Science.gov

Sample records for air monitoring results

  1. Measurement results obtained from air quality monitoring system

    SciTech Connect

    Turzanski, P.K.; Beres, R.

    1995-12-31

    An automatic system of air pollution monitoring operates in Cracow since 1991. The organization, assembling and start-up of the network is a result of joint efforts of the US Environmental Protection Agency and the Cracow environmental protection service. At present the automatic monitoring network is operated by the Provincial Inspection of Environmental Protection. There are in total seven stationary stations situated in Cracow to measure air pollution. These stations are supported continuously by one semi-mobile (transportable) station. It allows to modify periodically the area under investigation and therefore the 3-dimensional picture of creation and distribution of air pollutants within Cracow area could be more intelligible.

  2. URBAN AIR POLLUTION WORLDWIDE: RESULTS OF THE GEMS (GLOBAL ENVIRONMENT MONITORING SYSTEM) AIR MONITORING PROJECT

    EPA Science Inventory

    Measurements of sulfur dioxide and suspended particulate matter in urban areas have been compiled in an international air quality monitoring project. Interpretative analyses of the 1973 to 1980 data have been completed, showing the general range of concentrations, intercity compa...

  3. New Brunswick air quality monitoring results for the years 1996 and 1997. Technical report number T-9901

    SciTech Connect

    1999-11-01

    This report summarizes air quality monitoring data from New Brunswick during 1996 and 1997, with an emphasis on air quality assessment in relation to existing air quality standards and objectives. Introductory sections review provincial air quality legislation, national and provincial standards, other air quality criteria, sources and effects of regulated air pollutants, and air quality monitoring networks in the province. Results are presented by area, corporation, or network monitored, and are discussed and compared with data from centres in other parts of the world. Air pollutants monitored include nitrogen oxides, hydrogen sulphide, particulates, ozone, acid precipitation, carbon monoxide, and sulphur dioxide. Appendices include a glossary and detailed monthly monitoring results.

  4. ANITA Air Monitoring on the International Space Station: Results Compared to Other Measurements

    NASA Technical Reports Server (NTRS)

    Honne, A.; Schumann-Olsen, H.; Kaspersen, K.; Limero, T.; Macatangay, A.; Mosebach, H.; Kampf, D.; Mudgett, P. D.; James, J. T.; Tan, G.; Supper, W.

    2009-01-01

    ANITA (Analysing Interferometer for Ambient Air) is a flight experiment precursor for a permanent continuous air quality monitoring system on the ISS (International Space Station). For the safety of the crew, ANITA can detect and quantify quasi-online and simultaneously 33 gas compounds in the air with ppm or sub-ppm detection limits. The autonomous measurement system is based on FTIR (Fourier Transform Infra-Red spectroscopy). The system represents a versatile air quality monitor, allowing for the first time the detection and monitoring of trace gas dynamics in a spacecraft atmosphere. ANITA operated on the ISS from September 2007 to August 2008. This paper summarizes the results of ANITA s air analyses with emphasis on comparisons to other measurements. The main basis of comparison is NASA s set of grab samples taken onboard the ISS and analysed on ground applying various GC-based (Gas Chromatography) systems.

  5. Transboundary Air Pollution over the Central Himalayas: Monitoring network and Preliminary Results

    NASA Astrophysics Data System (ADS)

    Zhang, Qianggong; Kang, Shichang

    2016-04-01

    The Himalayas, stretching over 3000 kms along west-east, separates South Asia continent and the Tibetan Plateau with its extreme high altitudes. The South Asia is being increasingly recognized to be among the hotspots of air pollution, posing multi-effects on regional climate and environment. Recent monitoring and projection have indicated an accelerated decrease of glacier and increasing glacier runoff in the Himalayas, and a remarkable phenomenon has been recognized in the Himalayas that long-range transport atmospheric pollutants (e.g., black carbon and dust) deposited on glacier surface can promote glacier melt, and in turns, may liberate historical contaminant legacy in glaciers into downward ecosystems. To understand the air pollution variation and how they can infiltrate the Himalayas and beyond, we started to operate a coordinated atmospheric pollution monitoring network composing 11 sites with 5 in Nepal and 6 in Tibet since April 2013. Atmospheric total suspended particles ( TSP < 100 μm) are collected for 24h at an interval of 3-6 days at all sites. Black carbon, typical persistent organic pollutants (PAHs) and heavy metals (particulate-bounded mercury) are measured to reveal their spatial and temporal distributions. Results revealed a consistent gradient decrease in almost all analyzed parameters along south-north gradient across the Himalayas, with a clear seasonal variation of higher values in pre-monsoon seasons. Analysis of geochemical signatures of carbonaceous aerosols indicated dominant sources from biomass burning and vehicle exhaust. PAHs concentrations and signatures from soils and aerosols indicated that low-ring PAHs can readily transport across the Himalayas. Integrated analysis of satellite images and air mass trajectories suggested that the transboundary air pollution over the Himalayas is episodic and is likely concentrated in pre-monsoon seasons. Our results emphasis the potential transport and impact of air pollution from South Asia

  6. Building Air Monitoring Networks

    ERIC Educational Resources Information Center

    Environmental Science and Technology, 1977

    1977-01-01

    The different components of air monitoring networks, the status of air monitoring in the United States, and the services and activities of the three major American network builders are detailed. International air monitoring networks and alert systems are identified, with emphasis on the Dutch air monitoring network. (BT)

  7. Journal Article: EPA's National Dioxin Air Monitoring Network (Ndamn): Design, Implementation, and Final Results

    EPA Science Inventory

    The U.S. Environmental Protection Agency (U.S. EPA) established the National Dioxin Air Monitoring Network (NDAMN) in June of 1998, and operated it until November of 2004. The objective of NDAMN was to determine background air concentrations of polychlorinated dibenzo-p-dioxins (...

  8. Air Quality Observations from Space: Results from the Ozone Monitoring Instrument (OMI) and Expected Results from the TROPOspheric Monitoring Instrument (TROPOMI)

    NASA Astrophysics Data System (ADS)

    Veefkind, J. P.; Boersma, K. F.; van der A, R.; Eskes, H.; Kleipool, Q.; Krotkov, N.; Aben, I.; de Vries, J.; Ingmann, P.; Tamminen, J.; Joiner, J.; Bhartia, P. K.; Levelt, P. F.

    2012-04-01

    Air quality is one of the largest societal challenges, especially in large urbanized and industrialized regions of the world. Reduced air quality has adverse health effects, and also results in reduced crop yields. In addition, there are strong links between air quality and climate change. Air quality has traditionally been monitored by ground-based networks. In the previous decade the observation capabilities have been extended with measurements from space, most notable from the Ozone Monitoring Instrument (OMI), the SCanning Imaging Absorption spectroMeter for Atmospheric CartograpHY (SCIAMACHY) and the Global Ozone Monitoring Experiment (GOME-1/2). Whereas the satellite instruments do not provide concentrations at the surface level, they provide unique global information on the spatial distribution and transport of pollutants. Over the last decade the quality of the satellite data for tropospheric species like nitrogen dioxide, carbon monoxide, sulfur dioxide, formaldehyde and aerosols have matured rapidly. Several data products now contribute to the monitoring and forecasting of air quality through data assimilation techniques, as for example developed in the MACC (http://www.gmes-atmosphere.eu/) project. Apart from directly contributing through data assimilation, satellite data are also used for the top-down quantification of emission sources and understanding of atmospheric processes, thus improving chemistry transport models. The OMI instrument, which was launched in July 2004, was the first instrument that combined daily global coverage with high spatial resolution of 13x24 km2 at nadir. The OMI data have attracted many new users and have resulted in several new applications. The TROPOMI instrument on the ESA/GMES Sentinel 5 precursor satellite, planned for launch in 2015, will be the first in a series of European satellite sensors dedicated for monitoring atmospheric composition changes in the timeframe 2015-2030. The TROPOMI instrument has a heritage to

  9. Air Quality Observations from Space: Results from the Ozone Monitoring Instrument (OMI) and Expected Results from the TROPOspheric Monitoring Instrument (TROPOMI)

    NASA Astrophysics Data System (ADS)

    Veefkind, J. P.; Boersma, F. F.; van der A, R. J.; Eskes, H. J.; de Haan, J. F.; Kleipool, Q.; Krotkov, N. A.; Aben, I.; de Vries, J.; Ingmann, P.; Tamminen, J.; Joiner, J.; Bhartia, P. K.; Levelt, P.

    2011-12-01

    Air quality is one of the largest societal challenges, especially in large urbanized and industrialized regions of the world. Reduced air quality has adverse health effects, and also results in reduced crop yields. In addition, there are strong links between air quality and climate change. Traditionally, air quality has been monitored by ground-based networks. In the previous decade the observation capabilities have been extended with measurements from space, most notable from the Ozone Monitoring Instrument (OMI), the SCanning Imaging Absorption spectroMeter for Atmospheric CartograpHY (SCIAMACHY) and the Global Ozone Monitoring Experiment (GOME-1/2). Whereas the satellite instruments do not provide concentrations at the surface level, they provide unique global information on the spatial distribution and transport of pollutants. Over the last decade the quality of the satellite data for tropospheric species like nitrogen dioxide, carbon monoxide, sulfur dioxide, formaldehyde and aerosols have matured rapidly. Several data products now contribute to the monitoring and forecasting of air quality through data assimilation techniques, most notably as developed in the EU GEMS and MACC (http://www.gmes-atmosphere.eu/) projects. Apart from directly contributing through data assimilation, satellite data is also used for the top-down quantification of emission sources and understanding of atmospheric processes, thus improving chemistry transport models. The OMI instrument, which was launched in July 2004, was the first instrument that combined daily global coverage with high spatial resolution of 13x24 km2 at nadir. The OMI data have attracted many new users and has resulted in several new applications. The TROPOMI instrument, planned for launch in late 2014, will be the first in a series of European satellite sensors dedicated for monitoring atmospheric composition changes in the timeframe 2015-2030. The TROPOMI instrument has a heritage to both OMI and SCIAMACHY. With a

  10. AMBIENT AIR MONITORING STRATEGY

    EPA Science Inventory

    The Clean Air Act requires EPA to establish national ambient air quality standards and to regulate as necessary, hazardous air pollutants. EPA uses ambient air monitoring to determine current air quality conditions, and to assess progress toward meeting these standards and relat...

  11. Air quality monitoring around oil refinery in the Baltic region. First results.

    NASA Astrophysics Data System (ADS)

    Balträ--Naitä--, Edita; Erevičienä--, Vaida Å.; Balträ--Nas, Pranas; Pereira, Paulo

    2010-05-01

    One of the largest oil refineries in the eastern Baltic Region is situated in a northern, rural part of Lithuania, 10 km from a small city of Mažeikiai (Lithuania). The thermal power station serves as an energy source for an oil refinery and is located near the refinery. Both stations contribute to the air quality of the Mažeikiai region and are subjects of state and municipal monitoring. The present study is directed to assess the concentration of Nitrogen dioxide (NO2) Sulphur dioxide (SO2) and Volatile Organic Compounds (VOC) in Mažeikiai region and relate it with industrial and urban emissions. NO2, SO2 and VOC concentrations were sampled by passive sampling method. Sampling was carried out in 13 points distributed across study area, monitored since July 2009. The passive samplers were placed at 3.5 m from the ground and kept in a special shelter to protect them from rain and wind influence. The results showed that NO2 concentration ranged from 1.40 to 34.9 μg/m3, with an average value of 13.2 μg/m3. The highest concentrations were observed in the places nearby intensive traffic. SO2 concentration varied between 0.3 to 5.5 μg/m3 with a mean value of 3.85 μg/m3. The highest SO2 concentration was identified in the areas close to thermal power station and oil refining company. We studied also the concentration of the benzene, toluene and xylene in all area. The higher concentration of the first pollutant was 2.94 μg/m3 and the lower 0.90 μg/m3, with an average of 1.7 μg/m3. In relation to the second, the maximum value was 3.60 μg/m3 and the minimum 0.76 μg/m3, with a mean value of 1.69 μg/m3. In the last element, we identified a higher value of 3.2 μg/m3 and the lower 1.3 μg/m3, with an average value of 2.6 μg/m3. These VOC's were identified in higher concentration near major traffic areas. Non of the observed concentrations exceed the thresholds limited by European directives. The spatial pattern of pollutants accumulation is related with traffic

  12. Microbial Air and Surface Monitoring Results from International Space Station Samples

    NASA Technical Reports Server (NTRS)

    Ott, C. Mark; Bruce, Rebekah J.; Castro, Victoria A.; Novikova, Natalia D.; Pierson, D. L.

    2005-01-01

    Over the course of long-duration spaceflight, spacecraft develop a microbial ecology that directly interacts with the crew of the vehicle. While most microorganisms are harmless or beneficial to the inhabitants of the vehicle, the presence of medically significant organisms appearing in this semi-closed environment could adversely affect crew health and performance. The risk of exposure of the crew to medically significant organisms during a mission is estimated using information gathered during nominal and contingency environmental monitoring. Analysis of the air and surface microbiota in the habitable compartments of the International Space Station (ISS) over the last four years indicate a high presence of Staphylococcus species reflecting the human inhabitants of the vehicle. Generally, air and surface microbial concentrations are below system design specifications, suggesting a lower risk of contact infection or biodegradation. An evaluation of sample frequency indicates a decrease in the identification of new species, suggesting a lower potential for unknown microorganisms to be identified. However, the opportunistic pathogen, Staphylococcus aureus, has been identified in 3 of the last 5 air samples and 5 of the last 9 surface samples. In addition, 47% of the coagulase negative Staphylococcus species that were isolated from the crew, ISS, and its hardware were found to be methicillin resistance. In combination, these observations suggest the potential of methicillin resistant infectious agents over time.

  13. EPA's National Dioxin Air Monitoring Network (NDAMN): Design, implementation, and final results

    NASA Astrophysics Data System (ADS)

    Lorber, Matthew; Ferrario, Joseph; Byrne, Christian

    2013-10-01

    The U.S. Environmental Protection Agency (U.S. EPA) established the National Dioxin Air Monitoring Network (NDAMN) in June of 1998, and operated it until November of 2004. The objective of NDAMN was to determine background air concentrations of polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), and dioxin-like polychlorinated biphenyls (dl-PCBs). NDAMN started with 10 sampling sites, adding more over time until the final count of 34 sites was reached by the beginning of 2003. Samples were taken quarterly, and the final sample count was 685. All samples were measured for 17 PCDD/PCDF congeners, 8 PCDD/PCDF homologue groups, and 7 dl-PCBs (note: 5 additional dl-PCBs were added for samples starting in the summer of 2002; 317 samples had measurements of 12 dl-PCBs). The overall average total toxic equivalent (TEQ) concentration in the United States was 11.2 fg TEQ m-3 with dl-PCBs contributing 0.8 fg TEQ m-3 (7%) to this total. The archetype dioxin and furan background air congener profile was seen in the survey averages and in most individual samples. This archetype profile is characterized by low and similar concentrations for tetra - through hexa PCDD/PCDF congeners, with elevations in four congeners - a hepta dioxin and furan congener, and both octa congeners. Sites were generally categorized as urban (4 sites), rural (23 sites), or remote (7 sites). The average TEQ concentrations over all sites and samples within these categories were: urban = 15.9 fg TEQ m-3, rural = 13.9 fg TEQ m-3, and remote = 1.2 fg TEQ m-3. Rural sites showed elevations during the fall or winter months when compared to the spring or summer months, and the same might be said for urban sites, but the remote sites appear to show little variation over time. The four highest individual moment measurements were 847, 292, 241, and 132 fg TEQ m-3. For the 847 and 292 fg TEQ m-3 samples, the concentrations of all congeners were elevated over their site averages, but for

  14. Air monitoring in the Arctic: Results for selected persistent organic pollutants for 1992

    SciTech Connect

    Fellin, P.; Dougherty, D.; Barrie, L.A.; Toom, D.; Muir, D.; Grift, N.; Lockhart, L.; Billeck, B.

    1996-03-01

    The Arctic is generally considered to be a pristine environment and has few direct inputs of organochlorine compounds (OCs), including pesticides, herbicides, polychlorinated biphenyls, or polycyclic aromatic hydrocarbons (PAHs). In spite of this, airborne concentrations of persistent organic pollutants (POPs) are comparable to those in more populated and industrialized regions of North America and Europe. Atmospheric transport and condensation of compounds at low temperature conditions are important factors contributing to the presence of contaminants in the Arctic. A long-term program has been established to measure the airborne concentrations of POPs in the Arctic. The first station at Alert was established in January 1992. The concentrations measured in the first year of monitoring for 18 compounds that are representative of different compound classes are presented. Seasonal variations for PAHs are similar to those for Arctic haze and peak during winter. For example, in the coldest period, october to April, benzo[a]pyrene concentrations were found to average 20 pg/m{sup 3}, whereas, in contrast, during the relatively warm May to September period, average levels were 1.0 pg/m{sup 3}. For OCs, the seasonal cycle was not as pronounced as that for PAH compounds. For example, {alpha}-hexachlorocyclohexane was found at Alert at average concentrations of 62 and 57 pg/m{sup 3}, respectively, during cold and warm periods. It is postulated that air concentrations are influenced by advection from distant source regions as well as exchange with local (Arctic Ocean) surfaces.

  15. Next Generation Air Monitoring

    EPA Science Inventory

    Abstract. Air pollution measurement technology is advancing rapidly towards smaller-scale and wireless devices, with a potential to significantly change the landscape of air pollution monitoring. The U.S. EPA Office of Research and Development is evaluating and developing a rang...

  16. AIR RADIOACTIVITY MONITOR

    DOEpatents

    Bradshaw, R.L.; Thomas, J.W.

    1961-04-11

    The monitor is designed to minimize undesirable background buildup. It consists of an elongated column containing peripheral electrodes in a central portion of the column, and conduits directing an axial flow of radioactively contaminated air through the center of the column and pure air through the annular portion of the column about the electrodes. (AEC)

  17. Air Monitoring Network at Tonopah Test Range: Network Description, Capabilities, and Analytical Results

    SciTech Connect

    Hartwell, William T.; Daniels, Jeffrey; Nikolich, George; Shadel, Craig; Giles, Ken; Karr, Lynn; Kluesner, Tammy

    2012-01-01

    During the period April to June 2008, at the behest of the Department of Energy (DOE), National Nuclear Security Administration, Nevada Site Office (NNSA/NSO); the Desert Research Institute (DRI) constructed and deployed two portable environmental monitoring stations at the Tonopah Test Range (TTR) as part of the Environmental Restoration Project Soils Activity. DRI has operated these stations since that time. A third station was deployed in the period May to September 2011. The TTR is located within the northwest corner of the Nevada Test and Training Range (NTTR), and covers an area of approximately 725.20 km2 (280 mi2). The primary objective of the monitoring stations is to evaluate whether and under what conditions there is wind transport of radiological contaminants from Soils Corrective Action Units (CAUs) associated with Operation Roller Coaster on TTR. Operation Roller Coaster was a series of tests, conducted in 1963, designed to examine the stability and dispersal of plutonium in storage and transportation accidents. These tests did not result in any nuclear explosive yield. However, the tests did result in the dispersal of plutonium and contamination of surface soils in the surrounding area.

  18. Personal continuous air monitor

    DOEpatents

    Morgan, Ronald G.; Salazar, Samuel A.

    2000-01-01

    A personal continuous air monitor capable of giving immediate warning of the presence of radioactivity has a filter/detector head to be worn in the breathing zone of a user, containing a filter mounted adjacent to radiation detectors, and a preamplifier. The filter/detector head is connected to a belt pack to be worn at the waist or on the back of a user. The belt pack contains a signal processor, batteries, a multichannel analyzer, a logic circuit, and an alarm. An air pump also is provided in the belt pack for pulling air through the filter/detector head by way of an air tube.

  19. ESTIMATION OF PERSONAL EXPOSURES TO AIR POLLUTANTS FOR A COMMUNITY-BASED STUDY OF HEALTH EFFECTS IN ASTHMATICS: DESIGN AND RESULTS OF AIR MONITORING

    EPA Science Inventory

    In order to provide reliable pollutant and meteorological exposure estimates for an epidemiological study of asthmatics residing in two Houston neighborhoods, a dedicated three-tier air monitoring system was established. This consisted of fixed site ambient air monitoring at the ...

  20. Tribal Air Quality Monitoring.

    ERIC Educational Resources Information Center

    Wall, Dennis

    2001-01-01

    The Institute for Tribal Environmental Professionals (ITEP) (Flagstaff, Arizona) provides training and support for tribal professionals in the technical job skills needed for air quality monitoring and other environmental management tasks. ITEP also arranges internships, job placements, and hands-on training opportunities and supports an…

  1. Results of monitoring for polychlorinated dibenzo-p-dioxins and dibenzofurans in ambient air at McMurdo station, Antarctica

    SciTech Connect

    Lugar, R.M.; Harles, R.L.

    1996-02-01

    This paper presents the results of ambient air monitoring for polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) performed during the 1992-1993 and 1993-1994 austral summers in the vicinity of McMurdo Station, Antarctica. Twenty-eight air samples were collected from four different locations to determine the identity and concentration of PCDD/PCDF compounds. PCDD/PCDF compounds were not detected at either the predominantly upwind location or a more remote site on Black Island. Trace levels of only a few PCDD/PCDF congeners were detected sporadically at a location approximately 500 m downwind of the station. The most frequent, most varied, and highest levels of PCDDs/PCDFs were measured at a `downtown` location, where concentrations of total PCDDs ranged from 0.12 to 1.80 pg/m{sup 3} and total PCDDs ranged from less than 0.02 to 2.77 pg/m{sup 3}. The data indicate that there are combustion sources at McMurdo other than the solid waste incinerator (power plants, vehicles, heating furnaces, etc.) that contribute PCDD/PCDF compounds to the ambient air. The greatest variety and highest concentration of PCDD/PCDF congeners measured in 1992-1993 during incineration of selected solid wastes implicates the interim incinerator as the likely source of the increased presence of these compounds in air. 18 refs., 2 figs., 3 tabs.

  2. Space Derived Air Monitor

    NASA Technical Reports Server (NTRS)

    1983-01-01

    COPAMS, Commonwealth of Pennsylvania Air Monitoring System, derives from technology involved in building unmanned spacecraft. The Nimbus spacecraft carried experimental sensors to measure temperature, pressure, ozone, and water vapor, and instruments for studying solar radiation and telemetry. The process which relayed these findings to Earth formed the basis for COPAMS. The COPAMS system consists of data acquisition units which measure and record pollution level, and sense wind speed and direction, etc. The findings are relayed to a central station where the information is computerized. The system is automatic and supplemented by PAQSS, PA Air Quality Surveillance System.

  3. Air Quality Monitor

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Stak-Tracker CEM (Continuous Emission Monitor) Gas Analyzer is an air quality monitor capable of separating the various gases in a bulk exhaust stream and determining the amounts of individual gases present within the stream. The monitor is produced by GE Reuter- Stokes, a subsidiary of GE Corporate Research & Development Center. The Stak-Tracker uses a Langley Research Center software package which measures the concentration of a target gas by determining the degree to which molecules of that gas absorb an infrared beam. The system is environmental-friendly, fast and has relatively low installation and maintenance costs. It is applicable to gas turbines and various industries including glass, paper and cement.

  4. Air monitoring device

    NASA Technical Reports Server (NTRS)

    Tissandier, Michael D. (Inventor)

    2012-01-01

    An air monitoring device (100) includes an outer casing (101) configured to receive an airflow (102) comprising particulate; a bore (103) located inside the outer casing (101); and a collection probe (104) located inside the outer casing (101), the collection probe (104) being configured such that there is a gap (105) between an exit of the bore (103) and an entrance of the collection probe (104), such that particulate in the airflow (102) having a diameter larger than a threshold flows through an interior of the collection probe (104).

  5. Next-generation air monitoring

    EPA Science Inventory

    Air pollution measurement technology is advancing rapidly towards smaller-scale and wireless devices, with a potential to significantly change the landscape of air pollution monitoring. EPA is evaluating and developing a range of next-generation air monitoring (NGAM) technologie...

  6. Volunteers for Air Monitoring Project (VAMP).

    ERIC Educational Resources Information Center

    Oak Ridge National Lab., TN.

    An education and communication project of the Environment and Technology Assessment Program, Oak Ridge National Laboratory, Tennessee, is described in this report. The project for monitoring air dustfall resulted in the largest citizen-scientist air monitoring effort in the history of our nation. Nearly 21,000 public secondary school students and…

  7. Evaluation of workplace air monitoring locations

    SciTech Connect

    Stoetzel, G.A.; Cicotte, G.R.; Lynch, T.P. ); Aldrich, L.K. )

    1991-10-01

    Current federal guidance on occupational radiation protection recognizes the importance of conducting air flow studies to assist in the placement of air sampling and monitoring equipment. In support of this, Pacific Northwest Laboratory has provided technical assistance to Westinghouse Hanford Company for the purpose of evaluating the adequacy of air sampling and monitoring locations at selected Hanford facilities. Qualitative air flow studies were performed using smoke aerosols to visually determine air movement. Three examples are provided of how air flow studies results, along with information on the purpose of the air sample being collected, were used as a guide in placing the air samplers and monitors. Preparatory steps in conducting an air flow study should include: (1) identifying type of work performed in the work area including any actual or potential release points; (2) determining the amounts of radioactive material available for release and its chemical and physical form; (3) obtaining accurate work area descriptions and diagrams; (4) identifying the location of existing air samplers and monitors; (5) documenting physical and ventilation configurations; (6) notifying appropriate staff of the test; and (7) obtaining necessary equipment and supplies. The primary steps in conducting an air flow study are measurements of air velocities in the work area, release of the smoke aerosol at selected locations in the work area and the observation of air flow patterns, and finally evaluation and documentation of the results. 2 refs., 3 figs.

  8. Comprehensive air monitoring plan: general monitoring report

    SciTech Connect

    Not Available

    1980-03-31

    Recommendations are provided for general monitoring of hydrogen sulfide (H/sub 2/S) in ambient air in parts of Colusa, Lake, Mendocino, Napa, and Sonoma counties potentially impacted by emissions from geothermal development projects in the Geysers-Calistoga Known Geothermal Resource Area. Recommendations for types, placement, performance guidelines, and criteria and procedure for triggering establishment and termination of CAMP monitoring equipment were determined after examination of four factors: population location; emission sources; meteorological considerations; and data needs of permitting agencies and applicants. Three alternate financial plans were developed. Locations and equipment for immediate installation are recommended for: two air quality stations in communities where the State ambient air quality standard for H/sub 2/S has been exceeded; three air quality trend stations to monitor progress in reduction of H/sub 2/S emissions; two meteorological observation stations to monitor synoptic wind flow over the area; and one acoustic radar and one rawinsonde station to monitor air inversions which limit the depth of the mixing layer.

  9. Microfabricated Air-Microfluidic Sensor for Personal Monitoring of Airborne Particulate Matter: Design, Fabrication, and Experimental Results

    EPA Science Inventory

    We present the design and fabrication of a micro electro mechanical systems (MEMS) air-microfluidic particulate matter (PM) sensor, and show experimental results obtained from exposing the sensor to concentrations of tobacco smoke and diesel exhaust, two commonly occurring P...

  10. Community air monitoring for pesticides. Part 3: using health-based screening levels to evaluate results collected for a year.

    PubMed

    Wofford, Pamela; Segawa, Randy; Schreider, Jay; Federighi, Veda; Neal, Rosemary; Brattesani, Madeline

    2014-03-01

    The CA Department of Pesticide Regulation (CDPR) and the CA Air Resources Board monitored 40 pesticides, including five degradation products, in Parlier, CA, to determine if its residents were exposed to any of these pesticides and, if so, in what amounts. They included 1,3-dichloropropene, acrolein, arsenic, azinphos-methyl, carbon disulfide, chlorpyrifos and its degradation product, chlorthalonil, copper, cypermethrin, diazinon and its degradation product, dichlorvos, dicofol, dimethoate and its degradation product, diuron, endosulfan and its degradation product, S-ethyl dipropylcarbamothioate (EPTC), formaldehyde, malathion and its degradation product, methyl isothiocyanate (MITC), methyl bromide, metolachlor, molinate, norflurazon, oryzalin, oxyfluorfen, permethrin, phosmet, propanil, propargite, simazine, SSS-tributylphosphorotrithioate, sulfur, thiobencarb, trifluralin, and xylene. Monitoring was conducted 3 days per week for a year. Twenty-three pesticides and degradation products were detected. Acrolein, arsenic, carbon disulfide, chlorpyrifos, copper, formaldehyde, methyl bromide, MITC, and sulfur were detected in more than half the samples. Since no regulatory ambient air standards exist for these pesticides, CDPR developed advisory, health-based non-cancer screening levels (SLs) to assess acute, subchronic, and chronic exposures. For carcinogenic pesticides, CDPR assessed risk using cancer potency values. Amongst non-carcinogenic agricultural use pesticides, only diazinon exceeded its SL. For carcinogens, 1,3-dichloropropene concentrations exceeded its cancer potency value. Based on these findings, CDPR has undertaken a more comprehensive evaluation of 1,3-dichloropropene, diazinon, and the closely related chlorpyrifos that was frequently detected. Four chemicals-acrolein, arsenic, carbon disulfide, and formaldehyde-sometimes used as pesticides were detected, although no pesticidal use was reported in the area during this study. Their presence was most

  11. Monitoring Air Quality with Leaf Yeasts.

    ERIC Educational Resources Information Center

    Richardson, D. H. S.; And Others

    1985-01-01

    Proposes that leaf yeast serve as quick, inexpensive, and effective techniques for monitoring air quality. Outlines procedures and provides suggestions for data analysis. Includes results from sample school groups who employed this technique. (ML)

  12. Prototype development and test results of a continuous ambient air monitoring system for hydrazine at the 10 ppb level

    NASA Astrophysics Data System (ADS)

    Meneghelli, Barry; Parrish, Clyde; Barile, Ron; Lueck, Dale E.

    1995-01-01

    A Hydrazine Vapor Area Monitor (HVAM) system is currently being field tested as a detector for the presence of hydrazine in ambient air. The MDA/Polymetron Hydrazine Analyzer has been incorporated within the HVAM system as the core detector. This analyzer is a three-electrode liquid analyzer typically used in boiler feed water applications. The HVAM system incorporates a dual-phase sample collection/transport method which simultaneously pulls ambient air samples containing hydrazine and a very dilute sulfuric acid solution (0.0001 M) down a length of 1/4 inch outside diameter (OD) tubing from a remote site to the analyzer. The hydrazine-laden dilute acid stream is separated from the air and the pH is adjusted by addition of a dilute caustic solution to a pH greater than 10.2 prior to analysis. Both the dilute acid and caustic used by the HVAM are continuously generated during system operation on an "as needed" basis by mixing a metered amount of concentrated acid/base with dilution water. All of the waste water generated by the analyzer is purified for reuse by Barnstead ion-exchange cartridges so that the entire system minimizes the generation of waste materials. The pumping of all liquid streams and mixing of the caustic solution and dilution water with the incoming sample are done by a single pump motor fitted with the appropriate mix of peristaltic pump heads. The signal to noise (S/N) ratio of the analyzer has been enhanced by adding a stirrer in the MDA liquid cell to provide mixing normally generated by the high liquid flow rate designed by the manufacturer. An onboard microprocessor continuously monitors liquid levels, sample vacuum, and liquid leak sensors, as well as handles communications and other system functions (such as shut down should system malfunctions or errors occur). The overall system response of the HVAM can be automatically checked at regular intervals by measuring the analyzer response to a metered amount of calibration standard injected

  13. Prototype development and test results of a continuous ambient air monitoring system for hydrazine at the 10 ppb level

    NASA Technical Reports Server (NTRS)

    Meneghelli, Barry; Parrish, Clyde; Barile, Ron; Lueck, Dale E.

    1995-01-01

    A Hydrazine Vapor Area Monitor (HVAM) system is currently being field tested as a detector for the presence of hydrazine in ambient air. The MDA/Polymetron Hydrazine Analyzer has been incorporated within the HVAM system as the core detector. This analyzer is a three-electrode liquid analyzer typically used in boiler feed water applications. The HVAM system incorporates a dual-phase sample collection/transport method which simultaneously pulls ambient air samples containing hydrazine and a very dilute sulfuric acid solution (0.0001 M) down a length of 1/4 inch outside diameter (OD) tubing from a remote site to the analyzer. The hydrazine-laden dilute acid stream is separated from the air and the pH is adjusted by addition of a dilute caustic solution to a pH greater than 10.2 prior to analysis. Both the dilute acid and caustic used by the HVAM are continuously generated during system operation on an "as needed" basis by mixing a metered amount of concentrated acid/base with dilution water. All of the waste water generated by the analyzer is purified for reuse by Barnstead ion-exchange cartridges so that the entire system minimizes the generation of waste materials. The pumping of all liquid streams and mixing of the caustic solution and dilution water with the incoming sample are done by a single pump motor fitted with the appropriate mix of peristaltic pump heads. The signal to noise (S/N) ratio of the analyzer has been enhanced by adding a stirrer in the MDA liquid cell to provide mixing normally generated by the high liquid flow rate designed by the manufacturer. An onboard microprocessor continuously monitors liquid levels, sample vacuum, and liquid leak sensors, as well as handles communications and other system functions (such as shut down should system malfunctions or errors occur). The overall system response of the HVAM can be automatically checked at regular intervals by measuring the analyzer response to a metered amount of calibration standard injected

  14. Indoor air quality and work-environment study. Library of Congress, Madison Building. Volume 2. Results of indoor air environmental monitoring

    SciTech Connect

    Not Available

    1990-07-01

    A systematic study was designed to assess the nature and spatial distribution of employee health symptoms and comfort concerns in the Madison Building of the Library of Congress (LOC), Washington, DC. Environmental monitoring was conducted at more than 100 sites within the building. The mean temperature for the building was 73.1 F, with a general trend for the temperature to increase throughout the building on all days from morning to afternoon. The mean relative humidity was 49.2 percent. Mean carbon-dioxide (124389) measurements increased at all sampling locations throughout the morning. Whole building air exchanges were relatively constant averaging between 0.85 and 0.79 air changes per hour. The real time respirable particle measurement mean value was 5.5 micrograms/cubic meter (microg/cu m). Nicotine (54115) was detected in several areas of the building ranging as high as 18.5 microg/cu m. Formaldehyde (50000) concentration was very low as was the acetaldehyde (75070) concentration. The mean acetone (67641) concentration was 32.5 microg/cu m. Volatile organic compounds ranged as high as 2ppm with the most predominant ones being xylene (1330207). The mean benzene (71432) concentration was 2 parts per billion. Total volatile organic compounds averaged 1.1 parts per million (ppm). Chlorpyrifos (2921882) was the only targeted pesticide observed above the analytical limit of detection and was documented in only one sample at 0.004 microg/cu m. Whole building carbon-monoxide (630080) (CO) levels averaged between 1 and 2ppm.

  15. Water- and Air-Quality Monitoring of Sweetwater Reservoir Watershed, San Diego County, California - Phase One Results Continued, 2001-2003

    USGS Publications Warehouse

    Mendez, Gregory O.; Foreman, William T.; Morita, Andrew; Majewski, Michael S.

    2008-01-01

    In 1998, the U.S. Geological Survey, in cooperation with the Sweetwater Authority, began a study to monitor water, air, and sediment at the Sweetwater and Loveland Reservoirs in San Diego County, California. The study includes regular sampling of water and air at Sweetwater Reservoir for chemical constituents, including volatile organic compounds (VOC), polynuclear aromatic hydrocarbons (PAH), pesticides, and major and trace elements. The purpose of this study is to monitor changes in contaminant composition and concentration during the construction and operation of State Route 125. To accomplish this, the study was divided into two phases. Phase One sampling (water years 1998-2004) determined baseline conditions for the detection frequency and the concentrations of target compounds in air and water. Phase Two sampling (starting water year 2005) continues at selected monitoring sites during and after construction of State Route 125 to assess the chemical impact this roadway alignment may have on water quality in the reservoir. Water samples were collected for VOCs and pesticides at Loveland Reservoir during Phase One and will be collected during Phase Two for comparison purposes. Air samples collected to monitor changes in VOCs, PAHs, and pesticides were analyzed by adapting methods used to analyze water samples. Bed-sediment samples have been and will be collected three times during the study; at the beginning of Phase One, at the start of Phase Two, and near the end of the study. In addition to the ongoing data collection, several special studies were initiated to assess the occurrence of specific chemicals of concern, such as trace metals, anthropogenic indicator compounds, and pharmaceuticals. This report describes the study design, and the sampling and analytical methods, and presents data from water and air samples collected during the fourth and fifth years of Phase One of the study (October 2001 to September 2003). Data collected during the first three

  16. VALIDATION OF AIR MONITORING DATA

    EPA Science Inventory

    Data validation refers to those activities performed after the data have been obtained and thus serves as a final screening of the data before they are used in a decision making process. This report provides organizations that are monitoring ambient air levels and stationary sour...

  17. Water- and Air-Quality Monitoring of the Sweetwater Reservoir Watershed, San Diego County, California-Phase One Results, Continued, 1999-2001

    USGS Publications Warehouse

    Mendez, Gregory O.; Foreman, William T.; Sidhu, Jagdeep S.; Majewski, Michael S.

    2007-01-01

    In 1998, the U.S. Geological Survey, in cooperation with the Sweetwater Authority, began a study to assess the overall health of the Sweetwater watershed with respect to chemical contamination. The study included regular sampling of air and water at Sweetwater Reservoir for chemical contaminants, including volatile organic compounds, polycyclic aromatic hydrocarbons, pesticides, and major and trace elements. Background water samples were collected at Loveland Reservoir for volatile organic compounds and pesticides. The purpose of this study was to monitor changes in contaminant composition and concentration in the air and water resulting from the construction and operation of State Route 125 near Sweetwater Reservoir. To accomplish this, the study was divided into two phases. Phase One sampling was designed to establish baseline conditions for target compounds in terms of detection frequency and concentration in air and water. Phase Two sampling is planned to continue at the established monitoring sites during and after construction of State Route 125 to assess the chemical impact this roadway alignment project may have on the water quality in the reservoir. In addition to the ongoing data collection, several special studies were initiated to assess the occurrence of specific chemicals of concern, such as low-use pesticides, trace metals, and wastewater compounds. This report describes the study design, and the sampling and analytical methods, and presents the results for the second and third years of the study (October 1999 to September 2001). Data collected during the first year of sampling (October 1998 to September 1999) were published in 2002.

  18. Air quality monitor and acid rain networks

    NASA Technical Reports Server (NTRS)

    Rudolph, H.

    1980-01-01

    The air quality monitor program which consists of two permanent air monitor stations (PAMS's) and four mobile shuttle pollutant air monitor stations (SPAMS's) is evaluated. The PAMS measures SO sub X, NO sub X particulates, CO, O3, and nonmethane hydrocarbons. The SPAMS measures O3, SO2, HCl, and particulates. The collection and analysis of data in the rain monitor program are discussed.

  19. Results of the basewide monitoring program at Wright-Patterson Air Force Base, Ohio, 1993-1994

    USGS Publications Warehouse

    Schalk, C.W.; Cunningham, W.L.

    1996-01-01

    Geologic and hydrologic data were collected at Wright-Patterson Air Force Base (WPAFB), Ohio, as part of Basewide Monitoring Program (BMP) that began in 1992. The BMP was designed as a long-term project to character ground-water and surface-water quality (including streambed sediments), describe water-quality changes as water enters, flows across, and exits the Base, and investigate the effects of activities at WPAFB on regional water quality. Ground water, surface ware, and streambed sediment were sampled in four rounds between August 1993 and September 1994 to provide the analytical data needed to address the objectives of the BMP. Surface-water-sampling rounds were designed to include most of the seasonal hydrologic conditions encountered in southwestern Ohio, including baseflow conditions and spring runoff. Ground-water-sampling rounds were scheduled for times of recession and recharfe. Ground-water data were used to construct water-table, potentiometric, and vertical gradient maps of the WPAFB area. Water levels have not changed significantly since 1987, but the effects of pumping on and near the Base can have a marked effect on water levels in localized areas. Ground-ware gradients generally were downward throughout Area B (the southwestern third of the Base) and in the eastern third of Areas A and C (the northeastern two-thirds of the Base), and were upward in the vicinity of Mad River. Stream-discharge measurements verified these gradients. Many of the U.S. Environmental Protection Agency maximum contaminant level (MCL) exceedances of inorganic constituents in ground water were associated with water from the bedrock. Exceedances of concentrations of chromium and nickel were found consistently in five wells completed in the glacial aquifer beneath the Base. Five organic compounds [trichloroethylene (TCE), tetrachloroethylene (PCE), vinyl chloride, benzene, and bis(2-ethylhexyl) phthalate] were detected at concentrations that exceeded MCLs; all of the TCE

  20. ANALYSIS OF EPA (ENVIRONMENTAL PROTECTION AGENCY) PROTOCOL GASES USED FOR CALIBRATION AND AUDITS OF CONTINUOUS EMISSION MONITORING SYSTEMS AND AMBIENT AIR ANALYZERS - RESULTS OF AUDIT 6

    EPA Science Inventory

    A performance audit was conducted on EPA Protocol Gases used for calibration and audits of continuous emission monitoring systems and ambient air analyzers. Fifty gaseous pollutant calibraton standards were purchased from eleven specialty gas producers. These standards contained ...

  1. 10 CFR 835.403 - Air monitoring.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Air monitoring. 835.403 Section 835.403 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Monitoring of Individuals and Areas § 835.403 Air... been prescribed. (b) Real-time air monitoring shall be performed as necessary to detect and...

  2. 10 CFR 835.403 - Air monitoring.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Air monitoring. 835.403 Section 835.403 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Monitoring of Individuals and Areas § 835.403 Air... been prescribed. (b) Real-time air monitoring shall be performed as necessary to detect and...

  3. 10 CFR 835.403 - Air monitoring.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Air monitoring. 835.403 Section 835.403 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Monitoring of Individuals and Areas § 835.403 Air... been prescribed. (b) Real-time air monitoring shall be performed as necessary to detect and...

  4. 10 CFR 835.403 - Air monitoring.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Air monitoring. 835.403 Section 835.403 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Monitoring of Individuals and Areas § 835.403 Air... been prescribed. (b) Real-time air monitoring shall be performed as necessary to detect and...

  5. 10 CFR 835.403 - Air monitoring.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Air monitoring. 835.403 Section 835.403 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Monitoring of Individuals and Areas § 835.403 Air... been prescribed. (b) Real-time air monitoring shall be performed as necessary to detect and...

  6. Large scale air monitoring: lichen vs. air particulate matter analysis.

    PubMed

    Rossbach, M; Jayasekera, R; Kniewald, G; Thang, N H

    1999-07-15

    Biological indicator organisms have been widely used for monitoring and banking purposes for many years. Although the complexity of the interactions between organisms and their environment is generally not easily comprehensible, environmental quality assessment using the bioindicator approach offers some convincing advantages compared to direct analysis of soil, water, or air. Measurement of air particulates is restricted to experienced laboratories with access to expensive sampling equipment. Additionally, the amount of material collected generally is just enough for one determination per sampling and no multidimensional characterization might be possible. Further, fluctuations in air masses have a pronounced effect on the results from air filter sampling. Combining the integrating property of bioindicators with the world wide availability and particular matrix characteristics of air particulate matter as a prerequisite for global monitoring of air pollution is discussed. A new approach for sampling urban dust using large volume filtering devices installed in air conditioners of large hotel buildings is assessed. A first experiment was initiated to collect air particulates (300-500 g each) from a number of hotels during a period of 3-4 months by successive vacuum cleaning of used inlet filters from high volume air conditioning installations reflecting average concentrations per 3 months in different large cities. This approach is expected to be upgraded and applied for global monitoring. Highly positive correlated elements were found in lichens such as K/S, Zn/P, the rare earth elements (REE) and a significant negative correlation between Hg and Cu was observed in these samples. The ratio of concentrations of elements in dust and Usnea spp. is highest for Cz, Zn and Fe (400-200) and lowest for elements such as Ca, Rb, and Sr (20-10). PMID:10474261

  7. Air Quality Monitoring: Risk-Based Choices

    NASA Technical Reports Server (NTRS)

    James, John T.

    2009-01-01

    Air monitoring is secondary to rigid control of risks to air quality. Air quality monitoring requires us to target the credible residual risks. Constraints on monitoring devices are severe. Must transition from archival to real-time, on-board monitoring. Must provide data to crew in a way that they can interpret findings. Dust management and monitoring may be a major concern for exploration class missions.

  8. Radiation control coatings installed on federal buildings at Tyndall Air Force Base. Volume 1: Pre-coating monitoring and fresh coating results

    SciTech Connect

    Petrie, T.W.; Childs, P.W.

    1997-02-01

    The US Department of Energy`s (DOE`s) Federal Energy Management Program (FEMP) supports efforts to reduce energy use and associated expenses in the federal sector. One such effort, the New Technology Demonstration Program (NTDP), seeks to evaluate new energy-saving US technologies and secure their more timely adoption by the US government. Through a partnership with a federal site, the utility serving the site, a manufacturer of an energy-related technology, and other organizations associated with these interests, DOE can evaluate a new technology. The results of the program give federal agency decision makers more hands-on information with which to validate a decision to utilize a new technology in their facilities. The partnership of these interests is secured through a cooperative research and development agreement (CRADA), in this case between Lockheed Martin Energy Research Corporation, the manager of the Oak Ridge National Laboratory (ORNL), Oak Ridge, Tennessee, and ThermShield International, Ltd., the manufacturer of the technology. This is the first volume of a two-volume report that describes the effects of radiation control coatings installed on federal buildings at Tyndall Air Force Base (AFB) in Florida by ThermShield International. ORNL`s Buildings Technology Center (BTC) was assigned the responsibility for gathering, analyzing, and reporting on the data to describe the effects of the coatings. This volume describes the monitoring plan and its implementation, the results of pre-coating monitoring, the coating installation, results from fresh coatings compared to pre-coating results, and a plan to decommission the monitoring equipment. By including results from roofs at Tyndall AFB and from an outdoor test facility at the BTC, the data cover the range from poorly insulated to well-insulated roofs and two kinds of radiation control coatings on various roof membranes.

  9. Alpha-environmental continuous air monitor inlet

    DOEpatents

    Rodgers, John C.

    2003-01-01

    A wind deceleration and protective shroud that provides representative samples of ambient aerosols to an environmental continuous air monitor (ECAM) has a cylindrical enclosure mounted to an input on the continuous air monitor, the cylindrical enclosure having shrouded nozzles located radially about its periphery. Ambient air flows, often along with rainwater flows into the nozzles in a sampling flow generated by a pump in the continuous air monitor. The sampling flow of air creates a cyclonic flow in the enclosure that flows up through the cylindrical enclosure until the flow of air reaches the top of the cylindrical enclosure and then is directed downward to the continuous air monitor. A sloped platform located inside the cylindrical enclosure supports the nozzles and causes any moisture entering through the nozzle to drain out through the nozzles.

  10. Citizen Science Air Monitor (CSAM) Operating Procedures

    EPA Science Inventory

    The Citizen Science Air Monitor (CSAM) is an air monitoring system designed for measuring nitrogen dioxide (NO2) and particulate matter (PM) pollutants simultaneously. This self-contained system consists of a CairPol CairClip NO2 sensor, a Thermo Scientific personal DataRAM PM2.5...

  11. EPA AIR MONITORING BANK PROPOSAL

    EPA Science Inventory

    Specimen banking of air pollution samples has not been attempted because of the complexity of this type of environmental medium. ollutants may exist in air as gases or particles or distributed in between these two states. mpirically, air pollutants may be categorized as volatiles...

  12. STATISTICAL COMPARISON OF RESULTS OF TWO INDOOR AIR PILOT STUDIES

    EPA Science Inventory

    The objective of this study was to compare the results between two previous indoor air PAH monitoring studies conducted by EPA in 1984 and 1987. Both of the previous studies were pilot studies involving ambient and indoor air monitoring at a small number of residences in Columbus...

  13. AMBIENT AIR NON-METHANE HYDROCARBON MONITOR

    EPA Science Inventory

    A monitor has been developed with adequate sensitivity and accuracy to measure continuously the concentration of non-methane hydrocarbons (NMHC) in ambient air. The monitor consists of pump and manifold system along with two basic instruments, a methane monitor and a flame-ioniza...

  14. Continuous Air Monitor Operating Experience Review

    SciTech Connect

    L. C. Cadwallader; S. A. Bruyere

    2008-09-01

    Continuous air monitors (CAMs) are used to sense radioactive particulates in room air of nuclear facilities. CAMs alert personnel of potential inhalation exposures to radionuclides and can also actuate room ventilation isolation for public and environmental protection. This paper presents the results of a CAM operating experience review of the DOE Occurrence Reporting and Processing System (ORPS) database from the past 18 years. Regulations regarding these monitors are briefly reviewed. CAM location selection and operation are briefly discussed. Operating experiences reported by the U.S. Department of Energy and in other literature sources were reviewed to determine the strengths and weaknesses of these monitors. Power losses, human errors, and mechanical issues cause the majority of failures. The average “all modes” failure rate is 2.65E-05/hr. Repair time estimates vary from an average repair time of 9 hours (with spare parts on hand) to 252 hours (without spare parts on hand). These data should support the use of CAMs in any nuclear facility, including the National Ignition Facility and the international ITER experiment.

  15. COMPARISON OF 24H AVERAGE VOC MONITORING RESULTS FOR RESIDENTIAL INDOOR AND OUTDOOR AIR USING CARBOPACK X-FILLED DIFFUSIVE SAMPLERS AND ACTIVE SAMPLING - A PILOT STUDY

    EPA Science Inventory

    Analytical results obtained by thermal desorption GC/MS for 24h diffusive sampling of 11 volatile organic compounds (VOCs) are compared with results of time-averaged active sampling at a known constant flow rate. Air samples were collected with co-located duplicate diffusive samp...

  16. DEMONSTRATION OF AUTONOMOUS AIR MONITORING THROUGH ROBOTICS

    EPA Science Inventory

    This project included modifying an existing teleoperated robot to include autonomous navigation, large object avoidance, and air monitoring and demonstrating that prototype robot system in indoor and outdoor environments. An existing teleoperated "Surveyor" robot developed by ARD...

  17. Next Generation Air Monitoring (NGAM) VOC Sensor Evaluation Report

    EPA Science Inventory

    This report summarizes the results of next generation air monitor (NGAM) volatile organic compound (VOC) evaluations performed using both laboratory as well as field scale settings. These evaluations focused on challenging lower cost (<$2500) NGAM technologies to either controlle...

  18. Instrumentation for Air Pollution Monitoring

    ERIC Educational Resources Information Center

    Hollowell, Craig D.; McLaughlin, Ralph D.

    1973-01-01

    Describes the techniques which form the basis of current commercial instrumentation for monitoring five major gaseous atmospheric pollutants (sulfur dioxide, oxides of nitrogen, oxidants, carbon monoxide, and hydrocarbons). (JR)

  19. AIR MONITOR SITING BY OBJECTIVE

    EPA Science Inventory

    A method is developed whereby measured pollutant concentrations can be used in conjunction with a mathematical air quality model to estimate the full spatial and temporal concentration distributions of the pollutants over a given region. The method is based on the application of ...

  20. Sensor selection for outdoor air quality monitoring

    NASA Astrophysics Data System (ADS)

    Dorsey, K. L.; Herr, John R.; Pisano, A. P.

    2014-06-01

    Gas chemical monitoring for next-generation robotics applications such as fire fighting, explosive gas detection, ubiquitous urban monitoring, and mine safety require high performance, reliable sensors. In this work, we discuss the performance requirements of fixed-location, mobile vehicle, and personal sensor nodes for outdoor air quality sensing. We characterize and compare the performance of a miniature commercial electrochemical and a metal oxide gas sensor and discuss their suitability for environmental monitoring applications. Metal oxide sensors are highly cross-sensitive to factors that affect chemical adsorption (e.g., air speed, pressure) and require careful enclosure design or compensation methods. In contrast, electrochemical sensors are less susceptible to environmental variations, have very low power consumption, and are well matched for mobile air quality monitoring.

  1. Room air monitor for radioactive aerosols

    DOEpatents

    Balmer, David K.; Tyree, William H.

    1989-04-11

    A housing assembly for use with a room air monitor for simultaneous collection and counting of suspended particles includes a casing containing a combination detector-preamplifier system at one end, a filter system at the other end, and an air flow system consisting of an air inlet formed in the casing between the detector-preamplifier system and the filter system and an air passageway extending from the air inlet through the casing and out the end opposite the detector-preamplifier combination. The filter system collects suspended particles transported directly through the housing by means of the air flow system, and these particles are detected and examined for radioactivity by the detector-pre The U.S. Government has rights in this invention pursuant to Contract No. DE-AC04-76DP03533 between the Department of Energy and Rockwell International Corporation.

  2. Room air monitor for radioactive aerosols

    DOEpatents

    Balmer, D.K.; Tyree, W.H.

    1987-03-23

    A housing assembly for use with a room air monitor for simultaneous collection and counting of suspended particles includes a casing containing a combination detector-preamplifier system at one end, a filter system at the other end, and an air flow system consisting of an air inlet formed in the casing between the detector-preamplifier system and the filter system and an air passageway extending from the air inlet through the casing and out the end opposite the detector-preamplifier combination. The filter system collects suspended particles transported directly through the housing by means of the air flow system, and these particles are detected and examined for radioactivity by the detector-preamplifier combination. 2 figs.

  3. 21 CFR 868.2025 - Ultrasonic air embolism monitor.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Ultrasonic air embolism monitor. 868.2025 Section... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2025 Ultrasonic air embolism monitor. (a) Identification. An ultrasonic air embolism monitor is a device used to detect air bubbles...

  4. 21 CFR 868.2025 - Ultrasonic air embolism monitor.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Ultrasonic air embolism monitor. 868.2025 Section... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2025 Ultrasonic air embolism monitor. (a) Identification. An ultrasonic air embolism monitor is a device used to detect air bubbles...

  5. 21 CFR 868.2025 - Ultrasonic air embolism monitor.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Ultrasonic air embolism monitor. 868.2025 Section... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2025 Ultrasonic air embolism monitor. (a) Identification. An ultrasonic air embolism monitor is a device used to detect air bubbles...

  6. 21 CFR 868.2025 - Ultrasonic air embolism monitor.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ultrasonic air embolism monitor. 868.2025 Section... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2025 Ultrasonic air embolism monitor. (a) Identification. An ultrasonic air embolism monitor is a device used to detect air bubbles...

  7. Solar Powered Radioactive Air Monitoring Stations

    SciTech Connect

    Barnett, J. Matthew; Bisping, Lynn E.; Gervais, Todd L.

    2013-10-30

    Environmental monitoring of ambient air for radioactive material is required as stipulated in the PNNL Site radioactive air license. Sampling ambient air at identified preferred locations could not be initially accomplished because utilities were not readily available. Therefore, solar powered environmental monitoring systems were considered as a possible option. PNNL purchased two 24-V DC solar powered environmental monitoring systems which consisted of solar panels, battery banks, and sampling units. During an approximate four month performance evaluation period, the solar stations operated satisfactorily at an on-site test location. They were subsequently relocated to their preferred locations in June 2012 where they continue to function adequately under the conditions found in Richland, Washington.

  8. Representativeness of air quality monitoring networks

    NASA Astrophysics Data System (ADS)

    Duyzer, Jan; van den Hout, Dick; Zandveld, Peter; van Ratingen, Sjoerd

    2015-03-01

    The suitability of European networks to check compliance with air quality standards and to assess exposure of the population was investigated. An air quality model (URBIS) was applied to estimate and compare the spatial distribution of the concentration of nitrogen dioxide (NO2) in ambient air in four large cities. The concentrations calculated at the location of the monitoring stations, compared well with the concentrations measured at the stations indicating that the models worked well. Therefore the calculated concentration distributions were used as a proxy for the actual concentration distributions across the cities. The distributions of these proxy concentrations across the city populations was determined and cumulative population distribution curves were estimated. The calculated annual mean values at the monitoring network stations were located on the population distribution curves to estimate the fractions of the populations that the monitoring network stations represent. This macro scale procedure is used to evaluate which subgroups of the monitoring stations can be reliably used to decide on compliance or to estimate the concentration the population is exposed to. In addition, the CAR model and Computational Fluid Dynamics (CFD) models are used to investigate the effect of micro scale siting of the monitoring stations within the streets. The following observations were made: - Berlin and London networks cover the distribution of concentrations to which the population is exposed rather well, while Stuttgart and Barcelona have stations at sites with mainly the higher concentrations and the exposure is covered less well. - The networks in London and Berlin, with a substantial number of urban background stations, seem fit to monitor the average population exposure, contrary to those in Stuttgart and Barcelona with only a limited number of these stations. - The concentrations measured at street stations hardly reflect the calculated differences in street

  9. Cool-Water Coal Gasification Program: Environmental Monitoring Plan Commissioning Phase, final report. Volume 1. Technical report. Volume 2. Appendix A - HRSG (heat recovery steam generator) stack-testing results. Volume 3. Appendix B - analytical results. Appendix C - sampling analytical methods. Appendix D - ambient air monitoring data. Volume 4. Appendix E - quality assurance/quality control. Technical report

    SciTech Connect

    Not Available

    1985-10-11

    The Cool Water Coal Gasification Program (CWCGP) began electrical production under the terms of the Price Guarantee Commitment with the U.S. Synthetic Fuels Corporation (SFC) on June 24, 1984. An Environmental Monitoring Plan (EMP) approved by the SFC was initiated at that time. The Commissioning Phase, the first of four phases of the EMP, was conducted from June 24 through December 31, 1984. Sampling and analysis of compliance and supplemental parameters produced over 1100 samples and 8500 data points from 17 aqueous, ten gaseous, and four solid sampling streams. The technical report includes a description of the CWCGP process as it was operated during the Commissioning Phase, a summary of process changes that occurred during the period, their effect on the environmental monitoring effort, and details of pollution-control testing (Appendix A), data calculations (Appendix B), analytical methods and results (Appendix C), ambient-air-monitoring data (Appendix D), and quality-assurance/quality-control program results (Appendix E).

  10. Corral Monitoring System assessment results

    SciTech Connect

    Filby, E.E.; Haskel, K.J.

    1998-03-01

    This report describes the results of a functional and operational assessment of the Corral Monitoring Systems (CMS), which was designed to detect and document accountable items entering or leaving a monitored site. Its development was motivated by the possibility that multiple sites in the nuclear weapons states of the former Soviet Union might be opened to such monitoring under the provisions of the Strategic Arms Reduction Treaty. The assessment was performed at three levels. One level evaluated how well the planned approach addressed the target application, and which involved tracking sensitive items moving into and around a site being monitored as part of an international treaty or other agreement. The second level examined the overall design and development approach, while the third focused on individual subsystems within the total package. Unfortunately, the system was delivered as disassembled parts and pieces, with very poor documentation. Thus, the assessment was based on fragmentary operating data coupled with an analysis of what documents were provided with the system. The system design seemed to be a reasonable match to the requirements of the target application; however, important questions about site manning and top level administrative control were left unanswered. Four weaknesses in the overall design and development approach were detected: (1) poor configuration control and management, (2) inadequate adherence to a well defined architectural standard, (3) no apparent provision for improving top level error tolerance, and (4) weaknesses in the object oriented programming approach. The individual subsystems were found to offer few features or capabilities that were new or unique, even at the conceptual level. The CMS might possibly have offered a unique combination of features, but this level of integration was never realized, and it had no unique capabilities that could be readily extracted for use in another system.

  11. OPTICAL REMOTE SENSING FOR AIR QUALITY MONITORING

    EPA Science Inventory

    The paper outlines recent developments in using optical remote sensing (ORS) instruments for air quality monitoring both for gaseous pollutants and airborne particulate matter (PM). The U.S. Environmental Protection Agency (EPA) has been using open-path Fourier transform infrared...

  12. SEATTLE AIR TOXICS MONITORING PILOT PROJECT

    EPA Science Inventory

    Since January, 2000, the Washington Department of Ecology has been monitoring for air toxics at two sites in Seattle, Beacon Hill and Georgetown. The Beacon Hill site is in an area of high population density that reflects conditions in a "typical" urban residential neighborhood a...

  13. Changing the Paradigm of Air Pollution Monitoring

    EPA Science Inventory

    Historically, approaches for monitoring air pollution generally use expensive, complex, stationary equipment,1,2 which limits who collects data, why data are collected, and how data are accessed. This paradigm is changing with the materialization of lower-cost, easy-to...

  14. Air pollution and doctors' house calls: results from the ERPURS system for monitoring the effects of air pollution on public health in Greater Paris, France, 1991-1995. Evaluation des Risques de la Pollution Urbaine pour la Santé.

