Science.gov

Sample records for air navigation systems

  1. Autonomous navigation system. [gyroscopic pendulum for air navigation

    NASA Technical Reports Server (NTRS)

    Merhav, S. J. (Inventor)

    1981-01-01

    An inertial navigation system utilizing a servo-controlled two degree of freedom pendulum to obtain specific force components in the locally level coordinate system is described. The pendulum includes a leveling gyroscope and an azimuth gyroscope supported on a two gimbal system. The specific force components in the locally level coordinate system are converted to components in the geographical coordinate system by means of a single Euler transformation. The standard navigation equations are solved to determine longitudinal and lateral velocities. Finally, vehicle position is determined by a further integration.

  2. 76 FR 77939 - Proposed Provision of Navigation Services for the Next Generation Air Transportation System...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-15

    ...The Federal Aviation Administration (FAA) seeks comments on a proposed transition of the U.S. National Airspace System (NAS) navigation infrastructure to enable performance-based navigation (PBN) as part of the Next Generation Air Transportation System (NextGen). The FAA plans to transition from defining airways, routes and procedures using VHF Omni-directional Range (VOR) and other legacy......

  3. Air Navigation. Aerospace Education II.

    ERIC Educational Resources Information Center

    Gromling, F. C.; Mackin, T. E.

    This book, which can be used only in the Air Force ROTC program, elucidates ideas about air navigation techniques. The book is divided into two main parts. The first part describes the earth's surface and different components of navigation. A chapter on charts provides ideas about different kinds of charts and a variety of symbols used in…

  4. INL Autonomous Navigation System

    2005-03-30

    The INL Autonomous Navigation System provides instructions for autonomously navigating a robot. The system permits high-speed autonomous navigation including obstacle avoidance, waypoing navigation and path planning in both indoor and outdoor environments.

  5. Vertical Navigation Control Laws and Logic for the Next Generation Air Transportation System

    NASA Technical Reports Server (NTRS)

    Hueschen, Richard M.; Khong, Thuan H.

    2013-01-01

    A vertical navigation (VNAV) outer-loop control system was developed to capture and track the vertical path segments of energy-efficient trajectories that are being developed for high-density operations in the evolving Next Generation Air Transportation System (NextGen). The VNAV control system has a speed-on-elevator control mode to pitch the aircraft for tracking a calibrated airspeed (CAS) or Mach number profile and a path control mode for tracking the VNAV altitude profile. Mode control logic was developed for engagement of either the speed or path control modes. The control system will level the aircraft to prevent it from flying through a constraint altitude. A stability analysis was performed that showed that the gain and phase margins of the VNAV control system significantly exceeded the design gain and phase margins. The system performance was assessed using a six-deg-of-freedom non-linear transport aircraft simulation and the performance is illustrated with time-history plots of recorded simulation data.

  6. Civil air navigation using GNSS enhanced by wide area satellite based augmentation systems

    NASA Astrophysics Data System (ADS)

    Dautermann, Thomas

    2014-05-01

    Advancement in augmented satellite navigation enables a new class of instrument approach procedures for aircraft. These approaches are based on regional augmentation systems which broadcast corrections via a geostationary satellite. The enhanced GNSS navigation solution using the corrections from the satellite provides the necessary accuracy and integrity to perform approaches with vertical and lateral angular guidance to a given runway threshold. This enables cost effective and simple procedure generation with low descent minima even for small airports. Moreover, it supports high precision en-route navigation and future high precision flight guidance applications.

  7. Navigation Systems for Ablation

    PubMed Central

    Wood, B. J.; Kruecker, J.; Abi-Jaoudeh, N; Locklin, J.; Levy, E.; Xu, S.; Solbiati, L.; Kapoor, A.; Amalou, H.; Venkatesan, A.

    2010-01-01

    Navigation systems, devices and intra-procedural software are changing the way we practice interventional oncology. Prior to the development of precision navigation tools integrated with imaging systems, thermal ablation of hard-to-image lesions was highly dependent upon operator experience, spatial skills, and estimation of positron emission tomography-avid or arterial-phase targets. Numerous navigation systems for ablation bring the opportunity for standardization and accuracy that extends our ability to use imaging feedback during procedures. Existing systems and techniques are reviewed, and specific clinical applications for ablation are discussed to better define how these novel technologies address specific clinical needs, and fit into clinical practice. PMID:20656236

  8. Evaluation of the impact of ionospheric disturbances on air navigation augmentation system using multi-point GPS receivers

    NASA Astrophysics Data System (ADS)

    Omatsu, N.; Otsuka, Y.; Shiokawa, K.; Saito, S.

    2013-12-01

    In recent years, GPS has been utilized for navigation system for airplanes. Propagation delays in the ionosphere due to total electron content (TEC) between GPS satellite and receiver cause large positioning errors. In precision measurement using GPS, the ionospheric delay correction is generally conducted using both GPS L1 and L2 frequencies. However, L2 frequency is not internationally accepted as air navigation band, so it is not available for positioning directly in air navigation. In air navigation, not only positioning accuracy but safety is important, so augmentation systems are required to ensure the safety. Augmentation systems such as the satellite-based augmentation system (SBAS) or the ground-based augmentation system (GBAS) are being developed and some of them are already in operation. GBAS is available in a relatively narrow area around airports. In general, it corrects for the combined effects of multiple sources of positioning errors simultaneously, including satellite clock and orbital information errors, ionospheric delay errors, and tropospheric delay errors, using the differential corrections broadcast by GBAS ground station. However, if the spatial ionospheric delay gradient exists in the area, correction errors remain even after correction by GBAS. It must be a threat to GBAS. In this study, we use the GPS data provided by the Geographical Survey Institute in Japan. From the GPS data, TEC is obtained every 30 seconds. We select 4 observation points from 24.4 to 35.6 degrees north latitude in Japan, and analyze TEC data of these points from 2001 to 2011. Then we reveal dependences of Rate of TEC change Index (ROTI) on latitude, season, and solar activity statistically. ROTI is the root-mean-square deviation of time subtraction of TEC within 5 minutes. In the result, it is the midnight of the spring and the summer of the solar maximum in the point of 26.4 degrees north latitude that the value of ROTI becomes the largest. We think it is caused by

  9. Development of visual-display aid to air navigation

    NASA Technical Reports Server (NTRS)

    Matcovich, T. J.

    1973-01-01

    The developments are discussed in the design of a liquid-crystal, visual display, air navigation aid, which uses two VOR signals to locate the aircraft. The system concepts, liquid crystal materials, stability tests, and the electronic system are described. It is concluded that a navigational aid of this type is technically feasible, but not at the projected low cost.

  10. Onboard Navigation Systems Characteristics

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The space shuttle onboard navigation systems characteristics are described. A standard source of equations and numerical data for use in error analyses and mission simulations related to space shuttle development is reported. The sensor characteristics described are used for shuttle onboard navigation performance assessment. The use of complete models in the studies depend on the analyses to be performed, the capabilities of the computer programs, and the availability of computer resources.

  11. A Common Communications, Navigation and Surveillance Infrastructure for Accommodating Space Vehicles in the Next Generation Air Transportation System

    NASA Technical Reports Server (NTRS)

    VanSuetendael, RIchard; Hayes, Alan; Birr, Richard

    2008-01-01

    Suborbital space flight and space tourism are new potential markets that could significantly impact the National Airspace System (NAS). Numerous private companies are developing space flight capabilities to capture a piece of an emerging commercial space transportation market. These entrepreneurs share a common vision that sees commercial space flight as a profitable venture. Additionally, U.S. space exploration policy and national defense will impose significant additional demands on the NAS. Air traffic service providers must allow all users fair access to limited airspace, while ensuring that the highest levels of safety, security, and efficiency are maintained. The FAA's Next Generation Air Transportation System (NextGen) will need to accommodate spacecraft transitioning to and from space through the NAS. To accomplish this, space and air traffic operations will need to be seamlessly integrated under some common communications, navigation and surveillance (CNS) infrastructure. As part of NextGen, the FAA has been developing the Automatic Dependent Surveillance Broadcast (ADS-B) which utilizes the Global Positioning System (GPS) to track and separate aircraft. Another key component of NextGen, System-Wide Information Management/ Network Enabled Operations (SWIM/NEO), is an open architecture network that will provide NAS data to various customers, system tools and applications. NASA and DoD are currently developing a space-based range (SBR) concept that also utilizes GPS, communications satellites and other CNS assets. The future SBR will have very similar utility for space operations as ADS-B and SWIM has for air traffic. Perhaps the FAA, NASA, and DoD should consider developing a common space-based CNS infrastructure to support both aviation and space transportation operations. This paper suggests specific areas of research for developing a CNS infrastructure that can accommodate spacecraft and other new types of vehicles as an integrated part of NextGen.

  12. 77 FR 50420 - Proposed Provision of Navigation Services for the Next Generation Air Transportation System...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-21

    ... published a Federal Register Notice (76 FR 77939) requesting comments on the FAA's plans for providing PBN... discontinuance of VOR navigation services. Comment #21: Comments from military and general aviation expressed... stakeholders, and the FAA will ] engage stakeholders in the discontinuance process. Comment #23: Military...

  13. Multisensor robot navigation system

    NASA Astrophysics Data System (ADS)

    Persa, Stelian; Jonker, Pieter P.

    2002-02-01

    Almost all robot navigation systems work indoors. Outdoor robot navigation systems offer the potential for new application areas. The biggest single obstacle to building effective robot navigation systems is the lack of accurate wide-area sensors for trackers that report the locations and orientations of objects in an environment. Active (sensor-emitter) tracking technologies require powered-device installation, limiting their use to prepared areas that are relative free of natural or man-made interference sources. The hybrid tracker combines rate gyros and accelerometers with compass and tilt orientation sensor and DGPS system. Sensor distortions, delays and drift required compensation to achieve good results. The measurements from sensors are fused together to compensate for each other's limitations. Analysis and experimental results demonstrate the system effectiveness. The paper presents a field experiment for a low-cost strapdown-IMU (Inertial Measurement Unit)/DGPS combination, with data processing for the determination of 2-D components of position (trajectory), velocity and heading. In the present approach we have neglected earth rotation and gravity variations, because of the poor gyroscope sensitivities of our low-cost ISA (Inertial Sensor Assembly) and because of the relatively small area of the trajectory. The scope of this experiment was to test the feasibility of an integrated DGPS/IMU system of this type and to develop a field evaluation procedure for such a combination.

  14. Flight Test Result for the Ground-Based Radio Navigation System Sensor with an Unmanned Air Vehicle

    PubMed Central

    Jang, Jaegyu; Ahn, Woo-Guen; Seo, Seungwoo; Lee, Jang Yong; Park, Jun-Pyo

    2015-01-01

    The Ground-based Radio Navigation System (GRNS) is an alternative/backup navigation system based on time synchronized pseudolites. It has been studied for some years due to the potential vulnerability issue of satellite navigation systems (e.g., GPS or Galileo). In the framework of our study, a periodic pulsed sequence was used instead of the randomized pulse sequence recommended as the RTCM (radio technical commission for maritime services) SC (special committee)-104 pseudolite signal, as a randomized pulse sequence with a long dwell time is not suitable for applications requiring high dynamics. This paper introduces a mathematical model of the post-correlation output in a navigation sensor, showing that the aliasing caused by the additional frequency term of a periodic pulsed signal leads to a false lock (i.e., Doppler frequency bias) during the signal acquisition process or in the carrier tracking loop of the navigation sensor. We suggest algorithms to resolve the frequency false lock issue in this paper, relying on the use of a multi-correlator. A flight test with an unmanned helicopter was conducted to verify the implemented navigation sensor. The results of this analysis show that there were no false locks during the flight test and that outliers stem from bad dilution of precision (DOP) or fluctuations in the received signal quality. PMID:26569251

  15. Flight Test Result for the Ground-Based Radio Navigation System Sensor with an Unmanned Air Vehicle.

    PubMed

    Jang, Jaegyu; Ahn, Woo-Guen; Seo, Seungwoo; Lee, Jang Yong; Park, Jun-Pyo

    2015-01-01

    The Ground-based Radio Navigation System (GRNS) is an alternative/backup navigation system based on time synchronized pseudolites. It has been studied for some years due to the potential vulnerability issue of satellite navigation systems (e.g., GPS or Galileo). In the framework of our study, a periodic pulsed sequence was used instead of the randomized pulse sequence recommended as the RTCM (radio technical commission for maritime services) SC (special committee)-104 pseudolite signal, as a randomized pulse sequence with a long dwell time is not suitable for applications requiring high dynamics. This paper introduces a mathematical model of the post-correlation output in a navigation sensor, showing that the aliasing caused by the additional frequency term of a periodic pulsed signal leads to a false lock (i.e., Doppler frequency bias) during the signal acquisition process or in the carrier tracking loop of the navigation sensor. We suggest algorithms to resolve the frequency false lock issue in this paper, relying on the use of a multi-correlator. A flight test with an unmanned helicopter was conducted to verify the implemented navigation sensor. The results of this analysis show that there were no false locks during the flight test and that outliers stem from bad dilution of precision (DOP) or fluctuations in the received signal quality. PMID:26569251

  16. 43 CFR 2651.6 - Airport and air navigation facilities.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Airport and air navigation facilities... Village Selections § 2651.6 Airport and air navigation facilities. (a) Every airport and air navigation.... (b) The surface of all other lands of existing airport sites, airway beacons, or other...

  17. 43 CFR 2651.6 - Airport and air navigation facilities.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Airport and air navigation facilities... Village Selections § 2651.6 Airport and air navigation facilities. (a) Every airport and air navigation.... (b) The surface of all other lands of existing airport sites, airway beacons, or other...

  18. 43 CFR 2651.6 - Airport and air navigation facilities.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Airport and air navigation facilities... Village Selections § 2651.6 Airport and air navigation facilities. (a) Every airport and air navigation.... (b) The surface of all other lands of existing airport sites, airway beacons, or other...

  19. 43 CFR 2651.6 - Airport and air navigation facilities.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Airport and air navigation facilities... Village Selections § 2651.6 Airport and air navigation facilities. (a) Every airport and air navigation.... (b) The surface of all other lands of existing airport sites, airway beacons, or other...

  20. 47 CFR 22.365 - Antenna structures; air navigation safety.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 2 2014-10-01 2014-10-01 false Antenna structures; air navigation safety. 22... Antenna structures; air navigation safety. Licensees that own their antenna structures must not allow these antenna structures to become a hazard to air navigation. In general, antenna structure owners...

  1. 47 CFR 22.365 - Antenna structures; air navigation safety.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 2 2011-10-01 2011-10-01 false Antenna structures; air navigation safety. 22... Antenna structures; air navigation safety. Licensees that own their antenna structures must not allow these antenna structures to become a hazard to air navigation. In general, antenna structure owners...

  2. 47 CFR 22.365 - Antenna structures; air navigation safety.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Antenna structures; air navigation safety. 22... Antenna structures; air navigation safety. Licensees that own their antenna structures must not allow these antenna structures to become a hazard to air navigation. In general, antenna structure owners...

  3. 47 CFR 22.365 - Antenna structures; air navigation safety.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 2 2012-10-01 2012-10-01 false Antenna structures; air navigation safety. 22... Antenna structures; air navigation safety. Licensees that own their antenna structures must not allow these antenna structures to become a hazard to air navigation. In general, antenna structure owners...

  4. 47 CFR 22.365 - Antenna structures; air navigation safety.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 2 2013-10-01 2013-10-01 false Antenna structures; air navigation safety. 22... Antenna structures; air navigation safety. Licensees that own their antenna structures must not allow these antenna structures to become a hazard to air navigation. In general, antenna structure owners...

  5. Wellborne inertial navigation system

    SciTech Connect

    Kelsey, J.R.

    1983-01-01

    A phototype wireline tool which includes a downhole inertial platform and a surface computer to spatially map a well is described. The hardware consists of a single-gimbaled inertial platform with accelerometers and gyros to obtain three-axis motion information. The gyroscope and accelerometer outputs are transmitted to a computer at the surface which calculates probe attitude relative to north, east, and vertical. Double integration of the accelerometer data provides the position information. A conventional 7-conductor wireline is used for the system data transmission. System accuracy is enhanced by advances made in the computer software which processes the data received from the tool. The software uses statistical sampling estimation to obtain optimal estimates of the system errors. Measurement errors are determined by periodically stopping the tool during the logging procedure and observing the indicated velocity measurements. This procedure, known as Kalman filtering, results in increased accuracy of the data. Present mapping systems have an X-Y-Z location accuracy of +- 100 to +- 200 feet for a typical well depth of 10,000 feet. Test results show that the new system is accurate to about +- 1 foot per 1000 feet of well depth. Unlike conventional systems, the inertial navigator does not require any sort of projection of the cable length (which may not be accurately known). Also this system provides continuous data throughout the wellbore and logging speeds on the order of 10 ft/sec appear possible. The hardware and software associated with this mapping system are described and the recent field test results are reported.

  6. NASA tracking ship navigation systems

    NASA Technical Reports Server (NTRS)

    Mckenna, J. J.

    1976-01-01

    The ship position and attitude measurement system that was installed aboard the tracking ship Vanguard is described. An overview of the entire system is given along with a description of how precise time and frequency is utilized. The instrumentation is broken down into its basic components. Particular emphasis is given to the inertial navigation system. Each navigation system used, a mariner star tracker, navigation satellite system, Loran C and OMEGA in conjunction with the inertial system is described. The accuracy of each system is compared along with their limitations.

  7. Space shuttle navigation analysis. Volume 2: Baseline system navigation

    NASA Technical Reports Server (NTRS)

    Jones, H. L.; Luders, G.; Matchett, G. A.; Rains, R. G.

    1980-01-01

    Studies related to the baseline navigation system for the orbiter are presented. The baseline navigation system studies include a covariance analysis of the Inertial Measurement Unit calibration and alignment procedures, postflight IMU error recovery for the approach and landing phases, on-orbit calibration of IMU instrument biases, and a covariance analysis of entry and prelaunch navigation system performance.

  8. Selected bibliography of OMEGA, VLF and LF techniques applied to aircraft navigation systems

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A bibliography is presented which includes references to the OMEGA navigation system, very low frequencies, time-frequency measurements, air traffic control, radio navigation, and applications of OMEGA.

  9. 132. STANDARD NAVAL AIR STATIONS CELESTIAL NAVIGATION, ELEVATIONS AND SECTIONS, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    132. STANDARD NAVAL AIR STATIONS CELESTIAL NAVIGATION, ELEVATIONS AND SECTIONS, BUDOCKS, OCTOBER 14, 1943. QP ACC 9689. - Quonset Point Naval Air Station, Roger Williams Way, North Kingstown, Washington County, RI

  10. GPS Auto-Navigation Design for Unmanned Air Vehicles

    NASA Technical Reports Server (NTRS)

    Nilsson, Caroline C. A.; Heinzen, Stearns N.; Hall, Charles E., Jr.; Chokani, Ndaona

    2003-01-01

    A GPS auto-navigation system is designed for Unmanned Air Vehicles. The objective is to enable the air vehicle to be used as a test-bed for novel flow control concepts. The navigation system uses pre-programmed GPS waypoints. The actual GPS position, heading, and velocity are collected by the flight computer, a PC104 system running in Real-Time Linux, and compared with the desired waypoint. The navigator then determines the necessity of a heading correction and outputs the correction in the form of a commanded bank angle, for a level coordinated turn, to the controller system. This controller system consists of 5 controller! (pitch rate PID, yaw damper, bank angle PID, velocity hold, and altitude hold) designed for a closed loop non-linear aircraft model with linear aerodynamic coefficients. The ability and accuracy of using GPS data, is validated by a GPS flight. The autopilots are also validated in flight. The autopilot unit flight validations show that the designed autopilots function as designed. The aircraft model, generated on Matlab SIMULINK is also enhanced by the flight data to accurately represent the actual aircraft.

  11. 47 CFR 24.55 - Antenna structures; air navigation safety.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 2 2014-10-01 2014-10-01 false Antenna structures; air navigation safety. 24... SERVICES PERSONAL COMMUNICATIONS SERVICES Technical Standards § 24.55 Antenna structures; air navigation safety. Licensees that own their antenna structures must not allow these antenna structures to become...

  12. 47 CFR 27.56 - Antenna structures; air navigation safety.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 2 2014-10-01 2014-10-01 false Antenna structures; air navigation safety. 27... SERVICES MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES Technical Standards § 27.56 Antenna structures; air navigation safety. A licensee that owns its antenna structure(s) must not allow such antenna structure(s)...

  13. 47 CFR 24.55 - Antenna structures; air navigation safety.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 2 2013-10-01 2013-10-01 false Antenna structures; air navigation safety. 24... SERVICES PERSONAL COMMUNICATIONS SERVICES Technical Standards § 24.55 Antenna structures; air navigation safety. Licensees that own their antenna structures must not allow these antenna structures to become...

  14. 47 CFR 27.56 - Antenna structures; air navigation safety.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 2 2013-10-01 2013-10-01 false Antenna structures; air navigation safety. 27... SERVICES MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES Technical Standards § 27.56 Antenna structures; air navigation safety. A licensee that owns its antenna structure(s) must not allow such antenna structure(s)...

  15. 47 CFR 24.55 - Antenna structures; air navigation safety.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 2 2011-10-01 2011-10-01 false Antenna structures; air navigation safety. 24... SERVICES PERSONAL COMMUNICATIONS SERVICES Technical Standards § 24.55 Antenna structures; air navigation safety. Licensees that own their antenna structures must not allow these antenna structures to become...

  16. 47 CFR 27.56 - Antenna structures; air navigation safety.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 2 2012-10-01 2012-10-01 false Antenna structures; air navigation safety. 27... SERVICES MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES Technical Standards § 27.56 Antenna structures; air navigation safety. A licensee that owns its antenna structure(s) must not allow such antenna structure(s)...

  17. 47 CFR 27.56 - Antenna structures; air navigation safety.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Antenna structures; air navigation safety. 27... SERVICES MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES Technical Standards § 27.56 Antenna structures; air navigation safety. A licensee that owns its antenna structure(s) must not allow such antenna structure(s)...

  18. 47 CFR 24.55 - Antenna structures; air navigation safety.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 2 2012-10-01 2012-10-01 false Antenna structures; air navigation safety. 24... SERVICES PERSONAL COMMUNICATIONS SERVICES Technical Standards § 24.55 Antenna structures; air navigation safety. Licensees that own their antenna structures must not allow these antenna structures to become...

  19. 47 CFR 24.55 - Antenna structures; air navigation safety.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Antenna structures; air navigation safety. 24... SERVICES PERSONAL COMMUNICATIONS SERVICES Technical Standards § 24.55 Antenna structures; air navigation safety. Licensees that own their antenna structures must not allow these antenna structures to become...

  20. 47 CFR 27.56 - Antenna structures; air navigation safety.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 2 2011-10-01 2011-10-01 false Antenna structures; air navigation safety. 27... SERVICES MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES Technical Standards § 27.56 Antenna structures; air navigation safety. A licensee that owns its antenna structure(s) must not allow such antenna structure(s)...

  1. Integrated navigation method based on inertial navigation system and Lidar

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoyue; Shi, Haitao; Pan, Jianye; Zhang, Chunxi

    2016-04-01

    An integrated navigation method based on the inertial navigational system (INS) and Lidar was proposed for land navigation. Compared with the traditional integrated navigational method and dead reckoning (DR) method, the influence of the inertial measurement unit (IMU) scale factor and misalignment was considered in the new method. First, the influence of the IMU scale factor and misalignment on navigation accuracy was analyzed. Based on the analysis, the integrated system error model of INS and Lidar was established, in which the IMU scale factor and misalignment error states were included. Then the observability of IMU error states was analyzed. According to the results of the observability analysis, the integrated system was optimized. Finally, numerical simulation and a vehicle test were carried out to validate the availability and utility of the proposed INS/Lidar integrated navigational method. Compared with the test result of a traditional integrated navigation method and DR method, the proposed integrated navigational method could result in a higher navigation precision. Consequently, the IMU scale factor and misalignment error were effectively compensated by the proposed method and the new integrated navigational method is valid.

  2. Navigation systems. [for interplanetary flight

    NASA Technical Reports Server (NTRS)

    Jordan, J. F.

    1985-01-01

    The elements of the measurement and communications network comprising the global deep space navigation system (DSN) for NASA missions are described. Among the measurement systems discussed are: VLBI, two-way Doppler and range measurements, and optical measurements carried out on board the spacecraft. Processing of navigation measurement is carried out using two modules: an N-body numerical integration of the trajectory (and state transition partial derivatives) based on pre-guessed initial conditions; and partial derivatives of simulated observables corresponding to each actual observation. Calculations of velocity correction parameters is performed by precise modelling of all physical phenomena influencing the observational measurements, including: planetary motions; tracking station locations, gravity field structure, and transmission media effects. Some of the contributions to earth-relative orbit estimate errors for the Doppler/range system on board Voyager are discussed in detail. A line drawing of the DSN navigation system is provided.

  3. 78 FR 68861 - Certain Navigation Products, Including GPS Devices, Navigation and Display Systems, Radar Systems...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-15

    ..., Navigational Aids, Mapping Systems and Related Software; Institution of Investigation Pursuant to 19 U.S.C... and display systems, radar systems, navigational aids, mapping systems and related software by reason... products, including GPS devices, navigation and display systems, radar systems, navigational aids,...

  4. Aircraft Instrument, Fire Protection, Warning, Communication, Navigation and Cabin Atmosphere Control System (Course Outline), Aviation Mechanics 3 (Air Frame): 9067.04.

    ERIC Educational Resources Information Center

    Dade County Public Schools, Miami, FL.

    This document presents an outline for a 135-hour course designed to familiarize the student with manipulative skills and theoretical knowledge concerning aircraft instrument systems like major flight and engine instruments; fire protection and fire fighting systems; warning systems and navigation systems; aircraft cabin control systems, such as…

  5. Lunar roving vehicle navigation system performance review

    NASA Technical Reports Server (NTRS)

    Smith, E. C.; Mastin, W. C.

    1973-01-01

    The design and operation of the lunar roving vehicle (LRV) navigation system are briefly described. The basis for the premission LRV navigation error analysis is explained and an example included. The real time mission support operations philosophy is presented. The LRV navigation system operation and accuracy during the lunar missions are evaluated.

  6. 47 CFR 87.395 - Plan for the Security Control of Air Traffic and Air Navigation Aids (Short Title: SCATANA).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... and Air Navigation Aids (Short Title: SCATANA). 87.395 Section 87.395 Telecommunication FEDERAL... Communications § 87.395 Plan for the Security Control of Air Traffic and Air Navigation Aids (Short Title: SCATANA). (a) The Plan for the Security Control of Air Traffic and Air Navigation Aids (SCATANA)...

  7. 47 CFR 87.395 - Plan for the Security Control of Air Traffic and Air Navigation Aids (Short Title: SCATANA).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... and Air Navigation Aids (Short Title: SCATANA). 87.395 Section 87.395 Telecommunication FEDERAL... Communications § 87.395 Plan for the Security Control of Air Traffic and Air Navigation Aids (Short Title: SCATANA). (a) The Plan for the Security Control of Air Traffic and Air Navigation Aids (SCATANA)...

  8. 47 CFR 87.395 - Plan for the Security Control of Air Traffic and Air Navigation Aids (Short Title: SCATANA).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... and Air Navigation Aids (Short Title: SCATANA). 87.395 Section 87.395 Telecommunication FEDERAL... Communications § 87.395 Plan for the Security Control of Air Traffic and Air Navigation Aids (Short Title: SCATANA). (a) The Plan for the Security Control of Air Traffic and Air Navigation Aids (SCATANA)...

  9. 47 CFR 87.395 - Plan for the Security Control of Air Traffic and Air Navigation Aids (Short Title: SCATANA).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... and Air Navigation Aids (Short Title: SCATANA). 87.395 Section 87.395 Telecommunication FEDERAL... Communications § 87.395 Plan for the Security Control of Air Traffic and Air Navigation Aids (Short Title: SCATANA). (a) The Plan for the Security Control of Air Traffic and Air Navigation Aids (SCATANA)...

  10. 47 CFR 87.395 - Plan for the Security Control of Air Traffic and Air Navigation Aids (Short Title: SCATANA).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... and Air Navigation Aids (Short Title: SCATANA). 87.395 Section 87.395 Telecommunication FEDERAL... Communications § 87.395 Plan for the Security Control of Air Traffic and Air Navigation Aids (Short Title: SCATANA). (a) The Plan for the Security Control of Air Traffic and Air Navigation Aids (SCATANA)...

  11. Navigation system for flexible endoscopes

    NASA Astrophysics Data System (ADS)

    Hummel, Johann; Figl, Michael; Birkfellner, Wolfgang; Häfner, Michael; Kollmann, Christian; Bergmann, Helmar

    2003-05-01

    Endoscopic Ultrasound (EUS) features flexible endoscopes equipped with a radial or linear array scanhead allowing high resolution examination of organs adjacent to the upper gastrointestinal tract. An optical system based on fibre-glass or a CCD-chip allows additional orientation. However, 3-dimensional orientation and correct identification of the various anatomical structures may be difficult. It therefore seems desirable to merge real-time US images with high resolution CT or MR images acquired prior to EUS to simplify navigation during the intervention. The additional information provided by CT or MR images might facilitate diagnosis of tumors and, ultimately, guided puncture of suspicious lesions. We built a grid with 15 plastic spheres and measured their positions relatively to five fiducial markers placed on the top of the grid. For this measurement we used an optical tracking system (OTS) (Polaris, NDI, Can). Two sensors of an electromagnetic tracking system (EMTS) (Aurora, NDI, Can) were mounted on a flexible endoscope (Pentax GG 38 UX, USA) to enable a free hand ultrasound calibration. To determine the position of the plastic spheres in the emitter coordinate system of the EMTS we applied a point-to-point registration (Horn) using the coordinates of the fiducial markers in both coordinate systems (OTS and EMTS). For the transformation between EMTS to the CT space the Horn algorithm was adopted again using the fiducial markers. Visualization was enabled by the use of the AVW-4.0 library (Biomedical Imaging Resource, Mayo Clinic, Rochester/MN, USA). To evaluate the suitability of our new navigation system we measured the Fiducial Registration Error (FRE) of the diverse registrations and the Target Registration Error (TRE) for the complete transformation from the US space to the CT space. The FRE for the ultrasound calibration amounted to 4.3 mm +/- 4.2 mm, resulting from 10 calibration procedures. For the transformation from the OTS reference system to the

  12. Autonomous navigation system and method

    SciTech Connect

    Bruemmer, David J; Few, Douglas A

    2009-09-08

    A robot platform includes perceptors, locomotors, and a system controller, which executes instructions for autonomously navigating a robot. The instructions repeat, on each iteration through an event timing loop, the acts of defining an event horizon based on the robot's current velocity, detecting a range to obstacles around the robot, testing for an event horizon intrusion by determining if any range to the obstacles is within the event horizon, and adjusting rotational and translational velocity of the robot accordingly. If the event horizon intrusion occurs, rotational velocity is modified by a proportion of the current rotational velocity reduced by a proportion of the range to the nearest obstacle and translational velocity is modified by a proportion of the range to the nearest obstacle. If no event horizon intrusion occurs, translational velocity is set as a ratio of a speed factor relative to a maximum speed.

  13. Learning at Air Navigation Services after Initial Training

    ERIC Educational Resources Information Center

    Teperi, Anna-Maria; Leppanen, Anneli

    2010-01-01

    Purpose: This study aims to find out the means used for individual, group and organizational learning at work at one air navigation service provider after the initial training period. The study also aims to find out what practices need to be improved to enhance learning at work. Design/methodology/approach: The data for the study were collected…

  14. A wellbore inertial navigation system

    SciTech Connect

    Kelsey, J.R.

    1983-02-01

    A prototype wireline tool which includes a downhole inertial platform and a surface computer to spatially map a well is described. The hardware consists of a single-gimballed inertial platform with accelerometers and gyros to obtain three-axis motion information. The gyroscope and accelerometer outputs are transmitted to a computer at the surface which calculates probe attitude relative to north, east, and vertical. Double integration of the accelerometer data provides the position information. A conventional 7-conductor wireline is used for the system data transmission. System accuracy is enhanced by advances made in the computer software which processes the data received from the tool. The software uses statistical sampling estimation to obtain optimal estimates of the system errors. Measurement errors are determined by periodically stopping the tool during the logging procedure and observing the indicated velocity measurements. This procedure, known as Kalman filtering, results in increased accuracy of the data. Present mapping systems have an X-Y-Z location accuracy of 100 to 200 feet for a typical well depth of 10,000 feet. Test results show that the new system is accurate to about 1 foot per 1000 feet of well depth. Unlike conventional systems, the inertial navigator does not require any sort of projection of the cable length (which may not be accurately known). Also, this system provides continuous data throughout the wellbore and logging speeds on the order of 10 ft/sec appear possible. The hardware and software associated with this mapping system are described and the recent field test results are reported.

  15. Spatial Database Modeling for Indoor Navigation Systems

    NASA Astrophysics Data System (ADS)

    Gotlib, Dariusz; Gnat, Miłosz

    2013-12-01

    For many years, cartographers are involved in designing GIS and navigation systems. Most GIS applications use the outdoor data. Increasingly, similar applications are used inside buildings. Therefore it is important to find the proper model of indoor spatial database. The development of indoor navigation systems should utilize advanced teleinformation, geoinformatics, geodetic and cartographical knowledge. The authors present the fundamental requirements for the indoor data model for navigation purposes. Presenting some of the solutions adopted in the world they emphasize that navigation applications require specific data to present the navigation routes in the right way. There is presented original solution for indoor data model created by authors on the basis of BISDM model. Its purpose is to expand the opportunities for use in indoor navigation.

  16. 14 CFR 171.61 - Air navigation certificate: Revocation and termination.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Air navigation certificate: Revocation and... TRANSPORTATION (CONTINUED) NAVIGATIONAL FACILITIES NON-FEDERAL NAVIGATION FACILITIES True Lights § 171.61 Air navigation certificate: Revocation and termination. (a) Except as provided in paragraph (b) of this...

  17. 14 CFR 171.61 - Air navigation certificate: Revocation and termination.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Air navigation certificate: Revocation and... TRANSPORTATION (CONTINUED) NAVIGATIONAL FACILITIES NON-FEDERAL NAVIGATION FACILITIES True Lights § 171.61 Air navigation certificate: Revocation and termination. (a) Except as provided in paragraph (b) of this...

  18. 14 CFR 171.61 - Air navigation certificate: Revocation and termination.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Air navigation certificate: Revocation and... TRANSPORTATION (CONTINUED) NAVIGATIONAL FACILITIES NON-FEDERAL NAVIGATION FACILITIES True Lights § 171.61 Air navigation certificate: Revocation and termination. (a) Except as provided in paragraph (b) of this...

  19. A STOL terminal area navigation system

    NASA Technical Reports Server (NTRS)

    Neuman, F.; Warner, D. N., Jr.

    1974-01-01

    The mechanization and performance of a STOL terminal area navigation system are described. The purpose of the navigation system is to allow flying with precision 4D-guidance along complex flight paths in the terminal area, and to develop requirements for STOL operations in the 1980s. The navigation aids include an experimental microwave landing system, MODILS. The systems description begins with the navigation aids. It is shown how the data are transformed and combined with other data to obtain position and velocity estimates. Also presented are some of the design changes and other features that were introduced as a result of flight testing. The various ways of displaying navigation-derived data are given. Finally, simulator and flight test results are discussed.

  20. Civil satellite navigation and location systems

    NASA Astrophysics Data System (ADS)

    Blanchard, W. F.

    1989-05-01

    The use of satellites for civil navigation and location, including satellites not necessarily launched for that purpose, is reviewed. In particular, attention is given to differences between civil and military satellites; civil use of military systems and the associated commercial considerations and regulatory issues; the use of communication satellites; and radiodetermination satellite service based on geostationary satellites. The discussion also covers integration with ground-based radio-navigation systems; existing radio-navigation satellite systems; and the Starfix, Geostar/Locstar, Starfind, Navsat, and Rexstar systems.

  1. Integration of Omega and satellite navigation systems

    NASA Astrophysics Data System (ADS)

    Schlachta, Henry B.

    An extensive series of laboratory tests and flight trials has established that the hybrid Omega/VLF/GPS system effectively applies GPS to the enhancement of Omega with a cost-effective operator installation. The accuracy enhancement thus achieved also increases the reliability of navigation and furnishes aviation fuel savings superior to those of Omega, as a result of reduced flight-path wavering. The prospective GPS/GLONASS navigation system currently undergoing definition will be the first certifiable as a sole means on navigation; the Omega/VLF/GPS hybrid can serve as a transitional system.

  2. NFC internal: an indoor navigation system.

    PubMed

    Ozdenizci, Busra; Coskun, Vedat; Ok, Kerem

    2015-01-01

    Indoor navigation systems have recently become a popular research field due to the lack of GPS signals indoors. Several indoors navigation systems have already been proposed in order to eliminate deficiencies; however each of them has several technical and usability limitations. In this study, we propose NFC Internal, a Near Field Communication (NFC)-based indoor navigation system, which enables users to navigate through a building or a complex by enabling a simple location update, simply by touching NFC tags those are spread around and orient users to the destination. In this paper, we initially present the system requirements, give the design details and study the viability of NFC Internal with a prototype application and a case study. Moreover, we evaluate the performance of the system and compare it with existing indoor navigation systems. It is seen that NFC Internal has considerable advantages and significant contributions to existing indoor navigation systems in terms of security and privacy, cost, performance, robustness, complexity, user preference and commercial availability. PMID:25825976

  3. NFC Internal: An Indoor Navigation System

    PubMed Central

    Ozdenizci, Busra; Coskun, Vedat; Ok, Kerem

    2015-01-01

    Indoor navigation systems have recently become a popular research field due to the lack of GPS signals indoors. Several indoors navigation systems have already been proposed in order to eliminate deficiencies; however each of them has several technical and usability limitations. In this study, we propose NFC Internal, a Near Field Communication (NFC)-based indoor navigation system, which enables users to navigate through a building or a complex by enabling a simple location update, simply by touching NFC tags those are spread around and orient users to the destination. In this paper, we initially present the system requirements, give the design details and study the viability of NFC Internal with a prototype application and a case study. Moreover, we evaluate the performance of the system and compare it with existing indoor navigation systems. It is seen that NFC Internal has considerable advantages and significant contributions to existing indoor navigation systems in terms of security and privacy, cost, performance, robustness, complexity, user preference and commercial availability. PMID:25825976

  4. Air Navigation. Flying Training. AFM 51-40. NAVAIR 00-80V-49.

    ERIC Educational Resources Information Center

    Air Training Command, Randolph AFB, TX.

    This manual provides information on all phases of air navigation for navigators and student navigators in training. It develops the art of navigation from the simplest concepts to the most advanced procedures and techniques. The text contains explanations on how to measure, map, and chart the earth; how to use basic instruments to obtain…

  5. Semiotic evaluation of Lithuania military air navigation charts

    NASA Astrophysics Data System (ADS)

    Ovodas, Donatas; Česnulevičius, Algimantas

    2014-06-01

    Research of semiotic aspects Lithuanian military air navigation charts was based on the semantic, graphic and information load analysis. The aim of semantic analysis was to determine how the conventional cartographical symbols, used in air navigation charts, correspond with carto-linguistic and carto-semiotic requirements. The analysis of all the markings was performed complex and collected by questionnaire were interviewed various respondents: pilots, cartographers and other chart users. The researches seek two aims: evaluate information and graphical load of military air navigation charts. Information load evaluated to calculate all objects and phenomenon, which was in 25 cm² of map. Charts analysis showed that in low flight charts (LFC) average information load are 4 - 5 times richer than in the operational maps. Map signs optimization on LFC has to be managed very carefully, choosing signs that can reduce the load of information and helps for the information transfer process. Graphical load of maps evaluated of aeronautical maps is not great (5 - 12%) and does not require reduction the information load and generalization of charts. Air navigation charts analysis pointed that not all air navigation sings correspond carto-semiotic requirements and must be improved. The authors suggested some new sings for military air navigation chart, which are simpler, equivalent to human psychophysical perception criteria, creates faster communication and less load on the chart. Badania semiotycznych aspektów litewskich wojskowych map żeglugi powietrznej bazowały na semantycznej, graficznej i informacyjnej analizie treści tych map. Celem analizy semantycznej było określenie na ile tradycyjne symbole kartograficzne stosowane na mapach nawigacji lotniczej są zgodne z wymogami języka kartograficznego oraz zasadami stosowania znaków kartograficznych. Powyższe analizy przeprowadzono w sposób kompleksowy, informacje zebrano za pomocą ankiet, przeprowadzając wywiady w r

  6. The orbiter air data system

    NASA Technical Reports Server (NTRS)

    Hillje, E. R.

    1985-01-01

    Air data parameters are required during Orbiter atmospheric entry for use by the autoguidance, navigation, and flight control systems, and for crew displays. Conventional aircraft calibrations of the Orbiter air data system were not practicable for the Space Shuttle, therefore extensive wind tunnel testing was required to give confidence in the preflight calibrations. Many challenges became apparent as the program developed; in the overall system design, in the wind tunnel testing program, in the implementation of the air data system calibration, and in the use of the flight data to modify the wind tunnel results. These challenges are discussed along with the methods used to solve the problems.

  7. The Mathematics of Navigating the Solar System

    NASA Technical Reports Server (NTRS)

    Hintz, Gerald

    2000-01-01

    In navigating spacecraft throughout the solar system, the space navigator relies on three academic disciplines - optimization, estimation, and control - that work on mathematical models of the real world. Thus, the navigator determines the flight path that will consume propellant and other resources in an efficient manner, determines where the craft is and predicts where it will go, and transfers it onto the optimal trajectory that meets operational and mission constraints. Mission requirements, for example, demand that observational measurements be made with sufficient precision that relativity must be modeled in collecting and fitting (the estimation process) the data, and propagating the trajectory. Thousands of parameters are now determined in near real-time to model the gravitational forces acting on a spacecraft in the vicinity of an irregularly shaped body. Completing these tasks requires mathematical models, analyses, and processing techniques. Newton, Gauss, Lambert, Legendre, and others are justly famous for their contributions to the mathematics of these tasks. More recently, graduate students participated in research to update the gravity model of the Saturnian system, including higher order gravity harmonics, tidal effects, and the influence of the rings. This investigation was conducted for the Cassini project to incorporate new trajectory modeling features in the navigation software. The resulting trajectory model will be used in navigating the 4-year tour of the Saturnian satellites. Also, undergraduate students are determining the ephemerides (locations versus time) of asteroids that will be used as reference objects in navigating the New Millennium's Deep Space 1 spacecraft autonomously.

  8. Testing Microwave Landing Systems With Satellite Navigation

    NASA Technical Reports Server (NTRS)

    Kiriazes, John J.

    1990-01-01

    Less time and equipment needed to perform tests. Satellite-based Global Positioning System (GPS) measures accuracy of microwave scanning-beam landing system (MSBLS) at airports used to support Shuttle landings. Provides time and three-dimensional information on position and velocity with unprecedented accuracy. Useful for testing other electronic navigation aids like LORAN, TACAN and microwave landing systems (MLS).

  9. Navigation of robotic system using cricket motes

    NASA Astrophysics Data System (ADS)

    Patil, Yogendra J.; Baine, Nicholas A.; Rattan, Kuldip S.

    2011-06-01

    This paper presents a novel algorithm for self-mapping of the cricket motes that can be used for indoor navigation of autonomous robotic systems. The cricket system is a wireless sensor network that can provide indoor localization service to its user via acoustic ranging techniques. The behavior of the ultrasonic transducer on the cricket mote is studied and the regions where satisfactorily distance measurements can be obtained are recorded. Placing the motes in these regions results fine-grain mapping of the cricket motes. Trilateration is used to obtain a rigid coordinate system, but is insufficient if the network is to be used for navigation. A modified SLAM algorithm is applied to overcome the shortcomings of trilateration. Finally, the self-mapped cricket motes can be used for navigation of autonomous robotic systems in an indoor location.

  10. Inertial navigation sensor integrated obstacle detection system

    NASA Technical Reports Server (NTRS)

    Bhanu, Bir (Inventor); Roberts, Barry A. (Inventor)

    1992-01-01

    A system that incorporates inertial sensor information into optical flow computations to detect obstacles and to provide alternative navigational paths free from obstacles. The system is a maximally passive obstacle detection system that makes selective use of an active sensor. The active detection typically utilizes a laser. Passive sensor suite includes binocular stereo, motion stereo and variable fields-of-view. Optical flow computations involve extraction, derotation and matching of interest points from sequential frames of imagery, for range interpolation of the sensed scene, which in turn provides obstacle information for purposes of safe navigation.

