Monitoring Air Quality with Leaf Yeasts.
ERIC Educational Resources Information Center
Richardson, D. H. S.; And Others
1985-01-01
Proposes that leaf yeast serve as quick, inexpensive, and effective techniques for monitoring air quality. Outlines procedures and provides suggestions for data analysis. Includes results from sample school groups who employed this technique. (ML)
Air quality mapping using GIS and economic evaluation of health impact for Mumbai City, India.
Kumar, Awkash; Gupta, Indrani; Brandt, Jørgen; Kumar, Rakesh; Dikshit, Anil Kumar; Patil, Rashmi S
2016-05-01
Mumbai, a highly populated city in India, has been selected for air quality mapping and assessment of health impact using monitored air quality data. Air quality monitoring networks in Mumbai are operated by National Environment Engineering Research Institute (NEERI), Maharashtra Pollution Control Board (MPCB), and Brihanmumbai Municipal Corporation (BMC). A monitoring station represents air quality at a particular location, while we need spatial variation for air quality management. Here, air quality monitored data of NEERI and BMC were spatially interpolated using various inbuilt interpolation techniques of ArcGIS. Inverse distance weighting (IDW), Kriging (spherical and Gaussian), and spline techniques have been applied for spatial interpolation for this study. The interpolated results of air pollutants sulfur dioxide (SO2), nitrogen dioxide (NO2) and suspended particulate matter (SPM) were compared with air quality data of MPCB in the same region. Comparison of results showed good agreement for predicted values using IDW and Kriging with observed data. Subsequently, health impact assessment of a ward was carried out based on total population of the ward and air quality monitored data within the ward. Finally, health cost within a ward was estimated on the basis of exposed population. This study helps to estimate the valuation of health damage due to air pollution. Operating more air quality monitoring stations for measurement of air quality is highly resource intensive in terms of time and cost. The appropriate spatial interpolation techniques can be used to estimate concentration where air quality monitoring stations are not available. Further, health impact assessment for the population of the city and estimation of economic cost of health damage due to ambient air quality can help to make rational control strategies for environmental management. The total health cost for Mumbai city for the year 2012, with a population of 12.4 million, was estimated as USD8000 million.
Monitoring Knowledge Base (MKB)
The Monitoring Knowledge Base (MKB) is a compilation of emissions measurement and monitoring techniques associated with air pollution control devices, industrial process descriptions, and permitting techniques, including flexible permit development. Using MKB, one can gain a comprehensive understanding of emissions sources, control devices, and monitoring techniques, enabling one to determine appropriate permit terms and conditions.
Large-scale monitoring of air pollution in remote and ecologically important areas
Andrzej Bytnerowicz; Witold Fraczek
2013-01-01
New advances in air quality monitoring techniques, such as passive samplers for nitrogenous (N) or sulphurous (S) pollutants and ozone (O3), have allowed for an improved understanding of concentrations of these pollutants in remote areas. Mountains create special problems with regard to the feasibility of establishing and maintaining air pollution monitoring networks,...
Predictive monitoring and diagnosis of periodic air pollution in a subway station.
Kim, YongSu; Kim, MinJung; Lim, JungJin; Kim, Jeong Tai; Yoo, ChangKyoo
2010-11-15
The purpose of this study was to develop a predictive monitoring and diagnosis system for the air pollutants in a subway system using a lifting technique with a multiway principal component analysis (MPCA) which monitors the periodic patterns of the air pollutants and diagnoses the sources of the contamination. The basic purpose of this lifting technique was to capture the multivariate and periodic characteristics of all of the indoor air samples collected during each day. These characteristics could then be used to improve the handling of strong periodic fluctuations in the air quality environment in subway systems and will allow important changes in the indoor air quality to be quickly detected. The predictive monitoring approach was applied to a real indoor air quality dataset collected by telemonitoring systems (TMS) that indicated some periodic variations in the air pollutants and multivariate relationships between the measured variables. Two monitoring models--global and seasonal--were developed to study climate change in Korea. The proposed predictive monitoring method using the lifted model resulted in fewer false alarms and missed faults due to non-stationary behavior than that were experienced with the conventional methods. This method could be used to identify the contributions of various pollution sources. Copyright © 2010 Elsevier B.V. All rights reserved.
Air-coupled ultrasound: a novel technique for monitoring the curing of thermosetting matrices.
Lionetto, Francesca; Tarzia, Antonella; Maffezzoli, Alfonso
2007-07-01
A custom-made, air-coupled ultrasonic device was applied to cure monitoring of thick samples (7-10 mm) of unsaturated polyester resin at room temperature. A key point was the optimization of the experimental setup in order to propagate compression waves during the overall curing reaction by suitable placement of the noncontact transducers, placed on the same side of the test material, in the so-called pitch-catch configuration. The progress of polymerization was monitored through the variation of the time of flight of the propagating longitudinal waves. The exothermic character of the polymerization was taken into account by correcting the measured value of time of flight with that one in air, obtained by sampling the air velocity during the experiment. The air-coupled ultrasonic results were compared with those obtained from conventional contact ultrasonic measurements. The good agreement between the air-coupled ultrasonic results and those obtained by the rheological analysis demonstrated the reliability of air-coupled ultrasound in monitoring the changes of viscoelastic properties at gelation and vitrification. The position of the transducers on the same side of the sample makes this technique suitable for on-line cure monitoring during several composite manufacturing technologies.
Advanced Control Techniques with Fuzzy Logic
2014-06-01
ORGANIZATION Structural Validation Branch ( AFRL /RQVV) Aerospace Vehicles Division Air Force Research Laboratory , Aerospace Systems Directorate......SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING Air Force Research Laboratory Aerospace Systems Directorate Wright
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-07
... techniques, provisions for the establishment and operation of appropriate devices necessary to collect data... information.) Ambient air quality monitoring data for the 3-year period must meet a data completeness requirement. The ambient air quality monitoring data completeness requirement is met when the percent of days...
High resolution remote sensing of densely urbanised regions: a case study of Hong Kong.
Nichol, Janet E; Wong, Man Sing
2009-01-01
Data on the urban environment such as climate or air quality is usually collected at a few point monitoring stations distributed over a city. However, the synoptic viewpoint of satellites where a whole city is visible on a single image permits the collection of spatially comprehensive data at city-wide scale. In spite of rapid developments in remote sensing systems, deficiencies in image resolution and algorithm development still exist for applications such as air quality monitoring and urban heat island analysis. This paper describes state-of-the-art techniques for enhancing and maximising the spatial detail available from satellite images, and demonstrates their applications to the densely urbanised environment of Hong Kong. An Emissivity Modulation technique for spatial enhancement of thermal satellite images permits modelling of urban microclimate in combination with other urban structural parameters at local scale. For air quality monitoring, a Minimum Reflectance Technique (MRT) has been developed for MODIS 500 m images. The techniques described can promote the routine utilization of remotely sensed images for environmental monitoring in cities of the 21(st) century.
High Resolution Remote Sensing of Densely Urbanised Regions: a Case Study of Hong Kong
Nichol, Janet E.; Wong, Man Sing
2009-01-01
Data on the urban environment such as climate or air quality is usually collected at a few point monitoring stations distributed over a city. However, the synoptic viewpoint of satellites where a whole city is visible on a single image permits the collection of spatially comprehensive data at city-wide scale. In spite of rapid developments in remote sensing systems, deficiencies in image resolution and algorithm development still exist for applications such as air quality monitoring and urban heat island analysis. This paper describes state-of-the-art techniques for enhancing and maximising the spatial detail available from satellite images, and demonstrates their applications to the densely urbanised environment of Hong Kong. An Emissivity Modulation technique for spatial enhancement of thermal satellite images permits modelling of urban microclimate in combination with other urban structural parameters at local scale. For air quality monitoring, a Minimum Reflectance Technique (MRT) has been developed for MODIS 500 m images. The techniques described can promote the routine utilization of remotely sensed images for environmental monitoring in cities of the 21st century. PMID:22408549
Use of High Resolution Mobile Monitoring Techniques to Assess Near Road Air Quality Variability
This presentation provides a description of the techniques used to develop and conduct effective mobile monitoring studies. It also provides a summary of mobile monitoring assessment studies that have been used to assess near-road concentrations and the variability of pollutant l...
Use of High Resolution Mobile Monitoring Techniques to Assess Near-Road Air Quality Variability
This presentation provides a description of the techniques used to develop and conduct effective mobile monitoring studies. It also provides a summary of mobile monitoring assessment studies that have been used to assess near-road concentrations and the variability of pollutant l...
Hayes, Robert
2004-10-01
In most nuclear facilities, fixed air samplers and sometimes portable air samplers are used where some probability of a release exists but is not expected, and so the added expense and effort of using a continuous air monitor is not deemed justified. When a release is suspected, naturally occurring radioactive material buildup on the filter typically prevents any quantitative measurements within the first day or so. Likewise, outdoor air measurements suffer from the same limitations (such as those taken during the Los Alamos fires) and so any rapid quantifiable measurements of fixed air sampler/portable air sampler filters which are technically defendable (even though conservative) are of use. The technique presented here is only intended for use in routine health physics survey applications and does not presently appear to be appropriate for sub pico Curie activity determinations. This study evaluates the utility of using a portable continuous air monitor as an alpha spectrometer to make transuranic activity determinations of samples using both the built in algorithm for air monitoring and a simple region of interest analysis. All samples evaluated were from air sample filters taken using a portable air sampler. Samples were taken over many months to quantify effects from natural variation in radon progeny activity distributions.
Donnelly, Aoife; Naughton, Owen; Misstear, Bruce; Broderick, Brian
2016-10-14
This article describes a new methodology for increasing the spatial representativeness of individual monitoring sites. Air pollution levels at a given point are influenced by emission sources in the immediate vicinity. Since emission sources are rarely uniformly distributed around a site, concentration levels will inevitably be most affected by the sources in the prevailing upwind direction. The methodology provides a means of capturing this effect and providing additional information regarding source/pollution relationships. The methodology allows for the division of the air quality data from a given monitoring site into a number of sectors or wedges based on wind direction and estimation of annual mean values for each sector, thus optimising the information that can be obtained from a single monitoring station. The method corrects for short-term data, diurnal and seasonal variations in concentrations (which can produce uneven weighting of data within each sector) and uneven frequency of wind directions. Significant improvements in correlations between the air quality data and the spatial air quality indicators were obtained after application of the correction factors. This suggests the application of these techniques would be of significant benefit in land-use regression modelling studies. Furthermore, the method was found to be very useful for estimating long-term mean values and wind direction sector values using only short-term monitoring data. The methods presented in this article can result in cost savings through minimising the number of monitoring sites required for air quality studies while also capturing a greater degree of variability in spatial characteristics. In this way, more reliable, but also more expensive monitoring techniques can be used in preference to a higher number of low-cost but less reliable techniques. The methods described in this article have applications in local air quality management, source receptor analysis, land-use regression mapping and modelling and population exposure studies.
Lichens as bioindicators of air quality
K. Stolte; D. Mangis; R. Doty; K. Tonnessen; Laurie S. Huckaby
1993-01-01
This report is the result of a workshop held in Denver, Colorado on April 9-11, 1991. It summarizes the current literature and techniques for using lichens to monitor air quality. Experts in lichenology and ecology contributed information on lichen floristics, characterization of monitoring sites, lichen species and communities, identifying lichen species...
NEAR-SURFACE AIR PARCEL TRAJECTORIES - ST. LOUIS, 1975
The utility of air parcel trajectories is described for the diagnosis of mesometeorological and urban air pollution problems. A technique is described that uses the St. Louis Regional Air Monitoring System (RAMS) to provide wind measurements for the local urban scale. A computeri...
Cotrozzi, Lorenzo; Townsend, Philip A; Pellegrini, Elisa; Nali, Cristina; Couture, John J
2018-03-01
The Mediterranean basin can be considered a hot spot not only in terms of climate change (CC) but also for air quality. Assessing the impact of CC and air pollution on ecosystem functions is a challenging task, and adequate monitoring techniques are needed. This paper summarizes the present knowledge on the use of reflectance spectroscopy for the evaluation of the effects of air pollution on plants. First, the history of this technique is outlined. Next, we describe the vegetation reflectance spectrum, how it can be scaled from leaf to landscape levels, what information it contains, and how it can be exploited to understand plant and ecosystem functions. Finally, we review the literature concerning this topic, with special attention to Mediterranean air pollutants, showing the increasing interest in this technique. The ability of spectroscopy to detect the influence of air pollution on plant function of all major and minor Mediterranean pollutants has been evaluated, and ozone and its interaction with other gases (carbon dioxide, nitrogen oxides, and sulfur dioxide) have been the most studied. In the recent years, novel air pollutants, such as particulate matter, nitrogen deposition, and heavy metals, have drawn attention. Although various vegetation types have been studied, few of these species are representative of the Mediterranean environment. Thus, major emphasis should be placed on using vegetation spectroscopy for better understanding and monitoring the impact of air pollution on Mediterranean plants in the CC era.
Temporal and modal characterization of DoD source air toxic emission factors: final report
This project tested three, real-/near real-time monitoring techniques to develop air toxic emission factors for Department of Defense (DoD) platform sources. These techniques included: resonance enhanced multi photon ionization time of flight mass spectrometry (REMPI-TOFMS) for o...
APPLICATION OF JET REMPI AND LIBS TO AIR TOXIC MONITORING
The paper discusses three advanced, laser-based monitoring techniques that the EPA is assisting in developing for real time measurement of toxic aerosol compounds. One of the three techniques is jet resonance enhanced multiphoton ionization (Jet REMPI) coupled with a time-of-flig...
Instrumentation for air quality measurements.
NASA Technical Reports Server (NTRS)
Loewenstein, M.
1973-01-01
Comparison of the new generation of air quality monitoring instruments with some more traditional methods. The first generation of air quality measurement instruments, based on the use of oxidant coulometric cells, nitrogen oxide colorimetry, carbon monoxide infrared analyzers, and other types of detectors, is compared with new techniques now coming into wide use in the air monitoring field and involving the use of chemiluminescent reactions, optical absorption detectors, a refinement of the carbon monoxide infrared analyzer, electrochemical cells based on solid electrolytes, and laser detectors.
Temporal and modal characterization of DoD source air toxic ...
This project tested three, real-/near real-time monitoring techniques to develop air toxic emission factors for Department of Defense (DoD) platform sources. These techniques included: resonance enhanced multi photon ionization time of flight mass spectrometry (REMPI-TOFMS) for organic air toxics, laser induced breakdown spectroscopy (LIBS) for metallic air toxics, and optical remote sensing (ORS) methods for measurement of criteria pollutants and other hazardous air pollutants (HAPs). Conventional emission measurements were used for verification of the real-time monitoring results. The REMPI-TOFMS system was demonstrated on the following: --a United States U.S. Marine Corps (USMC) diesel generator, --a U.S. Air Force auxiliary power unit (APU), --the waste combustor at the Portsmouth Naval Shipyard, during a multi-monitor environmental technology verification (ETV) test for dioxin monitoring systems, --two dynamometer-driven high mobility multi-purpose wheeled vehicles (HMMWVs), --an idling Abrams battle tank, --a Bradley infantry fighting vehicle (IFV), and --an F-15 and multiple F-22 U.S. Air Force aircraft engines. LIBS was tested and applied solely to the U.S. Marine Corps diesel generator. The high detection limits of LIBS for toxic metals limited its usefulness as a real time analyzer for most DoD sources. ORS was tested only on the APU with satisfactory results for non-condensable combustion products (carbon monoxide [CO], carbon dioxide
CleAir Monitoring System for Particulate Matter: A Case in the Napoleonic Museum in Rome
Bonacquisti, Valerio; Di Michele, Marta; Frasca, Francesca; Chianese, Angelo; Siani, Anna Maria
2017-01-01
Monitoring the air particulate concentration both outdoors and indoors is becoming a more relevant issue in the past few decades. An innovative, fully automatic, monitoring system called CleAir is presented. Such a system wants to go beyond the traditional technique (gravimetric analysis), allowing for a double monitoring approach: the traditional gravimetric analysis as well as the optical spectroscopic analysis of the scattering on the same filters in steady-state conditions. The experimental data are interpreted in terms of light percolation through highly scattering matter by means of the stretched exponential evolution. CleAir has been applied to investigate the daily distribution of particulate matter within the Napoleonic Museum in Rome as a test case. PMID:28892016
Orr, Christopher Henry; Luff, Craig Janson; Dockray, Thomas; Macarthur, Duncan Whittemore
2001-01-01
The apparatus and method provide a technique for more simply measuring alpha and/or beta emissions arising from items or locations. The technique uses indirect monitoring of the emissions by detecting ions generated by the emissions, the ions being attracted electrostatically to electrodes for discharge of collection. The apparatus and method employ a chamber which is sealed around the item or location during monitoring with no air being drawn into or expelled from the chamber during the monitoring process. A simplified structure and operations arises as a result, but without impairing the efficiency and accuracy of the detection technique.
Instrumentation for Air Pollution Monitoring
ERIC Educational Resources Information Center
Hollowell, Craig D.; McLaughlin, Ralph D.
1973-01-01
Describes the techniques which form the basis of current commercial instrumentation for monitoring five major gaseous atmospheric pollutants (sulfur dioxide, oxides of nitrogen, oxidants, carbon monoxide, and hydrocarbons). (JR)
A nonintrusive nuclear monitor for measuring liquid contents in sealed vessels
NASA Technical Reports Server (NTRS)
Singh, J. J.; Mall, G. H.
1984-01-01
A nonintrusive nuclear technique for monitoring fluid contents in sealed vessels, regardless of the fluid distribution inside the vessels is described. The technique is applicable to all-g environments. It is based on the differences in Cesium-137 gamma ray attenuation coefficients in air and the test liquids.
Avison, M; Hart, G
2001-06-01
The aim of this study was to reduce airborne contamination resulting from the use of aerosols in lung ventilation scintigraphy. Lung ventilation imaging is frequently performed with 99mTc-diethylenetriaminepentaacetate aerosol (DTPA), derived from a commercial nebuliser. Airborne contamination is a significant problem with this procedure; it results in exposure of staff to radiation and can reduce gamma camera performance when the ventilation is performed in the camera room. We examined the level of airborne contamination resulting from the standard technique with one of the most popular nebuliser kits and tested a modification which significantly reduced airborne contamination. Air contamination was measured while ventilating 122 patients. The modified technique reduced air contamination by a mean value of 64% (p = 0.028) compared with the standard control technique. Additionally, differences in contamination were examined when a mask or mouthpiece was used as well as differences between operators. A simplified method of monitoring air contamination is presented using a commonly available surface contamination monitor. The index so derived was proportional to air contamination (r = 0.88). The problems and regulations associated with airborne contamination are discussed.
NASA Astrophysics Data System (ADS)
Li, De Z.; Wang, Wilson; Ismail, Fathy
2017-11-01
Induction motors (IMs) are commonly used in various industrial applications. To improve energy consumption efficiency, a reliable IM health condition monitoring system is very useful to detect IM fault at its earliest stage to prevent operation degradation, and malfunction of IMs. An intelligent harmonic synthesis technique is proposed in this work to conduct incipient air-gap eccentricity fault detection in IMs. The fault harmonic series are synthesized to enhance fault features. Fault related local spectra are processed to derive fault indicators for IM air-gap eccentricity diagnosis. The effectiveness of the proposed harmonic synthesis technique is examined experimentally by IMs with static air-gap eccentricity and dynamic air-gap eccentricity states under different load conditions. Test results show that the developed harmonic synthesis technique can extract fault features effectively for initial IM air-gap eccentricity fault detection.
Lichens as bioindicators of air quality. Forest Service general technical report (Final)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stolte, K.; Doty, R.; Mangis, D.
1993-03-01
The report is the result of a workshop held in Denver, Colorado on April 9-11, 1991. It summarizes the current literature and techniques for using lichens to monitor air quality. Experts in lichenology and ecology contributed information on lichen floristics, characterization of monitoring sites, lichen species and communities, identifying lichen species sensitive to pollutants, active monitoring with transplants, chemical analysis of lichens, and case studies as examples of lichen biomonitoring scenarios.
Objective. Epidemiologic and community health studies of traffic-related air pollution and childhood asthma have been limited by resource intensive exposure assessment techniques. The current study utilized a novel participant-based approach to collect air monitoring data f...
Differential Absorption Lidar Measurements of Fugitive Benzene Emissions
NASA Astrophysics Data System (ADS)
Robinson, R. A.; Innocenti, F.; Helmore, J.; Gardiner, T.; Finlayson, A.; Connor, A.
2016-12-01
The Differential Absorption Lidar (DIAL) technique is based on the optical analogue of radar; lidar (light detection and ranging). It provides the capability to remotely measure the concentration and spatial distribution of compounds in the atmosphere. The ability to scan the optical measurement beam throughout the atmosphere enables pollutant concentrations to be mapped, and emission fluxes to be determined when combined with wind data. The NPL DIAL systems can operate in the UV and infrared spectral, enabling the measurement of a range of air pollutants and GHGs including hazardous air pollutants such as benzene. The mobile ground based DIAL systems developed at NPL for pollution monitoring have been used for over 25 years. They have been deployed for routine monitoring, emission factor studies, research investigations and targeted monitoring campaigns. More recently the NPL DIAL has been used in studies to validate other monitoring techniques. In support of this capability, NPL have developed a portable, configurable controlled release system (CRF) able to simulate emissions from typical sources. This has been developed to enable the validation and assessment of fugitive emission monitoring techniques. Following a brief summary of the technique, we outline recent developments in the use of DIAL for monitoring fugitive and diffuse emissions, including the development of a European Standard Method for fugitive emission monitoring. We will present the results of a number of validation exercises using the CRF presenting an update on the performance of DIAL for emission quantification and discuss the wider validation of novel technologies. We will report on recent measurements of the emissions of benzene from industrial sites including a large scale emissions monitoring study carried out by the South Coast Air Quality Management District (SCAQMD) and will report on the measurement of emissions from petrochemical facilities and examine an example of the identification and quantification of a significant benzene release from a facility in Europe. We will discuss the use of advanced techniques such as DIAL in support of the recently introduced EPA refinery rule (and the long term sampling approach in EPA method 325) and explore the role these techniques can have in providing improved data on emissions.
End-user perspective of low-cost sensors for outdoor air pollution monitoring.
Rai, Aakash C; Kumar, Prashant; Pilla, Francesco; Skouloudis, Andreas N; Di Sabatino, Silvana; Ratti, Carlo; Yasar, Ansar; Rickerby, David
2017-12-31
Low-cost sensor technology can potentially revolutionise the area of air pollution monitoring by providing high-density spatiotemporal pollution data. Such data can be utilised for supplementing traditional pollution monitoring, improving exposure estimates, and raising community awareness about air pollution. However, data quality remains a major concern that hinders the widespread adoption of low-cost sensor technology. Unreliable data may mislead unsuspecting users and potentially lead to alarming consequences such as reporting acceptable air pollutant levels when they are above the limits deemed safe for human health. This article provides scientific guidance to the end-users for effectively deploying low-cost sensors for monitoring air pollution and people's exposure, while ensuring reasonable data quality. We review the performance characteristics of several low-cost particle and gas monitoring sensors and provide recommendations to end-users for making proper sensor selection by summarizing the capabilities and limitations of such sensors. The challenges, best practices, and future outlook for effectively deploying low-cost sensors, and maintaining data quality are also discussed. For data quality assurance, a two-stage sensor calibration process is recommended, which includes laboratory calibration under controlled conditions by the manufacturer supplemented with routine calibration checks performed by the end-user under final deployment conditions. For large sensor networks where routine calibration checks are impractical, statistical techniques for data quality assurance should be utilised. Further advancements and adoption of sophisticated mathematical and statistical techniques for sensor calibration, fault detection, and data quality assurance can indeed help to realise the promised benefits of a low-cost air pollution sensor network. Copyright © 2017 Elsevier B.V. All rights reserved.
Optical remote measurement of toxic gases
NASA Technical Reports Server (NTRS)
Grant, W. B.; Kagann, R. H.; McClenny, W. A.
1992-01-01
Enactment of the Clean Air Act Amendments (CAAA) of 1990 has resulted in increased ambient air monitoring needs for industry, some of which may be met efficiently using open-path optical remote sensing techniques. These techniques include Fourier transform spectroscopy, differential optical absorption spectroscopy, laser long-path absorption, differential absorption lidar, and gas cell correlation spectroscopy. With this regulatory impetus, it is an opportune time to consider applying these technologies to the remote and/or path-averaged measurement and monitoring of toxic gases covered by the CAAA. This article reviews the optical remote sensing technology and literature for that application.
NASA Astrophysics Data System (ADS)
Steffens, Juliana; da Costa, Renata F.; Landulfo, Eduardo; Guardani, Roberto; Moreira, Paulo F., Jr.; Held, Gerhard
2011-11-01
Optical remote sensing techniques have obvious advantages for monitoring gas and aerosol emissions, since they enable the operation over large distances, far from hostile environments, and fast processing of the measured signal. In this study two remote sensing devices, namely a Lidar (Light Detection and Ranging) for monitoring the vertical profile of backscattered light intensity, and a Sodar (Acoustic Radar, Sound Detection and Ranging) for monitoring the vertical profile of the wind vector were operated during specific periods. The acquired data were processed and compared with data of air quality obtained from ground level monitoring stations, in order to verify the possibility of using the remote sensing techniques to monitor industrial emissions. The campaigns were carried out in the area of the Environmental Research Center (Cepema) of the University of Sao Paulo, in the city of Cubatao, Brazil, a large industrial site, where numerous different industries are located, including an oil refinery, a steel plant, as well as fertilizer, cement and chemical/petrochemical plants. The local environmental problems caused by the industrial activities are aggravated by the climate and topography of the site, unfavorable to pollutant dispersion. Results of a campaign are presented for a 24- hour period, showing data of a Lidar, an air quality monitoring station and a Sodar.
NASA Astrophysics Data System (ADS)
Guttikunda, S. K.; Johnson, T. M.; Procee, P.
2004-12-01
Fossil fuel combustion for domestic cooking and heating, power generation, industrial processes, and motor vehicles are the primary sources of air pollution in the developing country cities. Over the past twenty years, major advances have been made in understanding the social and economic consequences of air pollution. In both industrialized and developing countries, it has been shown that air pollution from energy combustion has detrimental impacts on human health and the environment. Lack of information on the sectoral contributions to air pollution - especially fine particulates, is one of the typical constraints for an effective integrated urban air quality management program. Without such information, it is difficult, if not impossible, for decision makers to provide policy advice and make informed investment decisions related to air quality improvements in developing countries. This also raises the need for low-cost ways of determining the principal sources of fine PM for a proper planning and decision making. The project objective is to develop and verify a methodology to assess and monitor the sources of PM, using a combination of ground-based monitoring and source apportionment techniques. This presentation will focus on four general tasks: (1) Review of the science and current activities in the combined use of monitoring data and modeling for better understanding of PM pollution. (2) Review of recent advances in atmospheric source apportionment techniques (e.g., principal component analysis, organic markers, source-receptor modeling techniques). (3) Develop a general methodology to use integrated top-down and bottom-up datasets. (4) Review of a series of current case studies from Africa, Asia and Latin America and the methodologies applied to assess the air pollution and its sources.
Reevaluation of air surveillance station siting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abbott, K.; Jannik, T.
2016-07-06
DOE Technical Standard HDBK-1216-2015 (DOE 2015) recommends evaluating air-monitoring station placement using the analytical method developed by Waite. The technique utilizes wind rose and population distribution data in order to determine a weighting factor for each directional sector surrounding a nuclear facility. Based on the available resources (number of stations) and a scaling factor, this weighting factor is used to determine the number of stations recommended to be placed in each sector considered. An assessment utilizing this method was performed in 2003 to evaluate the effectiveness of the existing SRS air-monitoring program. The resulting recommended distribution of air-monitoring stations wasmore » then compared to that of the existing site perimeter surveillance program. The assessment demonstrated that the distribution of air-monitoring stations at the time generally agreed with the results obtained using the Waite method; however, at the time new stations were established in Barnwell and in Williston in order to meet requirements of DOE guidance document EH-0173T.« less
Linking Meteorology, Air Quality Models and Observations to ...
Epidemiologic studies are critical in establishing the association between exposure to air pollutants and adverse health effects. Results of epidemiologic studies are used by U.S. EPA in developing air quality standards to protect the public from the health effects of air pollutants. A major challenge in environmental epidemiology is adequate exposure characterization. Numerous health studies have used measurements from a few central-site ambient monitors to characterize air pollution exposures. Relying solely on central-site ambient monitors does not account for the spatial-heterogeneity of ambient air pollution patterns, the temporal variability in ambient concentrations, nor the influence of infiltration and indoor sources. Central-site monitoring becomes even more problematic for certain air pollutants that exhibit significant spatial heterogeneity. Statistical interpolation techniques and passive monitoring methods can provide additional spatial resolution in ambient concentration estimates. In addition, spatio-temporal models, which integrate GIS data and other factors, such as meteorology, have also been developed to produce more resolved estimates of ambient concentrations. Models, such as the Community Multi-Scale Air Quality (CMAQ) model, estimate ambient concentrations by combining information on meteorology, source emissions, and chemical-fate and transport. Hybrid modeling approaches, which integrate regional scale models with local scale dispersion
Syed Abdul Mutalib, Sharifah Norsukhairin; Juahir, Hafizan; Azid, Azman; Mohd Sharif, Sharifah; Latif, Mohd Talib; Aris, Ahmad Zaharin; Zain, Sharifuddin M; Dominick, Doreena
2013-09-01
The objective of this study is to identify spatial and temporal patterns in the air quality at three selected Malaysian air monitoring stations based on an eleven-year database (January 2000-December 2010). Four statistical methods, Discriminant Analysis (DA), Hierarchical Agglomerative Cluster Analysis (HACA), Principal Component Analysis (PCA) and Artificial Neural Networks (ANNs), were selected to analyze the datasets of five air quality parameters, namely: SO2, NO2, O3, CO and particulate matter with a diameter size of below 10 μm (PM10). The three selected air monitoring stations share the characteristic of being located in highly urbanized areas and are surrounded by a number of industries. The DA results show that spatial characterizations allow successful discrimination between the three stations, while HACA shows the temporal pattern from the monthly and yearly factor analysis which correlates with severe haze episodes that have happened in this country at certain periods of time. The PCA results show that the major source of air pollution is mostly due to the combustion of fossil fuel in motor vehicles and industrial activities. The spatial pattern recognition (S-ANN) results show a better prediction performance in discriminating between the regions, with an excellent percentage of correct classification compared to DA. This study presents the necessity and usefulness of environmetric techniques for the interpretation of large datasets aiming to obtain better information about air quality patterns based on spatial and temporal characterizations at the selected air monitoring stations.
Principal Component Analysis for Enhancement of Infrared Spectra Monitoring
NASA Astrophysics Data System (ADS)
Haney, Ricky Lance
The issue of air quality within the aircraft cabin is receiving increasing attention from both pilot and flight attendant unions. This is due to exposure events caused by poor air quality that in some cases may have contained toxic oil components due to bleed air that flows from outside the aircraft and then through the engines into the aircraft cabin. Significant short and long-term medical issues for aircraft crew have been attributed to exposure. The need for air quality monitoring is especially evident in the fact that currently within an aircraft there are no sensors to monitor the air quality and potentially harmful gas levels (detect-to-warn sensors), much less systems to monitor and purify the air (detect-to-treat sensors) within the aircraft cabin. The specific purpose of this research is to utilize a mathematical technique called principal component analysis (PCA) in conjunction with principal component regression (PCR) and proportionality constant calculations (PCC) to simplify complex, multi-component infrared (IR) spectra data sets into a reduced data set used for determination of the concentrations of the individual components. Use of PCA can significantly simplify data analysis as well as improve the ability to determine concentrations of individual target species in gas mixtures where significant band overlap occurs in the IR spectrum region. Application of this analytical numerical technique to IR spectrum analysis is important in improving performance of commercial sensors that airlines and aircraft manufacturers could potentially use in an aircraft cabin environment for multi-gas component monitoring. The approach of this research is two-fold, consisting of a PCA application to compare simulation and experimental results with the corresponding PCR and PCC to determine quantitatively the component concentrations within a mixture. The experimental data sets consist of both two and three component systems that could potentially be present as air contaminants in an aircraft cabin. In addition, experimental data sets are analyzed for a hydrogen peroxide (H2O2) aqueous solution mixture to determine H2O2 concentrations at various levels that could be produced during use of a vapor phase hydrogen peroxide (VPHP) decontamination system. After the PCA application to two and three component systems, the analysis technique is further expanded to include the monitoring of potential bleed air contaminants from engine oil combustion. Simulation data sets created from database spectra were utilized to predict gas components and concentrations in unknown engine oil samples at high temperatures as well as time-evolved gases from the heating of engine oils.
Measurement of 224Ra and 226Ra activities in natural waters using a radon-in-air monitor
Kim, G.; Burnett, W.C.; Dulaiova, H.; Swarzenski, P.W.; Moore, W.S.
2001-01-01
We report a simple new technique for measuring low-level radium isotopes (224Ra and 226Ra) in natural waters. The radium present in natural waters is first preconcentrated onto MnO2-coated acrylic fiber (Mn fiber) in a column mode. The radon produced from the adsorbed radium is then circulated through a closed air-loop connected to a commercial radon-in-air monitor. The monitor counts alpha decays of radon daughters (polonium isotopes) which are electrostatically collected onto a silicon semiconductor detector. Count data are collected in energy-specific windows, which eliminate interference and maintain very low backgrounds. Radium-224 is measured immediately after sampling via 220Rn (216Po), and 226Ra is measured via 222Rn (218Po) after a few days of ingrowth of 222Rn. This technique is rapid, simple, and accurate for measurements of low-level 224Ra and 226Ra activities without requiring any wet chemistry. Rapid measurements of short-lived 222Rn and 224Ra, along with long-lived 226Ra, may thus be made in natural waters using a single portable system for environmental monitoring of radioactivity as well as tracing of various geochemical and geophysical processes. The technique could be especially useful for the on-site rapid determination of 224Ra which has recently been found to occur at elevated activities in some groundwater wells.
Measuring concentrations of selected air pollutants inside California vehicles : final report
DOT National Transportation Integrated Search
1998-12-01
This study provided the data needed to characterize in-transit exposures to air pollutants for California drivers. It also demonstrated a number of in-situ monitoring techniques in moving vehicles and provided findings that shed new light on particle...
Air Pollution Surveillance Systems
ERIC Educational Resources Information Center
Morgan, George B.; And Others
1970-01-01
Describes atmospheric data monitoring as part of total airpollution control effort. Summarizes types of gaseous, liquid and solid pollutants and their sources; contrast between urban and rural environmental air quality; instrumentation to identify pollutants; and anticipated new non-wet chemical physical and physiochemical techniques tor cetection…
Olaguer, Eduardo P; Erickson, Matthew; Wijesinghe, Asanga; Neish, Brad; Williams, Jeff; Colvin, John
2016-02-01
An explosive growth in natural gas production within the last decade has fueled concern over the public health impacts of air pollutant emissions from oil and gas sites in the Barnett and Eagle Ford shale regions of Texas. Commonly acknowledged sources of uncertainty are the lack of sustained monitoring of ambient concentrations of pollutants associated with gas mining, poor quantification of their emissions, and inability to correlate health symptoms with specific emission events. These uncertainties are best addressed not by conventional monitoring and modeling technology, but by increasingly available advanced techniques for real-time mobile monitoring, microscale modeling and source attribution, and real-time broadcasting of air quality and human health data over the World Wide Web. The combination of contemporary scientific and social media approaches can be used to develop a strategy to detect and quantify emission events from oil and gas facilities, alert nearby residents of these events, and collect associated human health data, all in real time or near-real time. The various technical elements of this strategy are demonstrated based on the results of past, current, and planned future monitoring studies in the Barnett and Eagle Ford shale regions. Resources should not be invested in expanding the conventional air quality monitoring network in the vicinity of oil and gas exploration and production sites. Rather, more contemporary monitoring and data analysis techniques should take the place of older methods to better protect the health of nearby residents and maintain the integrity of the surrounding environment.
Hayes, Robert B; Peña, Adan M; Goff, Thomas E
2005-08-01
This paper demonstrates the utility of a portable alpha Continuous Air Monitor (CAM) as a bench top scalar counter for multiple sample types. These include using the CAM to count fixed air sample filters and radiological smears. In counting radiological smears, the CAM is used very much like a gas flow proportional counter (GFPC), albeit with a lower efficiency. Due to the typically low background in this configuration, the minimum detectable activity for a 5-min count should be in the range of about 10 dpm which is acceptably below the 20 dpm limit for transuranic isotopes. When counting fixed air sample filters, the CAM algorithm along with other measurable characteristics can be used to identify and quantify the presence of transuranic isotopes in the samples. When the radiological control technician wants to take some credit from naturally occurring radioactive material contributions due to radon progeny producing higher energy peaks (as in the case with a fixed air sample filter), then more elaborate techniques are required. The techniques presented here will generate a decision level of about 43 dpm for such applications. The calibration for this application should alternatively be done using the default values of channels 92-126 for region of interest 1. This can be done within 10 to 15 min resulting in a method to rapidly evaluate air filters for transuranic activity. When compared to the 1-h count technique described by , the technique presented in the present work demonstrates a technique whereby more than two thirds of samples can be rapidly shown (within 10 to 15 min) to be within regulatory compliant limits. In both cases, however, spectral quality checks are required to insure sample self attenuation is not a significant bias in the activity estimates. This will allow the same level of confidence when using these techniques for activity quantification as is presently available for air monitoring activity quantification using CAMs.
Optical Air Flow Measurements for Flight Tests and Flight Testing Optical Air Flow Meters
NASA Technical Reports Server (NTRS)
Jentink, Henk W.; Bogue, Rodney K.
2005-01-01
Optical air flow measurements can support the testing of aircraft and can be instrumental to in-flight investigations of the atmosphere or atmospheric phenomena. Furthermore, optical air flow meters potentially contribute as avionics systems to flight safety and as air data systems. The qualification of these instruments for the flight environment is where we encounter the systems in flight testing. An overview is presented of different optical air flow measurement techniques applied in flight and what can be achieved with the techniques for flight test purposes is reviewed. All in-flight optical airflow velocity measurements use light scattering. Light is scattered on both air molecules and aerosols entrained in the air. Basic principles of making optical measurements in flight, some basic optical concepts, electronic concepts, optoelectronic interfaces, and some atmospheric processes associated with natural aerosols are reviewed. Safety aspects in applying the technique are shortly addressed. The different applications of the technique are listed and some typical examples are presented. Recently NASA acquired new data on mountain rotors, mountain induced turbulence, with the ACLAIM system. Rotor position was identified using the lidar system and the potentially hazardous air flow profile was monitored by the ACLAIM system.
Predicting Air Quality in Smart Environments
Deleawe, Seun; Kusznir, Jim; Lamb, Brian; Cook, Diane J.
2011-01-01
The pervasive sensing technologies found in smart environments offer unprecedented opportunities for monitoring and assisting the individuals who live and work in these spaces. As aspect of daily life that is often overlooked in maintaining a healthy lifestyle is the air quality of the environment. In this paper we investigate the use of machine learning technologies to predict CO2 levels as an indicator of air quality in smart environments. We introduce techniques for collecting and analyzing sensor information in smart environments and analyze the correlation between resident activities and air quality levels. The effectiveness of our techniques is evaluated using three physical smart environment testbeds. PMID:21617739
NASA Astrophysics Data System (ADS)
Polidori, A.; Tisopulos, L.; Pikelnaya, O.; Mellqvist, J.; Samuelsson, J.; Marianne, E.; Robinson, R. A.; Innocenti, F.; Finlayson, A.; Hashmonay, R.
2016-12-01
Despite great advances in reducing air pollution, the South Coast Air Basin (SCAB) still faces challenges to attain federal health standards for air quality. Refineries are large sources of ozone precursors and, hence contribute to the air quality problems of the region. Additionally, petrochemical facilities are also sources of other hazardous air pollutants (HAP) that adversely affect human health, for example aromatic hydrocarbons. In order to assure safe operation, decrease air pollution and minimize population exposure to HAP the South Coast Air Quality Management District (SCAQMD) has a number of regulations for petrochemical facilities. However, significant uncertainties still exist in emission estimates and traditional monitoring techniques often do not allow for real-time emission monitoring. In the fall of 2015 the SCAQMD, Fluxsense Inc., the National Physical Laboratory (NPL), and Atmosfir Optics Ltd. conducted a measurement study to characterize and quantify gaseous emissions from the tank farm of one of the largest oil refineries in the SCAB. Fluxsense used a vehicle equipped with Solar Occultation Flux (SOF), Differential Optical Absorption Spectroscopy (DOAS), and Extractive Fourier Transform Infrared (FTIR) spectroscopy instruments. Concurrently, NPL operated their Differential Absorption Lidar (DIAL) system. Both research groups quantified emissions from the entire tank farm and identified fugitive emission sources within the farm. At the same time, Atmosfir operated an Open Path FTIR (OP-FTIR) spectrometer along the fenceline of the tank farm. During this presentation we will discuss the results of the emission measurements from the tank farm of the petrochemical facility. Emission rates resulting from measurements by different ORS methods will be compared and discussed in detail.
High Temperatures Health Monitoring of the Condensed Water Height in Steam Pipe Systems
NASA Technical Reports Server (NTRS)
Lih, Shyh-Shiuh; Bar-Cohen, Yoseph; Lee, Hyeong Jae; Badescu, Mircea; Bao, Xiaoqi; Sherrit, Stewart; Takano, Nobuyuki; Ostlund, Patrick; Blosiu, Julian
2013-01-01
Ultrasonic probes were designed, fabricated and tested for high temperature health monitoring system. The goal of this work was to develop the health monitoring system that can determine the height level of the condensed water through the pipe wall at high temperature up to 250 deg while accounting for the effects of surface perturbation. Among different ultrasonic probe designs, 2.25 MHz probes with air backed configuration provide satisfactory results in terms of sensitivity, receiving reflections from the target through the pipe wall. A series of tests were performed using the air-backed probes under irregular conditions, such as surface perturbation and surface disturbance at elevated temperature, to qualify the developed ultrasonic system. The results demonstrate that the fabricated air-backed probes combined with advanced signal processing techniques offer the capability of health monitoring of steam pipe under various operating conditions.
NASA Astrophysics Data System (ADS)
Taylan, Osman
2017-02-01
High ozone concentration is an important cause of air pollution mainly due to its role in the greenhouse gas emission. Ozone is produced by photochemical processes which contain nitrogen oxides and volatile organic compounds in the lower atmospheric level. Therefore, monitoring and controlling the quality of air in the urban environment is very important due to the public health care. However, air quality prediction is a highly complex and non-linear process; usually several attributes have to be considered. Artificial intelligent (AI) techniques can be employed to monitor and evaluate the ozone concentration level. The aim of this study is to develop an Adaptive Neuro-Fuzzy inference approach (ANFIS) to determine the influence of peripheral factors on air quality and pollution which is an arising problem due to ozone level in Jeddah city. The concentration of ozone level was considered as a factor to predict the Air Quality (AQ) under the atmospheric conditions. Using Air Quality Standards of Saudi Arabia, ozone concentration level was modelled by employing certain factors such as; nitrogen oxide (NOx), atmospheric pressure, temperature, and relative humidity. Hence, an ANFIS model was developed to observe the ozone concentration level and the model performance was assessed by testing data obtained from the monitoring stations established by the General Authority of Meteorology and Environment Protection of Kingdom of Saudi Arabia. The outcomes of ANFIS model were re-assessed by fuzzy quality charts using quality specification and control limits based on US-EPA air quality standards. The results of present study show that the ANFIS model is a comprehensive approach for the estimation and assessment of ozone level and is a reliable approach to produce more genuine outcomes.
NASA Astrophysics Data System (ADS)
da Costa, Renata F.; Marques, Marcia T. A.; M Macedo, Fernanda de; Andrade, Izabel da Silva; Araujo, Elaine Cristina; Correa, Thais; de Andrade Salani, Maria Helena Goncalves; Lopes, Daniel Silveira; Goncalves Guardani, Maria Lucia; Landulfo, Eduardo; Guardani, Roberto
2018-04-01
Field campaigns with a scanning multiwavelength elastic lidar coupled with a Doppler system to monitor industrial atmospheric aerosol emissions were carried out, with the objective of monitoring aerosol emission sources and plume dispersion. Since the technique provides information on the spatial and temporal distribution of aerosol concentration, the implementation of a systematic monitoring procedure is proposed as a valuable tool in air quality monitoring applied to regions of interest.
Human exposure to air pollution in many studies is represented by ambient concentrations from space-time kriging of observed values. Space-time kriging techniques based on a limited number of ambient monitors may fail to capture the concentration from local sources. Further, beca...
Compressed air injection technique to standardize block injection pressures.
Tsui, Ban C H; Li, Lisa X Y; Pillay, Jennifer J
2006-11-01
Presently, no standardized technique exists to monitor injection pressures during peripheral nerve blocks. Our objective was to determine if a compressed air injection technique, using an in vitro model based on Boyle's law and typical regional anesthesia equipment, could consistently maintain injection pressures below a 1293 mmHg level associated with clinically significant nerve injury. Injection pressures for 20 and 30 mL syringes with various needle sizes (18G, 20G, 21G, 22G, and 24G) were measured in a closed system. A set volume of air was aspirated into a saline-filled syringe and then compressed and maintained at various percentages while pressure was measured. The needle was inserted into the injection port of a pressure sensor, which had attached extension tubing with an injection plug clamped "off". Using linear regression with all data points, the pressure value and 99% confidence interval (CI) at 50% air compression was estimated. The linearity of Boyle's law was demonstrated with a high correlation, r = 0.99, and a slope of 0.984 (99% CI: 0.967-1.001). The net pressure generated at 50% compression was estimated as 744.8 mmHg, with the 99% CI between 729.6 and 760.0 mmHg. The various syringe/needle combinations had similar results. By creating and maintaining syringe air compression at 50% or less, injection pressures will be substantially below the 1293 mmHg threshold considered to be an associated risk factor for clinically significant nerve injury. This technique may allow simple, real-time and objective monitoring during local anesthetic injections while inherently reducing injection speed.