    PubMed

    Medina, S; Le Tertre, A; Quénel, P; Le Moullec, Y; Lameloise, P; Guzzo, J C; Festy, B; Ferry, R; Dab, W

    1997-10-01

    This study examines short-term relationships between doctors' house calls and urban air pollution in Greater Paris for the period 1991-1995. Poisson regressions using nonparametric smoothing functions controlled for time trend, seasonal patterns, pollen counts, influenza epidemics, and weather. The relationship between asthma visits and air pollution was stronger for children. A relative risk (RRP95/P5) of 1.32 [95% confidence interval (CI) = 1.17-1.47)] was observed for an increase from the 5th to the 95th percentile (7-51 micrograms/m3) in daily concentrations of black smoke (BS). The risks for 24-hr sulfur dioxide and nitrogen dioxide levels were in the same range. Cardiovascular conditions, considered globally, showed weaker associations than angina pectoris/myocardial infarction, for which RRP95/P5 was 1.63 (95% CI = 1.10-2.41) in relation to ozone ambient levels. Eye conditions were exclusively related to ozone (RRP95/P5 = 1.17, 95% CI 1.02-1.33). Asthma visits and ozone showed an interaction with minimum temperature: an effect was observed only at 10 degrees C or higher. In two-pollutant models including BS with, successively, SO2, NO2, and O3, only BS and O3 effects remained stable. Along with mortality and hospital admissions, house call activity data, available on a regular basis, may be a sensitive indicator for monitoring health effects related to air pollution. PMID:9356196

  15. 40 CFR 58.15 - Annual air monitoring data certification.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 5 2010-07-01 2010-07-01 false Annual air monitoring data certification. 58.15 Section 58.15 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) AMBIENT AIR QUALITY SURVEILLANCE Monitoring Network § 58.15 Annual air monitoring...

  16. 40 CFR 58.15 - Annual air monitoring data certification.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 5 2011-07-01 2011-07-01 false Annual air monitoring data certification. 58.15 Section 58.15 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) AMBIENT AIR QUALITY SURVEILLANCE Monitoring Network § 58.15 Annual air monitoring...

  17. Concepts for Environmental Radioactive Air Sampling and Monitoring

    SciTech Connect

    Barnett, J. Matthew

    2011-11-04

    Environmental radioactive air sampling and monitoring is becoming increasingly important as regulatory agencies promulgate requirements for the measurement and quantification of radioactive contaminants. While researchers add to the growing body of knowledge in this area, events such as earthquakes and tsunamis demonstrate how nuclear systems can be compromised. The result is the need for adequate environmental monitoring to assure the public of their safety and to assist emergency workers in their response. Two forms of radioactive air monitoring include direct effluent measurements and environmental surveillance. This chapter presents basic concepts for direct effluent sampling and environmental surveillance of radioactive air emissions, including information on establishing the basis for sampling and/or monitoring, criteria for sampling media and sample analysis, reporting and compliance, and continual improvement.

  18. Continuous emission monitoring of metal aerosol concentrations in atmospheric air

    NASA Astrophysics Data System (ADS)

    Gomes, Anne-Marie; Sarrette, Jean-Philippe; Madon, Lydie; Almi, Abdenbi

    1996-11-01

    Improvements of an apparatus for continuous emission monitoring (CEM) by inductively coupled plasma atomic emission spectrometry (ICP-AES) of metal aerosols in air are described. The method simultaneously offers low operating costs, large volume of tested air for valuable sampling and avoids supplementary contamination or keeping of the air pollutant concentrations. Questions related to detection and calibration are discussed. The detection limits (DL) obtained for the eight pollutants studied are lower than the recommended threshold limit values (TLV) and as satisfactory as the results obtained with other CEM methods involving air-argon plasmas.

  19. Tritium Room Air Monitor Operating Experience Review

    SciTech Connect

    L. C. Cadwallader; B. J. Denny

    2008-09-01

    Monitoring the breathing air in tritium facility rooms for airborne tritium is a radiological safety requirement and a best practice for personnel safety. Besides audible alarms for room evacuation, these monitors often send signals for process shutdown, ventilation isolation, and cleanup system actuation to mitigate releases and prevent tritium spread to the environment. Therefore, these monitors are important not only to personnel safety but also to public safety and environmental protection. This paper presents an operating experience review of tritium monitor performance on demand during small (1 mCi to 1 Ci) operational releases, and intentional airborne inroom tritium release tests. The tritium tests provide monitor operation data to allow calculation of a statistical estimate for the reliability of monitors annunciating in actual tritium gas airborne release situations. The data show a failure to operate rate of 3.5E-06/monitor-hr with an upper bound of 4.7E-06, a failure to alarm on demand rate of 1.4E-02/demand with an upper bound of 4.4E-02, and a spurious alarm rate of 0.1 to 0.2/monitor-yr.

  20. Demonstration of autonomous air monitoring through robotics

    SciTech Connect

    Rancatore, R.

    1989-11-01

    The project included modifying an existing teleoperated robot to include autonomous navigation, large object avoidance, and air monitoring and demonstrating that prototype robot system in indoor and outdoor environments. The robot was also modified to carry a HNU PI-101 Photoionization Detector air monitoring device. A sonar range finder, which already was an integral part of the Surveyor, was repositioned to the front of the robot chassis to detect large obstacles in the path of the robot. In addition, the software of the onboard computer was also extensively modified to provide: navigation control, dynamic steering to smoothly follow the wire-course without hesitation, obstacle avoidance, autonomous shut down and remote reporting of toxic substance detection.

  1. 40 CFR 52.346 - Air quality monitoring requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Air Quality Monitoring plan as identified at 40 CFR 52.320 (c)(17). The revisions updated the plan to bring it into conformance with the Federal requirements for air quality monitoring as found in 40 CFR... 40 Protection of Environment 3 2011-07-01 2011-07-01 false Air quality monitoring requirements....

  2. 40 CFR 52.346 - Air quality monitoring requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Air Quality Monitoring plan as identified at 40 CFR 52.320 (c)(17). The revisions updated the plan to bring it into conformance with the Federal requirements for air quality monitoring as found in 40 CFR... 40 Protection of Environment 3 2013-07-01 2013-07-01 false Air quality monitoring requirements....

  3. 40 CFR 52.346 - Air quality monitoring requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Air Quality Monitoring plan as identified at 40 CFR 52.320 (c)(17). The revisions updated the plan to bring it into conformance with the Federal requirements for air quality monitoring as found in 40 CFR... 40 Protection of Environment 3 2014-07-01 2014-07-01 false Air quality monitoring requirements....

  4. 40 CFR 51.190 - Ambient air quality monitoring requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 2 2010-07-01 2010-07-01 false Ambient air quality monitoring... PROGRAMS REQUIREMENTS FOR PREPARATION, ADOPTION, AND SUBMITTAL OF IMPLEMENTATION PLANS Ambient Air Quality Surveillance § 51.190 Ambient air quality monitoring requirements. The requirements for monitoring ambient...

  5. 40 CFR 51.190 - Ambient air quality monitoring requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 2 2011-07-01 2011-07-01 false Ambient air quality monitoring... PROGRAMS REQUIREMENTS FOR PREPARATION, ADOPTION, AND SUBMITTAL OF IMPLEMENTATION PLANS Ambient Air Quality Surveillance § 51.190 Ambient air quality monitoring requirements. The requirements for monitoring ambient...

  6. 40 CFR 51.190 - Ambient air quality monitoring requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 2 2014-07-01 2014-07-01 false Ambient air quality monitoring... PROGRAMS REQUIREMENTS FOR PREPARATION, ADOPTION, AND SUBMITTAL OF IMPLEMENTATION PLANS Ambient Air Quality Surveillance § 51.190 Ambient air quality monitoring requirements. The requirements for monitoring ambient...

  7. 40 CFR 51.190 - Ambient air quality monitoring requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 2 2013-07-01 2013-07-01 false Ambient air quality monitoring... PROGRAMS REQUIREMENTS FOR PREPARATION, ADOPTION, AND SUBMITTAL OF IMPLEMENTATION PLANS Ambient Air Quality Surveillance § 51.190 Ambient air quality monitoring requirements. The requirements for monitoring ambient...

  8. 40 CFR 52.346 - Air quality monitoring requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Air Quality Monitoring plan as identified at 40 CFR 52.320 (c)(17). The revisions updated the plan to bring it into conformance with the Federal requirements for air quality monitoring as found in 40 CFR... 40 Protection of Environment 3 2012-07-01 2012-07-01 false Air quality monitoring requirements....

  9. 40 CFR 51.190 - Ambient air quality monitoring requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 2 2012-07-01 2012-07-01 false Ambient air quality monitoring... PROGRAMS REQUIREMENTS FOR PREPARATION, ADOPTION, AND SUBMITTAL OF IMPLEMENTATION PLANS Ambient Air Quality Surveillance § 51.190 Ambient air quality monitoring requirements. The requirements for monitoring ambient...

  10. Ambient air quality monitoring plan, Cumberland Steam Plant

    SciTech Connect

    Owen, A.E. Jr.; Carter, R.V.

    1981-09-01

    The Tennessee Valley Authority (TVA) has conducted ambient air quality monitoring at Cumberland Steam Plant since 1971. The monitoring network was operated to collect background air quality information prior to plant startup (1972) and to document ambient air quality after the plant reached full operating levels in 1973. This monitoring plan presents a new network design for Cumberland Steam Plant.

  11. 40 CFR 52.346 - Air quality monitoring requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Air Quality Monitoring plan as identified at 40 CFR 52.320 (c)(17). The revisions updated the plan to bring it into conformance with the Federal requirements for air quality monitoring as found in 40 CFR... 40 Protection of Environment 3 2010-07-01 2010-07-01 false Air quality monitoring requirements....

  12. 76 FR 54462 - Notification of a Public Teleconference; Clean Air Scientific Advisory Committee; Air Monitoring...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-01

    ... network in support of a newly revised National Ambient Air Quality Standard (NAAQS) for 1-hour NO 2 (75 FR... AGENCY Notification of a Public Teleconference; Clean Air Scientific Advisory Committee; Air Monitoring... teleconference of the Air Monitoring and Methods Subcommittee (AMMS) of the Clean Air Scientific...

  13. Acid deposition in Maryland. Summary of research and monitoring results compiled through 1991 and a discussion of the 1990 Clean Air Act Amendments. Report for 1991-1992

    SciTech Connect

    Price, R.; Mountain, D.

    1992-10-01

    This is the sixth annual report submitted under Maryland legislative requirements. The report focuses on more than a decade of acid deposition research conducted in Maryland. In addition, the report discusses Title IV - Acid Deposition Control of the 1990 Clean Air Act Amendments (CAAA) and its potential impacts on Maryland.

  14. Modeling, Monitoring and Fault Diagnosis of Spacecraft Air Contaminants

    NASA Technical Reports Server (NTRS)

    Ramirez, W. Fred; Skliar, Mikhail; Narayan, Anand; Morgenthaler, George W.; Smith, Gerald J.

    1996-01-01

    Progress and results in the development of an integrated air quality modeling, monitoring, fault detection, and isolation system are presented. The focus was on development of distributed models of the air contaminants transport, the study of air quality monitoring techniques based on the model of transport process and on-line contaminant concentration measurements, and sensor placement. Different approaches to the modeling of spacecraft air contamination are discussed, and a three-dimensional distributed parameter air contaminant dispersion model applicable to both laminar and turbulent transport is proposed. A two-dimensional approximation of a full scale transport model is also proposed based on the spatial averaging of the three dimensional model over the least important space coordinate. A computer implementation of the transport model is considered and a detailed development of two- and three-dimensional models illustrated by contaminant transport simulation results is presented. The use of a well established Kalman filtering approach is suggested as a method for generating on-line contaminant concentration estimates based on both real time measurements and the model of contaminant transport process. It is shown that high computational requirements of the traditional Kalman filter can render difficult its real-time implementation for high-dimensional transport model and a novel implicit Kalman filtering algorithm is proposed which is shown to lead to an order of magnitude faster computer implementation in the case of air quality monitoring.

  15. Noncontact Monitoring of Respiration by Dynamic Air-Pressure Sensor.

    PubMed

    Takarada, Tohru; Asada, Tetsunosuke; Sumi, Yoshihisa; Higuchi, Yoshinori

    2015-01-01

    We have previously reported that a dynamic air-pressure sensor system allows respiratory status to be visually monitored for patients in minimally clothed condition. The dynamic air-pressure sensor measures vital information using changes in air pressure. To utilize this device in the field, we must clarify the influence of clothing conditions on measurement. The present study evaluated use of the dynamic air-pressure sensor system as a respiratory monitor that can reliably detect change in breathing patterns irrespective of clothing. Twelve healthy volunteers reclined on a dental chair positioned horizontally with the sensor pad for measuring air-pressure signals corresponding to respiration placed on the seat back of the dental chair in the central lumbar region. Respiratory measurements were taken under 2 conditions: (a) thinly clothed (subject lying directly on the sensor pad); and (b) thickly clothed (subject lying on the sensor pad covered with a pressure-reducing sheet). Air-pressure signals were recorded and time integration values for air pressure during each expiration were calculated. This information was compared with expiratory tidal volume measured simultaneously by a respirometer connected to the subject via face mask. The dynamic air-pressure sensor was able to receive the signal corresponding to respiration regardless of clothing conditions. A strong correlation was identified between expiratory tidal volume and time integration values for air pressure during each expiration for all subjects under both clothing conditions (0.840-0.988 for the thinly clothed condition and 0.867-0.992 for the thickly clothed condition). These results show that the dynamic air-pressure sensor is useful for monitoring respiratory physiology irrespective of clothing. PMID:26398125

  16. Modeling air quality over China: Results from the Panda project

    NASA Astrophysics Data System (ADS)

    Katinka Petersen, Anna; Bouarar, Idir; Brasseur, Guy; Granier, Claire; Xie, Ying; Wang, Lili; Wang, Xuemei

    2015-04-01

    China faces strong air pollution problems related to rapid economic development in the past decade and increasing demand for energy. Air quality monitoring stations often report high levels of particle matter and ozone all over the country. Knowing its long-term health impacts, air pollution became then a pressing problem not only in China but also in other Asian countries. The PANDA project is a result of cooperation between scientists from Europe and China who joined their efforts for a better understanding of the processes controlling air pollution in China, improve methods for monitoring air quality and elaborate indicators in support of European and Chinese policies. A modeling system of air pollution is being setup within the PANDA project and include advanced global (MACC, EMEP) and regional (WRF-Chem, EMEP) meteorological and chemical models to analyze and monitor air quality in China. The poster describes the accomplishments obtained within the first year of the project. Model simulations for January and July 2010 are evaluated with satellite measurements (SCIAMACHY NO2 and MOPITT CO) and in-situ data (O3, CO, NOx, PM10 and PM2.5) observed at several surface stations in China. Using the WRF-Chem model, we investigate the sensitivity of the model performance to emissions (MACCity, HTAPv2), horizontal resolution (60km, 20km) and choice of initial and boundary conditions.

  17. Continuous air monitor filter changeout apparatus

    DOEpatents

    Rodgers, John C.

    2008-07-15

    An apparatus and corresponding method for automatically changing out a filter cartridge in a continuous air monitor. The apparatus includes: a first container sized to hold filter cartridge replacements; a second container sized to hold used filter cartridges; a transport insert connectively attached to the first and second containers; a shuttle block, sized to hold the filter cartridges that is located within the transport insert; a transport driver mechanism means used to supply a motive force to move the shuttle block within the transport insert; and, a control means for operating the transport driver mechanism.

  18. In-line real time air monitor

    DOEpatents

    Wise, M.B.; Thompson, C.V.

    1998-07-14

    An in-line gas monitor capable of accurate gas composition analysis in a continuous real time manner even under strong applied vacuum conditions operates by mixing an air sample with helium forming a sample gas in two complementary sample loops embedded in a manifold which includes two pairs of 3-way solenoid valves. The sample gas is then analyzed in an ion trap mass spectrometer on a continuous basis. Two valve drivers actuate the two pairs of 3-way valves in a reciprocating fashion, so that there is always flow through the in-line gas monitor via one or the other of the sample loops. The duty cycle for the two pairs of 3-way valves is varied by tuning the two valve drivers to a duty cycle typically between 0.2 to 0.7 seconds. 3 figs.

  19. In-line real time air monitor

    DOEpatents

    Wise, Marcus B.; Thompson, Cyril V.

    1998-01-01

    An in-line gas monitor capable of accurate gas composition analysis in a continuous real time manner even under strong applied vacuum conditions operates by mixing an air sample with helium forming a sample gas in two complementary sample loops embedded in a manifold which includes two pairs of 3-way solenoid valves. The sample gas is then analyzed in an ion trap mass spectrometer on a continuous basis. Two valve drivers actuate the two pairs of 3-way valves in a reciprocating fashion, so that there is always flow through the in-line gas monitor via one or the other of the sample loops. The duty cycle for the two pairs of 3-way valves is varied by tuning the two valve drivers to a duty cycle typically between 0.2 to 0.7 seconds.

  20. Development of wireless sensor network for monitoring indoor air pollutant

    NASA Astrophysics Data System (ADS)

    Saad, Shaharil Mad; Shakaff, Ali Yeon Md; Saad, Abdul Rahman Mohd; Yusof @ Kamarudin, Azman Muhamad

    2015-05-01

    The air that we breathe with everyday contains variety of contaminants and particles. Some of these contaminants and particles are hazardous to human health. Most of the people don't realize that the content of air they being exposed to whether it was a good or bad air quality. The air quality whether in indoor or outdoor environment can be influenced by physical factors like dust particles, gaseous pollutants (including carbon dioxide, carbon monoxide and volatile organic compounds) and biological like molds and bacteria growth which largely depend on temperature and humidity condition of a room. These kinds of pollutants can affect human health, physical reaction, comfort or work performance. In this study, a wireless sensor network (WSN) monitoring system for monitor air pollutant in indoor environment was developed. The system was divided into three parts: web-based interface program, sensing module and a base station. The measured data was displayed on the web which is can be accessed by the user. The result shows that the overall measured parameters were meet the acceptable limit, requirement and criteria of indoor air pollution inside the building. The research can be used to improve the indoor air quality level in order to create a comfortable working and healthy environment for the occupants inside the building.

  1. Air Monitoring for Hazardous Gas Detection

    NASA Technical Reports Server (NTRS)

    Arkin, C. Richard; Naylor, Guy; Haskell, William; Floyd, David; Curley, Charles; Griffin, Timothy P.; Adams, Frederick; Follistein, Duke

    2003-01-01

    The Hazardous Gas Detection Lab is involved in the design and development of instrumentation that can detect and quantify various hazardous gases. Traditionally these systems are designed for leak detection of the cryogenic gases used for the propulsion of the Shuttle and other vehicles. Mass spectrometers are the basis of these systems, which provide excellent quantitation, sensitivity, selectivity, response and limits of detection. Unfortunately, these systems are large, heavy and expensive. This feature limits the ability to perform gas analysis in certain applications. Smaller and lighter mass spectrometer systems could be used in many more applications primarily due to the portability of the system. Such applications would include air analysis in confined spaces, in-situ environmental analysis and emergency response. In general, system cost is lowered as size is reduced. With a low cost air analysis system, several systems could be utilized for monitoring large areas. These networked systems could be deployed at job-sites for worker safety, throughout a community for pollution warnings, or dispersed in a battlefield for early warning of chemical or biological threats. Presented will be information on the first prototype of this type of system. Included will be field trial data, with this prototype performing air analysis autonomously from an aircraft.

  2. Cubesat Constellation Design for Air Traffic Monitoring

    NASA Technical Reports Server (NTRS)

    Nag, Sreeja; Rios, Joseph Lucio; Gerhardt, David; Pham, Camvu

    2015-01-01

    Suitably equipped global and local air traffic can be tracked. The tracking information may then be used for control from ground-based stations by receiving the Automatic Dependent Surveillance-Broadcast (ADS-B) signal. The ADS-B signal, emitted from the aircraft's Mode-S transponder, is currently tracked by terrestrial based receivers but not over remote oceans or sparsely populated regions such as Alaska or the Pacific Ocean. Lack of real-time aircraft time/location information in remote areas significantly hinders optimal planning and control because bigger "safety bubbles" (lateral and vertical separation) are required around the aircraft until they reach radar-controlled airspace. Moreover, it presents a search-and-rescue bottleneck. Aircraft in distress, e.g. Air France AF449 that crashed in 2009, take days to be located or cannot be located at all, e.g. Malaysia Airlines MH370 in 2014. In this paper, we describe a tool for designing a constellation of small satellites which demonstrates, through high-fidelity modeling based on simulated air traffic data, the value of space-based ADS-B monitoring and provides recommendations for cost-efficient deployment of a constellation of small satellites to increase safety and situational awareness in the currently poorly-served surveillance area of Alaska. Air traffic data has been obtained from the Future ATM Concepts Evaluation Tool (FACET), developed at NASA Ames Research Center, simulated over the Alaskan airspace over a period of one day. The simulation is driven by MATLAB with satellites propagated and coverage calculated using AGI's Satellite ToolKit(STK10).

  3. WORKSHOP ON SOURCE EMISSION AND AMBIENT AIR MONITORING OF MERCURY

    EPA Science Inventory

    AN EPA/ORD Workshop on Source Emission and Ambient Air Monitoring of Mercury was held on 9/13-14/99, Bloomington, Minnesota. The purpose of the workshop was to discuss the state-of-the-science in source and ambient air mercury monitoring as well as mercury monitoring research and...

  4. Monitoring air pollution in the Bialowieza Forest

    NASA Astrophysics Data System (ADS)

    Malzahn, Elżbieta; Sondej, Izabela; Paluch, Rafał

    2016-04-01

    Air pollution, as sulfur dioxide(SO2) and nitrous oxides (NOx), affects forest health negatively and can initiate forest dieback. Long-term monitoring (since 1986) and analyses are conducted in the Bialowieza Forest due to the threat by abiotic, biotic and anthropogenic factors. This forest has a special and unique natural value, as confirmed by the various forms of protection of national and international rank. The main aim of monitoring is to determine the level and trends of deposition of air pollutants and their effects on selected forest stands and forest communities in the Bialowieza Forest. Concentration measurements of gaseous pollutants and the chemical composition of the precipitation are performed at seven points within the forest area (62 219 ha). Measurement gauges are measuring gaseous pollutants (SO2 and NOx) by the passive method and collecting precipitation at each point at a height of three meters. The period of measuring by the instruments is 30 days. All analyses are conducted according to the methodology of the European forest monitoring program in the certified Laboratory of Natural Environment Chemistry of the Polish Forest Research Institute (IBL). The concentration of pollutant gases (dry deposition) in the years 2002-2015 accounted for only 6-13% of the limit in Poland, as defined by the Polish Ministry of Environment, and are of no threat to the forest environment. Wet deposition of pollutants, which dependents directly from the amount of precipitation and its concentration of pollutants, varied strongly between different months and years. Total deposition (dry and wet) of sulfur (S) and nitrogen (N) was calculated for seasonal and annual periods. On an annual basis, wet deposition represented approximately 80% of the total deposition of S and N. Total deposition of S did not exceed the average deposition values for forests in north-eastern Europe (5-10 kg ha‑1 year‑1) at any of the seven measuring points. Total deposition of N did

  5. Monitoring of pyrocatechol indoor air pollution

    NASA Astrophysics Data System (ADS)

    Eškinja, I.; Grabarić, Z.; Grabarić, B. S.

    Spectrophotometric and electrochemical methods for monitoring of pyrocatechol (PC) indoor air pollution have been investigated. Spectrophotometric determination was performed using Fe(III) and iodine methods. The adherence to Beer's law was found in the concentration range between 0 and 12 μg ml - for iodine method at pH = 5.7 measuring absorbance at 725 nm, and in the range 0-30 μg ml - for Fe(III) method at pH = 9.5 measuring absorbance at 510 nm. The former method showed greater sensitivity than the latter one. Differential pulse voltammetry (DPV) and chronoamperometric (CA) detection in flow injection analysis (FIA) using carbon paste electrode in phosphate buffer solution of pH = 6.5 was also used for pyrocatechol determination. The electrochemical methods allowed pyrocatechol quantitation in submicromolar concentration level with an overall reproducibility of ± 1%. The efficiency of pyrocatechol sampling collection was investigated at two temperatures (27 and 40°C) in water, 0.1 M NaOH and 0.1 M HCl solutions. Solution of 0.1 M HCl gave the best collection efficiency (95.5-98.5%). A chamber testing simulating the indoor pollution has been performed. In order to check the reliability of the proposed methods for monitoring of the indoor pyrocatechol pollution, the air in working premises with pyrocatechol released from meteorological charts during mapping and paper drying was analyzed using proposed methods. The concentration of pyrocatechol in the air during mapping was found to be 1.8 mg m -3 which is below the hygienic standard of permissible exposure of 20 mg m -3 (≈ 5 ppm). The release of pyrocatechol from the paper impregnated with pyrocatechol standing at room temperature during one year was also measured. The proposed methods can be used for indoor pyrocatechol pollution monitoring in working premises of photographic, rubber, oil and dye industries, fur and furniture dyeing and cosmetic or pharmaceutical premises where pyrocatechol and related

  6. Early Results from AIRS/AMSU/HSB

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Barnet, Christopher; Blaisdell, John; Iredell, Lena; Keita, Fricky; Kouvaris, Lou

    2003-01-01

    AIRS was launched on EOS Aqua on May 5, 2002, together with AMSU A and HSB, to form a next generation polar orbiting infiared and microwave atmospheric sounding system. The primary products of AIRS/AMSU/HSB are twice daily global fields of atmospheric temperature-humidity profiles, ozone profiles, sea/land surface skin temperature, and cloud related parameters including OLR. The sounding goals of AIRS are to produce 1 km tropospheric layer mean temperatures with an rms error of lK, and layer precipitable water with an rms error of 20%, in cases with up to 80% effective cloud cover. Pre-launch simulation studies indicated that these results should be achievable. Minor modifications have been made to the pre-launch retrieval algorithm as described in this paper. Sample fields of parameters retrieved from AIRS/AMSU/HSB data are presented and validated as a function of retrieved fractional cloud cover. As in simulation, the degradation of retrieval accuracy with increasing cloud cover is small. Select fields are also compared to those contained in the ECMWF analysis, done without the benefit of AIRS data, to demonstrate information that AIRS can add to that already contained in the ECMWF analysis.

  7. East Mountain Area 1995 air sampling results

    SciTech Connect

    Deola, R.A.

    1996-09-01

    Ambient air samples were taken at two locations in the East Mountain Area in conjunction with thermal testing at the Lurance Canyon Burn Site (LCBS). The samples were taken to provide measurements of particulate matter with a diameter less than or equal to 10 micrometers (PM{sub 10}) and volatile organic compounds (VOCs). This report summarizes the results of the sampling performed in 1995. The results from small-scale testing performed to determine the potentially produced air pollutants in the thermal tests are included in this report. Analytical results indicate few samples produced measurable concentrations of pollutants believed to be produced by thermal testing. Recommendations for future air sampling in the East Mountain Area are also noted.

  8. Community air monitoring and the Village Green Project

    EPA Science Inventory

    Abstract: Cost and logistics are practical issues that have historically constrained the number of locations where long-term, active air pollution measurement is possible. In addition, traditional air monitoring approaches are generally conducted by technical experts with limite...

  9. Monitoring Air Quality from Space using AURA Data

    NASA Technical Reports Server (NTRS)

    Gleason, James F.; Chance, Kelly V.; Fishman, Jack; Torres, Omar; Veefkind, Pepijn

    2003-01-01

    Measurements from the Earth Observing System (EOS) AURA mission will provide a unique perspective on air quality monitoring. Ozone, nitrogen dioxide, formaldehyde and aerosols from the Ozone Monitoring Instrument (OMI) and carbon monoxide from the Tropospheric Emission Spectrometer (TES) will be simultaneously measured with the spatial resolution and coverage needed for improving our understanding of air quality. AURA data products useful for air quality monitoring will be given.

  10. Sampling frequency guidance for ambient air toxics monitoring.

    PubMed

    Bortnick, Steven M; Stetzer, Shannon L

    2002-07-01

    The U.S. Environmental Protection Agency (EPA) is in the process of designing a national network to monitor hazardous air pollutants (HAPs), also known as air toxics. The purposes of the expanded monitoring are to (1) characterize ambient concentrations in representative areas; (2) provide data to support and evaluate dispersion and receptor models; and (3) establish trends and evaluate the effectiveness of HAP emission reduction strategies. Existing air toxics data, in the form of an archive compiled by EPA's Office of Air Quality Planning and Standards (OAQPS), are used in this paper to examine the relationship between estimated annual average (AA) HAP concentrations and their associated variability. The goal is to assess the accuracy, or bias and precision, with which the AA can be estimated as a function of ambient concentration levels and sampling frequency. The results suggest that, for several air toxics, a sampling schedule of 1 in 3 days (1:3) or 1:6 days maybe appropriate for meeting some of the general objectives of the national network, with the more intense sampling rate being recommended for areas expected to exhibit relatively high ambient levels. PMID:12139351

  11. Journal Article: the National Dioxin Air Monitoring Network (Ndamn): Measurements of CDDs, CDFs, and Coplanar PCBs at 18 Rural, 8 National Parks, and 2 Suburban Areas of the U.S.: Results for the Year 2000.

    EPA Science Inventory

    In June, 1998, the U.S. EPA established the National Dioxin Air Monitoring Network (NDAMN). The primary goal of NDAMN is determine the temporal and geographical variability of atmospheric CDDs, CDFs, and coplanar PCBs at rural and nonimpacted locations throughout the United Stat...

  12. Fiber optic sensors for structural health monitoring of air platforms.

    PubMed

    Guo, Honglei; Xiao, Gaozhi; Mrad, Nezih; Yao, Jianping

    2011-01-01

    Aircraft operators are faced with increasing requirements to extend the service life of air platforms beyond their designed life cycles, resulting in heavy maintenance and inspection burdens as well as economic pressure. Structural health monitoring (SHM) based on advanced sensor technology is potentially a cost-effective approach to meet operational requirements, and to reduce maintenance costs. Fiber optic sensor technology is being developed to provide existing and future aircrafts with SHM capability due to its unique superior characteristics. This review paper covers the aerospace SHM requirements and an overview of the fiber optic sensor technologies. In particular, fiber Bragg grating (FBG) sensor technology is evaluated as the most promising tool for load monitoring and damage detection, the two critical SHM aspects of air platforms. At last, recommendations on the implementation and integration of FBG sensors into an SHM system are provided. PMID:22163816

  13. Fiber Optic Sensors for Structural Health Monitoring of Air Platforms

    PubMed Central

    Guo, Honglei; Xiao, Gaozhi; Mrad, Nezih; Yao, Jianping

    2011-01-01

    Aircraft operators are faced with increasing requirements to extend the service life of air platforms beyond their designed life cycles, resulting in heavy maintenance and inspection burdens as well as economic pressure. Structural health monitoring (SHM) based on advanced sensor technology is potentially a cost-effective approach to meet operational requirements, and to reduce maintenance costs. Fiber optic sensor technology is being developed to provide existing and future aircrafts with SHM capability due to its unique superior characteristics. This review paper covers the aerospace SHM requirements and an overview of the fiber optic sensor technologies. In particular, fiber Bragg grating (FBG) sensor technology is evaluated as the most promising tool for load monitoring and damage detection, the two critical SHM aspects of air platforms. At last, recommendations on the implementation and integration of FBG sensors into an SHM system are provided. PMID:22163816

  14. Caenorhabditis elegans: a model to monitor bacterial air quality

    PubMed Central

    2011-01-01

    Background Low environmental air quality is a significant cause of mortality and morbidity and this question is now emerging as a main concern of governmental authorities. Airborne pollution results from the combination of chemicals, fine particles, and micro-organisms quantitatively or qualitatively dangerous for health or for the environment. Increasing regulations and limitations for outdoor air quality have been decreed in regards to chemicals and particles contrary to micro-organisms. Indeed, pertinent and reliable tests to evaluate this biohazard are scarce. In this work, our purpose was to evaluate the Caenorhaditis elegans killing test, a model considered as an equivalent to the mouse acute toxicity test in pharmaceutical industry, in order to monitor air bacterial quality. Findings The present study investigates the bacterial population in dust clouds generated during crop ship loading in harbor installations (Rouen harbor, Normandy, France). With a biocollector, airborne bacteria were impacted onto the surface of agar medium. After incubation, a replicate of the colonies on a fresh agar medium was done using a velvet. All the replicated colonies were pooled creating the "Total Air Sample". Meanwhile, all the colonies on the original plate were isolated. Among which, five representative bacterial strains were chosen. The virulence of these representatives was compared to that of the "Total Air Sample" using the Caenorhaditis elegans killing test. The survival kinetic of nematodes fed with the "Total Air Sample" is consistent with the kinetics obtained using the five different representatives strains. Conclusions Bacterial air quality can now be monitored in a one shot test using the Caenorhaditis elegans killing test. PMID:22099854

  15. SNRB{trademark} air toxics monitoring. Final report

    SciTech Connect

    Not Available

    1994-01-01

    Babcock & Wilcox (B&W) is currently conducting a project under the DOE`s Clean Coal Technology (CCT II) Program to demonstrate its SO{sub x}NO{sub x}-Rox Box{trademark} (SNRB{trademark}) process in a 5 MWe Field Demonstration Unit at Ohio Edison`s R. E. Burger Plant near Shadyside, Ohio. The objective of the SNRB{trademark} Air Toxics Monitoring Project was to provide data on SNRB{trademark} air toxics emissions control performance to B&W and to add to the DOE/EPRI/EPA data base by quantifying the flow rates of selected hazardous substances (or air toxics) in all of the major input and output streams of the SNRB{trademark} process as well as the power plant. Work under the project included the collection and analysis of representative samples of all major input and output streams of the SNRB{trademark} demonstration unit and the power plant, and the subsequent laboratory analysis of these samples to determine the partitioning of the hazardous substances between the various process streams. Material balances for selected air toxics were subsequently calculated around the SNRB{trademark} and host boiler systems, including the removal efficiencies across each of the major air pollution control devices. This report presents results of the SNRB{trademark} Air Toxics Monitoring Project. In addition to the Introduction, a brief description of the test site, including the Boiler No. 8 and the SNRB{trademark} process, is included in Section H. The concentrations of air toxic emissions are presented in Section II according to compound class. Material balances are included in Section IV for three major systems: boiler, electrostatic precipitator, and SNRB{trademark}. Emission factors and removal efficiencies are also presented according to compound class in Sections V and VI, respectively. A data evaluation is provided in Section VII.

  16. Air Quality and Road Emission Results for Fort Stewart, Georgia

    SciTech Connect

    Kirkham, Randy R.; Driver, Crystal J.; Chamness, Mickie A.; Barfuss, Brad C.

    2004-02-02

    The Directorate of Public Works Environmental & Natural Resources Division (Fort Stewart /Hunter Army Airfield) contracted with the Pacific Northwest National Laboratory (PNNL) to monitor particulate matter (PM) concentrations on Fort Stewart, Georgia. The purpose of this investigation was to establish a PM sampling network using monitoring equipment typically used in U.S. Environmental Protection Agency (EPA) ''saturation sampling'', to determine air quality on the installation. In this initial study, the emphasis was on training-generated PM, not receptor PM loading. The majority of PM samples were 24-hr filter-based samples with sampling frequency ranging from every other day, to once every six days synchronized with the EPA 6th day national sampling schedule. Eight measurement sites were established and used to determine spatial variability in PM concentrations and evaluate whether fluctuations in PM appear to result from training activities and forest management practices on the installation. Data collected to date indicate the average installation PM2.5 concentration is lower than that of nearby urban Savannah, Georgia. At three sites near the installation perimeter, analyses to segregate PM concentrations by direction of air flow across the installation boundary indicate that air (below 80 ft) leaving the installation contains less PM2.5 than that entering the installation. This is reinforced by the observation that air near the ground is cleaner on average than the air at the top of the canopy.

  17. 30 CFR 7.507 - Air-monitoring components.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Air-monitoring components. 7.507 Section 7.507 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS TESTING BY APPLICANT OR THIRD PARTY Refuge Alternatives § 7.507 Air-monitoring components. (a) Each refuge...

  18. 30 CFR 7.507 - Air-monitoring components.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Air-monitoring components. 7.507 Section 7.507 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS TESTING BY APPLICANT OR THIRD PARTY Refuge Alternatives § 7.507 Air-monitoring components. (a) Each refuge...

  19. 21 CFR 868.2025 - Ultrasonic air embolism monitor.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Ultrasonic air embolism monitor. 868.2025 Section 868.2025 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2025 Ultrasonic air...

  20. 40 CFR 52.995 - Enhanced ambient air quality monitoring.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 3 2014-07-01 2014-07-01 false Enhanced ambient air quality monitoring... air quality monitoring. (a) The Governor of the State of Louisiana submitted the photochemical... nonattainment area on September 10, 1993. This SIP submittal satisfies 40 CFR 58.20(f), which requires the...

  1. 40 CFR 52.995 - Enhanced ambient air quality monitoring.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 3 2012-07-01 2012-07-01 false Enhanced ambient air quality monitoring... air quality monitoring. (a) The Governor of the State of Louisiana submitted the photochemical... nonattainment area on September 10, 1993. This SIP submittal satisfies 40 CFR 58.20(f), which requires the...

  2. 40 CFR 52.995 - Enhanced ambient air quality monitoring.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 3 2013-07-01 2013-07-01 false Enhanced ambient air quality monitoring... air quality monitoring. (a) The Governor of the State of Louisiana submitted the photochemical... nonattainment area on September 10, 1993. This SIP submittal satisfies 40 CFR 58.20(f), which requires the...

  3. 40 CFR 52.995 - Enhanced ambient air quality monitoring.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 3 2011-07-01 2011-07-01 false Enhanced ambient air quality monitoring... air quality monitoring. (a) The Governor of the State of Louisiana submitted the photochemical... nonattainment area on September 10, 1993. This SIP submittal satisfies 40 CFR 58.20(f), which requires the...

  4. 40 CFR 52.995 - Enhanced ambient air quality monitoring.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 3 2010-07-01 2010-07-01 false Enhanced ambient air quality monitoring... air quality monitoring. (a) The Governor of the State of Louisiana submitted the photochemical... nonattainment area on September 10, 1993. This SIP submittal satisfies 40 CFR 58.20(f), which requires the...

  5. Clean air land mine: Continuous monitoring

    SciTech Connect

    White, J.P. ); Mitnick, S.A. )

    1992-12-01

    When the Clean Air Act Amendments were enacted, many observers expected the new law to usher in a futuristic system of environmental control cum economic incentives. This has yet to materialize. However, the legislation has brought in an entirely different new environmental order-rigid emissions accounting, down to each operating hour. In many respects, EPA regulation of fossil plant operations is coming more to resemble the Nuclear Regulatory Commission regulatory model for nuclear plant operations, where regulation of process and procedure is at least as important as substance. The final continuous emission monitoring (CEM) rules, which were enacted as part of the Acid Rain Program, are perhaps the best evidence of this evolution. There can be no denying that the CEM rules are a prosecutor's dream. Not only must the industry comply with the law, but it must go to heroic efforts to make affirmative proof of compliance. The final CEM rules are a serious matter requiring the immediate attention of the electric utility industry.

  6. Operational Use of the Air Quality Monitor on ISS and Potential for Air Quality Monitoring Onboard Submarines

    NASA Technical Reports Server (NTRS)

    Limero, Thomas; Jones, Jared; Wallace, William; Mudgett, Paul

    2015-01-01

    The air quality monitor (AQM) began operations on the International Space Station (ISS) in March 2013 and was validated for operational use in January 2014. The AQM is a gas chromatograph-differential mobility spectrometer that currently monitors 22 target compounds in the ISS atmosphere. Data are collected twice per week, although data collection can be more frequent in contingency situations. In its second year, the AQM has provided data to decision-makers on several ISS contaminant related issues in both air and water. AQM has been used in strictly air incidents, such as a potential ammonia leak, and to investigate air contaminants affecting the water processing (excess ethanol). In the latter case data from water monitors and AQM were compared to understand the issue with the water processor. Additionally, the AQM has been moved to different ISS modules to determine whether air is sufficiently mixed between modules so that a central LAB module location is representative of the entire ISS atmosphere. Historic data on the ISS atmosphere in different modules from archival samples (ground lab analysis) suggest that the atmosphere is usually homogenous. This presentation will briefly describe the technical aspects of the AQM operations and summarize the validation results. The main focus of the presentation will be to discuss the results from the AQM survey of the ISS modules and to show how the AQM data has contributed to an understanding of environmental issues that have arisen on ISS. Presentation of a potential ammonia leak (indicated by an alarm) in 2015 will illustrate the use and value of the AQM in such situations.

  7. CHATTANOOGA AIR TOXICS (CATS) MONITORING RISK ASSESSMENT

    EPA Science Inventory

    The Chattanooga-Hamilton County Air Pollution Control Bureau (CHCAPCB), the United States Environmental Protection Agency Region 4 (Region 4), and other stakeholders, in a cooperative effort, conducted an air toxics study in the Chattanooga area (city population approximately 285...

  8. DUS II SOIL GAS SAMPLING AND AIR INJECTION TEST RESULTS

    SciTech Connect

    Noonkester, J.; Jackson, D.; Jones, W.; Hyde, W.; Kohn, J.; Walker, R.

    2012-09-20

    VOC soil gas concentrations during ASVE. Five (5) SVE wells that were located closest to the air injection wells were used as monitoring points during the air sparging tests. The air sparging tests lasted 48 hours. Soil gas sample results indicate that sparging did not affect VOC concentrations in four of the five sparging wells, while results from one test did show an increase in soil gas concentrations.

  9. Monitoring ambient air for mutagenicity using the higher plant Tradescantia

    SciTech Connect

    Schairer, L A; Sautkulis, R C; Tempel, N R

    1981-01-01

    Final assessment of human health effects resulting from exposure to harmful environmental agents may rest with mammalian test system results. In vitro systems are short-term assays used most frequently for extrapolation to humans. However, no single assay system is adequate and the more expensive long-term tests must be augmented by multiple assays designed for redundancy or to fill gaps in present state of the art of environmental monitoring. The Tradescantia stamen hair test system is one such assay offering redundancy as well as filling the gap of monitoring ambient air for mutagenic agents. The flower color locus in heterozygous clones of Tradescantia mutates when exposed to such agents as fumigants, solvents, chemical additives or catalysts, and compounds requiring activation such as benzo (a) pyrene. The stamen hair system responds to low levels of airborne compounds. The Tradescantia stamen hair system was used as an in situ monitor for mutagens in ambient air in polluted industrial sites. Preliminary results from many sites showed a significant increase in mutation rate. The environment most consistently mutagenic was that downwind from petroleum refineries. No specific compounds or groups of compounds have as yet been correlated with the positive sites. (ERB)

  10. CONTINUOUS AIR POLLUTION SOURCE MONITORING SYSTEMS

    EPA Science Inventory

    This handbook provides the eetailed information necessary to develop a continuous emissions monitoring program at a stationary source facility. Federal and State EPA requirements are given, including design and performance specifications and monitoring and date reporting requirem...

  11. A continuous sampling air-ICP for metals emission monitoring

    SciTech Connect

    Baldwin, D.P.; Zamzow, D.S.; Eckels, D.E.; Miller, G.P.

    1999-09-19

    An air-inductively coupled plasma (air-ICP) system has been developed for continuous sampling and monitoring of metals as a continuous emission monitor (CEM). The plasma is contained in a metal enclosure to allow reduced-pressure operation. The enclosure and plasma are operated at a pressure slightly less than atmospheric using a Roots blower, so that sample gas is continuously drawn into the plasma. A Teflon sampling chamber, equipped with a sampling pump, is connected to the stack that is to be monitored to isokinetically sample gas from the exhaust line and introduce the sample into the air-ICP. Optical emission from metals in the sampled gas stream is detected and monitored using an acousto-optic tunable filter (AOTF)--echelle spectrometer system. A description of the continuous sampling air-ICP system is given, along with some preliminary laboratory data for continuous monitoring of metals.

  12. Continuous sampling air-ICP for metals emission monitoring

    NASA Astrophysics Data System (ADS)

    Baldwin, David P.; Zamzow, Daniel S.; Eckels, David E.; Miller, George P.

    1999-12-01

    An air-inductively coupled plasma (air-ICP) system has been developed for continuous sampling and monitoring of metals as a continuous emission monitor (CEM). The plasma is contained in a metal enclosure to allow reduced-pressure operation. The enclosure and plasma are operated at a pressure slightly less than atmospheric using a Roots blower, so that sample gas is continuously drawn into the plasma. A Teflon sampling chamber, equipped with a sampling pump, is connected to the stack that is to be monitored to isokinetically sample gas from the exhaust line and introduce the sample into the air-ICP. Optical emission from metals in the sampled gas stream is detected and monitored using an acousto-optic tunable filter (AOTF)-echelle spectrometer system. A description of the continuous sampling air-ICP system is given, along with some preliminary laboratory data for continuous monitoring of metals.

  13. Participatory Patterns in an International Air Quality Monitoring Initiative

    PubMed Central

    Sîrbu, Alina; Becker, Martin; Caminiti, Saverio; De Baets, Bernard; Elen, Bart; Francis, Louise; Gravino, Pietro; Hotho, Andreas; Ingarra, Stefano; Loreto, Vittorio; Molino, Andrea; Mueller, Juergen; Peters, Jan; Ricchiuti, Ferdinando; Saracino, Fabio; Servedio, Vito D. P.; Stumme, Gerd; Theunis, Jan; Tria, Francesca; Van den Bossche, Joris

    2015-01-01

    The issue of sustainability is at the top of the political and societal agenda, being considered of extreme importance and urgency. Human individual action impacts the environment both locally (e.g., local air/water quality, noise disturbance) and globally (e.g., climate change, resource use). Urban environments represent a crucial example, with an increasing realization that the most effective way of producing a change is involving the citizens themselves in monitoring campaigns (a citizen science bottom-up approach). This is possible by developing novel technologies and IT infrastructures enabling large citizen participation. Here, in the wider framework of one of the first such projects, we show results from an international competition where citizens were involved in mobile air pollution monitoring using low cost sensing devices, combined with a web-based game to monitor perceived levels of pollution. Measures of shift in perceptions over the course of the campaign are provided, together with insights into participatory patterns emerging from this study. Interesting effects related to inertia and to direct involvement in measurement activities rather than indirect information exposure are also highlighted, indicating that direct involvement can enhance learning and environmental awareness. In the future, this could result in better adoption of policies towards decreasing pollution. PMID:26313263

  14. Participatory Patterns in an International Air Quality Monitoring Initiative.

    PubMed

    Sîrbu, Alina; Becker, Martin; Caminiti, Saverio; De Baets, Bernard; Elen, Bart; Francis, Louise; Gravino, Pietro; Hotho, Andreas; Ingarra, Stefano; Loreto, Vittorio; Molino, Andrea; Mueller, Juergen; Peters, Jan; Ricchiuti, Ferdinando; Saracino, Fabio; Servedio, Vito D P; Stumme, Gerd; Theunis, Jan; Tria, Francesca; Van den Bossche, Joris

    2015-01-01

    The issue of sustainability is at the top of the political and societal agenda, being considered of extreme importance and urgency. Human individual action impacts the environment both locally (e.g., local air/water quality, noise disturbance) and globally (e.g., climate change, resource use). Urban environments represent a crucial example, with an increasing realization that the most effective way of producing a change is involving the citizens themselves in monitoring campaigns (a citizen science bottom-up approach). This is possible by developing novel technologies and IT infrastructures enabling large citizen participation. Here, in the wider framework of one of the first such projects, we show results from an international competition where citizens were involved in mobile air pollution monitoring using low cost sensing devices, combined with a web-based game to monitor perceived levels of pollution. Measures of shift in perceptions over the course of the campaign are provided, together with insights into participatory patterns emerging from this study. Interesting effects related to inertia and to direct involvement in measurement activities rather than indirect information exposure are also highlighted, indicating that direct involvement can enhance learning and environmental awareness. In the future, this could result in better adoption of policies towards decreasing pollution. PMID:26313263

  15. On the design of distributed air quality monitoring systems

    NASA Astrophysics Data System (ADS)

    Velasco, Alejandro; Ferrero, Renato; Gandino, Filippo; Montrucchio, Bartolomeo; Rebaudengo, Maurizio

    2015-12-01

    Nowadays, the air quality is considered a key point, and its monitoring is not only suggested but it is even required in many countries. Since traditional standard monitors for air quality are very expensive, the use of a low-cost distributed network of sensors represents a valid complementary approach. This paper discusses the benefits of a distributed approach and analyzes the main elements that should be taken into account during the design of a distributed system for the air quality monitoring. This paper aims at representing a valuable aid for researchers and practitioners interested in the topic.

  16. Definition of air quality measurements for monitoring space shuttle launches

    NASA Technical Reports Server (NTRS)

    Thorpe, R. D.

    1978-01-01

    A description of a recommended air quality monitoring network to characterize the impact on ambient air quality in the Kennedy Space Center (KSC) (area) of space shuttle launch operations is given. Analysis of ground cloud processes and prevalent meteorological conditions indicates that transient HCl depositions can be a cause for concern. The system designed to monitor HCl employs an extensive network of inexpensive detectors combined with a central analysis device. An acid rain network is also recommended. A quantitative measure of projected minimal long-term impact involves the limited monitoring of NOx and particulates. All recommended monitoring is confined ti KSC property.

  17. Monitoring Trace Contaminants in Air Via Ion Trap Mass Spectrometry

    NASA Technical Reports Server (NTRS)

    Palmer, Peter T.; Karr, Dane; Pearson, Richard; Valero, Gustavo; Wong, Carla

    1995-01-01

    Recent passage of the Clean Air Act with its stricter regulation of toxic gas emissions, and the ever-growing number of applications which require faster turnaround times between sampling and analysis are two major factors which are helping to drive the development of new instrument technologies for in-situ, on-line, real-time monitoring. The ion trap, with its small size, excellent sensitivity, and tandem mass spectrometry capability is a rapidly evolving technology which is well-suited for these applications. In this paper, we describe the use of a commercial ion trap instrument for monitoring trace levels of chlorofluorocarbons (CFCs) and volatile organic compounds (VOCs) in air. A number of sample introduction devices including a direct transfer line interface, short column GC, and a cryotrapping interface are employed to achieve increasing levels of sensitivity. MS, MS/MS, and MS/MS/MS methods are compared to illustrate trade-offs between sensitivity and selectivity. Filtered Noise Field (FNF) technology is found to be an excellent means for achieving lower detection limits through selective storage of the ion(s) of interest during ionization. Figures of merit including typical sample sizes, detection limits, and response times are provided. The results indicate the potential of these techniques for atmospheric assessments, the High Speed Research Program, and advanced life support monitoring applications for NASA.

  18. March 2007 monitoring results for Centralia, Kansas.

    SciTech Connect

    LaFreniere, L. M.; Environmental Science Division

    2007-06-01

    In September 2005, periodic sampling of groundwater was initiated by the Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA) in the vicinity of a grain storage facility formerly operated by the CCC/USDA at Centralia, Kansas. The sampling at Centralia is being performed on behalf of the CCC/USDA by Argonne National Laboratory, in accord with a monitoring program approved by the Kansas Department of Health and Environment (KDHE). The objective is to monitor levels of carbon tetrachloride contamination identified in the groundwater at Centralia (Argonne 2003, 2004, 2005a). Under the KDHE-approved Monitoring Plan (Argonne 2005b), the groundwater is being sampled twice yearly (for a recommended period of two years) for analyses for volatile organic compounds (VOCs), as well as measurement of selected geochemical parameters to aid in the evaluation of possible natural contaminant degradation (reductive dechlorination) processes in the subsurface environment. The sampling is presently conducted in a network of 11 monitoring wells and 5 piezometers (Figure 1.1), at locations approved by the KDHE (Argonne 2006a). The results of groundwater sampling and VOCs analyses in September-October 2005, March 2006, and September 2006 were documented previously (Argonne 2006a,b). The results have demonstrated the presence of carbon tetrachloride contamination, at levels exceeding the KDHE Tier 2 Risk-Based Screening Level of 5 {micro}g/L for this compound, in a broad groundwater plume that has shown little movement. This report presents the results of the groundwater sampling at Centralia in March 2007, performed in accord with the KDHE-approved Monitoring Plan (Argonne 2005b). The March 2007 sampling represents the fourth monitoring event performed under the recommended two-year monitoring program approved by the KDHE. A final sampling event under this program is scheduled for September 2007.

  19. September 2007 monitoring results for Centralia, Kansas.

    SciTech Connect

    LaFreniere, L. M.; Environmental Science Division

    2008-05-01

    In September 2005, periodic sampling of groundwater was initiated by the Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA) in the vicinity of a grain storage facility formerly operated by the CCC/USDA at Centralia, Kansas. The sampling at Centralia is being performed on behalf of the CCC/USDA by Argonne National Laboratory, in accord with a monitoring program approved by the Kansas Department of Health and Environment (KDHE). The objective is to monitor levels of carbon tetrachloride contamination identified in the groundwater at Centralia (Argonne 2003, 2004, 2005a). Under the KDHE-approved monitoring plan (Argonne 2005b), the groundwater is being sampled twice yearly (for a recommended period of two years) for analyses for volatile organic compounds (VOCs), as well as measurement of selected geochemical parameters to aid in the evaluation of possible natural contaminant degradation (reductive dechlorination) processes in the subsurface environment. The sampling is presently conducted in a network of 10 monitoring wells and 6 piezometers (Figure 1.1), at locations approved by the KDHE (Argonne 2006a). The results of groundwater sampling and VOCs analyses in September-October 2005, March 2006, September 2006, and March 2007 were documented previously (Argonne 2006a,b, 2007a). The results have demonstrated the presence of carbon tetrachloride contamination, at levels exceeding the KDHE Tier 2 Risk-Based Screening Level of 5 {micro}g/L for this compound, in a broad groundwater plume that has shown little movement. This report presents the results of the groundwater sampling at Centralia in September 2007, performed in accord with the KDHE-approved monitoring plan (Argonne 2005b). The September 2007 sampling represents the fifth and final monitoring event performed under the recommended two-year monitoring program approved by the KDHE.

  20. Quality screening for air quality monitoring data in China.

    PubMed

    Liu, Jianzheng; Li, Weifeng; Li, Jie

    2016-09-01

    Particulate matter data obtained from the national air quality monitoring network in China has become an essential and critical data source for many current and forthcoming studies as well as the formulation and implementation of air pollution regulatory policies on particulate matter (PM2.5 and PM10). However, the quality control of this data is dubitable and can affect many future studies and policies. This study identifies and elucidates two significant quality control issues with the data. They are PM2.5 levels exceeding concurrent co-located PM10 levels and the registration of same concentrations for consecutive hours at some stations. Future studies utilizing particulate matter data need to acknowledge and address these issues to ensure accurate and reliable results. PMID:27376986

  1. Mobile Air Monitoring Data Processing Strategies and Effects on Spatial Air Pollution Trends

    EPA Science Inventory

    The collection of real-time air quality measurements while in motion (i.e., mobile monitoring) is currently conducted worldwide to evaluate in situ emissions, local air quality trends, and air pollutant exposure. This measurement strategy pushes the limits of traditional data an...

  2. DEVELOPMENT OF CRITERIA FOR SITING AIR MONITORING STATIONS

    EPA Science Inventory

    This paper reviews relevant research findings for the purpose of establishing a set of uniform national criteria for designating locations of air monitoring stations. Data first are presented showing the difficulty, in the absence of uniform criteria, of interpreting measurements...

  3. FAST-RESPONSE ISOTOPIC ALPHA CONTINUOUS AIR MONITOR (CAM)

    SciTech Connect

    Keith D. Patch

    2000-04-28

    The objective of this effort is to develop and test a novel Continuous Air Monitor (CAM) instrument for monitoring alpha-emitting radionuclides, using a technology that can be applied to Continuous Emission Monitoring (CEM) of thermal treatment system off gas streams. The CAM instrument will have very high alpha spectral resolution and provide real-time, on-line monitoring suitable for alerting workers of high concentrations of alpha-emitting radionuclides in the ambient air and for improved control of decontamination, dismantlement, and air emission control equipment. Base Phase I involves the design, development, and preliminary testing of a laboratory-scale instrument. Testing will initially be conducted using naturally-occurring radon progeny in ambient air. In the Optional Phase II, the Base Phase I instrument will be critically evaluated at the Lovelace Respiratory Research Institute (LRRI) with characterized plutonium aerosols; then an improved instrument will be built and field-tested at a suitable DOE site.

  4. Validation of a novel air toxic risk model with air monitoring.

    PubMed

    Pratt, Gregory C; Dymond, Mary; Ellickson, Kristie; Thé, Jesse

    2012-01-01

    Three modeling systems were used to estimate human health risks from air pollution: two versions of MNRiskS (for Minnesota Risk Screening), and the USEPA National Air Toxics Assessment (NATA). MNRiskS is a unique cumulative risk modeling system used to assess risks from multiple air toxics, sources, and pathways on a local to a state-wide scale. In addition, ambient outdoor air monitoring data were available for estimation of risks and comparison with the modeled estimates of air concentrations. Highest air concentrations and estimated risks were generally found in the Minneapolis-St. Paul metropolitan area and lowest risks in undeveloped rural areas. Emissions from mobile and area (nonpoint) sources created greater estimated risks than emissions from point sources. Highest cancer risks were via ingestion pathway exposures to dioxins and related compounds. Diesel particles, acrolein, and formaldehyde created the highest estimated inhalation health impacts. Model-estimated air concentrations were generally highest for NATA and lowest for the AERMOD version of MNRiskS. This validation study showed reasonable agreement between available measurements and model predictions, although results varied among pollutants, and predictions were often lower than measurements. The results increased confidence in identifying pollutants, pathways, geographic areas, sources, and receptors of potential concern, and thus provide a basis for informing pollution reduction strategies and focusing efforts on specific pollutants (diesel particles, acrolein, and formaldehyde), geographic areas (urban centers), and source categories (nonpoint sources). The results heighten concerns about risks from food chain exposures to dioxins and PAHs. Risk estimates were sensitive to variations in methodologies for treating emissions, dispersion, deposition, exposure, and toxicity. PMID:21651597

  5. March 2008 monitoring results for Centralia, Kansas.

    SciTech Connect

    LaFreniere, L. M.; Environmental Science Division

    2008-11-06

    In September 2005, periodic sampling of groundwater was initiated by the Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA) in the vicinity of a grain storage facility formerly operated by the CCC/USDA at Centralia, Kansas. The sampling at Centralia is being performed on behalf of the CCC/USDA by Argonne National Laboratory, in accord with a monitoring program approved by the Kansas Department of Health and Environment (KDHE). The objective is to monitor levels of carbon tetrachloride contamination identified in the groundwater at Centralia (Argonne 2003, 2004, 2005a). Under the KDHE-approved monitoring plan (Argonne 2005b), the groundwater is being sampled twice yearly (for a recommended period of two years) for analyses for volatile organic compounds (VOCs), as well as measurement of selected geochemical parameters to aid in the evaluation of possible natural contaminant degradation (reductive dechlorination) processes in the subsurface environment. The sampling is presently conducted in a network of 10 monitoring wells and 6 piezometers (Figure 1.1), at locations approved by the KDHE (Argonne 2006a). The results of groundwater sampling and VOCs analyses in September-October 2005, March 2006, September 2006, March 2007, and September 2007 were documented previously (Argonne 2006a,b, 2007a, 2008). The results have demonstrated the presence of carbon tetrachloride contamination, at levels exceeding the KDHE Tier 2 Risk-Based Screening Level of 5 {micro}g/L for this compound, in a broad groundwater plume that has shown little movement. This report presents the results of the groundwater sampling at Centralia in March 2008, performed in accord with the KDHE-approved monitoring plan (Argonne 2005b). The September 2007 sampling represented the fifth and final monitoring event performed under the recommended two-year monitoring program approved by the KDHE. The March 2008 sampling begins an extension of the approved monitoring that is to

  6. October 2008 monitoring results for Morrill, Kansas.

    SciTech Connect

    LaFreniere, L. M.; Environmental Science Division

    2009-03-10

    In September 2005, the Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA) initiated periodic sampling of groundwater in the vicinity of a grain storage facility formerly operated by the CCC/USDA at Morrill, Kansas. The sampling at Morrill is being performed on behalf of the CCC/USDA by Argonne National Laboratory, in accord with a monitoring program approved by the Kansas Department of Health and Environment (KDHE 2005), to monitor levels of carbon tetrachloride contamination identified in the groundwater at this site (Argonne 2004, 2005a). This report provides results for the most recent monitoring event, in October 2008. Under the KDHE-approved monitoring plan (Argonne 2005b), groundwater was initially sampled twice yearly for a period of two years (in fall 2005, in spring and fall 2006, and in spring and fall 2007). The samples were analyzed for volatile organic compounds (VOCs), as well as for selected geochemical parameters to aid in the evaluation of possible natural contaminant degradation (reductive dechlorination) processes in the subsurface environment. During the two-year period, the originally approved scope of the monitoring was expanded to include vegetation sampling (initiated in October 2006) and surface water and stream bed sediment sampling (initiated in March 2007, after a visual reconnaissance along Terrapin Creek [Argonne 2007a]). The analytical results for groundwater sampling events at Morrill in September 2005, March and September 2006, March and October 2007, and April 2008 were documented previously (Argonne 2006a,b, 2007b, 2008a,c). Those results consistently demonstrated the presence of carbon tetrachloride contamination, at levels exceeding the KDHE Tier 2 risk-based screening level (5.0 {micro}g/L) for this compound, in a groundwater plume extending generally south-southeastward from the former CCC/USDA facility, toward Terrapin Creek at the south edge of the town. Low levels ({le} 1.3 {micro}g/L) of carbon

  7. October 2007 monitoring results for Morrill, Kansas.

    SciTech Connect

    LaFreniere, L. M.; Environmental Science Division

    2008-03-26

    In September 2005, the Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA) initiated periodic sampling of groundwater in the vicinity of a grain storage facility formerly operated by the CCC/USDA at Morrill, Kansas. On the basis of available information, the CCC/USDA believes that one or more third parties operated this facility after termination of the CCC/USDA's lease in 1971. The sampling at Morrill is being performed on behalf of the CCC/USDA by Argonne National Laboratory, in accord with a monitoring program approved by the Kansas Department of Health and Environment (KDHE), to monitor levels of carbon tetrachloride contamination identified in the groundwater at this site (Argonne 2004, 2005a). Under the KDHE-approved monitoring plan (Argonne 2005b), the groundwater has been sampled twice yearly for a recommended period of two years. The samples are analyzed for volatile organic compounds (VOCs), as well as for selected geochemical parameters to aid in the evaluation of possible natural contaminant degradation (reductive dechlorination) processes in the subsurface environment. The sampling is presently conducted in a network of 12 monitoring wells and 3 private wells (Figure 1.1), at locations approved by the KDHE. The scope of the originally approved monitoring has been expanded to include vegetation sampling (initiated in October 2006) and surface water and stream bed sediment sampling (initiated in March 2007). The analytical results for groundwater sampling events at Morrill in September 2005, March 2006, September 2006, and March 2007 were documented previously (Argonne 2006a, 2007c,e). The results have demonstrated the presence of carbon tetrachloride contamination, at levels exceeding the KDHE Tier 2 Risk-Based Screening Level (5.0 {micro}g/L) for this compound, in a groundwater plume extending generally south-southeastward from the former CCC/USDA facility, toward Terrapin Creek at the south edge of the town. Little clear

  8. DESIGN OF LARGE-SCALE AIR MONITORING NETWORKS

    EPA Science Inventory

    The potential effects of air pollution on human health have received much attention in recent years. In the U.S. and other countries, there are extensive large-scale monitoring networks designed to collect data to inform the public of exposure risks to air pollution. A major crit...

