Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-03
... Monitoring Reference and Equivalent Methods: Designation of One New Equivalent Method AGENCY: Environmental Protection Agency. ACTION: Notice of the designation of one new equivalent method for monitoring ambient air... accordance with 40 CFR part 53, one new equivalent method for measuring concentrations of lead (Pb) in total...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-07
... Monitoring Reference and Equivalent Methods; Designation of One New Equivalent Method AGENCY: Environmental Protection Agency. ACTION: Notice of the designation of one new equivalent method for monitoring ambient air... accordance with 40 CFR Part 53, one new equivalent method for measuring concentrations of ozone (O 3 ) in the...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-18
... Monitoring Reference and Equivalent Methods: Designation of Two New Equivalent Methods AGENCY: Environmental Protection Agency. ACTION: Notice of the designation of two new equivalent methods for monitoring ambient air... accordance with 40 CFR Part 53, two new equivalent methods for measuring concentrations of PM 10 and sulfur...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-27
... Monitoring Reference and Equivalent Methods: Designation of One New Equivalent Method AGENCY: Environmental Protection Agency. ACTION: Notice of the designation of one new equivalent method for monitoring ambient air... accordance with 40 CFR Part 53, one new equivalent method for measuring concentrations of ozone (O 3 ) in the...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-28
... Monitoring Reference and Equivalent Methods: Designation of One New Equivalent Method AGENCY: Environmental Protection Agency. ACTION: Notice of the designation of one new equivalent method for monitoring ambient air... accordance with 40 CFR Part 53, one new equivalent method for measuring concentrations of lead (Pb) in total...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-04
... Monitoring Reference and Equivalent Methods: Designation of One New Equivalent Method AGENCY: Environmental Protection Agency. ACTION: Notice of the designation of one new equivalent method for monitoring ambient air... accordance with 40 CFR part 53, one new equivalent method for measuring concentrations of lead (Pb) in total...
NASA Astrophysics Data System (ADS)
Jiao, Wan; Hagler, Gayle; Williams, Ronald; Sharpe, Robert; Brown, Ryan; Garver, Daniel; Judge, Robert; Caudill, Motria; Rickard, Joshua; Davis, Michael; Weinstock, Lewis; Zimmer-Dauphinee, Susan; Buckley, Ken
2016-11-01
Advances in air pollution sensor technology have enabled the development of small and low-cost systems to measure outdoor air pollution. The deployment of a large number of sensors across a small geographic area would have potential benefits to supplement traditional monitoring networks with additional geographic and temporal measurement resolution, if the data quality were sufficient. To understand the capability of emerging air sensor technology, the Community Air Sensor Network (CAIRSENSE) project deployed low-cost, continuous, and commercially available air pollution sensors at a regulatory air monitoring site and as a local sensor network over a surrounding ˜ 2 km area in the southeastern United States. Collocation of sensors measuring oxides of nitrogen, ozone, carbon monoxide, sulfur dioxide, and particles revealed highly variable performance, both in terms of comparison to a reference monitor as well as the degree to which multiple identical sensors produced the same signal. Multiple ozone, nitrogen dioxide, and carbon monoxide sensors revealed low to very high correlation with a reference monitor, with Pearson sample correlation coefficient (r) ranging from 0.39 to 0.97, -0.25 to 0.76, and -0.40 to 0.82, respectively. The only sulfur dioxide sensor tested revealed no correlation (r < 0.5) with a reference monitor and erroneously high concentration values. A wide variety of particulate matter (PM) sensors were tested with variable results - some sensors had very high agreement (e.g., r = 0.99) between identical sensors but moderate agreement with a reference PM2.5 monitor (e.g., r = 0.65). For select sensors that had moderate to strong correlation with reference monitors (r > 0.5), step-wise multiple linear regression was performed to determine if ambient temperature, relative humidity (RH), or age of the sensor in number of sampling days could be used in a correction algorithm to improve the agreement. Maximum improvement in agreement with a reference, incorporating all factors, was observed for an NO2 sensor (multiple correlation coefficient R2adj-orig = 0.57, R2adj-final = 0.81); however, other sensors showed no apparent improvement in agreement. A four-node sensor network was successfully able to capture ozone (two nodes) and PM (four nodes) data for an 8-month period of time and show expected diurnal concentration patterns, as well as potential ozone titration due to nearby traffic emissions. Overall, this study demonstrates the performance of emerging air quality sensor technologies in a real-world setting; the variable agreement between sensors and reference monitors indicates that in situ testing of sensors against benchmark monitors should be a critical aspect of all field studies.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Methods for Air Monitoring of Criteria Pollutants Pollutant Ref. or equivalent Manual or automated Applicable part 50 appendix Applicable subparts of part 53 A B C D E F SO2 Reference Manual A Equivalent Manual ✓ ✓ Automated ✓ ✓ ✓ CO Reference Automated C ✓ ✓ Equivalent Manual ✓ ✓ Automated ✓ ✓ ✓ O3...
The construction of control chart for PM10 functional data
NASA Astrophysics Data System (ADS)
Shaadan, Norshahida; Jemain, Abdul Aziz; Deni, Sayang Mohd
2014-06-01
In this paper, a statistical procedure to construct a control chart for monitoring air quality (PM10) using functional data is proposed. A set of daily indices that represent the daily PM10 curves were obtained using Functional Principal Component Analysis (FPCA). By means of an iterative charting procedure, a reference data set that represented a stable PM10 process was obtained. The data were then used as a reference for monitoring future data. The application of the procedure was conducted using seven-year (2004-2010) period of recorded data from the Klang air quality monitoring station located in the Klang Valley region of Peninsular Malaysia. The study showed that the control chart provided a useful visualization tool for monitoring air quality and was capable in detecting abnormality in the process system. As in the case of Klang station, the results showed that with reference to 2004-2008, the air quality (PM10) in 2010 was better than that in 2009.
40 CFR Appendix A to Subpart F of... - References
Code of Federal Regulations, 2010 CFR
2010-07-01
... Indoor Air Sampling: Design and Calibration., JAPCA, 37: 1303-1307 (1987). (2) Vanderpool, R.W. and K.L... Part 53 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) AMBIENT AIR MONITORING REFERENCE AND EQUIVALENT METHODS Procedures for Testing Performance Characteristics...
40 CFR Appendix A to Subpart F of... - References
Code of Federal Regulations, 2011 CFR
2011-07-01
... Indoor Air Sampling: Design and Calibration., JAPCA, 37: 1303-1307 (1987). (2) Vanderpool, R.W. and K.L... Part 53 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) AMBIENT AIR MONITORING REFERENCE AND EQUIVALENT METHODS Procedures for Testing Performance Characteristics...
40 CFR 53.11 - Cancellation of reference or equivalent method designation.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 5 2010-07-01 2010-07-01 false Cancellation of reference or equivalent method designation. 53.11 Section 53.11 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) AMBIENT AIR MONITORING REFERENCE AND EQUIVALENT METHODS General...
The open literature, Federal publications, industrial reports, and other sources published between 1975 and 1980 were reviewed for information relevant to personal air samplers potentially useful in sampling organic compounds at ambient levels (50-200 ppt). Seventy one references...
40 CFR 53.14 - Modification of a reference or equivalent method.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 5 2010-07-01 2010-07-01 false Modification of a reference or equivalent method. 53.14 Section 53.14 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) AMBIENT AIR MONITORING REFERENCE AND EQUIVALENT METHODS General Provisions...
40 CFR 53.8 - Designation of reference and equivalent methods.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 5 2010-07-01 2010-07-01 false Designation of reference and equivalent methods. 53.8 Section 53.8 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) AMBIENT AIR MONITORING REFERENCE AND EQUIVALENT METHODS General Provisions § 53.8...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 6 2014-07-01 2014-07-01 false Section Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) AMBIENT AIR MONITORING REFERENCE AND EQUIVALENT METHODS Procedures for Determining Comparability Between Candidate Methods and Reference Method...
[Calibration of a room air gas monitor with certified reference gases].
Krueger, W A; Trick, M; Schroeder, T H; Unertl, K E
2003-12-01
Photo-acoustic infrared spectrometry is considered to be the gold standard for on-line measurement of anesthetic waste gas in room air. For maintenance of the precision of the measurements, the manufacturer recommends calibration of the gas monitor monitor every 3-12 months. We investigated whether the use of reference gases with analysis certificate could serve as a feasible alternative to commercial recalibration. We connected a multi-gas monitor type1302 (Bruel & Kjaer, Naerum, Denmark) to compressed air bottles containing reference gases with analysis certificate. Using a T-piece with a flow-meter, we avoided the entry of room air during the calibration phase. Highly purified nitrogen was used for zero calibration. The reference concentrations for desflurane, enflurane, halothane, isoflurane, and sevoflurane ranged from 41.6-51.1 ml/m(3) (ppm) in synthetic air. Since there is an overlap of the infrared absorption spectra of volatile anesthetics with alcohol used in operating rooms, we performed a cross-compensation with iso-propanol (107.0 ppm). A two-point calibration was performed for N(2)O (96.2 and 979.0 ppm), followed by cross-compensation with CO(2). Nafion tubes were used in order to avoid erroneous measurements due to molecular relaxation phenomena. The deviation of the measurement values ranged initially from 0-2.0% and increased to up to 4.9% after 18 months. For N(2)O, the corresponding values were 4.2% and 2.7%, respectively. Thus, our calibration procedure using certified reference gases yielded precise measurements with low deterioration over 18 months. It seems to be advantageous that the precision can be determined whenever deemed necessary. This allows for an individual decision, when the gas monitor needs to be calibrated again. The costs for reference gases and working time as well as logistic aspects such as storage and expiration dates must be individually balanced against the costs for commercial recalibration.
Method and apparatus for monitoring oxygen partial pressure in air masks
NASA Technical Reports Server (NTRS)
Kelly, Mark E. (Inventor); Pettit, Donald R. (Inventor)
2006-01-01
Method and apparatus are disclosed for monitoring an oxygen partial pressure in an air mask and providing a tactile warning to the user. The oxygen partial pressure in the air mask is detected using an electrochemical sensor, the output signal from which is provided to a comparator. The comparator compares the output signal with a preset reference value or range of values representing acceptable oxygen partial pressures. If the output signal is different than the reference value or outside the range of values, the air mask is vibrated by a vibrating motor to alert the user to a potentially hypoxic condition.
There are a number of Federal Reference Method (FRM) and Federal Equivalent Method (FEM) systems used to monitor the six criteria air pollutants (Lead [Pb], Carbon Monoxide [CO], Sulfur Dioxide [SO2], Nitrogen Dioxide [NO2], Ozone [O3], Particulate Matter [PM]) to determine if an...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-11
... Methods: Designation of a New Equivalent Method AGENCY: Environmental Protection Agency. ACTION: Notice of the designation of a new equivalent method for monitoring ambient air quality. SUMMARY: Notice is... part 53, a new equivalent method for measuring concentrations of PM 2.5 in the ambient air. FOR FURTHER...
Estimating Air-Manganese Exposures in Two Ohio Towns ...
Manganese (Mn), a nutrient required for normal metabolic function, is also a persistent air pollutant and a known neurotoxin at high concentrations. Elevated exposures can result in a number of motor and cognitive deficits. Quantifying chronic personal exposures in residential populations studied by environmental epidemiologists can be time-consuming and expensive. We developed an approach for quantifying chronic exposures for two towns (Marietta and East Liverpool, Ohio) with elevated air Mn concentrations (air-Mn) related to ambient emissions from industrial processes. This was accomplished through the use of measured and modeled data in the communities studied. A novel approach was developed because one of the facilities lacked emissions data for the purposes of modeling. A unit emission rate was assumed over the surface area of both source facilities, and offsite concentrations at receptor residences and air monitoring sites were estimated with the American Meteorological Society/Environmental Protection Agency Regulatory Model (AERMOD). Ratios of all modeled receptor points were created, and a long-running air monitor was identified as a reference location. All ratios were normalized to the reference location. Long-term averages at all residential receptor points were calculated using modeled ratios and data from the reference monitoring location. Modeled five-year average air-Mn exposures ranged from 0.03-1.61 µg/m3 in Marietta and 0.01-6.32 µg/m3 in E
PM2.5 Monitors in New England | Air Quality Planning Unit ...
2017-04-10
The New England states are currently operating a network of 58 ambient PM2.5 air quality monitors that meet EPA's Federal Reference Method (FRM) for PM2.5, which is necessary in order for the resultant data to be used for attainment/non-attainment purposes. These monitors collect particles in the ambient air smaller than 2.5 microns in size on a filter, which is weighed prior and post sampling to produce a 24-hour sample concentration.
Performance Evaluation of the United Nations Environment Programme Air Quality Monitoring Unit
A request for technical collaboration between the UNEP and the US EPA resulted in the establishment of a MCRADA. The purpose of this agreement was to evaluate an air quality monitoring system (referred to as the UNEP pod) developed by the UNEP for use in environmental situations ...
Code of Federal Regulations, 2012 CFR
2012-07-01
... curtain incinerators that burn 100 percent yard waste? 60.1450 Section 60.1450 Protection of Environment... Air Curtain Incinerators That Burn 100 Percent Yard Waste § 60.1450 How must I monitor opacity for air curtain incinerators that burn 100 percent yard waste? (a) Use EPA Reference Method 9 in appendix A of...
Code of Federal Regulations, 2010 CFR
2010-07-01
... curtain incinerators that burn 100 percent yard waste? 60.1450 Section 60.1450 Protection of Environment... Air Curtain Incinerators That Burn 100 Percent Yard Waste § 60.1450 How must I monitor opacity for air curtain incinerators that burn 100 percent yard waste? (a) Use EPA Reference Method 9 in appendix A of...
Code of Federal Regulations, 2011 CFR
2011-07-01
... curtain incinerators that burn 100 percent yard waste? 60.1450 Section 60.1450 Protection of Environment... Air Curtain Incinerators That Burn 100 Percent Yard Waste § 60.1450 How must I monitor opacity for air curtain incinerators that burn 100 percent yard waste? (a) Use EPA Reference Method 9 in appendix A of...
Code of Federal Regulations, 2014 CFR
2014-07-01
... curtain incinerators that burn 100 percent yard waste? 60.1450 Section 60.1450 Protection of Environment... Air Curtain Incinerators That Burn 100 Percent Yard Waste § 60.1450 How must I monitor opacity for air curtain incinerators that burn 100 percent yard waste? (a) Use EPA Reference Method 9 in appendix A of...
Code of Federal Regulations, 2013 CFR
2013-07-01
... curtain incinerators that burn 100 percent yard waste? 60.1450 Section 60.1450 Protection of Environment... Air Curtain Incinerators That Burn 100 Percent Yard Waste § 60.1450 How must I monitor opacity for air curtain incinerators that burn 100 percent yard waste? (a) Use EPA Reference Method 9 in appendix A of...
This study evaluates performance of nitrogen dioxide NO2 and volatile organic compounds (VOC) passive samplers with corresponding reference monitors at two sites in the Detroit, Michigan area during the summer of 2005.
Impact of wildfires on regional air pollution
We examine the impact of wildfires and agricultural/prescribed burning on regional air pollution and Air Quality Index (AQI) between 2006 and 2013. We define daily regional air pollution using monitoring sites for ozone (n=1595), PM2.5 collected by Federal Reference Method (n=10...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-01
... Hydrogen Peroxide Filter Extraction'' In this method, total suspended particulate matter (TSP) is collected on glass fiber filters according to 40 CFR Appendix G to part 50, EPA Reference Method for the Determination of Lead in Suspended Particulate Matter Collected From Ambient Air. The filter samples are...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-05
... Methods: Designation of Three New Equivalent Methods AGENCY: Environmental Protection Agency. ACTION: Notice of the designation of three new equivalent methods for monitoring ambient air quality. SUMMARY... equivalent methods, one for measuring concentrations of PM 2.5 , one for measuring concentrations of PM 10...
Over the past decade, a range of sensor technologies became available on the market, enabling a revolutionary shift in air pollution monitoring and assessment. With their cost of up to three orders of magnitude lower than standard/reference instruments, many avenues for applicati...
Community Air Sensor Network (CAIRSENSE) project ...
Advances in air pollution sensor technology have enabled the development of small and low cost systems to measure outdoor air pollution. The deployment of a large number of sensors across a small geographic area would have potential benefits to supplement traditional monitoring networks with additional geographic and temporal measurement resolution, if the data quality were sufficient. To understand the capability of emerging air sensor technology, the Community Air Sensor Network (CAIRSENSE) project deployed low cost, continuous and commercially-available air pollution sensors at a regulatory air monitoring site and as a local sensor network over a surrounding ~2 km area in Southeastern U.S. Co-location of sensors measuring oxides of nitrogen, ozone, carbon monoxide, sulfur dioxide, and particles revealed highly variable performance, both in terms of comparison to a reference monitor as well as whether multiple identical sensors reproduced the same signal. Multiple ozone, nitrogen dioxide, and carbon monoxide sensors revealed low to very high correlation with a reference monitor, with Pearson sample correlation coefficient (r) ranging from 0.39 to 0.97, -0.25 to 0.76, -0.40 to 0.82, respectively. The only sulfur dioxide sensor tested revealed no correlation (r 0.5), step-wise multiple linear regression was performed to determine if ambient temperature, relative humidity (RH), or age of the sensor in sampling days could be used in a correction algorihm to im
40 CFR 53.16 - Supersession of reference methods.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 5 2010-07-01 2010-07-01 false Supersession of reference methods. 53... (CONTINUED) AMBIENT AIR MONITORING REFERENCE AND EQUIVALENT METHODS General Provisions § 53.16 Supersession of reference methods. (a) This section prescribes procedures and criteria applicable to requests that...
Low-Cost Sensor POD Design Considerations
Public concern about air quality is growing in communities around the globe as citizens learn more about the potential health effects of the air they breathe. Air quality monitoring has often been restricted to organizations administering Federal Reference Method (FRM) or Federal...
Low-Cost Sensor POD Design Considerations
Public concern about air quality is growing in communities around the globe as citizens learn more about the potential health effects of the air they breathe.1 Air quality monitoring has often been restricted to organizations administering Federal Reference Method (FRM) or Federa...
EPA scientists develop Federal Reference & Equivalent Methods for measuring key air pollutants
EPA operates a nationwide air monitoring network to measure six primary air pollutants: carbon monoxide, lead, sulfur dioxide, ozone, nitrogen dioxide, and particulate matter as part of its mission to protect human health and the environment.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-28
...EPA is finalizing rule revisions that modify existing requirements for sources affected by the federally administered emission trading programs including the NOX Budget Trading Program, the Acid Rain Program, and the Clean Air Interstate Rule. EPA is amending its Protocol Gas Verification Program (PGVP) and the minimum competency requirements for air emission testing (formerly air emission testing body requirements) to improve the accuracy of emissions data. EPA is also amending other sections of the Acid Rain Program continuous emission monitoring system regulations by adding and clarifying certain recordkeeping and reporting requirements, removing the provisions pertaining to mercury monitoring and reporting, removing certain requirements associated with a class-approved alternative monitoring system, disallowing the use of a particular quality assurance option in EPA Reference Method 7E, adding two incorporation by references that were inadvertently left out of the January 24, 2008 final rule, adding two new definitions, revising certain compliance dates, and clarifying the language and applicability of certain provisions.
Performance Evaluation of the United Nations Environment ...
A request for technical collaboration between the UNEP and the US EPA resulted in the establishment of a MCRADA. The purpose of this agreement was to evaluate an air quality monitoring system (referred to as the UNEP pod) developed by the UNEP for use in environmental situations where more sophisticated monitoring instrumentation was not available. The US EPA has conducted numerous evaluations of other similar sensor pods at its Research Triangle Park, NC research campus and has trained staff as well as established research designs for such efforts. Under the terms of the MCRADA, the US EPA would operate the pod using UNEP provided operating procedures in a manner consistent with its planned intent of deployment. The US EPA would collect air quality monitoring data from the pod involving select environmental measures over a period of approximately one month. Reference monitoring data collected from collocated federal regulatory monitors would be used to establish a comparison between the two systems and thus establishment of performance characteristics. In addition, the US EPA would provide feedback information to the UNEP as to observed ease of use features of the pod that would be beneficial in its future evolution and deployment. The UNEP recently developed a multipollutant sensor pod called the UNEP Air Quality Monitoring Unit, herein simply defined as the UNEP pod (http://aqicn.org/faq/2015-10-28/unep-air-quality-monitoring-station/). First introduced in 20
Baron, Ronan; Saffell, John
2017-11-22
This review examines the use of amperometric electrochemical gas sensors for monitoring inorganic gases that affect urban air quality. First, we consider amperometric gas sensor technology including its development toward specifically designed air quality sensors. We then review recent academic and research organizations' studies where this technology has been trialed for air quality monitoring applications: early studies showed the potential of electrochemical gas sensors when colocated with reference Air Quality Monitoring (AQM) stations. Spatially dense networks with fast temporal resolution provide information not available from sparse AQMs with longer recording intervals. We review how this technology is being offered as commercial urban air quality networks and consider the remaining challenges. Sensors must be sensitive, selective, and stable; air quality monitors/nodes must be electronically and mechanically well designed. Data correction is required and models with differing levels of sophistication are being designed. Data analysis and validation is possibly the biggest remaining hurdle needed to deliver reliable concentration readings. Finally, this review also considers the roles of companies, urban infrastructure requirements, and public research in the development of this technology.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-11
...Recent EPA gas audit results indicate that some gas cylinders used to calibrate continuous emission monitoring systems on stationary sources do not meet EPA's performance specification. Reviews of stack test reports in recent years indicate that some stack testers do not properly follow EPA test methods or do not correctly calculate test method results. Therefore, EPA is proposing to amend its Protocol Gas Verification Program (PGVP) and the minimum competency requirements for air emission testing (formerly air emission testing body requirements) to improve the accuracy of emissions data. EPA is also proposing to amend other sections of the Acid Rain Program continuous emission monitoring system regulations by adding and clarifying certain recordkeeping and reporting requirements, removing the provisions pertaining to mercury monitoring and reporting, removing certain requirements associated with a class-approved alternative monitoring system, disallowing the use of a particular quality assurance option in EPA Reference Method 7E, adding an incorporation by reference that was inadvertently left out of the January 24, 2008 final rule, and clarifying the language and applicability of certain provisions.
SUPPORT FOR REFERENCE AND EQUIVALENCY PROGRAM
Federal Reference Methods (FRMs) and Federal Equivalent Methods (FEMs) form the backbone of the EPA's national monitoring strategy. They are the measurement methodologies that define attainment of a National Ambient Air Quality Standard (NAAQS). As knowledge and technology adva...
AIRQino, a low-cost air quality mobile platform
NASA Astrophysics Data System (ADS)
Zaldei, Alessandro; Vagnoli, Carolina; Di Lonardo, Sara; Gioli, Beniamino; Gualtieri, Giovanni; Toscano, Piero; Martelli, Francesca; Matese, Alessandro
2015-04-01
Recent air quality regulations (Directive 2008/50/EC) enforce the transition from point-based monitoring networks to new tools that must be capable of mapping and forecasting air quality on the totality of land area, and therefore the totality of citizens. This implies new technologies such as models and additional indicative measurements, are needed in addition to accurate fixed air quality monitoring stations, that until now have been taken as reference by local administrators for the enforcement of various mitigation strategies. However, due to their sporadic spatial distribution, they cannot describe the highly resolved spatial pollutant variations within cities. Integrating additional indicative measurements may provide adequate information on the spatial distribution of the ambient air quality, also allowing for a reduction of the required minimum number of fixed sampling points, whose high cost and complex maintenance still remain a crucial concern for local administrators. New low-cost and small size sensors are becoming available, that could be employed in air quality monitoring including mobile applications. However, accurate assessment of their accuracy and performance both in controlled and real monitoring conditions is crucially needed. Quantifying sensor response is a significant challenge due to the sensitivity to ambient temperature and humidity and the cross-sensitivity to others pollutant species. This study reports the development of an Arduino compatible electronic board (AIRQino) which integrates a series of low-cost metal oxide and NDIR sensors for air quality monitoring, with sensors to measure air temperature, relative humidity, noise, solar radiation and vertical acceleration. A comparative assessment was made for CO2, CO, NO2, CH4, O3, VOCs concentrations, temperature and relative humidity. A controlled climatic chamber study (-80°C / +80°C) was performed to verify temperature and humidity interference using reference gas cylinders and high quality reference sensors. The AIRQino was installed on mobile vectors such as bikes, buses and trams in the cities of Firenze and Siracusa (Italy), that send data real-time to a Web portal. By integrating a microprocessor unit it is capable of directly updating calibration coefficients to provide corrected sensor output as digital string through RS232 serial port. Results from the lab tests and the 'real world' mobile applications are presented and discussed, to assess to what extent this sensor technology might be useful for the development of portable, compact, wireless and cost-effective system for air quality monitoring in urban areas at high spatio-temporal resolution.
This product is an easy-to-use Excel-based macro analysis tool (MAT) for performing comparisons of air sensor data with reference data and interpreting the results. This tool tackles one of the biggest hurdles in citizen-led community air monitoring projects – working with ...
Maintaining vigilance on a simulated ATC monitoring task across repeated sessions.
DOT National Transportation Integrated Search
1994-03-01
Maintaining alertness to information provided visually is an important aspect of air traffic controllers' work. Improper or incomplete scanning and monitoring behavior is often referred to as one of the causal factors associated with operational erro...
Current Status of EPA Protocol Gas Verification Program
Accurate compressed gas reference standards are needed to calibrate and audit continuous emission monitors (CEMs) and ambient air quality monitors that are being used for regulatory purposes. US Environmental Protection Agency (EPA) established its traceability protocol to ensur...
Research on Air Quality Evaluation based on Principal Component Analysis
NASA Astrophysics Data System (ADS)
Wang, Xing; Wang, Zilin; Guo, Min; Chen, Wei; Zhang, Huan
2018-01-01
Economic growth has led to environmental capacity decline and the deterioration of air quality. Air quality evaluation as a fundamental of environmental monitoring and air pollution control has become increasingly important. Based on the principal component analysis (PCA), this paper evaluates the air quality of a large city in Beijing-Tianjin-Hebei Area in recent 10 years and identifies influencing factors, in order to provide reference to air quality management and air pollution control.
NASA Astrophysics Data System (ADS)
Tasić, Viša; Jovašević-Stojanović, Milena; Vardoulakis, Sotiris; Milošević, Novica; Kovačević, Renata; Petrović, Jelena
2012-07-01
Accurate monitoring of indoor mass concentrations of particulate matter is very important for health risk assessment as people in developed countries spend approximately 90% of their time indoors. The direct reading, aerosol monitoring device, Turnkey, OSIRIS Particle Monitor (Model 2315) and the European reference low volume sampler, LVS3 (Sven/Leckel LVS3) with size-selective inlets for PM10 and PM2.5 fractions were used to assess the comparability of available optical and gravimetric methods for particulate matter characterization in indoor air. Simultaneous 24-hour samples were collected in an indoor environment for 60 sampling periods in the town of Bor, Serbia. The 24-hour mean PM10 levels from the OSIRIS monitor were well correlated with the LVS3 levels (R2 = 0.87) and did not show statistically significant bias. The 24-hour mean PM2.5 levels from the OSIRIS monitor were moderately correlated with the LVS3 levels (R2 = 0.71), but show statistically significant bias. The results suggest that the OSIRIS monitor provides sufficiently accurate measurements for PM10. The OSIRIS monitor underestimated the indoor PM10 concentrations by approximately 12%, relative to the reference LVS3 sampler. The accuracy of PM10 measurements could be further improved through empirical adjustment. For the fine fraction of particulate matter, PM2.5, it was found that the OSIRIS monitor underestimated indoor concentrations by approximately 63%, relative to the reference LVS3 sampler. This could lead to exposure misclassification in health effects studies relying on PM2.5 measurements collected with this instrument in indoor environments.
NASA Astrophysics Data System (ADS)
Żymełka, Piotr; Nabagło, Daniel; Janda, Tomasz; Madejski, Paweł
2017-12-01
Balanced distribution of air in coal-fired boiler is one of the most important factors in the combustion process and is strongly connected to the overall system efficiency. Reliable and continuous information about combustion airflow and fuel rate is essential for achieving optimal stoichiometric ratio as well as efficient and safe operation of a boiler. Imbalances in air distribution result in reduced boiler efficiency, increased gas pollutant emission and operating problems, such as corrosion, slagging or fouling. Monitoring of air flow trends in boiler is an effective method for further analysis and can help to appoint important dependences and start optimization actions. Accurate real-time monitoring of the air distribution in boiler can bring economical, environmental and operational benefits. The paper presents a novel concept for online monitoring system of air distribution in coal-fired boiler based on real-time numerical calculations. The proposed mathematical model allows for identification of mass flow rates of secondary air to individual burners and to overfire air (OFA) nozzles. Numerical models of air and flue gas system were developed using software for power plant simulation. The correctness of the developed model was verified and validated with the reference measurement values. The presented numerical model for real-time monitoring of air distribution is capable of giving continuous determination of the complete air flows based on available digital communication system (DCS) data.
40 CFR 53.5 - Processing of applications.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 5 2010-07-01 2010-07-01 false Processing of applications. 53.5 Section 53.5 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) AMBIENT AIR MONITORING REFERENCE AND EQUIVALENT METHODS General Provisions § 53.5 Processing of...
CURRENT STATUS OF THE EPA PROTOCOL GAS PROGRAM
Accurate compressed gas calibration standards are needed to calibrate continuous emission monitors (CEMs) and ambient air quality monitors that are being used for regulatory purposes. EPA has published a protocol to establish the traceability of these standards to national refer...
Micro-controller based air pressure monitoring instrumentation system using optical fibers as sensor
NASA Astrophysics Data System (ADS)
Hazarika, D.; Pegu, D. S.
2013-03-01
This paper describes a micro-controller based instrumentation system to monitor air pressure using optical fiber sensors. The principle of macrobending is used to develop the sensor system. The instrumentation system consists of a laser source, a beam splitter, two multi mode optical fibers, two Light Dependent Resistance (LDR) based timer circuits and a AT89S8252 micro-controller. The beam splitter is used to divide the laser beam into two parts and then these two beams are launched into two multi mode fibers. One of the multi mode fibers is used as the sensor fiber and the other one is used as the reference fiber. The use of the reference fiber is to eliminate the environmental effects while measuring the air pressure magnitude. The laser beams from the sensor and reference fibers are applied to two identical LDR based timer circuits. The LDR based timer circuits are interfaced to a micro-controller through its counter pins. The micro-controller samples the frequencies of the timer circuits using its counter-0 and counter-1 and the counter values are then processed to provide the measure of air pressure magnitude.
40 CFR 53.10 - Appeal from rejection of application.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 5 2010-07-01 2010-07-01 false Appeal from rejection of application. 53.10 Section 53.10 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) AMBIENT AIR MONITORING REFERENCE AND EQUIVALENT METHODS General Provisions § 53.10...
The US Environmental Protection Agency (EPA) along with state, local, and tribal governments operate Federal Reference Method (FRM) and Federal Equivalent Method (FEM) instruments to assess compliance with US air pollution standards designed to protect human and ecosystem health....
Characteristics and applications of small, portable gaseous air pollution monitors.
McKercher, Grant R; Salmond, Jennifer A; Vanos, Jennifer K
2017-04-01
Traditional approaches for measuring air quality based on fixed measurements are inadequate for personal exposure monitoring. To combat this issue, the use of small, portable gas-sensing air pollution monitoring technologies is increasing, with researchers and individuals employing portable and mobile methods to obtain more spatially and temporally representative air pollution data. However, many commercially available options are built for various applications and based on different technologies, assumptions, and limitations. A review of the monitor characteristics of small, gaseous monitors is missing from current scientific literature. A state-of-the-art review of small, portable monitors that measure ambient gaseous outdoor pollutants was developed to address broad trends during the last 5-10 years, and to help future experimenters interested in studying gaseous air pollutants choose monitors appropriate for their application and sampling needs. Trends in small, portable gaseous air pollution monitor uses and technologies were first identified and discussed in a review of literature. Next, searches of online databases were performed for articles containing specific information related to performance, characteristics, and use of such monitors that measure one or more of three criteria gaseous air pollutants: ozone, nitrogen dioxide, and carbon monoxide. All data were summarized into reference tables for comparison between applications, physical features, sensing capabilities, and costs of the devices. Recent portable monitoring trends are strongly related to associated applications and audiences. Fundamental research requires monitors with the best individual performance, and thus the highest cost technology. Monitor networking favors real-time capabilities and moderate cost for greater reproduction. Citizen science and crowdsourcing applications allow for lower-cost components; however important strengths and limitations for each application must be addressed or acknowledged for the given use. Copyright © 2016 Elsevier Ltd. All rights reserved.
40 CFR 53.58 - Operational field precision and blank test.
Code of Federal Regulations, 2013 CFR
2013-07-01
... PROGRAMS (CONTINUED) AMBIENT AIR MONITORING REFERENCE AND EQUIVALENT METHODS Procedures for Testing Physical (Design) and Performance Characteristics of Reference Methods and Class I and Class II Equivalent... samplers are also subject to a test for possible deposition of particulate matter on inactive filters...
40 CFR 53.58 - Operational field precision and blank test.
Code of Federal Regulations, 2014 CFR
2014-07-01
... PROGRAMS (CONTINUED) AMBIENT AIR MONITORING REFERENCE AND EQUIVALENT METHODS Procedures for Testing Physical (Design) and Performance Characteristics of Reference Methods and Class I and Class II Equivalent... samplers are also subject to a test for possible deposition of particulate matter on inactive filters...
40 CFR 53.58 - Operational field precision and blank test.
Code of Federal Regulations, 2010 CFR
2010-07-01
... PROGRAMS (CONTINUED) AMBIENT AIR MONITORING REFERENCE AND EQUIVALENT METHODS Procedures for Testing Physical (Design) and Performance Characteristics of Reference Methods and Class I and Class II Equivalent... samplers are also subject to a test for possible deposition of particulate matter on inactive filters...
40 CFR 53.58 - Operational field precision and blank test.
Code of Federal Regulations, 2012 CFR
2012-07-01
... PROGRAMS (CONTINUED) AMBIENT AIR MONITORING REFERENCE AND EQUIVALENT METHODS Procedures for Testing Physical (Design) and Performance Characteristics of Reference Methods and Class I and Class II Equivalent... samplers are also subject to a test for possible deposition of particulate matter on inactive filters...
40 CFR 53.12 - Request for hearing on cancellation.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 5 2010-07-01 2010-07-01 false Request for hearing on cancellation. 53.12 Section 53.12 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) AMBIENT AIR MONITORING REFERENCE AND EQUIVALENT METHODS General Provisions § 53.12 Request for...
Emerging air monitoring technologies and thoughts on role of Department of State
The slides will support topics ranging from federal reference/equivalent level monitoring that is already underway at a number of embassies and consulates worldwide, as well as discuss non-regulatory research methods that could be considered to answer specific questions. Finally...
Bayly, John G.; Booth, Ronald J.
1977-01-01
An apparatus for monitoring the concentration of a vapor, such as heavy water, having at least one narrow bandwidth in its absorption spectrum, in a sample gas such as air. The air is drawn into a chamber in which the vapor content is measured by means of its radiation absorption spectrum. High sensitivity is obtained by modulating the wavelength at a relatively high frequency without changing its optical path, while high stability against zero drift is obtained by the low frequency interchange of the sample gas to be monitored and of a reference sample. The variable HDO background due to natural humidity is automatically corrected.
NASA Astrophysics Data System (ADS)
Johnson, Nicholas E.; Bonczak, Bartosz; Kontokosta, Constantine E.
2018-07-01
The increased availability and improved quality of new sensing technologies have catalyzed a growing body of research to evaluate and leverage these tools in order to quantify and describe urban environments. Air quality, in particular, has received greater attention because of the well-established links to serious respiratory illnesses and the unprecedented levels of air pollution in developed and developing countries and cities around the world. Though numerous laboratory and field evaluation studies have begun to explore the use and potential of low-cost air quality monitoring devices, the performance and stability of these tools has not been adequately evaluated in complex urban environments, and further research is needed. In this study, we present the design of a low-cost air quality monitoring platform based on the Shinyei PPD42 aerosol monitor and examine the suitability of the sensor for deployment in a dense heterogeneous urban environment. We assess the sensor's performance during a field calibration campaign from February 7th to March 25th 2017 with a reference instrument in New York City, and present a novel calibration approach using a machine learning method that incorporates publicly available meteorological data in order to improve overall sensor performance. We find that while the PPD42 performs well in relation to the reference instrument using linear regression (R2 = 0.36-0.51), a gradient boosting regression tree model can significantly improve device calibration (R2 = 0.68-0.76). We discuss the sensor's performance and reliability when deployed in a dense, heterogeneous urban environment during a period of significant variation in weather conditions, and important considerations when using machine learning techniques to improve the performance of low-cost air quality monitors.
40 CFR 53.6 - Right to witness conduct of tests.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 5 2010-07-01 2010-07-01 false Right to witness conduct of tests. 53.6 Section 53.6 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) AMBIENT AIR MONITORING REFERENCE AND EQUIVALENT METHODS General Provisions § 53.6 Right to witness conduct...
Monitoring urban air quality using a high-density network of low-cost sensor nodes in Oslo, Norway.
NASA Astrophysics Data System (ADS)
Castell, Nuria; Schneider, Philipp; Vogt, Matthias; Dauge, Franck R.; Lahoz, William; Bartonova, Alena
2017-04-01
Urban air quality represents a major public health burden and is a long-standing concern to citizens. Air pollution is associated with a range of diseases, symptoms and conditions that impair health and quality of life. In Oslo, traffic, especially exhaust from heavy-duty and private diesel vehicles and dust resuspension from studded tyres, together with wood burning in winter, are the main sources of pollution. Norway, as part of the European Economic Area, is obliged to comply with the European air quality regulations and ensure clean air. Despite this, Oslo has exceeded both the NO2 and PM10 thresholds for health protection defined in the Directive 2008/50/EC. The air quality in the Oslo area is continuously monitored in 12 compliance monitoring stations. These stations provide reliable and accurate data but their density is too low to provide a detailed spatial distribution of air quality. The emergence of low-cost nodes enables observations at high spatial resolution, providing the opportunity to enhance existing monitoring systems. However, the data generated by these nodes is significantly less accurate and precise than the data provided by reference equipment. We have conducted an evaluation of low-cost nodes to monitor NO2 and PM10, comparing the data collected with low-cost nodes against CEN (European Standardization Organization) reference analysers. During January and March 2016, a network of 24 nodes was deployed in Oslo. During January, high NO2 levels were observed for several days in a row coinciding with the formation of a thermal inversion. During March, we observed an episode with high PM10 levels due to road dust resuspension. Our results show that there is a major technical challenge associated with current commercial low-cost sensors, regarding the sensor robustness and measurement repeatability. Despite this, low-cost sensor nodes are able to reproduce the NO2 and PM10 variability. The data from the sensors was employed to generate detailed NO2 and PM10 air quality maps using a data fusion technique. This way we were able to offer localized air quality information for the city of Oslo. The outlook for commercial low-cost sensors is promising, and our results show that currently some sensors are already capable of providing coarse information about air quality, indicating if the air quality is good, moderate or if the air is heavily polluted. This type of information could be suitable for applications that aim to raise awareness, or engage the community by monitoring local air quality, as such applications do not require the same accuracy as scientific or regulatory monitoring.