  11. Cloud Absorption Radiometer Autonomous Navigation System - CANS

    NASA Technical Reports Server (NTRS)

    Kahle, Duncan; Gatebe, Charles; McCune, Bill; Hellwig, Dustan

    2013-01-01

    CAR (cloud absorption radiometer) acquires spatial reference data from host aircraft navigation systems. This poses various problems during CAR data reduction, including navigation data format, accuracy of position data, accuracy of airframe inertial data, and navigation data rate. Incorporating its own navigation system, which included GPS (Global Positioning System), roll axis inertia and rates, and three axis acceleration, CANS expedites data reduction and increases the accuracy of the CAR end data product. CANS provides a self-contained navigation system for the CAR, using inertial reference and GPS positional information. The intent of the software application was to correct the sensor with respect to aircraft roll in real time based upon inputs from a precision navigation sensor. In addition, the navigation information (including GPS position), attitude data, and sensor position details are all streamed to a remote system for recording and later analysis. CANS comprises a commercially available inertial navigation system with integral GPS capability (Attitude Heading Reference System AHRS) integrated into the CAR support structure and data system. The unit is attached to the bottom of the tripod support structure. The related GPS antenna is located on the P-3 radome immediately above the CAR. The AHRS unit provides a RS-232 data stream containing global position and inertial attitude and velocity data to the CAR, which is recorded concurrently with the CAR data. This independence from aircraft navigation input provides for position and inertial state data that accounts for very small changes in aircraft attitude and position, sensed at the CAR location as opposed to aircraft state sensors typically installed close to the aircraft center of gravity. More accurate positional data enables quicker CAR data reduction with better resolution. The CANS software operates in two modes: initialization/calibration and operational. In the initialization/calibration mode

  12. The Taxiway Navigation and Situation Awareness (T-NASA) System

    NASA Technical Reports Server (NTRS)

    Foyle, David C.; Sridhar, Banavar (Technical Monitor)

    1997-01-01

    The goal of NASA's Terminal Area Productivity (TAP) Low-Visibility Landing and Surface Operations (LVLASO) subelement is to improve the efficiency of airport surface operations for commercial aircraft operating in weather conditions to Category IIIB while maintaining a high degree of safety. Currently, surface operations are one of the least technologically sophisticated components of the air transport system, being conducted in the 1990's with the same basic technology as in the 1930's. Pilots are given little or no explicit information about their current position, and routing information is limited to ATC communications and airport charts. In TAP/LVLASO, advanced technologies such as satellite navigation systems, digital data communications, advanced information presentation technology, and ground surveillance systems will be integrated into flight deck displays to enable expeditious and safe traffic movement on the airport surface. The cockpit display suite is called the T-NASA (Taxiway Navigation and Situation Awareness) System. This system has three integrated components: 1) Moving Map track-up airport surface display with own-ship, traffic and graphical route guidance 2) Scene-Linked Symbology - route/taxi information virtually projected via a Head-up Display (HUD) onto the forward scene; and, 3) 3-D Audio Ground Collision Avoidance and Navigation system - spatially-localized auditory traffic and navigation alerts. In the current paper, the design philosophy of the T-NASA system will be presented, and the T-NASA system display components described.

  13. Autonomous system for cross-country navigation

    NASA Astrophysics Data System (ADS)

    Stentz, Anthony; Brumitt, Barry L.; Coulter, R. C.; Kelly, Alonzo

    1993-05-01

    Autonomous cross-country navigation is essential for outdoor robots moving about in unstructured environments. Most existing systems use range sensors to determine the shape of the terrain, plan a trajectory that avoids obstacles, and then drive the trajectory. Performance has been limited by the range and accuracy of sensors, insufficient vehicle-terrain interaction models, and the availability of high-speed computers. As these elements improve, higher- speed navigation on rougher terrain becomes possible. We have developed a software system for autonomous navigation that provides for greater capability. The perception system supports a large braking distance by fusing multiple range images to build a map of the terrain in front of the vehicle. The system identifies range shadows and interpolates undersamples regions to account for rough terrain effects. The motion planner reduces computational complexity by investigating a minimum number of trajectories. Speeds along the trajectory are set to provide for dynamic stability. The entire system was tested in simulation, and a subset of the capability was demonstrated on a real vehicle. Results to date include a continuous 5.1 kilometer run across moderate terrain with obstacles. This paper begins with the applications, prior work, limitations, and current paradigms for autonomous cross-country navigation, and then describes our contribution to the area.

  14. Navigating the system governance maze.

    PubMed

    Savage, T J

    1987-01-01

    Health care system governance today is a complex maze of concerns that assume a unique character in Catholic-sponsored multi-institutional systems. Most Catholic health care systems began with a common sponsor or mission and several shared services and gradually moved from separately incorporated entities to a system with few centralized operating functions but a governing body between the local facilities and the sponsoring religious institute. The next step was development of a managed system with consolidated services and centralized decision making. Now, many systems are attempting the most important and difficult effort--systemwide strategic planning. The phases described have required a rethinking of governance structures, and conflicts often arise during restructuring. Such turmoil requires many Catholic health care systems to develop a clearer sense of direction and purpose. To achieve their objectives, system leaders can use a governance compass that has five key points: Information. Boards must determine what they need to know, where to secure this information, and what form the information should take. Agenda. Boards must make reflective and intentional use of their agenda by reviewing and categorizing agenda items discussed in the past 12 months and establishing an agenda plan for the next 12 months. Structural mechanisms. Boards must decide structural issues such as relationships between system board and local boards, sizes of boards, and kinds of committees needed. Culture. Boards should reflect on their culture--values and traditions that have characterized them in the past--to assess whether changes are needed to strengthen or improve the culture.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:10280354

  15. New mechanization equations for aided inertial navigation systems

    NASA Technical Reports Server (NTRS)

    Schmidt, S. F.; Bjorkman, W. S.; Conrad, B.

    1973-01-01

    Inertial navigation equations are developed which use area navigation (RNAV) waypoints and runway references as coodinate centers. The formulation is designed for aided inertial navigation systems and gives a high numerical accuracy through all phases of flight. A new formulation of the error equations for inertial navigation systems is also presented. This new formulation reduces numerical calculations in the use of Kalman filters for aided inertial navigation systems.

  16. Autonomous integrated navigation method based on the strapdown inertial navigation system and Lidar

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoyue; Lin, Zhili; Zhang, Chunxi

    2014-07-01

    An integrated navigation method based on the strapdown inertial navigation system (SINS) and Doppler Lidar was presented and its validity is demonstrated by practical experiments. A very effective and independent integrated navigation mode is realized that both an inertial navigation system (INS) and Lidar are not interfered with or screened by electromagnetic waves. In our work, the SINS error model was first introduced, and the velocity error model was transformed into body reference coordinates. Then the expression for measurement model of SINS/Lidar integrated navigation was deduced under Lidar reference coordinates. For application of land or vehicle navigation, the expression for the measurement model was simplified, and observation analysis was carried out. Finally, numerical simulation and vehicle test results were carried out to validate the availability and utility of the proposed SINS/Lidar integrated navigation method for land navigation.

  17. Redundant Strapdown Laser Gyro Navigation System

    NASA Technical Reports Server (NTRS)

    Mcpherson, B. W.; Walls, B. F.; White, J. B.

    1976-01-01

    For the last several years, NASA has pursued the development of low-cost high-reliability inertial navigation systems that would satisfy a broad spectrum of future space and avionics missions. Two specific programs have culminated in the construction of a Redundant Strapdown Laser Gyro Navigation System. These two programs were for development of a space ultrareliable modular computer (SUMC) and a redundant laser gyro inertial measurement unit (IMU). The SUMC is a digital computer that employs state-of-the-art large-scale integrated circuits configured in a functional modular breakdown. The redundant laser gyro IMU is a six-pack strapdown sensor package in a dodecahedron configuration which uses six laser gyros to provide incremental angular positions and six accelerometers for linear velocity outputs. The sensor arrangement allows automatic accommodation of two failures; a third failure can be tolerated provided it can be determined. The navigation system also includes redundant power supplies, built-in test-equipment (BITE) circuits for failure detection, and software which provides for navigation, redundancy management, and automatic calibration and alignment.

  18. Introduction to Global Navigation Satellite System

    NASA Technical Reports Server (NTRS)

    Moreau, Michael

    2005-01-01

    This viewgraph presentation reviews the fundamentals of satellite navigation, and specifically how GPS works. It presents an overview and status of Global Positioning System, for both the current GPS, and plans to modernize it in the future. There is also a overview and status of other Global Navigation Satellite System (GNSS), specifically GLONASS, Galileo, and QZSS. There is also a review of Satellite based time transfer techniques. The topic is of interest to the Time and Frequency Community, because the Global Positioning system has become the primary system for distributing Time and frequency globally, and because it allows users to synchronize clocks and calibrate and control oscillators in any location that has a GPS antenna.

  19. Visual navigation system for autonomous indoor blimps

    NASA Astrophysics Data System (ADS)

    Campos, Mario F.; de Souza Coelho, Lucio

    1999-07-01

    Autonomous dirigibles - aerial robots that are a blimp controlled by computer based on information gathered by sensors - are a new and promising research field in Robotics, offering several original work opportunities. One of them is the study of visual navigation of UAVs. In the work described in this paper, a Computer Vision and Control system was developed to perform automatically very simple navigation task for a small indoor blimp. The vision system is able to track artificial visual beacons - objects with known geometrical properties - and from them a geometrical methodology can extract information about orientation of the blimp. The tracking of natural landmarks is also a possibility for the vision technique developed. The control system uses that data to keep the dirigible on a programmed orientation. Experimental results showing the correct and efficient functioning of the system are shown and have your implications and future possibilities discussed.

  20. Obstacle-avoiding navigation system

    DOEpatents

    Borenstein, Johann; Koren, Yoram; Levine, Simon P.

    1991-01-01

    A system for guiding an autonomous or semi-autonomous vehicle through a field of operation having obstacles thereon to be avoided employs a memory for containing data which defines an array of grid cells which correspond to respective subfields in the field of operation of the vehicle. Each grid cell in the memory contains a value which is indicative of the likelihood, or probability, that an obstacle is present in the respectively associated subfield. The values in the grid cells are incremented individually in response to each scan of the subfields, and precomputation and use of a look-up table avoids complex trigonometric functions. A further array of grid cells is fixed with respect to the vehicle form a conceptual active window which overlies the incremented grid cells. Thus, when the cells in the active window overly grid cell having values which are indicative of the presence of obstacles, the value therein is used as a multiplier of the precomputed vectorial values. The resulting plurality of vectorial values are summed vectorially in one embodiment of the invention to produce a virtual composite repulsive vector which is then summed vectorially with a target-directed vector for producing a resultant vector for guiding the vehicle. In an alternative embodiment, a plurality of vectors surrounding the vehicle are computed, each having a value corresponding to obstacle density. In such an embodiment, target location information is used to select between alternative directions of travel having low associated obstacle densities.

  1. Lunar Navigation Determination System - LaNDS

    NASA Technical Reports Server (NTRS)

    Quinn, David; Talabac, Stephen

    2012-01-01

    A portable comprehensive navigational system has been developed that both robotic and human explorers can use to determine their location, attitude, and heading anywhere on the lunar surface independent of external infrastructure (needs no Lunar satellite network, line of sight to the Sun or Earth, etc.). The system combines robust processing power with an extensive topographical database to create a real-time atlas (GIS Geospatial Information System) that is able to autonomously control and monitor both single unmanned rovers and fleets of rovers, as well as science payload stations. The system includes provisions for teleoperation and tele-presence. The system accepts (but does not require) inputs from a wide range of sensors. A means was needed to establish a location when the search is taken deep in a crater (looking for water ice) and out of view of Earth or any other references. A star camera can be employed to determine the user's attitude in menial space and stellar map in body space. A local nadir reference (e.g., an accelerometer that orients the nadir vector in body space) can be used in conjunction with a digital ephemeris and gravity model of the Moon to isolate the latitude, longitude, and azimuth of the user on the surface. That information can be used in conjunction with a Lunar GIS and advanced navigation planning algorithms to aid astronauts (or other assets) to navigate on the Lunar surface.

  2. Integrated communications and optical navigation system

    NASA Astrophysics Data System (ADS)

    Mueller, J.; Pajer, G.; Paluszek, M.

    2013-12-01

    The Integrated Communications and Optical Navigation System (ICONS) is a flexible navigation system for spacecraft that does not require global positioning system (GPS) measurements. The navigation solution is computed using an Unscented Kalman Filter (UKF) that can accept any combination of range, range-rate, planet chord width, landmark, and angle measurements using any celestial object. Both absolute and relative orbit determination is supported. The UKF employs a full nonlinear dynamical model of the orbit including gravity models and disturbance models. The ICONS package also includes attitude determination algorithms using the UKF algorithm with the Inertial Measurement Unit (IMU). The IMU is used as the dynamical base for the attitude determination algorithms. This makes the sensor a more capable plug-in replacement for a star tracker, thus reducing the integration and test cost of adding this sensor to a spacecraft. Recent additions include an integrated optical communications system which adds communications, and integrated range and range rate measurement and timing. The paper includes test results from trajectories based on the NASA New Horizons spacecraft.

  3. Inertial navigation system for directional surveying

    SciTech Connect

    Kohler, S.M.

    1982-09-01

    A Wellbore Inertial Navigation System (WINS) was developed and tested. Developed for directional surveying of geothermal, oil, and gas wells, the system uses gyros and accelerometers to obtain survey errors of less than 10 ft (approx. 3 m) in a 10,000-ft (approx. 300-m) well. The tool, which communicates with a computer at the surface, is 4 in. (approx. 10 cm) in diameter and 20 ft (approx. 6.1 m) long. The concept and hardware is based on a system developed by Sandia for flight vehicles.

  4. Fiber optic gyroscopes for vehicle navigation systems

    NASA Astrophysics Data System (ADS)

    Kumagai, Tatsuya; Soekawa, Hirokazu; Yuhara, Toshiya; Kajioka, Hiroshi; Oho, Shigeru; Sonobe, Hisao

    1994-03-01

    Fiber optic gyroscopes (FOGs) have been developed for vehicle navigation systems and are used in Toyota Motor Corporation models Mark II, Chaser and Cresta in Japan. Use of FOGs in these systems requires high reliability under a wide range of conditions, especially in a temperature range between -40 and 85 degree(s)C. In addition, a high cost-performance ratio is needed. We have developed optical and electrical systems that are inexpensive and can perform well. They are ready to be mass-produced. FOGs have already been installed in luxury automobiles, and will soon be included in more basic vehicles. We have developed more inexpensive FOGs for this purpose.

  5. Vision aided inertial navigation system augmented with a coded aperture

    NASA Astrophysics Data System (ADS)

    Morrison, Jamie R.

    Navigation through a three-dimensional indoor environment is a formidable challenge for an autonomous micro air vehicle. A main obstacle to indoor navigation is maintaining a robust navigation solution (i.e. air vehicle position and attitude estimates) given the inadequate access to satellite positioning information. A MEMS (micro-electro-mechanical system) based inertial navigation system provides a small, power efficient means of maintaining a vehicle navigation solution; however, unmitigated error propagation from relatively noisy MEMS sensors results in the loss of a usable navigation solution over a short period of time. Several navigation systems use camera imagery to diminish error propagation by measuring the direction to features in the environment. Changes in feature direction provide information regarding direction for vehicle movement, but not the scale of movement. Movement scale information is contained in the depth to the features. Depth-from-defocus is a classic technique proposed to derive depth from a single image that involves analysis of the blur inherent in a scene with a narrow depth of field. A challenge to this method is distinguishing blurriness caused by the focal blur from blurriness inherent to the observed scene. In 2007, MIT's Computer Science and Artificial Intelligence Laboratory demonstrated replacing the traditional rounded aperture with a coded aperture to produce a complex blur pattern that is more easily distinguished from the scene. A key to measuring depth using a coded aperture then is to correctly match the blur pattern in a region of the scene with a previously determined set of blur patterns for known depths. As the depth increases from the focal plane of the camera, the observable change in the blur pattern for small changes in depth is generally reduced. Consequently, as the depth of a feature to be measured using a depth-from-defocus technique increases, the measurement performance decreases. However, a Fresnel zone

  6. Navigational and Environmental Measurement System (NEMS)

    NASA Technical Reports Server (NTRS)

    Clem, T. D.

    1988-01-01

    The NEMS concept and design were initiated from the need to measure and record positional and environmental information during aircraft flights of developmental science research instrumentation. The unit was designed as a stand-alone system which could serve the needs of instruments whose developmental nature did not justify the cost and complexity of including these measurements within the instrument data system. Initially, the system was comprised of a Loran-C receiver and a portable IBM compatible computer recording position and time. Later, the system was interfaced with the Wallops aircraft inertial navigation system (INS), and various other sensors were supplied and shared by the Goddard science users. Real-time position mapping on video monitors was added for investigator's use and information. In 1987, the use of a Global Positioning System (GPS) receiver was included in some missions. A total configuration of the system and the various sensors which can be incorporated are shown.

  7. Fault tolerant highly reliable inertial navigation system

    NASA Astrophysics Data System (ADS)

    Jeerage, Mahesh; Boettcher, Kevin

    This paper describes a development of failure detection and isolation (FDI) strategies for highly reliable inertial navigation systems. FDI strategies are developed based on the generalized likelihood ratio test (GLRT). A relationship between detection threshold and false alarm rate is developed in terms of the sensor parameters. A new method for correct isolation of failed sensors is presented. Evaluation of FDI performance parameters, such as false alarm rate, wrong isolation probability, and correct isolation probability, are presented. Finally a fault recovery scheme capable of correcting false isolation of good sensors is presented.

  8. Autonomous underwater pipeline monitoring navigation system

    NASA Astrophysics Data System (ADS)

    Mitchell, Byrel; Mahmoudian, Nina; Meadows, Guy

    2014-06-01

    This paper details the development of an autonomous motion-control and navigation algorithm for an underwater autonomous vehicle, the Ocean Server IVER3, to track long linear features such as underwater pipelines. As part of this work, the Nonlinear and Autonomous Systems Laboratory (NAS Lab) developed an algorithm that utilizes inputs from the vehicles state of the art sensor package, which includes digital imaging, digital 3-D Sidescan Sonar, and Acoustic Doppler Current Profilers. The resulting algorithms should tolerate real-world waterway with episodic strong currents, low visibility, high sediment content, and a variety of small and large vessel traffic.

  9. Vision enhanced navigation for unmanned systems

    NASA Astrophysics Data System (ADS)

    Wampler, Brandon Loy

    A vision based simultaneous localization and mapping (SLAM) algorithm is evaluated for use on unmanned systems. SLAM is a technique used by a vehicle to build a map of an environment while concurrently keeping track of its location within the map, without a priori knowledge. The work in this thesis is focused on using SLAM as a navigation solution when global positioning system (GPS) service is degraded or temporarily unavailable. Previous work on unmanned systems that lead up to the determination that a better navigation solution than GPS alone is first presented. This previous work includes control of unmanned systems, simulation, and unmanned vehicle hardware testing. The proposed SLAM algorithm follows the work originally developed by Davidson et al. in which they dub their algorithm MonoSLAM [1--4]. A new approach using the Pyramidal Lucas-Kanade feature tracking algorithm from Intel's OpenCV (open computer vision) library is presented as a means of keeping correct landmark correspondences as the vehicle moves through the scene. Though this landmark tracking method is unusable for long term SLAM due to its inability to recognize revisited landmarks, as opposed to the Scale Invariant Feature Transform (SIFT) and Speeded Up Robust Features (SURF), its computational efficiency makes it a good candidate for short term navigation between GPS position updates. Additional sensor information is then considered by fusing INS and GPS information into the SLAM filter. The SLAM system, in its vision only and vision/IMU form, is tested on a table top, in an open room, and finally in an outdoor environment. For the outdoor environment, a form of the slam algorithm that fuses vision, IMU, and GPS information is tested. The proposed SLAM algorithm, and its several forms, are implemented in C++ using an Extended Kalman Filter (EKF). Experiments utilizing a live video feed from a webcam are performed. The different forms of the filter are compared and conclusions are made on

  10. Design and implementation of small navigation system on land vehicle

    NASA Astrophysics Data System (ADS)

    Ma, Shuaiqi

    2013-03-01

    This paper is focused on the problem of frame loss and truncation on multi-channel universal asynchronous receiver transmitter (UART) embedded in Integrated Navigation Systems, and it contains attitude heading reference system (AHRS) and global positioning system (GPS). An advanced design based on FPGA and ARM processor is discussed in this paper, in which FPGA would be used to coordinate with each logic modules, expand UART for GPS and AHRS, resolve navigation information, and save specify data to SD card, which can reduce the delay in data receiving and resolving, while ARM is applied in the area of parameters estimation and navigation algorithms. The experiment results show that this navigation system can use UART to receive, resolve data frames and save data while ARM execute parameter estimation and navigation algorithms in real time. This integrated navigation can effectively avoid the phenomenon of data frame loss or truncation in UART receiving, and can improve the navigation precision.

  11. Preliminary navigation accuracy analysis for the TDRSS Onboard Navigation System (TONS) experiment on EP/EUVE

    NASA Technical Reports Server (NTRS)

    Gramling, C. J.; Long, A. C.; Lee, T.; Ottenstein, N. A.; Samii, M. V.

    1991-01-01

    A Tracking and Data Relay Satellite System (TDRSS) Onboard Navigation System (TONS) is currently being developed by NASA to provide a high accuracy autonomous navigation capability for users of TDRSS and its successor, the Advanced TDRSS (ATDRSS). The fully autonomous user onboard navigation system will support orbit determination, time determination, and frequency determination, based on observation of a continuously available, unscheduled navigation beacon signal. A TONS experiment will be performed in conjunction with the Explorer Platform (EP) Extreme Ultraviolet Explorer (EUVE) mission to flight quality TONS Block 1. An overview is presented of TONS and a preliminary analysis of the navigation accuracy anticipated for the TONS experiment. Descriptions of the TONS experiment and the associated navigation objectives, as well as a description of the onboard navigation algorithms, are provided. The accuracy of the selected algorithms is evaluated based on the processing of realistic simulated TDRSS one way forward link Doppler measurements. The analysis process is discussed and the associated navigation accuracy results are presented.

  12. A navigation system for shoulder arthroscopic surgery.

    PubMed

    Tyryshkin, K; Mousavi, P; Beek, M; Ellis, R E; Pichora, D R; Abolmaesumi, P

    2007-10-01

    The general framework and experimental validation of a novel navigation system designed for shoulder arthroscopy are presented. The system was designed to improve the surgeon's perception of the three-dimensional space within the human shoulder. Prior to surgery, a surface model of the shoulder was created from computed tomography images. Intraoperatively, optically tracked arthroscopic instruments were calibrated. The surface model was then registered to the patient using tracked freehand ultrasound images taken from predefined landmark regions on the scapula. Three-dimensional models of the surgical instruments were displayed, in real time, relative to the surface model in a user interface. Laboratory experiments revealed only small registration and calibration errors, with minimal time needed to complete the intraoperative tasks. PMID:18019466

  13. Navigation systems for approach and landing of VTOL aircraft

    NASA Technical Reports Server (NTRS)

    Schmidt, S. F.; Mohr, R. L.

    1979-01-01

    The formulation and implementation of navigation systems used for research investigations in the V/STOLAND avionics system are described. The navigation systems prove position and velocity in a cartestian reference frame aligned with the runway. They use filtering techniques to combine the raw position data from navaids (e.g., TACAN, MLS) with data from onboard inertial sensors. The filtering techniques which use both complementary and Kalman filters, are described. The software for the navigation systems is also described.

  14. Orion Absolute Navigation System Progress and Challenges

    NASA Technical Reports Server (NTRS)

    Holt, Greg N.; D'Souza, Christopher

    2011-01-01

    The Orion spacecraft is being designed as NASA's next-generation exploration vehicle for crewed missions beyond Low-Earth Orbit. The navigation system for the Orion spacecraft is being designed in a Multi-Organizational Design Environment (MODE) team including contractor and NASA personnel. The system uses an Extended Kalman Filter to process measurements and determine the state. The design of the navigation system has undergone several iterations and modifications since its inception, and continues as a work-in-progress. This paper seeks to benchmark the current state of the design and some of the rationale and analysis behind it. There are specific challenges to address when preparing a timely and effective design for the Exploration Flight Test (EFT-1), while still looking ahead and providing software extensibility for future exploration missions. The primary measurements in a Near-Earth or Mid-Earth environment consist of GPS pseudorange and deltarange, but for future explorations missions the use of star-tracker and optical navigation sources need to be considered. Discussions are presented for state size and composition, processing techniques, and consider states. A presentation is given for the processing technique using the computationally stable and robust UDU formulation with an Agee-Turner Rank-One update. This allows for computational savings when dealing with many parameters which are modeled as slowly varying Gauss-Markov processes. Preliminary analysis shows up to a 50% reduction in computation versus a more traditional formulation. Several state elements are discussed and evaluated, including position, velocity, attitude, clock bias/drift, and GPS measurement biases in addition to bias, scale factor, misalignment, and non-orthogonalities of the accelerometers and gyroscopes. Another consideration is the initialization of the EKF in various scenarios. Scenarios such as single-event upset, ground command, pad alignment, cold start are discussed as are

  15. Development of AR Surgical Navigation Systems for Multiple Surgical Regions.

    PubMed

    Suzuki, Naoki; Hattori, Asaki; Iimura, Jiro; Otori, Nobuyoshi; Onda, Shinji; Okamoto, Tomoyoshi; Yanaga, Katsuhiko

    2014-01-01

    The purpose of our research is to develop surgical navigation systems to enhance surgical safety. Our systems make use of augmented reality technology to superimpose, on the surgery screen on a real time basis, patients' organ models reconstructed in 3D from their X-ray CT data taken before surgery. By doing so, the systems display anatomical risk materials, tumors and blood vessels which surgeons cannot see with their naked eyes. This will in turn lead to surgeons intuitively grasping the inner structures of the operational fields. We so far have been developing navigation systems that can conduct surgeries in various fields. The basic structure of the navigation systems are the same. The navigation systems uses different peripheral equipment and different methods to display navigation images which best meet the demands of each type of surgery. In this thesis, we report on our navigation systems for 2 types of surgery - endoscopic sinus surgery and hepatobilialy-pancreatic surgery. PMID:24732545

  16. Integrated navigation method of a marine strapdown inertial navigation system using a star sensor

    NASA Astrophysics Data System (ADS)

    Wang, Qiuying; Diao, Ming; Gao, Wei; Zhu, Minghong; Xiao, Shu

    2015-11-01

    This paper presents an integrated navigation method of the strapdown inertial navigation system (SINS) using a star sensor. According to the principle of SINS, its own navigation information contains an error that increases with time. Hence, the inertial attitude matrix from the star sensor is introduced as the reference information to correct the SINS increases error. For the integrated navigation method, the vehicle’s attitude can be obtained in two ways: one is calculated from SINS; the other, which we have called star sensor attitude, is obtained as the product between the SINS position and the inertial attitude matrix from the star sensor. Therefore, the SINS position error is introduced in the star sensor attitude error. Based on the characteristics of star sensor attitude error and the mathematical derivation, the SINS navigation errors can be obtained by the coupling calculation between the SINS attitude and the star sensor attitude. Unlike several current techniques, the navigation process of this method is non-radiating and invulnerable to jamming. The effectiveness of this approach was demonstrated by simulation and experimental study. The results show that this integrated navigation method can estimate the attitude error and the position error of SINS. Therefore, the SINS navigation accuracy is improved.

  17. Coupled Inertial Navigation and Flush Air Data Sensing Algorithm for Atmosphere Estimation

    NASA Technical Reports Server (NTRS)

    Karlgaard, Christopher D.; Kutty, Prasad; Schoenenberger, Mark

    2015-01-01

    This paper describes an algorithm for atmospheric state estimation that is based on a coupling between inertial navigation and flush air data sensing pressure measurements. In this approach, the full navigation state is used in the atmospheric estimation algorithm along with the pressure measurements and a model of the surface pressure distribution to directly estimate atmospheric winds and density using a nonlinear weighted least-squares algorithm. The approach uses a high fidelity model of atmosphere stored in table-look-up form, along with simplified models of that are propagated along the trajectory within the algorithm to provide prior estimates and covariances to aid the air data state solution. Thus, the method is essentially a reduced-order Kalman filter in which the inertial states are taken from the navigation solution and atmospheric states are estimated in the filter. The algorithm is applied to data from the Mars Science Laboratory entry, descent, and landing from August 2012. Reasonable estimates of the atmosphere and winds are produced by the algorithm. The observability of winds along the trajectory are examined using an index based on the discrete-time observability Gramian and the pressure measurement sensitivity matrix. The results indicate that bank reversals are responsible for adding information content to the system. The algorithm is then applied to the design of the pressure measurement system for the Mars 2020 mission. The pressure port layout is optimized to maximize the observability of atmospheric states along the trajectory. Linear covariance analysis is performed to assess estimator performance for a given pressure measurement uncertainty. The results indicate that the new tightly-coupled estimator can produce enhanced estimates of atmospheric states when compared with existing algorithms.

  18. An onboard navigation system which fulfills Mars aerocapture guidance requirements

    NASA Technical Reports Server (NTRS)

    Brand, Timothy J.; Fuhry, Douglas P.; Shepperd, Stanley W.

    1989-01-01

    The development of a candidate autonomous onboard Mars approach navigation scheme capable of supporting aerocapture into Mars orbit is discussed. An aerocapture guidance and navigation system which can run independently of the preaerocapture navigation was used to define a preliminary set of accuracy requirements at entry interface. These requirements are used to evaluate the proposed preaerocapture navigation scheme. This scheme uses optical sightings on Deimos with a star tracker and an inertial measurement unit for instrumentation as a source for navigation nformation. Preliminary results suggest that the approach will adequately support aerocaputre into Mars orbit.

  19. An IR Navigation System for Pleural PDT

    NASA Astrophysics Data System (ADS)

    Zhu, Timothy; Liang, Xing; Kim, Michele; Finlay, Jarod; Dimofte, Andreea; Rodriguez, Carmen; Simone, Charles; Friedberg, Joseph; Cengel, Keith

    2015-03-01

    Pleural photodynamic therapy (PDT) has been used as an adjuvant treatment with lung-sparing surgical treatment for malignant pleural mesothelioma (MPM). In the current pleural PDT protocol, a moving fiber-based point source is used to deliver the light. The light fluences at multiple locations are monitored by several isotropic detectors placed in the pleural cavity. To improve the delivery of light fluence uniformity, an infrared (IR) navigation system is used to track the motion of the light source in real-time at a rate of 20 - 60 Hz. A treatment planning system uses the laser source positions obtained from the IR camera to calculate light fluence distribution to monitor the light dose uniformity on the surface of the pleural cavity. A novel reconstruction algorithm is used to determine the pleural cavity surface contour. A dual-correction method is used to match the calculated fluences at detector locations to the detector readings. Preliminary data from a phantom shows superior light uniformity using this method. Light fluence uniformity from patient treatments is also shown with and without the correction method.

  20. Research on Temperature Modeling of Strapdown Inertial Navigation System

    NASA Astrophysics Data System (ADS)

    Huang, XiaoJuan; Zhao, LiJian; Xu, RuXiang; Yang, Heng

    2016-02-01

    Strapdown inertial navigation system with laser gyro has been deployed in space tracking ship and compared with the conventional platform inertial navigation system, it has substantial advantage in performance, accuracy and stabilization. Environmental and internal temperature affects the gyro, accelerator, electrical circuits and mechanical structure significantly but the existing temperature compensation model is not accurate enough especially when there is a big temperature change.

  1. Wind-Based Navigation of a Hot-air Balloon on Titan: A Feasibility Study

    NASA Technical Reports Server (NTRS)

    Furfaro, Roberto; Lunine, Jonathan I.; Elfes, Alberto; Reh, Kim

    2008-01-01

    Current analysis of data streamed back to Earth by the Cassini spacecraft features Titan as one of the most exciting places in the solar system. NASA centers and universities around the US, as well as the European Space Agency, are studying the possibility of sending, as part of the next mission to this giant moon of Saturn, a hot-air balloon (Montgolfier-type) for further and more in-depth exploration. The basic idea would be to design a reliable, semi-autonomous, and yet cheap Montgolfier capable of using continuous flow of waste heat from a power source to lift the balloon and sustain its altitude in the Titan environment. In this paper we study the problem of locally navigating a hot-air balloon in the nitrogen-based Titan atmosphere. The basic idea is to define a strategy (i.e. design of a suitable guidance system) that allows autonomous and semi-autonomous navigation of the balloon using the available (and partial) knowledge of the wind structure blowing on the saturnian satellite surface. Starting from first principles we determined the appropriate thermal and dynamical models describing (a) the vertical dynamics of the balloon and (b) the dynamics of the balloon moving on a vertical plane (2-D motion). Next, various non-linear fuzzy-based control strategies have been evaluated, analyzed and implemented in MATLAB to numerically simulate the capability of the system to simultaneously maintain altitude, as well as a scientifically desirable trajectory. We also looked at the ability of the balloon to perform station keeping. The results of the simulation are encouraging and show the effectiveness of such a system to cheaply and effectively perform semiautonomous exploration of Titan.

  2. An analysis of GDOP in global positioning system navigation

    NASA Technical Reports Server (NTRS)

    Fang, B. T.

    1980-01-01

    The accuracy of user navigation fix based on the NAVSTAR global positioning system is described. The trace of this matrix serves as a convenient navigation performance index and the square root of the trace is called geometric dilution of precision (GDOP). Certain theoretical results concerning the general properties of the navigation performance are derived. An efficient algorithm for the computation of GDOP is given. Applications of the results are illustrated by numerical examples.

  3. Basic Mars Navigation System For Local Areas

    NASA Astrophysics Data System (ADS)

    Petitfils, E.-A.; Boche-Sauvan, L.; Foing, B. H.; Monaghan, E.; Crews, Eurogeomars

    2009-04-01

    Introduction: This project has been first set up as a basic solution in navigation during EVA (extra-vehicular activities) in the Mars Society Desert Research Station in the desert of Utah. The main idea is to keep the system as simple as possible so that it can be easily adaptable and portable. The purpose of such a device is to tell the astronauts in EVA where they roughly are and then letting them reaching different points in avoiding any risky way. Thus the precision needed has not to be really high: even if it is about 50m, every astronaut can then look on a map and be able to design a way to another point. This navigation system will improve the safety of the EVA as it is an added reliable orientating tool. Concept: To look at a simple way to localize oneself, one should have a look at what has been done by mankind on Earth. Today, everyone can think of the GPS because it's simple and very reliable. However the infrastructure for such a system is huge and will not be for sure available during the first missions. We can think of course of a basic GPS using the satellites being in orbit but this approach is not yet as simple as we would like. If we want to keep the sky in sight, we can use the stars and the moons of Mars. Yet this would be a good solution and we can even have a star tracker that would give a good position according to the time of the picture. This solution has to be kept in mind but a star tracker is quite big for an astronaut without any rover nearby and using the sky may not be as precise as one should expect. Another useful tool is the compass. It has been used for centuries by sailors but on Mars, without a good magnetic field for this purpose. But sailors also use lighthouses and some placemarks on the land to localize themselves. This is done with a compass, measuring the angle between a placemark and the magnetic North. With two angles, we can then have the position of the boat. The idea here is the same: measuring the angles between

  4. An excellent navigation system and experience in craniomaxillofacial navigation surgery: a double-center study

    PubMed Central

    Dai, Jiewen; Wu, Jinyang; Wang, Xudong; Yang, Xudong; Wu, Yunong; Xu, Bing; Shi, Jun; Yu, Hongbo; Cai, Min; Zhang, Wenbin; Zhang, Lei; Sun, Hao; Shen, Guofang; Zhang, Shilei

    2016-01-01

    Numerous problems regarding craniomaxillofacial navigation surgery are not well understood. In this study, we performed a double-center clinical study to quantitatively evaluate the characteristics of our navigation system and experience in craniomaxillofacial navigation surgery. Fifty-six patients with craniomaxillofacial disease were included and randomly divided into experimental (using our AccuNavi-A system) and control (using Strker system) groups to compare the surgical effects. The results revealed that the average pre-operative planning time was 32.32 mins vs 29.74 mins between the experimental and control group, respectively (p > 0.05). The average operative time was 295.61 mins vs 233.56 mins (p > 0.05). The point registration orientation accuracy was 0.83 mm vs 0.92 mm. The maximal average preoperative navigation orientation accuracy was 1.03 mm vs 1.17 mm. The maximal average persistent navigation orientation accuracy was 1.15 mm vs 0.09 mm. The maximal average navigation orientation accuracy after registration recovery was 1.15 mm vs 1.39 mm between the experimental and control group. All patients healed, and their function and profile improved. These findings demonstrate that although surgeons should consider the patients’ time and monetary costs, our qualified navigation surgery system and experience could offer an accurate guide during a variety of craniomaxillofacial surgeries. PMID:27305855

  5. Comparative advantage between traditional and smart navigation systems

    NASA Astrophysics Data System (ADS)

    Shin, Jeongkyu; Kim, Pan-Jun; Kim, Seunghwan

    2013-03-01

    The smart navigation system that refers to real-time traffic data is believed to be superior to traditional navigation systems. To verify this belief, we created an agent-based traffic model and examined the effect of changing market share of the traditional shortest-travel-time algorithm based navigation and the smart navigation system. We tested our model on the grid and actual metropolitan road network structures. The result reveals that the traditional navigation system have better performance than the smart one as the market share of the smart navigation system exceeds a critical value, which is contrary to conventional expectation. We suggest that the superiority inversion between agent groups is strongly related to the traffic weight function form, and is general. We also found that the relationship of market share, traffic flow density and travel time is determined by the combination of congestion avoidance behavior of the smartly navigated agents and the inefficiency of shortest-travel-time based navigated agents. Our results can be interpreted with the minority game and extended to the diverse topics of opinion dynamics. This work was supported by the Original Technology Research Program for Brain Science through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology(No. 2010-0018847).

  6. Basic Mars Navigation System For Local Areas

    NASA Astrophysics Data System (ADS)

    Petitfils, E.-A.; Boche-Sauvan, L.; Foing, B. H.; Monaghan, E.; Crews, Eurogeomars

    2009-04-01

    Introduction: This project has been first set up as a basic solution in navigation during EVA (extra-vehicular activities) in the Mars Society Desert Research Station in the desert of Utah. The main idea is to keep the system as simple as possible so that it can be easily adaptable and portable. The purpose of such a device is to tell the astronauts in EVA where they roughly are and then letting them reaching different points in avoiding any risky way. Thus the precision needed has not to be really high: even if it is about 50m, every astronaut can then look on a map and be able to design a way to another point. This navigation system will improve the safety of the EVA as it is an added reliable orientating tool. Concept: To look at a simple way to localize oneself, one should have a look at what has been done by mankind on Earth. Today, everyone can think of the GPS because it's simple and very reliable. However the infrastructure for such a system is huge and will not be for sure available during the first missions. We can think of course of a basic GPS using the satellites being in orbit but this approach is not yet as simple as we would like. If we want to keep the sky in sight, we can use the stars and the moons of Mars. Yet this would be a good solution and we can even have a star tracker that would give a good position according to the time of the picture. This solution has to be kept in mind but a star tracker is quite big for an astronaut without any rover nearby and using the sky may not be as precise as one should expect. Another useful tool is the compass. It has been used for centuries by sailors but on Mars, without a good magnetic field for this purpose. But sailors also use lighthouses and some placemarks on the land to localize themselves. This is done with a compass, measuring the angle between a placemark and the magnetic North. With two angles, we can then have the position of the boat. The idea here is the same: measuring the angles between

  7. Regionalized Lunar South Pole Surface Navigation System Analysis

    NASA Technical Reports Server (NTRS)

    Welch, Bryan W.

    2008-01-01

    Apollo missions utilized Earth-based assets for navigation because the landings took place at lunar locations in constant view from the Earth. The new exploration campaign to the lunar south pole region will have limited Earth visibility, but the extent to which a navigation system comprised solely of Earth-based tracking stations will provide adequate navigation solutions in this region is unknown. This report presents a dilution-of-precision (DoP)-based, stationary surface navigation analysis of the performance of multiple lunar satellite constellations, Earth-based deep space network assets, and combinations thereof. Results show that kinematic and integrated solutions cannot be provided by the Earth-based deep space network stations. Also, the stationary surface navigation system needs to be operated either as a two-way navigation system or as a one-way navigation system with local terrain information, while the position solution is integrated over a short duration of time with navigation signals being provided by a lunar satellite constellation.

  8. Clock performance as a critical parameter in navigation satellite systems

    NASA Technical Reports Server (NTRS)

    Anderle, R. J.

    1978-01-01

    The high performance of available oscillators has permitted the development of invaluable navigation and geodetic satellite systems. However, still higher performance oscillators would further improve the accuracy or flexibility of the systems.

  9. Satellite Navigation Systems in the Transport, Today and in the Future

    NASA Astrophysics Data System (ADS)

    Januszewski, Jacek

    2010-01-01

    Operational status and practical exploitation (October 2010) of Satellite Navigation Systems (SNS), as GPS and GLONASS, and Satellite Based Augmentation System (SBAS), as EGNOS are presented in this paper. Other SNS are under development as Galileo and Compass, other SBAS in various part of the world are already available (WAAS, MSAS) or under development as GAGAN or SDCM. The receivers of these systems are now found in every mode of transportation - air, maritime and land. Additionally SNS markets and applications in the transport and the most significant events in the satellite navigation systems in the nearest years and SNS markets and applications are described also.

  10. High efficiency air cycle air conditioning system

    SciTech Connect

    Rannenberg, G. C.

    1985-11-19

    An air cycle air conditioning system is provided with regenerative heat exchangers upstream and downstream of an expansion turbine. A closedloop liquid circulatory system serially connects the two regenerative heat exchangers for regeneration without the bulk associated with air-to-air heat exchange. The liquid circulatory system may also provide heat transport to a remote sink heat exchanger and from a remote load as well as heat exchange within the sink heat exchanger and load for enhanced compactness and efficiency.

  11. Investigation on navigation patterns of inertial/celestial integrated systems

    NASA Astrophysics Data System (ADS)

    Luo, Dacheng; Liu, Yan; Liu, Zhiguo; Jiao, Wei; Wang, Qiuyan

    2014-11-01

    It is known that Strapdown Inertial Navigation System (SINS), Global Navigation Satellite System (GNSS) and Celestial Navigation System (CNS) can complement each other's advantages. The SINS/CNS integrated system, which has the characteristics of strong autonomy, high accuracy and good anti-jamming, is widely used in military and civilian applications. Similar to SINS/GNSS integrated system, the SINS/CNS integrated system can also be divided into three kinds according to the difference of integrating depth, i.e., loosely coupled pattern, tightly coupled pattern and deeply coupled pattern. In this paper, the principle and characteristics of each pattern of SINS/CNS system are analyzed. Based on the comparison of these patterns, a novel deeply coupled SINS/CNS integrated navigation scheme is proposed. The innovation of this scheme is that a new star pattern matching method aided by SINS information is put forward. Thus the complementary features of these two subsystems are reflected.

  12. Intelligent personal navigator supported by knowledge-based systems for estimating dead reckoning navigation parameters

    NASA Astrophysics Data System (ADS)

    Moafipoor, Shahram

    Personal navigators (PN) have been studied for about a decade in different fields and applications, such as safety and rescue operations, security and emergency services, and police and military applications. The common goal of all these applications is to provide precise and reliable position, velocity, and heading information of each individual in various environments. In the PN system developed in this dissertation, the underlying assumption is that the system does not require pre-existing infrastructure to enable pedestrian navigation. To facilitate this capability, a multisensor system concept, based on the Global Positioning System (GPS), inertial navigation, barometer, magnetometer, and a human pedometry model has been developed. An important aspect of this design is to use the human body as navigation sensor to facilitate Dead Reckoning (DR) navigation in GPS-challenged environments. The system is designed predominantly for outdoor environments, where occasional loss of GPS lock may happen; however, testing and performance demonstration have been extended to indoor environments. DR navigation is based on a relative-measurement approach, with the key idea of integrating the incremental motion information in the form of step direction (SD) and step length (SL) over time. The foundation of the intelligent navigation system concept proposed here rests in exploiting the human locomotion pattern, as well as change of locomotion in varying environments. In this context, the term intelligent navigation represents the transition from the conventional point-to-point DR to dynamic navigation using the knowledge about the mechanism of the moving person. This approach increasingly relies on integrating knowledge-based systems (KBS) and artificial intelligence (AI) methodologies, including artificial neural networks (ANN) and fuzzy logic (FL). In addition, a general framework of the quality control for the real-time validation of the DR processing is proposed, based on a

  13. Weather-enabled future onboard surveillance and navigation systems

    NASA Astrophysics Data System (ADS)

    Mutuel, L.; Baillon, B.; Barnetche, B.; Delpy, P.

    2009-09-01

    With the increasing traffic and the development of business trajectories, there is a widespread need to anticipate any adverse weather conditions that could impact the performance of the flight or to use of atmospheric parameters to optimize trajectories. Current sensors onboard air transport are challenged to provide the required service, while new products for business jets and general aviation open the door to innovative assimilation of weather information in onboard surveillance and navigation. The paper aims at surveying current technology available to air transport aircraft and pointing out their shortcomings in view of the modernization proposed in SESAR and NextGen implementation plans. Foreseen innovations are then illustrated via results of ongoing research like FLYSAFE or standardization efforts, in particular meteorological datalink services and impact on Human-Machine Interface. The paper covers the operational need to avoid adverse weather like thunderstorm, icing, turbulence, windshear and volcanic ash, but also the requirement to control in 4D the trajectory through the integration of wind and temperature grids in the flight management. The former will lead to enhanced surveillance systems onboard the aircraft with new displays and new alerting schemes, ranging from targeted information supporting better re-planning to auto-escape strategies. The latter will be standard in next generation flight management systems. Finally both will rely on ATM products that will also assimilate weather information so that situational awareness is shared and decision is collaborative.