  9. THE ENVIRONMENTAL PROTECTION AGENCY FOUR CORNERS AMBIENT AIR MONITORING NETWORK

    EPA Science Inventory

    This ambient air monitoring program was initiated with the overall objective of establishing an air quality base line for the Four Corners area of Arizona, Colorado, New Mexico, and Utah. The base line will be used in assessing the impact of the development of coal deposits and t...

  10. 75 FR 81126 - Revisions to Lead Ambient Air Monitoring Requirements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-27

    ... of the State and local monitoring network. If after a review of the data from the monitoring study we... Worldwide Web through the Technology Transfer Network (TTN). Following the Administrator's signature, a copy... various areas of air pollution control. III. Background The EPA issued a final rule on November 12,...

  11. METHODOLOGY FOR SITING AMBIENT AIR MONITORS AT THE NEIGHBORHOOD SCALE

    EPA Science Inventory

    In siting a monitor to measure compliance with U.S. National Ambient Air Quality Standards for particulate matter (PM), there is a need to characterize variations in PM concentration within a neighborhood-scale region in order to achieve monitor siting objectives.

    We p...

  12. September 2008 monitoring results for Centralia, Kansas.

    SciTech Connect

    LaFreniere, L. M.; Environmental Science Division

    2009-02-24

    In September 2005, periodic sampling of groundwater was initiated by the Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA) in the vicinity of a grain storage facility formerly operated by the CCC/USDA at Centralia, Kansas. The sampling at Centralia is being performed on behalf of the CCC/USDA by Argonne National Laboratory, in accord with a monitoring program approved by the Kansas Department of Health and Environment (KDHE). The objective is to monitor levels of carbon tetrachloride contamination identified in the groundwater at Centralia (Argonne 2003, 2004, 2005a). Under a KDHE-approved monitoring plan (Argonne 2005b), the groundwater was sampled twice yearly (for a recommended period of two years) for analyses for volatile organic compounds (VOCs), as well as measurement of selected geochemical parameters to aid in the evaluation of possible natural contaminant degradation (reductive dechlorination) processes in the subsurface environment. The sampling in September 2007 represented the fifth and final monitoring event performed under the two-year twice yearly monitoring program (Argonne 2006a,b, 2007a, 2008a). The results from the two-year monitoring program demonstrated the presence of carbon tetrachloride contamination at levels exceeding the KDHE Tier 2 Risk-Based Screening Level of 5 {micro}g/L for this compound in a broad groundwater plume that has shown little movement. The relative concentrations of chloroform, the primary degradation product of carbon tetrachloride, suggested that some degree of reductive dechlorination or natural biodegradation was taking place in situ at the former CCC/USDA facility on a localized scale. The CCC/USDA subsequently developed an Interim Measure Conceptual Design (Argonne 2007b), proposing a pilot test of the Adventus EHC in situ chemical reduction technology, that was approved by the KDHE in November 2007 (KDHE 2007). Implementation of the proposed interim measure occurred in December 2007

  13. Infrared Laser System for Extended Area Monitoring of Air Pollution

    NASA Technical Reports Server (NTRS)

    Snowman, L. R.; Gillmeister, R. J.

    1971-01-01

    An atmospheric pollution monitoring system using a spectrally scanning laser has been developed by the General Electric Company. This paper will report on an evaluation of a breadboard model, and will discuss applications of the concept to various ambient air monitoring situations. The system is adaptable to other tunable lasers. Operating in the middle infrared region, the system uses retroreflectors to measure average concentrations over long paths at low, safe power levels. The concept shows promise of meeting operational needs in ambient air monitoring and providing new data for atmospheric research.

  14. October 2008 monitoring results for Barnes, Kansas.

    SciTech Connect

    LaFreniere, L. M.; Environmental Science Division

    2009-02-26

    The Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA) operated a grain storage facility at Barnes, Kansas, during most of the interval 1949-1974. Carbon tetrachloride contamination was initially detected in 1986 in the town's public water supply wells. In 2006-2007, the CCC/USDA conducted a comprehensive targeted investigation at and near its former property in Barnes to characterize this contamination. Those results were reported previously (Argonne 2008a). In November 2007, the CCC/USDA began quarterly groundwater monitoring at Barnes. The monitoring is being conducted on behalf of the CCC/USDA by Argonne National Laboratory, in accord with the recommendations made in the report for the 2006-2007 targeted investigation (Argonne 2008a). The objective is to monitor the carbon tetrachloride contamination identified in the groundwater at Barnes. The sampling is presently conducted in a network of 28 individual monitoring wells (at 19 distinct locations), 2 public water supply wells, and 1 private well (Figure 1.1). The results of the 2006-2007 targeted investigation and the subsequent monitoring events in November 2007 (Argonne 2008b), March 2008 (Argonne 2008c), and July 2008 (Argonne 2008d) demonstrated the presence of carbon tetrachloride contamination in groundwater at levels exceeding the Kansas Department of Health and Environment (KDHE) Tier 2 risk-based screening level (RBSL) of 5.0 {micro}g/L for this compound. The contaminant plume appears to extend from the former CCC/USDA property northwestward, toward the Barnes public water supply wells. Information obtained during the 2006-2007 investigations indicates that at least one other potential source might have contributed to the groundwater contaminant plume (Argonne 2008a). The former agriculture building owned by the local school district, located immediately east of well PWS3, is also a potential source of the contamination. This current report presents the results of the fourth

  15. Compact spectroscopic sensor for air quality monitoring in spacecrafts

    NASA Astrophysics Data System (ADS)

    Scherer, Benjamin; Hamid, Hakim; Rosskopf, Jürgen; Forouhar, Siamak

    2011-01-01

    The air quality of any manned spacecraft needs to be continuously monitored in order to safeguard the health of the crew. Any fire event, accidental release of harmful gaseous contaminants or a malfunction in the air revitalization system has to be detected as fast as possible to provide enough time for the crew to react. In this paper, a fast sensor system based on laser spectroscopy is presented, which is able to detect three important gases: carbon monoxide for fire detection, hydrogen chloride for fire characterization and oxygen to monitor the air vitalization system. To provide a long maintenance-free operation time without the need for any consumables except power, a calibration-free measurement method was developed, which is only based on molecule specific constants which are available from the molecular data base HITRAN. The presented sensor offers the possibility for reliable and crosssensitivity-free air quality monitoring over a large pressure and temperature range.

  16. Results of an indoor air pollution investigation.

    PubMed

    Beller, M; Middaugh, J P

    1989-01-01

    After the opening of a new elementary school in fall 1986, several members of the school's staff noticed symptoms they attributed to the workplace. An investigation by the Occupational Safety and Health Branch (OSHA) of the Alaska Department of Labor found no major health problems and concluded that fireproofing at the school may have caused a petroleum-like odor. In fall 1987, parents reported illness in their children that they attributed to school attendance. Subsequent epidemiologic investigation found that student and staff absentee rates were not increased and were similar to other schools in the district. Testing conducted by the National Institute for Occupational Safety and Health (NIOSH) confirmed that the petroleum-like odor was due to the fireproofing. Toxicologic information and the results of air sampling confirmed that no adverse health effects would be expected from the product. By working together with NIOSH, OSHA, the school district, and a consulting mechanical engineer, deficiencies in the school's ventilation system were discovered and immediately corrected with interim engineering changes. Only by bringing multiple agencies together and openly sharing findings with concerned parents and staff were the problems at the school resolved. PMID:2596649

  17. Evaluation of observation-fused regional air quality model results for population air pollution exposure estimation.

    PubMed

    Chen, Gang; Li, Jingyi; Ying, Qi; Sherman, Seth; Perkins, Neil; Rajeshwari, Sundaram; Mendola, Pauline

    2014-07-01

    In this study, Community Multiscale Air Quality (CMAQ) model was applied to predict ambient gaseous and particulate concentrations during 2001 to 2010 in 15 hospital referral regions (HRRs) using a 36-km horizontal resolution domain. An inverse distance weighting based method was applied to produce exposure estimates based on observation-fused regional pollutant concentration fields using the differences between observations and predictions at grid cells where air quality monitors were located. Although the raw CMAQ model is capable of producing satisfying results for O3 and PM2.5 based on EPA guidelines, using the observation data fusing technique to correct CMAQ predictions leads to significant improvement of model performance for all gaseous and particulate pollutants. Regional average concentrations were calculated using five different methods: 1) inverse distance weighting of observation data alone, 2) raw CMAQ results, 3) observation-fused CMAQ results, 4) population-averaged raw CMAQ results and 5) population-averaged fused CMAQ results. It shows that while O3 (as well as NOx) monitoring networks in the HRRs are dense enough to provide consistent regional average exposure estimation based on monitoring data alone, PM2.5 observation sites (as well as monitors for CO, SO2, PM10 and PM2.5 components) are usually sparse and the difference between the average concentrations estimated by the inverse distance interpolated observations, raw CMAQ and fused CMAQ results can be significantly different. Population-weighted average should be used to account for spatial variation in pollutant concentration and population density. Using raw CMAQ results or observations alone might lead to significant biases in health outcome analyses. PMID:24747248

  18. Evaluation of Observation-Fused Regional Air Quality Model Results for Population Air Pollution Exposure Estimation

    PubMed Central

    Chen, Gang; Li, Jingyi; Ying, Qi; Sherman, Seth; Perkins, Neil; Rajeshwari, Sundaram; Mendola, Pauline

    2014-01-01

    In this study, Community Multiscale Air Quality (CMAQ) model was applied to predict ambient gaseous and particulate concentrations during 2001 to 2010 in 15 hospital referral regions (HRRs) using a 36-km horizontal resolution domain. An inverse distance weighting based method was applied to produce exposure estimates based on observation-fused regional pollutant concentration fields using the differences between observations and predictions at grid cells where air quality monitors were located. Although the raw CMAQ model is capable of producing satisfying results for O3 and PM2.5 based on EPA guidelines, using the observation data fusing technique to correct CMAQ predictions leads to significant improvement of model performance for all gaseous and particulate pollutants. Regional average concentrations were calculated using five different methods: 1) inverse distance weighting of observation data alone, 2) raw CMAQ results, 3) observation-fused CMAQ results, 4) population-averaged raw CMAQ results and 5) population-averaged fused CMAQ results. It shows that while O3 (as well as NOx) monitoring networks in the HRR regions are dense enough to provide consistent regional average exposure estimation based on monitoring data alone, PM2.5 observation sites (as well as monitors for CO, SO2, PM10 and PM2.5 components) are usually sparse and the difference between the average concentrations estimated by the inverse distance interpolated observations, raw CMAQ and fused CMAQ results can be significantly different. Population-weighted average should be used to account spatial variation in pollutant concentration and population density. Using raw CMAQ results or observations alone might lead to significant biases in health outcome analyses. PMID:24747248

  19. Mobile air monitoring data processing strategies and effects on spatial air pollution trends

    NASA Astrophysics Data System (ADS)

    Brantley, H. L.; Hagler, G. S. W.; Kimbrough, S.; Williams, R. W.; Mukerjee, S.; Neas, L. M.

    2013-12-01

    The collection of real-time air quality measurements while in motion (i.e., mobile monitoring) is currently conducted worldwide to evaluate in situ emissions, local air quality trends, and air pollutant exposure. This measurement strategy pushes the limits of traditional data analysis with complex second-by-second multipollutant data varying as a function of time and location. Data reduction and filtering techniques are often applied to deduce trends, such as pollutant spatial gradients downwind of a highway. However, rarely do mobile monitoring studies report the sensitivity of their results to the chosen data processing approaches. The study being reported here utilized a large mobile monitoring dataset collected on a roadway network in central North Carolina to explore common data processing strategies including time-alignment, short-term emissions event detection, background estimation, and averaging techniques. One-second time resolution measurements of ultrafine particles ≤ 100 nm in diameter (UFPs), black carbon (BC), particulate matter (PM), carbon monoxide (CO), carbon dioxide (CO2), and nitrogen dioxide (NO2) were collected on twelve unique driving routes that were repeatedly sampled. Analyses demonstrate that the multiple emissions event detection strategies reported produce generally similar results and that utilizing a median (as opposed to a mean) as a summary statistic may be sufficient to avoid bias in near-source spatial trends. Background levels of the pollutants are shown to vary with time, and the estimated contributions of the background to the mean pollutant concentrations were: BC (6%), PM2.5-10 (12%), UFPs (19%), CO (38%), PM10 (45%), NO2 (51%), PM2.5 (56%), and CO2 (86%). Lastly, while temporal smoothing (e.g., 5 s averages) results in weak pair-wise correlation and the blurring of spatial trends, spatial averaging (e.g., 10 m) is demonstrated to increase correlation and refine spatial trends.

  20. Air tightness monitoring by IR thermography

    NASA Astrophysics Data System (ADS)

    Grinzato, Ermanno G.; Marinetti, Sergio; Bison, Paolo G.

    2004-04-01

    The standard air tightness test of containers is based on measurement of global parameters as the outlet of a specific gas, detected by specialised mass spectrometers. The identification and location of air leakages is extremely important especially for the container manufacturer. At the same time, the measure of the mass flux is of importance. IR Thermography has been successfully applied for leakages detection on buildings, but unfortunately, the noise due to The standard air tightness test of containers is based on measurement of global parameters as the outlet of a specific gas, detected by specialised mass spectrometers. The identification and location of air leakages is extremely important especially for the container manufacturer. At the same time, the measure of the mass flux is of importance. IR Thermography has been successfully applied for leakage detection on buildings, but unfortunately, the noise due to environment limits its applicability, particularly in case of a small flux. A new thermal procedure has been developed for the leakage detection. The technique is based on the stimulation of the envelope with a low oscillating heat flux and lock-in analysis. An airflow is injected, with a harmonically varying flowrate and a slightly higher temperature than the ambient. Then, the thermograms sequence is analyzed in the frequency domain. A review of quantitative techniques for the convective heat exchange measurement is reported. The procedure has been utilized for special containers used for both transport and exhibition of pictures inside museums. Tests performed before and after gaskets improvements show the capability of the technique to estimate qualitatively the airflow.

  1. The use of video for air pollution source monitoring

    SciTech Connect

    Ferreira, F.; Camara, A.

    1999-07-01

    The evaluation of air pollution impacts from single industrial emission sources is a complex environmental engineering problem. Recent developments in multimedia technologies used by personal computers improved the digitizing and processing of digital video sequences. This paper proposes a methodology where statistical analysis of both meteorological and air quality data combined with digital video images are used for monitoring air pollution sources. One of the objectives of this paper is to present the use of image processing algorithms in air pollution source monitoring. CCD amateur video cameras capture images that are further processed by computer. The use of video as a remote sensing system was implemented with the goal of determining some particular parameters, either meteorological or related with air quality monitoring and modeling of point sources. These parameters include the remote calculation of wind direction, wind speed, gases stack's outlet velocity, and stack's effective emission height. The characteristics and behavior of a visible pollutant's plume is also studied. Different sequences of relatively simple image processing operations are applied to the images gathered by the different cameras to segment the plume. The algorithms are selected depending on the atmospheric and lighting conditions. The developed system was applied to a 1,000 MW fuel power plant located at Setubal, Portugal. The methodology presented shows that digital video can be an inexpensive form to get useful air pollution related data for monitoring and modeling purposes.

  2. Air Force electrochemical impregnation process results

    NASA Technical Reports Server (NTRS)

    Miller, L. E.

    1978-01-01

    The status of the Air Force Electrochemical program was reviewed. The performance characteristics of the system was attributed to the use of an electrochemical impregnation process. The electrode improvements, the prototype equipment designs, and the actual construction of a production facility are discussed.

  3. Air Monitoring for Hazardous Gas Detection

    NASA Technical Reports Server (NTRS)

    Arkin, C. Richard; Griffin, Timothy P.; Adams, Frederick W.; Naylor, Guy; Haskell, William; Floyd, David; Curley, Charles; Follistein, Duke W.

    2004-01-01

    The Hazardous Gas Detection Lab (HGDL) at Kennedy Space Center is involved in the design and development of instrumentation that can detect and quantify various hazardous gases. Traditionally these systems are designed for leak detection of the cryogenic gases used for the propulsion of the Shuttle and other vehicles. Mass spectrometers are the basis of these systems, which provide excellent quantitation, sensitivity, selectivity, response times and detection limits. A Table lists common gases monitored for aerospace applications. The first five gases, hydrogen, helium, nitrogen, oxygen, and argon are historically the focus of the HGDL.

  4. Monitoring the global environment. An assessment of urban air quality

    SciTech Connect

    Not Available

    1989-10-01

    The Global Environment Monitoring System (GEMS) operates worldwide networks to monitor both air and water quality under the auspices of the World Health Organization (WHO) and the United Nations Environment Program (UNEP). In most cities, there are three GEMS/air monitoring stations: one located in an industrial zone, one in a commercial zone, and one in a residential area. The data obtained in these stations permit a reasonable evaluation of minimum and maximum emission levels and of long-term trends in average concentrations of pollutants. The body of the recent report is based on GEMS/Air data for sulfur dioxide nitrogen dioxide, carbon monoxide, lead and suspended particulate matter. The effects of these five major pollutants that are emitted in relatively large quantities and are common to virtually all outdoor and indoor environments are summarized.

  5. Wide Area Wind Field Monitoring Status & Results

    SciTech Connect

    Alan Marchant; Jed Simmons

    2011-09-30

    Volume-scanning elastic has been investigated as a means to derive 3D dynamic wind fields for characterization and monitoring of wind energy sites. An eye-safe volume-scanning lidar system was adapted for volume imaging of aerosol concentrations out to a range of 300m. Reformatting of the lidar data as dynamic volume images was successfully demonstrated. A practical method for deriving 3D wind fields from dynamic volume imagery was identified and demonstrated. However, the natural phenomenology was found to provide insufficient aerosol features for reliable wind sensing. The results of this study may be applicable to wind field measurement using injected aerosol tracers.

  6. Monitoring tritium in air containing other radioactive gases

    SciTech Connect

    Jalbert, R.A.

    1982-09-01

    A brief survey is presented of methods that have been developed for active tritium monitoring that may be applied to measure tritium concentrations in air containing /sup 13/N, /sup 16/N, and /sup 41/Ar produced by D-T neutrons. Included are instruments that employ current subtraction to achieve discriminations and others that selectively remove atmospheric water vapor from stream of activated air.

  7. Air Monitoring of Emissions from the Fukushima Daiichi Reactor

    SciTech Connect

    McNaughton, Michael; Allen, Shannon P.; Archuleta, Debra C.; Brock, Burgandy; Coronado, Melissa A.; Dewart, Jean M.; Eisele, William F. Jr.; Fuehne, David P.; Gadd, Milan S.; Green, Andrew A.; Lujan, Joan J.; MacDonell, Carolyn; Whicker, Jeffrey J.

    2012-06-12

    In response to the disasters in Japan on March 11, 2011, and the subsequent emissions from Fukushima-Daiichi, we monitored the air near Los Alamos using four air-monitoring systems: the standard AIRNET samplers, the standard rad-NESHAP samplers, the NEWNET system, and high-volume air samplers. Each of these systems has advantages and disadvantages. In combination, they provide a comprehensive set of measurements of airborne radionuclides near Los Alamos during the weeks following March 11. We report air-monitoring measurements of the fission products released from the Fukushima-Daiichi nuclear-power-plant accident in 2011. Clear gamma-spectrometry peaks were observed from Cs-134, Cs-136, Cs-137, I-131, I132, Te-132, and Te-129m. These data, together with measurements of other radionuclides, are adequate for an assessment and assure us that radionuclides from Fukushima Daiichi did not present a threat to human health at or near Los Alamos. The data demonstrate the capabilities of the Los Alamos air-monitoring systems.

  8. Off-site air monitoring following methyl bromide chamber and building fumigations and evaluation of the ISCST air dispersion model

    SciTech Connect

    Barry, T.; Swgawa, R.; Wofford, P.

    1995-12-31

    The Department of Pesticide Regulation`s preliminary risk characterization of methyl bromide indicated an inadequate margin of safety for several exposure scenarios. Characterization of the air concentrations associated with common methyl bromide use patterns was necessary to determine specific scenarios that result in an unacceptable margin of safety. Field monitoring data were used in conjunction with the Industrial Source Complex, Short Tenn (ISCST) air dispersion model to characterize air concentrations associated with various types of methyl bromide applications. Chamber and building fumigations were monitored and modelled. For each fumigation the emission rates, chamber or building specifications and on-site meteorological data were input into the ISCST model. The model predicted concentrations were compared to measured air concentrations. The concentrations predicted by the ISCST model reflect both the pattern and magnitude of the measured concentrations. Required buffer zones were calculated using the ISCST output.

  9. Continuous air monitor for alpha-emitting aerosol particles

    SciTech Connect

    McFarland, A.R.; Ortiz, C.A. . Dept. of Mechanical Engineering); Rodgers, J.C.; Nelson, D.C. )

    1990-01-01

    A new alpha Continuous Air Monitor (CAM) sampler is being developed for use in detecting the presence of alpha-emitting aerosol particles. The effort involves design, fabrication and evaluation of systems for the collection of aerosol and for the processing of data to speciate and quantify the alpha emitters of interest. At the present time we have a prototype of the aerosol sampling system and we have performed wind tunnel tests to characterize the performance of the device for different particle sizes, wind speeds, flow rates and internal design parameters. The results presented herein deal with the aerosol sampling aspects of the new CAM sampler. Work on the data processing, display and alarm functions is being done in parallel with the particle sampling work and will be reported separately at a later date. 17 refs., 5 figs., 3 tabs.

  10. Wireless sensor networks for indoor air quality monitoring.

    PubMed

    Yu, Tsang-Chu; Lin, Chung-Chih; Chen, Chun-Chang; Lee, Wei-Lun; Lee, Ren-Guey; Tseng, Chao-Heng; Liu, Shi-Ping

    2013-02-01

    The purpose of this study is to build an indoor air quality monitoring system based on wireless sensor networks (WSNs) technology. The main functions of the system include (1) remote parameter adjustment and firmware update mechanism for the sensors to enhance the flexibility and convenience of the system, (2) sensor nodes are designed by referring to the IEEE 1451.4 standard. This way, sensor nodes can automatically adjust and be plug and play, and (3) calibration method to strength the measurement value's sensitivity and accuracy. The experimental results show that transmission speed improves 30% than Trickle, transmission volume reduced to 42% of the original volume, updating task in 5*5 network topology can be executed 1.79 times and power consumption reduced to 30%. When baseline drifts, we can use the firmware update mechanism to adjust the reference value. The way can reduce error percentage from 15% to 7%. PMID:22133488

  11. Feasibility of wake vortex monitoring systems for air terminals

    NASA Technical Reports Server (NTRS)

    Wilson, D. J.; Shrider, K. R.; Lawrence, T. R.

    1972-01-01

    Wake vortex monitoring systems, especially those using laser Doppler sensors, were investigated. The initial phases of the effort involved talking with potential users (air traffic controllers, pilots, etc.) of a wake vortex monitoring system to determine system requirements from the user's viewpoint. These discussions involved the volumes of airspace to be monitored for vortices, and potential methods of using the monitored vortex data once the data are available. A subsequent task led to determining a suitable mathematical model of the vortex phenomena and developing a mathematical model of the laser Doppler sensor for monitoring the vortex flow field. The mathematical models were used in combination to help evaluate the capability of laser Doppler instrumentation in monitoring vortex flow fields both in the near vicinity of the sensor (within 1 kilometer and at long ranges(10 kilometers).

  12. PREV'AIR, A Platform for Air Quality Monitoring and Forecasting

    NASA Astrophysics Data System (ADS)

    Honore, C.; Menut, L.; Bessagnet, B.; Meleux, F.; R, L.; Vautard, R.; Beekmann, M.; Poisson, N.; Peuch, V.

    2006-12-01

    The PREV'AIR system is one among the few systems for air pollution forecasting currently running in Europe. Since 2003, observation data and model outputs are displayed daily on a web site (http://www.prevair.org/en/) in order to monitor and forecast surface chemical concentrations fields. Results are ozone, NO2, PM2.5 and PM10 maps. Statistical scores are also computed (maxima and daily average) and comparisons to the whole set of available near-real time surface measurements are performed. In summertime, alert criteria based on ozone concentration thresholds are evaluated ; in case of a major pollution risk, informations are sent to national authorities and televisions. In addition, the available ozone and PM10 observations data are used based on an optimal interpolation method to build 'analysis' maps integrating all sources of information. We first present the forecast system and the statistical scores computed for previous years: for example, for surface ozone concentrations forecasts during the whole summer of 2004, the bias is less than 5 ug/m-3, with a RMSE less than 19 ug/m-3 and a correlation factor of 0.82. This shows that the PREV'AIR system is able to forecast a large majority of the pollution events observed over Europe. An analysis of the causes of these errors is given. This gives further insights into which efforts have to be done in air quality modeling. In the framework of the GMES PROMOTE and GEMS European projects, PREV'AIR will quickly evolve in the next few years: we present, in the second part, the current projects concerning the models used. This includes developments both for meteorology and chemistry-transport modeling (CTM), particularly for aerosols (including dust). We also discuss the implementation of variational methods to assimilate satellite data. Finally, the feasability of using several models to deliver a single forecast (multi model approach) will be investigated.

  13. Operational results from the LHC luminosity monitors

    SciTech Connect

    Miyamoto, R.; Ratti, A.; Matis, H.S.; Stezelberger, T.; Turner, W.C.; Yaver, H.; Bravin, E.

    2011-03-28

    The luminosity monitors for the high luminosity regions in the LHC have been operating to monitor and optimize the luminosity since 2009. The device is a gas ionization chamber inside the neutral particle absorber 140 m from the interaction point and monitors showers produced by high energy neutral particles from the collisions. It has the ability to resolve the bunch-by-bunch luminosity as well as to survive the extreme level of radiation in the nominal LHC operation. We present operational results of the device during proton and lead ion operations in 2010 and make comparisons with measurements of experiments. The Large Hadron Collider (LHC) at CERN can accelerate proton and lead ion beams to 7 TeV and 547 TeV and produce collisions of these particles. Luminosity measures performance of the LHC and is particularly important for experiments in high luminosity interaction points (IPs), ATLAS (IP1) and CMS (IP5). To monitor and optimize the luminosities of these IPs, BRAN (Beam RAte Neutral) detectors [1, 2] have been installed and operating since the beginning of the 2009 operation [3]. A neutral particle absorber (TAN) protects the D2 separation dipole from high energy forward neutral particles produced in the collisions [4]. These neutral particles produce electromagnetic and hadronic showers inside the TAN and their energy flux is proportional to the collision rate and hence to the luminosity. The BRAN detector is an Argon gas ionization chamber installed inside the TANs on both sides of the IP1 and IP5 and monitors the relative changes in the luminosity by detecting the ionization due to these showers. When the number of collisions per bunch crossing (multiplicity) is small, the shower rate inside the TAN is also proportional to the luminosity. Hence, the detector is designed to operate by measuring either the shower rate (counting mode for low and intermediate luminosities) or the average shower flux (pulse height mode for high luminosities). The detector is

  14. 30 CFR 7.507 - Air-monitoring components.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Air-monitoring components. 7.507 Section 7.507 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND... with the ability to determine the concentrations of carbon dioxide, carbon monoxide, oxygen,...

  15. 30 CFR 7.507 - Air-monitoring components.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Air-monitoring components. 7.507 Section 7.507 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND... with the ability to determine the concentrations of carbon dioxide, carbon monoxide, oxygen,...

  16. 30 CFR 7.507 - Air-monitoring components.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Air-monitoring components. 7.507 Section 7.507 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND... with the ability to determine the concentrations of carbon dioxide, carbon monoxide, oxygen,...

  17. Monitoring of air pollution by plants methods and problems

    SciTech Connect

    Steubing, L.; Jager, H.J.

    1985-01-01

    Ecosystem pollution is often discovered too late for preventive measure to be implemented. Papers include the topics of methods and problems of bioindication of air pollution. The participants discussed passive and active biological monitoring, including mapping of natural vegetation (lichens and mosses, for example) and plant exposure. Morphological and microscopical studies, chemical, physiological and biochemical investigations are presented.

  18. Raman gas analyzer applicability to monitoring of gaseous air pollution

    NASA Astrophysics Data System (ADS)

    Petrov, D. V.; Matrosov, I. I.; Tikhomirov, A. A.

    2015-11-01

    It is shown that the main problem, arising when designing a stationary Raman gas analyzer intended to monitor gaseous air pollutions, is to get SRS signals of sufficient intensity. The engineering solutions are presented that provide the required sensitivity (~ 50-100 ppb). It is achieved by compressing a gas medium under analysis and gaining intensity of the exciting laser radiation.

  19. Air Monitoring: New Advances in Sampling and Detection

    PubMed Central

    Watson, Nicola; Davies, Stephen; Wevill, David

    2011-01-01

    As the harmful effects of low-level exposure to hazardous organic air pollutants become more evident, there is constant pressure to improve the detection limits of indoor and ambient air monitoring methods, for example, by collecting larger air volumes and by optimising the sensitivity of the analytical detector. However, at the other end of the scale, rapid industrialisation in the developing world and growing pressure to reclaim derelict industrial land for house building is driving the need for air monitoring methods that can reliably accommodate very-high-concentration samples in potentially aggressive matrices. This paper investigates the potential of a combination of two powerful gas chromatography—based analytical enhancements—sample preconcentration/thermal desorption and time-of-flight mass spectrometry—to improve quantitative and qualitative measurement of very-low-(ppt) level organic chemicals, even in the most complex air samples. It also describes new, practical monitoring options for addressing equally challenging high-concentration industrial samples. PMID:22241966

  20. Modeling, Monitoring and Fault Diagnosis of Spacecraft Air Contaminants

    NASA Technical Reports Server (NTRS)

    Ramirez, W. Fred; Skliar, Mikhail; Narayan, Anand; Morgenthaler, George W.; Smith, Gerald J.

    1998-01-01

    Control of air contaminants is a crucial factor in the safety considerations of crewed space flight. Indoor air quality needs to be closely monitored during long range missions such as a Mars mission, and also on large complex space structures such as the International Space Station. This work mainly pertains to the detection and simulation of air contaminants in the space station, though much of the work is easily extended to buildings, and issues of ventilation systems. Here we propose a method with which to track the presence of contaminants using an accurate physical model, and also develop a robust procedure that would raise alarms when certain tolerance levels are exceeded. A part of this research concerns the modeling of air flow inside a spacecraft, and the consequent dispersal pattern of contaminants. Our objective is to also monitor the contaminants on-line, so we develop a state estimation procedure that makes use of the measurements from a sensor system and determines an optimal estimate of the contamination in the system as a function of time and space. The real-time optimal estimates in turn are used to detect faults in the system and also offer diagnoses as to their sources. This work is concerned with the monitoring of air contaminants aboard future generation spacecraft and seeks to satisfy NASA's requirements as outlined in their Strategic Plan document (Technology Development Requirements, 1996).

  1. Time-resolved air monitoring using Fourier absorption spectroscopy

    SciTech Connect

    Biermann, H.W.

    1995-12-31

    Two categories where spectroscopic techniques excel are the capabilities to perform air analyses in situ and to obtain data at very high time resolutions. Because of these features, the Department of Pesticide Regulation augmented its extensive air monitoring capabilities with a Fourier transform infrared (FTIR) spectrometer using open-path optical systems for time resolved ambient air monitoring. A description of the instrumentation and the data analysis procedures will be presented based on two data sets obtained with this FTIR system. In one case, a 100 m folded optical path was used to measure methyl bromide concentrations after fumigation in a warehouse with a time resolution of 15 min and a detection limit of 0.2 ppm. And trying to assess the capability of this FTIR spectrometer to determine flux, water vapor concentrations were measured with a four-meter path length at a time resolution of 0.6 seconds.

  2. Failure Monitoring and Leakage Detection for Underground Storage of Compressed Air Energy in Lined Rock Caverns

    NASA Astrophysics Data System (ADS)

    Kim, Hyung-Mok; Rutqvist, Jonny; Kim, Hyunwoo; Park, Dohyun; Ryu, Dong-Woo; Park, Eui-Seob

    2016-02-01

    Underground compressed air energy storage (CAES) in lined rock caverns (LRCs) provides a promising solution for storing energy on a large scale. One of the essential issues facing underground CAES implementation is the risk of air leakage from the storage caverns. Compressed air may leak through an initial defect in the inner containment liner, such as imperfect welds and construction joints, or through structurally damaged points of the liner during CAES operation for repeated compression and decompression cycles. Detection of the air leakage and identification of the leakage location around the underground storage cavern are required. In this study, we analyzed the displacement (or strain) monitoring method to detect the mechanical failure of liners that provides major pathways of air leakage using a previously developed numerical technique simulating the coupled thermodynamic and geomechanical behavior of underground CAES in LRCs. We analyzed the use of pressure monitoring to detect air leakage and characterize the leakage location. From the simulation results, we demonstrated that tangential strain monitoring at the inner face of sealing liners could enable one to detect failure. We also demonstrated that the use of the cross-correlation method between pressure history data measured at various sensors could identify the air leak location. These results may help in the overall design of a monitoring and alarm system for the successful implementation and operation of CAES in LRCs.

  3. Comparison of exposure estimation methods for air pollutants: ambient monitoring data and regional air quality simulation.

    PubMed

    Bravo, Mercedes A; Fuentes, Montserrat; Zhang, Yang; Burr, Michael J; Bell, Michelle L

    2012-07-01

    Air quality modeling could potentially improve exposure estimates for use in epidemiological studies. We investigated this application of air quality modeling by estimating location-specific (point) and spatially-aggregated (county level) exposure concentrations of particulate matter with an aerodynamic diameter less than or equal to 2.5 μm (PM(2.5)) and ozone (O(3)) for the eastern U.S. in 2002 using the Community Multi-scale Air Quality (CMAQ) modeling system and a traditional approach using ambient monitors. The monitoring approach produced estimates for 370 and 454 counties for PM(2.5) and O(3), respectively. Modeled estimates included 1861 counties, covering 50% more population. The population uncovered by monitors differed from those near monitors (e.g., urbanicity, race, education, age, unemployment, income, modeled pollutant levels). CMAQ overestimated O(3) (annual normalized mean bias=4.30%), while modeled PM(2.5) had an annual normalized mean bias of -2.09%, although bias varied seasonally, from 32% in November to -27% in July. Epidemiology may benefit from air quality modeling, with improved spatial and temporal resolution and the ability to study populations far from monitors that may differ from those near monitors. However, model performance varied by measure of performance, season, and location. Thus, the appropriateness of using such modeled exposures in health studies depends on the pollutant and metric of concern, acceptable level of uncertainty, population of interest, study design, and other factors. PMID:22579357

  4. Comparison of exposure estimation methods for air pollutants: Ambient monitoring data and regional air quality simulation

    PubMed Central

    Bravo, Mercedes A.; Fuentes, Montserrat; Zhang, Yang; Burr, Michael J.; Bell, Michelle L.

    2012-01-01

    Air quality modeling could potentially improve exposure estimates for use in epidemiological studies. We investigated this application of air quality modeling by estimating location-specific (point) and spatially-aggregated (county level) exposure concentrations of particulate matter with an aerodynamic diameter less than or equal to 2.5 µm (PM2.5) and ozone (O3) for the eastern U.S. in 2002 using the Community Multi-scale Air Quality (CMAQ) modeling system and a traditional approach using ambient monitors. The monitoring approach produced estimates for 370 and 454 counties for PM2.5 and O3, respectively. Modeled estimates included 1861 counties, covering 50% more population. The population uncovered by monitors differed from those near monitors (e.g., urbanicity, race, education, age, unemployment, income, modeled pollutant levels). CMAQ overestimated O3 (annual normalized mean bias = 4.30%), while modeled PM2.5 had an annual normalized mean bias of −2.09%, although bias varied seasonally, from 32% in November to −27% in July. Epidemiology may benefit from air quality modeling, with improved spatial and temporal resolution and the ability to study populations far from monitors that may differ from those near monitors. However, model performance varied by measure of performance, season, and location. Thus, the appropriateness of using such modeled exposures in health studies depends on the pollutant and metric of concern, acceptable level of uncertainty, population of interest, study design, and other factors. PMID:22579357

  5. Toward the Next Generation of Air Quality Monitoring Indicators

    NASA Technical Reports Server (NTRS)

    Hsu, Angel; Reuben, Aaron; Shindell, Drew; deSherbinin, Alex; Levy, Marc

    2013-01-01

    This paper introduces an initiative to bridge the state of scientific knowledge on air pollution with the needs of policymakers and stakeholders to design the "next generation" of air quality indicators. As a first step this initiative assesses current monitoring and modeling associated with a number of important pollutants with an eye toward identifying knowledge gaps and scientific needs that are a barrier to reducing air pollution impacts on human and ecosystem health across the globe. Four outdoor air pollutants were considered e particulate matter, ozone, mercury, and Persistent Organic Pollutants (POPs) e because of their clear adverse impacts on human and ecosystem health and because of the availability of baseline data for assessment for each. While other papers appearing in this issue will address each pollutant separately, this paper serves as a summary of the initiative and presents recommendations for needed investments to provide improved measurement, monitoring, and modeling data for policyrelevant indicators. The ultimate goal of this effort is to enable enhanced public policy responses to air pollution by linking improved data and measurement methods to decision-making through the development of indicators that can allow policymakers to better understand the impacts of air pollution and, along with source attribution based on modeling and measurements, facilitate improved policies to solve it. The development of indicators represents a crucial next step in this process.

  6. Toward the next generation of air quality monitoring indicators

    NASA Astrophysics Data System (ADS)

    Hsu, Angel; Reuben, Aaron; Shindell, Drew; de Sherbinin, Alex; Levy, Marc

    2013-12-01

    This paper introduces an initiative to bridge the state of scientific knowledge on air pollution with the needs of policymakers and stakeholders to design the “next generation” of air quality indicators. As a first step this initiative assesses current monitoring and modeling associated with a number of important pollutants with an eye toward identifying knowledge gaps and scientific needs that are a barrier to reducing air pollution impacts on human and ecosystem health across the globe. Four outdoor air pollutants were considered - particulate matter, ozone, mercury, and Persistent Organic Pollutants (POPs) - because of their clear adverse impacts on human and ecosystem health and because of the availability of baseline data for assessment for each. While other papers appearing in this issue will address each pollutant separately, this paper serves as a summary of the initiative and presents recommendations for needed investments to provide improved measurement, monitoring, and modeling data for policy-relevant indicators. The ultimate goal of this effort is to enable enhanced public policy responses to air pollution by linking improved data and measurement methods to decision-making through the development of indicators that can allow policymakers to better understand the impacts of air pollution and, along with source attribution based on modeling and measurements, facilitate improved policies to solve it. The development of indicators represents a crucial next step in this process.

  7. Toward the next generation of air quality monitoring: Particulate Matter

    NASA Astrophysics Data System (ADS)

    Engel-Cox, Jill; Kim Oanh, Nguyen Thi; van Donkelaar, Aaron; Martin, Randall V.; Zell, Erica

    2013-12-01

    Fine particulate matter is one of the key global pollutants affecting human health. Satellite and ground-based monitoring technologies as well as chemical transport models have advanced significantly in the past 50 years, enabling improved understanding of the sources of fine particles, their chemical composition, and their effect on human and environmental health. The ability of air pollution to travel across country and geographic boundaries makes particulate matter a global problem. However, the variability in monitoring technologies and programs and poor data availability make global comparison difficult. This paper summarizes fine particle monitoring, models that integrate ground-based and satellite-based data, and communications, then recommends steps for policymakers and scientists to take to expand and improve local and global indicators of particulate matter air pollution. One of the key set of recommendations to improving global indicators is to improve data collection by basing particulate matter monitoring design and stakeholder communications on the individual country, its priorities, and its level of development, while at the same time creating global data standards for inter-country comparisons. When there are good national networks that produce consistent quality data that is shared openly, they serve as the foundation for better global understanding through data analysis, modeling, health impact studies, and communication. Additionally, new technologies and systems should be developed to expand personal air quality monitoring and participation of non-specialists in crowd-sourced data collections. Finally, support to the development and improvement of global multi-pollutant indicators of the health and economic effects of air pollution is essential to addressing improvement of air quality around the world.

  8. SAMIRA - SAtellite based Monitoring Initiative for Regional Air quality

    NASA Astrophysics Data System (ADS)

    Schneider, Philipp; Stebel, Kerstin; Ajtai, Nicolae; Diamandi, Andrei; Horalek, Jan; Nicolae, Doina; Stachlewska, Iwona; Zehner, Claus

    2016-04-01

    Here, we present a new ESA-funded project entitled Satellite based Monitoring Initiative for Regional Air quality (SAMIRA), which aims at improving regional and local air quality monitoring through synergetic use of data from present and upcoming satellites, traditionally used in situ air quality monitoring networks and output from chemical transport models. Through collaborative efforts in four countries, namely Romania, Poland, the Czech Republic and Norway, all with existing air quality problems, SAMIRA intends to support the involved institutions and associated users in their national monitoring and reporting mandates as well as to generate novel research in this area. Despite considerable improvements in the past decades, Europe is still far from achieving levels of air quality that do not pose unacceptable hazards to humans and the environment. Main concerns in Europe are exceedances of particulate matter (PM), ground-level ozone, benzo(a)pyrene (BaP) and nitrogen dioxide (NO2). While overall sulfur dioxide (SO2) emissions have decreased in recent years, regional concentrations can still be high in some areas. The objectives of SAMIRA are to improve algorithms for the retrieval of hourly aerosol optical depth (AOD) maps from SEVIRI, and to develop robust methods for deriving column- and near-surface PM maps for the study area by combining satellite AOD with information from regional models. The benefit to existing monitoring networks (in situ, models, satellite) by combining these datasets using data fusion methods will be tested for satellite-based NO2, SO2, and PM/AOD. Furthermore, SAMIRA will test and apply techniques for downscaling air quality-related EO products to a spatial resolution that is more in line with what is generally required for studying urban and regional scale air quality. This will be demonstrated for a set of study sites that include the capitals of the four countries and the highly polluted areas along the border of Poland and the

  9. Automatic electrochemical ambient air monitor for chloride and chlorine

    DOEpatents

    Mueller, Theodore R.

    1976-07-13

    An electrochemical monitoring system has been provided for determining chloride and chlorine in air at levels of from about 10-1000 parts per billion. The chloride is determined by oxidation to chlorine followed by reduction to chloride in a closed system. Chlorine is determined by direct reduction at a platinum electrode in 6 M H.sub.2 SO.sub.4 electrolyte. A fully automated system is utilized to (1) acquire and store a value corresponding to electrolyte-containing impurities, (2) subtract this value from that obtained in the presence of air, (3) generate coulometrically a standard sample of chlorine mixed with air sample, and determine it as chlorine and/or chloride, and (4) calculate, display, and store for permanent record the ratio of the signal obtained from the air sample and that obtained with the standard.

  10. Heart-rate monitoring by air pressure and causal analysis

    NASA Astrophysics Data System (ADS)

    Tsuchiya, Naoki; Nakajima, Hiroshi; Hata, Yutaka

    2011-06-01

    Among lots of vital signals, heart-rate (HR) is an important index for diagnose human's health condition. For instance, HR provides an early stage of cardiac disease, autonomic nerve behavior, and so forth. However, currently, HR is measured only in medical checkups and clinical diagnosis during the rested state by using electrocardiograph (ECG). Thus, some serious cardiac events in daily life could be lost. Therefore, a continuous HR monitoring during 24 hours is desired. Considering the use in daily life, the monitoring should be noninvasive and low intrusive. Thus, in this paper, an HR monitoring in sleep by using air pressure sensors is proposed. The HR monitoring is realized by employing the causal analysis among air pressure and HR. The causality is described by employing fuzzy logic. According to the experiment on 7 males at age 22-25 (23 on average), the correlation coefficient against ECG is 0.73-0.97 (0.85 on average). In addition, the cause-effect structure for HR monitoring is arranged by employing causal decomposition, and the arranged causality is applied to HR monitoring in a setting posture. According to the additional experiment on 6 males, the correlation coefficient is 0.66-0.86 (0.76 on average). Therefore, the proposed method is suggested to have enough accuracy and robustness for some daily use cases.

  11. Dynamic Monitoring of Cleanroom Fallout Using an Air Particle Counter

    NASA Technical Reports Server (NTRS)

    Perry, Radford

    2011-01-01

    The particle fallout limitations and periodic allocations for the James Webb Space Telescope are very stringent. Standard prediction methods are complicated by non-linearity and monitoring methods that are insufficiently responsive. A method for dynamically predicting the particle fallout in a cleanroom using air particle counter data was determined by numerical correlation. This method provides a simple linear correlation to both time and air quality, which can be monitored in real time. The summation of effects provides the program better understanding of the cleanliness and assists in the planning of future activities. Definition of fallout rates within a cleanroom during assembly and integration of contamination-sensitive hardware, such as the James Webb Space Telescope, is essential for budgeting purposes. Balancing the activity levels for assembly and test with the particle accumulation rate is paramount. The current approach to predicting particle fallout in a cleanroom assumes a constant air quality based on the rated class of a cleanroom, with adjustments for projected work or exposure times. Actual cleanroom class can also depend on the number of personnel present and the type of activities. A linear correlation of air quality and normalized particle fallout was determined numerically. An air particle counter (standard cleanroom equipment) can be used to monitor the air quality on a real-time basis and determine the "class" of the cleanroom (per FED-STD-209 or ISO-14644). The correlation function provides an area coverage coefficient per class-hour of exposure. The prediction of particle accumulations provides scheduling inputs for activity levels and cleanroom class requirements.

  12. Global Monitoring of Air Pollution Using Spaceborne Sensors

    NASA Technical Reports Server (NTRS)

    Chu, D. A.; Kaufman, Y. J.; Tanre, D.; Remer, L. A.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    The MODIS sensor onboard EOS-Terra satellite provides not only daily global coverage but also high spectral (36 channels from 0.41 to 14 microns wavelength) and spatial (250m, 500m and 1km) resolution measurements. A similar MODIS instrument will be also configured into EOS-Aqua satellite to be launched soon. Using the complementary EOS-Terra and EOS-Aqua sun-synchronous orbits (10:30 AM and 1:30 PM equator-crossing time respectively), it enables us also to study the diurnal changes of the Earth system. It is unprecedented for the derivation of aerosol properties with such high spatial resolution and daily global converge. Aerosol optical depth and other aerosol properties, e.g., Angstrom coefficient over land and particle size over ocean, are derived as standard products at a spatial resolution of 10 x 10 sq km. The high resolution results are found surprisingly useful in detecting aerosols in both urban and rural regions as a result of urban/industrial pollution and biomass burning. For long-lived aerosols, the ability to monitoring the evolution of these aerosol events could help us to establish an system of air quality especially for highly populated areas. Aerosol scenarios with city pollution and biomass burning will be presented. Also presented are the method used in the derivation of aerosol optical properties and preliminary results will be presented, and issue as well as obstacles in validating aerosol optical depth with AERONET ground-based observations.

  13. Air-coupled ultrasound: a novel technique for monitoring the curing of thermosetting matrices.

    PubMed

    Lionetto, Francesca; Tarzia, Antonella; Maffezzoli, Alfonso

    2007-07-01

    A custom-made, air-coupled ultrasonic device was applied to cure monitoring of thick samples (7-10 mm) of unsaturated polyester resin at room temperature. A key point was the optimization of the experimental setup in order to propagate compression waves during the overall curing reaction by suitable placement of the noncontact transducers, placed on the same side of the test material, in the so-called pitch-catch configuration. The progress of polymerization was monitored through the variation of the time of flight of the propagating longitudinal waves. The exothermic character of the polymerization was taken into account by correcting the measured value of time of flight with that one in air, obtained by sampling the air velocity during the experiment. The air-coupled ultrasonic results were compared with those obtained from conventional contact ultrasonic measurements. The good agreement between the air-coupled ultrasonic results and those obtained by the rheological analysis demonstrated the reliability of air-coupled ultrasound in monitoring the changes of viscoelastic properties at gelation and vitrification. The position of the transducers on the same side of the sample makes this technique suitable for on-line cure monitoring during several composite manufacturing technologies. PMID:17718333

  14. Preliminary draft: comprehensive air-monitoring plan report

    SciTech Connect

    Not Available

    1980-02-15

    The topography of the CAMP Study Area, climate, and air pollution meteorology are described. The population analysis indicated limited growth during the next 10 years in the CAMP Study Area. Analysis of emission sources (current and projected) included a presentation of the types of emissions and their impact on the Study Area population (receptors). The general conclusion was drawn that of the non-condensible gases emitted, and considered pollutants, hydrogen sulfide was the only one for which monitoring would be recommended. Recommendations for type, placement, performance criteria, and the timing of establishment and terminating monitoring equipment were determined.

  15. Monitoring plan for routine organic air emissions at the Radioactive Waste Management Complex Waste Storage Facilities

    SciTech Connect

    Galloway, K.J.; Jolley, J.G.

    1994-06-01

    This monitoring plan provides the information necessary to perform routine organic air emissions monitoring at the Waste Storage Facilities located at the Transuranic Storage Area of the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory. The Waste Storage Facilities include both the Type I and II Waste Storage Modules. The plan implements a dual method approach where two dissimilar analytical methodologies, Open-Path Fourier Transform Infrared Spectroscopy (OP-FTIR) and ancillary SUMMA{reg_sign} canister sampling, following the US Environmental Protection Agency (EPA) analytical method TO-14, will be used to provide qualitative and quantitative volatile organic concentration data. The Open-Path Fourier Transform Infrared Spectroscopy will provide in situ, real time monitoring of volatile organic compound concentrations in the ambient air of the Waste Storage Facilities. To supplement the OP-FTIR data, air samples will be collected using SUMMA{reg_sign}, passivated, stainless steel canisters, following the EPA Method TO-14. These samples will be analyzed for volatile organic compounds with gas chromatograph/mass spectrometry analysis. The sampling strategy, procedures, and schedules are included in this monitoring plan. The development of this monitoring plan is driven by regulatory compliance to the Resource Conservation and Recovery Act, State of Idaho Toxic Air Pollutant increments, Occupational Safety and Health Administration. The various state and federal regulations address the characterization of the volatile organic compounds and the resultant ambient air emissions that may originate from facilities involved in industrial production and/or waste management activities.

  16. Near-Road Air Quality Monitoring: Factors Affecting Network Design and Interpretation of Data

    EPA Science Inventory

    The growing number of health studies identifying adverse health effects for populations spending significant amounts of time near large roadways has increased the interest in monitoring air quality in this microenvironment. Designing near-road air monitoring networks or interpret...

  17. Development of a field-portable air monitor for Lewisite

    SciTech Connect

    Aldstadt, J.H.; Martin, A.F.; Olson, D.C. |

    1996-03-01

    The focus of this research is the development of a prototype field-portable ambient-air monitor for measuring trace levels of volatile organoarsenicals. Lewisite (dichloro[2-chlorovinyl]arsine) is a chemical warfare agent developed during World War I and stockpiled on a large scale by the former Soviet Union. A continuous air monitor for Lewisite at the eight-hour time-weighted-average concentration (3 {mu}g/m{sup 3}) is necessary to protect the safety and health of arms control treaty inspectors. Flow injection is used to integrate an air sampling device based on liquid-phase extraction with a flow-through detector based on potentiometric stripping analysis. We describe a method for the sampling and preconcentration of organoarsenicals from ambient air by using a gas permeation membrane sampler. The sampler is designed to selectively preconcentrate analyte that permeates a silicone rubber membrane into a caustic carrier stream. Instrument design is described for the sampling and detection methodologies.

  18. Energy Monitoring in Gins - 2012 Preliminary Results

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Electricity and fuel are the second largest source of variable costs for cotton gins, after labor. Few studies of gin energy use have been conducted recently and none have monitored energy use continuously throughout the ginning season. More detailed information is needed to identify management st...

  19. TH-C-17A-09: Direct Visualization and Monitoring of Medical Radiation Beams in Air

    SciTech Connect

    Fahimian, B; Ceballos, A; Turkcan, S; Kapp, D; Pratx, G

    2014-06-15

    Purpose: Radiation therapy errors are rare but potentially catastrophic. Recent fatal incidents could have been avoided by utilizing real-time methods of monitoring delivery of radiation during treatment. However, few existing methods are practical enough to be used routinely. The study presents the first experimental demonstration of a novel non-perturbing method of monitoring radiation therapy through the phenomena of air scintillation. Methods: Monitoring of radiation delivery was devised by leveraging the phenomena of nitrogen excitation in air by ionizing radiation. The excitation induced weak luminescence in the 300–400 nm range, a process called air scintillation. An electron-multiplication charge-coupled device camera (f/0.95 lens; 440 nm shortpass) was set-up in a clinical treatment vault and was used to capture air scintillation images of kilovoltage and megavoltage beams. Monte Carlo simulations were performed to determine the correlation of radiation dose to air scintillation. Results: Megavoltage beams from a Varian Clinac 21EX and kilovoltage beams from an orthovoltage unit (50 kVp, 30 mA) were visualized with a relatively short exposure time (10 s). Cherenkov luminescence produced in a plastic transparent phantom did not interfere with detection of air scintillation. The image intensity displayed an inverse intensity falloff (r{sup 2} = 0.89) along the central axis and was proportional to dose rate (r{sup 2} = 0.9998). As beam energy increased, the divergence of the imaged beam decreased. Last, air scintillation was visualized during a simulated total skin irradiation electron treatment. Conclusion: Air scintillation can be clinically detected to monitor a radiation beam in an inexpensive and non-perturbing manner. This new method is advantageous in monitoring for gross delivery and uniquely capable of wide area in a single acquisition, such as the case for online verification of total body / skin / lymphoid irradiation treatments.

  20. Environmental monitoring of chromium in air, soil, and water.

    PubMed

    Vitale, R J; Mussoline, G R; Rinehimer, K A

    1997-08-01

    Historical uses of chromium have resulted in its widespread release into the environment. In recent years, a significant amount of research has evaluated the impact of chromium on human health and the environment. Additionally, numerous analytical methods have been developed to identify and quantitate chromium in environmental media in response to various state and federal mandates such as CERCLA, RCRA, CWA, CAA, and SWDA. Due to the significant toxicity differences between trivalent [Cr(III)] and hexavalent [Cr(VI)] chromium, it is essential that chromium be quantified in these two distinct valence states to assess the potential risks to exposure to each in environmental media. Speciation is equally important because of their marked differences in environmental behavior. As the knowledge of risks associated with each valence state has grown and regulatory requirements have evolved, methods to accurately quantitate these species at ever-decreasing concentrations within environmental media have also evolved. This paper addresses the challenges of chromium species quantitation and some of the most relevant current methods used for environmental monitoring, including ASTM Method D5281 for air, SW-846 Methods 3060A, 7196A and 7199 for soils, sediments, and waste, and U.S. EPA Method 218.6 for water. PMID:9380841

  1. Preliminary results from the Pittsburgh Air Quality Study

    NASA Astrophysics Data System (ADS)

    Pandis, S. N.; Davidson, C. I.; Robinson, A. L.; Khlystov, A. Y.

    2002-12-01

    The Pittsburgh Air Quality Study (PAQS) is a collaborative effort among 20 research groups, and is part of the EPA Supersite Program. In collaboration with several other Supersites around the country, PAQS is also one component of an intensive experiment conducted in July 2001. The PAQS study includes monitoring for aerosol number, surface, and volume distributions, PM mass in several size ranges, single particle chemical composition, continuous aerosol sulfate, nitrate, and carbon mass, bioaerosols, hygroscopic aerosol growth, and filter-based aerosol chemical composition including trace metals, anions/cations, elemental and organic carbon, and various organic compounds. Meteorological data and concentrations of several trace gases are obtained simultaneously. The results will be used to test a variety of hypothesis on atmospheric aerosols. Examples include our ability to account for aerosol mass by summing contributions of individual chemical species, the extent to which single particle chemical composition data can be used to determine bulk chemical concentrations, our ability to predict natural and anthropogenic sources of aerosols, and the extent to which aerosols contribute to increased morbidity and mortality in Pittsburgh. This paper summarizes a few of the interesting results obtained during the study, such as closure of the aerosol mass balance, frequent new particle formation, aerosol water content and artifacts when sampling carbonaceous aerosol.

  2. Calibration and monitoring of the air fluorescence detector for the Telescope Array experiment

    NASA Astrophysics Data System (ADS)

    Tokuno, H.; Azuma, R.; Fukushima, M.; Higashide, Y.; Inoue, N.; Kadota, K.; Kakimoto, F.; Kawana, S.; Murano, Y.; Ogio, S.; Sakurai, N.; Sagawa, H.; Shibata, T.; Takeda, M.; Taketa, A.; Tameda, Y.; Tsunesada, Y.; Udo, S.; Yoshida, S.; Telescope Array Collaboration

    The air fluorescence detectors (FDs) of the Telescope Array (TA) experiment have been constructed in a dessert of Utah, USA. We can measure the longitudinal developments of EASs directly with the FDs by detecting air fluorescence lights and determine the primary energies of ultra-high energy cosmic rays. In order for accurate observation and measurements of EASs, elaborate detector calibrations and monitoring systems are required. We will present the result of calibration and monitoring systems for the reflectance and curvature radius of segment mirrors, the characteristics of PMT (absolute gain, linearity, temperature dependence of gain), and the uniformity of the camera surface, etc.

  3. ATMOSPHERIC DEPOSITION MONITORING -- CLEAN AIR STATUS AND TRENDS NETWORK (CASTNET) OPERATION

    EPA Science Inventory

    CAMD operates a national monitoring network mandated by the 1990 Clean Air Act Amendments (CAAA) to determine the effectiveness of promulgated emission reductions. The Clean Air Status and Trends Network (CASTNET) provides data for determining relationships between emissions, air...

  4. 40 CFR 50.14 - Treatment of air quality monitoring data influenced by exceptional events.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 2 2013-07-01 2013-07-01 false Treatment of air quality monitoring... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS NATIONAL PRIMARY AND SECONDARY AMBIENT AIR QUALITY STANDARDS § 50.14 Treatment of air quality monitoring data influenced by exceptional events. (a) Requirements. (1)...