Development of intelligent monitoring purifier for indoor PM 2.5
NASA Astrophysics Data System (ADS)
Lou, Guanting; Zhu, Rong; Guo, Jiangwei; Wei, Yongqing
2018-03-01
The particulate matter 2.5 (PM2.5) refers to tiny particles or droplets in the air that are two and one half microns or less in width. PM2.5 is an air pollutant that is a concern for people’s health when levels in air are high. The intelligent monitoring purifier was developed to detect indoor PM2.5 concentration before and after purification and the monitoring data could be displayed on the LCD screen, displaying different color patterns according to the concentrations. Through the Bluetooth transport module, real-time values could also display on the mobile phone and voice broadcast PM2.5 concentration level in the air. When PM2.5 concentration is higher than the setting threshold, the convection fan rotation and the speed can be remote controlled with mobile phone through the Bluetooth transport. Therefore, the efficiency and scope of the purification could be enhanced and further better air quality could be achieved.
Impact of wildfires on regional air pollution | Science Inventory ...
We examine the impact of wildfires and agricultural/prescribed burning on regional air pollution and Air Quality Index (AQI) between 2006 and 2013. We define daily regional air pollution using monitoring sites for ozone (n=1595), PM2.5 collected by Federal Reference Method (n=1058), and constituents of PM2.5 from the Interagency Monitoring of PROtected Visual Environment (IMPROVE) network (n=264) and use satellite image analysis from the NOAA Hazard Mapping System (HMS) to determine days on which visible smoke plumes are detected in the vertical column of the monitoring site. To examine the impact of smoke from these fires on regional air pollution we use a two stage approach, accounting for within site (1st stage) and between site (2nd stage) variations. At the first stage we estimate a monitor-specific plume day effect describing the relative change in pollutant concentrations on the days impacted by smoke plume while accounting for confounding effects of season and temperature_. At the second stage we combine monitor-specific plume day effects with a Bayesian hierarchical model and estimate a pooled nationally-averaged effect. HMS visible smoke plumes were detected on 6% of ozone, 8% of PM2.5 and 6% of IMPROVE network monitoring days. Our preliminary results indicate that the long range transport of air pollutants from wildfires and prescribed burns increase ozone concentration by 11% and PM2.5 mass by 34%. On all of the days where monitoring sites were AQI
40 CFR 63.8248 - What other requirements must I meet?
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) National Emission Standards for Hazardous Air Pollutants: Mercury Emissions From Mercury Cell... the reference temperature during the first regeneration cycle following the period that the monitoring...
30 CFR 7.507 - Air-monitoring components.
Code of Federal Regulations, 2010 CFR
2010-07-01
... in mines with a history of harmful gases, other than carbon monoxide, carbon dioxide, and methane... and Technology (NIST) “Standard Reference Materials” (SRMs). (4) The analytical accuracy of the...
Guide to monitoring smoke exposure of wildland firefighters.
Tim E. Reinhardt; Roger D. Ottmar; Michael J. Hallett
1999-01-01
Fire managers and safety officers concerned with smoke exposure among fire crews can use electronic carbon monoxide (CO) monitors to track and prevent overexposure to smoke. Commonly referred to as dosimeters, these lightweight instruments measure the concentration of CO in the air the firefighter's breathe. This guide outlines the protocol developed for sampling...
NASA Astrophysics Data System (ADS)
Li, Z.; Che, W.; Frey, H. C.; Lau, A. K. H.
2016-12-01
Portable air monitors are currently being developed and used to enable a move towards exposure monitoring as opposed to fixed site monitoring. Reliable methods are needed regarding capturing spatial and temporal variability in exposure concentration to obtain credible data from which to develop efficient exposure mitigation measures. However, there are few studies that quantify the validity and repeatability of the collected data. The objective of this study is to present and evaluate a collocated exposure monitoring (CEM) methodology including the calibration of portable air monitors against stationary reference equipment, side-by-side comparison of portable air monitors, personal or microenvironmental exposure monitoring and the processing and interpretation of the collected data. The CEM methodology was evaluated based on application to portable monitors TSI DustTrak II Aerosol Monitor 8530 for fine particulate matter (PM2.5) and TSI Q-Trak model 7575 with probe model 982 for CO, CO2, temperature and relative humidity. Taking a school sampling campaign in Hong Kong in January and June, 2015 as an example, the calibrated side-by-side measured 1 Hz PM2.5 concentrations showed good consistency between two sets of portable air monitors. Confidence in side-by-side comparison, PM2.5 concentrations of which most of the time were within 2 percent, enabled robust inference regarding differences when the monitors measured in classroom and pedestrian during school hour. The proposed CEM methodology can be widely applied in sampling campaigns with the objective of simultaneously characterizing pollutant concentrations in two or more locations or microenvironments. The further application of the CEM methodology to transportation exposure will be presented and discussed.
Carvlin, Graeme N; Lugo, Humberto; Olmedo, Luis; Bejarano, Ester; Wilkie, Alexa; Meltzer, Dan; Wong, Michelle; King, Galatea; Northcross, Amanda; Jerrett, Michael; English, Paul B; Hammond, Donald; Seto, Edmund
2017-12-01
The Imperial County Community Air Monitoring Network was developed as part of a community-engaged research study to provide real-time particulate matter (PM) air quality information at a high spatial resolution in Imperial County, California. The network augmented the few existing regulatory monitors and increased monitoring near susceptible populations. Monitors were both calibrated and field validated, a key component of evaluating the quality of the data produced by the community monitoring network. This paper examines the performance of a customized version of the low-cost Dylos optical particle counter used in the community air monitors compared with both PM 2.5 and PM 10 (particulate matter with aerodynamic diameters <2.5 and <10 μm, respectively) federal equivalent method (FEM) beta-attenuation monitors (BAMs) and federal reference method (FRM) gravimetric filters at a collocation site in the study area. A conversion equation was developed that estimates particle mass concentrations from the native Dylos particle counts, taking into account relative humidity. The R 2 for converted hourly averaged Dylos mass measurements versus a PM 2.5 BAM was 0.79 and that versus a PM 10 BAM was 0.78. The performance of the conversion equation was evaluated at six other sites with collocated PM 2.5 environmental beta-attenuation monitors (EBAMs) located throughout Imperial County. The agreement of the Dylos with the EBAMs was moderate to high (R 2 = 0.35-0.81). The performance of low-cost air quality sensors in community networks is currently not well documented. This paper provides a methodology for quantifying the performance of a next-generation Dylos PM sensor used in the Imperial County Community Air Monitoring Network. This air quality network provides data at a much finer spatial and temporal resolution than has previously been possible with government monitoring efforts. Once calibrated and validated, these high-resolution data may provide more information on susceptible populations, assist in the identification of air pollution hotspots, and increase community awareness of air pollution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
The study was conducted to determine the pollutants of concern in the Istanbul metropolitan area, monitoring equipment specifications and monitoring and data analysis procedures for an air quality and meteorological monitoring program. This volume consists of: (1) Introduction; (2) Selection of Pollutants of Concern; (3) Selection of Monitoring Locations; (4) Equipment Specifications; (5) Site Preparation and Security; (6) Standard Operating Procedures; (7) Data Reduction and Analysis; (8) Future Phases; (9) References. Also included are Attachments A through G and List of Tables and List of Figures.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-22
... on a particle filter. Because this new measurement approach is being approved for NAAQS compliance... Lead (Pb) on TSP High-Volume Filters.'' A sample of total suspended particulate matter (TSP) is collected on a glass fiber filter, using the sampler and procedure of the EPA Reference Method for the...
40 CFR Appendix A to Part 58 - Quality Assurance Requirements for SLAMS, SPMs and PSD Air Monitoring
Code of Federal Regulations, 2014 CFR
2014-07-01
... monitor. 3.3.4.4Pb Performance Evaluation Program (PEP) Procedures. Each year, one performance evaluation... Information 2. Quality System Requirements 3. Measurement Quality Check Requirements 4. Calculations for Data... 10 of this appendix) and at a national level in references 1, 2, and 3 of this appendix. 1...
40 CFR Appendix A to Part 58 - Quality Assurance Requirements for SLAMS, SPMs and PSD Air Monitoring
Code of Federal Regulations, 2013 CFR
2013-07-01
... monitor. 3.3.4.4Pb Performance Evaluation Program (PEP) Procedures. Each year, one performance evaluation... Information 2. Quality System Requirements 3. Measurement Quality Check Requirements 4. Calculations for Data... 10 of this appendix) and at a national level in references 1, 2, and 3 of this appendix. 1...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-22
...: The commenter supported EPA's efforts to require ozone monitoring in Utah's Uinta Basin. However, the... air quality in the basin is not in compliance with the ozone standard,'' to designate the Uinta Basin... commenter refers to. For a discussion of other monitoring data in the Uinta Basin, see the response to...
Calibration of low-cost gas sensors for an urban air quality monitoring network
NASA Astrophysics Data System (ADS)
Scott, A.; Kelley, C.; He, C.; Ghugare, P.; Lehman, A.; Benish, S.; Stratton, P.; Dickerson, R. R.; Zuidema, C.; Azdoud, Y.; Ren, X.
2017-12-01
In a warming world, environmental pollution may be exacerbated by anthropogenic activities, such as climate change and the urban heat island effect, as well as natural phenomena such as heat waves. However, monitoring air pollution at federal reference standards (approximately 1 part per billion or ppb for ambient ozone) is cost-prohibitive in heterogeneous urban areas as many expensive devices are required to fully capture a region's geo-spatial variability. Innovation in low-cost sensors provide a potential solution, yet technical challenges remain to overcome possible imprecision in the data. We present the calibrations of ozone and nitrous dioxide from a low-cost air quality monitoring device designed for the Baltimore Open Air Project. The sensors used in this study are commercially available thin film electrochemical sensors from SPEC Sensor, which are amperometric, meaning they generate current proportional to volumetric fraction of gas. The results of sensor calibrations in the laboratory and field are presented.
Morawska, Lidia; Thai, Phong K; Liu, Xiaoting; Asumadu-Sakyi, Akwasi; Ayoko, Godwin; Bartonova, Alena; Bedini, Andrea; Chai, Fahe; Christensen, Bryce; Dunbabin, Matthew; Gao, Jian; Hagler, Gayle S W; Jayaratne, Rohan; Kumar, Prashant; Lau, Alexis K H; Louie, Peter K K; Mazaheri, Mandana; Ning, Zhi; Motta, Nunzio; Mullins, Ben; Rahman, Md Mahmudur; Ristovski, Zoran; Shafiei, Mahnaz; Tjondronegoro, Dian; Westerdahl, Dane; Williams, Ron
2018-07-01
Over the past decade, a range of sensor technologies became available on the market, enabling a revolutionary shift in air pollution monitoring and assessment. With their cost of up to three orders of magnitude lower than standard/reference instruments, many avenues for applications have opened up. In particular, broader participation in air quality discussion and utilisation of information on air pollution by communities has become possible. However, many questions have been also asked about the actual benefits of these technologies. To address this issue, we conducted a comprehensive literature search including both the scientific and grey literature. We focused upon two questions: (1) Are these technologies fit for the various purposes envisaged? and (2) How far have these technologies and their applications progressed to provide answers and solutions? Regarding the former, we concluded that there is no clear answer to the question, due to a lack of: sensor/monitor manufacturers' quantitative specifications of performance, consensus regarding recommended end-use and associated minimal performance targets of these technologies, and the ability of the prospective users to formulate the requirements for their applications, or conditions of the intended use. Numerous studies have assessed and reported sensor/monitor performance under a range of specific conditions, and in many cases the performance was concluded to be satisfactory. The specific use cases for sensors/monitors included outdoor in a stationary mode, outdoor in a mobile mode, indoor environments and personal monitoring. Under certain conditions of application, project goals, and monitoring environments, some sensors/monitors were fit for a specific purpose. Based on analysis of 17 large projects, which reached applied outcome stage, and typically conducted by consortia of organizations, we observed that a sizable fraction of them (~ 30%) were commercial and/or crowd-funded. This fact by itself signals a paradigm change in air quality monitoring, which previously had been primarily implemented by government organizations. An additional paradigm-shift indicator is the growing use of machine learning or other advanced data processing approaches to improve sensor/monitor agreement with reference monitors. There is still some way to go in enhancing application of the technologies for source apportionment, which is of particular necessity and urgency in developing countries. Also, there has been somewhat less progress in wide-scale monitoring of personal exposures. However, it can be argued that with a significant future expansion of monitoring networks, including indoor environments, there may be less need for wearable or portable sensors/monitors to assess personal exposure. Traditional personal monitoring would still be valuable where spatial variability of pollutants of interest is at a finer resolution than the monitoring network can resolve. Copyright © 2018 Elsevier Ltd. All rights reserved.
Extrinsic fiber optic displacement sensors and displacement sensing systems
Murphy, K.A.; Gunther, M.F.; Vengsarkar, A.M.; Claus, R.O.
1994-04-05
An extrinsic Fizeau fiber optic sensor comprises a single-mode fiber, used as an input/output fiber, and a multimode fiber, used purely as a reflector, to form an air gap within a silica tube that acts as a Fizeau cavity. The Fresnel reflection from the glass/air interface at the front of the air gap (reference reflection) and the reflection from the air/glass interface at the far end of the air gap (sensing reflection) interfere in the input/output fiber. The two fibers are allowed to move in the silica tube, and changes in the air gap length cause changes in the phase difference between the reference reflection and the sensing reflection. This phase difference is observed as changes in intensity of the light monitored at the output arm of a fused biconical tapered coupler. The extrinsic Fizeau fiber optic sensor behaves identically whether it is surface mounted or embedded, which is unique to the extrinsic sensor in contrast to intrinsic Fabry-Perot sensors. The sensor may be modified to provide a quadrature phase shift extrinsic Fizeau fiber optic sensor for the detection of both the amplitude and the relative polarity of dynamically varying strain. The quadrature light signals may be generated by either mechanical or optical means. A plurality of the extrinsic sensors may connected in cascade and multiplexed to allow monitoring by a single analyzer. 14 figures.
Extrinsic fiber optic displacement sensors and displacement sensing systems
Murphy, Kent A.; Gunther, Michael F.; Vengsarkar, Ashish M.; Claus, Richard O.
1994-01-01
An extrinsic Fizeau fiber optic sensor comprises a single-mode fiber, used as an input/output fiber, and a multimode fiber, used purely as a reflector, to form an air gap within a silica tube that acts as a Fizeau cavity. The Fresnel reflection from the glass/air interface at the front of the air gap (reference reflection) and the reflection from the air/glass interface at the far end of the air gap (sensing reflection) interfere in the input/output fiber. The two fibers are allowed to move in the silica tube, and changes in the air gap length cause changes in the phase difference between the reference reflection and the sensing reflection. This phase difference is observed as changes in intensity of the light monitored at the output arm of a fused biconical tapered coupler. The extrinsic Fizeau fiber optic sensor behaves identically whether it is surface mounted or embedded, which is unique to the extrinsic sensor in contrast to intrinsic Fabry-Perot sensors. The sensor may be modified to provide a quadrature phase shift extrinsic Fizeau fiber optic sensor for the detection of both the amplitude and the relative polarity of dynamically varying strain. The quadrature light signals may be generated by either mechanical or optical means. A plurality of the extrinsic sensors may connected in cascade and multiplexed to allow monitoring by a single analyzer.
Development and evaluation of a suite of isotope reference gases for methane in air
NASA Astrophysics Data System (ADS)
Sperlich, Peter; Uitslag, Nelly A. M.; Richter, Jürgen M.; Rothe, Michael; Geilmann, Heike; van der Veen, Carina; Röckmann, Thomas; Blunier, Thomas; Brand, Willi A.
2016-08-01
Measurements from multiple laboratories have to be related to unifying and traceable reference material in order to be comparable. However, such fundamental reference materials are not available for isotope ratios in atmospheric methane, which led to misinterpretations of combined data sets in the past. We developed a method to produce a suite of synthetic CH4-in-air standard gases that can be used to unify methane isotope ratio measurements of laboratories in the atmospheric monitoring community. Therefore, we calibrated a suite of pure methane gases of different methanogenic origin against international referencing materials that define the VSMOW (Vienna Standard Mean Ocean Water) and VPDB (Vienna Pee Dee Belemnite) isotope scales. The isotope ratios of our pure methane gases range between -320 and +40 ‰ for δ2H-CH4 and between -70 and -40 ‰ for δ13C-CH4, enveloping the isotope ratios of tropospheric methane (about -85 and -47 ‰ for δ2H-CH4 and δ13C-CH4 respectively). Estimated uncertainties, including the full traceability chain, are < 1.5 ‰ and < 0.2 ‰ for δ2H and δ13C calibrations respectively. Aliquots of the calibrated pure methane gases have been diluted with methane-free air to atmospheric methane levels and filled into 5 L glass flasks. The synthetic CH4-in-air standards comprise atmospheric oxygen/nitrogen ratios as well as argon, krypton and nitrous oxide mole fractions to prevent gas-specific measurement artefacts. The resulting synthetic CH4-in-air standards are referred to as JRAS-M16 (Jena Reference Air Set - Methane 2016) and will be available to the atmospheric monitoring community. JRAS-M16 may be used as unifying isotope scale anchor for isotope ratio measurements in atmospheric methane, so that data sets can be merged into a consistent global data frame.
Assessment of the Indoor Odour Impact in a Naturally Ventilated Room
Eusebio, Lidia; Derudi, Marco; Capelli, Laura; Nano, Giuseppe; Sironi, Selena
2017-01-01
Indoor air quality influences people’s lives, potentially affecting their health and comfort. Nowadays, ventilation is the only technique commonly used for regulating indoor air quality. CO2 is the reference species considered in order to calculate the air exchange rates of indoor environments. Indeed, regarding air quality, the presence of pleasant or unpleasant odours can strongly influence the environmental comfort. In this paper, a case study of indoor air quality monitoring is reported. The indoor field tests were conducted measuring both CO2 concentration, using a photoacoustic multi-gas analyzer, and odour trends, using an electronic nose, in order to analyze and compare the information acquired. The indoor air monitoring campaign was run for a period of 20 working days into a university room. The work was focused on the determination of both CO2 and odour emission factors (OEF) emitted by the human activity and on the evaluation of the odour impact in a naturally ventilated room. The results highlighted that an air monitoring and recycling system based only on CO2 concentration and temperature measurements might be insufficient to ensure a good indoor air quality, whereas its performances could be improved by integrating the existing systems with an electronic nose for odour detection. PMID:28379190
Evaluation of Elm and Speck Sensors
Particulate matter (PM) is a pollutant of high public interest regulated by national ambient air quality standards (NAAQS) using Federal Reference Method (FRM) and Federal Equivalent Method (FEM) instrumentation identified for environmental monitoring. The US EPA has been evaluat...
Characterizing Intra-Urban Air Quality Gradients with a Spatially-Distributed Network
NASA Astrophysics Data System (ADS)
Zimmerman, N.; Ellis, A.; Schurman, M. I.; Gu, P.; Li, H.; Snell, L.; Gu, J.; Subramanian, R.; Robinson, A. L.; Apte, J.; Presto, A. A.
2016-12-01
City-wide air pollution measurements have typically relied on regulatory or research monitoring sites with low spatial density to assess population-scale exposure. However, air pollutant concentrations exhibit significant spatial variability depending on local sources and features of the built environment, which may not be well captured by the existing monitoring regime. To better understand urban spatial and temporal pollution gradients at 1 km resolution, a network of 12 real-time air quality monitoring stations was deployed beginning July 2016 in Pittsburgh, PA. The stations were deployed at sites along an urban-rural transect and in urban locations with a range of traffic, restaurant, and tall building densities to examine the impact of various modifiable factors. Measurements from the stationary monitoring stations were further supported by mobile monitoring, which provided higher spatial resolution pollutant measurements on nearby roadways and enabled routine calibration checks. The stationary monitoring measurements comprise ultrafine particle number (Aerosol Dynamics "MAGIC" CPC), PM2.5 (Met One Neighborhood PM Monitor), black carbon (Met One BC 1050), and a new low-cost air quality monitor, the Real-time Affordable Multi-Pollutant (RAMP) sensor package for measuring CO, NO2, SO2, O3, CO2, temperature and relative humidity. High time-resolution (sub-minute) measurements across the distributed monitoring network enable insight into dynamic pollutant behaviour. Our preliminary findings show that our instruments are sensitive to PM2.5 gradients exceeding 2 micro-grams per cubic meter and ultrafine particle gradients exceeding 1000 particles per cubic centimeter. Additionally, we have developed rigorous calibration protocols to characterize the RAMP sensor response and drift, as well as multiple linear regression models to convert sensor response into pollutant concentrations that are comparable to reference instrumentation.
Determination of beryllium concentrations in UK ambient air
NASA Astrophysics Data System (ADS)
Goddard, Sharon L.; Brown, Richard J. C.; Ghatora, Baljit K.
2016-12-01
Air quality monitoring of ambient air is essential to minimise the exposure of the general population to toxic substances such as heavy metals, and thus the health risks associated with them. In the UK, ambient air is already monitored under the UK Heavy Metals Monitoring Network for a number of heavy metals, including nickel (Ni), arsenic (As), cadmium (Cd) and lead (Pb) to ensure compliance with legislative limits. However, the UK Expert Panel on Air Quality Standards (EPAQS) has highlighted a need to limit concentrations of beryllium (Be) in air, which is not currently monitored, because of its toxicity. The aim of this work was to analyse airborne particulate matter (PM) sampled onto filter papers from the UK Heavy Metals Monitoring Network for quantitative, trace level beryllium determination and compare the results to the guideline concentration specified by EPAQS. Samples were prepared by microwave acid digestion in a matrix of 2% sulphuric acid and 14% nitric acid, verified by the use of Certified Reference Materials (CRMs). The digested samples were then analysed by Inductively Coupled Plasma Mass Spectrometry (ICP-MS). The filters from the UK Heavy Metals Monitoring Network were tested using this procedure and the average beryllium concentration across the network for the duration of the study period was 7.87 pg m-3. The highest site average concentration was 32.0 pg m-3 at Scunthorpe Low Santon, which is significantly lower than levels that are thought to cause harm. However the highest levels were observed at sites monitoring industrial point sources, indicating that beryllium is being used and emitted, albeit at very low levels, from these point sources. Comparison with other metals concentrations and data from the UK National Atmospheric Emissions Inventory suggests that current emissions of beryllium may be significantly overestimated.
Assessment of air quality microsensors versus reference methods: The EuNetAir joint exercise
NASA Astrophysics Data System (ADS)
Borrego, C.; Costa, A. M.; Ginja, J.; Amorim, M.; Coutinho, M.; Karatzas, K.; Sioumis, Th.; Katsifarakis, N.; Konstantinidis, K.; De Vito, S.; Esposito, E.; Smith, P.; André, N.; Gérard, P.; Francis, L. A.; Castell, N.; Schneider, P.; Viana, M.; Minguillón, M. C.; Reimringer, W.; Otjes, R. P.; von Sicard, O.; Pohle, R.; Elen, B.; Suriano, D.; Pfister, V.; Prato, M.; Dipinto, S.; Penza, M.
2016-12-01
The 1st EuNetAir Air Quality Joint Intercomparison Exercise organized in Aveiro (Portugal) from 13th-27th October 2014, focused on the evaluation and assessment of environmental gas, particulate matter (PM) and meteorological microsensors, versus standard air quality reference methods through an experimental urban air quality monitoring campaign. The IDAD-Institute of Environment and Development Air Quality Mobile Laboratory was placed at an urban traffic location in the city centre of Aveiro to conduct continuous measurements with standard equipment and reference analysers for CO, NOx, O3, SO2, PM10, PM2.5, temperature, humidity, wind speed and direction, solar radiation and precipitation. The comparison of the sensor data generated by different microsensor-systems installed side-by-side with reference analysers, contributes to the assessment of the performance and the accuracy of microsensor-systems in a real-world context, and supports their calibration and further development. The overall performance of the sensors in terms of their statistical metrics and measurement profile indicates significant differences in the results depending on the platform and on the sensors considered. In terms of pollutants, some promising results were observed for O3 (r2: 0.12-0.77), CO (r2: 0.53-0.87), and NO2 (r2: 0.02-0.89). For PM (r2: 0.07-0.36) and SO2 (r2: 0.09-0.20) the results show a poor performance with low correlation coefficients between the reference and microsensor measurements. These field observations under specific environmental conditions suggest that the relevant microsensor platforms, if supported by the proper post processing and data modelling tools, have enormous potential for new strategies in air quality control.
NASA Astrophysics Data System (ADS)
Aliyu, Yahaya A.; Botai, Joel O.
2018-04-01
The retrieval characteristics for a city-scale satellite experiment was explored over a Nigerian city. The study evaluated carbon monoxide and aerosol contents in the city atmosphere. We utilized the MSA Altair 5× gas detector and CW-HAT200 particulate counter to investigate the city-scale monitoring capabilities of satellite pollution observing instruments; atmospheric infrared sounder (AIRS), measurement of pollution in the troposphere (MOPITT), moderate resolution imaging spectroradiometer (MODIS), multi-angle imaging spectroradiometer (MISR) and ozone monitoring instrument (OMI). To achieve this, we employed the Kriging interpolation technique to collocate the satellite pollutant estimations over 19 ground sample sites for the period of 2015-2016. The portable pollutant devices were validated using the WHO air filter sampling model. To determine the city-scale performance of the satellite datasets, performance indicators: correlation coefficient, model efficiency, reliability index and root mean square error, were adopted as measures. The comparative analysis revealed that MOPITT carbon monoxide (CO) and MODIS aerosol optical depth (AOD) estimates are the appropriate satellite measurements for ground equivalents in Zaria, Nigeria. Our findings were within the acceptable limits of similar studies that utilized reference stations. In conclusion, this study offers direction to Nigeria's air quality policy organizers about available alternative air pollution measurements for mitigating air quality effects within its limited resource environment.
Development, characterization, and validation of an optical transfer standard for ammonia in air
NASA Astrophysics Data System (ADS)
Lüttschwager, Nils; Balslev-Harder, David; Leuenberger, Daiana; Pogány, Andrea; Werhahn, Olav; Ebert, Volker
2017-04-01
Ammonia is an atmospheric trace gas that is predominantly emitted from anthropogenic agricultural activities. Since elevated levels of ammonia can have negative effects to human health as well as ecosystems, it is imperative to monitor and control ammonia emissions. This requires SI-traceable standards to calibrate ammonia monitoring instrumentation and to make measurements comparable. The lack of such standards became a pressing issue in recent years and the MetNH3 project (www.metnh3.eu) was initiated to fill the gap, pursuing different strategies. The work that we present was part of these endeavours and focusses on the development and application of an optical transfer standard for amount fraction measurements of ammonia in ambient air. An optical transfer standard (OTS) offers an alternative to calibrations of air monitoring instrumentation by means of reference gas mixtures. With an OTS, absolute amount fraction results are derived by evaluating absorption spectra using a spectral model and pre-measured spectral properties of the analyte. In that way, the instrument can measure calibration gas-independent ("calibration-free") and, moreover, can itself serve as standard to calibrate air monitoring analyzers. Molecular spectral properties are the excellent, non-drifting point of reference of the OTS and form, together with traceable measurements of temperature and pressure, the basis for SI-traceable amount fraction measurements. We developed an OTS based on a commercial cavity-ring-down spectrometer with a detection limit below 1 ppb (1 nmol/mol). A custom spectral data evaluation routine for absolute, calibration-free measurements, as well as measurements of spectral properties of ammonia with the focus on measurement uncertainty and traceability [1] are the fundaments of our OTS. Validation measurements were conducted using a SI-traceable ammonia reference gas generator over a period of several months. Here, we present an evaluation of the performance of our OTS from 1 ppb to 200 ppb. We found the results obtained with the OTS to be concordant to reference gas mixtures yielding amount fraction results with standard uncertainties of less than 3 %, for which an uncertainty budget is provided. Acknowledgement: This work was supported by the European Metrology Research Programme (EMRP). The EMRP is jointly funded by the EMRP participating countries within EURAMET and the European Union. References 1. A. Pogány, O. Werhahn, and V. Ebert, High-Accuracy Ammonia Line Intensity Measurements at 1.5 µm, in Imaging and Applied Optics 2016, OSA Technical Digest (online) (Optical Society of America, 2016), paper JT3A.15, DOI: 10.1364/3D.2016.JT3A.15
Evaluation of Field-deployed Low Cost PM Sensors
Background Particulate matter (PM) is a pollutant of high public interest regulated by national ambient air quality standards (NAAQS) using federal reference method (FRM) and federal equivalent method (FEM) instrumentation identified for environmental monitoring. PM is present i...
Ambient ultrafine particle levels at residential and reference sites in urban and rural Switzerland.
Meier, Reto; Eeftens, Marloes; Aguilera, Inmaculada; Phuleria, Harish C; Ineichen, Alex; Davey, Mark; Ragettli, Martina S; Fierz, Martin; Schindler, Christian; Probst-Hensch, Nicole; Tsai, Ming-Yi; Künzli, Nino
2015-03-03
Although there is evidence that ultrafine particles (UFP) do affect human health there are currently no legal ambient standards. The main reasons are the absence of spatially resolved exposure data to investigate long-term health effects and the challenge of defining representative reference sites for monitoring given the high dependence of UFP on proximity to sources. The objectives of this study were to evaluate the spatial distribution of UFP in four areas of the Swiss Study on Air Pollution and Lung and Heart Diseases in Adults (SAPALDIA) and to investigate the representativeness of routine air monitoring stations for residential sites in these areas. Repeated UFP measurements during three seasons have been conducted at a total of 80 residential sites and four area specific reference sites over a median duration of 7 days. Arithmetic mean residential PNC scattered around the median of 10,800 particles/cm(3) (interquartile range [IQR] = 7800 particles/cm(3)). Spatial within area contrasts (90th/10th percentile ratios) were around two; increased contrasts were observed during weekday rush-hours. Temporal UFP patterns were comparable at reference and residential sites in all areas. Our data show that central monitoring sites can represent residential conditions when locations are well chosen with respect to the local sources--namely traffic. For epidemiological research, locally resolved spatial models are needed to estimate individuals' long-term exposures to UFP of outdoor origin at home, during commute and at work.
NASA Astrophysics Data System (ADS)
Collier, A. M.; Hannigan, M.; Piedrahita, R.; Casey, J. G.; Johnston, J.; Chiang, S.
2016-12-01
The growing accessibility of low-cost air quality monitoring technologies has led to their increased usage among community-based organizations, particularly for the monitoring of pollutants dangerous to human health (e.g., hazardous air pollutants or HAPS). However, often these low-cost sensors are `off-the-shelf' and are being utilized in a manner that differs from their intended purpose - necessitating high quality calibrations. For example, VOC sensors intended for the detection of high levels of a particular compound in an industrial setting may instead be used for ambient monitoring of a group of VOCs. Academic/community partnerships can be an ideal way to improve this type of sensor quantification while providing a community with not only the opportunity to use these technologies with additional support around data quality, but also the opportunity for education around the abilities and applications of low-cost sensors. In the spring of 2016, our lab at the University of Colorado, Boulder partnered with communities in Los Angeles and Kern County to deploy low-cost air quality monitors for the purpose of quantifying methane and non-methane hydrocarbon signals in an effort to learn more about potential impacts from local sources (e.g., nearby highways and oil & gas development). The monitoring platform was developed in our lab and is capable of logging multiple gas phase species as well as some environmental parameters. The monitors include two different metal oxide VOC sensors - each with slightly different sensing capabilities. Calibration was achieved using a pre- and post-deployment field normalization to reference monitoring equipment maintained by the South Coast Air Quality Management District. Monitors were then deployed at locations throughout the community. We will present results on our efforts to quantify a total non-methane hydrocarbon signal, observations from the field data, and recommendations for academic/community partnerships formed around air quality monitoring.
Baltrėnaitė, Edita; Baltrėnas, Pranas; Lietuvninkas, Arvydas; Serevičienė, Vaida; Zuokaitė, Eglė
2014-01-01
The composition of the ambient air is constantly changing; therefore, the monitoring of ambient air quality to detect the changes caused by aerogenic pollutants makes the essential part of general environmental monitoring. To achieve more effective improvement of the ambient air quality, the Directive 2008/50/EC on 'Ambient Air Quality and Cleaner Air for Europe' was adopted by the European Parliament and the European Council. It informed the public and enterprises about a negative effect of pollution on humans, animals and plants, as well as about the need for monitoring aerogenic pollutants not only at the continuous monitoring stations but also by using indicator methods, i.e. by analysing natural deposit media. The problem of determining the relationship between the accumulation level of pollutants by a deposit medium and the level of air pollution and its risks is constantly growing in importance. The paper presents a comprehensive analysis of the response of the main four deposit media, i.e. snow cover, soil, pine bark and epigeic mosses, to the long-term pollution by aerogenic pollutants which can be observed in the area of oil refinery influence. Based on the quantitative expressions of the amounts of the accumulated pollutants in the deposit media, the territory of the oil refinery investigated in this paper has been referred to the areas of mild or moderate pollution.
30 CFR 7.507 - Air-monitoring components.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND... in mines with a history of harmful gases, other than carbon monoxide, carbon dioxide, and methane... and Technology (NIST) “Standard Reference Materials” (SRMs). (4) The analytical accuracy of the...
Enhanced data validation strategy of air quality monitoring network.
Harkat, Mohamed-Faouzi; Mansouri, Majdi; Nounou, Mohamed; Nounou, Hazem
2018-01-01
Quick validation and detection of faults in measured air quality data is a crucial step towards achieving the objectives of air quality networks. Therefore, the objectives of this paper are threefold: (i) to develop a modeling technique that can be used to predict the normal behavior of air quality variables and help provide accurate reference for monitoring purposes; (ii) to develop fault detection method that can effectively and quickly detect any anomalies in measured air quality data. For this purpose, a new fault detection method that is based on the combination of generalized likelihood ratio test (GLRT) and exponentially weighted moving average (EWMA) will be developed. GLRT is a well-known statistical fault detection method that relies on maximizing the detection probability for a given false alarm rate. In this paper, we propose to develop GLRT-based EWMA fault detection method that will be able to detect the changes in the values of certain air quality variables; (iii) to develop fault isolation and identification method that allows defining the fault source(s) in order to properly apply appropriate corrective actions. In this paper, reconstruction approach that is based on Midpoint-Radii Principal Component Analysis (MRPCA) model will be developed to handle the types of data and models associated with air quality monitoring networks. All air quality modeling, fault detection, fault isolation and reconstruction methods developed in this paper will be validated using real air quality data (such as particulate matter, ozone, nitrogen and carbon oxides measurement). Copyright © 2017 Elsevier Inc. All rights reserved.
Kim, Sun Kyu; Burris, David R; Bryant-Genevier, Jonathan; Gorder, Kyle A; Dettenmaier, Erik M; Zellers, Edward T
2012-06-05
We demonstrate the use of two prototype Si-microfabricated gas chromatographs (μGC) for continuous, short-term measurements of indoor trichloroethylene (TCE) vapor concentrations related to the investigation of TCE vapor intrusion (VI) in two houses. In the first house, with documented TCE VI, temporal variations in TCE air concentrations were monitored continuously for up to 48 h near the primary VI entry location under different levels of induced differential pressure (relative to the subslab). Concentrations ranged from 0.23 to 27 ppb by volume (1.2-150 μg/m(3)), and concentration trends agreed closely with those determined from concurrent reference samples. The sensitivity and temporal resolution of the measurements were sufficiently high to detect transient fluctuations in concentration resulting from short-term changes in variables affecting the extent of VI. Spatial monitoring showed a decreasing TCE concentration gradient with increasing distance from the primary VI entry location. In the second house, with no TCE VI, spatial profiles derived from the μGC prototype data revealed an intentionally hidden source of TCE within a closet, demonstrating the capability for locating non-VI sources. Concentrations measured in this house ranged from 0.51 to 56 ppb (2.7-300 μg/m(3)), in good agreement with reference method values. This first field demonstration of μGC technology for automated, near-real-time, selective VOC monitoring at low- or subppb levels augurs well for its use in short- and long-term on-site analysis of indoor air in support of VI assessments.
Grechi, Daniele
2016-01-01
On March 2015, the Environmental Protection Agency of Tuscany Region (Central Italy) and the Laboratory of monitoring and environmental modelling published a Report on spatial representativeness of monitoring stations for Tuscan air quality, where they supported the decommissioning of modelling stations located in the Florentine Plain. The stations of Signa, Scandicci, and Firenze-Bassi, located in a further South area, were considered representative Believing that air quality of the Plain could be evaluated by these stations is a stretch. In this text the author show the inconsistency of the conclusion of the Report through correlation graphs comparing daily means of PM10 detected in the disposed stations and in the active ones, showing relevant differences between the reported values and the days when the limits are exceeded. The discrepancy is due to the fact that uncertainty of theoretical estimates is greater than the differences recorded by the stations considered as a reference and the areas they may represent. The area of the Plain has a population of 150,000 individuals and it is subject to a heavy environmental pression, which will change for the urban works planned for the coming years. The population's legitimate request for the analytical monitoring of air pollution could be met through the organization of participated monitoring based on the use of low-cost innovative tools.
PM: RESEARCH METHODS FOR PM TOXIC COMPOUNDS - PARTICLE METHODS EVALUATION AND DEVELOPMENT
The Federal Reference Method (FRM) for Particulate Matter (PM) developed by EPA's National Exposure Research Laboratory (NERL) forms the backbone of the EPA's national monitoring strategy. It is the measurement that defines attainment of the National Ambient Air Quality Standard...
Wheeler, Amanda J; Xu, Xiaohong; Kulka, Ryan; You, Hongyu; Wallace, Lance; Mallach, Gary; Van Ryswyk, Keith; MacNeill, Morgan; Kearney, Jill; Rasmussen, Pat E; Dabek-Zlotorzynska, Ewa; Wang, Daniel; Poon, Raymond; Williams, Ron; Stocco, Corinne; Anastassopoulos, Angelos; Miller, J David; Dales, Robert; Brook, Jeffrey R
2011-03-01
The Windsor, Ontario Exposure Assessment Study evaluated the contribution of ambient air pollutants to personal and indoor exposures of adults and asthmatic children living in Windsor, Ontario, Canada. In addition, the role of personal, indoor, and outdoor air pollution exposures upon asthmatic children's respiratory health was assessed. Several active and passive sampling methods were applied, or adapted, for personal, indoor, and outdoor residential monitoring of nitrogen dioxide, volatile organic compounds, particulate matter (PM; PM-2.5 pm [PM2.5] and < or =10 microm [PM10] in aerodynamic diameter), elemental carbon, ultrafine particles, ozone, air exchange rates, allergens in settled dust, and particulate-associated metals. Participants completed five consecutive days of monitoring during the winter and summer of 2005 and 2006. During 2006, in addition to undertaking the air pollution measurements, asthmatic children completed respiratory health measurements (including peak flow meter tests and exhaled breath condensate) and tracked respiratory symptoms in a diary. Extensive quality assurance and quality control steps were implemented, including the collocation of instruments at the National Air Pollution Surveillance site operated by Environment Canada and at the Michigan Department of Environmental Quality site in Allen Park, Detroit, MI. During field sampling, duplicate and blank samples were also completed and these data are reported. In total, 50 adults and 51 asthmatic children were recruited to participate, resulting in 922 participant days of data. When comparing the methods used in the study with standard reference methods, field blanks were low and bias was acceptable, with most methods being within 20% of reference methods. Duplicates were typically within less than 10% of each other, indicating that study results can be used with confidence. This paper covers study design, recruitment, methodology, time activity diary, surveys, and quality assurance and control results for the different methods used.