  14. Autonomous navigation system based on GPS and magnetometer data

    NASA Technical Reports Server (NTRS)

    Julie, Thienel K. (Inventor); Richard, Harman R. (Inventor); Bar-Itzhack, Itzhack Y. (Inventor)

    2004-01-01

    This invention is drawn to an autonomous navigation system using Global Positioning System (GPS) and magnetometers for low Earth orbit satellites. As a magnetometer is reliable and always provides information on spacecraft attitude, rate, and orbit, the magnetometer-GPS configuration solves GPS initialization problem, decreasing the convergence time for navigation estimate and improving the overall accuracy. Eventually the magnetometer-GPS configuration enables the system to avoid costly and inherently less reliable gyro for rate estimation. Being autonomous, this invention would provide for black-box spacecraft navigation, producing attitude, orbit, and rate estimates without any ground input with high accuracy and reliability.

  15. 14 CFR 171.61 - Air navigation certificate: Revocation and termination.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., each air navigation certificate of “Lawful Authority to Operate a True Light” is hereby revoked, and... certificate under regulations then in effect, and who has not surrendered that certificate under § 151.86(e... to make that application under regulations then in effect, and who has not terminated...

  16. 14 CFR 171.61 - Air navigation certificate: Revocation and termination.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ..., each air navigation certificate of “Lawful Authority to Operate a True Light” is hereby revoked, and... certificate under regulations then in effect, and who has not surrendered that certificate under § 151.86(e... to make that application under regulations then in effect, and who has not terminated...

  17. Integrated Navigation System for the Second Generation Reusable Launch Vehicle

    NASA Technical Reports Server (NTRS)

    2002-01-01

    An array of components in a laboratory at NASA's Marshall Space Flight Center (MSFC) is being tested by the Flight Mechanics Office to develop an integrated navigation system for the second generation reusable launch vehicle. The laboratory is testing Global Positioning System (GPS) components, a satellite-based location and navigation system, and Inertial Navigation System (INS) components, sensors on a vehicle that determine angular velocity and linear acceleration at various points. The GPS and INS components work together to provide a space vehicle with guidance and navigation, like the push of the OnStar button in your car assists you with directions to a specific address. The integration will enable the vehicle operating system to track where the vehicle is in space and define its trajectory. The use of INS components for navigation is not new to space technology. The Space Shuttle currently uses them. However, the Space Launch Initiative is expanding the technology to integrate GPS and INS components to allow the vehicle to better define its position and more accurately determine vehicle acceleration and velocity. This advanced technology will lower operational costs and enhance the safety of reusable launch vehicles by providing a more comprehensive navigation system with greater capabilities. In this photograph, Dr. Jason Chuang of MSFC inspects an INS component in the laboratory.

  18. Satellite Imagery Assisted Road-Based Visual Navigation System

    NASA Astrophysics Data System (ADS)

    Volkova, A.; Gibbens, P. W.

    2016-06-01

    There is a growing demand for unmanned aerial systems as autonomous surveillance, exploration and remote sensing solutions. Among the key concerns for robust operation of these systems is the need to reliably navigate the environment without reliance on global navigation satellite system (GNSS). This is of particular concern in Defence circles, but is also a major safety issue for commercial operations. In these circumstances, the aircraft needs to navigate relying only on information from on-board passive sensors such as digital cameras. An autonomous feature-based visual system presented in this work offers a novel integral approach to the modelling and registration of visual features that responds to the specific needs of the navigation system. It detects visual features from Google Earth* build a feature database. The same algorithm then detects features in an on-board cameras video stream. On one level this serves to localise the vehicle relative to the environment using Simultaneous Localisation and Mapping (SLAM). On a second level it correlates them with the database to localise the vehicle with respect to the inertial frame. The performance of the presented visual navigation system was compared using the satellite imagery from different years. Based on comparison results, an analysis of the effects of seasonal, structural and qualitative changes of the imagery source on the performance of the navigation algorithm is presented. * The algorithm is independent of the source of satellite imagery and another provider can be used

  19. Navigation for space shuttle approach and landing using an inertial navigation system augmented by data from a precision ranging system or a microwave scan beam landing guidance system

    NASA Technical Reports Server (NTRS)

    Mcgee, L. A.; Smith, G. L.; Hegarty, D. M.; Merrick, R. B.; Carson, T. M.; Schmidt, S. F.

    1970-01-01

    A preliminary study has been made of the navigation performance which might be achieved for the high cross-range space shuttle orbiter during final approach and landing by using an optimally augmented inertial navigation system. Computed navigation accuracies are presented for an on-board inertial navigation system augmented (by means of an optimal filter algorithm) with data from two different ground navigation aids; a precision ranging system and a microwave scanning beam landing guidance system. These results show that augmentation with either type of ground navigation aid is capable of providing a navigation performance at touchdown which should be adequate for the space shuttle. In addition, adequate navigation performance for space shuttle landing is obtainable from the precision ranging system even with a complete dropout of precision range measurements as much as 100 seconds before touchdown.

  20. An indoor navigation system to support the visually impaired.

    PubMed

    Riehle, T H; Lichter, P; Giudice, N A

    2008-01-01

    Indoor navigation technology is needed to support seamless mobility for the visually impaired. A small portable personal navigation device that provides current position, useful contextual wayfinding information about the indoor environment and directions to a destination would greatly improve access and independence for people with low vision. This paper describes the construction of such a device which utilizes a commercial Ultra-Wideband (UWB) asset tracking system to support real-time location and navigation information. Human trials were conducted to assess the efficacy of the system by comparing target-finding performance between blindfolded subjects using the navigation system for real-time guidance, and blindfolded subjects who only received speech information about their local surrounds but no route guidance information (similar to that available from a long cane or guide dog). A normal vision control condition was also run. The time and distance traveled was measured in each trial and a point-back test was performed after goal completion to assess cognitive map development. Statistically significant differences were observed between the three conditions in time and distance traveled; with the navigation system and the visual condition yielding the best results, and the navigation system dramatically outperforming the non-guided condition. PMID:19163698

  1. A navigational guidance system in the human brain.

    PubMed

    Spiers, Hugo J; Maguire, Eleanor A

    2007-01-01

    Finding your way in large-scale space requires knowing where you currently are and how to get to your goal destination. While much is understood about the neural basis of one's current position during navigation, surprisingly little is known about how the human brain guides navigation to goals. Computational accounts argue that specific brain regions support navigational guidance by coding the proximity and direction to the goal, but empirical evidence for such mechanisms is lacking. Here, we scanned subjects with functional magnetic resonance imaging as they navigated to goal destinations in a highly accurate virtual simulation of a real city. Brain activity was then analyzed in combination with metric measures of proximity and direction to goal destinations that were derived from each individual subject's coordinates at every second of navigation. We found that activity in the medial prefrontal cortex was positively correlated, and activity in a right subicular/entorhinal region was negatively correlated with goal proximity. By contrast, activity in bilateral posterior parietal cortex was correlated with egocentric direction to goals. Our results provide empirical evidence for a navigational guidance system in the human brain, and define more precisely the contribution of these three brain regions to human navigation. In addition, these findings may also have wider implications for how the brain monitors and integrates different types of information in the service of goal-directed behavior in general. PMID:17492693

  2. A navigational guidance system in the human brain

    PubMed Central

    Spiers, Hugo J.; Maguire, Eleanor A.

    2008-01-01

    Finding your way in large-scale space requires knowing where you currently are and how to get to your goal destination. While much is understood about the neural basis of one’s current position during navigation, surprisingly little is known about how the human brain guides navigation to goals. Computational accounts argue that specific brain regions support navigational guidance by coding the proximity and direction to the goal, but empirical evidence for such mechanisms is lacking. Here, we scanned subjects with functional MRI (fMRI) as they navigated to goal destinations in a highly accurate virtual simulation of a real city. Brain activity was then analysed in combination with metric measures of proximity and direction to goal destinations which were derived from each individual subject’s coordinates at every second of navigation. We found that activity in the medial prefrontal cortex was positively correlated, and activity in a right subicular/entorhinal region was negatively correlated with goal proximity. By contrast, activity in bilateral posterior parietal cortex was correlated with egocentric direction to goals. Our results provide empirical evidence for a navigational guidance system in the human brain, and define more precisely the contribution of these three brain regions to human navigation. In addition, these findings may also have wider implications for how the brain monitors and integrates different types of information in the service of goal-directed behaviour in general. PMID:17492693

  3. Development of a GPS/INS/MAG navigation system and waypoint navigator for a VTOL UAV

    NASA Astrophysics Data System (ADS)

    Meister, Oliver; Mönikes, Ralf; Wendel, Jan; Frietsch, Natalie; Schlaile, Christian; Trommer, Gert F.

    2007-04-01

    Unmanned aerial vehicles (UAV) can be used for versatile surveillance and reconnaissance missions. If a UAV is capable of flying automatically on a predefined path the range of possible applications is widened significantly. This paper addresses the development of the integrated GPS/INS/MAG navigation system and a waypoint navigator for a small vertical take-off and landing (VTOL) unmanned four-rotor helicopter with a take-off weight below 1 kg. The core of the navigation system consists of low cost inertial sensors which are continuously aided with GPS, magnetometer compass, and a barometric height information. Due to the fact, that the yaw angle becomes unobservable during hovering flight, the integration with a magnetic compass is mandatory. This integration must be robust with respect to errors caused by the terrestrial magnetic field deviation and interferences from surrounding electronic devices as well as ferrite metals. The described integration concept with a Kalman filter overcomes the problem that erroneous magnetic measurements yield to an attitude error in the roll and pitch axis. The algorithm provides long-term stable navigation information even during GPS outages which is mandatory for the flight control of the UAV. In the second part of the paper the guidance algorithms are discussed in detail. These algorithms allow the UAV to operate in a semi-autonomous mode position hold as well an complete autonomous waypoint mode. In the position hold mode the helicopter maintains its position regardless of wind disturbances which ease the pilot job during hold-and-stare missions. The autonomous waypoint navigator enable the flight outside the range of vision and beyond the range of the radio link. Flight test results of the implemented modes of operation are shown.

  4. Navigation Performance of Global Navigation Satellite Systems in the Space Service Volume

    NASA Technical Reports Server (NTRS)

    Force, Dale A.

    2013-01-01

    This paper extends the results I reported at this year's ION International Technical Meeting on multi-constellation GNSS coverage by showing how the use of multi-constellation GNSS improves Geometric Dilution of Precision (GDOP). Originally developed to provide position, navigation, and timing for terrestrial users, GPS has found increasing use for in space for precision orbit determination, precise time synchronization, real-time spacecraft navigation, and three-axis attitude control of Earth orbiting satellites. With additional Global Navigation Satellite Systems (GNSS) coming into service (GLONASS, Galileo, and Beidou) and the development of Satellite Based Augmentation Services, it is possible to obtain improved precision by using evolving multi-constellation receiver. The Space Service Volume formally defined as the volume of space between three thousand kilometers altitude and geosynchronous altitude ((is) approximately 36,500 km), with the volume below three thousand kilometers defined as the Terrestrial Service Volume (TSV). The USA has established signal requirements for the Space Service Volume (SSV) as part of the GPS Capability Development Documentation (CDD). Diplomatic efforts are underway to extend Space service Volume commitments to the other Position, Navigation, and Timing (PNT) service providers in an effort to assure that all space users will benefit from the enhanced capabilities of interoperating GNSS services in the space domain.

  5. Air heating system

    DOEpatents

    Primeau, John J.

    1983-03-01

    A self-starting, fuel-fired, air heating system including a vapor generator, a turbine, and a condenser connected in a closed circuit such that the vapor output from the vapor generator is conducted to the turbine and then to the condenser where it is condensed for return to the vapor generator. The turbine drives an air blower which passes air over the condenser for cooling the condenser. Also, a condensate pump is driven by the turbine. The disclosure is particularly concerned with the provision of heat exchanger and circuitry for cooling the condensed fluid output from the pump prior to its return to the vapor generator.

  6. The navigation system of the JPL robot

    NASA Technical Reports Server (NTRS)

    Thompson, A. M.

    1977-01-01

    The control structure of the JPL research robot and the operations of the navigation subsystem are discussed. The robot functions as a network of interacting concurrent processes distributed among several computers and coordinated by a central executive. The results of scene analysis are used to create a segmented terrain model in which surface regions are classified by traversibility. The model is used by a path planning algorithm, PATH, which uses tree search methods to find the optimal path to a goal. In PATH, the search space is defined dynamically as a consequence of node testing. Maze-solving and the use of an associative data base for context dependent node generation are also discussed. Execution of a planned path is accomplished by a feedback guidance process with automatic error recovery.

  7. Low-frequency radio navigation system

    NASA Technical Reports Server (NTRS)

    Wallis, D. E. (Inventor)

    1983-01-01

    A method of continuous wave navigation using four transmitters operating at sufficiently low frequencies to assure essentially pure groundwave operation is described. The transmitters are keyed to transmit constant bursts (1/4 sec) in a time-multiplexed pattern with phase modulation of at least one transmitter for identification of the transmitters and with the ability to identify the absolute phase of the modulated transmitter and the ability to modulate low rate data for transmission. The transmitters are optimally positioned to provide groundwave coverage over a service region of about 50 by 50 km for the frequencies selected in the range of 200 to 500 kHz, but their locations are not critical because of the beneficial effect of overdetermination of position of a receiver made possible by the fourth transmitter. Four frequencies are used, at least two of which are selected to provide optimal resolution. All transmitters are synchronized to an average phase as received by a monitor receiver.

  8. Orion Absolute Navigation System Progress and Challenge

    NASA Technical Reports Server (NTRS)

    Holt, Greg N.; D'Souza, Christopher

    2012-01-01

    The absolute navigation design of NASA's Orion vehicle is described. It has undergone several iterations and modifications since its inception, and continues as a work-in-progress. This paper seeks to benchmark the current state of the design and some of the rationale and analysis behind it. There are specific challenges to address when preparing a timely and effective design for the Exploration Flight Test (EFT-1), while still looking ahead and providing software extensibility for future exploration missions. The primary onboard measurements in a Near-Earth or Mid-Earth environment consist of GPS pseudo-range and delta-range, but for future explorations missions the use of star-tracker and optical navigation sources need to be considered. Discussions are presented for state size and composition, processing techniques, and consider states. A presentation is given for the processing technique using the computationally stable and robust UDU formulation with an Agee-Turner Rank-One update. This allows for computational savings when dealing with many parameters which are modeled as slowly varying Gauss-Markov processes. Preliminary analysis shows up to a 50% reduction in computation versus a more traditional formulation. Several state elements are discussed and evaluated, including position, velocity, attitude, clock bias/drift, and GPS measurement biases in addition to bias, scale factor, misalignment, and non-orthogonalities of the accelerometers and gyroscopes. Another consideration is the initialization of the EKF in various scenarios. Scenarios such as single-event upset, ground command, and cold start are discussed as are strategies for whole and partial state updates as well as covariance considerations. Strategies are given for dealing with latent measurements and high-rate propagation using multi-rate architecture. The details of the rate groups and the data ow between the elements is discussed and evaluated.

  9. Earth orbit navigation study. Volume 2: System evaluation

    NASA Technical Reports Server (NTRS)

    1972-01-01

    An overall systems evaluation was made of five candidate navigation systems in support of earth orbit missions. The five systems were horizon sensor system, unkown landmark tracking system, ground transponder system, manned space flight network, and tracking and data relay satellite system. Two reference missions were chosen: a low earth orbit mission and a transfer trajectory mission from low earth orbit to geosynchronous orbit. The specific areas addressed in the evaluation were performance, multifunction utilization, system mechanization, and cost.

  10. Autonomous satellite navigation methods using the Global Positioning Satellite System

    NASA Technical Reports Server (NTRS)

    Murata, M.; Tapley, B. D.; Schutz, B. E.

    1982-01-01

    This investigation considers the problem of autonomous satellite navigation using the NAVSTAR Global Positioning System (GPS). The major topics covered include the design, implementation, and validation of onboard navigation filter algorithms by means of computer simulations. The primary errors that the navigation filter design must minimize are computational effects and modeling inaccuracies due to limited capability of the onboard computer. The minimization of the effect of these errors is attained by applying the sequential extended Kalman filter using a factored covariance implementation with Q-matrix or dynamical model compensations. Peformance evaluation of the navigation filter design is carried out using both the CDC Cyber 170/750 computer and the PDP-11/60 computer. The results are obtained assuming the Phase I GPS constellation, consisting of six satellites, and a Landsat-D type spacecraft as the model for the user satellite orbit.

  11. Precise navigation for the Earth Observing System (EOS)-AM1 spacecraft using the TDRSS Onboard Navigation System (TONS)

    NASA Technical Reports Server (NTRS)

    Folta, David C.; Elrod, Bryant; Lorenz, Mark; Kapoor, Ajay

    1993-01-01

    As the baseline navigation system for the Earth Observing System (EOS)-AM1 spacecraft, the Tracking and Data Relay Satellite System (TDRSS) Onboard Navigation System (TONS) is required to provide precise position and velocity information for imaging instrument calibration and routine operations. This paper presents the results of real-time navigation performance evaluations with respect to TONS-based orbit and frequency determination to satisfy this requirement. Both covariance and simulation analysis of EOS-AM1 navigation accuracy and analysis using operational data from Landsat-4 are presented. Local (half orbit) and global (multiple orbits) tracking are considered using a way-forward link services. Improvements in navigation accuracies by using enhanced gravity models beyond the Goddard Earth Model (GEM)-T3 are also discussed. Key objectives of the analysis are to evaluate nominal performance and potential sensitivities and to address algorithm improvements such as TDRS ephemeris biasing, ionosphere model, and gravity process noise models slated for implementation. Results indicate that TONS can be configured to meet the proposed instrument navigation requirements of 20 meters, 3-sigma.

  12. Precise navigation for the Earth Observing System (EOS)-AM1 spacecraft using the TDRSS Onboard Navigation System (TONS)

    NASA Astrophysics Data System (ADS)

    Folta, David C.; Elrod, Bryant; Lorenz, Mark; Kapoor, Ajay

    As the baseline navigation system for the Earth Observing System (EOS)-AM1 spacecraft, the Tracking and Data Relay Satellite System (TDRSS) Onboard Navigation System (TONS) is required to provide precise position and velocity information for imaging instrument calibration and routine operations. This paper presents the results of real-time navigation performance evaluations with respect to TONS-based orbit and frequency determination to satisfy this requirement. Both covariance and simulation analysis of EOS-AM1 navigation accuracy and analysis using operational data from Landsat-4 are presented. Local (half orbit) and global (multiple orbits) tracking are considered using a way-forward link services. Improvements in navigation accuracies by using enhanced gravity models beyond the Goddard Earth Model (GEM)-T3 are also discussed. Key objectives of the analysis are to evaluate nominal performance and potential sensitivities and to address algorithm improvements such as TDRS ephemeris biasing, ionosphere model, and gravity process noise models slated for implementation. Results indicate that TONS can be configured to meet the proposed instrument navigation requirements of 20 meters, 3-sigma.

  13. Prospects for Navsat - A future worldwide civil navigation-satellite system

    NASA Astrophysics Data System (ADS)

    Rosetti, C.

    1982-05-01

    Air navigational problems which inhibit flying optimal routes and which could be aided by a worldwide navigational satellite system (Navsat) are examined. Satellite systems are noted to alleviate ground- and air-based equipment constraints for the airlines, developing nations in need of mapping assistance, offshore oil drilling operations, and geodetic surveys. A Navsat system, following the design adopted by military GPS operations, involves a receiver capable of detecting time-lapsed signals from well-positioned satellites. The transmission is broadcast in terms of a lock-on signal and a signal carrying tens of bits/sec of information regarding ephemerides. Either mobile or fixed receivers can gain precise location data by tuning in to two or three satellites simultaneously. A potential system involving 24 satellites is described, which would offer 95.6% availability from anywhere on earth.

  14. A goggle navigation system for cancer resection surgery

    NASA Astrophysics Data System (ADS)

    Xu, Junbin; Shao, Pengfei; Yue, Ting; Zhang, Shiwu; Ding, Houzhu; Wang, Jinkun; Xu, Ronald

    2014-02-01

    We describe a portable fluorescence goggle navigation system for cancer margin assessment during oncologic surgeries. The system consists of a computer, a head mount display (HMD) device, a near infrared (NIR) CCD camera, a miniature CMOS camera, and a 780 nm laser diode excitation light source. The fluorescence and the background images of the surgical scene are acquired by the CCD camera and the CMOS camera respectively, co-registered, and displayed on the HMD device in real-time. The spatial resolution and the co-registration deviation of the goggle navigation system are evaluated quantitatively. The technical feasibility of the proposed goggle system is tested in an ex vivo tumor model. Our experiments demonstrate the feasibility of using a goggle navigation system for intraoperative margin detection and surgical guidance.

  15. Investigation and evaluation of shuttle/GPS navigation system

    NASA Technical Reports Server (NTRS)

    Nilsen, P. W.

    1977-01-01

    Iterative procedures were used to analyze the performance of two preliminary shuttle/GPS navigation system configurations: an early OFT experimental system and a more sophisticated system which consolidates several separate navigation functions thus permitting net cost savings from decreased shuttle avionics weight and power consumption, and from reduced ground data processing. The GPS system can provide on-orbit navigation accuracy an order of magnitude better than the baseline system, with very adequate link margins. The worst-case link margin is 4.3 dB. This link margin accounts for shuttle RF circuit losses which were minimized under the constraints of program schedule and environmental limitations. Implicit in the link analyses are the location trade-offs for preamplifiers and antennas.

  16. Global positioning system pseudolite-based relative navigation.

    SciTech Connect

    Monda, Eric W.

    2004-03-01

    Though the Global Positioning System has revolutionized navigation in the modern age, it is limited in its capability for some applications because an unobstructed line of sight to a minimum of four satellites is required. One way of augmenting the system in small areas is by employing pseudolites to broadcast additional signals that can be used to improve the user's position solution. At the Navigation Systems Testing Laboratory (NSTL) at NASA's Johnson Space Center in Houston, TX, research has been underway on the use of pseudolites to perform precision relative navigation. Based on the findings of previous research done at the NSTL, the method used to process the pseudolite measurements is an extended Kalman filter of the double differenced carrier phase measurements. By employing simulations of the system, as well as processing previously collected data in a real time manner, sub-meter tracking of a moving receiver with carrier phase measurements in the extended Kalman filter appears to be possible.

  17. An Indoor Navigation System for the Visually Impaired

    PubMed Central

    Guerrero, Luis A.; Vasquez, Francisco; Ochoa, Sergio F.

    2012-01-01

    Navigation in indoor environments is highly challenging for the severely visually impaired, particularly in spaces visited for the first time. Several solutions have been proposed to deal with this challenge. Although some of them have shown to be useful in real scenarios, they involve an important deployment effort or use artifacts that are not natural for blind users. This paper presents an indoor navigation system that was designed taking into consideration usability as the quality requirement to be maximized. This solution enables one to identify the position of a person and calculates the velocity and direction of his movements. Using this information, the system determines the user's trajectory, locates possible obstacles in that route, and offers navigation information to the user. The solution has been evaluated using two experimental scenarios. Although the results are still not enough to provide strong conclusions, they indicate that the system is suitable to guide visually impaired people through an unknown built environment. PMID:22969398

  18. An indoor navigation system for the visually impaired.

    PubMed

    Guerrero, Luis A; Vasquez, Francisco; Ochoa, Sergio F

    2012-01-01

    Navigation in indoor environments is highly challenging for the severely visually impaired, particularly in spaces visited for the first time. Several solutions have been proposed to deal with this challenge. Although some of them have shown to be useful in real scenarios, they involve an important deployment effort or use artifacts that are not natural for blind users. This paper presents an indoor navigation system that was designed taking into consideration usability as the quality requirement to be maximized. This solution enables one to identify the position of a person and calculates the velocity and direction of his movements. Using this information, the system determines the user's trajectory, locates possible obstacles in that route, and offers navigation information to the user. The solution has been evaluated using two experimental scenarios. Although the results are still not enough to provide strong conclusions, they indicate that the system is suitable to guide visually impaired people through an unknown built environment. PMID:22969398

  19. Navigation and geo-tracking system of UAV EO payload

    NASA Astrophysics Data System (ADS)

    Chen, Ying; Zhen, Kang; Xue, Yuanyuan; Zhang, Xiajiang; Li, Yingjuan; Tang, Chao

    2016-01-01

    A multi-function system based on inertial measurement unit (IMU) is introduced, which can fulfill navigation, attitude measurement of LOS in payload, platform stabilization and tracking control. The IMU is integrated with electro-optical sensors and a laser range finder on gimbals, which performs attitude calculation and navigation by constructing navigation coordinates in a mathematic platform, and the platform navigation information is obtained by transformation matrix between platform and gimbal coordinates. The platform comprising of gyros, electro-optical sensors and servo mechanism is capable of stabilizing line of sight and could be used to geo-tracking in the relevant field of view (FOV).The system can determine geography coordinates of the host platform and target only with navigation information and laser ranging data. The geo-tracking system always locked the target image at the center of FOV by calculating spatial geometry and adjusting LOS attitude. This tracking is different from TV tracking and geographical reference image tracking, which may be influenced by fog and obscurant. When the UAV is flying over urban or mountain areas for rescue missions, it can avoid the loss of targets due to strong maneuver or LOS obscuration, and reduce the operation load and improve rescue efficiency.

  20. Autonomous satellite navigation with the Global Positioning System

    NASA Technical Reports Server (NTRS)

    Fuchs, A. J.; Wooden, W. H., II; Long, A. C.

    1977-01-01

    This paper discusses the potential of using the Global Positioning System (GPS) to provide autonomous navigation capability to NASA satellites in the 1980 era. Some of the driving forces motivating autonomous navigation are presented. These include such factors as advances in attitude control systems, onboard science annotation, and onboard gridding of imaging data. Simulation results which demonstrate baseline orbit determination accuracies using GPS data on Seasat, Landsat-D, and the Solar Maximum Mission are presented. Emphasis is placed on identifying error sources such as GPS time, GPS ephemeris, user timing biases, and user orbit dynamics, and in a parametric sense on evaluating their contribution to the orbit determination accuracies.

  1. Air cleaning system

    SciTech Connect

    Tidwell, J.H.

    1987-06-16

    This patent describes an air cleaning system comprising: a motor housing; a motor mounted within the housing; a fan attached to and rotatably driven by the motor; a fan chamber surrounding the fan and having an air inlet and outlet; a separator housing means mounted adjacent to and in spaced relation with the motor housing, the separator housing means having an inlet disposed in communication with a chamber within separator housing means; an outlet disposed in communication with the fan chamber; an air driven separator means mounted in chamber of the separator housing means to receive airflow from inlet for rotation of the separator means and removal of foreign matter from airflow by centrifugal force responsive to rotation of the separator means; the airflow is further directed through the outlet of separator housing means to the fan chamber to be ejected by the fan.

  2. Navigation and control considerations for space based orbital maneuvering systems

    NASA Technical Reports Server (NTRS)

    Brandon, L.

    1984-01-01

    Various design areas of concern in navigation and control of space-based orbital maneuvering systems such as those on the Orbiter are discussed, with note taken of approach maneuvers. Design problems occur in the areas of storage modes, sensing, activation methods, navigation, target/mission determination, rendezvous and docking schemes, reliability, and commonality between low- and high-energy maneuvering vehicles. Navigation may be in autonomous or nonautonomous modes and may include ground-baed computations and commands via the TDRSS or NORAD systems. Autonomous operations would interface with the GPS. All the concepts discussed are significant for the planned orbital transfer and orbital maneuvering vehicles, which would be used to place satellites in orbit and repair or retrieve them.

  3. The GPS integrated navigation and attitude-determination system (GINAS)

    NASA Astrophysics Data System (ADS)

    Lucas, R.; Martin-Neira, M.

    When the European Columbus Free-Flying Laboratory is orbiting the earth at a speed of 7 km/s, the Global Positioning System (GPS) will allow its instantaneous position to be determined on-board, independently of the ground, to an accuracy of better than 100 m. When the European spaceplane Hermes and the Columbus elements are performing rendezvous maneuvers, they will also be relying on GPS measurements to compute the remaining distance to contact. For the first flight of Hermes itself, there will be no pilot on board and GPS-based navigation will be used for this first mission and the landing. This paper describes the results of GPS field-measurement experiments conducted at ESTEC's radio-navigation testbed laboratory, including a novel 'GPS integrated navigation and attitude-determination system'.

  4. Air System Information Management

    NASA Technical Reports Server (NTRS)

    Filman, Robert E.

    2004-01-01

    I flew to Washington last week, a trip rich in distributed information management. Buying tickets, at the gate, in flight, landing and at the baggage claim, myriad messages about my reservation, the weather, our flight plans, gates, bags and so forth flew among a variety of travel agency, airline and Federal Aviation Administration (FAA) computers and personnel. By and large, each kind of information ran on a particular application, often specialized to own data formats and communications network. I went to Washington to attend an FAA meeting on System-Wide Information Management (SWIM) for the National Airspace System (NAS) (http://www.nasarchitecture.faa.gov/Tutorials/NAS101.cfm). NAS (and its information infrastructure, SWIM) is an attempt to bring greater regularity, efficiency and uniformity to the collection of stovepipe applications now used to manage air traffic. Current systems hold information about flight plans, flight trajectories, weather, air turbulence, current and forecast weather, radar summaries, hazardous condition warnings, airport and airspace capacity constraints, temporary flight restrictions, and so forth. Information moving among these stovepipe systems is usually mediated by people (for example, air traffic controllers) or single-purpose applications. People, whose intelligence is critical for difficult tasks and unusual circumstances, are not as efficient as computers for tasks that can be automated. Better information sharing can lead to higher system capacity, more efficient utilization and safer operations. Better information sharing through greater automation is possible though not necessarily easy.

  5. Flight evaluation of differential GPS aided inertial navigation systems

    NASA Technical Reports Server (NTRS)

    Mcnally, B. David; Paielli, Russell A.; Bach, Ralph E., Jr.; Warner, David N., Jr.

    1992-01-01

    Algorithms are described for integration of Differential Global Positioning System (DGPS) data with Inertial Navigation System (INS) data to provide an integrated DGPS/INS navigation system. The objective is to establish the benefits that can be achieved through various levels of integration of DGPS with INS for precision navigation. An eight state Kalman filter integration was implemented in real-time on a twin turbo-prop transport aircraft to evaluate system performance during terminal approach and landing operations. A fully integrated DGPS/INS system is also presented which models accelerometer and rate-gyro measurement errors plus position, velocity, and attitude errors. The fully integrated system was implemented off-line using range-domain (seventeen-state) and position domain (fifteen-state) Kalman filters. Both filter integration approaches were evaluated using data collected during the flight test. Flight-test data consisted of measurements from a 5 channel Precision Code GPS receiver, a strap-down Inertial Navigation Unit (INU), and GPS satellite differential range corrections from a ground reference station. The aircraft was laser tracked to determine its true position. Results indicate that there is no significant improvement in positioning accuracy with the higher levels of DGPS/INS integration. All three systems provided high-frequency (e.g., 20 Hz) estimates of position and velocity. The fully integrated system provided estimates of inertial sensor errors which may be used to improve INS navigation accuracy should GPS become unavailable, and improved estimates of acceleration, attitude, and body rates which can be used for guidance and control. Precision Code DGPS/INS positioning accuracy (root-mean-square) was 1.0 m cross-track and 3.0 m vertical. (This AGARDograph was sponsored by the Guidance and Control Panel.)

  6. Simple nonlinear systems and navigating catastrophes

    NASA Astrophysics Data System (ADS)

    Harré, Michael S.; Atkinson, Simon R.; Hossain, Liaquat

    2013-06-01

    Tipping points are a common occurrence in complex adaptive systems. In such systems feedback dynamics strongly influence equilibrium points and they are one of the principal concerns of research in this area. Tipping points occur as small changes in system parameters result in disproportionately large changes in the global properties of the system. In order to show how tipping points might be managed we use the Maximum Entropy (MaxEnt) method developed by Jaynes to find the fixed points of an economic system in two different ways. In the first, economic agents optimise their choices based solely on their personal benefits. In the second they optimise the total benefits of the system, taking into account the effects of all agent's actions. The effect is to move the game from a recently introduced dual localised Lagrangian problem to that of a single global Lagrangian. This leads to two distinctly different but related solutions where localised optimisation provides more flexibility than global optimisation. This added flexibility allows an economic system to be managed by adjusting the relationship between macro parameters, in this sense such manipulations provide for the possibility of "steering" an economy around potential disasters.

  7. Data Analysis Techniques for a Lunar Surface Navigation System Testbed

    NASA Technical Reports Server (NTRS)

    Chelmins, David; Sands, O. Scott; Swank, Aaron

    2011-01-01

    NASA is interested in finding new methods of surface navigation to allow astronauts to navigate on the lunar surface. In support of the Vision for Space Exploration, the NASA Glenn Research Center developed the Lunar Extra-Vehicular Activity Crewmember Location Determination System and performed testing at the Desert Research and Technology Studies event in 2009. A significant amount of sensor data was recorded during nine tests performed with six test subjects. This paper provides the procedure, formulas, and techniques for data analysis, as well as commentary on applications.

  8. Triply redundant integrated navigation and asset visibility system

    SciTech Connect

    Smith, Stephen F.; Moore, James A.

    2011-11-29

    Methods and apparatus are described for a navigation system. A method includes providing a global positioning system fix having a plurality of tracking parameters; providing a theater positioning system fix; monitoring the plurality of tracking parameters for predetermined conditions; and, when the predetermined conditions are met, sending a notifying signal and switching to the theater positioning system fix as a primary fix. An apparatus includes a system controller; a global positioning system receiver coupled to the system controller; a radio frequency locating receiver coupled to the system controller; and an operator interface coupled to the system controller.

  9. Triply redundant integrated navigation and asset visibility system

    SciTech Connect

    Smith, Stephen F.; Moore, James A.

    2013-01-22

    Methods and apparatus are described for a navigation system. A method includes providing a global positioning system fix having a plurality of tracking parameters; providing a theater positioning system fix; monitoring the plurality of tracking parameters for predetermined conditions; and, when the predetermined conditions are met, sending a notifying signal and switching to the theater positioning system fix as a primary fix. An apparatus includes a system controller; a global positioning system receiver coupled to the system controller; a radio frequency locating receiver coupled to the system controller; and an operator interface coupled to the system controller.

  10. Autonomous navigation system for the Marsokhod rover project

    NASA Technical Reports Server (NTRS)

    Proy, C.; Lamboley, M.; Rastel, L.

    1994-01-01

    This paper presents a general overview of the Marsokhod rover mission. The autonomous navigation for a Mars exploration rover is controlled by a vision system which has been developed on the basis of two CCD cameras, stereovision and path planning algorithms. Its performances have been tested on a Mars-like experimentation site.

  11. Flexible vision-based navigation system for unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Blasch, Erik P.

    1995-01-01

    A critical component of unmanned aerial vehicles in the navigation system which provides position and velocity feedback for autonomous control. The Georgia Tech Aerial Robotics navigational system (NavSys) consists of four DVTStinger70C Integrated Vision Units (IVUs) with CCD-based panning platforms, software, and a fiducial onboard the vehicle. The IVUs independently scan for the retro-reflective bar-code fiducial while the NavSys image processing software performs a gradient threshold followed by a image search localization of three vertical bar-code lines. Using the (x,y) image coordinate and CCD angle, the NavSys triangulates the fiducial's (x,y) position, differentiates for velocity, and relays the information to the helicopter controller, which independently determines the z direction with an onboard altimeter. System flexibility is demonstrated by recognition of different fiducial shapes, night and day time operation, and is being extended to on-board and off-board navigation of aerial and ground vehicles. The navigation design provides a real-time, inexpensive, and effective system for determining the (x,y) position of the aerial vehicle with updates generated every 51 ms (19.6 Hz) at an accuracy of approximately +/- 2.8 in.

  12. Interoperability of satellite-based augmentation systems for aircraft navigation

    NASA Astrophysics Data System (ADS)

    Dai, Donghai

    The Federal Aviation Administration (FAA) is pioneering a transformation of the national airspace system from its present ground based navigation and landing systems to a satellite based system using the Global Positioning System (GPS). To meet the critical safety-of-life aviation positioning requirements, a Satellite-Based Augmentation System (SBAS), the Wide Area Augmentation System (WAAS), is being implemented to support navigation for all phases of flight, including Category I precision approach. The system is designed to be used as a primary means of navigation, capable of meeting the Required Navigation Performance (RNP), and therefore must satisfy the accuracy, integrity, continuity and availability requirements. In recent years there has been international acceptance of Global Navigation Satellite Systems (GNSS), spurring widespread growth in the independent development of SBASs. Besides the FAA's WAAS, the European Geostationary Navigation Overlay Service System (EGNOS) and the Japan Civil Aviation Bureau's MTSAT-Satellite Augmentation System (MSAS) are also being actively developed. Although all of these SBASs can operate as stand-alone, regional systems, there is increasing interest in linking these SBASs together to reduce costs while improving service coverage. This research investigated the coverage and availability improvements due to cooperative efforts among regional SBAS networks. The primary goal was to identify the optimal interoperation strategies in terms of performance, complexity and practicality. The core algorithms associated with the most promising concepts were developed and demonstrated. Experimental verification of the most promising concepts was conducted using data collected from a joint international test between the National Satellite Test Bed (NSTB) and the EGNOS System Test Bed (ESTB). This research clearly shows that a simple switch between SBASs made by the airborne equipment is the most effective choice for achieving the

  13. Vision-aided inertial navigation system for robotic mobile mapping

    NASA Astrophysics Data System (ADS)

    Bayoud, Fadi; Skaloud, Jan

    2008-04-01

    A mapping system by vision-aided inertial navigation was developed for areas where GNSS signals are unreachable. In this framework, a methodology on the integration of vision and inertial sensors is presented, analysed and tested. The system employs the method of “SLAM: Simultaneous Localisation And Mapping” where the only external input available to the system at the beginning of the mapping mission is a number of features with known coordinates. SLAM is a term used in the robotics community to describe the problem of mapping the environment and at the same time using this map to determine the location of the mapping device. Differing from the robotics approach, the presented development stems from the frameworks of photogrammetry and kinematic geodesy that are merged in two filters that run in parallel: the Least-Squares Adjustment (LSA) for features coordinates determination and the Kalman filter (KF) for navigation correction. To test this approach, a mapping system-prototype comprising two CCD cameras and one Inertial Measurement Unit (IMU) is introduced. Conceptually, the outputs of the LSA photogrammetric resection are used as the external measurements for the KF that corrects the inertial navigation. The filtered position and orientation are subsequently employed in the photogrammetric intersection to map the surrounding features that are used as control points for the resection in the next epoch. We confirm empirically the dependency of navigation performance on the quality of the images and the number of tracked features, as well as on the geometry of the stereo-pair. Due to its autonomous nature, the SLAM's performance is further affected by the quality of IMU initialisation and the a-priory assumptions on error distribution. Using the example of the presented system we show that centimetre accuracy can be achieved in both navigation and mapping when the image geometry is optimal.

  14. A Hybrid Shortest Path Algorithm for Navigation System

    NASA Astrophysics Data System (ADS)

    Cho, Hsun-Jung; Lan, Chien-Lun

    2007-12-01

    Combined with Geographic Information System (GIS) and Global Positioning System (GPS), the vehicle navigation system had become a quite popular product in daily life. A key component of the navigation system is the Shortest Path Algorithm. Navigation in real world must face a network consists of tens of thousands nodes and links, and even more. Under the limited computation capability of vehicle navigation equipment, it is difficult to satisfy the realtime response requirement that user expected. Hence, this study focused on shortest path algorithm that enhances the computation speed with less memory requirement. Several well-known algorithms such as Dijkstra, A* and hierarchical concepts were integrated to build hybrid algorithms that reduce searching space and improve searching speed. Numerical examples were conducted on Taiwan highway network that consists of more than four hundred thousands of links and nearly three hundred thousands of nodes. This real network was divided into two connected sub-networks (layers). The upper layer is constructed by freeways and expressways; the lower layer is constructed by local networks. Test origin-destination pairs were chosen randomly and divided into three distance categories; short, medium and long distances. The evaluation of outcome is judged by actual length and travel time. The numerical example reveals that the hybrid algorithm proposed by this research might be tens of thousands times faster than traditional Dijkstra algorithm; the memory requirement of the hybrid algorithm is also much smaller than the tradition algorithm. This outcome shows that this proposed algorithm would have an advantage over vehicle navigation system.

  15. Tightly Coupled Inertial Navigation System/Global Positioning System (TCMIG)

    NASA Technical Reports Server (NTRS)

    Watson, Michael D.; Jackson, Kurt (Technical Monitor)

    2002-01-01

    Many NASA applications planned for execution later this decade are seeking high performance, miniaturized, low power Inertial Management Units (IMU). Much research has gone into Micro-Electro-Mechanical System (MEMS) over the past decade as a solution to these needs. While MEMS devices have proven to provide high accuracy acceleration measurements, they have not yet proven to have the accuracy required by many NASA missions in rotational measurements. Therefore, a new solution has been formulated integrating the best of all IMU technologies to address these mid-term needs in the form of a Tightly Coupled Micro Inertial Navigation System (INS)/Global Positioning System (GPS) (TCMIG). The TCMIG consists of an INS and a GPS tightly coupled by a Kalman filter executing on an embedded Field Programmable Gate Array (FPGA) processor. The INS consists of a highly integrated Interferometric Fiber Optic Gyroscope (IFOG) and a MEMS accelerometer. The IFOG utilizes a tightly wound fiber coil to reduce volume and the high level of integration and advanced optical components to reduce power. The MEMS accelerometer utilizes a newly developed deep etch process to increase the proof mass and yield a highly accurate accelerometer. The GPS receiver consists of a low power miniaturized version of the Blackjack receiver. Such an IMU configuration is ideal to meet the mid-term needs of the NASA Science Enterprises and the new launch vehicles being developed for the Space Launch Initiative (SLI).

  16. Systems analysis for ground-based optical navigation

    NASA Technical Reports Server (NTRS)

    Null, G. W.; Owen, W. M., Jr.; Synnott, S. P.

    1992-01-01

    Deep-space telecommunications systems will eventually operate at visible or near-infrared regions to provide increased information return from interplanetary spacecraft. This would require an onboard laser transponder in place of (or in addition to) the usual microwave transponder, as well as a network of ground-based and/or space-based optical observing stations. This article examines the expected navigation systems to meet these requirements. Special emphasis is given to optical astrometric (angular) measurements of stars, solar system target bodies, and (when available) laser-bearing spacecraft, since these observations can potentially provide the locations of both spacecraft and target bodies. The role of astrometry in the navigation system and the development options for astrometric observing systems are also discussed.

  17. An alternative ionospheric correction model for global navigation satellite systems

    NASA Astrophysics Data System (ADS)

    Hoque, M. M.; Jakowski, N.

    2015-04-01

    The ionosphere is recognized as a major error source for single-frequency operations of global navigation satellite systems (GNSS). To enhance single-frequency operations the global positioning system (GPS) uses an ionospheric correction algorithm (ICA) driven by 8 coefficients broadcasted in the navigation message every 24 h. Similarly, the global navigation satellite system Galileo uses the electron density NeQuick model for ionospheric correction. The Galileo satellite vehicles (SVs) transmit 3 ionospheric correction coefficients as driver parameters of the NeQuick model. In the present work, we propose an alternative ionospheric correction algorithm called Neustrelitz TEC broadcast model NTCM-BC that is also applicable for global satellite navigation systems. Like the GPS ICA or Galileo NeQuick, the NTCM-BC can be optimized on a daily basis by utilizing GNSS data obtained at the previous day at monitor stations. To drive the NTCM-BC, 9 ionospheric correction coefficients need to be uploaded to the SVs for broadcasting in the navigation message. Our investigation using GPS data of about 200 worldwide ground stations shows that the 24-h-ahead prediction performance of the NTCM-BC is better than the GPS ICA and comparable to the Galileo NeQuick model. We have found that the 95 percentiles of the prediction error are about 16.1, 16.1 and 13.4 TECU for the GPS ICA, Galileo NeQuick and NTCM-BC, respectively, during a selected quiet ionospheric period, whereas the corresponding numbers are found about 40.5, 28.2 and 26.5 TECU during a selected geomagnetic perturbed period. However, in terms of complexity the NTCM-BC is easier to handle than the Galileo NeQuick and in this respect comparable to the GPS ICA.

  18. In-flight angular alignment of inertial navigation systems by means of radio aids

    NASA Technical Reports Server (NTRS)

    Tanner, W.

    1972-01-01

    The principles involved in the angular alignment of the inertial reference by nondirectional data from radio aids are developed and compared with conventional methods of alignment such as gyro-compassing and pendulous vertical determination. The specific problem is considered of the space shuttle reentry and a proposed technique for the alignment of the inertial reference system some time before landing. A description is given of the digital simulation of a transponder interrogation system and of its interaction with the inertial navigation system. Data from reentry simulations are used to demonstrate the effectiveness of in-flight inertial system alignment. Concluding remarks refer to other potential applications such as space shuttle orbit insertion and air navigation of conventional aircraft.

  19. The military space system technology model - A guidance, navigation and control perspective

    NASA Astrophysics Data System (ADS)

    Dannenberg, K.; Daly, K. C.; Dorroh, W. E.; Fosth, D.; Iwens, R.; Pelka, G.; Williamson, R. K.