30 CFR 282.28 - Environmental protection measures.
Code of Federal Regulations, 2010 CFR
2010-07-01
... recent research or improved monitoring techniques. (5) When prototype test mining is proposed, the lessee...) The sampling techniques and procedures to be used to acquire the needed data and information; (ii) The... evaluation of the approved Delineation, Testing, or Mining Plan. The Director's review of the air quality...
Development and evaluation of optical fiber NH3 sensors for application in air quality monitoring
NASA Astrophysics Data System (ADS)
Huang, Yu; Wieck, Lucas; Tao, Shiquan
2013-02-01
Ammonia is a major air pollutant emitted from agricultural practices. Sources of ammonia include manure from animal feeding operations and fertilizer from cropping systems. Sensor technologies with capability of continuous real time monitoring of ammonia concentration in air are needed to qualify ammonia emissions from agricultural activities and further evaluate human and animal health effects, study ammonia environmental chemistry, and provide baseline data for air quality standard. We have developed fiber optic ammonia sensors using different sensing reagents and different polymers for immobilizing sensing reagents. The reversible fiber optic sensors have detection limits down to low ppbv levels. The response time of these sensors ranges from seconds to tens minutes depending on transducer design. In this paper, we report our results in the development and evaluation of fiber optic sensor technologies for air quality monitoring. The effect of change of temperature, humidity and carbon dioxide concentration on fiber optic ammonia sensors has been investigated. Carbon dioxide in air was found not interfere the fiber optic sensors for monitoring NH3. However, the change of humidity can cause interferences to some fiber optic NH3 sensors depending on the sensor's transducer design. The sensitivity of fiber optic NH3 sensors was found depends on temperature. Methods and techniques for eliminating these interferences have been proposed.
Spatial-temporal and cancer risk assessment of selected hazardous air pollutants in Seattle.
Wu, Chang-fu; Liu, L-J Sally; Cullen, Alison; Westberg, Hal; Williamson, John
2011-01-01
In the Seattle Air Toxics Monitoring Pilot Program, we measured 15 hazardous air pollutants (HAPs) at 6 sites for more than a year between 2000 and 2002. Spatial-temporal variations were evaluated with random-effects models and principal component analyses. The potential health risks were further estimated based on the monitored data, with the incorporation of the bootstrapping technique for the uncertainty analysis. It is found that the temporal variability was generally higher than the spatial variability for most air toxics. The highest temporal variability was observed for tetrachloroethylene (70% temporal vs. 34% spatial variability). Nevertheless, most air toxics still exhibited significant spatial variations, even after accounting for the temporal effects. These results suggest that it would require operating multiple air toxics monitoring sites over a significant period of time with proper monitoring frequency to better evaluate population exposure to HAPs. The median values of the estimated inhalation cancer risks ranged between 4.3 × 10⁻⁵ and 6.0 × 10⁻⁵, with the 5th and 95th percentile levels exceeding the 1 in a million level. VOCs as a whole contributed over 80% of the risk among the HAPs measured and arsenic contributed most substantially to the overall risk associated with metals. Copyright © 2010 Elsevier Ltd. All rights reserved.
Modeling, Monitoring and Fault Diagnosis of Spacecraft Air Contaminants
NASA Technical Reports Server (NTRS)
Ramirez, W. Fred; Skliar, Mikhail; Narayan, Anand; Morgenthaler, George W.; Smith, Gerald J.
1996-01-01
Progress and results in the development of an integrated air quality modeling, monitoring, fault detection, and isolation system are presented. The focus was on development of distributed models of the air contaminants transport, the study of air quality monitoring techniques based on the model of transport process and on-line contaminant concentration measurements, and sensor placement. Different approaches to the modeling of spacecraft air contamination are discussed, and a three-dimensional distributed parameter air contaminant dispersion model applicable to both laminar and turbulent transport is proposed. A two-dimensional approximation of a full scale transport model is also proposed based on the spatial averaging of the three dimensional model over the least important space coordinate. A computer implementation of the transport model is considered and a detailed development of two- and three-dimensional models illustrated by contaminant transport simulation results is presented. The use of a well established Kalman filtering approach is suggested as a method for generating on-line contaminant concentration estimates based on both real time measurements and the model of contaminant transport process. It is shown that high computational requirements of the traditional Kalman filter can render difficult its real-time implementation for high-dimensional transport model and a novel implicit Kalman filtering algorithm is proposed which is shown to lead to an order of magnitude faster computer implementation in the case of air quality monitoring.
NASA Technical Reports Server (NTRS)
Folmer, Michael; Halverson, Jeffrey; Berndt, Emily; Dunion, Jason; Goodman, Steve; Goldberg, Mitch
2014-01-01
The Geostationary Operational Environmental Satellites R-Series (GOES-R) and Joint Polar Satellite System (JPSS) Satellite Proving Grounds have introduced multiple proxy and operational products into operations over the last few years. Some of these products have proven to be useful in current operations at various National Weather Service (NWS) offices and national centers as a first look at future satellite capabilities. Forecasters at the National Hurricane Center (NHC), Ocean Prediction Center (OPC), NESDIS Satellite Analysis Branch (SAB) and the NASA Hurricane and Severe Storms Sentinel (HS3) field campaign have had access to a few of these products to assist in monitoring extratropical transitions of hurricanes. The red, green, blue (RGB) Air Mass product provides forecasters with an enhanced view of various air masses in one complete image to help differentiate between possible stratospheric/tropospheric interactions, moist tropical air masses, and cool, continental/maritime air masses. As a compliment to this product, a new Atmospheric Infrared Sounder (AIRS) and Cross-track Infrared Sounder (CrIS) Ozone product was introduced in the past year to assist in diagnosing the dry air intrusions seen in the RGB Air Mass product. Finally, a lightning density product was introduced to forecasters as a precursor to the new Geostationary Lightning Mapper (GLM) that will be housed on GOES-R, to monitor the most active regions of convection, which might indicate a disruption in the tropical environment and even signal the onset of extratropical transition. This presentation will focus on a few case studies that exhibit extratropical transition and point out the usefulness of these new satellite techniques in aiding forecasters forecast these challenging events.
Adams, Matthew D; Kanaroglou, Pavlos S
2016-03-01
Air pollution poses health concerns at the global scale. The challenge of managing air pollution is significant because of the many air pollutants, insufficient funds for monitoring and abatement programs, and political and social challenges in defining policy to limit emissions. Some governments provide citizens with air pollution health risk information to allow them to limit their exposure. However, many regions still have insufficient air pollution monitoring networks to provide real-time mapping. Where available, these risk mapping systems either provide absolute concentration data or the concentrations are used to derive an Air Quality Index, which provides the air pollution risk for a mix of air pollutants with a single value. When risk information is presented as a single value for an entire region it does not inform on the spatial variation within the region. Without an understanding of the local variation residents can only make a partially informed decision when choosing daily activities. The single value is typically provided because of a limited number of active monitoring units in the area. In our work, we overcome this issue by leveraging mobile air pollution monitoring techniques, meteorological information and land use information to map real-time air pollution health risks. We propose an approach that can provide improved health risk information to the public by applying neural network models within a framework that is inspired by land use regression. Mobile air pollution monitoring campaigns were conducted across Hamilton from 2005 to 2013. These mobile air pollution data were modelled with a number of predictor variables that included information on the surrounding land use characteristics, the meteorological conditions, air pollution concentrations from fixed location monitors, and traffic information during the time of collection. Fine particulate matter and nitrogen dioxide were both modelled. During the model fitting process we reserved twenty percent of the data to validate the predictions. The models' performances were measured with a coefficient of determination at 0.78 and 0.34 for PM2.5 and NO2, respectively. We apply a relative importance measure to identify the importance of each variable in the neural network to partially overcome the black box issues of neural network models. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Podol'skii, I. G.; Norokh, A. A.; Bingham, G. E.; Brigham, G. E. (Principal Investigator); Campbell, W. F. (Principal Investigator)
2002-01-01
Point thermopulse probes were used to monitor moisture level in the root substrates during cultivation of higher plants in a space greenhouse. Investigated were performance data of the thermopulse moisture probe in integration with the space greenhouse. It was shown that within the substrate moisture range from 20 up to 100% of the full saturation the technique error does not exceed 1.5%. The thermopulse technique bears much promise for metrologic monitoring of the root substrate moisture content in space greenhouses no matter water and air supply technology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lattin, F.G.; Paul, D.G.; Jakubowski, E.M.
1994-12-31
The Real Time Analytical Platform (RTAP) is designed to provide mobile, real-time monitoring support to ensure protection of worker safety in areas where military unique compounds are used and stored, and at disposal sites. Quantitative analysis of low-level vapor concentrations in air is accomplished through sorbent-based collection with subsequent thermal desorption into a gas chromatograph (GC) equipped with a variety of detectors. The monitoring system is characterized by its sensitivity (ability to measure at low concentrations), selectivity (ability to filter out interferences), dynamic range and linearity, real time mode (versus methods requiring extensive sample preparation procedures), and ability to interfacemore » with complimentary GC detectors. This presentation describes an RTAP analytical method for analyzing lewisite, an arsenical compound, that consists of a GC screening technique with an Electron Capture Detector (ECD), and a confirmation technique using an Atomic Emission Detector (AED). Included in the presentation is a description of quality assurance objectives in the monitoring system, and an assessment of method accuracy, precision and detection levels.« less
NASA Technical Reports Server (NTRS)
1976-01-01
The papers deal with the detection of hazardous environmental pollutants, the development of emission control plans, and the design of compliance monitoring systems. Topics include remote sensing techniques in environmental pollution monitoring, monitoring of atmospheric particulate matter, air pollution due to sulfur dioxide and other inorganic compounds, marine pollution, atmospheric aerosols, industrial pollution, and legal aspects of pollution monitoring. Other papers examine the toxic effects of heavy metals and halogenated hydrocarbons, pollution associated with waste-disposal processes, pesticide residues in soil and groundwater, evaluations of groundwater quality, and monitoring of nuclear wastes. The interaction of climate and pollution is also discussed along with global pollutant transport, environmental modeling, ambient environmental air quality, aircraft and ground-vehicle emissions, and pollution associated with energy extraction and utilization processes. Individual items are announced in this issue.
Assessment of the Indoor Odour Impact in a Naturally Ventilated Room
Eusebio, Lidia; Derudi, Marco; Capelli, Laura; Nano, Giuseppe; Sironi, Selena
2017-01-01
Indoor air quality influences people’s lives, potentially affecting their health and comfort. Nowadays, ventilation is the only technique commonly used for regulating indoor air quality. CO2 is the reference species considered in order to calculate the air exchange rates of indoor environments. Indeed, regarding air quality, the presence of pleasant or unpleasant odours can strongly influence the environmental comfort. In this paper, a case study of indoor air quality monitoring is reported. The indoor field tests were conducted measuring both CO2 concentration, using a photoacoustic multi-gas analyzer, and odour trends, using an electronic nose, in order to analyze and compare the information acquired. The indoor air monitoring campaign was run for a period of 20 working days into a university room. The work was focused on the determination of both CO2 and odour emission factors (OEF) emitted by the human activity and on the evaluation of the odour impact in a naturally ventilated room. The results highlighted that an air monitoring and recycling system based only on CO2 concentration and temperature measurements might be insufficient to ensure a good indoor air quality, whereas its performances could be improved by integrating the existing systems with an electronic nose for odour detection. PMID:28379190
An Interpolation and Compaction Technique for Gridded Data.
1983-06-27
Scientific Research 13. NUMBER OF PAGES Bolling AFB DC 20332 /*. 59 14. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office) IS...ByBy___{ Distribution/ FINAL REPORT Availabiiity Codes Avail and/or .-. Dist Special Prepared for V; Air Force Office of Scientific Research Boiling Air...Force Base, DC 20332 Under Grand AFOSR-82-0166 • , .4 This report was written for the Air Force Office of Scientific Research under Grant AFOSR-82-0166
Air pollution source identification
NASA Technical Reports Server (NTRS)
Fordyce, J. S.
1975-01-01
Techniques for air pollution source identification are reviewed, and some results obtained with them are evaluated. Described techniques include remote sensing from satellites and aircraft, on-site monitoring, and the use of injected tracers and pollutants themselves as tracers. The use of a large number of trace elements in ambient airborne particulate matter as a practical means of identifying sources is discussed in detail. Sampling and analysis techniques are described, and it is shown that elemental constituents can be related to specific source types such as those found in the earth's crust and those associated with specific industries. Source identification sytems are noted which utilize charged particle X-ray fluorescence analysis of original field data.
Near-infrared spectroscopy (NIRS) as a tool to monitor exhaust air from poultry operations.
Druckenmüller, Katharina; Günther, Klaus; Elbers, Gereon
2018-07-15
Intensive poultry operation systems emit a considerable volume of inorganic and organic matter in the surrounding environment. Monitoring cleaning properties of exhaust air cleaning systems and to detect small but significant changes in emission characteristics during a fattening cycle is important for both emission and fattening process control. In the present study, we evaluated the potential of near-infrared spectroscopy (NIRS) combined with chemometric techniques as a monitoring tool of exhaust air from poultry operation systems. To generate a high-quality data set for evaluation, the exhaust air of two poultry houses was sampled by applying state-of-the-art filter sampling protocols. The two stables were identical except for one crucial difference, the presence or absence of an exhaust air cleaning system. In total, twenty-one exhaust air samples were collected at the two sites to monitor spectral differences caused by the cleaning device, and to follow changes in exhaust air characteristics during a fattening period. The total dust load was analyzed by gravimetric determination and included as a response variable in multivariate data analysis. The filter samples were directly measured with NIR spectroscopy. Principal component analysis (PCA), linear discriminant analysis (LDA), and factor analysis (FA) were effective in classifying the NIR exhaust air spectra according to fattening day and origin. The results indicate that the dust load and the composition of exhaust air (inorganic or organic matter) substantially influence the NIR spectral patterns. In conclusion, NIR spectroscopy as a tool is a promising and very rapid way to detect differences between exhaust air samples based on still not clearly defined circumstances triggered during a fattening period and the availability of an exhaust air cleaning system. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Coast Guard's Response to Spilled Oil
ERIC Educational Resources Information Center
Ard, R. W., Jr.
1976-01-01
The Coast Guard utilizes a number of monitoring detectors, sensors, and techniques to find, recover and identify oil spills. Discussed in this article are in-situ and airborne sensors, systems developed to provide clean-up capability such as air deployable anti-pollution transfer system (ADAPTS), and techniques which will determine the source of a…
NASA Astrophysics Data System (ADS)
Aliyu, Yahaya A.; Botai, Joel O.
2018-04-01
The retrieval characteristics for a city-scale satellite experiment was explored over a Nigerian city. The study evaluated carbon monoxide and aerosol contents in the city atmosphere. We utilized the MSA Altair 5× gas detector and CW-HAT200 particulate counter to investigate the city-scale monitoring capabilities of satellite pollution observing instruments; atmospheric infrared sounder (AIRS), measurement of pollution in the troposphere (MOPITT), moderate resolution imaging spectroradiometer (MODIS), multi-angle imaging spectroradiometer (MISR) and ozone monitoring instrument (OMI). To achieve this, we employed the Kriging interpolation technique to collocate the satellite pollutant estimations over 19 ground sample sites for the period of 2015-2016. The portable pollutant devices were validated using the WHO air filter sampling model. To determine the city-scale performance of the satellite datasets, performance indicators: correlation coefficient, model efficiency, reliability index and root mean square error, were adopted as measures. The comparative analysis revealed that MOPITT carbon monoxide (CO) and MODIS aerosol optical depth (AOD) estimates are the appropriate satellite measurements for ground equivalents in Zaria, Nigeria. Our findings were within the acceptable limits of similar studies that utilized reference stations. In conclusion, this study offers direction to Nigeria's air quality policy organizers about available alternative air pollution measurements for mitigating air quality effects within its limited resource environment.
Long term monitoring of methane in the atmosphere by multiplex gas chromatography
NASA Technical Reports Server (NTRS)
Valentin, Jose R.; Carle, Glenn C.; Phillips, John B.
1985-01-01
Methane is of interest in the study of the Earth's atmosphere because of its implication in the future global warming of the surface. This warming is produced by the absorption of infrared energy by trace gases. It has been estimated that in the next 40 to 50 years, methane could contribute 20 to 25 pct. as much atmospheric warming as that expected from carbon dioxide increases. Studies to examine sources, sinks, and cycles of methane will require analytical methods capable of continuous unattended measurement with temporal resolution of an hour or less for weeks at a time. Gas chromatography (GC) is one of the most practical methods available to conduct the analysis of air, but limitations in this technique still exist which can be alleviated with multiplex GC (MGC). MGC is a technique where many samples are pseudo-randomly introduced to the chromatograph without regard to the length of time required for an analysis. The resulting data must then be reduced using computational methods such as cross correlation. In the technique reported, a tube packed with silver oxide was used at the inlet of the GC column to create concentration pulses of methane in a sample stream of air. By using only one carrier, i.e., ambient air, an effective and accurate method to monitor the variations in concentration of methane in the atmosphere over long periods of time was developed. Methane in ambient air was monitored for an eight day period and an interesting temporal variability was found. This work has shown the utility of a relatively simple MGC for the analysis of a real environmental sample.
Active and passive ozone samplers based on a reaction with a binary reagent.
Hackney, J D; Avol, E L; Linn, W S; Anderson, K R
1994-02-01
Ozone is one of the most toxic common air pollutants (judging from short-term animal and human exposure studies at realistic concentrations) and one of the most difficult and expensive pollutants to control. Because of ozone's high chemical reactivity, its concentrations may vary greatly over short distances, and fixed-site air quality monitors may not accurately estimate exposures of human populations. Epidemiologic research on ozone's long-term health effects has been inconclusive, partly because of the lack of reliable personal exposure information. The objective of this project was to develop a practical personal ozone exposure monitoring technique, and to document its precision and accuracy in actual use by representatives of freely ranging, ozone-exposed populations. The project site, Los Angeles, is the nation's metropolitan area with the highest level of ozone pollution and, thus, probably the most important locale for personal exposure assessment. Our overall strategy was (1) to select the most promising laboratory technique for ozone detection from published literature and private communications; (2) to design and test personal monitors using this technique; and (3) when feasible, to evaluate concurrently alternative methodologies developed by others. As indicated below, parts 1 and 2 of our strategy yielded a limited success with respect to short-term active sampling, i.e., measuring personal ozone exposure levels during one to two hours with a monitor incorporating a battery-powered air pump of the type used in industrial hygiene investigations. The same approach was not successful in passive sampling, i.e., measuring exposure levels during multihour or multiday periods with a light-weight, diffusion-controlled "badge" sampler having no moving parts. Passive badge samplers could be calibrated reasonably well in laboratory exposures to ozone in otherwise pure air, but they greatly overestimated ozone levels in outdoor ambient air. Part 3 of our strategy yielded more promising information on an alternative passive badge design. After testing and rejecting two other possibilities, we chose a binary organic reagents, 3-methyl-2-benzothiazolinone acetone azine with 2-phenylphenol, as the most promising chemical detector of ozone. Filter papers impregnated with the binary reagent develop a characteristic intense pink color when exposed to ozone. The inventors, J.E. Lambert and associates of Kansas State University, had intended only to develop a rough qualitative ozone monitor (Lambert et al. 1989). However, our initial laboratory testing (in exposure chambers containing ozone in otherwise very clean air, away from humans), revealed fairly accurate quantitative response.(ABSTRACT TRUNCATED AT 400 WORDS)
Detecting Bioterrorism: Is Chemistry Enough?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Omberg, Kristin M.
2014-03-13
This slide shows how most bioaerosol detection systems work. There is a lot of concern in the biothreat community, and in the federal government, about a large-scale aerosolized attack. Because of that, we’ve implemented environmental monitoring programs that use aerosol collectors to continuously monitor for the presence of threat agents in the air. Air samples are usually analyzed using PCR, which is one of the most effective analytical techniques we have for identifying DNA. Experiments and modeling have shown these systems are effective, and can warn public health of an impending crisis in time to mount an effective response.
A survey of light-scattering techniques used in the remote monitoring of atmospheric aerosols
NASA Technical Reports Server (NTRS)
Deirmendjian, D.
1980-01-01
A critical survey of the literature on the use of light-scattering mechanisms in the remote monitoring of atmospheric aerosols, their geographical and spatial distribution, and temporal variations was undertaken to aid in the choice of future operational systems, both ground based and air or space borne. An evaluation, mainly qualitative and subjective, of various techniques and systems is carried out. No single system is found to be adequate for operational purposes. A combination of earth surface and space-borne systems based mainly on passive techniques involving solar radiation with active (lidar) systems to provide auxiliary or backup information is tentatively recommended.
NASA Astrophysics Data System (ADS)
Lindley, S. J.; Walsh, T.
There are many modelling methods dedicated to the estimation of spatial patterns in pollutant concentrations, each with their distinctive advantages and disadvantages. The derivation of a surface of air quality values from monitoring data alone requires the conversion of point-based data from a limited number of monitoring stations to a continuous surface using interpolation. Since interpolation techniques involve the estimation of data at un-sampled points based on calculated relationships between data measured at a number of known sample points, they are subject to some uncertainty, both in terms of the values estimated and their spatial distribution. These uncertainties, which are incorporated into many empirical and semi-empirical mapping methodologies, could be recognised in any further usage of the data and also in the assessment of the extent of an exceedence of an air quality standard and the degree of exposure this may represent. There is a wide range of available interpolation techniques and the differences in the characteristics of these result in variations in the output surfaces estimated from the same set of input points. The work presented in this paper provides an examination of uncertainties through the application of a number of interpolation techniques available in standard GIS packages to a case study nitrogen dioxide data set for the Greater Manchester conurbation in northern England. The implications of the use of different techniques are discussed through application to hourly concentrations during an air quality episode and annual average concentrations in 2001. Patterns of concentrations demonstrate considerable differences in the estimated spatial pattern of maxima as the combined effects of chemical processes, topography and meteorology. In the case of air quality episodes, the considerable spatial variability of concentrations results in large uncertainties in the surfaces produced but these uncertainties vary widely from area to area. In view of the uncertainties with classical techniques research is ongoing to develop alternative methods which should in time help improve the suite of tools available to air quality managers.
Fine PM measurements: personal and indoor air monitoring.
Jantunen, M; Hänninen, O; Koistinen, K; Hashim, J H
2002-12-01
This review compiles personal and indoor microenvironment particulate matter (PM) monitoring needs from recently set research objectives, most importantly the NRC published "Research Priorities for Airborne Particulate Matter (1998)". Techniques and equipment used to monitor PM personal exposures and microenvironment concentrations and the constituents of the sampled PM during the last 20 years are then reviewed. Development objectives are set and discussed for personal and microenvironment PM samplers and monitors, for filter materials, and analytical laboratory techniques for equipment calibration, filter weighing and laboratory climate control. The progress is leading towards smaller sample flows, lighter, silent, independent (battery powered) monitors with data logging capacity to store microenvironment or activity relevant sensor data, advanced flow controls and continuous recording of the concentration. The best filters are non-hygroscopic, chemically pure and inert, and physically robust against mechanical wear. Semiautomatic and primary standard equivalent positive displacement flow meters are replacing the less accurate methods in flow calibration, and also personal sampling flow rates should become mass flow controlled (with or without volumetric compensation for pressure and temperature changes). In the weighing laboratory the alternatives are climatic control (set temperature and relative humidity), and mechanically simpler thermostatic heating, air conditioning and dehumidification systems combined with numerical control of temperature, humidity and pressure effects on flow calibration and filter weighing.
NASA Technical Reports Server (NTRS)
Gregory, J. C.
1976-01-01
The use and sensitivity of the multiwire proportional counter to detect Kr-85 in ambient air are examined. Data also cover monitoring beta and X-ray emitting radio nuclides at low activity levels. Results show the counter to have excellent properties for monitoring Kr-85 down to 0.0004 pCi cu/cm.
Sturman, Andrew; Titov, Mikhail; Zawar-Reza, Peyman
2011-01-15
Installation of temporary or long term monitoring sites is expensive, so it is important to rationally identify potential locations that will achieve the requirements of regional air quality management strategies. A simple, but effective, numerical approach to selecting ambient particulate matter (PM) monitoring site locations has therefore been developed using the MM5-CAMx4 air pollution dispersion modelling system. A new method, 'site efficiency,' was developed to assess the ability of any monitoring site to provide peak ambient air pollution concentrations that are representative of the urban area. 'Site efficiency' varies from 0 to 100%, with the latter representing the most representative site location for monitoring peak PM concentrations. Four heavy pollution episodes in Christchurch (New Zealand) during winter 2005, representing 4 different aerosol dispersion patterns, were used to develop and test this site assessment technique. Evaluation of the efficiency of monitoring sites was undertaken for night and morning aerosol peaks for 4 different particulate material (PM) spatial patterns. The results demonstrate that the existing long term monitoring site at Coles Place is quite well located, with a site efficiency value of 57.8%. A temporary ambient PM monitoring site (operating during winter 2006) showed a lower ability to capture night and morning peak aerosol concentrations. Evaluation of multiple site locations used during an extensive field campaign in Christchurch (New Zealand) in 2000 indicated that the maximum efficiency achieved by any site in the city would be 60-65%, while the efficiency of a virtual background site is calculated to be about 7%. This method of assessing the appropriateness of any potential monitoring site can be used to optimize monitoring site locations for any air pollution measurement programme. Copyright © 2010 Elsevier B.V. All rights reserved.
Atmospheric monitoring and model applications at the Pierre Auger Observatory
NASA Astrophysics Data System (ADS)
Keilhauer, Bianca
2015-03-01
The Pierre Auger Observatory detects high-energy cosmic rays with energies above ˜1017 eV. It is built as a multi-hybrid detector measuring extensive air showers with different techniques. For the reconstruction of extensive air showers, the atmospheric conditions at the site of the Observatory have to be known quite well. This is particularly true for reconstructions based on data obtained by the fluorescence technique. For these data, not only the weather conditions near ground are relevant, most important are altitude-dependent atmospheric profiles. The Pierre Auger Observatory has set up a dedicated atmospheric monitoring programme at the site in the Mendoza province, Argentina. Beyond this, exploratory studies were performed in Colorado, USA, for possible installations in the northern hemisphere. In recent years, the atmospheric monitoring programme at the Pierre Auger Observatory was supplemented by applying data from atmospheric models. Both GDAS and HYSPLIT are developments by the US weather department NOAA and the data are freely available. GDAS is a global model of the atmospheric state parameters on a 1 degree geographical grid, based on real-time measurements and numeric weather predictions, providing a full altitude-dependent data set every 3 hours. HYSPLIT is a powerful tool to track the movement of air masses at various heights, and with it the aerosols. Combining local measurements of the atmospheric state variables and aerosol scattering with the given model data, advanced studies about atmospheric conditions can be performed and high precision air shower reconstructions are achieved.
Thermoelectrically cooled water trap
Micheels, Ronald H [Concord, MA
2006-02-21
A water trap system based on a thermoelectric cooling device is employed to remove a major fraction of the water from air samples, prior to analysis of these samples for chemical composition, by a variety of analytical techniques where water vapor interferes with the measurement process. These analytical techniques include infrared spectroscopy, mass spectrometry, ion mobility spectrometry and gas chromatography. The thermoelectric system for trapping water present in air samples can substantially improve detection sensitivity in these analytical techniques when it is necessary to measure trace analytes with concentrations in the ppm (parts per million) or ppb (parts per billion) partial pressure range. The thermoelectric trap design is compact and amenable to use in a portable gas monitoring instrumentation.
NASA Astrophysics Data System (ADS)
Tarhan, Mehmet C.; Lafitte, Nicolas; Tauran, Yannick; Jalabert, Laurent; Kumemura, Momoko; Perret, Grégoire; Kim, Beomjoon; Coleman, Anthony W.; Fujita, Hiroyuki; Collard, Dominique
2016-06-01
Monitoring biological reactions using the mechanical response of macromolecules is an alternative approach to immunoassays for providing real-time information about the underlying molecular mechanisms. Although force spectroscopy techniques, e.g. AFM and optical tweezers, perform precise molecular measurements at the single molecule level, sophisticated operation prevent their intensive use for systematic biosensing. Exploiting the biomechanical assay concept, we used micro-electro mechanical systems (MEMS) to develop a rapid platform for monitoring bio/chemical interactions of bio macromolecules, e.g. DNA, using their mechanical properties. The MEMS device provided real-time monitoring of reaction dynamics without any surface or molecular modifications. A microfluidic device with a side opening was fabricated for the optimal performance of the MEMS device to operate at the air-liquid interface for performing bioassays in liquid while actuating/sensing in air. The minimal immersion of the MEMS device in the channel provided long-term measurement stability (>10 h). Importantly, the method allowed monitoring effects of multiple solutions on the same macromolecule bundle (demonstrated with DNA bundles) without compromising the reproducibility. We monitored two different types of effects on the mechanical responses of DNA bundles (stiffness and viscous losses) exposed to pH changes (2.1 to 4.8) and different Ag+ concentrations (1 μM to 0.1 M).
A new tritium monitor design based on plasma source ion implantation technique
NASA Astrophysics Data System (ADS)
Nassar, Rafat Mohammad
Tritium is an important isotope of hydrogen. The availability of tritium in our environment is manifest through both natural and artificial sources. Consequently, the requirement for tritium handling and usage will continue to increase in the future. An important future contributor is nuclear fusion power plants and facilities. Essential safety regulations and procedures require effective monitoring and measurements of tritium concentrations in workplaces. The unique characteristics of tritium impose an important role on the criteria for its detection and measurement. As tritium decays by the emission of soft beta particles, maximum 18 keV, it cannot be readily detected by commonly used detectors. Specially built monitors are required. Additional complications occur due to the presence of other radioactive isotopes or ambient radiation fields and because of the high diffusivity of tritium. When it is in oxidized form it is 25000 times more hazardous biologically than when in elemental form. Therefore, contamination of the monitor is expected and compound specific monitors are important. A summary is given of the various well known methods of detecting tritium-in-air. This covers the direct as well as the indirect measuring techniques, although each has been continually improved and further developed, nevertheless, each has its own limitations. Ionization chambers cannot discriminate against airborne P emitters. Proportional counters have a narrow operating range, 3-4 decades, and have poor performance in relatively high humid environments and require a dry counting gas. Liquid scintillation counters are sensitive, but inspection of the sample is slow and they produce chemical liquid waste. A new way to improve the sensitivity of detecting tritium with plastic scintillators has been developed. The technique is based on a non-line-of-sight implantation of tritium ions into a 20 mum plastic scintillator using a plasma source ion implantation (PSII) technique, This type of source is different, superior to the line-of-sight implantation and requires no additional beam handling. It is capable of implanting ion species in a broad beam configuration into the entire surface of a target. The technique requires a special ion source with special characteristics of the type obtained from a surfatron plasma source. This ion source has a large high ion density plasma with minimum contamination and produces ions of low temperature. It was constructed to ionize the sampled air and to produce a plasma over a wide range of pressure, 4-0.1 mTorr. A plasma source ion implantation cell was designed and constructed using mathematical modeling with personal computer, to optimize the essential variables of the design and to estimate the implantation rate under different operation conditions. Also, a high voltage pulse modulator was designed and constructed to produce a series of 10 musec pulses (up to 2 MHz) with a maximum magnitude of -60 kV. The developed device was capable of ionizing air samples and implanting the resulting ions into a plastic scintillator. Two different methods to enhance the collection and deposition of the tritium ions, have been proposed and assessed. A movable prototype device for monitoring environmental tritium in air has been designed and constructed. Although this prototype was not fully tested, the primary calculations have shown that measurable concentrations of tritium ions can be collected from an air sample, with tritium activity ranging from 0.3 Bq/cm3 down to 0.03 mBq/cm3, in a short time, to the order of seconds, on-line. This sensitivity fulfills the requirement for environmental monitoring.
Ding, Weifu; Zhang, Jiangshe; Leung, Yee
2016-10-01
In this paper, we predict air pollutant concentration using a feedforward artificial neural network inspired by the mechanism of the human brain as a useful alternative to traditional statistical modeling techniques. The neural network is trained based on sparse response back-propagation in which only a small number of neurons respond to the specified stimulus simultaneously and provide a high convergence rate for the trained network, in addition to low energy consumption and greater generalization. Our method is evaluated on Hong Kong air monitoring station data and corresponding meteorological variables for which five air quality parameters were gathered at four monitoring stations in Hong Kong over 4 years (2012-2015). Our results show that our training method has more advantages in terms of the precision of the prediction, effectiveness, and generalization of traditional linear regression algorithms when compared with a feedforward artificial neural network trained using traditional back-propagation.
NASA Astrophysics Data System (ADS)
Casey, J. G.; Hannigan, M.; Collier, A. M.; Coffey, E.; Piedrahita, R.
2016-12-01
Affordable, small, portable, quiet tools to measure atmospheric trace gases and air quality enable novel experimental design and new findings. Members of the Hannigan Lab at the University of Colorado in Boulder have been working over the last few years to integrate emerging affordable gas sensors into such an air quality monitor. Presented here are carbon monoxide (CO) and carbon dioxide (CO2) measurements from two field experiments that utilized these tools. In the first experiment, ten air quality monitors were located northeast of Boulder throughout the Denver Julesburg oil and gas basin. The Colorado Department of Health and Environment has several air quality monitoring sites in this broader region, each in an Urban center. One goal of the experiment was to determine whether or not significant spatial variability of EPA criteria pollutants like CO, exists on a sub-regulatory monitoring grid scale. Another goal of the experiment was to compare rural sampling locations with urban sites. The monitors collected continuous data (sampling every 15 seconds) at each location over the course of several months. Our sensor calibration procedures are presented along with our observations and an analysis of the spatial and temporal variability in CO and CO2. In the second experiment, we used eight of our air quality monitors to better understand how home heating fuel type can impact indoor air quality in two communities on the Navajo Nation. We sought to compare air quality in homes using one of four different fuels for heat (wood, wood plus coal, pellet, and gas). There are many factors that contribute to indoor air quality and the impact of an emission source, like a woodstove, within a home. Having multiple, easily deployable, air quality monitors allowed us to account for many of these factors. We sampled four homes at a time, aiming for one home from each of our fuel groups in each sampling period. We sampled inside and outside of each home for a period of 3-4 days. In this way, we hoped to account for possible weather and outdoor air quality biases. CO and CO2 were measured and are put into context with acceptable levels. During periods when there were no emissions of CO and CO2, we used their rates of decay to calculate the home's air exchange rate via the tracer gas technique. The air exchange rate was then used to calculate emission rates for CO.
Challoner, Avril; Pilla, Francesco; Gill, Laurence
2015-12-01
NO₂ and particulate matter are the air pollutants of most concern in Ireland, with possible links to the higher respiratory and cardiovascular mortality and morbidity rates found in the country compared to the rest of Europe. Currently, air quality limits in Europe only cover outdoor environments yet the quality of indoor air is an essential determinant of a person's well-being, especially since the average person spends more than 90% of their time indoors. The modelling conducted in this research aims to provide a framework for epidemiological studies by the use of publically available data from fixed outdoor monitoring stations to predict indoor air quality more accurately. Predictions are made using two modelling techniques, the Personal-exposure Activity Location Model (PALM), to predict outdoor air quality at a particular building, and Artificial Neural Networks, to model the indoor/outdoor relationship of the building. This joint approach has been used to predict indoor air concentrations for three inner city commercial buildings in Dublin, where parallel indoor and outdoor diurnal monitoring had been carried out on site. This modelling methodology has been shown to provide reasonable predictions of average NO₂ indoor air quality compared to the monitored data, but did not perform well in the prediction of indoor PM2.5 concentrations. Hence, this approach could be used to determine NO₂ exposures more rigorously of those who work and/or live in the city centre, which can then be linked to potential health impacts.
Enhanced data validation strategy of air quality monitoring network.
Harkat, Mohamed-Faouzi; Mansouri, Majdi; Nounou, Mohamed; Nounou, Hazem
2018-01-01
Quick validation and detection of faults in measured air quality data is a crucial step towards achieving the objectives of air quality networks. Therefore, the objectives of this paper are threefold: (i) to develop a modeling technique that can be used to predict the normal behavior of air quality variables and help provide accurate reference for monitoring purposes; (ii) to develop fault detection method that can effectively and quickly detect any anomalies in measured air quality data. For this purpose, a new fault detection method that is based on the combination of generalized likelihood ratio test (GLRT) and exponentially weighted moving average (EWMA) will be developed. GLRT is a well-known statistical fault detection method that relies on maximizing the detection probability for a given false alarm rate. In this paper, we propose to develop GLRT-based EWMA fault detection method that will be able to detect the changes in the values of certain air quality variables; (iii) to develop fault isolation and identification method that allows defining the fault source(s) in order to properly apply appropriate corrective actions. In this paper, reconstruction approach that is based on Midpoint-Radii Principal Component Analysis (MRPCA) model will be developed to handle the types of data and models associated with air quality monitoring networks. All air quality modeling, fault detection, fault isolation and reconstruction methods developed in this paper will be validated using real air quality data (such as particulate matter, ozone, nitrogen and carbon oxides measurement). Copyright © 2017 Elsevier Inc. All rights reserved.
Validation of New Crack Monitoring Technique for Victoria Class High-Pressure Air Bottles
2014-06-01
technique de corrélation d’images numériques a été employée pour mesurer le champ de déforma- tion dans la zone située du côté opposé à l’entaille... la Reine en droit du Canada (Ministère de la Défense nationale), 2014 Abstract High-pressure air bottles are used in the Victoria class submarines to...charges cycliques pouvant provoquer l’apparition et favoriser la croissance de fissures de fatigue. L’ob- servation d’une marque interne semblable à une
Air Quality Side Event Proposal November 2016 GEO XIII ...
The Group on Earth Observations (GEO), which EPA has participated in since 2003, has put out a call for Side Events for its thirteenth annual international Plenary Meeting which is in St. Petersburg, Russia this year during November, 2016. EPA has put on Side Events on Air Quality and Health observational systems at eight of the previous Plenaries. This document is a Side Event proposal regarding air quality, health and next generation monitoring and observations techniques. It is submitted to the GEO Secretariat for consideration. If accepted, there will likely be presentations by EPA and NASA, other GEO Member Countries and UNEP and other GEO Participating Organizations at the Side Event. It is an opportunity to share scientific and technological advances in this area and build partnerships and collaboration. The Group on Earth Observations (GEO), which EPA has participated in since 2003, has put out a call for Side Events for its thirteenth annual international Plenary Meeting which is in St. Petersburg, Russia this year during November, 2016. EPA has put on Side Events on Air Quality and Health observational systems at eight of the previous Plenaries. This document is a Side Event proposal regarding air quality, health and next generation monitoring and observations techniques. It is submitted to the GEO Secretariat for consideration. If accepted, there will likely be presentations by EPA and NASA, other GEO Member Countries and UNEP and other GEO P
Yan, Cheing-Tong; Chien, Hai-Ying
2012-07-13
In this study, a simple and novel one-step hollow-fiber supported liquid-phase sampling (HF-LPS) technique was developed for enriched sampling of gaseous toxic species prior to chemical analysis for workplace air monitoring. A lab-made apparatus designed with a gaseous sample generator and a microdialysis sampling cavity (for HF-LPS) was utilized and evaluated to simulate gaseous contaminant air for occupational workplace analysis. Gaseous phenol was selected as the model toxic species. A polyethersulfone hollow fiber dialysis module filled with ethylene glycol in the shell-side was applied as the absorption solvent to collect phenol from a gas flow through the tube-side, based on the concentration distribution of phenol between the absorption solvent and the gas flow. After sampling, 20 μL of the extractant was analyzed by high performance liquid chromatography with ultraviolet detection (HPLC-UV). Factors that influence the generation of gaseous standards and the HF-LPS were studied thoroughly. Results indicated that at 25 °C the phenol (2000 μg/mL) standard solution injected at 15-μL/min can be vaporized into sampling cavity under nitrogen flow at 780 mL/min, to generate gaseous phenol with concentration approximate to twice the permissible exposure limit. Sampling at 37.3 mL/min for 30 min can meet the requirement of the workplace air monitoring. The phenol in air ranged between 0.7 and 10 cm³/m³ (shows excellent linearity) with recovery between 98.1 and 104.1%. The proposed method was identified as a one-step sampling for workplace monitoring with advantages of convenience, rapidity, sensitivity, and usage of less-toxic solvent. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Zwack, Leonard M.; Paciorek, Christopher J.; Spengler, John D.; Levy, Jonathan I.
2011-05-01
Traffic within urban street canyons can contribute significantly to ambient concentrations of particulate air pollution. In these settings, it is challenging to separate within-canyon source contributions from urban and regional background concentrations given the highly variable and complex emissions and dispersion characteristics. In this study, we used continuous mobile monitoring of traffic-related particulate air pollutants to assess the contribution to concentrations, above background, of traffic in the street canyons of midtown Manhattan. Concentrations of both ultrafine particles (UFP) and fine particles (PM 2.5) were measured at street level using portable instruments. Statistical modeling techniques accounting for autocorrelation were used to investigate the presence of spatial heterogeneity of pollutant concentrations as well as to quantify the contribution of within-canyon traffic sources. Measurements were also made within Central Park, to examine the impact of offsets from major roadways in this urban environment. On average, an approximate 11% increase in concentrations of UFP and 8% increase in concentrations of PM 2.5 over urban background was estimated during high-traffic periods in street canyons as opposed to low traffic periods. Estimates were 8% and 5%, respectively, after accounting for temporal autocorrelation. Within Central Park, concentrations were 40% higher than background (5% after accounting for temporal autocorrelation) within the first 100 m from the nearest roadway for UFP, with a smaller but statistically significant increase for PM 2.5. Our findings demonstrate the viability of a mobile monitoring protocol coupled with spatiotemporal modeling techniques in characterizing local source contributions in a setting with street canyons.
NASA Astrophysics Data System (ADS)
Schneider, Philipp; Stebel, Kerstin; Ajtai, Nicolae; Diamandi, Andrei; Horalek, Jan; Nemuc, Anca; Stachlewska, Iwona; Zehner, Claus
2017-04-01
We present a summary and some first results of a new ESA-funded project entitled Satellite based Monitoring Initiative for Regional Air quality (SAMIRA), which aims at improving regional and local air quality monitoring through synergetic use of data from present and upcoming satellite instruments, traditionally used in situ air quality monitoring networks and output from chemical transport models. Through collaborative efforts in four countries, namely Romania, Poland, the Czech Republic and Norway, all with existing air quality problems, SAMIRA intends to support the involved institutions and associated users in their national monitoring and reporting mandates as well as to generate novel research in this area. The primary goal of SAMIRA is to demonstrate the usefulness of existing and future satellite products of air quality for improving monitoring and mapping of air pollution at the regional scale. A total of six core activities are being carried out in order to achieve this goal: Firstly, the project is developing and optimizing algorithms for the retrieval of hourly aerosol optical depth (AOD) maps from the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) onboard of Meteosat Second Generation. As a second activity, SAMIRA aims to derive particulate matter (PM2.5) estimates from AOD data by developing robust algorithms for AOD-to-PM conversion with the support from model- and Lidar data. In a third activity, we evaluate the added value of satellite products of atmospheric composition for operational European-scale air quality mapping using geostatistics and auxiliary datasets. The additional benefit of satellite-based monitoring over existing monitoring techniques (in situ, models) is tested by combining these datasets using geostatistical methods and demonstrated for nitrogen dioxide (NO2), sulphur dioxide (SO2), and aerosol optical depth/particulate matter. As a fourth activity, the project is developing novel algorithms for downscaling coarse-resolution satellite products of air quality with the help of high-resolution model information. This will add value to existing earth observation products of air quality by bringing them to spatial scales that are more in line with what is generally required for studying urban and regional scale air quality. In a fifth activity, we implement robust and independent validation schemes for evaluating the quality of the generated products. Finally, in a sixth activity the consortium is working towards a pre-operational system for improved PM forecasts using observational (in situ and satellite) data assimilation. SAMIRA aims to maximize project benefits by liaison with national and regional environmental protection agencies and health institutions, as well as related ESA and European initiatives such as the Copernicus Atmosphere Monitoring Service (CAMS).
NASA Astrophysics Data System (ADS)
Yu, Yanan; Wang, Xiaoxun; He, Chengcheng; Lai, Chenlong; Liu, Yuanchao
2015-11-01
For overcoming the problems such as remote operation and dangerous tasks, multi-terminal remote monitoring and warning system based on STC89C52 Micro Control Unit and wireless communication technique was proposed. The system with MCU as its core adopted multiple sets of sensor device to monitor environment parameters of different locations, such as temperature, humidity, smoke other harmful gas concentration. Data information collected was transmitted remotely by wireless transceiver module, and then multi-channel data parameter was processed and displayed through serial communication protocol between the module and PC. The results of system could be checked in the form of web pages within a local network which plays a wireless monitoring and warning role. In a remote operation, four-rotor micro air vehicle which fixed airborne data acquisition device was utilized as a middleware between collecting terminal and PC to increase monitoring scope. Whole test system has characteristics of simple construction, convenience, real time ability and high reliability, which could meet the requirements of actual use.