For EPA, this Summer 2014, Denver CO, DISCOVER-AQ field research activity focused on assessing Federal Reference Methods (FRMs) and Federal Equivalent Methods (FEMs) for ozone (O3) and Nitrogen Dioxide (NO2), while comparing their operational performance to each other and to smal...
Air Monitoring Data for BP Spill/Deepwater Horizon
The Deepwater Horizon oil spill (also referred to as the BP oil spill) began on 20 April 2010 in the Gulf of Mexico on the BP-operated Macondo Prospect. Following the explosion and sinking of the Deepwater Horizon oil rig, a sea-floor oil gusher flowed for 87 days, until it was capped on 15 July 2010.In response to the BP oil spill, EPA sampled air, water, sediment, and waste generated by the cleanup operations.
Linkage of the National Health Interview Survey to air quality data.
Parker, Jennifer D; Kravets, Nataliya; Woodruff, Tracey J
2008-02-01
This report describes the linkage between the National Health Interview Survey (NHIS) and air monitoring data from the U.S. Environmental Protection Agency (EPA). There have been few linkages of these data sources, partly because of restrictions on releasing geographic detail from NHIS on public-use files in order to protect participant confidentiality. Pollution exposures for NHIS respondents were calculated by averaging the annual average exposure estimates from EPA air monitors both within 5, 10, 15, and 20 miles of the respondent's block-group location (which is available on restricted NHIS data files) and by county of residence. The 1987-2005 linked data files--referred to as NHIS-EPAAnnualAir--were used to describe the percentage of NHIS respondents linked and the median exposures by linkage method, survey year, and pollutant. Using the 2005 NHIS-EPAAnnualAir data file, the percentage linked and median exposure were described by respondent characteristics, linkage method, and pollutant. Many decisions were made to define pollution exposures for NHIS respondents, including monitor selection, location assignment for NHIS respondents, and geographic linkage criteria. Geographic linkage criteria for assigning area-level exposure estimates affected the percentage and composition of respondents included in the resulting linked sample. Median exposure estimates, however, were similar among geographic linkage methods. NHIS-EPAAnnualAir data files for 1985 through 2005 are currently available to users in the NCHS Research Data Center.
Calibration of Heat Stress Monitor and its Measurement Uncertainty
NASA Astrophysics Data System (ADS)
Ekici, Can
2017-07-01
Wet-bulb globe temperature (WBGT) equation is a heat stress index that gives information for the workers in the industrial areas. WBGT equation is described in ISO Standard 7243 (ISO 7243 in Hot environments—estimation of the heat stress on working man, based on the WBGT index, ISO, Geneva, 1982). WBGT is the result of the combined quantitative effects of the natural wet-bulb temperature, dry-bulb temperature, and air temperature. WBGT is a calculated parameter. WBGT uses input estimates, and heat stress monitor measures these quantities. In this study, the calibration method of a heat stress monitor is described, and the model function for measurement uncertainty is given. Sensitivity coefficients were derived according to GUM. Two-pressure humidity generators were used to generate a controlled environment. Heat stress monitor was calibrated inside of the generator. Two-pressure humidity generator, which is located in Turkish Standard Institution, was used as the reference device. This device is traceable to national standards. Two-pressure humidity generator includes reference temperature Pt-100 sensors. The reference sensor was sheltered with a wet wick for the calibration of natural wet-bulb thermometer. The reference sensor was centred into a black globe that has got 150 mm diameter for the calibration of the black globe thermometer.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-19
..., including emissions inventories, monitoring, and modeling to assure attainment and maintenance of the... of the Louisiana Environmental Action Network (LEAN, hereinafter referred to as ``the commenter... action'' subject to review by the Office of Management and Budget under Executive Order 12866 (58 FR...
40 CFR Appendix C to Part 58 - Ambient Air Quality Monitoring Methodology
Code of Federal Regulations, 2013 CFR
2013-07-01
..., National Exposure Research Laboratory (MD-D205-03), U.S. Environmental Protection Agency, Research Triangle....2.3For which a quantitative relationship to a reference or equivalent method for PM 10 has been established at the use site. Procedures for establishing a quantitative site-specific relationship are...
40 CFR Appendix C to Part 58 - Ambient Air Quality Monitoring Methodology
Code of Federal Regulations, 2014 CFR
2014-07-01
..., National Exposure Research Laboratory (MD-D205-03), U.S. Environmental Protection Agency, Research Triangle....2.3For which a quantitative relationship to a reference or equivalent method for PM 10 has been established at the use site. Procedures for establishing a quantitative site-specific relationship are...
Gas monitoring onboard ISS using FTIR spectroscopy
NASA Astrophysics Data System (ADS)
Gisi, Michael; Stettner, Armin; Seurig, Roland; Honne, Atle; Witt, Johannes; Rebeyre, Pierre
2017-06-01
In the confined, enclosed environment of a spacecraft, the air quality must be monitored continuously in order to safeguard the crew's health. For this reason, OHB builds the ANITA2 (Analysing Interferometer for Ambient Air) technology demonstrator for trace gas monitoring onboard the International Space Station (ISS). The measurement principle of ANITA2 is based on the Fourier Transform Infrared (FTIR) technology with dedicated gas analysis software from the Norwegian partner SINTEF. This combination proved to provide high sensitivity, accuracy and precision for parallel measurements of 33 trace gases simultaneously onboard ISS by the precursor instrument ANITA1. The paper gives a technical overview about the opto-mechanical components of ANITA2, such as the interferometer, the reference Laser, the infrared source and the gas cell design and a quick overview about the gas analysis. ANITA2 is very well suited for measuring gas concentrations specifically but not limited to usage onboard spacecraft, as no consumables are required and measurements are performed autonomously. ANITA2 is a programme under the contract of the European Space Agency, and the air quality monitoring system is a stepping stone into the future, as a precursor system for manned exploration missions.
Pleasant, Saraya; O'Donnell, Amanda; Powell, Jon; Jain, Pradeep; Townsend, Timothy
2014-07-01
High concentrations of iron (Fe(II)) and manganese (Mn(II)) reductively dissolved from soil minerals have been detected in groundwater monitoring wells near many municipal solid waste landfills. Air sparging and vadose zone aeration (VZA) were evaluated as remedial approaches at a closed, unlined municipal solid waste landfill in Florida, USA. The goal of aeration was to oxidize Fe and Mn to their respective immobile forms. VZA and shallow air sparging using a partially submerged well screen were employed with limited success (Phase 1); decreases in dissolved iron were observed in three of nine monitoring wells during shallow air sparging and in two of 17 wells at VZA locations. During Phase 2, where deeper air sparging was employed, dissolved iron levels decreased in a significantly greater number of monitoring wells surrounding injection points, however no radial pattern was observed. Additionally, in wells affected positively by air sparging (mean total iron (FeTOT) <4.2mg/L, after commencement of air sparging), rising manganese concentrations were observed, indicating that the redox potential of the groundwater moved from an iron-reducing to a manganese-reducing environment. The mean FeTOT concentration observed in affected monitoring wells throughout the study was 1.40 mg/L compared to a background of 15.38 mg/L, while the mean Mn concentration was 0.60 mg/L compared to a background level of 0.27 mg/L. Reference wells located beyond the influence of air sparging areas showed little variation in FeTOT and Mn, indicating the observed effects were the result of air injection activities at study locations and not a natural phenomenon. Air sparging was found effective in intercepting plumes of dissolved Fe surrounding municipal landfills, but the effect on dissolved Mn was contrary to the desired outcome of decreased Mn groundwater concentrations. Copyright © 2014 Elsevier B.V. All rights reserved.
76 FR 54293 - Review of National Ambient Air Quality Standards for Carbon Monoxide
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-31
...This rule is being issued at this time as required by a court order governing the schedule for completion of this review of the air quality criteria and the national ambient air quality standards (NAAQS) for carbon monoxide (CO). Based on its review, the EPA concludes the current primary standards are requisite to protect public health with an adequate margin of safety, and is retaining those standards. After review of the air quality criteria, EPA further concludes that no secondary standard should be set for CO at this time. EPA is also making changes to the ambient air monitoring requirements for CO, including those related to network design, and is updating, without substantive change, aspects of the Federal reference method.
CAIRSENSE Study: Real-world evaluation of low cost sensors ...
Low-cost air pollution sensors are a rapidly developing field in air monitoring. In recent years, numerous sensors have been developed that can provide real-time concentration data for different air pollutants at costs accessible to individuals and non-regulatory groups. Additionally, these sensors have the potential to improve the spatial resolution of monitoring networks and provide a better understanding of neighborhood- and local-scale air quality and sources. However, many new sensors have not been evaluated to determine their long-term performance and capabilities. In this study, nine different low-cost sensor models, including O3, NO2 and particle sensors, were deployed in Denver, CO from September 2015 to February 2016. Three sensors of each type were deployed to evaluate instrument precision and consistency over the time period. Sensors were co-located with reference monitors at the Denver NCore site in order to evaluate sensor accuracy and precision. Denver was chosen as the location for this study to evaluate sensor performance in dry, high altitude, and low winter temperatures. Sensors were evaluated for data completeness, performance over time, and comparison with regulatory monitors. This presentation will also address challenges and approaches to data logging and processing. Preliminary analysis revealed that most sensors had high data completeness when data loggers were operational (e.g., the Aeroqual O3 sensor ranged from 94-100%), and exhibited
GCOS reference upper air network (GRUAN): Steps towards assuring future climate records
NASA Astrophysics Data System (ADS)
Thorne, P. W.; Vömel, H.; Bodeker, G.; Sommer, M.; Apituley, A.; Berger, F.; Bojinski, S.; Braathen, G.; Calpini, B.; Demoz, B.; Diamond, H. J.; Dykema, J.; Fassò, A.; Fujiwara, M.; Gardiner, T.; Hurst, D.; Leblanc, T.; Madonna, F.; Merlone, A.; Mikalsen, A.; Miller, C. D.; Reale, T.; Rannat, K.; Richter, C.; Seidel, D. J.; Shiotani, M.; Sisterson, D.; Tan, D. G. H.; Vose, R. S.; Voyles, J.; Wang, J.; Whiteman, D. N.; Williams, S.
2013-09-01
The observational climate record is a cornerstone of our scientific understanding of climate changes and their potential causes. Existing observing networks have been designed largely in support of operational weather forecasting and continue to be run in this mode. Coverage and timeliness are often higher priorities than absolute traceability and accuracy. Changes in instrumentation used in the observing system, as well as in operating procedures, are frequent, rarely adequately documented and their impacts poorly quantified. For monitoring changes in upper-air climate, which is achieved through in-situ soundings and more recently satellites and ground-based remote sensing, the net result has been trend uncertainties as large as, or larger than, the expected emergent signals of climate change. This is more than simply academic with the tropospheric temperature trends issue having been the subject of intense debate, two international assessment reports and several US congressional hearings. For more than a decade the international climate science community has been calling for the instigation of a network of reference quality measurements to reduce uncertainty in our climate monitoring capabilities. This paper provides a brief history of GRUAN developments to date and outlines future plans. Such reference networks can only be achieved and maintained with strong continuing input from the global metrological community.
1988-01-21
DISTRIBUTION/AVAILABILITY OF REPORT Approved for public release; 2b. DECLASSIFICATION /’DOWNGRADING SCHEDULE Distribution unlimited 4. PERFORMING ORGANIZATION ...REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S) AFGL-TR-88-0016 6a, NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF...MONITORING ORGANIZATION Air Force Geophysics (If applicable) Laboratory I oc. ADDRESS (City, State, and ZIP Code) 7b ADDRESS (City, Stare, and ZIP Code
Optogalvanic wavelength calibration for laser monitoring of reactive atmospheric species
NASA Technical Reports Server (NTRS)
Webster, C. R.
1982-01-01
Laser-based techniques have been successfully employed for monitoring atmospheric species of importance to stratospheric ozone chemistry or tropospheric air quality control. When spectroscopic methods using tunable lasers are used, a simultaneously recorded reference spectrum is required for wavelength calibration. For stable species this is readily achieved by incorporating into the sensing instrument a reference cell containing the species to be monitored. However, when the species of interest is short-lived, this approach is unsuitable. It is proposed that wavelength calibration for short-lived species may be achieved by generating the species of interest in an electrical or RF discharge and using optogalvanic detection as a simple, sensitive, and reliable means of recording calibration spectra. The wide applicability of this method is emphasized. Ultraviolet, visible, or infrared lasers, either CW or pulsed, may be used in aircraft, balloon, or shuttle experiments for sensing atoms, molecules, radicals, or ions.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-12
... Methods: Designation of Five New Equivalent Methods AGENCY: Office of Research and Development; Environmental Protection Agency (EPA). ACTION: Notice of the designation of five new equivalent methods for...) has designated, in accordance with 40 CFR Part 53, five new equivalent methods, one for measuring...
Monitoring and risk assessment of the spruce bark beetle, Ips typographus
S. Netherer; J. Pennerstorfer; P. Baier; E. Fuhrer; A. Schopf
2003-01-01
A model describing development of the spruce bark beetle, Ips typographus, combines topo-climatic aspects of the terrain with eco-physiological aspects of the bark beetle. By correlating air temperature and solar irradiation measured at a reference station, along with topographic data and microclimatic conditions of terrain plots, topo-climatic...
Subsequent to the 1997 promulgation of the Federal Reference Method (FRM) for monitoring PM2.5 in ambient air, the United States Environmental Protection Agency (USEPA) received reports that the Dow 704 diffusion oil used in the method's WINS fractionator would occasionally cry...
US Fish and Wildlife Service biomonitoring operations manual, Appendices A--K
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gianotto, D.F.; Rope, R.C.; Mondecar, M.
1993-04-01
Volume 2 contains Appendices and Summary Sheets for the following areas: A-Legislative Background and Key to Relevant Legislation, B- Biomonitoring Operations Workbook, C-Air Monitoring, D-Introduction to the Flora and Fauna for Biomonitoring, E-Decontamination Guidance Reference Field Methods, F-Documentation Guidance, Sample Handling, and Quality Assurance/Quality Control Standard Operating Procedures, G-Field Instrument Measurements Reference Field Methods, H-Ground Water Sampling Reference Field Methods, I-Sediment Sampling Reference Field Methods, J-Soil Sampling Reference Field Methods, K-Surface Water Reference Field Methods. Appendix B explains how to set up strategy to enter information on the ``disk workbook``. Appendix B is enhanced by DE97006389, an on-line workbook formore » users to be able to make revisions to their own biomonitoring data.« less
An Improved Calibration Method for Hydrazine Monitors for the United States Air Force
DOE Office of Scientific and Technical Information (OSTI.GOV)
Korsah, K
2003-07-07
This report documents the results of Phase 1 of the ''Air Force Hydrazine Detector Characterization and Calibration Project''. A method for calibrating model MDA 7100 hydrazine detectors in the United States Air Force (AF) inventory has been developed. The calibration system consists of a Kintek 491 reference gas generation system, a humidifier/mixer system which combines the dry reference hydrazine gas with humidified diluent or carrier gas to generate the required humidified reference for calibrations, and a gas sampling interface. The Kintek reference gas generation system itself is periodically calibrated using an ORNL-constructed coulometric titration system to verify the hydrazine concentrationmore » of the sample atmosphere in the interface module. The Kintek reference gas is then used to calibrate the hydrazine monitors. Thus, coulometric titration is only used to periodically assess the performance of the Kintek reference gas generation system, and is not required for hydrazine monitor calibrations. One advantage of using coulometric titration for verifying the concentration of the reference gas is that it is a primary standard (if used for simple solutions), thereby guaranteeing, in principle, that measurements will be traceable to SI units (i.e., to the mole). The effect of humidity of the reference gas was characterized by using the results of concentrations determined by coulometric titration to develop a humidity correction graph for the Kintek 491 reference gas generation system. Using this calibration method, calibration uncertainty has been reduced by 50% compared to the current method used to calibrate hydrazine monitors in the Air Force inventory and calibration time has also been reduced by more than 20%. Significant findings from studies documented in this report are the following: (1) The Kintek 491 reference gas generation system (generator, humidifier and interface module) can be used to calibrate hydrazine detectors. (2) The Kintek system output concentration is less than the calculated output of the generator alone but can be calibrated as a system by using coulometric titration of gas samples collected with impingers. (3) The calibrated Kintek system output concentration is reproducible even after having been disassembled and moved and reassembled. (4) The uncertainty of the reference gas concentration generated by the Kintek system is less than half the uncertainty of the Zellweger Analytics' (ZA) reference gas concentration and can be easily lowered to one third or less of the ZA method by using lower-uncertainty flow rate or total flow measuring instruments. (5) The largest sources of uncertainty in the current ORNL calibration system are the permeation rate of the permeation tubes and the flow rate of the impinger sampling pump used to collect gas samples for calibrating the Kintek system. Upgrading the measurement equipment, as stated in (4), can reduce both of these. (6) The coulometric titration technique can be used to periodically assess the performance of the Kintek system and determine a suitable recalibration interval. (7) The Kintek system has been used to calibrate two MDA 7100s and an Interscan 4187 in less than one workday. The system can be upgraded (e.g., by automating it) to provide more calibrations per day. (8) The humidity of both the reference gas and the environment of the Chemcassette affect the MDA 7100 hydrazine detector's readings. However, ORNL believes that the environmental effect is less significant than the effect of the reference gas humidity. (9) The ORNL calibration method based on the Kintek 491 M-B gas standard can correct for the effect of the humidity of the reference gas to produce the same calibration as that of ZA's. Zellweger Analytics calibrations are typically performed at 45%-55% relative humidity. (10) Tests using the Interscan 4187 showed that the instrument was not accurate in its lower (0-100 ppb) range. Subsequent discussions with Kennedy Space Center (KSC) personnel also indicated that the Interscan units were not reproducible when new sensors were used. KSC had discovered that the Interscan units read incorrectly on the low range because of the presence of carbon dioxide. ORNL did not test the carbon dioxide effect, but it was found that the units did not read zero when a test gas containing no hydrazine was sampled. According to the KSC personnel that ORNL had these discussions with, NASA is phasing out the use of these Interscan detectors.« less
Field testing of new-technology ambient air ozone monitors.
Ollison, Will M; Crow, Walt; Spicer, Chester W
2013-07-01
Multibillion-dollar strategies control ambient air ozone (O3) levels in the United States, so it is essential that the measurements made to assess compliance with regulations be accurate. The predominant method employed to monitor O3 is ultraviolet (UV) photometry. Instruments employ a selective manganese dioxide or heated silver wool "scrubber" to remove O3 to provide a zero reference signal. Unfortunately, such scrubbers remove atmospheric constituents that absorb 254-nm light, causing measurement interference. Water vapor also interferes with the measurement under some circumstances. We report results of a 3-month field test of two new instruments designed to minimize interferences (2B Technologies model 211; Teledyne-API model 265E) that were operated in parallel with a conventional Thermo Scientific model 49C O3 monitor. The field test was hosted by the Houston Regional Monitoring Corporation (HRM). The model 211 photometer scrubs O3 with excess nitric oxide (NO) generated in situ by photolysis of added nitrous oxide (N2O) to provide a reference signal, eliminating the need for a conventional O3 scrubber. The model 265E analyzer directly measures O3-NO chemiluminescence from added excess NO to quantify O3 in the sample stream. Extensive quality control (QC) and collocated monitoring data are assessed to evaluate potential improvements to the accuracy of O3 compliance monitoring. Two new-technology ozone monitors were compared with a conventional monitor under field conditions. Over 3 months the conventional monitor reported more exceedances of the current standard than the new instruments, which could potentially result in an area being misjudged as "nonattainment." Instrument drift can affect O3 data accuracy, and the same degree of drift has a proportionally greater compliance effect as standard stringency is increased. Enhanced data quality assurance and data adjustment may be necessary to achieve the improved accuracy required to judge compliance with tighter standards.
Uncertainty in air quality observations using low-cost sensors
NASA Astrophysics Data System (ADS)
Castell, Nuria; Dauge, Franck R.; Dongol, Rozina; Vogt, Matthias; Schneider, Philipp
2016-04-01
Air pollution poses a threat to human health, and the WHO has classified air pollution as the world's largest single environmental health risk. In Europe, the majority of the population lives in areas where air quality levels frequently exceed WHO's ambient air quality guidelines. The emergence of low-cost, user-friendly and very compact air pollution platforms allowing observations at high spatial resolution in near real-time, provides us with new opportunities to simultaneously enhance existing monitoring systems as well as enable citizens to engage in more active environmental monitoring (citizen science). However the data sets generated by low-cost sensors show often questionable data quality. For many sensors, neither their error characteristics nor how their measurement capability holds up over time or through a range of environmental conditions, have been evaluated. We have conducted an exhaustive evaluation of the commercial low-cost platform AQMesh (measuring NO, NO2, CO, O3, PM10 and PM2.5) in laboratory and in real-world conditions in the city of Oslo (Norway). Co-locations in field of 24 platforms were conducted over a 6 month period (April to September 2015) allowing to characterize the temporal variability in the performance. Additionally, the field performance included the characterization on different monitoring urban monitoring sites characteristic of both traffic and background conditions. All the evaluations have been conducted against CEN reference method analyzers maintained according to the Norwegian National Reference Laboratory quality system. The results show clearly that a good performance in laboratory does not imply similar performance in real-world outdoor conditions. Moreover, laboratory calibration is not suitable for subsequent measurements in urban environments. In order to reduce the errors, sensors require on-site field calibration. Even after such field calibration, the platforms show a significant variability in the performance due to changes in the environmental conditions. Currently there is a lack of testing to ensure adequate sensor performance prior to marketing such instruments. Even when manufacturers provide detailed specification sheets, there is little guarantee that the specifications can actually be met in real-world conditions. Data quality is a pertinent concern, especially when citizens are collecting and interpreting the data by themselves. Poor or unknown data quality can lead to incorrect or inappropriate decisions. We present the experiences gained within the EU project CITI-SENSE, where low-cost sensors are one of the tools employed to empower citizens in air quality issues.
Tian, Ying; Yao, Yiming; Chang, Shuai; Zhao, Zhen; Zhao, Yangyang; Yuan, Xiaojia; Wu, Fengchang; Sun, Hongwen
2018-02-06
A total of 23 per- and polyfluoroalkyl substances (PFASs) were investigated in the air, dry deposition, and plant leaves at two different landfills and one suburban reference site in Tianjin, China. The potential of landfills as sources of PFASs to the atmosphere and the phase distribution therein were evaluated. The maximum concentrations of ∑PFASs in the two landfills were up to 9.5 ng/m 3 in the air, 4.1 μg/g in dry deposition, and 48 μg/g lipid in leaves with trifluoroacetic acid and perfluoropropionic acid being dominant (71%-94%). Spatially, the distribution trend of ionizable and neutral PFASs in all three kinds of media consistently showed the central landfill > the downwind > the upwind > the reference sites, indicating that landfills are important sources to PFASs in the environment. Plant leaves were found effective in uptake of a variety of airborne PFASs including polyfluoroalkyl phosphoric acid diesters, thus capable of acting as a passive air sampling approach for air monitoring.
1985-08-09
and regulations. Additional hazard areas refer to non-regulated operations and/or practices that pose potential risks to human and environmental ...ORGANI1A’iON REPORT NUMPERASE IRP-IIa-AFP6 64 xAfi OF PEROING ORG IS ZArTON Śo 7a.AM OF MONITORING OAYIZAToN Environmental Science ’ aeedwabi.) U.S. Air...Force and Engineering, Inc ca ed AORESS Y. State, And ZIP C017) AOSS Approvetaoe pblic reease; P. Box ESE Occupational and Environmental Gainesville, FL
Comparison of air pollution in Shanghai and Lanzhou based on wavelet transform.
Su, Yana; Sha, Yongzhong; Zhai, Guangyu; Zong, Shengliang; Jia, Jiehua
2017-04-21
For a long-period comparative analysis of air pollution in coastal and inland cities, we analyzed the continuous Morlet wavelet transform on the time series of a 5274-day air pollution index in Shanghai and Lanzhou during 15 years and studied the multi-scale variation characteristic, main cycle, and impact factor of the air pollution time series. The analysis showed that (1) air pollution in the two cities was non-stationary and nonlinear, had multiple timescales, and exhibited the characteristics of high in winter and spring and low in summer and autumn. (2) The monthly variation in air pollution in Shanghai was not significant, whereas the seasonal variation of air pollution in Lanzhou was obvious. (3) Air pollution in Shanghai showed an ascending tendency, whereas that in Lanzhou presented a descending tendency. Overall, air pollution in Lanzhou was higher than that in Shanghai, but the situation has reversed since 2015. (4) The primary cycles of air pollution in these two cities were close, but the secondary cycles were significantly different. The aforementioned differences were mainly due to the impact of topographical and meteorological factors in Lanzhou, the weather process and the surrounding environment in Shanghai. These conclusions have reference significance for Shanghai and Lanzhou to control air pollution. The multi-timescale variation and local features of the wavelet analysis method used in this study can be applied to varied aspects of air pollution analysis. The identification of cycle characteristics and the monitoring, forecasting, and controlling of air pollution can yield valuable reference.
40 CFR Appendix C to Part 58 - Ambient Air Quality Monitoring Methodology
Code of Federal Regulations, 2012 CFR
2012-07-01
..., 2.6.2, or 2.8 of this appendix must be submitted to: Director, National Exposure Research Laboratory (MD-D205-03), U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711. For... measurements, and 5.1.2.3For which a quantitative relationship to a reference or equivalent method for PM10 has...
40 CFR Appendix C to Part 58 - Ambient Air Quality Monitoring Methodology
Code of Federal Regulations, 2011 CFR
2011-07-01
..., 2.6.2, or 2.8 of this appendix must be submitted to: Director, National Exposure Research Laboratory (MD-D205-03), U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711. For... measurements, and 5.1.2.3For which a quantitative relationship to a reference or equivalent method for PM10 has...
40 CFR Appendix C to Part 58 - Ambient Air Quality Monitoring Methodology
Code of Federal Regulations, 2010 CFR
2010-07-01
..., 2.6.2, or 2.8 of this appendix must be submitted to: Director, National Exposure Research Laboratory (MD-D205-03), U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711. For... measurements, and 5.1.2.3For which a quantitative relationship to a reference or equivalent method for PM10 has...
A metrological approach to improve accuracy and reliability of ammonia measurements in ambient air
NASA Astrophysics Data System (ADS)
Pogány, Andrea; Balslev-Harder, David; Braban, Christine F.; Cassidy, Nathan; Ebert, Volker; Ferracci, Valerio; Hieta, Tuomas; Leuenberger, Daiana; Martin, Nicholas A.; Pascale, Céline; Peltola, Jari; Persijn, Stefan; Tiebe, Carlo; Twigg, Marsailidh M.; Vaittinen, Olavi; van Wijk, Janneke; Wirtz, Klaus; Niederhauser, Bernhard
2016-11-01
The environmental impacts of ammonia (NH3) in ambient air have become more evident in the recent decades, leading to intensifying research in this field. A number of novel analytical techniques and monitoring instruments have been developed, and the quality and availability of reference gas mixtures used for the calibration of measuring instruments has also increased significantly. However, recent inter-comparison measurements show significant discrepancies, indicating that the majority of the newly developed devices and reference materials require further thorough validation. There is a clear need for more intensive metrological research focusing on quality assurance, intercomparability and validations. MetNH3 (Metrology for ammonia in ambient air) is a three-year project within the framework of the European Metrology Research Programme (EMRP), which aims to bring metrological traceability to ambient ammonia measurements in the 0.5-500 nmol mol-1 amount fraction range. This is addressed by working in three areas: (1) improving accuracy and stability of static and dynamic reference gas mixtures, (2) developing an optical transfer standard and (3) establishing the link between high-accuracy metrological standards and field measurements. In this article we describe the concept, aims and first results of the project.
NASA Astrophysics Data System (ADS)
Zimmerman, Naomi; Presto, Albert A.; Kumar, Sriniwasa P. N.; Gu, Jason; Hauryliuk, Aliaksei; Robinson, Ellis S.; Robinson, Allen L.; Subramanian, R.
2018-01-01
Low-cost sensing strategies hold the promise of denser air quality monitoring networks, which could significantly improve our understanding of personal air pollution exposure. Additionally, low-cost air quality sensors could be deployed to areas where limited monitoring exists. However, low-cost sensors are frequently sensitive to environmental conditions and pollutant cross-sensitivities, which have historically been poorly addressed by laboratory calibrations, limiting their utility for monitoring. In this study, we investigated different calibration models for the Real-time Affordable Multi-Pollutant (RAMP) sensor package, which measures CO, NO2, O3, and CO2. We explored three methods: (1) laboratory univariate linear regression, (2) empirical multiple linear regression, and (3) machine-learning-based calibration models using random forests (RF). Calibration models were developed for 16-19 RAMP monitors (varied by pollutant) using training and testing windows spanning August 2016 through February 2017 in Pittsburgh, PA, US. The random forest models matched (CO) or significantly outperformed (NO2, CO2, O3) the other calibration models, and their accuracy and precision were robust over time for testing windows of up to 16 weeks. Following calibration, average mean absolute error on the testing data set from the random forest models was 38 ppb for CO (14 % relative error), 10 ppm for CO2 (2 % relative error), 3.5 ppb for NO2 (29 % relative error), and 3.4 ppb for O3 (15 % relative error), and Pearson r versus the reference monitors exceeded 0.8 for most units. Model performance is explored in detail, including a quantification of model variable importance, accuracy across different concentration ranges, and performance in a range of monitoring contexts including the National Ambient Air Quality Standards (NAAQS) and the US EPA Air Sensors Guidebook recommendations of minimum data quality for personal exposure measurement. A key strength of the RF approach is that it accounts for pollutant cross-sensitivities. This highlights the importance of developing multipollutant sensor packages (as opposed to single-pollutant monitors); we determined this is especially critical for NO2 and CO2. The evaluation reveals that only the RF-calibrated sensors meet the US EPA Air Sensors Guidebook recommendations of minimum data quality for personal exposure measurement. We also demonstrate that the RF-model-calibrated sensors could detect differences in NO2 concentrations between a near-road site and a suburban site less than 1.5 km away. From this study, we conclude that combining RF models with carefully controlled state-of-the-art multipollutant sensor packages as in the RAMP monitors appears to be a very promising approach to address the poor performance that has plagued low-cost air quality sensors.
Zhang, Weihua; Bean, Marc; Benotto, Mike; Cheung, Jeff; Ungar, Kurt; Ahier, Brian
2011-12-01
A high volume aerosol sampler ("Grey Owl") has been designed and developed at the Radiation Protection Bureau, Health Canada. Its design guidance is based on the need for a low operational cost and reliable sampler to provide daily aerosol monitoring samples that can be used as reference samples for radiological studies. It has been developed to provide a constant air flow rate at low pressure drops (∼3 kPa for a day sampling) with variations of less than ±1% of the full scale flow rate. Its energy consumption is only about 1.5 kW for a filter sampling over 22,000 standard cubic meter of air. It has been demonstrated in this Fukushima nuclear accident related aerosol radioactivity monitoring study at Sidney station, B.C. that the sampler is robust and reliable. The results provided by the new monitoring system have been used to support decision-making in Canada during an emergency response. Copyright © 2011 Elsevier Ltd. All rights reserved.
Corrosion detector apparatus for universal assessment of pollution in data centers
Hamann, Hendrik F.; Klein, Levente I.
2015-08-18
A compact corrosion measurement apparatus and system includes an air fan, a corrosion sensor, a temperature sensor, a humidity sensor, a heater element, and an air flow sensor all under control to monitor and maintain constant air parameters in an environment and minimize environmental fluctuations around the corrosion sensor to overcome the variation commonly encountered in corrosion rate measurement. The corrosion measurement apparatus includes a structure providing an enclosure within which are located the sensors. Constant air flow and temperature is maintained within the enclosure where the corrosion sensor is located by integrating a variable speed air fan and a heater with the corresponding feedback loop control. Temperature and air flow control loops ensure that corrosivity is measured under similar conditions in different facilities offering a general reference point that allow a one to one comparison between facilities with similar or different pollution levels.
A Field Study of Air Force Organization Structures.
1984-05-01
t.ral 1z,,- contract . 66-1 and 66-5 are the numbered regulations ... eo coer’. , of design. Contract refers to the design used in a facility where...REPORT NUMBER (S) 5 MONITORING ORGANIZATION RLPORT NuMHLF1H’ LMDC-TR-34-4 6& NAME OF PERFORMING ORGANIZATION Fr. O IE SYMBOL 7a NAME OF MONITORING ORGANIZA...assi f ied 22& NAME OF RESPONSIBLE IN0IVIO~jA. 22t, TELEPHONE NUMBER 22c OFF ICE SY(MBOL Capt Jeffrey S. Austin (0)2373 MCA DOD FORM 1473,83 APR
Oh, TaeSeok; Kim, MinJeong; Lim, JungJin; Kang, OnYu; Shetty, K Vidya; SankaraRao, B; Yoo, ChangKyoo; Park, Jae Hyung; Kim, Jeong Tai
2012-05-01
Subway systems are considered as main public transportation facility in developed countries. Time spent by people in indoors, such as underground spaces, subway stations, and indoor buildings, has gradually increased in the recent past. Especially, operators or old persons who stay in indoor environments more than 15 hr per day usually influenced a greater extent by indoor air pollutants. Hence, regulations on indoor air pollutants are needed to ensure good health of people. Therefore, in this study, a new cumulative calculation method for the estimation of total amounts of indoor air pollutants emitted inside the subway station is proposed by taking cumulative amounts of indoor air pollutants based on integration concept. Minimum concentration of individual air pollutants which naturally exist in indoor space is referred as base concentration of air pollutants and can be found from the data collected. After subtracting the value of base concentration from data point of each data set of indoor air pollutant, the primary quantity of emitted air pollutant is calculated. After integration is carried out with these values, adding the base concentration to the integration quantity gives the total amount of indoor air pollutant emitted. Moreover the values of new index for cumulative indoor air quality obtained for 1 day are calculated using the values of cumulative air quality index (CAI). Cumulative comprehensive indoor air quality index (CCIAI) is also proposed to compare the values of cumulative concentrations of indoor air pollutants. From the results, it is clear that the cumulative assessment approach of indoor air quality (IAQ) is useful for monitoring the values of total amounts of indoor air pollutants emitted, in case of exposure to indoor air pollutants for a long time. Also, the values of CCIAI are influenced more by the values of concentration of NO2, which is released due to the use of air conditioners and combustion of the fuel. The results obtained in this study confirm that the proposed method can be applied to monitor total amounts of indoor air pollutants emitted, inside apartments and hospitals as well. Nowadays, subway systems are considered as main public transportation facility in developed countries. Time spent by people in indoors, such as underground spaces, subway stations, and indoor buildings, has gradually increased in the recent past. Especially, operators or old persons who stay in the indoor environments more than 15 hr per day usually influenced a greater extent by indoor air pollutants. Hence, regulations on indoor air pollutants are needed to ensure good health of people. Therefore, this paper presents a new methodology for monitoring and assessing total amounts of indoor air pollutants emitted inside underground spaces and subway stations. A new methodology for the calculation of cumulative amounts of indoor air pollutants based on integration concept is proposed. The results suggest that the cumulative assessment approach of IAQ is useful for monitoring the values of total amounts of indoor air pollutants, if indoor air pollutants accumulated for a long time, especially NO2 pollutants. The results obtained here confirm that the proposed method can be applied to monitor total amounts of indoor air pollutants emitted, inside apartments and hospitals as well.
Novel Method for Detection of Air Pollution using Cellular Communication Networks
NASA Astrophysics Data System (ADS)
David, N.; Gao, O. H.
2016-12-01
Air pollution can lead to a wide spectrum of severe and chronic health impacts. Conventional tools for monitoring the phenomenon do not provide a sufficient monitoring solution in a global scale since they are, for example, not representative of the larger space or due to limited deployment as a result of practical limitations, such as: acquisition, installation, and ongoing maintenance costs. Near ground temperature inversions are directly identified with air pollution events since they suppress vertical atmospheric movement and trap pollutants near the ground. Wireless telecommunication links that comprise the data transfer infrastructure in cellular communication networks operate at frequencies of tens of GHz and are affected by different atmospheric phenomena. These systems are deployed near ground level across the globe, including in developing countries such as India, countries in Africa, etc. Many cellular providers routinely store data regarding the received signal levels in the network for quality assurance needs. Temperature inversions cause atmospheric layering, and change the refractive index of the air when compared to standard conditions. As a result, the ducts that are formed can operate, in essence, as atmospheric wave guides, and cause interference (signal amplification / attenuation) in the microwaves measured by the wireless network. Thus, this network is in effect, an existing system of environmental sensors for monitoring temperature inversions and the episodes of air pollution identified with them. This work presents the novel idea, and demonstrates it, in operation, over several events of air pollution which were detected by a standard cellular communication network during routine operation. Reference: David, N. and Gao, H.O. Using cellular communication networks to detect air pollution, Environmental Science & Technology, 2016 (accepted).
Community exposures to airborne agricultural pesticides in California: ranking of inhalation risks.
Lee, Sharon; McLaughlin, Robert; Harnly, Martha; Gunier, Robert; Kreutzer, Richard
2002-01-01
We assessed inhalation risks to California communities from airborne agricultural pesticides by probability distribution analysis using ambient air data provided by the California Air Resources Board and the California Department of Pesticide Regulation. The pesticides evaluated include chloropicrin, chlorothalonil, chlorpyrifos, S,S,S-tributyl phosphorotrithioate, diazinon, 1,3-dichloropropene, dichlorvos (naled breakdown product), endosulfan, eptam, methidathion, methyl bromide, methyl isothiocyanate (MITC; metam sodium breakdown product), molinate, propargite, and simazine. Risks were estimated for the median and 75th and 95th percentiles of probability (50, 25, and 5% of the exposed populations). Exposure estimates greater than or equal to noncancer reference values occurred for 50% of the exposed populations (adults and children) for MITC subchronic and chronic exposures, methyl bromide subchronic exposures (year 2000 monitoring), and 1,3-dichloropropene subchronic exposures (1990 monitoring). Short-term chlorpyrifos exposure estimates exceeded the acute reference value for 50% of children (not adults) in the exposed population. Noncancer risks were uniformly higher for children due to a proportionately greater inhalation rate-to-body weight ratio compared to adults and other factors. Target health effects of potential concern for these exposures include neurologic effects (methyl bromide and chlorpyrifos) and respiratory effects (1,3-dichloropropene and MITC). The lowest noncancer risks occurred for simazine and chlorothalonil. Lifetime cancer risks of one-in-a-million or greater were estimated for 50% of the exposed population for 1,3-dichloropropene (1990 monitoring) and 25% of the exposed populations for methidathion and molinate. Pesticide vapor pressure was found to be a better predictor of inhalation risk compared to other methods of ranking pesticides as potential toxic air contaminants. PMID:12460795
Code of Federal Regulations, 2012 CFR
2012-07-01
... midnight to midnight (local standard time) that are used in NAAQS computations. Designated monitors are... accordance with part 58 of this chapter. Design values are the metrics (i.e., statistics) that are compared... (referred to as the “annual standard design value”). If spatial averaging has been approved by EPA for a...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-11
...EPA is proposing to make two determinations regarding the tri- state Huntington-Ashland, West Virginia-Kentucky-Ohio fine particulate matter (PM2.5) nonattainment Area (hereafter referred to as ``the Huntington-Ashland Area'' or ``Area''). First, EPA is proposing to determine that the Area has attained the 1997 annual average PM2.5 National Ambient Air Quality Standard (NAAQS). This proposed determination of attainment is based upon complete, quality- assured and certified ambient air monitoring data for the 2007-2009 period showing that the Area has attained the 1997 annual PM2.5 NAAQS, and data available to date for 2010 in EPA's Air Quality System (AQS) database that show the area continues to attain. If EPA finalizes this proposed determination of attainment, the requirements for the Area to submit attainment demonstrations and associated reasonably available control measures (RACM), a reasonable further progress (RFP) plan, contingency measures, and other planning State Implementation Plan (SIP) revisions related to attainment of the standard shall be suspended for so long as the Area continues to attain the annual PM2.5 NAAQS. Second, EPA is also proposing to determine, based on quality-assured and certified monitoring data for the 2007-2009 monitoring period, that the Area has attained the 1997 annual PM2.5 NAAQS by its applicable attainment date of April 5, 2010.