  5. 40 CFR 50.14 - Treatment of air quality monitoring data influenced by exceptional events.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 2 2014-07-01 2014-07-01 false Treatment of air quality monitoring... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS NATIONAL PRIMARY AND SECONDARY AMBIENT AIR QUALITY STANDARDS § 50.14 Treatment of air quality monitoring data influenced by exceptional events. (a) Requirements. (1)...

  6. 40 CFR 50.14 - Treatment of air quality monitoring data influenced by exceptional events.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 2 2011-07-01 2011-07-01 false Treatment of air quality monitoring... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS NATIONAL PRIMARY AND SECONDARY AMBIENT AIR QUALITY STANDARDS § 50.14 Treatment of air quality monitoring data influenced by exceptional events. (a) Requirements. (1)...

  7. Use of Multi-Objective Air Pollution Monitoring Sites and Online Air Pollution Monitoring System for Total Health Risk Assessment in Hyderabad, India

    PubMed Central

    Anjaneyulu, Y.; Jayakumar, I.; Bindu, V. Hima; Sagareswar, G.; Rao, P.V. Mukunda; Rambabu, N.; Ramani, K. V.

    2005-01-01

    A consensus has been emerging among public health experts in developing countries that air pollution, even at current ambient levels, aggravates respiratory and cardiovascular diseases and leads to premature mortality. Recent studies have also presented well-founded theories concerning the biological mechanisms involved and the groups of people that are probably more susceptible to health effects caused or exacerbated by inhalation of ambient particulate matter (PM.). On the basis of prognostic studies carried out in Center for Environment, JNT University, Hyderabad “it has been estimated that in Hyderabad some 1,700 to 3,000 people per year die prematurely as a result of inhaling PM”. These figures reflect only the effects of acute exposure to air pollution. If the long-term effects of chronic exposure are taken into account, 10,000–15,000 people a year could die prematurely in Hyderabad. This estimate of the chronic effects is based on other studies, which are not completely comparable with the Hyderabad situation. While the study designs and analyses in these other studies may indeed be different or irrelevant to Hyderabad, the fact they were carried out in other countries is irrelevant. Taking into account these considerations, a model for total health risk assessment for the city of Hyderabad, and its state of Andhra Pradesh in India has been developed using a multi-objective air pollution monitoring network and online and real time air pollution monitoring stations. For the model studies a number of potential monitoring sites were screened for general and site-specific criteria in a geographic information system (GIS) environment that may, on a local basis, affect the representativeness of the data collected. Local features that may affect either the chemical or meteorological parameters are evaluated to assure a minimum of interference. Finally, for monitoring air pollution, an online and real-time monitoring system was designed using advanced

  8. Performance of underfloor air distribution: Results of a field study

    SciTech Connect

    Fisk, William; Faulkner, David; Sullivan, Douglas

    2004-09-02

    Underfloor air distribution (UFAD) is a new method of supplying heated or cooled air throughout a building. Reported advantages of UFAD include easy relocation of air supply diffusers, energy savings, and improved indoor air quality (IAQ). We measured several aspects of the performance of an UFAD system installed in a medium-size office building. The measured air change effectiveness was very close to unity, which is comparable to that measured in buildings with typical overhead air distribution. The pollutant removal efficiency for carbon dioxide was 13 percent higher than expected in a space with well-mixed air, suggesting a 13 percent reduction in exposures to occupant generated pollutants. The increase in indoor air temperatures with height above the floor was only 1 to 2 C (2-4 F). This amount of thermal stratification could reduce the sensible energy requirements for cooling of outdoor air by approximately 10 percent. The occupants level of satisfaction with thermal conditions w as well above average and this high satisfaction rating could possibly be due, in all or part, to the use of a UFAD system. The results of this study provide some evidence of moderate energy and IAQ-related benefits of UFAD. Before general conclusions are drawn, the benefits need to be confirmed in other studies.

  9. Pico2 Monitoring of Transferred Jejunum Perfusion Using an Air Tonometry Technique After Hypopharyngeal Cancer Surgery

    PubMed Central

    Ozawa, Hiroyuki; Imanishi, Yorihisa; Ito, Fumihiro; Watanabe, Yoshihiro; Kato, Takashi; Nameki, Hideo; Isobe, Kiyoshi; Ogawa, Kaoru

    2015-01-01

    Abstract This study aimed to investigate the usefulness of intraluminal Pco2 (Pico2) monitoring by air tonometry for the assessment of the vascular condition of the transferred jejunum after surgery for hypopharyngeal cancer. Pico2 in the transplanted jejunum of 24 patients was monitored using air tonometry after radical surgery for hypopharyngeal cancer from 2003 to 2010. All but 1 patient, who removed the catheter before monitoring began, were monitored safely. Pico2 in the transferred jejunum correlated with arterial Pco2 (Paco2) that was measured concurrently, and dissociation of Pico2 from Paco2 was observed in cases with vascular complication. In those cases without postoperative vascular complication, the Pico2 value gradually increased for 3 hours but then decreased by 12 hours after surgery. Three patients experienced major vascular complication. All 3 patients had continuous elevation of Pico2 >100 mm Hg, although vascular flow in 1 patient recovered by removal of a venous thrombosis and reanastomosis of the vein 7.5 hours after surgery. Four other patients who experienced elevation of Pico2 had their skin suture released for decompression of their neck wound, resulting in a decrease in Pico2 after treatment. The current results demonstrated that continuous monitoring of Pico2 by air tonometry accurately reflects the vascular condition of the transferred jejunum, and this method is one of the best options for postoperative monitoring of jejunum blood perfusion. PMID:25789955

  10. Monitoring air quality in mountains: Designing an effective network

    USGS Publications Warehouse

    Peterson, D.L.

    2000-01-01

    A quantitatively robust yet parsimonious air-quality monitoring network in mountainous regions requires special attention to relevant spatial and temporal scales of measurement and inference. The design of monitoring networks should focus on the objectives required by public agencies, namely: 1) determine if some threshold has been exceeded (e.g., for regulatory purposes), and 2) identify spatial patterns and temporal trends (e.g., to protect natural resources). A short-term, multi-scale assessment to quantify spatial variability in air quality is a valuable asset in designing a network, in conjunction with an evaluation of existing data and simulation-model output. A recent assessment in Washington state (USA) quantified spatial variability in tropospheric ozone distribution ranging from a single watershed to the western third of the state. Spatial and temporal coherence in ozone exposure modified by predictable elevational relationships ( 1.3 ppbv ozone per 100 m elevation gain) extends from urban areas to the crest of the Cascade Range. This suggests that a sparse network of permanent analyzers is sufficient at all spatial scales, with the option of periodic intensive measurements to validate network design. It is imperative that agencies cooperate in the design of monitoring networks in mountainous regions to optimize data collection and financial efficiencies.

  11. Ambient air monitoring plan for Ciudad Acuna and Piedra Negras, Coahuila, Mexico. Final report

    SciTech Connect

    Winberry, J.; Henning, L.; Crume, R.

    1998-01-01

    The Cities of Ciudad Acuna and Piedras Negras and the State of Coahuila in Mexico are interested in improving ambient air quality monitoring capabilities in the two cities through the establishment of a network of ambient air monitors. The purpose of the network is to characterize population exposure to potentially harmful air contaminants, possibly including sulfur dioxide (SO{sub 2}), nitrogen oxides (NO{sub x}), ozone (O{sub 3}), carbon monoxide (CO), total suspended particulate matter (TSP), particulate matter with aerodynamic diameter less than 100 micrometers PM-10, and lead. This report presents the results of an evaluation of existing air quality monitoring equipment and facilities in Ciudad Acuna and Piedras Negras. Additionally, the report presents recommendations for developing an air quality monitoring network for PM-10, SO{sub 2}, lead, and ozone in these cities, using a combination of both new and existing equipment. The human resources currently available and ultimately needed to operate and maintain the network are also discussed.

  12. Use of air quality modeling results as exposure estimates in health studies

    NASA Astrophysics Data System (ADS)

    Holmes, H. A.; Ivey, C.; Friberg, M.; Zhai, X.; Balachandran, S.; Hu, Y.; Russell, A. G.; Mulholland, J. A.; Tolbert, P. E.; Sarnat, S. E.

    2013-12-01

    impacts, two techniques are used. The first combines CMAQ results and air quality observations from ambient monitoring networks in a data fusion approach to generate spatially and temporally resolved gaseous and PM species concentrations. The second is a hybrid source-receptor model approach, in which CMAQ source impact estimates are adjusted based on scaling factors obtained using CMAQ results and observations in a CMB-fashion optimization to estimate daily spatially resolved source impacts. Results from St. Louis, Missouri and Atlanta, Georgia will be presented, where source impact estimates were generated for acute health effects studies (e.g., time-series studies of emergency department visits). Spatially resolved air quality metrics developed for a birth cohort study in the state of Georgia will also be shown.

  13. Application of a dry-gas meter for measuring air sample volumes in an ambient air monitoring network

    SciTech Connect

    Fritz, Brad G.

    2009-05-24

    Ambient air monitoring for non-research applications (e.g. compliance) occurs at locations throughout the world. Often, the air sampling systems employed for these purposes employee simple yet robust equipment capable of handling the rigors of demanding sampling schedules. At the Hanford Site (near Richland, Washington) concentrations of radionuclides in ambient air are monitored continuously at 44 locations. In 2004, mechanical dry-gas meters were incorporated into the Hanford Site ambient air sample collection system to allow the direct measurement of sample volumes. These meters replaced a portable airflow measurement system that required two manual flow measurements and a sample duration measurement to determine sample volume. A six-month evaluation of the dry-gas meters compared sample volumes calculated using the original flow rate method to the direct sample volume measurement (new method). The results of the evaluation indicate that use of the dry-gas meters result in accurate sample volume measurements and provide greater confidence in the measured sample volumes. In several years of in-network use, the meters have proven to be reliable and have resulted in an improved sampling system.

  14. Canister-based method for monitoring toxic VOCS in ambient air

    SciTech Connect

    McClenny, W.A.; Plell, J.D.; Oliver, K.D.; Holdren, M.W.; Winberry, W.T.

    1991-01-01

    The availability of reliable, accurate and precise monitoring methods for toxic volatile organic compounds (VOCs) is a primary need for state and local agencies addressing daily monitoring requirements related to odor complaints, fugitive emissions, and trend monitoring. The canister-based monitoring method for VOCs is a viable and widely used approach that is based on research and evaluation performed over the past several years. The activity has involved the testing of sample stability of VOCs in canisters and the design of time-integrative samplers. The development of procedures for analysis of samples in canisters, including the procedure for VOC preconcentration from whole air, the treatment of water vapor in the sample, and the selection of an appropriate analytical finish has been accomplished. The canister-based method was initially summarized in the EPA Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air as Method TO-14. Modifications and refinements are being added to Method TO-14 in order to obtain a Statement of Work for the Superfund Contract Laboratory Program for Air. The paper discusses the developments leading to the current status of the canister-based method and provides a critique of the method using results obtained in EPA monitoring networks. (Copyright (c) 1991 - Air and Waste Management Association.)

  15. Evaluation of portable air samplers for monitoring airborne culturable bacteria

    NASA Technical Reports Server (NTRS)

    Mehta, S. K.; Bell-Robinson, D. M.; Groves, T. O.; Stetzenbach, L. D.; Pierson, D. L.

    2000-01-01

    Airborne culturable bacteria were monitored at five locations (three in an office/laboratory building and two in a private residence) in a series of experiments designed to compare the efficiency of four air samplers: the Andersen two-stage, Burkard portable, RCS Plus, and SAS Super 90 samplers. A total of 280 samples was collected. The four samplers were operated simultaneously, each sampling 100 L of air with collection on trypticase soy agar. The data were corrected by applying positive hole conversion factors for the Burkard portable, Andersen two-stage, and SAS Super 90 air samplers, and were expressed as log10 values prior to statistical analysis by analysis of variance. The Burkard portable air sampler retrieved the highest number of airborne culturable bacteria at four of the five sampling sites, followed by the SAS Super 90 and the Andersen two-stage impactor. The number of bacteria retrieved by the RCS Plus was significantly less than those retrieved by the other samplers. Among the predominant bacterial genera retrieved by all samplers were Staphylococcus, Bacillus, Corynebacterium, Micrococcus, and Streptococcus.

  16. Evaluation of membrane filter field monitors for microbiological air sampling

    NASA Technical Reports Server (NTRS)

    Fields, N. D.; Oxborrow, G. S.; Puleo, J. R.; Herring, C. M.

    1974-01-01

    Due to area constraints encountered in assembly and testing areas of spacecraft, the membrane filter field monitor (MF) and the National Aeronautics and Space Administration-accepted Reyniers slit air sampler were compared for recovery of airborne microbial contamination. The intramural air in a microbiological laboratory area and a clean room environment used for the assembly and testing of the Apollo spacecraft was studied. A significantly higher number of microorganisms was recovered by the Reyniers sampler. A high degree of consistency between the two sampling methods was shown by a regression analysis, with a correlation coefficient of 0.93. The MF samplers detected 79% of the concentration measured by the Reyniers slit samplers. The types of microorganisms identified from both sampling methods were similar.

  17. Monitoring of fine particle air pollutants at FWS Class 1 air quality areas

    SciTech Connect

    Porter, E.

    1995-12-31

    Fine particle samplers have been installed at five FWS wilderness areas, all Class 1 air quality areas. The samplers are designed primarily to measure the fine particles in ambient air responsible for visibility impairment and are part of the national IMPROVE (Interagency Monitoring of Protected Visual Environments) network. Filters in the samplers are analyzed for trace elements, soil elements, sulfur, hydrogen, nitrate, chloride, organic carbon, and inorganic carbon. Several composite parameters are derived from the measured parameters and include sulfate, nitrate, organic mass, light-absorbing carbon, and soil. Data indicate that fine particle concentrations at FWS sites are consistent with geographical trends observed in the national IMPROVE network. For instance, concentrations of most parameters are higher in the eastern US than in the western US, reflecting the pattern or greater air pollution and lower visibility in the east. Of the five FWS sites, Brigantine Wilderness Area experiences the greatest air pollution, receiving polluted air masses from the Ohio Valley and eastern metropolitan areas, including Philadelphia and Washington, DC. As the data record lengthens, attributing air pollution and visibility impairment at the wilderness areas to specific source types and regions will be more accurate.

  18. Monitoring and analysis of air quality in Riga

    NASA Astrophysics Data System (ADS)

    Ubelis, Arnolds; Leitass, Andris; Vitols, Maris

    1995-09-01

    Riga, the capital of Latvia is a city with nearly 900,000 inhabitants and various highly concentrated industries. Air pollution in Riga is a serious problem affecting health and damaging valuable buildings of historical importance, as acid rain and smog take their toll. Therefore the Air Quality Management System with significant assistance from Swedish Government and persistent efforts from Riga City Council was arranged in Riga. It contains INDIC AIRVIRO system which simulates and evaluates air pollution levels at various locations. It then processes the data in order to predict air quality based on a number of criteria and parameters, measured by OPSIS differential absorption instruments, as well as data from the Meteorological Service and results of episodic measurements. The analysis of the results provided by Riga Air Quality Management System for the first time allows us to start comprehensive supervision of troposphere physical, chemical, and photochemical processes in the air of Riga as well as to appreciate the influence of lcoal pollution and transboundary transfer. The report contains the actual results of this work and first attempts of analysis as well as overview about activities towards research and teaching in the fields of spectroscopy and photochemistry of polluted atmospheres.

  19. Rapid Analysis, Self-Calibrating Array for Air Monitoring

    NASA Technical Reports Server (NTRS)

    Homer, Margie L.; Shevade, Abhijit V.; Lara, Liana; Huerta, Ramon; Vergara, Alexander; Muezzinoglua, Mehmet K.

    2012-01-01

    Human space missions have critical needs for monitoring and control for life support systems. These systems have monitoring needs that include feedback for closed loop processes and quality control for environmental factors. Sensors and monitoring technologies assure that the air environment and water supply for the astronaut crew habitat fall within acceptable limits, and that the life support system is functioning properly and efficiently. The longer the flight duration and the more distant the destination, the more critical it becomes to have carefully monitored and automated control systems for life support. Past experiments with the JPL ENose have demonstrated a lifetime of the sensor array, with the software, of around 18 months. The lifetime of the calibration, for some analytes, was as long as 24 months. We are working on a sensor array and new algorithms that will include sensor response time in the analysis. The preliminary array analysis for two analytes shows that the analysis time, of an event, can be dropped from 45 minutes to less than10 minutes and array training time can be cut substantially. We will describe the lifetime testing of an array and show lifetime data on individual sensors. This progress will lead to more rapid identification of analytes, and faster training time of the array.

  20. Monitoring strategy to assessment the air pollution level in Salamanca (México)

    NASA Astrophysics Data System (ADS)

    Barrón-Adame, J. M.; Cortina-Januchs, M. G.; Andina, D.; Vega-Corona, A.

    2009-04-01

    Air pollution affects not only the quality of life and the health of the urban population but also forests and agriculture. Agricultural crops can be injured when exposed to high concentrations of various air pollutants. Air pollutants can generally be classed as either local or widespread. Local pollutants are those emitted from a specific stationary source and result in a well-defined zone of vegetation injury or contamination. Most common among the local pollutants are sulphur dioxide, fluorides, ammonia and particulate matter. The paper presents an air monitoring strategy based on data fusion and Artificial Neural Networks. The main objective is to classify automatically the air pollution level as a proposal to assessment the air pollution level affecting the agriculture in Salamanca (Mexico). Salamanca is catalogued as one of the most polluted cities in Mexico. Pollutant concentrations and meteorological variables have been consider in data fusion process in order to build a Representative Pollution Vector (RPV). Meteorological variables (Wind Direction and Wind Speed) are taken as a decision factor in the air pollutant concentration level. RPV is used to train an Artificial Neural Network in order to classify new pollutant events. In the experiments, real time series gathered from the Automatic Environmental Monitoring Network (AEMN) in Salamanca have been used.

  1. The TOMPs ambient air monitoring network - Continuous data on UK air quality for over 20 years.

    PubMed

    Graf, Carola; Katsoyiannis, Athanasios; Jones, Kevin C; Sweetman, Andrew J

    2016-10-01

    Long-term air monitoring datasets are needed for persistent organic pollutants (POPs) to assess the effectiveness of source abatement measures and the factors controlling ambient levels. The Toxic Organic Micro Pollutants (TOMPs) Network, which has operated since 1991, collects ambient air samples at six sites across England and Scotland, using high-volume active air samplers. The network provides long-term ambient air trend data for a range of POPs at both urban and rural locations. Data from the network provides the UK Government, regulators and researchers with valuable information on emission/source controls and on the effectiveness of international chemicals regulation such as the Stockholm Convention and UN/ECE Protocol on POPs. The target chemicals of TOMPs have been polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), and, since 2010, polybrominated diphenyl ethers (PBDEs). The continuous monitoring of these compounds demonstrates the constant decline in UK air concentrations over the last two decades, with average clearance rates for PCDD/Fs in urban locations of 5.1 years and for PCBs across all sites 6.6 years. No significant declines in rural locations for PCDD/Fs have been observed. There is a strong observable link between the declining ambient air concentrations and the emission reductions estimated in the annually produced National Atmospheric Emission Inventory (NAEI) dataset. These findings clearly demonstrate the unique strengths of long-term consistent datasets for the evaluation of the success of chemical regulation and control. PMID:26843028

  2. Data Quality Objectives Supporting Radiological Air Emissions Monitoring for the PNNL Site

    SciTech Connect

    Barnett, J. M.; Meier, Kirsten M.; Snyder, Sandra F.; Fritz, Brad G.; Poston, Ted M.; Rhoads, Kathleen

    2010-05-25

    This document of Data Quality Objectives (DQOs) was prepared based on the U.S. Environmental Protection Agency (EPA) Guidance on Systematic Planning Using the Data Quality Objectives Process, EPA, QA/G4, 2/2006 (EPA 2006) as well as several other published DQOs. Pacific Northwest National Laboratory (PNNL) is in the process of developing a radiological air monitoring program for the PNNL Site that is distinct from that of the nearby Hanford Site. Radiological emissions at the PNNL Site result from Physical Sciences Facility (PSF) major emissions units. A team was established to determine how the PNNL Site would meet federal regulations and address guidelines developed to monitor and estimate offsite air emissions of radioactive materials. The result is a program that monitors the impact to the public from the PNNL Site.

  3. A performance assessment and adjustment program for air quality monitoring networks in Shanghai

    NASA Astrophysics Data System (ADS)

    Zhao, Laijun; Xie, Yujing; Wang, Jiajia; Xu, Xiang

    2015-12-01

    In this study, we evaluated the performance of Shanghai's air quality monitoring network (AQMN) using principal components analysis, an assignment method, and cluster analysis. Our goal was to improve the utilization of monitoring stations and evaluate Shanghai's air quality more comprehensively and accurately. Specifically, we (i) identified similar pollution sources or behaviors in the monitoring areas; (ii) identified redundant monitoring stations and re-evaluated the AQMN's performance without them; and (iii) proposed adjustments to the AQMN. We used data on particulates less than 2.5 μm (PM2.5) and 10 μm (PM10) in diameter, sulfur dioxide (SO2), nitrogen dioxide (NO2), ozone (O3), and carbon monoxide (CO) at stations in and around Shanghai from 1 January to 22 August 2014. For each pollutant, we grouped the monitoring stations into clusters based on their different pollution behaviors, revealing redundancy and inefficiency in the current AQMN that resulted from the concentrated station distribution and similarity of the monitoring environments. The analysis results showed that there exist redundant stations in the current AQMN of Shanghai. Furthermore, we proposed adjustments to Shanghai's AQMN: transfer four redundant stations and build a new station in the directions of the Taicang Experimental Primary School, Kunshan Zhenchuan Middle School, Suzhou Industrial Park, Wujiang Industrial Zone, and Jiaxing Monitoring Station. Our analysis suggests that, in addition to industrial, transportation, construction, and population influences inside Shanghai, external pollutants significantly affect Shanghai's air quality. Therefore, it is necessary to jointly prevent and control regional air pollution both in Shanghai and in neighboring cities.

  4. 40 CFR 141.706 - Reporting source water monitoring results.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 24 2013-07-01 2013-07-01 false Reporting source water monitoring...) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Enhanced Treatment for Cryptosporidium Source Water Monitoring Requirements § 141.706 Reporting source water monitoring results....

  5. 40 CFR 141.706 - Reporting source water monitoring results.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 24 2012-07-01 2012-07-01 false Reporting source water monitoring...) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Enhanced Treatment for Cryptosporidium Source Water Monitoring Requirements § 141.706 Reporting source water monitoring results....

  6. 40 CFR 141.706 - Reporting source water monitoring results.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 23 2014-07-01 2014-07-01 false Reporting source water monitoring...) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Enhanced Treatment for Cryptosporidium Source Water Monitoring Requirements § 141.706 Reporting source water monitoring results....

  7. 40 CFR 141.706 - Reporting source water monitoring results.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 23 2011-07-01 2011-07-01 false Reporting source water monitoring...) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Enhanced Treatment for Cryptosporidium Source Water Monitoring Requirements § 141.706 Reporting source water monitoring results....

  8. 40 CFR 141.706 - Reporting source water monitoring results.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Reporting source water monitoring...) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Enhanced Treatment for Cryptosporidium Source Water Monitoring Requirements § 141.706 Reporting source water monitoring results....

  9. Can car air filters be useful as a sampling medium for air pollution monitoring purposes?

    PubMed

    Katsoyiannis, Athanasios; Birgul, Askin; Ratola, Nuno; Cincinelli, Alessandra; Sweetman, Andy J; Jones, Kevin C

    2012-11-01

    Urban air quality and real human exposure to chemical environmental stressors is an issue of high scientific and political interest. In an effort to find innovative and inexpensive means for air quality monitoring, the ability of car engine air filters (CAFs) to act as efficient samplers collecting street level air, to which people are exposed to, was tested. In particular, in the case of taxis, air filters are replaced after regular distances, the itineraries are almost exclusively urban, cruising mode is similar and, thus, knowledge of the air flow can provide with an integrated city air sample. The present pilot study focused on polycyclic aromatic hydrocarbons (PAHs), the most important category of organic pollutants associated with traffic emissions. Concentrations of ΣPAHs in CAFs ranged between 650 and 2900 μg CAF(-1), with benzo[b]fluoranthene, benzo[k]fluoranthene and indeno[123-cd]pyrene being the most abundant PAHs. Benzo[a]pyrene (BaP) ranged between 110 and 250 μg CAF(-1), accounting regularly for 5-15% of the total carcinogenic PAHs. The CAF PAH loads were used to derive road-level atmospheric PAH concentrations from a standard formula relating to the CAF air flow. Important parameters/assumptions for these estimates are the cruising speed and the exposure duration of each CAF. Based on information obtained from the garage experts, an average 'sampled air volume' of 48,750 m(3) per CAF was estimated, with uncertainty in this calculation estimated to be about a factor of 4 between the two extreme scenarios. Based on this air volume, ΣPAHs ranged between 13 and 56 ng m(-3) and BaP between 2.1 and 5.0 ng m(-3), suggesting that in-traffic BaP concentrations can be many times higher than the limit values set by the UK (0.25 ng m(-3)) and the European Union (1.0 ng m(-3)), or from active sampling stations normally cited on building roof tops or far from city centres. Notwithstanding the limitations of this approach, the very low cost, the continuous

  10. FY 1994 ambient air monitoring report for McMurdo Station, Antarctica

    SciTech Connect

    Lugar, R.M.

    1994-12-01

    This report presents the results of ambient air monitoring performed during the 1994 fiscal year (FY 1994) in the vicinity of McMurdo Station, Antarctica. Routine monitoring was performed during the 1993-1994 austral summer at three locations for airborne particulate matter less than 10 micrometers (PM-10) and at two locations for carbon monoxide (CO), sulfur dioxide (SO{sub 2}), and nitrogen oxides (NO, NO{sub 2}, and NO{sub x}). Selected PM-10 filters were analyzed for arsenic, beryllium, cadmium, chromium, lead, mercury, and nickel. Additional air samples were collected at three McMurdo area locations and at Black Island for determination of the airborne concentration of polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs). Sampling site selection, sampling procedures, and quality assurance procedures used were consistent with US Environmental Protection Agency guidance for local ambient air quality networks.

  11. Applications of MODIS satellite data and products for monitoring air quality in the state of Texas

    NASA Astrophysics Data System (ADS)

    Hutchison, Keith D.

    The Center for Space Research (CSR), in conjunction with the Monitoring Operations Division (MOD) of the Texas Commission on Environmental Quality (TCEQ), is evaluating the use of remotely sensed satellite data to assist in monitoring and predicting air quality in Texas. The challenges of meeting air quality standards established by the US Environmental Protection Agency (US EPA) are impacted by the transport of pollution into Texas that originates from outside our borders and are cumulative with those generated by local sources. In an attempt to quantify the concentrations of all pollution sources, MOD has installed ground-based monitoring stations in rural regions along the Texas geographic boundaries including the Gulf coast, as well as urban regions that are the predominant sources of domestic pollution. However, analysis of time-lapse GOES satellite imagery at MOD, clearly demonstrates the shortcomings of using only ground-based observations for monitoring air quality across Texas. These shortcomings include the vastness of State borders, that can only be monitored with a large number of ground-based sensors, and gradients in pollution concentration that depend upon the location of the point source, the meteorology governing its transport to Texas, and its diffusion across the region. With the launch of NASA's MODerate resolution Imaging Spectroradiometer (MODIS), the transport of aerosol-borne pollutants can now be monitored over land and ocean surfaces. Thus, CSR and MOD personnel have applied MODIS data to several classes of pollution that routinely impact Texas air quality. Results demonstrate MODIS data and products can detect and track the migration of pollutants. This paper presents one case study in which continental haze from the northeast moved into the region and subsequently required health advisories to be issued for 150 counties in Texas. It is concluded that MODIS provides the basis for developing advanced data products that will, when used in

  12. A Low-Cost Sensing System for Cooperative Air Quality Monitoring in Urban Areas

    PubMed Central

    Brienza, Simone; Galli, Andrea; Anastasi, Giuseppe; Bruschi, Paolo

    2015-01-01

    Air quality in urban areas is a very important topic as it closely affects the health of citizens. Recent studies highlight that the exposure to polluted air can increase the incidence of diseases and deteriorate the quality of life. Hence, it is necessary to develop tools for real-time air quality monitoring, so as to allow appropriate and timely decisions. In this paper, we present uSense, a low-cost cooperative monitoring tool that allows knowing, in real-time, the concentrations of polluting gases in various areas of the city. Specifically, users monitor the areas of their interest by deploying low-cost and low-power sensor nodes. In addition, they can share the collected data following a social networking approach. uSense has been tested through an in-field experimentation performed in different areas of a city. The obtained results are in line with those provided by the local environmental control authority and show that uSense can be profitably used for air quality monitoring. PMID:26016912

  13. A low-cost sensing system for cooperative air quality monitoring in urban areas.

    PubMed

    Brienza, Simone; Galli, Andrea; Anastasi, Giuseppe; Bruschi, Paolo

    2015-01-01

    Air quality in urban areas is a very important topic as it closely affects the health of citizens. Recent studies highlight that the exposure to polluted air can increase the incidence of diseases and deteriorate the quality of life. Hence, it is necessary to develop tools for real-time air quality monitoring, so as to allow appropriate and timely decisions. In this paper, we present uSense, a low-cost cooperative monitoring tool that allows knowing, in real-time, the concentrations of polluting gases in various areas of the city. Specifically, users monitor the areas of their interest by deploying low-cost and low-power sensor nodes. In addition, they can share the collected data following a social networking approach. uSense has been tested through an in-field experimentation performed in different areas of a city. The obtained results are in line with those provided by the local environmental control authority and show that uSense can be profitably used for air quality monitoring. PMID:26016912

  14. Development and evaluation of optical fiber NH3 sensors for application in air quality monitoring

    NASA Astrophysics Data System (ADS)

    Huang, Yu; Wieck, Lucas; Tao, Shiquan

    2013-02-01

    Ammonia is a major air pollutant emitted from agricultural practices. Sources of ammonia include manure from animal feeding operations and fertilizer from cropping systems. Sensor technologies with capability of continuous real time monitoring of ammonia concentration in air are needed to qualify ammonia emissions from agricultural activities and further evaluate human and animal health effects, study ammonia environmental chemistry, and provide baseline data for air quality standard. We have developed fiber optic ammonia sensors using different sensing reagents and different polymers for immobilizing sensing reagents. The reversible fiber optic sensors have detection limits down to low ppbv levels. The response time of these sensors ranges from seconds to tens minutes depending on transducer design. In this paper, we report our results in the development and evaluation of fiber optic sensor technologies for air quality monitoring. The effect of change of temperature, humidity and carbon dioxide concentration on fiber optic ammonia sensors has been investigated. Carbon dioxide in air was found not interfere the fiber optic sensors for monitoring NH3. However, the change of humidity can cause interferences to some fiber optic NH3 sensors depending on the sensor's transducer design. The sensitivity of fiber optic NH3 sensors was found depends on temperature. Methods and techniques for eliminating these interferences have been proposed.

  15. The meteorological monitoring system for the Kennedy Space Center/Cape Canaveral Air Station

    NASA Technical Reports Server (NTRS)

    Dianic, Allan V.

    1994-01-01

    The Kennedy Space Center (KSC) and Cape Canaveral Air Station (CCAS) are involved in many weather-sensitive operations. Manned and unmanned vehicle launches, which occur several times each year, are obvious example of operations whose success and safety are dependent upon favorable meteorological conditions. Other operations involving NASA, Air Force, and contractor personnel, including daily operations to maintain facilities, refurbish launch structures, prepare vehicles for launch, and handle hazardous materials, are less publicized but are no less weather-sensitive. The Meteorological Monitoring System (MMS) is a computer network which acquires, processes, disseminates, and monitors near real-time and forecast meteorological information to assist operational personnel and weather forecasters with the task of minimizing the risk to personnel, materials, and the surrounding population. CLIPS has been integrated into the MMS to provide quality control analysis and data monitoring. This paper describes aspects of the MMS relevant to CLIPS including requirements, actual implementation details, and results of performance testing.

  16. 40 CFR Appendix C to Part 58 - Ambient Air Quality Monitoring Methodology

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Methodology C Appendix C to Part 58 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Quality Monitoring Methodology 1.0 Purpose 2.0 SLAMS Ambient Air Monitoring Stations 3.0 NCore Ambient Air... appendix must be submitted to: Director, National Exposure Research Laboratory (MD-D205-03),...

  17. Monitoring of viable airborne SARS virus in ambient air

    NASA Astrophysics Data System (ADS)

    Agranovski, Igor E.; Safatov, Alexander S.; Pyankov, Oleg V.; Sergeev, Alexander N.; Agafonov, Alexander P.; Ignatiev, Georgy M.; Ryabchikova, Elena I.; Borodulin, Alexander I.; Sergeev, Artemii A.; Doerr, Hans W.; Rabenau, Holger F.; Agranovski, Victoria

    Due to recent SARS related issues (Science 300 (5624) 1394; Nature 423 (2003) 240; Science 300 (5627) 1966), the development of reliable airborne virus monitoring procedures has become galvanized by an exceptional sense of urgency and is presently in a high demand (In: Cox, C.S., Wathers, C.M. (Eds.), Bioaerosols Handbook, Lewis Publishers, Boca Raton, FL, 1995, pp. 247-267). Based on engineering control method (Aerosol Science and Technology 31 (1999) 249; 35 (2001) 852), which was previously applied to the removal of particles from gas carriers, a new personal bioaerosol sampler has been developed. Contaminated air is bubbled through porous medium submerged into liquid and subsequently split into multitude of very small bubbles. The particulates are scavenged by these bubbles, and, thus, effectively removed. The current study explores its feasibility for monitoring of viable airborne SARS virus. It was found that the natural decay of such virus in the collection fluid was around 0.75 and 1.76 lg during 2 and 4 h of continuous operation, respectively. Theoretical microbial recovery rates of higher than 55 and 19% were calculated for 1 and 2 h of operation, respectively. Thus, the new sampling method of direct non-violent collection of viable airborne SARS virus into the appropriate liquid environment was found suitable for monitoring of such stress sensitive virus.

  18. Environmental Technology Verification Report for Applikon MARGA Semi-Continuous Ambient Air Monitoring System

    EPA Science Inventory

    The verification test was conducted oer a period of 30 days (October 1 to October 31, 2008) and involved the continuous operation of duplicate semi-continuous monitoring technologies at the Burdens Creek Air Monitoring Site, an existing ambient-air monitoring station located near...

  19. Air monitoring for volatile organic compounds at the Pilot Plant Complex, Aberdeen Proving Ground, Maryland

    SciTech Connect

    Schneider, J.F.; O`Neill, H.J.; Raphaelian, L.A.; Tomczyk, N.A.; Sytsma, L.F.; Cohut, V.J.; Cobo, H.A.; O`Reilly, D.P.; Zimmerman, R.E.

    1995-03-01

    The US Army`s Aberdeen Proving Ground has been a test site for a variety of munitions, including chemical warfare agents (CWA). The Pilot Plant Complex (PPC) at Aberdeen was the site of development, manufacture, storage, and disposal of CWA. Deterioration of the buildings and violations of environmental laws led to closure of the complex in 1986. Since that time, all equipment, piping, and conduit in the buildings have been removed. The buildings have been declared free of surface CWA contamination as a result of air sampling using the military system. However, no air sampling has been done to determine if other hazardous volatile organic compounds are present in the PPC, although a wide range of toxic and/or hazardous materials other than CWA was used in the PPC. The assumption has been that the air in the PPC is not hazardous. The purpose of this air-monitoring study was to screen the indoor air in the PPC to confirm the assumption that the air does not contain volatile organic contaminants at levels that would endanger persons in the buildings. A secondary purpose was to identify any potential sources of volatile organic contaminants that need to be monitored in subsequent sampling efforts.

  20. Monitoring Iodine-129 in Air and Milk Samples Collected Near the Hanford Site: An Investigation of Historical Iodine Monitoring Data

    SciTech Connect

    Fritz, Brad G.; Patton, Gregory W.

    2006-01-01

    While other research has reported on the concentrations of 129I in the environment surrounding active nuclear fuel reprocessing facilities, there is a shortage of information regarding how the concentrations change once facilities close. At the Hanford Site, the Plutonium-Uranium Extraction (PUREX) chemical separation plant was operational between 1983 and 1990, during which time 129I concentrations in air and milk were measured. After the cessation of operations in 1990, plant emissions decreased 2.5 orders of magnitude over an 8 year period, and monitoring of environmental levels continued. An evaluation of air and milk 129I concentration data spanning the PUREX operation and post closure period was conducted to compare the changes in environmental levels of 129I measured. Measured concentrations over the monitoring period were below levels that could result in a potential human dose greater than 10 uSv. There was a significant and measurable difference in the measured air concentrations of 129I at different distances from the source, indicating a distinct Hanford fingerprint. Correlations between stack emissions of 129I and concentrations in air and milk indicate that atmospheric emissions were responsible for the 129I concentrations measured in environmental samples. The measured concentrations during PUREX operation were similar to observations made around a fuel reprocessing plant in Germany.

  1. Magnetic evaluation of TSP-filters for air quality monitoring

    NASA Astrophysics Data System (ADS)

    Castañeda-Miranda, Ana Gabriela; Böhnel, Harald N.; Molina-Garza, Roberto S.; Chaparro, Marcos A. E.

    2014-10-01

    We present the magnetic properties of the powders collected by high volume total suspended particle air samplers used to monitor atmospheric pollution in Santiago de Querétaro, a city of one million people in central Mexico. The magnetic measurements have been combined with scanning electron microscopy observations and analysis, in order to characterize the particles captured in the filters as natural and anthropogenic. The main goal of the study is to test if magnetic measurements on the sampled atmospheric dust can be effective, low-cost, proxy to qualitatively estimate the air quality, complementing the traditional analytical methods. The magnetic properties of the powder collected in the filters have been investigated measuring the low field magnetic susceptibility, hysteresis loops, thermomagnetic curves, and isothermal remanent magnetization. The rock magnetism data have been supplemented by energy-dispersive X-ray spectroscopy analysis and Raman spectroscopy. It was found that the main magnetic carrier is low-Ti magnetite in the PSD range with a contribution from SP particles, and small but significant contributions from hematite, maghemite and goethite particles. Total suspended particles in the atmosphere during the monitored days ranged between about 30 and 280 μg/m3. Magnetic susceptibility values are well correlated with the independently determined total suspended particles concentration (R = 0.93), but particle concentration does not correlate as well with IRM1T. This may be attributed to contributions from SP and paramagnetic particles to the susceptibility signal, but not to the remanence. The effects of climate in particle size, composition and concentration were considered in terms of precipitation and wind intensity, but they are actually minor. The main effect of climate appears to be the removal of SP particles during rainy days. There is a contribution to air pollution from natural mineral sources, which we attribute to low vegetation cover

  2. Toward the next generation of air quality monitoring: Mercury

    NASA Astrophysics Data System (ADS)

    Pirrone, Nicola; Aas, Wenche; Cinnirella, Sergio; Ebinghaus, Ralf; Hedgecock, Ian M.; Pacyna, Jozef; Sprovieri, Francesca; Sunderland, Elsie M.

    2013-12-01

    understanding the link between the magnitude of mercury emissions and the concentrations found in the fish that we consume. For air quality monitoring, priorities include expanding the existing data collection network and widening the scope of atmospheric mercury measurements (elemental, oxidised, and particulate species as well as mercury in precipitation). Presently, the only accurate indicators of mercury impacts on human and biological health are methylmercury concentrations in biota. However, recent advances in analytical techniques (stable mercury isotopes) and integrated modelling tools are allowing greater understanding of the relationship between atmospheric deposition, concentrations in water, methylation and uptake by biota. This article recommends an expansion of the current atmospheric monitoring network and the establishment of new coordinated measurements of total mercury and methylmercury concentrations in seawater and concurrent concentrations and trends in marine fish.

  3. Examination of the long-path open-air FTIR technique for air monitoring in the state of Kentucky

    NASA Astrophysics Data System (ADS)

    Chakraborty, Dilip K.

    1995-05-01

    The Kentucky Department for Environmental Protection has been developing on-site monitoring capability for the measurement of air pollutants. The department has purchased a mobile laboratory equipped with a GC/MS for point monitoring and a long-path Fourier transform infrared (FT-IR) remote sensor unit for monitoring air pollutants at different locations in the State. Prior to deploying the FT-IR instrument in the field, the instrument has been evaluated for precision and accuracy with 15 certified gases (CO, NO, NH3, COS, CS2, SO2, (CH3)2S, acetone, benzene, CH3OH, CH4, CCl4, CCl3H, C2H5OH, and H2S) against the vendor provided calibration spectra by using a 15 cm quality control internal cell. Results of this study are presented. Some other studies include the cases of strong spectral overlaps and structured spectral features. Results of some short-term field study at Calvert City, Western Kentucky are also presented.

  4. ENVIRONMENTAL SAMPLING USING LOCATION SPECIFIC AIR MONITORING IN BULK HANDLING FACILITIES

    SciTech Connect

    Sexton, L.; Hanks, D.; Degange, J.; Brant, H.; Hall, G.; Cable-Dunlap, P.; Anderson, B.

    2011-06-07

    Since the introduction of safeguards strengthening measures approved by the International Atomic Energy Agency (IAEA) Board of Governors (1992-1997), international nuclear safeguards inspectors have been able to utilize environmental sampling (ES) (e.g. deposited particulates, air, water, vegetation, sediments, soil and biota) in their safeguarding approaches at bulk uranium/plutonium handling facilities. Enhancements of environmental sampling techniques used by the IAEA in drawing conclusions concerning the absence of undeclared nuclear materials or activities will soon be able to take advantage of a recent step change improvement in the gathering and analysis of air samples at these facilities. Location specific air monitoring feasibility tests have been performed with excellent results in determining attribute and isotopic composition of chemical elements present in an actual test-bed sample. Isotopic analysis of collected particles from an Aerosol Contaminant Extractor (ACE) collection, was performed with the standard bulk sampling protocol used throughout the IAEA network of analytical laboratories (NWAL). The results yielded bulk isotopic values expected for the operations. Advanced designs of air monitoring instruments such as the ACE may be used in gas centrifuge enrichment plants (GCEP) to detect the production of highly enriched uranium (HEU) or enrichments not declared by a State. Researchers at Savannah River National Laboratory in collaboration with Oak Ridge National Laboratory are developing the next generation of ES equipment for air grab and constant samples that could become an important addition to the international nuclear safeguards inspector's toolkit. Location specific air monitoring to be used to establish a baseline environmental signature of a particular facility employed for comparison of consistencies in declared operations will be described in this paper. Implementation of air monitoring will be contrasted against the use of smear ES

  5. Plug-and-play web-based visualization of mobile air monitoring data

    EPA Science Inventory

    The collection of air measurements in real-time on moving platforms, such as wearable, bicycle-mounted, or vehicle-mounted air sensors, is becoming an increasingly common method to investigate local air quality. However, visualizing and analyzing geospatial air monitoring data r...

  6. 40 CFR Appendix C to Part 58 - Ambient Air Quality Monitoring Methodology

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 6 2013-07-01 2013-07-01 false Ambient Air Quality Monitoring... PROGRAMS (CONTINUED) AMBIENT AIR QUALITY SURVEILLANCE Pt. 58, App. C Appendix C to Part 58—Ambient Air... temporary modification is approved, air quality data obtained with the method as temporarily modified...

  7. 40 CFR Appendix C to Part 58 - Ambient Air Quality Monitoring Methodology

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 6 2014-07-01 2014-07-01 false Ambient Air Quality Monitoring... PROGRAMS (CONTINUED) AMBIENT AIR QUALITY SURVEILLANCE Pt. 58, App. C Appendix C to Part 58—Ambient Air... temporary modification is approved, air quality data obtained with the method as temporarily modified...

  8. Chicago air quality: PCB (polychlorinated biphenyl) air-monitoring plan. Phase 2. Final report

    SciTech Connect

    Not Available

    1986-04-01

    Polychlorinated biphenyls (PCBs) have significant commercial value because of their high chemical and physical stability, resistance to fire, low vapor pressure, and high dielectric (insulating) strength. The chemical stability and physical properties of PCBs that have made them commercially valuable also makes their safe disposal difficult. The environmentally preferred option for disposing of PCB containing wastes is incineration. In order to provide assurance that the operation of the SCA incinerator did not represent a threat to public health, the Illinois EPA initiated an air-sampling study in the vicinity to measure the levels of PCBs in the ambient air. Quality control checks conducted during the study revealed a previously unknown weakness in the analysis method that caused the quantitative results to be unreliable. A revised method has now been validated and will be used to further characterize ambient air quality and assess the environmental impact, if any, of the incineration of PCBs in Chicago. The document presents the overall plan for the project. Objectives: (1) Quantitatively determine PCB levels in the ambient air at three locations in the area of impacted by the SCA incinerator in southeast Chicago; (2) Correlate the air sampling results and meteorological conditions with the operational parameters from the SCA incinerator; (3) Assess the environmental impact associated with the incineration of PCBs; (4) Establish background concentrations of PCBs in the ambient air in the area.

  9. Monitoring results of PV for electric propulsion in recreational boating

    SciTech Connect

    Loois, G.; Wouters, F.P.H.; Koerts, G.M.; Weiden, T.C.J. van der

    1994-12-31

    In the future, grid connected systems will become the most important application of PV in Europe. Until that time a range of applications of autonomous systems needs to be developed to support the introduction of PV. Two projects concerning development and demonstration of PV-systems for powering ships with electric propulsion, aim to open a market with a technical potential of several hundreds of MWp in Europe. A secure energy supply, enhanced comfort (less noise and air pollution) and benevolence for the natural environment are the most significant advantages for introduction. Eighteen PV/battery-systems for electric propulsion of leisure boats (4 kWp in total) are currently realized and investigated in a pilot project in The Netherlands. The systems in use all run to the satisfaction of the users. Preliminary results of monitoring data on a few systems of these systems will be presented. A European project comprising about more than 75 PV-powered recreational ships (100 Wp to 2.5 kWp), involving shipbuilders, local authorities, utilities and interest groups has recently started.

  10. Compressed air system upgrade results in substantial energy savings

    SciTech Connect

    None, None

    2002-01-01

    This case study highlights a compressed air system upgrade at BWX Technologies manufacturing plant in Lynchburg, Virginia, which replaced antiquated compressors and dryers and implemented an improved control strategy, resulting in improved energy efficiency and savings in energy and maintenance costs.

  11. [A method for resolving spectra shift in the urban air quality monitoring system (DOAS)].

    PubMed

    Liu, Shi-Sheng; Wei, Qing-Nong; Feng, Wei-Wei; Zhan, Kai; Wang, Feng-Ping

    2009-06-01

    In the urban air quality monitoring system, there is spectra shift which is caused by environment factors on the optical part (temperature and optic fiber position), or by the self-change of Xe-lamp. Relative spectra shift will occur if the shift of lamp-spectrum and air-spectrum is inconsistent which has direct influences on the accuracy of the measurement results. So the match of wavelength between lamp-spectrum and air-spectrum should be considered when we retrieve pollutants concentration measurement of trace gas in the atmosphere through DOAS method. Based on the study of the unique structures for Xe-lamp emitting spectrum, a method for the calibration of two signal spectra using Xe-lamp emitting peak and least square fitting is given. The results show that, the impact of spectrum shift can be reduced by this method for retrieving results. PMID:19810506

  12. Micro sensor node for air pollutant monitoring: hardware and software issues.

    PubMed

    Choi, Sukwon; Kim, Nakyoung; Cha, Hojung; Ha, Rhan

    2009-01-01

    Wireless sensor networks equipped with various gas sensors have been actively used for air quality monitoring. Previous studies have typically explored system issues that include middleware or networking performance, but most research has barely considered the details of the hardware and software of the sensor node itself. In this paper, we focus on the design and implementation of a sensor board for air pollutant monitoring applications. Several hardware and software issues are discussed to explore the possibilities of a practical WSN-based air pollution monitoring system. Through extensive experiments and evaluation, we have determined the various characteristics of the gas sensors and their practical implications for air pollutant monitoring systems. PMID:22408489

  13. Micro Sensor Node for Air Pollutant Monitoring: Hardware and Software Issues

    PubMed Central

    Choi, Sukwon; Kim, Nakyoung; Cha, Hojung; Ha, Rhan

    2009-01-01

    Wireless sensor networks equipped with various gas sensors have been actively used for air quality monitoring. Previous studies have typically explored system issues that include middleware or networking performance, but most research has barely considered the details of the hardware and software of the sensor node itself. In this paper, we focus on the design and implementation of a sensor board for air pollutant monitoring applications. Several hardware and software issues are discussed to explore the possibilities of a practical WSN-based air pollution monitoring system. Through extensive experiments and evaluation, we have determined the various characteristics of the gas sensors and their practical implications for air pollutant monitoring systems. PMID:22408489

  14. Personal Air Pollution Exposure Monitoring using Low Cost Sensors in Chennai City

    NASA Astrophysics Data System (ADS)

    Reddy Yasa, Pavan; Shiva, Nagendra S. N.

    2016-04-01

    Air quality in many cities is deteriorating due to rapid urbanization and motorization. In the past, most of the health impacts studies in the urban areas have considered stationary air quality monitoring station data for health impact assessment. Since, there exist a spatial and temporal variation of air quality because of rapid change in land use pattern and complex interaction between emission sources and meteorological conditions, the human exposure assessment using stationary data may not provide realistic information. In such cases low cost sensors monitoring is viable in providing both spatial and temporal variations of air pollutant concentrations. In the present study an attempt has been made to use low cost sensor for monitoring the personal exposure to the two criteria pollutants CO and PM2.5 at 3 different locations of Chennai city. Maximum and minimum concentrations of CO and PM2.5 were found to be 5.4ppm, 0.8ppm and 534.8μg/m3, 1.9μg/m3 respectively. Results showed high concentrations near the intersection and low concentrations in the straight road.

  15. ASSESSING THE COMPARABILITY OF AMMONIUM, NITRATE AND SULFATE CONCENTRATIONS MEASURED BY THREE AIR QUALITY MONITORING NETWORKS

    EPA Science Inventory

    Airborne fine particulate matter across the United States is monitored by different networks, the three prevalent ones presently being the Clean Air Status and Trend Network (CASTNet), the Interagency Monitoring of PROtected Visual Environment Network (IMPROVE) and the Speciati...

  16. Determination of background concentrations for air quality models using spectral analysis and filtering of monitoring data

    NASA Astrophysics Data System (ADS)

    Tchepel, O.; Costa, A. M.; Martins, H.; Ferreira, J.; Monteiro, A.; Miranda, A. I.; Borrego, C.

    2010-01-01

    The use of background concentrations in air pollution modelling is usually a critical issue and a source of errors. The current work proposes an approach for the estimation of background concentrations using air quality measured data decomposed on baseline and short-term components. For this purpose, the spectral density was obtained for air quality monitoring data based on the Fourier series analysis. After, short-term fluctuations associated with the influence of local emissions and dispersion conditions were extracted from the original measurements using an iterative moving-average filter and taking into account the contribution of higher frequencies determined from the spectral analysis. The deterministic component obtained by the filtering is characterised by wider spatial and temporal representativeness than original monitoring data and is assumed to be appropriate for establishing the background values. This methodology was applied to define background concentrations of particulate matter (PM 10) used as input data for a local scale CFD model, and compared with an alternative approach using background concentrations provided by a mesoscale air quality modelling system. The study is focused on a selected domain within the Lisbon urban area (Portugal). The results present a better performance for the microscale model when initialised by decomposed time series and demonstrate the importance of the proposed methodology in reducing the uncertainty of the model predictions. The decomposition of air quality measurements and the removal of short-term fluctuations discussed in the work is a valuable technique to determine representative background concentrations.

  17. Monitoring of (7)Be in surface air of varying PM(10) concentrations.

    PubMed

    Chao, J H; Liu, C C; Cho, I C; Niu, H

    2014-07-01

    In this study, beryllium-7 ((7)Be) concentrations of surface air were monitored throughout a span of 23 years (1992-2012) in the Taiwanese cities Yilan, Taipei, Taichung, and Kaohsiung. During this period, particulate matter (PM) concentrations, in terms of PM10, were collected monthly from the nearest air-quality pollutant monitoring stations and compared against (7)Be concentrations. Seasonal monsoons influenced (7)Be concentrations in all cities, resulting in high winter and low summer concentrations. In addition, the meteorological conditions caused seasonal PM10 variations, yielding distinct patterns among the cities. There was no correlation between (7)Be and PM10 in the case cities. The average annual (7)Be concentrations varied little among the cities, ranging from 2.9 to 3.5 mBq/m(3), while the PM10 concentrations varied significantly from 38 μg/m(3) in Yilan to 92 μg/m(3) in Kaohsiung depending on the degree of air pollution and meteorological conditions. The correlation between the (7)Be concentration and gross-beta activities (Aβ) in air implied that the (7)Be was mainly attached to crustal PM and its concentration varied little among the cities, regardless of the increase in anthropogenic PM in air-polluted areas. PMID:24607534

  18. Open hardware, low cost, air quality stations for monitoring ozone in coastal area

    NASA Astrophysics Data System (ADS)

    Lima, Marco; Donzella, Davide; Pintus, Fabio; Fedi, Adriano; Ferrari, Daniele; Massabò, Marco

    2014-05-01

    Ozone concentrations in urban and coastal area are a great concern for citizens and, consequently regulator. In the last 20 years the Ozone concentration is almost doubled and it has attracted the public attention because of the well know harmful impacts on human health and biosphere in general. Official monitoring networks usually comprise high precision, high accuracy observation stations, usually managed by public administrations and environmental agency; unfortunately due to their high costs of installation and maintenance, the monitoring stations are relatively sparse. This kind of monitoring networks have been recognized to be unsuitable to effectively characterize the high variability of air quality, especially in areas where pollution sources are various and often not static. We present a prototype of a low cost station for air quality monitoring, specifically developed for complementing the official monitoring stations improving the representation of air quality spatial distribution. We focused on a semi-professional product that could guarantee the highest reliability at the lowest possible cost, supported by a consistent infrastructure for data management. We test two type of Ozone sensor electrochemical and metal oxide. This work is integrated in the ACRONET Paradigm ® project: an open-hardware platform strongly oriented on environmental monitoring. All software and hardware sources will be available on the web. Thus, a computer and a small amount of work tools will be sufficient to create new monitoring networks, with the only constraint to share all the data obtained. It will so possible to create a real "sensing community". The prototype is currently able to measure ozone level, temperature and relative humidity, but soon, with the upcoming changes, it will be able also to monitor dust, carbon monoxide and nitrogen dioxide, always through the use of commercial sensors. The sensors are grouped in a compact board that interfaces with a data

  19. An Air Plasma Off-Gas Emission Monitor (APO-GEM) For On-line Toxic Metal Monitoring

    NASA Astrophysics Data System (ADS)

    Miller, G. P.; Zhu, Z.; Baldwin, D. P.

    1998-10-01

    Increasing regulatory demands requiring significant reductions in the emission of hazardous air pollutants have led to the need for techniques capable of providing real-time monitoring of toxic metals in combustion gas streams. These waste streams range from coal-fired boilers, municipal waste combustors to plasma vitrification systems used for the remediation of low level radioactive waste. Our solution to this problem is the development of APO-GEM. This instrument incorporates an atmospheric-pressure inductively-coupled air plasma powered by a 3.5 kW solid-state 27.12 MHz rf generator coupled with an isokinetic sampling system. The detection system includes both a 1-m monochromator and a novel solid-state AOTF high-resolution spectrometer. The air plasma readily tolerates the introduction of combustion gases as well as the significant particle loading that can be present in exhaust streams. Plasma properties and performance characteristics, including results obtained recently at the DOE/EPA-sponsored Demonstration of Toxic Metal Continuous Emission Monitors, will be discussed.

  20. Development and Application of a Next Generation Air Sensor Network for the Hong Kong Marathon 2015 Air Quality Monitoring

    PubMed Central

    Sun, Li; Wong, Ka Chun; Wei, Peng; Ye, Sheng; Huang, Hao; Yang, Fenhuan; Westerdahl, Dane; Louie, Peter K.K.; Luk, Connie W.Y.; Ning, Zhi

    2016-01-01

    This study presents the development and evaluation of a next generation air monitoring system with both laboratory and field tests. A multi-parameter algorithm was used to correct for the impact of environmental conditions on the electrochemical sensors for carbon monoxide (CO) and nitrogen dioxide (NO2) pollutants. The field evaluation in an urban roadside environment in comparison to designated monitors showed good agreement with measurement error within 5% of the pollutant concentrations. Multiple sets of the developed system were then deployed in the Hong Kong Marathon 2015 forming a sensor-based network along the marathon route. Real-time air pollution concentration data were wirelessly transmitted and the Air Quality Health Index (AQHI) for the Green Marathon was calculated, which were broadcast to the public on an hourly basis. The route-specific sensor network showed somewhat different pollutant patterns than routine air monitoring, indicating the immediate impact of traffic control during the marathon on the roadside air quality. The study is one of the first applications of a next generation sensor network in international sport events, and it demonstrated the usefulness of the emerging sensor-based air monitoring technology in rapid network deployment to supplement existing air monitoring. PMID:26861336

  1. Development and Application of a Next Generation Air Sensor Network for the Hong Kong Marathon 2015 Air Quality Monitoring.

    PubMed

    Sun, Li; Wong, Ka Chun; Wei, Peng; Ye, Sheng; Huang, Hao; Yang, Fenhuan; Westerdahl, Dane; Louie, Peter K K; Luk, Connie W Y; Ning, Zhi

    2016-01-01

    This study presents the development and evaluation of a next generation air monitoring system with both laboratory and field tests. A multi-parameter algorithm was used to correct for the impact of environmental conditions on the electrochemical sensors for carbon monoxide (CO) and nitrogen dioxide (NO2) pollutants. The field evaluation in an urban roadside environment in comparison to designated monitors showed good agreement with measurement error within 5% of the pollutant concentrations. Multiple sets of the developed system were then deployed in the Hong Kong Marathon 2015 forming a sensor-based network along the marathon route. Real-time air pollution concentration data were wirelessly transmitted and the Air Quality Health Index (AQHI) for the Green Marathon was calculated, which were broadcast to the public on an hourly basis. The route-specific sensor network showed somewhat different pollutant patterns than routine air monitoring, indicating the immediate impact of traffic control during the marathon on the roadside air quality. The study is one of the first applications of a next generation sensor network in international sport events, and it demonstrated the usefulness of the emerging sensor-based air monitoring technology in rapid network deployment to supplement existing air monitoring. PMID:26861336

  2. Monitoring iodine-129 in air and milk samples collected near the Hanford Site: an investigation of historical iodine monitoring data.

    PubMed

    Fritz, Brad G; Patton, Gregory W

    2006-01-01

    While other research has reported on the concentrations of (129)I in the environment surrounding active nuclear fuel reprocessing facilities, there is a shortage of information regarding how the concentrations change once facilities close. At the Hanford Site, the Plutonium-Uranium Extraction (PUREX) chemical separation plant was operating between 1983 and 1990, during which time (129)I concentrations in air and milk were measured. After the cessation of chemical processing, plant emissions decreased 2.5 orders of magnitude over an 8-year period. An evaluation of (129)I and (127)I concentration data in air and milk spanning the PUREX operation and post-closure period was conducted to compare the changes in environmental levels. Measured concentrations over the monitoring period were below the levels that could result in a potential annual human dose greater than 1 mSv. There was a measurable difference in the measured air concentrations of (129)I at different distances from the source, indicating a distinct Hanford fingerprint. Correlations between stack emissions of (129)I and concentrations in air and milk indicate that atmospheric emissions were the major source of (129)I measured in environmental samples. The measured concentrations during PUREX operations were similar to observations made around a fuel reprocessing plant in Germany. After the PUREX Plant stopped operating, (129)I concentration measurements made upwind of Hanford were similar to the results from Seville, Spain. PMID:16125287

  3. Air Pollution Monitoring and Mining Based on Sensor Grid in London

    PubMed Central

    Ma, Yajie; Richards, Mark; Ghanem, Moustafa; Guo, Yike; Hassard, John

    2008-01-01

    In this paper, we present a distributed infrastructure based on wireless sensors network and Grid computing technology for air pollution monitoring and mining, which aims to develop low-cost and ubiquitous sensor networks to collect real-time, large scale and comprehensive environmental data from road traffic emissions for air pollution monitoring in urban environment. The main informatics challenges in respect to constructing the high-throughput sensor Grid are discussed in this paper. We present a two-layer network framework, a P2P e-Science Grid architecture, and the distributed data mining algorithm as the solutions to address the challenges. We simulated the system in TinyOS to examine the operation of each sensor as well as the networking performance. We also present the distributed data mining result to examine the effectiveness of the algorithm.

  4. Long-term air quality monitoring at the South Pole by the NOAA program Geophysical Monitoring for Climatic Change

    SciTech Connect

    Robinson, E.; Rodhaine, B.A.; Komhyr, W.D.; Oltmans, S.J.; Steele, L.P.