ASBESTOS EXPOSURE RESEARCH - AIR, SOIL AND BULK MATERIAL SCENARIOS
Presently, asbestos and other mineral fibers are monitored in the workplace and in the environment using several basic analytical techniques, based primarily upon observing the fiber by either optical or electron microscopy. EPA is conducting research to determine which sampling ...
Black, J D; Long, C A
1992-07-20
In a rotating cavity rig, which models cooling air flow in the spaces between disks of a gas turbine compressor, the buildup of oxygen concentration after the cooling gas was changed from nitrogen to air was monitored using rotational coherent anti-Stokes Raman spectroscopy (CARS). From this information an estimate of the fraction of the throughflow entering the rotating cavity was obtained. This demonstrates that rotational CARS can be applied as a nonintrusive concentration-measurement technique in a rotating engineering test rig.
Damage detection and isolation via autocorrelation: a step toward passive sensing
NASA Astrophysics Data System (ADS)
Chang, Y. S.; Yuan, F. G.
2018-03-01
Passive sensing technique may eliminate the need of expending power from actuators and thus provide a means of developing a compact and simple structural health monitoring system. More importantly, it may provide a solution for monitoring the aircraft subjected to environmental loading from air flow during operation. In this paper, a non-contact auto-correlation based technique is exploited as a feasibility study for passive sensing application to detect damage and isolate the damage location. Its theoretical basis bears some resemblance to reconstructing Green's function from diffusive wavefield through cross-correlation. Localized high pressure air from air compressor are randomly and continuously applied on the one side surface of the aluminum panels through the air blow gun. A laser Doppler vibrometer (LDV) was used to scan a 90 mm × 90 mm area to create a 6 × 6 2D-array signals from the opposite side of the panels. The scanned signals were auto-correlated to reconstruct a "selfimpulse response" (or Green's function). The premise for stably reconstructing the accurate Green's function requires long sensing times. For a 609.6 mm × 609.6 mm flat aluminum panel, the sensing times roughly at least four seconds is sufficient to establish converged Green's function through correlation. For the integral stiffened aluminum panel, the geometrical features of the panel expedite the formation of the diffusive wavefield and thus shorten the sensing times. The damage is simulated by gluing a magnet onto the panels. Reconstructed Green's functions (RGFs) are used for damage detection and damage isolation based on an imaging condition with mean square deviation of the RGFs from the pristine and the damaged structure and the results are shown in color maps. The auto-correlation based technique is shown to consistently detect the simulated damage, image and isolate the damage in the structure subjected to high pressure air excitation. This technique may be transformed into passive sensing applied on the aircraft during operation.
1993-09-12
the liquid -air interface could be monitored by changes in the surface area. Deposition of monolayers by Langmuir - Blodgett technique is possible and...polymerization product from the LB trough in chloroform solution. Figure 10 Langmuir - Blodgett transfer of poly (3-hexadecyl pyrrole) onto hydrophobized glass... Langmuir - Blodgett Techniques, 2: The Polymerization of Monolayers of 3-Substituted Pyrroles by W.M. Sigmund, C. Marestin, S. Keil, H. Zhou and R.S
Agudelo-Calderón, Carlos A; Quiroz-Arcentales, Leonardo; García-Ubaque, Juan C; Robledo-Martínez, Rocío; García-Ubaque, Cesar A
2016-02-01
Objectives To determine concentrations of PM10, mercury and lead in indoor air of homes, water sources and soil in municipalities near mining operations. Method 6 points were evaluated in areas of influence and 2 in control areas. For measurements of indoor air, we used the NIOSH 600 method (PM10), NIOSH 6009 (mercury) and NIOSH 7300 (lead). For water analysis we used the IDEAM Guide for monitoring discharges. For soil analysis, we used the cold vapor technique (mercury) and atomic absorption (lead). Results In almost all selected households, the average PM10 and mercury concentrations in indoor air exceeded applicable air quality standards. Concentrations of lead were below standard levels. In all water sources, high concentrations of lead were found and in some places within the mining areas, high levels of iron, aluminum and mercury were also found. In soil, mercury concentrations were below the detection level and for lead, differences between the monitored points were observed. Conclusions The results do not establish causal relationships between mining and concentration of these pollutants in the evaluated areas because of the multiplicity of sources in the area. However, such studies provide important information, useful to agents of the environmental health system and researchers. Installation of networks for environmental monitoring to obtain continuous reports is suggested.
Challoner, Avril; Pilla, Francesco; Gill, Laurence
2015-01-01
NO2 and particulate matter are the air pollutants of most concern in Ireland, with possible links to the higher respiratory and cardiovascular mortality and morbidity rates found in the country compared to the rest of Europe. Currently, air quality limits in Europe only cover outdoor environments yet the quality of indoor air is an essential determinant of a person’s well-being, especially since the average person spends more than 90% of their time indoors. The modelling conducted in this research aims to provide a framework for epidemiological studies by the use of publically available data from fixed outdoor monitoring stations to predict indoor air quality more accurately. Predictions are made using two modelling techniques, the Personal-exposure Activity Location Model (PALM), to predict outdoor air quality at a particular building, and Artificial Neural Networks, to model the indoor/outdoor relationship of the building. This joint approach has been used to predict indoor air concentrations for three inner city commercial buildings in Dublin, where parallel indoor and outdoor diurnal monitoring had been carried out on site. This modelling methodology has been shown to provide reasonable predictions of average NO2 indoor air quality compared to the monitored data, but did not perform well in the prediction of indoor PM2.5 concentrations. Hence, this approach could be used to determine NO2 exposures more rigorously of those who work and/or live in the city centre, which can then be linked to potential health impacts. PMID:26633448
Surface, Water, and Air Biocharacterization (SWAB) Flight Experiment
NASA Technical Reports Server (NTRS)
Castro, V. A.; Ott, C. M.; Pierson, D. L.
2012-01-01
The determination of risk from infectious disease during spaceflight missions is composed of several factors including both the concentration and characteristics of the microorganisms to which the crew are exposed. Thus, having a good understanding of the microbial ecology aboard spacecraft provides the necessary information to mitigate health risks to the crew. While preventive measures are taken to minimize the presence of pathogens on spacecraft, medically significant organisms have been isolated from both the Mir and International Space Station (ISS). Historically, the method for isolation and identification of microorganisms from spacecraft environmental samples depended upon their growth on culture media. Unfortunately, only a fraction of the organisms may grow on a specific culture medium, potentially omitting those microorganisms whose nutritional and physical requirements for growth are not met. To address this bias in our understanding of the ISS environment, the Surface, Water, and Air Biocharacterization (SWAB) Flight Experiment was designed to investigate and develop monitoring technology to provide better microbial characterization. For the SWAB flight experiment, we hypothesized that environmental analysis using non-culture-based technologies would reveal microorganisms, allergens, and microbial toxins not previously reported in spacecraft, allowing for a more complete health assessment. Key findings during this experiment included: a) Generally, advanced molecular techniques were able to reveal a few organisms not recovered using culture-based methods; however, there is no indication that current monitoring is "missing" any medically significant bacteria or fungi. b) Molecular techniques have tremendous potential for microbial monitoring, however, sample preparation and data analysis present challenges for spaceflight hardware. c) Analytical results indicate that some molecular techniques, such as denaturing gradient gel electrophoresis (DGGE), can be much less sensitive than culture-based methods. d) More sensitive molecular techniques, such as quantitative polymerase chain reaction (QPCR), were able to identify viral DNA from ISS environments, suggesting potential transfer of the organism between crewmembers. In addition, the hardware selected for this experiment represented advances for next-generation sample collection. The advanced nature of this collection hardware was noted, when the Sartorius MD8 Air Port air sampler from the SWAB experiment remained on board ISS at the request of JAXA investigators, who intend to use it in completion of their microbial ecology experiment.
He, Yabai; Kan, Ruifeng; Englich, Florian V; Liu, Wenqing; Orr, Brian J
2010-09-13
The greenhouse-gas molecules CO(2), CH(4), and H(2)O are detected in air within a few ms by a novel cavity-ringdown laser-absorption spectroscopy technique using a rapidly swept optical cavity and multi-wavelength coherent radiation from a set of pre-tuned near-infrared diode lasers. The performance of various types of tunable diode laser, on which this technique depends, is evaluated. Our instrument is both sensitive and compact, as needed for reliable environmental monitoring with high absolute accuracy to detect trace concentrations of greenhouse gases in outdoor air.
NASA Astrophysics Data System (ADS)
Sudhakar, P.; Kalavathi, P.; Ramakrishna Rao, D.; Satyanarayna, M.
2014-12-01
Industrialization can no longer sustain without internalization of the concerns of the receiving environment and land-use. Increased awareness and public pressure, coupled with regulatory instruments and bodies exert constant pressure on industries to control their emissions to a level acceptable to the receiving environment. However, when a group of industries come-up together as an industrial estate, the cumulative impacts of all the industries together often challenges the expected/desired quality of receiving environment, requiring stringent pollution control and monitoring measures. Laser remote sensing techniques provide powerful tools for environmental monitoring. These methods provide range resolved measurements of concentrations of various gaseous pollutants and suspended particulate matter (SPM) not only in the path of the beam but over the entire area. A three dimensional mapping of the pollutants and their dispersal can be estimated using the laser remote sensing methods on a continuous basis. Laser Radar (Lidar) systems are the measurements technology used in the laser remote sensing methods. Differential absorption lidar (DIAL) and Raman Lidar technologies have proved to be very useful for remote sensing of air pollutants. DIAL and Raman lidar systems can be applied for range resolved measurements of molecules like SO2, NO2, O3 Hg, CO, C2H4, H2O, CH4, hydrocarbons etc. in real time on a continuous basis. This paper describes the design details of the DAIL and Raman lidar techniques for measurement of various hazardous air pollutants which are being released into the atmosphere by the chemical industries operating in the Bachupally industrial Estate area at Hyderabad, India. The relative merits of the two techniques have been studied and the minimum concentration of pollutants that can be measured using these systems are presented. A dispersion model of the air pollutants in the selected chemical industrial estates at Hyderabad has been developed.
Measurement of liner slips, milking time, and milk yield.
O'Callaghan, E J
1996-03-01
Liner slip or rapid air leakage past the mouthpiece of the milking machine liner is related to high rates of new cases of mastitis. A real time technique was developed to monitor the air flow into the milking machine cluster during liner slips as well as to monitor milking time and milk yield using a commercial type pipeline milking system. The air flow into the cluster was measured by recording the pressure differences across an orifice plate placed in the air bypass of an air-milk separator using a differential pressure transducer. Milk yield was recorded by counting the number of milk releases from an electronic milk meter. The release solenoids of the milk meter were linked to a computer. The start and end of milking were manually recorded by switching a two-pole switch connected to a digital input card on the computer, which was programmed to record air flow, milk yield, and milking time. Milk yield, milking time, and air flows during liner slips were recorded simultaneously at each milking unit in an 11-unit herringbone parlor. The system was tested with an experiment with a 4 x 4 Latin square design using four treatments (clusters) and four treatment groups (22 cows per group).
Monitoring urban air quality using a high-density network of low-cost sensor nodes in Oslo, Norway.
NASA Astrophysics Data System (ADS)
Castell, Nuria; Schneider, Philipp; Vogt, Matthias; Dauge, Franck R.; Lahoz, William; Bartonova, Alena
2017-04-01
Urban air quality represents a major public health burden and is a long-standing concern to citizens. Air pollution is associated with a range of diseases, symptoms and conditions that impair health and quality of life. In Oslo, traffic, especially exhaust from heavy-duty and private diesel vehicles and dust resuspension from studded tyres, together with wood burning in winter, are the main sources of pollution. Norway, as part of the European Economic Area, is obliged to comply with the European air quality regulations and ensure clean air. Despite this, Oslo has exceeded both the NO2 and PM10 thresholds for health protection defined in the Directive 2008/50/EC. The air quality in the Oslo area is continuously monitored in 12 compliance monitoring stations. These stations provide reliable and accurate data but their density is too low to provide a detailed spatial distribution of air quality. The emergence of low-cost nodes enables observations at high spatial resolution, providing the opportunity to enhance existing monitoring systems. However, the data generated by these nodes is significantly less accurate and precise than the data provided by reference equipment. We have conducted an evaluation of low-cost nodes to monitor NO2 and PM10, comparing the data collected with low-cost nodes against CEN (European Standardization Organization) reference analysers. During January and March 2016, a network of 24 nodes was deployed in Oslo. During January, high NO2 levels were observed for several days in a row coinciding with the formation of a thermal inversion. During March, we observed an episode with high PM10 levels due to road dust resuspension. Our results show that there is a major technical challenge associated with current commercial low-cost sensors, regarding the sensor robustness and measurement repeatability. Despite this, low-cost sensor nodes are able to reproduce the NO2 and PM10 variability. The data from the sensors was employed to generate detailed NO2 and PM10 air quality maps using a data fusion technique. This way we were able to offer localized air quality information for the city of Oslo. The outlook for commercial low-cost sensors is promising, and our results show that currently some sensors are already capable of providing coarse information about air quality, indicating if the air quality is good, moderate or if the air is heavily polluted. This type of information could be suitable for applications that aim to raise awareness, or engage the community by monitoring local air quality, as such applications do not require the same accuracy as scientific or regulatory monitoring.
2014-06-30
Directorate 3550 Aberdeen Ave SE AIR FORCE MATERIEL COMMAND KIRTLAND AIR FORCE BASE, NM 87117-5776 DTIC COPY NOTICE AND SIGNATURE PAGE Using ...any other person or corporation; or convey any rights or permission to manufacture, use , or sell any patented invention that may relate to them...stations in Eurasia. This is accomplished by synthesizing seismograms using a radiative transport technique to predict the high frequency coda (>5 Hz
Almeida, Susana Marta; Lage, Joana; Freitas, Maria do Carmo; Pedro, Ana Isabel; Ribeiro, Tiago; Silva, Alexandra Viana; Canha, Nuno; Almeida-Silva, Marina; Sitoe, Timóteo; Dionisio, Isabel; Garcia, Sílvia; Domingues, Gonçalo; de Faria, Julia Perim; Fernández, Beatriz González; Ciaparra, Diane; Wolterbeek, Hubert T
2012-01-01
Throughout the world, epidemiological studies were established to examine the relationship between air pollution and mortality rates and adverse respiratory health effects. However, despite the years of discussion the correlation between adverse health effects and atmospheric pollution remains controversial, partly because these studies are frequently restricted to small and well-monitored areas. Monitoring air pollution is complex due to the large spatial and temporal variations of pollution phenomena, the high costs of recording instruments, and the low sampling density of a purely instrumental approach. Therefore, together with the traditional instrumental monitoring, bioindication techniques allow for the mapping of pollution effects over wide areas with a high sampling density. In this study, instrumental and biomonitoring techniques were integrated to support an epidemiological study that will be developed in an industrial area located in Gijon in the coastal of central Asturias, Spain. Three main objectives were proposed to (i) analyze temporal patterns of PM₁₀ concentrations in order to apportion emissions sources, (ii) investigate spatial patterns of lichen conductivity to identify the impact of the studied industrial area in air quality, and (iii) establish relationships amongst lichen conductivity with some site-specific characteristics. Samples of the epiphytic lichen Parmelia sulcata were transplanted in a grid of 18 by 20 km with an industrial area in the center. Lichens were exposed for a 5-mo period starting in April 2010. After exposure, lichen samples were soaked in 18-MΩ water aimed at determination of water electrical conductivity and, consequently, lichen vitality and cell damage. A marked decreasing gradient of lichens conductivity relative to distance from the emitting sources was observed. Transplants from a sampling site proximal to the industrial area reached values 10-fold higher than levels far from it. This finding showed that lichens reacted physiologically in the polluted industrial area as evidenced by increased conductivity correlated to contamination level. The integration of temporal PM₁₀ measurements and analysis of wind direction corroborated the importance of this industrialized region for air quality measurements and identified the relevance of traffic for the urban area.
Monitoring of atmospheric particles and ozone in Sequoia National Park: 1985-1987. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cahill, T.A.
1989-06-01
The Air Quality Group Monitored particles and ozone in Sequoia National Park as part of an effort to understand the impact of acid deposition and other air pollutants on the park's forests and watersheds. For high-elevation ozone measurement, the project developed a new solar-powered ozone monitoring system. The particulate matter sampled was analyzed for elemental content using nuclear techniques. The measurements were correlated with meteorology, known elemental sources, and wet and dry deposition measurements. The results show that particulate matter at Sequoia National Park is similar to that present at other sites on the western slope of the Sierra Nevadamore » range at equivalent elevations. Some anthropogenic species, including nickel and sulfate, are present in higher concentrations at Sequoia than at Yosemite National Park.« less
SOIL-GAS AND GEOPHYSICAL TECHNIQUES FOR DETECTION OF SUBSURFACE ORGANIC CONTAMINATION
From 1985 through 1987, the Air Force Engineering and Services Center funded research at the U.S. Environmental Protection Agency Environmental Monitoring Systems Laboratory in Las Vegas, Nevada through an interagency agreement. The agreement provided for investigations of subsur...
Ambient Air Monitoring for Sulfur Compounds
ERIC Educational Resources Information Center
Forrest, Joseph; Newman, Leonard
1973-01-01
A literature review of analytical techniques available for the study of compounds at low concentrations points up some of the areas where further research is needed. Compounds reviewed are sulfur dioxide, sulfuric acid, ammonium sulfate and bisulfate, metal sulfates, hydrogen sulfide, and organic sulfides. (BL)
SAMIRA - SAtellite based Monitoring Initiative for Regional Air quality
NASA Astrophysics Data System (ADS)
Schneider, Philipp; Stebel, Kerstin; Ajtai, Nicolae; Diamandi, Andrei; Horalek, Jan; Nicolae, Doina; Stachlewska, Iwona; Zehner, Claus
2016-04-01
Here, we present a new ESA-funded project entitled Satellite based Monitoring Initiative for Regional Air quality (SAMIRA), which aims at improving regional and local air quality monitoring through synergetic use of data from present and upcoming satellites, traditionally used in situ air quality monitoring networks and output from chemical transport models. Through collaborative efforts in four countries, namely Romania, Poland, the Czech Republic and Norway, all with existing air quality problems, SAMIRA intends to support the involved institutions and associated users in their national monitoring and reporting mandates as well as to generate novel research in this area. Despite considerable improvements in the past decades, Europe is still far from achieving levels of air quality that do not pose unacceptable hazards to humans and the environment. Main concerns in Europe are exceedances of particulate matter (PM), ground-level ozone, benzo(a)pyrene (BaP) and nitrogen dioxide (NO2). While overall sulfur dioxide (SO2) emissions have decreased in recent years, regional concentrations can still be high in some areas. The objectives of SAMIRA are to improve algorithms for the retrieval of hourly aerosol optical depth (AOD) maps from SEVIRI, and to develop robust methods for deriving column- and near-surface PM maps for the study area by combining satellite AOD with information from regional models. The benefit to existing monitoring networks (in situ, models, satellite) by combining these datasets using data fusion methods will be tested for satellite-based NO2, SO2, and PM/AOD. Furthermore, SAMIRA will test and apply techniques for downscaling air quality-related EO products to a spatial resolution that is more in line with what is generally required for studying urban and regional scale air quality. This will be demonstrated for a set of study sites that include the capitals of the four countries and the highly polluted areas along the border of Poland and the Czech Republic, and the Gorj County in Romania. All data products shall undergo a quality control, i.e. robust and independent validation. The SAMIRA consortium will further work towards a pre-operational system for improved PM10 forecasts using observational (in situ and satellite) data assimilation. SAMIRA aims to maximize project benefits by liaison with national and regional environmental protection agencies and health institutions, as well as related ESA and European initiatives such as the Copernicus Atmospheric Monitoring Services (CAMS).
Forecasting air quality time series using deep learning.
Freeman, Brian S; Taylor, Graham; Gharabaghi, Bahram; Thé, Jesse
2018-04-13
This paper presents one of the first applications of deep learning (DL) techniques to predict air pollution time series. Air quality management relies extensively on time series data captured at air monitoring stations as the basis of identifying population exposure to airborne pollutants and determining compliance with local ambient air standards. In this paper, 8 hr averaged surface ozone (O 3 ) concentrations were predicted using deep learning consisting of a recurrent neural network (RNN) with long short-term memory (LSTM). Hourly air quality and meteorological data were used to train and forecast values up to 72 hours with low error rates. The LSTM was able to forecast the duration of continuous O 3 exceedances as well. Prior to training the network, the dataset was reviewed for missing data and outliers. Missing data were imputed using a novel technique that averaged gaps less than eight time steps with incremental steps based on first-order differences of neighboring time periods. Data were then used to train decision trees to evaluate input feature importance over different time prediction horizons. The number of features used to train the LSTM model was reduced from 25 features to 5 features, resulting in improved accuracy as measured by Mean Absolute Error (MAE). Parameter sensitivity analysis identified look-back nodes associated with the RNN proved to be a significant source of error if not aligned with the prediction horizon. Overall, MAE's less than 2 were calculated for predictions out to 72 hours. Novel deep learning techniques were used to train an 8-hour averaged ozone forecast model. Missing data and outliers within the captured data set were replaced using a new imputation method that generated calculated values closer to the expected value based on the time and season. Decision trees were used to identify input variables with the greatest importance. The methods presented in this paper allow air managers to forecast long range air pollution concentration while only monitoring key parameters and without transforming the data set in its entirety, thus allowing real time inputs and continuous prediction.
Development of a nuclear technique for monitoring water levels in pressurized vehicles
NASA Technical Reports Server (NTRS)
Singh, J. J.; Davis, W. T.; Mall, G. H.
1983-01-01
A new technique for monitoring water levels in pressurized stainless steel cylinders was developed. It is based on differences in attenuation coefficients of water and air for Cs137 (662 keV) gamma rays. Experimentally observed gamma ray counting rates with and without water in model reservoir cylinder were compared with corresponding calculated values for two different gamma ray detection theshold energies. Calculated values include the effects of multiple scattering and attendant gamma ray energy reductions. The agreement between the measured and calculated values is reasonably good. Computer programs for calculating angular and spectral distributions of scattered radition in various media are included.
Visualization of stress wave propagation via air-coupled acoustic emission sensors
NASA Astrophysics Data System (ADS)
Rivey, Joshua C.; Lee, Gil-Yong; Yang, Jinkyu; Kim, Youngkey; Kim, Sungchan
2017-02-01
We experimentally demonstrate the feasibility of visualizing stress waves propagating in plates using air-coupled acoustic emission sensors. Specifically, we employ a device that embeds arrays of microphones around an optical lens in a helical pattern. By implementing a beamforming technique, this remote sensing system allows us to record wave propagation events in situ via a single-shot and full-field measurement. This is a significant improvement over the conventional wave propagation tracking approaches based on laser doppler vibrometry or digital image correlation techniques. In this paper, we focus on demonstrating the feasibility and efficacy of this air-coupled acoustic emission technique by using large metallic plates exposed to external impacts. The visualization results of stress wave propagation will be shown under various impact scenarios. The proposed technique can be used to characterize and localize damage by detecting the attenuation, reflection, and scattering of stress waves that occurs at damage locations. This can ultimately lead to the development of new structural health monitoring and nondestructive evaluation methods for identifying hidden cracks or delaminations in metallic or composite plate structures, simultaneously negating the need for mounted contact sensors.
Lidar Measurements for Desert Dust Characterization: An Overview
NASA Technical Reports Server (NTRS)
Mona, L.; Liu, Z.; Mueller, D.; Omar, A.; Papayannis, A.; Pappalardo, G.; Sugimoto, N.; Vaughan, M.
2012-01-01
We provide an overview of light detection and ranging (lidar) capability for describing and characterizing desert dust. This paper summarizes lidar techniques, observations, and fallouts of desert dust lidar measurements. The main objective is to provide the scientific community, including non-practitioners of lidar observations with a reference paper on dust lidar measurements. In particular, it will fill the current gap of communication between research-oriented lidar community and potential desert dust data users, such as air quality monitoring agencies and aviation advisory centers. The current capability of the different lidar techniques for the characterization of aerosol in general and desert dust in particular is presented. Technical aspects and required assumptions of these techniques are discussed, providing readers with the pros and cons of each technique. Information about desert dust collected up to date using lidar techniques is reviewed. Lidar techniques for aerosol characterization have a maturity level appropriate for addressing air quality and transportation issues, as demonstrated by some first results reported in this paper
Remote sensing techniques in monitoring areas affected by forest fire
NASA Astrophysics Data System (ADS)
Karagianni, Aikaterini Ch.; Lazaridou, Maria A.
2017-09-01
Forest fire is a part of nature playing a key role in shaping ecosystems. However, fire's environmental impacts can be significant, affecting wildlife habitat and timber, human settlements, man-made technical constructions and various networks (road, power networks) and polluting the air with emissions harmful to human health. Furthermore, fire's effect on the landscape may be long-lasting. Monitoring the development of a fire occurs as an important aspect at the management of natural hazards in general. Among the used methods for monitoring, satellite data and remote sensing techniques can be proven of particular importance. Satellite remote sensing offers a useful tool for forest fire detection, monitoring, management and damage assessment. Especially for fire scars detection and monitoring, satellite data derived from Landsat 8 can be a useful research tool. This paper includes critical considerations of the above and concerns in particular an example of the Greek area (Thasos Island). This specific area was hit by fires several times in the past and recently as well (September 2016). Landsat 8 satellite data are being used (pre and post fire imagery) and digital image processing techniques are applied (enhancement techniques, calculation of various indices) for fire scars detection. Visual interpretation of the example area affected by the fires is also being done, contributing to the overall study.
NASA Astrophysics Data System (ADS)
Bourges, F.; Genty, D.; Genthon, P.; Mangin, A.; D'Hulst, D.
2012-04-01
Cave climatic environment survey covers different sort of analyses on air and water, and has various interests from the conservation of prehistoric caves to the study of paleoclimates. Depending on the purpose, the cave monitoring can be entirely automatic or combine both automatic and manual data acquisitions. Apparatus are adapted to cave environment to measure specific parameters (i.e. drip rate, air humidity, CO2) and during the long-term monitorings, several generations of techniques have been used. We present here examples of cave monitoring (1996 →) from South-France: Chauvet, Orgnac (Ardèche), Esparros (Hautes-Pyrénées) and Villars (Dordogne). In all these sites, we obtained among the longest series of climatic parameters of inside the caves, coupled sometimes with geochemical and isotopic analyses on air and seepage water, which allow to better understand cave air circulation behaviour and their sensitivity to the external climatic and environmental variations. High precision temperature measurements in Orgnac and Chauvet caves, coupled with pCO2 and radon analyses, allowed the reconstruction of seasonal air circulation patterns in each cave. While the Chauvet and Esparros caves are quite confined environments with temperature changes mainly controlled by air pressure variations, the Orgnac cave, like most caves, shows a well marked summer/winter regime alternation. Quantification of air flows of known CO2 concentration allowed the calculation of carbon fluxes toward the earth atmosphere which is estimated to about 340 gm-2yr-1. Since 15 years, the monitoring made in the Villars cave at two different levels has shown that the air temperature displays small seasonal variations in the upper galleries while it is not detectable in the lower ones. Average annual temperature difference between these two levels is of more than 1°C, showing that local differences in a single cave can be significant. A global warming trend likely correlated with local external temperature changes is observed in both levels since the beginning of the monitoring in 1996 which is not the case in Chauvet and Esparros caves. The stable isotope composition of the seepage water of the Villars cave and drip rates measured under several stalactites give precious information about the mixture of the rainfall infiltration signal in the unsaturated zone; these long isotopic series are discussed and compared with the rainfall (quantity and isotopic composition) sampled at this site.
OPEN-PATH FTIR MEASUREMENTS OF NOX AND OTHER DIESEL EMISSIONS
The paper gives results of a demonstration of the feasibility of using an open-path Fourier transform infrared (OP-FTIR) monitoring technique to address the across-road characterization of diesel vehicle emissions of criteria pollutants and hazardous air pollutants. Four sets of ...
NASA Astrophysics Data System (ADS)
Johnson, Nicholas E.; Bonczak, Bartosz; Kontokosta, Constantine E.
2018-07-01
The increased availability and improved quality of new sensing technologies have catalyzed a growing body of research to evaluate and leverage these tools in order to quantify and describe urban environments. Air quality, in particular, has received greater attention because of the well-established links to serious respiratory illnesses and the unprecedented levels of air pollution in developed and developing countries and cities around the world. Though numerous laboratory and field evaluation studies have begun to explore the use and potential of low-cost air quality monitoring devices, the performance and stability of these tools has not been adequately evaluated in complex urban environments, and further research is needed. In this study, we present the design of a low-cost air quality monitoring platform based on the Shinyei PPD42 aerosol monitor and examine the suitability of the sensor for deployment in a dense heterogeneous urban environment. We assess the sensor's performance during a field calibration campaign from February 7th to March 25th 2017 with a reference instrument in New York City, and present a novel calibration approach using a machine learning method that incorporates publicly available meteorological data in order to improve overall sensor performance. We find that while the PPD42 performs well in relation to the reference instrument using linear regression (R2 = 0.36-0.51), a gradient boosting regression tree model can significantly improve device calibration (R2 = 0.68-0.76). We discuss the sensor's performance and reliability when deployed in a dense, heterogeneous urban environment during a period of significant variation in weather conditions, and important considerations when using machine learning techniques to improve the performance of low-cost air quality monitors.
2015-06-30
Aberdeen Ave SE AIR FORCE MATERIEL COMMAND KIRTLAND AIR FORCE BASE, NM 87117-5776 DTIC COPY NOTICE AND SIGNATURE PAGE Using Government drawings...or corporation; or convey any rights or permission to manufacture, use , or sell any patented invention that may relate to them. This report was...synthesizing seismograms using a radiative transport technique to predict the high frequency coda (2 to 4 Hz) of regional seismic phases at stations
2012-01-01
Background Hyperpolarised helium MRI (He3 MRI) is a new technique that enables imaging of the air distribution within the lungs. This allows accurate determination of the ventilation distribution in vivo. The technique has the disadvantages of requiring an expensive helium isotope, complex apparatus and moving the patient to a compatible MRI scanner. Electrical impedance tomography (EIT) a non-invasive bedside technique that allows constant monitoring of lung impedance, which is dependent on changes in air space capacity in the lung. We have used He3MRI measurements of ventilation distribution as the gold standard for assessment of EIT. Methods Seven rats were ventilated in supine, prone, left and right lateral position with 70% helium/30% oxygen for EIT measurements and pure helium for He3 MRI. The same ventilator and settings were used for both measurements. Image dimensions, geometric centre and global in homogeneity index were calculated. Results EIT images were smaller and of lower resolution and contained less anatomical detail than those from He3 MRI. However, both methods could measure positional induced changes in lung ventilation, as assessed by the geometric centre. The global in homogeneity index were comparable between the techniques. Conclusion EIT is a suitable technique for monitoring ventilation distribution and inhomgeneity as assessed by comparison with He3 MRI. PMID:22966835
Air quality for metals and sulfur in Shanghai, China, determined with moss bags.
Cao, Tong; Wang, Min; An, Li; Yu, Yinghao; Lou, Yuxia; Guo, Shuiliang; Zuo, Benrong; Liu, Yan; Wu, Jiming; Cao, Yang; Zhu, Zhirui
2009-04-01
In order to better understand the spatial and temporal distribution pattern of metals and sulfur present in Shanghai, moss bags with Haplocladium microphyllum (Hedw.) Broth. were suspended at 14 local monitoring stations from April through June 2006 in Shanghai, the largest city in China. The results showed that the concentrations of S, Cu, Pb, and Zn in the moss bags after exposure were higher at the sites in the industrial district and most urban districts and lower at the sites in suburban areas, and well correlated with SO(2) API and PM10 API in the air both in terms of space and time. The present study provided evidence that the moss H. microphyllum is suitable for bio-monitoring air pollution with moss bags and further confirmed that the moss-bag method is a simple, inexpensive and useful technique.
Spatial mapping and analysis of aerosols during a forest fire using computational mobile microscopy
NASA Astrophysics Data System (ADS)
Wu, Yichen; Shiledar, Ashutosh; Luo, Yi; Wong, Jeffrey; Chen, Cheng; Bai, Bijie; Zhang, Yibo; Tamamitsu, Miu; Ozcan, Aydogan
2018-02-01
Forest fires are a major source of particulate matter (PM) air pollution on a global scale. The composition and impact of PM are typically studied using only laboratory instruments and extrapolated to real fire events owing to a lack of analytical techniques suitable for field-settings. To address this and similar field test challenges, we developed a mobilemicroscopy- and machine-learning-based air quality monitoring platform called c-Air, which can perform air sampling and microscopic analysis of aerosols in an integrated portable device. We tested its performance for PM sizing and morphological analysis during a recent forest fire event in La Tuna Canyon Park by spatially mapping the PM. The result shows that with decreasing distance to the fire site, the PM concentration increases dramatically, especially for particles smaller than 2 µm. Image analysis from the c-Air portable device also shows that the increased PM is comparatively strongly absorbing and asymmetric, with an aspect ratio of 0.5-0.7. These PM features indicate that a major portion of the PM may be open-flame-combustion-generated element carbon soot-type particles. This initial small-scale experiment shows that c-Air has some potential for forest fire monitoring.
NASA Astrophysics Data System (ADS)
Parracino, Stefano; Richetta, Maria; Gelfusa, Michela; Malizia, Andrea; Bellecci, Carlo; De Leo, Leonardo; Perrimezzi, Carlo; Fin, Alessandro; Forin, Marco; Giappicucci, Francesca; Grion, Massimo; Marchese, Giuseppe; Gaudio, Pasquale
2016-10-01
Urban air pollution causes deleterious effects on human health and the environment. To meet stringent standards imposed by the European Commission, advanced measurement methods are required. Remote sensing techniques, such as light detection and ranging (LiDAR), can be a valuable option for evaluating particulate matter (PM), emitted by vehicles in urban traffic, with high sensitivity and in shorter time intervals. Since air quality problems persist not only in large urban areas, a measuring campaign was specifically performed in a suburban area of Crotone, Italy, using both a compact LiDAR system and conventional instruments for real-time vehicle emissions monitoring along a congested road. First results reported in this paper show a strong dependence between variations of LiDAR backscattering signals and traffic-related air pollution levels. Moreover, time-resolved LiDAR data averaged in limited regions, directly above conventional monitoring stations at the border of an intersection, were found to be linearly correlated to the PM concentration levels with a correlation coefficient between 0.75 and 0.84.
NASA Technical Reports Server (NTRS)
Tai, H.; Wilson, J. W.; Maiden, D. L.
2003-01-01
The atmospheric ionizing radiation (AIR) ER-2 preflight analysis, one of the first attempts to obtain a relatively complete measurement set of the high-altitude radiation level environment, is described in this paper. The primary thrust is to characterize the atmospheric radiation and to define dose levels at high-altitude flight. A secondary thrust is to develop and validate dosimetric techniques and monitoring devices for protecting aircrews. With a few chosen routes, we can measure the experimental results and validate the AIR model predictions. Eventually, as more measurements are made, we gain more understanding about the hazardous radiation environment and acquire more confidence in the prediction models.
Krawczyk, M.; Namiesnik, J.
2003-01-01
A new technique is presented for continuous measurements of hydrogen contamination by air in the upper explosive limit range. It is based on the application of a catalytic combustion sensor placed in a cell through which the tested sample passes. The air content is the function of the quantity of formed heat during catalytic combustion of hydrogen inside the sensor. There is the possibility of using the method in industrial installations by using hydrogen for cooling electric current generators. PMID:18924620
NASA Astrophysics Data System (ADS)
Pikálek, Tomáš; Šarbort, Martin; Číp, Ondřej; Pham, Minh Tuan; Lešundák, Adam; Pravdová, Lenka; Buchta, Zdeněk.
2017-06-01
The air refractive index is an important parameter in interferometric length measurements, since it substantially affects the measurement accuracy. We present a refractive index of air measurement method based on monitoring the phase difference between the ambient air and vacuum inside a permanently evacuated double-spaced cell. The cell is placed in one arm of the Michelson interferometer equipped with two light sources—red LED and HeNe laser, while the low-coherence and laser interference signals are measured separately. Both phase and group refractive indices of air can be calculated from the measured signals. The method was experimentally verified by comparing the obtained refractive index values with two different techniques.
Fortuna, A O; Gurd, J R
1999-01-01
During certain medical procedures, it is important to continuously measure the respiratory flow of a patient, as lack of proper ventilation can cause brain damage and ultimately death. The monitoring of the ventilatory condition of a patient is usually performed with the aid of flowmeters. However, water and other secretions present in the expired air can build up and ultimately block a traditional, restriction-based flowmeter; by using an orifice plate flowmeter, such blockages are minimized. This paper describes the design of an orifice plate flowmetering system including, especially, a description of the numerical and computational techniques adopted in order to simulate human respiratory and sinusoidal air flow across various possible designs for the orifice plate flowmeter device. Parallel computation and multigrid techniques were employed in order to reduce execution time. The simulated orifice plate was later built and tested under unsteady sinusoidal flows. Experimental tests show reasonable agreement with the numerical simulation, thereby reinforcing the general hypothesis that computational exploration of the design space is sufficiently accurate to allow designers of such systems to use this in preference to the more traditional, mechanical prototyping techniques.
The Impact of Spatial Correlation and Incommensurability on Model Evaluation
Standard evaluations of air quality models rely heavily on a direct comparison of monitoring data matched with the model output for the grid cell containing the monitor’s location. While such techniques may be adequate for some applications, conclusions are limited by such facto...
Energy efficiency buildings program
NASA Astrophysics Data System (ADS)
1981-05-01
Progress is reported in developing techniques for auditing the energy performance of buildings. The ventilation of buildings and indoor air quality is discussed from the viewpoint of (1) combustion generated pollutants; (2) organic contaminants; (3) radon emanation, measurements, and control; (4) strategies for the field monitoring of indoor air quality; and (5) mechanical ventilation systems using air-to-air heat exchanges. The development of energy efficient windows to provide optimum daylight with minimal thermal losses in cold weather and minimum thermal gain in hot weather is considered as well as the production of high frequency solid state ballasts for fluorescent lights to provide more efficient lighting at a 25% savings over conventional core ballasts. Data compilation, analysis, and demonstration activities are summarized.
Assessing transboundary influences in the lower Rio Grande Valley
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mukerjee, S.; Shadwick, D.S.; Dean, K.E.
1999-07-01
The Lower Rio Grande Valley Transboundary Air Pollution Project (TAPP) was a US-Mexico Border XXI Program project to assess transboundary air pollution in and near Brownsville, Texas. The study used a three-site air monitoring network very close to the border to capture the direct impact of local sources and transboundary transport. Ambient data included particulate mass and elemental composition, VOCs, PAHs, pesticides, and meteorology. Also, near real-time, PM{sub 2.5} mass measurements captured potential pollutant plume events occurring over 1-h periods. Data collected were compared to screening levels and other monitoring data to assess general air pollution impacts on nearby bordermore » communities. Wind sector analyses, chemical tracer analyses, principal component analyses, and other techniques were used to assess the extent of transboundary transport of air pollutants and identify possible transboundary air pollution sources. Overall, ambient levels were comparable to or lower than other urban and rural areas in Texas and elsewhere. Movement of air pollution across the border did not appear to cause noticeable deterioration of air quality on the US side of the Lower Rio Grande Valley. Dominant southeasterly winds from the Gulf of Mexico were largely responsible for the clean air conditions in the Brownsville airshed. Few observations of pollutants exceeded effects screening levels, almost all being VOCs; these appeared to be due to local events and immediate influences, not regional phenomena or persistent transboundary plumes.« less
Basic Information about Air Emissions Monitoring
This site is about types of air emissions monitoring and the Clean Air Act regulations, including Ambient Air Quality Monitoring, Stationary Source Emissions Monitoring, and Continuous Monitoring Systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fulle, D.J.; Bilello, M.A.; Armstrong, J.A.
The US Trade and Development Agency is partially funding the initial phase of an ambient air quality monitoring program for the Metropolitan Municipality of Istanbul in Turkey. The objectives of the monitoring program are fourfold: (1) to ascertain existing levels of air pollution within the urban area; (2) to identify locations where there may be health concerns associated with existing levels of air pollution; (3) to determine the portion of air pollution arising from specific anthropogenic sources within the urban area; and (4) to target the major sources for an emission-reduction program. This program is being carried out in phases.more » A feasibility study has recently been completed. This initial activity will be followed by three main program phases. Phase 1 will involve the installation of several air quality monitoring stations to collect area-wide background data within and surrounding the Municipality. Phase 2 will consist of taking detailed pollutant measurements near specific sources and in specific areas of high pollutant concentrations identified in Phase 1. Phase 3 would target the major sources for emission reductions to improve local air quality and would institute revisions to the existing air quality permitting program. The feasibility study included determining the pollutants of concern, specifying the equipment that should be utilized in Phase 1 for the collection of the data, recommending the number and location of sites where data should be collected, determining site preparation and security needs, and defining the data reduction and analysis techniques which should be employed. This paper describes the results of the feasibility study and outlines plans for the remaining phases of the program.« less
Recommendations on the use of satellite remote-sensing data for urban air quality.
Engel-Cox, Jill A; Hoff, Raymond M; Haymet, A D J
2004-11-01
In the last 5 yr, the capabilities of earth-observing satellites and the technological tools to share and use satellite data have advanced sufficiently to consider using satellite imagery in conjunction with ground-based data for urban-scale air quality monitoring. Satellite data can add synoptic and geospatial information to ground-based air quality data and modeling. An assessment of the integrated use of ground-based and satellite data for air quality monitoring, including several short case studies, was conducted. Findings identified current U.S. satellites with potential for air quality applications, with others available internationally and several more to be launched within the next 5 yr; several of these sensors are described in this paper as illustrations. However, use of these data for air quality applications has been hindered by historical lack of collaboration between air quality and satellite scientists, difficulty accessing and understanding new data, limited resources and agency priorities to develop new techniques, ill-defined needs, and poor understanding of the potential and limitations of the data. Specialization in organizations and funding sources has limited the resources for cross-disciplinary projects. To successfully use these new data sets requires increased collaboration between organizations, streamlined access to data, and resources for project implementation.
Carter Carburetor Weekly Air Monitoring & Sampling Report - March 7, 2013 - March 13, 2016
Carter Carburetor Daily Weather Conditions, Dairly Work Activities, Daily Air Monitoring and Samplying Results, Air Monitoring/Samplying Results –Station 2 Linc 126, Air Monitoring/Sampling Results- Sation 3 Linc 123, Air Monitoring/Samplying Results-Stati
NASA Astrophysics Data System (ADS)
Elangasinghe, M. A.; Dirks, K. N.; Singhal, N.; Costello, S. B.; Longley, I.; Salmond, J. A.
2014-02-01
Air pollution from the transport sector has a marked effect on human health, so isolating the pollutant contribution from a roadway is important in understanding its impact on the local neighbourhood. This paper proposes a novel technique based on a semi-empirical air pollution model to quantify the impact from a roadway on the air quality of a local neighbourhood using ambient records of a single air pollution monitor. We demonstrate the proposed technique using a case study, in which we quantify the contribution from a major highway with respect to the local background concentration in Auckland, New Zealand. Comparing the diurnal variation of the model-separated background contribution with real measurements from a site upwind of the highway shows that the model estimates are reliable. Amongst all of the pollutants considered, the best estimations of the background were achieved for nitrogen oxides. Although the multi-pronged approach worked well for predominantly vehicle-related pollutants, it could not be used effectively to isolate emissions of PM10 due to the complex and less predictable influence of natural sources (such as marine aerosols). The proposed approach is useful in situations where ambient records from an upwind background station are not available (as required by other techniques) and is potentially transferable to situations such as intersections and arterial roads. Applying this technique to longer time series could help to understand the changes in pollutant concentrations from the road and background sources for different emission scenarios, for different years or seasons. Modelling results also show the potential of such a hybrid semi-empirical models to contribute to our understanding of the physical parameters determining air quality and to validate emissions inventory data.
Krypton and Xenon Radionuclides Monitoring in the Northwest Region of Russia
NASA Astrophysics Data System (ADS)
Dubasov, Yuri V.; Okunev, Nikolay S.
2010-05-01
Monitoring of Xe and Kr radionuclides was conducted from August 2006 to 30 July 2008 within the framework of ISTC Project #2133. Cherepovets City in Vologda Province and St. Petersburg were chosen as monitoring locations. Kr-Xe concentrate samples were obtained as a result of processing of several thousand m3 of atmospheric air. New results of 85Kr monitoring show, that for last 15 years, the 85Kr volumetric activity in the atmospheric air of the northwest region of Russia has increased approximately 50% and has achieved a level of 1.5 Bq/m3. This value correlates well with similar data for Western Europe and Japan. The xenon fraction (80-160 cm3 under STP) is adsorbed on charcoal in the ampoule, which is measured in the well of HPGe gamma detector. Minimum detectable concentration (MDC) of 133Xe for this technique is 0.008 mBq/m3, and it is the most sensitive method used today. The 133Xe concentration in the atmospheric air of Cherepovets City varied in the monitoring period ranging from 0.09 to 2.5 mBq/m3. During the period of March 2007-30 July 2008, 133Xe activity concentration in the atmospheric air of St. Petersburg changed from background values (0.2-0.3 mBq/m3) to 185 mBq/m3 and for approximately 20% of the samples 135Xe was also measured with the 135Xe/133Xe activity ratio varied within the range of 0.03-3.5.