Cruz-Martinez, Luis; Fernie, Kim J; Soos, Catherine; Harner, Tom; Getachew, Fitsum; Smits, Judit E G
2015-01-01
Changes in environmental and wildlife health from contaminants in tailings water on the Canadian oil sands have been well-studied; however, effects of air contaminants on wildlife health have not. A field study was conducted to assess biological costs of natural exposure to oil sands-related air emissions on birds. Nest boxes for tree swallows (Tachycineta bicolor) were erected at two sites; within 5 km of active oil sands mining and extraction, and ≥ 60 km south, at one reference site. Passive air monitors were deployed at the nest boxes to measure nitrogen dioxide, sulfur dioxide, ozone, volatile organic compounds, and polycyclic aromatic hydrocarbons (PAHs). Nestlings were examined at day 9 post hatching to assess T cell function and morphometry. At day 14 post hatching, a subset of nestlings was euthanized to measure detoxification enzymes, endocrine changes, and histological alterations of immune organs. Except for ozone, all air contaminants were higher at the two oil sands sites than the reference site (up to 5-fold). Adult birds had similar reproductive performance among sites (p>0.05). Nestlings from industrial sites showed higher hepatic ethoxyresorufin O-dealkylase (EROD) induction (p<0.0001) with lower relative hepatic mass (p=0.0001), a smaller T cell response to the phytohemagglutinin skin test (p=0.007), and smaller bursae of Fabricius (p<0.02); a low sample size for one site indicating lower body condition scores (p=0.01) at day 14 warrants cautious interpretation. There were no differences among nestlings for feather corticosterone (p>0.6), and no histological alterations in the spleen or bursa of Fabricius (p>0.05). This is the first report examining toxicological responses in wild birds exposed to air contaminants from industrial activity in the oil sands. It is also the first time that small, individual air contaminant monitors have been used to determine local contaminant levels in ambient air around nest boxes of wild birds. Copyright © 2014 Elsevier B.V. All rights reserved.
Code of Federal Regulations, 2010 CFR
2010-07-01
... measured from midnight to midnight (local standard time) that are used in NAAQS computations. Design values..., calculated as specified in section 5 of this appendix. The design values for the primary NAAQS are: (1) The annual mean value for a monitoring site for one year (referred to as the “annual primary standard design...
Code of Federal Regulations, 2014 CFR
2014-07-01
... measured from midnight to midnight (local standard time) that are used in NAAQS computations. Design values..., calculated as specified in section 5 of this appendix. The design values for the primary NAAQS are: (1) The annual mean value for a monitoring site for one year (referred to as the “annual primary standard design...
Code of Federal Regulations, 2012 CFR
2012-07-01
... measured from midnight to midnight (local standard time) that are used in NAAQS computations. Design values..., calculated as specified in section 5 of this appendix. The design values for the primary NAAQS are: (1) The annual mean value for a monitoring site for one year (referred to as the “annual primary standard design...
Code of Federal Regulations, 2011 CFR
2011-07-01
... measured from midnight to midnight (local standard time) that are used in NAAQS computations. Design values..., calculated as specified in section 5 of this appendix. The design values for the primary NAAQS are: (1) The annual mean value for a monitoring site for one year (referred to as the “annual primary standard design...
Code of Federal Regulations, 2013 CFR
2013-07-01
... measured from midnight to midnight (local standard time) that are used in NAAQS computations. Design values..., calculated as specified in section 5 of this appendix. The design values for the primary NAAQS are: (1) The annual mean value for a monitoring site for one year (referred to as the “annual primary standard design...
De Brouwere, Katleen; Cornelis, Christa; Arvanitis, Athanasios; Brown, Terry; Crump, Derrick; Harrison, Paul; Jantunen, Matti; Price, Paul; Torfs, Rudi
2014-05-01
The maximum cumulative ratio (MCR) method allows the categorisation of mixtures according to whether the mixture is of concern for toxicity and if so whether this is driven by one substance or multiple substances. The aim of the present study was to explore, by application of the MCR approach, whether health risks due to indoor air pollution are dominated by one substance or are due to concurrent exposure to various substances. Analysis was undertaken on monitoring data of four European indoor studies (giving five datasets), involving 1800 records of indoor air or personal exposure. Application of the MCR methodology requires knowledge of the concentrations of chemicals in a mixture together with health-based reference values for those chemicals. For this evaluation, single substance health-based reference values (RVs) were selected through a structured review process. The MCR analysis found high variability in the proportion of samples of concern for mixture toxicity. The fraction of samples in these groups of concern varied from 2% (Flemish schools) to 77% (EXPOLIS, Basel, indoor), the variation being due not only to the variation in indoor air contaminant levels across the studies but also to other factors such as differences in number and type of substances monitored, analytical performance, and choice of RVs. However, in 4 out of the 5 datasets, a considerable proportion of cases were found where a chemical-by-chemical approach failed to identify the need for the investigation of combined risk assessment. Although the MCR methodology applied in the current study provides no consideration of commonality of endpoints, it provides a tool for discrimination between those mixtures requiring further combined risk assessment and those for which a single-substance assessment is sufficient. Copyright © 2014 Elsevier B.V. All rights reserved.
Evaluation of consumer monitors to measure particulate matter.
Sousan, Sinan; Koehler, Kirsten; Hallett, Laura; Peters, Thomas M
2017-05-01
Recently, inexpensive (<$300) consumer aerosol monitors (CAMs) targeted for use in homes have become available. We evaluated the accuracy, bias, and precision of three CAMs (Foobot from Airoxlab, Speck from Carnegie Mellon University, and AirBeam from HabitatMap) for measuring mass concentrations in occupational settings. In a laboratory study, PM 2.5 measured with the CAMs and a medium-cost aerosol photometer (personal DataRAM 1500, Thermo Scientific) were compared to that from reference instruments for three aerosols (salt, welding fume, and Arizona road dust, ARD) at concentrations up to 8500 μg/m 3 . Three of each type of CAM were included to estimate precision. Compared to reference instruments, mass concentrations measured with the Foobot (r-value = 0.99) and medium-cost photometer (r-value = 0.99) show strong correlation, whereas those from the Speck (r-value range 0.88 - 0.99) and AirBeam (0.7 - 0.96) were less correlated. The Foobot bias was (-12%) for ARD and measurements were similar to the medium-cost instrument. Foobot bias was (< -46%) for salt and welding fume aerosols. Speck bias was at 18% salt for ARD and -86% for welding fume. AirBeam bias was (-36%) for salt and (-83%) for welding fume. All three photometers had a bias (< -82%) for welding fume. Precision was excellent for the Foobot (coefficient of variation range: 5% to 8%) and AirBeam (2% to 9%), but poorer for the Speck (8% to 25%). These findings suggest that the Foobot, with a linear response to different aerosol types and good precision, can provide reasonable estimates of PM 2.5 in the workplace after site-specific calibration to account for particle size and composition.
Measurement systems and indices of miners' exposure to radon daughter products in the air of mines.
Domański, T
1990-01-01
This paper presents the classification of measurement systems that may be used for the assessment of miners' exposure to radiation in mines. The following systems were described and characterized as the Air Sampling System (ASS), the Environmental Control System (ECS), the Individual Dosimetry System (IDS), the Stream Monitoring System (SMS) and the Exhaust Monitoring System (EMS). The indices for evaluation of miners' working environments, or for assessment of individual or collective miners' exposure, were selected and determined. These are: average expected concentration (CAE), average observed concentration (CAO), average expected rate of exposure cumulation rate (EEXP), average observed exposure cumulation rate (EOBS), average effective exposure cumulation rate (EEFF). Mathematical formulae for determining all these indicators, according to the type of measurement system used in particular mines, are presented. The reliability of assessment of miners' exposure in particular measurement systems, as well as the role of the possible reference system, are discussed.
Shi, Yuan; Lau, Kevin Ka-Lun; Ng, Edward
2017-08-01
Urban air quality serves as an important function of the quality of urban life. Land use regression (LUR) modelling of air quality is essential for conducting health impacts assessment but more challenging in mountainous high-density urban scenario due to the complexities of the urban environment. In this study, a total of 21 LUR models are developed for seven kinds of air pollutants (gaseous air pollutants CO, NO 2 , NO x , O 3 , SO 2 and particulate air pollutants PM 2.5 , PM 10 ) with reference to three different time periods (summertime, wintertime and annual average of 5-year long-term hourly monitoring data from local air quality monitoring network) in Hong Kong. Under the mountainous high-density urban scenario, we improved the traditional LUR modelling method by incorporating wind availability information into LUR modelling based on surface geomorphometrical analysis. As a result, 269 independent variables were examined to develop the LUR models by using the "ADDRESS" independent variable selection method and stepwise multiple linear regression (MLR). Cross validation has been performed for each resultant model. The results show that wind-related variables are included in most of the resultant models as statistically significant independent variables. Compared with the traditional method, a maximum increase of 20% was achieved in the prediction performance of annual averaged NO 2 concentration level by incorporating wind-related variables into LUR model development. Copyright © 2017 Elsevier Inc. All rights reserved.
Basic Information about Air Emissions Monitoring
This site is about types of air emissions monitoring and the Clean Air Act regulations, including Ambient Air Quality Monitoring, Stationary Source Emissions Monitoring, and Continuous Monitoring Systems.
Laser Spectroscopy Monitoring of 13C18O16O and 12C17O16O of Atmospheric Carbon Dioxide
NASA Astrophysics Data System (ADS)
Shorter, J. H.; Nelson, D. D.; Ono, S.; McManus, J. B.; Zahniser, M. S.
2017-12-01
One of the main challenges to making accurate predictions of future changes in CO2 concentration is the capability to determine what fraction of human produced CO2 remains in the atmosphere. We present our progress in the application of Tunable Infrared Laser Direct Absorption Spectroscopy (TILDAS) to the measurement of the primary clumped (13C18O16O) as well as 17O (12C17O16O) isotopologues of atmospheric CO2, as a tracer of its sources and sinks. We expect unique isotopologue signals in CO2 from high-temperature combustion sources, plants, soils, and air-sea exchange processes. High sampling frequency (a few minutes for each sample vs. reference cycle) achieved by a TILDAS instrument is expected to enable us to document local heterogeneous sources and temporal variations. The TILDAS is equipped with a newly developed 400-meter absorption cell. We designed a dual pressure measurement technique in which the clumped isotopologue, 13C18O16O, and 13C16O16O are first measured at 30 torr cell pressure. This is followed by measurement of 12C17O16O, 12C18O16O and 12C16O16O at lower ( 5 torr) cell pressure. Isotopologue ratios are compared between reference and sample gases. Preliminary tests demonstrated a precision approaching 0.03 ‰ for the ratio 13C18O16O/13C16O16O and 0.08‰ for Δ13C18O16O value (1σ repeatability for 4 min sample vs. reference cycle). Sample size for a single analysis is approximately 100 mL of air (1.6μmol of CO2). Given the previously observed range of variations for Δ13C18O16O and Δ17O values as large as 0.6 to 0.3 ‰, respectively, TILDAS offers a novel approach for real time monitoring of atmospheric CO2 isotopologues. It was found that achieving better than 0.1‰ requires careful matching of CO2 mixing ratios between reference and sample air. A primary cause of pressure and mixing ratio dependence is inaccurate baseline fitting (analogous to abundance sensitivity or pressure baseline for IRMS). Given that mixing ratios of atmospheric CO2 can vary as much as 50% or more, a dynamic dilution scheme, where sample air is diluted by CO2 free air to match the reference mixing ratio, is being developed. An in-line calibration source of hot, equilibrated CO2 isotopologues is also being tested. We will discuss the current instrument performance, areas for improvement, and project future applications.
Carter Carburetor Weekly Air Monitoring & Sampling Report - March 7, 2013 - March 13, 2016
Carter Carburetor Daily Weather Conditions, Dairly Work Activities, Daily Air Monitoring and Samplying Results, Air Monitoring/Samplying Results –Station 2 Linc 126, Air Monitoring/Sampling Results- Sation 3 Linc 123, Air Monitoring/Samplying Results-Stati
Long-term stability measurements of low concentration Volatile Organic Compound gas mixtures
NASA Astrophysics Data System (ADS)
Allen, Nick; Amico di Meane, Elena; Brewer, Paul; Ferracci, Valerio; Corbel, Marivon; Worton, David
2017-04-01
VOCs (Volatile Organic Compounds) are a class of compounds with significant influence on the atmosphere due to their large anthropogenic and biogenic emission sources. VOC emissions have a significant impact on the atmospheric hydroxyl budget and nitrogen reservoir species, while also contributing indirectly to the production of tropospheric ozone and secondary organic aerosol. However, the global budget of many of these species are poorly constrained. Moreover, the World Meteorological Organization's (WMO) Global Atmosphere Watch (GAW) have set challenging data quality objectives for atmospheric monitoring programmes for these classes of traceable VOCs, despite the lack of available stable gas standards. The Key-VOCs Joint Research Project is an ongoing three-year collaboration with the aim of improving the measurement infrastructure of important atmospheric VOCs by providing traceable and comparable reference gas standards and by validating new measurement systems in support of the air monitoring networks. It focuses on VOC compounds that are regulated by European legislation, that are relevant for indoor air monitoring and for air quality and climate monitoring programmes like the VOC programme established by the WMO GAW and the European Monitoring and Evaluation Programme (EMEP). These VOCs include formaldehyde, oxy[genated]-VOCs (acetone, ethanol and methanol) and terpenes (a-pinene, 1,8-cineole, δ-3-carene and R-limonene). Here we present the results of a novel long term stability study for low concentration formaldehyde, oxy-VOC and terpenes gas mixtures produced by the Key-VOCs consortium with discussion regarding the implementation of improved preparation techniques and the use of novel cylinder passivation chemistries to guarantee mixture stability.
Carter Carburetor Weekly Air Monitoring & Sampling Report - November 30, 2015 – December 6, 2015
Carter Carburetor Daily Weather Conditions, Dairly Work Activities, Daily Air Monitoring and Samplying Results, Air Monitoring/Samplying Results –Station 2 Linc 126, Air Monitoring/Sampling Results- Sation 3 Linc 123, Air Monitoring/Samplying Results-Stati
Carter Carburetor Weekly Air Monitoring & Sampling Report - October 26, 2015 – November 1, 2015
Carter Carburetor Daily Weather Conditions, Dairly Work Activities, Daily Air Monitoring and Samplying Results, Air Monitoring/Samplying Results –Station 2 Linc 126, Air Monitoring/Sampling Results- Sation 3 Linc 123, Air Monitoring/Samplying Results-Stati
Carter Carburetor Weekly Air Monitoring & Sampling Report - February 15, 2016 – February 21, 2016
Carter Carburetor Daily Weather Conditions, Dairly Work Activities, Daily Air Monitoring and Samplying Results, Air Monitoring/Samplying Results –Station 2 Linc 126, Air Monitoring/Sampling Results- Sation 3 Linc 123, Air Monitoring/Samplying Results-Stati
Carter Carburetor Weekly Air Monitoring & Sampling Report - October 12, 2015 – October 18, 2015
Carter Carburetor Daily Weather Conditions, Dairly Work Activities, Daily Air Monitoring and Samplying Results, Air Monitoring/Samplying Results –Station 2 Linc 126, Air Monitoring/Sampling Results- Sation 3 Linc 123, Air Monitoring/Samplying Results-Stati
Carter Carburetor Weekly Air Monitoring & Sampling Report - November 23, 2015 – November 29, 2015
Carter Carburetor Daily Weather Conditions, Dairly Work Activities, Daily Air Monitoring and Samplying Results, Air Monitoring/Samplying Results –Station 2 Linc 126, Air Monitoring/Sampling Results- Sation 3 Linc 123, Air Monitoring/Samplying Results-Stati
Carter Carburetor Weekly Air Monitoring & Sampling Report - October 5, 2015 – October 11, 2015
Carter Carburetor Daily Weather Conditions, Dairly Work Activities, Daily Air Monitoring and Samplying Results, Air Monitoring/Samplying Results –Station 2 Linc 126, Air Monitoring/Sampling Results- Sation 3 Linc 123, Air Monitoring/Samplying Results-Stati
Carter Carburetor Weekly Air Monitoring & Sampling Report - February 1, 2016 – February 7, 2016
Carter Carburetor Daily Weather Conditions, Dairly Work Activities, Daily Air Monitoring and Samplying Results, Air Monitoring/Samplying Results –Station 2 Linc 126, Air Monitoring/Sampling Results- Sation 3 Linc 123, Air Monitoring/Samplying Results-Stati
Carter Carburetor Weekly Air Monitoring & Sampling Report - September 28, 2015 – October 4, 2015
Carter Carburetor Daily Weather Conditions, Dairly Work Activities, Daily Air Monitoring and Samplying Results, Air Monitoring/Samplying Results –Station 2 Linc 126, Air Monitoring/Sampling Results- Sation 3 Linc 123, Air Monitoring/Samplying Results-Stati
Carter Carburetor Weekly Air Monitoring & Sampling Report - November 16, 2015 – November 22, 2015
Carter Carburetor Daily Weather Conditions, Dairly Work Activities, Daily Air Monitoring and Samplying Results, Air Monitoring/Samplying Results –Station 2 Linc 126, Air Monitoring/Sampling Results- Sation 3 Linc 123, Air Monitoring/Samplying Results-Stati
Carter Carburetor Weekly Air Monitoring & Sampling Report - November 9, 2015 – November 15, 2015
Carter Carburetor Daily Weather Conditions, Dairly Work Activities, Daily Air Monitoring and Samplying Results, Air Monitoring/Samplying Results –Station 2 Linc 126, Air Monitoring/Sampling Results- Sation 3 Linc 123, Air Monitoring/Samplying Results-Stati
Carter Carburetor Weekly Air Monitoring & Sampling Report - October 19, 2015 – October 25, 2015
Carter Carburetor Daily Weather Conditions, Dairly Work Activities, Daily Air Monitoring and Samplying Results, Air Monitoring/Samplying Results –Station 2 Linc 126, Air Monitoring/Sampling Results- Sation 3 Linc 123, Air Monitoring/Samplying Results-Stati
Carter Carburetor Weekly Air Monitoring & Sampling Report - November 2, 2015 – November 8, 2015
Carter Carburetor Daily Weather Conditions, Dairly Work Activities, Daily Air Monitoring and Samplying Results, Air Monitoring/Samplying Results –Station 2 Linc 126, Air Monitoring/Sampling Results- Sation 3 Linc 123, Air Monitoring/Samplying Results-Stati
Statistical Analysis of the Impacts of Regional Transportation on the Air Quality in Beijing
NASA Astrophysics Data System (ADS)
Huang, Zhongwen; Zhang, Huiling; Tong, Lei; Xiao, Hang
2016-04-01
From October to December 2015, Beijing-Tianjin-Hebei (BTH) region had experienced several severe haze events. In order to assess the effects of the regional transportation on the air quality in Beijing, the air monitoring data (PM2.5, SO2, NO2 and CO) from that period published by Chinese National Environmental Monitoring Center (CNEMC) was collected and analyzed with various statistical models. The cities within BTH area were clustered into three groups according to the geographical conditions, while the air pollutant concentrations of cities within a group sharing similar variation trends. The Granger causality test results indicate that significant causal relationships exist between the air pollutant data of Beijing and its surrounding cities (Baoding, Chengde, Tianjin and Zhangjiakou) for the reference period. Then, linear regression models were constructed to capture the interdependency among the multiple time series. It shows that the observed air pollutant concentrations in Beijing were well consistent with the model-fitted results. More importantly, further analysis suggests that the air pollutants in Beijing were strongly affected by regional transportation, as the local sources only contributed 17.88%, 27.12%, 14.63% and 31.36% of PM2.5, SO2, NO2 and CO concentrations, respectively. And the major foreign source for Beijing was from Southwest (Baoding) direction, account for more than 42% of all these air pollutants. Thus, by combining various statistical models, it may not only be able to quickly predict the air qualities of any cities on a regional scale, but also to evaluate the local and regional source contributions for a particular city. Key words: regional transportation, air pollution, Granger causality test, statistical models
1981-08-01
OFFICE NAME AND ADDRESS 12. -A&PORT DATE Naval Air Development Center jAug Ŝ 1 Warmninster, PA 18974 -1j NUMBER OF PAGES 14 MONITORING AGENCY NAME...vii NOMENCLATURE x 1.0 INTRODUCTION I 2.0 METHODOLOGY DEVELOPMENT 4 2.1 SUCKDOWN 5 2.1.1 FREE-AIR SUCKDOWN 5 2.1.2 ALTITUDE DEPENDENT SUCKDOWN 5 2.2...Width (Figures 2.3-2 and 2.3-4) Superscripts II, 11, IV Referring to 2, 3 or 4 Nozzle Planforms X NADC 79298-60 1.0 INTRODUCTION The flow field in the
1988-12-01
and do not refer to monitoring zones at McClellSn AFB. b Priority poLutant metals analyses also included U.S. EPA Methods 206.2, 245.1 and 270.2. EW a...sampling protocol, and the laboratory is audited routinely. Therefore, no corrective action other than good training and supervision is necessary. The same
21 CFR 868.2025 - Ultrasonic air embolism monitor.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Ultrasonic air embolism monitor. 868.2025 Section... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2025 Ultrasonic air embolism monitor. (a) Identification. An ultrasonic air embolism monitor is a device used to detect air bubbles in...
21 CFR 868.2025 - Ultrasonic air embolism monitor.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Ultrasonic air embolism monitor. 868.2025 Section... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2025 Ultrasonic air embolism monitor. (a) Identification. An ultrasonic air embolism monitor is a device used to detect air bubbles in...
21 CFR 868.2025 - Ultrasonic air embolism monitor.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ultrasonic air embolism monitor. 868.2025 Section... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2025 Ultrasonic air embolism monitor. (a) Identification. An ultrasonic air embolism monitor is a device used to detect air bubbles in...
Leston, Alan R; Ollison, Will M
2017-11-01
Long-standing measurement techniques for determining ground-level ozone (O 3 ) and nitrogen dioxide (NO 2 ) are known to be biased by interfering compounds that result in overestimates of high O 3 and NO 2 ambient concentrations under conducive conditions. An increasing near-ground O 3 gradient (NGOG) with increasing height above ground level is also known to exist. Both the interference bias and NGOG were investigated by comparing data from a conventional Federal Equivalent Method (FEM) O 3 photometer and an identical monitor upgraded with an "interference-free" nitric oxide O 3 scrubber that alternatively sampled at 2 m and 6.2 m inlet heights above ground level (AGL). Intercomparison was also made between a conventional nitrogen oxide (NO x ) chemiluminescence Federal Reference Method (FRM) monitor and a new "direct-measure" NO 2 NO x 405 nm photometer at a near-road air quality measurement site. Results indicate that the O 3 monitor with the upgraded scrubber recorded lower regulatory-oriented concentrations than the deployed conventional metal oxide-scrubbed monitor and that O 3 concentrations 6.2 m AGL were higher than concentrations 2.0 m AGL, the nominal nose height of outdoor populations. Also, a new direct-measure NO 2 photometer recorded generally lower NO 2 regulatory-oriented concentrations than the conventional FRM chemiluminescence monitor, reporting lower daily maximum hourly average concentrations than the conventional monitor about 3 of every 5 days. Employing bias-prone instruments for measurement of ambient ozone or nitrogen dioxide from inlets at inappropriate heights above ground level may result in collection of positively biased data. This paper discusses tests of new regulatory instruments, recent developments in bias-free ozone and nitrogen dioxide measurement technology, and the presence/extent of a near-ground O 3 gradient (NGOG). Collection of unbiased monitor inlet height-appropriate data is crucial for determining accurate design values and meeting National Ambient Air Quality Standards.
A real-time posture monitoring method for rail vehicle bodies based on machine vision
NASA Astrophysics Data System (ADS)
Liu, Dongrun; Lu, Zhaijun; Cao, Tianpei; Li, Tian
2017-06-01
Monitoring vehicle operation conditions has become significantly important in modern high-speed railway systems. However, the operational impact of monitoring the roll angle of vehicle bodies has principally been limited to tilting trains, while few studies have focused on monitoring the running posture of vehicle bodies during operation. We propose a real-time posture monitoring method to fulfil real-time monitoring requirements, by taking rail surfaces and centrelines as detection references. In realising the proposed method, we built a mathematical computational model based on space coordinate transformations to calculate attitude angles of vehicles in operation and vertical and lateral vibration displacements of single measuring points. Moreover, comparison and verification of reliability between system and field results were conducted. Results show that monitoring of the roll angles of car bodies obtained through the system exhibit variation trends similar to those converted from the dynamic deflection of bogie secondary air springs. The monitoring results of two identical conditions were basically the same, highlighting repeatability and good monitoring accuracy. Therefore, our monitoring results were reliable in reflecting posture changes in running railway vehicles.
A new apparatus for on-site calibration of gamma dose rate monitors
NASA Astrophysics Data System (ADS)
Zhang, Yu; Chen, Bo; Zhao, Chao; Zhuo, Weihai
2018-01-01
In order to carry out on-site calibrations of environmental gamma dose rate monitors, a new irradiation apparatus was developed in this study. The apparatus mainly consists of a piece of 137Cs source, a set of beam attenuators, and 3 built-in laser rangefinders, and it can be remotely controlled by using a laptop through WiFi network. With an activity of 4.6 × 108 Bq of 137Cs source, the reference air kerma rate could be adjusted from 0.26 μGy h-1 to 140 μGy h-1 by changing the calibration distance from 0.5 m to 5 m and using different beam attenuators (or none), and both the reproducibility and the homogeneity of reference radiation were better than 97%. The overall uncertainty of the calibration was estimated to be 6.5% (k = 2). Both the laboratory and field experiments confirmed that the calibration method met the requirements of ISO 4037-1. As the advantages of portability and simplicity, it is considered that the new irradiation apparatus is applicable to stationary gamma radiation monitors for on-site calibration.
Aerospace toxicology overview: aerial application and cabin air quality.
Chaturvedi, Arvind K
2011-01-01
Aerospace toxicology is a rather recent development and is closely related to aerospace medicine. Aerospace toxicology can be defined as a field of study designed to address the adverse effects of medications, chemicals, and contaminants on humans who fly within or outside the atmosphere in aviation or on space flights. The environment extending above and beyond the surface of the Earth is referred to as aerospace. The term aviation is frequently used interchangeably with aerospace. The focus of the literature review performed to prepare this paper was on aerospace toxicology-related subject matters, aerial application and aircraft cabin air quality. Among the important topics addressed are the following: · Aerial applications of agricultural chemicals, pesticidal toxicity, and exposures to aerially applied mixtures of chemicals and their associated formulating solvents/surfactants The safety of aerially encountered chemicals and the bioanalytical methods used to monitor exposures to some of them · The presence of fumes and smoke, as well as other contaminants that may generally be present in aircraft/space vehicle cabin air · And importantly, the toxic effects of aerially encountered contaminants, with emphasis on the degradation products of oils, fluids, and lubricants used in aircraft, and finally · Analytical methods used for monitoring human exposure to CO and HCN are addressed in the review, as are the signs and symptoms associated with exposures to these combustion gases. Although many agricultural chemical monitoring studies have been published, few have dealt with the occurrence of such chemicals in aircraft cabin air. However, agricultural chemicals do appear in cabin air; indeed, attempts have been made to establish maximum allowable concentrations for several of the more potentially toxic ones that are found in aircraft cabin air. In this article, I emphasize the need for precautionary measures to be taken to minimize exposures to aerially encountered chemicals, or aircraft cabin air contaminants and point out the need for future research to better address toxicological evaluation of aircraft-engine oil additives.
Modeling and Evaluation of Miles-in-Trail Restrictions in the National Air Space
NASA Technical Reports Server (NTRS)
Grabbe, Shon; Sridhar, Banavar
2003-01-01
Miles-in-trail restrictions impact flights in the national air space on a daily basis and these restrictions routinely propagate between adjacent Air Route Traffic Control Centers. Since overly restrictive or ineffective miles-in-trail restrictions can reduce the overall efficiency of the national air space, decision support capabilities that model miles-in-trail restrictions should prove to be very beneficial. This paper presents both an analytical formulation and a linear programming approach for modeling the effects of miles-in-trail restrictions. A methodology for monitoring the conformance of an existing miles-in-trail restriction is also presented. These capabilities have been implemented in the Future ATM Concepts Evaluation Tool for testing purposes. To allow alternative restrictions to be evaluated in post-operations, a new mode of operation, which is referred to as the hybrid-playback mode, has been implemented in the simulation environment. To demonstrate the capabilities of these new algorithms, the miles-in-trail restrictions, which were in effect on June 27, 2002 in the New York Terminal Radar Approach Control, are examined. Results from the miles-in-trail conformance monitoring functionality are presented for the ELIOT, PARKE and WHITE departure fixes. In addition, the miles-in-trail algorithms are used to assess the impact of alternative restrictions at the PARKE departure fix.
Castell, Nuria; Dauge, Franck R; Schneider, Philipp; Vogt, Matthias; Lerner, Uri; Fishbain, Barak; Broday, David; Bartonova, Alena
2017-02-01
The emergence of low-cost, user-friendly and very compact air pollution platforms enable observations at high spatial resolution in near-real-time and provide new opportunities to simultaneously enhance existing monitoring systems, as well as engage citizens in active environmental monitoring. This provides a whole new set of capabilities in the assessment of human exposure to air pollution. However, the data generated by these platforms are often of questionable quality. We have conducted an exhaustive evaluation of 24 identical units of a commercial low-cost sensor platform against CEN (European Standardization Organization) reference analyzers, evaluating their measurement capability over time and a range of environmental conditions. Our results show that their performance varies spatially and temporally, as it depends on the atmospheric composition and the meteorological conditions. Our results show that the performance varies from unit to unit, which makes it necessary to examine the data quality of each node before its use. In general, guidance is lacking on how to test such sensor nodes and ensure adequate performance prior to marketing these platforms. We have implemented and tested diverse metrics in order to assess if the sensor can be employed for applications that require high accuracy (i.e., to meet the Data Quality Objectives defined in air quality legislation, epidemiological studies) or lower accuracy (i.e., to represent the pollution level on a coarse scale, for purposes such as awareness raising). Data quality is a pertinent concern, especially in citizen science applications, where citizens are collecting and interpreting the data. In general, while low-cost platforms present low accuracy for regulatory or health purposes they can provide relative and aggregated information about the observed air quality. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Modeling of lead air pollution. [Baton Rouge, Louisiana
DOE Office of Scientific and Technical Information (OSTI.GOV)
Monteith, C.S.; Henry, J.M.
1982-05-01
A study was performed to determine whether vehicular emissions should be included with industrial emissions when demonstrating attainment of the ambient air quality standard for lead. The impact on ambient lead concentrations of the phaseout of leaded gasoline and improved automobile fuel economy was examined by modeling vehicular emissions for 1972 and 1978. Results show that while automobiles in the Baton Rouge area were a significant source of lead in 1972, the phaseout of leaded gasoline and the increase in fuel economy have resulted in a lower contribution (0.20 ..mu..g/m/sup 3/) by automobiles to the ambient lead concentration in 1978.more » The areas having the greatest potential for exceeding the ambient air quality standard can be identified using CDM (EPA's Climatological Dispersion Model). This information can be used to determine the optimal location for an ambient air monitor to demonstrate compliance with the ambient air quality standard. 9 references, 4 figures, 5 tables. (JMT)« less
40 CFR 51.190 - Ambient air quality monitoring requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 2 2013-07-01 2013-07-01 false Ambient air quality monitoring... PROGRAMS REQUIREMENTS FOR PREPARATION, ADOPTION, AND SUBMITTAL OF IMPLEMENTATION PLANS Ambient Air Quality Surveillance § 51.190 Ambient air quality monitoring requirements. The requirements for monitoring ambient air...
40 CFR 51.190 - Ambient air quality monitoring requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 2 2014-07-01 2014-07-01 false Ambient air quality monitoring... PROGRAMS REQUIREMENTS FOR PREPARATION, ADOPTION, AND SUBMITTAL OF IMPLEMENTATION PLANS Ambient Air Quality Surveillance § 51.190 Ambient air quality monitoring requirements. The requirements for monitoring ambient air...
40 CFR 51.190 - Ambient air quality monitoring requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 2 2011-07-01 2011-07-01 false Ambient air quality monitoring... PROGRAMS REQUIREMENTS FOR PREPARATION, ADOPTION, AND SUBMITTAL OF IMPLEMENTATION PLANS Ambient Air Quality Surveillance § 51.190 Ambient air quality monitoring requirements. The requirements for monitoring ambient air...
40 CFR 51.190 - Ambient air quality monitoring requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 2 2012-07-01 2012-07-01 false Ambient air quality monitoring... PROGRAMS REQUIREMENTS FOR PREPARATION, ADOPTION, AND SUBMITTAL OF IMPLEMENTATION PLANS Ambient Air Quality Surveillance § 51.190 Ambient air quality monitoring requirements. The requirements for monitoring ambient air...
40 CFR 51.190 - Ambient air quality monitoring requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 2 2010-07-01 2010-07-01 false Ambient air quality monitoring... PROGRAMS REQUIREMENTS FOR PREPARATION, ADOPTION, AND SUBMITTAL OF IMPLEMENTATION PLANS Ambient Air Quality Surveillance § 51.190 Ambient air quality monitoring requirements. The requirements for monitoring ambient air...
NASA Astrophysics Data System (ADS)
Vaskuri, Anna; Greenwell, Claire; Hessey, Isabel; Tompkins, Jordan; Woolliams, Emma
2018-02-01
Diffuser reflectance targets are key components in in-orbit calibrations and for verifying ground reference test sites. In this work, Spectralon, Diffusil, and Heraeus diffusers were exposed to exhaust gases and ultraviolet (UV) radiation in the ambient air conditions and their degradations were monitored by measuring changes in spectral reflectances. Spectralon is a state-of-the-art diffuser made of polytetrafluoroethylene, and Diffusil and Heraeus diffusers are made of fused silica with gas bubbles inside. Based on the contamination tests, Spectralon degrades faster than fused silica diffusers. For the samples exposed to contamination for 20 minutes, the 250 nm - 400 nm total diffuse spectral reflectance of Spectralon degraded 3-5 times more when exposed to petrol-like emission and 16-23 times more when exposed to diesel-like emission, compared with Diffusil. When the reflectance changes of Spectralon were compared with those of Heraeus, Spectralon degraded 3-4 times more when exposed to petrol-like emission for 20 minutes and 5-7 times more when exposed to diesel-like emission for 7.5 minutes. When the samples contaminated were exposed to UV radiation in the ambient air, their reflectance gradually restored back to the original level. In conclusion, fused silica diffusers are more resistant to hydrocarbon contaminants present in ground reference test sites, and thus more stable under UV radiation in the air.
40 CFR 58.15 - Annual air monitoring data certification.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 5 2010-07-01 2010-07-01 false Annual air monitoring data certification. 58.15 Section 58.15 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) AMBIENT AIR QUALITY SURVEILLANCE Monitoring Network § 58.15 Annual air monitoring data...
40 CFR 58.15 - Annual air monitoring data certification.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 5 2011-07-01 2011-07-01 false Annual air monitoring data certification. 58.15 Section 58.15 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) AMBIENT AIR QUALITY SURVEILLANCE Monitoring Network § 58.15 Annual air monitoring data...
Comparison of ozone determinations by ultraviolet photometry and gas-phase titration
NASA Technical Reports Server (NTRS)
Demore, W. B.; Patapoff, M.
1976-01-01
A comparison of ozone determinations based on ultraviolet absorption photometry and gas-phase titration (GPT) shows good agreement between the two methods. Together with other results, these findings indicate that three candidate reference methods for ozone, UV photometry, IR photometry, and GPT are in substantial agreement. However, the GPT method is not recommended for routine use by air pollution agencies for calibration of ozone monitors because of susceptibility to experimental error.
Climate intercomparison of GPS radio occultation, RS90/92 radiosondes and GRUAN from 2002 to 2013
NASA Astrophysics Data System (ADS)
Ladstädter, F.; Steiner, A. K.; Schwärz, M.; Kirchengast, G.
2015-04-01
Observations from the GPS radio occultation (GPSRO) satellite technique and from the newly established GCOS Reference Upper Air Network (GRUAN) are both candidates to serve as reference observations in the Global Climate Observing System (GCOS). Such reference observations are key to decrease existing uncertainties in upper-air climate research. There are now more than 12 years of data available from GPSRO, with the recognized properties high accuracy, global coverage, high vertical resolution, and long-term stability. These properties make GPSRO a suitable choice for comparison studies with other upper-air observational systems. The GRUAN network consists of reference radiosonde ground stations (16 at present), which adhere to the GCOS climate monitoring principles. In this study, we intercompare GPSRO temperature and humidity profiles and Vaisala RS90/92 data from the "standard" global radiosonde network over the whole 2002 to 2013 time frame. Additionally, we include the first years of GRUAN data (using Vaisala RS92), available since 2009. GPSRO profiles which occur within 3 h and 300 km of radiosonde launches are used. Overall very good agreement is found between all three data sets with temperature differences usually less than 0.2 K. In the stratosphere above 30 hPa, temperature differences are larger but still within 0.5 K. Day/night comparisons with GRUAN data reveal small deviations likely related to a warm bias of the radiosonde data at high altitudes, but also residual errors from the GPSRO retrieval process might play a role. Vaisala RS90/92 specific humidity exhibits a dry bias of up to 40% in the upper troposphere, with a smaller bias at lower altitudes within 15%. GRUAN shows a marked improvement in the bias characteristics, with less than 5% difference to GPSRO, up to 300 hPa. GPSRO dry temperature and physical temperature are validated using radiosonde data as reference. We find that GPSRO provides valuable long-term stable reference observations with well-defined error characteristics for climate applications and for anchoring other upper-air measurements.
Climate intercomparison of GPS radio occultation, RS90/92 radiosondes and GRUAN over 2002 to 2013
NASA Astrophysics Data System (ADS)
Ladstädter, F.; Steiner, A. K.; Schwärz, M.; Kirchengast, G.