    The Military Space Systems Technology Model (MSSTM) represents a systematic approach to identify future technology needs based on perceived mission requirements. In provides help in the planning of technology programs which support the mission of the Space Division, Air Force Systems Command. The MSSTM represents a broad range of information concerning the projected military space missions systems, and technology requirements for the next 20 years. In an attempt to obtain an industry view of the MSSTM, the AIAA was asked by Space Division to review this model. The activity was divided into 15 different functional areas. The present investigation is concerned with the Guidance Navigation and Control (GNC) results. Attention is given to attitude determination and navigation, acquisition, pointing, tracking, large space structure control, GNC space operations, and questions of systems design. It is concluded that new GNC technology is needed to enable 17 of the considered missions to be performed.

  20. Analysis of navigation performance for the Earth Observing System (EOS) using the TDRSS Onboard Navigation System (TONS)

    NASA Technical Reports Server (NTRS)

    Elrod, B.; Kapoor, A.; Folta, David C.; Liu, K.

    1991-01-01

    Use of the Tracking and Data Relay Satellite System (TDRSS) Onboard Navigation System (TONS) was proposed as an alternative to the Global Positioning System (GPS) for supporting the Earth Observing System (EOS) mission. The results are presented of EOS navigation performance evaluation with respect to TONS based orbit, time, and frequency determination (OD/TD/FD). Two TONS modes are considered: one uses scheduled TDRSS forward link service to derive one way Doppler tracking data for OD/FD support (TONS-I); the other uses an unscheduled navigation beacon service (proposed for Advanced TDRSS) to obtain pseudorange and Doppler data for OD/TD/FD support (TONS-II). Key objectives of the analysis were to evaluate nominal performance and potential sensitivities, such as suboptimal tracking geometry, tracking contact scheduling, and modeling parameter selection. OD/TD/FD performance predictions are presented based on covariance and simulation analyses. EOS navigation scenarios and the contributions of principal error sources impacting performance are also described. The results indicate that a TONS mode can be configured to meet current and proposed EOS position accuracy requirements of 100 and 50 m, respectively.

  1. Computer-assisted navigation system in intranasal surgery

    NASA Astrophysics Data System (ADS)

    Rapiejko, Piotr; Wojdas, Andrzej; Wawrzyniak, Zbigniew M.; Jurkiewicz, Dariusz

    2005-02-01

    Due to anatomical variability and limited visibility of endoscopic image, endoscopic operations of nose and paranasal sinuses are ones of the most difficult surgical procedures. The field of operation often comprises anatomical structures, which often present anomalies. Computer-assisted navigational endoscopic surgery consists of routine tomography with the possibility of 3-axis projection allowing for localization of surgical instruments in proper relation to anatomic structures. This potential permits the surgeon to penetrate specific structures with surgical instruments and visualize their localization on computer tomography, which was earlier entered to the computer and projected. Projection of the images and endoscopic picture on the same monitor provides comfort to the operator and feeling of safety to the operated patient. The image analysis feature supplies a set of information necessary for safer and more effective procedure conduction and decreased number of complications. This technique may considerably contribute to training programs in endoscopic surgery. Computer-aided navigation in surgical procedures allows for precise biopsy specimen uptake for pathological examination, even in cases requiring precision up to 1 mm. The authors present an overview of surgical computer-aided navigation systems and their own experience in endoscopic ethmoid and maxillary sinus surgery performed with the use of computer-assisted navigation system.

  2. Analysis of test data on the simplex strapdown navigation system

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The results of a study of test data taken on the simplex strapdown navigation system were presented. That system consisted of the following components: strapdown platform, altimeter, digital computer, tape recorder, typewriter, and power source. The objective of these tests was to isolate error sources which may cause degradation of the system's accuracy and to recommend appropriate changes to the system test procedures or computer software. The following recommendations were made: (1) addition of a gyro compassing alignment program into the navigation program, (2) addition of line drivers at the signal processor end of the transmission line, (3) need for extensive laboratory testing to determine sensor misalignments, biases, and scale factors, (4) need to stabilize the power source to prevent transients during power transfer, (5) need to isolate and eliminate the source of the large noise inputs.

  3. Conceptual approaches to avian navigation systems.

    PubMed

    Wallraff, H G

    1991-01-01

    The general basis of migratory orientation in birds is most probably an endogenous time-and-direction programme. Directions are selected with respect to celestial as well as geomagnetic clues. These clues appear to be integrated within a system that profits from the special advantages of either kind of environmental signal, and thereby can cope with their limitations. Using these clues, and following a genetically determined intended direction (or sequence of directions) over a genetically determined period of time, a bird may reach a larger population-specific area. However, it will hardly be able to find a particular location, such as, for instance, its previous breeding site. Homing to a familiar site over several hundred kilometers of unfamiliar terrain is substantially based on the smelling of atmospheric trace compounds. At shorter distances from home, orientation by means of--presumably visual--familiar landmarks completes the repertoire of mechanisms guiding a bird back home. These mechanisms are considered to be based on different kinds of 'maps' and 'compasses'. Conceptual approaches to the properties of an 'olfactory map' have as yet only reached an early state of speculation. PMID:1838512

  4. Ultra-Wideband Tracking System Design for Relative Navigation

    NASA Technical Reports Server (NTRS)

    Ni, Jianjun David; Arndt, Dickey; Bgo, Phong; Dekome, Kent; Dusl, John

    2011-01-01

    This presentation briefly discusses a design effort for a prototype ultra-wideband (UWB) time-difference-of-arrival (TDOA) tracking system that is currently under development at NASA Johnson Space Center (JSC). The system is being designed for use in localization and navigation of a rover in a GPS deprived environment for surface missions. In one application enabled by the UWB tracking, a robotic vehicle carrying equipments can autonomously follow a crewed rover from work site to work site such that resources can be carried from one landing mission to the next thereby saving up-mass. The UWB Systems Group at JSC has developed a UWB TDOA High Resolution Proximity Tracking System which can achieve sub-inch tracking accuracy of a target within the radius of the tracking baseline [1]. By extending the tracking capability beyond the radius of the tracking baseline, a tracking system is being designed to enable relative navigation between two vehicles for surface missions. A prototype UWB TDOA tracking system has been designed, implemented, tested, and proven feasible for relative navigation of robotic vehicles. Future work includes testing the system with the application code to increase the tracking update rate and evaluating the linear tracking baseline to improve the flexibility of antenna mounting on the following vehicle.

  5. On-Board Perception System For Planetary Aerobot Balloon Navigation

    NASA Technical Reports Server (NTRS)

    Balaram, J.; Scheid, Robert E.; T. Salomon, Phil

    1996-01-01

    NASA's Jet Propulsion Laboratory is implementing the Planetary Aerobot Testbed to develop the technology needed to operate a robotic balloon aero-vehicle (Aerobot). This earth-based system would be the precursor for aerobots designed to explore Venus, Mars, Titan and other gaseous planetary bodies. The on-board perception system allows the aerobot to localize itself and navigate on a planet using information derived from a variety of celestial, inertial, ground-imaging, ranging, and radiometric sensors.

  6. Vehicle health management for guidance, navigation and control systems

    NASA Technical Reports Server (NTRS)

    Radke, Kathleen; Frazzini, Ron; Bursch, Paul; Wald, Jerry; Brown, Don

    1993-01-01

    The objective of the program was to architect a vehicle health management (VHM) system for space systems avionics that assures system readiness for launch vehicles and for space-based dormant vehicles. The platforms which were studied and considered for application of VHM for guidance, navigation and control (GN&C) included the Advanced Manned Launch System (AMLS), the Horizontal Landing-20/Personnel Launch System (HL-20/PLS), the Assured Crew Return Vehicle (ACRV) and the Extended Duration Orbiter (EDO). This set was selected because dormancy and/or availability requirements are driving the designs of these future systems.

  7. Future Air Force systems.

    PubMed

    Tremaine, S A

    1986-10-01

    Planning for the future is under way in earnest at the Aeronautical Systems Division (ASD) at Wright-Patterson Air Force Base. It has been statistically established that it takes from 14-16 years from the generation of a new system idea to enter into engineering development. With this unpleasing, but realistic, schedule in mind, ASD has, during the last 3 years, been initiating long-term planning projects that are pre-starts for new system ideas. They are generated from throughout the Air Force and are locally managed and funded. Through this process, which spans from 12-14 months, specific and revolutionary new ideas for the systems of the future are generated. This article addresses more than a dozen specific new ideas in work at ASD today. These ideas range from a need to replace the C-130 type aircraft after the year 2000 to planning a follow-on to the B-18 well into the 21st century. Among other specific projects are investigation into an immortal fighter intended to be free of reliability and maintenance demands for an especially long period of operation, a new training system and advanced trainer to replace the T-38, a transatmospheric vehicle that could operate in the 100,000-500,000 foot flight region (30,480-152,400 m), and a new means of defending against hostile cruise missile launchers and cruise missiles. Other ideas are also addressed. The article concludes with emphasis on systems that can operate hypersonically in and out of the known atmosphere and greater use of airbreathing propulsion systems operating between Mach 3 and Mach 6. PMID:3778403

  8. A projective surgical navigation system for cancer resection

    NASA Astrophysics Data System (ADS)

    Gan, Qi; Shao, Pengfei; Wang, Dong; Ye, Jian; Zhang, Zeshu; Wang, Xinrui; Xu, Ronald

    2016-03-01

    Near infrared (NIR) fluorescence imaging technique can provide precise and real-time information about tumor location during a cancer resection surgery. However, many intraoperative fluorescence imaging systems are based on wearable devices or stand-alone displays, leading to distraction of the surgeons and suboptimal outcome. To overcome these limitations, we design a projective fluorescence imaging system for surgical navigation. The system consists of a LED excitation light source, a monochromatic CCD camera, a host computer, a mini projector and a CMOS camera. A software program is written by C++ to call OpenCV functions for calibrating and correcting fluorescence images captured by the CCD camera upon excitation illumination of the LED source. The images are projected back to the surgical field by the mini projector. Imaging performance of this projective navigation system is characterized in a tumor simulating phantom. Image-guided surgical resection is demonstrated in an ex-vivo chicken tissue model. In all the experiments, the projected images by the projector match well with the locations of fluorescence emission. Our experimental results indicate that the proposed projective navigation system can be a powerful tool for pre-operative surgical planning, intraoperative surgical guidance, and postoperative assessment of surgical outcome. We have integrated the optoelectronic elements into a compact and miniaturized system in preparation for further clinical validation.

  9. A Strapdown Interial Navigation System/Beidou/Doppler Velocity Log Integrated Navigation Algorithm Based on a Cubature Kalman Filter

    PubMed Central

    Gao, Wei; Zhang, Ya; Wang, Jianguo

    2014-01-01

    The integrated navigation system with strapdown inertial navigation system (SINS), Beidou (BD) receiver and Doppler velocity log (DVL) can be used in marine applications owing to the fact that the redundant and complementary information from different sensors can markedly improve the system accuracy. However, the existence of multisensor asynchrony will introduce errors into the system. In order to deal with the problem, conventionally the sampling interval is subdivided, which increases the computational complexity. In this paper, an innovative integrated navigation algorithm based on a Cubature Kalman filter (CKF) is proposed correspondingly. A nonlinear system model and observation model for the SINS/BD/DVL integrated system are established to more accurately describe the system. By taking multi-sensor asynchronization into account, a new sampling principle is proposed to make the best use of each sensor's information. Further, CKF is introduced in this new algorithm to enable the improvement of the filtering accuracy. The performance of this new algorithm has been examined through numerical simulations. The results have shown that the positional error can be effectively reduced with the new integrated navigation algorithm. Compared with the traditional algorithm based on EKF, the accuracy of the SINS/BD/DVL integrated navigation system is improved, making the proposed nonlinear integrated navigation algorithm feasible and efficient. PMID:24434842

  10. Pilot factors guidelines for the operational inspection of navigation systems

    NASA Technical Reports Server (NTRS)

    Sadler, J. F.; Boucek, G. P.

    1988-01-01

    A computerized human engineered inspection technique is developed for use by FAA inspectors in evaluating the pilot factors aspects of aircraft navigation systems. The short title for this project is Nav Handbook. A menu-driven checklist, computer program and data base (Human Factors Design Criteria) were developed and merged to form a self-contained, portable, human factors inspection checklist tool for use in a laboratory or field setting. The automated checklist is tailored for general aviation navigation systems and can be expanded for use with other aircraft systems, transports or military aircraft. The Nav Handbook inspection concept was demonstrated using a lap-top computer and an Omega/VLF CDU. The program generates standardized inspection reports. Automated checklists for LORAN/C and R NAV were also developed. A Nav Handbook User's Guide is included.

  11. A reactive system for open terrain navigation: Performance and limitations

    NASA Technical Reports Server (NTRS)

    Langer, D.; Rosenblatt, J.; Hebert, M.

    1994-01-01

    We describe a core system for autonomous navigation in outdoor natural terrain. The system consists of three parts: a perception module which processes range images to identify untraversable regions of the terrain, a local map management module which maintains a representation of the environment in the vicinity of the vehicle, and a planning module which issues commands to the vehicle controller. Our approach is to use the concept of 'early traversability evaluation', and on the use of reactive planning for generating commands to drive the vehicle. We argue that our approach leads to a robust and efficient navigation system. We illustrate our approach by an experiment in which a vehicle travelled autonomously for one kilometer through unmapped cross-country terrain.

  12. 75 FR 25794 - Regulated Navigation Area: Red Bull Air Race World Championship, Upper New York Bay, Lower Hudson...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-10

    ..., 2008, issue of the Federal Register (73 FR 3316). Public Meeting We do not now plan to hold a public... SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AA08 Regulated Navigation Area: Red Bull Air Race World... State Park, New Jersey and Ellis Island, New Jersey and New York for the Red Bull Air Race...

  13. Fault tolerant integrated inertial navigation/global positioning systems for next generation spacecraft

    NASA Astrophysics Data System (ADS)

    Miller, Hugh; Hilts, David A.

    The authors address the requirements, benefits, and mitigation of risks to adapt a commercial Hexad fault-tolerant inertial navigation/global positioning system (FT IN/GPS) for use in next-generation spacecraft. Next-generation requirements are examined to determine whether a high production base system can meet autonomous, reliable, and low-cost requirements for future spacecraft. The major benefits are the combining and replacement of functions, the reduction of unscheduled maintenance and operations costs, and a higher probability of mission success. The design, development, and production risks are mitigated by the long-term commercial production schedule for the Boeing 777 air data inertial reference unit (ADIRU) which begins in the mid-1990s. The conclusion is that a strapdown ring laser gyro (RLG) Hexad FT IN/GPS is the preferred integrated navigation and control system for next-generation vehicles.

  14. Fuzzy Adaptive Cubature Kalman Filter for Integrated Navigation Systems.

    PubMed

    Tseng, Chien-Hao; Lin, Sheng-Fuu; Jwo, Dah-Jing

    2016-01-01

    This paper presents a sensor fusion method based on the combination of cubature Kalman filter (CKF) and fuzzy logic adaptive system (FLAS) for the integrated navigation systems, such as the GPS/INS (Global Positioning System/inertial navigation system) integration. The third-degree spherical-radial cubature rule applied in the CKF has been employed to avoid the numerically instability in the system model. In processing navigation integration, the performance of nonlinear filter based estimation of the position and velocity states may severely degrade caused by modeling errors due to dynamics uncertainties of the vehicle. In order to resolve the shortcoming for selecting the process noise covariance through personal experience or numerical simulation, a scheme called the fuzzy adaptive cubature Kalman filter (FACKF) is presented by introducing the FLAS to adjust the weighting factor of the process noise covariance matrix. The FLAS is incorporated into the CKF framework as a mechanism for timely implementing the tuning of process noise covariance matrix based on the information of degree of divergence (DOD) parameter. The proposed FACKF algorithm shows promising accuracy improvement as compared to the extended Kalman filter (EKF), unscented Kalman filter (UKF), and CKF approaches. PMID:27472336

  15. High accuracy autonomous navigation using the global positioning system (GPS)

    NASA Technical Reports Server (NTRS)

    Truong, Son H.; Hart, Roger C.; Shoan, Wendy C.; Wood, Terri; Long, Anne C.; Oza, Dipak H.; Lee, Taesul

    1997-01-01

    The application of global positioning system (GPS) technology to the improvement of the accuracy and economy of spacecraft navigation, is reported. High-accuracy autonomous navigation algorithms are currently being qualified in conjunction with the GPS attitude determination flyer (GADFLY) experiment for the small satellite technology initiative Lewis spacecraft. Preflight performance assessments indicated that these algorithms are able to provide a real time total position accuracy of better than 10 m and a velocity accuracy of better than 0.01 m/s, with selective availability at typical levels. It is expected that the position accuracy will be increased to 2 m if corrections are provided by the GPS wide area augmentation system.

  16. Robust low-frequency spread-spectrum navigation system

    DOEpatents

    Smith, Stephen F.; Moore, James A.

    2011-01-25

    Methods and apparatus are described for a navigation system. A process includes providing a plurality of transmitters distributed throughout a desired coverage area; locking the plurality of transmitters to a common timing reference; transmitting a signal from each of the plurality of transmitters. An apparatus includes a plurality of transmitters distributed throughout a desired coverage area; wherein each of the plurality of transmitters comprises a packet generator; and wherein the plurality of transmitters are locked to a common timing reference.

  17. Robust low-frequency spread-spectrum navigation system

    DOEpatents

    Smith, Stephen F.; Moore, James A.

    2012-01-03

    Methods and apparatus are described for a navigation system. A process includes providing a plurality of transmitters distributed throughout a desired coverage area; locking the plurality of transmitters to a common timing reference; transmitting a signal from each of the plurality of transmitters. An apparatus includes a plurality of transmitters distributed throughout a desired coverage area; wherein each of the plurality of transmitters comprises a packet generator; and wherein the plurality of transmitters are locked to a common timing reference.

  18. Significance of Waterway Navigation Positioning Systems On Ship's Manoeuvring Safety

    NASA Astrophysics Data System (ADS)

    Galor, W.

    The main goal of navigation is to lead the ship to the point of destination safety and efficiently. Various factors may affect ship realisating this process. The ship movement on waterway are mainly limited by water area dimensions (surface and depth). These limitations cause the requirement to realise the proper of ship movement trajectory. In case when this re requirement cant't fulfil then marine accident may happend. This fact is unwanted event caused losses of human health and life, damage or loss of cargo and ship, pollution of natural environment, damage of port structures or blocking the port of its ports and lost of salvage operation. These losses in same cases can be catas- trophical especially while e.i. crude oil spilling could be place. To realise of safety navigation process is needed to embrace the ship's movement trajectory by waterways area. The ship's trajectory is described by manoeuvring lane as a surface of water area which is require to realise of safety ship movement. Many conditions affect to ship manoeuvring line. The main are following: positioning accuracy, ship's manoeuvring features and phenomena's of shore and ship's bulk common affecting. The accuracy of positioning system is most important. This system depends on coast navigation mark- ing which can range many kinds of technical realisation. Mainly used systems based on lights (line), radionavigation (local system or GPS, DGPS), or radars. If accuracy of positiong is higer, then safety of navigation is growing. This article presents these problems exemplifying with approaching channel to ports situated on West Pomera- nian water region.

  19. Robust low-frequency spread-spectrum navigation system

    DOEpatents

    Smith, Stephen F; Moore, James A

    2012-10-30

    Methods and apparatus are described for a navigation system. A process includes providing a plurality of transmitters distributed throughout a desired coverage area; locking the plurality of transmitters to a common timing reference; transmitting a signal from each of the plurality of transmitters. An apparatus includes a plurality of transmitters distributed throughout a desired coverage area; wherein each of the plurality of transmitters comprises a packet generator; and wherein the plurality of transmitters are locked to a common timing reference.

  20. Robust low-frequency spread-spectrum navigation system

    DOEpatents

    Smith, Stephen F [Loudon, TN; Moore, James A [Powell, TN

    2009-12-01

    Methods and apparatus are described for a navigation system. A process includes providing a plurality of transmitters distributed throughout a desired coverage area; locking the plurality of transmitters to a common timing reference; transmitting a signal from each of the plurality of transmitters. An apparatus includes a plurality of transmitters distributed throughout a desired coverage area; wherein each of the plurality of transmitters comprises a packet generator; and wherein the plurality of transmitters are locked to a common timing reference.

  1. A comparison of two commercial and the terminal configured vehicle area navigation systems

    NASA Technical Reports Server (NTRS)

    Knox, C. E.; Hartnell, D.

    1976-01-01

    A comparison was made of some of the more important features of two commercially available area navigation systems and the Terminal Configured Vehicle (TCV) area navigation system. Topics discussed included system design criteria, system elements, calculation of the navigation solution, and presentation of guidance information.

  2. Improved Modeling in a Matlab-Based Navigation System

    NASA Technical Reports Server (NTRS)

    Deutschmann, Julie; Bar-Itzhack, Itzhack; Harman, Rick; Larimore, Wallace E.

    1999-01-01

    An innovative approach to autonomous navigation is available for low earth orbit satellites. The system is developed in Matlab and utilizes an Extended Kalman Filter (EKF) to estimate the attitude and trajectory based on spacecraft magnetometer and gyro data. Preliminary tests of the system with real spacecraft data from the Rossi X-Ray Timing Explorer Satellite (RXTE) indicate the existence of unmodeled errors in the magnetometer data. Incorporating into the EKF a statistical model that describes the colored component of the effective measurement of the magnetic field vector could improve the accuracy of the trajectory and attitude estimates and also improve the convergence time. This model is identified as a first order Markov process. With the addition of the model, the EKF attempts to identify the non-white components of the noise allowing for more accurate estimation of the original state vector, i.e. the orbital elements and the attitude. Working in Matlab allows for easy incorporation of new models into the EKF and the resulting navigation system is generic and can easily be applied to future missions resulting in an alternative in onboard or ground-based navigation.

  3. Fault detection and isolation for multisensor navigation systems

    NASA Technical Reports Server (NTRS)

    Kline, Paul A.; Vangraas, Frank

    1991-01-01

    Increasing attention is being given to the problem of erroneous measurement data for multisensor navigation systems. A recursive estimator can be used in conjunction with a 'snapshot' batch estimator to provide fault detection and isolation (FDI) for these systems. A recursive estimator uses past system states to form a new state estimate and compares it to the calculated state based on a new set of measurements. A 'snapshot' batch estimator uses a set of measurements collected simultaneously and compares solutions based on subsets of measurements. The 'snapshot' approach requires redundant measurements in order to detect and isolate faults. FDI is also referred to as Receiver Autonomous Integrity Monitoring (RAIM).

  4. Maintenance-free lead acid battery for inertial navigation systems aircraft

    NASA Astrophysics Data System (ADS)

    Johnson, William R.; Vutetakis, David G.

    1995-05-01

    Historically, Aircraft Inertial Navigation System (INS) Batteries have utilized vented nickel-cadmium batteries for emergency DC power. The United States Navy and Air Force developed separate systems during their respective INS developments. The Navy contracted with Litton Industries to produce the LTN-72 and Air Force contracted with Delco to produce the Carousel IV INS for the large cargo and specialty aircraft applications. Over the years, a total of eight different battery national stock numbers (NSNs) have entered the stock system along with 75 battery spare part NSNs. The Standard Hardware Acquisition and Reliability Program is working with the Aircraft Battery Group at Naval Surface Warfare Center Crane Division, Naval Air Systems Command (AIR 536), Wright Laboratory, Battelle Memorial Institute, and Concorde Battery Corporation to produce a standard INS battery. This paper discusses the approach taken to determine whether the battery should be replaced and to select the replacement chemistry. The paper also discusses the battery requirements, aircraft that the battery is compatible with, and status of Navy flight evaluation. Projected savings in avoided maintenance in Navy and Air Force INS Systems is projected to be $14.7 million per year with a manpower reduction of 153 maintenance personnel. The new INS battery is compatible with commercially sold INS systems which represents 66 percent of the systems sold.

  5. Autonomous navigation system using a fuzzy adaptive nonlinear H∞ filter.

    PubMed

    Outamazirt, Fariz; Li, Fu; Yan, Lin; Nemra, Abdelkrim

    2014-01-01

    Although nonlinear H∞ (NH∞) filters offer good performance without requiring assumptions concerning the characteristics of process and/or measurement noises, they still require additional tuning parameters that remain fixed and that need to be determined through trial and error. To address issues associated with NH∞ filters, a new SINS/GPS sensor fusion scheme known as the Fuzzy Adaptive Nonlinear H∞ (FANH∞) filter is proposed for the Unmanned Aerial Vehicle (UAV) localization problem. Based on a real-time Fuzzy Inference System (FIS), the FANH∞ filter continually adjusts the higher order of the Taylor development thorough adaptive bounds  and adaptive disturbance attenuation , which significantly increases the UAV localization performance. The results obtained using the FANH∞ navigation filter are compared to the NH∞ navigation filter results and are validated using a 3D UAV flight scenario. The comparison proves the efficiency and robustness of the UAV localization process using the FANH∞ filter. PMID:25244587

  6. Updating inertial navigation systems with VOR/DME information.

    NASA Technical Reports Server (NTRS)

    Bobick, J. C.; Bryson, A. E., Jr.

    1972-01-01

    Demonstration that updating an inertial navigation system (INS) with VOR/DME information (from one or two stations) by means of a maximum-likelihood filter results in substantial improvements in navigational accuracy over that obtained by the use of a single VOR/DME (current practice). When continuously updating, the use of a high-quality INS (0.01 deg/hr gyro drift) instead of a low-quality INS (1.0 deg/hr gyro drift) does not substantially improve position accuracy. In-flight alignment (or realignment) of an INS to an accuracy comparable to that of ground alignment can be accomplished by using two DMEs. Several reduced-order suboptimal filters were found to perform nearly optimally.

  7. Individual Global Navigation Satellite Systems in the Space Service Volume

    NASA Technical Reports Server (NTRS)

    Force, Dale A.

    2015-01-01

    Besides providing position, navigation, and timing (PNT) to terrestrial users, GPS is currently used to provide for precision orbit determination, precise time synchronization, real-time spacecraft navigation, and three-axis control of Earth orbiting satellites. With additional Global Navigation Satellite Systems (GNSS) coming into service (GLONASS, Beidou, and Galileo), it will be possible to provide these services by using other GNSS constellations. The paper, "GPS in the Space Service Volume," presented at the ION GNSS 19th International Technical Meeting in 2006 (Ref. 1), defined the Space Service Volume, and analyzed the performance of GPS out to 70,000 km. This paper will report a similar analysis of the performance of each of the additional GNSS and compare them with GPS alone. The Space Service Volume, defined as the volume between 3,000 km altitude and geosynchronous altitude, as compared with the Terrestrial Service Volume between the surface and 3,000 km. In the Terrestrial Service Volume, GNSS performance will be similar to performance on the Earth's surface. The GPS system has established signal requirements for the Space Service Volume. A separate paper presented at the conference covers the use of multiple GNSS in the Space Service Volume.

  8. Telecommunications and navigation systems design for manned Mars exploration missions

    NASA Technical Reports Server (NTRS)

    Hall, Justin R.; Hastrup, Rolf C.

    1989-01-01

    This paper discusses typical manned Mars exploration needs for telecommunications, including preliminary navigation support functions. It is a brief progress report on an ongoing study program within the current NASA JPL Deep Space Network (DSN) activities. A typical Mars exploration case is defined, and support approaches comparing microwave and optical frequency performance for both local in situ and Mars-earth links are described. Optical telecommunication and navigation technology development opportunities in a Mars exploration program are also identified. A local Mars system telecommunication relay and navigation capability for service support of all Mars missions has been proposed as part of an overall solar system communications network. The effects of light-time delay and occultations on real-time mission decision-making are discussed; the availability of increased local mass data storage may be more important than increasing peak data rates to earth. The long-term frequency use plan will most likely include a mix of microwave, millimeter-wave and optical link capabilities to meet a variety of deep space mission needs.

  9. A Topographical Lidar System for Terrain-Relative Navigation

    NASA Technical Reports Server (NTRS)

    Liebe, Carl Christian; Spiers, Gary; Bartman, Randy; Lam, Raymond; Alexander, James; Montgomery, James; Goldberg, Hannah; Johnson, Andrew; Meras, Patrick; Palacios, Peter

    2008-01-01

    An imaging lidar system is being developed for use in navigation, relative to the local terrain. This technology will potentially be used for future spacecraft landing on the Moon. Systems like this one could also be used on Earth for diverse purposes, including mapping terrain, navigating aircraft with respect to terrain and military applications. The system has been field-tested aboard a helicopter in the Mojave Desert. When this system was designed, digitizers with sufficient sampling rate (2 GHz) were only available with very limited memory. Also, it was desirable to limit the amount of data to be transferred between the digitizer and the mass storage between individual frames. One of the novelty design features of this system was to design the system around the limited amount of memory of the digitizer. The system is required to operate over an altitude (distance) range from a few meters to approximately 1 km, but for each scan across the full field of view, the digitizer memory is only able to hold data for an altitude range no more than 100 m. Data acquisition methods in support of the limited 100 m wide altitude range are described.

  10. Clarissa Spoken Dialogue System for Procedure Reading and Navigation

    NASA Technical Reports Server (NTRS)

    Hieronymus, James; Dowding, John

    2004-01-01

    Speech is the most natural modality for humans use to communicate with other people, agents and complex systems. A spoken dialogue system must be robust to noise and able to mimic human conversational behavior, like correcting misunderstandings, answering simple questions about the task and understanding most well formed inquiries or commands. The system aims to understand the meaning of the human utterance, and if it does not, then it discards the utterance as being meant for someone else. The first operational system is Clarissa, a conversational procedure reader and navigator, which will be used in a System Development Test Objective (SDTO) on the International Space Station (ISS) during Expedition 10. In the present environment one astronaut reads the procedure on a Manual Procedure Viewer (MPV) or paper, and has to stop to read or turn pages, shifting focus from the task. Clarissa is designed to read and navigate ISS procedures entirely with speech, while the astronaut has his eyes and hands engaged in performing the task. The system also provides an MPV like graphical interface so the procedure can be read visually. A demo of the system will be given.

  11. TDRSS Onboard Navigation System (TONS) flight qualification experiment

    NASA Technical Reports Server (NTRS)

    Gramling, C. J.; Hart, R. C.; Folta, D. C.; Long, A. C.

    1994-01-01

    The National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) is currently developing an operational Tracking and Data Relay Satellite (TDRS) System (TDRSS) Onboard Navigation System (TONS) to provide realtime, autonomous, high-accuracy navigation products to users of TDRSS. A TONS experiment was implemented on the Explorer Platform/Extreme Ultraviolet Explorer (EP/EUVE) spacecraft, launched June 7, 1992, to flight qualify the TONS operational system using TDRSS forward-link communications services. This paper provides a detailed evaluation of the flight hardware, an ultrastable oscillator (USO) and Doppler extractor (DE) card in one of the TDRSS user transponders and the ground-based prototype flight software performance, based on the 1 year of TONS experiment operation. The TONS experiment results are used to project the expected performance of the TONS 1 operational system. TONS 1 processes Doppler data derived from scheduled forward-link S-band services using a sequential estimation algorithm enhanced by a sophisticated process noise model to provide onboard orbit and frequency determination and time maintenance. TONS 1 will be the prime navigation system on the Earth Observing System (EOS)-AM1 spacecraft, currently scheduled for launch in 1998. Inflight evaluation of the USO and DE short-term and long-term stability indicates that the performance is excellent. Analysis of the TONS prototype flight software performance indicates that realtime onboard position accuracies of better than 25 meters root-mean-square are achievable with one tracking contact every one to two orbits for the EP/EUVE 525-kilometer altitude, 28.5 degree inclination orbit. The success of the TONS experiment demonstrates the flight readiness of TONS to support the EOS-AM1 mission.

  12. Implementation of a Vector-based Tracking Loop Receiver in a Pseudolite Navigation System

    PubMed Central

    So, Hyoungmin; Lee, Taikjin; Jeon, Sanghoon; Kim, Chongwon; Kee, Changdon; Kim, Taehee; Lee, Sanguk

    2010-01-01

    We propose a vector tracking loop (VTL) algorithm for an asynchronous pseudolite navigation system. It was implemented in a software receiver and experiments in an indoor navigation system were conducted. Test results show that the VTL successfully tracks signals against the near–far problem, one of the major limitations in pseudolite navigation systems, and could improve positioning availability by extending pseudolite navigation coverage. PMID:22163552

  13. A strategy for removal of foreign body in mandible with navigation system.

    PubMed

    Li, P; Li, Z; Tian, W; Tang, W

    2015-07-01

    Navigation surgery in the mandible has rarely been reported because of the complexities of navigating a mobile structure. In this article, we present a simple and novel strategy for removal of a foreign body in the mandible using a navigation system. A female diagnosed with a foreign body in the left mandible underwent navigation surgery using a BrainLAB system. We used a special open splint fabricated with acrylic resin to successfully perform the mandibular navigation. This strategy may be appropriate for many types of mandibular navigation surgery. PMID:25744644

  14. Space-based augmentation for global navigation satellite systems.

    PubMed

    Grewal, Mohinder S

    2012-03-01

    This paper describes space-based augmentation for global navigation satellite systems (GNSS). Space-based augmentations increase the accuracy and integrity of the GNSS, thereby enhancing users' safety. The corrections for ephemeris, ionospheric delay, and clocks are calculated from reference station measurements of GNSS data in wide-area master stations and broadcast via geostationary earth orbit (GEO) satellites. This paper discusses the clock models, satellite orbit determination, ionospheric delay estimation, multipath mitigation, and GEO uplink subsystem (GUS) as used in the Wide Area Augmentation System developed by the FAA. PMID:22481784

  15. Intraoperative Fluorescence Imaging and Multimodal Surgical Navigation Using Goggle System.

    PubMed

    Mela, Christopher A; Papay, Francis A; Liu, Yang

    2016-01-01

    Intraoperative imaging is an invaluable tool in many surgical procedures. We have developed a wearable stereoscopic imaging and display system entitled Integrated Imaging Goggle, which can provide real-time multimodal image guidance. With the Integrated Imaging Goggle, wide field-of-view fluorescence imaging is tracked and registered with intraoperative ultrasound imaging and preoperative tomography-based surgical navigation, to provide integrated multimodal imaging capabilities in real-time. Herein we describe the system instrumentation and the methods of using the Integrated Imaging Goggle to guide surgeries. PMID:27283420

  16. Field operations with cesium clocks in HF navigation systems

    NASA Technical Reports Server (NTRS)

    Christy, E. H.; Clayton, D. A.

    1982-01-01

    Networks of HF phase comparison marine navigation stations employing cesium clocks are discussed. The largest permanent network is in the Gulf of Mexico where some fourteen base stations are continuously active and others are activated as needed. These HF phase comparison systems, which operate on a single transmission path, require a clock on the mobile unit as well. Inventory consists of upwards of 70 clocks from two different manufacturers. The maintenance of this network as an operating system requires a coordinated effort involving clock preparation, clock environment control, station performance monitoring and field service.

  17. Development of an advanced intelligent robot navigation system

    SciTech Connect

    Hai Quan Dai; Dalton, G.R.; Tulenko, J.; Crane, C.C. III )

    1992-01-01

    As part of the US Department of Energy's Robotics for Advanced Reactors Project, the authors are in the process of assembling an advanced intelligent robotic navigation and control system based on previous work performed on this project in the areas of computer control, database access, graphical interfaces, shared data and computations, computer vision for positions determination, and sonar-based computer navigation systems. The system will feature three levels of goals: (1) high-level system for management of lower level functions to achieve specific functional goals; (2) intermediate level of goals such as position determination, obstacle avoidance, and discovering unexpected objects; and (3) other supplementary low-level functions such as reading and recording sonar or video camera data. In its current phase, the Cybermotion K2A mobile robot is not equipped with an onboard computer system, which will be included in the final phase. By that time, the onboard system will play important roles in vision processing and in robotic control communication.

  18. Combined Global Navigation Satellite Systems in the Space Service Volume

    NASA Technical Reports Server (NTRS)

    Force, Dale A.; Miller, James J.

    2015-01-01

    Besides providing position, navigation, and timing (PNT) services to traditional terrestrial and airborne users, GPS is also being increasingly used as a tool to enable precision orbit determination, precise time synchronization, real-time spacecraft navigation, and three-axis attitude control of Earth orbiting satellites. With additional Global Navigation Satellite System (GNSS) constellations being replenished and coming into service (GLONASS, Beidou, and Galileo), it will become possible to benefit from greater signal availability and robustness by using evolving multi-constellation receivers. The paper, "GPS in the Space Service Volume," presented at the ION GNSS 19th International Technical Meeting in 2006 (Ref. 1), defined the Space Service Volume, and analyzed the performance of GPS out to seventy thousand kilometers. This paper will report a similar analysis of the signal coverage of GPS in the space domain; however, the analyses will also consider signal coverage from each of the additional GNSS constellations noted earlier to specifically demonstrate the expected benefits to be derived from using GPS in conjunction with other foreign systems. The Space Service Volume is formally defined as the volume of space between three thousand kilometers altitude and geosynchronous altitude circa 36,000 km, as compared with the Terrestrial Service Volume between 3,000 km and the surface of the Earth. In the Terrestrial Service Volume, GNSS performance is the same as on or near the Earth's surface due to satellite vehicle availability and geometry similarities. The core GPS system has thereby established signal requirements for the Space Service Volume as part of technical Capability Development Documentation (CDD) that specifies system performance. Besides the technical discussion, we also present diplomatic efforts to extend the GPS Space Service Volume concept to other PNT service providers in an effort to assure that all space users will benefit from the enhanced

  19. Improving CAR Navigation with a Vision-Based System

    NASA Astrophysics Data System (ADS)

    Kim, H.; Choi, K.; Lee, I.

    2015-08-01

    The real-time acquisition of the accurate positions is very important for the proper operations of driver assistance systems or autonomous vehicles. Since the current systems mostly depend on a GPS and map-matching technique, they show poor and unreliable performance in blockage and weak areas of GPS signals. In this study, we propose a vision oriented car navigation method based on sensor fusion with a GPS and in-vehicle sensors. We employed a single photo resection process to derive the position and attitude of the camera and thus those of the car. This image georeferencing results are combined with other sensory data under the sensor fusion framework for more accurate estimation of the positions using an extended Kalman filter. The proposed system estimated the positions with an accuracy of 15 m although GPS signals are not available at all during the entire test drive of 15 minutes. The proposed vision based system can be effectively utilized for the low-cost but high-accurate and reliable navigation systems required for intelligent or autonomous vehicles.

  20. Research on the error model of airborne celestial/inertial integrated navigation system

    NASA Astrophysics Data System (ADS)

    Zheng, Xiaoqiang; Deng, Xiaoguo; Yang, Xiaoxu; Dong, Qiang

    2015-02-01

    Celestial navigation subsystem of airborne celestial/inertial integrated navigation system periodically correct the positioning error and heading drift of the inertial navigation system, by which the inertial navigation system can greatly improve the accuracy of long-endurance navigation. Thus the navigation accuracy of airborne celestial navigation subsystem directly decides the accuracy of the integrated navigation system if it works for long time. By building the mathematical model of the airborne celestial navigation system based on the inertial navigation system, using the method of linear coordinate transformation, we establish the error transfer equation for the positioning algorithm of airborne celestial system. Based on these we built the positioning error model of the celestial navigation. And then, based on the positioning error model we analyze and simulate the positioning error which are caused by the error of the star tracking platform with the MATLAB software. Finally, the positioning error model is verified by the information of the star obtained from the optical measurement device in range and the device whose location are known. The analysis and simulation results show that the level accuracy and north accuracy of tracking platform are important factors that limit airborne celestial navigation systems to improve the positioning accuracy, and the positioning error have an approximate linear relationship with the level error and north error of tracking platform. The error of the verification results are in 1000m, which shows that the model is correct.

  1. 77 FR 13350 - Certain Automotive GPS Navigation Systems, Components Thereof, and Products Containing Same...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-06

    ... complaint filed by Beacon Navigation GmbH of Zug, Switzerland (``Beacon''). 76 FR 72443 (Nov. 23, 2011). The... COMMISSION Certain Automotive GPS Navigation Systems, Components Thereof, and Products Containing Same... importation of certain automotive GPS navigation systems, components thereof, and products containing the...

  2. Sensitivity analysis of helicopter IMC decelerating steep approach and landing performance to navigation system parameters

    NASA Technical Reports Server (NTRS)

    Karmali, M. S.; Phatak, A. V.

    1982-01-01

    Results of a study to investigate, by means of a computer simulation, the performance sensitivity of helicopter IMC DSAL operations as a function of navigation system parameters are presented. A mathematical model representing generically a navigation system is formulated. The scenario simulated consists of a straight in helicopter approach to landing along a 6 deg glideslope. The deceleration magnitude chosen is 03g. The navigation model parameters are varied and the statistics of the total system errors (TSE) computed. These statistics are used to determine the critical navigation system parameters that affect the performance of the closed-loop navigation, guidance and control system of a UH-1H helicopter.

  3. Tuning and Robustness Analysis for the Orion Absolute Navigation System

    NASA Technical Reports Server (NTRS)

    Holt, Greg N.; Zanetti, Renato; D'Souza, Christopher

    2013-01-01

    The Orion Multi-Purpose Crew Vehicle (MPCV) is currently under development as NASA's next-generation spacecraft for exploration missions beyond Low Earth Orbit. The MPCV is set to perform an orbital test ight, termed Exploration Flight Test 1 (EFT-1), some time in late 2014. The navigation system for the Orion spacecraft is being designed in a Multi-Organizational Design Environment (MODE) team including contractor and NASA personnel. The system uses an Extended Kalman Filter to process measurements and determine the state. The design of the navigation system has undergone several iterations and modi cations since its inception, and continues as a work-in-progress. This paper seeks to show the e orts made to-date in tuning the lter for the EFT-1 mission and instilling appropriate robustness into the system to meet the requirements of manned space ight. The results generally show Monte Carlo error performance bounded by the lter uncertainty for all phases of ight. Some future items of investigation are presented related to suspected anomalies in the trajectory truth reference le.

  4. Wellbore inertial navigation system (WINS) software development and test results

    SciTech Connect

    Wardlaw, R. Jr.

    1982-09-01

    The structure and operation of the real-time software developed for the Wellbore Inertial Navigation System (WINS) application are described. The procedure and results of a field test held in a 7000-ft well in the Nevada Test Site are discussed. Calibration and instrumentation error compensation are outlined, as are design improvement areas requiring further test and development. Notes on Kalman filtering and complete program listings of the real-time software are included in the Appendices. Reference is made to a companion document which describes the downhole instrumentation package.

  5. A Kinect™ camera based navigation system for percutaneous abdominal puncture

    NASA Astrophysics Data System (ADS)

    Xiao, Deqiang; Luo, Huoling; Jia, Fucang; Zhang, Yanfang; Li, Yong; Guo, Xuejun; Cai, Wei; Fang, Chihua; Fan, Yingfang; Zheng, Huimin; Hu, Qingmao

    2016-08-01

    Percutaneous abdominal puncture is a popular interventional method for the management of abdominal tumors. Image-guided puncture can help interventional radiologists improve targeting accuracy. The second generation of Kinect™ was released recently, we developed an optical navigation system to investigate its feasibility for guiding percutaneous abdominal puncture, and compare its performance on needle insertion guidance with that of the first-generation Kinect™. For physical-to-image registration in this system, two surfaces extracted from preoperative CT and intraoperative Kinect™ depth images were matched using an iterative closest point (ICP) algorithm. A 2D shape image-based correspondence searching algorithm was proposed for generating a close initial position before ICP matching. Evaluation experiments were conducted on an abdominal phantom and six beagles in vivo. For phantom study, a two-factor experiment was designed to evaluate the effect of the operator’s skill and trajectory on target positioning error (TPE). A total of 36 needle punctures were tested on a Kinect™ for Windows version 2 (Kinect™ V2). The target registration error (TRE), user error, and TPE are 4.26  ±  1.94 mm, 2.92  ±  1.67 mm, and 5.23  ±  2.29 mm, respectively. No statistically significant differences in TPE regarding operator’s skill and trajectory are observed. Additionally, a Kinect™ for Windows version 1 (Kinect™ V1) was tested with 12 insertions, and the TRE evaluated with the Kinect™ V1 is statistically significantly larger than that with the Kinect™ V2. For the animal experiment, fifteen artificial liver tumors were inserted guided by the navigation system. The TPE was evaluated as 6.40  ±  2.72 mm, and its lateral and longitudinal component were 4.30  ±  2.51 mm and 3.80  ±  3.11 mm, respectively. This study demonstrates that the navigation accuracy of the proposed system is acceptable

  6. Meta-image navigation augmenters for unmanned aircraft systems (MINA for UAS)

    NASA Astrophysics Data System (ADS)

    Òªelik, Koray; Somani, Arun K.; Schnaufer, Bernard; Hwang, Patrick Y.; McGraw, Gary A.; Nadke, Jeremy

    2013-05-01

    GPS is a critical sensor for Unmanned Aircraft Systems (UASs) due to its accuracy, global coverage and small hardware footprint, but is subject to denial due to signal blockage or RF interference. When GPS is unavailable, position, velocity and attitude (PVA) performance from other inertial and air data sensors is not sufficient, especially for small UASs. Recently, image-based navigation algorithms have been developed to address GPS outages for UASs, since most of these platforms already include a camera as standard equipage. Performing absolute navigation with real-time aerial images requires georeferenced data, either images or landmarks, as a reference. Georeferenced imagery is readily available today, but requires a large amount of storage, whereas collections of discrete landmarks are compact but must be generated by pre-processing. An alternative, compact source of georeferenced data having large coverage area is open source vector maps from which meta-objects can be extracted for matching against real-time acquired imagery. We have developed a novel, automated approach called MINA (Meta Image Navigation Augmenters), which is a synergy of machine-vision and machine-learning algorithms for map aided navigation. As opposed to existing image map matching algorithms, MINA utilizes publicly available open-source geo-referenced vector map data, such as OpenStreetMap, in conjunction with real-time optical imagery from an on-board, monocular camera to augment the UAS navigation computer when GPS is not available. The MINA approach has been experimentally validated with both actual flight data and flight simulation data and results are presented in the paper.