Carter Carburetor Weekly Air Monitoring & Sampling Report - November 30, 2015 – December 6, 2015
Carter Carburetor Daily Weather Conditions, Dairly Work Activities, Daily Air Monitoring and Samplying Results, Air Monitoring/Samplying Results –Station 2 Linc 126, Air Monitoring/Sampling Results- Sation 3 Linc 123, Air Monitoring/Samplying Results-Stati
Carter Carburetor Weekly Air Monitoring & Sampling Report - October 26, 2015 – November 1, 2015
Carter Carburetor Daily Weather Conditions, Dairly Work Activities, Daily Air Monitoring and Samplying Results, Air Monitoring/Samplying Results –Station 2 Linc 126, Air Monitoring/Sampling Results- Sation 3 Linc 123, Air Monitoring/Samplying Results-Stati
Carter Carburetor Weekly Air Monitoring & Sampling Report - February 15, 2016 – February 21, 2016
Carter Carburetor Daily Weather Conditions, Dairly Work Activities, Daily Air Monitoring and Samplying Results, Air Monitoring/Samplying Results –Station 2 Linc 126, Air Monitoring/Sampling Results- Sation 3 Linc 123, Air Monitoring/Samplying Results-Stati
Carter Carburetor Weekly Air Monitoring & Sampling Report - October 12, 2015 – October 18, 2015
Carter Carburetor Daily Weather Conditions, Dairly Work Activities, Daily Air Monitoring and Samplying Results, Air Monitoring/Samplying Results –Station 2 Linc 126, Air Monitoring/Sampling Results- Sation 3 Linc 123, Air Monitoring/Samplying Results-Stati
Carter Carburetor Weekly Air Monitoring & Sampling Report - November 23, 2015 – November 29, 2015
Carter Carburetor Daily Weather Conditions, Dairly Work Activities, Daily Air Monitoring and Samplying Results, Air Monitoring/Samplying Results –Station 2 Linc 126, Air Monitoring/Sampling Results- Sation 3 Linc 123, Air Monitoring/Samplying Results-Stati
Carter Carburetor Weekly Air Monitoring & Sampling Report - October 5, 2015 – October 11, 2015
Carter Carburetor Daily Weather Conditions, Dairly Work Activities, Daily Air Monitoring and Samplying Results, Air Monitoring/Samplying Results –Station 2 Linc 126, Air Monitoring/Sampling Results- Sation 3 Linc 123, Air Monitoring/Samplying Results-Stati
Carter Carburetor Weekly Air Monitoring & Sampling Report - February 1, 2016 – February 7, 2016
Carter Carburetor Daily Weather Conditions, Dairly Work Activities, Daily Air Monitoring and Samplying Results, Air Monitoring/Samplying Results –Station 2 Linc 126, Air Monitoring/Sampling Results- Sation 3 Linc 123, Air Monitoring/Samplying Results-Stati
Carter Carburetor Weekly Air Monitoring & Sampling Report - September 28, 2015 – October 4, 2015
Carter Carburetor Daily Weather Conditions, Dairly Work Activities, Daily Air Monitoring and Samplying Results, Air Monitoring/Samplying Results –Station 2 Linc 126, Air Monitoring/Sampling Results- Sation 3 Linc 123, Air Monitoring/Samplying Results-Stati
Carter Carburetor Weekly Air Monitoring & Sampling Report - November 16, 2015 – November 22, 2015
Carter Carburetor Daily Weather Conditions, Dairly Work Activities, Daily Air Monitoring and Samplying Results, Air Monitoring/Samplying Results –Station 2 Linc 126, Air Monitoring/Sampling Results- Sation 3 Linc 123, Air Monitoring/Samplying Results-Stati
Carter Carburetor Weekly Air Monitoring & Sampling Report - November 9, 2015 – November 15, 2015
Carter Carburetor Daily Weather Conditions, Dairly Work Activities, Daily Air Monitoring and Samplying Results, Air Monitoring/Samplying Results –Station 2 Linc 126, Air Monitoring/Sampling Results- Sation 3 Linc 123, Air Monitoring/Samplying Results-Stati
Carter Carburetor Weekly Air Monitoring & Sampling Report - October 19, 2015 – October 25, 2015
Carter Carburetor Daily Weather Conditions, Dairly Work Activities, Daily Air Monitoring and Samplying Results, Air Monitoring/Samplying Results –Station 2 Linc 126, Air Monitoring/Sampling Results- Sation 3 Linc 123, Air Monitoring/Samplying Results-Stati
Carter Carburetor Weekly Air Monitoring & Sampling Report - November 2, 2015 – November 8, 2015
Carter Carburetor Daily Weather Conditions, Dairly Work Activities, Daily Air Monitoring and Samplying Results, Air Monitoring/Samplying Results –Station 2 Linc 126, Air Monitoring/Sampling Results- Sation 3 Linc 123, Air Monitoring/Samplying Results-Stati
Hofman, Jelle; Samson, Roeland
2014-09-01
Biomagnetic monitoring of tree leaf deposited particles has proven to be a good indicator of the ambient particulate concentration. The objective of this study is to apply this method to validate a local-scale air quality model (ENVI-met), using 96 tree crown sampling locations in a typical urban street canyon. To the best of our knowledge, the application of biomagnetic monitoring for the validation of pollutant dispersion modeling is hereby presented for the first time. Quantitative ENVI-met validation showed significant correlations between modeled and measured results throughout the entire in-leaf period. ENVI-met performed much better at the first half of the street canyon close to the ring road (r=0.58-0.79, RMSE=44-49%), compared to second part (r=0.58-0.64, RMSE=74-102%). The spatial model behavior was evaluated by testing effects of height, azimuthal position, tree position and distance from the main pollution source on the obtained model results and magnetic measurements. Our results demonstrate that biomagnetic monitoring seems to be a valuable method to evaluate the performance of air quality models. Due to the high spatial and temporal resolution of this technique, biomagnetic monitoring can be applied anywhere in the city (where urban green is present) to evaluate model performance at different spatial scales. Copyright © 2014 Elsevier Ltd. All rights reserved.
THE APPLICATION OF JET REMPI-TOFMS TO REAL-TIME MONITORING OF AROMATIC AIR TOXIC POLLUTANTS
Jet REMPI-TOFMS is a measurement technique which combines laser induced photoionization with mass spectrometry to create a two-dimensional (wavelength / mass) detection method. In combination with a supersonic jet inlet, aromatic organics are detected in real time (one data poin...
Correlation of gravestone decay and air quality 1960-2010
NASA Astrophysics Data System (ADS)
Mooers, H. D.; Carlson, M. J.; Harrison, R. M.; Inkpen, R. J.; Loeffler, S.
2017-03-01
Evaluation of spatial and temporal variability in surface recession of lead-lettered Carrara marble gravestones provides a quantitative measure of acid flux to the stone surfaces and is closely related to local land use and air quality. Correlation of stone decay, land use, and air quality for the period after 1960 when reliable estimates of atmospheric pollution are available is evaluated. Gravestone decay and SO2 measurements are interpolated spatially using deterministic and geostatistical techniques. A general lack of spatial correlation was identified and therefore a land-use-based technique for correlation of stone decay and air quality is employed. Decadally averaged stone decay is highly correlated with land use averaged spatially over an optimum radius of ≈7 km even though air quality, determined by records from the UK monitoring network, is not highly correlated with gravestone decay. The relationships among stone decay, air-quality, and land use is complicated by the relatively low spatial density of both gravestone decay and air quality data and the fact that air quality data is available only as annual averages and therefore seasonal dependence cannot be evaluated. However, acid deposition calculated from gravestone decay suggests that the deposition efficiency of SO2 has increased appreciably since 1980 indicating an increase in the SO2 oxidation process possibly related to reactions with ammonia.
NASA Astrophysics Data System (ADS)
Carreras, H. A.; Pignata, M. L.; Saldiva, P. H. N.
During the last decades, a significant deterioration of ambient air quality has been observed in Argentina. However, the availability of air pollution monitoring stations is still limited to only few cities. In this study, we investigated the genotoxicity of ambient levels of air pollution in Córdoba using the Tradescantia micronucleus assay. The experiment was performed from October, 2004 to April 2005. Pots with Tradescantia pallida were placed in three sites: Córdoba city center, characterized by important avenues with high traffic activity (cars, taxis, and public transport vehicles); the university campus, along a side road with heavy traffic of gasoline and diesel powered vehicles, buses and trucks; and a residential area, with no significant local sources of air pollution. Twenty young T. pallida inflorescences were collected from each sampling site in November, February and April. Micronuclei frequencies were determined in early tetrads of pollen mother cells and expressed as MCN/100 tetrads. Simultaneously, the environmental levels of total suspended particles (24 h mean) were determined for each site. A significant difference in micronuclei frequency was observed among sites ( p=0.036). Post-hoc analysis revealed that the residential area exhibited a lower micronuclei frequency than the university and city center areas. In conclusion, we found that the gradients of ambient air pollution of Córdoba are associated with changes in the spontaneous micronuclei frequency of Tradescantia pollen mother cells. These results indicate that in situ biomonitoring with higher plants may be useful for characterizing air pollution in areas without instrumental monitoring techniques, or for exploring the distribution of air contaminants at a microscale.
The first survey of airborne trace elements at airport using moss bag technique.
Vuković, Gordana; Urošević, Mira Aničić; Škrivanj, Sandra; Vergel, Konstantin; Tomašević, Milica; Popović, Aleksandar
2017-06-01
Air traffic represents an important way of social mobility in the world, and many ongoing discussions are related to the impacts that air transportation has on local air quality. In this study, moss Sphagnum girgensohnii was used for the first time in the assessment of trace element content at the international airport. The moss bags were exposed during the summer of 2013 at four sampling sites at the airport 'Nikola Tesla' (Belgrade, Serbia): runway (two), auxiliary runway and parking lot. According to the relative accumulation factor (RAF) and the limit of quantification of the moss bag technique (LOQ T ), the most abundant elements in the samples were Zn, Na, Cr, V, Cu and Fe. A comparison between the element concentrations at the airport and the corresponding values in different land use classes (urban central, suburban, industrial and green zones) across the city of Belgrade did not point out that the air traffic and associated activities significantly contribute to the trace element air pollution. This study emphasised an easy operational and robust (bio)monitoring, using moss bags as a suitable method for assessment of air quality within various microenvironments with restriction in positioning referent instrumental devices.
21 CFR 868.2025 - Ultrasonic air embolism monitor.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Ultrasonic air embolism monitor. 868.2025 Section... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2025 Ultrasonic air embolism monitor. (a) Identification. An ultrasonic air embolism monitor is a device used to detect air bubbles in...
21 CFR 868.2025 - Ultrasonic air embolism monitor.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Ultrasonic air embolism monitor. 868.2025 Section... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2025 Ultrasonic air embolism monitor. (a) Identification. An ultrasonic air embolism monitor is a device used to detect air bubbles in...
21 CFR 868.2025 - Ultrasonic air embolism monitor.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ultrasonic air embolism monitor. 868.2025 Section... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2025 Ultrasonic air embolism monitor. (a) Identification. An ultrasonic air embolism monitor is a device used to detect air bubbles in...
Configurations and calibration methods for passive sampling techniques.
Ouyang, Gangfeng; Pawliszyn, Janusz
2007-10-19
Passive sampling technology has developed very quickly in the past 15 years, and is widely used for the monitoring of pollutants in different environments. The design and quantification of passive sampling devices require an appropriate calibration method. Current calibration methods that exist for passive sampling, including equilibrium extraction, linear uptake, and kinetic calibration, are presented in this review. A number of state-of-the-art passive sampling devices that can be used for aqueous and air monitoring are introduced according to their calibration methods.
An evaluation of the accuracy of some radar wind profiling techniques
NASA Technical Reports Server (NTRS)
Koscielny, A. J.; Doviak, R. J.
1983-01-01
Major advances in Doppler radar measurement in optically clear air have made it feasible to monitor radial velocities in the troposphere and lower stratosphere. For most applications the three dimensional wind vector is monitored rather than the radial velocity. Measurement of the wind vector with a single radar can be made assuming a spatially linear, time invariant wind field. The components and derivatives of the wind are estimated by the parameters of a linear regression of the radial velocities on functions of their spatial locations. The accuracy of the wind measurement thus depends on the locations of the radial velocities. The suitability is evaluated of some of the common retrieval techniques for simultaneous measurement of both the vertical and horizontal wind components. The techniques considered for study are fixed beam, azimuthal scanning (VAD) and elevation scanning (VED).
Method and apparatus for phase for and amplitude detection
Cernosek, Richard W.; Frye, Gregory C.; Martin, Stephen J.
1998-06-09
A new class of techniques been developed which allow inexpensive application of SAW-type chemical sensor devices while retaining high sensitivity (ppm) to chemical detection. The new techniques do not require that the sensor be part of an oscillatory circuit, allowing large concentrations of, e.g., chemical vapors in air, to be accurately measured without compromising the capacity to measure trace concentrations. Such devices have numerous potential applications in environmental monitoring, from manufacturing environments to environmental restoration.
Detection of beryllium by laser-induced-breakdown spectroscopy
NASA Astrophysics Data System (ADS)
Radziemski, Leon J.; Cremers, David A.; Loree, Thomas R.
Using the new technique of laser-induced-breakdown spectroscopy (LIBS) a limit of detection was measured for beryllium in air of 0.5 ng/g ( w/w), which is one-third of the OSHA limit for the 8-h average exposure to beryllium. Approximately linear working curves were obtained over the concentration range 0.5 to 2 × 10 4 ng g -1. The potential application of this technique to a beryllium monitoring instrument is discussed.
Field evaluation of Fourier transform infrared continuous emissions monitoring (FTIR CEM) systems
NASA Astrophysics Data System (ADS)
Dunder, Thomas A.; Geyer, Thomas J.; Kinner, Laura L.; Plummer, Grant M.
1995-02-01
Recent environmental regulations, including the Clean Air Act and the Enhanced Monitoring Regulations, may require continuous emissions monitoring (CEM) of hazardous air pollutants (HAPs). A promising technique for this application is Fourier transform infrared spectroscopy (FTIR). FTIR spectroscopy can, in principle, be used to monitor virtually any gas phase species. Two evaluations of FTIR CEM systems are discussed. The first study, performed in 1993 - 94, compared two FTIR CEM systems on a side-by-side basis in an extended field test at two coal-fired electric power plants. The FTIR CEM systems monitored the legally mandated criteria pollutants and diluents (CO, CO2, NO, NO2, and SO2) as well as H2O. In addition, one system monitored two HAPs (HCl and HF) and NH3. The FTIR CEM measurements were compared with those from the compliance CEM systems at the facilities. Several relative accuracy test audits were also performed to verify the FTIR CEM accuracy. The second evaluation was recently commenced on behalf of the Environmental Protection Agency. In this study, FTIR CEM systems are evaluated specifically for the monitoring of HAP species by conducting laboratory and field tests. The evaluation culminates in the development of proposed performance specifications and protocols for FTIR CEM systems.
NASA Astrophysics Data System (ADS)
Johnson, Markey M.; Williams, Ron; Fan, Zhihua; Lin, Lin; Hudgens, Edward; Gallagher, Jane; Vette, Alan; Neas, Lucas; Özkaynak, Halûk
2010-12-01
The Mechanistic Indicators of Childhood Asthma (MICA) study in Detroit, Michigan introduced a participant-based approach to reduce the resource burden associated with collection of indoor and outdoor residential air sampling data. A subset of participants designated as MICA-Air conducted indoor and outdoor residential sampling of nitrogen dioxide (NO 2), volatile organic compounds (VOCs), and polycyclic aromatic hydrocarbons (PAHs). This participant-based methodology was subsequently adapted for use in the Vanguard phase of the U.S. National Children's Study. The current paper examines residential indoor and outdoor concentrations of these pollutant species among health study participants in Detroit, Michigan. Pollutants measured under MICA-Air agreed well with other studies and continuous monitoring data collected in Detroit. For example, NO 2 and BTEX concentrations reported for other Detroit area monitoring were generally within 10-15% of indoor and outdoor concentrations measured in MICA-Air households. Outdoor NO 2 concentrations were typically higher than indoor NO 2 concentration among MICA-Air homes, with a median indoor/outdoor (I/O) ratio of 0.6 in homes that were not impacted by environmental tobacco smoke (ETS) during air sampling. Indoor concentrations generally exceeded outdoor concentrations for VOC and PAH species measured among non-ETS homes in the study. I/O ratios for BTEX species (benzene, toluene, ethylbenzene, and m/p- and o-xylene) ranged from 1.2 for benzene to 3.1 for toluene. Outdoor NO 2 concentrations were approximately 4.5 ppb higher on weekdays versus weekends. As expected, I/O ratios pollutants were generally higher for homes impacted by ETS. These findings suggest that participant-based air sampling can provide a cost-effective alternative to technician-based approaches for assessing indoor and outdoor residential air pollution in community health studies. We also introduced a technique for estimating daily concentrations at each home by weighting 2- and 7-day integrated concentrations using continuous measurements from regulatory monitoring sites. This approach may be applied to estimate short-term daily or hourly pollutant concentrations in future health studies.
2014-01-01
Background The chemical composition of aerosols and particle size distributions are the most significant factors affecting air quality. In particular, the exposure to finer particles can cause short and long-term effects on human health. In the present paper PM10 (particulate matter with aerodynamic diameter lower than 10 μm), CO, NOx (NO and NO2), Benzene and Toluene trends monitored in six monitoring stations of Bari province are shown. The data set used was composed by bi-hourly means for all parameters (12 bi-hourly means per day for each parameter) and it’s referred to the period of time from January 2005 and May 2007. The main aim of the paper is to provide a clear illustration of how large data sets from monitoring stations can give information about the number and nature of the pollutant sources, and mainly to assess the contribution of the traffic source to PM10 concentration level by using multivariate statistical techniques such as Principal Component Analysis (PCA) and Absolute Principal Component Scores (APCS). Results Comparing the night and day mean concentrations (per day) for each parameter it has been pointed out that there is a different night and day behavior for some parameters such as CO, Benzene and Toluene than PM10. This suggests that CO, Benzene and Toluene concentrations are mainly connected with transport systems, whereas PM10 is mostly influenced by different factors. The statistical techniques identified three recurrent sources, associated with vehicular traffic and particulate transport, covering over 90% of variance. The contemporaneous analysis of gas and PM10 has allowed underlining the differences between the sources of these pollutants. Conclusions The analysis of the pollutant trends from large data set and the application of multivariate statistical techniques such as PCA and APCS can give useful information about air quality and pollutant’s sources. These knowledge can provide useful advices to environmental policies in order to reach the WHO recommended levels. PMID:24555534
Nano/micro/meso scale interactions in mechanics of pharmaceutical solid dosage forms
NASA Astrophysics Data System (ADS)
Akseli, Ilgaz
Oral administration in form tablets has been the most common method for delivering drug to the human systemic blood circulation accurately and reproducibly due to its established manufacturing methods and reliability as well as cost. The mechanical criteria for a successful powder-to-tablet processing are good flowability, compressibility and compactibility that are closely related to the mechanical and adhesion properties of the particles and particle strength. In this thesis, air-coupled acoustic and ultrasonic techniques are presented and demonstrated as noncontact and nondestructive methods for physical (mechanical) integrity monitoring and mechanical characterization of tablets. A testing and characterization experimental platform for defect detection, coating thickness and mechanical property determination of tablets was also developed. The presented air-coupled technique was based on the analysis of the transient vibrational responses of a tablet in both temporal and spectral domains. The contact ultrasonic technique was based on the analysis of the propagation speed of an acoustic pulse launched into a tablet and its reflection from the coat-core interface of the tablet. In defect monitoring, the ultimate objective is to separate defective tablets from nominal ones. In the case of characterization, to extract the coating layer thicknesses and mechanical properties of the tablets from a subset of the measured resonance frequencies, an iterative computational procedure was demonstrated. In the compaction monitoring experiments, an instrumented punch and a cylindrical die were employed to extract the elasticity properties of tablets during compaction. To study the effect of compaction kinetics on tablet properties and defect, finite element analyses of single layer and bilayer tablets were performed. A noncontact work-of-adhesion technique was also demonstrated to determine the work-of-adhesion of pharmaceutical powder particles.
Multi-perspective analysis and spatiotemporal mapping of air pollution monitoring data.
Kolovos, Alexander; Skupin, André; Jerrett, Michael; Christakos, George
2010-09-01
Space-time data analysis and assimilation techniques in atmospheric sciences typically consider input from monitoring measurements. The input is often processed in a manner that acknowledges characteristics of the measurements (e.g., underlying patterns, fluctuation features) under conditions of uncertainty; it also leads to the derivation of secondary information that serves study-oriented goals, and provides input to space-time prediction techniques. We present a novel approach that blends a rigorous space-time prediction model (Bayesian maximum entropy, BME) with a cognitively informed visualization of high-dimensional data (spatialization). The combined BME and spatialization approach (BME-S) is used to study monthly averaged NO2 and mean annual SO4 measurements in California over the 15-year period 1988-2002. Using the original scattered measurements of these two pollutants BME generates spatiotemporal predictions on a regular grid across the state. Subsequently, the prediction network undergoes the spatialization transformation into a lower-dimensional geometric representation, aimed at revealing patterns and relationships that exist within the input data. The proposed BME-S provides a powerful spatiotemporal framework to study a variety of air pollution data sources.
40 CFR 51.190 - Ambient air quality monitoring requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 2 2013-07-01 2013-07-01 false Ambient air quality monitoring... PROGRAMS REQUIREMENTS FOR PREPARATION, ADOPTION, AND SUBMITTAL OF IMPLEMENTATION PLANS Ambient Air Quality Surveillance § 51.190 Ambient air quality monitoring requirements. The requirements for monitoring ambient air...
40 CFR 51.190 - Ambient air quality monitoring requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 2 2014-07-01 2014-07-01 false Ambient air quality monitoring... PROGRAMS REQUIREMENTS FOR PREPARATION, ADOPTION, AND SUBMITTAL OF IMPLEMENTATION PLANS Ambient Air Quality Surveillance § 51.190 Ambient air quality monitoring requirements. The requirements for monitoring ambient air...
40 CFR 51.190 - Ambient air quality monitoring requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 2 2011-07-01 2011-07-01 false Ambient air quality monitoring... PROGRAMS REQUIREMENTS FOR PREPARATION, ADOPTION, AND SUBMITTAL OF IMPLEMENTATION PLANS Ambient Air Quality Surveillance § 51.190 Ambient air quality monitoring requirements. The requirements for monitoring ambient air...
40 CFR 51.190 - Ambient air quality monitoring requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 2 2012-07-01 2012-07-01 false Ambient air quality monitoring... PROGRAMS REQUIREMENTS FOR PREPARATION, ADOPTION, AND SUBMITTAL OF IMPLEMENTATION PLANS Ambient Air Quality Surveillance § 51.190 Ambient air quality monitoring requirements. The requirements for monitoring ambient air...
40 CFR 51.190 - Ambient air quality monitoring requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 2 2010-07-01 2010-07-01 false Ambient air quality monitoring... PROGRAMS REQUIREMENTS FOR PREPARATION, ADOPTION, AND SUBMITTAL OF IMPLEMENTATION PLANS Ambient Air Quality Surveillance § 51.190 Ambient air quality monitoring requirements. The requirements for monitoring ambient air...
40 CFR 58.15 - Annual air monitoring data certification.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 5 2010-07-01 2010-07-01 false Annual air monitoring data certification. 58.15 Section 58.15 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) AMBIENT AIR QUALITY SURVEILLANCE Monitoring Network § 58.15 Annual air monitoring data...
40 CFR 58.15 - Annual air monitoring data certification.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 5 2011-07-01 2011-07-01 false Annual air monitoring data certification. 58.15 Section 58.15 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) AMBIENT AIR QUALITY SURVEILLANCE Monitoring Network § 58.15 Annual air monitoring data...
[Air pollution biomonitoring with plants and fungi: concepts and uses].
Cuny, D
2012-07-01
Air pollution remains a major environmental concern of the French. Since about 30 years, due to evolution and diversification of sources, pollution became more and more complex, constituting a true "cocktail". Today, it is very important to know environmental and health effects of this cocktail. In this context air biomonitoring using plants and fungi can bring a lot of information. Biomonitoring includes four concepts: the use of biomarkers, bioindication biointegration and bioaccumulation. These four concepts are articulated according to the levels of biological organization, what links up biosurveillance on fundamental plan with ecotoxicology. It is a complementary approach of the physicochemical techniques of air pollution measurements. The main objectives of biomonitoring studies are the monitoring of the space and temporal distribution of pollutants effect; the monitoring of local sources; participation in the health risks assessment; the information of people and the help to decision in public policies. Biomonitoring of air quality is a method, which made its proof in numerous domains of application and brings fundamental information on the impacts of the quality of air. Recent evolution of low concerning biggest industries allows us to envisage the increase of air quality biomonitoring with plants and fungi applications in the field of the valuation of environmental and health risks. The recent normalization (French and European) of different methods will also allow the development of uses. Copyright © 2012. Published by Elsevier Masson SAS.
Method and apparatus for phase and amplitude detection
Cernosek, R.W.; Frye, G.C.; Martin, S.J.
1998-06-09
A new class of techniques has been developed which allow inexpensive application of SAW-type chemical sensor devices while retaining high sensitivity (ppm) to chemical detection. The new techniques do not require that the sensor be part of an oscillatory circuit, allowing large concentrations of, e.g., chemical vapors in air, to be accurately measured without compromising the capacity to measure trace concentrations. Such devices have numerous potential applications in environmental monitoring, from manufacturing environments to environmental restoration. 12 figs.
Singh, Ajit Pratap; Chakrabarti, Sumanta; Kumar, Sumit; Singh, Anjaney
2017-08-01
This paper deals with assessment of air quality in Haora River basin using two techniques. Initially, air quality indices were evaluated using a modified EPA method. The indices were also evaluated using a fuzzy comprehensive assessment (FCA) method. The results obtained from the fuzzy comprehensive assessment method were compared to that obtained from the modified EPA method. To illustrate the applicability of the methodology proposed herein, a case study has been presented. Air samples have been collected at 10 sampling sites located along Haora River. Six important air pollutants, namely, carbon monoxide, sulfur dioxide, nitrogen dioxide, suspended particulate matter (SPM), PM 10 , and lead, were monitored continuously, and air quality maps were generated on the GIS platform. Comparison of the methodologies has clearly highlighted superiority and robustness of the fuzzy comprehensive assessment method in determining air quality indices under study. It has effectively addressed the inherent uncertainties involved in the evaluation, modeling, and interpretation of sampling data, which was beyond the scope of the traditional weighted approaches employed otherwise. The FCA method is robust and prepares a credible platform of air quality evaluation and identification, in face of the uncertainties that remain eclipsed in the traditional approaches like the modified EPA method. The insights gained through the present study are believed to be of pivotal significance in guiding the development and implementation of effective environmental remedial action plans in the study area.
Llompart, M; Li, K; Fingas, M
1998-10-16
In this work we report the use of solid-phase microextraction (SPME) to extract and concentrate water-soluble volatile as well as semi-volatile pollutants. Both methods of exposing the SPME fibre were utilised: immersion in the aqueous solution (SPME) and in the headspace over the solution (HSSPME). The proposed HSSPME procedure was compared to conventional static headspace (HS) analysis for artificially spiked water as well as real water samples, which had been, equilibrated with various oil and petroleum products. Both techniques gave similar results but HSSPME was much more sensitive and exhibited better precision. Detection limits were found to be in the sub-ng/ml level, with precision better than 5% R.S.D. in most cases. To evaluate the suitability of SPME for relatively high contamination level analysis, the proposed HSSPME method was applied to the screening of run-off water samples that had heavy oil suspended in them from a tire fire incident. HSSPME results were compared with liquid--liquid extraction. Library searches were conducted on the resulting GC-MS total ion chromatograms to determine the types of compounds found in such samples. Both techniques found similar composition in the water samples with the exception of alkylnaphthalenes that were detected only by HSSPME. A brief study was carried out to assess using SPME for air monitoring. By sampling and concentrating the volatile organic compounds in the coating of the SPME fibre without any other equipment, this new technique is useful as an alternative to active air monitoring by means of sampling pumps and sorbent tubes.
Laser spectroscopy applied to environmental, ecological, food safety, and biomedical research.
Svanberg, Sune; Zhao, Guangyu; Zhang, Hao; Huang, Jing; Lian, Ming; Li, Tianqi; Zhu, Shiming; Li, Yiyun; Duan, Zheng; Lin, Huiying; Svanberg, Katarina
2016-03-21
Laser spectroscopy provides many possibilities for multi-disciplinary applications in environmental monitoring, in the ecological field, for food safety investigations, and in biomedicine. The paper gives several examples of the power of multi-disciplinary applications of laser spectroscopy as pursued in our research group. The studies utilize mostly similar and widely applicable spectroscopic approaches. Air pollution and vegetation monitoring by lidar techniques, as well as agricultural pest insect monitoring and classification by elastic scattering and fluorescence spectroscopy are described. Biomedical aspects include food safety applications and medical diagnostics of sinusitis and otitis, with strong connection to the abatement of antibiotics resistance development.
Low-cost mobile air pollution monitoring in urban environments: a pilot study in Lubbock, Texas.
McKercher, Grant R; Vanos, Jennifer K
2018-06-01
The complex nature of air pollution in urban areas prevents traditional monitoring techniques from obtaining measurements representative of true human exposure. The current study assessed the capability of low-cost mobile monitors to acquire useful data in a city without a monitoring network in place (Lubbock, Texas) using a bicycle platform. The monitoring campaign resulted in 30 days of data along a 13.4 km fixed concentric route. Due to high sensitivities to airflow, the apparent wind velocity was accounted for throughout the route. The data were also normalized into percentiles in order to visualize spatial patterns. The highest estimated pollution levels were located near frequently busy intersections and roads; however, sensor issues resulted in lower confidence. Additional research is needed concerning the appropriate use of low-cost metal oxide sensors for citizen science applications, as measurements can be misleading if the user is unaware of sensors specifications. The simultaneous use of several low-cost mobile platforms, rather than a single platform, as well as the use of high-end cases, are recommended to create a more robust spatial analysis. The issues addressed from this research are important to understand for accurate and beneficial application of low-cost gaseous monitors for citizen science.
Air Quality Monitoring: Risk-Based Choices
NASA Technical Reports Server (NTRS)
James, John T.
2009-01-01
Air monitoring is secondary to rigid control of risks to air quality. Air quality monitoring requires us to target the credible residual risks. Constraints on monitoring devices are severe. Must transition from archival to real-time, on-board monitoring. Must provide data to crew in a way that they can interpret findings. Dust management and monitoring may be a major concern for exploration class missions.
Development of flight experiments for remote measurement of pollution
NASA Technical Reports Server (NTRS)
Keafer, L. S., Jr.; Kopia, L. P.
1973-01-01
The status as of February 1973 of several NASA-sponsored development projects is reported concerning flight experiments for remote measurement of pollution. Eight passive multispectral instruments for remotely sensing air and water pollutants are described, as well as two active (laser radar) measuring techniques. These techniques are expected to add some new dimensions to the remote sensing of water quality, oceanographic parameters, and earth resources. Multiple applications in these fields are generally possible. Successful completion of the flight demonstration tests and comparisons with simultaneously obtained surface truth measurements may establish these techniques as valid water quality monitoring tools.
Interfaces and thin films as seen by bound electromagnetic waves.
Knoll, W
1998-01-01
This contribution summarizes the use of plasmon surface polaritons and guided optical waves for the characterization of interfaces and thin organic films. After a short introduction to the theoretical background of evanescent wave optics, examples are given that show how this interfacial "light" can be employed to monitor thin coatings at a solid/air or solid/liquid interface. Examples are given for a very sensitive thickness determination of samples ranging from self-assembled monolayers, to multilayer assemblies prepared by the Langmuir/Blodgett/Kuhn technique or by the alternate polyelectrolyte deposition. These are complemented by the demonstration of the potential of the technique to also monitor time-dependent processes in a kinetic mode. Here, we put an emphasis on the combination set-up of surface plasmon optics with electrochemical techniques, allowing for the on-line characterization of various surface functionalization strategies, e.g. for (bio-) sensor purposes.
Conway, Thomas [NOAA Climate Monitoring and Diagnostics Laboratory, Boulder, CO (USA); Tans, Pieter [NOAA Climate Monitoring and Diagnostics Laboratory, Boulder, CO (USA)
2009-01-01
The National Oceanic and Atmospheric Administration's Climate Monitoring and Diagnostics Laboratory (NOAA/CMDL) has measured CO2 in air samples collected weekly at a global network of sites since the late 1960s. Atmospheric CO2 mixing ratios reported in these files were measured by a nondispersive infrared absorption technique in air samples collected in glass flasks. All CMDL flask samples are measured relative to standards traceable to the World Meteorological Organization (WMO) CO2 mole fraction scale. These measurements constitute the most geographically extensive, carefully calibrated, internally consistent atmospheric CO2 data set available and are essential for studies aimed at better understanding the global carbon cycle budget.
Can Nocturnal Cold Air Drainage be Used to Monitor Ecosystem Function?
NASA Astrophysics Data System (ADS)
Pypker, T. G.; Unsworth, M. H.; Sulzman, E. W.; Lamb, B.; Allwine, G.; Mix, A. C.; Bond, B. J.
2005-12-01
Ecosystem carbon dynamics in flat, uniform terrain are commonly studied using standard micrometeorological techniques such as eddy covariance or gradient methods. But many of the world's ecosystems are in complex topography that is inappropriate for these methods. Nocturnal cold air drainage commonly occurs in mountainous terrain. This drainage provides an opportunity to monitor ecosystem carbon dynamics because as air flows downhill through a watershed, it collects respired CO2 from the soil and vegetation. If the nocturnal drainage can be treated as a river of air flowing down a valley, sampling this air from a tower at the base of a watershed could provide an estimate of ecosystem respiration and the 12C/13C ratio. To interpret the measured CO2 and the 12C/13C ratio, the characteristics of the drainage and the footprint (source area) of air passing the tower must be understood. To explore the potential of using nocturnal cold air drainage we built a 37 m tower at the base of a deeply incised watershed of ~40 y-old Douglas-fir in the Oregon Cascades. At various heights on the tower we monitored air temperature, wind speed/direction, and the CO2 concentration and 12C/13C isotopic ratio with a combination of thermistors, sonic anemometers (2-D and 3-D) and a CO2 profile system. The temperature gradient along the axis of the watershed was monitored by 30 temperature sensors from the base to the top of the watershed. The maximum drainage windspeeds on the tower occurred near sunset and, unlike past reports of cold air drainage, this drainage was very deep (> 37 m). The drainage became well mixed when the vertical profile of potential temperature became isothermal. It remained well mixed through the night into the early morning. The drainage occurred on most summer nights and typically provided a range of CO2 (> 60 ppm) sufficient for "Keeling plot" analysis. In September 2005, we released a tracer in the watershed (SF6) to determine the varying footprint size of the tower. The footprint size and windspeed varied throughout the night, resulting in a change in the CO2 concentration at the tower. Further analysis will determine how the CO2 passing the tower is altered by entrainment of the air overlying the drainage and the change in the source area of the drainage.
Chu, Pengbo; Pax, Randolph; Li, Ronghao; Langlois, Ray; Finch, James A
2017-04-04
Frothers, a class of surfactants, are widely employed in froth flotation to aid the generation of small bubbles. Their action is commonly explained by their ability to hinder coalescence. There are occasional references suggesting that the frother may also play a role in the initial breakup of the injected air mass. This work investigates the possible effect of the frother on breakup by monitoring air bubbles produced quasi-statically at an underwater capillary. Under this condition, breakup is isolated from coalescence and an impact of frothers on the detached bubble can be ascribed to an impact on breakup. The breakaway process was monitored by an acoustic technique along with high-speed cinematography. The results showed that the presence of frothers did influence the breakaway process and that the acoustic technique was able to detect the impact. It was demonstrated that the acoustic frequency and acoustic damping ratio depend upon the frother type and concentration and that they are associated with a liquid jet, which initially excites the bubble and then decays to form a surface wave. The addition of the frother did not influence the formation of the jet but did increase its decay rate, hence, dampening the surface wave. It is postulated that the action of the frother is related to an effect on the magnitude of surface tension gradients.
NASA Astrophysics Data System (ADS)
Gilge, Stefan; Plass-Dülmer, Christian; Weyrauch, Dietmar; Rohrer, Franz
2013-04-01
The European ACTRIS (Aerosols, Clouds, and Trace gases Research InfraStructure Network) project, Work Package 4, aims at harmonization and improvement of the measurement of volatile organic carbon and nitrogen oxides. Central tools to assess and compare the performance of European NOx monitoring stations and labs within ACTRIS are a round robin experiment (2012) and side-by-side intercomparisons (Nov 2012). While the first checked the used laboratories' scales versus a common scale, the latter investigated weather same samples are identically and artefact-free analyzed by collocated instruments. The ACTRIS-NOx-side-by-side intercomparison was realised by instruments sampling from a common manifold which was fed by zero gas, synthetic air mixtures, ambient air, and spiked ambient air. Thus, the side-by-side experiments enabled a full characterization of the detection limit, the linear range, the span, and of potential artefacts due to interfering species for each of the contributing instruments. Generally, CLD type NOx instruments were used in the comparisons supplemented by four new optical techniques, comprising LIF and cavity enhanced techniques. In the round robin exercise, some 20 monitoring sites participated, and 14 instruments were running side-by-side in the one week Nov comparison. The results of both experiments will be presented and discussed with respect to the data quality objectives of GAW and ACTRIS.
NASA Astrophysics Data System (ADS)
Lattin, Frank G.; Paul, Donald G.
1996-11-01
A sorbent-based gas chromatographic method provides continuous quantitative measurement of phosgene, hydrogen cyanide, and cyanogen chloride in ambient air. These compounds are subject to workplace exposure limits as well as regulation under terms of the Chemical Arms Treaty and Title III of the 1990 Clean Air Act amendments. The method was developed for on-sit use in a mobile laboratory during remediation operations. Incorporated into the method are automated multi-level calibrations at time weighted average concentrations, or lower. Gaseous standards are prepared in fused silica lined air sampling canisters, then transferred to the analytical system through dynamic spiking. Precision and accuracy studies performed to validate the method are described. Also described are system deactivation and passivation techniques critical to optimum method performance.
Community Air Monitoring Where You Live in EPA Region 5
Community air monitoring projects that are using air sensor technology to monitor air quality in states in EPA’s Region 5 are providing the public with more information on the quality of the air they breathe.
Community Air Monitoring Where You Live in EPA Region 8
Community air monitoring projects that are using air sensor technology to monitor air quality in states in EPA’s Region 8 are providing the public with more information on the quality of the air they breathe.
40 CFR 52.346 - Air quality monitoring requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 3 2012-07-01 2012-07-01 false Air quality monitoring requirements. 52... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Colorado § 52.346 Air quality monitoring... VIII Administrator, the State submitted a revised Air Quality Monitoring State Implementation Plan. The...
40 CFR 52.346 - Air quality monitoring requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 3 2014-07-01 2014-07-01 false Air quality monitoring requirements. 52... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Colorado § 52.346 Air quality monitoring... VIII Administrator, the State submitted a revised Air Quality Monitoring State Implementation Plan. The...
40 CFR 52.346 - Air quality monitoring requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 3 2013-07-01 2013-07-01 false Air quality monitoring requirements. 52... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Colorado § 52.346 Air quality monitoring... VIII Administrator, the State submitted a revised Air Quality Monitoring State Implementation Plan. The...
40 CFR 52.346 - Air quality monitoring requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 3 2011-07-01 2011-07-01 false Air quality monitoring requirements. 52... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Colorado § 52.346 Air quality monitoring... VIII Administrator, the State submitted a revised Air Quality Monitoring State Implementation Plan. The...
40 CFR 52.346 - Air quality monitoring requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 3 2010-07-01 2010-07-01 false Air quality monitoring requirements. 52... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Colorado § 52.346 Air quality monitoring... VIII Administrator, the State submitted a revised Air Quality Monitoring State Implementation Plan. The...
Automobile gross emitter screening with remote sensing data using objective-oriented neural network.
Chen, Ho-Wen; Yang, Hsi-Hsien; Wang, Yu-Sheng
2009-11-01
One of the costs of Taiwan's massive economic development has been severe air pollution problems in many parts of the island. Since vehicle emissions are the major source of air pollution in most of Taiwan's urban areas, Taiwan's government has implemented policies to rectify the degrading air quality, especially in areas with high population density. To reduce vehicle pollution emissions an on-road remote sensing and monitoring system is used to check the exhaust emissions from gasoline engine automobiles. By identifying individual vehicles with excessive emissions for follow-up inspection and testing, air quality in the urban environment is expected to improve greatly. Because remote sensing is capable of measuring a large number of moving vehicles in a short period, it has been considered as an assessment technique in place of the stationary emission-sampling techniques. However, inherent measurement uncertainty of remote sensing instrumentation, compounded by the indeterminacy of monitoring site selection, plus the vagaries of weather, causes large errors in pollution discrimination and limits the application of the remote sensing. Many governments are still waiting for a novel data analysis methodology to clamp down on heavily emitting vehicles by using remote sensing data. This paper proposes an artificial neural network (ANN), with vehicle attributes embedded, that can be trained by genetic algorithm (GA) based on different strategies to predict vehicle emission violation. Results show that the accuracy of predicting emission violation is as high as 92%. False determinations tend to occur for vehicles aged 7-13 years, peaking at 10 years of age.
Automatic localization of backscattering events due to particulate in urban areas
NASA Astrophysics Data System (ADS)
Gaudio, P.; Gelfusa, M.; Malizia, Andrea; Parracino, Stefano; Richetta, M.; Murari, A.; Vega, J.
2014-10-01
Particulate matter (PM), emitted by vehicles in urban traffic, can greatly affect environment air quality and have direct implications on both human health and infrastructure integrity. The consequences for society are relevant and can impact also on national health. Limits and thresholds of pollutants emitted by vehicles are typically regulated by government agencies. In the last few years, the interest in PM emissions has grown substantially due to both air quality issues and global warming. Lidar-Dial techniques are widely recognized as a costeffective alternative to monitor large regions of the atmosphere. To maximize the effectiveness of the measurements and to guarantee reliable, automatic monitoring of large areas, new data analysis techniques are required. In this paper, an original tool, the Universal Multi-Event Locator (UMEL), is applied to the problem of automatically indentifying the time location of peaks in Lidar measurements for the detection of particulate matter emitted by anthropogenic sources like vehicles. The method developed is based on Support Vector Regression and presents various advantages with respect to more traditional techniques. In particular, UMEL is based on the morphological properties of the signals and therefore the method is insensitive to the details of the noise present in the detection system. The approach is also fully general, purely software and can therefore be applied to a large variety of problems without any additional cost. The potential of the proposed technique is exemplified with the help of data acquired during an experimental campaign in the field in Rome.
10 CFR 835.403 - Air monitoring.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 4 2014-01-01 2014-01-01 false Air monitoring. 835.403 Section 835.403 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Monitoring of Individuals and Areas § 835.403 Air... been prescribed. (b) Real-time air monitoring shall be performed as necessary to detect and provide...
10 CFR 835.403 - Air monitoring.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 4 2013-01-01 2013-01-01 false Air monitoring. 835.403 Section 835.403 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Monitoring of Individuals and Areas § 835.403 Air... been prescribed. (b) Real-time air monitoring shall be performed as necessary to detect and provide...
10 CFR 835.403 - Air monitoring.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 4 2012-01-01 2012-01-01 false Air monitoring. 835.403 Section 835.403 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Monitoring of Individuals and Areas § 835.403 Air... been prescribed. (b) Real-time air monitoring shall be performed as necessary to detect and provide...
10 CFR 835.403 - Air monitoring.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 4 2010-01-01 2010-01-01 false Air monitoring. 835.403 Section 835.403 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Monitoring of Individuals and Areas § 835.403 Air... been prescribed. (b) Real-time air monitoring shall be performed as necessary to detect and provide...
10 CFR 835.403 - Air monitoring.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 4 2011-01-01 2011-01-01 false Air monitoring. 835.403 Section 835.403 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Monitoring of Individuals and Areas § 835.403 Air... been prescribed. (b) Real-time air monitoring shall be performed as necessary to detect and provide...
Seeing the invisible: direct visualization of therapeutic radiation beams using air scintillation.
Fahimian, Benjamin; Ceballos, Andrew; Türkcan, Silvan; Kapp, Daniel S; Pratx, Guillem
2014-01-01
To assess whether air scintillation produced during standard radiation treatments can be visualized and used to monitor a beam in a nonperturbing manner. Air scintillation is caused by the excitation of nitrogen gas by ionizing radiation. This weak emission occurs predominantly in the 300-430 nm range. An electron-multiplication charge-coupled device camera, outfitted with an f/0.95 lens, was used to capture air scintillation produced by kilovoltage photon beams and megavoltage electron beams used in radiation therapy. The treatment rooms were prepared to block background light and a short-pass filter was utilized to block light above 440 nm. Air scintillation from an orthovoltage unit (50 kVp, 30 mA) was visualized with a relatively short exposure time (10 s) and showed an inverse falloff (r(2) = 0.89). Electron beams were also imaged. For a fixed exposure time (100 s), air scintillation was proportional to dose rate (r(2) = 0.9998). As energy increased, the divergence of the electron beam decreased and the penumbra improved. By irradiating a transparent phantom, the authors also showed that Cherenkov luminescence did not interfere with the detection of air scintillation. In a final illustration of the capabilities of this new technique, the authors visualized air scintillation produced during a total skin irradiation treatment. Air scintillation can be measured to monitor a radiation beam in an inexpensive and nonperturbing manner. This physical phenomenon could be useful for dosimetry of therapeutic radiation beams or for online detection of gross errors during fractionated treatments.
Air quality monitor and acid rain networks
NASA Technical Reports Server (NTRS)
Rudolph, H.
1980-01-01
The air quality monitor program which consists of two permanent air monitor stations (PAMS's) and four mobile shuttle pollutant air monitor stations (SPAMS's) is evaluated. The PAMS measures SO sub X, NO sub X particulates, CO, O3, and nonmethane hydrocarbons. The SPAMS measures O3, SO2, HCl, and particulates. The collection and analysis of data in the rain monitor program are discussed.