2014-11-01
Observations from the GPS radio occultation (GPSRO) satellite technique and from the newly established GCOS Reference Upper Air Network (GRUAN) are both candidates to serve as reference observations in the Global Climate Observing System (GCOS). Such reference observations are key to decrease existing uncertainties in upper-air climate research. There are now more than 12 years of data available from GPSRO, with the recognized properties high accuracy, global coverage, high vertical resolution, and long-term stability. These properties make GPSRO a suitable choice for comparison studies with other upper-air observational systems. The GRUAN network consists of reference radiosonde ground stations (16 at present), which adhere to the GCOS climate monitoring principles. In this study, we intercompare GPSRO temperature and humidity profiles and Vaisala RS90/92 data from the "standard" global radiosonde network over the whole 2002 to 2013 time frame. Additionally, we include the first years of GRUAN data (using Vaisala RS92), available since 2009. GPSRO profiles which occur within 3 h and 300 km of radiosonde launches are used. Very good agreement is found between all three datasets with temperature differences usually less than 0.2 K. In the stratosphere above 30 hPa, temperature differences are larger but still within 0.5 K. Day/night comparisons with GRUAN data reveal small deviations likely related to a warm bias of the radiosonde data at high altitudes, but also residual errors from the GPSRO retrieval process might play a role. Vaisala RS90/92 specific humidity exhibits a dry bias of up to 40% in the upper troposphere, with a smaller bias at lower altitudes within 15%. GRUAN shows a marked improvement in the bias characteristics, with less than 5% difference to GPSRO up to 300 hPa. GPSRO dry temperature and physical temperature are validated using radiosonde data as reference. We find that GPSRO provides valuable long-term stable reference observations with well-defined error characteristics for climate applications and for anchoring other upper-air measurements.
Swanepoel, De Wet; Matthysen, Cornelia; Eikelboom, Robert H; Clark, Jackie L; Hall, James W
2015-01-01
Accessibility of audiometry is hindered by the cost of sound booths and shortage of hearing health personnel. This study investigated the validity of an automated mobile diagnostic audiometer with increased attenuation and real-time noise monitoring for clinical testing outside a sound booth. Attenuation characteristics and reference ambient noise levels for the computer-based audiometer (KUDUwave) was evaluated alongside the validity of environmental noise monitoring. Clinical validity was determined by comparing air- and bone-conduction thresholds obtained inside and outside the sound booth (23 subjects). Twenty-three normal-hearing subjects (age range, 20-75 years; average age 35.5) and a sub group of 11 subjects to establish test-retest reliability. Improved passive attenuation and valid environmental noise monitoring was demonstrated. Clinically, air-conduction thresholds inside and outside the sound booth, corresponded within 5 dB or less > 90% of instances (mean absolute difference 3.3 ± 3.2 SD). Bone conduction thresholds corresponded within 5 dB or less in 80% of comparisons between test environments, with a mean absolute difference of 4.6 dB (3.7 SD). Threshold differences were not statistically significant. Mean absolute test-retest differences outside the sound booth was similar to those in the booth. Diagnostic pure-tone audiometry outside a sound booth, using automated testing, improved passive attenuation, and real-time environmental noise monitoring demonstrated reliable hearing assessments.
Air Quality Monitoring: Risk-Based Choices
NASA Technical Reports Server (NTRS)
James, John T.
2009-01-01
Air monitoring is secondary to rigid control of risks to air quality. Air quality monitoring requires us to target the credible residual risks. Constraints on monitoring devices are severe. Must transition from archival to real-time, on-board monitoring. Must provide data to crew in a way that they can interpret findings. Dust management and monitoring may be a major concern for exploration class missions.
Monitoring Nanoaerosols and Environmental Exposure
NASA Astrophysics Data System (ADS)
Mandin, Corinne; Le Bihan, Olivier; Aguerre-Chariol, Olivier
Environmental exposure refers to exposure of the population outside the occupational context (see Chap. 6.4) and excluding also medical exposure. The kind of exposure discussed in this chapter is due to the presence of nanoparticles in the various environmental compartments, such as the air (indoors or outdoors), water (water for drinking, bathing, etc.), soils, foodstuffs, and so on. These nanoparticles may come from the nanomaterials that contain them and upon which they bestow specific novel properties, or they may be formed unintentionally by human activities such as industry, traffic, domestic fuel combustion, etc., or natural phenomena such as forest fires, for example, or again by physicochemical reactions, e.g., the reaction between gases and particles in the air, spray formation, vapour condensation, and so on. This book is concerned with the former, namely manufactured nanoparticles, but the related questions and acquired knowledge must often be viewed from the perspective of what is already known about the latter, commonly referred to as ultrafine particles.
Sample and data processing considerations for the NIST quantitative infrared database
NASA Astrophysics Data System (ADS)
Chu, Pamela M.; Guenther, Franklin R.; Rhoderick, George C.; Lafferty, Walter J.; Phillips, William
1999-02-01
Fourier-transform infrared (FT-IR) spectrometry has become a useful real-time in situ analytical technique for quantitative gas phase measurements. In fact, the U.S. Environmental Protection Agency (EPA) has recently approved open-path FT-IR monitoring for the determination of hazardous air pollutants (HAP) identified in EPA's Clean Air Act of 1990. To support infrared based sensing technologies, the National Institute of Standards and Technology (NIST) is currently developing a standard quantitative spectral database of the HAPs based on gravimetrically prepared standard samples. The procedures developed to ensure the quantitative accuracy of the reference data are discussed, including sample preparation, residual sample contaminants, data processing considerations, and estimates of error.
Adaptation of a military FTS to civilian air toxics measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Engel, J.R.; Dorval, R.K.
1994-12-31
In many ways, the military problem of chemical agent detection is similar to the civilian problem of toxic and related air pollutants detection. A recent program to design a next generation Fourier transform spectrometer (FTS) based chemical agent detection system has been funded by the US Army. This program has resulted in an FTS system that has a number of characteristics that make it suitable for applications to the civilian measurement problem. Low power, low weight, and small size lead to low installation, operating and maintenance costs. Innovative use of diode lasers in place of HeNe reference sources leads tomore » long lifetimes and high reliability. Absolute scan position servos allow for highly efficient offset scanning. This paper will relate the performance of this system to present air monitoring requirements.« less
NASA Astrophysics Data System (ADS)
Liu, Lixian; Mandelis, Andreas; Melnikov, Alexander; Michaelian, Kirk; Huan, Huiting; Haisch, Christoph
2016-07-01
Air pollutants have adverse effects on the Earth's climate system. There is an urgent need for cost-effective devices capable of recognizing and detecting various ambient pollutants. An FTIR photoacoustic spectroscopy (FTIR-PAS) method based on a commercial FTIR spectrometer developed for air contamination monitoring will be presented. A resonant T-cell was determined to be the most appropriate resonator in view of the low-frequency requirement and space limitations in the sample compartment. Step-scan FTIR-PAS theory for regular cylinder resonator has been described as a reference for prediction of T-cell vibration principles. Both simulated amplitude and phase responses of the T-cell show good agreement with measurement data Carbon dioxide IR absorption spectra were used to demonstrate the capacity of the FTIR-PAS method to detect ambient pollutants. The theoretical detection limit for carbon dioxide was found to be 4 ppmv. A linear response to carbon dioxide concentration was found in the range from 2500 ppmv to 5000 ppmv. The results indicate that it is possible to use step-scan FTIR-PAS with a T-cell as a quantitative method for analysis of ambient contaminants.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-02
...EPA is making two determinations, one regarding the Knoxville, Tennessee, 1997 annual fine particulate (PM2.5) nonattainment area and one regarding the Knoxville-Sevierville-La Follette, Tennessee, 2006 24-hour PM2.5 nonattainment area (both areas have the same geographic boundary and will hereafter be collectively referred to as the ``Knoxville Area'' or ``Area''). First, EPA is determining that the Area has attained the 1997 annual PM2.5 National Ambient Air Quality Standards (NAAQS or ``standard''). Second, EPA is determining that the Area has attained the 2006 24-hour PM2.5 NAAQS. These determinations of attaining data are based upon quality-assured and certified ambient air monitoring data for the 2009-2011 period, showing that the Area has monitored attainment of the 1997 annual PM2.5 NAAQS and 2006 24-hour PM2.5 NAAQS. The requirements for the Area to submit an attainment demonstration and associated reasonably available control measures (RACM), reasonable further progress (RFP) plans, contingency measures, and other planning State Implementation Plan (SIP) revisions related to attainment of the standards shall be suspended so long as the Area continues to attain the respective PM2.5 NAAQS.
Ning, Zhi; Ye, Sheng; Sun, Li; Yang, Fenhuan; Wong, Ka Chun; Westerdahl, Dane; Louie, Peter K. K.
2018-01-01
The increasing applications of low-cost air sensors promises more convenient and cost-effective systems for air monitoring in many places and under many conditions. However, the data quality from such systems has not been fully characterized and may not meet user expectations in research and regulatory uses, or for use in citizen science. In our study, electrochemical sensors (Alphasense B4 series) for carbon monoxide (CO), nitric oxide (NO), nitrogen dioxide (NO2), and oxidants (Ox) were evaluated under controlled laboratory conditions to identify the influencing factors and quantify their relation with sensor outputs. Based on the laboratory tests, we developed different correction methods to compensate for the impact of ambient conditions. Further, the sensors were assembled into a monitoring system and tested in ambient conditions in Hong Kong side-by-side with regulatory reference monitors, and data from these tests were used to evaluate the performance of the models, to refine them, and validate their applicability in variable ambient conditions in the field. The more comprehensive correction models demonstrated enhanced performance when compared with uncorrected data. One over-arching observation of this study is that the low-cost sensors may promise excellent sensitivity and performance, but it is essential for users to understand and account for several key factors that may strongly affect the nature of sensor data. In this paper, we also evaluated factors of multi-month stability, temperature, and humidity, and considered the interaction of oxidant gases NO2 and ozone on a newly introduced oxidant sensor. PMID:29360749
Wei, Peng; Ning, Zhi; Ye, Sheng; Sun, Li; Yang, Fenhuan; Wong, Ka Chun; Westerdahl, Dane; Louie, Peter K K
2018-01-23
The increasing applications of low-cost air sensors promises more convenient and cost-effective systems for air monitoring in many places and under many conditions. However, the data quality from such systems has not been fully characterized and may not meet user expectations in research and regulatory uses, or for use in citizen science. In our study, electrochemical sensors (Alphasense B4 series) for carbon monoxide (CO), nitric oxide (NO), nitrogen dioxide (NO₂), and oxidants (O x ) were evaluated under controlled laboratory conditions to identify the influencing factors and quantify their relation with sensor outputs. Based on the laboratory tests, we developed different correction methods to compensate for the impact of ambient conditions. Further, the sensors were assembled into a monitoring system and tested in ambient conditions in Hong Kong side-by-side with regulatory reference monitors, and data from these tests were used to evaluate the performance of the models, to refine them, and validate their applicability in variable ambient conditions in the field. The more comprehensive correction models demonstrated enhanced performance when compared with uncorrected data. One over-arching observation of this study is that the low-cost sensors may promise excellent sensitivity and performance, but it is essential for users to understand and account for several key factors that may strongly affect the nature of sensor data. In this paper, we also evaluated factors of multi-month stability, temperature, and humidity, and considered the interaction of oxidant gases NO₂ and ozone on a newly introduced oxidant sensor.
Study on sensing property of one-dimensional ring mirror-defect photonic crystal
NASA Astrophysics Data System (ADS)
Chen, Ying; Luo, Pei; Cao, Huiying; Zhao, Zhiyong; Zhu, Qiguang
2018-02-01
Based on the photon localization and the photonic bandgap characteristics of photonic crystals (PCs), one-dimensional (1D) ring mirror-defect photonic crystal structure is proposed. Due to the introduction of mirror structure, a defect cavity is formed in the center of the photonic crystal, and then the resonant transmission peak can be obtained in the bandgap of transmission spectrum. The transfer matrix method is used to establish the relationship model between the resonant transmission peak and the structure parameters of the photonic crystals. Using the rectangular air gate photonic crystal structure, the dynamic monitoring of the detected gas sample parameters can be achieved from the shift of the resonant transmission peak. The simulation results show that the Q-value can attain to 1739.48 and the sensitivity can attain to 1642 nm ṡ RIU-1, which demonstrates the effectiveness of the sensing structure. The structure can provide certain theoretical reference for air pollution monitoring and gas component analysis.
Community Air Monitoring Where You Live in EPA Region 5
Community air monitoring projects that are using air sensor technology to monitor air quality in states in EPA’s Region 5 are providing the public with more information on the quality of the air they breathe.
Community Air Monitoring Where You Live in EPA Region 8
Community air monitoring projects that are using air sensor technology to monitor air quality in states in EPA’s Region 8 are providing the public with more information on the quality of the air they breathe.
40 CFR 52.346 - Air quality monitoring requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 3 2012-07-01 2012-07-01 false Air quality monitoring requirements. 52... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Colorado § 52.346 Air quality monitoring... VIII Administrator, the State submitted a revised Air Quality Monitoring State Implementation Plan. The...
40 CFR 52.346 - Air quality monitoring requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 3 2014-07-01 2014-07-01 false Air quality monitoring requirements. 52... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Colorado § 52.346 Air quality monitoring... VIII Administrator, the State submitted a revised Air Quality Monitoring State Implementation Plan. The...
40 CFR 52.346 - Air quality monitoring requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 3 2013-07-01 2013-07-01 false Air quality monitoring requirements. 52... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Colorado § 52.346 Air quality monitoring... VIII Administrator, the State submitted a revised Air Quality Monitoring State Implementation Plan. The...
40 CFR 52.346 - Air quality monitoring requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 3 2011-07-01 2011-07-01 false Air quality monitoring requirements. 52... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Colorado § 52.346 Air quality monitoring... VIII Administrator, the State submitted a revised Air Quality Monitoring State Implementation Plan. The...
40 CFR 52.346 - Air quality monitoring requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 3 2010-07-01 2010-07-01 false Air quality monitoring requirements. 52... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Colorado § 52.346 Air quality monitoring... VIII Administrator, the State submitted a revised Air Quality Monitoring State Implementation Plan. The...
Acid precipitation; an annotated bibliography
Wiltshire, Denise A.; Evans, Margaret L.
1984-01-01
This collection of 1660 bibliographies references on the causes and environmental effects of acidic atmospheric deposition was compiled from computerized literature searches of earth-science and chemistry data bases. Categories of information are (1) atmospheric chemistry (gases and aerosols), (2) precipitation chemistry, (3) transport and deposition (wet and dry), (4) aquatic environments (biological and hydrological), (5) terrestrial environments, (6) effects on materials and structures, (7) air and precipitation monitoring and data collection, and (8) modeling studies. References date from the late 1800 's through December 1981. The bibliography includes short summaries of most documents. Omitted are unpublished manuscripts, publications in press, master 's theses and doctoral dissertations, newspaper articles, and book reviews. Coauthors and subject indexes are included. (USGS)
10 CFR 835.403 - Air monitoring.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 4 2014-01-01 2014-01-01 false Air monitoring. 835.403 Section 835.403 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Monitoring of Individuals and Areas § 835.403 Air... been prescribed. (b) Real-time air monitoring shall be performed as necessary to detect and provide...
10 CFR 835.403 - Air monitoring.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 4 2013-01-01 2013-01-01 false Air monitoring. 835.403 Section 835.403 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Monitoring of Individuals and Areas § 835.403 Air... been prescribed. (b) Real-time air monitoring shall be performed as necessary to detect and provide...
10 CFR 835.403 - Air monitoring.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 4 2012-01-01 2012-01-01 false Air monitoring. 835.403 Section 835.403 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Monitoring of Individuals and Areas § 835.403 Air... been prescribed. (b) Real-time air monitoring shall be performed as necessary to detect and provide...
10 CFR 835.403 - Air monitoring.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 4 2010-01-01 2010-01-01 false Air monitoring. 835.403 Section 835.403 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Monitoring of Individuals and Areas § 835.403 Air... been prescribed. (b) Real-time air monitoring shall be performed as necessary to detect and provide...
10 CFR 835.403 - Air monitoring.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 4 2011-01-01 2011-01-01 false Air monitoring. 835.403 Section 835.403 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Monitoring of Individuals and Areas § 835.403 Air... been prescribed. (b) Real-time air monitoring shall be performed as necessary to detect and provide...
EMP Attachment 3 DOE-SC PNNL Site Dose Assessment Guidance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snyder, Sandra F.
2011-12-21
This Dose Assessment Guidance (DAG) describes methods to use to determine the Maximally-Exposed Individual (MEI) location and to estimate dose impact to that individual under the U.S. Department of Energy Office of Science (DOE-SC) Pacific Northwest National Laboratory (PNNL) Site Environmental Monitoring Plan (EMP). This guidance applies to public dose from radioactive material releases to the air from PNNL Site operations. This document is an attachment to the Pacific Northwest National Laboratory (PNNL) Environmental Monitoring Plan (EMP) and describes dose assessment guidance for radiological air emissions. The impact of radiological air emissions from the U.S. Department of Energy Office ofmore » Science (DOE-SC) PNNL Site is indicated by dose estimates to a maximally exposed member of the public, referred to as the maximally exposed individual (MEI). Reporting requirements associated with dose to members of the public from radiological air emissions are in 40 CFR Part 61.94, WAC 246-247-080, and DOE Order 458.1. The DOE Order and state standards for dose from radioactive air emissions are consistent with U.S. Environmental Protection Agency (EPA) dose standards in 40 CFR 61.92 (i.e., 10 mrem/yr to a MEI). Despite the fact that the current Contract Requirements Document (CRD) for the DOE-SC PNNL Site operations does not include the requirement to meet DOE CRD 458.1, paragraph 2.b, public dose limits, the DOE dose limits would be met when EPA limits are met.« less
Air quality monitor and acid rain networks
NASA Technical Reports Server (NTRS)
Rudolph, H.
1980-01-01
The air quality monitor program which consists of two permanent air monitor stations (PAMS's) and four mobile shuttle pollutant air monitor stations (SPAMS's) is evaluated. The PAMS measures SO sub X, NO sub X particulates, CO, O3, and nonmethane hydrocarbons. The SPAMS measures O3, SO2, HCl, and particulates. The collection and analysis of data in the rain monitor program are discussed.
Using geo-targeted social media data to detect outdoor air pollution
NASA Astrophysics Data System (ADS)
Jiang, W.; Wang, Y.; Tsou, M. H.; Fu, X.
2016-06-01
Outdoor air pollution has become a more and more serious issue over recent years (He, 2014). Urban air quality is measured at air monitoring stations. Building air monitoring stations requires land, incurs costs and entails skilled technicians to maintain a station. Many countries do not have any monitoring stations and even lack any means to monitor air quality. Recent years, the social media could be used to monitor air quality dynamically (Wang, 2015; Mei, 2014). However, no studies have investigated the inter-correlations between real-space and cyberspace by examining variation in micro-blogging behaviors relative to changes in daily air quality. Thus, existing methods of monitoring AQI using micro-blogging data shows a high degree of error between real AQI and air quality as inferred from social media messages. In this paper, we introduce a new geo-targeted social media analytic method to (1) investigate the dynamic relationship between air pollution-related posts on Sina Weibo and daily AQI values; (2) apply Gradient Tree Boosting, a machine learning method, to monitor the dynamics of AQI using filtered social media messages. Our results expose the spatiotemporal relationships between social media messages and real-world environmental changes as well suggesting new ways to monitor air pollution using social media.
30 CFR 7.507 - Air-monitoring components.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Air-monitoring components. 7.507 Section 7.507... APPROVAL OF MINING PRODUCTS TESTING BY APPLICANT OR THIRD PARTY Refuge Alternatives § 7.507 Air-monitoring components. (a) Each refuge alternative shall have an air-monitoring component that provides persons inside...
30 CFR 7.507 - Air-monitoring components.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Air-monitoring components. 7.507 Section 7.507... APPROVAL OF MINING PRODUCTS TESTING BY APPLICANT OR THIRD PARTY Refuge Alternatives § 7.507 Air-monitoring components. (a) Each refuge alternative shall have an air-monitoring component that provides persons inside...
30 CFR 7.507 - Air-monitoring components.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Air-monitoring components. 7.507 Section 7.507... APPROVAL OF MINING PRODUCTS TESTING BY APPLICANT OR THIRD PARTY Refuge Alternatives § 7.507 Air-monitoring components. (a) Each refuge alternative shall have an air-monitoring component that provides persons inside...
Non-methane hydrocarbons in the atmosphere of Mexico City: Results of the 2012 ozone-season campaign
NASA Astrophysics Data System (ADS)
Jaimes-Palomera, Mónica; Retama, Armando; Elias-Castro, Gabriel; Neria-Hernández, Angélica; Rivera-Hernández, Olivia; Velasco, Erik
2016-05-01
With the aim to strengthen the verification capabilities of the local air quality management, the air quality monitoring network of Mexico City has started the monitoring of selected non-methane hydrocarbons (NMHCs). Previous information on the NMHC characterization had been obtained through individual studies and comprehensive intensive field campaigns, in both cases restricted to sampling periods of short duration. This new initiative will address the NMHC pollution problem during longer monitoring periods and provide robust information to evaluate the effectiveness of new control measures. The article introduces the design of the monitoring network and presents results from the first campaign carried out during the first six months of 2012 covering the ozone-season (Mar-May). Using as reference data collected in 2003, results show reductions during the morning rush hour (6-9 h) in the mixing ratios of light alkanes associated with the consumption and distribution of liquefied petroleum gas and aromatic compounds related with the evaporation of fossil fuels and solvents, in contrast to olefins from vehicular traffic. The increase in mixing ratios of reactive olefins is of relevance to understand the moderate success in the ozone and fine aerosols abatement in recent years in comparison to other criteria pollutants. In the case of isoprene, the typical afternoon peak triggered by biogenic emissions was clearly observed for the first time within the city. The diurnal profiles of the monitored compounds are analyzed in terms of the energy balance throughout the day as a surrogate of the boundary layer evolution. Particular features of the diurnal profiles and correlation between individual NMHCs and carbon monoxide are used to investigate the influence of specific emission sources. The results discussed here highlight the importance of monitoring NMHCs to better understand the drivers and impacts of air pollution in large cities like Mexico City.
Next-generation air monitoring
Air pollution measurement technology is advancing rapidly towards smaller-scale and wireless devices, with a potential to significantly change the landscape of air pollution monitoring. EPA is evaluating and developing a range of next-generation air monitoring (NGAM) technologie...
Bart, Mark; Williams, David E; Ainslie, Bruce; McKendry, Ian; Salmond, Jennifer; Grange, Stuart K; Alavi-Shoshtari, Maryam; Steyn, Douw; Henshaw, Geoff S
2014-04-01
A cost-efficient technology for accurate surface ozone monitoring using gas-sensitive semiconducting oxide (GSS) technology, solar power, and automated cell-phone communications was deployed and validated in a 50 sensor test-bed in the Lower Fraser Valley of British Columbia, over 3 months from May-September 2012. Before field deployment, the entire set of instruments was colocated with reference instruments for at least 48 h, comparing hourly averaged data. The standard error of estimate over a typical range 0-50 ppb for the set was 3 ± 2 ppb. Long-term accuracy was assessed over several months by colocation of a subset of ten instruments each at a different reference site. The differences (GSS-reference) of hourly average ozone concentration were normally distributed with mean -1 ppb and standard deviation 6 ppb (6000 measurement pairs). Instrument failures in the field were detected using network correlations and consistency checks on the raw sensor resistance data. Comparisons with modeled spatial O3 fields demonstrate the enhanced monitoring capability of a network that was a hybrid of low-cost and reference instruments, in which GSS sensors are used both to increase station density within a network as well as to extend monitoring into remote areas. This ambitious deployment exposed a number of challenges and lessons, including the logistical effort required to deploy and maintain sites over a summer period, and deficiencies in cell phone communications and battery life. Instrument failures at remote sites suggested that redundancy should be built into the network (especially at critical sites) as well as the possible addition of a "sleep-mode" for GSS monitors. At the network design phase, a more objective approach to optimize interstation distances, and the "information" content of the network is recommended. This study has demonstrated the utility and affordability of the GSS technology for a variety of applications, and the effectiveness of this technology as a means substantially and economically to extend the coverage of an air quality monitoring network. Low-cost, neighborhood-scale networks that produce reliable data can be envisaged.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-14
... ambient air quality monitoring data for the period preceding the applicable attainment deadline. DATES... and certified monitoring data. A violation occurs when the ambient ozone air quality monitoring data... standard, generally based on air quality monitoring data from the 1987 through 1989 period (section 107(d...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-18
... based on complete, quality-assured and certified ambient air quality monitoring data for 2007-2009... certain air quality monitoring data because they meet the criteria for ozone exceptional events that are... certified monitoring data. A violation occurs when the ambient ozone air quality monitoring data show...
Mendes, Ana; Papoila, Ana Luísa; Carreiro-Martins, Pedro; Bonassi, Stefano; Caires, Iolanda; Palmeiro, Teresa; Aguiar, Lívia; Pereira, Cristiana; Neves, Paula; Mendes, Diana; Botelho, Maria Amália Silveira; Neuparth, Nuno; Teixeira, João Paulo
2016-01-01
persons who are 65 years or older often spend an important part of their lives indoors thus adverse indoor climate might influence their health status. to evaluate the influence of indoor air quality and contaminants on older people's respiratory health. cross-sectional study. 21 long-term care residences (LTC) in the city of Porto, Portugal. older people living in LTC with ≥65 years old. the Portuguese version of BOLD questionnaire was administered by an interviewer to older residents able to participate (n = 143). Indoor air contaminants (IAC) were measured twice, during winter and summer in 135 areas. Mixed effects logistic regression models were used to study the association between the health questionnaire results and the monitored IAC, adjusted for age, smoking habits, gender and number of years living in the LTC. cough (23%) and sputum (12%) were the major respiratory symptoms, and allergic rhinitis (22%) the main self-reported illness. Overall particulate matter up to 2.5 micrometres in size median concentration was above the reference levels both in winter and summer seasons. Peak values of particulate matter up to 10 micrometres in size (PM10), total volatile organic compounds, carbon dioxide, bacteria and fungi exceeded the reference levels. Older people exposed to PM10 above the reference levels demonstrated higher odds of allergic rhinitis (OR = 2.9, 95% CI: 1.1-7.2). high levels of PM10 were associated with 3-fold odds of allergic rhinitis. No association was found between indoor air chemical and biological contaminants and respiratory symptoms. © The Author 2015. Published by Oxford University Press on behalf of the British Geriatrics Society. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Wong, Michelle; Bejarano, Esther; Carvlin, Graeme; Fellows, Katie; King, Galatea; Lugo, Humberto; Jerrett, Michael; Meltzer, Dan; Northcross, Amanda; Olmedo, Luis; Seto, Edmund; Wilkie, Alexa; English, Paul
2018-03-15
Air pollution continues to be a global public health threat, and the expanding availability of small, low-cost air sensors has led to increased interest in both personal and crowd-sourced air monitoring. However, to date, few low-cost air monitoring networks have been developed with the scientific rigor or continuity needed to conduct public health surveillance and inform policy. In Imperial County, California, near the U.S./Mexico border, we used a collaborative, community-engaged process to develop a community air monitoring network that attains the scientific rigor required for research, while also achieving community priorities. By engaging community residents in the project design, monitor siting processes, data dissemination, and other key activities, the resulting air monitoring network data are relevant, trusted, understandable, and used by community residents. Integration of spatial analysis and air monitoring best practices into the network development process ensures that the data are reliable and appropriate for use in research activities. This combined approach results in a community air monitoring network that is better able to inform community residents, support research activities, guide public policy, and improve public health. Here we detail the monitor siting process and outline the advantages and challenges of this approach.
Wong, Michelle; Bejarano, Esther; Carvlin, Graeme; King, Galatea; Lugo, Humberto; Jerrett, Michael; Northcross, Amanda; Olmedo, Luis; Seto, Edmund; Wilkie, Alexa; English, Paul
2018-01-01
Air pollution continues to be a global public health threat, and the expanding availability of small, low-cost air sensors has led to increased interest in both personal and crowd-sourced air monitoring. However, to date, few low-cost air monitoring networks have been developed with the scientific rigor or continuity needed to conduct public health surveillance and inform policy. In Imperial County, California, near the U.S./Mexico border, we used a collaborative, community-engaged process to develop a community air monitoring network that attains the scientific rigor required for research, while also achieving community priorities. By engaging community residents in the project design, monitor siting processes, data dissemination, and other key activities, the resulting air monitoring network data are relevant, trusted, understandable, and used by community residents. Integration of spatial analysis and air monitoring best practices into the network development process ensures that the data are reliable and appropriate for use in research activities. This combined approach results in a community air monitoring network that is better able to inform community residents, support research activities, guide public policy, and improve public health. Here we detail the monitor siting process and outline the advantages and challenges of this approach. PMID:29543726
NASA Astrophysics Data System (ADS)
Pearce, Ruth
2016-04-01
A Synthetic Zero Air Standard R. E. Hill-Pearce, K. V. Resner, D. R. Worton, P. J. Brewer The National Physical Laboratory Teddington, Middlesex TW11 0LW UK We present work towards providing traceability for measurements of high impact greenhouse gases identified by the World Meteorological Organisation (WMO) as critical for global monitoring. Standards for these components are required with challengingly low uncertainties to improve the quality assurance and control processes used for the global networks to better assess climate trends. Currently the WMO compatibility goals require reference standards with uncertainties of < 100 nmolmol-1 for CO2 (northern hemisphere) and < 2 nmolmol-1 for CH4 and CO. High purity zero gas is required for both the balance gas in the preparation of reference standards and for baseline calibrations of instrumentation. Quantification of the amount fraction of the target components in the zero gas is a significant contributor to the uncertainty and is challenging due to limited availability of reference standard at the amount fraction of the measurand and limited analytical techniques with sufficient detection limits. A novel dilutor was used to blend NPL Primary Reference Gas Mixtures containing CO2, CH4 and CO at atmospheric amount fractions with a zero gas under test. Several mixtures were generated with nominal dilution ratios ranging from 2000:1 to 350:1. The baseline of two cavity ring down spectrometers was calibrated using the zero gas under test after purification by oxidative removal of CO and hydrocarbons to < 1 nmolmol-1 (SAES PS15-GC50) followed by the removal of CO2 and water vapour to < 100 pmolmol-1 (SAES MC190). Using the standard addition method.[1] we have quantified the amount fraction of CO, CO2, and CH4 in scrubbed whole air (Scott Marrin) and NPL synthetic zero air. This is the first synthetic zero air standard with a matrix of N2, O2 and Ar closely matching ambient composition with gravimetrically assigned values and with accurate quantification of the CO, CO2, and CH4 impurities. [1] Brown, R.J.C et al.,Analytica Chimica Acta 587, 158-163 (2007)
The expanding scope of air pollution monitoring can facilitate sustainable development.
Knox, Andrew; Mykhaylova, Natalia; Evans, Greg J; Lee, Colin J; Karney, Bryan; Brook, Jeffrey R
2013-03-15
This paper explores technologies currently expanding the physical scope of air pollution monitoring and their potential contributions to the assessment of sustainable development. This potential lies largely in the ability of these technologies to address issues typically on the fringe of the air pollution agenda. Air pollution monitoring tends to be primarily focused on human health, and largely neglects other aspects of sustainable development. Sensor networks, with their relatively inexpensive monitoring nodes, allow for monitoring with finer spatiotemporal resolution. This resolution can support more conclusive studies of air pollution's effect on socio-ecological justice and human quality of life. Satellite observation of air pollution allows for wider geographical scope, and in doing so can facilitate studies of air pollution's effects on natural capital and ecosystem resilience. Many air pollution-related aspects of the sustainability of development in human systems are not being given their due attention. Opportunities exist for air pollution monitoring to attend more to these issues. Improvements to the resolution and scale of monitoring make these opportunities realizable. Copyright © 2012 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leggett, Richard Wayne; Eckerman, Keith F; McGinn, Wilson
2012-01-01
This report provides methods for interpreting and applying occupational uranium monitoring data. The methods are based on current international radiation protection guidance, current information on the chemical toxicity of uranium, and best available biokinetic models for uranium. Emphasis is on air monitoring data and three types of bioassay data: the concentration of uranium in urine; the concentration of uranium in feces; and the externally measured content of uranium in the chest. Primary Reference guidance levels for prevention of chemical effects and limitation of radiation effects are selected based on a review of current scientific data and regulatory principles for settingmore » standards. Generic investigation levels and immediate action levels are then defined in terms of these primary guidance levels. The generic investigation and immediate actions levels are stated in terms of radiation dose and concentration of uranium in the kidneys. These are not directly measurable quantities, but models can be used to relate the generic levels to the concentration of uranium in air, urine, or feces, or the total uranium activity in the chest. Default investigation and immediate action levels for uranium in air, urine, feces, and chest are recommended for situations in which there is little information on the form of uranium taken into the body. Methods are prescribed also for deriving case-specific investigation and immediate action levels for uranium in air, urine, feces, and chest when there is sufficient information on the form of uranium to narrow the range of predictions of accumulation of uranium in the main target organs for uranium: kidneys for chemical effects and lungs for radiological effects. In addition, methods for using the information herein for alternative guidance levels, different from the ones selected for this report, are described.« less
1989-09-01
Guidelines Generation #2 b. Electronic Submission of Commerce Business Daily ( CBD ) Notices #6 c. On-line Debarred/Suspended List #5 d. On-Line Contract...a number of years. Reality of system differs from manual. One reference - easy to follow, block by block - is needed. -Imaging and CBD electronic...milestones are tracked - and those milestones should be monitored as a natural outcome of thc process - e.g. A milestone is noted when the RFP is
Alpha-environmental continuous air monitor inlet
Rodgers, John C.
2003-01-01
A wind deceleration and protective shroud that provides representative samples of ambient aerosols to an environmental continuous air monitor (ECAM) has a cylindrical enclosure mounted to an input on the continuous air monitor, the cylindrical enclosure having shrouded nozzles located radially about its periphery. Ambient air flows, often along with rainwater flows into the nozzles in a sampling flow generated by a pump in the continuous air monitor. The sampling flow of air creates a cyclonic flow in the enclosure that flows up through the cylindrical enclosure until the flow of air reaches the top of the cylindrical enclosure and then is directed downward to the continuous air monitor. A sloped platform located inside the cylindrical enclosure supports the nozzles and causes any moisture entering through the nozzle to drain out through the nozzles.
High accuracy Primary Reference gas Mixtures for high-impact greenhouse gases
NASA Astrophysics Data System (ADS)
Nieuwenkamp, Gerard; Zalewska, Ewelina; Pearce-Hill, Ruth; Brewer, Paul; Resner, Kate; Mace, Tatiana; Tarhan, Tanil; Zellweger, Christophe; Mohn, Joachim
2017-04-01
Climate change, due to increased man-made emissions of greenhouse gases, poses one of the greatest risks to society worldwide. High-impact greenhouse gases (CO2, CH4 and N2O) and indirect drivers for global warming (e.g. CO) are measured by the global monitoring stations for greenhouse gases, operated and organized by the World Meteorological Organization (WMO). Reference gases for the calibration of analyzers have to meet very challenging low level of measurement uncertainty to comply with the Data Quality Objectives (DQOs) set by the WMO. Within the framework of the European Metrology Research Programme (EMRP), a project to improve the metrology for high-impact greenhouse gases was granted (HIGHGAS, June 2014-May 2017). As a result of the HIGHGAS project, primary reference gas mixtures in cylinders for ambient levels of CO2, CH4, N2O and CO in air have been prepared with unprecedented low uncertainties, typically 3-10 times lower than usually previously achieved by the NMIs. To accomplish these low uncertainties in the reference standards, a number of preparation and analysis steps have been studied and improved. The purity analysis of the parent gases had to be performed with lower detection limits than previously achievable. E.g., to achieve an uncertainty of 2•10-9 mol/mol (absolute) on the amount fraction for N2O, the detection limit for the N2O analysis in the parent gases has to be in the sub nmol/mol domain. Results of an OPO-CRDS analyzer set-up in the 5µm wavelength domain, with a 200•10-12 mol/mol detection limit for N2O, will be presented. The adsorption effects of greenhouse gas components at cylinder surfaces are critical, and have been studied for different cylinder passivation techniques. Results of a two-year stability study will be presented. The fit-for-purpose of the reference materials was studied for possible variation on isotopic composition between the reference material and the sample. Measurement results for a suit of CO2 in air mixtures with varying δ13C values (from -5‰ to -40‰) analyzed with both cavity ringdown spectroscopy (CRDS) and isotope-ratio mass spectrometry (IRMS) will be presented. Round robins were organized to assess the agreement of the new reference gas mixtures developed by different project partners and to compare the new reference gases with the reference standards currently used by the atmospheric monitoring community (NOAA and AGAGE). These results will also be presented.
System for monitoring non-coincident, nonstationary process signals
Gross, Kenneth C.; Wegerich, Stephan W.
2005-01-04
An improved system for monitoring non-coincident, non-stationary, process signals. The mean, variance, and length of a reference signal is defined by an automated system, followed by the identification of the leading and falling edges of a monitored signal and the length of the monitored signal. The monitored signal is compared to the reference signal, and the monitored signal is resampled in accordance with the reference signal. The reference signal is then correlated with the resampled monitored signal such that the reference signal and the resampled monitored signal are coincident in time with each other. The resampled monitored signal is then compared to the reference signal to determine whether the resampled monitored signal is within a set of predesignated operating conditions.
NASA Astrophysics Data System (ADS)
Feltz, M. L.; Knuteson, R. O.; Revercomb, H. E.
2017-08-01
Upper air temperature is defined as an essential climate variable by the World Meteorological Organization. Two remote sensing technologies being promoted for monitoring stratospheric temperatures are GPS radio occultation (RO) and spectrally resolved IR radiances. This study assesses RO and hyperspectral IR sounder derived temperature products within the stratosphere by comparing IR spectra calculated from GPS RO and IR sounder products to coincident IR observed radiances, which are used as a reference standard. RO dry temperatures from the University Corporation for Atmospheric Research (UCAR) Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) mission are compared to NASA Atmospheric Infrared Sounder (AIRS) retrievals using a previously developed profile-to-profile collocation method and vertical temperature averaging kernels. Brightness temperatures (BTs) are calculated for both COSMIC and AIRS temperature products and are then compared to coincident AIRS measurements. The COSMIC calculated minus AIRS measured BTs exceed the estimated 0.5 K measurement uncertainty for the winter time extratropics around 35 hPa. These differences are attributed to seasonal UCAR COSMIC biases. Unphysical vertical oscillations are seen in the AIRS L2 temperature product in austral winter Antarctic regions, and results imply a small AIRS tropical warm bias around 35 hPa in the middle stratosphere.