    1988-02-01

    The objectives of the NOAA program of Geophysical Monitoring for Climatic Change (GMCC) for the South Pole include measurements of atmospheric changes which can potentially impact climate. This paper discusses the long-term GMCC South Pole air chemistry data for carbon dioxide, total ozone, surface ozone, methane, halocarbons, nitrous oxide, and aerosol concentrations, comparing the findings with GMCC data for other regions. Special consideration is given to the results of recent GMCC ozonesonde operations and to an asessment of Dobson ozone spectrophotometer data taken at South Pole by NOAA since 1964. Data are discussed in the framework of Antarctic ozone hole phenomenon. 49 references.

  5. The air quality monitoring program for the 1100-EM-1 remedial investigation

    SciTech Connect

    Glantz, C.S.; Laws, G.L.

    1990-09-01

    Air quality monitoring for the remedial investigation of the Hanford Site's 1100-EM-1 operable unit was conducted in the spring and fall of 1989 and during January 1990. The monitoring program was divided into two phases. The first phase examined the air quality impact of routine atmospheric emissions at three of the operable unit's waste sites before the beginning of intrusive remedial investigation activities. The second phase of monitoring examined the air quality impact of routine atmospheric emissions from two of the operable unit's waste sites during intrusive remedial investigation activities. Each phase of the program consisted of a series of monitoring events that measured pollutant concentrations at key locations upwind and downwind of individual waste sites. During each monitoring event, sampling was conducted to determine the air concentrations of a wide variety of volatile organic compounds and semivolatile organic compounds. Monitoring for heavy metals and asbestos was also conducted during some monitoring events. 8 refs., 15 figs., 9 tabs.

  6. Using Satellite Aerosol Retrievals to Monitor Surface Particulate Air Quality

    NASA Technical Reports Server (NTRS)

    Levy, Robert C.; Remer, Lorraine A.; Kahn, Ralph A.; Chu, D. Allen; Mattoo, Shana; Holben, Brent N.; Schafer, Joel S.

    2011-01-01

    The MODIS and MISR aerosol products were designed nearly two decades ago for the purpose of climate applications. Since launch of Terra in 1999, these two sensors have provided global, quantitative information about column-integrated aerosol properties, including aerosol optical depth (AOD) and relative aerosol type parameters (such as Angstrom exponent). Although primarily designed for climate, the air quality (AQ) community quickly recognized that passive satellite products could be used for particulate air quality monitoring and forecasting. However, AOD and particulate matter (PM) concentrations have different units, and represent aerosol conditions in different layers of the atmosphere. Also, due to low visible contrast over brighter surface conditions, satellite-derived aerosol retrievals tend to have larger uncertainty in urban or populated regions. Nonetheless, the AQ community has made significant progress in relating column-integrated AOD at ambient relative humidity (RH) to surface PM concentrations at dried RH. Knowledge of aerosol optical and microphysical properties, ambient meteorological conditions, and especially vertical profile, are critical for physically relating AOD and PM. To make urban-scale maps of PM, we also must account for spatial variability. Since surface PM may vary on a finer spatial scale than the resolution of standard MODIS (10 km) and MISR (17km) products, we test higher-resolution versions of MODIS (3km) and MISR (1km research mode) retrievals. The recent (July 2011) DISCOVER-AQ campaign in the mid-Atlantic offers a comprehensive network of sun photometers (DRAGON) and other data that we use for validating the higher resolution satellite data. In the future, we expect that the wealth of aircraft and ground-based measurements, collected during DISCOVER-AQ, will help us quantitatively link remote sensed and ground-based measurements in the urban region.

  7. Data Quality Objectives Supporting Radiological Air Emissions Monitoring for the PNNL Site

    SciTech Connect

    Barnett, J. Matthew; Meier, Kirsten M.; Snyder, Sandra F.; Fritz, Brad G.; Poston, Theodore M.; Antonio, Ernest J.

    2012-11-12

    Pacific Northwest National Laboratory (PNNL) is in the process of developing a radiological air monitoring program for the PNNL Site that is distinct from that of the nearby Hanford Site. The original DQO (PNNL-19427) considered radiological emissions at the PNNL Site from Physical Sciences Facility (PSF) major emissions units. This first revision considers PNNL Site changes subsequent to the implementation of the original DQO. A team was established to determine how the PNNL Site changes would continue to meet federal regulations and address guidelines developed to monitor air emissions and estimate offsite impacts of radioactive material operations. The result is an updated program to monitor the impact to the public from the PNNL Site. The team used the emission unit operation parameters and local meteorological data as well as information from the PSF Potential-to-Emit documentation and Notices of Construction submitted to the Washington State Department of Health (WDOH). The locations where environmental monitoring stations would most successfully characterize the maximum offsite impacts of PNNL Site emissions from the three PSF buildings with major emission units were determined from these data. Three monitoring station locations were determined during the original revision of this document. This first revision considers expanded Department of Energy operations south of the PNNL Site and relocation of the two offsite, northern monitoring stations to sites near the PNNL Site fenceline. Inclusion of the southern facilities resulted in the proposal for a fourth monitoring station in the southern region. The southern expansion added two minor emission unit facilities and one diffuse emission unit facility. Relocation of the two northern stations was possible due to the use of solar power, rather than the previous limitation of the need for access to AC power, at these more remote locations. Addendum A contains all the changes brought about by the revision 1

  8. Comparison of regional air dispersion simulation and ambient air monitoring data for the soil fumigant 1,3-dichloropropene.

    PubMed

    van Wesenbeeck, I J; Cryer, S A; de Cirugeda Helle, O; Li, C; Driver, J H

    2016-11-01

    SOFEA v2.0 is an air dispersion modeling tool used to predict acute and chronic pesticide concentrations in air for large air sheds resulting from agronomic practices. A 1,3-dichloropropene (1,3-D) air monitoring study in high use townships in Merced County, CA, logged 3-day average air concentrations at nine locations over a 14.5month period. SOFEA, using weather data measured at the site, and using a historical CDPR regulatory assumption of a constant 320m mixing height, predicted the general pattern and correct order of magnitude for 1,3-D air concentrations as a function of time, but failed to estimate the highest observed 1,3-D concentrations of the monitoring study. A time series and statistical comparison of the measured and modeled data indicated that the model underestimated 1,3-D concentrations during calm periods (wind speed <1m/s), such that the annual average concentration was under predicted by approximately 4.7-fold, and the variability was not representative of the measured data. Calm periods are associated with low mixing heights (MHs) and are more prevalent in the Central Valley of CA during the winter months, and thus the assumption of a constant 320m mixing height is not appropriate. An algorithm was developed to calculate the MH using the air temperature in the weather file when the wind speed was <1m/s. When the model was run using the revised MHs, the average of the modeled 1,3-D concentration Probability Distribution Function (PDF) was within 5% of the measured PDF, and the variability in modeled concentrations more closely matched the measured dataset. Use of the PCRAMMET processed weather data from the site (including PCRAMMET MH) resulted in the global annual average concentration within 2-fold of measured data. Receptor density was also found to have an effect on the modeled 1,3-D concentration PDF, and a 50×50 receptor grid in the nine township domain captured the measured 1,3-D concentration distribution much better than a 3×3

  9. What is in my air? Feds facilitating citizen science in the EPA Next Generation Air Monitoring Program

    NASA Astrophysics Data System (ADS)

    French, R. A.; Preuss, P.

    2013-12-01

    Recent advances in the development of small-scale and inexpensive air pollutant sensors, coupled with the ubiquitous use of wireless and mobile technology, will transform the field of air quality monitoring. For the first time, the general public may purchase air monitors, which can measure their personal exposure to NOx, Ozone, black carbon, and VOCs for a few hundred dollars. Concerned citizens may now gather the data for themselves to answer questions such as, ';what am I breathing?' and ';is my air clean?' The research and policy community will have access to real-time air quality data collected at the local and regional scale, making targeted protection of environmental health possible. With these benefits come many questions from citizen scientists, policymakers, and researchers. These include, what is the quality of the data? How will the public interpret data from the air sensors and are there guidelines to interpret that data? How do you know if the air sensor is trustworthy? Recognizing that this revolution in air quality monitoring will proceed regardless of the involvement of the government, the Innovation Team at the EPA Office of Research and Development, in partnership with the Office of Enforcement and Compliance Assistance and the Office of Air and Radiation, seized the opportunity to ensure that users of next generation air sensors can realize the full potential benefits of these innovative technologies. These efforts include releasing an EPA Draft Roadmap for Next Generation Air Monitoring, testing air sensors under laboratory and field conditions, field demonstrations of new air sensor technology for the public, and building a community of air sensor developers, researchers, local, state and federal officials, and community members through workshops and a website. This presentation will review the status of those programs, highlighting the particular programs of interest to citizen scientists. The Next Generation Air Monitoring program may serve

  10. High-Density, High-Resolution, Low-Cost Air Quality Sensor Networks for Urban Air Monitoring

    NASA Astrophysics Data System (ADS)

    Mead, M. I.; Popoola, O. A.; Stewart, G.; Bright, V.; Kaye, P.; Saffell, J.

    2012-12-01

    Monitoring air quality in highly granular environments such as urban areas which are spatially heterogeneous with variable emission sources, measurements need to be made at appropriate spatial and temporal scales. Current routine air quality monitoring networks generally are either composed of sparse expensive installations (incorporating e.g. chemiluminescence instruments) or higher density low time resolution systems (e.g. NO2 diffusion tubes). Either approach may not accurately capture important effects such as pollutant "hot spots" or adequately capture spatial (or temporal) variability. As a result, analysis based on data from traditional low spatial resolution networks, such as personal exposure, may be inaccurate. In this paper we present details of a sophisticated, low-cost, multi species (gas phase, speciated PM, meteorology) air quality measurement network methodology incorporating GPS and GPRS which has been developed for high resolution air quality measurements in urban areas. Sensor networks developed in the Centre for Atmospheric Science (University of Cambridge) incorporated electrochemical gas sensors configured for use in urban air quality studies operating at parts-per-billion (ppb) levels. It has been demonstrated that these sensors can be used to measure key air quality gases such as CO, NO and NO2 at the low ppb mixing ratios present in the urban environment (estimated detection limits <4ppb for CO and NO and <1ppb for NO2. Mead et al (submitted Aug., 2012)). Based on this work, a state of the art multi species instrument package for deployment in scalable sensor networks has been developed which has general applicability. This is currently being employed as part of a major 3 year UK program at London Heathrow airport (the Sensor Networks for Air Quality (SNAQ) Heathrow project). The main project outcome is the creation of a calibrated, high spatial and temporal resolution data set for O3, NO, NO2, SO2, CO, CO2, VOCstotal, size-speciated PM

  11. Test/QA Plan (TQAP) for Verification of Semi-Continuous Ambient Air Monitoring Systems

    EPA Science Inventory

    The purpose of the semi-continuous ambient air monitoring technology (or MARGA) test and quality assurance plan is to specify procedures for a verification test applicable to commercial semi-continuous ambient air monitoring technologies. The purpose of the verification test is ...

  12. 40 CFR Appendix C to Part 58 - Ambient Air Quality Monitoring Methodology

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Micropolitan Statistical Area site. If the candidate ARM for a network is already approved for purposes of this... Quality Monitoring Methodology 1.0 Purpose 2.0 SLAMS Ambient Air Monitoring Stations 3.0 NCore Ambient Air... ARM for purposes of section 2.1 of this appendix at a particular site or network of sites under...

  13. Overview of the new National Near-Road Air Quality Monitoring Network

    EPA Science Inventory

    In 2010, EPA promulgated new National Ambient Air Quality Standards (NAAQS) for nitrogen dioxide (NO2). As part of this new NAAQS, EPA required the establishment of a national near-road air quality monitoring network. This network will consist of one NO2 near-road monitoring st...

  14. INDOOR/AMBIENT RESIDENTIAL AIR TOXICS RESULTS IN RURAL WESTERN MONTANA

    PubMed Central

    Ward, Tony J.; Underberg, Heidi; Jones, David; Hamilton, Raymond F.; Adams, Earle

    2009-01-01

    Indoor and ambient concentrations of 21 Volatile Organic Compounds (including 14 Hazardous Air Pollutants) were measured in the homes of nearly 80 western Montana (Missoula) high school students as part of the ‘Air Toxics Under the Big Sky’ program during the 2004/2005 and 2005/2006 school years. Target analytes were measured using low flow air sampling pumps and sorbent tubes, with analysis of the exposed samples by Thermal Desorption/Gas Chromatography/Mass Spectrometry (TD/GC/MS). The results reported here present the findings of the first indoor/ambient air toxics monitoring program conducted in a semi-rural valley location located in the Northern Rocky Mountain/western Montana region. Of all of the air toxics quantified in this study, toluene was found to be the most abundant compound in both the indoor and ambient environments during each of the two school years. Indoor log-transformed mean concentrations were found to be higher when compared with ambient log-transformed mean concentrations at P < 0.001 for the majority of the compounds, supporting the results of previous studies conducted in urban areas. For the air toxics consistently measured throughout this program, concentrations were approximately six times higher inside the student’s homes compared to those simultaneously measured directly outside their homes. For the majority of the compounds, there were no significant correlations between indoor and ambient concentrations. PMID:18548326

  15. Indoor/ambient residential air toxics results in rural western Montana.

    PubMed

    Ward, Tony J; Underberg, Heidi; Jones, David; Hamilton, Raymond F; Adams, Earle

    2009-06-01

    Indoor and ambient concentrations of 21 volatile organic compounds (including 14 hazardous air pollutants) were measured in the homes of nearly 80 western Montana (Missoula) high school students as part of the 'Air Toxics Under the Big Sky' program during the 2004/2005 and 2005/2006 school years. Target analytes were measured using low flow air sampling pumps and sorbent tubes, with analysis of the exposed samples by thermal desorption/gas chromatography/mass spectrometry (TD/GC/MS). The results reported here present the findings of the first indoor/ambient air toxics monitoring program conducted in a semi-rural valley location located in the Northern Rocky Mountain/Western Montana region. Of all of the air toxics quantified in this study, toluene was found to be the most abundant compound in both the indoor and ambient environments during each of the two school years. Indoor log-transformed mean concentrations were found to be higher when compared with ambient log-transformed mean concentrations at P < 0.001 for the majority of the compounds, supporting the results of previous studies conducted in urban areas. For the air toxics consistently measured throughout this program, concentrations were approximately six times higher inside the student's homes compared to those simultaneously measured directly outside their homes. For the majority of the compounds, there were no significant correlations between indoor and ambient concentrations. PMID:18548326

  16. TVA Reservoir Monitoring Program: Fish community results, 1991

    SciTech Connect

    Scott, E.M. Jr.

    1992-07-31

    The Tennessee Valley Authority (TVA) operates 9 reservoirs on the Tennessee River and 37 reservoirs on its tributaries. TVA is committed to maintaining the health of aquatic resources created when the reservoir system was built. To that end, TVA conducts the Water Resources and Biological Monitoring Program that includes physical, chemical, and biological data collection components. Biological monitoring targets the following selected elements within three zones of the reservoir (inflow, transition, and forebay): Sediment/Water-column Acute Toxicity Screening (forebay and transition zone only); Benthic macroinvertebrates Fish Reservoir fish monitoring is divided into the following activities: Fish Biomass; Fish Tissue Contamination; Fish Community Monitoring; Fish Health Assessment. This report presents the results of fall1991 fish community monitoring and fish health assessment data using a new analytical approach: Reservoir Index of Biotic Integrity (RIBI). Fish health assessment is included in this report as one of the RIBI metrics.

  17. Fish community results. Reservoir vital signs monitoring, 1990

    SciTech Connect

    Hickman, G.D.; Scott, E.M. Jr.; Brown, A.M.

    1991-05-01

    The Tennessee Valley Authority (TVA) operates 9 reservoirs on the Tennessee River and 37 reservoirs on its tributaries. TVA is committed to maintaining the health of aquatic resources created when the reservoir system was built. To that end, TVA in cooperation with Valley states, operates a water resource monitoring program that includes physical, chemical, and biological data collection components. Biological monitoring will target the following selected elements within three zones of the reservoir (inflow, transition, and forebay): Sediment/Water-column Acute Toxicity Screening, Benthic macroinvertebrates, and Fish. Reservoir fisheries monitoring is divided into the following activities: Fish Biomass, Fish Tissue Contamination, Fish Community Monitoring, and Fish Health Assessment. This report presents the results of fish community monitoring and fish health assessments.

  18. Using Unmanned Air Systems to Monitor Methane in the Atmosphere

    NASA Technical Reports Server (NTRS)

    Clow, Jacqueline; Smith, Jeremy Christopher

    2016-01-01

    Methane is likely to be an important contributor to global warming, and our current knowledge of its sources, distributions, and transport is insufficient. It is estimated that there could be from 7.5 to 400 billion tons carbon-equivalent of methane in the arctic region, a broad range that is indicative of the uncertainty within the Earth Science community. Unmanned Air Systems (UASs) are often used for combat or surveillance by the military, but they also have been used for Earth Science field missions. In this study, we will analyze the utility of the NASA Global Hawk and the Aurora Flight Sciences Orion UASs compared to the manned DC-8 aircraft for conducting a methane monitoring mission. The mission will focus on the measurement of methane along the boundaries of Arctic permafrost thaw and melting glaciers. The use of Long Endurance UAS brings a new range of possibilities including the ability to obtain long- term and persistent observations and to significantly augment methane measurements/retrievals collected by satellite. Furthermore, we discuss the future of long endurance UAS and their potential for science applications in the next twenty to twenty-five years.

  19. Monitoring and evaluation of replacing low-efficiency air conditioners with high-efficiency air conditioners in single-family detached houses in Austin, Texas

    SciTech Connect

    Burns, R.; Hough, R.E. and Associates, Inc., Syracuse, NY )

    1991-10-01

    The US DOE initiated this project to evaluate the performance of an air conditioner retrofit program in Austin, Texas. The City's Austin's Resource Management Department pursued this project to quantify the retrofit effect of replacing low-efficiency air conditioners with high-efficiency air conditioners in single-family detached homes. If successfully implemented, this retrofit program could help defer construction of a new power plant which is a major goal of this department. The project compares data collected from 12 houses during two cooling seasons under pre-retrofit and then post-retrofit air conditioner units. The existing low-efficiency air conditioners were monitored during the 1987 cooling season, replaced during the 1987--88 heating season with new, smaller sized, high-efficiency units, and then monitored again during the 1988 cooling season. Results indicated that the air conditioner retrofits reduce the annual air conditioner electric consumption and peak electric demand by an average of 38%. When normalized to the nominal capacity of the air conditioner, average demand savings were 1.12 W/ft{sup 2} and estimated annual energy savings were 1.419 kWh/ft{sup 2}. Individual air conditioner power requirements were found to be a well defined function of outdoor temperature as expected. In the absence of detailed data, estimates of the peak demand reductions of new air conditioners can be made from the manufacturer's specifications. Air conditioner energy consumption proved to be strongly linear as a function of the outdoor temperature as expected when taken as an aggregate. No noticeable differences in the diversity factor of the air conditioner usage were found. Analysis of the retrofit effect using PRISM yields estimates of the reduction in normalized annual consumption (NAC) and annual cooling consumption of 12% and 30%. 2 refs., 11 figs., 17 tabs.

  20. Denitrogenation interruptions with air. [resulting in decompression sickness

    NASA Technical Reports Server (NTRS)

    Cooke, J. P.

    1976-01-01

    A 3-h denitrogenation period at ground-level pressure with 95% O2-5% N2, with an air interruption of 5 min or more and matched with additional denitrogenation time equal to the interruption, will later result occasionally in altitude decompression sickness ('bends') during a 2-h decompression exposure at 3.8 psia (10,058 m equivalent) with 92% O2- 8% N2. Thus the equal time or 'mirror-image' make-up time for loss of denitrogenation did not prevent bends 7 times in 17 subjects during 71 exposures with air interruptions; on the other hand, no case of bends was reported after uninterrupted denitrogenation periods. Nitrogen-loading during the interruptive period is believed to resupply the bends sites with additional nitrogen, which re-establishes conditions favoring a return to a high incidence of bends.

  1. Air and water quality monitor assessment of life support subsystems

    NASA Technical Reports Server (NTRS)

    Whitley, Ken; Carrasquillo, Robyn L.; Holder, D.; Humphries, R.

    1988-01-01

    Preprotype air revitalization and water reclamation subsystems (Mole Sieve, Sabatier, Static Feed Electrolyzer, Trace Contaminant Control, and Thermoelectric Integrated Membrane Evaporative Subsystem) were operated and tested independently and in an integrated arrangement. During each test, water and/or gas samples were taken from each subsystem so that overall subsystem performance could be determined. The overall test design and objectives for both subsystem and integrated subsystem tests were limited, and no effort was made to meet water or gas specifications. The results of chemical analyses for each of the participating subsystems are presented along with other selected samples which were analyzed for physical properties and microbiologicals.

  2. Satellite-based monitoring of air quality within QUITSAT project

    NASA Astrophysics Data System (ADS)

    di Nicolantonio, W.

    2009-04-01

    Satellite remote sensing of both trace gas constituents and Particulate Matter (PM) can be profitably exploited in Air Quality (AQ) assessment. The actual potential role of satellite observations is here highlighted combined with regional meteorological and Chemical Transport Models (CTM) in the context of air quality monitoring as experienced in QUITSAT Project over Northern Italy (from 43:09 to 46:39 N, from 6:19 to 14:23 E). QUITSAT (2006-2009) is a pilot project funded by the Italian Space Agency (ASI) in the framework of its institutional priorities for the Natural and Technological disaster management programme. AQ monitoring is in general based on local ground measurements. In recent years, this issue has been inserted in a more extended frame, in which CTM have joined ground-based data and satellite observations to provide a better characterization of AQ monitoring, forecasting and planning on a regional scale. In particular, two satellite-based products arisen from analysis methodologies developed in QUITSAT and relative to significant pollutants as PM2.5 and NO2 are presented within this work. The MODIS sensors capability (Terra and Aqua/NASA platforms) to retrieve Aerosol Optical Properties (AOP) has been used in a semi-empirical approach to estimate PM2.5 content at the ground. At first, PM2.5 concentration sampled in several sites over Northern Italy are employed in order to infer AOP to PM conversion parameters. A spatial-temporal coincidence procedure has been performed amongst EO and non-EO data. To take into account the aerosol columnar dispersion and the AOP dependence on the relative humidity (RH) meteorological fields (Planetary Boundary Layer and RH) simulated by MM5 are considered. MODIS aerosol level 2 products (MOD04 and MYD04 collection 5, 10x10 km2 spatial resolution) and PM2.5 samplings performed by Regional Environmental Agencies (ARPA Emilia Romagna and ARPA Lombardia) and carried out over further 6 measurements sites (located in Milano

  3. Method, system and apparatus for monitoring and adjusting the quality of indoor air

    DOEpatents

    Hartenstein, Steven D.; Tremblay, Paul L.; Fryer, Michael O.; Hohorst, Frederick A.

    2004-03-23

    A system, method and apparatus is provided for monitoring and adjusting the quality of indoor air. A sensor array senses an air sample from the indoor air and analyzes the air sample to obtain signatures representative of contaminants in the air sample. When the level or type of contaminant poses a threat or hazard to the occupants, the present invention takes corrective actions which may include introducing additional fresh air. The corrective actions taken are intended to promote overall health of personnel, prevent personnel from being overexposed to hazardous contaminants and minimize the cost of operating the HVAC system. The identification of the contaminants is performed by comparing the signatures provided by the sensor array with a database of known signatures. Upon identification, the system takes corrective actions based on the level of contaminant present. The present invention is capable of learning the identity of previously unknown contaminants, which increases its ability to identify contaminants in the future. Indoor air quality is assured by monitoring the contaminants not only in the indoor air, but also in the outdoor air and the air which is to be recirculated. The present invention is easily adaptable to new and existing HVAC systems. In sum, the present invention is able to monitor and adjust the quality of indoor air in real time by sensing the level and type of contaminants present in indoor air, outdoor and recirculated air, providing an intelligent decision about the quality of the air, and minimizing the cost of operating an HVAC system.

  4. Understanding The Correlation of San Joaquin Air Quality Monitoring With Aerosol Optical Thickness Satellite Measurements

    NASA Astrophysics Data System (ADS)

    Ballard, M.; Newcomer, M.; Rudy, J.; Lake, S.; Sambasivam, S.; Strawa, A. W.; Schmidt, C.; Skiles, J.

    2007-12-01

    Air quality in the San Joaquin Valley (SJV) has failed to meet state and federal attainment standards for Particulate Matter (PM) for several years. Air quality agencies currently use ground monitoring sites to monitor air quality in the San Joaquin Valley. This method provides accurate information at specific points but does not provide a clear indication of what is occurring over large regions. Using measurements from satellite imagery has the potential to provide valuable air quality information in a timely manner across large regions. While previous studies show good correlations between satellite derived Aerosol Optical Thickness (AOT) and surface PM measurements on the East Coast of the United States, the data do not correlate well in the SJV. This paper compares PM2.5 ground data from the California Air Resources Board (CARB) and the Interagency Monitoring of Protected Environments (IMPROVE) sites with satellite data in an effort to understand this discrepancy. To verify satellite AOT value accuracy, ground AOT values were collected from the Aerosol Robotic Network (AERONET) and from measurements using the hand-held MicroTops II Sun Photometer field instrument. We found good correlation of the AOT values between MODIS, MISR and AERONET. However, we found poor correlations between satellite- based AOT values and PM2.5 values, and consideration of aerosol speciation did not improve the correlations. Further investigation is needed to determine the causes of the poor correlation. Acquiring detailed information on the meteorological conditions and vertical profiles of the atmosphere using ground-based LIDAR or data from CALIPSO may provide better results.

  5. Monitoring Air Quality over China: Evaluation of the modeling system of the PANDA project

    NASA Astrophysics Data System (ADS)

    Bouarar, Idir; Katinka Petersen, Anna; Brasseur, Guy; Granier, Claire; Xie, Ying; Wang, Xuemei; Fan, Qi; Wang, Lili

    2015-04-01

    Air pollution has become a pressing problem in Asia and specifically in China due to rapid increase in anthropogenic emissions related to growth of China's economic activity and increasing demand for energy in the past decade. Observed levels of particulate matter and ozone regularly exceed World Health Organization (WHO) air quality guidelines in many parts of the country leading to increased risk of respiratory illnesses and other health problems. The EU-funded project PANDA aims to establish a team of European and Chinese scientists to monitor air pollution over China and elaborate air quality indicators in support of European and Chinese policies. PANDA combines state-of-the-art air pollution modeling with space and surface observations of chemical species to improve methods for monitoring air quality. The modeling system of the PANDA project follows a downscaling approach: global models such as MOZART and MACC system provide initial and boundary conditions to regional WRF-Chem and EMEP simulations over East Asia. WRF-Chem simulations at higher resolution (e.g. 20km) are then performed over a smaller domain covering East China and initial and boundary conditions from this run are used to perform simulations at a finer resolution (e.g. 5km) over specific megacities like Shanghai. Here we present results of model simulations for January and July 2010 performed during the first year of the project. We show an intercomparison of the global (MACC, EMEP) and regional (WRF-Chem) simulations and a comprehensive evaluation with satellite measurements (NO2, CO) and in-situ data (O3, CO, NOx, PM10 and PM2.5) at several surface stations. Using the WRF-Chem model, we demonstrate that model performance is influenced not only by the resolution (e.g. 60km, 20km) but also the emission inventories used (MACCity, HTAPv2), their resolution and diurnal variation, and the choice of initial and boundary conditions (e.g. MOZART, MACC analysis).

  6. Utilizing multiobjective analysis to determine an air quality monitoring network in an industrial district

    NASA Astrophysics Data System (ADS)

    Kao, Jehng-Jung; Hsieh, Ming-Ru

    An industrial district with polluting factories operating inside poses a potential threat to the air quality in the surrounding areas. Therefore, establishing a proper air quality monitoring network (AQMN) is essential for assessing the effectiveness of imposed pollution controls, strategies, and facilities in reducing pollutants. The geographic layout of such an AQMN should assure the quality of the monitored data. Monitoring stations located at inappropriate sites will likely affect data validity. In this study, a multiobjective approach was explored for configuring an AQMN for an industrial district. A dispersion model was employed to simulate hourly distribution of pollutant concentrations in the study area. Models optimizing pollution detection, dosage, coverage, and population protection were established. Alternative AQMNs with varied station numbers and spatial distributions were obtained using the models. The resulting AQMNs were compared and evaluated for effectiveness in monitoring the temporal and spatial variation of pollutants. Discussion of the differences among the AQMNs is provided. This multiobjective analysis is expected to facilitate a decision-making process for determining an appropriate AQMN.

  7. FIELD-DEPLOYABLE MONITORS FOR VOLATILE ORGANIC COMPOUNDS IN AIR

    EPA Science Inventory

    Volatile organic compounds in ambient air are usually estimated by trapping them from air or collecting whole air samples and returning them to a laboratory for analysis by gas chromatography using selective detection. ata do not appear for several days, during which sample integ...

  8. FIELD DEPLOYABLE MONITORS FOR VOLATILE COMPOUNDS IN AIR

    EPA Science Inventory

    Volatile organic compounds in ambient air are usually estimated by trapping them from air or collecting whole air samples and returning them to a laboratory for analysis by gas chromatography using selective detection. ata do not appear for several days, during which sample integ...

  9. Opportunistic mobile air pollution monitoring: A case study with city wardens in Antwerp

    NASA Astrophysics Data System (ADS)

    Van den Bossche, Joris; Theunis, Jan; Elen, Bart; Peters, Jan; Botteldooren, Dick; De Baets, Bernard

    2016-09-01

    The goal of this paper is to explore the potential of opportunistic mobile monitoring to map the exposure to air pollution in the urban environment at a high spatial resolution. Opportunistic mobile monitoring makes use of existing mobile infrastructure or people's common daily routines to move measurement devices around. Opportunistic mobile monitoring can also play a crucial role in participatory monitoring campaigns as a typical way to gather data. A case study to measure black carbon was set up in Antwerp, Belgium, with the collaboration of city employees (city wardens). The Antwerp city wardens are outdoors for a large part of the day on surveillance tours by bicycle or on foot, and gathered a total of 393 h of measurements. The data collection is unstructured both in space and time, leading to sampling bias. A temporal adjustment can only partly counteract this bias. Although a high spatial coverage was obtained, there is still a rather large uncertainty on the average concentration levels at a spatial resolution of 50 m due to a limited number of measurements and sampling bias. Despite of this uncertainty, large spatial patterns within the city are clearly captured. This study illustrates the potential of campaigns with unstructured opportunistic mobile monitoring, including participatory monitoring campaigns. The results demonstrate that such an approach can indeed be used to identify broad spatial trends over a wider area, enabling applications including hotspot identification, personal exposure studies, regression mapping, etc. But, they also emphasize the need for repeated measurements and careful processing and interpretation of the data.

  10. Atmospheric Parameter Climatologies from AIRS: Monitoring Short-, and Longer-Term Climate Variabilities and 'Trends'

    NASA Technical Reports Server (NTRS)

    Molnar, Gyula; Susskind, Joel

    2008-01-01

    The AIRS instrument is currently the best space-based tool to simultaneously monitor the vertical distribution of key climatically important atmospheric parameters as well as surface properties, and has provided high quality data for more than 5 years. AIRS analysis results produced at the GODDARD/DAAC, based on Versions 4 & 5 of the AIRS retrieval algorithm, are currently available for public use. Here, first we present an assessment of interrelationships of anomalies (proxies of climate variability based on 5 full years, since Sept. 2002) of various climate parameters at different spatial scales. We also present AIRS-retrievals-based global, regional and 1x1 degree grid-scale "trend"-analyses of important atmospheric parameters for this 5-year period. Note that here "trend" simply means the linear fit to the anomaly (relative the mean seasonal cycle) time series of various parameters at the above-mentioned spatial scales, and we present these to illustrate the usefulness of continuing AIRS-based climate observations. Preliminary validation efforts, in terms of intercomparisons of interannual variabilities with other available satellite data analysis results, will also be addressed. For example, we show that the outgoing longwave radiation (OLR) interannual spatial variabilities from the available state-of-the-art CERES measurements and from the AIRS computations are in remarkably good agreement. Version 6 of the AIRS retrieval scheme (currently under development) promises to further improve bias agreements for the absolute values by implementing a more accurate radiative transfer model for the OLR computations and by improving surface emissivity retrievals.

  11. Results of vertical electric field monitoring in Lake Baikal

    NASA Astrophysics Data System (ADS)

    Korotaev, S. M.; Budnev, N. M.; Serdyuk, V. O.; Zurbanov, V. L.; Mirgazov, R. R.; Machinin, V. A.; Kiktenko, E. O.; Buzin, V. B.; Novysh, A. V.; Portyanskaya, I. A.

    2015-07-01

    The electric field of the hydrosphere can be used for monitoring various geophysical processes. Practical implementation of such monitoring requires sufficiently reliable measurements of the field and separation of the contributions from different sources. The present work endeavors to successively solve these tasks in the scope of the experiment on monitoring the vertical voltage in Lake Baikal. Similar monitoring has been conducted previously; however, insufficient reliability of the measurements limited the progress in data interpretation. Since then, we have designed a new instrumental complex, capable of highly accurate measurements and controlling the potential noise sources. For the first time, the flow-induced field is compared with the direct flow velocity measurements. The first results show the flow-induced field is predominant at periods of up to ten days. However, this analysis leaves unclear the origin of variations with a period of about 100 days.

  12. A Next Generation Air Monitor: Combining Orion and ISS Requirements for a Common Major Constituent Analyzer

    NASA Technical Reports Server (NTRS)

    Burchfield, David E.; Tissandier, Michael; Niu, William Hsein-Chi; Lewis, John F.

    2013-01-01

    The Major Constituent Analyzer (MCA) is a mass spectrometer-based instrument designed to provide critical monitoring of six major atmospheric constituents; nitrogen, oxygen, hydrogen, carbon dioxide, methane, and water vapor on-board the International Space Station. The analyzer has been an integral part of the Environmental Control and Life Support System (ECLSS) since the station went on-line. The Orion Air Monitor (OAM) was derived from the MCA and heavily optimized for reduced mass, lower power, faster water vapor response, and maintenance-free operation. The resulting OAM is approximately the size of the analyzer portion of the MCA, orbital-replacement unit 02 (ORU 02), while incorporating the functions of three other modules: Data Processing and Communication (ORU 01), Verification Gas Assembly (ORU 08), and Low Voltage Power Supply (ORU 04). The overlap in MCA and OAM requirements makes it possible to derive a common Air Monitor design that spans both applications while minimally impacting the weight and power limits imposed by the Multipurpose Crew Vehicle (MPCV). Benefits to ISS include the retirement of ORUs 01, 04, and 08, reducing up-mass and eliminating EEE parts obsolescence issues through the extended ISS mission phases. Benefits to MPCV and future deployed habitats under the Constellation program include greater interchangeability across ECLSS subsystems. This paper discusses the results of the requirements development study, where a superset of ISS and Orion air monitoring requirements were distilled; evaluated against increases in OAM functionality, mass, and power; and traded-off where possible using simple operating mode modifications. A system architecture and preliminary design addressing the common requirements will be presented.

  13. The deployment of carbon monoxide wireless sensor network (CO-WSN) for ambient air monitoring.

    PubMed

    Chaiwatpongsakorn, Chaichana; Lu, Mingming; Keener, Tim C; Khang, Soon-Jai

    2014-06-01

    Wireless sensor networks are becoming increasingly important as an alternative solution for environment monitoring because they can reduce cost and complexity. Also, they can improve reliability and data availability in places where traditional monitoring methods are difficult to site. In this study, a carbon monoxide wireless sensor network (CO-WSN) was developed to measure carbon monoxide concentrations at a major traffic intersection near the University of Cincinnati main campus. The system has been deployed over two weeks during Fall 2010, and Summer 2011-2012, traffic data was also recorded by using a manual traffic counter and a video camcorder to characterize vehicles at the intersection 24 h, particularly, during the morning and evening peak hour periods. According to the field test results, the 1 hr-average CO concentrations were found to range from 0.1-1.0 ppm which is lower than the National Ambient Air Quality Standards (NAAQS) 35 ppm on a one-hour averaging period. During rush hour periods, the traffic volume at the intersection varied from 2,067 to 3,076 vehicles per hour with 97% being passenger vehicles. Furthermore, the traffic volume based on a 1-h average showed good correlation (R2 = 0.87) with the 1-h average CO-WSN concentrations for morning and evening peak time periods whereas CO-WSN results provided a moderate correlation (R2 = 0.42) with 24 hours traffic volume due to fluctuated changes of meteorological conditions. It is concluded that the performance and the reliability of wireless ambient air monitoring networks can be used as an alternative method for real time air monitoring. PMID:24937527

  14. A Next Generation Air Monitor: Combining Orion and ISS Requirements for a Common Major Constituent Analyzer

    NASA Technical Reports Server (NTRS)

    Burchfield, David E.; Tissandier, Michael; Hsein-ChiNiu, William; Lewis, John F.

    2012-01-01

    The Major Constituent Analyzer (MCA) is a mass spectrometer-based instrument designed to provide critical monitoring of six major atmospheric constituents; nitrogen, oxygen, hydrogen, carbon dioxide, methane, and water vapor on-board the International Space Station. The analyzer has been an integral part of the Environmental Control and Life Support System (ECLSS) since the station went on-line. The Orion Air Monitor (OAM) was derived from the MCA and heavily optimized for reduced mass, lower power, faster water vapor response, and maintenance-free operation. The resulting OAM is approximately the size of the analyzer portion of the MCA, orbital-replacement unit 02 (ORU 02), while incorporating the functions of three other modules: Data Processing and Communication (ORU 01), Verification Gas Assembly (ORU 08), and Low Voltage Power Supply (ORU 04). The overlap in MCA and OAM requirements makes it possible to derive a common Air Monitor design that spans both applications while minimally impacting the weight and power limits imposed by the Multipurpose Crew Vehicle (MPCV). Benefits to ISS include the retirement of ORUs 01, 04, and 08, reducing up-mass and eliminating EEE parts obsolescence issues through the extended ISS mission phases. Benefits to MPCV and future deployed habitats under the Constellation program include greater interchangeability across ECLSS subsystems. This paper discusses the results of the requirements development study, where a superset of ISS and Orion air monitoring requirements were distilled; evaluated against increases in OAM functionality, mass, and power; and traded-off where possible using simple operating mode modifications. A system architecture and preliminary design addressing the common requirements will be presented.

  15. The Deployment of Carbon Monoxide Wireless Sensor Network (CO-WSN) for Ambient Air Monitoring

    PubMed Central

    Chaiwatpongsakorn, Chaichana; Lu, Mingming; Keener, Tim C.; Khang, Soon-Jai

    2014-01-01

    Wireless sensor networks are becoming increasingly important as an alternative solution for environment monitoring because they can reduce cost and complexity. Also, they can improve reliability and data availability in places where traditional monitoring methods are difficult to site. In this study, a carbon monoxide wireless sensor network (CO-WSN) was developed to measure carbon monoxide concentrations at a major traffic intersection near the University of Cincinnati main campus. The system has been deployed over two weeks during Fall 2010, and Summer 2011–2012, traffic data was also recorded by using a manual traffic counter and a video camcorder to characterize vehicles at the intersection 24 h, particularly, during the morning and evening peak hour periods. According to the field test results, the 1 hr-average CO concentrations were found to range from 0.1–1.0 ppm which is lower than the National Ambient Air Quality Standards (NAAQS) 35 ppm on a one-hour averaging period. During rush hour periods, the traffic volume at the intersection varied from 2,067 to 3,076 vehicles per hour with 97% being passenger vehicles. Furthermore, the traffic volume based on a 1-h average showed good correlation (R2 = 0.87) with the 1-h average CO-WSN concentrations for morning and evening peak time periods whereas CO-WSN results provided a moderate correlation (R2 = 0.42) with 24 hours traffic volume due to fluctuated changes of meteorological conditions. It is concluded that the performance and the reliability of wireless ambient air monitoring networks can be used as an alternative method for real time air monitoring. PMID:24937527

  16. Optimized Arrangement of Constant Ambient Air Monitoring Stations in the Kanto Region of Japan

    PubMed Central

    Shirato, Shintaro; Iizuka, Atsushi; Mizukoshi, Atsushi; Noguchi, Miyuki; Yamasaki, Akihiro; Yanagisawa, Yukio

    2015-01-01

    Continuous ambient air monitoring systems have been introduced worldwide. However, such monitoring forces autonomous communities to bear a significant financial burden. Thus, it is important to identify pollutant-monitoring stations that are less efficient, while minimizing loss of data quality and mitigating effects on the determination of spatiotemporal trends of pollutants. This study describes a procedure for optimizing a constant ambient air monitoring system in the Kanto region of Japan. Constant ambient air monitoring stations in the area were topologically classified into four groups by cluster analysis and principle component analysis. Then, air pollution characteristics in each area were reviewed using concentration contour maps and average pollution concentrations. We then introduced three simple criteria to reduce the number of monitoring stations: (1) retain the monitoring station if there were similarities between its data and average data of the group to which it belongs; (2) retain the station if its data showed higher concentrations; and (3) retain the station if the monitored concentration levels had an increasing trend. With this procedure, the total number of air monitoring stations in suburban and urban areas was reduced by 36.5%. The introduction of three new types of monitoring stations is proposed, namely, mobile, for local non-methane hydrocarbon pollution, and Ox-prioritized. PMID:25764058

  17. The role of Environmental Health System air quality monitors in Space Station Contingency Operations

    NASA Technical Reports Server (NTRS)

    Limero, Thomas F.; Wilson, Steve; Perlot, Susan; James, John

    1992-01-01

    This paper describes the Space Station Freedom (SSF) Environmental Health System's air-quality monitoring strategy and instrumentation. A two-tier system has been developed, consisting of first-alert instruments that warn the crew of airborne contamination and a volatile organic analyzer that can identify volatile organic contaminants in near-real time. The strategy for air quality monitoring on SSF is designed to provide early detection so that the contamination can be confined to one module and so that crew health and safety can be protected throughout the contingency event. The use of air-quality monitors in fixed and portable modes will be presented as a means of following the progress of decontamination efforts and ensuring acceptable air quality in a module after an incident. The technology of each instrument will be reviewed briefly; the main focus of this paper, however, will be the use of air-quality monitors before, during, and after contingency incidents.

  18. Results from the International Halocarbons in Air Comparison Experiment (IHALACE)

    NASA Astrophysics Data System (ADS)

    Hall, B. D.; Engel, A.; Mühle, J.; Elkins, J. W.; Artuso, F.; Atlas, E.; Aydin, M.; Blake, D.; Brunke, E.-G.; Chiavarini, S.; Fraser, P. J.; Happell, J.; Krummel, P. B.; Levin, I.; Loewenstein, M.; Maione, M.; Montzka, S. A.; O'Doherty, S.; Reimann, S.; Rhoderick, G.; Saltzman, E. S.; Scheel, H. E.; Steele, L. P.; Vollmer, M. K.; Weiss, R. F.; Worthy, D.; Yokouchi, Y.

    2014-02-01

    The International Halocarbons in Air Comparison Experiment (IHALACE) was conducted to document relationships between calibration scales among various laboratories that measure atmospheric greenhouse and ozone depleting gases. This study included trace gases such as chlorofluorocarbons (CFCs), hydrochlorofluorocarbons (HCFCs), and hydrofluorocarbons (HFCs), as well as nitrous oxide, methane, sulfur hexafluoride, very short-lived halocompounds, and carbonyl sulfide. Many of these gases are present in the unpolluted atmosphere at pmol mol-1 (parts per trillion) or nmol mol-1 (parts per billion) levels. Six stainless steel cylinders containing natural and modified natural air samples were circulated among 19 laboratories. Results from this experiment reveal relatively good agreement (within a few percent) among commonly used calibration scales. Scale relationships for some gases, such as CFC-12 and CCl4, were found to be consistent with those derived from estimates of global mean mole fractions, while others, such as halon-1211 and CH3Br, revealed discrepancies. The transfer of calibration scales among laboratories was problematic in many cases, meaning that measurements tied to a particular scale may not, in fact, be compatible. Large scale transfer errors were observed for CH3CCl3 (10-100%) and CCl4 (2-30%), while much smaller scale transfer errors (< 1%) were observed for halon-1211, HCFC-22, and HCFC-142b. These results reveal substantial improvements in calibration over previous comparisons. However, there is room for improvement in communication and coordination of calibration activities with respect to the measurement of halogenated and related trace gases.

  19. Tonopah Test Range Air Monitoring. CY2014 Meteorological, Radiological, and Airborne Particulate Observations

    SciTech Connect

    Nikoloch, George; Shadel, Craig; Chapman, Jenny; Mizell, Steve A.; McCurdy, Greg; Etyemezian, Vicken; Miller, Julianne J.

    2015-10-01

    In 1963, the U.S. Department of Energy (DOE) (formerly the Atomic Energy Commission [AEC]), implemented Operation Roller Coaster on the Tonopah Test Range (TTR) and an adjacent area of the Nevada Test and Training Range (NTTR) (formerly the Nellis Air Force Range). This test resulted in radionuclide-contaminated soils at Clean Slate I, II, and III. This report documents observations made during ongoing monitoring of radiological, meteorological, and dust conditions at stations installed adjacent to Clean Slate I and Clean Slate III and at the TTR Range Operations Control center. The primary objective of the monitoring effort is to determine if winds blowing across the Clean Slate sites are transporting particles of radionuclide-contaminated soils beyond both the physical and administrative boundaries of the sites. Results for the calendar year (CY) 2014 monitoring are: (1) the gross alpha and gross beta values from the monitoring stations are approximately equivalent to the highest values observed during the CY2014 reporting at the surrounding Community Environmental Monitoring Program (CEMP) stations; (2) only naturally occurring radionuclides were identified in the gamma spectral analyses; (3) the ambient gamma radiation measurements indicate that the average annual gamma exposure is similar at all three monitoring stations and periodic intervals of increased gamma values appear to be associated with storm fronts passing through the area; and (4) the concentrations of both resuspended dust and saltated sand particles generally increase with increasing wind speed. Differences in the observed dust concentrations are likely the result of differences in the soil characteristics immediately adjacent to the monitoring stations. Neither the resuspended particulate radiological analyses nor the ambient gamma radiation measurements suggest wind transport of radionuclide-contaminated soils.

  20. Mobile Air Monitoring: Measuring Change in Air Quality in the City of Hamilton, 2005-2010

    ERIC Educational Resources Information Center

    Adams, Matthew D.; DeLuca, Patrick F.; Corr, Denis; Kanaroglou, Pavlos S.

    2012-01-01

    This paper examines the change in air pollutant concentrations between 2005 and 2010 occurring in the City of Hamilton, Ontario, Canada. After analysis of stationary air pollutant concentration data, we analyze mobile air pollutant concentration data. Air pollutants included in the analysis are CO, PM[subscript 2.5], SO[subscript 2], NO,…

  1. Expanding NevCAN capabilities: monitoring cold air drainage flow along a narrow wash within a Montane to PJ ecotone

    NASA Astrophysics Data System (ADS)

    Bird, B. M.; Devitt, D.

    2012-12-01

    Cold air drainage flows are a naturally occurring physical process of mountain systems. Plant communities that exist in cold air drainage basins respond to these localized cold air trends, and have been shown to be decoupled from larger global climate weather systems. The assumption that air temperature decreases with altitude is violated within these systems and climate model results based on this assumption would ultimately be inaccurate. In arid regions, high radiation loads lead to significant long wave radiation being emitted from the ground later in the day. As incoming radiation ceases, the surface very quickly loses energy through radiative processes, leading to surface inversions and enhanced cold air drainage opportunities. This study is being conducted in the Mojave desert on Sheep Mountain located between sites 3 and 4 of the NSF EPSCoR network. Monitoring of cold air drainage was initiated in September of 2011within a narrow ravine located between the 2164 and 2350 meter elevation. We have installed 25 towers (5 towers per location situated at the central low point in a ravine and at equal distances up the sides of the ravine on both the N and S facing slopes) to assess air temperatures from 0.1 meters to a height of 3 meters at 25m intervals. Our goal is to better understand the connection between cold air movement and plant physiological response. The species monitored in this study include: Pinus ponderosa (common name: Ponderosa Pine), Pinus pinyon (Pinyon Pine), Juniperus osteosperma (Utah juniper), Cercocarpus intricatus (Mountain Mahogany) and Symphoricarpos (snowberry). Hourly air temperature measurements within the wash are being captured from 100 ibuttons placed within PVC solar radiation shields. We are also developing a modeling approach to assess the three dimensional movement of cold air over time by incorporating wind vectors captured from 5 2D sonic anemometers. Wind velocities will be paired with air temperatures to better understand

  2. An argon ICP-based continuous emissions monitor for hazardous air pollutant metals: Field evaluation

    SciTech Connect

    Seltzer, M.D.; Mayer, G.A.

    1997-12-31

    A fully-operational, argon ICP-based continuous emissions monitor (CEM) for hazardous air pollutant (HAP) metals has recently been demonstrated. The CEM has undergone extensive field evaluation in conjunction with a variety of combustor configurations including coal-fired power plants, waste incinerators, and ordnance deactivation furnaces. The CEM has been successfully demonstrated to provide both speed and sensitivity for simultaneous, multielement detection of HAP metals while exhibiting considerable tolerance for both particulate and moisture loading in sample air streams. The CEM employs a state-of-the-art argon inductively coupled plasma spectrometer as an elemental analyzer. Stack air, continuously extracted under strictly isokinetic conditions, is transported to the CEM through heated sample lines. A sampling interface of novel design permits extraction of air at the high, often variable flow rates required for isokinetic sampling while at the same time, provides aliquots of sample air to the plasma spectrometer at the relatively low but constant analytical flow rates that are appropriate for plasma injection. The CEM is automated to high degree and can operate unattended for several hours at a time. CEM calibration is accomplished using precision-generated metal aerosols. Provision is made for correction of spectral interferences from concomitant metals and molecular species in stack gases. The prototype instrumentation described here is presently considered to be the leading candidate for multimetals CEM application. While specifically designed and implemented to monitor metal emissions from military furnaces used for ordnance deactivation, the CEM has exhibited versatility that makes it well-suited for numerous compliance and process control applications. Results of field testing under various conditions and relative accuracy assessments will be presented.

  3. Chickamauga Reservoir 1992 fisheries monitoring cove rotenone results

    SciTech Connect

    Kerley, B.L.

    1993-06-01

    The Tennessee Valley Authority (TVA) is required by the National Pollutant Discharge Elimination System (NPDES) Permit for Sequoyah Nuclear Plant (SQN) to conduct and report annually a nonradiological operational monitoring program to evaluate potential effects of SQN on Chickamauga Reservoir. This monitoring program was initially designed to identify potential changes in water quality and biological communities in Chickamauga Reservoir resulting from operation of SQU. Chickamauga Reservoir cove rotenone sampling has also been conducted as part of the preoperational monitoring program for Watts Bar Nuclear Plant (WBN) to evaluate the combined effects of operating two nuclear facilities on one reservoir once WBU becomes operational. The purpose of this report is to present results of cove rotenone sampling conducted on Chickamauga Reservoir in 1992.

  4. Quasi Real Time Data Analysis for Air Quality Monitoring with an Electronic Nose

    NASA Technical Reports Server (NTRS)

    Zhou, Hanying; Shevade, Abhijit V.; Pelletier, Christine C.; Homer, Margie L.; Ryan, M. Amy

    2006-01-01

    Cabin Air Quality Monitoring: A) Functions; 1) Incident monitor for targeted contaminants exceeding targeted concentrations. Identify and quantify. 2) Monitor for presence of compounds associated with fires or overheating electronics. 3) Monitor clean-up process. B) Characteristics; 1) Low mass, low power device. 2) Requires little crew time for maintenance and calibration. 3) Detects, identifies and quantifies selected chemical species at or below 24 hour SMAC.

  5. Results of groundwater monitoring at Everest, Kansas, in April 2008.

    SciTech Connect

    LaFreniere, L. M.; Environmental Science Division

    2008-11-05

    On September 7, 2005, the Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA) presented a Scoping Memo (Argonne 2005) for preliminary consideration by the Kansas Department of Health and Environment (KDHE), suggesting possible remedial options for the carbon tetrachloride contamination in groundwater at Everest, Kansas. The suggested approaches were discussed by representatives of the KDHE, the CCC/USDA, and Argonne at the KDHE office in Topeka on September 8-9, 2005, along with other technical and logistic issues related to the Everest site. In response to these discussions, the KDHE recommended (KDHE 2005) evaluation of several remedial processes, either alone or in combination, as part of a Corrective Action Study (CAS) for Everest. The primary remedial processes suggested by the KDHE were the following: Hydraulic control by groundwater extraction with aboveground treatment; Air sparging (AS) coupled with soil vapor extraction (SVE) in large-diameter boreholes (LDBs); and Phytoremediation. As a further outcome of the 2005 meeting and as a precursor to development of a possible CAS, the CCC/USDA completed the following supplemental investigations at Everest to address several specific technical concerns discussed with the KDHE: (1) Construction of interpretive cross sections at strategic locations selected by the KDHE along the main plume migration pathway, to depict the hydrogeologic characteristics affecting groundwater flow and contaminant movement (Argonne 2006a). (2) A field investigation in early 2006 (Argonne 2006b), as follows: (a) Installation and testing of a production well and associated observation points, at locations approved by the KDHE, to determine the response of the Everest aquifer to groundwater extraction near the Nigh property. (b) Groundwater sampling for the analysis of volatile organic compounds (VOCs) and the installation of additional permanent monitoring points at locations selected by the KDHE, to further

  6. Tonopah Test Range Air Monitoring: CY2013 Meteorological, Radiological, and Airborne Particulate Observations

    SciTech Connect

    Mizell, Steve A; Nikolich, George; Shadel, Craig; McCurdy, Greg; Etyemezian, Vicken; Miller, Julianne J

    2014-10-01

    In 1963, the U.S. Department of Energy (DOE) (formerly the Atomic Energy Commission [AEC]), implemented Operation Roller Coaster on the Tonopah Test Range (TTR) and an adjacent area of the Nevada Test and Training Range (NTTR) (formerly the Nellis Air Force Range). This test resulted in radionuclide-contaminated soils at Clean Slate I, II, and III. This report documents observations made during on-going monitoring of radiological, meteorological, and dust conditions at stations installed adjacent to Clean Slate I and Clean Slate III and at the TTR Range Operations Control center. The primary objective of the monitoring effort is to determine if winds blowing across the Clean Slate sites are transporting particles of radionuclide-contaminated soils beyond both the physical and administrative boundaries of the sites. Results for the calendar year (CY) 2013 monitoring include: (1) the gross alpha and gross beta values from the monitoring stations are approximately equivalent to the highest values observed during the CY2012 reporting at the surrounding Community Environmental Monitoring Program (CEMP) stations (this was the latest documented data available at the time of this writing); (2) only naturally occurring radionuclides were identified in the gamma spectral analyses; (3) the ambient gamma radiation measurements indicate that the average annual gamma exposure is similar at all three monitoring stations and periodic intervals of increased gamma values appear to be associated with storm fronts passing through the area; and (4) the concentrations of both resuspended dust and saltated sand particles generally increase with increasing wind speed. However, differences in the observed dust concentrations are likely due to differences in the soil characteristics immediately adjacent to the monitoring stations. Neither the resuspended particulate radiological analyses nor the ambient gamma radiation measurements suggest wind transport of radionuclide-contaminated soils.

  7. Plug-in Sensors for Air Pollution Monitoring.

    ERIC Educational Resources Information Center

    Shaw, Manny

    Faristors, a type of plug-in sensors used in analyzing equipment, are described in this technical report presented at the 12th Conference on Methods in Air Pollution and Industrial Hygiene Studies, University of Southern California, April, 1971. Their principles of operation, interchangeability, and versatility for measuring air pollution at…

  8. Air Pollution Monitoring Site Selection by Multiple Criteria Decision Analysis

    EPA Science Inventory

    Criteria air pollutants (particulate matter, sulfur dioxide, oxides of nitrogen, volatile organic compounds, and carbon monoxide) as well as toxic air pollutants are a global concern. A particular scenario that is receiving increased attention in the research is the exposure to t...

  9. METHODOLOGY OF AMBIENT AIR MONITORING FOR POLYCYCLIC AROMATIC HYDROCARBONS

    EPA Science Inventory

    In the last decade, several studies of polycyclic aromatic hydrocarbons (PAH) in ambient air in the U.S. specifically investigated (1) the sampling efficiency of two sorbents for PAH in air: XAD-2 and polyurethane foam (PUP); (2) the storage stability of PAH on quartz fiber fil...

  10. Toward the next generation of air quality monitoring: Persistent organic pollutants

    NASA Astrophysics Data System (ADS)

    Hung, Hayley; MacLeod, Matthew; Guardans, Ramon; Scheringer, Martin; Barra, Ricardo; Harner, Tom; Zhang, Gan

    2013-12-01

    Persistent Organic Pollutants (POPs) are global pollutants that can migrate over long distances and bioaccumulate through food webs, posing health risks to wildlife and humans. Multilateral environmental agreements, such as the Stockholm Convention on POPs, were enacted to identify POPs and establish the conditions to control their release, production and use. A Global Monitoring Plan was initiated under the Stockholm Convention calling for POP monitoring in air as a core medium; however long temporal trends (>10 years) of atmospheric POPs are only available at a few selected sites. Spatial coverage of air monitoring for POPs has recently significantly improved with the introduction and advancement of passive air samplers. Here, we review the status of air monitoring and modeling activities and note major uncertainties in data comparability, deficiencies of air monitoring and modeling in urban and alpine areas, and lack of emission inventories for most POPs. A vision for an internationally-integrated strategic monitoring plan is proposed which could provide consistent and comparable monitoring data for POPs supported and supplemented by global and regional transport models. Key recommendations include developing expertise in all aspects of air monitoring to ensure data comparability and consistency; partnering with existing air quality and meteorological networks to leverage synergies; facilitating data sharing with international data archives; and expanding spatial coverage with passive air samplers. Enhancing research on the stability of particle-bound chemicals is needed to assess exposure and deposition in urban areas, and to elucidate long-range transport. Conducting targeted measurement campaigns in specific source areas would enhance regional models which can be extrapolated to similar regions to estimate emissions. Ultimately, reverse-modeling combined with air measurements can be used to derive “emission” as an indicator to assess environmental

  11. Hanford coring bit temperature monitor development testing results report

    SciTech Connect

    Rey, D.

    1995-05-01

    Instrumentation which directly monitors the temperature of a coring bit used to retrieve core samples of high level nuclear waste stored in tanks at Hanford was developed at Sandia National Laboratories. Monitoring the temperature of the coring bit is desired to enhance the safety of the coring operations. A unique application of mature technologies was used to accomplish the measurement. This report documents the results of development testing performed at Sandia to assure the instrumentation will withstand the severe environments present in the waste tanks.

  12. Sensitivities of five alpha continuous air monitors for detection of airborne sup 239 Pu

    SciTech Connect

    McIsaac, C.V.; Amaro, C.R.

    1992-07-01

    Results of measurements of the sensitivities of five alpha continuous air monitors (CAMs) for detection of airborne {sup 239}Pu are presented. Four commercially available alpha CAMs (Kurz model 8311, Merlin Gerin Edgar, RADeCO model 452, and Victoreen model 758) and a prototype alpha CAM currently in use at Argonne National Laboratory- West (ANL-W) were tested sampling natural ambient air and laboratory-generated atmospheres laden with either blank dust or dust containing nCi/g concentrations of {sup 239}Pu. Cumulative alpha spectra were stored at 30 or 60 minute intervals during each sampling and were subsequently analyzed using three different commonly used alpha spectrum analysis algorithms. The effect of airborne dust concentration and sample filter porosity on detector resolution and sensitivity for airborne {sup 239}Pu are described.

  13. Sensitivities of five alpha continuous air monitors for detection of airborne {sup 239}Pu

    SciTech Connect

    McIsaac, C.V.; Amaro, C.R.

    1992-07-01

    Results of measurements of the sensitivities of five alpha continuous air monitors (CAMs) for detection of airborne {sup 239}Pu are presented. Four commercially available alpha CAMs (Kurz model 8311, Merlin Gerin Edgar, RADeCO model 452, and Victoreen model 758) and a prototype alpha CAM currently in use at Argonne National Laboratory- West (ANL-W) were tested sampling natural ambient air and laboratory-generated atmospheres laden with either blank dust or dust containing nCi/g concentrations of {sup 239}Pu. Cumulative alpha spectra were stored at 30 or 60 minute intervals during each sampling and were subsequently analyzed using three different commonly used alpha spectrum analysis algorithms. The effect of airborne dust concentration and sample filter porosity on detector resolution and sensitivity for airborne {sup 239}Pu are described.