Impaired visibility: the air pollution people see
NASA Astrophysics Data System (ADS)
Hyslop, Nicole Pauly
Almost every home and office contains a portrayal of a scenic landscape whether on a calendar, postcard, photograph, or painting. The most sought after locations boast a scenic landscape right outside their window. No matter what the scene - mountains, skyscrapers, clouds, or pastureland - clarity and vividness are essential to the image. Air pollution can degrade scenic vistas, and in extreme cases, completely obscure them. Particulate matter suspended in the air is the main cause of visibility degradation. Particulate matter affects visibility in multiple ways: obscures distant objects, drains the contrast from a scene, and discolors the sky. Visibility is an environmental quality that is valued for aesthetic reasons that are difficult to express or quantify. Human psychology and physiology are sensitive to visual input. Visibility has been monitored throughout the world but there are few places where it is a protected resource. Existing health-based regulations are weak in terms of visibility protection. Various techniques, including human observation, light transmission measurements, digital photography, and satellite imaging, are used to monitor visibility. As with air pollution, trends in visibility vary spatially and temporally. Emissions from the developing world and large scale events such as dust storms and wildfires affect visibility around much of the globe.
West, J Jason; Cohen, Aaron; Dentener, Frank; Brunekreef, Bert; Zhu, Tong; Armstrong, Ben; Bell, Michelle L; Brauer, Michael; Carmichael, Gregory; Costa, Dan L; Dockery, Douglas W; Kleeman, Michael; Krzyzanowski, Michal; Künzli, Nino; Liousse, Catherine; Lung, Shih-Chun Candice; Martin, Randall V; Pöschl, Ulrich; Pope, C Arden; Roberts, James M; Russell, Armistead G; Wiedinmyer, Christine
2016-05-17
Air pollution contributes to the premature deaths of millions of people each year around the world, and air quality problems are growing in many developing nations. While past policy efforts have succeeded in reducing particulate matter and trace gases in North America and Europe, adverse health effects are found at even these lower levels of air pollution. Future policy actions will benefit from improved understanding of the interactions and health effects of different chemical species and source categories. Achieving this new understanding requires air pollution scientists and engineers to work increasingly closely with health scientists. In particular, research is needed to better understand the chemical and physical properties of complex air pollutant mixtures, and to use new observations provided by satellites, advanced in situ measurement techniques, and distributed micro monitoring networks, coupled with models, to better characterize air pollution exposure for epidemiological and toxicological research, and to better quantify the effects of specific source sectors and mitigation strategies.
Online monitoring of oil film using electrical capacitance tomography and level set method.
Xue, Q; Sun, B Y; Cui, Z Q; Ma, M; Wang, H X
2015-08-01
In the application of oil-air lubrication system, electrical capacitance tomography (ECT) provides a promising way for monitoring oil film in the pipelines by reconstructing cross sectional oil distributions in real time. While in the case of small diameter pipe and thin oil film, the thickness of the oil film is hard to be observed visually since the interface of oil and air is not obvious in the reconstructed images. And the existence of artifacts in the reconstructions has seriously influenced the effectiveness of image segmentation techniques such as level set method. Besides, level set method is also unavailable for online monitoring due to its low computation speed. To address these problems, a modified level set method is developed: a distance regularized level set evolution formulation is extended to image two-phase flow online using an ECT system, a narrowband image filter is defined to eliminate the influence of artifacts, and considering the continuity of the oil distribution variation, the detected oil-air interface of a former image can be used as the initial contour for the detection of the subsequent frame; thus, the propagation from the initial contour to the boundary can be greatly accelerated, making it possible for real time tracking. To testify the feasibility of the proposed method, an oil-air lubrication facility with 4 mm inner diameter pipe is measured in normal operation using an 8-electrode ECT system. Both simulation and experiment results indicate that the modified level set method is capable of visualizing the oil-air interface accurately online.
Online monitoring of oil film using electrical capacitance tomography and level set method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xue, Q., E-mail: xueqian@tju.edu.cn; Ma, M.; Sun, B. Y.
2015-08-15
In the application of oil-air lubrication system, electrical capacitance tomography (ECT) provides a promising way for monitoring oil film in the pipelines by reconstructing cross sectional oil distributions in real time. While in the case of small diameter pipe and thin oil film, the thickness of the oil film is hard to be observed visually since the interface of oil and air is not obvious in the reconstructed images. And the existence of artifacts in the reconstructions has seriously influenced the effectiveness of image segmentation techniques such as level set method. Besides, level set method is also unavailable for onlinemore » monitoring due to its low computation speed. To address these problems, a modified level set method is developed: a distance regularized level set evolution formulation is extended to image two-phase flow online using an ECT system, a narrowband image filter is defined to eliminate the influence of artifacts, and considering the continuity of the oil distribution variation, the detected oil-air interface of a former image can be used as the initial contour for the detection of the subsequent frame; thus, the propagation from the initial contour to the boundary can be greatly accelerated, making it possible for real time tracking. To testify the feasibility of the proposed method, an oil-air lubrication facility with 4 mm inner diameter pipe is measured in normal operation using an 8-electrode ECT system. Both simulation and experiment results indicate that the modified level set method is capable of visualizing the oil-air interface accurately online.« less
Using geo-targeted social media data to detect outdoor air pollution
NASA Astrophysics Data System (ADS)
Jiang, W.; Wang, Y.; Tsou, M. H.; Fu, X.
2016-06-01
Outdoor air pollution has become a more and more serious issue over recent years (He, 2014). Urban air quality is measured at air monitoring stations. Building air monitoring stations requires land, incurs costs and entails skilled technicians to maintain a station. Many countries do not have any monitoring stations and even lack any means to monitor air quality. Recent years, the social media could be used to monitor air quality dynamically (Wang, 2015; Mei, 2014). However, no studies have investigated the inter-correlations between real-space and cyberspace by examining variation in micro-blogging behaviors relative to changes in daily air quality. Thus, existing methods of monitoring AQI using micro-blogging data shows a high degree of error between real AQI and air quality as inferred from social media messages. In this paper, we introduce a new geo-targeted social media analytic method to (1) investigate the dynamic relationship between air pollution-related posts on Sina Weibo and daily AQI values; (2) apply Gradient Tree Boosting, a machine learning method, to monitor the dynamics of AQI using filtered social media messages. Our results expose the spatiotemporal relationships between social media messages and real-world environmental changes as well suggesting new ways to monitor air pollution using social media.
30 CFR 7.507 - Air-monitoring components.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Air-monitoring components. 7.507 Section 7.507... APPROVAL OF MINING PRODUCTS TESTING BY APPLICANT OR THIRD PARTY Refuge Alternatives § 7.507 Air-monitoring components. (a) Each refuge alternative shall have an air-monitoring component that provides persons inside...
30 CFR 7.507 - Air-monitoring components.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Air-monitoring components. 7.507 Section 7.507... APPROVAL OF MINING PRODUCTS TESTING BY APPLICANT OR THIRD PARTY Refuge Alternatives § 7.507 Air-monitoring components. (a) Each refuge alternative shall have an air-monitoring component that provides persons inside...
30 CFR 7.507 - Air-monitoring components.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Air-monitoring components. 7.507 Section 7.507... APPROVAL OF MINING PRODUCTS TESTING BY APPLICANT OR THIRD PARTY Refuge Alternatives § 7.507 Air-monitoring components. (a) Each refuge alternative shall have an air-monitoring component that provides persons inside...
Next-generation air monitoring
Air pollution measurement technology is advancing rapidly towards smaller-scale and wireless devices, with a potential to significantly change the landscape of air pollution monitoring. EPA is evaluating and developing a range of next-generation air monitoring (NGAM) technologie...
Real-time PM10 concentration monitoring on Penang Bridge by using traffic monitoring CCTV
NASA Astrophysics Data System (ADS)
Low, K. L.; Lim, H. S.; MatJafri, M. Z.; Abdullah, K.; Wong, C. J.
2007-04-01
For this study, an algorithm was developed to determine concentration of particles less than 10μm (PM10) from still images captured by a CCTV camera on the Penang Bridge. The objective of this study is to remotely monitor the PM10 concentrations on the Penang Bridge through the internet. So, an algorithm was developed based on the relationship between the atmospheric reflectance and the corresponding air quality. By doing this, the still images were separated into three bands namely red, green and blue and their digital number values were determined. A special transformation was then performed to the data. Ground PM10 measurements were taken by using DustTrak TM meter. The algorithm was calibrated using a regression analysis. The proposed algorithm produced a high correlation coefficient (R) and low root-mean-square error (RMS) between the measured and produced PM10. Later, a program was written by using Microsoft Visual Basic 6.0 to download still images from the camera over the internet and implement the newly developed algorithm. Meanwhile, the program is running in real time and the public will know the air pollution index from time to time. This indicates that the technique using the CCTV camera images can provide a useful tool for air quality studies.
Minet, L; Gehr, R; Hatzopoulou, M
2017-11-01
The development of reliable measures of exposure to traffic-related air pollution is crucial for the evaluation of the health effects of transportation. Land-use regression (LUR) techniques have been widely used for the development of exposure surfaces, however these surfaces are often highly sensitive to the data collected. With the rise of inexpensive air pollution sensors paired with GPS devices, we witness the emergence of mobile data collection protocols. For the same urban area, can we achieve a 'universal' model irrespective of the number of locations and sampling visits? Can we trade the temporal representation of fixed-point sampling for a larger spatial extent afforded by mobile monitoring? This study highlights the challenges of short-term mobile sampling campaigns in terms of the resulting exposure surfaces. A mobile monitoring campaign was conducted in 2015 in Montreal; nitrogen dioxide (NO 2 ) levels at 1395 road segments were measured under repeated visits. We developed LUR models based on sub-segments, categorized in terms of the number of visits per road segment. We observe that LUR models were highly sensitive to the number of road segments and to the number of visits per road segment. The associated exposure surfaces were also highly dissimilar. Copyright © 2017 Elsevier Ltd. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-14
... ambient air quality monitoring data for the period preceding the applicable attainment deadline. DATES... and certified monitoring data. A violation occurs when the ambient ozone air quality monitoring data... standard, generally based on air quality monitoring data from the 1987 through 1989 period (section 107(d...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-18
... based on complete, quality-assured and certified ambient air quality monitoring data for 2007-2009... certain air quality monitoring data because they meet the criteria for ozone exceptional events that are... certified monitoring data. A violation occurs when the ambient ozone air quality monitoring data show...
Long-term stability measurements of low concentration Volatile Organic Compound gas mixtures
NASA Astrophysics Data System (ADS)
Allen, Nick; Amico di Meane, Elena; Brewer, Paul; Ferracci, Valerio; Corbel, Marivon; Worton, David
2017-04-01
VOCs (Volatile Organic Compounds) are a class of compounds with significant influence on the atmosphere due to their large anthropogenic and biogenic emission sources. VOC emissions have a significant impact on the atmospheric hydroxyl budget and nitrogen reservoir species, while also contributing indirectly to the production of tropospheric ozone and secondary organic aerosol. However, the global budget of many of these species are poorly constrained. Moreover, the World Meteorological Organization's (WMO) Global Atmosphere Watch (GAW) have set challenging data quality objectives for atmospheric monitoring programmes for these classes of traceable VOCs, despite the lack of available stable gas standards. The Key-VOCs Joint Research Project is an ongoing three-year collaboration with the aim of improving the measurement infrastructure of important atmospheric VOCs by providing traceable and comparable reference gas standards and by validating new measurement systems in support of the air monitoring networks. It focuses on VOC compounds that are regulated by European legislation, that are relevant for indoor air monitoring and for air quality and climate monitoring programmes like the VOC programme established by the WMO GAW and the European Monitoring and Evaluation Programme (EMEP). These VOCs include formaldehyde, oxy[genated]-VOCs (acetone, ethanol and methanol) and terpenes (a-pinene, 1,8-cineole, δ-3-carene and R-limonene). Here we present the results of a novel long term stability study for low concentration formaldehyde, oxy-VOC and terpenes gas mixtures produced by the Key-VOCs consortium with discussion regarding the implementation of improved preparation techniques and the use of novel cylinder passivation chemistries to guarantee mixture stability.
Respiratory tract toxicity in rats exposed to Mexico City air.
Moss, O R; Gross, E A; James, R A; Janszen, D B; Ross, P W; Roberts, K C; Howard, A M; Harkema, J R; Calderón-Garcidueñas, L; Morgan, K T
2001-03-01
The rat has been used extensively as a health sentinel, indicator, or monitor of environmental health hazards, but this model has not been directly validated against human exposures. Humans in Mexico City show upper respiratory tract lesions and evidence of pulmonary damage related to their environmental inhalation exposure. In this study, male and female F344 rats were exposed (23 hr/day) in Mexico City to local Mexico City air (MCA)* for up to seven weeks. Controls were maintained at the same location under filtered air. Prior to these exposures, several steps were taken. First, the nasal passages of normal male rats shipped from the United States and housed in Mexico City were examined for mycoplasma infection; no evidence of infection was found. In addition, a mobile exposure and monitoring system was assembled and, with an ozone (O3) exposure atmosphere, was tested along with supporting histopathology techniques and analysis of rat nasal and lung tissues. Last, the entire exposure model (equipment and animals) was transported to Mexico City and validated for a three-week period. During the seven-week study there were 18 one-hour intervals during which the average O3 concentration of MCA in the exposure chamber exceeded the US National Ambient Air Quality Standard (NAAQS) of 0.120 ppm 03 (hourly average, not to be exceeded more than once per year). This prolonged exposure of healthy F344 rats to MCA containing episodically low to moderate concentrations of 03 (as well as other urban air pollutants) did not induce inflammatory or epithelial lesions in the nasal airways or lung as measured by qualitative histologic techniques or quantitative morphometric techniques. These findings agree with those of previous controlled O3 inhalation studies, but they are in contrast to reports indicating that O3-polluted MCA causes significant nasal mucosal injury in adults and children living in southwestern Mexico City. Taken together, these findings may suggest that human airways are markedly more susceptible to the toxic effects of MCA than are the airways of the F344 rat.
Wong, Michelle; Bejarano, Esther; Carvlin, Graeme; Fellows, Katie; King, Galatea; Lugo, Humberto; Jerrett, Michael; Meltzer, Dan; Northcross, Amanda; Olmedo, Luis; Seto, Edmund; Wilkie, Alexa; English, Paul
2018-03-15
Air pollution continues to be a global public health threat, and the expanding availability of small, low-cost air sensors has led to increased interest in both personal and crowd-sourced air monitoring. However, to date, few low-cost air monitoring networks have been developed with the scientific rigor or continuity needed to conduct public health surveillance and inform policy. In Imperial County, California, near the U.S./Mexico border, we used a collaborative, community-engaged process to develop a community air monitoring network that attains the scientific rigor required for research, while also achieving community priorities. By engaging community residents in the project design, monitor siting processes, data dissemination, and other key activities, the resulting air monitoring network data are relevant, trusted, understandable, and used by community residents. Integration of spatial analysis and air monitoring best practices into the network development process ensures that the data are reliable and appropriate for use in research activities. This combined approach results in a community air monitoring network that is better able to inform community residents, support research activities, guide public policy, and improve public health. Here we detail the monitor siting process and outline the advantages and challenges of this approach.
Wong, Michelle; Bejarano, Esther; Carvlin, Graeme; King, Galatea; Lugo, Humberto; Jerrett, Michael; Northcross, Amanda; Olmedo, Luis; Seto, Edmund; Wilkie, Alexa; English, Paul
2018-01-01
Air pollution continues to be a global public health threat, and the expanding availability of small, low-cost air sensors has led to increased interest in both personal and crowd-sourced air monitoring. However, to date, few low-cost air monitoring networks have been developed with the scientific rigor or continuity needed to conduct public health surveillance and inform policy. In Imperial County, California, near the U.S./Mexico border, we used a collaborative, community-engaged process to develop a community air monitoring network that attains the scientific rigor required for research, while also achieving community priorities. By engaging community residents in the project design, monitor siting processes, data dissemination, and other key activities, the resulting air monitoring network data are relevant, trusted, understandable, and used by community residents. Integration of spatial analysis and air monitoring best practices into the network development process ensures that the data are reliable and appropriate for use in research activities. This combined approach results in a community air monitoring network that is better able to inform community residents, support research activities, guide public policy, and improve public health. Here we detail the monitor siting process and outline the advantages and challenges of this approach. PMID:29543726
NASA Astrophysics Data System (ADS)
Ghaemi, Z.; Farnaghi, M.; Alimohammadi, A.
2015-12-01
The critical impact of air pollution on human health and environment in one hand and the complexity of pollutant concentration behavior in the other hand lead the scientists to look for advance techniques for monitoring and predicting the urban air quality. Additionally, recent developments in data measurement techniques have led to collection of various types of data about air quality. Such data is extremely voluminous and to be useful it must be processed at high velocity. Due to the complexity of big data analysis especially for dynamic applications, online forecasting of pollutant concentration trends within a reasonable processing time is still an open problem. The purpose of this paper is to present an online forecasting approach based on Support Vector Machine (SVM) to predict the air quality one day in advance. In order to overcome the computational requirements for large-scale data analysis, distributed computing based on the Hadoop platform has been employed to leverage the processing power of multiple processing units. The MapReduce programming model is adopted for massive parallel processing in this study. Based on the online algorithm and Hadoop framework, an online forecasting system is designed to predict the air pollution of Tehran for the next 24 hours. The results have been assessed on the basis of Processing Time and Efficiency. Quite accurate predictions of air pollutant indicator levels within an acceptable processing time prove that the presented approach is very suitable to tackle large scale air pollution prediction problems.
Measurement of water pressure and deformation with time domain reflectometry cables
NASA Astrophysics Data System (ADS)
Dowding, Charles H.; Pierce, Charles E.
1995-05-01
Time domain reflectometry (TDR) techniques can be deployed to measure water pressures and relative dam abutment displacement with an array of coaxial cables either drilled and grouted or retrofitted through existing passages. Application of TDR to dam monitoring requires determination of appropriate cable types and methods to install these cables in existing dams or during new construction. This paper briefly discusses currently applied and developing TDR techniques and describes initial design considerations for TDR-based dam instrumentation. Water pressure at the base of or within the dam can be determined by measuring the water level within a hollow or air-filled coaxial cable. The ability to retrofit existing porous stone-tipped piezometers is an attractive attribute of the TDR system. Measurement of relative lateral movement can be accomplished by monitoring local shearing of a solid polyethylene-filled coaxial cable at the interface of the dam base and foundation materials or along adversely oriented joints. Uplift can be recorded by measuring cable extension as the dam displaces upward off its foundation. Since each monitoring technique requires measurements with different types of coaxial cables, a variety may be installed within the array. Multiplexing of these cables will allow monitoring from a single pulser, and measurements can be recorded on site or remotely via a modem at any time.
The expanding scope of air pollution monitoring can facilitate sustainable development.
Knox, Andrew; Mykhaylova, Natalia; Evans, Greg J; Lee, Colin J; Karney, Bryan; Brook, Jeffrey R
2013-03-15
This paper explores technologies currently expanding the physical scope of air pollution monitoring and their potential contributions to the assessment of sustainable development. This potential lies largely in the ability of these technologies to address issues typically on the fringe of the air pollution agenda. Air pollution monitoring tends to be primarily focused on human health, and largely neglects other aspects of sustainable development. Sensor networks, with their relatively inexpensive monitoring nodes, allow for monitoring with finer spatiotemporal resolution. This resolution can support more conclusive studies of air pollution's effect on socio-ecological justice and human quality of life. Satellite observation of air pollution allows for wider geographical scope, and in doing so can facilitate studies of air pollution's effects on natural capital and ecosystem resilience. Many air pollution-related aspects of the sustainability of development in human systems are not being given their due attention. Opportunities exist for air pollution monitoring to attend more to these issues. Improvements to the resolution and scale of monitoring make these opportunities realizable. Copyright © 2012 Elsevier B.V. All rights reserved.
Beta/alpha continuous air monitor
Becker, Gregory K.; Martz, Dowell E.
1989-01-01
A single deep layer silicon detector in combination with a microcomputer, recording both alpha and beta activity and the energy of each pulse, distinguishing energy peaks using a novel curve fitting technique to reduce the natural alpha counts in the energy region where plutonium and other transuranic alpha emitters are present, and using a novel algorithm to strip out radon daughter contribution to actual beta counts.
Lidar monitoring of regions of intense backscatter with poorly defined boundaries
Vladimir A. Kovalev; Alexander Petkov; Cyle Wold; WeiMin Hao
2011-01-01
The upper height of a region of intense backscatter with a poorly defined boundary between this region and a region of clear air above it is found as the maximal height where aerosol heterogeneity is detectable, that is, where it can be discriminated from noise. The theoretical basis behind the retrieval technique and the corresponding lidar-data-processing procedures...
A Testbed for Data Fusion for Helicopter Diagnostics and Prognostics
2003-03-01
and algorithm design and tuning in order to develop advanced diagnostic and prognostic techniques for air craft health monitoring . Here a...and development of models for diagnostics, prognostics , and anomaly detection . Figure 5 VMEP Server Browser Interface 7 Download... detections , and prognostic prediction time horizons. The VMEP system and in particular the web component are ideal for performing data collection
1983-08-01
Proc. 2nd Congress National de flabilite, Perros -Guirec, Sept. 17-20, 1974, pp. 639-653. Published by CNET, Lannion (France). 53. Love, A. E. H., A...96. C. Rosiaux, Fiabilite des allumeurs determinee a partir des ventes-echanges, Proc. 2nd Congres National de fiabilite, Perros Guirec, Sept. 17-20
GI-13 – A brief review of the GEO Work Plan DescriptionGlobal map examples of PM2.5 satellite measuresUS Maps showing examples of fused in-situ and satellite dataNew AQ Monitoring approach with social value – Village Green exampleComputing and Systems Applied in Energ...
Rocket exhaust effluent modeling for tropospheric air quality and environmental assessments
NASA Technical Reports Server (NTRS)
Stephens, J. B.; Stewart, R. B.
1977-01-01
The various techniques for diffusion predictions to support air quality predictions and environmental assessments for aerospace applications are discussed in terms of limitations imposed by atmospheric data. This affords an introduction to the rationale behind the selection of the National Aeronautics and Space Administration (NASA)/Marshall Space Flight Center (MSFC) Rocket Exhaust Effluent Diffusion (REED) program. The models utilized in the NASA/MSFC REED program are explained. This program is then evaluated in terms of some results from a joint MSFC/Langley Research Center/Kennedy Space Center Titan Exhaust Effluent Prediction and Monitoring Program.
Mobile system for on-road measurements of air pollutants.
Katulski, Ryszard J; Namieśnik, Jacek; Sadowski, Jarosław; Stefański, Jacek; Szymańska, Krystyna; Wardencki, Waldemar
2010-04-01
The paper presents a prototype of a mobile monitoring system for measuring the levels of the main traffic air pollutants (C(6)H(6), NO(2), NO(x), CO, and CO(2),) in cities. The novelty of the proposed system lies in the fact that it can be utilized to monitor emissions from urban traffic along roads and areas where traditional monitoring stations cannot be placed. In the proposed system, the monitoring device can be mounted on any moving vehicle (such as a car, bus, or truck) rather than be attached to a dedicated van, as most systems of this kind found in literature are. Analyzers used in this system are small portable structures that contain an electronic instrument to measure, record, and transmit relevant data on concentrations of the pollutants to a website. The model outcome for carbon monoxide obtained in functional tests in real conditions is also presented here. Data on temporal changes of carbon monoxide concentration are compared against meteorological parameters and speed of the vehicle. Spatial interpolation techniques are applied to obtain a nonplanar visualization of carbon monoxide and benzene concentrations in the main arteries of a city.
Mobile system for on-road measurements of air pollutants
NASA Astrophysics Data System (ADS)
Katulski, Ryszard J.; Namieśnik, Jacek; Sadowski, Jarosław; Stefański, Jacek; Szymańska, Krystyna; Wardencki, Waldemar
2010-04-01
The paper presents a prototype of a mobile monitoring system for measuring the levels of the main traffic air pollutants (C6H6, NO2, NOx, CO, and CO2,) in cities. The novelty of the proposed system lies in the fact that it can be utilized to monitor emissions from urban traffic along roads and areas where traditional monitoring stations cannot be placed. In the proposed system, the monitoring device can be mounted on any moving vehicle (such as a car, bus, or truck) rather than be attached to a dedicated van, as most systems of this kind found in literature are. Analyzers used in this system are small portable structures that contain an electronic instrument to measure, record, and transmit relevant data on concentrations of the pollutants to a website. The model outcome for carbon monoxide obtained in functional tests in real conditions is also presented here. Data on temporal changes of carbon monoxide concentration are compared against meteorological parameters and speed of the vehicle. Spatial interpolation techniques are applied to obtain a nonplanar visualization of carbon monoxide and benzene concentrations in the main arteries of a city.
Chen, Gang; Li, Jingyi; Ying, Qi; Sherman, Seth; Perkins, Neil; Rajeshwari, Sundaram; Mendola, Pauline
2014-01-01
In this study, Community Multiscale Air Quality (CMAQ) model was applied to predict ambient gaseous and particulate concentrations during 2001 to 2010 in 15 hospital referral regions (HRRs) using a 36-km horizontal resolution domain. An inverse distance weighting based method was applied to produce exposure estimates based on observation-fused regional pollutant concentration fields using the differences between observations and predictions at grid cells where air quality monitors were located. Although the raw CMAQ model is capable of producing satisfying results for O3 and PM2.5 based on EPA guidelines, using the observation data fusing technique to correct CMAQ predictions leads to significant improvement of model performance for all gaseous and particulate pollutants. Regional average concentrations were calculated using five different methods: 1) inverse distance weighting of observation data alone, 2) raw CMAQ results, 3) observation-fused CMAQ results, 4) population-averaged raw CMAQ results and 5) population-averaged fused CMAQ results. It shows that while O3 (as well as NOx) monitoring networks in the HRR regions are dense enough to provide consistent regional average exposure estimation based on monitoring data alone, PM2.5 observation sites (as well as monitors for CO, SO2, PM10 and PM2.5 components) are usually sparse and the difference between the average concentrations estimated by the inverse distance interpolated observations, raw CMAQ and fused CMAQ results can be significantly different. Population-weighted average should be used to account spatial variation in pollutant concentration and population density. Using raw CMAQ results or observations alone might lead to significant biases in health outcome analyses. PMID:24747248
Alpha-environmental continuous air monitor inlet
Rodgers, John C.
2003-01-01
A wind deceleration and protective shroud that provides representative samples of ambient aerosols to an environmental continuous air monitor (ECAM) has a cylindrical enclosure mounted to an input on the continuous air monitor, the cylindrical enclosure having shrouded nozzles located radially about its periphery. Ambient air flows, often along with rainwater flows into the nozzles in a sampling flow generated by a pump in the continuous air monitor. The sampling flow of air creates a cyclonic flow in the enclosure that flows up through the cylindrical enclosure until the flow of air reaches the top of the cylindrical enclosure and then is directed downward to the continuous air monitor. A sloped platform located inside the cylindrical enclosure supports the nozzles and causes any moisture entering through the nozzle to drain out through the nozzles.
Leston, Alan R; Ollison, Will M
2017-11-01
Long-standing measurement techniques for determining ground-level ozone (O 3 ) and nitrogen dioxide (NO 2 ) are known to be biased by interfering compounds that result in overestimates of high O 3 and NO 2 ambient concentrations under conducive conditions. An increasing near-ground O 3 gradient (NGOG) with increasing height above ground level is also known to exist. Both the interference bias and NGOG were investigated by comparing data from a conventional Federal Equivalent Method (FEM) O 3 photometer and an identical monitor upgraded with an "interference-free" nitric oxide O 3 scrubber that alternatively sampled at 2 m and 6.2 m inlet heights above ground level (AGL). Intercomparison was also made between a conventional nitrogen oxide (NO x ) chemiluminescence Federal Reference Method (FRM) monitor and a new "direct-measure" NO 2 NO x 405 nm photometer at a near-road air quality measurement site. Results indicate that the O 3 monitor with the upgraded scrubber recorded lower regulatory-oriented concentrations than the deployed conventional metal oxide-scrubbed monitor and that O 3 concentrations 6.2 m AGL were higher than concentrations 2.0 m AGL, the nominal nose height of outdoor populations. Also, a new direct-measure NO 2 photometer recorded generally lower NO 2 regulatory-oriented concentrations than the conventional FRM chemiluminescence monitor, reporting lower daily maximum hourly average concentrations than the conventional monitor about 3 of every 5 days. Employing bias-prone instruments for measurement of ambient ozone or nitrogen dioxide from inlets at inappropriate heights above ground level may result in collection of positively biased data. This paper discusses tests of new regulatory instruments, recent developments in bias-free ozone and nitrogen dioxide measurement technology, and the presence/extent of a near-ground O 3 gradient (NGOG). Collection of unbiased monitor inlet height-appropriate data is crucial for determining accurate design values and meeting National Ambient Air Quality Standards.
Comparison of Calibration Techniques for Low-Cost Air Quality Monitoring
NASA Astrophysics Data System (ADS)
Malings, C.; Ramachandran, S.; Tanzer, R.; Kumar, S. P. N.; Hauryliuk, A.; Zimmerman, N.; Presto, A. A.
2017-12-01
Assessing the intra-city spatial distribution and temporal variability of air quality can be facilitated by a dense network of monitoring stations. However, the cost of implementing such a network can be prohibitive if high-quality but high-cost monitoring systems are used. To this end, the Real-time Affordable Multi-Pollutant (RAMP) sensor package has been developed at the Center for Atmospheric Particle Studies of Carnegie Mellon University, in collaboration with SenSevere LLC. This self-contained unit can measure up to five gases out of CO, SO2, NO, NO2, O3, VOCs, and CO2, along with temperature and relative humidity. Responses of individual gas sensors can vary greatly even when exposed to the same ambient conditions. Those of VOC sensors in particular were observed to vary by a factor-of-8, which suggests that each sensor requires its own calibration model. To this end, we apply and compare two different calibration methods to data collected by RAMP sensors collocated with a reference monitor station. The first method, random forest (RF) modeling, is a rule-based method which maps sensor responses to pollutant concentrations by implementing a trained sequence of decision rules. RF modeling has previously been used for other RAMP gas sensors by the group, and has produced precise calibrated measurements. However, RF models can only predict pollutant concentrations within the range observed in the training data collected during the collocation period. The second method, Gaussian process (GP) modeling, is a probabilistic Bayesian technique whereby broad prior estimates of pollutant concentrations are updated using sensor responses to generate more refined posterior predictions, as well as allowing predictions beyond the range of the training data. The accuracy and precision of these techniques are assessed and compared on VOC data collected during the summer of 2017 in Pittsburgh, PA. By combining pollutant data gathered by each RAMP sensor and applying appropriate calibration techniques, the potentially noisy or biased responses of individual sensors can be mapped to pollutant concentration values which are comparable to those of reference instruments.
An Acoustic-Based Method to Detect and Quantify the Effect of Exhalation into a Dry Powder Inhaler.
Holmes, Martin S; Seheult, Jansen N; O'Connell, Peter; D'Arcy, Shona; Ehrhardt, Carsten; Healy, Anne Marie; Costello, Richard W; Reilly, Richard B
2015-08-01
Dry powder inhaler (DPI) users frequently exhale into their inhaler mouthpiece before the inhalation step. This error in technique compromises the integrity of the drug and results in poor bronchodilation. This study investigated the effect of four exhalation factors (exhalation flow rate, distance from mouth to inhaler, exhalation duration, and relative air humidity) on dry powder dose delivery. Given that acoustic energy can be related to the factors associated with exhalation sounds, we then aimed to develop a method of identifying and quantifying this critical inhaler technique error using acoustic based methods. An in vitro test rig was developed to simulate this critical error. The effect of the four factors on subsequent drug delivery were investigated using multivariate regression models. In a further study we then used an acoustic monitoring device to unobtrusively record the sounds 22 asthmatic patients made whilst using a Diskus(™) DPI. Acoustic energy was employed to automatically detect and analyze exhalation events in the audio files. All exhalation factors had a statistically significant effect on drug delivery (p<0.05); distance from the inhaler mouthpiece had the largest effect size. Humid air exhalations were found to reduce the fine particle fraction (FPF) compared to dry air. In a dataset of 110 audio files from 22 asthmatic patients, the acoustic method detected exhalations with an accuracy of 89.1%. We were able to classify exhalations occurring 5 cm or less in the direction of the inhaler mouthpiece or recording device with a sensitivity of 72.2% and specificity of 85.7%. Exhaling into a DPI has a significant detrimental effect. Acoustic based methods can be employed to objectively detect and analyze exhalations during inhaler use, thus providing a method of remotely monitoring inhaler technique and providing personalized inhaler technique feedback.
CO and NO2 Selective Monitoring by ZnO-Based Sensors
Hjiri, Mokhtar; El Mir, Lassaad; Leonardi, Salvatore Gianluca; Donato, Nicola; Neri, Giovanni
2013-01-01
ZnO nanomaterials with different shapes were synthesized, characterized and tested in the selective monitoring of low concentration of CO and NO2 in air. ZnO nanoparticles (NPs) and nanofibers (NFs) were synthesized by a modified sol-gel method in supercritical conditions and electrospinning technique, respectively. CO and NO2 sensing tests have demonstrated that the annealing temperature and shape of zinc oxide nanomaterials are the key factors in modulating the electrical and sensing properties. Specifically, ZnO NPs annealed at high temperature (700 °C) have been found sensitive to CO, while they displayed negligible response to NO2. The opposite behavior has been registered for the one-dimensional ZnO NFs annealed at medium temperature (400 °C). Due to their adaptable sensitivity/selectivity characteristics, the developed sensors show promising applications in dual air quality control systems for closed ambient such as automotive cabin, parking garage and tunnels. PMID:28348340
Public health applications of remote sensing of the environment, an evaluation
NASA Technical Reports Server (NTRS)
1972-01-01
The available techniques were examined in the field of remote sensing (including aerial photography, infrared detection, radar, etc.) and applications to a number of problems in the wide field of public health determined. The specific areas of public health examined included: air pollution, water pollution, communicable disease, and the combined problems of urban growth and the effect of disasters on human communities. The assessment of the possible applications of remote sensing to these problems was made primarily by examination of the available literature in each field, and by interviews with health authorities, physicists, biologists, and other interested workers. Three types of programs employing remote sensors were outlined in the air pollution field: (1) proving ability of sensors to monitor pollutants at three levels of interest - point source, ambient levels in cities, and global patterns; (2) detection of effects of pollutants on the environment at local and global levels; and (3) routine monitoring.
Gaidajis, George
2003-01-01
To assess ambient air quality at the wider area of TVX Hellas mining facilities, the Total Suspended Particulate matter (TSP) and its content in characteristic elements, i.e., As, Cd, Cu, Fe, Mn, Pb, Zn are being monitored for more than thirty months as part of the established Environmental Monitoring Program. High Volume air samplers equipped with Tissue Quartz filters were employed for the collection of TSP. Analyses were effected after digestion of the suspended particulate with an HNO3-HCl solution and determination of elemental concentrations with an Atomic Absorption Spectroscopy equipped with graphite furnace. The sampling stations were selected to record representatively the existing ambient air quality in the vicinity of the facilities and at remote sites not affected from industrial activities. Monitoring data indicated that the background TSP concentrations ranged from 5-60 microg/m3. Recorded TSP concentrations at the residential sites close to the facilities ranged between 20-100 microg/m3, indicating only a minimal influence from the mining and milling activities. Similar spatial variation was observed for the TSP constituents and specifically for Pb and Zn. To validate the monitoring procedures, a parallel sampling campaign took place with different High Volume samplers at days where low TSP concentrations were expected. The satisfactory agreement (+/- 11%) at low concentrations (50-100 microg/m3) clearly supported the reproducibility of the techniques employed specifically at the critical range of lower concentrations.
The next generation of low-cost personal air quality sensors for quantitative exposure monitoring
NASA Astrophysics Data System (ADS)
Piedrahita, R.; Xiang, Y.; Masson, N.; Ortega, J.; Collier, A.; Jiang, Y.; Li, K.; Dick, R.; Lv, Q.; Hannigan, M.; Shang, L.
2014-03-01
Advances in embedded systems and low-cost gas sensors are enabling a new wave of low cost air quality monitoring tools. Our team has been engaged in the development of low-cost wearable air quality monitors (M-Pods) using the Arduino platform. The M-Pods use commercially available metal oxide semiconductor (MOx) sensors to measure CO, O3, NO2, and total VOCs, and NDIR sensors to measure CO2. MOx sensors are low in cost and show high sensitivity near ambient levels; however they display non-linear output signals and have cross sensitivity effects. Thus, a quantification system was developed to convert the MOx sensor signals into concentrations. Two deployments were conducted at a regulatory monitoring station in Denver, Colorado. M-Pod concentrations were determined using laboratory calibration techniques and co-location calibrations, in which we place the M-Pods near regulatory monitors to then derive calibration function coefficients using the regulatory monitors as the standard. The form of the calibration function was derived based on laboratory experiments. We discuss various techniques used to estimate measurement uncertainties. A separate user study was also conducted to assess personal exposure and M-Pod reliability. In this study, 10 M-Pods were calibrated via co-location multiple times over 4 weeks and sensor drift was analyzed with the result being a calibration function that included drift. We found that co-location calibrations perform better than laboratory calibrations. Lab calibrations suffer from bias and difficulty in covering the necessary parameter space. During co-location calibrations, median standard errors ranged between 4.0-6.1 ppb for O3, 6.4-8.4 ppb for NO2, 0.28-0.44 ppm for CO, and 16.8 ppm for CO2. Median signal to noise (S/N) ratios for the M-Pod sensors were higher for M-Pods than the regulatory instruments: for NO2, 3.6 compared to 23.4; for O3, 1.4 compared to 1.6; for CO, 1.1 compared to 10.0; and for CO2, 42.2 compared to 300-500. The user study provided trends and location-specific information on pollutants, and affected change in user behavior. The study demonstrated the utility of the M-Pod as a tool to assess personal exposure.
NASA Astrophysics Data System (ADS)
Carrano, Charles S.; Groves, Keith M.; Rino, Charles L.; Doherty, Patricia H.
2016-08-01
The zonal drift of ionospheric irregularities at low latitudes is most commonly measured by cross-correlating observations of a scintillating satellite signal made with a pair of closely spaced antennas. The Air Force Research Laboratory-Scintillation Network Decision Aid (AFRL-SCINDA) network operates a small number of very high frequency (VHF) spaced-receiver systems at low latitudes for this purpose. A far greater number of Global Navigation Satellite System (GNSS) scintillation monitors are operated by the AFRL-SCINDA network (25-30) and the Low-Latitude Ionospheric Sensor Network (35-50), but the receivers are too widely separated from each other for cross-correlation techniques to be effective. In this paper, we present an alternative approach that leverages the weak scatter scintillation theory to infer the zonal irregularity drift from single-station GNSS measurements of S4, σφ, and the propagation geometry. Unlike the spaced-receiver technique, this approach requires assumptions regarding the height of the scattering layer (which introduces a bias in the drift estimates) and the spectral index of the irregularities (which affects the spread of the drift estimates about the mean). Nevertheless, theory and experiment suggest that the ratio of σφ to S4 is less sensitive to these parameters than it is to the zonal drift. We validate the technique using VHF spaced-receiver measurements of zonal irregularity drift obtained from the AFRL-SCINDA network. While the spaced-receiver technique remains the preferred way to monitor the drift when closely spaced antenna pairs are available, our technique provides a new opportunity to monitor zonal irregularity drift using regional or global networks of widely separated GNSS scintillation monitors.
Principi, S; Guardiola, C; Duch, M A; Ginjaume, M
2016-09-01
Recent studies highlight the fact that the new eye lens dose limit can be exceeded in interventional radiology procedures and that eye lens monitoring could be required for these workers. The recommended operational quantity for monitoring of eye lens exposure is the personal dose equivalent at 3 mm depth Hp(3) (ICRU 51). However, there are no available conversion coefficients in international standards, while in the literature coefficients have only been calculated for monoenergetic beams and for ISO 4037-1 X-ray qualities. The aim of this article is to provide air kerma to Hp(3) conversion coefficients for a cylindrical phantom made of ICRU-4 elements tissue-equivalent material for RQR radiation qualities (IEC-61267) from 40 to 120 kV and for angles of incidence from 0 to 180°, which are characteristic of medical workplace. Analytic calculations using interpolation techniques and Monte Carlo modelling have been compared. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Su, Jason G; Jerrett, Michael; Meng, Ying-Ying; Pickett, Melissa; Ritz, Beate
2015-02-15
Epidemiological studies investigating relationships between environmental exposures from air pollution and health typically use residential addresses as a single point for exposure, while environmental exposures in transit, at work, school or other locations are largely ignored. Personal exposure monitors measure individuals' exposures over time; however, current personal monitors are intrusive and cannot be operated at a large scale over an extended period of time (e.g., for a continuous three months) and can be very costly. In addition, spatial locations typically cannot be identified when only personal monitors are used. In this paper, we piloted a study that applied momentary location tracking services supplied by smart phones to identify an individual's location in space-time for three consecutive months (April 28 to July 28, 2013) using available Wi-Fi networks. Individual exposures in space-time to the traffic-related pollutants Nitrogen Oxides (NOX) were estimated by superimposing an annual mean NOX concentration surface modeled using the Land Use Regression (LUR) modeling technique. Individual's exposures were assigned to stationary (including home, work and other stationary locations) and in-transit (including commute and other travel) locations. For the individual, whose home/work addresses were known and the commute route was fixed, it was found that 95.3% of the time, the individual could be accurately identified in space-time. The ambient concentration estimated at the home location was 21.01 ppb. When indoor/outdoor infiltration, indoor sources of air pollution and time spent outdoors were taken into consideration, the individual's cumulative exposures were 28.59 ppb and 96.49 ppb, assuming a respective indoor/outdoor ratio of 1.33 and 5.00. Integrating momentary location tracking services with fixed-site field monitoring, plus indoor-outdoor air exchange calibration, makes exposure assessment of a very large population over an extended time period feasible. Copyright © 2014 Elsevier B.V. All rights reserved.
Olaguer, Eduardo P; Erickson, Matthew H; Wijesinghe, Asanga; Neish, Bradley S
2016-02-01
A mobile laboratory equipped with a proton transfer reaction mass spectrometer (PTR-MS) operated in Galena Park, Texas, near the Houston Ship Channel during the Benzene and other Toxics Exposure Study (BEE-TEX). The mobile laboratory measured transient peaks of benzene of up to 37 ppbv in the afternoon and evening of February 19, 2015. Plume reconstruction and source attribution were performed using the four-dimensional (4D) variational data assimilation technique and a three-dimensional (3D) micro-scale forward and adjoint air quality model based on mobile PTR-MS data and nearby stationary wind measurements at the Galena Park Continuous Air Monitoring Station (CAMS). The results of inverse modeling indicate that significant pipeline emissions of benzene may at least partly explain the ambient concentration peaks observed in Galena Park during BEE-TEX. Total pipeline emissions of benzene inferred within the 16-km(2) model domain exceeded point source emissions by roughly a factor of 2 during the observational episode. Besides pipeline leaks, the model also inferred significant benzene emissions from marine, railcar, and tank truck loading/unloading facilities, consistent with the presence of a tanker and barges in the Kinder Morgan port terminal during the afternoon and evening of February 19. Total domain emissions of benzene exceeded corresponding 2011 National Emissions Inventory (NEI) estimates by a factor of 2-6. Port operations involving petrochemicals may significantly increase emissions of air toxics from the transfer and storage of materials. Pipeline leaks, in particular, can lead to sporadic emissions greater than in emission inventories, resulting in higher ambient concentrations than are sampled by the existing monitoring network. The use of updated methods for ambient monitoring and source attribution in real time should be encouraged as an alternative to expanding the conventional monitoring network.
EPA has developed a technology transfer handbook for the EMPACT Roxbury Air Monitoring (AirBeat) Project. The purpose of AirBeat is to make real-time air quality monitoring information (for ozone, black carbon, and fine particulates) available to the Boston MA community of Roxbur...
40 CFR 52.995 - Enhanced ambient air quality monitoring.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 3 2014-07-01 2014-07-01 false Enhanced ambient air quality monitoring. 52.995 Section 52.995 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... air quality monitoring. (a) The Governor of the State of Louisiana submitted the photochemical...
40 CFR 52.995 - Enhanced ambient air quality monitoring.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 3 2012-07-01 2012-07-01 false Enhanced ambient air quality monitoring. 52.995 Section 52.995 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... air quality monitoring. (a) The Governor of the State of Louisiana submitted the photochemical...
40 CFR 52.995 - Enhanced ambient air quality monitoring.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 3 2013-07-01 2013-07-01 false Enhanced ambient air quality monitoring. 52.995 Section 52.995 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... air quality monitoring. (a) The Governor of the State of Louisiana submitted the photochemical...
40 CFR 52.995 - Enhanced ambient air quality monitoring.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 3 2011-07-01 2011-07-01 false Enhanced ambient air quality monitoring. 52.995 Section 52.995 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... air quality monitoring. (a) The Governor of the State of Louisiana submitted the photochemical...
40 CFR 52.995 - Enhanced ambient air quality monitoring.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 3 2010-07-01 2010-07-01 false Enhanced ambient air quality monitoring. 52.995 Section 52.995 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... air quality monitoring. (a) The Governor of the State of Louisiana submitted the photochemical...
Reducing ingress of organic vapours into homes situated on contaminated land.