  7. Air conditioning system

    DOEpatents

    Lowenstein, Andrew; Miller, Jeffrey; Gruendeman, Peter; DaSilva, Michael

    2005-02-01

    An air conditioner comprises a plurality of plates arranged in a successively stacked configuration with portions thereof having a spaced apart arrangement, and defining between successive adjacent pairs of plates at the spaced apart portions a first and second series of discrete alternating passages wherein a first air stream is passed through the first series of passages and a second air stream is passed through the second series of passages; and said stacked configuration of plates forming integrally therewith a liquid delivery means for delivering from a source a sufficient quantity of a liquid to the inside surfaces of the first series of fluid passages in a manner which provides a continuous flow of the liquid from a first end to a second end of the plurality of plates while in contact with the first air stream.

  8. Engineering a Multimission Approach to Navigation Ground Data System Operations

    NASA Technical Reports Server (NTRS)

    Gerasimatos, Dimitrios V.; Attiyah, Ahlam A.

    2012-01-01

    The Mission Design and Navigation (MDNAV) Section at the Jet Propulsion Laboratory (JPL) supports many deep space and earth orbiting missions from formulation to end of mission operations. The requirements of these missions are met with a multimission approach to MDNAV ground data system (GDS) infrastructure capable of being shared and allocated in a seamless and consistent manner across missions. The MDNAV computing infrastructure consists of compute clusters, network attached storage, mission support area facilities, and desktop hardware. The multimission architecture allows these assets, and even personnel, to be leveraged effectively across the project lifecycle and across multiple missions simultaneously. It provides a more robust and capable infrastructure to each mission than might be possible if each constructed its own. It also enables a consistent interface and environment within which teams can conduct all mission analysis and navigation functions including: trajectory design; ephemeris generation; orbit determination; maneuver design; and entry, descent, and landing analysis. The savings of these efficiencies more than offset the costs of increased complexity and other challenges that had to be addressed: configuration management, scheduling conflicts, and competition for resources. This paper examines the benefits of the multimission MDNAV ground data system infrastructure, focusing on the hardware and software architecture. The result is an efficient, robust, scalable MDNAV ground data system capable of supporting more than a dozen active missions at once.

  9. A High Accuracy Hybrid Navigation System for Unmanned Underwater Vehicle

    NASA Astrophysics Data System (ADS)

    Kumagai, Hideo; Numajima, Toru; Sugimoto, Sueo

    The development of small, light weight, low power navigation system for guidance of both tethered and autonomous Unmanned Underwater Vehicle (UUV) is required in applications such as deep salvage, oil and gas well head and pipe line laying and maintenance, etc. All have stringent position requirements in order to define target locations followings the initial find, minimize search time for return missions, as well as support of autopilot functions. In these applications mainly an accurate Sonar Doppler Velocity Log (DVL) was used for Inertial Navigation System (INS) error corrections. But the settlement of DVL is not affordable to various UUV so that not convenient to low cost and small UUV. In this paper we propose a new algorithm for combining the low cost but highly accurate INS with Water Screw Speed (WSS) of the UUV efficiently. In order to evaluate our algorithm we produced the data acquisition system and after several experimental run, we simulated this algorithm searching the error correlation time and noise variance of these estimations.

  10. Sensing the Earth using Global Navigation Satellite System signals

    NASA Astrophysics Data System (ADS)

    Jin, Shuanggen; Rizos, Chris; Rius, Antonio

    2011-11-01

    International Workshop on GNSS Remote Sensing for Future Missions and Sciences; Shanghai, China, 7-9 August 2011 The Global Navigation Satellite System (GNSS) has been widely used in navigation, positioning, and geoscience applications. Recently, the versatility of GNSS as a new remote sensing tool has been demonstrated with the use of refracted, reflected, and scattered GNSS signals to sound the atmosphere and ionosphere, ocean, land surfaces (including soil moisture), and cryosphere. Existing GPS radio occultation (RO) missions—e.g., the U.S.-Argentina SAC-C, German Challenging Minisatellite Payload (CHAMP), U.S.-Germany Gravity Recovery and Climate Experiment (GRACE), Taiwan-U.S. Formosa Satellite Mission-3/Constellation Observing System for Meteorology, Ionosphere, and Climate (FORMOSAT-3/COSMIC) satellites, German TerraSAR-X satellite, and European MetOp—together with groundbased GNSS observations, have provided precise and high-resolution information on tropospheric water vapor, pressure, temperature, tropopause parameters, ionospheric total electron content, and electron density profiles. GNSS signals reflected from the ocean and land surface can determine the ocean height, ocean surface wind speed and wind direction, soil moisture, and ice and snow thickness. With improvement expected due to the next generation of multifrequency GNSS systems and receivers, and new space-based instruments tracking GNSS reflected and refracted signals, new scientific applications of GNSS are expected in the near future across a number of environmental remote sensing fields.

  11. Air-Flow Navigated Crystal Growth for TIPS Pentacene-Based Organic Thin-Film Transistors

    SciTech Connect

    He, Zhengran; Chen, Jihua; Sun, Zhenzhong; Szulczewski, Greg; Li, Dawen

    2012-01-01

    6,13-bis(triisopropylsilylethynyl)pentacene (TIPS pentacene) is a promising active channel material of organic thin-film transistors (OTFTs) due to its solubility, stability, and high mobility. However, the growth of TIPS pentacene crystals is intrinsically anisotropic and thus leads to significant variation in the performance of OTFTs. In this paper, air flow is utilized to effectively reduce the TIPS pentacene crystal anisotropy and enhance performance consistency in OTFTs, and the resulted films are examined with optical microscopy, grazing-incidence X-ray diffraction, and thin-film transistor measurements. Under air-flow navigation (AFN), TIPS pentacene drop-cast from toluene solution has been observed to form thin films with improved crystal orientation and increased areal coverage on substrates, which subsequently lead to a four-fold increase of average hole mobility and one order of magnitude enhancement in performance consistency defined by the ratio of average mobility to the standard deviation of the field-effect mobilities.

  12. Navigation system for visual impaired persons based on satellital location.

    PubMed

    Perez-Ponce, H; Hernandez-Rodriguez, P R

    2004-01-01

    A system designed to assist visual impaired persons to travel in a city without external help using GPS navigation system has been developed. With the use of a BIuetooth hands-free, the user only has to give spoken commands to receive spoken directions to get to his/her destination. The directions received from the system will help him/her to walk parallel to the tangent of the walk-side and to walk through the most convenient route. This means that the route calculated to arrive to the destination point not only will be the shortest, but also the least risky one. The system can also be personalized by the user, entering his/her own waypoints. PMID:17271383

  13. Navigation Performance of Global Navigation Satellite Systems in the Space Service Volume

    NASA Technical Reports Server (NTRS)

    Force, Dale A.

    2013-01-01

    GPS has been used for spacecraft navigation for many years center dot In support of this, the US has committed that future GPS satellites will continue to provide signals in the Space Service Volume center dot NASA is working with international agencies to obtain similar commitments from other providers center dot In support of this effort, I simulated multi-constellation navigation in the Space Service Volume In this presentation, I extend the work to examine the navigational benefits and drawbacks of the new constellations center dot A major benefit is the reduced geometric dilution of precision (GDOP). I show that there is a substantial reduction in GDOP by using all of the GNSS constellations center dot The increased number of GNSS satellites broadcasting does produce mutual interference, raising the noise floor. A near/far signal problem can also occur where a nearby satellite drowns out satellites that are far away. - In these simulations, no major effect was observed Typically, the use of multi-constellation GNSS navigation improves GDOP by a factor of two or more over GPS alone center dot In addition, at the higher altitudes, four satellite solutions can be obtained much more often center dot This show the value of having commitments to provide signals in the Space Service Volume Besides a commitment to provide a minimum signal in the Space Service Volume, detailed signal gain information is useful for mission planning center dot Knowledge of group and phase delay over the pattern would also reduce the navigational uncertainty

  14. Fully self-contained vision-aided navigation and landing of a micro air vehicle independent from external sensor inputs

    NASA Astrophysics Data System (ADS)

    Brockers, Roland; Susca, Sara; Zhu, David; Matthies, Larry

    2012-06-01

    Direct-lift micro air vehicles have important applications in reconnaissance. In order to conduct persistent surveillance in urban environments, it is essential that these systems can perform autonomous landing maneuvers on elevated surfaces that provide high vantage points without the help of any external sensor and with a fully contained on-board software solution. In this paper, we present a micro air vehicle that uses vision feedback from a single down looking camera to navigate autonomously and detect an elevated landing platform as a surrogate for a roof top. Our method requires no special preparation (labels or markers) of the landing location. Rather, leveraging the planar character of urban structure, the landing platform detection system uses a planar homography decomposition to detect landing targets and produce approach waypoints for autonomous landing. The vehicle control algorithm uses a Kalman filter based approach for pose estimation to fuse visual SLAM (PTAM) position estimates with IMU data to correct for high latency SLAM inputs and to increase the position estimate update rate in order to improve control stability. Scale recovery is achieved using inputs from a sonar altimeter. In experimental runs, we demonstrate a real-time implementation running on-board a micro aerial vehicle that is fully self-contained and independent from any external sensor information. With this method, the vehicle is able to search autonomously for a landing location and perform precision landing maneuvers on the detected targets.

  15. Fully Self-Contained Vision-Aided Navigation and Landing of a Micro Air Vehicle Independent from External Sensor Inputs

    NASA Technical Reports Server (NTRS)

    Brockers, Roland; Susca, Sara; Zhu, David; Matthies, Larry

    2012-01-01

    Direct-lift micro air vehicles have important applications in reconnaissance. In order to conduct persistent surveillance in urban environments, it is essential that these systems can perform autonomous landing maneuvers on elevated surfaces that provide high vantage points without the help of any external sensor and with a fully contained on-board software solution. In this paper, we present a micro air vehicle that uses vision feedback from a single down looking camera to navigate autonomously and detect an elevated landing platform as a surrogate for a roof top. Our method requires no special preparation (labels or markers) of the landing location. Rather, leveraging the planar character of urban structure, the landing platform detection system uses a planar homography decomposition to detect landing targets and produce approach waypoints for autonomous landing. The vehicle control algorithm uses a Kalman filter based approach for pose estimation to fuse visual SLAM (PTAM) position estimates with IMU data to correct for high latency SLAM inputs and to increase the position estimate update rate in order to improve control stability. Scale recovery is achieved using inputs from a sonar altimeter. In experimental runs, we demonstrate a real-time implementation running on-board a micro aerial vehicle that is fully self-contained and independent from any external sensor information. With this method, the vehicle is able to search autonomously for a landing location and perform precision landing maneuvers on the detected targets.

  16. Autocalibrating vision guided navigation of unmanned air vehicles via tactical monocular cameras in GPS denied environments

    NASA Astrophysics Data System (ADS)

    Celik, Koray

    This thesis presents a novel robotic navigation strategy by using a conventional tactical monocular camera, proving the feasibility of using a monocular camera as the sole proximity sensing, object avoidance, mapping, and path-planning mechanism to fly and navigate small to medium scale unmanned rotary-wing aircraft in an autonomous manner. The range measurement strategy is scalable, self-calibrating, indoor-outdoor capable, and has been biologically inspired by the key adaptive mechanisms for depth perception and pattern recognition found in humans and intelligent animals (particularly bats), designed to assume operations in previously unknown, GPS-denied environments. It proposes novel electronics, aircraft, aircraft systems, systems, and procedures and algorithms that come together to form airborne systems which measure absolute ranges from a monocular camera via passive photometry, mimicking that of a human-pilot like judgement. The research is intended to bridge the gap between practical GPS coverage and precision localization and mapping problem in a small aircraft. In the context of this study, several robotic platforms, airborne and ground alike, have been developed, some of which have been integrated in real-life field trials, for experimental validation. Albeit the emphasis on miniature robotic aircraft this research has been tested and found compatible with tactical vests and helmets, and it can be used to augment the reliability of many other types of proximity sensors.

  17. Experimental validation of GPS-INS-STAR hybrid navigation system for space autonomy

    NASA Astrophysics Data System (ADS)

    Tanabe, Toru; Harigae, Masatoshi

    The experimental validation of the GPS-INS-STAR hybrid navigation system concept is performed. The hybrid navigation system combines the best features of employed sensors to improve total navigation performances. The GPS-INS-STAR hybrid navigation system consists of the three different sensors, a GPS receiver, an inertial navigation system and a STAR image sensor. In this concept, the system integrates a high positioning performance of the GPS system, an accurate attitude determination capability of the STAR image sensor and the INS signal with a wide bandwidth. It results in a complete 6-DOF (degrees of freedom) autonomous navigation system. The present paper shows the validation of the concept by the experiments using GPS, INS and STAR hardware systems. The experiments are divided into three steps. Firstly, the INS-STAR hybrid navigation system is constructed on the 3-axis motion table to verify the performances of its attitude loop. Secondly, the GPS-INS hybrid navigation system installed on the car shows the performance improvement in its translational loop. Finally, the full configuration of the GPS-INS-STAR hybrid navigation system is evaluated at night. Each experiment result is checked by the theoretical analysis. In the theoretical analysis, the concept of observability well explains the performances of the system. Its feasibility for space application is also evaluated in the point of existing hardware technology. It is concluded that the experiments vaidate the concept of the hybrid navigation system and confirm its capability to realize space autonomy.

  18. Inertial Pocket Navigation System: Unaided 3D Positioning

    PubMed Central

    Munoz Diaz, Estefania

    2015-01-01

    Inertial navigation systems use dead-reckoning to estimate the pedestrian's position. There are two types of pedestrian dead-reckoning, the strapdown algorithm and the step-and-heading approach. Unlike the strapdown algorithm, which consists of the double integration of the three orthogonal accelerometer readings, the step-and-heading approach lacks the vertical displacement estimation. We propose the first step-and-heading approach based on unaided inertial data solving 3D positioning. We present a step detector for steps up and down and a novel vertical displacement estimator. Our navigation system uses the sensor introduced in the front pocket of the trousers, a likely location of a smartphone. The proposed algorithms are based on the opening angle of the leg or pitch angle. We analyzed our step detector and compared it with the state-of-the-art, as well as our already proposed step length estimator. Lastly, we assessed our vertical displacement estimator in a real-world scenario. We found that our algorithms outperform the literature step and heading algorithms and solve 3D positioning using unaided inertial data. Additionally, we found that with the pitch angle, five activities are distinguishable: standing, sitting, walking, walking up stairs and walking down stairs. This information complements the pedestrian location and is of interest for applications, such as elderly care. PMID:25897501

  19. Inertial Pocket Navigation System: Unaided 3D Positioning.

    PubMed

    Diaz, Estefania Munoz

    2015-01-01

    Inertial navigation systems use dead-reckoning to estimate the pedestrian's position. There are two types of pedestrian dead-reckoning, the strapdown algorithm and the step-and-heading approach. Unlike the strapdown algorithm, which consists of the double integration of the three orthogonal accelerometer readings, the step-and-heading approach lacks the vertical displacement estimation. We propose the first step-and-heading approach based on unaided inertial data solving 3D positioning. We present a step detector for steps up and down and a novel vertical displacement estimator. Our navigation system uses the sensor introduced in the front pocket of the trousers, a likely location of a smartphone. The proposed algorithms are based on the opening angle of the leg or pitch angle. We analyzed our step detector and compared it with the state-of-the-art, as well as our already proposed step length estimator. Lastly, we assessed our vertical displacement estimator in a real-world scenario. We found that our algorithms outperform the literature step and heading algorithms and solve 3D positioning using unaided inertial data. Additionally, we found that with the pitch angle, five activities are distinguishable: standing, sitting, walking, walking up stairs and walking down stairs. This information complements the pedestrian location and is of interest for applications, such as elderly care. PMID:25897501

  20. Fundamentals of air quality systems

    SciTech Connect

    Noll, K.E.

    1999-08-01

    The book uses numerous examples to demonstrate how basic design concepts can be applied to the control of air emissions from industrial sources. It focuses on the design of air pollution control devices for the removal of gases and particles from industrial sources, and provides detailed, specific design methods for each major air pollution control system. Individual chapters provide design methods that include both theory and practice with emphasis on the practical aspect by providing numerous examples that demonstrate how air pollution control devices are designed. Contents include air pollution laws, air pollution control devices; physical properties of air, gas laws, energy concepts, pressure; motion of airborne particles, filter and water drop collection efficiency; fundamentals of particulate emission control; cyclones; fabric filters; wet scrubbers; electrostatic precipitators; control of volatile organic compounds; adsorption; incineration; absorption; control of gaseous emissions from motor vehicles; practice problems (with solutions) for the P.E. examination in environmental engineering. Design applications are featured throughout.

  1. An efficient navigation-control system for small unmanned aircraft

    NASA Astrophysics Data System (ADS)

    Girwar-Nath, Jonathan Alejandro

    Unmanned Aerial Vehicles have been research in the past decade for a broad range of tasks and application domains such as search and rescue, reconnaissance, traffic control, pipe line inspections, surveillance, border patrol, and communication bridging. This work describes the design and implementation of a lightweight Commercial-Off-The-Shelf (COTS) semi-autonomous Fixed-Wing Unmanned Aerial Vehicle (UAV). Presented here is a methodology for System Identification utilizing the Box-Jenkins model estimator on recorded flight data to characterize the system and develop a mathematical model of the aircraft. Additionally, a novel microprocessor, the XMOS, is utilized to navigate and maneuver the aircraft utilizing a PD control system. In this thesis is a description of the aircraft and the sensor suite utilized, as well as the flight data and supporting videos for the benefit of the UAV research community.

  2. Advanced air revitalization system testing

    NASA Technical Reports Server (NTRS)

    Heppner, D. B.; Hallick, T. M.; Schubert, F. H.

    1983-01-01

    A previously developed experimental air revitalization system was tested cyclically and parametrically. One-button startup without manual interventions; extension by 1350 hours of tests with the system; capability for varying process air carbon dioxide partial pressure and humidity and coolant source for simulation of realistic space vehicle interfaces; dynamic system performance response on the interaction of the electrochemical depolarized carbon dioxide concentrator, the Sabatier carbon dioxide reduction subsystem, and the static feed water electrolysis oxygen generation subsystem, the carbon dioxide concentrator module with unitized core technology for the liquid cooled cell; and a preliminary design for a regenerative air revitalization system for the space station are discussed.

  3. A Novel Augmented Reality Navigation System for Endoscopic Sinus and Skull Base Surgery: A Feasibility Study

    PubMed Central

    Li, Liang; Yang, Jian; Chu, Yakui; Wu, Wenbo; Xue, Jin; Liang, Ping; Chen, Lei

    2016-01-01

    Objective To verify the reliability and clinical feasibility of a self-developed navigation system based on an augmented reality technique for endoscopic sinus and skull base surgery. Materials and Methods In this study we performed a head phantom and cadaver experiment to determine the display effect and accuracy of our navigational system. We compared cadaver head-based simulated operations, the target registration error, operation time, and National Aeronautics and Space Administration Task Load Index scores of our navigation system to conventional navigation systems. Results The navigation system developed in this study has a novel display mode capable of fusing endoscopic images to three-dimensional (3-D) virtual images. In the cadaver head experiment, the target registration error was 1.28 ± 0.45 mm, which met the accepted standards of a navigation system used for nasal endoscopic surgery. Compared with conventional navigation systems, the new system was more effective in terms of operation time and the mental workload of surgeons, which is especially important for less experienced surgeons. Conclusion The self-developed augmented reality navigation system for endoscopic sinus and skull base surgery appears to have advantages that outweigh those of conventional navigation systems. We conclude that this navigational system will provide rhinologists with more intuitive and more detailed imaging information, thus reducing the judgment time and mental workload of surgeons when performing complex sinus and skull base surgeries. Ultimately, this new navigational system has potential to increase the quality of surgeries. In addition, the augmented reality navigational system could be of interest to junior doctors being trained in endoscopic techniques because it could speed up their learning. However, it should be noted that the navigation system serves as an adjunct to a surgeon’s skills and knowledge, not as a substitute. PMID:26757365

  4. Exploitation of Semantic Building Model in Indoor Navigation Systems

    NASA Astrophysics Data System (ADS)

    Anjomshoaa, A.; Shayeganfar, F.; Tjoa, A. Min

    2009-04-01

    There are many types of indoor and outdoor navigation tools and methodologies available. A majority of these solutions are based on Global Positioning Systems (GPS) and instant video and image processing. These approaches are ideal for open world environments where very few information about the target location is available, but for large scale building environments such as hospitals, governmental offices, etc the end-user will need more detailed information about the surrounding context which is especially important in case of people with special needs. This paper presents a smart indoor navigation solution that is based on Semantic Web technologies and Building Information Model (BIM). The proposed solution is also aligned with Google Android's concepts to enlighten the realization of results. Keywords: IAI IFCXML, Building Information Model, Indoor Navigation, Semantic Web, Google Android, People with Special Needs 1 Introduction Built environment is a central factor in our daily life and a big portion of human life is spent inside buildings. Traditionally the buildings are documented using building maps and plans by utilization of IT tools such as computer-aided design (CAD) applications. Documenting the maps in an electronic way is already pervasive but CAD drawings do not suffice the requirements regarding effective building models that can be shared with other building-related applications such as indoor navigation systems. The navigation in built environment is not a new issue, however with the advances in emerging technologies like GPS, mobile and networked environments, and Semantic Web new solutions have been suggested to enrich the traditional building maps and convert them to smart information resources that can be reused in other applications and improve the interpretability with building inhabitants and building visitors. Other important issues that should be addressed in building navigation scenarios are location tagging and end-user communication

  5. An adaptive technique for a redundant-sensor navigation system.

    NASA Technical Reports Server (NTRS)

    Chien, T.-T.

    1972-01-01

    An on-line adaptive technique is developed to provide a self-contained redundant-sensor navigation system with a capability to utilize its full potentiality in reliability and performance. This adaptive system is structured as a multistage stochastic process of detection, identification, and compensation. It is shown that the detection system can be effectively constructed on the basis of a design value, specified by mission requirements, of the unknown parameter in the actual system, and of a degradation mode in the form of a constant bias jump. A suboptimal detection system on the basis of Wald's sequential analysis is developed using the concept of information value and information feedback. The developed system is easily implemented, and demonstrates a performance remarkably close to that of the optimal nonlinear detection system. An invariant transformation is derived to eliminate the effect of nuisance parameters such that the ambiguous identification system can be reduced to a set of disjoint simple hypotheses tests. By application of a technique of decoupled bias estimation in the compensation system the adaptive system can be operated without any complicated reorganization.

  6. The changing world of global navigation satellite systems

    NASA Astrophysics Data System (ADS)

    Dow, John M.; Neilan, Ruth E.; Higgins, Matt; Arias, Felicitas

    The world of global navigation satellite systems (GNSS) has been changing very rapidly during the last years. New constellations are being developed in Europe (Galileo), India (IRNSS), Japan (QZNSS) and China (Compass), while both the US GPS and the Russian GLONASS programmes are engaged in very significant mediumto long-term improvements, which will make them even more valuable in the coming years to an ever wider range of civilian users. In addition, powerful regional augmentation systems are becoming (or have already become) operational, providing users with important real time information concerning the integrity of the signals being broadcast by those two systems: these include the US WAAS, the European EGNOS, the Japanese MSAS, the Indian GAGAN and others. Following a number of United Nations sponsored regional workshops, a report by an ad hoc UN "GNSS Action Team" and several preparatory meetings, the International Committee on GNSS (ICG) was established in December 2005 in Vienna, Austria. The ICG is an informal body with the main objective of promoting cooperation on matters of mutual interest related to civil satellite-based positioning, navigation, timing, and value-added services, as well as compatibility and interoperability among the GNSS systems. A further important objective is to encourage the use of GNSS to support sustainable development, particularly in the developing countries. The United Nations Office for Outer Space Affairs (UNOOSA) plays a key role in facilitating the work of the ICG. The members of the Committee are GNSS system providers, while international organisations representing users of GNSS can qualify for participation in the work of the Committee as associate members or observers. The interests of the space geodetic, mapping and timing communities are represented in particular through ICG associate membership of the IGS, IAG, FIG, IERS, while BIPM is an ICG observer. This paper will highlight the background of these developments

  7. Air Pollution Surveillance Systems

    ERIC Educational Resources Information Center

    Morgan, George B.; And Others

    1970-01-01

    Describes atmospheric data monitoring as part of total airpollution control effort. Summarizes types of gaseous, liquid and solid pollutants and their sources; contrast between urban and rural environmental air quality; instrumentation to identify pollutants; and anticipated new non-wet chemical physical and physiochemical techniques tor cetection…

  8. The NASA Cyclone Global Navigation Satellite System (CYGNSS): Mission Status

    NASA Astrophysics Data System (ADS)

    Ruf, C. S.; Ridley, A. J.; Gleason, S.; Rose, R.; Scherrer, J.

    2015-12-01

    The NASA Cyclone Global Navigation Satellite System (CYGNSS) is a confirmed spaceborne mission scheduled for launch in October 2016 that is specifically designed to study the surface wind structure in and near the inner core of tropical cyclones (TC). CYGNSS consists of a constellation of eight small observatories carried into orbit on a single launch vehicle. Each observatory carries a 4-channel bistatic radar receiver tuned to receive GPS navigation signals scattered from the ocean surface. The eight satellites are spaced approximately twelve minutes apart in the same circular, low inclination orbit plane in order to provide frequent temporal sampling in the tropics. CYGNSS is expected to provide unprecedented temporal resolution and spatial coverage, under all precipitating conditions, and over the full dynamic range of wind speeds experienced in a TC. Mission simulations predict a median(mean) revisit time of 3(7) hours at all locations between 35o N and 35o S latitude.. The CYGNSS mission is currently in Phase D assembly, integration and test of the 8 Observatories and Deployment Module. An update on the status of the mission will be presented, including the latest hardware developments, the science algorithms planned for ground processing, and simulations of the expected impact on tropical cyclone forecast skill due to the CYGNSS measurements.

  9. System using leo satellites for centimeter-level navigation

    NASA Technical Reports Server (NTRS)

    Rabinowitz, Matthew (Inventor); Parkinson, Bradford W. (Inventor); Cohen, Clark E. (Inventor); Lawrence, David G. (Inventor)

    2002-01-01

    Disclosed herein is a system for rapidly resolving position with centimeter-level accuracy for a mobile or stationary receiver [4]. This is achieved by estimating a set of parameters that are related to the integer cycle ambiguities which arise in tracking the carrier phase of satellite downlinks [5,6]. In the preferred embodiment, the technique involves a navigation receiver [4] simultaneously tracking transmissions [6] from Low Earth Orbit Satellites (LEOS) [2] together with transmissions [5] from GPS navigation satellites [1]. The rapid change in the line-of-sight vectors from the receiver [4] to the LEO signal sources [2], due to the orbital motion of the LEOS, enables the resolution with integrity of the integer cycle ambiguities of the GPS signals [5] as well as parameters related to the integer cycle ambiguity on the LEOS signals [6]. These parameters, once identified, enable real-time centimeter-level positioning of the receiver [4]. In order to achieve high-precision position estimates without the use of specialized electronics such as atomic clocks, the technique accounts for instabilities in the crystal oscillators driving the satellite transmitters, as well as those in the reference [3] and user [4] receivers. In addition, the algorithm accommodates as well as to LEOS that receive signals from ground-based transmitters, then re-transmit frequency-converted signals to the ground.

  10. Air ejector augmented compressed air energy storage system

    DOEpatents

    Ahrens, Frederick W.; Kartsounes, George T.

    1980-01-01

    Energy is stored in slack demand periods by charging a plurality of underground reservoirs with air to the same peak storage pressure, during peak demand periods throttling the air from one storage reservoir into a gas turbine system at a constant inlet pressure until the air pressure in the reservoir falls to said constant inlet pressure, thereupon permitting air in a second reservoir to flow into said gas turbine system while drawing air from the first reservoir through a variable geometry air ejector and adjusting said variable geometry air ejector, said air flow being essentially at the constant inlet pressure of the gas turbine system.

  11. Air ejector augmented compressed air energy storage system

    DOEpatents

    Ahrens, F.W.; Kartsounes, G.T.

    Energy is stored in slack demand periods by charging a plurality of underground reservoirs with air to the same peak storage pressure, during peak demand periods throttling the air from one storage reservoir into a gas turbine system at a constant inlet pressure until the air presure in the reservoir falls to said constant inlet pressure, thereupon permitting air in a second reservoir to flow into said gas turbine system while drawing air from the first reservoir through a variable geometry air ejector and adjusting said variable geometry air ejector, said air flow being essentially at the constant inlet pressure of the gas turbine system.

  12. Automated endoscopic navigation and advisory system from medical image

    NASA Astrophysics Data System (ADS)

    Kwoh, Chee K.; Khan, Gul N.; Gillies, Duncan F.

    1999-05-01

    In this paper, we present a review of the research conducted by our group to design an automatic endoscope navigation and advisory system. The whole system can be viewed as a two-layer system. The first layer is at the signal level, which consists of the processing that will be performed on a series of images to extract all the identifiable features. The information is purely dependent on what can be extracted from the 'raw' images. At the signal level, the first task is performed by detecting a single dominant feature, lumen. Few methods of identifying the lumen are proposed. The first method used contour extraction. Contours are extracted by edge detection, thresholding and linking. This method required images to be divided into overlapping squares (8 by 8 or 4 by 4) where line segments are extracted by using a Hough transform. Perceptual criteria such as proximity, connectivity, similarity in orientation, contrast and edge pixel intensity, are used to group edges both strong and weak. This approach is called perceptual grouping. The second method is based on a region extraction using split and merge approach using spatial domain data. An n-level (for a 2' by 2' image) quadtree based pyramid structure is constructed to find the most homogenous large dark region, which in most cases corresponds to the lumen. The algorithm constructs the quadtree from the bottom (pixel) level upward, recursively and computes the mean and variance of image regions corresponding to quadtree nodes. On reaching the root, the largest uniform seed region, whose mean corresponds to a lumen is selected that is grown by merging with its neighboring regions. In addition to the use of two- dimensional information in the form of regions and contours, three-dimensional shape can provide additional information that will enhance the system capabilities. Shape or depth information from an image is estimated by various methods. A particular technique suitable for endoscopy is the shape from shading

  13. Optimizing Mars Airplane Trajectory with the Application Navigation System

    NASA Technical Reports Server (NTRS)

    Frumkin, Michael; Riley, Derek

    2004-01-01

    Planning complex missions requires a number of programs to be executed in concert. The Application Navigation System (ANS), developed in the NAS Division, can execute many interdependent programs in a distributed environment. We show that the ANS simplifies user effort and reduces time in optimization of the trajectory of a martian airplane. We use a software package, Cart3D, to evaluate trajectories and a shortest path algorithm to determine the optimal trajectory. ANS employs the GridScape to represent the dynamic state of the available computer resources. Then, ANS uses a scheduler to dynamically assign ready task to machine resources and the GridScape for tracking available resources and forecasting completion time of running tasks. We demonstrate system capability to schedule and run the trajectory optimization application with efficiency exceeding 60% on 64 processors.

  14. Innovative use of global navigation satellite systems for flight inspection

    NASA Astrophysics Data System (ADS)

    Kim, Eui-Ho

    The International Civil Aviation Organization (ICAO) mandates flight inspection in every country to provide safety during flight operations. Among many criteria of flight inspection, airborne inspection of Instrument Landing Systems (ILS) is very important because the ILS is the primary landing guidance system worldwide. During flight inspection of the ILS, accuracy in ILS landing guidance is checked by using a Flight Inspection System (FIS). Therefore, a flight inspection system must have high accuracy in its positioning capability to detect any deviation so that accurate guidance of the ILS can be maintained. Currently, there are two Automated Flight Inspection Systems (AFIS). One is called Inertial-based AFIS, and the other one is called Differential GPS-based (DGPS-based) AFIS. The Inertial-based AFIS enables efficient flight inspection procedures, but its drawback is high cost because it requires a navigation-grade Inertial Navigation System (INS). On the other hand, the DGPS-based AFIS has relatively low cost, but flight inspection procedures require landing and setting up a reference receiver. Most countries use either one of the systems based on their own preferences. There are around 1200 ILS in the U.S., and each ILS must be inspected every 6 to 9 months. Therefore, it is important to manage the airborne inspection of the ILS in a very efficient manner. For this reason, the Federal Aviation Administration (FAA) mainly uses the Inertial-based AFIS, which has better efficiency than the DGPS-based AFIS in spite of its high cost. Obviously, the FAA spends tremendous resources on flight inspection. This thesis investigates the value of GPS and the FAA's augmentation to GPS for civil aviation called the Wide Area Augmentation System (or WAAS) for flight inspection. Because standard GPS or WAAS position outputs cannot meet the required accuracy for flight inspection, in this thesis, various algorithms are developed to improve the positioning ability of Flight

  15. A Self-Tuning Kalman Filter for Autonomous Navigation Using the Global Positioning System (GPS)

    NASA Technical Reports Server (NTRS)

    Truong, Son H.

    1999-01-01

    Most navigation systems currently operated by NASA are ground-based, and require extensive support to produce accurate results. Recently developed systems that use Kalman filter and GPS (Global Positioning Systems) data for orbit determination greatly reduce dependency on ground support, and have potential to provide significant economies for NASA spacecraft navigation. These systems, however, still rely on manual tuning from analysts. A sophisticated neuro-fuzzy component fully integrated with the flight navigation system can perform the self-tuning capability for the Kalman filter and help the navigation system recover from estimation errors in real time.

  16. Navigation of Pedicle Screws in the Thoracic Spine with a New Electromagnetic Navigation System: A Human Cadaver Study

    PubMed Central

    Hahn, Patrick; Oezdemir, Semih; Komp, Martin; Giannakopoulos, Athanasios; Kasch, Richard; Merk, Harry; Liermann, Dieter; Godolias, Georgios; Ruetten, Sebastian

    2015-01-01

    Introduction. Posterior stabilization of the spine is a standard procedure in spinal surgery. In addition to the standard techniques, several new techniques have been developed. The objective of this cadaveric study was to examine the accuracy of a new electromagnetic navigation system for instrumentation of pedicle screws in the spine. Material and Method. Forty-eight pedicle screws were inserted in the thoracic spine of human cadavers using EMF navigation and instruments developed especially for electromagnetic navigation. The screw position was assessed postoperatively by a CT scan. Results. The screws were classified into 3 groups: grade 1 = ideal position; grade 2 = cortical penetration <2 mm; grade 3 = cortical penetration ≥2 mm. The initial evaluation of the system showed satisfied positioning for the thoracic spine; 37 of 48 screws (77.1%, 95% confidence interval [62.7%, 88%]) were classified as group 1 or 2. Discussion. The screw placement was satisfactory. The initial results show that there is room for improvement with some changes needed. The ease of use and short setup times should be pointed out. Instrumentation is achieved without restricting the operator's mobility during navigation. Conclusion. The results indicate a good placement technique for pedicle screws. Big advantages are the easy handling of the system. PMID:25759814

  17. A navigation and control system for an autonomous rescue vehicle in the space station environment

    NASA Technical Reports Server (NTRS)

    Merkel, Lawrence

    1991-01-01

    A navigation and control system was designed and implemented for an orbital autonomous rescue vehicle envisioned to retrieve astronauts or equipment in the case that they become disengaged from the space station. The rescue vehicle, termed the Extra-Vehicular Activity Retriever (EVAR), has an on-board inertial measurement unit ahd GPS receivers for self state estimation, a laser range imager (LRI) and cameras for object state estimation, and a data link for reception of space station state information. The states of the retriever and objects (obstacles and the target object) are estimated by inertial state propagation which is corrected via measurements from the GPS, the LRI system, or the camera system. Kalman filters are utilized to perform sensor fusion and estimate the state propagation errors. Control actuation is performed by a Manned Maneuvering Unit (MMU). Phase plane control techniques are used to control the rotational and translational state of the retriever. The translational controller provides station-keeping or motion along either Clohessy-Wiltshire trajectories or straight line trajectories in the LVLH frame of any sufficiently observed object or of the space station. The software was used to successfully control a prototype EVAR on an air bearing floor facility, and a simulated EVAR operating in a simulated orbital environment. The design of the navigation system and the control system are presented. Also discussed are the hardware systems and the overall software architecture.

  18. The Global Framework for Providing Information about Volcanic-Ash Hazards to International Air Navigation

    NASA Astrophysics Data System (ADS)

    Romero, R. W.; Guffanti, M.

    2009-12-01

    The International Civil Aviation Organization (ICAO) created the International Airways Volcano Watch (IAVW) in 1987 to establish a requirement for international dissemination of information about airborne ash hazards to safe air navigation. The IAVW is a set of operational protocols and guidelines that member countries agree to follow in order to implement a global, multi-faceted program to support the strategy of ash-cloud avoidance. Under the IAVW, the elements of eruption reporting, ash-cloud detecting, and forecasting expected cloud dispersion are coordinated to culminate in warnings sent to air traffic controllers, dispatchers, and pilots about the whereabouts of ash clouds. Nine worldwide Volcanic Ash Advisory Centers (VAAC) established under the IAVW have the responsibility for detecting the presence of ash in the atmosphere, primarily by looking at imagery from civilian meteorological satellites, and providing advisories about the location and movement of ash clouds to aviation meteorological offices and other aviation users. Volcano Observatories also are a vital part of the IAVW, as evidenced by the recent introduction of a universal message format for reporting the status of volcanic activity, including precursory unrest, to aviation users. Since 2003, the IAVW has been overseen by a standing group of scientific, technical, and regulatory experts that assists ICAO in the development of standards and other regulatory material related to volcanic ash. Some specific problems related to the implementation of the IAVW include: the lack of implementation of SIGMET (warning to aircraft in flight) provisions and delayed notifications of volcanic eruptions. Expected future challenges and developments involve the improvement in early notifications of volcanic eruptions, the consolidation of the issuance of SIGMETs, and the possibility of determining a “safe” concentration of volcanic ash.

  19. A Self-Tuning Kalman Filter for Autonomous Navigation using the Global Positioning System (GPS)

    NASA Technical Reports Server (NTRS)

    Truong, S. H.

    1999-01-01

    Most navigation systems currently operated by NASA are ground-based, and require extensive support to produce accurate results. Recently developed systems that use Kalman filter and GPS data for orbit determination greatly reduce dependency on ground support, and have potential to provide significant economies for NASA spacecraft navigation. These systems, however, still rely on manual tuning from analysts. A sophisticated neuro-fuzzy component fully integrated with the flight navigation system can perform the self-tuning capability for the Kalman filter and help the navigation system recover from estimation errors in real time.

  20. Research of smart real-time robot navigation system

    NASA Astrophysics Data System (ADS)

    Rahmani, Budi; Harjoko, A.; Priyambodo, T. K.; Aprilianto, H.

    2016-02-01

    In this paper described how the humanoid robot measures its distance to the orange ball on green floor. We trained the robot camera (CMUcam5) to detect and track the block color of the orange ball. The block color also used to estimate the distance of the camera toward the ball by comparing its block color size when its in the end of field of view and when its near of the camera. Then, using the pythagoras equation we calculate the distance estimation between the whole humanoid robot toward the ball. The distance will be used to estimate how many step the robot must perform to approach the ball and doing another task like kick the ball. The result shows that our method can be used as one of smart navigation system using a camera as the only one sensor to perceive the information of environtment.

  1. Guiding Blind Pedestrians with a Personal Navigation System

    NASA Astrophysics Data System (ADS)

    Dodson, A. H.; Moon, G. V.; Moore, T.; Jones, D.

    With the assistance provided by the white cane or guide dog, most blind pedestrians can find their way to known destinations along familiar routes. Finding new or known destinations along unfamiliar routes is more challenging. Before such a journey is attempted, detailed instructions must be acquired. The difficulty of obtaining and then reliably following such instructions deters many blind pedestrians from travelling alone in unknown areas. This paper demonstrates a technological approach, by way of field trials, that supplements the existing aids and eliminates the need for sighted guides. The approach has the potential to offer greater independence to the blind person. The investigation suggests that the methodology used in personal navigation systems for the sighted is sub-optimal for guiding the blind pedestrian. Suitable extensions are introduced, and the results show the proposed methodology is efficient for guiding the blind individual to unknown destinations in the chosen field trial environment.

  2. Error Analysis System for Spacecraft Navigation Using the Global Positioning System (GPS)

    NASA Technical Reports Server (NTRS)

    Truong, S. H.; Hart, R. C.; Hartman, K. R.; Tomcsik, T. L.; Searl, J. E.; Bernstein, A.

    1997-01-01

    The Flight Dynamics Division (FDD) at the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) is currently developing improved space-navigation filtering algorithms to use the Global Positioning System (GPS) for autonomous real-time onboard orbit determination. In connection with a GPS technology demonstration on the Small Satellite Technology Initiative (SSTI)/Lewis spacecraft, FDD analysts and programmers have teamed with the GSFC Guidance, Navigation, and Control Branch to develop the GPS Enhanced Orbit Determination Experiment (GEODE) system. The GEODE system consists of a Kalman filter operating as a navigation tool for estimating the position, velocity, and additional states required to accurately navigate the orbiting Lewis spacecraft by using astrodynamic modeling and GPS measurements from the receiver. A parallel effort at the FDD is the development of a GPS Error Analysis System (GEAS) that will be used to analyze and improve navigation filtering algorithms during development phases and during in-flight calibration. For GEAS, the Kalman filter theory is extended to estimate the errors in position, velocity, and other error states of interest. The estimation of errors in physical variables at regular intervals will allow the time, cause, and effect of navigation system weaknesses to be identified. In addition, by modeling a sufficient set of navigation system errors, a system failure that causes an observed error anomaly can be traced and accounted for. The GEAS software is formulated using Object Oriented Design (OOD) techniques implemented in the C++ programming language on a Sun SPARC workstation. The Phase 1 of this effort is the development of a basic system to be used to evaluate navigation algorithms implemented in the GEODE system. This paper presents the GEAS mathematical methodology, systems and operations concepts, and software design and implementation. Results from the use of the basic system to evaluate

  3. High accuracy integrated global positioning system/inertial navigation system LDRD: Final report

    SciTech Connect

    Owen, T.E.; Meindl, M.A.; Fellerhoff, J.R.

    1997-03-01

    This report contains the results of a Sandia National Laboratories Directed Research and Development (LDRD) program to investigate the integration of Global Positioning System (GPS) and inertial navigation system (INS) technologies toward the goal of optimizing the navigational accuracy of the combined GPSANS system. The approach undertaken is to integrate the data from an INS, which has long term drifts, but excellent short term accuracy, with GPS carrier phase signal information, which is accurate to the sub-centimeter level, but requires continuous tracking of the GPS signals. The goal is to maintain a sub-meter accurate navigation solution while the vehicle is in motion by using the GPS measurements to estimate the INS navigation errors and then using the refined INS data to aid the GPS carrier phase cycle slip detection and correction and bridge dropouts in the GPS data. The work was expanded to look at GPS-based attitude determination, using multiple GPS receivers and antennas on a single platform, as a possible navigation aid. Efforts included not only the development of data processing algorithms and software, but also the collection and analysis of GPS and INS flight data aboard a Twin Otter aircraft. Finally, the application of improved navigation system accuracy to synthetic aperture radar (SAR) target location is examined.

  4. Autonomous reconfigurable GPS/INS navigation and pointing system for rendezvous and docking

    NASA Technical Reports Server (NTRS)

    Upadhyay, T. N.; Cotterill, S.; Deaton, A. W.

    1992-01-01

    This paper describes the development of an autonomous integrated spacecraft navigation system which provides multiple modes of navigation, including relative and absolute navigation. The system provides attitude information from GPS or INS, or by tightly integrating the two systems. Interferometric GPS techniques are used when multiple antennas and integrated Doppler measurements are available. An important aspect of this research is the autonomously reconfigurable Kalman filter, controlled by an embedded knowledge base, designed to respond to component degradation and changes in mission goals.

  5. 76 FR 50808 - Airborne Supplemental Navigation Equipment Using the Global Positioning System (GPS)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-16

    ... cancel TSO-C129a, Airborne Supplemental Navigation Equipment Using the Global Positioning System (GPS... Global Positioning System Equipment Using Aircraft-Based Augmentation; an updated minimum performance... system (TSO-C145c, Airborne Navigation Sensors Using the Global Positioning System Augmented by...