Wilson, Sacoby M.; Tarver, Siobhan L.; Svendsen, Erik; Jiang, Chengsheng; Ogunsakin, Olalekan A.; Zhang, Hongmei; Campbell, Dayna; Fraser-Rahim, Herbert
2017-01-01
Abstract As the demand for goods continues to increase, a collective network of transportation systems is required to facilitate goods movement activities. This study examines air quality near the Port of Charleston before its expansion and briefly describes the establishment and structure of a community–university partnership used to monitor existing pollution. Particulate matter (PM) concentrations (PM2.5 and PM10) were measured using the Thermo Fisher Scientific Partisol 2000i-D Dichotomous Air Sampler, Thermo Scientific Dichotomous Sequential Air Sampler Partisol-Plus 2025-D, and Rupprecht & Patashnick TEOM Series 1400 Sampler at neighborhood (Union Heights, Rosemont, and Accabee) and reference (FAA2.5 and Jenkins Street) sites. Descriptive statistics were performed and an ANOVA (analysis of variance) was calculated to find the difference in overall mean 24-hour PM average concentrations in communities impacted by environmental injustice. PM2.5 (15.2 μg/m3) and PM10 (27.2 μg/m3) maximum concentrations were highest in neighborhoods such as Union Heights neighborhoods due to more goods movement activities. Nevertheless, there was no statistically significant difference in mean concentrations of PM2.5 and PM10 across neighborhood sites. In contrast, mean PM10 neighborhood concentrations were significantly lower than mean PM10 reference concentrations for Union Heights (p = 0.00), Accabee (p ≤ 0.0001), and Rosemont (p = 0.01). Although PM concentrations were lower than current National Ambient Air Quality Standards, this study demonstrated how community–university partners can work collectively to document baseline PM concentrations that will be used to examine changes in air quality after the port expansion brings additional goods movement activities to the area. PMID:29576842
The first survey of airborne trace elements at airport using moss bag technique.
Vuković, Gordana; Urošević, Mira Aničić; Škrivanj, Sandra; Vergel, Konstantin; Tomašević, Milica; Popović, Aleksandar
2017-06-01
Air traffic represents an important way of social mobility in the world, and many ongoing discussions are related to the impacts that air transportation has on local air quality. In this study, moss Sphagnum girgensohnii was used for the first time in the assessment of trace element content at the international airport. The moss bags were exposed during the summer of 2013 at four sampling sites at the airport 'Nikola Tesla' (Belgrade, Serbia): runway (two), auxiliary runway and parking lot. According to the relative accumulation factor (RAF) and the limit of quantification of the moss bag technique (LOQ T ), the most abundant elements in the samples were Zn, Na, Cr, V, Cu and Fe. A comparison between the element concentrations at the airport and the corresponding values in different land use classes (urban central, suburban, industrial and green zones) across the city of Belgrade did not point out that the air traffic and associated activities significantly contribute to the trace element air pollution. This study emphasised an easy operational and robust (bio)monitoring, using moss bags as a suitable method for assessment of air quality within various microenvironments with restriction in positioning referent instrumental devices.
NASA Astrophysics Data System (ADS)
Erell, E.; Williamson, T.
2006-10-01
A model is proposed that adapts data from a standard meteorological station to provide realistic site-specific air temperature in a city street exposed to the same meso-scale environment. In addition to a rudimentary description of the two sites, the canyon air temperature (CAT) model requires only inputs measured at standard weather stations; yet it is capable of accurately predicting the evolution of air temperature in all weather conditions for extended periods. It simulates the effect of urban geometry on radiant exchange; the effect of moisture availability on latent heat flux; energy stored in the ground and in building surfaces; air flow in the street based on wind above roof height; and the sensible heat flux from individual surfaces and from the street canyon as a whole. The CAT model has been tested on field data measured in a monitoring program carried out in Adelaide, Australia, in 2000-2001. After calibrating the model, predicted air temperature correlated well with measured data in all weather conditions over extended periods. The experimental validation provides additional evidence in support of a number of parameterisation schemes incorporated in the model to account for sensible heat and storage flux.
EPA has developed a technology transfer handbook for the EMPACT Roxbury Air Monitoring (AirBeat) Project. The purpose of AirBeat is to make real-time air quality monitoring information (for ozone, black carbon, and fine particulates) available to the Boston MA community of Roxbur...
40 CFR 52.995 - Enhanced ambient air quality monitoring.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 3 2014-07-01 2014-07-01 false Enhanced ambient air quality monitoring. 52.995 Section 52.995 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... air quality monitoring. (a) The Governor of the State of Louisiana submitted the photochemical...
40 CFR 52.995 - Enhanced ambient air quality monitoring.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 3 2012-07-01 2012-07-01 false Enhanced ambient air quality monitoring. 52.995 Section 52.995 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... air quality monitoring. (a) The Governor of the State of Louisiana submitted the photochemical...
40 CFR 52.995 - Enhanced ambient air quality monitoring.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 3 2013-07-01 2013-07-01 false Enhanced ambient air quality monitoring. 52.995 Section 52.995 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... air quality monitoring. (a) The Governor of the State of Louisiana submitted the photochemical...
40 CFR 52.995 - Enhanced ambient air quality monitoring.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 3 2011-07-01 2011-07-01 false Enhanced ambient air quality monitoring. 52.995 Section 52.995 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... air quality monitoring. (a) The Governor of the State of Louisiana submitted the photochemical...
40 CFR 52.995 - Enhanced ambient air quality monitoring.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 3 2010-07-01 2010-07-01 false Enhanced ambient air quality monitoring. 52.995 Section 52.995 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... air quality monitoring. (a) The Governor of the State of Louisiana submitted the photochemical...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schey, Stephen; Francfort, Jim
Task 1includes a survey of the inventory of non-tactical fleet vehicles at Naval Air Station Whidbey Island (NASWI) to characterize the fleet. This information and characterization are used to select vehicles for monitoring that takes place during Task 2. This monitoring involves data logging of vehicle operation in order to identify the vehicle’s mission and travel requirements. Individual observations of these selected vehicles provide the basis for recommendations related to PEV adoption. It also identifies whether a battery electric vehicle or plug-in hybrid electric vehicle (collectively referred to as PEVs) can fulfill the mission requirements and provide observations related tomore » placement of PEV charging infrastructure. This report provides the results of the assessments and observations of the current non-tactical fleet, fulfilling the Task 1 requirements.« less
Proton-transfer-reaction/ion-mobility-spectrometer and method of using the same
NASA Technical Reports Server (NTRS)
Kanik, Isik (Inventor); Beegle, Luther W. (Inventor)
2004-01-01
A high-pressure hollow cathode ionizer is combined with an ion-mobility-spectrometer (IMS) for the detection of trace amounts of organic compounds in gas. The ionizer uses H.sub.3 0.sup.+, ions which do not react with air to ionize the organic compounds and the organic compounds are soft ionized. The ionized organic compounds are detected in the IMS at levels of parts per billion and identified using calibrated reference tables. Applications include but are not limited to the fields of: (1) medicine as a breath analyzer for detection of lung cancer, diabetes, liver cirrhosis, (2) law enforcement in drug interdiction and explosives detection, (3) food monitoring and control, (4) environmental monitoring and (5) space applications.
AMBIENT AIR MONITORING STRATEGY
The Clean Air Act requires EPA to establish national ambient air quality standards and to regulate as necessary, hazardous air pollutants. EPA uses ambient air monitoring to determine current air quality conditions, and to assess progress toward meeting these standards and relat...
Senzolo, C; Frignani, S; Pavoni, B
2001-07-01
An exposure risk assessment of workers in a refinery production unit was undertaken. Gasoline and its main components were investigated through environmental and biological monitoring. Measured variables were environmental benzene, toluene, pentane and hexane; benzene and toluene in blood and urine; tt-MA (metabolite of benzene) in urine. Multivariate statistical analysis of the data showed that worker's exposure to the above substances fell within the limits specified by organisations such as ACGIH. Also, biological values complied with reference values (RV) for non-occupationally-exposed population. Different values of biological variables were determined by separating smokers from non-smokers: smokers had hematic and urinary benzene values significantly higher than non-smokers. During a 3-yr sampling, it was possible to identify a significant decrease of benzene in the workplace air and of hematic benzene for non-smokers. The most exposed department, one in which tank-lorries were loaded, needs further investigation and extended monitoring.
Microfabricated fuel heating value monitoring device
Robinson, Alex L [Albuquerque, NM; Manginell, Ronald P [Albuquerque, NM; Moorman, Matthew W [Albuquerque, NM
2010-05-04
A microfabricated fuel heating value monitoring device comprises a microfabricated gas chromatography column in combination with a catalytic microcalorimeter. The microcalorimeter can comprise a reference thermal conductivity sensor to provide diagnostics and surety. Using microfabrication techniques, the device can be manufactured in production quantities at a low per-unit cost. The microfabricated fuel heating value monitoring device enables continuous calorimetric determination of the heating value of natural gas with a 1 minute analysis time and 1.5 minute cycle time using air as a carrier gas. This device has applications in remote natural gas mining stations, pipeline switching and metering stations, turbine generators, and other industrial user sites. For gas pipelines, the device can improve gas quality during transfer and blending, and provide accurate financial accounting. For industrial end users, the device can provide continuous feedback of physical gas properties to improve combustion efficiency during use.
Citizen Science Opportunities for Monitoring Air Quality Fact Sheet
The Citizen Science Opportunities for Monitoring Air Quality fact sheet provides information on what citizen science is and the tools and resources available for citizen scientists interested in monitoring air quality.
Community Air Monitoring Training
EPA hosted a training workshop to share tools used to conduct citizen science projects involving Next Generation Air Monitoring (NGAM) technology and to educate interested groups and individuals on best practices for successful air monitoring projects.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-01
... Scientific Advisory Committee; Air Monitoring and Methods Subcommittee AGENCY: Environmental Protection... Advisory Board (SAB) Staff Office announces a public teleconference of the Air Monitoring and Methods..., including definitions, basis of interest, and measurement methods. OAR requested CASAC advice on how to...
Microbiologic Testing for 503A Sterile-Compounding Pharmacies.
Mixon, William; Roth, Abby
2017-01-01
Compounding pharmacists must ensure that the sterile preparations they dispense are free of microbiologic contamination. Working in a cleanroom under controlled conditions (proper differential air pressure, temperature, and humidity; acceptable levels of viable and nonviable airborne particles and surface counts, etc.) and testing the efficacy of cleaning and disinfecting practices via environmental monitoring (viable-air and surface testing, glove-fingertip-thumb testing, etc.) are essential to preparing contamination-free medications. Sterile-compounding pharmacists must understand how to monitor their cleanroom environment and, if they perform testing in house, to interpret the results of simple microbiologic tests (a skill helpful even when tests are outsourced to a contract laboratory). In this article, which pertains to 503A sterile compounding, and is based on the current version of United States Pharmacopeia (USP) Chapter <797>, basic concepts in microbiology and the microbial tests that can be performed and interpreted in house and those that must be outsourced are discussed. Streamlining communication with contract laboratory personnel is reviewed. Requirements for an inhouse microbiology laboratory are presented, and the advantages and disadvantages of inhouse and outsourced testing are examined. A list of suggested reading is provided for easy reference. In a subsequent article, environmental monitoring and analysis will be addressed in detail. Copyright© by International Journal of Pharmaceutical Compounding, Inc.
Site environmental report for Calendar Year 1994 on radiological and nonradiological parameters
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-06-30
Battelle Memorial Institute`s nuclear research facilities are currently being maintained in a surveillance and maintenance (S&M) mode with continual decontamination and decommissioning (D&D) activities being conducted under Department of Energy (DOE) Contract W-7405-ENG-92. These activities are referred to under the Contract as the Battelle Columbus Laboratories Decommissioning Project (BCLDP). Operations referenced in this report are performed in support of S&M and D&D activities. Battelle`s King Avenue facility is not considered in this report to the extent that the West Jefferson facility is. The source term at the King Avenue site is a small fraction of the source term at themore » West Jefferson site. Off site levels of radionuclides that could be attributed to the west Jefferson and King Avenue nuclear operations wereindistinguishable from background levels at specific locations where air, water, and direct radiation measurements were performed. Environmental monitoring continued to demonstrate compliance by Battelle with federal, state and local regulations. Routine, nonradiological activities performed include monitoring liquid effluents and monitoring the ground water system for the West Jefferson North site. Samples of various environmental media including air, water, grass, fish, field and garden crops, sediment and soil were collected from the region surrounding the two sites and analyzed.« less
WORKSHOP ON SOURCE EMISSION AND AMBIENT AIR MONITORING OF MERCURY
AN EPA/ORD Workshop on Source Emission and Ambient Air Monitoring of Mercury was held on 9/13-14/99, Bloomington, Minnesota. The purpose of the workshop was to discuss the state-of-the-science in source and ambient air mercury monitoring as well as mercury monitoring research and...
The verification test was conducted oer a period of 30 days (October 1 to October 31, 2008) and involved the continuous operation of duplicate semi-continuous monitoring technologies at the Burdens Creek Air Monitoring Site, an existing ambient-air monitoring station located near...
Pereira, Boscolli Barbosa; da Cunha, Paolla Brandão; Silva, Guilherme Gomes; de Campos Júnior, Edimar Olegário; Morelli, Sandra; Filho, Cláudio Alves Vieira; de Lima, Euclides Antônio Pereira; Barrozo, Marcos Antônio Souza
2017-01-01
The development of parameters to explore the link between air-related diseases and their significant driving forces is an important aim in terms of national economics and public health. In this study, we did an integrated analysis involving multiple environmental health indicators from Uberlândia, Brazil, registered before and during a period when the Brazilian government reduced taxes on new cars in a bid to bolster local manufacturing. In addition, the present study utilized Driving Force-Pressure-State-Exposure-Effect-Action (DPSEEA) frameworks to evaluate correlations in environmental health indicators over 10 years (2004-2013), in which the Brazilian government reduced vehicle production taxes beginning in 2008. Significant correlations in all indicators selected were found from 2008 to 2013, corresponding to the tax reduction on new vehicles. The frequency of micronuclei (MN) was significantly higher in the city center compared to the reference site, with the highest MN levels observed during the period of reduced taxes. Results reinforced the need to adopt air quality monitoring programs in major cities.
NASA Astrophysics Data System (ADS)
Mielke-Maday, I.
2015-12-01
The National Oceanic and Atmospheric Administration (NOAA) Global Monitoring Division (GMD) maintains a global reference network for over 50 trace gas species and analyzes discrete air samples collected by this network throughout the world at the Earth System Research Laboratory in Boulder, Colorado. In particular, flask samples are analyzed for a number of hydrocarbons with policy and health relevance such as ozone precursors, greenhouse gases, and hazardous air pollutants. Because this global network's sites are remote and therefore minimally influenced by local anthropogenic emissions, these data yield information about background ambient mole fractions and can provide a context for observations collected in intensive field campaigns, such as the Front Range Air Pollution and Photochemistry Experiment (FRAPPE), the Southeast Nexus (SENEX) study, and the DISCOVER-AQ deployments. Information about background mole fractions during field campaigns is critical for calculating hydrocarbon enhancements in the region of study and for assessing the extent to which a particular region's local emissions sources contribute to these enhancements. Understanding the geographic variability of the background and its contribution to regional ambient mole fractions is also crucial for the development of realistic regulations. We present background hydrocarbon mole fractions and their ratios in North America using data from air samples collected in the planetary boundary layer at tall towers and aboard aircraft from 2008 to 2014. We discuss the spatial and seasonal variability in these data. We present trends over the time period of measurements and propose possible explanations for these trends.
Evaluation of continuous air monitor placement in a plutonium facility.
Whicker, J J; Rodgers, J C; Fairchild, C I; Scripsick, R C; Lopez, R C
1997-05-01
Department of Energy appraisers found continuous air monitors at Department of Energy plutonium facilities alarmed less than 30% of the time when integrated room plutonium air concentrations exceeded 500 DAC-hours. Without other interventions, this alarm percentage suggests the possibility that workers could be exposed to high airborne concentrations without continuous air monitor alarms. Past research has shown that placement of continuous air monitors is a critical component in rapid and reliable detection of airborne releases. At Los Alamos National Laboratory and many other Department of Energy plutonium facilities, continuous air monitors have been primarily placed at ventilation exhaust points. The purpose of this study was to evaluate and compare the effectiveness of exhaust register placement of workplace continuous air monitors with other sampling locations. Polydisperse oil aerosols were released from multiple locations in two plutonium laboratories at Los Alamos National Laboratory. An array of laser particle counters positioned in the rooms measured time-resolved aerosol dispersion. Results showed alternative placement of air samplers generally resulted in aerosol detection that was faster, often more sensitive, and equally reliable compared with samplers at exhaust registers.
Ambient Monitoring Technology Information Center (AMTIC)
This site contains information on ambient air quality monitoring programs, monitoring methods, quality assurance and control procedures, and federal regulations related to ambient air quality monitoring.
Hamrin, Tova Hannegård; Radell, Peter J; Fläring, Urban; Berner, Jonas; Eksborg, Staffan
2017-12-28
The aim of the present study was to evaluate the performance of regional oxygen saturation (rSO 2 ) monitoring with near infrared spectroscopy (NIRS) during pediatric inter-hospital transports and to optimize processing of the electronically stored data. Cerebral (rSO 2 -C) and abdominal (rSO 2 -A) NIRS sensors were used during transport in air ambulance and connecting ground ambulance. Data were electronically stored by the monitor during transport, extracted and analyzed off-line after the transport. After removal of all zero and floor effect values, the Savitzky-Golay algorithm of data smoothing was applied on the NIRS-signal. The second order of smoothing polynomial was used and the optimal number of neighboring points for the smoothing procedure was evaluated. NIRS-data from 38 pediatric patients was examined. Reliability, defined as measurements without values of 0 or 15%, was acceptable during transport (> 90% of all measurements). There were, however, individual patients with < 90% reliable measurements during transport, while no patient was found to have < 90% reliable measurements in hospital. Satisfactory noise reduction of the signal, without distortion of the underlying information, was achieved when 20-50 neighbors ("window-size") were used. The use of NIRS for measuring rSO 2 in clinical studies during pediatric transport in ground and air-ambulance is feasible but hampered by unreliable values and signal interference. By applying the Savitzky-Golay algorithm, the signal-to-noise ratio was improved and enabled better post-hoc signal evaluation.
D. Schirokauer; L. Geiser; A. Bytnerowicz; M. Fenn; K. Dillman
2014-01-01
Air quality and air quality related values are important resources to the National Park Service (NPS) units and Wilderness areas in northern Southeast Alaska. Air quality monitoring was prioritized as a high-priority Vital Sign at the Southeast Alaska Networkâs (SEAN) Inventory and Monitoring Programâs terrestrial scoping workshop (Derr and Fastie 2006). Air quality...
VOC Monitoring to Understand Changes in Secondary Pollution in Mexico City
NASA Astrophysics Data System (ADS)
Velasco, E.; Jaimes-Palomera, M.; Retama, A.; Neria, A.; Rivera, O.; Elias, G.
2015-12-01
Previous studies have documented the distribution, diurnal pattern, magnitude, and reactivity of the volatile organic compounds (VOCs) within and downwind of Mexico City. These studies have provided valuable data, but their duration has been restricted to a few weeks since the majority have been part of intensive field campaigns. With the aim of addressing the VOC pollution problem during longer monitoring periods and evaluating control measures to reduce the production of ozone and secondary aerosols, the environmental authorities of Mexico City through its Air Quality Monitoring Network have developed a program to monitor over 50 VOC species every hour in selected existing air quality monitoring stations inside and outside the urban sprawl. The program started with a testing period of six months in 2012 covering the ozone-season (Mar-May). Results of this first campaign are presented in this paper. Using as reference VOC data collected in 2003, reductions in the mixing ratios of light alkanes associated with the consumption of liquefied petroleum gas and aromatic compounds related with the evaporation of fossil fuels and solvents were observed. In contrast, a clear increase in the mixing ratio of olefins was observed. This increase is of relevance to understand the moderate success in the reduction of ozone and fine aerosols in recent years in comparison to other criteria pollutants, which have substantially decreased. Particular features of the diurnal profiles, reactivity with the hydroxyl radical and correlations between individual VOCs and carbon monoxide are used to investigate the influence of specific emission sources. The results discussed here expect to highlight the importance of monitoring VOCs to better understand the drivers and impacts of secondary pollution in large cities like Mexico City.
McLean, Thomas D; Moore, Murray E; Justus, Alan L; Hudston, Jonathan A; Barbé, Benoît
2016-11-01
Evaluation of continuous air monitors in the presence of a plutonium aerosol is time intensive, expensive, and requires a specialized facility. The Radiation Protection Services Group at Los Alamos National Laboratory has designed a Dynamic Radioactive Source, intended to replace plutonium aerosol challenge testing. The Dynamic Radioactive Source is small enough to be inserted into the sampler filter chamber of a typical continuous air monitor. Time-dependent radioactivity is introduced from electroplated sources for real-time testing of a continuous air monitor where a mechanical wristwatch motor rotates a mask above an alpha-emitting electroplated disk source. The mask is attached to the watch's minute hand, and as it rotates, more of the underlying source is revealed. The measured alpha activity increases with time, simulating the arrival of airborne radioactive particulates at the air sampler inlet. The Dynamic Radioactive Source allows the temporal behavior of puff and chronic release conditions to be mimicked without the need for radioactive aerosols. The new system is configurable to different continuous air monitor designs and provides an in-house testing capability (benchtop compatible). It is a repeatable and reusable system and does not contaminate the tested air monitor. Test benefits include direct user control, realistic (plutonium) aerosol spectra, and iterative development of continuous air monitor alarm algorithms. Data obtained using the Dynamic Radioactive Source has been used to elucidate alarm algorithms and to compare the response time of two commercial continuous air monitors.
McLean, Thomas D.; Moore, Murray E.; Justus, Alan L.; ...
2016-01-01
Evaluation of continuous air monitors in the presence of a plutonium aerosol is time intensive, expensive, and requires a specialized facility. The Radiation Protection Services Group at Los Alamos National Laboratory has designed a Dynamic Radioactive Source, intended to replace plutonium aerosol challenge testing. Furthermore, the Dynamic Radioactive Source is small enough to be inserted into the sampler filter chamber of a typical continuous air monitor. Time-dependent radioactivity is introduced from electroplated sources for real-time testing of a continuous air monitor where a mechanical wristwatch motor rotates a mask above an alpha-emitting electroplated disk source. The mask is attached tomore » the watch’s minute hand, and as it rotates, more of the underlying source is revealed. The alpha activity we measured increases with time, simulating the arrival of airborne radioactive particulates at the air sampler inlet. The Dynamic Radioactive Source allows the temporal behavior of puff and chronic release conditions to be mimicked without the need for radioactive aerosols. The new system is configurable to different continuous air monitor designs and provides an in-house testing capability (benchtop compatible). It is a repeatable and reusable system and does not contaminate the tested air monitor. Test benefits include direct user control, realistic (plutonium) aerosol spectra, and iterative development of continuous air monitor alarm algorithms. We also used data obtained using the Dynamic Radioactive Source to elucidate alarm algorithms and to compare the response time of two commercial continuous air monitors.« less
Atmosphere and water quality monitoring on Space Station Freedom
NASA Technical Reports Server (NTRS)
Niu, William
1990-01-01
In Space Station Freedom air and water will be supplied in closed loop systems. The monitoring of air and water qualities will ensure the crew health for the long mission duration. The Atmosphere Composition Monitor consists of the following major instruments: (1) a single focusing mass spectrometer to monitor major air constituents and control the oxygen/nitrogen addition for the Space Station; (2) a gas chromatograph/mass spectrometer to detect trace contaminants; (3) a non-dispersive infrared spectrometer to determine carbon monoxide concentration; and (4) a laser particle counter for measuring particulates in the air. An overview of the design and development concepts for the air and water quality monitors is presented.
Micro sensor node for air pollutant monitoring: hardware and software issues.
Choi, Sukwon; Kim, Nakyoung; Cha, Hojung; Ha, Rhan
2009-01-01
Wireless sensor networks equipped with various gas sensors have been actively used for air quality monitoring. Previous studies have typically explored system issues that include middleware or networking performance, but most research has barely considered the details of the hardware and software of the sensor node itself. In this paper, we focus on the design and implementation of a sensor board for air pollutant monitoring applications. Several hardware and software issues are discussed to explore the possibilities of a practical WSN-based air pollution monitoring system. Through extensive experiments and evaluation, we have determined the various characteristics of the gas sensors and their practical implications for air pollutant monitoring systems.
Air Pollution in the World's Megacities.
ERIC Educational Resources Information Center
Richman, Barbara T., Ed.
1994-01-01
Reports findings of the Global Environment Monitoring System study concerning air pollution in the world's megacities. Discusses sources of air pollution, air pollution impacts, air quality monitoring, air quality trends, and control strategies. Provides profiles of the problem in Beijing, Los Angeles, Mexico City, India, Cairo, Sao Paulo, and…
40 CFR 50.14 - Treatment of air quality monitoring data influenced by exceptional events.
Code of Federal Regulations, 2010 CFR
2010-07-01
... specific air pollution concentration at a particular air quality monitoring location. (2) Demonstration to... exceptional event caused a specific air pollution concentration in excess of one or more national ambient air... specific air pollution concentration in excess of one or more national ambient air quality standards at a...
Short time interval comparisons of low cost sensor response and corresponding Federal Reference or Federal Equivalent Monitors at an NCOR site located in proximity to Atlanta, GeorgiaThis dataset is associated with the following publication:Jiao, W., G. Hagler, R. Williams, R. Sharpe, R. Brown, D. Garver, R. Judge, M. Caudill, J. Rickard, M. Davis, L. Weinstock, S. Zimmer-Dauphinee, and K. Buckley. Community Air Sensor Network (CAIRSENSE) project: Evaluation of low-cost sensor performance in a suburban environment in the southeastern United States. Atmospheric Measurement Techniques. Copernicus Publications, Katlenburg-Lindau, GERMANY, 9: 5282-5292, (2016).
40 CFR Appendix IV to Part 266 - Reference Air Concentrations*
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 28 2013-07-01 2013-07-01 false Reference Air Concentrations* IV Appendix IV to Part 266 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES... MANAGEMENT FACILITIES Pt. 266, App. IV Appendix IV to Part 266—Reference Air Concentrations* Constituent CAS...
40 CFR Appendix IV to Part 266 - Reference Air Concentrations*
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 27 2014-07-01 2014-07-01 false Reference Air Concentrations* IV Appendix IV to Part 266 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES... MANAGEMENT FACILITIES Pt. 266, App. IV Appendix IV to Part 266—Reference Air Concentrations* Constituent CAS...
40 CFR Appendix IV to Part 266 - Reference Air Concentrations*
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 27 2011-07-01 2011-07-01 false Reference Air Concentrations* IV Appendix IV to Part 266 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES... MANAGEMENT FACILITIES Pt. 266, App. IV Appendix IV to Part 266—Reference Air Concentrations* Constituent CAS...
40 CFR Appendix IV to Part 266 - Reference Air Concentrations*
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Reference Air Concentrations* IV Appendix IV to Part 266 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES... MANAGEMENT FACILITIES Pt. 266, App. IV Appendix IV to Part 266—Reference Air Concentrations* Constituent CAS...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-11
... Promulgation of Air Quality Implementation Plans; Maryland; Amendments to Maryland's Ambient Air Quality... adopting through incorporation by reference the national ambient air quality standards (NAAQS). In the... incorporation by reference of the national ambient air quality standards (NAAQS), please see the information...
Near-Port Air Quality Assessment Utilizing a Mobile Monitoring Approach
Mobile monitoring is an emerging strategy to characterize spatially and temporally variable air pollution in areas near sources. EPA’s Geospatial Monitoring of Air Pollution (GMAP) vehicle – an all-electric vehicle measuring real-time concentrations of particulate and gaseous po...
Air quality mapping using GIS and economic evaluation of health impact for Mumbai City, India.
Kumar, Awkash; Gupta, Indrani; Brandt, Jørgen; Kumar, Rakesh; Dikshit, Anil Kumar; Patil, Rashmi S
2016-05-01
Mumbai, a highly populated city in India, has been selected for air quality mapping and assessment of health impact using monitored air quality data. Air quality monitoring networks in Mumbai are operated by National Environment Engineering Research Institute (NEERI), Maharashtra Pollution Control Board (MPCB), and Brihanmumbai Municipal Corporation (BMC). A monitoring station represents air quality at a particular location, while we need spatial variation for air quality management. Here, air quality monitored data of NEERI and BMC were spatially interpolated using various inbuilt interpolation techniques of ArcGIS. Inverse distance weighting (IDW), Kriging (spherical and Gaussian), and spline techniques have been applied for spatial interpolation for this study. The interpolated results of air pollutants sulfur dioxide (SO2), nitrogen dioxide (NO2) and suspended particulate matter (SPM) were compared with air quality data of MPCB in the same region. Comparison of results showed good agreement for predicted values using IDW and Kriging with observed data. Subsequently, health impact assessment of a ward was carried out based on total population of the ward and air quality monitored data within the ward. Finally, health cost within a ward was estimated on the basis of exposed population. This study helps to estimate the valuation of health damage due to air pollution. Operating more air quality monitoring stations for measurement of air quality is highly resource intensive in terms of time and cost. The appropriate spatial interpolation techniques can be used to estimate concentration where air quality monitoring stations are not available. Further, health impact assessment for the population of the city and estimation of economic cost of health damage due to ambient air quality can help to make rational control strategies for environmental management. The total health cost for Mumbai city for the year 2012, with a population of 12.4 million, was estimated as USD8000 million.
Sun, Li; Wong, Ka Chun; Wei, Peng; Ye, Sheng; Huang, Hao; Yang, Fenhuan; Westerdahl, Dane; Louie, Peter K K; Luk, Connie W Y; Ning, Zhi
2016-02-05
This study presents the development and evaluation of a next generation air monitoring system with both laboratory and field tests. A multi-parameter algorithm was used to correct for the impact of environmental conditions on the electrochemical sensors for carbon monoxide (CO) and nitrogen dioxide (NO2) pollutants. The field evaluation in an urban roadside environment in comparison to designated monitors showed good agreement with measurement error within 5% of the pollutant concentrations. Multiple sets of the developed system were then deployed in the Hong Kong Marathon 2015 forming a sensor-based network along the marathon route. Real-time air pollution concentration data were wirelessly transmitted and the Air Quality Health Index (AQHI) for the Green Marathon was calculated, which were broadcast to the public on an hourly basis. The route-specific sensor network showed somewhat different pollutant patterns than routine air monitoring, indicating the immediate impact of traffic control during the marathon on the roadside air quality. The study is one of the first applications of a next generation sensor network in international sport events, and it demonstrated the usefulness of the emerging sensor-based air monitoring technology in rapid network deployment to supplement existing air monitoring.
Sun, Li; Wong, Ka Chun; Wei, Peng; Ye, Sheng; Huang, Hao; Yang, Fenhuan; Westerdahl, Dane; Louie, Peter K.K.; Luk, Connie W.Y.; Ning, Zhi
2016-01-01
This study presents the development and evaluation of a next generation air monitoring system with both laboratory and field tests. A multi-parameter algorithm was used to correct for the impact of environmental conditions on the electrochemical sensors for carbon monoxide (CO) and nitrogen dioxide (NO2) pollutants. The field evaluation in an urban roadside environment in comparison to designated monitors showed good agreement with measurement error within 5% of the pollutant concentrations. Multiple sets of the developed system were then deployed in the Hong Kong Marathon 2015 forming a sensor-based network along the marathon route. Real-time air pollution concentration data were wirelessly transmitted and the Air Quality Health Index (AQHI) for the Green Marathon was calculated, which were broadcast to the public on an hourly basis. The route-specific sensor network showed somewhat different pollutant patterns than routine air monitoring, indicating the immediate impact of traffic control during the marathon on the roadside air quality. The study is one of the first applications of a next generation sensor network in international sport events, and it demonstrated the usefulness of the emerging sensor-based air monitoring technology in rapid network deployment to supplement existing air monitoring. PMID:26861336
A cellphone based system for large-scale monitoring of black carbon
NASA Astrophysics Data System (ADS)
Ramanathan, N.; Lukac, M.; Ahmed, T.; Kar, A.; Praveen, P. S.; Honles, T.; Leong, I.; Rehman, I. H.; Schauer, J. J.; Ramanathan, V.
2011-08-01
Black carbon aerosols are a major component of soot and are also a major contributor to global and regional climate change. Reliable and cost-effective systems to measure near-surface black carbon (BC) mass concentrations (hereafter denoted as [BC]) globally are necessary to validate air pollution and climate models and to evaluate the effectiveness of BC mitigation actions. Toward this goal we describe a new wireless, low-cost, ultra low-power, BC cellphone based monitoring system (BC_CBM). BC_CBM integrates a Miniaturized Aerosol filter Sampler (MAS) with a cellphone for filter image collection, transmission and image analysis for determining [BC] in real time. The BC aerosols in the air accumulate on the MAS quartz filter, resulting in a coloration of the filter. A photograph of the filter is captured by the cellphone camera and transmitted by the cellphone to the analytics component of BC_CBM. The analytics component compares the image with a calibrated reference scale (also included in the photograph) to estimate [BC]. We demonstrate with field data collected from vastly differing environments, ranging from southern California to rural regions in the Indo-Gangetic plains of Northern India, that the total BC deposited on the filter is directly and uniquely related to the reflectance of the filter in the red wavelength, irrespective of its source or how the particles were deposited. [BC] varied from 0.1 to 1 μg m -3 in Southern California and from 10 to 200 μg m -3 in rural India in our field studies. In spite of the 3 orders of magnitude variation in [BC], the BC_CBM system was able to determine the [BC] well within the experimental error of two independent reference instruments for both indoor air and outdoor ambient air. Accurate, global-scale measurements of [BC] in urban and remote rural locations, enabled by the wireless, low-cost, ultra low-power operation of BC_CBM, will make it possible to better capture the large spatial and temporal variations in [BC], informing climate science, health, and policy.
NASA Astrophysics Data System (ADS)
Sklaveniti, S.; Locoge, N.; Dusanter, S.; Leonardis, T.; Lew, M.; Bottorff, B.; Sigler, P. S. R.; Stevens, P. S.; Wood, E. C. D.; Kundu, S.; Gentner, D. R.
2015-12-01
Ozone is a greenhouse gas and a primary constituent of urban smog, irritating the respiratory system and damaging the vegetation. The current understanding of ozone chemistry in the troposphere indicates that net ozone production P(O3) occurs when peroxy radicals (HO2+RO2) react with NO producing NO2, whose photolysis leads to O3 formation. P(O3) values can be calculated from peroxy radical concentrations, either from ambient measurements or box model outputs. These two estimation methods often disagree for NOx mixing ratios higher than a few ppb, questioning our ability to measure peroxy radicals under high NOx conditions or indicating that there are still unknowns in our understanding of the radical and ozone production chemistry. Direct measurements of ozone production rates will help to address this issue and improve air quality regulations. We will present the development of an instrument for direct measurements of ozone production rates (OPR). The OPR instrument consists of three parts: (i) two quartz flow tubes sampling ambient air ("Ambient" and "Reference" flow tube), (ii) an O3-to-NO2 conversion unit, and (iii) a Cavity Attenuated Phase Shift (CAPS) monitor to measure NO2. The air in the Ambient flow tube undergoes the same photochemistry as in ambient air, while the Reference flow tube is covered by a UV filter limiting the formation of ozone. Exiting the flow tubes, ozone is converted into NO2 and the sum O3+NO2 (Ox) is measured by the CAPS monitor. The difference in Ox between the two flow tubes divided by the residence time yields the Ox production rate, P(Ox). P(O3) is assumed to be equal to P(Ox) when NO2 is efficiently photolyzed during daytime. We will present preliminary results from the Indiana Radical, Reactivity and Ozone Production Intercomparison (IRRONIC) campaign in Bloomington, Indiana, during July 2015, where ozone production rates were measured by introducing various amounts of NO inside the flow tubes to investigate the ozone production sensitivity.
Tim’s expertise and interests lie in the area of air pollution exposure assessment, including ambient air monitoring, personal monitoring, source apportionment, and air quality and exposure modeling.
Near-Road Air Quality Monitoring: Factors Affecting Network Design and Interpretation of Data
The growing number of health studies identifying adverse health effects for populations spending significant amounts of time near large roadways has increased the interest in monitoring air quality in this microenvironment. Designing near-road air monitoring networks or interpret...
40 CFR 63.864 - Monitoring requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... that uses an air pollution control system other than an ESP, wet scrubber, RTO, or fabric filter must... unit equipped with an alternative air pollution control system and monitoring operating parameters... affected source or process unit equipped with an alternative air pollution control system and monitoring...
40 CFR 63.864 - Monitoring requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... that uses an air pollution control system other than an ESP, wet scrubber, RTO, or fabric filter must... unit equipped with an alternative air pollution control system and monitoring operating parameters... affected source or process unit equipped with an alternative air pollution control system and monitoring...
40 CFR 63.864 - Monitoring requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... that uses an air pollution control system other than an ESP, wet scrubber, RTO, or fabric filter must... unit equipped with an alternative air pollution control system and monitoring operating parameters... affected source or process unit equipped with an alternative air pollution control system and monitoring...
Plug-and-play web-based visualization of mobile air monitoring data
The collection of air measurements in real-time on moving platforms, such as wearable, bicycle-mounted, or vehicle-mounted air sensors, is becoming an increasingly common method to investigate local air quality. However, visualizing and analyzing geospatial air monitoring data r...
Ambient Air Quality Data Inventory
The Office of Air and Radiation's (OAR) Ambient Air Quality Data (Current) contains ambient air pollution data collected by EPA, other federal agencies, as well as state, local, and tribal air pollution control agencies. Its component data sets have been collected over the years from approximately 10,000 monitoring sites, of which approximately 5,000 are currently active. OAR's Office of Air Quality Planning and Standards (OAQPS) and other internal and external users, rely on this data to assess air quality, assist in Attainment/Non-Attainment designations, evaluate State Implementation Plans for Non-Attainment Areas, perform modeling for permit review analysis, and other air quality management functions. Air quality information is also used to prepare reports for Congress as mandated by the Clean Air Act. This data covers air quality data collected after 1980, when the Clean Air Act requirements for monitoring were significantly modified. Air quality data from the Agency's early years (1970s) remains available (see OAR PRIMARY DATA ASSET: Ambient Air Quality Data -- Historical), but because of technical and definitional differences the two data assets are not directly comparable. The Clean Air Act of 1970 provided initial authority for monitoring air quality for Conventional Air Pollutants (CAPs) for which EPA has promulgated National Ambient Air Quality Standards (NAAQS). Requirements for monitoring visibility-related parameters were added in 1977. Requiremen
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levin, J.O.; Andersson, K.; Lindahl, R.
1985-05-01
Formaldehyde is sampled from air with the use of a standard miniature glass fiber filter impregnated with 2,4-dinitrophenylhydrazine and phosphoric acid. The formaldehyde hydrazone is desorbed from the filter with acetonitrile and determined by high-performance liquid chromatography using UV detection at 365 nm. Recovery of gas-phase-generated formaldehyde as hydrazone from a 13-mm impregnated filter is 80-100% in the range 0.3-30 ..mu..g of formaldehyde. This corresponds to 0.1-10 mg/m/sup 3/ in a 3-L air sample. When the filter sampling system is used in the active mode, air can be sampled at a rate of up to 1 L/min, affording an overallmore » sensitivity of about 1 ..mu..g/m/sup 3/ based on a 60-L air sample. Results are given from measurements of formaldehyde in indoor air. The DNP-coated filters were also evaluated for passive sampling. In this case 37-mm standard glass fibers were used and the sampling rate was 55-65 mL/min in two types of dosimeters. The diffusion samplers are especially useful for personal exposure monitoring in the work environment. 24 references, 2 figures, 4 tables.« less
PSE Aysis of Crossflow Instability on HifIre-5B Flight Test
2017-06-05
AIR FORCE RESEARCH LABORATORY AEROSPACE SYSTEMS DIRECTORATE WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7542 AIR FORCE MATERIEL COMMAND UNITED...Air Force Research Laboratory, Aerospace Systems Directorate Wright-Patterson Air Force Base, OH 45433-7542 Air Force Materiel Command, United...States Air Force 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING Air Force Research Laboratory Aerospace Systems
A quantitative method for optimized placement of continuous air monitors.