Crump, D; Brown, V; Rowley, J; Squire, R
2004-04-01
The efficacy of current landfill gas and radon mitigation measures for the prevention of ingress of organic vapours was investigated by the study of four houses situated on contaminated land in North West England. The chemical present in the ground of greatest concern for health due to exposure to vapour in the indoor air was hexachlorobutadiene (HCBD) and the concentration of this compound was used to assess the effectiveness of the remedial measures. A two stage remediation was undertaken. For a house with a solid floor the top surface of the floor was sealed and then for the second stage a fan was used to pressurise the soil gas beneath the house. In a house with a suspended timber floor, extra air bricks were installed to increase ventilation of the floor void and then a fan to further increase air exchange in the void. HCBD in air was monitored by both pumped and diffusive sampling methods. Control houses were also monitored that were not subject to remediation. It is concluded that the remedial measures used for radon protection of a suspended floor have the potential to reduce indoor HCBD concentrations by about 80%, at least in downstairs rooms (where initial levels were highest). The two techniques used for properties with solid floors do not appear to be as effective, and no benefit at all was seen without making allowances for changes in concentration that occurred in the control house over the same period. Further work is required to test the efficacy of the techniques over a longer period and under different circumstances of type of contamination and building characteristics.
Mietelski, J W; Grabowska, S; Nowak, T; Bogacz, J; Gaca, P; Bartyzel, M; Budzanowski, M
2005-01-01
We present here measurements of the 131I concentration for both: gaseous and aerosol fraction of 131I in the air above the septic tank containing wastes from medical application of this isotope. Aerosols were collected using air filters, whereas gaseous forms of iodine were trapped in KI impregnated charcoal double layer cartridge. Besides an active method (pumping of the air through system of filters) an attempt for using a passive method (charcoal traps) for monitoring of radio-iodine is described. For better characterisation of a site the external kerma was determined by means of G-M and TLD techniques as well as the activity kept in the septic tank was measured by gamma spectrometry. Results show that the activity of the aerosol fraction can be neglected compared to that of the gaseous fraction. He measured activity of air is low, on the level of 1 Bq m(-3), even during simulated failure of the ventilation system. Estimated inhalation dose for the serviceman of septic tanks is low ( approximately 10%) compared with external dose obtained by such person due to gamma radiation from the tank (on the level approximately 500 nSv h(-1)). Therefore, the concept of passive monitoring of the iodine in air was abandoned. Also estimated is the efficiency of 131I reduction by a charcoal filter of the ventilation system and 131I input to the environment by the ventilation chimney.
Vuković, Gordana; Aničić Urošević, Mira; Pergal, Miodrag; Janković, Milan; Goryainova, Zoya; Tomašević, Milica; Popović, Aleksandar
2015-12-01
In areas with moderate to continental climates, emissions from residential heating system lead to the winter air pollution peaks. The EU legislation requires only the monitoring of airborne concentrations of particulate matter, As, Cd, Hg, Ni, and B[a]P. Transition metals and rare earth elements (REEs) have also arisen questions about their detrimental health effects. In that sense, this study examined the level of extensive set of air pollutants: 16 polycyclic aromatic hydrocarbons (PAHs), and 41 major elements, trace elements, and REEs using Sphagnum girgensohnii moss bag technique. During the winter of 2013/2014, the moss bags were exposed across Belgrade (Serbia) to study the influence of residential heating system to the overall air quality. The study was set as an extension to our previous survey during the summer, i.e., non-heating season. Markedly higher concentrations of all PAHs, Sb, Cu, V, Ni, and Zn were observed in the exposed moss in comparison to the initial values. The patterns of the moss REE concentrations normalized to North American Shale Composite and Post-Archean Australian Shales were identical across the study area but enhanced by anthropogenic activities. The results clearly demonstrate the seasonal variations in the moss enrichment of the air pollutants. Moreover, the results point out a need for monitoring of air quality during the whole year, and also of various pollutants, not only those regulated by the EU Directive.
Beta/alpha continuous air monitor
Becker, G.K.; Martz, D.E.
1988-06-27
A single deep layer silicon detector in combination with a microcomputer, recording both alpha and beta activity and the energy of each pulse, distinquishing energy peaks using a novel curve fitting technique to reduce the natural alpha counts in the energy region where plutonium and other transuranic alpha emitters are present, and using a novel algorithm to strip out radon daughter contribution to actual beta counts. 7 figs.
A Tale of Two Cities - HSI-DOAS Measurements of Air Quality
NASA Astrophysics Data System (ADS)
Graves, Rosemarie; Leigh, Roland; Anand, Jasdeep; McNally, Michael; Lawrence, James; Monks, Paul
2013-04-01
Differential Optical Absorption Spectroscopy is now commonly used as an air quality measuring system; primarily through the measurements of nitrogen dioxide (NO2) both as a ground-based and satellite technique. CityScan is a Hemispherical Scanning Imaging Differential Optical Absorption Spectrometer (HSI-DOAS) which has been optimised to measure concentrations of nitrogen dioxide. CityScan has a 95˚ field of view (FOV) between the zenith and 5˚ below the horizon. Across this FOV there are 128 resolved elements which are measured concurrently, the spectrometer is rotated azimuthally 1˚ per second providing full hemispherical coverage every 6 minutes. CityScan measures concentrations of nitrogen dioxide over specific lines of sight and due to the extensive field of view of the instrument this produces measurements which are representative over city-wide scales. Nitrogen dioxide is an important air pollutant which is produced in all combustion processes and can reduce lung function; especially in sensitised individuals. These instruments aim to bridge the gap in spatial scales between point source measurements of air quality and satellite measurements of air quality offering additional information on emissions, transport and the chemistry of nitrogen dioxide. More information regarding the CityScan technique can be found at http://www.leos.le.ac.uk/aq/index.html. CityScan has been deployed in both London and Bologna, Italy during 2012. The London deployment took place as part of the large NERC funded ClearfLo project in January and July/August. CityScan was deployed in Bologna in June as part of the large EU project PEGASOS. Analysis of both of these campaigns of data will be used to give unprecedented levels of spatial information to air quality measurements whilst also showing the difference in air quality between a relatively isolated mega city and a smaller city situated in a very polluted region; in this case the Po Valley. Results from multiple CityScan instruments will be used in conjunction with data from ground based in-situ monitor networks to evaluate the ability of in-situ monitors to effectively assess the air quality in an urban environment. Trend analysis will also be shown to demonstrate any changes in the air quality in London during the time of the Olympic Games in comparison with a normal summer.
NASA Astrophysics Data System (ADS)
Popa, C.; Bratu, A. M.; Matei, C.; Cernat, R.; Popescu, A.; Dumitras, D. C.
2011-07-01
The hypothesis that blood, urine and other body fluids and tissues can be sampled and analyzed to produce clinical information for disease diagnosis or therapy monitoring is the basis of modern clinical diagnosis and medical practice. The analysis of breath air has major advantages because it is a non-invasive method, represents minimal risk to personnel collecting the samples and can be often sampled. Breath air samples from the human subjects were collected using aluminized bags from QuinTron and analyzed using the laser photoacoustic spectroscopy (LPAS) technique. LPAS is used to detect traces of ethylene in breath air resulting from lipid peroxidation in lung epithelium following the radiotherapy and also traces of ammonia from patients subjected to hemodialysis for treatment of renal failure. In the case of patients affected by cancer and treated by external radiotherapy, all measurements were done at 10P(14) CO2 laser line, where the ethylene absorption coefficient has the largest value (30.4 cm-1 atm-1), whereas for patients affected by renal failure and treated by standard dialysis, all measurements were performed at 9R(30) CO2 laser line, where the ammonia absorption coefficient has the maximum value of 57 cm-1 atm-1. The levels of ethylene and ammonia in exhaled air, from patients with cancer and renal failure, respectively, were measured and compared with breath air contents from healthy humans. Human gas biomarkers were measured at sub-ppb (parts per billion) concentration sensitivities. It has been demonstrated that LPAS technique will play an important role in the future of exhaled breath air analysis. The key attributes of this technique are sensitivity, selectivity, fast and real time response, as well as its simplicity.
AMBIENT AIR MONITORING STRATEGY
The Clean Air Act requires EPA to establish national ambient air quality standards and to regulate as necessary, hazardous air pollutants. EPA uses ambient air monitoring to determine current air quality conditions, and to assess progress toward meeting these standards and relat...
Citizen Science Opportunities for Monitoring Air Quality Fact Sheet
The Citizen Science Opportunities for Monitoring Air Quality fact sheet provides information on what citizen science is and the tools and resources available for citizen scientists interested in monitoring air quality.
Community Air Monitoring Training
EPA hosted a training workshop to share tools used to conduct citizen science projects involving Next Generation Air Monitoring (NGAM) technology and to educate interested groups and individuals on best practices for successful air monitoring projects.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-01
... Scientific Advisory Committee; Air Monitoring and Methods Subcommittee AGENCY: Environmental Protection... Advisory Board (SAB) Staff Office announces a public teleconference of the Air Monitoring and Methods..., including definitions, basis of interest, and measurement methods. OAR requested CASAC advice on how to...
Heavy - metal biomonitoring by using moss bags in Florence urban area, Italy
NASA Astrophysics Data System (ADS)
Pellizzaro, Grazia; Canu, Annalisa; Arca, Angelo; Duce, Pierpaolo
2013-04-01
In the last century, pollution has become one of the most important risks for environment. In particular, heavy metal presence in air, water and soil induces toxic effects on ecosystems and human health. Monitoring airborne trace element over large areas is a task not easy to reach since the concentrations of pollutants are variable in space and time. Data from automatic devices are site-specific and very limited in number to describe spatial-temporal trends of pollutants. In addition, especially in Italy, trace elements concentrations are not often recorded by most of the automated monitoring stations. In the last decades, development of alternative and complementary methods as bio-monitoring techniques, allowed to map deposition patterns not only near single pollution sources, but also over relatively large areas at municipal or even regional scale. Bio-monitoring includes a wide array of methodologies finalised to study relationships between pollution and living organisms. Mosses and lichens have been widely used as bio-accumulators for assessing the atmospheric deposition of heavy metals in natural ecosystems and urban areas. In this study bio-monitoring of airborne trace metals was made using moss bags technique. The moss Hypnum cupressiforme was used as bio-indicator for estimating atmospheric traces metal deposition in the urban area of Florence. Moss carpets were collected in a forested area of central Sardinia (municipality of Bolotana - Nuoro), which is characterised by absence of air pollution. Moss bags were located in the urban area of Florence close to three monitoring air quality stations managed by ARPAT (Agenzia Regionale Protezione Ambiente Toscana). Two stations were located in high-traffic roads whereas the other one was located in a road with less traffic density. In each site moss bags were exposed during three campaigns of measurement conducted during the periods March-April, May-July, and August-October 2010. Two moss bags, used as control, were not exposed. After exposure periods, moss bags were removed and moss samples were analyzed for As, Cr, Cu, Fe, Ni, Pb, V, and Zn by Inductively Coupled Plasma Atomic Emission Spectrometry. Results show differences between mean concentration of trace metals in moss bags after-exposure and the respective blanks in the three sample sites of Florence during the three campaigns of measurement. The highest concentrations for almost all elements were recorded at high-traffic road sites. Whereas lower values were detected in site located in a road with less traffic density In conclusion, Hypnum cupressiforme, for his high ability to accumulate trace metals, can be efficiently used as bio-indicator to estimate the trend of air pollution in a urban area during a period time.
Hung, H; Blanchard, P; Halsall, C J; Bidleman, T F; Stern, G A; Fellin, P; Muir, D C G; Barrie, L A; Jantunen, L M; Helm, P A; Ma, J; Konoplev, A
2005-04-15
The Northern Contaminants Program (NCP) baseline monitoring project was established in 1992 to monitor for persistent organic pollutants (POPs) in Arctic air. Under this project, weekly samples of air were collected at four Canadian and two Russian arctic sites, namely Alert, Nunavut; Tagish, Yukon; Little Fox Lake, Yukon; Kinngait, Nunavut; Dunai Island, Russia and Amderma, Russia. Selected POPs, including polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and organochlorine (OC) pesticides, were analyzed in both the gas and particulate phases. This paper summarizes results obtained from this project in the past 5 years. Temporal trends were developed for atmospheric PCBs and OCs observed at Alert using a digital filtration (DF) technique. It was found that trends developed with 5 years of data (1993-1997) did not differ significantly from those determined with 7 years of data (1993-1999). This implies that with the DF technique, long-term trends can still be developed with less than 10 years of data. An acceleration in decline of OC and PCB air concentrations was noted in 1999 for some compounds, although the reason is unknown. Monitoring efforts must continue to assess the effect of this decline on the long-term trends of POPs in the Canadian Arctic. Occasional high trans-/cis-chlordane ratios and heptachlor air concentrations measured at Alert between 1995 and 1997 suggests sporadic fresh usage of chlordane-based pesticides. However, significant decreasing trends of chlordanes along with their chemical signatures has provided evidence that emission of old soil residues is replacing new usage as an important source to the atmosphere. Measurements of OC air concentrations conducted at Kinngait in 1994-1995 and 2000-2001 indicated faster OC removal at this location than at Alert. This may be attributed to the proximity of Kinngait to temperate regions where both biotic and abiotic degradation rates are faster. The PAH concentrations observed at Alert mimic those at mid-latitudes and are consistent with long-range transport to the Arctic, particularly for the lighter PAHs. A decline in particulate PAH was observed, similar to atmospheric sulphate aerosol and can be attributed to the collapse of industrial activity in the former Soviet Union between 1991 and 1995. Spatial comparisons of OC seasonality at Alert, Tagish, Dunai and Kinngait show elevated air concentrations of some compounds in spring. However, elevated spring concentrations were observed for different compounds at different sites. Potential causes are discussed. Further investigation in the atmospheric flow pattern in spring which is responsible for the transport of POPs into the Arctic is required. OC and PCB air concentrations at Alert were found to be influenced by two climate variation patterns, the North Atlantic Oscillation (NAO) and the Pacific North American (PNA) pattern. Planetary atmospheric patterns must be taken into account in the global prediction and modelling of POPs in the future.
NASA Astrophysics Data System (ADS)
Krooneman, Janneke; Harmsen, Hermie; Landini, Paolo; Zinn, Manfred; Munaut, Françoise; van der Meer, Walter; Beimfohr, Claudia; Reichert, Bas; Preuß, Andrea
2005-10-01
Microbial hygiene is important in our daily lives; preventing and combating microbial infections is increasingly important in society. In hospitals, strict monitoring and control is exercised for people and infrastructure alike. In modern buildings, air-conditioning system are screened for harmful bacteria such as Legionella. More recently, concerns about SARS (virus) and anthrax (bacteria) have added pressure on the scientific community to come up with adequate monitoring and control techniques to assure microbial hygiene. Additionally, the use of biotechnological recycling and cleaning processes for sustainability brings the need for reliable monitoring tools and preventive or riks-reducing strategies. In the manned space environment, similar problems need to be solved and efforts have already been made to study the behaviour of micro-organisms and microbial hygiene onboard space stations.
Recent Progress in Biosensors for Environmental Monitoring: A Review
2017-01-01
The environmental monitoring has been one of the priorities at the European and global scale due to the close relationship between the environmental pollution and the human health/socioeconomic development. In this field, the biosensors have been widely employed as cost-effective, fast, in situ, and real-time analytical techniques. The need of portable, rapid, and smart biosensing devices explains the recent development of biosensors with new transduction materials, obtained from nanotechnology, and for multiplexed pollutant detection, involving multidisciplinary experts. This review article provides an update on recent progress in biosensors for the monitoring of air, water, and soil pollutants in real conditions such as pesticides, potentially toxic elements, and small organic molecules including toxins and endocrine disrupting chemicals. PMID:29244756
Recent Progress in Biosensors for Environmental Monitoring: A Review.
Justino, Celine I L; Duarte, Armando C; Rocha-Santos, Teresa A P
2017-12-15
The environmental monitoring has been one of the priorities at the European and global scale due to the close relationship between the environmental pollution and the human health/socioeconomic development. In this field, the biosensors have been widely employed as cost-effective, fast, in situ, and real-time analytical techniques. The need of portable, rapid, and smart biosensing devices explains the recent development of biosensors with new transduction materials, obtained from nanotechnology, and for multiplexed pollutant detection, involving multidisciplinary experts. This review article provides an update on recent progress in biosensors for the monitoring of air, water, and soil pollutants in real conditions such as pesticides, potentially toxic elements, and small organic molecules including toxins and endocrine disrupting chemicals.
de Nazelle, Audrey; Arunachalam, Saravanan; Serre, Marc L
2010-08-01
States in the USA are required to demonstrate future compliance of criteria air pollutant standards by using both air quality monitors and model outputs. In the case of ozone, the demonstration tests aim at relying heavily on measured values, due to their perceived objectivity and enforceable quality. Weight given to numerical models is diminished by integrating them in the calculations only in a relative sense. For unmonitored locations, the EPA has suggested the use of a spatial interpolation technique to assign current values. We demonstrate that this approach may lead to erroneous assignments of nonattainment and may make it difficult for States to establish future compliance. We propose a method that combines different sources of information to map air pollution, using the Bayesian Maximum Entropy (BME) Framework. The approach gives precedence to measured values and integrates modeled data as a function of model performance. We demonstrate this approach in North Carolina, using the State's ozone monitoring network in combination with outputs from the Multiscale Air Quality Simulation Platform (MAQSIP) modeling system. We show that the BME data integration approach, compared to a spatial interpolation of measured data, improves the accuracy and the precision of ozone estimations across the state.
WORKSHOP ON SOURCE EMISSION AND AMBIENT AIR MONITORING OF MERCURY
AN EPA/ORD Workshop on Source Emission and Ambient Air Monitoring of Mercury was held on 9/13-14/99, Bloomington, Minnesota. The purpose of the workshop was to discuss the state-of-the-science in source and ambient air mercury monitoring as well as mercury monitoring research and...
The verification test was conducted oer a period of 30 days (October 1 to October 31, 2008) and involved the continuous operation of duplicate semi-continuous monitoring technologies at the Burdens Creek Air Monitoring Site, an existing ambient-air monitoring station located near...
NASA Astrophysics Data System (ADS)
Patil, D. L.; Gautam, R.; Rizvi, S.; Singh, M. K.
2016-12-01
The persistent and widespread winter fog impacts the Indo-Gangetic Plains (IGP) on an annual basis, disrupting day-to-day lives of millions of people in parts of northern India, Pakistan, Nepal and Bangladesh. The IGP is a densely-populated region located south of the Himalaya, in the northern parts of south Asia. During the past three decades or so, associated with growing population and energy demands, the IGP has witnessed strong upward trends in air pollution, particularly leading to poor air quality in the winter months. Co-occurring with the dense haze over the IGP, severe fog episodes persist throughout the months of December and January. Building on our recent work on satellite-based detection of fog, we have further extended the detection capability towards the development of a near-real time (NRT) fog monitoring system using satellite radiances and products. Here, we use multi-spectral radiances and aerosol/cloud retrievals from Terra/Aqua MODIS data for NRT fog monitoring over the IGP for both daytime as well as nighttime. Specifically, the nighttime fog detection algorithm employs a bi-spectral brightness temperature difference technique between two spectral channels: 3.9 μm and 11 μm. Our ongoing efforts also include extending fog detection capability in NRT to geostationary satellites, for providing continuous monitoring of the onset, evolution and spatial-temporal variation of fog, as well as the geospatial integration of surface meteorological observations of visibility, relative humidity, temperature. We anticipate that the ongoing and future development of a fog monitoring system may be of particular assistance to air and rail transportation management, as well as of general interest to the public. The outputs of fog detection algorithm and related aerosol/cloud parameters are operationally disseminated via http://fogsouthasia.com/.
NASA Technical Reports Server (NTRS)
Gloria, H. R.; Pitts, J. N., Jr.; Behar, J. V.; Bradburn, G. A.; Reinisch, R. F.; Zafonte, L.
1972-01-01
An instrumented aircraft has been used to study photochemical air pollution in the State of California. Simultaneous measurements of the most important chemical constituents (ozone, total oxidant, hydrocarbons, and nitrogen oxides, as well as several meteorological variables) were made. State-of-the-art measurement techniques and sampling procedures are discussed. Data from flights over the South Coast Air Basin, the San Francisco Bay Area, the San Joaquin Valley, the Santa Clara and Salinas Valleys, and the Pacific Ocean within 200 miles of the California coast are presented. Pollutants were found to be concentrated in distant layers up to at least 18,000 feet. In many of these layers, the pollutant concentrations were much higher than at ground level. These findings bring into serious question the validity of the present practice of depending solely on data from ground-based monitoring stations for predictive models.
Help from habit reversal for supragastric belching.
Punkkinen, Jari; Haak, Riikka; Kaartinen, Meri; Walamies, Markku
Supragastric belching differs from common gastric belching. It can be detected by 24-hour intra-esophageal impedance monitoring. Belching is seldom the only symptom: reflux symptom is present in 95% and dysphagia in 65% of the patients. In supragastric belching, the air does not come from the stomach but instead from the esophagus. Belching is caused by the patient him/herself swallowing air into the esophagus. This voluntary but unconscious symptom is treated by therapy in which explaining the mechanism of belching for the patient and learning of correct diaphragmatic breathing technique play a central role. Habit reversal is utilized for teaching the patient to react correctly to preemptive symptoms.
General Purpose Data-Driven Monitoring for Space Operations
NASA Technical Reports Server (NTRS)
Iverson, David L.; Martin, Rodney A.; Schwabacher, Mark A.; Spirkovska, Liljana; Taylor, William McCaa; Castle, Joseph P.; Mackey, Ryan M.
2009-01-01
As modern space propulsion and exploration systems improve in capability and efficiency, their designs are becoming increasingly sophisticated and complex. Determining the health state of these systems, using traditional parameter limit checking, model-based, or rule-based methods, is becoming more difficult as the number of sensors and component interactions grow. Data-driven monitoring techniques have been developed to address these issues by analyzing system operations data to automatically characterize normal system behavior. System health can be monitored by comparing real-time operating data with these nominal characterizations, providing detection of anomalous data signatures indicative of system faults or failures. The Inductive Monitoring System (IMS) is a data-driven system health monitoring software tool that has been successfully applied to several aerospace applications. IMS uses a data mining technique called clustering to analyze archived system data and characterize normal interactions between parameters. The scope of IMS based data-driven monitoring applications continues to expand with current development activities. Successful IMS deployment in the International Space Station (ISS) flight control room to monitor ISS attitude control systems has led to applications in other ISS flight control disciplines, such as thermal control. It has also generated interest in data-driven monitoring capability for Constellation, NASA's program to replace the Space Shuttle with new launch vehicles and spacecraft capable of returning astronauts to the moon, and then on to Mars. Several projects are currently underway to evaluate and mature the IMS technology and complementary tools for use in the Constellation program. These include an experiment on board the Air Force TacSat-3 satellite, and ground systems monitoring for NASA's Ares I-X and Ares I launch vehicles. The TacSat-3 Vehicle System Management (TVSM) project is a software experiment to integrate fault and anomaly detection algorithms and diagnosis tools with executive and adaptive planning functions contained in the flight software on-board the Air Force Research Laboratory TacSat-3 satellite. The TVSM software package will be uploaded after launch to monitor spacecraft subsystems such as power and guidance, navigation, and control (GN&C). It will analyze data in real-time to demonstrate detection of faults and unusual conditions, diagnose problems, and react to threats to spacecraft health and mission goals. The experiment will demonstrate the feasibility and effectiveness of integrated system health management (ISHM) technologies with both ground and on-board experiments.
Evaluation of continuous air monitor placement in a plutonium facility.
Whicker, J J; Rodgers, J C; Fairchild, C I; Scripsick, R C; Lopez, R C
1997-05-01
Department of Energy appraisers found continuous air monitors at Department of Energy plutonium facilities alarmed less than 30% of the time when integrated room plutonium air concentrations exceeded 500 DAC-hours. Without other interventions, this alarm percentage suggests the possibility that workers could be exposed to high airborne concentrations without continuous air monitor alarms. Past research has shown that placement of continuous air monitors is a critical component in rapid and reliable detection of airborne releases. At Los Alamos National Laboratory and many other Department of Energy plutonium facilities, continuous air monitors have been primarily placed at ventilation exhaust points. The purpose of this study was to evaluate and compare the effectiveness of exhaust register placement of workplace continuous air monitors with other sampling locations. Polydisperse oil aerosols were released from multiple locations in two plutonium laboratories at Los Alamos National Laboratory. An array of laser particle counters positioned in the rooms measured time-resolved aerosol dispersion. Results showed alternative placement of air samplers generally resulted in aerosol detection that was faster, often more sensitive, and equally reliable compared with samplers at exhaust registers.
Ambient Monitoring Technology Information Center (AMTIC)
This site contains information on ambient air quality monitoring programs, monitoring methods, quality assurance and control procedures, and federal regulations related to ambient air quality monitoring.
Ross, B M; Dadgostar, N; Bloom, M; McKeown, L
2009-05-01
Oral malodour is a common disorder predominantly caused by bacterial metabolism of food stuffs in the mouth. It is routinely diagnosed and monitored by either the subjective rating or the measurement of oral volatile sulphur compound (VSC) levels. Non-sulphur compounds are also believed to contribute significantly to the condition although there is currently no direct means to assess their levels. In this study, we utilized selective flow tube mass spectrometry (SIFT-MS) to measure, in real time, a range of sulphur and non-sulphur containing compounds in oral air to determine whether the technique can be used to objectively monitor oral malodour. Oral malodour was assessed using organoleptic scores in subjects with and without a history of oral malodour (n = 18) by a trained rater, while the chemical composition of oral air was analysed by both VSC sensor and SIFT-MS. Total VSC levels were significantly correlated with levels of hydrogen sulphide and methylmercaptan measured by SIFT-MS, but not with organoleptic scores. In subjects with elevated organoleptic score, only levels of methylmercaptan were significantly elevated. In three subjects with elevated tongue organoleptic scores but normal total VSC levels, SIFT-MS suggested that one subject possessed high levels of oral acetone while another had high oral levels of acetic acid. Our data suggest that SIFT-MS can be used to assess a wide range of compounds in oral air in addition to VSC to provide a clearer picture of the chemical nature of malodour. This may assist in the diagnosis and monitoring of the condition.
Federal Radiological Monitoring and Assessment Center Monitoring Manual Volume 1, Operations
DOE Office of Scientific and Technical Information (OSTI.GOV)
NSTec Aerial Measurement Systems
2012-07-31
The Monitoring division is primarily responsible for the coordination and direction of: Aerial measurements to delineate the footprint of radioactive contaminants that have been released into the environment. Monitoring of radiation levels in the environment; Sampling to determine the extent of contaminant deposition in soil, water, air and on vegetation; Preliminary field analyses to quantify soil concentrations or depositions; and Environmental and personal dosimetry for FRMAC field personnel, during a Consequence Management Response Team (CMRT) and Federal Radiological Monitoring and Assessment Center (FRMAC) response. Monitoring and sampling techniques used during CM/FRMAC operations are specifically selected for use during radiological emergenciesmore » where large numbers of measurements and samples must be acquired, analyzed, and interpreted in the shortest amount of time possible. In addition, techniques and procedures are flexible so that they can be used during a variety of different scenarios; e.g., accidents involving releases from nuclear reactors, contamination by nuclear waste, nuclear weapon accidents, space vehicle reentries, or contamination from a radiological dispersal device. The Monitoring division also provides technicians to support specific Health and Safety Division activities including: The operation of the Hotline; FRMAC facility surveys; Assistance with Health and Safety at Check Points; and Assistance at population assembly areas which require support from the FRMAC. This volume covers deployment activities, initial FRMAC activities, development and implementation of the monitoring and assessment plan, the briefing of field teams, and the transfer of FRMAC to the EPA.« less
NASA Astrophysics Data System (ADS)
Machala, Libor; Zboril, Radek; Sharma, Virender K.; Homonnay, Zoltan
2008-10-01
Mössbauer spectroscopy was shown to be very useful technique studying the mechanism of thermal decomposition or aging processes of the most known ferrate(VI), K2FeO4. In-situ Mössbauer spectroscopy approach was used to monitor the phase composition during the studied processes. The experimental set-up was designed to perform in-situ measurements at high temperatures and at different air humid conditions at room temperature. The potassium ferrate(III), KFeO2 was demonstrated to be the primary product of thermal decomposition of K2FeO4. The KFeO2 was unstable in a humid air at room temperature and reacted with components of air, H2O and CO2 to give Fe2O3 nanoparticles and KHCO3. The aging kinetics of K2FeO4 and KFeO2 under humid air were significantly dependent on the relative air humidity.
Kelly, Frank; Anderson, H Ross; Armstrong, Ben; Atkinson, Richard; Barratt, Ben; Beevers, Sean; Derwent, Dick; Green, David; Mudway, Ian; Wilkinson, Paul
2011-04-01
On February 17, 2003, a congestion charging scheme (CCS*) was introduced in central London along with a program of traffic management measures. The scheme operated Monday through Friday, 7 AM to 6 PM. This program resulted in an 18% reduction in traffic volume and a 30% reduction in traffic congestion in the first year (2003). We developed methods to evaluate the possible effects of the scheme on air quality: We used a temporal-spatial design in which modeled and measured air quality data from roadside and background monitoring stations were used to compare time periods before (2001-2002) and after (2003-2004) the CCS was introduced and to compare the spatial area of the congestion charging zone (CCZ) with the rest of London. In the first part of this project, we modeled changes in concentrations of oxides of nitrogen (NOx), nitrogen dioxide (NO2), and PM10 (particles with a mass median aerodynamic diameter < or = 10 microm) across the CCZ and in Greater London under different traffic and emission scenarios for the periods before and after CCS introduction. Comparing model results within and outside the zone suggested that introducing the CCS would be associated with a net 0.8-microg/m3 decrease in the mean concentration of PM10 and a net 1.7-ppb decrease in the mean concentration of NOx within the CCZ. In contrast, a net 0.3-ppb increase in the mean concentration of NO2 was predicted within the zone; this was partly explained by an expected increase in primary NO2 emissions due to the introduction of particle traps on diesel buses (one part of the improvements in public transport associated with the CCS). In the second part of the project, we established a CCS Study Database from measurements obtained from the London Air Quality Network (LAQN) for air pollution monitors sited to measure roadside and urban background concentrations. Fully ratified (validated) 15-minute mean carbon monoxide (CO), nitric oxide (NO), NO2, NOx, PM10, and PM2.5 data from each chosen monitoring site for the period from February 17, 2001, to February 16, 2005, were transferred from the LAQN database. In the third part of our project, these data were used to compare geometric means for the 2 years before and the 2 years after the CCS was introduced. Temporal changes within the CCZ were compared with changes, over the same period, at similarly sited (roadside or background) monitors in a control area 8 km distant from the center of the CCZ. The analysis was confined to measurements obtained during the hours and days on which the scheme was in operation and focused on pollutants derived from vehicles (NO, NO2, NOx, PM10, and CO). This set of analyses was based on the limited data available from within the CCZ. When compared with data from outside the zone, we did not find evidence of temporal changes in roadside measurements of NOx, NO, and NO2, nor in urban background concentrations of NOx. (The latter result, however, concealed divergent trends in NO, which fell, and NO2, which rose.) Although based upon fewer stations, there was evidence that background concentrations of PM10 and CO fell within the CCZ compared with outside the zone. We also analyzed the trends in background concentrations for all London monitoring stations; as distance from the center of the CCZ increased, we found some evidence of an increasing gradation in NO and PM10 concentrations before versus after the intervention. This suggests a possible intermediate effect on air quality in the area immediately surrounding the CCZ. Although London is relatively well served with air quality monitoring stations, our study was restricted by the availability of only a few monitoring sites within the CCZ, and only one of those was at a roadside location. The results derived from this single roadside site are not likely to be an adequate basis for evaluating this complex urban traffic management scheme. Our primary approach to assessing the impact of the CCS was to analyze the changes in geometric mean pollutant concentrations in the 2 years before and 2 years after the CCS was introduced and to compare changes at monitoring stations within the CCZ with those in a distant control area (8 km from the CCZ center) unlikely to be influenced by the CCS. We saw this as the most robust analytical approach with which to examine the CCS Study Database, but in the fourth part of the project we did consider three other approaches: ethane as an indicator of pollution dispersion; the cumulative sum (CUSUM) statistical technique; and bivariate polar plots for local emissions. All three were subsequently judged as requiring further development outside of the scope of this study. However, despite their investigative nature, each technique provided useful information supporting the main analyses. The first method used ethane as a dispersion indicator to remove the inherent variability in air pollutant concentrations caused by changes in meteorology and atmospheric dispersion. The technique had the potential to ascertain more accurately the likely impacts of the CCS on London's air quality. Although this novel method appeared promising over short time periods, a number of concerns arose about whether the spatial and temporal variability of ethane over longer time periods would be representative of meteorologic conditions alone. The major strength of CUSUM, the second method, is that it can be used to identify the approximate timing of changes that may have been caused by the CCS. This ability is weakened, however, by the effects of serial correlation (the correlation of data among measurements in successive time intervals) within air pollution data that is caused by seasonality and long-term meteorologic trends. The secure interpretation of CUSUM requires that the technique be adapted to take proper account of the underlying correlation between measurements without the use of smoothing functions that would obscure a stepped change in concentrations. Although CUSUM was not able to provide a quantitative estimation of changes in pollution levels arising from the introduction of the CCS, the strong signals that were identified were considered in the context of other results from the study. The third method, bivariate polar plots, proved useful. The plots revealed important characteristics of the data from the only roadside monitoring site within the CCZ and highlighted the importance of considering prevailing weather conditions when positioning a roadside monitor. The technique would benefit from further development, however, in transforming the qualitative assessment of change into a quantitative assessment and including an estimate of uncertainty. Research is ongoing to develop this method in air-quality time-series studies. Overall, using a range of measurement and modeling approaches, we found evidence of small changes in air quality after introduction of the CCS. These include small decreases in PM10, NO, and CO. The possibility that some of these effects might reflect more general changes in London's air quality is suggested by the findings of somewhat similar changes in geometric means for weekends, when the CCS was not operating. However, since some evidence suggests that the CCS also had an impact on traffic volume on weekends, the CCS remains as one possible explanation for the observed pattern of changes in pollutant concentrations. In addition, the CCS was just one of a number of traffic and emission reduction schemes introduced in London over the 4-year study period; if the other measures had an impact in central London, they might partly explain our findings. Although not the aim of this study, it is important to consider how the trends we observed might be translated into health effects. For example, given that London already has NO2 concentrations in excess of the permitted limit value, we do not know what the effects of an increase in NO2 created by diesel-exhaust after-treatment for particles might mean for health. Further, although it is not likely that NO affects health, the decrease in NO concentrations is likely associated with an increase in ozone concentrations (a pollutant associated with health effects), as has been seen in recent years in London. These and other similar issues require further investigation. Although the CCS is a relatively simple traffic management scheme in the middle of a major urban environment, analyzing its possible impact on air quality was found to be far from straightforward. Using a range of modeling and monitoring approaches to address the impact of the scheme revealed that each technique has its own advantages and limitations. The placement of monitoring sites and the availably of traffic count data were also identified as key issues. The most compelling lesson we take away from this study is that such work is impossible to undertake without a coherent multi-disciplinary team of skilled researchers. In conclusion, our study suggests that the introduction of the CCS in 2003 was associated with small temporal changes in air pollutant concentrations in central London compared with outer areas. However, attributing the cause of these changes to the CCS alone is not appropriate because the scheme was introduced at a time when other traffic and emissions interventions, which might have had a more concentrated effect in central London, were also being implemented.
D. Schirokauer; L. Geiser; A. Bytnerowicz; M. Fenn; K. Dillman
2014-01-01
Air quality and air quality related values are important resources to the National Park Service (NPS) units and Wilderness areas in northern Southeast Alaska. Air quality monitoring was prioritized as a high-priority Vital Sign at the Southeast Alaska Networkâs (SEAN) Inventory and Monitoring Programâs terrestrial scoping workshop (Derr and Fastie 2006). Air quality...
McLean, Thomas D; Moore, Murray E; Justus, Alan L; Hudston, Jonathan A; Barbé, Benoît
2016-11-01
Evaluation of continuous air monitors in the presence of a plutonium aerosol is time intensive, expensive, and requires a specialized facility. The Radiation Protection Services Group at Los Alamos National Laboratory has designed a Dynamic Radioactive Source, intended to replace plutonium aerosol challenge testing. The Dynamic Radioactive Source is small enough to be inserted into the sampler filter chamber of a typical continuous air monitor. Time-dependent radioactivity is introduced from electroplated sources for real-time testing of a continuous air monitor where a mechanical wristwatch motor rotates a mask above an alpha-emitting electroplated disk source. The mask is attached to the watch's minute hand, and as it rotates, more of the underlying source is revealed. The measured alpha activity increases with time, simulating the arrival of airborne radioactive particulates at the air sampler inlet. The Dynamic Radioactive Source allows the temporal behavior of puff and chronic release conditions to be mimicked without the need for radioactive aerosols. The new system is configurable to different continuous air monitor designs and provides an in-house testing capability (benchtop compatible). It is a repeatable and reusable system and does not contaminate the tested air monitor. Test benefits include direct user control, realistic (plutonium) aerosol spectra, and iterative development of continuous air monitor alarm algorithms. Data obtained using the Dynamic Radioactive Source has been used to elucidate alarm algorithms and to compare the response time of two commercial continuous air monitors.
McLean, Thomas D.; Moore, Murray E.; Justus, Alan L.; ...
2016-01-01
Evaluation of continuous air monitors in the presence of a plutonium aerosol is time intensive, expensive, and requires a specialized facility. The Radiation Protection Services Group at Los Alamos National Laboratory has designed a Dynamic Radioactive Source, intended to replace plutonium aerosol challenge testing. Furthermore, the Dynamic Radioactive Source is small enough to be inserted into the sampler filter chamber of a typical continuous air monitor. Time-dependent radioactivity is introduced from electroplated sources for real-time testing of a continuous air monitor where a mechanical wristwatch motor rotates a mask above an alpha-emitting electroplated disk source. The mask is attached tomore » the watch’s minute hand, and as it rotates, more of the underlying source is revealed. The alpha activity we measured increases with time, simulating the arrival of airborne radioactive particulates at the air sampler inlet. The Dynamic Radioactive Source allows the temporal behavior of puff and chronic release conditions to be mimicked without the need for radioactive aerosols. The new system is configurable to different continuous air monitor designs and provides an in-house testing capability (benchtop compatible). It is a repeatable and reusable system and does not contaminate the tested air monitor. Test benefits include direct user control, realistic (plutonium) aerosol spectra, and iterative development of continuous air monitor alarm algorithms. We also used data obtained using the Dynamic Radioactive Source to elucidate alarm algorithms and to compare the response time of two commercial continuous air monitors.« less
NASA Astrophysics Data System (ADS)
Cropper, Paul M.; Overson, Devon K.; Cary, Robert A.; Eatough, Delbert J.; Chow, Judith C.; Hansen, Jaron C.
2017-11-01
Particulate matter (PM) is among the most harmful air pollutants to human health, but due to its complex chemical composition is poorly characterized. A large fraction of PM is composed of organic compounds, but these compounds are not regularly monitored due to limitations in current sampling and analysis techniques. The Organic Aerosol Monitor (GC-MS OAM) combines a collection device with thermal desorption, gas chromatography and mass spectrometry to quantitatively measure the carbonaceous components of PM on an hourly averaged basis. The GC-MS OAM is fully automated and has been successfully deployed in the field. It uses a chemically deactivated filter for collection followed by thermal desorption and GC-MS analysis. Laboratory tests show that detection limits range from 0.2 to 3 ng for 16 atmospherically relevant compounds, with the possibility for hundreds more. The GC-MS OAM was deployed in the field for semi-continuous measurement of the organic markers, levoglucosan, dehydroabietic acid, and polycyclic aromatic hydrocarbons (PAHs) from January to March 2015. Results illustrate the significance of this monitoring technique to characterize the organic components of PM and identify sources of pollution.
Atmosphere and water quality monitoring on Space Station Freedom
NASA Technical Reports Server (NTRS)
Niu, William
1990-01-01
In Space Station Freedom air and water will be supplied in closed loop systems. The monitoring of air and water qualities will ensure the crew health for the long mission duration. The Atmosphere Composition Monitor consists of the following major instruments: (1) a single focusing mass spectrometer to monitor major air constituents and control the oxygen/nitrogen addition for the Space Station; (2) a gas chromatograph/mass spectrometer to detect trace contaminants; (3) a non-dispersive infrared spectrometer to determine carbon monoxide concentration; and (4) a laser particle counter for measuring particulates in the air. An overview of the design and development concepts for the air and water quality monitors is presented.
Micro sensor node for air pollutant monitoring: hardware and software issues.
Choi, Sukwon; Kim, Nakyoung; Cha, Hojung; Ha, Rhan
2009-01-01
Wireless sensor networks equipped with various gas sensors have been actively used for air quality monitoring. Previous studies have typically explored system issues that include middleware or networking performance, but most research has barely considered the details of the hardware and software of the sensor node itself. In this paper, we focus on the design and implementation of a sensor board for air pollutant monitoring applications. Several hardware and software issues are discussed to explore the possibilities of a practical WSN-based air pollution monitoring system. Through extensive experiments and evaluation, we have determined the various characteristics of the gas sensors and their practical implications for air pollutant monitoring systems.
An automated fog monitoring system for the Indo-Gangetic Plains based on satellite measurements
NASA Astrophysics Data System (ADS)
Patil, Dinesh; Chourey, Reema; Rizvi, Sarwar; Singh, Manoj; Gautam, Ritesh
2016-05-01
Fog is a meteorological phenomenon that causes reduction in regional visibility and affects air quality, thus leading to various societal and economic implications, especially disrupting air and rail transportation. The persistent and widespread winter fog impacts the entire the Indo-Gangetic Plains (IGP), as frequently observed in satellite imagery. The IGP is a densely populated region in south Asia, inhabiting about 1/6th of the world's population, with a strong upward pollution trend. In this study, we have used multi-spectral radiances and aerosol/cloud retrievals from Terra/Aqua MODIS data for developing an automated web-based fog monitoring system over the IGP. Using our previous and existing methodologies, and ongoing algorithm development for the detection of fog and retrieval of associated microphysical properties (e.g. fog droplet effective radius), we characterize the widespread fog detection during both daytime and nighttime. Specifically, for the night time fog detection, the algorithm employs a satellite-based bi-spectral brightness temperature difference technique between two spectral channels: MODIS band-22 (3.9μm) and band-31 (10.75μm). Further, we are extending our algorithm development to geostationary satellites, for providing continuous monitoring of the spatial-temporal variation of fog. We anticipate that the ongoing and future development of a fog monitoring system would be of assistance to air, rail and vehicular transportation management, as well as for dissemination of fog information to government agencies and general public. The outputs of fog detection algorithm and related aerosol/cloud parameters are operationally disseminated via http://fogsouthasia.com/.
Hoffeditz, William L; Son, Ho-Jin; Pellin, Michael J; Farha, Omar K; Hupp, Joseph T
2016-12-21
Organic and porphyrin-based chromophores are prevalent in liquid-junction photovoltaic and photocatalytic solar-cell chemistry; however, their long-term air and light instability may limit their practicality in real world technologies. Here, we describe the protection of a zinc porphyrin dye, adsorbed on nanoparticulate TiO 2 , from air and light degradation by a protective coating of alumina grown with a previously developed post-treatment atomic layer deposition (ALD) technique. The protective Al 2 O 3 ALD layer is deposited using dimethylaluminum isopropoxide as an Al source; in contrast to the ubiquitous ALD precursor trimethylaluminum, dimethylaluminum isopropoxide does not degrade the zinc porphyrin dye, as confirmed by UV-vis measurements. The growth of this protective ALD layer around the dye can be monitored by an in-reactor quartz crystal microbalance (QCM). Furthermore, greater than 80% of porphyrin light absorption is retained over ∼1 month of exposure to air and light when the protective coating is present, whereas almost complete loss of porphyrin absorption is observed in less than 2 days in the absence of the ALD protective layer. Applying the Al 2 O 3 post-treatment technique to the TiO 2 -adsorbed dye allows the dye to remain in electronic contact with both the semiconductor surface and a surrounding electrolyte solution, the combination of which makes this technique promising for numerous other electrochemical photovoltaic and photocatalytic applications, especially those involving the dye-sensitized evolution of oxygen.
Hannam, Kimberly; McNamee, Roseanne; Baker, Philip; Sibley, Colin; Agius, Raymond
2014-09-01
Previous work suggests an association between air pollution exposure and adverse pregnancy outcomes, even at relatively low concentrations. Our aim was to quantify the effect of air pollution having an adverse effect on preterm birth (PTB) and fetal growth in a large UK cohort using a novel exposure estimation technique [spatio-temporal (S-T) model] alongside a traditional nearest stationary monitor technique (NSTAT). All available postcodes from a Northwest England birth outcome dataset during 2004-2008 were geocoded (N=203 562 deliveries). Pollution estimates were linked to corresponding pregnancy periods using temporally adjusted background modelled concentrations as well as NSTAT. Associations with PTB, small for gestational age (SGA), and birth weight were investigated using regression models adjusting for maternal age, ethnicity, parity, birth season, socioeconomic status (SES), body mass index (BMI), and smoking. Based on the novel S-T model, a small statistically significant association was observed for particulate matter (PM10) and SGA, particularly with exposure in the first and third trimesters. Similar effects on SGA were also found for nitrogen dioxide (NO 2), particulate matter (PM 2,5), and carbon monoxide (CO) in later pregnancy, but no overall increased risk was observed. No associations were found with NO xor the outcomes PTB and reduction in birth weight. Our findings suggest an association between air pollution exposure and birth of a SGA infant, particularly in the later stages of pregnancy but not with PTB or mean birth weight change.