  6. Cold air systems: Sleeping giant

    SciTech Connect

    MacCracken, C.D. )

    1994-04-01

    This article describes how cold air systems help owners increase the profits from their buildings by reducing electric costs and improving indoor air quality through lower relative humidity levels. Cold air distribution involves energy savings, cost savings, space savings, greater comfort, cleaner air, thermal storage, tighter ducting, coil redesign, lower relative humidities, retrofitting, and improved indoor air quality (IAQ). It opens a door for architects, engineers, owners, builders, environmentalists, retrofitters, designers, occupants, and manufacturers. Three things have held up cold air's usage: multiple fan-powered boxes that ate up the energy savings of primary fans. Cold air room diffusers that provided inadequate comfort. Condensation from ducts, boxes, and diffusers. Such problems have been largely eliminated through research and development by utilities and manufacturers. New cold air diffusers no longer need fan powered boxes. It has also been found that condensation is not a concern so long as the ducts are located in air conditioned space, such as drop ceilings or central risers, where relative humidity falls quickly during morning startup.

  7. Use of an inertial navigation system for accurate track recovery and coastal oceanographic measurements

    NASA Technical Reports Server (NTRS)

    Oliver, B. M.; Gower, J. F. R.

    1977-01-01

    A data acquisition system using a Litton LTN-51 inertial navigation unit (INU) was tested and used for aircraft track recovery and for location and tracking from the air of targets at sea. The characteristic position drift of the INU is compensated for by sighting landmarks of accurately known position at discrete time intervals using a visual sighting system in the transparent nose of the Beechcraft 18 aircraft used. For an aircraft altitude of about 300 m, theoretical and experimental tests indicate that calculated aircraft and/or target positions obtained from the interpolated INU drift curve will be accurate to within 10 m for landmarks spaced approximately every 15 minutes in time. For applications in coastal oceanography, such as surface current mapping by tracking artificial targets, the system allows a broad area to be covered without use of high altitude photography and its attendant needs for large targets and clear weather.

  8. Individual Global Navigation Satellite Systems in the Space Service Volume

    NASA Technical Reports Server (NTRS)

    Force, Dale A.

    2013-01-01

    The use of individual Global Navigation Satellite Services (GPS, GLONASS, Galileo, and Beidou/COMPASS) for the position, navigation, and timing in the Space Service Volume at altitudes of 300 km, 3000 km, 8000 km, 15000 km, 25000 km, 36500km and 70000 km is examined and the percent availability of at least one and at least four satellites is presented.

  9. Visibility and Geometry of Global Satellite Navigation Systems Constellations

    NASA Astrophysics Data System (ADS)

    Januszewski, Jacek

    2015-12-01

    Nowadays (November 2015) there are two global fully operational satellite navigation systems, American GPS and Russian GLONASS. Two next are under construction, Galileo in Europe and BeiDou in China. As the error of observer's position obtained from these systems depends on geometry factor DOP (Dilution Of Precision) among other things the knowledge of the number of satellites visible by this observer above given masking elevation angle Hmin and the distributions of DOP coefficient values, GDOP in particular, is very important. The lowest and the greatest number of satellites visible in open area by the observer at different latitudes for different Hmin, the percentage of satellites visible above angle H (9 intervals, each 10O wide), distributions (in per cent) of satellites azimuths (8 intervals, each 45O wide) and GDOP coefficient values (8 intervals) for Hmin = 5O for all these four systems at different observer's latitudes (9 intervals, each wide 10O wide) are presented in the paper. Additionally the lowest elevation for which the number of satellites visible at different latitudes by the observer in open area above this angle is equal 4 or 3 and the distributions (in per cent) of GDOP coefficient values for different Hmin at observer's latitudes 50-60O for the same four systems are showed. All calculations were made for constellation of GPS 27 satellites, GLONASS 24, Galileo 30 and BeiDou 27 MEO satellites.

  10. Position error propagation in the simplex strapdown navigation system

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The results of an analysis of the effects of deterministic error sources on position error in the simplex strapdown navigation system were documented. Improving the long term accuracy of the system was addressed in two phases: understanding and controlling the error within the system, and defining methods of damping the net system error through the use of an external reference velocity or position. Review of the flight and ground data revealed error containing the Schuler frequency as well as non-repeatable trends. The only unbounded terms are those involving gyro bias and azimuth error coupled with velocity. All forms of Schuler-periodic position error were found to be sufficiently large to require update or damping capability unless the source coefficients can be limited to values less than those used in this analysis for misalignment and gyro and accelerometer bias. The first-order effects of the deterministic error sources were determined with a simple error propagator which provided plots of error time functions in response to various source error values.

  11. An Application of UAV Attitude Estimation Using a Low-Cost Inertial Navigation System

    NASA Technical Reports Server (NTRS)

    Eure, Kenneth W.; Quach, Cuong Chi; Vazquez, Sixto L.; Hogge, Edward F.; Hill, Boyd L.

    2013-01-01

    Unmanned Aerial Vehicles (UAV) are playing an increasing role in aviation. Various methods exist for the computation of UAV attitude based on low cost microelectromechanical systems (MEMS) and Global Positioning System (GPS) receivers. There has been a recent increase in UAV autonomy as sensors are becoming more compact and onboard processing power has increased significantly. Correct UAV attitude estimation will play a critical role in navigation and separation assurance as UAVs share airspace with civil air traffic. This paper describes attitude estimation derived by post-processing data from a small low cost Inertial Navigation System (INS) recorded during the flight of a subscale commercial off the shelf (COTS) UAV. Two discrete time attitude estimation schemes are presented here in detail. The first is an adaptation of the Kalman Filter to accommodate nonlinear systems, the Extended Kalman Filter (EKF). The EKF returns quaternion estimates of the UAV attitude based on MEMS gyro, magnetometer, accelerometer, and pitot tube inputs. The second scheme is the complementary filter which is a simpler algorithm that splits the sensor frequency spectrum based on noise characteristics. The necessity to correct both filters for gravity measurement errors during turning maneuvers is demonstrated. It is shown that the proposed algorithms may be used to estimate UAV attitude. The effects of vibration on sensor measurements are discussed. Heuristic tuning comments pertaining to sensor filtering and gain selection to achieve acceptable performance during flight are given. Comparisons of attitude estimation performance are made between the EKF and the complementary filter.

  12. Geometrical-Based Navigation System Performance Assessment in the Space Service Volume Using a Multiglobal Navigation Satellite System Methodology

    NASA Technical Reports Server (NTRS)

    Welch, Bryan W.

    2016-01-01

    NASA is participating in the International Committee on Global Navigation Satellite Systems (GNSS) (ICG)'s efforts towards demonstrating the benefits to the space user in the Space Service Volume (SSV) when a multi-GNSS solution space approach is utilized. The ICG Working Group: Enhancement of GNSS Performance, New Services and Capabilities has started a three phase analysis initiative as an outcome of recommendations at the ICG-10 meeting, in preparation for the ICG-11 meeting. The first phase of that increasing complexity and fidelity analysis initiative is based on a pure geometrically-derived access technique. The first phase of analysis has been completed, and the results are documented in this paper.

  13. Space Shuttle Orbiter descent navigation

    NASA Technical Reports Server (NTRS)

    Montez, M. N.; Madden, M. F.

    1982-01-01

    The entry operational sequence (OPS 3) begins approximately 2 hours prior to the deorbit maneuver and continues through atmospheric entry, terminal area energy management (TAEM), approach and landing, and rollout. During this flight phase, the navigation state vector is estimated by the Space Shuttle Orbiter onboard navigation system. This estimate is computed using a six-element sequential Kalman filter, which blends inertial measurement unit (IMU) delta-velocity data with external navaid data. The external navaids available to the filter are tactical air navigation (TACAN), barometric altimeter, and microwave scan beam landing system (MSBLS). Attention is given to the functional design of the Orbiter navigation system, the descent navigation sensors and measurement processing, predicted Kalman gains, correlation coefficients, and current flights navigation performance.

  14. Tracking Data Acquisition System (TDAS) for the 1990's. Volume 6: TDAS navigation system architecture

    NASA Technical Reports Server (NTRS)

    Elrod, B. D.; Jacobsen, A.; Cook, R. A.; Singh, R. N. P.

    1983-01-01

    One-way range and Doppler methods for providing user orbit and time determination are examined. Forward link beacon tracking, with on-board processing of independent navigation signals broadcast continuously by TDAS spacecraft; forward link scheduled tracking; with on-board processing of navigation data received during scheduled TDAS forward link service intervals; and return link scheduled tracking; with ground-based processing of user generated navigation data during scheduled TDAS return link service intervals are discussed. A system level definition and requirements assessment for each alternative, an evaluation of potential navigation performance and comparison with TDAS mission model requirements is included. TDAS satellite tracking is also addressed for two alternatives: BRTS and VLBI tracking.

  15. Tuning and Robustness Analysis for the Orion Absolute Navigation System

    NASA Technical Reports Server (NTRS)

    Holt, Greg N.; Zanetti, Renato; D'Souza, Christopher

    2013-01-01

    The Orion Multi-Purpose Crew Vehicle (MPCV) is currently under development as NASA's next-generation spacecraft for exploration missions beyond Low Earth Orbit. The MPCV is set to perform an orbital test flight, termed Exploration Flight Test 1 (EFT-1), some time in late 2014. The navigation system for the Orion spacecraft is being designed in a Multi-Organizational Design Environment (MODE) team including contractor and NASA personnel. The system uses an Extended Kalman Filter to process measurements and determine the state. The design of the navigation system has undergone several iterations and modifications since its inception, and continues as a work-in-progress. This paper seeks to show the efforts made to-date in tuning the filter for the EFT-1 mission and instilling appropriate robustness into the system to meet the requirements of manned space ight. Filter performance is affected by many factors: data rates, sensor measurement errors, tuning, and others. This paper focuses mainly on the error characterization and tuning portion. Traditional efforts at tuning a navigation filter have centered around the observation/measurement noise and Gaussian process noise of the Extended Kalman Filter. While the Orion MODE team must certainly address those factors, the team is also looking at residual edit thresholds and measurement underweighting as tuning tools. Tuning analysis is presented with open loop Monte-Carlo simulation results showing statistical errors bounded by the 3-sigma filter uncertainty covariance. The Orion filter design uses 24 Exponentially Correlated Random Variable (ECRV) parameters to estimate the accel/gyro misalignment and nonorthogonality. By design, the time constant and noise terms of these ECRV parameters were set to manufacturer specifications and not used as tuning parameters. They are included in the filter as a more analytically correct method of modeling uncertainties than ad-hoc tuning of the process noise. Tuning is explored for the

  16. Precise Orbit Determination of BeiDou Navigation Satellite System

    NASA Astrophysics Data System (ADS)

    He, Lina; Ge, Maorong; Wang, Jiexian; Wickert, Jens; Schuh, Harald

    2013-04-01

    China has been developing its own independent satellite navigation system since decades. Now the COMPASS system, also known as BeiDou, is emerging and gaining more and more interest and attention in the worldwide GNSS communities. The current regional BeiDou system is ready for its operational service around the end of 2012 with a constellation including five Geostationary Earth Orbit satellites (GEO), five Inclined Geosynchronous Orbit satellites (IGSO) and four Medium Earth orbit (MEO) satellites in operation. Besides the open service with positioning accuracy of around 10m which is free to civilian users, both precise relative positioning, and precise point positioning are demonstrated as well. In order to enhance the BeiDou precise positioning service, Precise Orbit Determination (POD) which is essential of any satellite navigation system has been investigated and studied thoroughly. To further improving the orbits of different types of satellites, we study the impact of network coverage on POD data products by comparing results from tracking networks over the Chinese territory, Asian-Pacific, Asian and of global scale. Furthermore, we concentrate on the improvement of involving MEOs on the orbit quality of GEOs and IGSOs. POD with and without MEOs are undertaken and results are analyzed. Finally, integer ambiguity resolution which brings highly improvement on orbits and positions with GPS data is also carried out and its effect on POD data products is assessed and discussed in detail. Seven weeks of BeiDou data from a ground tracking network, deployed by Wuhan University is employed in this study. The test constellation includes four GEO, five IGSO and two MEO satellites in operation. The three-day solution approach is employed to enhance its strength due to the limited coverage of the tracking network and the small movement of most of the satellites. A number of tracking scenarios and processing schemas are identified and processed and overlapping orbit

  17. Research and development for Onboard Navigation (ONAV) ground based expert/trainer system: Test report

    NASA Technical Reports Server (NTRS)

    Bochsler, Daniel C.

    1988-01-01

    The test results for the onboard navigation (ONAV) Ground Based Expert System Trainer System for an aircraft/space shuttle navigation entry phase system are described. A summary of the test methods and analysis results are included. Functional inspection and execution, interface tests, default data sources, function call returns, status light indicators, and user interface command acceptance are covered.

  18. GPS-INS-STAR - A navigation system for the era of space autonomy

    NASA Astrophysics Data System (ADS)

    Tanabe, Toru; Kitamura, Toshiaki; Ikeuchi, Masayuki; Tanaka, Toshiyuki; Akasaka, Akira

    Experimental validation of the GPS-INS-STAR hybrid navigation system concept is performed. First, an INS-STAR hybrid navigation system is constructed on the 3-axis motion table to verify the performance of its attitude loop. A GPS-INS hybrid navigation system is then installed on a car, and its translational performance is evaluated. Each result of the experiments is verified by theoretical analysis, and its feasibility for space application is evaluated. Through the experiments, the concept of the autonomous hybrid navigation is validated, and its potential in space autonomy is indicated.

  19. ODINS: On-Demand Indoor Navigation System RFID Based.

    PubMed

    Bianchi, Federico; Masciadri, Andrea; Salice, Fabio

    2015-01-01

    This paper presents an On-Demand Indoor Navigation System (ODINS) based on RFID technology. ODINS is a distributed infrastructure where a set of information points (Fixed Stations - FS) provides the direction to a user who has to reach the destination point he/she has previously selected. ODINS system is proposed for residencies hosting people with mild cognitive disabilities and elderly but it can be also applied to structures where people could be disoriented. The destination is configured at some reception points or it is a predefined (e.g. the bed room or a selected "safe" point). The destination is associated with a RFID disposable bracelet assigned to her/him. The path is algorithmically computed and spread to all FSs. Every time the user is disoriented, she/he can search for the closest FS that displays the right directition. FSs should be located in strategic positions and provide a user-friendly interface such as bright arrows. The complexity is "system-side" making ODINS usable for everyone. PMID:26294495

  20. Apollo experience report guidance and control systems: Primary guidance, navigation, and control system development

    NASA Technical Reports Server (NTRS)

    Holley, M. D.; Swingle, W. L.; Bachman, S. L.; Leblanc, C. J.; Howard, H. T.; Biggs, H. M.

    1976-01-01

    The primary guidance, navigation, and control systems for both the lunar module and the command module are described. Development of the Apollo primary guidance systems is traced from adaptation of the Polaris Mark II system through evolution from Block I to Block II configurations; the discussion includes design concepts used, test and qualification programs performed, and major problems encountered. The major subsystems (inertial, computer, and optical) are covered. Separate sections on the inertial components (gyroscopes and accelerometers) are presented because these components represent a major contribution to the success of the primary guidance, navigation, and control system.

  1. A comparative analysis of area navigation systems in general aviation. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Dodge, S. M.

    1973-01-01

    Radio navigation systems which offer the capabilities of area navigation to general aviation operators are discussed. The systems considered are: (1) the VORTAC system, (2) the Loran-C system, and (3) the Differential Omega system. The inital analyses are directed toward a comparison of the systems with respect to their compliance to specified performance parameters and to the cost effectiveness of each system in relation to those specifications. Further analyses lead to the development of system cost sensitivity charts, and the employment of these charts allows conclusions to be drawn relative to the cost-effectiveness of the candidate navigation system.

  2. Combined processing of observations from different Global Navigation Satellite Systems

    NASA Astrophysics Data System (ADS)

    Springer, T.; Dow, J.; Sanchez, J. F.; Romero, I.

    2007-12-01

    The upcoming the Galileo GNSS and the modernisation of the GPS and Glonass systems offers many exciting opportunities and challenges in the field of geosciences in the next decade. However, in order to obtain any positive effects on our geodetic and geophysical estimates the different GNSS systems will have to be observed by multi system receivers that track all systems on all available frequencies. Furthermore, these receivers should not introduce any biases between the tracked GNSS observations. In addition to this we need analysis software that can efficiently handle these multi-system and multi-frequency observations in one single estimation process. Over the last two years ESOC has put a significant effort into its Napeos processing software. This software is now capable of combined processing of SLR, DORIS, GPS, GLONASS, and GIOVE-A data. It is routinely used for a large number of tasks within ESOC, e.g., Envisat POD, GIOVE-A orbit predictions for SLR, and for the ESOC contributions to the Galileo Geodetic Service Provider. Furthermore, it will soon officially be used for generating all the ESOC products for the International GNSS Service (IGS). In our presentation we will show results from our combined GNSS analysis, both the combination of GPS and GLONASS as well as the combination of GPS and GIOVE-A. We will focus on the challenges and we were, and in part still are, faced with when combining the data of different GNSS. We will demonstrate that at present both GLONASS and GIOVE-A do not offer any benefits for our estimates. We will conclude our contribution with a discussion on the requirements which need to be fulfilled to be able to really benefit from a combined processing of multi Global Navigation Satellite Systems.

  3. Evaluation of Mobile Phone Interference With Aircraft GPS Navigation Systems

    NASA Technical Reports Server (NTRS)

    Pace, Scott; Oria, A. J.; Guckian, Paul; Nguyen, Truong X.

    2004-01-01

    This report compiles and analyzes tests that were conducted to measure cell phone spurious emissions in the Global Positioning System (GPS) radio frequency band that could affect the navigation system of an aircraft. The cell phone in question had, as reported to the FAA (Federal Aviation Administration), caused interference to several GPS receivers on-board a small single engine aircraft despite being compliant with data filed at the time with the FCC by the manufacturer. NASA (National Aeronautics and Space Administration) and industry tests show that while there is an emission in the 1575 MHz GPS band due to a specific combination of amplifier output impedance and load impedance that induces instability in the power amplifier, these spurious emissions (i.e., not the intentional transmit signal) are similar to those measured on non-intentionally transmitting devices such as, for example, laptop computers. Additional testing on a wide sample of different commercial cell phones did not result in any emission in the 1575 MHz GPS Band above the noise floor of the measurement receiver.

  4. Augmented Reality-Based Navigation System for Wrist Arthroscopy: Feasibility

    PubMed Central

    Zemirline, Ahmed; Agnus, Vincent; Soler, Luc; Mathoulin, Christophe L.; Liverneaux, Philippe A.; Obdeijn, Miryam

    2013-01-01

    Purpose In video surgery, and more specifically in arthroscopy, one of the major problems is positioning the camera and instruments within the anatomic environment. The concept of computer-guided video surgery has already been used in ear, nose, and throat (ENT), gynecology, and even in hip arthroscopy. These systems, however, rely on optical or mechanical sensors, which turn out to be restricting and cumbersome. The aim of our study was to develop and evaluate the accuracy of a navigation system based on electromagnetic sensors in video surgery. Methods We used an electromagnetic localization device (Aurora, Northern Digital Inc., Ontario, Canada) to track the movements in space of both the camera and the instruments. We have developed a dedicated application in the Python language, using the VTK library for the graphic display and the OpenCV library for camera calibration. Results A prototype has been designed and evaluated for wrist arthroscopy. It allows display of the theoretical position of instruments onto the arthroscopic view with useful accuracy. Discussion The augmented reality view represents valuable assistance when surgeons want to position the arthroscope or locate their instruments. It makes the maneuver more intuitive, increases comfort, saves time, and enhances concentration. PMID:24436832

  5. Determination of external forces in alpine skiing using a differential global navigation satellite system.

    PubMed

    Gilgien, Matthias; Spörri, Jörg; Chardonnens, Julien; Kröll, Josef; Müller, Erich

    2013-01-01

    In alpine ski racing the relationships between skier kinetics and kinematics and their effect on performance and injury-related aspects are not well understood. There is currently no validated system to determine all external forces simultaneously acting on skiers, particularly under race conditions and throughout entire races. To address the problem, this study proposes and assesses a method for determining skier kinetics with a single lightweight differential global navigation satellite system (dGNSS). The dGNSS kinetic method was compared to a reference system for six skiers and two turns each. The pattern differences obtained between the measurement systems (offset ± SD) were -26 ± 152 N for the ground reaction force, 1 ± 96 N for ski friction and -6 ± 6 N for the air drag force. The differences between turn means were small. The error pattern within the dGNSS kinetic method was highly repeatable and precision was therefore good (SD within system: 63 N ground reaction force, 42 N friction force and 7 N air drag force) allowing instantaneous relative comparisons and identification of discriminative meaningful changes. The method is therefore highly valid in assessing relative differences between skiers in the same turn, as well as turn means between different turns. The system is suitable to measure large capture volumes under race conditions. PMID:23917257

  6. Determination of External Forces in Alpine Skiing Using a Differential Global Navigation Satellite System

    PubMed Central

    Gilgien, Matthias; Spörri, Jörg; Chardonnens, Julien; Kröll, Josef; Müller, Erich

    2013-01-01

    In alpine ski racing the relationships between skier kinetics and kinematics and their effect on performance and injury-related aspects are not well understood. There is currently no validated system to determine all external forces simultaneously acting on skiers, particularly under race conditions and throughout entire races. To address the problem, this study proposes and assesses a method for determining skier kinetics with a single lightweight differential global navigation satellite system (dGNSS). The dGNSS kinetic method was compared to a reference system for six skiers and two turns each. The pattern differences obtained between the measurement systems (offset ± SD) were −26 ± 152 N for the ground reaction force, 1 ± 96 N for ski friction and −6 ± 6 N for the air drag force. The differences between turn means were small. The error pattern within the dGNSS kinetic method was highly repeatable and precision was therefore good (SD within system: 63 N ground reaction force, 42 N friction force and 7 N air drag force) allowing instantaneous relative comparisons and identification of discriminative meaningful changes. The method is therefore highly valid in assessing relative differences between skiers in the same turn, as well as turn means between different turns. The system is suitable to measure large capture volumes under race conditions. PMID:23917257

  7. Air support facilities. [interface between air and surface transportation systems

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Airports are discussed in terms of the interface between the ground and air for transportation systems. The classification systems, design, facilities, administration, and operations of airports are described.

  8. Effects of age, system experience, and navigation technique on driving with an advanced traveler information system.

    PubMed

    Dingus, T A; Hulse, M C; Mollenhauer, M A; Fleischman, R N; McGehee, D V; Manakkal, N

    1997-06-01

    This paper explores the effects of age, system experience, and navigation technique on driving, navigation performance, and safety for drivers who used TravTek, an Advanced Traveler Information System. The first two studies investigated various route guidance configurations on the road in a specially equipped instrumented vehicle with an experimenter present. The third was a naturalistic quasi-experimental field study that collected data unobtrusively from more than 1200 TravTek rental car drivers with no in-vehicle experimenter. The results suggest that with increased experience, drivers become familiar with the system and develop strategies for substantially more efficient and safer use. The results also showed that drivers over age 65 had difficulty driving and navigating concurrently. They compensated by driving slowly and more cautiously. Despite this increased caution, older drivers made more safety-related errors than did younger drivers. The results also showed that older drivers benefited substantially from a well-designed ATIS driver interface. PMID:9302887

  9. Magnus air turbine system

    DOEpatents

    Hanson, Thomas F.

    1982-01-01

    A Magnus effect windmill for generating electrical power is disclosed. A large nacelle-hub mounted pivotally (in Azimuth) atop a support tower carries, in the example disclosed, three elongated barrels arranged in a vertical plane and extending symmetrically radially outwardly from the nacelle. The system provides spin energy to the barrels by internal mechanical coupling in the proper sense to cause, in reaction to an incident wind, a rotational torque of a predetermined sense on the hub. The rotating hub carries a set of power take-off rollers which ride on a stationary circular track in the nacelle. Shafts carry the power, given to the rollers by the wind driven hub, to a central collector or accumulator gear assembly whose output is divided to drive the spin mechanism for the Magnus barrels and the main electric generator. A planetary gear assembly is interposed between the collector gears and the spin mechanism functioning as a differential which is also connected to an auxiliary electric motor whereby power to the spin mechanism may selectively be provided by the motor. Generally, the motor provides initial spin to the barrels for start-up after which the motor is braked and the spin mechanism is driven as though by a fixed ratio coupling from the rotor hub. During high wind or other unusual conditions, the auxiliary motor may be unbraked and excess spin power may be used to operate the motor as a generator of additional electrical output. Interposed between the collector gears of the rotating hub and the main electric generator is a novel variable speed drive-fly wheel system which is driven by the variable speed of the wind driven rotor and which, in turn, drives the main electric generator at constant angular speed. Reference is made to the complete specification for disclosure of other novel aspects of the system such as, for example, the aerodynamic and structural aspects of the novel Magnus barrels as well as novel gearing and other power coupling

  10. A model for addressing navigation limitations and metacognitive constraints in hypermedia training systems

    NASA Technical Reports Server (NTRS)

    Freedman, Glenn B.

    1990-01-01

    A model for addressing navigation limitations and metacognitive constraints in hypermedia training systems is presented in the form of the viewgraphs. The following subject areas are covered: samples of software and people problems; system design; and hypermedia training system.

  11. Reliable location-based services from radio navigation systems.

    PubMed

    Qiu, Di; Boneh, Dan; Lo, Sherman; Enge, Per

    2010-01-01

    Loran is a radio-based navigation system originally designed for naval applications. We show that Loran-C's high-power and high repeatable accuracy are fantastic for security applications. First, we show how to derive a precise location tag--with a sensitivity of about 20 meters--that is difficult to project to an exact location. A device can use our location tag to block or allow certain actions, without knowing its precise location. To ensure that our tag is reproducible we make use of fuzzy extractors, a mechanism originally designed for biometric authentication. We build a fuzzy extractor specifically designed for radio-type errors and give experimental evidence to show its effectiveness. Second, we show that our location tag is difficult to predict from a distance. For example, an observer cannot predict the location tag inside a guarded data center from a few hundreds of meters away. As an application, consider a location-aware disk drive that will only work inside the data center. An attacker who steals the device and is capable of spoofing Loran-C signals, still cannot make the device work since he does not know what location tag to spoof. We provide experimental data supporting our unpredictability claim. PMID:22163532

  12. Reliable Location-Based Services from Radio Navigation Systems

    PubMed Central

    Qiu, Di; Boneh, Dan; Lo, Sherman; Enge, Per

    2010-01-01

    Loran is a radio-based navigation system originally designed for naval applications. We show that Loran-C’s high-power and high repeatable accuracy are fantastic for security applications. First, we show how to derive a precise location tag—with a sensitivity of about 20 meters—that is difficult to project to an exact location. A device can use our location tag to block or allow certain actions, without knowing its precise location. To ensure that our tag is reproducible we make use of fuzzy extractors, a mechanism originally designed for biometric authentication. We build a fuzzy extractor specifically designed for radio-type errors and give experimental evidence to show its effectiveness. Second, we show that our location tag is difficult to predict from a distance. For example, an observer cannot predict the location tag inside a guarded data center from a few hundreds of meters away. As an application, consider a location-aware disk drive that will only work inside the data center. An attacker who steals the device and is capable of spoofing Loran-C signals, still cannot make the device work since he does not know what location tag to spoof. We provide experimental data supporting our unpredictability claim. PMID:22163532

  13. A Knowledge-Navigation System for Dimensional Metrology

    PubMed Central

    Moncarz, Howard T.

    2002-01-01

    Geometric dimensioning and tolerancing (GD&T) is a method to specify the dimensions and form of a part so that it will meet its design intent. GD&T is difficult to master for two main reasons. First, it is based on complex 3D geometric entities and relationships. Second, the geometry is associated with a large, diverse knowledge base of dimensional metrology with many interconnections. This paper describes an approach to create a dimensional metrology knowledge base that is organized around a set of key concepts and to represent those concepts as virtual objects that can be navigated with interactive, computer visualization techniques to access the associated knowledge. The approach can enable several applications. First is the application to convey the definition and meaning of GD&T over a broad range of tolerance types. Second is the application to provide a visualization of dimensional metrology knowledge within a control hierarchy of the inspection process. Third is the application to show the coverage of interoperability standards to enable industry to make decisions on standards development and harmonization efforts. A prototype system has been implemented to demonstrate the principles involved in the approach.

  14. The open service signal in space navigation data comparison of the Global Positioning System and the BeiDou Navigation Satellite System.

    PubMed

    Jan, Shau-Shiun; Tao, An-Lin

    2014-01-01

    More and more Global Navigation Satellite Systems (GNSSs) have been developed and are in operation. Before integrating information on various GNSSs, the differences between the various systems must be studied first. This research focuses on analyzing the navigation data differences between the Chinese BeiDou Navigation Satellite System (BDS) and the United States' Global Positioning System (GPS). In addition to explaining the impact caused by these two different coordinate and time systems, this research uses an actual open service signal in space (SIS) for both GPS and BDS to analyze their current system performance. Five data quality analysis (DQA) mechanisms are proposed in this research to validate both systems' SIS navigation data. These five DQAs evaluate the differences in ephemeris and almanac messages from both systems for stability and accuracy. After all of the DQAs, the different issues related to GPS and BDS satellite information are presented. Finally, based on these DQA results, this research provides suggested resolutions for the combined use of GPS and BDS for navigation and guidance. PMID:25195848

  15. The Open Service Signal in Space Navigation Data Comparison of the Global Positioning System and the BeiDou Navigation Satellite System

    PubMed Central

    Jan, Shau-Shiun; Tao, An-Lin

    2014-01-01

    More and more Global Navigation Satellite Systems (GNSSs) have been developed and are in operation. Before integrating information on various GNSSs, the differences between the various systems must be studied first. This research focuses on analyzing the navigation data differences between the Chinese BeiDou Navigation Satellite System (BDS) and the United States' Global Positioning System (GPS). In addition to explaining the impact caused by these two different coordinate and time systems, this research uses an actual open service signal in space (SIS) for both GPS and BDS to analyze their current system performance. Five data quality analysis (DQA) mechanisms are proposed in this research to validate both systems' SIS navigation data. These five DQAs evaluate the differences in ephemeris and almanac messages from both systems for stability and accuracy. After all of the DQAs, the different issues related to GPS and BDS satellite information are presented. Finally, based on these DQA results, this research provides suggested resolutions for the combined use of GPS and BDS for navigation and guidance. PMID:25195848

  16. An optical flow-based integrated navigation system inspired by insect vision.

    PubMed

    Pan, Chao; Deng, He; Yin, Xiao Fang; Liu, Jian Guo

    2011-10-01

    Some insects use optic flow (OF) to perform their navigational tasks perfectly. Learning from insects' OF navigation strategies, this article proposes a bio-inspired integrated navigation system based on OF. The integrated navigation system is composed of an OF navigation system (OFNS) and an OF aided navigation system (OFAN). The OFNS uses a simple OF method to measure motion at each step along a path. The position information is then obtained by path integration. However, path integration leads to cumulative position errors which increase rapidly with time. To overcome this problem, the OFAN is employed to assist the OFNS in estimating and correcting these cumulative errors. The OFAN adopts an OF-based Kalman filter (KF) to continuously estimate the position errors. Moreover, based on the OF technique used in the OFNS, we develop a new OF method employed by the OFAN to generate the measurement input of the OF-based KF. As a result, both the OFNS and the OFAN in our integrated navigation system are derived from the same OF method so that they share input signals and some operations. The proposed integrated navigation system can provide accurate position information without interference from cumulative errors yet doing so with low computational effort. Simulations and comparisons have demonstrated its efficiency. PMID:22124568

  17. Jet engine air intake system

    NASA Technical Reports Server (NTRS)

    Sorensen, N. E.; Latham, E. A. (Inventor)

    1977-01-01

    An axisymmetric air intake system for a jet aircraft engine comprising a fixed cowl extending outwardly from the face of the engine, a centerbody coaxially disposed within the cowl, and an actuator for axially displacing the centerbody within the cowl was developed. The cowl and centerbody define a main airflow passageway therebetween, the configuration of which is changed by displacement of the centerbody. The centerbody includes a forwardly-located closeable air inlet which communicates with a centerbody auxiliary airflow passageway to provide auxiliary airflow to the engine. In one embodiment, a system for opening and closing the centerbody air inlet is provided by a dual-member centerbody, the forward member of which may be displaced axially with respect to the aft member.

  18. Autonomous reconfigurable GPS/INS navigation and pointing system for rendezvous and docking

    NASA Technical Reports Server (NTRS)

    Upadhyay, Triveni M.

    1991-01-01

    The briefing describes work using the Global Positioning System to determine position of spacecraft and the development of computer tools to utilize these position determinations to enable autonomous rendezvous. Using GPS data in conjunction with Inertial Navigation Systems (INS) provides the capability for absolute spacecraft navigation, navigation of one spacecraft relative to another, and attitude determination. Some results presented are based on limited observations, though simulation results are documented. A GPS/INS navigation flight experiment could provide a platform for evaluating approaches for autonomous operation and reconfigurability of the navigation and attitude determination subsystem for future space vehicles. Current emphasis is on the development and demonstration of an Onboard Mission Manager (OMM) and a Multi-Mode Navigation Kalman filter. Sensor data will be handed over to the OMM, which will determine the appropriate response and generate commands for the Kalman filter to use to reconfigure itself. Global Positioning System measurements and INS data will be processed in the integrated navigation filter and used to compute errors in position, velocity, and attitude. Inertial Navigation Systems instrument errors (biases, scale factors, etc.) also can be estimated. The OMM then will use a knowledge base to determine appropriate system response. The GPS is good for missions that have attitude pointing accuracy requirements within the 100 to 200 arcsecond range.

  19. Accuracy of optical navigation systems for automatic head surgery: optical tracking versus optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Díaz Díaz, Jesús; Riva, Mauro H.; Majdani, Omid; Ortmaier, Tobias

    2014-03-01

    The choice of a navigation system highly depends on the medical intervention and its accuracy demands. The most commonly used systems for image guided surgery (IGS) are based on optical and magnetic tracking systems. This paper compares two optical systems in terms of accuracy: state of the art triangulation-based optical tracking (OT) and optical coherence tomography (OCT). We use an experimental setup with a combined OCT and cutting laser, and an external OT. We simulate a robotic assisted surgical intervention, including planning, navigation, and processing, and compare the accuracies reached at a specific target with each navigation system.

  20. A navigation system for the visually impaired an intelligent white cane.

    PubMed

    Fukasawa, A Jin; Magatani, Kazusihge

    2012-01-01

    In this paper, we describe about a developed navigation system that supports the independent walking of the visually impaired in the indoor space. Our developed instrument consists of a navigation system and a map information system. These systems are installed on a white cane. Our navigation system can follow a colored navigation line that is set on the floor. In this system, a color sensor installed on the tip of a white cane, this sensor senses a color of navigation line and the system informs the visually impaired that he/she is walking along the navigation line by vibration. This color recognition system is controlled by a one-chip microprocessor. RFID tags and a receiver for these tags are used in the map information system. RFID tags are set on the colored navigation line. An antenna for RFID tags and a tag receiver are also installed on a white cane. The receiver receives the area information as a tag-number and notifies map information to the user by mp3 formatted pre-recorded voice. And now, we developed the direction identification technique. Using this technique, we can detect a user's walking direction. A triaxiality acceleration sensor is used in this system. Three normal subjects who were blindfolded with an eye mask were tested with our developed navigation system. All of them were able to walk along the navigation line perfectly. We think that the performance of the system is good. Therefore, our system will be extremely valuable in supporting the activities of the visually impaired. PMID:23366992

  1. Shuttle Entry Air Data System

    NASA Technical Reports Server (NTRS)

    Siemers, P. M., III

    1978-01-01

    The SEADS system (Shuttle Entry Air Data System) is being developed to provide research quality hypersonic (M greater than 3.5) air data. SEADS will accomplish this through the instrumentation of the orbiter's baseline nose cap. The SEADS development program consists of (1) the design and testing program required to define a reinforced carbon-carbon (RCC) nose cap penetration concept which will not degrade nose cap performance, (2) the definition of analytical techniques and design criteria for array definition and flight data analysis, (3) the verification of these analytical techniques and array criteria through a comprehensive wind-tunnel test program, (4) the demonstration of the system concept through detailed testing, and (5) the analyses and tests required to flight-certify the SEADS system.

  2. Steerable percussion air drilling system

    SciTech Connect

    Bui, H.D.; Meyers, J.A.; Yost, A.B. II

    1998-12-31

    By increasing penetration rates and bit life, especially in hard formations, the use of down-hole air hammers in the oil field has significantly reduced drilling costs in the Northeast US and West Texas. Unfortunately, drilling by this percussion method has been limited mostly to straight hole applications. This paper presents a new concept of a percussion drilling tool which performs both the function of a down-hole hammer as well as that of a down-hole motor. Such a drilling tool, being introduced here as Steerable Percussion Air Drilling System (SPADS), eliminates the necessity to rotate the drill string and, consequently, enables the use of down-hole air hammers to drill directional wells.

  3. Air quality data systems integration

    SciTech Connect

    Row, V.K.; Wilson, J.F.

    1998-12-31

    Traditionally, data used for compliance with air quality programs are obtained from various sources within the plant, on site lab, or perhaps from a product movement accounting program. For the most part, the data processing and subsequent calculations and reports were handled individually, thus generating huge spreadsheets and mounds of process data in paper format. The natural reaction to this overwhelming data management problem is to search for an off-the-shelf software package that will hopefully cover all of the plant`s needs for compliance with air quality regulations. Rather than searching for or trying to custom build a single electronic system, the authors suggest using internet browsing software to create links between existing repositories of air quality data and related information.

  4. Research on the automatic laser navigation system of the tunnel boring machine

    NASA Astrophysics Data System (ADS)

    Liu, Yake; Li, Yueqiang

    2011-12-01

    By establishing relevant coordinates of the Automatic Laser Navigation System, the basic principle of the system which accesses the TBM three-dimensional reference point and yawing angle by mathematical transformation between TBM, target prism and earth coordinate systems is discussed deeply in details. According to the way of rigid body descriptions of its posture, TBM attitude parameters measurement and data acquisition methods are proposed, and measures to improve the accuracy of the Laser Navigation System are summarized.

  5. Optical air data systems and methods

    NASA Technical Reports Server (NTRS)

    Caldwell, Loren M. (Inventor); O'Brien, Martin J. (Inventor); Weimer, Carl S. (Inventor); Nelson, Loren D. (Inventor)

    2008-01-01

    Systems and methods for sensing air outside a moving aircraft are presented. In one embodiment, a system includes a laser for generating laser energy. The system also includes one or more transceivers for projecting the laser energy as laser radiation to the air. Subsequently, each transceiver receives laser energy as it is backscattered from the air. A computer processes signals from the transceivers to distinguish molecular scattered laser radiation from aerosol scattered laser radiation and determines one or more air parameters based on the scattered laser radiation. Such air parameters may include air speed, air pressure, air temperature and aircraft orientation angle, such as yaw, angle of attack and sideslip.

  6. Optical air data systems and methods

    NASA Technical Reports Server (NTRS)

    Caldwell, Loren M. (Inventor); Tang, Shoou-yu (Inventor); O'Brien, Martin (Inventor)

    2010-01-01

    Systems and methods for sensing air outside a moving aircraft are presented. In one embodiment, a system includes a laser for generating laser energy. The system also includes one or more transceivers for projecting the laser energy as laser radiation to the air. Subsequently, each transceiver receives laser energy as it is backscattered from the air. A computer processes signals from the transceivers to distinguish molecular scattered laser radiation from aerosol scattered laser radiation and determines one or more air parameters based on the scattered laser radiation. Such air parameters may include air speed, air pressure, air temperature and aircraft orientation angle, such as yaw, angle of attack and sideslip.

  7. Optical air data systems and methods

    NASA Technical Reports Server (NTRS)

    Caldwell, Loren M. (Inventor); O'Brien, Martin J. (Inventor); Weimer, Carl S. (Inventor); Nelson, Loren D. (Inventor)

    2005-01-01

    Systems and methods for sensing air outside a moving aircraft are presented. In one embodiment, a system includes a laser for generating laser energy. The system also includes one or more transceivers for projecting the laser energy as laser radiation to the air. Subsequently, each transceiver receives laser energy as it is backscattered from the air. A computer processes signals from the transceivers to distinguish molecular scattered laser radiation from aerosol scattered laser radiation and determines one or more air parameters based on the scattered laser radiation. Such air parameters may include air speed, air pressure, air temperature and aircraft orientation angle, such as yaw, angle of attack and sideslip.

  8. Navigation Maps in a Computer-Networked Hypertext Learning System.

    ERIC Educational Resources Information Center

    Chou, Chien; Lin, Hua

    A study of first-year college students (n=121) in Taiwan investigated the effects of navigation maps and learner cognitive styles on performance in searches for information, estimation of course scope, and the development of cognitive maps within a hypertext learning course. Students were tested to determine level of perceptual field dependence…

  9. Potential applications of satellite navigation

    NASA Astrophysics Data System (ADS)

    Schaenzer, G.

    The applicability of Navstar GPS to civil air navigation is discussed. The accuracy of current air-navigation systems is reviewed; the basic principle and accuracy of GPS navigation are characterized; the relatively low cost of GPS receiving equipment is pointed out; and particular attention is given to hybrid systems combining GPS with inertial navigation. It is predicted that CAT III landings will be possible using such hybrid systems when the GPS satellites are fully deployed, even without access to the military GPS code. Techniques for GPS-based precision landings, reduced-noise landings, landings on parallel runways, control of taxiing maneuvers, and aircraft-based geodetic measurements are briefly described and illustrated with diagrams.

  10. FPGA-Based Real-Time Embedded System for RISS/GPS Integrated Navigation

    PubMed Central

    Abdelfatah, Walid Farid; Georgy, Jacques; Iqbal, Umar; Noureldin, Aboelmagd

    2012-01-01

    Navigation algorithms integrating measurements from multi-sensor systems overcome the problems that arise from using GPS navigation systems in standalone mode. Algorithms which integrate the data from 2D low-cost reduced inertial sensor system (RISS), consisting of a gyroscope and an odometer or wheel encoders, along with a GPS receiver via a Kalman filter has proved to be worthy in providing a consistent and more reliable navigation solution compared to standalone GPS receivers. It has been also shown to be beneficial, especially in GPS-denied environments such as urban canyons and tunnels. The main objective of this paper is to narrow the idea-to-implementation gap that follows the algorithm development by realizing a low-cost real-time embedded navigation system capable of computing the data-fused positioning solution. The role of the developed system is to synchronize the measurements from the three sensors, relative to the pulse per second signal generated from the GPS, after which the navigation algorithm is applied to the synchronized measurements to compute the navigation solution in real-time. Employing a customizable soft-core processor on an FPGA in the kernel of the navigation system, provided the flexibility for communicating with the various sensors and the computation capability required by the Kalman filter integration algorithm. PMID:22368460

  11. FPGA-based real-time embedded system for RISS/GPS integrated navigation.

    PubMed

    Abdelfatah, Walid Farid; Georgy, Jacques; Iqbal, Umar; Noureldin, Aboelmagd

    2012-01-01

    Navigation algorithms integrating measurements from multi-sensor systems overcome the problems that arise from using GPS navigation systems in standalone mode. Algorithms which integrate the data from 2D low-cost reduced inertial sensor system (RISS), consisting of a gyroscope and an odometer or wheel encoders, along with a GPS receiver via a Kalman filter has proved to be worthy in providing a consistent and more reliable navigation solution compared to standalone GPS receivers. It has been also shown to be beneficial, especially in GPS-denied environments such as urban canyons and tunnels. The main objective of this paper is to narrow the idea-to-implementation gap that follows the algorithm development by realizing a low-cost real-time embedded navigation system capable of computing the data-fused positioning solution. The role of the developed system is to synchronize the measurements from the three sensors, relative to the pulse per second signal generated from the GPS, after which the navigation algorithm is applied to the synchronized measurements to compute the navigation solution in real-time. Employing a customizable soft-core processor on an FPGA in the kernel of the navigation system, provided the flexibility for communicating with the various sensors and the computation capability required by the Kalman filter integration algorithm. PMID:22368460

  12. Hidden Markov Model-based Pedestrian Navigation System using MEMS Inertial Sensors

    NASA Astrophysics Data System (ADS)

    Zhang, Yingjun; Liu, Wen; Yang, Xuefeng; Xing, Shengwei

    2015-02-01

    In this paper, a foot-mounted pedestrian navigation system using MEMS inertial sensors is implemented, where the zero-velocity detection is abstracted into a hidden Markov model with 4 states and 15 observations. Moreover, an observations extraction algorithm has been developed to extract observations from sensor outputs; sample sets are used to train and optimize the model parameters by the Baum-Welch algorithm. Finally, a navigation system is developed, and the performance of the pedestrian navigation system is evaluated using indoor and outdoor field tests, and the results show that position error is less than 3% of total distance travelled.

  13. Combined Global Navigation Satellite Systems in the Space Service Volume

    NASA Technical Reports Server (NTRS)

    Force, Dale A.; Miller, James J.