Whicker, Jeffrey J; Rodgers, John C; Moxley, John S
2003-11-01
Alarming continuous air monitors (CAMs) are a critical component for worker protection in facilities that handle large amounts of hazardous materials. In nuclear facilities, continuous air monitors alarm when levels of airborne radioactive materials exceed alarm thresholds, thus prompting workers to exit the room to reduce inhalation exposures. To maintain a high level of worker protection, continuous air monitors are required to detect radioactive aerosol clouds quickly and with good sensitivity. This requires that there are sufficient numbers of continuous air monitors in a room and that they are well positioned. Yet there are no published methodologies to quantitatively determine the optimal number and placement of continuous air monitors in a room. The goal of this study was to develop and test an approach to quantitatively determine optimal number and placement of continuous air monitors in a room. The method we have developed uses tracer aerosol releases (to simulate accidental releases) and the measurement of the temporal and spatial aspects of the dispersion of the tracer aerosol through the room. The aerosol dispersion data is then analyzed to optimize continuous air monitor utilization based on simulated worker exposure. This method was tested in a room within a Department of Energy operated plutonium facility at the Savannah River Site in South Carolina, U.S. Results from this study show that the value of quantitative airflow and aerosol dispersion studies is significant and that worker protection can be significantly improved while balancing the costs associated with CAM programs.
RadNet Air Data From Honolulu, HI
This page presents radiation air monitoring and air filter analysis data for Honolulu, HI from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Birmingham, AL
This page presents radiation air monitoring and air filter analysis data for Birmingham, AL from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Dallas, TX
This page presents radiation air monitoring and air filter analysis data for Dallas, TX from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Omaha, NE
This page presents radiation air monitoring and air filter analysis data for Omaha, NE from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Montgomery, AL
This page presents radiation air monitoring and air filter analysis data for Montgomery, AL from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Burlington, VT
This page presents radiation air monitoring and air filter analysis data for Burlington, VT from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Washington, DC
This page presents radiation air monitoring and air filter analysis data for Washington, DC from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Rochester, NY
This page presents radiation air monitoring and air filter analysis data for Rochester, NY from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Tampa, FL
This page presents radiation air monitoring and air filter analysis data for Tampa, FL from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Cincinnati, OH
This page presents radiation air monitoring and air filter analysis data for Cincinnati, OH from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Fairbanks, AK
This page presents radiation air monitoring and air filter analysis data for Fairbanks, AL from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
This page presents radiation air monitoring and air filter analysis data for Yuma, AZ from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Kalispell, MT
This page presents radiation air monitoring and air filter analysis data for Kalispell, MT from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Kearney, NE
This page presents radiation air monitoring and air filter analysis data for Kearney, NE from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Phoenix, AZ
This page presents radiation air monitoring and air filter analysis data for Phoenix, AZ from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Pierre, SD
This page presents radiation air monitoring and air filter analysis data for Pierre, SD from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Augusta, GA
This page presents radiation air monitoring and air filter analysis data for Augusta, GA from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Syracuse, NY
This page presents radiation air monitoring and air filter analysis data for Syracuse, NY from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Albany, NY
This page presents radiation air monitoring and air filter analysis data for Albany, NY from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Anchorage, AK
This page presents radiation air monitoring and air filter analysis data for Anchorage, AK from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Philadelphia, PA
This page presents radiation air monitoring and air filter analysis data for Philadelphia, PA from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Houston, TX
This page presents radiation air monitoring and air filter analysis data for Houston, TX from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Duluth, MN
This page presents radiation air monitoring and air filter analysis data for Duluth, MN from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Raleigh, NC
This page presents radiation air monitoring and air filter analysis data for Raleigh, NC from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Louisville, KY
This page presents radiation air monitoring and air filter analysis data for Louisville, KY from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Cleveland, OH
This page presents radiation air monitoring and air filter analysis data for Cleveland, OH from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Carlsbad, NM
This page presents radiation air monitoring and air filter analysis data for Carlsbad, NM from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Corvallis, OR
This page presents radiation air monitoring and air filter analysis data for Corvallis, OR from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Orono, ME
This page presents radiation air monitoring and air filter analysis data for Orono, ME from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
This page presents radiation air monitoring and air filter analysis data for Reno, NV from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Nashville, TN
This page presents radiation air monitoring and air filter analysis data for Nashville, TN from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Concord, NH
This page presents radiation air monitoring and air filter analysis data for Concord, NH from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Paducah, KY
This page presents radiation air monitoring and air filter analysis data for Paducah, KY from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Edison, NJ
This page presents radiation air monitoring and air filter analysis data for Edison, NJ from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Wilmington, NC
This page presents radiation air monitoring and air filter analysis data for Wilmington, NC from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Boise, ID
This page presents radiation air monitoring and air filter analysis data for Boise, ID from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Albuquerque, NM
This page presents radiation air monitoring and air filter analysis data for Albuquerque, NM from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Fresno, CA
This page presents radiation air monitoring and air filter analysis data for Fresno, CA from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Amarillo, TX
This page presents radiation air monitoring and air filter analysis data for Amarillo, TX from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Portland, OR
This page presents radiation air monitoring and air filter analysis data for Portland, OR from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Jacksonville, FL
This page presents radiation air monitoring and air filter analysis data for Jacksonville, FL from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Dover, DE
This page presents radiation air monitoring and air filter analysis data for Dover, DE from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Baltimore, MD
This page presents radiation air monitoring and air filter analysis data for Baltimore, MD from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Miami, FL
This page presents radiation air monitoring and air filter analysis data for Miami, FL from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Billings, MT
This page presents radiation air monitoring and air filter analysis data for Billings, MT from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Providence, RI
This page presents radiation air monitoring and air filter analysis data for Providence, RI from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Knoxville, TN
This page presents radiation air monitoring and air filter analysis data for Knoxville, TN from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Columbus, OH
This page presents radiation air monitoring and air filter analysis data for Columbus, OH from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Bloomsburg, PA
This page presents radiation air monitoring and air filter analysis data for Bloomsburg, PA from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Shreveport, LA
This page presents radiation air monitoring and air filter analysis data for Shreveport, LA from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Laredo, TX
This page presents radiation air monitoring and air filter analysis data for Laredo, TX from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Bakersfield, CA
This page presents radiation air monitoring and air filter analysis data for Bakersfield, CA from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Portland, ME
This page presents radiation air monitoring and air filter analysis data for Portland, ME from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Champaign, IL
This page presents radiation air monitoring and air filter analysis data for Champaign, IL from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Tucson, AZ
This page presents radiation air monitoring and air filter analysis data for Tucson, AZ from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Juneau, AK
This page presents radiation air monitoring and air filter analysis data for Juneau, AK from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Toledo, OH
This page presents radiation air monitoring and air filter analysis data for Toledo, OH from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Boston, MA
This page presents radiation air monitoring and air filter analysis data for Boston, MA from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Indianapolis, IN
This page presents radiation air monitoring and air filter analysis data for Indianapolis, IN from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Yaphank, NY
This page presents radiation air monitoring and air filter analysis data for Yaphank, NY from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Anaheim, CA
This page presents radiation air monitoring and air filter analysis data for Anaheim, CA from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Riverside, CA
This page presents radiation air monitoring and air filter analysis data for Riverside, CA from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Detroit, MI
This page presents radiation air monitoring and air filter analysis data for Detroit, MI from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Wichita, KS
This page presents radiation air monitoring and air filter analysis data for Wichita, KS from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Columbia, SC
This page presents radiation air monitoring and air filter analysis data for Columbia, SC from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Milwaukee, WI
This page presents radiation air monitoring and air filter analysis data for Milwaukee, WI from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Richmond, VA
This page presents radiation air monitoring and air filter analysis data for Richmond, VA from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Tulsa, OK
This page presents radiation air monitoring and air filter analysis data for Tulsa, OK from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Aurora, IL
This page presents radiation air monitoring and air filter analysis data for Aurora, IL from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Hartford, CT
This page presents radiation air monitoring and air filter analysis data for Hartford. CT from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Charleston, WV
This page presents radiation air monitoring and air filter analysis data for Charleston, WV from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Shawano, WI
This page presents radiation air monitoring and air filter analysis data for Shawano, WI from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Harlingen, TX
This page presents radiation air monitoring and air filter analysis data for Harlingen, TX from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation
RadNet Air Data From Springfield, MO
This page presents radiation air monitoring and air filter analysis data for Springfield, MO from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Olympia, WA
This page presents radiation air monitoring and air filter analysis data for Olympia, WA from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Memphis, TN
This page presents radiation air monitoring and air filter analysis data for Memphis, TN from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Lubbock, TX
This page presents radiation air monitoring and air filter analysis data for Lubbock, TX from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Sacramento, CA
This page presents radiation air monitoring and air filter analysis data for Sacramento, CA from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Lockport, NY
This page presents radiation air monitoring and air filter analysis data for Lockport, NY from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Jackson, MS
This page presents radiation air monitoring and air filter analysis data for Jackson, MS from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Seattle, WA
This page presents radiation air monitoring and air filter analysis data for Seattle, WA from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Pittsburgh, PA
This page presents radiation air monitoring and air filter analysis data for Pittsburgh, PA from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Madison, WI
This page presents radiation air monitoring and air filter analysis data for Madison, WI from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Ellensburg, WA
This page presents radiation air monitoring and air filter analysis data for Ellensburg, WA from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Harrisonburg, VA
This page presents radiation air monitoring and air filter analysis data for Harrisonburg, VA from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Bismarck, ND
This page presents radiation air monitoring and air filter analysis data for Bismarck, ND from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Denver, CO
This page presents radiation air monitoring and air filter analysis data for Denver, CO from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Charlotte, NC
This page presents radiation air monitoring and air filter analysis data for Charlotte, NC from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Lexington, KY
This page presents radiation air monitoring and air filter analysis data for Lexington, KY from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Casper, WY
This page presents radiation air monitoring and air filter analysis data for Casper, WY from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Eureka, CA
This page presents radiation air monitoring and air filter analysis data for Eureka, CA from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Lincoln, NE
This page presents radiation air monitoring and air filter analysis data for Lincoln, NE from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Orlando, FL
This page presents radiation air monitoring and air filter analysis data for Orlando, FL from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Mobile, AL
This page presents radiation air monitoring and air filter analysis data for Mobile, AL from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Spokane, WA
This page presents radiation air monitoring and air filter analysis data for Spokane, WA from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Atlanta, GA
This page presents radiation air monitoring and air filter analysis data for Atlanta, GA from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Greensboro, NC
This page presents radiation air monitoring and air filter analysis data for Greensboro, NC from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Chicago, IL
This page presents radiation air monitoring and air filter analysis data for Chicago, IL from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Worcester, MA
This page presents radiation air monitoring and air filter analysis data for Worcester, MA from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Austin, TX
This page presents radiation air monitoring and air filter analysis data for Austin, TX from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
Risk management in air protection in the Republic of Croatia.
Peternel, Renata; Toth, Ivan; Hercog, Predrag
2014-03-01
In the Republic of Croatia, according to the Air Protection Act, air pollution assessment is obligatory on the whole State territory. For individual regions and populated areas in the State a network has been established for permanent air quality monitoring. The State network consists of stations for measuring background pollution, regional and cross-border remote transfer and measurements as part of international government liabilities, then stations for measuring air quality in areas of cultural and natural heritage, and stations for measuring air pollution in towns and industrial zones. The exceeding of alert and information threshold levels of air pollutants are related to emissions from industrial plants, and accidents. Each excess represents a threat to human health in case of short-time exposure. Monitoring of alert and information threshold levels is carried out at stations from the state and local networks for permanent air quality monitoring according to the Air Quality Measurement Program in the State network for permanent monitoring of air quality and air quality measurement programs in local networks for permanent air quality monitoring. The State network for permanent air quality monitoring has a developed automatic system for reporting on alert and information threshold levels, whereas many local networks under the competence of regional and local self-governments still lack any fully installed systems of this type. In case of accidents, prompt action at all responsibility levels is necessary in order to prevent crisis and this requires developed and coordinated competent units of State Administration as well as self-government units. It is also necessary to be continuously active in improving the implementation of legislative regulations in the field of crises related to critical and alert levels of air pollutants, especially at local levels.
NASA Astrophysics Data System (ADS)
Casey, J. G.; Ilie, A. M. C.; Coffey, E.; Collier-Oxandale, A. M.; Hannigan, M.; Vaccaro, C.
2017-12-01
In Colorado and elsewhere in North America, the oil and gas production industry has been growing alongside and in the midst of increasing urban and rural populations. These coinciding trends have resulted in a growing number of people living in close proximity to petroleum production and processing activities, leading to potential public health impacts. Combustion-related emissions from heavy-duty diesel vehicle traffic, generators, compressors, and production stream flaring can potentially lead to locally enhanced levels of nitrogen oxides (NOx), carbon monoxide (CO), and carbon dioxide (CO2). Venting and fugitive emissions of production stream constituents can potentially lead to locally enhanced levels of methane (CH4) and volatile organic compounds (VOCs), some of which (like benzene) are known carcinogens. NOx and VOC emissions can also potentially increase local ozone (O3) production. After learning of a large new multiwell pad on the outskirts of Greeley, Colorado, we were able to quickly mobilize portable air quality monitors outfitted with low-cost gas sensors that respond to CH4, CO2, CO, and O3. The air quality monitors were installed outside homes adjacent to the new multiwell pad several weeks prior to the first spud date. An anemometer was also installed outside one of the homes in order to monitor wind speed and direction. Measurements continued during drilling, hydraulic fracturing, and production phases. The sensors were periodically collocated with reference instruments at a nearby regulatory air quality monitoring site towards calibration via field normalization and validation. Artificial Neural Networks were employed to map sensor signals to trace gas mole fractions during collocation periods. We present measurements of CH4, CO2, CO, and O3 in context with wellpad activities and local meteorology. CO and O3 observations are presented in context with regional measurements and National Ambient Air Quality Standards for each. Wind speed and direction measurements were used to indicate when air masses originated from the direction of the multiwell pad. CO2 mole fractions were used to estimate planetary boundary layer height and CH4 mole fractions were used to identify periods conducive to the pooling and accumulation of production stream venting and fugitive emissions.
NASA Astrophysics Data System (ADS)
Shendell, Derek G.; Therkorn, Jennifer H.; Yamamoto, Naomichi; Meng, Qingyu; Kelly, Sarah W.; Foster, Christine A.
2012-04-01
We can control asthma through proper clinical and environmental management and education. The U.S. population is growing, urbanizing and aging; seniors of low-to-middle income families are working and living longer. We conducted community-based participatory research in Visalia, Tulare County, California with a prospective, cross-sectional repeated measures design and quantitative and qualitative process; home environment and health-related outcomes data were collected. In this paper, we presented results of the air quality sampling-pollen, carbon dioxide (CO2) and particulate matter (PM) outdoors away from most major sources (agricultural fields, large pollinating trees, etc)-at a community central site close to a mobile line source and participant homes in the cooling season, July, 2009. Weather was hot and dry with light winds; diurnal variation ranged between 65-107 °F (18-42 °C) and 12-76% relative humidity at the study's central site. Co-located active (reference) and passive (PAAS) samplers were used for pollen; passive monitoring for CO2 (Telaire 7001) and active sampling for PM were conducted. Overall, we observed spatial variability in CO2, fine PM (PM2.5), and pollen counts. Weekday and study week average CO2 and PM2.5 concentrations were higher near study homes compared to central site sampling points, but peak measures and overnight/pre-dawn time period averages were elevated at the central site. Pollen counts were typically lower at homes-even if grass, trees, flowers or potted plants were present-compared to the central site closer to and generally downwind from commercial agricultural tree production. Data are new; the nine-county San Joaquin Valley has one pollen count station in the national network, and two of four government outdoor air monitoring stations in the county are in national parks. We suggest-given poor air quality in large part due to PM-adding routine pollen counts to regional/state agency air monitoring sites and more CO2 and PM monitoring.
NASA Astrophysics Data System (ADS)
French, R. A.; Preuss, P.
2013-12-01
Recent advances in the development of small-scale and inexpensive air pollutant sensors, coupled with the ubiquitous use of wireless and mobile technology, will transform the field of air quality monitoring. For the first time, the general public may purchase air monitors, which can measure their personal exposure to NOx, Ozone, black carbon, and VOCs for a few hundred dollars. Concerned citizens may now gather the data for themselves to answer questions such as, ';what am I breathing?' and ';is my air clean?' The research and policy community will have access to real-time air quality data collected at the local and regional scale, making targeted protection of environmental health possible. With these benefits come many questions from citizen scientists, policymakers, and researchers. These include, what is the quality of the data? How will the public interpret data from the air sensors and are there guidelines to interpret that data? How do you know if the air sensor is trustworthy? Recognizing that this revolution in air quality monitoring will proceed regardless of the involvement of the government, the Innovation Team at the EPA Office of Research and Development, in partnership with the Office of Enforcement and Compliance Assistance and the Office of Air and Radiation, seized the opportunity to ensure that users of next generation air sensors can realize the full potential benefits of these innovative technologies. These efforts include releasing an EPA Draft Roadmap for Next Generation Air Monitoring, testing air sensors under laboratory and field conditions, field demonstrations of new air sensor technology for the public, and building a community of air sensor developers, researchers, local, state and federal officials, and community members through workshops and a website. This presentation will review the status of those programs, highlighting the particular programs of interest to citizen scientists. The Next Generation Air Monitoring program may serve as a model for similar efforts in the EPA and at other Federal Agencies, who would like to take an active role in facilitating the future of citizen science and environmental monitoring.
Test/QA Plan (TQAP) for Verification of Semi-Continuous Ambient Air Monitoring Systems
The purpose of the semi-continuous ambient air monitoring technology (or MARGA) test and quality assurance plan is to specify procedures for a verification test applicable to commercial semi-continuous ambient air monitoring technologies. The purpose of the verification test is ...
Assessment of Near-Source Air Pollution at a Fine Spatial Scale Utilizing Mobile Monitoring Approach
Mobile monitoring is an emerging strategy to characterize spatially and temporally variable air pollution in areas near sources. EPA’s Geospatial Monitoring of Air Pollution (GMAP) vehicle – an all-electric vehicle measuring real-time concentrations of partic...
Citizen Science Air Monitor (CSAM) Operating Procedures
The Citizen Science Air Monitor (CSAM) is an air monitoring system designed for measuring nitrogen dioxide (NO2) and particulate matter (PM) pollutants simultaneously. This self-contained system consists of a CairPol CairClip NO2 sensor, a Thermo Scientific personal DataRAM PM2.5...
Mobile Air Monitoring Data Processing Strategies and Effects on Spatial Air Pollution Trends
The collection of real-time air quality measurements while in motion (i.e., mobile monitoring) is currently conducted worldwide to evaluate in situ emissions, local air quality trends, and air pollutant exposure. This measurement strategy pushes the limits of traditional data an...
WSN based indoor air quality monitoring in classrooms
NASA Astrophysics Data System (ADS)
Wang, S. K.; Chew, S. P.; Jusoh, M. T.; Khairunissa, A.; Leong, K. Y.; Azid, A. A.
2017-03-01
Indoor air quality monitoring is essential as the human health is directly affected by indoor air quality. This paper presents the investigations of the impact of undergraduate students' concentration during lecture due to the indoor air quality in classroom. Three environmental parameters such as temperature, relative humidity and concentration of carbon dioxide are measured using wireless sensor network based air quality monitoring system. This simple yet reliable system is incorporated with DHT-11 and MG-811 sensors. Two classrooms were selected to install the monitoring system. The level of indoor air quality were measured and students' concentration was assessed using intelligent test during normal lecturing section. The test showed significant correlation between the collected environmental parameters and the students' level of performances in their study.
Chu, Pengbo; Pax, Randolph; Li, Ronghao; Langlois, Ray; Finch, James A
2017-04-04
Frothers, a class of surfactants, are widely employed in froth flotation to aid the generation of small bubbles. Their action is commonly explained by their ability to hinder coalescence. There are occasional references suggesting that the frother may also play a role in the initial breakup of the injected air mass. This work investigates the possible effect of the frother on breakup by monitoring air bubbles produced quasi-statically at an underwater capillary. Under this condition, breakup is isolated from coalescence and an impact of frothers on the detached bubble can be ascribed to an impact on breakup. The breakaway process was monitored by an acoustic technique along with high-speed cinematography. The results showed that the presence of frothers did influence the breakaway process and that the acoustic technique was able to detect the impact. It was demonstrated that the acoustic frequency and acoustic damping ratio depend upon the frother type and concentration and that they are associated with a liquid jet, which initially excites the bubble and then decays to form a surface wave. The addition of the frother did not influence the formation of the jet but did increase its decay rate, hence, dampening the surface wave. It is postulated that the action of the frother is related to an effect on the magnitude of surface tension gradients.
Region 7 States Air Quality Monitoring Plans - Iowa
National Ambient Air Quality Standard (NAAQS) - Iowa, Kansas, Missouri, and Nebraska; Annual Monitoring Network Plans, Five-Year Monitoring Network Assessments, and approval documentation. Each year, states are required to submit an annual monitoring netwo
Region 7 States Air Quality Monitoring Plans - Missouri
National Ambient Air Quality Standard (NAAQS) - Iowa, Kansas, Missouri, and Nebraska; Annual Monitoring Network Plans, Five-Year Monitoring Network Assessments, and approval documentation. Each year, states are required to submit an annual monitoring netwo
Region 7 States Air Quality Monitoring Plans - Nebraska
National Ambient Air Quality Standard (NAAQS) - Iowa, Kansas, Missouri, and Nebraska; Annual Monitoring Network Plans, Five-Year Monitoring Network Assessments, and approval documentation. Each year, states are required to submit an annual monitoring netwo
Region 7 States Air Quality Monitoring Plans - Kansas
National Ambient Air Quality Standard (NAAQS) - Iowa, Kansas, Missouri, and Nebraska; Annual Monitoring Network Plans, Five-Year Monitoring Network Assessments, and approval documentation. Each year, states are required to submit an annual monitoring netwo
40 CFR 50.3 - Reference conditions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... SECONDARY AMBIENT AIR QUALITY STANDARDS § 50.3 Reference conditions. All measurements of air quality that... reported based on actual ambient air volume measured at the actual ambient temperature and pressure at the...
Photochemical Assessment Monitoring Stations (PAMS)
Photochemical Assessment Monitoring Stations (PAMS). This file provides information on the numbers and distribution (latitude/longitude) of air monitoring sites which measure ozone precursors (approximately 60 volatile hydrocarbons and carbonyl), as required by the 1990 Clean Air Act Amendments, in areas with persistently high ozone levels (mostly large metropolitan areas). In these areas, the States have established ambient air monitoring sites which collect and report detailed data for volatile organic compounds, nitrogen oxides, ozone and meteorological parameters. This file displays 199 monitoring sites reporting measurements for 2010. A wide range of related monitoring site attributes is also provided.
RadNet Air Data From San Juan, PR
This page presents radiation air monitoring and air filter analysis data for San Juan, PR from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Grand Rapids, MI
This page presents radiation air monitoring and air filter analysis data for Grand Rapids, MI from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Corpus Christi, TX
This page presents radiation air monitoring and air filter analysis data for Corpus Christi, TX from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Little Rock, AR
This page presents radiation air monitoring and air filter analysis data for Little Rock, AR from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Des Moines, IA
This page presents radiation air monitoring and air filter analysis data for Des Moines, IA from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Fort Madison, IA
This page presents radiation air monitoring and air filter analysis data for Fort Madison, IA from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Fort Wayne, IN
This page presents radiation air monitoring and air filter analysis data for Fort Wayne, IN from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Navajo Lake, NM
This page presents radiation air monitoring and air filter analysis data for Navajo Lake, NM from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Las Vegas, NV
This page presents radiation air monitoring and air filter analysis data for Las Vegas, NV from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From St. George, UT
This page presents radiation air monitoring and air filter analysis data for St. George, UT from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Jefferson City, MO
This page presents radiation air monitoring and air filter analysis data for Jefferson City, MO from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Fort Worth, TX
This page presents radiation air monitoring and air filter analysis data for Fort Worth, TX from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Kansas City, KS
This page presents radiation air monitoring and air filter analysis data for Kansas City, KS from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From San Angelo, TX
This page presents radiation air monitoring and air filter analysis data for San Angelo, TX from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From San Francisco, CA
This page presents radiation air monitoring and air filter analysis data for San Francisco, CA from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Oklahoma City, OK
This page presents radiation air monitoring and air filter analysis data for Oklahoma City, OK from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From San Bernardino, CA
This page presents radiation air monitoring and air filter analysis data for San Bernardino, CA from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Idaho Falls, ID
This page presents radiation air monitoring and air filter analysis data for Idaho Falls, ID from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Los Angeles, CA
This page presents radiation air monitoring and air filter analysis data for Los Angeles, CA from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From El Paso, TX
This page presents radiation air monitoring and air filter analysis data for El Paso, TX from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Grand Junction, CO
This page presents radiation air monitoring and air filter analysis data for Grand Junction, CO from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From St. Paul, MN
This page presents radiation air monitoring and air filter analysis data for St. Paul, MN from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Virginia Beach, VA
This page presents radiation air monitoring and air filter analysis data for Virginia Beach, VA from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From La Crosse, WI
This page presents radiation air monitoring and air filter analysis data for La Crosse, WI from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From San Diego, CA
This page presents radiation air monitoring and air filter analysis data for San Diego, CA from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From San Jose, CA
This page presents radiation air monitoring and air filter analysis data for San Jose, CA from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From San Antonio, TX
This page presents radiation air monitoring and air filter analysis data for San Antonio, TX from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Rapid City, SD
This page presents radiation air monitoring and air filter analysis data for Rapid City, SD from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Dodge City, KS
This page presents radiation air monitoring and air filter analysis data for Dodge City, KS from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Colorado Springs, CO
This page presents radiation air monitoring and air filter analysis data for Colorado Springs, CO from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From St. Louis, MO
This page presents radiation air monitoring and air filter analysis data for St. Louis, MO from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Bay City, MI
This page presents radiation air monitoring and air filter analysis data for Bay City, MI from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Mason City, IA
This page presents radiation air monitoring and air filter analysis data for Mason City, IA from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
Air Quality System (AQS) Metadata
The U.S. Environmental Protection Agency compiles air quality monitoring data in the Air Quality System (AQS). Ambient air concentrations are measured at a national network of more than 4,000 monitoring stations and are reported by state, local, and tribal
RadNet Air Data From Fort Smith, AR
This page presents radiation air monitoring and air filter analysis data for Fort Smith, AR from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
Overview of the new National Near-Road Air Quality Monitoring Network
In 2010, EPA promulgated new National Ambient Air Quality Standards (NAAQS) for nitrogen dioxide (NO2). As part of this new NAAQS, EPA required the establishment of a national near-road air quality monitoring network. This network will consist of one NO2 near-road monitoring st...
Assessment of Near-Source Air Pollution at a Fine Spatial Scale Utilizing Mobile Monitoring Approach
Mobile monitoring is an emerging strategy to characterize spatially and temporally variable air pollution in areas near sources. EPA’s Geospatial Monitoring of Air Pollution (GMAP) vehicle – an all-electric vehicle measuring real-time concentrations of particulate and gaseous po...
Volunteers for Air Monitoring Project (VAMP).
ERIC Educational Resources Information Center
Oak Ridge National Lab., TN.
An education and communication project of the Environment and Technology Assessment Program, Oak Ridge National Laboratory, Tennessee, is described in this report. The project for monitoring air dustfall resulted in the largest citizen-scientist air monitoring effort in the history of our nation. Nearly 21,000 public secondary school students and…
Mobile monitoring is an emerging strategy to characterize spatially and temporally variable air pollution in areas near sources. EPA’s Geospatial Monitoring of Air Pollution (GMAP) vehicle – an all-electric vehicle measuring real-time concentrations of particulate and gaseous po...
40 CFR 63.6655 - What records must I keep?
Code of Federal Regulations, 2010 CFR
2010-07-01
... equipment) or the air pollution control and monitoring equipment. (3) Records of performance tests and... on the air pollution control and monitoring equipment. (5) Records of actions taken during periods of... malfunctioning process and air pollution control and monitoring equipment to its normal or usual manner of...
40 CFR 63.6655 - What records must I keep?
Code of Federal Regulations, 2013 CFR
2013-07-01
... equipment) or the air pollution control and monitoring equipment. (3) Records of performance tests and... on the air pollution control and monitoring equipment. (5) Records of actions taken during periods of... malfunctioning process and air pollution control and monitoring equipment to its normal or usual manner of...
APEX (Air Pollution Exercise) Volume 21: Legal References: Air Pollution Control Regulations.
ERIC Educational Resources Information Center
Environmental Protection Agency, Research Triangle Park, NC. Office of Manpower Development.
The Legal References: Air Pollution Control Regulations Manual is the last in a set of 21 manuals (AA 001 009-001 029) used in APEX (Air Pollution Exercise), a computerized college and professional level "real world" game simulation of a community with urban and rural problems, industrial activities, and air pollution difficulties. The manual…
Comparison of Calibration Techniques for Low-Cost Air Quality Monitoring
NASA Astrophysics Data System (ADS)
Malings, C.; Ramachandran, S.; Tanzer, R.; Kumar, S. P. N.; Hauryliuk, A.; Zimmerman, N.; Presto, A. A.
2017-12-01
Assessing the intra-city spatial distribution and temporal variability of air quality can be facilitated by a dense network of monitoring stations. However, the cost of implementing such a network can be prohibitive if high-quality but high-cost monitoring systems are used. To this end, the Real-time Affordable Multi-Pollutant (RAMP) sensor package has been developed at the Center for Atmospheric Particle Studies of Carnegie Mellon University, in collaboration with SenSevere LLC. This self-contained unit can measure up to five gases out of CO, SO2, NO, NO2, O3, VOCs, and CO2, along with temperature and relative humidity. Responses of individual gas sensors can vary greatly even when exposed to the same ambient conditions. Those of VOC sensors in particular were observed to vary by a factor-of-8, which suggests that each sensor requires its own calibration model. To this end, we apply and compare two different calibration methods to data collected by RAMP sensors collocated with a reference monitor station. The first method, random forest (RF) modeling, is a rule-based method which maps sensor responses to pollutant concentrations by implementing a trained sequence of decision rules. RF modeling has previously been used for other RAMP gas sensors by the group, and has produced precise calibrated measurements. However, RF models can only predict pollutant concentrations within the range observed in the training data collected during the collocation period. The second method, Gaussian process (GP) modeling, is a probabilistic Bayesian technique whereby broad prior estimates of pollutant concentrations are updated using sensor responses to generate more refined posterior predictions, as well as allowing predictions beyond the range of the training data. The accuracy and precision of these techniques are assessed and compared on VOC data collected during the summer of 2017 in Pittsburgh, PA. By combining pollutant data gathered by each RAMP sensor and applying appropriate calibration techniques, the potentially noisy or biased responses of individual sensors can be mapped to pollutant concentration values which are comparable to those of reference instruments.
Sampling and monitoring for the mine life cycle
McLemore, Virginia T.; Smith, Kathleen S.; Russell, Carol C.
2014-01-01
Sampling and Monitoring for the Mine Life Cycle provides an overview of sampling for environmental purposes and monitoring of environmentally relevant variables at mining sites. It focuses on environmental sampling and monitoring of surface water, and also considers groundwater, process water streams, rock, soil, and other media including air and biological organisms. The handbook includes an appendix of technical summaries written by subject-matter experts that describe field measurements, collection methods, and analytical techniques and procedures relevant to environmental sampling and monitoring.The sixth of a series of handbooks on technologies for management of metal mine and metallurgical process drainage, this handbook supplements and enhances current literature and provides an awareness of the critical components and complexities involved in environmental sampling and monitoring at the mine site. It differs from most information sources by providing an approach to address all types of mining influenced water and other sampling media throughout the mine life cycle.Sampling and Monitoring for the Mine Life Cycle is organized into a main text and six appendices that are an integral part of the handbook. Sidebars and illustrations are included to provide additional detail about important concepts, to present examples and brief case studies, and to suggest resources for further information. Extensive references are included.
Predictive monitoring and diagnosis of periodic air pollution in a subway station.
Kim, YongSu; Kim, MinJung; Lim, JungJin; Kim, Jeong Tai; Yoo, ChangKyoo
2010-11-15
The purpose of this study was to develop a predictive monitoring and diagnosis system for the air pollutants in a subway system using a lifting technique with a multiway principal component analysis (MPCA) which monitors the periodic patterns of the air pollutants and diagnoses the sources of the contamination. The basic purpose of this lifting technique was to capture the multivariate and periodic characteristics of all of the indoor air samples collected during each day. These characteristics could then be used to improve the handling of strong periodic fluctuations in the air quality environment in subway systems and will allow important changes in the indoor air quality to be quickly detected. The predictive monitoring approach was applied to a real indoor air quality dataset collected by telemonitoring systems (TMS) that indicated some periodic variations in the air pollutants and multivariate relationships between the measured variables. Two monitoring models--global and seasonal--were developed to study climate change in Korea. The proposed predictive monitoring method using the lifted model resulted in fewer false alarms and missed faults due to non-stationary behavior than that were experienced with the conventional methods. This method could be used to identify the contributions of various pollution sources. Copyright © 2010 Elsevier B.V. All rights reserved.
Berg, C.J.; Bundy, L.; Escoffery, C.; Haardörfer, R.; Kegler, M.C.
2013-01-01
SUMMARY Objectives To examine the feasibility of telephone-assisted placement of air nicotine monitors among low socio-economic intervention participants, and examine the use of this strategy in differentiating air nicotine concentrations in rooms where smoking is allowed from rooms where smoking is not allowed. Methods Forty participants were recruited from a county health department clinic and were enrolled in a brief smoke-free home policy intervention study. Twenty participants were selected at random for air nicotine monitor placement, and were instructed to telephone study staff who assisted them in monitor placement in their homes at the end of the intervention. Assessments were conducted at Weeks 0 and 8, with air nicotine assessment performed post-test. Results Of the 20 participants, 17 placed and returned the air nicotine monitors, and 16 also completed the follow-up survey. Follow-up survey data were not obtained on one monitor, and one participant who did not return the monitor completed the follow-up survey. Among those who reported a smoke-free policy (n=7), the average nicotine concentration was 0.62 μg/m3 [standard deviation (SD) 0.48]. Among those without a smoke-free policy (n=9), the average nicotine concentration was 2.30 μg/m3 (SD 2.04). Thus, the air nicotine concentration was significantly higher in those rooms where smoking was allowed [t(9, 11)=-2.39, P=0.04]. Conclusions The use of a telephone-assisted protocol for placement of air nicotine monitors was feasible. Despite the variability of air nicotine concentrations in rooms where smoking is allowed compared with rooms where smoking is not allowed, average concentrations were lower in smoke-free rooms. PMID:23480954
Development and evaluation of an ultrasonic personal aerosol sampler.
Volckens, J; Quinn, C; Leith, D; Mehaffy, J; Henry, C S; Miller-Lionberg, D
2017-03-01
Assessing personal exposure to air pollution has long proven challenging due to technological limitations posed by the samplers themselves. Historically, wearable aerosol monitors have proven to be expensive, noisy, and burdensome. The objective of this work was to develop a new type of wearable monitor, an ultrasonic personal aerosol sampler (UPAS), to overcome many of the technological limitations in personal exposure assessment. The UPAS is a time-integrated monitor that features a novel micropump that is virtually silent during operation. A suite of onboard environmental sensors integrated with this pump measure and record mass airflow (0.5-3.0 L/min, accurate within 5%), temperature, pressure, relative humidity, light intensity, and acceleration. Rapid development of the UPAS was made possible through recent advances in low-cost electronics, open-source programming platforms, and additive manufacturing for rapid prototyping. Interchangeable cyclone inlets provided a close match to the EPA PM 2.5 mass criterion (within 5%) for device flows at either 1.0 or 2.0 L/min. Battery life varied from 23 to 45 hours depending on sample flow rate and selected filter media. Laboratory tests of the UPAS prototype demonstrate excellent agreement with equivalent federal reference method samplers for gravimetric analysis of PM 2.5 across a broad range of concentrations. © 2016 The Authors. Indoor Air published by John Wiley & Sons Ltd.
REGIONAL AIR POLLUTION STUDY, QUALITY ASSURANCE AUDITS
RAPS Quality Assurance audits were conducted under this Task Order in continuation of the audit program previously conducted under Task Order No. 58. Quantitative field audits were conducted of the Regional Air Monitoring System (RAMS) Air Monitoring Stations, Local Air Monitorin...
RadNet Air Data From Salt Lake City, UT
This page presents radiation air monitoring and air filter analysis data for Salt Lake City, UT from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From New York City, NY
This page presents radiation air monitoring and air filter analysis data for New York City, NY from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
NASA Astrophysics Data System (ADS)
Holmes, Rachel; Lidster, Richard; Hamilton, Jacqueline; Lee, James; Hopkins, James; Whalley, Lisa; Lewis, Alistair
2014-05-01
The majority of the World's population live in polluted urbanized areas. Poor air quality is shortening life expectancy of people in the UK by an average 7-8 months and costs society around £20 billion per year.[1] Despite this, our understanding of atmospheric processing in urban environments and its effect on air quality is incomplete. Air quality models are used to predict how air quality changes given different concentrations of pollution precursors, such as volatile organic compounds (VOCs). The urban environment of megacities pose a unique challenge for air quality measurements and modelling, due to high population densities, pollution levels and complex infrastructure. For over 60 years the air quality in London has been monitored, however the existing measurements are limited to a small group of compounds. In order to fully understand the chemical and physical processes that occur in London, more intensive and comprehensive measurements should be made. The Clean air for London (ClearfLo) project was conducted to investigate the air quality, in particular the boundary layer pollution, of London. A relatively new technique, comprehensive two dimensional gas chromatography (GC×GC) [2] was combined with a well-established dual channel GC (DC-GC) [3] system to provide a more comprehensive measurement of VOCs. A total of 78 individual VOCs (36 aliphatics, 19 monoaromatics, 21 oxygenated and 2 halogenated) and 10 groups of VOCs (8 aliphatic, 1 monoaromatic and 1 monoterpene) from C1-C13+ were quantified. Seasonal and diurnal profiles of these VOCs have been found which show the influence of emission source and chemical processing. Including these extra VOCs should enhance the prediction capability of air quality models thus informing policy makers on how to potentially improve air quality in megacities. References 1. House of Commons Environmental Audit Committee, Air Quality: A follow-up report, Ninth Report of session 2012-12. 2. Lidster, R.T., J.F. Hamilton, and A.C. Lewis, The application of two total transfer valve modulators for comprehensive two-dimensional gas chromatography of volatile organic compounds. Journal of Separation Science, 2011. 34(7): p. 812-821. 3. Hopkins, J.R., C.E. Jones, and A.C. Lewis, A dual channel gas chromatograph for atmospheric analysis of volatile organic compounds including oxygenated and monoterpene compounds. Journal of Environmental Monitoring, 2011. 13(8): p. 2268-2276.
Evaluation of a low-cost optical particle counter (Alphasense OPC-N2) for ambient air monitoring
NASA Astrophysics Data System (ADS)
Crilley, Leigh R.; Shaw, Marvin; Pound, Ryan; Kramer, Louisa J.; Price, Robin; Young, Stuart; Lewis, Alastair C.; Pope, Francis D.