Polluted air--outdoors and indoors.
Myers, I; Maynard, R L
2005-09-01
Many air pollutants which are considered important in ambient (outdoor) air are also found, sometimes at higher levels, in indoor air. With demanding standards having been set for many of these pollutants, both in the workplace and ambient air, consideration of the problems posed by indoor pollution is gaining pace. Studies on exposure to pollutants found in the indoor domestic environment are increasing and are contributing to an already significant compilation of datasets. Improvement in monitoring techniques has helped this process. Documented reports of fatalities from carbon monoxide poisonings are still worrying. However, studies on health effects of non-fatal, long term, low dose, indoor exposure to carbon monoxide and other pollutants, are still inconclusive and too infrequently documented. Of particular concern are the levels of air pollutants found in the domestic indoor environment in developing countries, despite simple interventions such as vented stoves having shown their value. Exposure to biomass smoke is still a level that would be considered unacceptable on health grounds in developed countries. As in the occupational environment, steps need to be taken to control the risks from exposure to the harmful constituents of indoor air in the home. However, the difficulty regarding regulation of the domestic indoor environment is its inherent privacy. Monitoring levels of pollutants in the home and ensuring regulations are adhered to, would likely prove difficult, especially when individual behaviour patterns and activities have the greatest influence on pollutant levels in indoor air. To this end, the Department of Health is developing guidance on indoor air pollution to encourage the reduction of pollutant levels in indoor domestic air. The importance of the effects of domestic indoor air on health and its contribution to the health of the worker are increasingly appreciated. Occupational physicians, by training and interest, are well placed to extend their interests into the environmental field and to focus on this important area.
Battista, L; Sciuto, S A; Scorza, A
2013-03-01
In this work, a simple and low-cost air flow sensor, based on a novel fiber-optic sensing technique has been developed for monitoring air flows rates supplied by a neonatal ventilator to support infants in intensive care units. The device is based on a fiber optic sensing technique allowing (a) the immunity to light intensity variations independent by measurand and (b) the reduction of typical shortcomings affecting all biomedical fields (electromagnetic interference and patient electrical safety). The sensing principle is based on the measurement of transversal displacement of an emitting fiber-optic cantilever due to action of air flow acting on it; the fiber tip displacement is measured by means of a photodiode linear array, placed in front of the entrance face of the emitting optical fiber in order to detect its light intensity profile. As the measurement system is based on a detection of the illumination pattern, and not on an intensity modulation technique, it results less sensitive to light intensity fluctuation independent by measurand than intensity-based sensors. The considered technique is here adopted in order to develop two different configurations for an air flow sensor suitable for the measurement of air flow rates typically occurring during mechanical ventilation of newborns: a mono-directional and a bi-directional transducer have been proposed. A mathematical model for the air flow sensor is here proposed and a static calibration of two different arrangements has been performed: a measurement range up to 3.00 × 10(-4) m(3)∕s (18.0 l∕min) for the mono-directional sensor and a measurement range of ±3.00 × 10(-4) m(3)∕s (±18.0 l∕min) for the bi-directional sensor are experimentally evaluated, according to the air flow rates normally encountered during tidal breathing of infants with a mass lower than 10 kg. Experimental data of static calibration result in accordance with the proposed theoretical model: for the mono-directional configuration, the coefficient of determination r(2) is equal to 0.997; for the bi-directional configuration, the coefficient of determination r(2) is equal to 0.990 for positive flows (inspiration) and 0.988 for negative flows (expiration). Measurement uncertainty δQ of air flow rate has been evaluated by means of the propagation of distributions and the percentage error in the arrangement of bi-directional sensor ranges from a minimum of about 0.5% at -18.0 l∕min to a maximum of about 9% at -12.0 l∕min.
NASA Astrophysics Data System (ADS)
Battista, L.; Sciuto, S. A.; Scorza, A.
2013-03-01
In this work, a simple and low-cost air flow sensor, based on a novel fiber-optic sensing technique has been developed for monitoring air flows rates supplied by a neonatal ventilator to support infants in intensive care units. The device is based on a fiber optic sensing technique allowing (a) the immunity to light intensity variations independent by measurand and (b) the reduction of typical shortcomings affecting all biomedical fields (electromagnetic interference and patient electrical safety). The sensing principle is based on the measurement of transversal displacement of an emitting fiber-optic cantilever due to action of air flow acting on it; the fiber tip displacement is measured by means of a photodiode linear array, placed in front of the entrance face of the emitting optical fiber in order to detect its light intensity profile. As the measurement system is based on a detection of the illumination pattern, and not on an intensity modulation technique, it results less sensitive to light intensity fluctuation independent by measurand than intensity-based sensors. The considered technique is here adopted in order to develop two different configurations for an air flow sensor suitable for the measurement of air flow rates typically occurring during mechanical ventilation of newborns: a mono-directional and a bi-directional transducer have been proposed. A mathematical model for the air flow sensor is here proposed and a static calibration of two different arrangements has been performed: a measurement range up to 3.00 × 10-4 m3/s (18.0 l/min) for the mono-directional sensor and a measurement range of ±3.00 × 10-4 m3/s (±18.0 l/min) for the bi-directional sensor are experimentally evaluated, according to the air flow rates normally encountered during tidal breathing of infants with a mass lower than 10 kg. Experimental data of static calibration result in accordance with the proposed theoretical model: for the mono-directional configuration, the coefficient of determination r2 is equal to 0.997; for the bi-directional configuration, the coefficient of determination r2 is equal to 0.990 for positive flows (inspiration) and 0.988 for negative flows (expiration). Measurement uncertainty δQ of air flow rate has been evaluated by means of the propagation of distributions and the percentage error in the arrangement of bi-directional sensor ranges from a minimum of about 0.5% at -18.0 l/min to a maximum of about 9% at -12.0 l/min.
Air Pollution in the World's Megacities.
ERIC Educational Resources Information Center
Richman, Barbara T., Ed.
1994-01-01
Reports findings of the Global Environment Monitoring System study concerning air pollution in the world's megacities. Discusses sources of air pollution, air pollution impacts, air quality monitoring, air quality trends, and control strategies. Provides profiles of the problem in Beijing, Los Angeles, Mexico City, India, Cairo, Sao Paulo, and…
NASA Astrophysics Data System (ADS)
Calderone, G. M.
2006-12-01
A long-term monitoring program was initiated in 1995 at 6 sites at NAS Brunswick, including 3 National Priorities List (Superfund) sites. Primary contaminants of concern include chlorinated volatile organic compounds, including tetrachloroethane, trichloroethene, and vinyl chloride, in addition to metals. More than 80 submersible pumping systems were installed to facilitate sample collection utilizing the low-flow sampling technique. Long-term monitoring of the groundwater is conducted to assess the effectiveness of remedial measures, and monitor changes in contaminant concentrations in the Eastern Plume Operable Unit. Long-term monitoring program activities include quarterly groundwater sampling and analysis at more than 90 wells across 6 sites; surface water, sediment, seep, and leachate sampling and analysis at 3 sites; landfill gas monitoring; well maintenance; engineering inspections of landfill covers and other sites or evidence of stressed vegetation; water level gauging; and treatment plant sampling and analysis. Significant cost savings were achieved by optimizing the sampling network and reducing sampling frequency from quarterly to semi- annual or annual sampling. As part of an ongoing optimization effort, a geostatistical assessment of the Eastern Plume was conducted at the Naval Air Station, Brunswick, Maine. The geostatistical assessment used 40 monitoring points and analytical data collected over 3 years. For this geostatistical assessment, EA developed and utilized a database of analytical results generated during 3 years of long-term monitoring which was linked to a Geographic Information System to enhance data visualization capacity. The Geographic Information System included themes for groundwater volatile organic compound concentration, groundwater flow directions, shallow and deep wells, and immediate access to point-specific analytical results. This statistical analysis has been used by the site decision-maker and its conclusions supported a significant reduction in the Long-Term Monitoring Program.
40 CFR 50.14 - Treatment of air quality monitoring data influenced by exceptional events.
Code of Federal Regulations, 2010 CFR
2010-07-01
... specific air pollution concentration at a particular air quality monitoring location. (2) Demonstration to... exceptional event caused a specific air pollution concentration in excess of one or more national ambient air... specific air pollution concentration in excess of one or more national ambient air quality standards at a...
Mapping of sea bottom topography
NASA Technical Reports Server (NTRS)
Calkoen, C. J.; Wensink, G. J.; Hesselmans, G. H. F. M.
1992-01-01
Under suitable conditions the bottom topography of shallow seas is visible in remote sensing radar imagery. Two experiments were performed to establish which remote sensing technique or combination yields optimal imaging of bottom topography and which hydro-meteorological conditions are favorable. A further goal is to gain experience with these techniques. Two experiments were performed over an area in the North Sea near the measuring platform Meetpost Noordwijk (MPN). The bottom topography in the test area is dominated by sand waves. The crests of the sand waves are perpendicular to the coast line and the dominating (tidal-)current direction. A 4x4 sq km wide section of the test area was studied in more detail. The first experiment was undertaken on 16 Aug. 1989. During the experiment the following remote sensing instruments were used: Landsat-Thematic Mapper, and NASA/JPL Airborne Imaging Radar (AIR). The hydro-meteorological conditions; current, wind, wave, and air and water temperature were monitored by MPN, a ship of Rijkswaterstaat (the OCTANS), and a pitch-and-roll WAVEC-buoy. The second experiment took place on 12 July 1992. During this experiment data were collected with the NASA/JPL polarimetric synthetic aperture radar (SAR), and a five-band helicopter-borne scatterometer. Again the hydro-meteorological conditions were monitored at MPN and the OCTANS. Furthermore, interferometric radar data were collected.
Environmental monitoring using autonomous vehicles: a survey of recent searching techniques.
Bayat, Behzad; Crasta, Naveena; Crespi, Alessandro; Pascoal, António M; Ijspeert, Auke
2017-06-01
Autonomous vehicles are becoming an essential tool in a wide range of environmental applications that include ambient data acquisition, remote sensing, and mapping of the spatial extent of pollutant spills. Among these applications, pollution source localization has drawn increasing interest due to its scientific and commercial interest and the emergence of a new breed of robotic vehicles capable of operating in harsh environments without human supervision. The aim is to find the location of a region that is the source of a given substance of interest (e.g. a chemical pollutant at sea or a gas leakage in air) using a group of cooperative autonomous vehicles. Motivated by fast paced advances in this challenging area, this paper surveys recent advances in searching techniques that are at the core of environmental monitoring strategies using autonomous vehicles. Copyright © 2017 Elsevier Ltd. All rights reserved.
Near-Port Air Quality Assessment Utilizing a Mobile Monitoring Approach
Mobile monitoring is an emerging strategy to characterize spatially and temporally variable air pollution in areas near sources. EPA’s Geospatial Monitoring of Air Pollution (GMAP) vehicle – an all-electric vehicle measuring real-time concentrations of particulate and gaseous po...
Development of a Cell Sheet Transportation Technique for Regenerative Medicine
Oie, Yoshinori; Nozaki, Takayuki; Takayanagi, Hiroshi; Hara, Susumu; Hayashi, Ryuhei; Takeda, Shizu; Mori, Keisuke; Moriya, Noboru; Soma, Takeshi; Tsujikawa, Motokazu; Saito, Kazuo
2014-01-01
Purpose: A transportation technique for cell sheets is necessary to standardize regenerative medicine. The aim of this article is to develop and evaluate a new transportation technique for cell sheets. Material and Methods: We developed a transportation container with three basic functions: the maintenance of interior temperature, air pressure, and sterility. The interior temperature and air pressure were monitored by a recorder. Human oral mucosal epithelial cells obtained from two healthy volunteers were cultured on temperature-responsive culture dishes. The epithelial cell sheets were transported via an airplane between the Osaka University and Tohoku University using the developed cell transportation container. Histological and immunohistochemical analyses and flow cytometric analyses for cell viability and cell purity were performed for the cell sheets before and 12 h after transportation to assess the influence of transportation on the cell sheets. Sterility tests and screening for endotoxin and mycoplasma in the cell sheets were performed before and after transportation. Results: During transportation via an airplane, the temperature inside the container was maintained above 32°C, and the changes in air pressure remained within 10 hPa. The cell sheets were well stratified and successfully harvested before and after transportation. The expression patterns of keratin 3/76, p63, and MUC16 were equivalent before and after transportation. However, the expression of ZO-1 in the cell sheet after transportation was slightly weaker than that before transportation. The cell viability was 72.0% before transportation and 77.3% after transportation. The epithelial purity was 94.6% before transportation and 87.9% after transportation. Sterility tests and screening for endotoxin and mycoplasma were negative for all cell sheets. Conclusion: The newly developed transportation technique for air travel is essential technology for regenerative medicine and promotes the standardization and spread of regenerative therapies. PMID:24044382
Assessment and prediction of short term hospital admissions: the case of Athens, Greece
NASA Astrophysics Data System (ADS)
Kassomenos, P.; Papaloukas, C.; Petrakis, M.; Karakitsios, S.
The contribution of air pollution on hospital admissions due to respiratory and heart diseases is a major issue in the health-environmental perspective. In the present study, an attempt was made to run down the relationships between air pollution levels and meteorological indexes, and corresponding hospital admissions in Athens, Greece. The available data referred to a period of eight years (1992-2000) including the daily number of hospital admissions due to respiratory and heart diseases, hourly mean concentrations of CO, NO 2, SO 2, O 3 and particulates in several monitoring stations, as well as, meteorological data (temperature, relative humidity, wind speed/direction). The relations among the above data were studied through widely used statistical techniques (multivariate stepwise analyses) and Artificial Neural Networks (ANNs). Both techniques revealed that elevated particulate concentrations are the dominant parameter related to hospital admissions (an increase of 10 μg m -3 leads to an increase of 10.2% in the number of admissions), followed by O 3 and the rest of the pollutants (CO, NO 2 and SO 2). Meteorological parameters also play a decisive role in the formation of air pollutant levels affecting public health. Consequently, increased/decreased daily hospital admissions are related to specific types of meteorological conditions that favor/do not favor the accumulation of pollutants in an urban complex. In general, the role of meteorological factors seems to be underestimated by stepwise analyses, while ANNs attribute to them a more important role. Comparison of the two models revealed that ANN adaptation in complicate environmental issues presents improved modeling results compared to a regression technique. Furthermore, the ANN technique provides a reliable model for the prediction of the daily hospital admissions based on air quality data and meteorological indices, undoubtedly useful for regulatory purposes.
Development of a cell sheet transportation technique for regenerative medicine.
Oie, Yoshinori; Nozaki, Takayuki; Takayanagi, Hiroshi; Hara, Susumu; Hayashi, Ryuhei; Takeda, Shizu; Mori, Keisuke; Moriya, Noboru; Soma, Takeshi; Tsujikawa, Motokazu; Saito, Kazuo; Nishida, Kohji
2014-05-01
A transportation technique for cell sheets is necessary to standardize regenerative medicine. The aim of this article is to develop and evaluate a new transportation technique for cell sheets. We developed a transportation container with three basic functions: the maintenance of interior temperature, air pressure, and sterility. The interior temperature and air pressure were monitored by a recorder. Human oral mucosal epithelial cells obtained from two healthy volunteers were cultured on temperature-responsive culture dishes. The epithelial cell sheets were transported via an airplane between the Osaka University and Tohoku University using the developed cell transportation container. Histological and immunohistochemical analyses and flow cytometric analyses for cell viability and cell purity were performed for the cell sheets before and 12 h after transportation to assess the influence of transportation on the cell sheets. Sterility tests and screening for endotoxin and mycoplasma in the cell sheets were performed before and after transportation. During transportation via an airplane, the temperature inside the container was maintained above 32°C, and the changes in air pressure remained within 10 hPa. The cell sheets were well stratified and successfully harvested before and after transportation. The expression patterns of keratin 3/76, p63, and MUC16 were equivalent before and after transportation. However, the expression of ZO-1 in the cell sheet after transportation was slightly weaker than that before transportation. The cell viability was 72.0% before transportation and 77.3% after transportation. The epithelial purity was 94.6% before transportation and 87.9% after transportation. Sterility tests and screening for endotoxin and mycoplasma were negative for all cell sheets. The newly developed transportation technique for air travel is essential technology for regenerative medicine and promotes the standardization and spread of regenerative therapies.
Sun, Li; Wong, Ka Chun; Wei, Peng; Ye, Sheng; Huang, Hao; Yang, Fenhuan; Westerdahl, Dane; Louie, Peter K K; Luk, Connie W Y; Ning, Zhi
2016-02-05
This study presents the development and evaluation of a next generation air monitoring system with both laboratory and field tests. A multi-parameter algorithm was used to correct for the impact of environmental conditions on the electrochemical sensors for carbon monoxide (CO) and nitrogen dioxide (NO2) pollutants. The field evaluation in an urban roadside environment in comparison to designated monitors showed good agreement with measurement error within 5% of the pollutant concentrations. Multiple sets of the developed system were then deployed in the Hong Kong Marathon 2015 forming a sensor-based network along the marathon route. Real-time air pollution concentration data were wirelessly transmitted and the Air Quality Health Index (AQHI) for the Green Marathon was calculated, which were broadcast to the public on an hourly basis. The route-specific sensor network showed somewhat different pollutant patterns than routine air monitoring, indicating the immediate impact of traffic control during the marathon on the roadside air quality. The study is one of the first applications of a next generation sensor network in international sport events, and it demonstrated the usefulness of the emerging sensor-based air monitoring technology in rapid network deployment to supplement existing air monitoring.
Sun, Li; Wong, Ka Chun; Wei, Peng; Ye, Sheng; Huang, Hao; Yang, Fenhuan; Westerdahl, Dane; Louie, Peter K.K.; Luk, Connie W.Y.; Ning, Zhi
2016-01-01
This study presents the development and evaluation of a next generation air monitoring system with both laboratory and field tests. A multi-parameter algorithm was used to correct for the impact of environmental conditions on the electrochemical sensors for carbon monoxide (CO) and nitrogen dioxide (NO2) pollutants. The field evaluation in an urban roadside environment in comparison to designated monitors showed good agreement with measurement error within 5% of the pollutant concentrations. Multiple sets of the developed system were then deployed in the Hong Kong Marathon 2015 forming a sensor-based network along the marathon route. Real-time air pollution concentration data were wirelessly transmitted and the Air Quality Health Index (AQHI) for the Green Marathon was calculated, which were broadcast to the public on an hourly basis. The route-specific sensor network showed somewhat different pollutant patterns than routine air monitoring, indicating the immediate impact of traffic control during the marathon on the roadside air quality. The study is one of the first applications of a next generation sensor network in international sport events, and it demonstrated the usefulness of the emerging sensor-based air monitoring technology in rapid network deployment to supplement existing air monitoring. PMID:26861336
Gottfried, Jennifer L; Bukowski, Eric J
2017-01-20
A focused, nanosecond-pulsed laser has been used to ablate, atomize, ionize, and excite milligram quantities of metal-doped energetic materials that undergo exothermic reactions in the laser-induced plasma. The subsequent shock wave expansion in the air above the sample has been monitored using high-speed schlieren imaging in a recently developed technique, laser-induced air shock from energetic materials (LASEM). The method enables the estimation of detonation velocities based on the measured laser-induced air-shock velocities and has previously been demonstrated for organic military explosives. Here, the LASEM technique has been extended to explosive formulations with metal additives. A comparison of the measured laser-induced air-shock velocities for TNT, RDX, DNTF, and LLM-172 doped with Al or B to the detonation velocities predicted by the thermochemical code CHEETAH for inert or active metal participation demonstrates that LASEM has potential for predicting the early time (<10 μs) participation of metal additives in detonation events. The LASEM results show that while Al is mostly inert at early times in the detonation event (confirmed from large-scale detonation testing), B is active-and reducing the amount of hydrogen present during the early chemical reactions increases the resulting estimated detonation velocities.
Non-contact evaluation of milk-based products using air-coupled ultrasound
NASA Astrophysics Data System (ADS)
Meyer, S.; Hindle, S. A.; Sandoz, J.-P.; Gan, T. H.; Hutchins, D. A.
2006-07-01
An air-coupled ultrasonic technique has been developed and used to detect physicochemical changes of liquid beverages within a glass container. This made use of two wide-bandwidth capacitive transducers, combined with pulse-compression techniques. The use of a glass container to house samples enabled visual inspection, helping to verify the results of some of the ultrasonic measurements. The non-contact pulse-compression system was used to evaluate agglomeration processes in milk-based products. It is shown that the amplitude of the signal varied with time after the samples had been treated with lactic acid, thus promoting sample destabilization. Non-contact imaging was also performed to follow destabilization of samples by scanning in various directions across the container. The obtained ultrasonic images were also compared to those from a digital camera. Coagulation with glucono-delta-lactone of skim milk poured into this container could be monitored within a precision of a pH of 0.15. This rapid, non-contact and non-destructive technique has shown itself to be a feasible method for investigating the quality of milk-based beverages, and possibly other food products.
NASA Astrophysics Data System (ADS)
Karl, T.; Jobson, T.; William, K.; Williams, E.; Stutz, J.; Goldan, P.; Fall, R.; Fehsenfeld, F.; Lindinger, W.
2002-12-01
We used Proton-Transfer-Reaction Mass Spectrometry (PTR-MS) for continuous real-time monitoring of volatile organic compounds (VOCs) at a site near the Houston Ship Channel during the Texas Air Quality Study 2000. Anthropogenic aromatics, alkenes, methanol, acetaldehyde, formaldehyde, acetone/propanal, a C7-Ketone, HCN and acrylonitrile were the most prominent compounds observed. Propene was the most abundant light-weight hydrocarbon detected by this technique, and was highly correlated with its oxidation products, formaldehyde and acetaldehyde, with typical propene-acetaldehyde ratios close to 1 in propene-dominated plumes. In the case of aromatic species the high time resolution of the obtained dataset helped in identifying different anthropogenic sources (e.g. industrial from urban emissions) and testing current emission inventories. In addition, a comparison with results from complimentary techniques (gas chromatography, differential optical absorption spectroscopy) was used to assess the selectivity of this on-line technique in a complex urban and industrial VOC matrix and give an interpretation of mass scans obtained by `soft' chemical ionization using proton-transfer via H3O+.
Tim’s expertise and interests lie in the area of air pollution exposure assessment, including ambient air monitoring, personal monitoring, source apportionment, and air quality and exposure modeling.
Near-Road Air Quality Monitoring: Factors Affecting Network Design and Interpretation of Data
The growing number of health studies identifying adverse health effects for populations spending significant amounts of time near large roadways has increased the interest in monitoring air quality in this microenvironment. Designing near-road air monitoring networks or interpret...
40 CFR 63.864 - Monitoring requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... that uses an air pollution control system other than an ESP, wet scrubber, RTO, or fabric filter must... unit equipped with an alternative air pollution control system and monitoring operating parameters... affected source or process unit equipped with an alternative air pollution control system and monitoring...
40 CFR 63.864 - Monitoring requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... that uses an air pollution control system other than an ESP, wet scrubber, RTO, or fabric filter must... unit equipped with an alternative air pollution control system and monitoring operating parameters... affected source or process unit equipped with an alternative air pollution control system and monitoring...
40 CFR 63.864 - Monitoring requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... that uses an air pollution control system other than an ESP, wet scrubber, RTO, or fabric filter must... unit equipped with an alternative air pollution control system and monitoring operating parameters... affected source or process unit equipped with an alternative air pollution control system and monitoring...
Plug-and-play web-based visualization of mobile air monitoring data
The collection of air measurements in real-time on moving platforms, such as wearable, bicycle-mounted, or vehicle-mounted air sensors, is becoming an increasingly common method to investigate local air quality. However, visualizing and analyzing geospatial air monitoring data r...
Remote sensing based approach for monitoring urban growth in Mexico city, Mexico: A case study
NASA Astrophysics Data System (ADS)
Obade, Vincent
The world is experiencing a rapid rate of urban expansion, largely contributed by the population growth. Other factors supporting urban growth include the improved efficiency in the transportation sector and increasing dependence on cars as a means of transport. The problems attributed to the urban growth include: depletion of energy resources, water and air pollution; loss of landscapes and wildlife, loss of agricultural land, inadequate social security and lack of employment or underemployment. Aerial photography is one of the popular techniques for analyzing, planning and minimizing urbanization related problems. However, with the advances in space technology, satellite remote sensing is increasingly being utilized in the analysis and planning of the urban environment. This article outlines the strengths and limitations of potential remote sensing techniques for monitoring urban growth. The selected methods include: Principal component analysis, Maximum likelihood classification and "decision tree". The results indicate that the "classification tree" approach is the most promising for monitoring urban change, given the improved accuracy and smooth transition between the various land cover classes
Model-based reasoning in SSF ECLSS
NASA Technical Reports Server (NTRS)
Miller, J. K.; Williams, George P. W., Jr.
1992-01-01
The interacting processes and reconfigurable subsystems of the Space Station Freedom Environmental Control and Life Support System (ECLSS) present a tremendous technical challenge to Freedom's crew and ground support. ECLSS operation and problem analysis is time-consuming for crew members and difficult for current computerized control, monitoring, and diagnostic software. These challenges can be at least partially mitigated by the use of advanced techniques such as Model-Based Reasoning (MBR). This paper will provide an overview of MBR as it is being applied to Space Station Freedom ECLSS. It will report on work being done to produce intelligent systems to help design, control, monitor, and diagnose Freedom's ECLSS. Specifically, work on predictive monitoring, diagnosability, and diagnosis, with emphasis on the automated diagnosis of the regenerative water recovery and air revitalization processes will be discussed.
Ambient Air Quality Data Inventory
The Office of Air and Radiation's (OAR) Ambient Air Quality Data (Current) contains ambient air pollution data collected by EPA, other federal agencies, as well as state, local, and tribal air pollution control agencies. Its component data sets have been collected over the years from approximately 10,000 monitoring sites, of which approximately 5,000 are currently active. OAR's Office of Air Quality Planning and Standards (OAQPS) and other internal and external users, rely on this data to assess air quality, assist in Attainment/Non-Attainment designations, evaluate State Implementation Plans for Non-Attainment Areas, perform modeling for permit review analysis, and other air quality management functions. Air quality information is also used to prepare reports for Congress as mandated by the Clean Air Act. This data covers air quality data collected after 1980, when the Clean Air Act requirements for monitoring were significantly modified. Air quality data from the Agency's early years (1970s) remains available (see OAR PRIMARY DATA ASSET: Ambient Air Quality Data -- Historical), but because of technical and definitional differences the two data assets are not directly comparable. The Clean Air Act of 1970 provided initial authority for monitoring air quality for Conventional Air Pollutants (CAPs) for which EPA has promulgated National Ambient Air Quality Standards (NAAQS). Requirements for monitoring visibility-related parameters were added in 1977. Requiremen
Decomposition Odour Profiling in the Air and Soil Surrounding Vertebrate Carrion
2014-01-01
Chemical profiling of decomposition odour is conducted in the environmental sciences to detect malodourous target sources in air, water or soil. More recently decomposition odour profiling has been employed in the forensic sciences to generate a profile of the volatile organic compounds (VOCs) produced by decomposed remains. The chemical profile of decomposition odour is still being debated with variations in the VOC profile attributed to the sample collection technique, method of chemical analysis, and environment in which decomposition occurred. To date, little consideration has been given to the partitioning of odour between different matrices and the impact this has on developing an accurate VOC profile. The purpose of this research was to investigate the decomposition odour profile surrounding vertebrate carrion to determine how VOCs partition between soil and air. Four pig carcasses (Sus scrofa domesticus L.) were placed on a soil surface to decompose naturally and their odour profile monitored over a period of two months. Corresponding control sites were also monitored to determine the VOC profile of the surrounding environment. Samples were collected from the soil below and the air (headspace) above the decomposed remains using sorbent tubes and analysed using gas chromatography-mass spectrometry. A total of 249 compounds were identified but only 58 compounds were common to both air and soil samples. This study has demonstrated that soil and air samples produce distinct subsets of VOCs that contribute to the overall decomposition odour. Sample collection from only one matrix will reduce the likelihood of detecting the complete spectrum of VOCs, which further confounds the issue of determining a complete and accurate decomposition odour profile. Confirmation of this profile will enhance the performance of cadaver-detection dogs that are tasked with detecting decomposition odour in both soil and air to locate victim remains. PMID:24740412
Decomposition odour profiling in the air and soil surrounding vertebrate carrion.
Forbes, Shari L; Perrault, Katelynn A
2014-01-01
Chemical profiling of decomposition odour is conducted in the environmental sciences to detect malodourous target sources in air, water or soil. More recently decomposition odour profiling has been employed in the forensic sciences to generate a profile of the volatile organic compounds (VOCs) produced by decomposed remains. The chemical profile of decomposition odour is still being debated with variations in the VOC profile attributed to the sample collection technique, method of chemical analysis, and environment in which decomposition occurred. To date, little consideration has been given to the partitioning of odour between different matrices and the impact this has on developing an accurate VOC profile. The purpose of this research was to investigate the decomposition odour profile surrounding vertebrate carrion to determine how VOCs partition between soil and air. Four pig carcasses (Sus scrofa domesticus L.) were placed on a soil surface to decompose naturally and their odour profile monitored over a period of two months. Corresponding control sites were also monitored to determine the VOC profile of the surrounding environment. Samples were collected from the soil below and the air (headspace) above the decomposed remains using sorbent tubes and analysed using gas chromatography-mass spectrometry. A total of 249 compounds were identified but only 58 compounds were common to both air and soil samples. This study has demonstrated that soil and air samples produce distinct subsets of VOCs that contribute to the overall decomposition odour. Sample collection from only one matrix will reduce the likelihood of detecting the complete spectrum of VOCs, which further confounds the issue of determining a complete and accurate decomposition odour profile. Confirmation of this profile will enhance the performance of cadaver-detection dogs that are tasked with detecting decomposition odour in both soil and air to locate victim remains.
PSE Aysis of Crossflow Instability on HifIre-5B Flight Test
2017-06-05
AIR FORCE RESEARCH LABORATORY AEROSPACE SYSTEMS DIRECTORATE WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7542 AIR FORCE MATERIEL COMMAND UNITED...Air Force Research Laboratory, Aerospace Systems Directorate Wright-Patterson Air Force Base, OH 45433-7542 Air Force Materiel Command, United...States Air Force 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING Air Force Research Laboratory Aerospace Systems
Characteristics and applications of small, portable gaseous air pollution monitors.
McKercher, Grant R; Salmond, Jennifer A; Vanos, Jennifer K
2017-04-01
Traditional approaches for measuring air quality based on fixed measurements are inadequate for personal exposure monitoring. To combat this issue, the use of small, portable gas-sensing air pollution monitoring technologies is increasing, with researchers and individuals employing portable and mobile methods to obtain more spatially and temporally representative air pollution data. However, many commercially available options are built for various applications and based on different technologies, assumptions, and limitations. A review of the monitor characteristics of small, gaseous monitors is missing from current scientific literature. A state-of-the-art review of small, portable monitors that measure ambient gaseous outdoor pollutants was developed to address broad trends during the last 5-10 years, and to help future experimenters interested in studying gaseous air pollutants choose monitors appropriate for their application and sampling needs. Trends in small, portable gaseous air pollution monitor uses and technologies were first identified and discussed in a review of literature. Next, searches of online databases were performed for articles containing specific information related to performance, characteristics, and use of such monitors that measure one or more of three criteria gaseous air pollutants: ozone, nitrogen dioxide, and carbon monoxide. All data were summarized into reference tables for comparison between applications, physical features, sensing capabilities, and costs of the devices. Recent portable monitoring trends are strongly related to associated applications and audiences. Fundamental research requires monitors with the best individual performance, and thus the highest cost technology. Monitor networking favors real-time capabilities and moderate cost for greater reproduction. Citizen science and crowdsourcing applications allow for lower-cost components; however important strengths and limitations for each application must be addressed or acknowledged for the given use. Copyright © 2016 Elsevier Ltd. All rights reserved.
Development of an integrated sensor module for a non-invasive respiratory monitoring system
NASA Astrophysics Data System (ADS)
Kang, Seok-Won; Chang, Keun-Shik
2013-09-01
A respiratory monitoring system has been developed for analyzing the carbon dioxide (CO2) and oxygen (O2) concentrations in the expired air using gas sensors. The data can be used to estimate some medical conditions, including diffusion capability of the lung membrane, oxygen uptake, and carbon dioxide output. For this purpose, a 3-way valve derived from a servomotor was developed, which operates synchronously with human respiratory signals. In particular, the breath analysis system includes an integrated sensor module for valve control, data acquisition through the O2 and CO2 sensors, and respiratory rate monitoring, as well as software dedicated to analysis of respiratory gasses. In addition, an approximation technique for experimental data based on Haar-wavelet-based decomposition is explored to remove noise as well as to reduce the file size of data for long-term monitoring.
A quantitative method for optimized placement of continuous air monitors.
Whicker, Jeffrey J; Rodgers, John C; Moxley, John S
2003-11-01
Alarming continuous air monitors (CAMs) are a critical component for worker protection in facilities that handle large amounts of hazardous materials. In nuclear facilities, continuous air monitors alarm when levels of airborne radioactive materials exceed alarm thresholds, thus prompting workers to exit the room to reduce inhalation exposures. To maintain a high level of worker protection, continuous air monitors are required to detect radioactive aerosol clouds quickly and with good sensitivity. This requires that there are sufficient numbers of continuous air monitors in a room and that they are well positioned. Yet there are no published methodologies to quantitatively determine the optimal number and placement of continuous air monitors in a room. The goal of this study was to develop and test an approach to quantitatively determine optimal number and placement of continuous air monitors in a room. The method we have developed uses tracer aerosol releases (to simulate accidental releases) and the measurement of the temporal and spatial aspects of the dispersion of the tracer aerosol through the room. The aerosol dispersion data is then analyzed to optimize continuous air monitor utilization based on simulated worker exposure. This method was tested in a room within a Department of Energy operated plutonium facility at the Savannah River Site in South Carolina, U.S. Results from this study show that the value of quantitative airflow and aerosol dispersion studies is significant and that worker protection can be significantly improved while balancing the costs associated with CAM programs.
Automatic detection of respiration rate from ambulatory single-lead ECG.
Boyle, Justin; Bidargaddi, Niranjan; Sarela, Antti; Karunanithi, Mohan
2009-11-01
Ambulatory electrocardiography is increasingly being used in clinical practice to detect abnormal electrical behavior of the heart during ordinary daily activities. The utility of this monitoring can be improved by deriving respiration, which previously has been based on overnight apnea studies where patients are stationary, or the use of multilead ECG systems for stress testing. We compared six respiratory measures derived from a single-lead portable ECG monitor with simultaneously measured respiration air flow obtained from an ambulatory nasal cannula respiratory monitor. Ten controlled 1-h recordings were performed covering activities of daily living (lying, sitting, standing, walking, jogging, running, and stair climbing) and six overnight studies. The best method was an average of a 0.2-0.8 Hz bandpass filter and RR technique based on lengthening and shortening of the RR interval. Mean error rates with the reference gold standard were +/-4 breaths per minute (bpm) (all activities), +/-2 bpm (lying and sitting), and +/-1 breath per minute (overnight studies). Statistically similar results were obtained using heart rate information alone (RR technique) compared to the best technique derived from the full ECG waveform that simplifies data collection procedures. The study shows that respiration can be derived under dynamic activities from a single-lead ECG without significant differences from traditional methods.
Remote Sensing of Air Pollution from Geo with GEMS and TEMPO
NASA Astrophysics Data System (ADS)
Lasnik, J.; Nicks, D. K., Jr.; Baker, B.; Canova, B.; Chance, K.; Liu, X.; Suleiman, R. M.; Pennington, W. F.; Flittner, D. E.; Al-Saadi, J. A.; Rosenbaum, D. M.
2017-12-01
The Geostationary Environmental Monitoring System (GEMS) and Tropospheric Emissions: Monitoring of Pollution (TEMPO) instruments will provide a new capability for the understanding of air quality and pollution. Ball Aerospace is the instrument developer. The GEMS and TEMPO instruments use well-proven remote sensing techniques and take advantage of a geostationary orbit to take hourly measurements of the same geographical area. The high spatial and temporal resolution of these instruments will allow for measurements of the complex diurnal cycle of pollution driven by the combination of photochemistry, chemical composition and the dynamic nature of the atmosphere. Status of the manufacturing, test and calibration efforts will be presented.The GEMS instrument is being built for the Korea Aerospace Research Institute and their customer the National Institute of Environmental Research (NIER). The TEMPO instrument is being built for NASA under the Earth Venture Instrument EVI Program. NASA Langley Research Center (LaRC) is the managing center and the Principle Investigator (PI) is Kelly Chance of the Smithsonian Astrophysical Observatory (SAO).
NASA Astrophysics Data System (ADS)
Kaipov, I. V.
2017-03-01
Anthropogenic and natural factors have increased the power of wildfires in massive Siberian woodlands. As a consequence, the expansion of burned areas and increase in the duration of the forest fire season have led to the release of significant amounts of gases and aerosols. Therefore, it is important to understand the impact of wildland fires on air quality, atmospheric composition, climate and accurately describe the distribution of combustion products in time and space. The most effective research tool is the regional hydrodynamic model of the atmosphere, coupled with the model of pollutants transport and chemical interaction. Taking into account the meteorological parameters and processes of chemical interaction of impurities, complex use of remote sensing techniques for monitoring massive forest fires and mathematical modeling of long-range transport of pollutants in the atmosphere, allow to evaluate spatial and temporal scale of the phenomenon and calculate the quantitative characteristics of pollutants depending on the height and distance of migration.
Sabo, Martin; Matejčík, Štefan
2012-06-19
We demonstrate the application of corona discharge ion mobility spectrometry with orthogonal acceleration time of flight mass spectrometry (CD IMS-oaTOF) for volatile organic compounds (VOCs) monitoring. Two-dimensional (2D) IMS-oaTOF spectra of VOCs were recorded in nearly real time. The corona discharge atmospheric pressure chemical ionization (APCI) source was operated in positive mode in nitrogen and air. The CD ion source generates in air H(3)O(+)(H(2)O)(n) and NO(+). The NO(+) offers additional possibility for selective ionization and for an increase of the sensitivity of monoaromatic compounds. In addition to H(3)O(+)(H(2)O)(n) and NO(+), we have carried out ionization of VOCs using acetone as dopant gas ((CH(3))(2)COH(+)). Sixteen model VOCs (tetrahydrofuran, butanol, n-propanol, iso-propano, acetone, methanol, ethanol, toluene, benzene, amomnia, dioxan, triethylamine, acetonitrile, formaldehyde, m-xylene, 2,2,2-trifluoroethylamine) were tested using these ionization techniques.
Calibration of an electronic nose for poultry farm
NASA Astrophysics Data System (ADS)
Abdullah, A. H.; Shukor, S. A.; Kamis, M. S.; Shakaff, A. Y. M.; Zakaria, A.; Rahim, N. A.; Mamduh, S. M.; Kamarudin, K.; Saad, F. S. A.; Masnan, M. J.; Mustafa, H.
2017-03-01
Malodour from the poultry farms could cause air pollution and therefore potentially dangerous to humans' and animals' health. This issue also poses sustainability risk to the poultry industries due to objections from local community. The aim of this paper is to develop and calibrate a cost effective and efficient electronic nose for poultry farm air monitoring. The instrument main components include sensor chamber, array of specific sensors, microcontroller, signal conditioning circuits and wireless sensor networks. The instrument was calibrated to allow classification of different concentrations of main volatile compounds in the poultry farm malodour. The outcome of the process will also confirm the device's reliability prior to being used for poultry farm malodour assessment. The Multivariate Analysis (HCA and KNN) and Artificial Neural Network (ANN) pattern recognition technique was used to process the acquired data. The results show that the instrument is able to calibrate the samples using ANN classification model with high accuracy. The finding verifies the instrument's performance to be used as an effective poultry farm malodour monitoring.
RadNet Air Data From Honolulu, HI
This page presents radiation air monitoring and air filter analysis data for Honolulu, HI from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Birmingham, AL
This page presents radiation air monitoring and air filter analysis data for Birmingham, AL from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Dallas, TX
This page presents radiation air monitoring and air filter analysis data for Dallas, TX from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Omaha, NE
This page presents radiation air monitoring and air filter analysis data for Omaha, NE from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Montgomery, AL
This page presents radiation air monitoring and air filter analysis data for Montgomery, AL from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Burlington, VT
This page presents radiation air monitoring and air filter analysis data for Burlington, VT from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Washington, DC
This page presents radiation air monitoring and air filter analysis data for Washington, DC from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Rochester, NY
This page presents radiation air monitoring and air filter analysis data for Rochester, NY from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Tampa, FL
This page presents radiation air monitoring and air filter analysis data for Tampa, FL from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Cincinnati, OH
This page presents radiation air monitoring and air filter analysis data for Cincinnati, OH from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Fairbanks, AK
This page presents radiation air monitoring and air filter analysis data for Fairbanks, AL from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
This page presents radiation air monitoring and air filter analysis data for Yuma, AZ from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Kalispell, MT
This page presents radiation air monitoring and air filter analysis data for Kalispell, MT from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Kearney, NE
This page presents radiation air monitoring and air filter analysis data for Kearney, NE from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Phoenix, AZ
This page presents radiation air monitoring and air filter analysis data for Phoenix, AZ from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Pierre, SD
This page presents radiation air monitoring and air filter analysis data for Pierre, SD from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Augusta, GA
This page presents radiation air monitoring and air filter analysis data for Augusta, GA from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Syracuse, NY
This page presents radiation air monitoring and air filter analysis data for Syracuse, NY from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Albany, NY
This page presents radiation air monitoring and air filter analysis data for Albany, NY from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Anchorage, AK
This page presents radiation air monitoring and air filter analysis data for Anchorage, AK from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Philadelphia, PA
This page presents radiation air monitoring and air filter analysis data for Philadelphia, PA from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Houston, TX
This page presents radiation air monitoring and air filter analysis data for Houston, TX from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Duluth, MN
This page presents radiation air monitoring and air filter analysis data for Duluth, MN from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Raleigh, NC
This page presents radiation air monitoring and air filter analysis data for Raleigh, NC from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Louisville, KY
This page presents radiation air monitoring and air filter analysis data for Louisville, KY from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Cleveland, OH
This page presents radiation air monitoring and air filter analysis data for Cleveland, OH from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Carlsbad, NM
This page presents radiation air monitoring and air filter analysis data for Carlsbad, NM from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Corvallis, OR
This page presents radiation air monitoring and air filter analysis data for Corvallis, OR from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Orono, ME
This page presents radiation air monitoring and air filter analysis data for Orono, ME from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
This page presents radiation air monitoring and air filter analysis data for Reno, NV from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Nashville, TN
This page presents radiation air monitoring and air filter analysis data for Nashville, TN from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Concord, NH
This page presents radiation air monitoring and air filter analysis data for Concord, NH from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Paducah, KY
This page presents radiation air monitoring and air filter analysis data for Paducah, KY from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Edison, NJ
This page presents radiation air monitoring and air filter analysis data for Edison, NJ from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Wilmington, NC
This page presents radiation air monitoring and air filter analysis data for Wilmington, NC from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Boise, ID
This page presents radiation air monitoring and air filter analysis data for Boise, ID from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Albuquerque, NM
This page presents radiation air monitoring and air filter analysis data for Albuquerque, NM from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Fresno, CA
This page presents radiation air monitoring and air filter analysis data for Fresno, CA from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Amarillo, TX
This page presents radiation air monitoring and air filter analysis data for Amarillo, TX from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Portland, OR
This page presents radiation air monitoring and air filter analysis data for Portland, OR from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Jacksonville, FL
This page presents radiation air monitoring and air filter analysis data for Jacksonville, FL from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Dover, DE
This page presents radiation air monitoring and air filter analysis data for Dover, DE from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Baltimore, MD
This page presents radiation air monitoring and air filter analysis data for Baltimore, MD from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Miami, FL
This page presents radiation air monitoring and air filter analysis data for Miami, FL from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Billings, MT
This page presents radiation air monitoring and air filter analysis data for Billings, MT from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Providence, RI
This page presents radiation air monitoring and air filter analysis data for Providence, RI from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Knoxville, TN
This page presents radiation air monitoring and air filter analysis data for Knoxville, TN from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Columbus, OH
This page presents radiation air monitoring and air filter analysis data for Columbus, OH from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Bloomsburg, PA
This page presents radiation air monitoring and air filter analysis data for Bloomsburg, PA from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Shreveport, LA
This page presents radiation air monitoring and air filter analysis data for Shreveport, LA from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Laredo, TX
This page presents radiation air monitoring and air filter analysis data for Laredo, TX from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Bakersfield, CA
This page presents radiation air monitoring and air filter analysis data for Bakersfield, CA from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Portland, ME
This page presents radiation air monitoring and air filter analysis data for Portland, ME from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Champaign, IL
This page presents radiation air monitoring and air filter analysis data for Champaign, IL from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Tucson, AZ
This page presents radiation air monitoring and air filter analysis data for Tucson, AZ from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Juneau, AK
This page presents radiation air monitoring and air filter analysis data for Juneau, AK from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Toledo, OH
This page presents radiation air monitoring and air filter analysis data for Toledo, OH from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Boston, MA
This page presents radiation air monitoring and air filter analysis data for Boston, MA from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Indianapolis, IN
This page presents radiation air monitoring and air filter analysis data for Indianapolis, IN from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Yaphank, NY
This page presents radiation air monitoring and air filter analysis data for Yaphank, NY from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Anaheim, CA
This page presents radiation air monitoring and air filter analysis data for Anaheim, CA from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Riverside, CA
This page presents radiation air monitoring and air filter analysis data for Riverside, CA from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Detroit, MI
This page presents radiation air monitoring and air filter analysis data for Detroit, MI from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Wichita, KS
This page presents radiation air monitoring and air filter analysis data for Wichita, KS from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Columbia, SC
This page presents radiation air monitoring and air filter analysis data for Columbia, SC from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Milwaukee, WI
This page presents radiation air monitoring and air filter analysis data for Milwaukee, WI from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Richmond, VA
This page presents radiation air monitoring and air filter analysis data for Richmond, VA from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Tulsa, OK
This page presents radiation air monitoring and air filter analysis data for Tulsa, OK from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Aurora, IL
This page presents radiation air monitoring and air filter analysis data for Aurora, IL from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Hartford, CT
This page presents radiation air monitoring and air filter analysis data for Hartford. CT from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Charleston, WV
This page presents radiation air monitoring and air filter analysis data for Charleston, WV from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Shawano, WI
This page presents radiation air monitoring and air filter analysis data for Shawano, WI from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Harlingen, TX
This page presents radiation air monitoring and air filter analysis data for Harlingen, TX from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation
RadNet Air Data From Springfield, MO
This page presents radiation air monitoring and air filter analysis data for Springfield, MO from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Olympia, WA
This page presents radiation air monitoring and air filter analysis data for Olympia, WA from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Memphis, TN
This page presents radiation air monitoring and air filter analysis data for Memphis, TN from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Lubbock, TX
This page presents radiation air monitoring and air filter analysis data for Lubbock, TX from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Sacramento, CA
This page presents radiation air monitoring and air filter analysis data for Sacramento, CA from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Lockport, NY
This page presents radiation air monitoring and air filter analysis data for Lockport, NY from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Jackson, MS
This page presents radiation air monitoring and air filter analysis data for Jackson, MS from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Seattle, WA
This page presents radiation air monitoring and air filter analysis data for Seattle, WA from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Pittsburgh, PA
This page presents radiation air monitoring and air filter analysis data for Pittsburgh, PA from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Madison, WI
This page presents radiation air monitoring and air filter analysis data for Madison, WI from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Ellensburg, WA
This page presents radiation air monitoring and air filter analysis data for Ellensburg, WA from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Harrisonburg, VA
This page presents radiation air monitoring and air filter analysis data for Harrisonburg, VA from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Bismarck, ND
This page presents radiation air monitoring and air filter analysis data for Bismarck, ND from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Denver, CO
This page presents radiation air monitoring and air filter analysis data for Denver, CO from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Charlotte, NC
This page presents radiation air monitoring and air filter analysis data for Charlotte, NC from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Lexington, KY
This page presents radiation air monitoring and air filter analysis data for Lexington, KY from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Casper, WY
This page presents radiation air monitoring and air filter analysis data for Casper, WY from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Eureka, CA
This page presents radiation air monitoring and air filter analysis data for Eureka, CA from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Lincoln, NE
This page presents radiation air monitoring and air filter analysis data for Lincoln, NE from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Orlando, FL
This page presents radiation air monitoring and air filter analysis data for Orlando, FL from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Mobile, AL
This page presents radiation air monitoring and air filter analysis data for Mobile, AL from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Spokane, WA
This page presents radiation air monitoring and air filter analysis data for Spokane, WA from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Atlanta, GA
This page presents radiation air monitoring and air filter analysis data for Atlanta, GA from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Greensboro, NC
This page presents radiation air monitoring and air filter analysis data for Greensboro, NC from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Chicago, IL
This page presents radiation air monitoring and air filter analysis data for Chicago, IL from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Worcester, MA
This page presents radiation air monitoring and air filter analysis data for Worcester, MA from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Austin, TX
This page presents radiation air monitoring and air filter analysis data for Austin, TX from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
Risk management in air protection in the Republic of Croatia.