  14. Air monitoring of aromatic hydrocarbons during automobile spray painting for developing change schedule of respirator cartridges

    PubMed Central

    2014-01-01

    In the absence of End of Service Life Indicator (ESLI), a cartridge change schedule should be established for ensuring that cartridges are changed before their end of service life. Factors effecting service life of cartridges were evaluated, including the amount of atmospheric contamination with aromatic hydrocarbon vapors in the workplace, temperature, and relative humidity of the air. A new change schedule was established based on comparing the results of air monitoring and workplace conditions, laboratory experiment, and the NIOSH MultiVapor software. Spray painters were being exposed to aromatic hydrocarbons in a range exceeding occupational exposure limits. The cartridge change schedule was not effective and could no longer provide adequate protection against organic contaminants for sprayers. Change schedules for respirator cartridges should be reduced from 16–24 hours to 4 hours. NIOSH’s service life software program could be applied to developing cartridge change schedules. PMID:24468234

  15. Incorrect interpretation of moving-filter continuous particulate air monitor responses.

    PubMed

    Evans, William C

    2013-04-01

    The graphs supplied by the vendors of moving-filter continuous particulate air monitors (CPAMs) in their sales literature show linear curves on a log-log scale, with net count rate on one axis and concentration on the other. The implication is that the monitor user is to read the concentration from the graph, given an observed net count rate, at any time. For the nominal filter speeds commonly used for these monitors, using the graph in this way is incorrect. The graphs do not state the limitations of the calculation: (1) the nuclide measured must be long-lived; (2) the concentration of that nuclide in the sampled air must remain constant; and (3) the reading of the net count rate must be obtained after a specific time, called the "transit time." This time is typically on the order of several hours. Reading the net count rate at any time earlier than this will result in an incorrect concentration estimate. Given that a major purpose of a CPAM is to alert plant personnel to a change in airborne radioactivity concentrations, by definition when this happens the concentration is not constant. Thus, using the supplied curves will result in an incorrect estimate of that concentration. The solution is to use instead a fixed-filter CPAM and a previously-published quantitative method. With this approach, there is no need to attempt to estimate a concentration, much less to assume that it is constant over long periods of time or that it can only change in a stair-step manner. With this alternative to a moving-filter CPAM, a signal proportional to the time-integrated worker intake can be generated continuously for any time-varying air concentration, including the sums-of-exponentials shapes expected during transient events in compartmental systems. PMID:23439149

  16. Wavelets-based clustering of air quality monitoring sites.

    PubMed

    Gouveia, Sónia; Scotto, Manuel G; Monteiro, Alexandra; Alonso, Andres M

    2015-11-01

    This paper aims at providing a variance/covariance profile of a set of 36 monitoring stations measuring ozone (O3) and nitrogen dioxide (NO2) hourly concentrations, collected over the period 2005-2013, in Portugal mainland. The resulting individual profiles are embedded in a wavelet decomposition-based clustering algorithm in order to identify groups of stations exhibiting similar profiles. The results of the cluster analysis identify three groups of stations, namely urban, suburban/urban/rural, and a third group containing all but one rural stations. The results clearly indicate a geographical pattern among urban stations, distinguishing those located in Lisbon area from those located in Oporto/North. Furthermore, for urban stations, intra-diurnal and daily time scales exhibit the highest variance. This is due to the more relevant chemical activity occurring in high NO2 emissions areas which are responsible for high variability on daily profiles. These chemical processes also explain the reason for NO2 and O3 being highly negatively cross-correlated in suburban and urban sites as compared with rural stations. Finally, the clustering analysis also identifies sites which need revision concerning classification according to environment/influence type. PMID:26483085

  17. URBAN SPRAWL MODELING, AIR QUALITY MONITORING AND RISK COMMUNICATION: THE NORTHEAST OHIO PROJECT

    EPA Science Inventory

    The Northeast Ohio Urban Sprawl, Air Quality Monitoring, and Communications Project (hereafter called the Northeast Ohio Project) provides local environmental and health information useful to residents, local officials, community planners, and others in a 15 county region in the ...

  18. TECHNOLOGY EVALUATION REPORT CEREX ENVIRONMENTAL SERVICES UV HOUND POINT SAMPLE AIR MONITOR

    EPA Science Inventory

    The USEPA's National Homeland Security Research Center (NHSRC) Technology Testing and Evaluation Program (TTEP) is carrying out performance tests on homeland security technologies. Under TTEP, Battelle evaluated the performance of the Cerex UV Hound point sample air monitor in de...

  19. Portable RF-Sensor System for the Monitoring of Air Pollution and Water Contamination

    PubMed Central

    Kang, Joonhee; Kim, Jin Young

    2012-01-01

    Monitoring air pollution including the contents of VOC, O3, NO2, and dusts has attracted a lot of interest in addition to the monitoring of water contamination because it affects directly to the quality of living conditions. Most of the current air pollution monitoring stations use the expensive and bulky instruments and are only installed in the very limited area. To bring the information of the air and water quality to the public in real time, it is important to construct portable monitoring systems and distribute them close to our everyday living places. In this work, we have constructed a low-cost portable RF sensor system by using 400 MHz transceiver to achieve this goal. Accuracy of the measurement was comparable to the ones used in the expensive and bulky commercial air pollution forecast systems. PMID:22928151

  20. Construction and application of an intelligent air quality monitoring system for healthcare environment.

    PubMed

    Yang, Chao-Tung; Liao, Chi-Jui; Liu, Jung-Chun; Den, Walter; Chou, Ying-Chyi; Tsai, Jaw-Ji

    2014-02-01

    Indoor air quality monitoring in healthcare environment has become a critical part of hospital management and policy. Manual air sampling and analysis are cost-inhibitive and do not provide real-time air quality data and response measures. In this month-long study over 14 sampling locations in a public hospital in Taiwan, we observed a positive correlation between CO(2) concentration and population, total bacteria, and particulate matter concentrations, thus monitoring CO(2) concentration as a general indicator for air quality could be a viable option. Consequently, an intelligent environmental monitoring system consisting of a CO(2)/temperature/humidity sensor, a digital plug, and a ZigBee Router and Coordinator was developed and tested. The system also included a backend server that received and analyzed data, as well as activating ventilation and air purifiers when CO(2) concentration exceeded a pre-set value. Alert messages can also be delivered to offsite users through mobile devices. PMID:24487985

  1. NATIONAL AIR TOXICS PILOT MONITORING AND DATA ANALYSIS PROJECT

    EPA Science Inventory

    Ten cities (Detroit, Providence, San Juan, Keeney Knob WV, Tampa, Grand Junction, Rio Rancho NM, Cedar Rapids, San Jacinto and Seattle) conducted 1/6 and 1/12 monitoring for 18 out of the 33 Urban HAP toxic pollutants through ten, EPA grants. Monitoring was completed in July 200...

  2. Monitoring of Plant Light/Dark Cycles Using Air-coupled Ultrasonic Spectroscopy

    NASA Astrophysics Data System (ADS)

    Fariñas, M. D.; Sancho-Knapik, D.; Peguero-Pina, J.; Gil-Pelegrín, E.; Álvarez-Arenas, T. E. G.

    This work presents the application of a technique based on the excitation, sensing and spectral analysis of leaves thickness resonances using air-coupled and wide-band ultrasound to monitor variations in leaves properties due to the plant response along light/dark cycles. The main features of these resonances are determined by the tautness of the cells walls in such a way that small modifications produced by variations in the transpiration rate, stomata aperture or water potential have a direct effect on the thickness resonances that can be measured in a completely non-invasive and contactless way. Results show that it is possible to monitor leaves changes due to variations in light intensity along the diurnal cycle, moreover, the technique reveals differences in the leaf response for different species and also within the same species but for specimens grown under different conditions that present different cell structures at the tissue level.

  3. Technical Basis for Work Place Air Monitoring for the Plutonium Finishing Plan (PFP)

    SciTech Connect

    JONES, R.A.

    1999-10-06

    This document establishes the basis for the Plutonium Finishing Plant's (PFP) work place air monitoring program in accordance with the following requirements: Title 10, Code of Federal Regulations (CFR), Part 835 ''Occupational Radiation Protection''; Hanford Site Radiological Control Manual (HSRCM-1); HNF-PRO-33 1, Work Place Air Monitoring; WHC-SD-CP-SAR-021, Plutonium Finishing Plant Final Safety Analysis Report; and Applicable recognized national standards invoked by DOE Orders and Policies.

  4. Community Air Monitoring, Educational Outreach, and the Village Green Project

    EPA Science Inventory

    The purpose of the poster is to provide an overview of the Village Green Project to attendees at the National Air Quality Conference. The emphasis on the presentation is the genesis of the project and community outreach.

  5. Ultrahigh sensitivity heavy noble gas detectors for long-term monitoring and for monitoring air. Technical status report

    SciTech Connect

    Valentine, J.D.

    1999-01-31

    The primary objective of this research project is to develop heavy noble gas (krypton, xenon, and radon) detectors for (1) long-term monitoring of transuranic waste, spent fuel, and other uranium and thorium bearing wastes and (2) alpha particle air monitors that discriminate between radon emissions and other alpha emitters. A University of Cincinnati/Argonne National Laboratory (UC/ANL) Team was assembled to complete this detector development project. DOE needs that are addressed by this project include improved long-term monitoring capability and improved air monitoring capability during remedial activities. Successful development and implementation of the proposed detection systems could significantly improve current capabilities with relatively simple and inexpensive equipment.

  6. Incident-response monitoring technologies for aircraft cabin air quality

    NASA Astrophysics Data System (ADS)

    Magoha, Paul W.

    Poor air quality in commercial aircraft cabins can be caused by volatile organophosphorus (OP) compounds emitted from the jet engine bleed air system during smoke/fume incidents. Tri-cresyl phosphate (TCP), a common anti-wear additive in turbine engine oils, is an important component in today's global aircraft operations. However, exposure to TCP increases risks of certain adverse health effects. This research analyzed used aircraft cabin air filters for jet engine oil contaminants and designed a jet engine bleed air simulator (BAS) to replicate smoke/fume incidents caused by pyrolysis of jet engine oil. Field emission scanning electron microscopy (FESEM) with X-ray energy dispersive spectroscopy (EDS) and neutron activation analysis (NAA) were used for elemental analysis of filters, and gas chromatography interfaced with mass spectrometry (GC/MS) was used to analyze used filters to determine TCP isomers. The filter analysis study involved 110 used and 90 incident filters. Clean air filter samples exposed to different bleed air conditions simulating cabin air contamination incidents were also analyzed by FESEM/EDS, NAA, and GC/MS. Experiments were conducted on a BAS at various bleed air conditions typical of an operating jet engine so that the effects of temperature and pressure variations on jet engine oil aerosol formation could be determined. The GC/MS analysis of both used and incident filters characterized tri- m-cresyl phosphate (TmCP) and tri-p-cresyl phosphate (TpCP) by a base peak of an m/z = 368, with corresponding retention times of 21.9 and 23.4 minutes. The hydrocarbons in jet oil were characterized in the filters by a base peak pattern of an m/z = 85, 113. Using retention times and hydrocarbon thermal conductivity peak (TCP) pattern obtained from jet engine oil standards, five out of 110 used filters tested had oil markers. Meanwhile 22 out of 77 incident filters tested positive for oil fingerprints. Probit analysis of jet engine oil aerosols obtained

  7. March-June 2009 monitoring results for Barnes, Kansas.

    SciTech Connect

    LaFreniere, L. M.; Environmental Science Division

    2009-09-08

    The Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA) operated a grain storage facility at Barnes, Kansas, during most of the interval 1949-1974. Carbon tetrachloride contamination was initially detected in 1986 in the town's public water supply wells. In 2006-2007, the CCC/USDA conducted a comprehensive targeted investigation at and near its former property in Barnes to characterize this contamination. Those results were reported previously (Argonne 2008a). In November 2007, the CCC/USDA began quarterly groundwater monitoring at Barnes. The monitoring is being conducted on behalf of the CCC/USDA by Argonne National Laboratory, in accord with the recommendations made in the report for the 2006-2007 targeted investigation (Argonne 2008a). The objective is to monitor the carbon tetrachloride contamination identified in the groundwater at Barnes. The sampling is presently conducted in a network of 28 individual monitoring wells (at 19 distinct locations), 2 public water supply wells, and 1 private well (Figure 1.1). The results of the 2006-2007 targeted investigation and the subsequent monitoring events (Argonne 2008a-d, 2009) demonstrated the presence of carbon tetrachloride contamination in groundwater at levels exceeding the Kansas Department of Health and Environment (KDHE) Tier 2 risk-based screening level (RBSL) of 5.0 {micro}g/L for this compound. The contaminant plume appears to extend from the former CCC/USDA property northwestward, toward the Barnes public water supply wells. Information obtained during the 2006-2007 investigation indicates that at least one other potential source might have contributed to the groundwater contaminant plume (Argonne 2008a). The former agriculture building owned by the local school district, located immediately east of well PWS3, is also a potential source of the contamination. This current report presents the results of the fifth and sixth quarterly monitoring events, conducted in March and June

  8. *A participant-based approach to indoor/outdoor air monitoring in Community Health Studies

    EPA Science Inventory

    Community health studies of traffic-related air pollution have been hampered by the cost and participant burden associated with collecting household-level exposure data. The current study utilized a participant-based approach to collect indoor and outdoor air monitoring data from...

  9. Performance Evaluation of a Low-Cost, Real-Time Community Air Monitoring Station

    EPA Science Inventory

    The US EPA’s Village Green Project (VGP) is an example of using innovative technology to enable community-level low-cost real-time air pollution measurements. The VGP is an air monitoring system configured as a park bench located outside of a public library in Durham, NC. ...

  10. Community Air Sensor Network (CAIRSENSE) Project: Lower Cost, Continuous Ambient Monitoring Methods

    EPA Science Inventory

    Advances in air pollution sensor technology have enabled the development of small and low cost systems to measure outdoor air pollution. The deployment of numerous sensors across a small geographic area would have potential benefits to supplement existing monitoring networks and ...

  11. PROCEDURES FOR EVALUATING OPERATIONS OF AMBIENT AIR MONITORING NETWORKS - A MANUAL

    EPA Science Inventory

    This manual is designed to evaluate the efficiency of ambient air monitoring networks whose primary objective is to document compliance with or progress toward attaining ambient air quality standards. The manual provides methods to evaluate the efficiency of each of six operation...

  12. METHODOLOGY FOR DESIGNING AIR QUALITY MONITORING NETWORKS: 2. APPLICATION TO LAS VEGAS, NEVADA, FOR CARBON MONOXIDE

    EPA Science Inventory

    An objective methodology presented in a companion paper (Liu et al., 1986) for determining the optimum number and disposition of ambient air quality stations in a monitoring network for carbon monoxide is applied to the Las Vegas, Nevada, area. The methodology utilizes an air qua...

  13. 40 CFR 61.184 - Ambient air monitoring for inorganic arsenic.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... arsenic. 61.184 Section 61.184 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... for Inorganic Arsenic Emissions From Arsenic Trioxide and Metallic Arsenic Production Facilities § 61.184 Ambient air monitoring for inorganic arsenic. (a) The owner or operator of each source to...

  14. 40 CFR 61.184 - Ambient air monitoring for inorganic arsenic.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... arsenic. 61.184 Section 61.184 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... for Inorganic Arsenic Emissions From Arsenic Trioxide and Metallic Arsenic Production Facilities § 61.184 Ambient air monitoring for inorganic arsenic. (a) The owner or operator of each source to...

  15. 40 CFR 61.184 - Ambient air monitoring for inorganic arsenic.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... arsenic. 61.184 Section 61.184 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... for Inorganic Arsenic Emissions From Arsenic Trioxide and Metallic Arsenic Production Facilities § 61.184 Ambient air monitoring for inorganic arsenic. (a) The owner or operator of each source to...

  16. 40 CFR 61.184 - Ambient air monitoring for inorganic arsenic.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... arsenic. 61.184 Section 61.184 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... for Inorganic Arsenic Emissions From Arsenic Trioxide and Metallic Arsenic Production Facilities § 61.184 Ambient air monitoring for inorganic arsenic. (a) The owner or operator of each source to...

  17. 40 CFR 61.184 - Ambient air monitoring for inorganic arsenic.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... arsenic. 61.184 Section 61.184 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... for Inorganic Arsenic Emissions From Arsenic Trioxide and Metallic Arsenic Production Facilities § 61.184 Ambient air monitoring for inorganic arsenic. (a) The owner or operator of each source to...

  18. 40 CFR Appendix D to Part 58 - Network Design Criteria for Ambient Air Quality Monitoring

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Air Quality Standards (NAAQS) levels and forms are defined in 40 CFR part 50. 4 These minimum...) The PM2.5 NAAQS, specified in 40 CFR part 50, provides State and local air monitoring agencies with an... defined in appendix N to 40 CFR part 50. 4.8Coarse Particulate Matter (PM10−2.5) Design Criteria....

  19. Assessing isocyanate exposures in polyurethane industry sectors using biological and air monitoring methods.

    PubMed

    Creely, K S; Hughson, G W; Cocker, J; Jones, K

    2006-08-01

    company (0.066 mg m(-3)) and also during spray application of polyurethane foam insulation (0.023 mg m(-3)). The most commonly detected isocyanate in the urine was hexamethylene diisocyanate, which was detected in 21 instances. The geometric mean total isocyanate metabolite concentration for the dataset was 0.29 micromol mol(-1) creatinine (range 0.05-12.64 micromol mol(-1) creatinine). A total of 23 samples collected were above the agreed biological monitoring guidance value of 1.0 micromol mol(-1) creatinine. Activities that resulted in the highest biological monitoring results of the dataset included mixing and casting of polyurethane products (12.64 micromol mol(-1) creatinine), semi-automatic moulding (4.80 micromol mol(-1) creatinine) and resin application (3.91 micromol mol(-1) creatinine). The biological monitoring results show that despite low airborne isocyanate concentrations, it was possible to demonstrate biological uptake. This tends to suggest high sensitivity of the biological monitoring method and/or that in some instances the RPE being used by operators was not effective or that absorption may have occurred via dermal or other routes of exposure. This study demonstrates that biological monitoring is a useful tool when assessing worker exposure to isocyanates, providing a more complete picture on the efficacy of control measures in place than is possible by air monitoring alone. The results also demonstrated that where control measures were judged to be adequate, most biological samples were close to or < 1 micromol mol(-1) creatinine, the agreed biological monitoring benchmark. PMID:16731584

  20. Evaluation of the Air Quality Monitor's Performance on the International Space Station

    NASA Technical Reports Server (NTRS)

    Limero, Thomas; Reese, Eric; Ballard, Ken; Durham, Tamara

    2010-01-01

    The Air Quality Monitor (AQM) was flown to the International Space Station (ISS) as an experiment to evaluate its potential to replace the aging Volatile Organic Analyzer (VOA), which ceased operations in August 2009. The AQM (Figure 1) is a small gas chromatography/differential mobility spectrometer (GC/DMS) manufactured by Sionex. Data was presented at last year s ISIMS conference that detailed the preparation of the AQM for flight, including instrument calibration. Furthermore, initial AQM data was compared to VOA results from simultaneous runs of the two instruments. Although comparison with VOA data provided a measure of confidence in the AQM performance, it is the comparison with results from simultaneously acquired air samples (grab sample containers-GSCs) that will define the success (or failure) of the AQM performance. This paper will update the progress in the AQM investigation by comparing AQM data to results from the analyses of GSC samples, returned from ISS. Additionally, a couple of example will illustrate the AQM s ability to detect disruptions in the spacecraft s air quality. Discussion will also focus upon a few unexpected issues that have arisen and how these will be a addressed in the final operational unit now being built.

  1. REVIEW OF THE RADNET AIR MONITORING NETWORK UPGRADE AND EXPANSION

    EPA Science Inventory

    RadNet, formerly known as ERAMS, has been operating since the 1970's, monitoring environmental radiation across the country, supporting responses to radiological emergencies, and providing important information on background levels of radiation in the environment. The original ...

  2. CHILD HEALTH CHAMPION AIR QUALITY MONITORING AND EDUCATION PROJECT

    EPA Science Inventory

    In response to two presidential directives, EPA has created the Child Health Champion (CHC) Environmental Monitoring for Public Access and Community Tracking (EMPACT) pilot program in communities where environmental data are not widely available and significant environmental heal...

  3. Multi-terminal remote monitoring and warning system using Micro Air Vehicle for dangerous environment

    NASA Astrophysics Data System (ADS)

    Yu, Yanan; Wang, Xiaoxun; He, Chengcheng; Lai, Chenlong; Liu, Yuanchao

    2015-11-01

    For overcoming the problems such as remote operation and dangerous tasks, multi-terminal remote monitoring and warning system based on STC89C52 Micro Control Unit and wireless communication technique was proposed. The system with MCU as its core adopted multiple sets of sensor device to monitor environment parameters of different locations, such as temperature, humidity, smoke other harmful gas concentration. Data information collected was transmitted remotely by wireless transceiver module, and then multi-channel data parameter was processed and displayed through serial communication protocol between the module and PC. The results of system could be checked in the form of web pages within a local network which plays a wireless monitoring and warning role. In a remote operation, four-rotor micro air vehicle which fixed airborne data acquisition device was utilized as a middleware between collecting terminal and PC to increase monitoring scope. Whole test system has characteristics of simple construction, convenience, real time ability and high reliability, which could meet the requirements of actual use.

  4. Hand and shoe monitor using air ionization probes

    DOEpatents

    Fergus, Richard W.

    1981-01-01

    A hand and shoe radiation monitor is provided which includes a probe support body defining a plurality of cells, within each cell there being an ionization probe. The support body provides structural strength for protecting the ionization probes from force applied to the support body during a radiation monitoring event. There is also provided a fast response time amplifier circuit for the output from the ionization probes.

  5. Air Quality Campaign Results from the Langley Mobile Ozone Lidar

    NASA Astrophysics Data System (ADS)

    De Young, R.; Carrion, W.; Pliutau, D.; Gano, R.

    2014-12-01

    A compact differential absorption ozone lidar (DIAL) system has been developed called the Langley Mobile Ozone Lidar (L-MOL) which can provide ozone, aerosol and cloud atmospheric profiles from a mobile trailer for ground-based atmospheric air quality campaigns. This lidar is integrated into the Tropospheric Ozone Lidar Network (TOLNet) currently made up of four other ozone lidars, three of which are mobile, across the country. The laser transmitter consist of a Coherent Evolution 30 TEM00 1-kHz diode pumped Q-switched Nd:YLF inter-cavity doubled laser pumping a Ce:LiCAF tunable UV laser. The transmitter transmits ~60 mW at two wavelengths between 280 and 293-nm for ozone and 2.5-W at 527-nm for aerosol profiling. The lidar operates at 1-kHz with 500-Hz at each 0f two UV wavelength. A fiber coupled 40-cm diameter parabolic telescope collets the backscattered return and records analog and photon counting signals. A separate 30-cm diameter telescope collects very near field returns for ozone profiles close to the surface. The lidar is capable of recording ozone profiles from 100-500-m with the very near field telescope and from 800-m to approximately 6000-m with the far field channel depending on sky background conditions. The system has been configured to enable mobile operation from a trailer which is environmentally controlled, and is towed with a truck with the objective to make the system mobile such that it can be setup at remote sites to support air quality field campaigns such as the July-August 2014 Denver, CO DISCOVER_AQ campaign. Before the lidar was deployed in the DISCOVER-AQ campaign the lidar operated for 15 hours at NASA Langley in Hampton, VA to test the ability of the system to accurately record ozone profiles. The figure below shows the results of that test. Six ozonesondes were launched during this period and show reasonable agreement with the ozone (ppbv) curtain plot. Ozone of stratospheric origin at 4-14 UTC was noted as well as local ozone

  6. 3D Air Quality and the Clean Air Interstate Rule: Lagrangian Sampling of CMAQ Model Results to Aid Regional Accountability Metrics

    NASA Technical Reports Server (NTRS)

    Fairlie, T. D.; Szykman, Jim; Pierce, Robert B.; Gilliland, A. B.; Engel-Cox, Jill; Weber, Stephanie; Kittaka, Chieko; Al-Saadi, Jassim A.; Scheffe, Rich; Dimmick, Fred; Tikvart, Joe

    2008-01-01

    The Clean Air Interstate Rule (CAIR) is expected to reduce transport of air pollutants (e.g. fine sulfate particles) in nonattainment areas in the Eastern United States. CAIR highlights the need for an integrated air quality observational and modeling system to understand sulfate as it moves in multiple dimensions, both spatially and temporally. Here, we demonstrate how results from an air quality model can be combined with a 3d monitoring network to provide decision makers with a tool to help quantify the impact of CAIR reductions in SO2 emissions on regional transport contributions to sulfate concentrations at surface monitors in the Baltimore, MD area, and help improve decision making for strategic implementation plans (SIPs). We sample results from the Community Multiscale Air Quality (CMAQ) model using ensemble back trajectories computed with the NASA Langley Research Center trajectory model to provide Lagrangian time series and vertical profile information, that can be compared with NASA satellite (MODIS), EPA surface, and lidar measurements. Results are used to assess the regional transport contribution to surface SO4 measurements in the Baltimore MSA, and to characterize the dominant source regions for low, medium, and high SO4 episodes.

  7. 40 CFR Appendix D to Part 58 - Network Design Criteria for Ambient Air Quality Monitoring

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Air Quality Standards (NAAQS) levels and forms are defined in 40 CFR part 50. 4 These minimum... approved as part of the annual monitoring network plan required in 40 CFR 58.10. 1 Daily or with an... nitrogen, VOC, and meteorology. 5.1PAMS Monitoring Objectives. PAMS design criteria are site...

  8. 40 CFR Appendix D to Part 58 - Network Design Criteria for Ambient Air Quality Monitoring

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Air Quality Standards (NAAQS) levels and forms are defined in 40 CFR part 50. 4 These minimum... approved as part of the annual monitoring network plan required in 40 CFR 58.10. 1 Daily or with an... Quality Monitoring D Appendix D to Part 58 Protection of Environment ENVIRONMENTAL PROTECTION...

  9. Reservoir vital signs monitoring, 1991: Benthic macroinvertebrate community results

    SciTech Connect

    Masters, A.E.

    1992-08-01

    As part of an extensive Reservoir Monitoring program to examine the ecological health of reservoirs in the TVA system, benthic communities were sampled and evaluated at 41 locations on 14 TVA reservoirs. Up to ten dredge samples were collected at locations from the forebay, inflow and transition zones. Surveys were conducted between mid-March and mid-April, 1991. The results of these surveys are presented and discussed in this report.

  10. Results from radiation monitoring equipment experiment on STS-8

    NASA Astrophysics Data System (ADS)

    Madonna, R. G.; Amico, R. L.; Brown, V. L.; Kidd, V. R.

    1984-07-01

    The results from the Radiation Equipment Monitoring (RME) experiment, flown onboard STS-8 are presented and discussed. The RME consists of the HRM-III gamma ray counter and PRM neutron/proton dosimeter. The gamma ray data agree wtih data from previous flights. Large increases in count rates are observed when the Orbiter is in the South Atlantic Anomaly. Neutron/proton dosage is consistent with NASA predictions for STS-8.

  11. Performance Evaluation of the Operational Air Quality Monitor for Water Testing Aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Wallace, William T.; Limero, Thomas F.; Gazda, Daniel B.; Macatangay, Ariel V.; Dwivedi, Prabha; Fernandez, Facundo M.

    2014-01-01

    In the history of manned spaceflight, environmental monitoring has relied heavily on archival sampling. For short missions, this type of sample collection was sufficient; returned samples provided a snapshot of the presence of chemical and biological contaminants in the spacecraft air and water. However, with the construction of the International Space Station (ISS) and the subsequent extension of mission durations, soon to be up to one year, the need for enhanced, real-time environmental monitoring became more pressing. The past several years have seen the implementation of several real-time monitors aboard the ISS, complemented with reduced archival sampling. The station air is currently monitored for volatile organic compounds (VOCs) using gas chromatography-differential mobility spectrometry (Air Quality Monitor [AQM]). The water on ISS is analyzed to measure total organic carbon and biocide concentrations using the Total Organic Carbon Analyzer (TOCA) and the Colorimetric Water Quality Monitoring Kit (CWQMK), respectively. The current air and water monitors provide important data, but the number and size of the different instruments makes them impractical for future exploration missions. It is apparent that there is still a need for improvements in environmental monitoring capabilities. One such improvement could be realized by modifying a single instrument to analyze both air and water. As the AQM currently provides quantitative, compound-specific information for target compounds present in air samples, and many of the compounds are also targets for water quality monitoring, this instrument provides a logical starting point to evaluate the feasibility of this approach. In this presentation, we will discuss our recent studies aimed at determining an appropriate method for introducing VOCs from water samples into the gas phase and our current work, in which an electro-thermal vaporization unit has been interfaced with the AQM to analyze target analytes at the

  12. AirSWOT: An Airborne Platform for Surface Water Monitoring

    NASA Astrophysics Data System (ADS)

    Rodriguez, E.; Moller, D.; Smith, L. C.; Pavelsky, T. M.; Alsdorf, D. E.

    2010-12-01

    The SWOT mission, expected to launch in 2020, will provide global measurements of surface water extent and elevation from which storage change and discharge can be derived. SWOT-like measurements are not routinely used by the hydrology community, and their optimal use and associated errors are areas of active research. The purpose of AirSWOT, a system that has been proposed to NASA’s Instrument Incubator Program, is to provide SWOT-like measurements to the hydrology and ocean community to be used to advance the understanding and use of SWOT data in the pre-launch phase. In the post-launch phase, AirSWOT will be used as the SWOT calibration/validation platform. The AirSWOT payload will consist of Kaspar, a multi-beam Ka-band radar interferometer able to produce elevations over a 5 km swath with centimetric precision. The absolute elevation accuracy of the AirSWOT system will be achieved with a combination of high precision Inertial Motion Units (IMUs), ground calibration points, and advanced calibration techniques utilizing a priori knowledge. It is expected that the accuracy of AirSWOT will exceed or match SWOT’s accuracy requirements. In addition to elevation measurements, the AirSWOT payload will include a near-infrared camera able to provide coincident high-resolution optical imagery of the water bodies imaged by the radar. In its initial hydrology deployments, AirSWOT will investigate four field sites: the Ohio-Mississippi confluence, the lower Atchafalaya River on the Mississippi River Delta, the Yukon River basin near Fairbanks, and the Sacramento River, California. The Ohio-Mississippi confluence is targeted for its large discharge, modest slope, and control structures that modulate Ohio but not Mississippi River slopes and elevations. The lower Atchafalaya River includes low slopes, wetlands with differing vegetation types, and some open lakes. Vegetation includes Cyprus forests, floating macrophytes, and grass marshes, all of which impact radar returns

  13. Test results of lithium pool-air reaction suppression systems

    SciTech Connect

    Jeppson, D.W.

    1987-02-01

    Engineered reaction suppression systems were demonstrated to be effective in suppressing lithium pool-air reactions for lithium quantities up to 100 kg. Lithium pool-air reaction suppression system tests were conducted to evaluate suppression system effectiveness for potential use in fusion facilities in mitigating consequences of postulated lithium spills. Small-scale perforated and sacrificial cover plate suppression systems with delayed inert gas purging proved effective in controlling the lithium-air interaction for lithium quantities near 15 kg at initial temperatures up to 450/sup 0/C. A large-scale suppression system with a sacrificial cover, a diverter plate, an inert gas atmosphere, and remotely retrievable catch pans proved effective in controlling lithium pool-air interaction for a 100-kg lithium discharge at an initial temperature of 550/sup 0/C. This suppression system limited the maximum pool temperature to about 600/sup 0/C less than that expected for a similar lithium pool-air reaction without a suppression system. Lithium aerosol release from this large-scale suppression system was a factor of about 10,000 less than that expected for a lithium pool-air reaction with no suppression system. Remote retrieval techniques for lithium cleanup, such as (1) in-place lithium siphoning and overhead crane dismantling, and (2) lithium catch pan removal by use of an overhead crane, were demonstrated as part of this large-scale test.

  14. Data Quality Objectives Summary Report Supporting Radiological Air Surveillance Monitoring for the INL Site

    SciTech Connect

    Haney, Thomas Jay

    2015-05-01

    This report documents the Data Quality Objectives (DQOs) developed for the Idaho National Laboratory (INL) Site ambient air surveillance program. The development of the DQOs was based on the seven-step process recommended “for systematic planning to generate performance and acceptance criteria for collecting environmental data” (EPA 2006). The process helped to determine the type, quantity, and quality of data needed to meet current regulatory requirements and to follow U.S. Department of Energy guidance for environmental surveillance air monitoring design. It also considered the current air monitoring program that has existed at INL Site since the 1950s. The development of the DQOs involved the application of the atmospheric dispersion model CALPUFF to identify likely contamination dispersion patterns at and around the INL Site using site-specific meteorological data. Model simulations were used to quantitatively assess the probable frequency of detection of airborne radionuclides released by INL Site facilities using existing and proposed air monitors.

  15. Lessons from a 5 yr citizen-science monitoring program, Mountain Watch, to engage hikers in air quality/visibility and plant phenology monitoring in the mountains

    NASA Astrophysics Data System (ADS)

    Murray, G.; Weihrauch, D.; Kimball, K.; McDonough, C.

    2010-12-01

    The AMC’s citizen scientist monitoring program, Mountain Watch, engages hikers in observational monitoring while recreating in the northern Appalachian Mountains. The program uses two monitoring activities:1) tracking the phenology of 11 mountain flowers species, and 2) the visitors real world perception of on-mountain visibility and its ‘quality’ with proximate monitored air quality parameters. The Mountain Watch program objectives are a) to engage and educate the public through hands-on monitoring, b) to motivate the participant to take further action towards environmental stewardship, and c) to provide supplemental data to AMC’s ongoing science-based research to further our understanding of the impact of human activity on mountain ecosystems. The Mountain Watch plant monitoring includes recording the time and location of alpine and forest plants flowering and other phenological phases using AMC field guides and datasheets. In the White Mountains of New Hampshire concurrent meteorological data, including soil temperature, is paired with the phenology observations as part of AMC’s research to develop spatial and temporal phenology models with air and soil temperature for northeastern mountains. Mountain Watch’s visibility monitoring program has hikers record visual range and rate the view at select vistas in comparison to a clear day view photo guide when visiting AMC’s backcountry huts. The results are compared to proximate air quality measurements, which assists in determining how White Mountain National Forest air quality related values and natural resources management objectives are being met. Since 2006 the Mountain Watch program has received over 3,500 citizen datasheets for plant reproductive phenology and visibility monitoring. We estimate that we have reached more than 15,000 hikers through our facility based education programming focused on air quality and phenology and field monitoring hikes. While we consider this good success in engaging

  16. Citizen Science Air Monitor (CSAM) Quality Assurance Guidelines

    EPA Science Inventory

    Many communities in the United States are potentially impacted by a wide variety of environmental pollution sources. The U.S. Environmental Protection Agency (EPA) encourages communities to advocate for environmental and public health mitigations and to raise awareness of air pol...

  17. MONITORING CYCLICAL AIR-WATER ELEMENTAL MERCURY EXCHANGE

    EPA Science Inventory

    Previous experimental work has demonstrated that elemental mercury evasion from natural water displays a diel cycle; evasion rates during the day can be two to three times evasion rates observed at night. A study with polychlorinated biphenyls (PCBS) found that diurnal PCB air/wa...

  18. 40 CFR 58.15 - Annual air monitoring data certification.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Administrator (through the appropriate Regional Office) an annual summary report of all the ambient air quality data collected at all SLAMS and at SPM stations using FRM, FEM, or ARMs. The annual report(s) shall be submitted for data collected from January 1 to December 31 of the previous year. The annual summary...

  19. 40 CFR 58.15 - Annual air monitoring data certification.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Administrator (through the appropriate Regional Office) an annual summary report of all the ambient air quality data collected at all SLAMS and at SPM stations using FRM, FEM, or ARMs. The annual report(s) shall be submitted for data collected from January 1 to December 31 of the previous year. The annual summary...

  20. DEVELOPMENT OF INTERNATIONAL STANDARDS FOR AIR QUALITY MONITORING AND CONTROL

    EPA Science Inventory

    This report presents a description of the activities and accomplishments of the American Society for Testing and Materials' U. S. Technical Advisory Group (TAG) to the International Standards Organization's Technical Committee 146 on Air Quality. The purpose of the TAG is to re...

  1. TETHERED BALLOON SAMPLING SYSTEMS FOR MONITORING AIR POLLUTION

    EPA Science Inventory

    The paper is an overview of recent studies in which balloons, usually tethered, have been used to investigate the structure and air quality of the planetary boundary layer. It also describes a number of lightweight tethered balloon sampling systems, developed to investigate parti...

  2. An evaluation of air effluent and workplace radioactivity monitoring at the Waste Isolation Pilot Plant

    SciTech Connect

    Bartlett, W.T. Environmental Evaluation Group, Albuquerque, NM )

    1993-02-01

    Improvements are needed in the Waste Isolation Pilot Plant (WIPP) air effluent and workplace radioactivity monitoring prior to receipt of radioactive wastes. This report provides a detailed review Zf radioactivity air monitoring regulatory requirements and related facility design requirements. Air monitoring data, supplied by the Westinghouse Isolation Division, are analyzed. The WIPP Final Safety Analysis Report (FSAR) requires that the WIPP radiological facilities always have multiple confinement barriers to prevent the accidental release of radioactive material to the environment. The Waste Handling Building has standard confinement barriers that satisfy the regulatory requirements, but the underground confinement barriers.include a more complex system for filtering air in the event of-an accidental release. A continuous air monitor (CAM) is an integral part of the underground confinement barrier strategy. For the last four years'' the reliability and sensitivity of the CAMs have been the subject of numerous reports and meetings which are summarized in this report. Data supplied to the Environmental Evaluation Group (EEG) show that the Station A CAM, which monitors the underground.exhaust, does not satisfy the requirements of the FSAR. The CAM system is not fail-safe, and operations appear to be affected by high levels of salt aerosol and poor detector performance. Additional test information is needed to establish the limits of CAM performance. Findings and recommendations are also provided on alternative monitoring methods, procedures and calculations.

  3. An evaluation of air effluent and workplace radioactivity monitoring at the Waste Isolation Pilot Plant

    SciTech Connect

    Bartlett, W.T. |

    1993-02-01

    Improvements are needed in the Waste Isolation Pilot Plant (WIPP) air effluent and workplace radioactivity monitoring prior to receipt of radioactive wastes. This report provides a detailed review Zf radioactivity air monitoring regulatory requirements and related facility design requirements. Air monitoring data, supplied by the Westinghouse Isolation Division, are analyzed. The WIPP Final Safety Analysis Report (FSAR) requires that the WIPP radiological facilities always have multiple confinement barriers to prevent the accidental release of radioactive material to the environment. The Waste Handling Building has standard confinement barriers that satisfy the regulatory requirements, but the underground confinement barriers.include a more complex system for filtering air in the event of-an accidental release. A continuous air monitor (CAM) is an integral part of the underground confinement barrier strategy. For the last four years`` the reliability and sensitivity of the CAMs have been the subject of numerous reports and meetings which are summarized in this report. Data supplied to the Environmental Evaluation Group (EEG) show that the Station A CAM, which monitors the underground.exhaust, does not satisfy the requirements of the FSAR. The CAM system is not fail-safe, and operations appear to be affected by high levels of salt aerosol and poor detector performance. Additional test information is needed to establish the limits of CAM performance. Findings and recommendations are also provided on alternative monitoring methods, procedures and calculations.

  4. Results from the Ariel 5 All-Sky Monitor

    NASA Technical Reports Server (NTRS)

    Holt, S. S.

    1976-01-01

    Results are summarized for the first year of operation of the Ariel 5 All-Sky Monitor. The monitor is described in detail, and representative observations of the transient sources A1524-62, Cen X-mas, A0535+26, and A0620-00 are discussed. It is shown that the transients are largely confined to the galactic plane and that about 100 such sources per year can be expected in the Galaxy. Long-term observations of Sco X-1, Cyg X-3, and Cyg X-1 are reported which illustrate that the large intensity variations in Sco X-1 appear to correlate on time scales greater than one Ariel 5 orbit, that Cyg X-3 has a widely varying intensity, and that the predominant feature of the intensity variation in Cyg X-1 is a minimum near superior conjunction.

  5. Air monitoring of volatile organic compounds at relevant receptors during hydraulic fracturing operations in Washington County, Pennsylvania.

    PubMed

    Maskrey, Joshua R; Insley, Allison L; Hynds, Erin S; Panko, Julie M

    2016-07-01

    A 3-month air monitoring study was conducted in Washington County, Pennsylvania, at the request of local community members regarding the potential risks resulting from air emissions of pollutants related to hydraulic fracturing operations. Continuous air monitoring for total volatile organic compounds was performed at two sampling sites, including a school and a residence, located within 900 m of a hydraulic fracturing well pad that had been drilled prior to the study. Intermittent 24-hour air samples for 62 individual volatile organic compounds were also collected. The ambient air at both sites was monitored during four distinct periods of unconventional natural gas extraction activity: an inactive period prior to fracturing operations, during fracturing operations, during flaring operations, and during another inactive period after operations. The results of the continuous monitoring during fracturing and flaring sampling periods for total volatile organic compounds were similar to the results obtained during inactive periods. Total volatile organic compound 24-hour average concentrations ranged between 0.16 and 80 ppb during all sampling periods. Several individual volatile compounds were detected in the 24-hour samples, but they were consistent with background atmospheric levels measured previously at nearby sampling sites and in other areas in Washington County. Furthermore, a basic yet conservative screening level evaluation demonstrated that the detected volatile organic compounds were well below health-protective levels. The primary finding of this study was that the operation of a hydraulic fracturing well pad in Washington County did not substantially affect local air concentrations of total and individual volatile organic compounds. PMID:27312253

  6. Rapid monitoring of soil, smears, and air dusts by direct large-area alpha spectrometry

    SciTech Connect

    Sill, C.W.

    1992-01-01

    Experimental conditions to permit rapid monitoring of soils, smears, and air dusts for transuranic (TRU) radionuclides under field conditions are described. The monitoring technique involves direct measurement of alpha emitters by alpha spectrometry using a large-area detector to identify and quantify the radionuclides present. The direct alpha spectrometry employs a circular gridded ionization chamber 35 cm in diameter which accommodates either a circular sample holder 25 cm in diameter or a rectangular one 20 by 25 cm (8 by 10 in.). Soils or settled dusts are finely ground, suspended in 30% ethanol, and sprayed onto a 25-cm stainless steel dish. Air dusts are collected with a high-volume sampler onto 20- by 25-cm membrane filters. Removable contamination is collected from surfaces onto a 20- by 25-cm filter using an 18-cm (7-in.) paint roller to hold the large filter in contact with the surface during sample collection. All three types of samples are then counted directly in the alpha spectrometer and no other sample preparation is necessary. Some results obtained are described.

  7. Calibration and operation of continuous air monitors for alpha-emitting radionuclides

    SciTech Connect

    Hoover, M.D.; Newton, G.J.

    1993-12-31

    Spectrometer-based continuous air monitors have improved our capabilities for detecting aerosols of alpha-emitting radionuclides. This paper describes basic requirements and statistical limitations in the sensitivity of alpha continuous air monitors, and presents a technical basis for selecting the energy window for detection of uranium and plutonium aerosols, correcting for interference from airborne dust, selecting filters with low pressure drop and good front surface collection characteristics, and properly using electroplated calibration sources. Sensitivity limits are described for detecting uranium or plutonium aerosols in the presence of increased concentrations of naturally occurring, alpha-emitting radon progeny radionuclides. Decreasing the lower energy boundary of the detection window from 4.3 MeV to 2.7 MeV improves by a factor of three the detection of plutonium in the presence of dust, while causing minimal additional interference from ambient radon progeny. Selection of the Millipore Fluoropore teflon membrane filter reduces both pressure drop and interference from ambient radon progeny by up to a factor of two. Field collection of ambient radon progeny can be used to verify the proper energy of alpha emissions from electroplated calibration sources. In the absence of energy verification, errors in instrument calibration may result from solid state diffusion of the electroplated calibration radionuclide into the substrate plate.

  8. Use Of The Operational Air Quality Monitor (AQM) For In-Flight Water Testing Project

    NASA Technical Reports Server (NTRS)

    Macatangay, Ariel

    2014-01-01

    A primary requirement for manned spaceflight is Environmental Health which ensures air and water contaminants, acoustic profiles, microbial flora, and radiation exposures within the cabin are maintained to levels needed for crew health and for vehicle system functionality. The reliance on ground analyses of returned samples is a limitation in the current environmental monitoring strategy that will prevent future Exploration missions beyond low-Earth orbit. This proposal attempts to address this shortcoming by advancing in-flight analyses of water and air. Ground analysis of in-flight, air and water samples typically employ vapor-phase analysis by gas chromatography-mass spectrometry (GC-MS) to identify and quantify organic compounds present in the samples. We envision the use of newly-developed direct ionization approaches as the most viable avenue leading towards an integrated analytical platform for the monitoring of water, air, and, potentially bio-samples in the cabin environment. Development of an in-flight instrument capable of analyzing air and water samples would be the logical next step to meeting the environmental monitoring needs of Exploration missions. Currently, the Air Quality Monitor (AQM) on-board ISS provides this specific information for a number of target compounds in the air. However, there is a significant subset of common target compounds between air and water. Naturally, the following question arises, "Can the AQM be used for both air and water quality monitoring?" Previous directorate-level IR&D funding led to the development of a water sample introduction method for mass spectrometry using electrothermal vaporization (ETV). This project will focus on the integration of the ETV with a ground-based AQM. The capabilities of this integrated platform will be evaluated using a subset of toxicologically important compounds.

  9. HESTIA Phase I Test Results: The Air Revitalization System

    NASA Technical Reports Server (NTRS)

    Wright, Sarah E.; Hansen, Scott W.

    2016-01-01

    In any human spaceflight mission, a number of Environmental Control & Life Support System (ECLSS) technologies work together to provide the conditions astronauts need to live healthily, productively, and comfortably in space. In a long-duration mission, many of these ECLSS technologies may use materials supplied by In-Situ Resource Utilization (ISRU), introducing more interactions between systems. The Human Exploration Spacecraft Test-bed for Integration & Advancement (HESTIA) Project aims to create a test-bed to evaluate ECLSS and ISRU technologies and how they interact in a high-fidelity, closed-loop, human-rated analog habitat. Air purity and conditioning are essential components within any ECLSS and for HESTIA's first test they were achieved with the Air Revitalization System (ARS) described below. The ARS provided four essential functions to the test-bed chamber: cooling the air, removing humidity from the air, removing trace contaminants, and scrubbing carbon dioxide (CO2) from the air. In this case, the oxygen supply function was provided by ISRU. In the current configuration, the ARS is a collection of different subsystems. A fan circulates the air, while a condensing heat exchanger (CHX) pulls humidity out of the air. A Trace Contaminant Removal System (TCRS) filters the air of potentially harmful contaminants. Lastly, a Reactive Plastic Lithium Hydroxide (RP-LiOH) unit removes CO2 from the breathing air. During the HESTIA Phase I test in September 2015, the ARS and its individual components each functioned as expected, although further analysis is underway. During the Phase I testing and in prior bench-top tests, the energy balance of heat removed by the CHX was not equal to the cooling it received. This indicated possible instrument error and therefore recalibration of the instruments and follow-up testing is planned in 2016 to address the issue. The ARS was tested in conjunction with two other systems: the Human Metabolic Simulator (HMS) and the

  10. Experimental and theoretical analysis results for high temperature air combustion

    SciTech Connect

    Tanigawa, Tadashi; Morita, Mitsunobu

    1998-07-01

    With Japan's preparation of its Action program to prevent global warming in 1990 and the holding of the United National Conference on Environment and Development (the Earth Summit) in 1992 as a backdrop, reflecting the global effort to protect the environment, a high performance industrial furnace development project was launched in 1993 by the New Energy and Industrial Technology Development Organization (NEDO). This project focuses on the development of a combustion technology which uses air that is preheated to extremely high temperatures (above 1,000 C), heretofore considered impossible. Not only can this technology reduce carbon dioxide emission, thought to cause the greenhouse effect, by over 30%, but it can also reduce nitrogen oxide emission by nearly half. This new technology makes use of the recently-developed high-cycle regenerative heat exchanger, for preheating the furnace air supply. This exchanger preheats air to above 1,000 C, much higher than for conventional furnaces, and then this air is injected with fuel. R and D data have shown that CO{sub 2} and NO{sub x} emissions can be reduced markedly. However, the theoretical analysis is yet to be made, thereby hampering efforts to have this advanced technology become widely adopted. This project accumulated new data related to uniform temperature distribution, high energy heat transfer and low NO{sub x} as common characteristics of high temperature air combustion.

  11. Real-time air quality monitoring by using internet video surveillance camera

    NASA Astrophysics Data System (ADS)

    Wong, C. J.; Lim, H. S.; MatJafri, M. Z.; Abdullah, K.; Low, K. L.

    2007-04-01

    Nowadays internet video surveillance cameras are widely use in security monitoring. The quantities of installations of these cameras also become more and more. This paper reports that the internet video surveillance cameras can be applied as a remote sensor for monitoring the concentrations of particulate matter less than 10 micron (PM10), so that real time air quality can be monitored at multi location simultaneously. An algorithm was developed based on the regression analysis of relationship between the measured reflectance components from a surface material and the atmosphere. This algorithm converts multispectral image pixel values acquired from these cameras into quantitative values of the concentrations of PM10. These computed PM10 values were compared to other standard values measured by a DustTrak TM meter. The correlation results showed that the newly develop algorithm produced a high degree of accuracy as indicated by high correlation coefficient (R2) and low root-mean-square-error (RMS) values. The preliminary results showed that the accuracy produced by this internet video surveillance camera is slightly better than that from the internet protocol (IP) camera. Basically the spatial resolution of images acquired by the IP camera was poorer compared to the internet video surveillance camera. This is because the images acquired by IP camera had been compressed and there was no compression for the images from the internet video surveillance camera.

  12. MONITORING THE AIR FOR TOXIC AND GENOTOXIC COMPOUNDS

    EPA Science Inventory

    A time-integrated sampling system interfaced with a toxicity-based assay is reported for monitoring volatile toxic industrial chemicals (TICs). Semipermeable membrane devices (SPMDs) using dimethyl sulfoxide (DMSO) as the fill solvent accumulated each of 17 TICs from the vapor p...

  13. APPLICATION OF JET REMPI AND LIBS TO AIR TOXIC MONITORING

    EPA Science Inventory

    The paper discusses three advanced, laser-based monitoring techniques that the EPA is assisting in developing for real time measurement of toxic aerosol compounds. One of the three techniques is jet resonance enhanced multiphoton ionization (Jet REMPI) coupled with a time-of-flig...

  14. Results of TSP metals monitoring at McMurdo Station, Antarctica

    SciTech Connect

    Lugar, R.M.

    1994-04-01

    This report presents the results of ambient air monitoring of metals in total suspended particulate (TSP) matter performed during the 1992--1993 austral summer at McMurdo Station, Antarctica. Seven samples of TSP were collected from three different locations and analyzed for arsenic, beryllium, cadmium, chromium, lead, nickel, and mercury. Critical-flow high-volume air samplers with a sample flow rate of approximately 1.1 m{sup 3}/minute were used to collect the particulate matter on quartz fiber filters for subsequent laboratory analysis. Sampling site selection, sampling procedures, and quality assurance procedures used were consistent with US Environmental Protection Agency guidance for local ambient air quality networks. The data indicate that McMurdo operations have a measurable impact on the qualitative toxic metals composition of suspended particulate matter in the ambient air; however a definitive quantitative impact could not be concluded. The levels measured are well below the US National Ambient Air Quality Standards and American Conference of Governmental Industrial Hygienists worker exposure levels. Lead was the most prevalent of the seven toxic metals and was detected in all samples at concentrations ranging from 1.4 ng/m{sup 3} to 38 ng/m{sup 3}. Data on the concentration of eleven other metal species are presented. Most notable was the relatively high abundance of titanium and copper, which were detectable at levels up to 2,100 ng/m{sup 3} and 230 ng/m{sup 3}, respectively.

  15. NHEXAS PHASE I REGION 5 STUDY--METALS IN AIR ANALYTICAL RESULTS

    EPA Science Inventory

    This data set includes analytical results for measurements of metals in 534 air samples. Samples of personal air, indoor air, and outdoor air were collected using a pump and interval timer over a period of approximately 144 hours to measure inhalation exposure to metals. Most of ...

  16. NHEXAS PHASE I REGION 5 STUDY--PARTICLES IN AIR ANALYTICAL RESULTS

    EPA Science Inventory

    This data set includes analytical results for measurements of particles (aerosol mass) in 538 air samples. Samples of personal air, indoor air, and outdoor air were collected using a pump and interval timer over a period of approximately 144 hours to measure inhalation exposure t...

  17. NHEXAS PHASE I REGION 5 STUDY--VOCS IN AIR ANALYTICAL RESULTS

    EPA Science Inventory

    This data set includes analytical results for measurements of VOCs (volatile organic compounds) in 998 air samples. Samples of personal air, indoor air, and outdoor air were collected using two-stage passive badges (3-M, 3520, Minneapolis, MN) over a period of approximately 144 h...

  18. Spatial modeling for air pollution monitoring network design: example of residential woodsmoke.

    PubMed

    Su, Jason G; Larson, Timothy; Baribeau, Anne-Marie; Brauer, Michael; Rensing, Michael; Buzzelli, Michael

    2007-08-01

    The purpose of this paper is to demonstrate how to develop an air pollution monitoring network to characterize small-area spatial contrasts in ambient air pollution concentrations. Using residential woodburning emissions as our case study, this paper reports on the first three stages of a four-stage protocol to measure, estimate, and validate ambient residential woodsmoke emissions in Vancouver, British Columbia. The first step is to develop an initial winter nighttime woodsmoke emissions surface using inverse-distance weighting of emissions information from consumer woodburning surveys and property assessment data. Second, fireplace density and a compound topographic index based on hydrological flow regimes are used to enhance the emissions surface. Third, the spatial variation of the surface is used in a location-allocation algorithm to design a network of samplers for the woodsmoke tracer compound levoglucosan and fine particulate matter. Measurements at these network sites are then used in the fourth stage of the protocol (not presented here): a mobile sampling campaign aimed at developing a high-resolution surface of woodsmoke concentrations for exposure assignment in health effects studies. Overall the results show that relatively simple data inputs and spatial analysis can be effective in capturing the spatial variability of ambient air pollution emissions and concentrations. PMID:17824279

  19. Terahertz sensor for air pollution monitoring from spacecraft

    NASA Astrophysics Data System (ADS)

    You, Rui; Guo, Aiyan

    2016-07-01

    Terahertz wave is a radio wave which wavelength between infrared and microwave, substantial is from 0.1-1mm that is 300-3000GHz(0.3-3THz). Compare to microwave and visible/infrared it is advantage of resolution and better penetration in atmosphere respectively, and because of wavelength is similar to scale of micro-particle of air pollution, the absorption coefficient due to the many relevant molecules have a maximum signature in the THz region, such as SO2、CH4、H2S、NH3、CO、O3 etc. of molecules of polluted atmosphere . This paper present a conceptional solution of THz sensor for air pollution sounder which using of large aperture antenna and FSS with 15 channels in 0.183-1.5THz region, each channel with 2MHz by extreme narrow band filter for detecting signature of polluted air. Analysis data show that 2Km spatial resolution at 700km altitude orbit. Sensitive is about 10-12W/Hz1/2 level at cryogenic temp.

  20. Emissions and ambient air monitoring trends of lower olefins across Texas from 2002 to 2012.

    PubMed

    Myers, Jessica L; Phillips, Tracie; Grant, Roberta L

    2015-11-01

    Texas has the largest ambient air monitoring network in the country with approximately 83 monitoring sites that measure ambient air concentrations of volatile organic compounds (VOCs). The lower olefins, including 1,3-butadiene, ethylene, isoprene, and propylene, are a group of VOCs that can be measured in both 24h/every sixth-day canister samples and continuous 1-h Automated Gas Chromatography (AutoGC) samples. Based on 2012 Toxics Release Inventory data, the total reported industrial air emissions in Texas for these olefins, as compared to total national reported air emissions, were 79% for 1,3-butadiene, 62% for ethylene, 76% for isoprene, and 54% for propylene, illustrating that Texas industries are some of the major emitters for these olefins. The purpose of this study was to look at the patterns of annual average air monitoring data from 2002 to 2012 using Texas Commission on Environmental Quality (TCEQ) data for these four lower olefins. It should be emphasized that monitors may not be located close to or downwind of the highest emitters of these lower olefins. In addition, air monitors only provide a snapshot in time of air concentrations for their respective locations, and may not be able to discriminate emissions between specific sources. In 2012, the highest annual average air concentration for 1,3-butadiene was 1.28 ppb by volume (ppbv), which was measured at the Port Neches monitoring site in Region 10-Beaumont. For ethylene, the highest 2012 annual average air concentration was 5.77 ppbv, which was measured at the Dona Park monitoring site in TCEQ Region 14-Corpus Christi. Although reported industrial emissions of isoprene are predominantly from the Houston and Beaumont regions, trees are natural emitters of isoprene, and the highest ambient air concentrations tend to be from regions with large areas of coniferous and hardwood forests. This was observed with TCEQ Region 5-Tyler, which had the two highest isoprene annual average air concentrations for

  1. Results from CrIS-ATMS Obtained Using the AIRS Science Team Retrieval Methodology

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Kouvaris, Louis C.; Iredell, Lena

    2013-01-01

    which significantly improved results of AIRS Version-6. Version-5.70 CrIS/ATMS temperature profile and surface skin temperature retrievals are of very good quality, and are better than AIRS Version-5 retrievals, but are still significantly poorer than those of AIRS Version-6. CrIS/ATMS retrievals should improve when a Neural-Net start-up system is ready for use. We also examined CrIS/ATMS retrievals generated by NOAA using their NUCAPS retrieval algorithm, which is based on earlier versions of the AIRS Science Team retrieval algorithms. We show that the NUCAPS algorithm as currently configured is not well suited for climate monitoring purposes.

  2. Monitoring Volcanoes by Use of Air-Dropped Sensor Packages

    NASA Technical Reports Server (NTRS)

    Kedar, Sharon; Rivellini, Tommaso; Webb, Frank; Blaes, Brent; Bracho, Caroline; Lockhart, Andrew; McGee, Ken

    2003-01-01

    Sensor packages that would be dropped from airplanes have been proposed for pre-eruption monitoring of physical conditions on the flanks of awakening volcanoes. The purpose of such monitoring is to gather data that could contribute to understanding and prediction of the evolution of volcanic systems. Each sensor package, denoted a volcano monitoring system (VMS), would include a housing with a parachute attached at its upper end and a crushable foam impact absorber at its lower end (see figure). The housing would contain survivable low-power instrumentation that would include a Global Positioning System (GPS) receiver, an inclinometer, a seismometer, a barometer, a thermometer, and CO2 and SO2 analyzers. The housing would also contain battery power, control, data-logging, and telecommunication subsystems. The proposal for the development of the VMS calls for the use of commercially available sensor, power, and telecommunication equipment, so that efforts could be focused on integrating all of the equipment into a system that could survive impact and operate thereafter for 30 days, transmitting data on the pre-eruptive state of a target volcano to a monitoring center. In a typical scenario, VMSs would be dropped at strategically chosen locations on the flanks of a volcano once the volcano had been identified as posing a hazard from any of a variety of observations that could include eyewitness reports, scientific observations from positions on the ground, synthetic-aperture-radar scans from aircraft, and/or remote sensing from aboard spacecraft. Once dropped, the VMSs would be operated as a network of in situ sensors that would transmit data to a local monitoring center. This network would provide observations as part of an integrated volcano-hazard assessment strategy that would involve both remote sensing and timely observations from the in situ sensors. A similar strategy that involves the use of portable sensors (but not dropping of sensors from aircraft) is

  3. Design of a complex terrain meteorological monitoring program for real-time air quality modeling analysis

    SciTech Connect

    Militana, L.M.; Karpovich, R.; Cimorelli, A.; Scire, J.S.

    1998-12-31

    A multi-station meteorological monitoring program has been designed and developed for a complex terrain air quality modeling study. The purpose of the program is to collect representative on site data as input to complex terrain air quality models and to predict in real-time the potential air quality impact of a rotary kiln incinerator The program is a state-of the science design using the best science air quality dispersion models (CALMET/CALPUFF) and meteorological monitoring equipment (RASS/SODAR Systems monostatic and phased array and multiple towers). The real-time meteorological monitoring program consisted of two monitoring stations using meteorological towers and Doppler SODAR and phased array RASS systems to determine the temperature and wind profile of the atmospheric boundary layer. The primary station were located adjacent to the site and consisted of a 150 ft meteorological tower and RASS/SODAR system. The secondary station was located approximately 1,600 meters northeast of the site and consisted of a 10 meter tower and a SODAR system. These monitoring stations provided 15-minute values of wind speed, wind direction, ambient temperature, and thermal and mechanical turbulence measurements for use in a complex terrain air quality modeling study and a real-time modeling system.