2018-02-01
A fast-growing area of research is the development of low-cost sensors for measuring air pollutants. The affordability and size of low-cost particle sensors makes them an attractive option for use in experiments requiring a number of instruments such as high-density spatial mapping. However, for these low-cost sensors to be useful for these types of studies their accuracy and precision need to be quantified. We evaluated the Alphasense OPC-N2, a promising low-cost miniature optical particle counter, for monitoring ambient airborne particles at typical urban background sites in the UK. The precision of the OPC-N2 was assessed by co-locating 14 instruments at a site to investigate the variation in measured concentrations. Comparison to two different reference optical particle counters as well as a TEOM-FDMS enabled the accuracy of the OPC-N2 to be evaluated. Comparison of the OPC-N2 to the reference optical instruments shows some limitations for measuring mass concentrations of PM1, PM2.5 and PM10. The OPC-N2 demonstrated a significant positive artefact in measured particle mass during times of high ambient RH (> 85 %) and a calibration factor was developed based upon κ-Köhler theory, using average bulk particle aerosol hygroscopicity. Application of this RH correction factor resulted in the OPC-N2 measurements being within 33 % of the TEOM-FDMS, comparable to the agreement between a reference optical particle counter and the TEOM-FDMS (20 %). Inter-unit precision for the 14 OPC-N2 sensors of 22 ± 13 % for PM10 mass concentrations was observed. Overall, the OPC-N2 was found to accurately measure ambient airborne particle mass concentration provided they are (i) correctly calibrated and (ii) corrected for ambient RH. The level of precision demonstrated between multiple OPC-N2s suggests that they would be suitable devices for applications where the spatial variability in particle concentration was to be determined.
Air Quality Monitoring and Sensor Technologies
EPA scientist Ron Williams presented on the features, examination, application, examples, and data quality of continuous monitoring study designs at EPA's Community Air Monitoring Training in July 2015.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-04
... Subjects in 40 CFR Part 52 Environmental protection, Air pollution control, Incorporation by reference...-hour ozone national ambient air quality standards (NAAQS) nonattainment area (hereafter referred to as... Section, Air Planning Branch, Air, Pesticides and Toxics Management Division, U.S. Environmental...
Air Pollution Monitoring for Communities Grants
EPA, through its Science to Achieve Results (STAR) grants program is providing funding to six institutions that will advance air monitoring technology while helping communities address unique air quality challenges.
Ottria, G; Dallera, M; Aresu, O; Manniello, M A; Parodi, B; Spagnolo, A M; Cristina, M L
2010-12-01
Recent discoveries in cell therapy research present new opportunities for cellular products to be used to treat severe, and as yet incurable, diseases. It is therefore essential to implement a quality control programme in order to ensure that safe cells and tissues are provided. In a preliminary phase of the setting up of a the cellfactory, monitoring was carried out monthly over a 6-month period in one out of three cell therapy laboratories and filter rooms in order to evaluate the microbial contamination of air and surfaces and the presence of airborne particulates. The mean total bacterial and fungal loads measured in the air in the centre of the filter room were 20.7 +/1 28.9 colony-forming units (cfu)/m3 and 9.2 +/- 15.4 cfu/m3, respectively, and 5.2 +/- 4.1 cfu/m3 and 6.8 +/- 13.4 cfu/m3, respectively, in the laboratory. The mean fungal load values recorded on the surfaces sampled in the laboratory were in 6 out of 18 cases higher than the reference values (5 cfu/plate). As to the results of particulate monitoring, with regard to the 0.5 microm particles, about 83% of the samples revealed values below the limit of 350.000 particles per cubic metre. In this set-up phase, monitoring was able to pick out structural and organisational flaws acceptable in a laboratory compliant with Good Manufacturing Practices class C (Annex 1), but not in a class B facility. Thanks to this preliminary monitoring phase, and by correcting these flaws, the clean room facility could achieve compliance to class B.
Ali, Mahboob; Athar, Makshoof
2008-01-01
Transportation system has contributed significantly to the development of human civilization; on the other hand it has an enormous impact on the ambient air quality in several ways. In this paper the air and noise pollution at selected sites along three sections of National Highway was monitored. Pakistan National Highway Authority has started a Highway Improvement program for rehabilitations and maintenance of National highways to improve the traffic flows, and would ultimately improve the air quality along highways. The ambient air quality and noise level was monitored at nine different locations along these sections of highways to quantify the air pollution. The duration of monitoring at individual location was 72 h. The most of the sampling points were near the urban or village population, schools or hospitals, in order to quantify the air pollution at most affected locations along these roads. A database consisting of information regarding the source of emission, local metrology and air quality may be created to assess the profile of air quality in the area.
NASA Astrophysics Data System (ADS)
Schliep, E. M.; Gelfand, A. E.; Holland, D. M.
2015-12-01
There is considerable demand for accurate air quality information in human health analyses. The sparsity of ground monitoring stations across the United States motivates the need for advanced statistical models to predict air quality metrics, such as PM2.5, at unobserved sites. Remote sensing technologies have the potential to expand our knowledge of PM2.5 spatial patterns beyond what we can predict from current PM2.5 monitoring networks. Data from satellites have an additional advantage in not requiring extensive emission inventories necessary for most atmospheric models that have been used in earlier data fusion models for air pollution. Statistical models combining monitoring station data with satellite-obtained aerosol optical thickness (AOT), also referred to as aerosol optical depth (AOD), have been proposed in the literature with varying levels of success in predicting PM2.5. The benefit of using AOT is that satellites provide complete gridded spatial coverage. However, the challenges involved with using it in fusion models are (1) the correlation between the two data sources varies both in time and in space, (2) the data sources are temporally and spatially misaligned, and (3) there is extensive missingness in the monitoring data and also in the satellite data due to cloud cover. We propose a hierarchical autoregressive spatially varying coefficients model to jointly model the two data sources, which addresses the foregoing challenges. Additionally, we offer formal model comparison for competing models in terms of model fit and out of sample prediction of PM2.5. The models are applied to daily observations of PM2.5 and AOT in the summer months of 2013 across the conterminous United States. Most notably, during this time period, we find small in-sample improvement incorporating AOT into our autoregressive model but little out-of-sample predictive improvement.
40 CFR 52.74 - Original identification of plan section.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Governor of Alaska on January 18, 1980 as follows: Volume II. Analysis of Problems, Control Actions Section... requirements of Air Quality Monitoring, 40 CFR part 58, subpart C, § 58.20, as follows: Volume II. Analysis of Problems, Control Actions Section V. Ambient Air Monitoring A. Purpose C. Air Monitoring Network E. Annual...
40 CFR 52.70 - Identification of plan.
Code of Federal Regulations, 2013 CFR
2013-07-01
... submitted by the Governor of Alaska on January 18, 1980 as follows: Volume II. Analysis of Problems, Control... requirements of Air Quality Monitoring, 40 CFR part 58, subpart C, § 58.20, as follows: Volume II. Analysis of Problems, Control Actions Section V. Ambient Air Monitoring A. Purpose C. Air Monitoring Network E. Annual...
Abstract. Air pollution measurement technology is advancing rapidly towards small-scale, real-time, wireless detectors, with a potential to significantly change the landscape of air pollution monitoring. The U.S. EPA Office of Research and Development is evaluating and developi...
Overview of Emerging Air Sensors
These slides will be presented at the 2014 National Ambient Air Monitoring Conference in Atlanta, GA during August 11-15, 2014. The goal is to provide an overview of air sensor technology and the audience will be primarily state air monitoring agencies and EPA Regions.
Highlights from the Air Sensors 2014 Workshop
In June 2014, the U.S. Environmental Protection Agency (EPA) hosted its fourth next-generation air monitoring workshop to discuss the current state of the science in air sensor technologies and their applications for environmental monitoring, Air Sensors 2014: A New Frontier. Th...
Air Pollution Monitoring for Communities Fact Sheet
EPA through its Science to Achieve Results (STAR) grants program is providing funding to six institutions that will advance air monitoring technology while helping communities address unique air quality challenges.
Design of an Air Pollution Monitoring Campaign in Beijing for Application to Cohort Health Studies.
Vedal, Sverre; Han, Bin; Xu, Jia; Szpiro, Adam; Bai, Zhipeng
2017-12-15
No cohort studies in China on the health effects of long-term air pollution exposure have employed exposure estimates at the fine spatial scales desirable for cohort studies with individual-level health outcome data. Here we assess an array of modern air pollution exposure estimation approaches for assigning within-city exposure estimates in Beijing for individual pollutants and pollutant sources to individual members of a cohort. Issues considered in selecting specific monitoring data or new monitoring campaigns include: needed spatial resolution, exposure measurement error and its impact on health effect estimates, spatial alignment and compatibility with the cohort, and feasibility and expense. Sources of existing data largely include administrative monitoring data, predictions from air dispersion or chemical transport models and remote sensing (specifically satellite) data. New air monitoring campaigns include additional fixed site monitoring, snapshot monitoring, passive badge or micro-sensor saturation monitoring and mobile monitoring, as well as combinations of these. Each of these has relative advantages and disadvantages. It is concluded that a campaign in Beijing that at least includes a mobile monitoring component, when coupled with currently available spatio-temporal modeling methods, should be strongly considered. Such a campaign is economical and capable of providing the desired fine-scale spatial resolution for pollutants and sources.
Design of an Air Pollution Monitoring Campaign in Beijing for Application to Cohort Health Studies
Vedal, Sverre; Han, Bin; Szpiro, Adam; Bai, Zhipeng
2017-01-01
No cohort studies in China on the health effects of long-term air pollution exposure have employed exposure estimates at the fine spatial scales desirable for cohort studies with individual-level health outcome data. Here we assess an array of modern air pollution exposure estimation approaches for assigning within-city exposure estimates in Beijing for individual pollutants and pollutant sources to individual members of a cohort. Issues considered in selecting specific monitoring data or new monitoring campaigns include: needed spatial resolution, exposure measurement error and its impact on health effect estimates, spatial alignment and compatibility with the cohort, and feasibility and expense. Sources of existing data largely include administrative monitoring data, predictions from air dispersion or chemical transport models and remote sensing (specifically satellite) data. New air monitoring campaigns include additional fixed site monitoring, snapshot monitoring, passive badge or micro-sensor saturation monitoring and mobile monitoring, as well as combinations of these. Each of these has relative advantages and disadvantages. It is concluded that a campaign in Beijing that at least includes a mobile monitoring component, when coupled with currently available spatio-temporal modeling methods, should be strongly considered. Such a campaign is economical and capable of providing the desired fine-scale spatial resolution for pollutants and sources. PMID:29244738
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiersma, G.B.; Kohler, A.; Boelcke, C.
1985-10-01
During 1984, a pilot project was initiated for monitoring pollution at Torres del Paine National Park in southern Chile and Olympic National Park in the United States. These are two of three initial sites that are to be established as part of an integrated global backgound monitoring network. Eventually, the plan is to establish a world-wide system of such sites. We collected and analyzed samples of the soil, water, air, and two species of plants (moss and lichen). We also collected and analyzed samples of the forest litter. We compared the samples of soil and vegetation against reference samples. Wemore » also compared samples of soil, vegetation, and of organic material from Torres del Paine against similar samples from Olympic and Sequoia-Kings Canyon National Parks in the United States. Although the data is preliminary, it is in agreement with out initial hypothesis that Torres del Paine and Olympic National Parks are not a polluted sites.« less
Li, Tianxin; Zhou, Xing Chen; Ikhumhen, Harrison Odion; Difei, An
2018-05-01
In recent years, with the significant increase in urban development, it has become necessary to optimize the current air monitoring stations to reflect the quality of air in the environment. Highlighting the spatial representation of some air monitoring stations using Beijing's regional air monitoring station data from 2012 to 2014, the monthly mean particulate matter concentration (PM10) in the region was calculated and through the IDW interpolation method and spatial grid statistical method using GIS, the spatial distribution of PM10 concentration in the whole region was deduced. The spatial distribution variation of districts in Beijing using the gridding model was performed, and through the 3-year spatial analysis, PM10 concentration data including the variation and spatial overlay (1.5 km × 1.5 km cell resolution grid), the spatial distribution result obtained showed that the total PM10 concentration frequency variation exceeded the standard. It is very important to optimize the layout of the existing air monitoring stations by combining the concentration distribution of air pollutants with the spatial region using GIS.
NASA Astrophysics Data System (ADS)
Prud'homme, Genevieve; Dobbin, Nina A.; Sun, Liu; Burnett, Richard T.; Martin, Randall V.; Davidson, Andrew; Cakmak, Sabit; Villeneuve, Paul J.; Lamsal, Lok N.; van Donkelaar, Aaron; Peters, Paul A.; Johnson, Markey
2013-12-01
Satellite remote sensing (RS) has emerged as a cutting edge approach for estimating ground level ambient air pollution. Previous studies have reported a high correlation between ground level PM2.5 and NO2 estimated by RS and measurements collected at regulatory monitoring sites. The current study examined associations between air pollution and adverse respiratory and allergic health outcomes using multi-year averages of NO2 and PM2.5 from RS and from regulatory monitoring. RS estimates were derived using satellite measurements from OMI, MODIS, and MISR instruments. Regulatory monitoring data were obtained from Canada's National Air Pollution Surveillance Network. Self-reported prevalence of doctor-diagnosed asthma, current asthma, allergies, and chronic bronchitis were obtained from the Canadian Community Health Survey (a national sample of individuals 12 years of age and older). Multi-year ambient pollutant averages were assigned to each study participant based on their six digit postal code at the time of health survey, and were used as a marker for long-term exposure to air pollution. RS derived estimates of NO2 and PM2.5 were associated with 6-10% increases in respiratory and allergic health outcomes per interquartile range (3.97 μg m-3 for PM2.5 and 1.03 ppb for NO2) among adults (aged 20-64) in the national study population. Risk estimates for air pollution and respiratory/allergic health outcomes based on RS were similar to risk estimates based on regulatory monitoring for areas where regulatory monitoring data were available (within 40 km of a regulatory monitoring station). RS derived estimates of air pollution were also associated with adverse health outcomes among participants residing outside the catchment area of the regulatory monitoring network (p < 0.05). The consistency between risk estimates based on RS and regulatory monitoring as well as the associations between air pollution and health among participants living outside the catchment area for regulatory monitoring suggest that RS can provide useful estimates of long-term ambient air pollution in epidemiologic studies. This is particularly important in rural communities and other areas where monitoring and modeled air pollution data are limited or unavailable.
Operational source receptor calculations for large agglomerations
NASA Astrophysics Data System (ADS)
Gauss, Michael; Shamsudheen, Semeena V.; Valdebenito, Alvaro; Pommier, Matthieu; Schulz, Michael
2016-04-01
For Air quality policy an important question is how much of the air pollution within an urbanized region can be attributed to local sources and how much of it is imported through long-range transport. This is critical information for a correct assessment of the effectiveness of potential emission measures. The ratio between indigenous and long-range transported air pollution for a given region depends on its geographic location, the size of its area, the strength and spatial distribution of emission sources, the time of the year, but also - very strongly - on the current meteorological conditions, which change from day to day and thus make it important to provide such calculations in near-real-time to support short-term legislation. Similarly, long-term analysis over longer periods (e.g. one year), or of specific air quality episodes in the past, can help to scientifically underpin multi-regional agreements and long-term legislation. Within the European MACC projects (Monitoring Atmospheric Composition and Climate) and the transition to the operational CAMS service (Copernicus Atmosphere Monitoring Service) the computationally efficient EMEP MSC-W air quality model has been applied with detailed emission data, comprehensive calculations of chemistry and microphysics, driven by high quality meteorological forecast data (up to 96-hour forecasts), to provide source-receptor calculations on a regular basis in forecast mode. In its current state, the product allows the user to choose among different regions and regulatory pollutants (e.g. ozone and PM) to assess the effectiveness of fictive emission reductions in air pollutant emissions that are implemented immediately, either within the agglomeration or outside. The effects are visualized as bar charts, showing resulting changes in air pollution levels within the agglomeration as a function of time (hourly resolution, 0 to 4 days into the future). The bar charts not only allow assessing the effects of emission reduction measures but they also indicate the relative importance of indigenous versus imported air pollution. The calculations are currently performed weekly by MET Norway for the Paris, London, Berlin, Oslo, Po Valley and Rhine-Ruhr regions and the results are provided free of charge at the MACC website (http://www.gmes-atmosphere.eu/services/aqac/policy_interface/regional_sr/). A proposal to extend this service to all EU capitals on a daily basis within the Copernicus Atmosphere Monitoring Service is currently under review. The tool is an important example illustrating the increased application of scientific tools to operational services that support Air Quality policy. This paper will describe this tool in more detail, focusing on the experimental setup, underlying assumptions, uncertainties, computational demand, and the usefulness for air quality for policy. Options to apply the tool for agglomerations outside the EU will also be discussed (making reference to, e.g., PANDA, which is a European-Chinese collaboration project).
Air Emissions Monitoring for Permits
Operating permits document how air pollution sources will demonstrate compliance with emission limits and also how air pollution sources will monitor, either periodically or continuously, their compliance with emission limits and all other requirements.
Air Monitoring of Emissions from the Fukushima Daiichi Reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
McNaughton, Michael; Allen, Shannon P.; Archuleta, Debra C.
2012-06-12
In response to the disasters in Japan on March 11, 2011, and the subsequent emissions from Fukushima-Daiichi, we monitored the air near Los Alamos using four air-monitoring systems: the standard AIRNET samplers, the standard rad-NESHAP samplers, the NEWNET system, and high-volume air samplers. Each of these systems has advantages and disadvantages. In combination, they provide a comprehensive set of measurements of airborne radionuclides near Los Alamos during the weeks following March 11. We report air-monitoring measurements of the fission products released from the Fukushima-Daiichi nuclear-power-plant accident in 2011. Clear gamma-spectrometry peaks were observed from Cs-134, Cs-136, Cs-137, I-131, I132, Te-132,more » and Te-129m. These data, together with measurements of other radionuclides, are adequate for an assessment and assure us that radionuclides from Fukushima Daiichi did not present a threat to human health at or near Los Alamos. The data demonstrate the capabilities of the Los Alamos air-monitoring systems.« less
The role of Environmental Health System air quality monitors in Space Station Contingency Operations
NASA Technical Reports Server (NTRS)
Limero, Thomas F.; Wilson, Steve; Perlot, Susan; James, John
1992-01-01
This paper describes the Space Station Freedom (SSF) Environmental Health System's air-quality monitoring strategy and instrumentation. A two-tier system has been developed, consisting of first-alert instruments that warn the crew of airborne contamination and a volatile organic analyzer that can identify volatile organic contaminants in near-real time. The strategy for air quality monitoring on SSF is designed to provide early detection so that the contamination can be confined to one module and so that crew health and safety can be protected throughout the contingency event. The use of air-quality monitors in fixed and portable modes will be presented as a means of following the progress of decontamination efforts and ensuring acceptable air quality in a module after an incident. The technology of each instrument will be reviewed briefly; the main focus of this paper, however, will be the use of air-quality monitors before, during, and after contingency incidents.
Ambient air monitoring plan for Ciudad Acuna and Piedra Negras, Coahuila, Mexico. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Winberry, J.; Henning, L.; Crume, R.
1998-01-01
The Cities of Ciudad Acuna and Piedras Negras and the State of Coahuila in Mexico are interested in improving ambient air quality monitoring capabilities in the two cities through the establishment of a network of ambient air monitors. The purpose of the network is to characterize population exposure to potentially harmful air contaminants, possibly including sulfur dioxide (SO{sub 2}), nitrogen oxides (NO{sub x}), ozone (O{sub 3}), carbon monoxide (CO), total suspended particulate matter (TSP), particulate matter with aerodynamic diameter less than 100 micrometers PM-10, and lead. This report presents the results of an evaluation of existing air quality monitoring equipmentmore » and facilities in Ciudad Acuna and Piedras Negras. Additionally, the report presents recommendations for developing an air quality monitoring network for PM-10, SO{sub 2}, lead, and ozone in these cities, using a combination of both new and existing equipment. The human resources currently available and ultimately needed to operate and maintain the network are also discussed.« less
78 FR 1735 - Airworthiness Directives; Honeywell International Inc. Air Data Pressure Transducers
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-09
... reviewed Honeywell Alert Service Bulletin ADM/ADC/ADAHRS-34-A01, dated November 6, 2012. This service...), air data computers, air data attitude heading reference systems, and digital air data computers... fails. Honeywell Service Bulletin ACM/ADC/ADAHRS-34-A01, dated November 6, 2012, specifies to refer to...
Jiang, Wei; Wang, Yandong; Tsou, Ming-Hsiang; Fu, Xiaokang
2015-01-01
Outdoor air pollution is a serious problem in many developing countries today. This study focuses on monitoring the dynamic changes of air quality effectively in large cities by analyzing the spatiotemporal trends in geo-targeted social media messages with comprehensive big data filtering procedures. We introduce a new social media analytic framework to (1) investigate the relationship between air pollution topics posted in Sina Weibo (Chinese Twitter) and the daily Air Quality Index (AQI) published by China's Ministry of Environmental Protection; and (2) monitor the dynamics of air quality index by using social media messages. Correlation analysis was used to compare the connections between discussion trends in social media messages and the temporal changes in the AQI during 2012. We categorized relevant messages into three types, retweets, mobile app messages, and original individual messages finding that original individual messages had the highest correlation to the Air Quality Index. Based on this correlation analysis, individual messages were used to monitor the AQI in 2013. Our study indicates that the filtered social media messages are strongly correlated to the AQI and can be used to monitor the air quality dynamics to some extent.
Tsou, Ming-Hsiang; Fu, Xiaokang
2015-01-01
Outdoor air pollution is a serious problem in many developing countries today. This study focuses on monitoring the dynamic changes of air quality effectively in large cities by analyzing the spatiotemporal trends in geo-targeted social media messages with comprehensive big data filtering procedures. We introduce a new social media analytic framework to (1) investigate the relationship between air pollution topics posted in Sina Weibo (Chinese Twitter) and the daily Air Quality Index (AQI) published by China’s Ministry of Environmental Protection; and (2) monitor the dynamics of air quality index by using social media messages. Correlation analysis was used to compare the connections between discussion trends in social media messages and the temporal changes in the AQI during 2012. We categorized relevant messages into three types, retweets, mobile app messages, and original individual messages finding that original individual messages had the highest correlation to the Air Quality Index. Based on this correlation analysis, individual messages were used to monitor the AQI in 2013. Our study indicates that the filtered social media messages are strongly correlated to the AQI and can be used to monitor the air quality dynamics to some extent. PMID:26505756
40 CFR 58.61 - Monitoring other pollutants.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 5 2010-07-01 2010-07-01 false Monitoring other pollutants. 58.61 Section 58.61 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) AMBIENT AIR QUALITY SURVEILLANCE Federal Monitoring § 58.61 Monitoring other pollutants. The...
40 CFR 58.13 - Monitoring network completion.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 6 2012-07-01 2012-07-01 false Monitoring network completion. 58.13 Section 58.13 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) AMBIENT AIR QUALITY SURVEILLANCE Monitoring Network § 58.13 Monitoring network completion. (a...
40 CFR 58.13 - Monitoring network completion.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 6 2014-07-01 2014-07-01 false Monitoring network completion. 58.13 Section 58.13 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) AMBIENT AIR QUALITY SURVEILLANCE Monitoring Network § 58.13 Monitoring network completion. (a...
40 CFR 58.13 - Monitoring network completion.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 6 2013-07-01 2013-07-01 false Monitoring network completion. 58.13 Section 58.13 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) AMBIENT AIR QUALITY SURVEILLANCE Monitoring Network § 58.13 Monitoring network completion. (a...
Method of monitoring CO concentrations in hydrogen feed to a PEM fuel cell
Grot, Stephen Andreas; Meltser, Mark Alexander; Gutowski, Stanley; Neutzler, Jay Kevin; Borup, Rodney Lynn; Weisbrod, Kirk
2000-01-01
The CO concentration in the H.sub.2 feed stream to a PEM fuel cell stack is monitored by measuring current and/or voltage behavior patterns from a PEM-probe communicating with the reformate feed stream. Pattern recognition software may be used to compare the current and voltage patterns from the PEM-probe to current and voltage telltale outputs determined from a reference cell similar to the PEM-probe and operated under controlled conditions over a wide range of CO concentrations in the H.sub.2 fuel stream. The PEM-probe is intermittently purged of any CO build-up on the anode catalyst (e.g., by (1) flushing the anode with air, (2) short circuiting the PEM-probe, or (3) reverse biasing the PEM-probe) to keep the PEM-probe at peak performance levels.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bromenshenk, J.J.; Smith, G.C.
Honey bees (Apis mellifera L.) have been shown to be multi-media monitors of chemical exposures and resultant effects. This five-year project has developed an automated system to assess in real-time colony behavioral responses to stressors, both anthropogenic and natural, including inclement weather. Field trials at the Aberdeen Proving Ground-Edgewood included the Old O Field and J field landfills, the Canal Creek and Bush River areas, and a Churchville, MD reference site. Preliminary results show varying concentrations of bioavailable inorganic elements and chlorinated hydrocarbons in bee colonies from all Maryland sites. Industrial solvents in the air inside beehives exhibited the greatestmore » between site differences, with the highest levels occurring in hives near landfills at Old O Field, J Field, and at some sites in the Bush River and Canal Creek areas. Compared to 1996, the 1997 levels of solvents in Old O Field hives decreased by an order of magnitude, and colony performance significantly improved, probably as a consequence of capping the landfill. Recent chemical monitoring accomplishments include development of a new apparatus to quantitatively calibrate TD/GC/MS analysis, a QA/QC assessment of factors that limit the precision of these analyses, and confirmation of transport of aqueous contaminants into the hive. Real-time effects monitoring advances include development of an extensive array of software tools for automated data display, inspection, and numerical analysis and the ability to deliver data from remote locations in real time through Internet or Intranet connections.« less
2002-06-06
KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility 2 (SAEF-2) a worker monitors the fueling of the Comet Nucleus Tour (CONTOUR) spacecraft. SCAPE refers to Self-Contained Atmospheric Protective Ensemble. CONTOUR will provide the first detailed look into the heart of a comet -- the nucleus. Flying as close as 60 miles (100 kilometers) to at least two comets, the spacecraft will take the sharpest pictures yet of a nucleus while analyzing the gas and dust that surround them. CONTOUR is scheduled for launch aboard a Boeing Delta II rocket July 1, 2002, from Launch Complex 17-A, Cape Canaveral Air Force Station
Large-scale monitoring of air pollution in remote and ecologically important areas
Andrzej Bytnerowicz; Witold Fraczek
2013-01-01
New advances in air quality monitoring techniques, such as passive samplers for nitrogenous (N) or sulphurous (S) pollutants and ozone (O3), have allowed for an improved understanding of concentrations of these pollutants in remote areas. Mountains create special problems with regard to the feasibility of establishing and maintaining air pollution monitoring networks,...
Analysis of CrIS/ATMS using AIRS Version-7 Retrieval and QC Methodology
NASA Astrophysics Data System (ADS)
Susskind, J.; Kouvaris, L. C.; Blaisdell, J. M.; Iredell, L. F.
2017-12-01
The objective of the proposed research is to develop, implement, test, and refine a CrIS/ATMS retrieval algorithm which will produce monthly mean data products that are compatible with those of the soon to be operational AIRS V7 retrieval algorithm. This is a necessary condition for CrIS/ATMS on NPP and future missions to serve as adequate follow-ons to AIRS for the monitoring of climate variability and trends. Of particular importance toward this end is achieving agreement of monthly mean fields of CrIS and AIRS geophysical parameters on a 1 deg by 1 deg spatial scale, and, more significantly, agreement of their interannual differences. Indications are that the best way to achieve this is to use scientific retrieval and Quality Control (QC) methodology for CrIS/ATMS which is analogous to that which will be used in AIRS V7. We refer to the current scientific candidate for AIRS V7 as AIRS Sounder Research Team (SRT) V6.42, which currently runs at JPL on the AIRS Team Leader Scientific Facility (TLSCF). We ported CrIS SRT V6.42 Level 2 (L2) retrieval code and QC methodology to run at the Sounder SIPS at JPL. The months of January and July 2015 were both processed at JPL using AIRS and CrIS at the TLSCF and SIPS respectively. This paper shows excellent agreement of AIRS and CrIS single day and monthly mean products on a 1 deg lat by 1 deg long spatial grid with each other and with the other satellites measures of the same products.
Regulatory Considerations of Lower Cost Air Pollution Sensor Data Performance
Low-cost, portable air quality sensors could be the next generation of air monitoring, however, this nascent technology is not without risk. This article looks at how the U.S. Environmental Protection Agency (EPA) uses air monitoring data, the procedures followed to ensure and a...
Jílek, K; Timková, J
2015-06-01
During the Eighth International Conference on High Levels of Natural Radiation and Radon Areas held in autumn 2014 at Prague, the third intercomparison of radon/thoron gas and radon short-lived decay products measurement instruments was organised by and held at the Natural Radiation Division of the National Radiation Protection Institute (NRPI; SÚRO v.v.i.) in Prague. The intercomparison was newly focussed also on continuous monitors with active sampling adapters capable to distinguish radon/thoron gas in their mix field.The results of radon gas measurements carried out in the big NRPI radon chamber indicated very well an average deviation of up to 5 % from the reference NRPI value for 80 % of all the exposed instruments. The results of equilibrium equivalent concentration continuous monitors indicated an average deviation of up to 5 % from the reference NRPI value for 40 % of all the exposed instruments and their ~8-10 % shift compared with the NRPI. The results of investigated ambient conditions upon response of exposed continuous monitors indicated influence of aerosol changes upon response of radon monitors with an active air sampling adapters through the filter, only. The exposures of both radon/thoron gas discriminative continuous monitors and passive detectors have been indicated inconsistent results: on one hand, their excellent agreement up to several per cent for both the gases, and on the other hand, systematic unsatisfactory differences up to 40 %. Additional radon/thoron exercises are recommended to improve both the instruments themselves and quality of their operators. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Puledda, Francesca; Toscano, Massimiliano; Pieroni, Alessio; Veneroso, Gabriele; Di Piero, Vittorio; Vicenzini, Edoardo
2016-02-01
Air-saline transcranial Doppler is nowadays the first-choice examination to identify right-to-left shunt. To increase right-to-left shunt detection in echocardiography, cardiologists also use air-gelatin mixtures, which are more stable, more echogenic, and easier to be prepared. We assessed the sensitivity of air-gelatin compared with air-saline for transcranial Doppler right-to-left shunt detection. Air-saline transcranial Doppler, during unilateral middle cerebral artery monitoring at rest and after Valsalva maneuver, was performed in patients referred to our neurosonology laboratory for right-to-left shunt detection. The same transcranial Doppler protocol was repeated with air-gelatin. To consider transcranial Doppler positive for cardiac right-to-left shunt, at least one embolic signal had to be detected within 20″ from contrast injection. Later signals were interpreted of pulmonary origin. Trans-thoracic echocardiography was repeated with both air-saline and air-gelatin. A total of 97 patients were enrolled; 46 had negative transcranial Doppler for cardiac right-to-left shunt with both air-saline and air-gelatin; out of these, four patients with air-saline plus two more patients with air-gelatin presented late, isolated microemboli, slightly more numerous with air-gelatin: these were interpreted as pulmonary shunts and confirmed with trans-thoracic echocardiography. In 28 patients with already early positive air-saline transcranial Doppler at rest, air-gelatin induced a marked right-to-left shunt increase, facilitating its visualization at trans-thoracic echocardiography. In 23 patients in whom air-saline transcranial Doppler was negative at rest and positive for cardiac right-to-left shunt only after Valsalva maneuver, air-gelatin was able to reveal shunt also at rest. Air-gelatin increases right-to-left shunt detection sensitivity with transcranial Doppler in particular at rest, even in patients in whom air-saline mixture fails to identify the shunt. The choice of air-gelatin mixture should be considered for multicentric, clinical, and research trials. © 2016 World Stroke Organization.
NASA Astrophysics Data System (ADS)
Castell, Nuria; Liu, Hai-Ying; Schneider, Philipp; Cole-Hunter, Tom; Lahoz, William; Bartonova, Alena
2015-04-01
Most European cities exceed the air quality guidelines established by the WHO to protect human health. As such, citizens are exposed to potentially harmful pollutant levels. Some cities have services (e.g., web pages, mobile apps, etc.) which provide timely air quality information to the public. However, air quality data at individual level is currently scarce or non-existent. Making this information directly useful to individuals poses a challenge. For instance, if a user is informed that the air quality is "poor", what does that mean for him/her, and how can this information be acted upon? Despite individuals having a unique relationship with their environment, the information on the state of atmospheric components and related hazards is currently mostly generic, and seldom personally relevant. This undermines citizens' interest in their environment, and consequently limits their ability to recognize and change both their contribution and their exposure to air pollution. In Oslo, two EU founded projects, CITI-SENSE (Engelken-Jorge et al., 2014) and Citi-Sense-MOB (Castell et al., 2014), are trying to establish a dialogue with citizens by providing them with the possibility of getting personalized air quality information on their smartphones. The users are able to check the air quality in their immediate surroundings and track their individual exposure while moving through the urban environment (Castell et al., 2014). In this way, they may be able to reduce their exposure such as by changing transport modes or routes, for example by selecting less polluted streets to walk or cycle through. Using a smartphone application, citizens are engaged in collecting and sharing environmental data generated by low-cost air quality sensors, and in reporting their individual perception (turning citizens into sensors themselves). The highly spatially resolved data on air quality and perception is geo-located. This allows for simultaneous visualization of both kinds of the sensor information on a map. These field experiences will allow us to evaluate the ability of crowdsourcing and low-cost sensor technologies to enhance existing air quality monitoring systems. They will also test to what extent this approach enables citizens to engage in more active environmental monitoring. Challenges include precision and accuracy of the measurements, scientific understanding of these novel data and provision of added value for the participants (Liu et al., 2014). References: Castell et al. 2014. Mobile technologies and services for environmental monitoring: The Citi-Sense-MOB approach. Urban Climate. http://dx.doi.org/10.1016/j.uclim.2014.08.002 Engelken-Jorge M, Moreno J, Keune H, Verheyden W, Bartonova A, CITI-SENSE Consortium. 2014. Developing citizens' observatories for environmental monitoring and citizen empowerment: challenges and future scenarios. In Proceedings of the Conference for EDemocracy and Open Governement (CeDEM14): 21-23 May 2014; Danube University Krems, Austria. Edited by Parycek P, Edelmann N. 2014:49-60. Liu H.-Y., Kobernus M., Broday D., Bartonova A. 2014. A conceptual approach to a citizens' observatory - supporting community-based environmental governance. Environmental Health. 13:107. doi:10.1186/1476-069X-13-107.
Woolfenden, Elizabeth
2010-04-16
Sorbent tubes/traps are widely used in combination with gas chromatographic (GC) analytical methods to monitor the vapour-phase fraction of organic compounds in air. Applications range from atmospheric research and ambient air monitoring (indoor and outdoor) to occupational hygiene (personal exposure assessment) and measuring chemical emission levels. Part 1 of this paper reviewed the main sorbent-based air sampling strategies including active (pumped) tube monitoring, diffusive (passive) sampling onto sorbent tubes/cartridges plus sorbent trapping/focusing of whole air samples that are either collected in containers (such as canisters or bags) or monitored online. Options for subsequent extraction and transfer to GC(MS) analysis were also summarised and the trend to thermal desorption (TD)-based methods and away from solvent extraction was explained. As a result of this trend, demand for TD-compatible sorbents (alternatives to traditional charcoal) is growing. Part 2 of this paper therefore continues with a summary of TD-compatible sorbents, their respective advantages and limitations and considerations for sorbent selection. Other analytical considerations for optimizing sorbent-based air monitoring methods are also discussed together with recent technical developments and sampling accessories which have extended the application range of sorbent trapping technology generally. Copyright 2010 Elsevier B.V. All rights reserved.
Scheepers, P T J; Heussen, G A H; Peer, P G M; Verbist, K; Anzion, R; Willems, J
2008-05-30
Inhalation exposure to total and hexavalent chromium (TCr and HCr) was assessed by personal air sampling and biological monitoring in 53 welders and 20 references. Median inhalation exposure levels of TCr were 1.3, 6.0, and 5.4 microg/m(3) for welders of mild steel (MS, <5% alloys), high alloy steel (HAS, >5% alloys), and stainless steel (SS, >26% alloys), respectively. The median exposures to HCr compounds were 0.23, 0.20, and 0.08 microg/m(3), respectively. Median concentrations of TCr in urine, blood plasma and erythrocytes were elevated in all welders, compared with the corresponding median concentrations in the reference group (p<0.005). The TCr levels observed in plasma were two-fold higher in welders of SS and HAS than in welders of MS (p<0.01). Exposure to HCr as indicated by median total content of Cr in erythrocytes was 10 microg/L in welders of SS, MS and HAS. Uptake of TCr during the shift was confirmed for welders of SS by a median increase of urinary TCr from pre- to post-shift of 0.30 microg/g creatinine. For welders of MS and HAS as a group TCr was not increased.
Davey, Nicholas G; Fitzpatrick, Cole T E; Etzkorn, Jacob M; Martinsen, Morten; Crampton, Robert S; Onstad, Gretchen D; Larson, Timothy V; Yost, Michael G; Krogh, Erik T; Gilroy, Michael; Himes, Kathy H; Saganić, Erik T; Simpson, Christopher D; Gill, Christopher G
2014-09-19
The objective of this study was to use membrane introduction mass spectrometry (MIMS), implemented on a mobile platform, in order to provide real-time, fine-scale, temporally and spatially resolved measurements of several hazardous air pollutants. This work is important because there is now substantial evidence that fine-scale spatial and temporal variations of air pollutant concentrations are important determinants of exposure to air pollution and adverse health outcomes. The study took place in Tacoma, WA during periods of impaired air quality in the winter and summer of 2008 and 2009. Levels of fine particles were higher in winter compared to summer, and were spatially uniform across the study area. Concentrations of vapor phase pollutants measured by membrane introduction mass spectrometry (MIMS), notably benzene and toluene, had relatively uniform spatial distributions at night, but exhibited substantial spatial variation during the day-daytime levels were up to 3-fold higher at traffic-impacted locations compared to a reference site. Although no direct side-by-side comparison was made between the MIMS system and traditional fixed site monitors, the MIMS system typically reported higher concentrations of specific VOCs, particularly benzene, ethylbenzene and naphthalene, compared to annual average concentrations obtained from SUMA canisters and gas chromatographic analysis at the fixed sites.
40 CFR Table 3 to Subpart Bbbbbb... - Applicability of General Provisions
Code of Federal Regulations, 2012 CFR
2012-07-01
... Maintain monitoring system in a manner consistent with good air pollution control practices Yes. § 63.8(c...) Maintenance records Recordkeeping of maintenance on air pollution control and monitoring equipment Yes. § 63... (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE...
40 CFR 63.7113 - What are my monitoring installation, operation, and maintenance requirements?
Code of Federal Regulations, 2014 CFR
2014-07-01
... monitor an add-on air pollution control device, you must meet the requirements in paragraphs (g)(1) and (2... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants for...
40 CFR 63.7113 - What are my monitoring installation, operation, and maintenance requirements?
Code of Federal Regulations, 2012 CFR
2012-07-01
... monitor an add-on air pollution control device, you must meet the requirements in paragraphs (g)(1) and (2... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants for...