    2013-01-01

    Besides providing position, velocity, and timing (PVT) for terrestrial users, the Global Positioning System (GPS) is also being used to provide PVT information for earth orbiting satellites. In 2006, F. H. Bauer, et. al., defined the Space Service Volume in the paper GPS in the Space Service Volume , presented at ION s 19th international Technical Meeting of the Satellite Division, and looked at GPS coverage for orbiting satellites. With GLONASS already operational, and the first satellites of the Galileo and Beidou/COMPASS constellations already in orbit, it is time to look at the use of the new Global Navigation Satellite Systems (GNSS) coming into service to provide PVT information for earth orbiting satellites. This presentation extends GPS in the Space Service Volume by examining the coverage capability of combinations of the new constellations with GPS GPS was first explored as a system for refining the position, velocity, and timing of other spacecraft equipped with GPS receivers in the early eighties. Because of this, a new GPS utility developed beyond the original purpose of providing position, velocity, and timing services for land, maritime, and aerial applications. GPS signals are now received and processed by spacecraft both above and below the GPS constellation, including signals that spill over the limb of the earth. Support of GPS space applications is now part of the system plan for GPS, and support of the Space Service Volume by other GNSS providers has been proposed to the UN International Committee on GNSS (ICG). GPS has been demonstrated to provide decimeter level position accuracy in real-time for satellites in low Earth orbit (centimeter level in non-real-time applications). GPS has been proven useful for satellites in geosynchronous orbit, and also for satellites in highly elliptical orbits. Depending on how many satellites are in view, one can keep time locked to the GNSS standard, and through that to Universal Time as long as at least one

  14. 14 CFR Appendix G to Part 121 - Doppler Radar and Inertial Navigation System (INS): Request for Evaluation; Equipment and...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Doppler Radar and Inertial Navigation... OPERATIONS Pt. 121, App. G Appendix G to Part 121—Doppler Radar and Inertial Navigation System (INS): Request... Radar or Inertial Navigation System must submit a request for evaluation of the system to the...

  15. Ionospheric monitoring by the Global Navigation Satellite System (GNSS)

    NASA Astrophysics Data System (ADS)

    Park, Jihye

    The ionosphere reacts to geophysical events, such as earthquakes, tsunamis, surface explosions, underground nuclear explosions (UNE), etc. The Global Navigation Satellite System (GNSS) remote sensing (RS) enables monitoring of the ionospheric disturbances excited by these events. The purpose of this dissertation is to use GNSS RS to detect, discriminate, model and monitor ionospheric disturbances induced by earthquakes and UNEs. Ionospheric delay, which can be derived from dual frequency GNSS signals, is converted to the total electron contents (TEC) along the signal path. After eliminating the main trend of TEC by taking the numerical third order horizontal 3-point derivatives, the traveling ionospheric disturbances (TIDs) are isolated. Since a TID can be generated due to various events, the source of TID must be verified. In this dissertation, the characteristics of the TID waves induced by an earthquake and an UNE are examined. The case studies are: (1) M9.0 2011 Tohoku, Japan earthquake, (2) 2006 North Korean UNE, and (3) 2009 North Korean UNE. From these experiments, the TIDs resulting from different types of events were characterized and discriminated due to the different waveform properties. In addition, the epicenter of the point source can be determined by TID observations. In experiment (2), the 2009 North Korean UNE was examined, using data from eleven nearby GNSS stations. Within a few hours from the explosion, the GNSS stations detected the TIDs, whose arrival time for each station formulated the linear model with respect to the distance to the station. TIDs were observed to propagate with speeds of roughly 150 - 400 m/s at stations about 365 km to 1330 km from the explosion site. Considering the wind effect, the wind-adjusted TIDs located the UNE to within about 2.7 km of its seismically determined epicenter. Through the case studies, the distinctive signatures of different events were demonstrated, which suggests the uniqueness of TIDs excited by

  16. Air Sampling System Evaluation Template

    2000-05-09

    The ASSET1.0 software provides a template with which a user can evaluate an Air Sampling System against the latest version of ANSI N13.1 "Sampling and Monitoring Releases of Airborne Radioactive Substances from the Stacks and Ducts of Nuclear Facilities". The software uses the ANSI N13.1 PIC levels to establish basic design criteria for the existing or proposed sampling system. The software looks at such criteria as PIC level, type of radionuclide emissions, physical state ofmore » the radionuclide, nozzle entrance effects, particulate transmission effects, system and component accuracy and precision evaluations, and basic system operations to provide a detailed look at the subsystems of a monitoring and sampling system/program. A GAP evaluation can then be completed which leads to identification of design and operational flaws in the proposed systems. Corrective measures can then be limited to the GAPs.« less

  17. Concept of "One Window" Data Exchange System Fulfilling the Recommendation for e-Navigation System

    NASA Astrophysics Data System (ADS)

    Filipkowski, Damian; Wawruch, Ryszard

    The implementation in maritime radio-communication of so called "One window concept" for exchange of information between a ship and a port and coastal state authorities requires designation of one contact point on shore for these purposes, e.g. harbour master or ships' monitoring or traffic control centre. In Poland, as contact points regional and local centres of the Polish National Maritime Safety System will be designated. Paper describes the proposal for system of data exchange between a ship and a shore contact point, containing definition, functions and architecture of proposed system, possible directions of information flow and levels of access, fulfilling requirements of this concept and recommendation for e-navigation system developed on the basis of the International Maritime Organization (IMO) and International Association of Marine Aids to Navigation and Lighthouse Authorities (IALA) working papers.

  18. Supporting Crewed Missions using LiAISON Navigation in the Earth-Moon System

    NASA Astrophysics Data System (ADS)

    Leonard, Jason M.

    Crewed navigation in certain regions of the Earth-Moon system provides a unique challenge due to the unstable dynamics and observation geometry relative to standard Earth-based tracking systems. The focus of this thesis is to advance the understanding of navigation precision in the Earth-Moon system, analyzing the observability of navigation data types frequently used to navigate spacecraft, and to provide a better understanding of the influence of a crewed vehicle disturbance model for future manned missions in the Earth-Moon system. In this research, a baseline for navigation performance of a spacecraft in a Lagrange point orbit in the Earth-Moon system is analyzed. Using operational ARTEMIS tracking data, an overlap analysis of the reconstructed ARTEMIS trajectory states is conducted. This analysis provides insight into the navigation precision of a spacecraft traversing a Lissajous orbit about the Earth-Moon L1 point. While the ARTEMIS analysis provides insight into the navigation precision using ground based tracking methods, an examination of the benefits of introducing Linked Autonomous Interplanetary Satellite Orbit Navigation (LiAISON) is investigated. This examination provides insight into the benefits and disadvantages of LiAISON range and range-rate measurements for trajectories in the Earth-Moon system. In addition to the characterization of navigation precision for spacecraft in the Earth-Moon system, an analysis of the uncertainty propagation for noisy crewed vehicles and quiet robotic spacecraft is given. Insight is provided on the characteristics of uncertainty propagation and how it is correlated to the instability of the Lagrange point orbit. A crewed vehicle disturbance model is provided based on either Gaussian or Poisson assumptions. The natural tendency for the uncertainty distribution in a Lagrange point orbit is to align with the unstable manifold after a certain period of propagation. This behavior is influenced directly by the unstable

  19. New vision system and navigation algorithm for an autonomous ground vehicle

    NASA Astrophysics Data System (ADS)

    Tann, Hokchhay; Shakya, Bicky; Merchen, Alex C.; Williams, Benjamin C.; Khanal, Abhishek; Zhao, Jiajia; Ahlgren, David J.

    2013-12-01

    Improvements were made to the intelligence algorithms of an autonomously operating ground vehicle, Q, which competed in the 2013 Intelligent Ground Vehicle Competition (IGVC). The IGVC required the vehicle to first navigate between two white lines on a grassy obstacle course, then pass through eight GPS waypoints, and pass through a final obstacle field. Modifications to Q included a new vision system with a more effective image processing algorithm for white line extraction. The path-planning algorithm adopted the vision system, creating smoother, more reliable navigation. With these improvements, Q successfully completed the basic autonomous navigation challenge, finishing tenth out of over 50 teams.

  20. Study on integrated vehicle navigation system of "Beidou" Double-Star/DR

    NASA Astrophysics Data System (ADS)

    Liu, Hong; Liu, Jianye; Zhai, Linpei; Xiu, Jihong

    2005-12-01

    Vehicle navigation is the corn element of Intelligent Transport System. The integrated system of "Beidou" Double-star/DR is studied in this paper according to the present state of vehicle navigation in our country. "Beidou" Double-star navigation position system is one regional satellite position system built up by our country, which can provide rapidly not only highly precision position and brevity telegram service. However, when the vehicles go around the tall buildings, high mountain area, wayside trees and in the tunnels, all signal may not be received. If the satellite navigation position system is used only, the precision will be reduced. Therefore, this paper proposes a nonlinear self-adaptive Kalman filter model and its algorithm for a Double-star/DR integrated navigation system in land vehicles, and verifies effectively the algorithm and scheme through the means of simulation. Next, this paper introduces map match approach. The roads are segmented and character information is brought out. Then, proper search rules and map match algorithm are adopted. According to the current vehicle position information that Double-Star/DR system provides, the nearest road can be found in the map database. The vehicle position will be matched and displayed on the road. The result of the experiment shows that the Double-Star/DR integrated algorithm and map match can improve reliability and the precision of vehicle navigation system efficiently.

  1. An advanced media interface for control of modern transport aircraft navigational systems

    NASA Technical Reports Server (NTRS)

    Jones, D. R.; Parrish, R. V.; Person, L. H., Jr.; Old, J. L.

    1984-01-01

    With the advent of digital avionics, the workload of the pilot in a moderen transport aircraft is increasing significantly. This situation makes it necessary to reduce pilot workload with the aid of new advanced technologies. As part of an effort to improve information management systems, NASA has, therefore, studied an advanced concept for managing the navigational tasks of a modern transport aircraft. This concept is mainly concerned with the simplification of the pilot interface. The advanced navigational system provides a simple method for a pilot to enter new waypoints to change his flight plan because of heavy traffic, adverse weather conditions, or other reasons. The navigational system was implemented and evaluated in a flight simulator representative of a modern transport aircraft. Attention is given to the simulator, flight simulation, multimode devices, and the navigational system.

  2. Dilution-of-Precision-Based Lunar Surface Navigation System Analysis Utilizing Earth-Based Assets

    NASA Technical Reports Server (NTRS)

    Welch, Bryan W.; Connolly, Joseph W.; Sands, Obed S.

    2007-01-01

    The NASA Vision for Space Exploration is focused on the return of astronauts to the Moon. Although navigation systems have already been proven in the Apollo missions to the Moon, the current exploration campaign will involve more extensive and extended missions requiring new concepts for lunar navigation. In contrast to Apollo missions, which were limited to the near-side equatorial region of the Moon, those under the Exploration Systems Initiative will require navigation on the Moon's limb and far side. These regions are known to have poor Earth visibility, but unknown is the extent to which a navigation system comprised solely of Earth-based tracking stations will provide adequate navigation solutions in these areas. This report presents a dilution-of-precision (DoP)-based analysis of the performance of a network of Earth-based assets. This analysis extends a previous analysis of a lunar network (LN) of navigation satellites by providing an assessment of the capability associated with a variety of assumptions. These assumptions pertain to the minimum provider elevation angle, nadir and zenith beam widths, and a total single failure in one of the Earth-based assets. The assessment is accomplished by making appropriately formed estimates of DoP. Different adaptations of DoP, such as geometrical DoP and positional DoP (GDoP and PDoP), are associated with a different set of assumptions regarding augmentations to the navigation receiver or transceiver.

  3. Dilution-of-Precision-Based Lunar Surface Navigation System Analysis Utilizing Lunar Orbiters

    NASA Technical Reports Server (NTRS)

    Welch, Bryan W.; Connolly, Joseph W.; Sands, Obed S.

    2007-01-01

    The NASA Vision for Space Exploration is focused on the return of astronauts to the Moon. Although navigation systems have already been proven in the Apollo missions to the Moon, the current exploration campaign will involve more extensive and extended missions requiring new concepts for lunar navigation. In contrast to Apollo missions, which were limited to the near-side equatorial region of the Moon, those under the Exploration Systems Initiative will require navigation on the Moon's limb and far side. Since these regions have poor Earth visibility, a navigation system comprised solely of Earth-based tracking stations will not provide adequate navigation solutions in these areas. In this report, a dilution-of-precision (DoP)-based analysis of the performance of a network of Moon orbiting satellites is provided. This analysis extends a previous analysis of a lunar network (LN) of navigation satellites by providing an assessment of the capability associated with a variety of assumptions. These assumptions pertain to the minimum surface user elevation angle and a total single satellite failure in the lunar network. The assessment is accomplished by making appropriately formed estimates of DoP. Different adaptations of DoP, such as geometric DoP and positional DoP (GDoP and PDoP), are associated with a different set of assumptions regarding augmentations to the navigation receiver or transceiver.

  4. Hybrid extended particle filter (HEPF) for integrated inertial navigation and global positioning systems

    NASA Astrophysics Data System (ADS)

    Aggarwal, Priyanka; Syed, Zainab; El-Sheimy, Naser

    2009-05-01

    Navigation includes the integration of methodologies and systems for estimating time-varying position, velocity and attitude of moving objects. Navigation incorporating the integrated inertial navigation system (INS) and global positioning system (GPS) generally requires extensive evaluations of nonlinear equations involving double integration. Currently, integrated navigation systems are commonly implemented using the extended Kalman filter (EKF). The EKF assumes a linearized process, measurement models and Gaussian noise distributions. These assumptions are unrealistic for highly nonlinear systems like land vehicle navigation and may cause filter divergence. A particle filter (PF) is developed to enhance integrated INS/GPS system performance as it can easily deal with nonlinearity and non-Gaussian noises. In this paper, a hybrid extended particle filter (HEPF) is developed as an alternative to the well-known EKF to achieve better navigation data accuracy for low-cost microelectromechanical system sensors. The results show that the HEPF performs better than the EKF during GPS outages, especially when simulated outages are located in periods with high vehicle dynamics.

  5. PERCEPT-II: smartphone based indoor navigation system for the blind.

    PubMed

    Ganz, Aura; Schafer, James M; Tao, Yang; Wilson, Carole; Robertson, Meg

    2014-01-01

    In this paper we introduce PERCEPT-II, a low cost and user friendly indoor navigation system for blind and visually impaired users. Using an Android Smartphone that runs PERCEPT-II application with accessibility features, the blind user obtains navigation instructions to the chosen destination when touching specific landmarks tagged with Near Field Communication tags. The system was deployed and tested in a large building at the University of Massachusetts at Amherst. PMID:25570785

  6. SAR and InSAR georeferencing algorithms for inertial navigation systems

    NASA Astrophysics Data System (ADS)

    Greco, M.; Kulpa, K.; Pinelli, G.; Samczynski, P.

    2011-10-01

    This paper presents the concept of Synthetic Aperture Radar (SAR) and Interferemetric SAR (InSAR) georeferencing algorithms dedicated for SAR based augmented Inertial Navigation Architecture (SARINA). The SARINA is a novel concept of the Inertial Navigation System (INS), which utilized the SAR radar as an additional sensor to provide information about the platform trajectory position and compensate an aircraft drift due to Inertial Measurement Unit (IMU) errors, Global Positioning System (GPS) lack of integrity, etc.

  7. Space-based Scintillation Nowcasting with the Communications/Navigation Outage Forecast System

    NASA Astrophysics Data System (ADS)

    Groves, K.; Starks, M.; Beach, T.; Basu, S.

    2008-12-01

    The Air Force Research Laboratory's Communication/Navigation Outage Forecast System (C/NOFS) fuses ground- and space-based data in a near real-time physics-based model aimed at forecasting and nowcasting equatorial scintillations and their impacts on satellite communications and navigation. A key component of the system is the C/NOFS satellite that was launched into a low-inclination (13°) elliptical orbit (400 km x 850 km) in April 2008. The satellite contains six sensors to measure space environment parameters including electron density and temperature, ion density and drift, electric and magnetic fields and neutral wind, as well as a tri-band radio beacon transmitting at 150 MHz, 400 MHz and 1067 MHz. Scintillation nowcasts are derived from measuring the one-dimensional in situ electron density fluctuations and subsequently modeling the propagation environment for satellite-to-ground radio links. The modeling process requires a number of simplifying assumptions regarding the three-dimensional structure of the ionosphere and the results are readily validated by comparisons with ground-based measurements of the satellite's tri-band beacon signals. In mid-September 2008 a campaign to perform detailed analyses of space-based scintillation nowcasts with numerous ground observations was conducted in the vicinity of Kwajalein Atoll, Marshall Islands. To maximize the collection of ground-truth data, the ALTAIR radar was employed to obtain detailed information on the spatial structure of the ionosphere during the campaign and to aid the improvement of space-based nowcasting algorithms. A comparison of these results will be presented; it appears that detailed information on the electron density structure is a limiting factor in modeling the scintillation environment from in situ observations.

  8. Air Navigation Systems: Chapter 6. Navigation and the Pioneering Flights Part II

    NASA Astrophysics Data System (ADS)

    Steele, Philip

    Part I of this chapter was included in the January 1997 issue of the Journal, Vol. 50, p. 65.The Smith Brothers, 1919. Captain Ross M. Smith, of the Australian Flying Corps based in Palestine, flew a Handley Page 0/400 late in 1918 on a special flight to Baghdad and beyond, carrying as passenger Major General W. G. H. Salmond, the RAF's Middle East Commander. Flying as co-pilot was Brigadier-General Borton, Commander of the Palestine Brigade. Smith had been flying, in support of Lawrence's forces, another 0/00 which Borton had brought from England.

  9. Space Shuttle Orbiter entry through landing navigation

    NASA Technical Reports Server (NTRS)

    Ewell, J. J., Jr.

    1982-01-01

    The Space Shuttle Orbiter navigation system must be capable of determining its position and velocity throughout a variety of operational regimes. The design and operation of the entry through landing navigation system is described as it operates during a nominal end of mission from the orbital coasting phase throughout atmospheric flight and landing. Design and operation of the Kalman filter is described. Stabilization of the altitude channel prior to acquisition of external measurement data is described. Utilization of the Tactical Air Navigation (TACAN), barometric altimeter, and Microwave Scan Beam Landing System external measurement data is described. A comparison is made between predicted performance and the navigation accuracy observed during flight.

  10. A novel navigation system for maxillary positioning in orthognathic surgery: Preclinical evaluation.

    PubMed

    Lutz, Jean-Christophe; Nicolau, Stéphane; Agnus, Vincent; Bodin, Frédéric; Wilk, Astrid; Bruant-Rodier, Catherine; Rémond, Yves; Soler, Luc

    2015-11-01

    Appropriate positioning of the maxilla is critical in orthognathic surgery. As opposed to splint-based positioning, navigation systems are versatile and appropriate in assessing the vertical dimension. Bulk and disruption to the line of sight are drawbacks of optical navigation systems. Our aim was to develop and assess a novel navigation system based on electromagnetic tracking of the maxilla, including real-time registration of head movements. Since the software interface has proved to greatly influence the accuracy of the procedure, we purposely designed and evaluated an original, user-friendly interface. A sample of 12 surgeons had to navigate the phantom osteotomized maxilla to eight given target positions using the software we have developed. Time and accuracy (translational error and angular error) were compared between a conventional and a navigated session. A questionnaire provided qualitative evaluation. Our system definitely allows a reduction in variability of time and accuracy among different operators. Accuracy was improved in all surgeons (mean terror difference = 1.11 mm, mean aerror difference = 1.32°). Operative time was decreased in trainees. Therefore, they would benefit from such a system that could also serve for educational purposes. The majority of surgeons who strongly agreed that such a navigation system would prove very helpful in complex deformities, also stated that it would be helpful in everyday orthognathic procedures. PMID:26364761

  11. Interplanetary navigation

    NASA Technical Reports Server (NTRS)

    Stuart, J. R.

    1984-01-01

    The evolution of NASA's planetary navigation techniques is traced, and radiometric and optical data types are described. Doppler navigation; the Deep Space Network; differenced two-way range techniques; differential very long base interferometry; and optical navigation are treated. The Doppler system enables a spacecraft in cruise at high absolute declination to be located within a total angular uncertainty of 1/4 microrad. The two-station range measurement provides a 1 microrad backup at low declinations. Optical data locate the spacecraft relative to the target to an angular accuracy of 5 microrad. Earth-based radio navigation and its less accurate but target-relative counterpart, optical navigation, thus form complementary measurement sources, which provide a powerful sensory system to produce high-precision orbit estimates.

  12. Outside Looking In: Landmark Generalization in the Human Navigational System

    PubMed Central

    Vass, Lindsay K.; Ryan, Jack; Epstein, Russell A.

    2015-01-01

    The use of landmarks is central to many navigational strategies. Here we use multivoxel pattern analysis of fMRI data to understand how landmarks are coded in the human brain. Subjects were scanned while viewing the interiors and exteriors of campus buildings. Despite their visual dissimilarity, interiors and exteriors corresponding to the same building elicited similar activity patterns in the parahippocampal place area (PPA), retrosplenial complex (RSC), and occipital place area (OPA), three regions known to respond strongly to scenes and buildings. Generalization across stimuli depended on knowing the correspondences among them in the PPA but not in the other two regions, suggesting that the PPA is the key region involved in learning the different perceptual instantiations of a landmark. In contrast, generalization depended on the ability to freely retrieve information from memory in RSC, and it did not depend on familiarity or cognitive task in OPA. Together, these results suggest a tripartite division of labor, whereby PPA codes landmark identity, RSC retrieves spatial or conceptual information associated with landmarks, and OPA processes visual features that are important for landmark recognition. SIGNIFICANCE STATEMENT A central element of spatial navigation is the ability to recognize the landmarks that mark different places in the world. However, little is known about how the brain performs this function. Here we show that the parahippocampal place area (PPA), a region in human occipitotemporal cortex, exhibits key features of a landmark recognition mechanism. Specifically, the PPA treats different perceptual instantiations of the same landmark as representationally similar, but only when subjects have enough experience to know the correspondences among the stimuli. We also identify two other brain regions that exhibit landmark generalization, but with less sensitivity to familiarity. These results elucidate the brain networks involved in the learning and

  13. The cerebellum: a new key structure in the navigation system

    PubMed Central

    Rochefort, Christelle; Lefort, Julie M.; Rondi-Reig, Laure

    2013-01-01

    Early investigations of cerebellar function focused on motor learning, in particular on eyeblink conditioning and adaptation of the vestibulo-ocular reflex, and led to the general view that cerebellar long-term depression (LTD) at parallel fiber (PF)–Purkinje cell (PC) synapses is the neural correlate of cerebellar motor learning. Thereafter, while the full complexity of cerebellar plasticities was being unraveled, cerebellar involvement in more cognitive tasks—including spatial navigation—was further investigated. However, cerebellar implication in spatial navigation remains a matter of debate because motor deficits frequently associated with cerebellar damage often prevent the dissociation between its role in spatial cognition from its implication in motor function. Here, we review recent findings from behavioral and electrophysiological analyses of cerebellar mutant mouse models, which show that the cerebellum might participate in the construction of hippocampal spatial representation map (i.e., place cells) and thereby in goal-directed navigation. These recent advances in cerebellar research point toward a model in which computation from the cerebellum could be required for spatial representation and would involve the integration of multi-source self-motion information to: (1) transform the reference frame of vestibular signals and (2) distinguish between self- and externally-generated vestibular signals. We eventually present herein anatomical and functional connectivity data supporting a cerebello-hippocampal interaction. Whilst a direct cerebello-hippocampal projection has been suggested, recent investigations rather favor a multi-synaptic pathway involving posterior parietal and retrosplenial cortices, two regions critically involved in spatial navigation. PMID:23493515

  14. An Adaptive Technique for a Redundant-Sensor Navigation System. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Chien, T. T.

    1972-01-01

    An on-line adaptive technique is developed to provide a self-contained redundant-sensor navigation system with a capability to utilize its full potentiality in reliability and performance. The gyro navigation system is modeled as a Gauss-Markov process, with degradation modes defined as changes in characteristics specified by parameters associated with the model. The adaptive system is formulated as a multistage stochastic process: (1) a detection system, (2) an identification system and (3) a compensation system. It is shown that the sufficient statistics for the partially observable process in the detection and identification system is the posterior measure of the state of degradation, conditioned on the measurement history.

  15. Verification and Validation of Numerical Models for Air/Water Flow on Coastal and Navigation Fluid-Structure Interaction Applications

    NASA Astrophysics Data System (ADS)

    Kees, C. E.; Farthing, M.; Dimakopoulos, A.; DeLataillade, T.

    2015-12-01

    Performance analysis and optimization of coastal and navigation structures is becoming feasible due to recent improvements in numerical methods for multiphase flows and the steady increase in capacity and availability of high performance computing resources. Now that the concept of fully three-dimensional air/water flow modelling for real world engineering analysis is achieving acceptance by the wider engineering community, it is critical to expand careful comparative studies on verification,validation, benchmarking, and uncertainty quantification for the variety of competing numerical methods that are continuing to evolve. Furthermore, uncertainty still remains about the relevance of secondary processes such as surface tension, air compressibility, air entrainment, and solid phase (structure) modelling so that questions about continuum mechanical theory and mathematical analysis of multiphase flow are still required. Two of the most popular and practical numerical approaches for large-scale engineering analysis are the Volume-Of-Fluid (VOF) and Level Set (LS) approaches. In this work we will present a publically available verification and validation test set for air-water-structure interaction problems as well as computational and physical model results including a hybrid VOF-LS method, traditional VOF methods, and Smoothed Particle Hydrodynamics (SPH) results. The test set repository and test problem formats will also be presented in order to facilitate future comparative studies and reproduction of scientific results.

  16. Radar seeker based autonomous navigation update system using topography feature matching techniques

    NASA Astrophysics Data System (ADS)

    Lerche, H. D.; Tumbreagel, F.

    1992-11-01

    The discussed navigation update system was designed for an unmanned platform with fire and forget capability. It meets the requirement due to fully autonomous operation. The system concept will be characterized by complementary use of the radar seeker for target identification as well as for navigation function. The system works in the navigation mode during preprogrammable phases where the primary target identification function is not active or in parallel processing. The dual function radar seeker system navigates the drone during the midcourse and terminal phases of the mission. Its high resolution due to range measurement and doppler beam sharpening in context with its radar reflectivity sensing capability are the basis for topography referenced navigation computation. The detected height jumps (coming from terrain elevation and cultural objects) and radar reflectivity features will be matched together with topography referenced features. The database comprises elevation data and selected radar reflectivity features that are robust against seasonal influences. The operational benefits of the discussed system are as follows: (1) the improved navigation performance with high probability of position fixing, even over flat terrain; (2) the operation within higher altitudes; and (3) bad weather capability. The developed software modules were verified with captive flight test data running in a hardware-in-the-loop simulation.

  17. Navigation technique for MR-endoscope system using a wireless accelerometer-based remote control device.

    PubMed

    Kumamoto, Etsuko; Takahashi, Akihiro; Matsuoka, Yuichiro; Morita, Yoshinori; Kutsumi, Hiromu; Azuma, Takeshi; Kuroda, Kagayaki

    2013-01-01

    The MR-endoscope system can perform magnetic resonance (MR) imaging during endoscopy and show the images obtained by using endoscope and MR. The MR-endoscope system can acquire a high-spatial resolution MR image with an intraluminal radiofrequency (RF) coil, and the navigation system shows the scope's location and orientation inside the human body and indicates MR images with a scope view. In order to conveniently perform an endoscopy and MR procedure, the design of the user interface is very important because it provides useful information. In this study, we propose a navigation system using a wireless accelerometer-based controller with Bluetooth technology and a navigation technique to set the intraluminal RF coil using the navigation system. The feasibility of using this wireless controller in the MR shield room was validated via phantom examinations of the influence on MR procedures and navigation accuracy. In vitro examinations using an isolated porcine stomach demonstrated the effectiveness of the navigation technique using a wireless remote-control device. PMID:24111031

  18. Autonomous reconfigurable GPS/INS navigation and pointing system for rendezvous and docking

    NASA Technical Reports Server (NTRS)

    Upadhyay, Triveni N.; Cotterill, Stephen; Deaton, A. Wayne

    1991-01-01

    This paper describes the results of an integrated navigation and pointing system software development effort sponsored by the NASA MSFC through a SBIR Phase 2 Program. The integrated Global Positioning System (GPS)/Inertial Navigation System (INS) implements an autonomous navigation filter that is reconfigurable in real-time to accommodate mission contingencies. An onboard expert system monitors the spacecraft status and reconfigures the navigation filter accordingly, to optimize the system performance. The navigation filter is a multi-mode Kalman filter to estimate the spacecraft position, velocity, and attitude. Three different GPS-based attitude determination techniques, namely, velocity vector matching, attitude vector matching, and interferometric processing, are implemented to encompass different mission contingencies. The integrated GPS/INS navigation filter will use any of these techniques depending on the mission phase and the state of the sensors. The first technique, velocity vector matching, uses the GPS velocity measurement to estimate the INS velocity errors and exploits the correlation between INS velocity and attitude errors to estimate the attitude. The second technique, attitude vector matching, uses INS gyro measurements and GPS carrier phase (integrated Doppler) measurements during a spacecraft rotation maneuver to determine the attitude. Both of these techniques require only one GPS antenna onboard to determine the spacecraft attitude. The third technique, interferometric processing, requires use of multiple GPS antennae. In order to determine 3-axis body attitude, three GPS antennae (2 no-coplanor baselines) are required.

  19. A simplified satellite navigation system for an autonomous Mars roving vehicle.

    NASA Technical Reports Server (NTRS)

    Janosko, R. E.; Shen, C. N.

    1972-01-01

    The use of a retroflecting satellite and a laser rangefinder to navigate a Martian roving vehicle is considered in this paper. It is shown that a simple system can be employed to perform this task. An error analysis is performed on the navigation equations and it is shown that the error inherent in the scheme proposed can be minimized by the proper choice of measurement geometry. A nonlinear programming approach is used to minimize the navigation error subject to constraints that are due to geometric and laser requirements. The problem is solved for a particular set of laser parameters and the optimal solution is presented.

  20. Micro Navigator

    NASA Technical Reports Server (NTRS)

    Blaes, B. R.; Kia, T.; Chau, S. N.

    2001-01-01

    Miniature high-performance low-mass space avionics systems are desired for planned future outer planetary exploration missions (i.e. Europa Orbiter/Lander, Pluto-Kuiper Express). The spacecraft fuel and mass requirements enabling orbit insertion is the driving requirement. The Micro Navigator is an integrated autonomous Guidance, Navigation & Control (GN&C)micro-system that would provide the critical avionics function for navigation, pointing, and precision landing. The Micro Navigator hardware and software allow fusion of data from multiple sensors to provide a single integrated vehicle state vector necessary for six degrees of freedom GN&C. The benefits of this MicroNavigator include: 1) The Micro Navigator employs MEMS devices that promise orders of magnitude reductions in mass power and volume of inertial sensors (accelerometers and gyroscopes), celestial sensing devices (startracker, sun sensor), and computing element; 2) The highly integrated nature of the unit will reduce the cost of flight missions. a) The advanced miniaturization technologies employed by the Micro Navigator lend themselves to mass production, and therefore will reduce production cost of spacecraft. b) The integral approach simplifies interface issues associated with discrete components and reduces cost associated with integration and test of multiple components; and 3) The integration of sensors and processing elements into a single unit will allow the Micro Navigator to encapsulate attitude information and determination functions into a single object. This is particularly beneficial for object-oriented software architectures that are used in advanced spacecraft. Additional information is contained in the original extended abstract.

  1. Astronavigation System as an Autonomous Enhancement Suite for a Strapdown Inertial Navigation System: An Evaluation

    NASA Astrophysics Data System (ADS)

    Ali, Jamshaid

    2009-01-01

    The determination of spacecraft coordinates is embodied by a navigation solution with high degree of autonomy, high precision and reliability. The foremost requirement for the solution of this problem is a strapdown inertial navigation system (SINS), which is autonomous, reliable and jamming resistant, but at the same time, errors in SINS increase with time. Therefore, for the SINS eiror correction, astronavigation system (ANS) is used as an additional navaid. This paper considers the ANS as an enhancement source for the SINS and presents its theoretical and practical aspects. The typical ANS makes use of star-trackers which are expensive, complicated in their structure and demand a-priori definition and vigilant preparation of each onboard attitude fix. To make this system cost effective and simple, an advanced configuration employs a charge coupled device (CCD) based star sensor rigidly mounted on a strapdown inertial measurement unit (SIMU). Consequently, in this evaluation, the ANS makes use of CCD based star sensors. Simulation results are presented to demonstrate the validity of the method for improving the navigation reliability and performance.

  2. Multi-Purpose Avionic Architecture for Vision Based Navigation Systems for EDL and Surface Mobility Scenarios

    NASA Astrophysics Data System (ADS)

    Tramutola, A.; Paltro, D.; Cabalo Perucha, M. P.; Paar, G.; Steiner, J.; Barrio, A. M.

    2015-09-01

    Vision Based Navigation (VBNAV) has been identified as a valid technology to support space exploration because it can improve autonomy and safety of space missions. Several mission scenarios can benefit from the VBNAV: Rendezvous & Docking, Fly-Bys, Interplanetary cruise, Entry Descent and Landing (EDL) and Planetary Surface exploration. For some of them VBNAV can improve the accuracy in state estimation as additional relative navigation sensor or as absolute navigation sensor. For some others, like surface mobility and terrain exploration for path identification and planning, VBNAV is mandatory. This paper presents the general avionic architecture of a Vision Based System as defined in the frame of the ESA R&T study “Multi-purpose Vision-based Navigation System Engineering Model - part 1 (VisNav-EM-1)” with special focus on the surface mobility application.

  3. Modular Software for Spacecraft Navigation Using the Global Positioning System (GPS)

    NASA Technical Reports Server (NTRS)

    Truong, S. H.; Hartman, K. R.; Weidow, D. A.; Berry, D. L.; Oza, D. H.; Long, A. C.; Joyce, E.; Steger, W. L.

    1996-01-01

    The Goddard Space Flight Center Flight Dynamics and Mission Operations Divisions have jointly investigated the feasibility of engineering modular Global Positioning SYSTEM (GPS) navigation software to support both real time flight and ground postprocessing configurations. The goals of this effort are to define standard GPS data interfaces and to engineer standard, reusable navigation software components that can be used to build a broad range of GPS navigation support applications. The paper discusses the GPS modular software (GMOD) system and operations concepts, major requirements, candidate software architecture, feasibility assessment and recommended software interface standards. In additon, ongoing efforts to broaden the scope of the initial study and to develop modular software to support autonomous navigation using GPS are addressed,

  4. Gemma: a Generic, Extensible and Modular Multi-Sensor Navigation Analysis System

    NASA Astrophysics Data System (ADS)

    Navarro, J. A.; Parés, M. E.; Colomina, I.

    2016-06-01

    This paper presents the concept of an architecture for a system that helps researchers in the field of Geomatics to speed up their daily research on kinematic geodesy, navigation and positioning fields. The presented ideas correspond to an extensible and modular software system aimed at the development of new navigation and positioning algorithms as well as at the evaluation of the performance of sensors. The concept, already implemented in the CTTC's system GEMMA is generic and extensible. This means that it is possible to incorporate new navigation algorithms or sensors at no maintenance cost. Only the effort related to the development tasks required to either create such algorithms or model sensors needs to be taken into account. As a consequence, change poses a much smaller problem for CTTC's research activities is this specific area. This system includes several standalone tools that may be combined in different ways to accomplish various goals; that is, it may be used to perform a variety of tasks, as, for instance, (1) define positioning and navigation scenarios, (2) simulate different kinds of sensors, (3) validate new navigation algorithms or (4) evaluate the quality of an estimated navigation solution.

  5. A 3D Model Based Imdoor Navigation System for Hubei Provincial Museum

    NASA Astrophysics Data System (ADS)

    Xu, W.; Kruminaite, M.; Onrust, B.; Liu, H.; Xiong, Q.; Zlatanova, S.

    2013-11-01

    3D models are more powerful than 2D maps for indoor navigation in a complicate space like Hubei Provincial Museum because they can provide accurate descriptions of locations of indoor objects (e.g., doors, windows, tables) and context information of these objects. In addition, the 3D model is the preferred navigation environment by the user according to the survey. Therefore a 3D model based indoor navigation system is developed for Hubei Provincial Museum to guide the visitors of museum. The system consists of three layers: application, web service and navigation, which is built to support localization, navigation and visualization functions of the system. There are three main strengths of this system: it stores all data needed in one database and processes most calculations on the webserver which make the mobile client very lightweight, the network used for navigation is extracted semi-automatically and renewable, the graphic user interface (GUI), which is based on a game engine, has high performance of visualizing 3D model on a mobile display.

  6. Application of a navigation system for contouring anatomical plasty of the distal end of the humerus.

    PubMed

    Ikeda, Masayoshi; Kobayashi, Yuka; Saito, Ikuo; Ishii, Takayuki; Shimizu, Ayuko; Oka, Yoshinori

    2012-01-01

    The effectiveness of navigation systems in performing accurate orthopaedic surgery has been reported previously, but there have been no reports on the application of navigation in surgeries involving bone resection around the elbow joint. In this study, anatomical plasty or bone resection was performed to restore anatomical morphology in 10 cases of osteoarthritis of the elbow and deformity of the distal end of the humerus. Bone resection was performed on the distal end of the humerus using navigation and on the proximal end of the ulna via freehand surgery. Postoperatively, the elbow function was evaluated and pre- and postoperative CT images were used to measure the bone resection. There were no complications arising from the use of navigation, and elbow function was improved in all cases. By evaluating the CT images, it was found that navigated resection of the fossae of the distal humerus was more effective than freehand resection of the processes of the proximal ulna, thus confirming the usefulness of navigation. In future, to fully confirm this finding, it will be necessary to conduct prospective controlled studies of cases in which navigation is used to perform arthroplasty, including those that involve the proximal end of the ulna. PMID:22681497

  7. Compressed air energy storage system

    SciTech Connect

    Ahrens, F.W.; Kartsounes, G.T.

    1981-07-28

    An internal combustion reciprocating engine is operable as a compressor during slack demand periods utilizing excess power from a power grid to charge air into an air storage reservoir and as an expander during peak demand periods to feed power into the power grid utilizing air obtained from the air storage reservoir together with combustible fuel. Preferably the internal combustion reciprocating engine is operated at high pressure and a low pressure turbine and compressor are also employed for air compression and power generation.

  8. Compressed air energy storage system

    DOEpatents

    Ahrens, Frederick W.; Kartsounes, George T.

    1981-01-01

    An internal combustion reciprocating engine is operable as a compressor during slack demand periods utilizing excess power from a power grid to charge air into an air storage reservoir and as an expander during peak demand periods to feed power into the power grid utilizing air obtained from the air storage reservoir together with combustible fuel. Preferably the internal combustion reciprocating engine is operated at high pressure and a low pressure turbine and compressor are also employed for air compression and power generation.

  9. Compressed air energy storage system

    DOEpatents

    Ahrens, F.W.; Kartsounes, G.T.

    An internal combustion reciprocating engine is operable as a compressor during slack demand periods utilizing excess power from a power grid to charge air into an air storage reservoir and as an expander during peak demand periods to feed power into the power grid utilizing air obtained from the air storage reservoir together with combustion reciprocating engine is operated at high pressure and a low pressure turbine and compressor are also employed for air compression and power generation.

  10. Solar Dynamics Observatory Guidance, Navigation, and Control System Overview

    NASA Technical Reports Server (NTRS)

    Morgenstern, Wendy M.; Bourkland, Kristin L.; Hsu, Oscar C.; Liu, Kuo-Chia; Mason, Paul A. C.; O'Donnell, James R., Jr.; Russo, Angela M.; Starin, Scott R.; Vess, Melissa F.

    2011-01-01

    The Solar Dynamics Observatory (SDO) was designed and built at the Goddard Space Flight Center, launched from Cape Canaveral on February 11, 2010, and reached its final geosynchronous science orbit on March 16, 2010. The purpose of SDO is to observe the Sun and continuously relay data to a dedicated ground station. SDO remains Sun-pointing throughout most of its mission for the instruments to take measurements of the Sun. The SDO attitude control system (ACS) is a single-fault tolerant design. Its fully redundant attitude sensor complement includes sixteen coarse Sun sensors (CSSs), a digital Sun sensor (DSS), three two-axis inertial reference units (IRUs), and two star trackers (STs). The ACS also makes use of the four guide telescopes included as a part of one of the science instruments. Attitude actuation is performed using four reaction wheels assemblies (RWAs) and eight thrusters, with a single main engine used to provide velocity-change thrust for orbit raising. The attitude control software has five nominal control modes, three wheel-based modes and two thruster-based modes. A wheel-based Safehold running in the attitude control electronics box improves the robustness of the system as a whole. All six modes are designed on the same basic proportional-integral-derivative attitude error structure, with more robust modes setting their integral gains to zero. This paper details the final overall design of the SDO guidance, navigation, and control (GN&C) system and how it was used in practice during SDO launch, commissioning, and nominal operations. This overview will include the ACS control modes, attitude determination and sensor calibration, the high gain antenna (HGA) calibration, and jitter mitigation operation. The Solar Dynamics Observatory mission is part of the NASA Living With a Star program, which seeks to understand the changing Sun and its effects on the Solar System, life, and society. To this end, the SDO spacecraft carries three Sun

  11. Strategy Guideline. Compact Air Distribution Systems

    SciTech Connect

    Burdick, Arlan

    2013-06-01

    This guideline discusses the benefits and challenges of using a compact air distribution system to handle the reduced loads and reduced air volume needed to condition the space within an energy efficient home. The decision criteria for a compact air distribution system must be determined early in the whole-house design process, considering both supply and return air design. However, careful installation of a compact air distribution system can result in lower material costs from smaller equipment, shorter duct runs, and fewer outlets; increased installation efficiencies, including ease of fitting the system into conditioned space; lower loads on a better balanced HVAC system, and overall improved energy efficiency of the home.

  12. Applications of different design methodologies in navigation systems and development at JPL

    NASA Technical Reports Server (NTRS)

    Thurman, S. W.

    1990-01-01

    The NASA/JPL deep space navigation system consists of a complex array of measurement systems, data processing systems, and support facilities, with components located both on the ground and on-board interplanetary spacecraft. From its beginings nearly 30 years ago, this system has steadily evolved and grown to meet the demands for ever-increasing navigation accuracy placed on it by a succession of unmanned planetary missions. Principal characteristics of this system are its capabilities and great complexity. Three examples in the design and development of interplanetary space navigation systems are examined in order to make a brief assessment of the usefulness of three basic design theories, known as normative, rational, and heuristic. Evaluation of the examples indicates that a heuristic approach, coupled with rational-based mathematical and computational analysis methods, is used most often in problems such as orbit determination strategy development and mission navigation system design, while normative methods have seen only limited use is such applications as the development of large software systems and in the design of certain operational navigation subsystems.

  13. Quantitative and qualitative evaluation of PERCEPT indoor navigation system for visually impaired users.

    PubMed

    Ganz, Aura; Schafer, James; Puleo, Elaine; Wilson, Carole; Robertson, Meg

    2012-01-01

    In this paper we introduce qualitative and quantitative evaluation of PERCEPT system, an indoor navigation system for the blind and visually impaired. PERCEPT system trials with 24 blind and visually impaired users in a multi-story building show PERCEPT system effectiveness in providing appropriate navigation instructions to these users. The uniqueness of our system is that it is affordable and that its design follows Orientation and Mobility principles. These results encourage us to generalize the solution to large indoor spaces and test it with significantly larger visually impaired population in diverse settings. We hope that PERCEPT will become a standard deployed in all indoor public spaces. PMID:23367251

  14. Integrated GPS/INS navigation system design for autonomous spacecraft rendezvous

    NASA Astrophysics Data System (ADS)

    Gaylor, David Edward

    2003-10-01

    The goal of the NASA Space Launch Initiative (SLI) program is to advance the technologies for the next generation reusable launch vehicle (RLV). The SLI program has identified automated rendezvous and docking as an area requiring further research and development. Currently, the Space Shuttle uses a partially manual system for rendezvous, but a fully automated system could be safer and more reliable. Previous studies have shown that it is feasible to use the Global Positioning System (GPS) for spacecraft navigation during rendezvous with the International Space Station (ISS). However, these studies have not accounted for the effects of GPS signal blockage and multipath in the vicinity of the ISS, which make a GPS-only navigation system less accurate and reliable. One possible solution is to combine GPS with an inertial navigation system (INS). The integration of GPS and INS can be achieved using a Kalman filter. GPS/INS systems have been used in aircraft for many years and have also been used in launch vehicles. However, the performance of GPS/INS systems in orbit and during spacecraft rendezvous has not been characterized. The primary objective of this research is to evaluate the ability of an integrated GPS/INS to provide accurate navigation solutions during a rendezvous scenario where the effects of ISS signal blockage, multipath and delta-v maneuvers degrade GPS-only navigation. In order to accomplish this, GPS-only and GPS/INS Kalman filters have been developed for both absolute and relative navigation, as well as a new statistical multipath model for spacecraft operating near the ISS. Several factors that affect relative navigation performance were studied, including: filter tuning, GPS constellation geometry, rendezvous approach direction, and inertial sensor performance. The results showed that each of these factors has a large impact on relative navigation performance. Finally, it has been demonstrated that a GPS/INS system based on medium accuracy aircraft

  15. Global Positioning System Navigation Above 76,000 km for NASA's Magnetospheric Multiscale Mission

    NASA Technical Reports Server (NTRS)

    Winternitz, Luke B.; Bamford, William A.; Price, Samuel R.; Carpenter, J. Russell; Long, Anne C.; Farahmand, Mitra

    2016-01-01

    NASA's Magnetospheric Multiscale (MMS) mission, launched in March of 2015, consists of a controlled formation of four spin-stabilized spacecraft in similar highly elliptic orbits reaching apogee at radial distances of 12 and 25 Earth radii (RE) in the first and second phases of the mission. Navigation for MMS is achieved independently on-board each spacecraft by processing Global Positioning System (GPS) observables using NASA Goddard Space Flight Center (GSFC)'s Navigator GPS receiver and the Goddard Enhanced Onboard Navigation System (GEONS) extended Kalman filter software. To our knowledge, MMS constitutes, by far, the highest-altitude operational use of GPS to date and represents a high point of over a decade of high-altitude GPS navigation research and development at GSFC. In this paper we will briefly describe past and ongoing high-altitude GPS research efforts at NASA GSFC and elsewhere, provide details on the design of the MMS GPS navigation system, and present on-orbit performance data from the first phase. We extrapolate these results to predict performance in the second phase orbit, and conclude with a discussion of the implications of the MMS results for future high-altitude GPS navigation, which we believe to be broad and far-reaching.