  4. The Air Sensor Citizen Science Toolbox: A Collaboration in Community Air Quality Monitoring and Mapping?

    EPA Science Inventory

    Project GoalDevelop tools Citizen Scientists can use to assist them in conducting environmental monitoringResearch PlanIdentify a citizen science project as a potential pilot study locationEstablish their pollutant monitoring interestsDevelop a sensor package to meet their needs ...

  5. New concept of enhanced monitoring station for urban air application

    NASA Astrophysics Data System (ADS)

    Allegrini, Ivo; Febo, Antonio; Giliberti, Claudia

    1995-05-01

    An advanced monitoring station was set up in the center of Milan, Italy. It is made up of several instruments for the measurement of atmospheric pollutants, including a DOAS system which is able to provide information of the time evolution of several primary and secondary atmospheric pollutants. A radioactivity monitor provides information about the time evolution of Radon daughters, thereby providing information about the evolution of the boundary layer. It is shown that pollution by primary pollutants can be described through a very simple model based on Radon observation. Secondary pollutants, like ozone and nitrogen dioxide can also be described by the same model. Observation in strong advective condition and during stability periods show that the presence of large concentration of nitrogen dioxide is due to radicalic processes which are also responsible for the formation of formaldehyde. The role of nitrous acid in the formation of radicals is also discussed.

  6. The Air Sensor Citizen Science Toolbox: A Collaboration in Community Air Quality Monitoring and Mapping

    EPA Science Inventory

    Research in Action: Collect air quality data to characterize near-road/near-source hotspots; Determine potential impact on nearby residences & roadways; Case study of successful use of such data; Relationship between distance to roadways and industrial sources, exposure to...

  7. Acoustic impedance rhinometry (AIR): a technique for monitoring dynamic changes in nasal congestion.

    PubMed

    Patuzzi, Robert; Cook, Alison

    2014-04-01

    We describe a simple and inexpensive method for monitoring nasal air flow resistance using measurement of the small-signal acoustic input impedance of the nasal passage, similar to the audiological measurement of ear drum compliance with acoustic tympanometry. The method requires generation of a fixed sinusoidal volume-velocity stimulus using ear-bud speakers, and an electret microphone to monitor the resultant pressure fluctuation in the nasal passage. Both are coupled to the nose via high impedance silastic tubing and a small plastic nose insert. The acoustic impedance is monitored in real-time using a laptop soundcard and custom-written software developed in LabView 7.0 (National Instruments). The compact, lightweight equipment and fast time resolution lends the technique to research into the small and rapid reflexive changes in nasal resistance caused by environmental and local neurological influences. The acoustic impedance rhinometry technique has the potential to be developed for use in a clinical setting, where the need exists for a simple and inexpensive objective nasal resistance measurement technique. PMID:24577261

  8. Air quality monitoring for dioxins, furans and PCBs in the Swan Hills area, Summer 1997, July 7 to August 1

    SciTech Connect

    1997-12-31

    Summarizes results of air quality monitoring activities carried out in the Swan Hills area of Alberta in summer 1997. At four locations in the area, samples of dioxin, furan, and polychlorinated biphenyls were analyzed and ambient concentrations determined. Results are presented in terms of toxic equivalents of dioxins and furans, total dioxins, total furans, and total polychlorinated biphenyls, normalized by compounds within each homologue group.

  9. On-line monitoring of methane in sewer air

    PubMed Central

    Liu, Yiwen; Sharma, Keshab R.; Murthy, Sudhir; Johnson, Ian; Evans, Ted; Yuan, Zhiguo

    2014-01-01

    Methane is a highly potent greenhouse gas and contributes significantly to climate change. Recent studies have shown significant methane production in sewers. The studies conducted so far have relied on manual sampling followed by off-line laboratory-based chromatography analysis. These methods are labor-intensive when measuring methane emissions from a large number of sewers, and do not capture the dynamic variations in methane production. In this study, we investigated the suitability of infrared spectroscopy-based on-line methane sensors for measuring methane in humid and condensing sewer air. Two such sensors were comprehensively tested in the laboratory. Both sensors displayed high linearity (R2 > 0.999), with a detection limit of 0.023% and 0.110% by volume, respectively. Both sensors were robust against ambient temperature variations in the range of 5 to 35°C. While one sensor was robust against humidity variations, the other was found to be significantly affected by humidity. However, the problem was solved by equipping the sensor with a heating unit to increase the sensor surface temperature to 35°C. Field studies at three sites confirmed the performance and accuracy of the sensors when applied to actual sewer conditions, and revealed substantial and highly dynamic methane concentrations in sewer air. PMID:25319343

  10. On-line monitoring of methane in sewer air

    NASA Astrophysics Data System (ADS)

    Liu, Yiwen; Sharma, Keshab R.; Murthy, Sudhir; Johnson, Ian; Evans, Ted; Yuan, Zhiguo

    2014-10-01

    Methane is a highly potent greenhouse gas and contributes significantly to climate change. Recent studies have shown significant methane production in sewers. The studies conducted so far have relied on manual sampling followed by off-line laboratory-based chromatography analysis. These methods are labor-intensive when measuring methane emissions from a large number of sewers, and do not capture the dynamic variations in methane production. In this study, we investigated the suitability of infrared spectroscopy-based on-line methane sensors for measuring methane in humid and condensing sewer air. Two such sensors were comprehensively tested in the laboratory. Both sensors displayed high linearity (R2 > 0.999), with a detection limit of 0.023% and 0.110% by volume, respectively. Both sensors were robust against ambient temperature variations in the range of 5 to 35°C. While one sensor was robust against humidity variations, the other was found to be significantly affected by humidity. However, the problem was solved by equipping the sensor with a heating unit to increase the sensor surface temperature to 35°C. Field studies at three sites confirmed the performance and accuracy of the sensors when applied to actual sewer conditions, and revealed substantial and highly dynamic methane concentrations in sewer air.

  11. On-line monitoring of methane in sewer air.

    PubMed

    Liu, Yiwen; Sharma, Keshab R; Murthy, Sudhir; Johnson, Ian; Evans, Ted; Yuan, Zhiguo

    2014-01-01

    Methane is a highly potent greenhouse gas and contributes significantly to climate change. Recent studies have shown significant methane production in sewers. The studies conducted so far have relied on manual sampling followed by off-line laboratory-based chromatography analysis. These methods are labor-intensive when measuring methane emissions from a large number of sewers, and do not capture the dynamic variations in methane production. In this study, we investigated the suitability of infrared spectroscopy-based on-line methane sensors for measuring methane in humid and condensing sewer air. Two such sensors were comprehensively tested in the laboratory. Both sensors displayed high linearity (R(2) > 0.999), with a detection limit of 0.023% and 0.110% by volume, respectively. Both sensors were robust against ambient temperature variations in the range of 5 to 35°C. While one sensor was robust against humidity variations, the other was found to be significantly affected by humidity. However, the problem was solved by equipping the sensor with a heating unit to increase the sensor surface temperature to 35°C. Field studies at three sites confirmed the performance and accuracy of the sensors when applied to actual sewer conditions, and revealed substantial and highly dynamic methane concentrations in sewer air. PMID:25319343

  12. Development of a Micro-scale Air Monitoring and Modeling System for a Urban District Air Quality Management

    NASA Astrophysics Data System (ADS)

    Yoo, Seung Heon; Woo, Jung-Hun; Ryoo, Rina; Jung, Bujeon; Seo, Jun Seong; Kim, Jae-Jin; Boem Lim, Sang; Kim, Hyungseok

    2010-05-01

    As the city is urbanized, its landscape is getting more complex due to the construction of high-rise buildings. The smaller scale wind-field in an urban district may change frequently due to the complex terrain, the diverse landuse, and high-rise buildings. It also leads to dynamic changes of air pollution in that area. The conventional urban scale air quality management system, however, is too coarse to effectively manage such a small area. In this study, we set up a micro-scale air quality management testbed near Konkuk University, Seoul, Korea. A ubiquities sensor monitoring network, high resolution emission database, and CFD-based air quality modeling system were developed, and then applied to the testbed. A sensor data management system using wireless technology and multi-modal scientific visualization module were combined in support of the management system. The sensor based monitoring system shows reasonably good performance for wind speed, temperature, and carbon dioxide from inter-comparison study against conventional large format analyzers. The sensor data have been successfully collected using a wireless sensor data collection network during a 6months operation period from July, 2009. The fire pollution event simulation using the CFD model reveals the effect of high rise buildings in the testbed.

  13. The next generation of low-cost personal air quality sensors for quantitative exposure monitoring

    NASA Astrophysics Data System (ADS)

    Piedrahita, R.; Xiang, Y.; Masson, N.; Ortega, J.; Collier, A.; Jiang, Y.; Li, K.; Dick, R.; Lv, Q.; Hannigan, M.; Shang, L.

    2014-03-01

    Advances in embedded systems and low-cost gas sensors are enabling a new wave of low cost air quality monitoring tools. Our team has been engaged in the development of low-cost wearable air quality monitors (M-Pods) using the Arduino platform. The M-Pods use commercially available metal oxide semiconductor (MOx) sensors to measure CO, O3, NO2, and total VOCs, and NDIR sensors to measure CO2. MOx sensors are low in cost and show high sensitivity near ambient levels; however they display non-linear output signals and have cross sensitivity effects. Thus, a quantification system was developed to convert the MOx sensor signals into concentrations. Two deployments were conducted at a regulatory monitoring station in Denver, Colorado. M-Pod concentrations were determined using laboratory calibration techniques and co-location calibrations, in which we place the M-Pods near regulatory monitors to then derive calibration function coefficients using the regulatory monitors as the standard. The form of the calibration function was derived based on laboratory experiments. We discuss various techniques used to estimate measurement uncertainties. A separate user study was also conducted to assess personal exposure and M-Pod reliability. In this study, 10 M-Pods were calibrated via co-location multiple times over 4 weeks and sensor drift was analyzed with the result being a calibration function that included drift. We found that co-location calibrations perform better than laboratory calibrations. Lab calibrations suffer from bias and difficulty in covering the necessary parameter space. During co-location calibrations, median standard errors ranged between 4.0-6.1 ppb for O3, 6.4-8.4 ppb for NO2, 0.28-0.44 ppm for CO, and 16.8 ppm for CO2. Median signal to noise (S/N) ratios for the M-Pod sensors were higher for M-Pods than the regulatory instruments: for NO2, 3.6 compared to 23.4; for O3, 1.4 compared to 1.6; for CO, 1.1 compared to 10.0; and for CO2, 42.2 compared to 300

  14. Added value of a geostationary thermal infrared and visible instrument to monitor ozone for air quality

    NASA Astrophysics Data System (ADS)

    Hache, Emeric; Attié, Jean-Luc; Tourneur, Cyrille; Ricaud, Philippe; Coret, Laurent; Lahoz, William; El Amraoui, Laaziz; Josse, Béatrice; Hamer, Paul; Warner, Juying; Liu, Xiong; Chance, Kelly; Höpfner, Michael; Spurr, Robert; Natraj, Vijay; Kulawik, Susan; Eldering, Annmarie; Orphal, Johannes

    2014-05-01

    Air quality concerns the atmospheric composition of the lowermost troposphere between the ground and 500 m; it depends on chemical and transport processes and emissions. Air quality has a strong impact on human health, and protecting society from its adverse effects has a high cost (Lahoz et al., 2012). It is thus important to monitor species that are key for air quality - these include ozone, carbon monoxide, NOx and aerosols. In this study we focus on ozone, and compare the capability of two instrument configurations onboard a geostationary (GEO) satellite to sense ozone in the lowermost troposphere (surface and 0-1 km column): 1) in the thermal infrared (GEO TIR), and 2) in the thermal infrared and the visible (GEO TIR+VIS). We consider one week during the Northern Hemisphere summer simulated by the chemical transport model MOCAGE, and use the two GEO instrument configurations to measure ozone. The GEO TIR instrument is described in Claeyman et al. (2011a, b). The GEO TIR+VIS instrument is the GEO TIR instrument with an additional visible Chappuis band to improve the sensitivity of the instrument in the lowermost troposphere. We compare these configurations against each other, and against an ozone reference state and a priori ozone information, to evaluate the benefit of the TIR+VIS in comparison to the TIR in the lowermost troposphere. The results from this work will inform an Observing System Simulation Experiment (OSSE) performed to quantify the added value of the GEO TIR+VIS configuration for forecasting air quality conditions.

  15. Biological Monitoring of Air Pollutants and Its Influence on Human Beings

    PubMed Central

    Cen, Shihong

    2015-01-01

    Monitoring air pollutants via plants is an economic, convenient and credible method compared with the traditional ways. Plants show different damage symptoms to different air pollutants, which can be used to determine the species of air pollutants. Besides, pollutants mass concentration scope can be estimated by the damage extent of plants and the span of polluted time. Based on the domestic and foreign research, this paper discusses the principles, mechanism, advantages and disadvantages of plant-monitoring, and exemplifies plenty of such plants and the minimum mass concentration and pollution time of the plants showing damage symptoms. Finally, this paper introduced the human health effects of air pollutants on immune function of the body, such as decrease of the body's immune function, decline of lung function, respiratory and circulatory system changes, inducing and promoting human allergic diseases, respiratory diseases and other diseases. PMID:26628931

  16. A New Era of Air Quality Monitoring from Space in East Asia: Korea's Geostationary Environmental Monitoring Spectrometer (GEMS) and an Integrated Korea-US Air Quality (KORUS-AQ) Study

    NASA Astrophysics Data System (ADS)

    Hong, J.; Hong, Y.; Song, C. K.; Kim, S. K.; Chang, L. S.; Lim, J.; Ahn, J.; Park, J. H.; Kim, J. Y.; Han, Y. J.; Kim, J.; Park, R.; Lee, G.; Lefer, B. L.; Al-Saadi, J. A.; Crawford, J. H.

    2015-12-01

    Due to remarkable economic growth over the last two decades, East Asia has become a region experiencing some of the poorest air quality in the world. In addition to local sources of pollution, the Korea peninsula is downwind of the largest emission sources in East Asia, complicating the understanding of air quality over Korea. Thus, knowing the factors controlling changes in air pollution across urban-rural and marine-continental interfaces, in addition to the contributions from local emissions and transboundary transport, is important for building effective management strategies and improving air quality in East Asia. GEMS (Geostationary Environmental Monitoring Spectrometer) is a satellite instrument planned for launch in 2019 by the Republic of Korea. The instrument will observe East Asia and the western Pacific region, providing real-time monitoring of air quality (e.g. O3, NO2, SO2, HCHO, AOD, etc.) and enabling better scientific understanding of the transboundary transport of air pollutants. The KORUS-AQ (the Korea and U.S. Air Quality) field campaign will take place in May - June 2016 and will employ an integrated observing strategy including multiplatform observations (i.e. ground stations, aircraft, ships, and satellites) and chemical transport models. This mission aims to not only strengthen our knowledge of atmospheric chemistry but also provide important data sets for validating GEMS retrieval algorithms. In preparation for KORUS-AQ, a pre-campaign has been successfully conducted in Korea during early summer 2015 with observations from multiple ground sites and a small aircraft. A brief summary of pre-field campaign results will be presented. Moving forward, the GEMS mission and KORUS-AQ study will lead to a new era of air quality monitoring in East Asia. GEMS will also make critical contributions to the global air quality perspective working in concert with geostationary missions launched by the U.S. (TEMPO: Tropospheric Emissions: Monitoring of

  17. Electrical Resistivity Monitoring of Voids: Results of Dynamic Modeling Experiments

    NASA Astrophysics Data System (ADS)

    Lane, J. W.; Day-Lewis, F. D.; Singha, K.

    2006-05-01

    Remote, non-invasive detection of voids is a challenging problem for environmental and engineering investigations in karst terrain. Many geophysical methods including gravity, electrical, electromagnetic, magnetic, and seismic have potential to detect voids in the subsurface; lithologic heterogeneity and method- specific sources of noise, however, can mask the geophysical signatures of voids. New developments in automated, autonomous geophysical monitoring technology now allow for void detection using differential geophysics. We propose automated collection of electrical resistivity measurements over time. This dynamic approach exploits changes in subsurface electrical properties related to void growth or water-table fluctuation in order to detect voids that would be difficult or impossible to detect using static imaging approaches. We use a series of synthetic modeling experiments to demonstrate the potential of difference electrical resistivity tomography for finding (1) voids that develop vertically upward under a survey line (e.g., an incipient sinkhole); (2) voids that develop horizontally toward a survey line (e.g., a tunnel); and (3) voids that are influenced by changing hydrologic conditions (e.g., void saturation and draining). Synthetic datasets are simulated with a 3D finite-element model, but the inversion assumes a 2D forward model to mimic conventional practice. The results of the synthetic modeling experiments provide insights useful for planning and implementing field-scale monitoring experiments using electrical methods.

  18. Clinical results from a noninvasive blood glucose monitor

    NASA Astrophysics Data System (ADS)

    Blank, Thomas B.; Ruchti, Timothy L.; Lorenz, Alex D.; Monfre, Stephen L.; Makarewicz, M. R.; Mattu, Mutua; Hazen, Kevin

    2002-05-01

    Non-invasive blood glucose monitoring has long been proposed as a means for advancing the management of diabetes through increased measurement and control. The use of a near-infrared, NIR, spectroscopy based methodology for noninvasive monitoring has been pursued by a number of groups. The accuracy of the NIR measurement technology is limited by challenges related to the instrumentation, the heterogeneity and time-variant nature of skin tissue, and the complexity of the calibration methodology. In this work, we discuss results from a clinical study that targeted the evaluation of individual calibrations for each subject based on a series of controlled calibration visits. While the customization of the calibrations to individuals was intended to reduce model complexity, the extensive requirements for each individual set of calibration data were difficult to achieve and required several days of measurement. Through the careful selection of a small subset of data from all samples collected on the 138 study participants in a previous study, we have developed a methodology for applying a single standard calibration to multiple persons. The standard calibrations have been applied to a plurality of individuals and shown to be persistent over periods greater than 24 weeks.

  19. Feasibility study for the modernization of the air quality monitoring network in Venezuela

    SciTech Connect

    1997-11-01

    The project is part of the Ministry of Environment and Recoverable Resources`s (MARNR) goal of establishing a consolidated and effective monitoring program nationwide, which would allow for evaluations of air quality, identification of pollution sources and provide a basis for future air quality management decisions. The bilingual Spanish/English report consists of: (1) work plan; (2) evaluation of current monitoring stations and recommendations for improvement; (3) field evaluation report for existing MARNR network; (4) institutional analysis, revenue requirements, selection of funding mechanism, and three sets of attachments.

  20. Technical specification for transferring ambient air monitoring data to the Oak Ridge Environmental Information System (OREIS)

    SciTech Connect

    1995-06-01

    In September 1994, a team was formed to develop, document, and implement technical specifications for transmitting ambient air environmental compliance and monitoring data to the Oak Ridge Environmental Information System (OREIS). The approach used to transmit this data is documented in the {open_quotes}Plan for Integrating Environmental Compliance and Monitoring Data into OREIS.{close_quotes} This plan addresses the consolidated data requirements defined by the Federal Facility Agreement (FFA) and the Tennessee Oversight Agreement (TOA) as they pertain to environmental compliance and monitoring data maintained by Energy Systems` Oak Ridge Environmental Management organizations. Ibis document describes. the requirements, responsibilities, criteria, and format for transmitting ambient air compliance and monitoring data to OREIS.

  1. Field assessment of the Village Green Project: an autonomous community air quality monitoring system.

    PubMed

    Jiao, Wan; Hagler, Gayle S W; Williams, Ronald W; Sharpe, Robert N; Weinstock, Lewis; Rice, Joann

    2015-05-19

    Continuous, long-term, and time-resolved measurement of outdoor air pollution has been limited by logistical hurdles and resource constraints. Measuring air pollution in more places is desired to address community concerns regarding local air quality impacts related to proximate sources, to provide data in areas lacking regional air monitoring altogether, or to support environmental awareness and education. This study integrated commercially available technologies to create the Village Green Project (VGP), a durable, solar-powered air monitoring park bench that measures real-time ozone, PM2.5, and meteorological parameters. The data are wirelessly transmitted via cellular modem to a server, where automated quality checks take place before data are provided to the public nearly instantaneously. Over 5500 h of data were successfully collected during the first ten months of pilot testing in Durham, North Carolina, with about 13 days (5.5%) of downtime because of low battery power. Additional data loss (4-14% depending on the measurement) was caused by infrequent wireless communication interruptions and instrument maintenance. The 94.5% operational time via solar power was within 1.5% of engineering calculations using historical solar data for the location. The performance of the VGP was evaluated by comparing the data to nearby air monitoring stations operating federal equivalent methods (FEM), which exhibited good agreement with the nearest benchmark FEMs for hourly ozone (r(2) = 0.79) and PM2.5 (r(2) = 0.76). PMID:25905923

  2. Performance Evaluation of Industrial Hygiene Air Monitoring Sensors

    SciTech Connect

    Maughan, A D.; Glissmeyer, John A.; Birnbaum, Jerome C.

    2004-12-10

    Tests were performed to evaluate the accuracy, precision and response time of certain commercially available handheld toxic gas monitors. The tests were conducted by PNNL in the Chemical Chamber Test Facility for CH2MHill Hanford Company. The instruments were tested with a set of dilute test gases including ammonia, nitrous oxide, and a mixture of organic vapors (acetone, benzene, ethanol, hexane, toluene and xylene). The certified gases were diluted to concentrations that may be encountered in the outdoor environment above the underground tank farms containing radioactive waste at the U.S. Department of Energy's Hanford site, near Richland, Washington. The challenge concentrations are near the lower limits of instrument sensitivity and response time. The performance test simulations were designed to look at how the instruments respond to changes in test gas concentrations that are similar to field conditions.

  3. Lipids and Molecular Tools as Biomarkers in Monitoring Air Sparging Bioremediation Processes

    NASA Astrophysics Data System (ADS)

    Heipieper, Hermann J.; Fischer, Janett

    2010-05-01

    The fluctuation of membrane lipids offers a promising tool as biomarkers for the analysis of microbial population changes as well as for the physiological status of micro-organisms. The investigation of changes in lipid composition is of common use for the assessment of physiological conditions in pure cultures. However, as lipid composition does not show drastic diversity among living organisms the use of lipids as biomarkers in mixed cultures and environmental samples has certain limitations. Therefore, special marker phospholipid fatty acids as well as modern statistical analysis of the results are necessary to receive certain information about the qualitative and quantitative changes of e.g. a soil microflora due to a contamination with organic compounds and its bioremediation. The use of lipids as biomarker in monitoring bioremediation are shown at the Hradčany site, a former Russian air force base in the Czech Republic that operated until 1990. In this time in an area of 32 ha soil and groundwater were contaminated with kerosene and BTEX compounds in an amount of 7,150 tons. This highly contaminated site is treated with the so-called air sparging method to clean-up the contamination by aerobic biodegradation. The results of PLFA analysis demonstrated a community shift to a gram-negative bacterial biomass with time. The results, including a principal component analysis (PCA) of the obtained fatty acid profiles, showed that the air sparging leads to substantial differences in microbial communities depending on the contamination levels and length of treatment, respectively. Obviously, the length of air sparging treatment controlling the BTEX concentration in soils causes temporal changes of bacterial community and adaptations of its respective members. This work was supported by the project BIOTOOL (Contract No. 003998) of the European Commission within its Sixth Framework Programme. Kabelitz N., Machackova J., Imfeld G., Brennerova M., Pieper D.H., Heipieper H

  4. NASA Air Force Cost Model (NAFCOM): Capabilities and Results

    NASA Technical Reports Server (NTRS)

    McAfee, Julie; Culver, George; Naderi, Mahmoud

    2011-01-01

    NAFCOM is a parametric estimating tool for space hardware. Uses cost estimating relationships (CERs) which correlate historical costs to mission characteristics to predict new project costs. It is based on historical NASA and Air Force space projects. It is intended to be used in the very early phases of a development project. NAFCOM can be used at the subsystem or component levels and estimates development and production costs. NAFCOM is applicable to various types of missions (crewed spacecraft, uncrewed spacecraft, and launch vehicles). There are two versions of the model: a government version that is restricted and a contractor releasable version.

  5. Monitoring of a slope affected by shallow landslides: preliminary results

    NASA Astrophysics Data System (ADS)

    Meisina, Claudia; Zizioli, Davide; Bordoni, Massimiliano; Valentino, Roberto; Bittelli, Marco; Chersich, Silvia

    2013-04-01

    pluviometer, a thermo-hygrometer, a barometer, a sonic anemometer and a net radiometer. Six TDR probes (Time Domain Reflectometer) are installed at 0.2, 0.4, 0.6, 1, 1.2, 1.4 meters from ground level to measure the soil volumetric water content. To measure soil matric suction three tensiometers and three heat dissipation sensors are installed at 0.2, 0.6, 1.2 meters from ground level. The data are collected by a CR1000 datalogger (Campbell Sci. Inc.) every 10 minutes. In this work preliminary results obtained from 12 months of monitoring are presented: emphasis is given to the response of the cover materials after dry and wet periods in terms of soil water content and matric potential. These results will be linked to determine the hydro-geotechnical processes that could predispose the triggering of shallow landslides.

  6. Amchitka Island, Alaska, Biological Monitoring Report 2011 Sampling Results

    SciTech Connect

    2013-09-01

    The Long-Term Surveillance and Maintenance (LTS&M) Plan for the U.S. Department of Energy (DOE) Office of Legacy Management (LM) Amchitka Island sites describes how LM plans to conduct its mission to protect human health and the environment at the three nuclear test sites located on Amchitka Island, Alaska. Amchitka Island, near the western end of the Aleutian Islands, is approximately 1,340 miles west-southwest of Anchorage, Alaska. Amchitka is part of the Aleutian Island Unit of the Alaska Maritime National Wildlife Refuge, which is administered by the U.S. Fish and Wildlife Service (USFWS). Since World War II, Amchitka has been used by multiple U.S. government agencies for various military and research activities. From 1943 to 1950, it was used as a forward air base for the U.S. Armed Forces. During the middle 1960s and early 1970s, the U.S. Department of Defense (DOD) and the U.S. Atomic Energy Commission (AEC) used a portion of the island as a site for underground nuclear tests. During the late 1980s and early 1990s, the U.S. Navy constructed and operated a radar station on the island. Three underground nuclear tests were conducted on Amchitka Island. DOD, in conjunction with AEC, conducted the first nuclear test (named Long Shot) in 1965 to provide data that would improve the United States' capability of detecting underground nuclear explosions. The second nuclear test (Milrow) was a weapons-related test conducted by AEC in 1969 as a means to study the feasibility of detonating a much larger device. Cannikin, the third nuclear test on Amchitka, was a weapons-related test detonated on November 6, 1971. With the exception of small concentrations of tritium detected in surface water shortly after the Long Shot test, radioactive fission products from the tests remain in the subsurface at each test location As a continuation of the environmental monitoring that has taken place on Amchitka Island since before 1965, LM in the summer of 2011 collected biological and

  7. Changes to indoor air quality as a result of relocating families from slums to public housing

    NASA Astrophysics Data System (ADS)

    Burgos, Soledad; Ruiz, Pablo; Koifman, Rosalina

    2013-05-01

    One largely unstudied benefit of relocating families from slums to public housing is the potential improvement in indoor air quality (IAQ). We compared families that moved from slums to public housing with those that remained living in slums in Santiago, Chile in terms of fine particulate matter (PM2.5) as main indicator of change. A cross-sectional study of 98 relocated families and 71 still living in slums was carried out, obtaining indoor and outdoor samples by a Personal Environmental Monitor. Home characteristics, including indoor air pollution sources were collected through questionnaires. Multivariate regression models included the intervention (public housing or slum), indoor pollution sources, outdoor PM2.5 and family characteristics as predictors. Indoor PM2.5 concentrations were higher in slums (77.8 μg m-3 [SD = 35.7 μg m-3]) than in public housing (55.7 μg m-3 [SD = 34.6 μg m-3], p < 0.001). Differences between indoor and outdoor PM2.5 were significant only in the slum houses. The multivariate analysis showed that housing intervention significantly decreased indoor PM2.5 (10.4 μg m-3) after adjusting by the other predictors. Outdoor PM2.5 was the main predictor of indoor PM2.5. Other significant factors were water heating fuels and indoor smoking. Having infants 1-23 months was associated with a lowering of indoor PM2.5. Our results suggest that a public housing program that moves families from slums to public housing improves indoor air quality directly and also indirectly through air pollution sources.

  8. Multitemporal Monitoring of the Air Quality in Bulgaria by Satellite Based Instruments

    NASA Astrophysics Data System (ADS)

    Nikolov, Hristo; Borisova, Denitsa

    2015-04-01

    Nowadays the effect on climate changes on the population and environment caused by air pollutants at local and regional scale by pollution concentrations higher than allowed is undisputable. Main sources of gas releases are due to anthropogenic emissions caused by the economic and domestic activities of the inhabitants, and to less extent having natural origin. Complementary to pollutants emissions the local weather parameters such as temperature, precipitation, wind speed, clouds, atmospheric water vapor, and wind direction control the chemical reactions in the atmosphere. It should be noted that intrinsic property of the air pollution is its "transboundary-ness" and this is why the air quality (AQ) is not affecting the population of one single country only. This why the exchange of information concerning AQ at EU level is subject to well established legislation and one of EU flagship initiatives for standardization in data exchange, namely INSPIRE, has to cope with. It should be noted that although good reporting mechanism with regard to AQ is already established between EU member states national networks suffer from a serious disadvantage - they don't form a regular grid which is a prerequisite for verification of pollutants transport modeling. Alternative sources of information for AQ are the satellite observations (i.e. OMI, TOMS instruments) providing daily data for ones of the major contributors to air pollution such as O3, NOX and SO2. Those data form regular grids and are processed the same day of the acquisition so they could be used in verification of the outputs generated by numerical modeling of the AQ and pollution transfer. In this research we present results on multitemporal monitoring of several regional "hot spots" responsible for greenhouse gases emissions in Bulgaria with emphasis on satellite-based instruments. Other output from this study is a method for validation of the AQ forecasts and also providing feedback to the service that prepares

  9. Method and apparatus for monitoring oxygen partial pressure in air masks

    NASA Technical Reports Server (NTRS)

    Kelly, Mark E. (Inventor); Pettit, Donald R. (Inventor)

    2006-01-01

    Method and apparatus are disclosed for monitoring an oxygen partial pressure in an air mask and providing a tactile warning to the user. The oxygen partial pressure in the air mask is detected using an electrochemical sensor, the output signal from which is provided to a comparator. The comparator compares the output signal with a preset reference value or range of values representing acceptable oxygen partial pressures. If the output signal is different than the reference value or outside the range of values, the air mask is vibrated by a vibrating motor to alert the user to a potentially hypoxic condition.

  10. Short-Term Monitoring Results for Advanced New Construction Test House -- Roseville, California

    SciTech Connect

    Stecher, D.; Brozyna, K.; Imm, C.

    2013-09-01

    A builder (K. Hovnanian Homes), design consultant, and trades collaborated to identify a systems integrated measures package for a 2,253-ft2 slab-on-grade ranch house to achieve a modeled energy savings of 60% with respect to the Building America House Simulation Protocols (Hendron, R. and Engebrecht, C. 'Building America House Simulation Protocols.' Golden, CO: National Renewable EnergyLaboratory, 2010) while minimizing construction costs and without requiring changes to the drawing that would impact local code or zoning approval. The key building improvements were applying R-10 insulation to the slab edge, increasing exterior wall cavity insulation from R-13 to R-15, and increasing attic insulation from R-30 to R-38. Also, the air handling unit was relocated from the attic toconditioned space, and ductwork was relocated along the attic floor with an insulated bulkhead built above it. Short-term testing results showed that duct air leakage was low due to short duct runs and the placement of ductwork in conditioned space. However, during commissioning, the lack of access for servicing the ductwork and dampers in the bulkhead area prevented retroactive balancing ofindividual branches, resulting in significant differences between specified and measured airflow values for some duct runs. Thermal imaging results performed on the house when operating in both heating and cooling modes validated historic stratification issues of ceiling supply registers with high supply air temperatures. Long-term monitoring results will be detailed in a future report.

  11. Short-Term Monitoring Results for Advanced New Construction Test House - Roseville, California

    SciTech Connect

    Stecher, D.; Brozyna, K.; Imm, C.

    2013-09-01

    A builder (K. Hovnanian® Homes®), design consultant, and trades collaborated to identify a systems integrated measures package for a 2,253-ft² slab-on-grade ranch house to achieve a modeled energy savings of 60% with respect to the Building America House Simulation Protocols, while minimizing construction costs and without requiring changes to the drawing that would impact local code or zoning approval. The key building improvements were applying R-10 insulation to the slab edge, increasing exterior wall cavity insulation from R-13 to R-15, and increasing attic insulation from R-30 to R-38. Also, the air handling unit was relocated from the attic to conditioned space, and ductwork was relocated along the attic floor with an insulated bulkhead built above it. Short-term testing results showed that duct air leakage was low due to short duct runs and the placement of ductwork in conditioned space. However, during commissioning, the lack of access for servicing the ductwork and dampers in the bulkhead area prevented retroactive balancing of individual branches, resulting in significant differences between specified and measured airflow values for some duct runs. Thermal imaging results performed on the house when operating in both heating and cooling modes validated historic stratification issues of ceiling supply registers with high supply air temperatures. Long-term monitoring results will be detailed in a future report.

  12. Monitoring intraurban spatial patterns of multiple combustion air pollutants in New York City: design and implementation.

    PubMed

    Matte, Thomas D; Ross, Zev; Kheirbek, Iyad; Eisl, Holger; Johnson, Sarah; Gorczynski, John E; Kass, Daniel; Markowitz, Steven; Pezeshki, Grant; Clougherty, Jane E

    2013-01-01

    Routine air monitoring provides data to assess urban scale temporal variation in pollution concentrations in relation to regulatory standards, but is not well suited to characterizing intraurban spatial variation in pollutant concentrations from local sources. To address these limitations and inform local control strategies, New York City developed a program to track spatial patterns of multiple air pollutants in each season of the year. Monitor locations include 150 distributed street-level sites chosen to represent a range of traffic, land-use and other characteristics. Integrated samples are collected at each distributed site for one 2-week session each season and in every 2-week period at five reference locations to track city-wide temporal variation. Pollutants sampled include PM(2.5) and constituents, nitrogen oxides, black carbon, ozone (summer only) and sulfur dioxide (winter only). During the first full year of monitoring more than 95% of designed samples were completed. Agreement between colocated samples was good (absolute mean % difference 3.2-8.9%). Street-level pollutant concentrations spanned a much greater range than did concentrations at regulatory monitors, especially for oxides of nitrogen and sulfur dioxide. Monitoring to characterize intraurban spatial gradients in ambient pollution usefully complements regulatory monitoring data to inform local air quality management. PMID:23321861

  13. The research and development of an air pollutant monitoring system based on DOAS technology

    NASA Astrophysics Data System (ADS)

    Li, Hua; Liu, Han-peng; Zheng, Ming; Meng, Xiao-feng

    2009-07-01

    This article illuminates a kind of sensor used in measuring the concentrations of the main pollutants in flue gas streams (Dust, SO2 and NOx) based on the UV-DOAS technology in air pollutant monitoring. Using the high-level embedded microprocessors and complex programmable logic device, the sensor completes system measurement, management and signal communication, and spectrum inversion and data saving are processed by PC at the same time. Differential optical absorption spectroscopy (DOAS) technology is used in the flue gas pollutant factor analysis through the sensor construction. The absorption spectra of SO2, NOx and smoke dust are inverted to reduce the interference of other factors in flue gas streams. At the same time, the effect of light source fluctuation and optical transmission ratio is considered and removed in the measurement system. The result shows that the monitoring accuracy of concentration of sulfur dioxide and smoke dust achieves +/-2%, the concentration of nitrogen oxides accuracy achieves +/-3%, which meets the requirements of the national standard. The sensor can be directly installed in a flue. As a result, process of measuring is simplified and measurement accuracy is improved. Further more, this method increases the stability of the system and reduces the maintenance costs. Measurement data is transferred through data bus between the sensor and upper PC to realize remote control and real-time measurement. Considering the severe conditions in measuring the main pollutants in flue gas streams, applications of anti-interference and anti-corrosion etc. are taken in the system design.

  14. The statistical evaluation and comparison of ADMS-Urban model for the prediction of nitrogen dioxide with air quality monitoring network.

    PubMed

    Dėdelė, Audrius; Miškinytė, Auksė

    2015-09-01

    In many countries, road traffic is one of the main sources of air pollution associated with adverse effects on human health and environment. Nitrogen dioxide (NO2) is considered to be a measure of traffic-related air pollution, with concentrations tending to be higher near highways, along busy roads, and in the city centers, and the exceedances are mainly observed at measurement stations located close to traffic. In order to assess the air quality in the city and the air pollution impact on public health, air quality models are used. However, firstly, before the model can be used for these purposes, it is important to evaluate the accuracy of the dispersion modelling as one of the most widely used method. The monitoring and dispersion modelling are two components of air quality monitoring system (AQMS), in which statistical comparison was made in this research. The evaluation of the Atmospheric Dispersion Modelling System (ADMS-Urban) was made by comparing monthly modelled NO2 concentrations with the data of continuous air quality monitoring stations in Kaunas city. The statistical measures of model performance were calculated for annual and monthly concentrations of NO2 for each monitoring station site. The spatial analysis was made using geographic information systems (GIS). The calculation of statistical parameters indicated a good ADMS-Urban model performance for the prediction of NO2. The results of this study showed that the agreement of modelled values and observations was better for traffic monitoring stations compared to the background and residential stations. PMID:26293894

  15. Biological monitoring and allergic sensitization in traffic police officers exposed to urban air pollution.

    PubMed

    Vimercati, L; Carrus, A; Bisceglia, L; Tatò, I; Bellotta, M R; Russo, A; Martina, G; Daprile, C; Di Leo, E; Nettis, E; Assennato, G

    2006-01-01

    Urban air pollution is associated with an increased incidence of allergic respiratory diseases. The aim of this study is to assess the occupational exposure to urban pollution through biological monitoring of PAHs and CO airborne levels in 122 traffic wardens in Bari, Italy and to investigate sensitization to inhaled allergens in a subgroup of workers. After filling in a questionnaire on lifestyle habits and occupational history, a medical examination, spirometry were carried out and blood samples were taken; the measurement of exhaled CO and urinary 1-hydroxypyrene (1-HOP) was performed and data on the air quality of Bari Municipality were obtained. Specific IgE dosage and skin prick tests were done on 18 workers giving altered values of spirometry or anamnestic allergic symptoms. Urinary 1-HOP showed median levels of 0.1 microMol/Mol(creat) (range 0.02-6.68) and was not influenced by smoking habits, work tasks, area of the city and environmental levels of PM10. Exhaled CO, with median value of 1 ppm (range 0-27), was significantly higher in smokers than in non-smokers, while no other variable seemed to play a role in modifying the levels. Specific IgE production versus inhalant allergens was found in 6 cases. Positive skin prick test results were observed in 11 cases. Allergic rhinitis was diagnosed in 6 cases. At least one of the allergometric tests performed was positive in 61 percent of the subjects. In conclusion, our results suggest the importance of introducing allergic status evaluation in this class of workers, exposed to several urban air pollutants. PMID:17291408

  16. Acrylamide monitoring in Switzerland, 2007-2009: results and conclusions.

    PubMed

    Biedermann, M; Grundbock, F; Fiselier, K; Biedermann, S; Burgi, C; Grob, K

    2010-10-01

    Parallel to the European Union acrylamide monitoring for the years 2007-2009, Switzerland performed its own monitoring, covering the whole range of products that significantly contain acrylamide (almost 300 samples per year), but focusing on those products that may result in high exposure. As reducing sugars are critical for potato products, these were included. No significant change, particularly improvement, was noticed, especially regarding those products for which substantial potential for improvement is known. 'Western-style' French fries continued to contain some four times more reducing sugars than 'traditional' fries, with correspondingly higher acrylamide in the finished product. The supply of raw potatoes low in reducing sugars by retail shops needs improvement, but there seemed to be insufficient willingness on a voluntary basis. A foreign producer was successful in penetrating the Swiss market with special potato chips containing up to 7000 microg kg(-1) acrylamide and only harsh measures could stop this. Three of about 61 products in the group of bakery ware showed a marked improvement. But there was also a store brand cracker that competed with a leading brand which contained 15 times more acrylamide (845 microg kg(-1)). Cereals contained 1080 microg kg(-1) acrylamide and even a warning did not prompt the producer to sell substantially better products one year later. It seems that only measures by the authorities will achieve improvements. The following seem promising: a limit for reducing sugars in prefabricates for French fries; the improved supply of raw potatoes low in sugars for roasting and frying; a legal limit for acrylamide content in potato chips; a general provision that products must not contain substantially more acrylamide than achievable by good manufacturing practice; and fryers with a temperature profile from an initial high to a lower final value. PMID:20730646

  17. Temperature-modulated graphene oxide resistive humidity sensor for indoor air quality monitoring

    NASA Astrophysics Data System (ADS)

    de Luca, A.; Santra, S.; Ghosh, R.; Ali, S. Z.; Gardner, J. W.; Guha, P. K.; Udrea, F.

    2016-02-01

    In this paper we present a temperature-modulated graphene oxide (GO) resistive humidity sensor that employs complementary-metal-oxide-semiconductor (CMOS) micro-electro-mechanical-system (MEMS) micro-hotplate technology for the monitoring and control of indoor air quality (IAQ). GO powder is obtained by chemical exfoliation, dispersed in water and deposited via ink-jet printing onto a low power micro-hotplate. Atomic force microscopy (AFM) and transmission electron microscopy (TEM) show the typical layered and wrinkled morphology of the GO. Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and Fourier transform infra-red (FTIR) spectroscopy indicate that the GO flakes possess a significant number of oxygen containing functional groups (epoxy, carbonyl, hydroxyl) extremely attractive for humidity detection. Electro-thermal characterisation of the micro-hotplates shows a thermal efficiency of 0.11 mW per °C, resulting in a sensor DC power consumption of only 2.75 mW at 50 °C. When operated in an isothermal mode, the sensor response is detrimentally affected by significant drift, hysteretic behaviour, slow response/recovery times and hence poor RH level discrimination. Conversely, a temperature modulation technique coupled with a differential readout methodology results in a significant reduction of the sensor drift, improved linear response with a sensitivity of 0.14 mV per %, resolution below 5%, and a maximum hysteresis of +/-5% response and recovery times equal to 189 +/- 49 s and 89 +/- 5 s, respectively. These performance parameters satisfy current IAQ monitoring requirements. We have thus demonstrated the effectiveness of integrating GO on a micro-hotplate CMOS-compatible platform enabling temperature modulation schemes to be easily applied in order to achieve compact, low power, low cost humidity IAQ monitoring.In this paper we present a temperature-modulated graphene oxide (GO) resistive humidity sensor that employs complementary

  18. Biomagnetic monitoring of traffic air pollution in Toulouse (France) using magnetic properties of tree bark

    NASA Astrophysics Data System (ADS)

    Macouin, M.; Rousse, S.; Brulfert, F.; Durand, M.; Feida, N.; Durand, X.; Becaud, L.

    2012-12-01

    Magnetic properties of various atmospheric samples represent rapid and economic proxies in the pollution studies based on their strong linkage to heavy metals and/or volatile organic carbons. We report a biomonitoring study of air pollution in Toulouse (France) based on the magnetic properties of tree (Platanus acerifolia) bark. More than 250 bark samples were taken at different areas of the city. Both mass specific magnetic susceptibility and isothermal remanent magnetization (IRM) at 1 Tesla display relationships with the traffic intensity and the distance to the road. Urban roadside tree bark exhibit significant enhancement in their values of susceptibility and IRM reflecting surface accumulation of particulate pollutants, compared with tree growing at lower traffic sites. To estimate the deposition time and accumulation on bark, we have deposited 20 "clean" bark samples from low traffic area with susceptibility inferior to 10 SI, near the city ring road. Samples were then collected during three months. Samples were imparted a 1 Tesla IRM both prior the deposition and after the resampling. Results are useful to apprehend the process of magnetic particulates accumulation and to evaluate the potential of tree bark for the air quality monitoring.

  19. An isotopic dilution approach for 1,3-butadiene tailpipe emissions and ambient air monitoring.

    PubMed

    Riservato, Manuela; Rolla, Antonio; Davoli, Enrico

    2004-01-01

    An isotopic dilution approach for 1,3-butadiene analysis in gaseous samples is presented. The methodology is based on active sampling on sorbent tubes and subsequent analysis by thermal desorption into a gas chromatography/mass spectrometry system. By adding a perdeuterated internal standard onto the sorbent tubes before sampling, and using mass spectrometric detection, the methodology gives high accuracy for this unstable analyte. The method has been used to monitor 1,3-butadiene ambient air concentrations in a residential area in proximity to a heavy-traffic roadway over a one-week period, for comparison with other traffic-related pollutants analysed by standard procedures. It has also been used to determine tailpipe emissions of two vehicles by standard emission testing procedures in a dynamometer. These vehicles were chosen as examples of low- and high-end emission rate vehicles, i.e., an old no-catalytic converter Otto engine and a new direct-injection diesel engine with catalytic converter. Exhaust gas emissions were 0.052 and 35.85 mg/km, reflecting differences in fuel, engine design, age, and presence (or not) of a catalytic abatement system. The ambient air results showed a weekly average concentration of 1,3-butadiene of 0.53 microg/m(3). PMID:14966846

  20. Mutual Information in the Air Quality Monitoring Network of Bogota - Colombia

    NASA Astrophysics Data System (ADS)

    Guerrero, O. J.; Jimenez-Pizarro, R.

    2012-12-01

    Large urban areas in the developing world are characterized by high population density and a great variety of activities responsible for emission of trace gases and particulate matter to the atmosphere. In general, these pollutants are unevenly distributed over cities according to the location of sources, meteorological variability and geographical features. Urban air quality monitoring networks are primarily designed to protect public health. The meteorological and air quality information gathered by monitoring networks can also be used to understand pollutant sources, sinks, and dispersion processes and to assess the spatial coverage of the network itself. Several statistical and numerical simulation methods allow for the identification of the domain that influences observations at each of the stations, i.e, the zone and respective population truly covered by the measurements. We focused on Bogota, Colombia, a dense city of approximately 9.6 million inhabitants in its metropolitan area. We analyzed the measurements obtained by the Bogotá Air Quality Monitoring Network (RMCAB) between the years 1997 and 2010 for TSP, PM10, CO, NOx and O3. RMCAB is composed of 16 stations, 13 of which are fixed and measure both atmospheric pollutants and meteorological variables. The method applied consisted of a statistical approach based on the mutual information that each station shares with its complement, i.e. the set formed by the other stations of the network. In order to improve our understanding and interpretation of the results, virtual data created for selected receptors along a simple modeled Gaussian plume spreading throughout Bogotá was analyzed. In this Gaussian model, we accounted for the prevailing weather conditions of this city and for different emission features under which the pollutants are emitted. The spatial location of the monitoring stations and emission sources, and the quality of the measurements are relevant factors when assessing the mutual

  1. Temperature-modulated graphene oxide resistive humidity sensor for indoor air quality monitoring.

    PubMed

    De Luca, A; Santra, S; Ghosh, R; Ali, S Z; Gardner, J W; Guha, P K; Udrea, F

    2016-02-28

    In this paper we present a temperature-modulated graphene oxide (GO) resistive humidity sensor that employs complementary-metal-oxide-semiconductor (CMOS) micro-electro-mechanical-system (MEMS) micro-hotplate technology for the monitoring and control of indoor air quality (IAQ). GO powder is obtained by chemical exfoliation, dispersed in water and deposited via ink-jet printing onto a low power micro-hotplate. Atomic force microscopy (AFM) and transmission electron microscopy (TEM) show the typical layered and wrinkled morphology of the GO. Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and Fourier transform infra-red (FTIR) spectroscopy indicate that the GO flakes possess a significant number of oxygen containing functional groups (epoxy, carbonyl, hydroxyl) extremely attractive for humidity detection. Electro-thermal characterisation of the micro-hotplates shows a thermal efficiency of 0.11 mW per °C, resulting in a sensor DC power consumption of only 2.75 mW at 50 °C. When operated in an isothermal mode, the sensor response is detrimentally affected by significant drift, hysteretic behaviour, slow response/recovery times and hence poor RH level discrimination. Conversely, a temperature modulation technique coupled with a differential readout methodology results in a significant reduction of the sensor drift, improved linear response with a sensitivity of 0.14 mV per %, resolution below 5%, and a maximum hysteresis of ±5%; response and recovery times equal to 189 ± 49 s and 89 ± 5 s, respectively. These performance parameters satisfy current IAQ monitoring requirements. We have thus demonstrated the effectiveness of integrating GO on a micro-hotplate CMOS-compatible platform enabling temperature modulation schemes to be easily applied in order to achieve compact, low power, low cost humidity IAQ monitoring. PMID:26842731

  2. Accumulation of organic air constituents by plant surfaces. Spruce needles for monitoring airborne chlorinated hydrocarbons

    SciTech Connect

    Reischl, A.; Thoma, H.; Reissinger, M.; Hutzinger, O. )

    1988-10-01

    The needles of the spruce (Picea abies) were used to monitor ambient air for organic trace substances. Analyses of spruce needles in an industrialized area demonstrated that the concentrations of these substances were much higher than those in a nonindustrialized area.

  3. U.S. EPA's National Dioxin Air Monitoring Network: Analytical Issues

    EPA Science Inventory

    The U.S. EPA has established a National Dioxin Air Monitoring Network (NDAMN) to determine the temporal and geographical variability of atmospheric chlorinated dibenzo-p-dioxins (CDDs), furans (CDFs), and coplanar polychlorinated biphenyls (PCBs) at rural and non-impacted locatio...

  4. Episodic Impacts from California Wildfires Identified in Las Vegas Near-Road Air Quality Monitoring

    EPA Science Inventory

    Air pollutant concentrations near major highways are usually attributed to a combination of nearby traffic emissions and regional background, and generally presumed to be additive in nature. During a recent year-long near-road monitoring study conducted in Las Vegas, NV, a substa...

  5. HUMAN EXPOSURE AIR MONITORING: EXAMPLES FROM THE NATIONAL EXPOSURE RESEARCH LABORATORY

    EPA Science Inventory

    The US-EPA and North Carolina Central University (NCCU) have a cross-pollination agenda to help share research opportunities between the two institutions. This presentation provides NCCU with an understanding of current air monitoring research the US EPA is involved in and some o...

  6. Test/QA Plan for Verification of Semi-Continuous Ambient Air Monitoring Systems - Second Round

    EPA Science Inventory

    Test/QA Plan for Verification of Semi-Continuous Ambient Air Monitoring Systems - Second Round. Changes reflect performance of second round of testing at new location and with various changes to personnel. Additional changes reflect general improvements to the Version 1 test/QA...

  7. Integration of Air Quality Modeling and Monitoring Data for Enhanced Health Exposure Assessment

    EPA Science Inventory

    In order to assess the environmental impact of air pollution on human health it is necessary to establish the concentrations to which the population is exposed. The obvious way to determine this is to measure these quantities. However, given the limited number of monitoring stati...

  8. Advanced-technology laser-aided air pollution monitoring in Athens: the Greek differential absorption lidar

    NASA Astrophysics Data System (ADS)

    Kambezidis, H. D.; Efthimiopoulos, Tom; Ehret, Gerhard; Kotsopoulos, Stavros A.; Zevgolis, Dimitrios; Economou, G.; Kosmidis, Constantine E.; Adamopoulos, A. D.; Doukas, A.; Gogou, P.-M.; Karaboulas, D.; Katsenos, J.

    1998-07-01

    This paper describes the needs for establishing a mobile laser laboratory (LIDAR) for air pollution monitoring in the Athens area. It also gives the specifications of the laser unit of the LIDAR system and the various studies to be performed in Athens area.

  9. RECOMMENDED METHODS FOR AMBIENT AIR MONITORING OF NO, NO2, NOY, AND INDIVIDUAL NOZ SPECIES

    EPA Science Inventory

    The most appropriate monitoring methods for reactive nitrogen oxides are identified subject to the requirements for diagnostic testing of air quality simulation models. Measurements must be made over 1 h or less and with an uncertainty of

  10. 75 FR 9894 - Office of Research and Development; Ambient Air Monitoring Reference and Equivalent Methods...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-04

    .... This designation is made under the provisions of 40 CFR part 53, as amended on November 12, 2008 (73 FR... AGENCY Office of Research and Development; Ambient Air Monitoring Reference and Equivalent Methods: Designation of One New Equivalent Method AGENCY: Environmental Protection Agency. ACTION: Notice of...

  11. 75 FR 22126 - Office of Research and Development; Ambient Air Monitoring Reference and Equivalent Methods...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-27

    ... November 12, 2008 (73 FR 67057-67059). The new equivalent method for O 3 is an automated method that... AGENCY Office of Research and Development; Ambient Air Monitoring Reference and Equivalent Methods: Designation of One New Equivalent Method AGENCY: Environmental Protection Agency. ACTION: Notice of...

  12. 75 FR 45627 - Office of Research and Development; Ambient Air Monitoring Reference and Equivalent Methods...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-03

    ... of 40 CFR part 53, as amended on November 12, 2008 (73 FR 67057-67059). The new equivalent method for... AGENCY Office of Research and Development; Ambient Air Monitoring Reference and Equivalent Methods: Designation of One New Equivalent Method AGENCY: Environmental Protection Agency. ACTION: Notice of...

  13. 77 FR 55832 - Ambient Air Monitoring Reference and Equivalent Methods: Designation of a New Equivalent Method

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-11

    ... made under the provisions of 40 CFR part 53, as ] amended on August 31, 2011 (76 FR 54326-54341). The... AGENCY Ambient Air Monitoring Reference and Equivalent Methods: Designation of a New Equivalent Method AGENCY: Environmental Protection Agency. ACTION: Notice of the designation of a new equivalent method...

  14. 77 FR 60985 - Ambient Air Monitoring Reference and Equivalent Methods: Designation of Three New Equivalent Methods

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-05

    ... 53, as amended on August 31, 2011 (76 FR 54326-54341). The new equivalent methods are automated... AGENCY Ambient Air Monitoring Reference and Equivalent Methods: Designation of Three New Equivalent Methods AGENCY: Environmental Protection Agency. ACTION: Notice of the designation of three new...

  15. 75 FR 51039 - Office of Research and Development; Ambient Air Monitoring Reference and Equivalent Methods...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-18

    ... provisions of 40 CFR Part 53, as amended on November 12, 2008 (73 FR 67057-67059). The new PM 10 equivalent... AGENCY Office of Research and Development; Ambient Air Monitoring Reference and Equivalent Methods: Designation of Two New Equivalent Methods AGENCY: Environmental Protection Agency. ACTION: Notice of...

  16. 76 FR 62402 - Office of Research and Development; Ambient Air Monitoring Reference and Equivalent Methods...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-07

    ... provisions of 40 CFR part 53, as amended on June 22, 2010 (75 FR 35597). The new O 3 equivalent method is an... AGENCY Office of Research and Development; Ambient Air Monitoring Reference and Equivalent Methods; Designation of One New Equivalent Method AGENCY: Environmental Protection Agency. ACTION: Notice of...

  17. Calibrating Personal Air Monitoring. Module 7. Vocational Education Training in Environmental Health Sciences.

    ERIC Educational Resources Information Center

    Consumer Dynamics Inc., Rockville, MD.

    This module, one of 25 on vocational education training for careers in environmental health occupations, contains self-instructional materials on calibrating personal air monitoring devices. Following guidelines for students and instructors and an introduction that explains what the student will learn are three lessons: (1) naming each part of the…

  18. TUNGSTIC ACID TECHNIQUE FOR MONITORING NITRIC ACID AND AMMONIA IN AMBIENT AIR

    EPA Science Inventory

    A new measurement procedure has been applied in field studies for monitoring ambient concentrations of HNO3 and NH3. Preconcentration of these gases as well as separation from their particulate forms is achieved by pulling the sampled air through a diffusion tube coated with the ...

  19. NHEXAS PHASE I MARYLAND STUDY--PESTICIDES IN AIR ANALYTICAL RESULTS

    EPA Science Inventory

    The Pesticides in Air data set contains analytical results for measurements of up to 9 pesticides in 127 air samples over 51 households. Samples were taken by pumping standardized air volumes through URG impactors with a 10 um cutpoint and polyurethane foam (PUF) filters at indo...

  20. NHEXAS PHASE I MARYLAND STUDY--PAHS IN AIR ANALYTICAL RESULTS

    EPA Science Inventory

    The PAHs in Air data set contains analytical results for measurements of up to 11 PAHs in 127 air samples over 51 households. Twenty-four-hour samples were taken over a one-week period using a continuous pump and solenoid apparatus pumping a standardized air volume through an UR...

  1. NHEXAS PHASE I ARIZONA STUDY--METALS IN AIR ANALYTICAL RESULTS

    EPA Science Inventory

    The Metals in Air data set contains analytical results for measurements of up to 11 metals in 369 air samples over 175 households. Samples were taken by pumping standardized air volumes through filters at indoor and outdoor sites around each household being sampled. The primary...

  2. U.S.-MEXICO BORDER PROGRAM ARIZONA BORDER STUDY--METALS IN AIR ANALYTICAL RESULTS

    EPA Science Inventory

    The Metals in Air data set contains analytical results for measurements of up to 11 metals in 344 air samples over 86 households. Samples were taken by pumping standardized air volumes through filters at indoor and outdoor sites around each household being sampled. The primary ...

  3. U.S.-MEXICO BORDER PROGRAM ARIZONA BORDER STUDY--PARTICULATE MATTER IN AIR ANALYTICAL RESULTS

    EPA Science Inventory

    The Particulate Matter in Air data set contains analytical results for measurements of 2 particle sizes in 344 air samples over 86 households. Samples were taken by pumping standardized air volumes through filters using impactors with a 10-um outpoint or with a 2.5-um outpoint. ...

  4. U.S.-MEXICO BORDER PROGRAM ARIZONA BORDER STUDY--PAHS IN AIR ANALYTICAL RESULTS

    EPA Science Inventory

    The PAHs in Air data set contains the analytical results for measurements of up to 22 polynuclear aromatic hydrocarbons (PAHs) in air samples taken indoors and outdoors. The information is for 172 samples for 86 households. Active samples were taken by pumping standardized air ...

  5. NHEXAS PHASE I MARYLAND STUDY--METALS IN AIR ANALYTICAL RESULTS

    EPA Science Inventory

    The Metals in Air data set contains analytical results for measurements of up to 4 metals in 458 air samples over 79 households. Twenty-four-hour samples were taken over a one-week period using a continuous pump and solenoid apparatus by pumping a standardized air volume through...

  6. NHEXAS PHASE I ARIZONA STUDY--METALS-XRF IN AIR ANALYTICAL RESULTS

    EPA Science Inventory

    The Metals-XRF in Air data set contains X-ray fluorescence (XRF) analytical results for measurements of up to 27 metals in 432 air samples over 236 households. Samples were taken by pumping standardized air volumes through filters at indoor and outdoor sites around each househol...

  7. U.S.-MEXICO BORDER PROGRAM ARIZONA BORDER STUDY--METALS/XRF IN AIR ANALYTICAL RESULTS

    EPA Science Inventory

    The Metals-XRF in Air data set contains X-ray fluorescence (XRF) analytical results for measurements of up to 27 metals in 344 air samples over 86 households. Samples were taken by pumping standardized air volumes through filters at indoor and outdoor sites around each household...

  8. Laboratory validation and field verification of a new passive colorimetric air monitoring badge for sampling hydrogen sulfide in air.