Peternel, Renata; Toth, Ivan; Hercog, Predrag
2014-03-01
In the Republic of Croatia, according to the Air Protection Act, air pollution assessment is obligatory on the whole State territory. For individual regions and populated areas in the State a network has been established for permanent air quality monitoring. The State network consists of stations for measuring background pollution, regional and cross-border remote transfer and measurements as part of international government liabilities, then stations for measuring air quality in areas of cultural and natural heritage, and stations for measuring air pollution in towns and industrial zones. The exceeding of alert and information threshold levels of air pollutants are related to emissions from industrial plants, and accidents. Each excess represents a threat to human health in case of short-time exposure. Monitoring of alert and information threshold levels is carried out at stations from the state and local networks for permanent air quality monitoring according to the Air Quality Measurement Program in the State network for permanent monitoring of air quality and air quality measurement programs in local networks for permanent air quality monitoring. The State network for permanent air quality monitoring has a developed automatic system for reporting on alert and information threshold levels, whereas many local networks under the competence of regional and local self-governments still lack any fully installed systems of this type. In case of accidents, prompt action at all responsibility levels is necessary in order to prevent crisis and this requires developed and coordinated competent units of State Administration as well as self-government units. It is also necessary to be continuously active in improving the implementation of legislative regulations in the field of crises related to critical and alert levels of air pollutants, especially at local levels.
NASA Astrophysics Data System (ADS)
French, R. A.; Preuss, P.
2013-12-01
Recent advances in the development of small-scale and inexpensive air pollutant sensors, coupled with the ubiquitous use of wireless and mobile technology, will transform the field of air quality monitoring. For the first time, the general public may purchase air monitors, which can measure their personal exposure to NOx, Ozone, black carbon, and VOCs for a few hundred dollars. Concerned citizens may now gather the data for themselves to answer questions such as, ';what am I breathing?' and ';is my air clean?' The research and policy community will have access to real-time air quality data collected at the local and regional scale, making targeted protection of environmental health possible. With these benefits come many questions from citizen scientists, policymakers, and researchers. These include, what is the quality of the data? How will the public interpret data from the air sensors and are there guidelines to interpret that data? How do you know if the air sensor is trustworthy? Recognizing that this revolution in air quality monitoring will proceed regardless of the involvement of the government, the Innovation Team at the EPA Office of Research and Development, in partnership with the Office of Enforcement and Compliance Assistance and the Office of Air and Radiation, seized the opportunity to ensure that users of next generation air sensors can realize the full potential benefits of these innovative technologies. These efforts include releasing an EPA Draft Roadmap for Next Generation Air Monitoring, testing air sensors under laboratory and field conditions, field demonstrations of new air sensor technology for the public, and building a community of air sensor developers, researchers, local, state and federal officials, and community members through workshops and a website. This presentation will review the status of those programs, highlighting the particular programs of interest to citizen scientists. The Next Generation Air Monitoring program may serve as a model for similar efforts in the EPA and at other Federal Agencies, who would like to take an active role in facilitating the future of citizen science and environmental monitoring.
Test/QA Plan (TQAP) for Verification of Semi-Continuous Ambient Air Monitoring Systems
The purpose of the semi-continuous ambient air monitoring technology (or MARGA) test and quality assurance plan is to specify procedures for a verification test applicable to commercial semi-continuous ambient air monitoring technologies. The purpose of the verification test is ...
Assessment of Near-Source Air Pollution at a Fine Spatial Scale Utilizing Mobile Monitoring Approach
Mobile monitoring is an emerging strategy to characterize spatially and temporally variable air pollution in areas near sources. EPA’s Geospatial Monitoring of Air Pollution (GMAP) vehicle – an all-electric vehicle measuring real-time concentrations of partic...
Citizen Science Air Monitor (CSAM) Operating Procedures
The Citizen Science Air Monitor (CSAM) is an air monitoring system designed for measuring nitrogen dioxide (NO2) and particulate matter (PM) pollutants simultaneously. This self-contained system consists of a CairPol CairClip NO2 sensor, a Thermo Scientific personal DataRAM PM2.5...
An assessment of air pollution and its attributable mortality in Ulaanbaatar, Mongolia.
Allen, Ryan W; Gombojav, Enkhjargal; Barkhasragchaa, Baldorj; Byambaa, Tsogtbaatar; Lkhasuren, Oyuntogos; Amram, Ofer; Takaro, Tim K; Janes, Craig R
2013-03-01
Epidemiologic studies have consistently reported associations between outdoor fine particulate matter (PM 2.5 ) air pollution and adverse health effects. Although Asia bears the majority of the public health burden from air pollution, few epidemiologic studies have been conducted outside of North America and Europe due in part to challenges in population exposure assessment. We assessed the feasibility of two current exposure assessment techniques, land use regression (LUR) modeling and mobile monitoring, and estimated the mortality attributable to air pollution in Ulaanbaatar, Mongolia. We developed LUR models for predicting wintertime spatial patterns of NO 2 and SO 2 based on 2-week passive Ogawa measurements at 37 locations and freely available geographic predictors. The models explained 74% and 78% of the variance in NO 2 and SO 2 , respectively. Land cover characteristics derived from satellite images were useful predictors of both pollutants. Mobile PM 2.5 monitoring with an integrating nephelometer also showed promise, capturing substantial spatial variation in PM 2.5 concentrations. The spatial patterns in SO 2 and PM, seasonal and diurnal patterns in PM 2.5 , and high wintertime PM 2.5 /PM 10 ratios were consistent with a major impact from coal and wood combustion in the city's low-income traditional housing (ger) areas. The annual average concentration of PM 2.5 measured at a centrally located government monitoring site was 75 μg/m 3 or more than seven times the World Health Organization's PM 2.5 air quality guideline, driven by a wintertime average concentration of 148 μg/m 3 . PM 2.5 concentrations measured in a traditional housing area were higher, with a wintertime mean PM 2.5 concentration of 250 μg/m 3 . We conservatively estimated that 29% (95% CI, 12-43%) of cardiopulmonary deaths and 40% (95% CI, 17-56%) of lung cancer deaths in the city are attributable to outdoor air pollution. These deaths correspond to nearly 10% of the city's total mortality, with estimates ranging to more than 13% of mortality under less conservative model assumptions. LUR models and mobile monitoring can be successfully implemented in developing country cities, thus cost-effectively improving exposure assessment for epidemiology and risk assessment. Air pollution represents a major threat to public health in Ulaanbaatar, Mongolia, and reducing home heating emissions in traditional housing areas should be the primary focus of air pollution control efforts.
Mobile Air Monitoring Data Processing Strategies and Effects on Spatial Air Pollution Trends
The collection of real-time air quality measurements while in motion (i.e., mobile monitoring) is currently conducted worldwide to evaluate in situ emissions, local air quality trends, and air pollutant exposure. This measurement strategy pushes the limits of traditional data an...
WSN based indoor air quality monitoring in classrooms
NASA Astrophysics Data System (ADS)
Wang, S. K.; Chew, S. P.; Jusoh, M. T.; Khairunissa, A.; Leong, K. Y.; Azid, A. A.
2017-03-01
Indoor air quality monitoring is essential as the human health is directly affected by indoor air quality. This paper presents the investigations of the impact of undergraduate students' concentration during lecture due to the indoor air quality in classroom. Three environmental parameters such as temperature, relative humidity and concentration of carbon dioxide are measured using wireless sensor network based air quality monitoring system. This simple yet reliable system is incorporated with DHT-11 and MG-811 sensors. Two classrooms were selected to install the monitoring system. The level of indoor air quality were measured and students' concentration was assessed using intelligent test during normal lecturing section. The test showed significant correlation between the collected environmental parameters and the students' level of performances in their study.
Molecular Rayleigh Scattering Diagnostic for Measurement of High Frequency Temperature Fluctuations
NASA Technical Reports Server (NTRS)
Mielke, Amy F.; Elam, Kristie A.
2005-01-01
A novel technique for measurement of high frequency temperature fluctuations in unseeded gas flows using molecular Rayleigh scattering is investigated. The spectrum of laser light scattered from molecules in a gas flow is resolved using a Fabry-Perot interferometer. The width of the spectral peak is broadened by thermal motion of the molecules and hence is related to gas temperature. The interference fringe pattern containing spectral information is divided into four concentric regions using a series of mirrors angled with respect to one another. Light from each of these regions is directed towards photomultiplier tubes and sampled at 10 kHz using photon counting electronics. Monitoring the relative change in intensity within each region allows measurement of gas temperature. Independently monitoring the total scattered intensity provides a measure of gas density. This technique also has the potential to simultaneously measure a single component of flow velocity by monitoring the spectral peak location. Measurements of gas temperature and density are demonstrated using a low speed heated air jet surrounded by an unheated air co-flow. Mean values of temperature and density are shown for radial scans across the jet flow at a fixed axial distance from the jet exit plane. Power spectra of temperature and density fluctuations at several locations in the jet are also shown. The instantaneous measurements have fairly high uncertainty; however, long data records provide highly accurate statistically quantities, which include power spectra. Mean temperatures are compared with thermocouple measurements as well as the temperatures derived from independent density measurements. The accuracy for mean temperature measurements was +/- 7 K.
Region 7 States Air Quality Monitoring Plans - Iowa
National Ambient Air Quality Standard (NAAQS) - Iowa, Kansas, Missouri, and Nebraska; Annual Monitoring Network Plans, Five-Year Monitoring Network Assessments, and approval documentation. Each year, states are required to submit an annual monitoring netwo
Region 7 States Air Quality Monitoring Plans - Missouri
National Ambient Air Quality Standard (NAAQS) - Iowa, Kansas, Missouri, and Nebraska; Annual Monitoring Network Plans, Five-Year Monitoring Network Assessments, and approval documentation. Each year, states are required to submit an annual monitoring netwo
Region 7 States Air Quality Monitoring Plans - Nebraska
National Ambient Air Quality Standard (NAAQS) - Iowa, Kansas, Missouri, and Nebraska; Annual Monitoring Network Plans, Five-Year Monitoring Network Assessments, and approval documentation. Each year, states are required to submit an annual monitoring netwo
Region 7 States Air Quality Monitoring Plans - Kansas
National Ambient Air Quality Standard (NAAQS) - Iowa, Kansas, Missouri, and Nebraska; Annual Monitoring Network Plans, Five-Year Monitoring Network Assessments, and approval documentation. Each year, states are required to submit an annual monitoring netwo
Miniature PCR based portable bioaerosol monitor development.
Agranovski, I E; Usachev, E V; Agranovski, E; Usacheva, O V
2017-01-01
A portable bioaerosol monitor is greatly demanded technology in many areas including air quality control, occupational exposure assessment and health risk evaluation, environmental studies and, especially, in defence and bio-terrorism applications. Our recent groundwork allowed us to formulate the concept of a portable bioaerosol monitor, which needs to be light, user friendly, reliable and capable of detecting airborne pathogens within 1-1·5 h on the spot. Conceptually, the event of a bioaerosol concentration burst is determined by triggers to commence the representative air sampling with sequential real-time polymerase chain reaction (PCR) confirmation of the targeted micro-organism present in the air. To minimize reagent consumption and idle running of the technology, an event of a bioaerosol burst is confirmed by three parameters: aerosol particle size, concentration and composition. Only particle sizes above 200 nm attract interest in the bioaerosol. Only an elevated aerosol concentration above the threshold (background aerosol concentration) is a signal to commence the analytical procedure. The combination of our previously developed personal bioaerosol sampler, aerosol particle counter based trigger and portable real-time PCR device formed the basis of the bioaerosol monitoring technology. The portable real-time PCR device was advanced to provide internally controlled detection, significantly reducing false-positive alarms. The technique is capable of detecting selected airborne micro-organisms on the spot within 30-80 min, depending on the genome organization of the particular strain. Due to recent outbreaks of infectious airborne diseases and the continuing threat of intentionally released bioaerosol attacks, investigations into the possibility of the early and reliable detection of pathogenic micro-organisms in the air is becoming increasingly important. The proposed technology consisting of a bioaerosol sampler, technology trigger and PCR device is capable of detecting selected airborne micro-organisms on the spot within a short time period. Journal of Applied Microbiology © 2016 The Society for Applied Microbiology.
1989-10-01
Northeast Aritificial Intelligence Consortium (NAIC). i Table of Contents Execu tive Sum m ary...o g~nIl ’vLr COPY o~ T- RADC-TR-89-259, Vol XI (of twelve) N Interim Report SOctober 1989 NORTHEAST ARTIFICIAL INTELLIGENCE CONSORTIUM ANNUAL REPORT...ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION Northeast Artificial (If applicable) Intelligence Consortium (NAIC) . Rome Air Development
Photochemical Assessment Monitoring Stations (PAMS)
Photochemical Assessment Monitoring Stations (PAMS). This file provides information on the numbers and distribution (latitude/longitude) of air monitoring sites which measure ozone precursors (approximately 60 volatile hydrocarbons and carbonyl), as required by the 1990 Clean Air Act Amendments, in areas with persistently high ozone levels (mostly large metropolitan areas). In these areas, the States have established ambient air monitoring sites which collect and report detailed data for volatile organic compounds, nitrogen oxides, ozone and meteorological parameters. This file displays 199 monitoring sites reporting measurements for 2010. A wide range of related monitoring site attributes is also provided.
RadNet Air Data From San Juan, PR
This page presents radiation air monitoring and air filter analysis data for San Juan, PR from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Grand Rapids, MI
This page presents radiation air monitoring and air filter analysis data for Grand Rapids, MI from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Corpus Christi, TX
This page presents radiation air monitoring and air filter analysis data for Corpus Christi, TX from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Little Rock, AR
This page presents radiation air monitoring and air filter analysis data for Little Rock, AR from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Des Moines, IA
This page presents radiation air monitoring and air filter analysis data for Des Moines, IA from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Fort Madison, IA
This page presents radiation air monitoring and air filter analysis data for Fort Madison, IA from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Fort Wayne, IN
This page presents radiation air monitoring and air filter analysis data for Fort Wayne, IN from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Navajo Lake, NM
This page presents radiation air monitoring and air filter analysis data for Navajo Lake, NM from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Las Vegas, NV
This page presents radiation air monitoring and air filter analysis data for Las Vegas, NV from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From St. George, UT
This page presents radiation air monitoring and air filter analysis data for St. George, UT from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Jefferson City, MO
This page presents radiation air monitoring and air filter analysis data for Jefferson City, MO from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Fort Worth, TX
This page presents radiation air monitoring and air filter analysis data for Fort Worth, TX from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Kansas City, KS
This page presents radiation air monitoring and air filter analysis data for Kansas City, KS from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From San Angelo, TX
This page presents radiation air monitoring and air filter analysis data for San Angelo, TX from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From San Francisco, CA
This page presents radiation air monitoring and air filter analysis data for San Francisco, CA from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Oklahoma City, OK
This page presents radiation air monitoring and air filter analysis data for Oklahoma City, OK from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From San Bernardino, CA
This page presents radiation air monitoring and air filter analysis data for San Bernardino, CA from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Idaho Falls, ID
This page presents radiation air monitoring and air filter analysis data for Idaho Falls, ID from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Los Angeles, CA
This page presents radiation air monitoring and air filter analysis data for Los Angeles, CA from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From El Paso, TX
This page presents radiation air monitoring and air filter analysis data for El Paso, TX from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Grand Junction, CO
This page presents radiation air monitoring and air filter analysis data for Grand Junction, CO from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From St. Paul, MN
This page presents radiation air monitoring and air filter analysis data for St. Paul, MN from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Virginia Beach, VA
This page presents radiation air monitoring and air filter analysis data for Virginia Beach, VA from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From La Crosse, WI
This page presents radiation air monitoring and air filter analysis data for La Crosse, WI from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From San Diego, CA
This page presents radiation air monitoring and air filter analysis data for San Diego, CA from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From San Jose, CA
This page presents radiation air monitoring and air filter analysis data for San Jose, CA from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From San Antonio, TX
This page presents radiation air monitoring and air filter analysis data for San Antonio, TX from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Rapid City, SD
This page presents radiation air monitoring and air filter analysis data for Rapid City, SD from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Dodge City, KS
This page presents radiation air monitoring and air filter analysis data for Dodge City, KS from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Colorado Springs, CO
This page presents radiation air monitoring and air filter analysis data for Colorado Springs, CO from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From St. Louis, MO
This page presents radiation air monitoring and air filter analysis data for St. Louis, MO from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Bay City, MI
This page presents radiation air monitoring and air filter analysis data for Bay City, MI from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From Mason City, IA
This page presents radiation air monitoring and air filter analysis data for Mason City, IA from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
Air Quality System (AQS) Metadata
The U.S. Environmental Protection Agency compiles air quality monitoring data in the Air Quality System (AQS). Ambient air concentrations are measured at a national network of more than 4,000 monitoring stations and are reported by state, local, and tribal
RadNet Air Data From Fort Smith, AR
This page presents radiation air monitoring and air filter analysis data for Fort Smith, AR from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
Overview of the new National Near-Road Air Quality Monitoring Network
In 2010, EPA promulgated new National Ambient Air Quality Standards (NAAQS) for nitrogen dioxide (NO2). As part of this new NAAQS, EPA required the establishment of a national near-road air quality monitoring network. This network will consist of one NO2 near-road monitoring st...
Assessment of Near-Source Air Pollution at a Fine Spatial Scale Utilizing Mobile Monitoring Approach
Mobile monitoring is an emerging strategy to characterize spatially and temporally variable air pollution in areas near sources. EPA’s Geospatial Monitoring of Air Pollution (GMAP) vehicle – an all-electric vehicle measuring real-time concentrations of particulate and gaseous po...
Volunteers for Air Monitoring Project (VAMP).
ERIC Educational Resources Information Center
Oak Ridge National Lab., TN.
An education and communication project of the Environment and Technology Assessment Program, Oak Ridge National Laboratory, Tennessee, is described in this report. The project for monitoring air dustfall resulted in the largest citizen-scientist air monitoring effort in the history of our nation. Nearly 21,000 public secondary school students and…
Mobile monitoring is an emerging strategy to characterize spatially and temporally variable air pollution in areas near sources. EPA’s Geospatial Monitoring of Air Pollution (GMAP) vehicle – an all-electric vehicle measuring real-time concentrations of particulate and gaseous po...
40 CFR 63.6655 - What records must I keep?
Code of Federal Regulations, 2010 CFR
2010-07-01
... equipment) or the air pollution control and monitoring equipment. (3) Records of performance tests and... on the air pollution control and monitoring equipment. (5) Records of actions taken during periods of... malfunctioning process and air pollution control and monitoring equipment to its normal or usual manner of...
40 CFR 63.6655 - What records must I keep?
Code of Federal Regulations, 2013 CFR
2013-07-01
... equipment) or the air pollution control and monitoring equipment. (3) Records of performance tests and... on the air pollution control and monitoring equipment. (5) Records of actions taken during periods of... malfunctioning process and air pollution control and monitoring equipment to its normal or usual manner of...
Sample and data processing considerations for the NIST quantitative infrared database
NASA Astrophysics Data System (ADS)
Chu, Pamela M.; Guenther, Franklin R.; Rhoderick, George C.; Lafferty, Walter J.; Phillips, William
1999-02-01
Fourier-transform infrared (FT-IR) spectrometry has become a useful real-time in situ analytical technique for quantitative gas phase measurements. In fact, the U.S. Environmental Protection Agency (EPA) has recently approved open-path FT-IR monitoring for the determination of hazardous air pollutants (HAP) identified in EPA's Clean Air Act of 1990. To support infrared based sensing technologies, the National Institute of Standards and Technology (NIST) is currently developing a standard quantitative spectral database of the HAPs based on gravimetrically prepared standard samples. The procedures developed to ensure the quantitative accuracy of the reference data are discussed, including sample preparation, residual sample contaminants, data processing considerations, and estimates of error.
NASA Technical Reports Server (NTRS)
Beckham, W. S., Jr.; Keune, F. A.
1974-01-01
The MIUS (Modular Integrated Utility System) concept is to be an energy-conserving, economically feasible, integrated community utility system to provide five necessary services: electricity generation, space heating and air conditioning, solid waste processing, liquid waste processing, and residential water purification. The MIST (MIUS Integration and Subsystem Test) integrated system testbed constructed at the Johnson Space Center in Houston includes subsystems for power generation, heating, ventilation, and air conditioning (HVAC), wastewater management, solid waste management, and control and monitoring. The key design issues under study include thermal integration and distribution techniques, thermal storage, integration of subsystems controls and displays, incinerator performance, effluent characteristics, and odor control.
Salamone, Francesco; Danza, Ludovico; Meroni, Italo; Pollastro, Maria Cristina
2017-04-11
nEMoS (nano Environmental Monitoring System) is a 3D-printed device built following the Do-It-Yourself (DIY) approach. It can be connected to the web and it can be used to assess indoor environmental quality (IEQ). It is built using some low-cost sensors connected to an Arduino microcontroller board. The device is assembled in a small-sized case and both thermohygrometric sensors used to measure the air temperature and relative humidity, and the globe thermometer used to measure the radiant temperature, can be subject to thermal effects due to overheating of some nearby components. A thermographic analysis was made to rule out this possibility. The paper shows how the pervasive technique of additive manufacturing can be combined with the more traditional thermographic techniques to redesign the case and to verify the accuracy of the optimized system in order to prevent instrumental systematic errors in terms of the difference between experimental and actual values of the above-mentioned environmental parameters.
Salamone, Francesco; Danza, Ludovico; Meroni, Italo; Pollastro, Maria Cristina
2017-01-01
nEMoS (nano Environmental Monitoring System) is a 3D-printed device built following the Do-It-Yourself (DIY) approach. It can be connected to the web and it can be used to assess indoor environmental quality (IEQ). It is built using some low-cost sensors connected to an Arduino microcontroller board. The device is assembled in a small-sized case and both thermohygrometric sensors used to measure the air temperature and relative humidity, and the globe thermometer used to measure the radiant temperature, can be subject to thermal effects due to overheating of some nearby components. A thermographic analysis was made to rule out this possibility. The paper shows how the pervasive technique of additive manufacturing can be combined with the more traditional thermographic techniques to redesign the case and to verify the accuracy of the optimized system in order to prevent instrumental systematic errors in terms of the difference between experimental and actual values of the above-mentioned environmental parameters. PMID:28398225
Beam position monitor engineering
NASA Astrophysics Data System (ADS)
Smith, Stephen R.
1997-01-01
The design of beam position monitors often involves challenging system design choices. Position transducers must be robust, accurate, and generate adequate position signal without unduly disturbing the beam. Electronics must be reliable and affordable, usually while meeting tough requirements on precision, accuracy, and dynamic range. These requirements may be difficult to achieve simultaneously, leading the designer into interesting opportunities for optimization or compromise. Some useful techniques and tools are shown. Both finite element analysis and analytic techniques will be used to investigate quasi-static aspects of electromagnetic fields such as the impedance of and the coupling of beam to striplines or buttons. Finite-element tools will be used to understand dynamic aspects of the electromagnetic fields of beams, such as wake fields and transmission-line and cavity effects in vacuum-to-air feedthroughs. Mathematical modeling of electrical signals through a processing chain will be demonstrated, in particular to illuminate areas where neither a pure time-domain nor a pure frequency-domain analysis is obviously advantageous. Emphasis will be on calculational techniques, in particular on using both time domain and frequency domain approaches to the applicable parts of interesting problems.
Plate motions and deformations from geologic and geodetic data
NASA Technical Reports Server (NTRS)
Jordan, Thomas H.
1990-01-01
An analysis of geodetic data in the vicinity of the Crustal Dynamics Program (CDP) site at Vandenberg Air Force Base (VNDN) is presented. The utility of space-geodetic data in the monitoring of transient strains associated with earthquakes in tectonically active areas like California is investigated. Particular interest is in the possibility that space-geodetic methods may be able to provide critical new data on deformations precursory to large seismic events. Although earthquake precursory phenomena are not well understood, the monitoring of small strains in the vicinity of active faults is a promising technique for studying the mechanisms that nucleate large earthquakes and, ultimately, for earthquake prediction. Space-geodetic techniques are now capable of measuring baselines of tens to hundreds of kilometers with a precision of a few parts in 108. Within the next few years, it will be possible to record and analyze large-scale strain variations with this precision continuously in real time. Thus, space-geodetic techniques may become tools for earthquake prediction. In anticipation of this capability, several questions related to the temporal and spatial scales associated with subseismic deformation transients are examined.
Berg, C.J.; Bundy, L.; Escoffery, C.; Haardörfer, R.; Kegler, M.C.
2013-01-01
SUMMARY Objectives To examine the feasibility of telephone-assisted placement of air nicotine monitors among low socio-economic intervention participants, and examine the use of this strategy in differentiating air nicotine concentrations in rooms where smoking is allowed from rooms where smoking is not allowed. Methods Forty participants were recruited from a county health department clinic and were enrolled in a brief smoke-free home policy intervention study. Twenty participants were selected at random for air nicotine monitor placement, and were instructed to telephone study staff who assisted them in monitor placement in their homes at the end of the intervention. Assessments were conducted at Weeks 0 and 8, with air nicotine assessment performed post-test. Results Of the 20 participants, 17 placed and returned the air nicotine monitors, and 16 also completed the follow-up survey. Follow-up survey data were not obtained on one monitor, and one participant who did not return the monitor completed the follow-up survey. Among those who reported a smoke-free policy (n=7), the average nicotine concentration was 0.62 μg/m3 [standard deviation (SD) 0.48]. Among those without a smoke-free policy (n=9), the average nicotine concentration was 2.30 μg/m3 (SD 2.04). Thus, the air nicotine concentration was significantly higher in those rooms where smoking was allowed [t(9, 11)=-2.39, P=0.04]. Conclusions The use of a telephone-assisted protocol for placement of air nicotine monitors was feasible. Despite the variability of air nicotine concentrations in rooms where smoking is allowed compared with rooms where smoking is not allowed, average concentrations were lower in smoke-free rooms. PMID:23480954
Fiber Bragg grating sensors for real-time monitoring of evacuation process
NASA Astrophysics Data System (ADS)
Guru Prasad, A. S.; Hegde, Gopalkrishna M.; Asokan, S.
2010-03-01
Fiber bragg grating (FBG) sensors have been widely used for number of sensing applications like temperature, pressure, acousto-ultrasonic, static and dynamic strain, refractive index change measurements and so on. Present work demonstrates the use of FBG sensors in in-situ measurement of vacuum process with simultaneous leak detection capability. Experiments were conducted in a bell jar vacuum chamber facilitated with conventional Pirani gauge for vacuum measurement. Three different experiments have been conducted to validate the performance of FBG sensor in monitoring vacuum creating process and air bleeding. The preliminary results of FBG sensors in vacuum monitoring have been compared with that of commercial Pirani gauge sensor. This novel technique offers a simple alternative to conventional method for real time monitoring of evacuation process. Proposed FBG based vacuum sensor has potential applications in vacuum systems involving hazardous environment such as chemical and gas plants, automobile industries, aeronautical establishments and leak monitoring in process industries, where the electrical or MEMS based sensors are prone to explosion and corrosion.
NASA Astrophysics Data System (ADS)
Zdeb, T. F.
2012-12-01
Preparing a Perimeter Air Monitoring Plan that provides the essential information and methods of evaluation needed to assure that the health of the surrounding community is adequately protected and adapting currently existing Cal/OSHA regulations to be relevant to the protection of workers at sites involving the excavation of Naturally Occurring Asbestos (NOA) is oftentimes challenging in California. Current guidelines regarding what constitutes an effective air monitoring program are often lacking in details regarding what should be sampled and analyzed to characterize a site and what evaluation techniques should be applied to process the results of monitoring, and the current Cal/OSHA asbestos related regulations regarding worker protection are for the most part largely pertinent to the abatement of asbestos in buildings. An overview of the essential components of an effective Baseline and Perimeter Air Monitoring Plan will be presented that includes a brief discussion of the various asbestos types and fiber sizes that may need to be considered, possible approachs for evaluating temporal and spatial variability, review of selected site boundary target concentrations, and consideration of the potential for airborne dust and soil containing asbestos (and other contaminants) to migrate and accumulate offsite eventually contributing to "background creep" --the incremental increase of overall airborne asbestos concentrations in the areas surrounding the site due to the re-entrainment of asbestos from the settled dust and/or transported soil. In addition to the above, the current Cal/OSHA asbestos regulations related to worker protection will be briefly discussed with respect to their relevancy at NOA sites with an overview of the adaptations to the regulations that were developed as a result of some fairly lengthy discussions with representatives of Cal/OSHA. These adaptations include, among other things, defining how regulated areas (asbestos concentrations over 1%) and "provisionally regulated" areas (less than 1%) are established and treated, what variables need to be considered when attempting to complete a personal exposure assessment, Cal/OSHA Permissible Exposure Limits (PELs) versus site specific permissible exposure limits, allowable work practices, and the qualifications of personnel performing the sampling and analyses of data.
REGIONAL AIR POLLUTION STUDY, QUALITY ASSURANCE AUDITS
RAPS Quality Assurance audits were conducted under this Task Order in continuation of the audit program previously conducted under Task Order No. 58. Quantitative field audits were conducted of the Regional Air Monitoring System (RAMS) Air Monitoring Stations, Local Air Monitorin...
RadNet Air Data From Salt Lake City, UT
This page presents radiation air monitoring and air filter analysis data for Salt Lake City, UT from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
RadNet Air Data From New York City, NY
This page presents radiation air monitoring and air filter analysis data for New York City, NY from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.
Air Quality Monitoring and Sensor Technologies
EPA scientist Ron Williams presented on the features, examination, application, examples, and data quality of continuous monitoring study designs at EPA's Community Air Monitoring Training in July 2015.
NASA Astrophysics Data System (ADS)
Wu, Ted Hsin-Yeh
A region of concern for persistent organic pollutants (POPS) contamination is the Arctic, because of POPs' ability to migrate long distances through the atmosphere toward cold regions, condense out of the atmosphere in those region, deposit in sensitive arctic ecosystems and bioaccumulate in Arctic species. Thus, monitoring of POP concentrations in the Arctic is necessary. However, traditional active air monitoring techniques for POPs may not be feasible in the Arctic, because of logistics and cost. While these issues may be overcome using passive air sampling devices, questions arise about the interpretation of the contaminant concentrations detected using the passive air samplers. In this dissertation semi-permeable membrane devices (SPMDs) containing triolein were characterized and evaluated for use in sampling the ambient air of Alaska for three classes of POPS (organochlorines [OCs], polychlorinated biphenyls [PCBs] and polyaromatic hydrocarbons [PAHs]). In addition, a SPMD-based sampling campaign for POPS was conducted simultaneously at five sites in Alaska during a one-year period. The POP concentrations obtained from the SPMDs were examined to determine the spatial and seasonal variability at the locations. POP concentrations detected in SPMDs were influenced by exposure to sunlight, concentrations of particulate-bound contaminants and changes in temperature. PAH concentrations in a SPMD mounted in a sunlight-blocking deployment unit were higher than in a SPMD exposed to sunlight (P = 0.007). PCB concentrations in SPMD exposed to filtered and non-filtered air were significantly different (P < 0.0001). Derived PAH air concentrations measured using SPMD were within a factor of approximately 7 of those obtained from an air sampler in Barrow, Alaska. The field study showed three distinct groups of samples. Barrow was separated from the sub-Arctic samples and a Homer sample (September-December) was distinct from the sub-Arctic samples. The separations suggest different air masses are being sampled by SPMDs. Lower concentrations of total POPs were measured at the coastal sites than the Interior sites.
Air Pollution Monitoring for Communities Grants
EPA, through its Science to Achieve Results (STAR) grants program is providing funding to six institutions that will advance air monitoring technology while helping communities address unique air quality challenges.
NASA Astrophysics Data System (ADS)
Al-Jeffery, Mohammad O.; Kondou, H.; Belenkevitch, Alexander; Azzeer, Abdallah M.
2002-05-01
The Environmental Protection Agency (EAP) designated phosphorus as hazardous material; it is flammable and poisonous. Phosphorus attacks the respiratory system, liver, kidneys, jaw, teeth, blood, eyes, and skin. Phosphorus is an element that has a high detection limit when using laser-induced breakdown spectroscopy (LIBS) techniques. In order to improve on detection limits, laser-induced fluorescence spectroscopy (LIFS) has been proposed, as an extension to LIBS. The ultimate goal of this work is to use the combined LIBS & LIFS techniques to detect the presence of phosphorus in air and to measure its level. In order to provide 'proof-of-concept' results, the sample used for our experiment was prepared using the 'igniting' strip of a safety match box. The spectrally and temporally resolved detection of the specific atomic emission revealed analytical information about the elemental composition of the sample. A tunable Ti: sapphire laser, at the resonance wavelength of 253.4 nm, was then used to probe the plume by exciting the phosphorus element and we measured the fluorescence from the atoms at 213.62 nm and 214.91 nm. The whole experiment was carried out in a few minutes. We have thus demonstrated for the first time, to our knowledge, the use of LIBS and LIFS in air quality monitoring and in particular for phosphorus detection.
Tsui, Ban C H; Li, Lisa X Y; Pillay, Jennifer J
2006-11-01
Presently, no standardized technique exists to monitor injection pressures during peripheral nerve blocks. Our objective was to determine if a compressed air injection technique, using an in vitro model based on Boyle's law and typical regional anesthesia equipment, could consistently maintain injection pressures below a 1293 mmHg level associated with clinically significant nerve injury. Injection pressures for 20 and 30 mL syringes with various needle sizes ( 18G, 20G, 21 G, 22G, and 24G) were measured in a closed system. A set volume of air was aspirated into a saline-filled syringe and then compressed and maintained at various percentages while pressure was measured. The needle was inserted into the injection port of a pressure sensor, which had attached extension tubing with an injection plug clamped "off". Using linear regression with all data points, the pressure value and 99% confidence interval (CI) at 50% air compression was estimated. The linearity of Boyle's law was demonstrated with a high correlation, r = 0.99, and a slope of 0.984 (99% CI: 0.967-1.001). The net pressure generated at 50% compression was estimated as 744.8 mmHg, with the 99% CI between 729.6 and 760.0 mmHg. The various syringe/needle combinations had similar results. By creating and maintaining syringe air compression at 50% or less, injection pressures will be substantially below the 1293 mmHg threshold considered to be an associated risk factor for clinically significant nerve injury. This technique may allow simple, real-time and objective monitoring during local anesthetic injections while inherently reducing injection speed. Présentement, aucune technique normalisée ne permet de vérifier les pressions d'injection pendant les blocages nerveux périphériques. Nous voulions vérifier si une technique d'injection d'air comprimé, utilisant un modèle in vitro fondé sur la loi de Boyle et du matériel propre à l'anesthésie régionale, pouvait maintenir avec régularité les pressions d'injection sous les 1293 mmHg, pression associée à une lésion nerveuse cliniquement significative. MéTHODE: Les pressions d'injection pour des seringues de 20 et 30 mL et diverses tailles d'aiguilles (18G, 20G, 21G, 22G et 24G) ont été mesurées dans un système fermé. Un volume défini d'air a été aspiré dans une seringue rempli de solution saline, puis comprimé et maintenu à des pourcentages variés pendant la mesure de la pression. L'aiguille a été insérée dans l'ouverture à injection d'un détecteur de pression muni d'une extension avec un bouchon d'injection en position fermée. La valeur de la pression et l'intervalle de confiance de 99 % (IC) pour une compression d'air à 50 % ont été évalués en utilisant une régression linéaire avec tous les points de données. RéSULTATS: La linéarité de la loi de Boyle a été démontrée avec une forte corrélation, r = 0,99 et une pente de 0,984 (IC de 99 % : 0,967-1,001) La pression nette générée sous une compression de 50% a été de 744,8 mmHg avec un IC de 99 % entre 729,6 et 760,0 mmHg. Les diverses combinaisons de seringues et d'aiguilles ont présenté des résultats similaires. En créant et en maintenant dans la seringue une compression d'air à 50% ou moins, les pressions d'injection seront dans l'ensemble sous le seuil des 1293 mmHg associé à un facteur de risque de lésion nerveuse cliniquement significative. Cette technique peut permettre une surveillance simple, objective et en temps réel pendant les injections d'anesthésiques locaux tout en réduisant fondamentalement la vitesse d'injection.
Ali, Mahboob; Athar, Makshoof
2008-01-01
Transportation system has contributed significantly to the development of human civilization; on the other hand it has an enormous impact on the ambient air quality in several ways. In this paper the air and noise pollution at selected sites along three sections of National Highway was monitored. Pakistan National Highway Authority has started a Highway Improvement program for rehabilitations and maintenance of National highways to improve the traffic flows, and would ultimately improve the air quality along highways. The ambient air quality and noise level was monitored at nine different locations along these sections of highways to quantify the air pollution. The duration of monitoring at individual location was 72 h. The most of the sampling points were near the urban or village population, schools or hospitals, in order to quantify the air pollution at most affected locations along these roads. A database consisting of information regarding the source of emission, local metrology and air quality may be created to assess the profile of air quality in the area.
40 CFR 52.74 - Original identification of plan section.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Governor of Alaska on January 18, 1980 as follows: Volume II. Analysis of Problems, Control Actions Section... requirements of Air Quality Monitoring, 40 CFR part 58, subpart C, § 58.20, as follows: Volume II. Analysis of Problems, Control Actions Section V. Ambient Air Monitoring A. Purpose C. Air Monitoring Network E. Annual...
40 CFR 52.70 - Identification of plan.
Code of Federal Regulations, 2013 CFR
2013-07-01
... submitted by the Governor of Alaska on January 18, 1980 as follows: Volume II. Analysis of Problems, Control... requirements of Air Quality Monitoring, 40 CFR part 58, subpart C, § 58.20, as follows: Volume II. Analysis of Problems, Control Actions Section V. Ambient Air Monitoring A. Purpose C. Air Monitoring Network E. Annual...
Abstract. Air pollution measurement technology is advancing rapidly towards small-scale, real-time, wireless detectors, with a potential to significantly change the landscape of air pollution monitoring. The U.S. EPA Office of Research and Development is evaluating and developi...
Carvlin, Graeme N; Lugo, Humberto; Olmedo, Luis; Bejarano, Ester; Wilkie, Alexa; Meltzer, Dan; Wong, Michelle; King, Galatea; Northcross, Amanda; Jerrett, Michael; English, Paul B; Hammond, Donald; Seto, Edmund
2017-12-01
The Imperial County Community Air Monitoring Network was developed as part of a community-engaged research study to provide real-time particulate matter (PM) air quality information at a high spatial resolution in Imperial County, California. The network augmented the few existing regulatory monitors and increased monitoring near susceptible populations. Monitors were both calibrated and field validated, a key component of evaluating the quality of the data produced by the community monitoring network. This paper examines the performance of a customized version of the low-cost Dylos optical particle counter used in the community air monitors compared with both PM 2.5 and PM 10 (particulate matter with aerodynamic diameters <2.5 and <10 μm, respectively) federal equivalent method (FEM) beta-attenuation monitors (BAMs) and federal reference method (FRM) gravimetric filters at a collocation site in the study area. A conversion equation was developed that estimates particle mass concentrations from the native Dylos particle counts, taking into account relative humidity. The R 2 for converted hourly averaged Dylos mass measurements versus a PM 2.5 BAM was 0.79 and that versus a PM 10 BAM was 0.78. The performance of the conversion equation was evaluated at six other sites with collocated PM 2.5 environmental beta-attenuation monitors (EBAMs) located throughout Imperial County. The agreement of the Dylos with the EBAMs was moderate to high (R 2 = 0.35-0.81). The performance of low-cost air quality sensors in community networks is currently not well documented. This paper provides a methodology for quantifying the performance of a next-generation Dylos PM sensor used in the Imperial County Community Air Monitoring Network. This air quality network provides data at a much finer spatial and temporal resolution than has previously been possible with government monitoring efforts. Once calibrated and validated, these high-resolution data may provide more information on susceptible populations, assist in the identification of air pollution hotspots, and increase community awareness of air pollution.
Overview of Emerging Air Sensors
These slides will be presented at the 2014 National Ambient Air Monitoring Conference in Atlanta, GA during August 11-15, 2014. The goal is to provide an overview of air sensor technology and the audience will be primarily state air monitoring agencies and EPA Regions.
Highlights from the Air Sensors 2014 Workshop
In June 2014, the U.S. Environmental Protection Agency (EPA) hosted its fourth next-generation air monitoring workshop to discuss the current state of the science in air sensor technologies and their applications for environmental monitoring, Air Sensors 2014: A New Frontier. Th...
Testing of high-volume sampler inlets for the sampling of atmospheric radionuclides.
Irshad, Hammad; Su, Wei-Chung; Cheng, Yung S; Medici, Fausto
2006-09-01
Sampling of air for radioactive particles is one of the most important techniques used to determine the nuclear debris from a nuclear weapon test in the Earth's atmosphere or those particles vented from underground or underwater tests. Massive-flow air samplers are used to sample air for any indication of radionuclides that are a signature of nuclear tests. The International Monitoring System of the Comprehensive Nuclear Test Ban Treaty Organization includes seismic, hydroacoustic, infrasound, and gaseous xenon isotopes sampling technologies, in addition to radionuclide sampling, to monitor for any violation of the treaty. Lovelace Respiratory Research Institute has developed a large wind tunnel to test the outdoor radionuclide samplers for the International Monitoring System. The inlets for these samplers are tested for their collection efficiencies for different particle sizes at various wind speeds. This paper describes the results from the testing of two radionuclide sampling units used in the International Monitoring System. The possible areas of depositional wall losses are identified and the losses in these areas are determined. Sampling inlet type 1 was tested at 2.2 m s wind speed for 5, 10, and 20-microm aerodynamic diameter particles. The global collection efficiency was about 87.6% for 10-microm particles for sampling inlet type 1. Sampling inlet type 2 was tested for three wind speeds at 0.56, 2.2, and 6.6 m s for 5, 10, and 20-microm aerodynamic diameter particles in two different configurations (sampling head lowered and raised). The global collection efficiencies for these configurations for 10-microm particles at 2.2 m s wind speed were 77.4% and 82.5%, respectively. The sampling flow rate was 600 m h for both sampling inlets.