    PubMed

    Kring, E V; Damrell, D J; Henry, T J; DeMoor, H M; Basilio, A N; Simon, C E

    1984-01-01

    The Pro-Tek passive colorimetric air monitoring badge for personal or area sampling of hydrogen sulfide is described. The badge has been validated over the range of 1.8 to 164 ppm-hours (0.23-21 ppm on an 8-hour TWA basis). It has an overall accuracy throughout this range of +/- 15.9% and meets the NIOSH accuracy criteria for an analytical and sampling method. The colorimetric analytical method used is based on the Texas Air Control Board's Molybdenum Blue method. Color-activated exposed badge solutions are read out on a standard laboratory spectrophotometer using 1 centimeter (10 mm) cells. Variations in exposure temperature (between 10 degrees and 40 degrees C), relative humidity, and face velocity (between 2 and 250 ft/min) do not affect badge performance. Unexposed badges are stable for more than 12 months refrigerated and for two months at room temperature. PMID:6702591

  9. Quantification Method for Electrolytic Sensors in Long-Term Monitoring of Ambient Air Quality.

    PubMed

    Masson, Nicholas; Piedrahita, Ricardo; Hannigan, Michael

    2015-01-01

    Traditional air quality monitoring relies on point measurements from a small number of high-end devices. The recent growth in low-cost air sensing technology stands to revolutionize the way in which air quality data are collected and utilized. While several technologies have emerged in the field of low-cost monitoring, all suffer from similar challenges in data quality. One technology that shows particular promise is that of electrolytic (also known as amperometric) sensors. These sensors produce an electric current in response to target pollutants. This work addresses the development of practical models for understanding and quantifying the signal response of electrolytic sensors. Such models compensate for confounding effects on the sensor response, such as ambient temperature and humidity, and address other issues that affect the usability of low-cost sensors, such as sensor drift and inter-sensor variability. PMID:26516860

  10. Monitoring of binder removal from injection molded ceramics using air-coupled ultrasound at high temperature.

    PubMed

    Wright, W D; Hutchins, D A

    1999-01-01

    A pair of capacitance-type air-coupled ultrasonic transducers have been constructed that were capable of operating in air at temperatures of 500 to 600 degrees C. These devices were then used to monitor the pyrolytic removal of organic binder from injection molded silicon nitride ceramic components using air-coupled ultrasound inside a furnace at elevated temperatures. Through-thickness waveforms were obtained in the ceramic and compared with simultaneous measurements of the mass of the sample. Both the ultrasonic velocity and signal amplitudes could be used to monitor the change in mass of the injection molded ceramic, and other phenomena (such as softening and redistribution of the binder) were observed. PMID:18238465

  11. Quantification Method for Electrolytic Sensors in Long-Term Monitoring of Ambient Air Quality

    PubMed Central

    Masson, Nicholas; Piedrahita, Ricardo; Hannigan, Michael

    2015-01-01

    Traditional air quality monitoring relies on point measurements from a small number of high-end devices. The recent growth in low-cost air sensing technology stands to revolutionize the way in which air quality data are collected and utilized. While several technologies have emerged in the field of low-cost monitoring, all suffer from similar challenges in data quality. One technology that shows particular promise is that of electrolytic (also known as amperometric) sensors. These sensors produce an electric current in response to target pollutants. This work addresses the development of practical models for understanding and quantifying the signal response of electrolytic sensors. Such models compensate for confounding effects on the sensor response, such as ambient temperature and humidity, and address other issues that affect the usability of low-cost sensors, such as sensor drift and inter-sensor variability. PMID:26516860

  12. Initial Results in Global Flood Monitoring Using GPM Data

    NASA Astrophysics Data System (ADS)

    Wu, H.; Adler, R. F.

    2015-12-01

    The Global Flood Monitoring System (GFMS) (http://flood.umd.edu) has been developed and used to provide real-time flood detection and streamflow estimates over the last few years with significant success shown by validation against global flood event data sets and observed streamflow variations. It has become a tool for various national and international organizations to appraise flood conditions in various areas, including where rainfall and hydrology information is limited. The GFMS has been using the TRMM Multi-satellite Precipitation Analysis (TMPA) as its main rainfall input. Now, with the advent of NASA's Global Precipitation Measurement (GPM) mission there is an opportunity to significantly improve global flood monitoring and forecasting. GPM's Integrated Multi-satellitE Retrievals for GPM (IMERG) multi-satellite product is designed to take advantage of various technical advances in the field and combine that with an efficient processing system producing "early" (6 hrs) and "late" (16 hrs) products for operational use. The products are also more uniform in results than TMPA among the various satellites going into the analysis and available at finer time and space resolutions. On the road to replacing TMPA with the IMERG in the operational version of the GFMS parallel systems were run for periods to understand the impact of the new type of data on the streamflow and flood estimates. Results of this comparison are the basis for this presentation. It is expected that an improvement will be noted both in the accuracy of the precipitation estimates and a smoother transition in and out of heavy rain events, helping to reduce "shock" in the hydrology model. The finer spatial resolution should also help in this regard. The GFMS will be initially run at its primary resolution of 1/8th degree latitude/longitude with both data sets to isolate the impact of the rain information change. Other aspects will also be examined, including higher latitude events, where GPM

  13. In situ monitoring of urban air in Córdoba, Argentina using the Tradescantia-micronucleus (Trad-MCN) bioassay

    NASA Astrophysics Data System (ADS)

    Carreras, H. A.; Pignata, M. L.; Saldiva, P. H. N.

    During the last decades, a significant deterioration of ambient air quality has been observed in Argentina. However, the availability of air pollution monitoring stations is still limited to only few cities. In this study, we investigated the genotoxicity of ambient levels of air pollution in Córdoba using the Tradescantia micronucleus assay. The experiment was performed from October, 2004 to April 2005. Pots with Tradescantia pallida were placed in three sites: Córdoba city center, characterized by important avenues with high traffic activity (cars, taxis, and public transport vehicles); the university campus, along a side road with heavy traffic of gasoline and diesel powered vehicles, buses and trucks; and a residential area, with no significant local sources of air pollution. Twenty young T. pallida inflorescences were collected from each sampling site in November, February and April. Micronuclei frequencies were determined in early tetrads of pollen mother cells and expressed as MCN/100 tetrads. Simultaneously, the environmental levels of total suspended particles (24 h mean) were determined for each site. A significant difference in micronuclei frequency was observed among sites ( p=0.036). Post-hoc analysis revealed that the residential area exhibited a lower micronuclei frequency than the university and city center areas. In conclusion, we found that the gradients of ambient air pollution of Córdoba are associated with changes in the spontaneous micronuclei frequency of Tradescantia pollen mother cells. These results indicate that in situ biomonitoring with higher plants may be useful for characterizing air pollution in areas without instrumental monitoring techniques, or for exploring the distribution of air contaminants at a microscale.

  14. Biomagnetic monitoring as a validation tool for local air quality models: a case study for an urban street canyon.

    PubMed

    Hofman, Jelle; Samson, Roeland

    2014-09-01

    Biomagnetic monitoring of tree leaf deposited particles has proven to be a good indicator of the ambient particulate concentration. The objective of this study is to apply this method to validate a local-scale air quality model (ENVI-met), using 96 tree crown sampling locations in a typical urban street canyon. To the best of our knowledge, the application of biomagnetic monitoring for the validation of pollutant dispersion modeling is hereby presented for the first time. Quantitative ENVI-met validation showed significant correlations between modeled and measured results throughout the entire in-leaf period. ENVI-met performed much better at the first half of the street canyon close to the ring road (r=0.58-0.79, RMSE=44-49%), compared to second part (r=0.58-0.64, RMSE=74-102%). The spatial model behavior was evaluated by testing effects of height, azimuthal position, tree position and distance from the main pollution source on the obtained model results and magnetic measurements. Our results demonstrate that biomagnetic monitoring seems to be a valuable method to evaluate the performance of air quality models. Due to the high spatial and temporal resolution of this technique, biomagnetic monitoring can be applied anywhere in the city (where urban green is present) to evaluate model performance at different spatial scales. PMID:24907705

  15. Environmental continuous air monitor inlet with combined preseparator and virtual impactor

    DOEpatents

    Rodgers, John C.

    2007-06-19

    An inlet for an environmental air monitor is described wherein a pre-separator interfaces with ambient environment air and removes debris and insects commonly associated with high wind outdoors and a deflector plate in communication with incoming air from the pre-separator stage, that directs the air radially and downward uniformly into a plurality of accelerator jets located in a manifold of a virtual impactor, the manifold being cylindrical and having a top, a base, and a wall, with the plurality of accelerator jets being located in the top of the manifold and receiving the directed air and accelerating directed air, thereby creating jets of air penetrating into the manifold, where a major flow is deflected to the walls of the manifold and extracted through ports in the walls. A plurality of receiver nozzles are located in the base of the manifold coaxial with the accelerator jets, and a plurality of matching flow restrictor elements are located in the plurality of receiver nozzles for balancing and equalizing the total minor flow among all the plurality of receiver nozzles, through which a lower, fractional flow extracts large particle constituents of the air for collection on a sample filter after passing through the plurality of receiver nozzles and the plurality of matching flow restrictor elements.

  16. Filter for on-line air monitor unaffected by radon progeny and method of using same

    DOEpatents

    Phillips, Terrance D.; Edwards, Howard D.

    1999-01-01

    An apparatus for testing air having contaminants and radon progeny therein. The apparatus includes a sampling box having an inlet for receiving the air and an outlet for discharging the air. The sampling box includes a filter made of a plate of sintered stainless steel. The filter traps the contaminants, yet allows at least a portion of the radon progeny to pass therethrough. A method of testing air having contaminants and radon progeny therein. The method includes providing a testing apparatus that has a sampling box with an inlet for receiving the air and an outlet for discharging the air, and has a sintered stainless steel filter disposed within said sampling box; drawing air from a source into the sampling box using a vacuum pump; passing the air through the filter; monitoring the contaminants trapped by the filter; and providing an alarm when a selected level of contaminants is reached. The filter traps the contaminants, yet allows at least a portion of the radon progeny to pass therethrough.

  17. Design of a small personal air monitor and its application in aircraft.

    PubMed

    van Netten, Chris

    2009-01-15

    A small air sampling system using standard air filter sampling technology has been used to monitor the air in aircraft. The device is a small ABS constructed cylinder 5 cm in diameter and 9 cm tall and can be operated by non technical individuals at an instant notice. It is completely self contained with a 4 AAA cell power supply, DC motor, a centrifugal fan, and accommodates standard 37 mm filters and backup pads. The monitor is totally enclosed and pre assembled in the laboratory. A 45 degrees twist of the cap switches on the motor and simultaneously opens up the intake ports and exhaust ports allowing air to pass through the filter. A reverse 45 degrees twist of the cap switches off the motor and closes all intake and exhaust ports, completely enclosing the filter. The whole monitor is returned to the laboratory by standard mail for analysis and reassembly for future use. The sampler has been tested for electromagnetic interference and has been approved for use in aircraft during all phases of flight. A set of samples taken by a BAe-146-300 crew member during two flights in the same aircraft and analyzed by GC-MS, indicated exposure to tricresyl phosphate (TCP) levels ranging from 31 to 83 nanograms/m(3) (detection limit <4.5 nanograms/m(3)). The latter elevated level was associated with the use of the auxiliary power unit (APU) in the aircraft. It was concluded that the air sampler was capable of monitoring air concentrations of TCP isomers in aircraft above 4.5 nanogram/m(3). PMID:18801557

  18. Nonradioactive Ambient Air Monitoring at Los Alamos National Laboratory 2001--2002

    SciTech Connect

    E. Gladney; J.Dewart, C.Eberhart; J.Lochamy

    2004-09-01

    During the spring of 2000, the Cerro Grande forest fire reached Los Alamos National Laboratory (LANL) and ignited both above-ground vegetation and disposed materials in several landfills. During and after the fire, there was concern about the potential human health impacts from chemicals emitted by the combustion of these Laboratory materials. Consequently, short-term, intensive air-monitoring studies were performed during and shortly after the fire. Unlike the radiological data from many years of AIRNET sampling, LANL did not have an adequate database of nonradiological species under baseline conditions with which to compare data collected during the fire. Therefore, during 2001 the Meteorology and Air Quality Group designed and implemented a new air-monitoring program, entitled NonRadNET, to provide nonradiological background data under normal conditions. The objectives of NonRadNET were to: (1) develop the capability for collecting nonradiological air-monitoring data, (2) conduct monitoring to develop a database of typical background levels of selected nonradiological species in the communities nearest the Laboratory, and (3) determine LANL's potential contribution to nonradiological air pollution in the surrounding communities. NonRadNET ended in late December 2002 with five quarters of data. The purpose of this paper is to organize and describe the NonRadNET data collected over 2001-2002 to use as baseline data, either for monitoring during a fire, some other abnormal event, or routine use. To achieve that purpose, in this paper we will: (1) document the NonRadNET program procedures, methods, and quality management, (2) describe the usual origins and uses of the species measured, (3) compare the species measured to LANL and other area emissions, (4) present the five quarters of data, (5) compare the data to known typical environmental values, and (6) evaluate the data against exposure standards.

  19. Monitoring of Air Quality in Passenger Cabins of the Athens Metro

    NASA Astrophysics Data System (ADS)

    Tsairidi, Evangelia; Assimakopoulos, Vasiliki D.; Assimakopoulos, Margarita-Niki; Barbaresos, Nicolaos; Karagiannis, Athanassios

    2013-04-01

    The air pollution induced by various transportation means combines the emission of pollutants with the simultaneous presence of people. In this respect, the scientific community has focused its efforts in studying both the air quality within busy streets and inside cars, buses and the underground railway network in order to identify the pollutants' sources and levels as well as the human exposure. The impact of the air pollution on commuters of the underground may be more severe because it is a confined space, extended mostly under heavily trafficked urban streets, relies on mechanical ventilation for air renewal and gathers big numbers of passengers. The purpose of the present work is to monitor the air quality of the city of Athens Metro Network cabins and platforms during the unusually hot summer of 2012. For that cause particulate matter (PM10, PM2.5, PM1), carbon dioxide (CO2), the number of commuters along with temperature (T) and humidity (RH) were recorded inside the Athens Metro Blue Line trains (covering a route from the centre of Athens (Aigaleo) to the Athens International Airport) and on the platforms of a central (Syntagma) and a suburban-traffic (Doukissis Plakentias) station between June and August. The data collection included six different experiments that took place for 2 consecutive working days each, for a time period of 6 weeks from 6:30 am too 7:00 pm in order to account for different outdoor climatic conditions and for morning and evening rush hours respectively. Measurements were taken in the middle car of the moving trains and the platform end of the selected stations. The results show PM concentrations to be higher (approximately 2 to 5 times) inside the cabins and o the platforms of the underground network as compared to the outdoor levels monitored routinely by the Ministry of Environment. Moreover, PM1, PM2.5 and PM10 average concentrations recorded at the Syntagma Station Platform were almost constantly higher reaching 11 μg m-3 47

  20. The potential of a new air cleaner to reduce airborne microorganisms in pig house air: preliminary results.

    PubMed

    Schulz, Jochen; Bao, Endong; Clauss, Marcus; Hartung, Jörg

    2013-01-01

    There is a need for technical solutions to reduce the concentrations of bioaerosols in the air and in the exhaust air of livestock buildings. A prototype of an air washer combined with a UV-irradiation system was positioned in a commercial pig fattening unit to test its efficiency of reducing culturable airborne microorganisms. No significant reduction in airborne bacteria and fungi was observed when untreated air passed through the device. However, when the air washer or the UV-irradiation system was activated, the concentrations of mesophilic aerobic bacteria, methicillin resistant Staphylococcus aureus and mesophilic aerotolerant cocci were reduced significantly (p < 0.01). Washing the air reduced bacteria by 84 to 96% and the relative reduction due to UV-irradiation ranged between 55 and 90%. The highest relative reduction in airborne bacteria (90 to 99%) was detected when the air washer and the UV-irradiation systems were in simultaneous operation. The concentration of total airborne fungi was reduced significantly (p < 0.05) only when the air was washed and UV-irradiated. Although these preliminary results provided significant and comprehensible findings, long-term studies are required to assess the efficiency of the device in more detail.The combination of air washing and UV-irradiation seem to be a useful technique for abating airborne microorganisms within or emitting from piggery buildings. However, some technical problems remain, such as the deposition of particulate matter on the surface of UV-irradiators and the consumption of fresh water by the air washer. These issues must be resolved before the system may be implemented for general practice. PMID:23540197

  1. Municipal waste incinerators: air and biological monitoring of workers for exposure to particles, metals, and organic compounds

    PubMed Central

    Maitre, A; Collot-Fertey, D; Anzivino, L; Marques, M; Hours, M; Stoklov, M

    2003-01-01

    Aims: To evaluate occupational exposure to toxic pollutants at municipal waste incinerators (MWIs). Methods: Twenty nine male subjects working near the furnaces in two MWIs, and 17 subjects not occupationally exposed to combustion generated pollutants were studied. Individual air samples were taken throughout the shift; urine samples were collected before and after. Stationary air samples were taken near potential sources of emission. Results: Occupational exposure did not result in the infringement of any occupational threshold limit value. Atmospheric exposure levels to particles and metals were 10–100 times higher in MWIs than at the control site. The main sources were cleaning operations for particles, and residue transfer and disposal operations for metals. MWI workers were not exposed to higher levels of polycyclic aromatic hydrocarbons than workers who are routinely in contact with vehicle exhaust. The air concentrations of volatile organic compounds and aldehydes were low and did not appear to pose any significant threat to human health. Only the measurement of chlorinated hydrocarbon levels would seem to be a reliable marker for the combustion of plastics. Urine metal levels were significantly higher at plant 1 than at plant 2 because of high levels of pollutants emanating from one old furnace. Conclusion: While biological monitoring is an easy way of acquiring data on long term personal exposure, air monitoring remains the only method that makes it possible to identify the primary sources of pollutant emission which need to be controlled if occupational exposure and environmental pollution are to be reduced. PMID:12883016

  2. Results from two years of resistivity monitoring at Cerro Prieto

    SciTech Connect

    Wilt, M.J.; Goldstein, N.E.

    1981-01-01

    Dipole-dipole resistivity measurements for the combined purposes of reservoir delineation and resistivity monitoring were first made at Cerro Prieto in 1978 and have continued on an annual basis since then. Two 20 km long dipole-dipole lines with permanently emplaced electrodes at one kilometer spacings were established over the field area; one of these lines is remeasured annually. Resistivity measurements are taken using a 25 kW generator capable of up to 80A output and a microprocessor controlled signal averaging receiver; this high power-low noise system is capable of highly accurate measurements even at large transmitter-receiver separations. Standard error calculations for collected data indicate errors less than 5% for all points, but 95% confidence intervals show error limits about 2 to 4 times higher. Analysis of collected data indicate little change in the apparent resistivity of the upper 300 m over the field production zone and that in this section measurements are relatively insensitive to the annual rainfall cycle. Apparent resistivity increases were observed over the older producing zone at Cerro Prieto at depths of 1 km and greater. Large zones of decreasing apparent resistivity were observed flanking the zone of increases on both sides. The increase in apparent resistivity in the production region may be due to an increasing fraction of steam in the reservoir resulting from a production related decline in reservoir pressure. Alternatively the increases may be the result of fresh water influx from the Colorado River. The zone of declining resistivity flanking the area of increase may be due to the movement of saline waters into the reservoir region as a result of the pressure decline. Quantitative modeling of observed changes is impractical owing to the high uncertainty in estimating apparent resistivity changes and the nonuniqueness of models.

  3. AIR MONITORING BY DIFFERENTIAL OPTICAL ABSORPTION SPECTROMETRY IN BAYTOWN, TEXAS

    EPA Science Inventory

    This report documents the results of a field study carried out in Baytown, Texas in August 1993. ne goal of the field study was to evaluate calibration and audit procedures for a differential optical absorption spectrometry (DOAS) system. he other major goal of the study was to c...

  4. The solar seeing monitor MISOLFA: presentation and first results

    NASA Astrophysics Data System (ADS)

    Irbah, A.; Corbard, T.; Assus, P.; Borgnino, J.; Dufour, C.; Ikhlef, R.; Martin, F.; Meftah, M.; Morand, F.; Renaud, C.; Simon, E.

    2010-07-01

    PICARD is a space mission developed to observe the Sun at high angular resolution. One of the main space objectives of PICARD is to measure the solar diameter with few milli arc-seconds accuracy. A replica of the space instrument will be installed at Calern Observatory in order to test our ability to make such measurement from ground with enough accuracy. High angular resolution observations with ground-based instrument are however limited by atmospheric turbulence. The seeing monitor MISOLFA is developed to give all observation conditions at the same moments when solar images will be recorded with the twin PICARD instruments. They will be used to link ground and space measurements. An overview of the PICARD mission and the solar ground-based experiments will be rst given. Optical properties of MISOLFA will be after presented. The basic principles to measure atmospheric parameters and the methods used to obtain them from solar images will be given. Finally, some recent results obtained at Calern Observatory will be presented and discussed.

  5. Continuous ECG monitoring on civil air crews during flight operations.

    PubMed

    Sekiguchi, C; Yamaguchi, O; Kitajima, T; Ueda, Y

    1977-09-01

    Cardiovascular disease is one of the disorders resulting in sudden incapacitation and is the most common malady leading to medical retirement. It is very important for us to control this disease among pilots. Generally, pilots undergo medical checkups at health control service on the ground, but they do not undergo these checkups during flight operations. We obtained a continuous ECG recording on four pilots to assess cardiac reserve capacity for mental load during flight operation. Results show that no significant ischemic changes of ST-segment and T-wave during flight were noticed except in one case of atrial fibrillation in which significant depression of ST-segment occurred while walking up a stairway after flight. An increased number of ectopic beats was found in another normal case. In general, it was suspected that mental load is greater at landing than takeoff. PMID:907598

  6. Monitoring Air Pollution from Satellites (MAPS). Volume 1: Technical report

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Performance tests on an electro-optical model of an infrared sensor for remote measurements of trace atmospheric gases are detailed; the instrument utilized a sample of the gas to be measured as spectral filter. Also reported is the development of radiometric calibration equipment that determines responses to simulated pollution effects. Results show excellent agreement with theoretical performance predictions with the exception of nonuniform radiance responses. Balance stability to an accuracy better than the rms noise level was demonstrated for the EOM in both the NH3 and CO modes for a period of two days under laboratory conditions. Flight test results show that the temperature range of the absorption cell is restricted to 255 K or higher.

  7. Assessment of Near-Source Air Pollution at a Fine Spatial Scale Utilizing a Mobile Monitoring Approach

    EPA Science Inventory

    Mobile monitoring is an emerging strategy to characterize spatially and temporally variable air pollution in areas near sources. EPA’s Geospatial Monitoring of Air Pollution (GMAP) vehicle – an all-electric vehicle measuring real-time concentrations of particulate and gaseous po...

  8. ULTRAHIGH SENSITIVITY HEAVY NOBLE GAS DETECTORS FOR LONG-TERM MONITORING AND MONITORING AIR

    EPA Science Inventory

    A Georgia Institute of Technology/Argonne National Laboratory team will develop and demonstrate novel ultrahigh sensitivity heavy noble gas (krypton, xenon, and radon) detectors for long-term monitoring of spent fuel and TRU waste, as well as for distinguishing background radon a...

  9. Air

    MedlinePlus

    ... do to protect yourself from dirty air . Indoor air pollution and outdoor air pollution Air can be polluted indoors and it can ... this chart to see what things cause indoor air pollution and what things cause outdoor air pollution! Indoor ...

  10. The next generation of low-cost personal air quality sensors for quantitative exposure monitoring

    NASA Astrophysics Data System (ADS)

    Piedrahita, R.; Xiang, Y.; Masson, N.; Ortega, J.; Collier, A.; Jiang, Y.; Li, K.; Dick, R. P.; Lv, Q.; Hannigan, M.; Shang, L.

    2014-10-01

    Advances in embedded systems and low-cost gas sensors are enabling a new wave of low-cost air quality monitoring tools. Our team has been engaged in the development of low-cost, wearable, air quality monitors (M-Pods) using the Arduino platform. These M-Pods house two types of sensors - commercially available metal oxide semiconductor (MOx) sensors used to measure CO, O3, NO2, and total VOCs, and NDIR sensors used to measure CO2. The MOx sensors are low in cost and show high sensitivity near ambient levels; however they display non-linear output signals and have cross-sensitivity effects. Thus, a quantification system was developed to convert the MOx sensor signals into concentrations. We conducted two types of validation studies - first, deployments at a regulatory monitoring station in Denver, Colorado, and second, a user study. In the two deployments (at the regulatory monitoring station), M-Pod concentrations were determined using collocation calibrations and laboratory calibration techniques. M-Pods were placed near regulatory monitors to derive calibration function coefficients using the regulatory monitors as the standard. The form of the calibration function was derived based on laboratory experiments. We discuss various techniques used to estimate measurement uncertainties. The deployments revealed that collocation calibrations provide more accurate concentration estimates than laboratory calibrations. During collocation calibrations, median standard errors ranged between 4.0-6.1 ppb for O3, 6.4-8.4 ppb for NO2, 0.28-0.44 ppm for CO, and 16.8 ppm for CO2. Median signal to noise (S / N) ratios for the M-Pod sensors were higher than the regulatory instruments: for NO2, 3.6 compared to 23.4; for O3, 1.4 compared to 1.6; for CO, 1.1 compared to 10.0; and for CO2, 42.2 compared to 300-500. By contrast, lab calibrations added bias and made it difficult to cover the necessary range of environmental conditions to obtain a good calibration. A separate user study

  11. Closer look at our neighbors to the south: Air quality trends, standards, and monitoring programs of Latin American countries

    SciTech Connect

    Childers, L.O.; Medina-Vera, M.; Mitchell, W.J.

    1997-09-01

    The Global Environment Monitoring System (GEMS/Air) is a program in which air monitoring data from over 50 countries throughout the world are collected and analyzed. The GEMS/Air program is sponsored by the United Nations Environment Program (UNEP) and the World Health Organization (WHO). As part of a technical systems agreement between the United States Environmental Protection Agency and the UNEP/WHO, collaborative reviews of eighteen Latin American cities were conducted over the past two years. The countries visited include Argentina, Brazil, Chile, Ecuador, and Venezuela. The findings of these reviews and the future direction of air pollution monitoring programs in these countries are presented.

  12. Monitoring of Air Pollution by Satellites (MAPS), phase 1

    NASA Technical Reports Server (NTRS)

    Ludwig, C. B.; Malkmus, W.; Griggs, M.; Bartle, E. R.

    1972-01-01

    Results are reported upon which the design of a satellite remote gas filter correlation (RGFC) instrument can be based. Although a final decision about the feasibility of measuring some of the pollutants with the required accuracy is still outstanding and subject to further theoretical and experimental verifications, viable concepts are presented which permit the initiation of the design phase. The pollutants which are of concern in the troposphere and stratosphere were selected. The infrared bands of these pollutants were identified, together with the bands of interfering gases, and the line parameters of the pollutants as well as interfering gases were generated through a computer program. Radiative transfer calculations (line-by-line) were made to establish the radiation levels at the top of the atmosphere and the signal levels at the detector of the RGFC instrument. Based upon these results the channels for the RGFC were selected. Finally, the problem areas, which need further investigations, were delineated and the supporting data requirements were established.

  13. Optimal Design of Air Quality Monitoring Network and its Application in an Oil Refinery Plant: An Approach to Keep Health Status of Workers

    PubMed Central

    ZoroufchiBenis, Khaled; Fatehifar, Esmaeil; Ahmadi, Javad; Rouhi, Alireza

    2015-01-01

    Background: Industrial air pollution is a growing challenge to humane health, especially in developing countries, where there is no systematic monitoring of air pollution. Given the importance of the availability of valid information on population exposure to air pollutants, it is important to design an optimal Air Quality Monitoring Network (AQMN) for assessing population exposure to air pollution and predicting the magnitude of the health risks to the population. Methods: A multi-pollutant method (implemented as a MATLAB program) was explored for configur­ing an AQMN to detect the highest level of pollution around an oil refinery plant. The method ranks potential monitoring sites (grids) according to their ability to represent the ambient concentration. The term of cluster of contiguous grids that exceed a threshold value was used to calculate the Station Dosage. Selection of the best configuration of AQMN was done based on the ratio of a sta­tion’s dosage to the total dosage in the network. Results: Six monitoring stations were needed to detect the pollutants concentrations around the study area for estimating the level and distribution of exposure in the population with total network efficiency of about 99%. An analysis of the design procedure showed that wind regimes have greatest effect on the location of monitoring stations. Conclusion: The optimal AQMN enables authorities to implement an effective program of air quality management for protecting human health. PMID:26933646

  14. Field monitoring and performance evaluation of an in situ air sparging system at a gasoline-contaminated site.

    PubMed

    Hall, B L; Lachmar, T E; Dupont, R R

    2000-06-30

    In situ air sparging (IAS) has been used since the mid-1980s, but few carefully designed field studies have been performed to evaluate its effectiveness. In this study, 27 discrete monitoring points (MPs) were installed at a gasoline-contaminated site to investigate the efficacy of IAS. Each MP was instrumented with a pressure transducer and a Technalithics dissolved oxygen (DO) probe, and located so they could be used to characterize subsurface changes in total head and DO with depth, distance and orientation around a central injection well. Because the blower over-heated and automatically shut down after approximately 30 min and short-circuiting of air into two MPs occurred within 2 min, the study was designed as three sets of three 30-min trials. Longer trials would not have yielded different nor more insightful results. A volume of soil was not oxygenated during any injection. Instead, air traveled directly to at least four of seven different MPs during eight of the nine trials, probably as a result of an air bubble forming beneath a confining layer. The order of air arrival at the MPs varied during the first few trials, but once a preferential pathway was established, it did not collapse between trials and provided the shortest distance to the vadose zone during subsequent trials. Oxygen uptake rates estimated for MPs that received air during any trial exceeded the consumption rates of the Technalithics DO probes, and indicate that the probes could be used for estimating oxygen transfer during system operation or for oxygen uptake measurements during shut-down tests. The data from the monitoring system indicate that IAS is infeasible for remediation of soil and groundwater at this site due to its low horizontal hydraulic conductivity. Similar behavior is anticipated when IAS is applied at other sites with low hydraulic conductivity materials. PMID:10794912

  15. Continuous monitoring of polychlorinated biphenyls in air using direct sampling APCI/ITMS

    NASA Astrophysics Data System (ADS)

    Yamada, Masuyoshi; Suga, Masao; Waki, Izumi; Sakamoto, Masami; Morita, Masatoshi

    2005-06-01

    We report a continuous monitoring system of polychlorinated biphenyls (PCBs) in air, which uses direct sampling atmospheric pressure chemical ionization (APCI)/ion trap mass spectrometry (ITMS). In APCI, humidity in the atmosphere, which fluctuates from 0 to 10 vol.%, influences PCB sensitivity. In dry air (0.5% humidity), the detection limits of Di- to Hp-chlorinated biphenyls (CB) are 0.01-0.44 [mu]g/Nm3 ([mu]g/m3 at normal condition) with time resolution of 1 min, whereas the sensitivity decreases to less than 1/10 when water vapor concentration is 10 vol.%. The sensitivity decrease is calibrated in real-time using an internal standard, trichlorophenol. In order to obtain the calibration accuracy of +/-30%, we dilute the sample gas by dry air, decreasing the water vapor concentration below 1%. We applied the monitor to measure Di- to Hp-CB in ventilation air from a PCB decomposition plant. The monitored PCB concentration levels agreed well with that by high-resolution gas chromatography/high resolution mass spectrometry (HRGC/HRMS).

  16. Ambient air quality monitoring during the H1N1 influence period in Pune (India).

    PubMed

    Pathak, M; Deshpande, A; Mirashe, P K; Sorte, R B; Ojha, A

    2010-10-01

    Ambient air quality in an urban area is directly linked with activity level in the city including transport, business and industrial activities. Maharashtra Pollution Control Board (MPCB) has established an ambient air quality network in the city including state-of-the-art continuous air quality monitoring stations which indicate short duration air quality variations for criteria and non-criteria pollutants. The influence of H1N1 outbreak in Pune hitting its worst pandemic condition, led the civic authorities to implement stringent isolation measures including closure of schools, colleges, business malls, cinema halls, etc. Additionally, the fear of such a pandemic brought the city to a stand still. It was therefore necessary to assess the impacts of such activity level on ambient air quality in the city. It has been observed that such events have positive impacts on air quality of the city. There was a decrease in PM concentration almost to the tune of 30 to 40% if the impacts of precipitation, i.e. seasonal variations, are taken into account. Similarly, the non criteria pollutants too showed a marked but unusual decrease in their concentrations in this ever growing city. The influence of these in turn led to lowered concentrations of secondary pollutants, i.e. O3. Overall, the ambient air quality of Pune was found to be improved during the study period. PMID:22312797

  17. Recognizing the Challenges of Ambient Air Monitoring in the Persian Gulf

    NASA Astrophysics Data System (ADS)

    Meade, T. G.; Nicodemus, M. A.; Howard, J. M.

    2011-12-01

    In an effort to better estimate environmental exposure, the U.S. Army Public Health Command has been operating an ambient air monitoring station in Shuaiba Port, Kuwait since 2002. The focus has primarily been on monitoring criteria pollutants at a busy sea port where local industry (oil refineries, cement plant, petrochemical production, etc.) heavily impacts air quality. To compound the issues associated with day to day monitoring at a busy sea port, the region often experiences sand storms and temperatures up to 60°C. Average daily particulate matter concentrations at Shuaiba Port are an order of magnitude higher than similar industrial areas in the U.S. On days when sand storms occur ambient PM concentrations can be two or three orders higher than average daily U.S. concentrations. For example, 24-hour average PM10 concentrations from 2004-2010 for the month of June were 395 μg/m3. During sand storms, 24-hour average concentrations can reach as high as 4,000 μg/m3. This poster presents 2004-2010 particulate matter data collected at Shuaiba Port, Kuwait and outlines logistical and environmental challenges associated with air monitoring in the region.

  18. A Survey of Wireless Sensor Network Based Air Pollution Monitoring Systems.

    PubMed

    Yi, Wei Ying; Lo, Kin Ming; Mak, Terrence; Leung, Kwong Sak; Leung, Yee; Meng, Mei Ling

    2015-01-01

    The air quality in urban areas is a major concern in modern cities due to significant impacts of air pollution on public health, global environment, and worldwide economy. Recent studies reveal the importance of micro-level pollution information, including human personal exposure and acute exposure to air pollutants. A real-time system with high spatio-temporal resolution is essential because of the limited data availability and non-scalability of conventional air pollution monitoring systems. Currently, researchers focus on the concept of The Next Generation Air Pollution Monitoring System (TNGAPMS) and have achieved significant breakthroughs by utilizing the advance sensing technologies, MicroElectroMechanical Systems (MEMS) and Wireless Sensor Network (WSN). However, there exist potential problems of these newly proposed systems, namely the lack of 3D data acquisition ability and the flexibility of the sensor network. In this paper, we classify the existing works into three categories as Static Sensor Network (SSN), Community Sensor Network (CSN) and Vehicle Sensor Network (VSN) based on the carriers of the sensors. Comprehensive reviews and comparisons among these three types of sensor networks were also performed. Last but not least, we discuss the limitations of the existing works and conclude the objectives that we want to achieve in future systems. PMID:26703598

  19. A Survey of Wireless Sensor Network Based Air Pollution Monitoring Systems

    PubMed Central

    Yi, Wei Ying; Lo, Kin Ming; Mak, Terrence; Leung, Kwong Sak; Leung, Yee; Meng, Mei Ling

    2015-01-01

    The air quality in urban areas is a major concern in modern cities due to significant impacts of air pollution on public health, global environment, and worldwide economy. Recent studies reveal the importance of micro-level pollution information, including human personal exposure and acute exposure to air pollutants. A real-time system with high spatio-temporal resolution is essential because of the limited data availability and non-scalability of conventional air pollution monitoring systems. Currently, researchers focus on the concept of The Next Generation Air Pollution Monitoring System (TNGAPMS) and have achieved significant breakthroughs by utilizing the advance sensing technologies, MicroElectroMechanical Systems (MEMS) and Wireless Sensor Network (WSN). However, there exist potential problems of these newly proposed systems, namely the lack of 3D data acquisition ability and the flexibility of the sensor network. In this paper, we classify the existing works into three categories as Static Sensor Network (SSN), Community Sensor Network (CSN) and Vehicle Sensor Network (VSN) based on the carriers of the sensors. Comprehensive reviews and comparisons among these three types of sensor networks were also performed. Last but not least, we discuss the limitations of the existing works and conclude the objectives that we want to achieve in future systems. PMID:26703598

  20. Development of a Real-Time Beryllium Air Monitor Utilizing Microwave Induced Plasma Spectroscopy (MIPAES)

    SciTech Connect

    Abeln, S.; Duan, Y.-a.; Olivares, J.A.; Koby, M.; Scopsick, R.C.

    1999-07-16

    This is the final report of a one-year, Laboratory-Directed Research and Development (LDRD) Program Development project at the Los Alamos National laboratory (LANL). The focus of this development has been an innovative beryllium air monitor for on-site' real-time continuous monitoring which overcomes limitations of the previous techniques for beryllium monitoring. A bench-top instrument has been set up and the performance of the instrument has been tested based on a solution aerosol. The sensitivity obtained with the instrument is sufficient to ensure workers can respond at airborne levels well below current exposure regulations. With this versatile, real-time monitor, worker exposure can be greatly reduced.

  1. Laser Spectroscopy Multi-Gas Monitor: Results of Technology Demonstration on ISS

    NASA Technical Reports Server (NTRS)

    Mudgett, Paul D.; Pilgrim, Jeffrey S.

    2015-01-01

    Tunable diode laser spectroscopy (TDLS) is an up and coming trace and major gas monitoring technology with unmatched selectivity, range and stability. The technology demonstration of the 4 gas Multi-Gas Monitor (MGM), reported at the 2014 ICES conference, operated continuously on the International Space Station (ISS) for nearly a year. The MGM is designed to measure oxygen, carbon dioxide, ammonia and water vapor in ambient cabin air in a low power, relatively compact device. While on board, the MGM experienced a number of challenges, unplanned and planned, including a test of the ammonia channel using a commercial medical ammonia inhalant. Data from the unit was downlinked once per week and compared with other analytical resources on board, notably the Major Constituent Analyzer (MCA), a magnetic sector mass spectrometer. MGM spent the majority of the time installed in the Nanoracks Frame 2 payload facility in front breathing mode (sampling the ambient environment of the Japanese Experiment Module), but was also used to analyze recirculated rack air. The capability of the MGM to be operated in portable mode (via internal rechargeable lithium ion polymer batteries or by plugging into any Express Rack 28VDC connector) was a part of the usability demonstration. Results to date show unprecedented stability and accuracy of the MGM vs. the MCA for oxygen and carbon dioxide. The ammonia challenge (approx. 75 ppm) was successful as well, showing very rapid response time in both directions. Work on an expansion of capability in a next generation MGM has just begun. Combustion products and hydrazine are being added to the measurable target analytes. An 8 to 10 gas monitor (aka Gas Tricorder 1.0) is envisioned for use on ISS, Orion and Exploration missions.

  2. Results of Self-Absorption Study on the Versapor 3000 Filters for Radioactive Particulate Air Sampling

    SciTech Connect

    Barnett, J. Matthew; Cullinan, Valerie I.; Barnett, Debra S.; Trang-Le, Truc LT; Bliss, Mary; Greenwood, Lawrence R.; Ballinger, Marcel Y.

    2009-02-17

    Since the mid-1980s, Pacific Northwest National Laboratory (PNNL) has used a value of 0.85 as the correction factor for self absorption of activity for particulate radioactive air samples collected from building exhaust for environmental monitoring. This value accounts for activity that cannot be detected by direct counting of alpha and beta particles. Emissions can be degraded or blocked by filter fibers for particles buried in the filter material or by inactive dust particles collected with the radioactive particles. These filters are used for monitoring air emissions from PNNL stacks for radioactive particles. This paper describes an effort to re-evaluate self-absorption effects in particulate radioactive air sample filters (Versapor® 3000, 47 mm diameter) used at PNNL. There were two methods used to characterize the samples. Sixty samples were selected from the archive for acid digestion to compare the radioactivity measured by direct gas-flow proportional counting of filters to the results obtained after acid digestion of the filter and counting again by gas-flow proportional detection. Thirty different sample filters were selected for visible light microscopy to evaluate filter loading and particulate characteristics. Mass-loading effects were also considered. Filter ratios were calculated by dividing the initial counts by the post-digestion counts with the expectation that post-digestion counts would be higher because digestion would expose radioactivity embedded in the filter in addition to that on top of the filter. Contrary to expectations, the post digestion readings were almost always lower than initial readings and averaged approximately half the initial readings for both alpha and beta activity. Before and after digestion readings appeared to be related to each other, but with a low coefficient of determination (R^2) value. The ratios had a wide range of values indicating that this method did not provide sufficient precision to quantify self

  3. A Method for Monitoring Organic Chlorides, Hydrochloric Acid and Chlorine in Air

    NASA Technical Reports Server (NTRS)

    Dennison, J. E.; Menichelli, R. P.

    1971-01-01

    While not commonly presented in nonurban atmospheres, organic chlorides, hydrochloric acid and chlorine are significant in industrial air pollution and industrial hygiene. Based on a microcoulometer, a much more sensitive method than has heretofore been available has been developed for monitoring these air impurities. The method has a response time (90%) of about twenty seconds, requires no calibration, is accurate to +/- 2.5%, and specific except for bromide and iodide interferences. The instrument is portable and has been operated unattended for 18 hours without difficulty.

  4. GIS based assessment of the spatial representativeness of air quality monitoring stations using pollutant emissions data

    NASA Astrophysics Data System (ADS)

    Righini, G.; Cappelletti, A.; Ciucci, A.; Cremona, G.; Piersanti, A.; Vitali, L.; Ciancarella, L.

    2014-11-01

    Spatial representativeness of air quality monitoring stations is a critical parameter when choosing location of sites and assessing effects on population to long term exposure to air pollution. According to literature, the spatial representativeness of a monitoring site is related to the variability of pollutants concentrations around the site. As the spatial distribution of primary pollutants concentration is strongly correlated to the allocation of corresponding emissions, in this work a methodology is presented to preliminarily assess spatial representativeness of a monitoring site by analysing the spatial variation of emissions around it. An analysis of horizontal variability of several pollutants emissions was carried out by means of Geographic Information System using a neighbourhood statistic function; the rationale is that if the variability of emissions around a site is low, the spatial representativeness of this site is high consequently. The methodology was applied to detect spatial representativeness of selected Italian monitoring stations, located in Northern and Central Italy and classified as urban background or rural background. Spatialized emission data produced by the national air quality model MINNI, covering entire Italian territory at spatial resolution of 4 × 4 km2, were processed and analysed. The methodology has shown significant capability for quick detection of areas with highest emission variability. This approach could be useful to plan new monitoring networks and to approximately estimate horizontal spatial representativeness of existing monitoring sites. Major constraints arise from the limited spatial resolution of the analysis, controlled by the resolution of the emission input data, cell size of 4 × 4 km2, and from the applicability to primary pollutants only.

  5. Optimization of air monitoring networks using chemical transport model and search algorithm

    NASA Astrophysics Data System (ADS)

    Araki, Shin; Iwahashi, Koki; Shimadera, Hikari; Yamamoto, Kouhei; Kondo, Akira

    2015-12-01

    Air monitoring network design is a critical issue because monitoring stations should be allocated properly so that they adequately represent the concentrations in the domain of interest. Although the optimization methods using observations from existing monitoring networks are often applied to a network with a considerable number of stations, they are difficult to be applied to a sparse network or a network under development: there are too few observations to define an optimization criterion and the high number of potential monitor location combinations cannot be tested exhaustively. This paper develops a hybrid of genetic algorithm and simulated annealing to combine their power to search a big space and to find local optima. The hybrid algorithm as well as the two single algorithms are applied to optimize an air monitoring network of PM2.5, NO2 and O3 respectively, by minimization of the mean kriging variance derived from simulated values of a chemical transport model instead of observations. The hybrid algorithm performs best among the algorithms: kriging variance is on average about 4% better than for GA and variability between trials is less than 30% compared to SA. The optimized networks for the three pollutants are similar and maps interpolated from the simulated values at these locations are close to the original simulations (RMSE below 9% relative to the range of the field). This also holds for hourly and daily values although the networks are optimized for annual values. It is demonstrated that the method using the hybrid algorithm and the model simulated values for the calculation of the mean kriging variance is of benefit to the optimization of air monitoring networks.

  6. March-April 2007 monitoring results for Morrill, Kansas.

    SciTech Connect

    LaFreniere, L. M.; Environmental Science Division

    2007-11-05

    In September 2005, the Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA) initiated periodic sampling of groundwater in the vicinity of a grain storage facility formerly operated by the CCC/USDA at Morrill, Kansas. The sampling at Morrill is being performed on behalf of the CCC/USDA by Argonne National Laboratory, in accord with a monitoring program approved by the Kansas Department of Health and Environment (KDHE), to monitor levels of carbon tetrachloride contamination identified in the groundwater at this site (Argonne 2004, 2005a). Under the KDHE-approved Monitoring Plan (Argonne 2005b), the groundwater is being sampled twice yearly for a recommended period of two years. The samples are analyzed for volatile organic compounds (VOCs), as well as for selected geochemical parameters to aid in the evaluation of possible natural contaminant degradation (reductive dechlorination) processes in the subsurface environment. The sampling is presently conducted in a network of 12 monitoring wells and 3 private wells (Argonne 2006a; Figure 1.1), at locations approved by the KDHE.

  7. SITE CHARACTERIZATION AND MONITORING TECHNOLOGY VERIFICATION: PROGRESS AND RESULTS

    EPA Science Inventory

    The Site Characterization and Monitoring Technology Pilot of the U.S. Environmental Protection Agency's Environmental Technology Verification Program (ETV) has been engaged in verification activities since the fall of 1994 (U.S. EPA, 1997). The purpose of the ETV is to promote th...

  8. Air - Ground - Bedrock Temperature Coupling, Its Monitoring at Borehole Climate Observatories

    NASA Astrophysics Data System (ADS)

    Cermák, V.

    2012-04-01

    Reconstructing ground surface temperature (GST) histories from present-day temperature-depth logs is now generally accepted as one of the independent and physically justified method to obtain information about the past climate history on the time scale of hundreds to thousands years. Any temperature change at the Earth`s surface slowly propagates downward and deeper we go farther back in time the measured temperature carries certain memory on what has happened on the surface in the past. Due to diffusive character of the process, however, the resolution quickly decreases for the remote events and the reconstructed GST at a given moment is a weighted average of temperature over a certain period of time. For better understanding of the temperature state in the subsurface T(z) logs can be suitably completed with long-run temperature-time monitoring at selected depth intervals, namely within the near-surface active layer affected by seasonal temperature variations (usually uppermost 30-40 m). In addition to GST inversions applied on deep T(z) profiles existing all over the world, several permanent borehole climate observatories were actually established in the last two decades to test the validity of the assumption that GST variations track the SAT (surface air temperature) changes as well as to study various environmental/local effects, such as the vegetation cover type/change, rain/snow precipitation, thawing/melting/freezing, etc. which controls the whole heat transfer process. Long-term monitoring of the shallow subsurface temperature field in suitably geographically located sites may additionally also help to understand the different conditions in e.g. urban vs. countryside environments and to assess the potential anthropogenic contribution to the present-day warming rate within the natural climate variability. This presentation summarizes main results obtained at the Czech borehole sites since 1992 completed with brief comparison of similar results collected

  9. Windsor, Ontario exposure assessment study: design and methods validation of personal, indoor, and outdoor air pollution monitoring.

    PubMed

    Wheeler, Amanda J; Xu, Xiaohong; Kulka, Ryan; You, Hongyu; Wallace, Lance; Mallach, Gary; Van Ryswyk, Keith; MacNeill, Morgan; Kearney, Jill; Dabek-Zlotorzynska, Ewa; Wang, Daniel; Poon, Raymond; Williams, Ron; Stocco, Corinne; Anastassopoulos, Angelos; Miller, J David; Dales, Robert; Brook, Jeffrey R

    2011-02-01

    The Windsor, Ontario Exposure Assessment Study evaluated the contribution of ambient air pollutants to personal and indoor exposures of adults and asthmatic children living in Windsor, Ontario, Canada. In addition, the role of personal, indoor, and outdoor air pollution exposures upon asthmatic children's respiratory health was assessed. Several active and passive sampling methods were applied, or adapted, for personal, indoor, and outdoor residential monitoring of nitrogen dioxide, volatile organic compounds, particulate matter (PM; PM < or = 2.5 microm [PM2.5] and < or = 10 microm [PM10] in aerodynamic diameter), elemental carbon, ultrafine particles, ozone, air exchange rates, allergens in settled dust, and particulate-associated metals. Participants completed five consecutive days of monitoring during the winter and summer of 2005 and 2006. During 2006, in addition to undertaking the air pollution measurements, asthmatic children completed respiratory health measurements (including peak flow meter tests and exhaled breath condensate) and tracked respiratory symptoms in a diary. Extensive quality assurance and quality control steps were implemented, including the collocation of instruments at the National Air Pollution Surveillance site operated by Environment Canada and at the Michigan Department of Environmental Quality site in Allen Park, Detroit, MI. During field sampling, duplicate and blank samples were also completed and these data are reported. In total, 50 adults and 51 asthmatic children were recruited to participate, resulting in 922 participant days of data. When comparing the methods used in the study with standard reference methods, field blanks were low and bias was acceptable, with most methods being within 20% of reference methods. Duplicates were typically within less than 10% of each other, indicating that study results can be used with confidence. This paper covers study design, recruitment, methodology, time activity diary, surveys, and

  10. Source area identification with observation from limited monitor sites for air pollution episodes in industrial parks

    NASA Astrophysics Data System (ADS)

    Huang, Zihan; Wang, Yuan; Yu, Qi; Ma, Weichun; Zhang, Yan; Chen, Limin

    2015-12-01

    Air pollution episodes of unknown origins are often detected by online equipment for air quality monitoring in industrial parks in China. The number of monitors available to provide observation data, as well as the source information, is often very limited. In such case, the identification of a potential source area is more practical than the precise back-calculation of the real source. The potential source area which can be deduced from the observation data from limited monitors was concerned in this paper. In order to do the source area identification, two inverse methods, a direct method and a statistical sampling method, were applied with a Gaussian puff model as the forward modeling method. The characteristic of the potential source area was illustrated by case studies. Both synthetic and real cases were presented. The distribution of the source locations and its variation with the other unknown source parameters were mainly focused in the case study. As a screening method, source area identification can be applied not only when the number of effective monitors is limited but also when an ideal number of monitors are available as long as the source information is almost uncertain.

  11. Air quality monitoring during building demolition activities at the Rocky Mountain Arsenal

    SciTech Connect

    Armstrong, J.A.; Ley, T.J.; Edson, H.; Edrich, J.A.; Huston, K.H.; Kutchenreiter, M.C.; Lucas, P.M.

    1997-12-31

    Rocky Mountain Arsenal (RMA) is a former production site for chemical and incendiary munitions as well as industrial chemicals, including pesticides, insecticides, and herbicides. Several contaminated areas, including former production facilities and many support buildings, currently remain on this 27-square-mile facility located just northeast of Denver, Colorado. From February 1, 1995, through June 1, 1995, a feasibility study for building demolition at RMA was conducted. This study, the Pilot Building Demolition Project (PBDP), was completed to evaluate the applicability and effectiveness of selected building remediation, emission control, and demolition techniques that may be utilized in the future during full-scale site remediation. Four buildings were demolished using a variety of strategies and techniques. The US Army conducted intensive ambient air monitoring in the vicinity of demolition activity throughout the PBDP. Monitoring was conducted for total suspended particulates (TSP), particulate matter less than 10 micrometers in diameter (PM-10), heavy metals, mercury, volatile organic compounds (VOCs), and organochlorine pesticides (OCPs). Mobile sampling platforms were placed in the four cardinal directions around each demolition area to provide intensive close-in monitoring coverage. Additional samplers, which are part of a larger, RMA-wide monitoring network, were also used to provide more distant sampling locations in the vicinity of each area. The objective of the monitoring program was to characterize the effects of demolition activities on the surrounding air quality.

  12. AN INTERDISCIPLINARY APPROACH TO ADDRESSING NEIGHBORHOOD SCALE AIR QUALITY CONCERNS: THE INTEGRATION OF GIS, URBAN MORPHOLOGY, PREDICTIVE METEOROLOGY, AND AIR QUALITY MONITORING TOOLS

    EPA Science Inventory

    The paper describes a project that combines the capabilities of urban geography, raster-based GIS, predictive meteorological and air pollutant diffusion modeling, to support a neighborhood-scale air quality monitoring pilot study under the U.S. EPA EMPACT Program. The study ha...

  13. On-site monitoring of vinyl chloride at part per trillion levels in air

    SciTech Connect

    Linenberg, A.

    1995-12-31

    The need to measure vinyl chloride at part per trillion levels and below in the atmosphere presents a challenge for those involved with environmental monitoring. Sentex has previously reported measuring vinyl chloride in the air at 1.0 part per billion levels and above. A portable gas chromatograph equipped with a special preconcentrator was used for on-site monitoring of vinyl chloride at sub-parts per billion levels. The test was performed at a landfill adjacent to a residential area. A lap-top computer controlled the gas chromatograph`s functions including sampling, preconcentration, chromatographic parameters, and data storage. Concentrations down to .02 ppb (20 ppt) were successfully detected.

  14. Performance Evaluation of the Operational Air Quality Monitor for Water Testing Aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Wallace, William T.; Limero, Thomas F.; Gazda, Daniel B.; Minton, John M.; Macatangay, Ariel V.; Dwivedi, Prabha; Fernandez, Facundo M.

    2014-01-01

    Real-time environmental monitoring on ISS is necessary to provide data in a timely fashion and to help ensure astronaut health. Current real-time water TOC monitoring provides high-quality trending information, but compound-specific data is needed. The combination of ETV with the AQM showed that compounds of interest could be liberated from water and analyzed in the same manner as air sampling. Calibration of the AQM using water samples allowed for the quantitative analysis of ISS archival samples. Some calibration issues remain, but the excellent accuracy of DMSD indicates that ETV holds promise for as a sample introduction method for water analysis in spaceflight.

  15. Noncontact monitoring of incision depth in laser surgery with air-coupled ultrasound transducers.

    PubMed

    Landa, Francisco Javier Oyaga; Deán-Ben, Xosé Luís; Montero de Espinosa, Francisco; Razansky, Daniel

    2016-06-15

    Lack of haptic feedback during laser surgery makes it difficult to control the incision depth, leading to high risk of undesired tissue damage. Here, we present a new feedback sensing method that accomplishes noncontact real-time monitoring of laser ablation procedures by detecting shock waves emanating from the ablation spot with air-coupled transducers. Experiments in soft and hard tissue samples attained high reproducibility in real-time depth estimation of the laser-induced cuts. The advantages derived from the noncontact nature of the suggested monitoring approach are expected to advance the general applicability of laser-based surgeries. PMID:27304268

  16. An Improved Calibration Method for Hydrazine Monitors for the United States Air Force

    SciTech Connect

    Korsah, K

    2003-07-07

    This report documents the results of Phase 1 of the ''Air Force Hydrazine Detector Characterization and Calibration Project''. A method for calibrating model MDA 7100 hydrazine detectors in the United States Air Force (AF) inventory has been developed. The calibration system consists of a Kintek 491 reference gas generation system, a humidifier/mixer system which combines the dry reference hydrazine gas with humidified diluent or carrier gas to generate the required humidified reference for calibrations, and a gas sampling interface. The Kintek reference gas generation system itself is periodically calibrated using an ORNL-constructed coulometric titration system to verify the hydrazine concentration of the sample atmosphere in the interface module. The Kintek reference gas is then used to calibrate the hydrazine monitors. Thus, coulometric titration is only used to periodically assess the performance of the Kintek reference gas generation system, and is not required for hydrazine monitor calibrations. One advantage of using coulometric titration for verifying the concentration of the reference gas is that it is a primary standard (if used for simple solutions), thereby guaranteeing, in principle, that measurements will be traceable to SI units (i.e., to the mole). The effect of humidity of the reference gas was characterized by using the results of concentrations determined by coulometric titration to develop a humidity correction graph for the Kintek 491 reference gas generation system. Using this calibration method, calibration uncertainty has been reduced by 50% compared to the current method used to calibrate hydrazine monitors in the Air Force inventory and calibration time has also been reduced by more than 20%. Significant findings from studies documented in this report are the following: (1) The Kintek 491 reference gas generation system (generator, humidifier and interface module) can be used to calibrate hydrazine detectors. (2) The Kintek system output

  17. Characterizing perfluorooctanoate in ambient air near the fence line of a manufacturing facility: comparing modeled and monitored values.

    PubMed

    Barton, Catherine A; Butler, Larry E; Zarzecki, Charles J; Flaherty, John; Kaiser, Mary

    2006-01-01

    In order to improve our understanding of the nature, measurement and prediction of salts of perfluorooctanoic acid (PFOA) in air, two studies were performed along the fence line of a fluoropolymer manufacturing facility. First, a six-event, 24-hr monitoring series was performed around the fence line using the OSHA versatile sampler (OVS) system. Perfluorooctanoate concentrations were determined as perfluorooctanoic acid (PFOA) via liquid chromatography and mass spectrometry. Those data indicated that the majority of the PFOA was present as a particulate. No vapor-phase PFOA was detected above a detection limit of approximately 0.07 microg/m3. A follow-up study using a high-volume cascade impactor verified the range of concentrations observed in the OVS data. Both studies aligned with the major transport direction and range of concentrations predicted by an air dispersion model, demonstrating that model predictions agreed with monitoring results. Results from both monitoring methods and predictions from air dispersion modeling showed the primary direction of transport for PFOA was in the prevailing wind direction. The PFOA concentration measured at the site fence over the 10-week sampling period ranged from 0.12 to 0.9 microg/m3. Modeled predictions for the same time period ranged from 0.12 to 3.84 microg/m3. Less than 6% of the particles were larger than 4 microm in size, while almost 60% of the particles were below 0.3 microm. These studies are believed to be the first published ambient air data for PFOA in the environment surrounding a manufacturing facility. PMID:16499146

  18. Long-term Monitoring Program Optimization for Chlorinated Volatile Organic Compound Plume, Naval Air Station Brunswick, Maine

    NASA Astrophysics Data System (ADS)

    Calderone, G. M.

    2006-12-01

    A long-term monitoring program was initiated in 1995 at 6 sites at NAS Brunswick, including 3 National Priorities List (Superfund) sites. Primary contaminants of concern include chlorinated volatile organic compounds, including tetrachloroethane, trichloroethene, and vinyl chloride, in addition to metals. More than 80 submersible pumping systems were installed to facilitate sample collection utilizing the low-flow sampling technique. Long-term monitoring of the groundwater is conducted to assess the effectiveness of remedial measures, and monitor changes in contaminant concentrations in the Eastern Plume Operable Unit. Long-term monitoring program activities include quarterly groundwater sampling and analysis at more than 90 wells across 6 sites; surface water, sediment, seep, and leachate sampling and analysis at 3 sites; landfill gas monitoring; well maintenance; engineering inspections of landfill covers and other sites or evidence of stressed vegetation; water level gauging; and treatment plant sampling and analysis. Significant cost savings were achieved by optimizing the sampling network and reducing sampling frequency from quarterly to semi- annual or annual sampling. As part of an ongoing optimization effort, a geostatistical assessment of the Eastern Plume was conducted at the Naval Air Station, Brunswick, Maine. The geostatistical assessment used 40 monitoring points and analytical data collected over 3 years. For this geostatistical assessment, EA developed and utilized a database of analytical results generated during 3 years of long-term monitoring which was linked to a Geographic Information System to enhance data visualization capacity. The Geographic Information System included themes for groundwater volatile organic compound concentration, groundwater flow directions, shallow and deep wells, and immediate access to point-specific analytical results. This statistical analysis has been used by the site decision-maker and its conclusions supported a

  19. Air/ground wind shear information integration: Flight test results

    NASA Technical Reports Server (NTRS)

    Hinton, David A.

    1992-01-01

    An element of the NASA/FAA wind shear program is the integration of ground-based microburst information on the flight deck, to support airborne wind shear alerting and microburst avoidance. NASA conducted a wind shear flight test program in the summer of 1991 during which airborne processing of Terminal Doppler Weather Radar (TDWR) data was used to derive microburst alerts. High level microburst products were extracted from TDWR, transmitted to a NASA Boeing 737 in flight via data link, and processed to estimate the wind shear hazard level (F-factor) that would be experienced by the aircraft in the core of each microburst. The microburst location and F-factor were used to derive a situation display and alerts. The situation display was successfully used to maneuver the aircraft for microburst penetrations, during which in situ 'truth' measurements were made. A total of 19 penetrations were made of TDWR-reported microburst locations, resulting in 18 airborne microburst alerts from the TDWR data and two microburst alerts from the airborne in situ measurements. The primary factors affecting alerting performance were spatial offset of the flight path from the region of strongest shear, differences in TDWR measurement altitude and airplane penetration altitude, and variations in microburst outflow profiles. Predicted and measured F-factors agreed well in penetrations near microburst cores. Although improvements in airborne and ground processing of the TDWR measurement would be required to support an airborne executive-level alerting protocol, the feasibility of airborne utilization of TDWR data link data has been demonstrated.

  20. U.S.-MEXICO BORDER PROGRAM ARIZONA BORDER STUDY--VOCS IN AIR ANALYTICAL RESULTS

    EPA Science Inventory

    The VOCs in Air data set contains analytical results for measurements of up to 45 volatile organic compounds (VOCs) in 183 air samples over 86 households. Results include samples taken using active and passive techniques. The primary VOCs of interest include benzene (CAS# 71-43...