  16. Navigation systems requirement analysis for the Aeroassist Flight Experiment (AFE)

    NASA Technical Reports Server (NTRS)

    Huang, K. H.; Chang, Ho-Pen; Wells, Eugene M.

    1990-01-01

    Navigation requirements for Aeroassist Flight Experiment (AFE) spacecraft passing through the earth's atmosphere have been studied using a 6-DOF dynamics model, an Inertial Measurement Unit model, a baseline AFE aeropass flight guidance logic, and a baseline AFE aeropass control model. The goal of this study is to determine, in a statistical sense, how much flight path angle error can be tolerated at Entry Interface (EI) and still have acceptable delta-V requirements at exit to position the AFE spacecraft for recovery. Assuming there is fuel available to produce 370 ft/sec of delta-V at atmospheric exit, a 3-sigma standard deviation in flight path angle error of 0.04 degree at EI would result in a 98 percent probability of mission success. In addition to the required delta-V at exit, other aeropass parameters such as maximum aeroheating rate, fuel consumption, and the science requirements affecting mission success are also investigated.

  17. Strategy Guideline: Compact Air Distribution Systems

    SciTech Connect

    Burdick, A.

    2013-06-01

    This Strategy Guideline discusses the benefits and challenges of using a compact air distribution system to handle the reduced loads and reduced air volume needed to condition the space within an energy efficient home. Traditional systems sized by 'rule of thumb' (i.e., 1 ton of cooling per 400 ft2 of floor space) that 'wash' the exterior walls with conditioned air from floor registers cannot provide appropriate air mixing and moisture removal in low-load homes. A compact air distribution system locates the HVAC equipment centrally with shorter ducts run to interior walls, and ceiling supply outlets throw the air toward the exterior walls along the ceiling plane; alternatively, high sidewall supply outlets throw the air toward the exterior walls. Potential drawbacks include resistance from installing contractors or code officials who are unfamiliar with compact air distribution systems, as well as a lack of availability of low-cost high sidewall or ceiling supply outlets to meet the low air volumes with good throw characteristics. The decision criteria for a compact air distribution system must be determined early in the whole-house design process, considering both supply and return air design. However, careful installation of a compact air distribution system can result in lower material costs from smaller equipment, shorter duct runs, and fewer outlets; increased installation efficiencies, including ease of fitting the system into conditioned space; lower loads on a better balanced HVAC system, and overall improved energy efficiency of the home.

  18. Air Force Training for Instructional Systems Development.

    ERIC Educational Resources Information Center

    Calkins, Ronald R.

    Detailed information is provided about the Air Force Instructional System Development (ISD) Model to supplement the 1979 AECT presentation made in New Orleans. Information of interest to instructional systems designers includes (1) a short overview of the Air Force ISD model, (2) an extended example which demonstrates the Air Training Command…

  19. Investigation of air transportation technology at Ohio University, 1980. [general aviation aircraft and navigation aids

    NASA Technical Reports Server (NTRS)

    Mcfarland, R. H.

    1981-01-01

    Specific configurations of first and second order all digital phase locked loops were analyzed for both ideal and additive gaussian noise inputs. In addition, a design for a hardware digital phase locked loop capable of either first or second order operation was evaluated along with appropriate experimental data obtained from testing of the hardware loop. All parameters chosen for the analysis and the design of the digital phase locked loop were consistent with an application to an Omega navigation receiver although neither the analysis nor the design are limited to this application. For all cases tested, the experimental data showed close agreement with the analytical results indicating that the Markov chain model for first and second order digital phase locked loops are valid.

  20. Precise time technology for selected Air Force systems: Present status and future requirements

    NASA Technical Reports Server (NTRS)

    Yannoni, N. F.

    1981-01-01

    Precise time and time interval (PTTI) technology is becoming increasingly significant to Air Force operations as digital techniques find expanded utility in military missions. Timing has a key role in the function as well as in navigation. A survey of the PTTI needs of several Air Force systems is presented. Current technology supporting these needs was reviewed and new requirements are emphasized for systems as they transfer from initial development to final operational deployment.

  1. Design of fault diagnosis system for inertial navigation system based on virtual technology

    NASA Astrophysics Data System (ADS)

    Hu, Baiqing; Wang, Boxiong; Li, An; Zhang, Mingzhao; Qin, Fangjun; Pan, Hua

    2006-11-01

    With regard to the complex structure of the inertial navigation system and the low rate of fault detection with BITE (built-in test equipment), a fault diagnosis system for INS based on virtual technologies (virtual instrument and virtual equipment) is proposed in this paper. The hardware of the system is a PXI computer with highly stable performance and strong extensibility. In addition to the basic functions of digital multimeter, oscilloscope and cymometer, it can also measure the attitude of the ship in real-time, connect and control the measurement instruments with digital interface. The software is designed with the languages of Measurement Studio for VB, JAVA, and CULT3D. Using the extensively applied fault-tree reasoning and fault cases makes fault diagnosis. To suit the system to the diagnosis for various navigation electronic equipments, the modular design concept is adopted for the software programming. Knowledge of the expert system is digitally processed and the parameters of the system's interface and the expert diagnosis knowledge are stored in the database. The application shows that system is stable in operation, easy to use, quick and accurate in fault diagnosis.

  2. Pedestrian tracking and navigation using an adaptive knowledge system based on neural networks

    NASA Astrophysics Data System (ADS)

    Grejner-Brzezinska, Dorota A.; Toth, Charles; Moafipoor, Shahram

    2007-11-01

    The primary objective of the research presented here is to develop theoretical foundations and implementation algorithms, which integrate the Global Positioning System (GPS), micro-electromechanical inertial measurement unit (MEMS IMU), digital barometer, electronic compass, and human pedometry to provide navigation and tracking of military and rescue ground personnel. This paper discusses the design, implementation and the performance analyses of the personal navigator prototype, with a special emphasis on dead-reckoning (DR) navigation supported by the human locomotion model. The adaptive knowledge system, based on the Artificial Neural Networks (ANN), is implemented to support this functionality. The knowledge system is trained during the GPS signal reception and is used to support navigation under GPS-denied conditions. The human locomotion parameters, step frequency (SF) and step length (SL), are extracted from GPS-timed impact switches (step frequency) and GPS/IMU data (step length), respectively, during the system calibration period. SL is correlated with several data types, such as acceleration, acceleration variation, SF, terrain slope, etc. that constitute the input parameters to the ANN-based knowledge system. The ANN-predicted SL, together with the heading information from the compass and gyro, support DR navigation. The current target accuracy of the system is 3-5 m CEP (circular error probable) 50%.

  3. Development and clinical application of surgical navigation system for laparoscopic hepatectomy

    NASA Astrophysics Data System (ADS)

    Hayashi, Yuichiro; Igami, Tsuyoshi; Hirose, Tomoaki; Nagino, Masato; Mori, Kensaku

    2015-03-01

    This paper describes a surgical navigation system for laparoscopic surgery and its application to laparoscopic hepatectomy. The proposed surgical navigation system presents virtual laparoscopic views using a 3D positional tracker and preoperative CT images. We use an electromagnetic tracker for obtaining positional information of a laparoscope and a forceps. The point-pair matching registration method is performed for aligning coordinate systems between the 3D positional tracker and the CT images. Virtual laparoscopic views corresponding to the laparoscope position are generated from the obtained positional information, the registration results, and the CT images using a volume rendering method. We performed surgical navigation using the proposed system during laparoscopic hepatectomy for fourteen cases. The proposed system could generate virtual laparoscopic views in synchronization with the laparoscope position during surgery.

  4. Robotic and Navigation Systems in Orthopaedic Surgery: How Much Do Our Patients Understand?

    PubMed Central

    Benjamin-Laing, Harry; Douglas, Stephen L; Haddad, Fares S

    2014-01-01

    Background Technology in orthopaedic surgery has become more widespread in the past 20 years, with emerging evidence of its benefits in arthroplasty. Although patients are aware of benefits of conventional joint replacement, little is known on patients' knowledge of the prevalence, benefits or drawbacks of surgery involving navigation or robotic systems. Methods In an outpatient arthroplasty clinic, 100 consecutive patients were approached and given questionnaires to assess their knowledge of navigation and robotics in orthopaedic surgery. Participation in the survey was voluntary. Results Ninety-eight patients volunteered to participate in the survey, mean age 56.2 years (range, 19 to 88 years; 52 female, 46 male). Forty percent of patients thought more than 30% of National Health Service (NHS) orthopaedic operations involved navigation or robotics; 80% believed this was the same level or less than the private sector. One-third believed most of an operation could be performed independently by a robotic/navigation system. Amongst perceived benefits of navigation/robotic surgery was more accurate surgery (47%), quicker surgery (50%), and making the surgeon's job easier (52%). Sixty-nine percent believed navigation/robotics was more expensive and 20% believed it held no benefit against conventional surgery, with only 9% believing it led to longer surgery. Almost 50% would not mind at least some of their operation being performed with use of robotics/navigation. Conclusions Although few patients were familiar with this new technology, there appeared to be a strong consensus it was quicker and more accurate than conventional surgery. Many patients appear to believe navigation and robotics in orthopaedic surgery is largely the preserve of the private sector. This study demonstrates public knowledge of such new technologies is limited and a need to inform patients of the relative merits and drawbacks of such surgery prior to their more widespread implementation. PMID

  5. Apollo Onboard Navigation Techniques

    NASA Technical Reports Server (NTRS)

    Interbartolo, Michael

    2009-01-01

    This viewgraph presentation reviews basic navigation concepts, describes coordinate systems and identifies attitude determination techniques including Primary Guidance, Navigation and Control System (PGNCS) IMU management and Command and Service Module Stabilization and Control System/Lunar Module (LM) Abort Guidance System (AGS) attitude management. The presentation also identifies state vector determination techniques, including PGNCS coasting flight navigation, PGNCS powered flight navigation and LM AGS navigation.

  6. Effects of using a portable navigation system and paper map in real driving.

    PubMed

    Lee, Wen-Chen; Cheng, Bor-Wen

    2008-01-01

    Navigation systems are very useful tools because they display a user's location and guide them to a destination using graphics, text and voice information. Recent work has revealed that millions of consumers received driving directions using their cell phone or PDA. This present work aimed to explore whether the efficiency to destination and driver behavior were distinguishable when using a portable navigation system compared to a paper map. Thirty-two subjects were paid to participate in this research, with field experiments being carried out in both urban and rural environments. A smart phone was adopted as the portable navigation system in the study. The results revealed that the drivers performed better when using a portable navigation system compared to those using a paper map, in terms of efficiency to destination and driving performance. In addition, drivers could save time and gasoline using a portable navigation system when in an unfamiliar region, and driving performance may be safer, despite the fact that the display screen of the phone is small. PMID:18215562

  7. Industrial Compressed Air System Energy Efficiency Guidebook.

    SciTech Connect

    United States. Bonneville Power Administration.

    1993-12-01

    Energy efficient design, operation and maintenance of compressed air systems in industrial plants can provide substantial reductions in electric power and other operational costs. This guidebook will help identify cost effective, energy efficiency opportunities in compressed air system design, re-design, operation and maintenance. The guidebook provides: (1) a broad overview of industrial compressed air systems, (2) methods for estimating compressed air consumption and projected air savings, (3) a description of applicable, generic energy conservation measures, and, (4) a review of some compressed air system demonstration projects that have taken place over the last two years. The primary audience for this guidebook includes plant maintenance supervisors, plant engineers, plant managers and others interested in energy management of industrial compressed air systems.

  8. Transformations in Air Transportation Systems For the 21st Century

    NASA Technical Reports Server (NTRS)

    Holmes, Bruce J.

    2004-01-01

    Globally, our transportation systems face increasingly discomforting realities: certain of the legacy air and ground infrastructures of the 20th century will not satisfy our 21st century mobility needs. The consequence of inaction is diminished quality of life and economic opportunity for those nations unable to transform from the 20th to 21st century systems. Clearly, new thinking is required regarding business models that cater to consumers value of time, airspace architectures that enable those new business models, and technology strategies for innovating at the system-of-networks level. This lecture proposes a structured way of thinking about transformation from the legacy systems of the 20th century toward new systems for the 21st century. The comparison and contrast between the legacy systems of the 20th century and the transformed systems of the 21st century provides insights into the structure of transformation of air transportation. Where the legacy systems tend to be analog (versus digital), centralized (versus distributed), and scheduled (versus on-demand) for example, transformed 21st century systems become capable of scalability through technological, business, and policy innovations. Where air mobility in our legacy systems of the 20th century brought economic opportunity and quality of life to large service markets, transformed air mobility of the 21st century becomes more equitable available to ever-thinner and widely distributed populations. Several technological developments in the traditional aircraft disciplines as well as in communication, navigation, surveillance and information systems create new foundations for 21st thinking about air transportation. One of the technological developments of importance arises from complexity science and modern network theory. Scale-free (i.e., scalable) networks represent a promising concept space for modeling airspace system architectures, and for assessing network performance in terms of robustness

  9. An ultrasound-based navigation system for minimally invasive neck surgery.

    PubMed

    Brennecke, Thorsten; Jansen, Nils; Raczkowsky, Joerg; Schipper, Joerg; Woern, Heinz

    2014-01-01

    Future minimally invasive neck surgery requires a navigation system adapted to the actual intra-operative bedding of the patient. The detection of the bedding-caused tissue shift is essential for a safe orientation for the surgeon new endoscopic operation procedures in neck surgery. It is essential to visualize the relation between important anatomic landmarks and operation instruments at any time. Within the scientific project SACAS we focus on developing an ultrasound supported navigation system based on preoperative imaging which considers the intra-operative tissue shift. A rotatable, flexible neck-model provides the basis for our analysis to evaluate the tissue shift and to invent the new navigation system for endoscopic neck surgery. The total registration error of the system was 2 mm. PMID:24732476

  10. Micromachined magnetometer-accelerometer for a navigation system

    NASA Astrophysics Data System (ADS)

    Cho, Ji-Man; Kim, Kyung S.; An, Seungdo; Park, HoJoon; Hahm, Ghun

    2002-11-01

    A new type of magnetometer-accelerometer is developed with a silicon micromachining. The operation principle of the sensor is based on the well known Lorentz force caused by the interaction of a current and an external magnetic field on a suspended conducting beam. To realize a new resonant micro sensor detecting both acceleration and the geomagnetic field simultaneously, a conducting line is formed on a spring part of a silicon accelerometer having two mass plates. And a new Samsung MEMS fabrication process is developed for this sensor. The process uses a silicon-on-glass (SOG) wafer, an inverted SOG wafer, and a gold-silicon eutectic bonding for the wafer-level hermetic packaging. To operate the sensor, an ac current of its mechanical resonant frequency is driven through the conducting line. Totally 1 mW is consumed in the current driving element. This newly developed sensor is enough for the 10 degree electronic display of the orientation angle and can be used in a portable navigator such as SmartPhones and PDAs that need a small, low cost and low power electronic compass.

  11. Overview of on-board navigation and positioning systems

    NASA Astrophysics Data System (ADS)

    Golias, Gleb P.

    1993-11-01

    I am representing the flight test institute named by Gromov. It is situated at the airfield to the south of Gromov Flight Testing Institute, Zhukovskij, where the flying laboratory IL76MD is stationed. We took off from this airfield to make our way to Denver. The crew of the Flight Test Institute was piloting the IL76MD. Dr. Dewhurst has visited our company, but until recently our institute was not well known here in the United States. I think that after the International Air Show, which took place at our Institute in August 12-16, 1992, the Institute will be better known in the United States. By the way, we are planning to to organize air shows like that on a regular basis. For the time being, we are planning to have one every two years. We hope that this will give us a background for future advantageous cooperation. At the air show which we had this year, a number of American companies took part.

  12. Performance Characterization of a Landmark Measurement System for ARRM Terrain Relative Navigation

    NASA Technical Reports Server (NTRS)

    Shoemaker, Michael A.; Wright, Cinnamon; Liounis, Andrew J.; Getzandanner, Kenneth M.; Van Eepoel, John M.; DeWeese, Keith D.

    2016-01-01

    This paper describes the landmark measurement system being developed for terrain relative navigation on NASAs Asteroid Redirect Robotic Mission (ARRM),and the results of a performance characterization study given realistic navigational and model errors. The system is called Retina, and is derived from the stereo-photoclinometry methods widely used on other small-body missions. The system is simulated using synthetic imagery of the asteroid surface and discussion is given on various algorithmic design choices. Unlike other missions, ARRMs Retina is the first planned autonomous use of these methods during the close-proximity and descent phase of the mission.

  13. Performance Characterization of a Landmark Measurement System for ARRM Terrain Relative Navigation

    NASA Technical Reports Server (NTRS)

    Shoemaker, Michael; Wright, Cinnamon; Liounis, Andrew; Getzandanner, Kenneth; Van Eepoel, John; Deweese, Keith

    2016-01-01

    This paper describes the landmark measurement system being developed for terrain relative navigation on NASAs Asteroid Redirect Robotic Mission (ARRM),and the results of a performance characterization study given realistic navigational and model errors. The system is called Retina, and is derived from the stereophotoclinometry methods widely used on other small-body missions. The system is simulated using synthetic imagery of the asteroid surface and discussion is given on various algorithmic design choices. Unlike other missions, ARRMs Retina is the first planned autonomous use of these methods during the close-proximity and descent phase of the mission.

  14. Preliminary Operational Results of the TDRSS Onboard Navigation System (TONS) for the Terra Mission

    NASA Technical Reports Server (NTRS)

    Gramling, Cheryl; Lorah, John; Santoro, Ernest; Work, Kevin; Chambers, Robert; Bauer, Frank H. (Technical Monitor)

    2000-01-01

    The Earth Observing System Terra spacecraft was launched on December 18, 1999, to provide data for the characterization of the terrestrial and oceanic surfaces, clouds, radiation, aerosols, and radiative balance. The Tracking and Data Relay Satellite System (TDRSS) Onboard Navigation System (ONS) (TONS) flying on Terra provides the spacecraft with an operational real-time navigation solution. TONS is a passive system that makes judicious use of Terra's communication and computer subsystems. An objective of the ONS developed by NASA's Goddard Space Flight Center (GSFC) Guidance, Navigation and Control Center is to provide autonomous navigation with minimal power, weight, and volume impact on the user spacecraft. TONS relies on extracting tracking measurements onboard from a TDRSS forward-link communication signal and processing these measurements in an onboard extended Kalman filter to estimate Terra's current state. Terra is the first NASA low Earth orbiting mission to fly autonomous navigation which produces accurate results. The science orbital accuracy requirements for Terra are 150 meters (m) (3sigma) per axis with a goal of 5m (1 sigma) RSS which TONS is expected to meet. The TONS solutions are telemetered in real-time to the mission scientists along with their science data for immediate processing. Once set in the operational mode, TONS eliminates the need for ground orbit determination and allows for a smooth flow from the spacecraft telemetry to planning products for the mission team. This paper will present the preliminary results of the operational TONS solution available from Terra.

  15. LiDAR Scan Matching Aided Inertial Navigation System in GNSS-Denied Environments

    PubMed Central

    Tang, Jian; Chen, Yuwei; Niu, Xiaoji; Wang, Li; Chen, Liang; Liu, Jingbin; Shi, Chuang; Hyyppä, Juha

    2015-01-01

    A new scan that matches an aided Inertial Navigation System (INS) with a low-cost LiDAR is proposed as an alternative to GNSS-based navigation systems in GNSS-degraded or -denied environments such as indoor areas, dense forests, or urban canyons. In these areas, INS-based Dead Reckoning (DR) and Simultaneous Localization and Mapping (SLAM) technologies are normally used to estimate positions as separate tools. However, there are critical implementation problems with each standalone system. The drift errors of velocity, position, and heading angles in an INS will accumulate over time, and on-line calibration is a must for sustaining positioning accuracy. SLAM performance is poor in featureless environments where the matching errors can significantly increase. Each standalone positioning method cannot offer a sustainable navigation solution with acceptable accuracy. This paper integrates two complementary technologies—INS and LiDAR SLAM—into one navigation frame with a loosely coupled Extended Kalman Filter (EKF) to use the advantages and overcome the drawbacks of each system to establish a stable long-term navigation process. Static and dynamic field tests were carried out with a self-developed Unmanned Ground Vehicle (UGV) platform—NAVIS. The results prove that the proposed approach can provide positioning accuracy at the centimetre level for long-term operations, even in a featureless indoor environment. PMID:26184206

  16. An Approach for Indoor Wayfinding Replicating Main Principles of AN Outdoor Navigation System for Cyclists

    NASA Astrophysics Data System (ADS)

    Makri, A.; Zlatanova, S.; Verbree, E.

    2015-05-01

    This work presents an approach to enhance navigation in indoor environments based on a landmark concept. It has already been proved by empirical research that by using landmarks the wayfinding task can be significantly simplified. Navigation based on landmarks relies on the presence of landmarks at each point along a route where wayfinders might need assistance. The approach presented here is based on the Dutch system for navigation of cyclists. The landmarks that are used in the proposed approach are special signposts containing the necessary directional information in order to guide the wayfinder in the space. The system is quite simple, efficient and satisfactory in providing navigational assistance in indoor space. An important contribution of this research is the generation of an approach to automatically determine the decision points in indoor environments, which makes it possible to apply it to navigational assistance systems in any building. The proposed system is verified by placing numbered landmark-signs in a specific building. Several tests are performed and the results are analysed. The findings of the experiment are very promising, showing that participants reach the destinations without detours.

  17. LiDAR Scan Matching Aided Inertial Navigation System in GNSS-Denied Environments.

    PubMed

    Tang, Jian; Chen, Yuwei; Niu, Xiaoji; Wang, Li; Chen, Liang; Liu, Jingbin; Shi, Chuang; Hyyppä, Juha

    2015-01-01

    A new scan that matches an aided Inertial Navigation System (INS) with a low-cost LiDAR is proposed as an alternative to GNSS-based navigation systems in GNSS-degraded or -denied environments such as indoor areas, dense forests, or urban canyons. In these areas, INS-based Dead Reckoning (DR) and Simultaneous Localization and Mapping (SLAM) technologies are normally used to estimate positions as separate tools. However, there are critical implementation problems with each standalone system. The drift errors of velocity, position, and heading angles in an INS will accumulate over time, and on-line calibration is a must for sustaining positioning accuracy. SLAM performance is poor in featureless environments where the matching errors can significantly increase. Each standalone positioning method cannot offer a sustainable navigation solution with acceptable accuracy. This paper integrates two complementary technologies-INS and LiDAR SLAM-into one navigation frame with a loosely coupled Extended Kalman Filter (EKF) to use the advantages and overcome the drawbacks of each system to establish a stable long-term navigation process. Static and dynamic field tests were carried out with a self-developed Unmanned Ground Vehicle (UGV) platform-NAVIS. The results prove that the proposed approach can provide positioning accuracy at the centimetre level for long-term operations, even in a featureless indoor environment. PMID:26184206

  18. Fundamentals of satellite navigation

    NASA Astrophysics Data System (ADS)

    Stiller, A. H.

    The basic operating principles and capabilities of conventional and satellite-based navigation systems for air, sea, and land vehicles are reviewed and illustrated with diagrams. Consideration is given to autonomous onboard systems; systems based on visible or radio beacons; the Transit, Cicada, Navstar-GPS, and Glonass satellite systems; the physical laws and parameters of satellite motion; the definition of time in satellite systems; and the content of the demodulated GPS data signal. The GPS and Glonass data format frames are presented graphically, and tables listing the GPS and Glonass satellites, their technical characteristics, and the (past or scheduled) launch dates are provided.

  19. Using an Empirical Model of Human Turning Motion to Aid Heading Estimation in a Personal Navigation System

    NASA Astrophysics Data System (ADS)

    Jakel, Thomas

    With the adoption of Global Navigation Satellite Systems in smart phones, soldier equipment, and emergency responder navigation systems users have realized the usefulness of low cost Personal Navigation Systems. The state-of-the-art Personal Navigation System is a unit that fuses information based on external references with a low cost IMU. Due to the size, weight, power, and cost constraints imposed on a pedestrian navigation systems as well as current IMU performance limitations, the gyroscopes used to determine heading exhibit significant drift limiting the performance of the navigation system. In this thesis biomechanical signals are used to predict the onset of pedestrian turning motion. Experimental data from eight subjects captured in a gait laboratory using a Vicon motion tracking unit is used for validation. The analysis of experimental data shows the heading computed by turn prediction augmented integration is more accurate than open loop gyro integration alone.

  20. Human Computer Interactions in Next-Generation of Aircraft Smart Navigation Management Systems: Task Analysis and Architecture under an Agent-Oriented Methodological Approach

    PubMed Central

    Canino-Rodríguez, José M.; García-Herrero, Jesús; Besada-Portas, Juan; Ravelo-García, Antonio G.; Travieso-González, Carlos; Alonso-Hernández, Jesús B.

    2015-01-01

    The limited efficiency of current air traffic systems will require a next-generation of Smart Air Traffic System (SATS) that relies on current technological advances. This challenge means a transition toward a new navigation and air-traffic procedures paradigm, where pilots and air traffic controllers perform and coordinate their activities according to new roles and technological supports. The design of new Human-Computer Interactions (HCI) for performing these activities is a key element of SATS. However efforts for developing such tools need to be inspired on a parallel characterization of hypothetical air traffic scenarios compatible with current ones. This paper is focused on airborne HCI into SATS where cockpit inputs came from aircraft navigation systems, surrounding traffic situation, controllers’ indications, etc. So the HCI is intended to enhance situation awareness and decision-making through pilot cockpit. This work approach considers SATS as a system distributed on a large-scale with uncertainty in a dynamic environment. Therefore, a multi-agent systems based approach is well suited for modeling such an environment. We demonstrate that current methodologies for designing multi-agent systems are a useful tool to characterize HCI. We specifically illustrate how the selected methodological approach provides enough guidelines to obtain a cockpit HCI design that complies with future SATS specifications. PMID:25746092

  1. Human computer interactions in next-generation of aircraft smart navigation management systems: task analysis and architecture under an agent-oriented methodological approach.

    PubMed

    Canino-Rodríguez, José M; García-Herrero, Jesús; Besada-Portas, Juan; Ravelo-García, Antonio G; Travieso-González, Carlos; Alonso-Hernández, Jesús B

    2015-01-01

    The limited efficiency of current air traffic systems will require a next-generation of Smart Air Traffic System (SATS) that relies on current technological advances. This challenge means a transition toward a new navigation and air-traffic procedures paradigm, where pilots and air traffic controllers perform and coordinate their activities according to new roles and technological supports. The design of new Human-Computer Interactions (HCI) for performing these activities is a key element of SATS. However efforts for developing such tools need to be inspired on a parallel characterization of hypothetical air traffic scenarios compatible with current ones. This paper is focused on airborne HCI into SATS where cockpit inputs came from aircraft navigation systems, surrounding traffic situation, controllers' indications, etc. So the HCI is intended to enhance situation awareness and decision-making through pilot cockpit. This work approach considers SATS as a system distributed on a large-scale with uncertainty in a dynamic environment. Therefore, a multi-agent systems based approach is well suited for modeling such an environment. We demonstrate that current methodologies for designing multi-agent systems are a useful tool to characterize HCI. We specifically illustrate how the selected methodological approach provides enough guidelines to obtain a cockpit HCI design that complies with future SATS specifications. PMID:25746092

  2. Organization of space navigation system based on use of geostationary satellites

    NASA Astrophysics Data System (ADS)

    Abdullayev, V. E.

    1985-09-01

    The modern navigation problem is inseparably related to the need for constant and operational support of the navigational personnel with meteorological, navigational and other types of information which could not possibly be provided without use of radio communications. The determination of a ship's position by such fundamental methods as observation of celestial bodies, the use of every possible radioelectronic and radar apparatus, is well known and has been developed in the form of an independent science called marine astronomy. However, with the appearance of present-day requirements, taking into account the high speeds of modern ships when there is a need at all times for reliable information on their position with an accuracy to a meter, all known marine astronomy methods are becoming greatly outmoded. Space navigation systems based on the Doppler method for determining the position of a ship by satellites moving in different circular orbits have good accuracy characteristics. However, a shortcoming of such systems is that the navigationl devices of a ship provide a correction of its position only in the period of presence of the transiting satellite in the zone of radiovisibility. For example, for the American Transit navigational system the mean time between observations at the equator is approximately 1.2 hours.

  3. Designing a wearable navigation system for image-guided cancer resection surgery

    PubMed Central

    Shao, Pengfei; Ding, Houzhu; Wang, Jinkun; Liu, Peng; Ling, Qiang; Chen, Jiayu; Xu, Junbin; Zhang, Shiwu; Xu, Ronald

    2015-01-01

    A wearable surgical navigation system is developed for intraoperative imaging of surgical margin in cancer resection surgery. The system consists of an excitation light source, a monochromatic CCD camera, a host computer, and a wearable headset unit in either of the following two modes: head-mounted display (HMD) and Google glass. In the HMD mode, a CMOS camera is installed on a personal cinema system to capture the surgical scene in real-time and transmit the image to the host computer through a USB port. In the Google glass mode, a wireless connection is established between the glass and the host computer for image acquisition and data transport tasks. A software program is written in Python to call OpenCV functions for image calibration, co-registration, fusion, and display with augmented reality. The imaging performance of the surgical navigation system is characterized in a tumor simulating phantom. Image-guided surgical resection is demonstrated in an ex vivo tissue model. Surgical margins identified by the wearable navigation system are co-incident with those acquired by a standard small animal imaging system, indicating the technical feasibility for intraoperative surgical margin detection. The proposed surgical navigation system combines the sensitivity and specificity of a fluorescence imaging system and the mobility of a wearable goggle. It can be potentially used by a surgeon to identify the residual tumor foci and reduce the risk of recurrent diseases without interfering with the regular resection procedure. PMID:24980159

  4. The Odd Man Out: How Fathers Navigate the Special Education System

    ERIC Educational Resources Information Center

    Mueller, Tracy Gershwin; Buckley, Pamela C.

    2014-01-01

    Research about parent experiences with the special education system is largely dominated by the perspectives of mothers. Using purposeful sampling techniques, we interviewed 20 active fathers about their experiences navigating the special education system. All the fathers described three primary roles they experienced, including acting as a…

  5. Designing a wearable navigation system for image-guided cancer resection surgery.

    PubMed

    Shao, Pengfei; Ding, Houzhu; Wang, Jinkun; Liu, Peng; Ling, Qiang; Chen, Jiayu; Xu, Junbin; Zhang, Shiwu; Xu, Ronald

    2014-11-01

    A wearable surgical navigation system is developed for intraoperative imaging of surgical margin in cancer resection surgery. The system consists of an excitation light source, a monochromatic CCD camera, a host computer, and a wearable headset unit in either of the following two modes: head-mounted display (HMD) and Google glass. In the HMD mode, a CMOS camera is installed on a personal cinema system to capture the surgical scene in real-time and transmit the image to the host computer through a USB port. In the Google glass mode, a wireless connection is established between the glass and the host computer for image acquisition and data transport tasks. A software program is written in Python to call OpenCV functions for image calibration, co-registration, fusion, and display with augmented reality. The imaging performance of the surgical navigation system is characterized in a tumor simulating phantom. Image-guided surgical resection is demonstrated in an ex vivo tissue model. Surgical margins identified by the wearable navigation system are co-incident with those acquired by a standard small animal imaging system, indicating the technical feasibility for intraoperative surgical margin detection. The proposed surgical navigation system combines the sensitivity and specificity of a fluorescence imaging system and the mobility of a wearable goggle. It can be potentially used by a surgeon to identify the residual tumor foci and reduce the risk of recurrent diseases without interfering with the regular resection procedure. PMID:24980159

  6. Geophysical flight line flying and flight path recovery utilizing the Litton LTN-76 inertial navigation system

    SciTech Connect

    Mitkus, A.F.; Cater, D.; Farmer, P.F.; Gay, S.P. Jr.

    1981-11-01

    The Litton LTN-76 Inertial Navigation Systems (INS) with Inertial Track guidance System (ITGS) software is geared toward the airborne survey industry. This report is a summary of tests performed with the LTN-76 designed to fly an airborne geophysical survey as well as to recover the subsequent flight path utilizing INS derived coordinates.

  7. Step-up-to-Excellence: A Change Navigation Protocol for Transforming School Systems

    ERIC Educational Resources Information Center

    Duffy, Francis M.

    2006-01-01

    This article presents a protocol change leaders can use to navigate whole-system change in their school districts. The information describing the protocol will help change leaders in school districts and policymakers interested in whole-district change answer the question, "How do we transform our entire school system"? The protocol is…

  8. Design, Development and Testing of the Miniature Autonomous Extravehicular Robotic Camera (Mini AERCam) Guidance, Navigation and Control System

    NASA Technical Reports Server (NTRS)

    Wagenknecht, J.; Fredrickson, S.; Manning, T.; Jones, B.

    2003-01-01

    Engineers at NASA Johnson Space Center have designed, developed, and tested a nanosatellite-class free-flyer intended for future external inspection and remote viewing of human spaceflight activities. The technology demonstration system, known as the Miniature Autonomous Extravehicular Robotic Camera (Mini AERCam), has been integrated into the approximate form and function of a flight system. The primary focus has been to develop a system capable of providing external views of the International Space Station. The Mini AERCam system is spherical-shaped and less than eight inches in diameter. It has a full suite of guidance, navigation, and control hardware and software, and is equipped with two digital video cameras and a high resolution still image camera. The vehicle is designed for either remotely piloted operations or supervised autonomous operations. Tests have been performed in both a six degree-of-freedom closed-loop orbital simulation and on an air-bearing table. The Mini AERCam system can also be used as a test platform for evaluating algorithms and relative navigation for autonomous proximity operations and docking around the Space Shuttle Orbiter or the ISS.

  9. Microwave systems applications in deep space telecommunications and navigation - Space Exploration Initiative architectures

    NASA Technical Reports Server (NTRS)

    Hall, Justin R.; Hastrup, Rolf C.; Bell, David J.

    1992-01-01

    The general support requirements of a typical SEI mission set, along with the mission operations objectives and related telecommunications, navigation, and information management (TNIM) support infrastructure options are described. Responsive system architectures and designs are proposed, including a Mars orbiting communications relay satellite system and a Mars-centered navigation capability for servicing all Mars missions. With the TNIM architecture as a basis, key elements of the microwave link design are proposed. The needed new technologies which enable these designs are identified, and current maturity is assessed.

  10. Preliminary performance analysis of an interplanetary navigation system using asteroid based beacons

    NASA Technical Reports Server (NTRS)

    Jee, J. Rodney; Khatib, Ahmad R.; Muellerschoen, Ronald J.; Williams, Bobby G.; Vincent, Mark A.

    1988-01-01

    A futuristic interplanetary navigation system using transmitters placed on selected asteroids is introduced. This network of space beacons is seen as a needed alternative to the overly burdened Deep Space Network. Covariance analyses on the potential performance of these space beacons located on a candidate constellation of eight real asteroids are initiated. Simplified analytic calculations are performed to determine limiting accuracies attainable with the network for geometric positioning. More sophisticated computer simulations are also performed to determine potential accuracies using long arcs of range and Doppler data from the beacons. The results from these computations show promise for this navigation system.

  11. Modeling methodology for MLS range navigation system errors using flight test data

    NASA Technical Reports Server (NTRS)

    Karmali, M. S.; Phatak, A. V.

    1982-01-01

    Flight test data was used to develop a methodology for modeling MLS range navigation system errors. The data used corresponded to the constant velocity and glideslope approach segment of a helicopter landing trajectory. The MLS range measurement was assumed to consist of low frequency and random high frequency components. The random high frequency component was extracted from the MLS range measurements. This was done by appropriate filtering of the range residual generated from a linearization of the range profile for the final approach segment. This range navigation system error was then modeled as an autoregressive moving average (ARMA) process. Maximum likelihood techniques were used to identify the parameters of the ARMA process.

  12. Autonomous Rubidium Clock Weak Frequency Jump Detector for Onboard Navigation Satellite System.

    PubMed

    Khare, Akshay; Arora, Rajat; Banik, Alak; Mehta, Sanjay D

    2016-02-01

    Frequency jumps are common in rubidium frequency sources. They affect the estimation of user position in navigational satellite systems. These jumps must be detected and corrected immediately as they have direct impact on the navigation system integrity. A novel weak frequency jump detector is proposed based on a Kalman filter with a multi-interval approach. This detector can be applied for both "sudden" and "slow" frequency transitions. In this detection method, noises of clock data are reduced by Kalman filtering, for accurate estimation of jump size with less latency. Analysis on in-orbit rubidium atomic frequency standard (RAFS) phase telemetry data shows that the detector can be used for fast detection and correction of weak frequency jumps. Furthermore, performance comparison of different existing frequency jump detection techniques with the proposed detector is discussed. A multialgorithm-based strategy is proposed depending on the jump size and latency for onboard navigation satellites having RAFS as the primary frequency source. PMID:26685233

  13. A Direct and Non-Singular UKF Approach Using Euler Angle Kinematics for Integrated Navigation Systems.

    PubMed

    Ran, Changyan; Cheng, Xianghong

    2016-01-01

    This paper presents a direct and non-singular approach based on an unscented Kalman filter (UKF) for the integration of strapdown inertial navigation systems (SINSs) with the aid of velocity. The state vector includes velocity and Euler angles, and the system model contains Euler angle kinematics equations. The measured velocity in the body frame is used as the filter measurement. The quaternion nonlinear equality constraint is eliminated, and the cross-noise problem is overcome. The filter model is simple and easy to apply without linearization. Data fusion is performed by an UKF, which directly estimates and outputs the navigation information. There is no need to process navigation computation and error correction separately because the navigation computation is completed synchronously during the filter time updating. In addition, the singularities are avoided with the help of the dual-Euler method. The performance of the proposed approach is verified by road test data from a land vehicle equipped with an odometer aided SINS, and a singularity turntable test is conducted using three-axis turntable test data. The results show that the proposed approach can achieve higher navigation accuracy than the commonly-used indirect approach, and the singularities can be efficiently removed as the result of dual-Euler method. PMID:27598169

  14. Real-Time Orbit Determination for Future Korean Regional Navigation Satellite System

    NASA Astrophysics Data System (ADS)

    Shin, Kihae; Oh, Hyungjik; Park, Sang-Young; Park, Chandeok

    2016-03-01

    This paper presents an algorithm for Real-Time Orbit Determination (RTOD) of navigation satellites for the Korean Regional Navigation Satellite System (KRNSS), when the navigation satellites generate ephemeris by themselves in abnormal situations. The KRNSS is an independent Regional Navigation Satellite System (RNSS) that is currently within the basic/preliminary research phase, which is intended to provide a satellite navigation service for South Korea and neighboring countries. Its candidate constellation comprises three geostationary and four elliptical inclined geosynchronous orbit satellites. Relative distance ranging between the KRNSS satellites based on Inter-Satellite Ranging (ISR) is adopted as the observation model. The extended Kalman filter is used for real-time estimation, which includes fine-tuning the covariance, measurement noise, and process noise matrices. Simulation results show that ISR precision of 0.3-0.7 m, ranging capability of 65,000 km, and observation intervals of less than 20 min are required to accomplish RTOD accuracy to within 1 m. Furthermore, close correlation is confirmed between the dilution of precision and RTOD accuracy.

  15. Maintenance requirements in solar air heating systems

    SciTech Connect

    Lof, G.O.G.; Junk, J.P.

    1983-06-01

    The maintenance requirements of a well designed and constructed solar air-heating system are comparable to those of conventional, forced warm air heating systems. One of the major reasons for this low maintenance is the absence of problems associated with corrosion, freezing, boiling, and leakage often encountered in solar liquid systems. Experience shows that most problems are due to overly complex designs, control problems, faulty installation, and adjustment of the moving parts in the system. Operational histories show negligible requirements for maintenance of air collectors, pebble-bed heat-storage bins, and system ducts and connections. Good quality control in the manufacture and installation of airtight collectors, heat-storage bins, and interconnecting ductwork is essential, however. The paper includes a description of solar air-heating systems and their characteristics, an evaluation of the various maintenance requirements, and several case histories illustrating the handling of solar air system maintenance.

  16. Disposal strategy for the geosynchronous orbits of the Beidou Navigation Satellite System

    NASA Astrophysics Data System (ADS)

    Tang, Jingshi; Liu, Lin

    Beidou Navigation Satellite System (BDS) is China's navigation satelite system. It is now operational for navigation service in China and Asia-Pacific region and is due to be fully operational as a global navigation system by 2020. Unlike other navigation satellite systems, BDS consists of both 12-hour medium Earth orbit and 24-hour geosynchronous orbit. To sustain a safe environment for the navigation satellites, the end-of-life satellites must be disposed appropriately so they do not pose potential dangers to the operational satellites. There are currently two strategies for the disposal orbit. One is to put the disposed satellite in a graveyard orbit that has a safe distance from the operational satellites. It is often applied in geosynchronous orbits and such graveyard orbit can always maintain a safe distance even for a few centuries. This strategy is also currently adopted by GPS, yet recent researches show a re-entry orbit can sometimes be a better alternative. The interaction of Earth oblateness and lunisolar gravitation can lead to a rapid increase in the orbit eccentricity such that by proper design the disposed GPS satellite can be cleared out by re-entry into the atmosphere. In this work we focus on the disposal strategy for BDS geosynchronous orbit, which consists of the equatorial stationary orbit (GEO) and the inclined orbit (IGSO). We show that these two orbits are essentially in two different dynamical environments and evolve quite distinctly over a long period of time. Taking advantage of the dynamic nature, we apply the graveyard orbit and the re-entry orbit to GEO and IGSO respectively and propose appropriate disposal strategies accordingly.

  17. SpaceX Dragon Air Circulation System

    NASA Technical Reports Server (NTRS)

    Hernandez, Brenda; Piatrovich, Siarhei; Prina, Mauro

    2011-01-01

    The Dragon capsule is a reusable vehicle being developed by Space Exploration Technologies (SpaceX) that will provide commercial cargo transportation to the International Space Station (ISS). Dragon is designed to be a habitable module while it is berthed to ISS. As such, the Dragon Environmental Control System (ECS) consists of pressure control and pressure equalization, air sampling, fire detection, illumination, and an air circulation system. The air circulation system prevents pockets of stagnant air in Dragon that can be hazardous to the ISS crew. In addition, through the inter-module duct, the air circulation system provides fresh air from ISS into Dragon. To utilize the maximum volume of Dragon for cargo packaging, the Dragon ECS air circulation system is designed around cargo rack optimization. At the same time, the air circulation system is designed to meet the National Aeronautics Space Administration (NASA) inter-module and intra-module ventilation requirements and acoustic requirements. A flight like configuration of the Dragon capsule including the air circulation system was recently assembled for testing to assess the design for inter-module and intra-module ventilation and acoustics. The testing included the Dragon capsule, and flight configuration in the pressure section with cargo racks, lockers, all of the air circulation components, and acoustic treatment. The air circulation test was also used to verify the Computational Fluid Dynamics (CFD) model of the Dragon capsule. The CFD model included the same Dragon internal geometry that was assembled for the test. This paper will describe the Dragon air circulation system design which has been verified by testing the system and with CFD analysis.

  18. Monitoring Capabilities of a Mobile Mapping System Based on Navigation Qualities

    NASA Astrophysics Data System (ADS)

    Jing, H.; Slatcher, N.; Meng, X.; Hunter, G.

    2016-06-01

    Mobile mapping systems are becoming increasingly popular as they can build 3D models of the environment rapidly by using a laser scanner that is integrated with a navigation system. 3D mobile mapping has been widely used for applications such as 3D city modelling and mapping of the scanned environments. However, accurate mapping relies on not only the scanner's performance but also on the quality of the navigation results (accuracy and robustness) . This paper discusses the potentials of using 3D mobile mapping systems for landscape change detection, that is traditionally carried out by terrestrial laser scanners that can be accurately geo-referenced at a static location to produce highly accurate dense point clouds. Yet compared to conventional surveying using terrestrial laser scanners, several advantages of mobile mapping systems can be identified. A large area can be monitored in a relatively short period, which enables high repeat frequency monitoring without having to set-up dedicated stations. However, current mobile mapping applications are limited by the quality of navigation results, especially in different environments. The change detection ability of mobile mapping systems is therefore significantly affected by the quality of the navigation results. This paper presents some data collected for the purpose of monitoring from a mobile platform. The datasets are analysed to address current potentials and difficulties. The change detection results are also presented based on the collected dataset. Results indicate the potentials of change detection using a mobile mapping system and suggestions to enhance quality and robustness.

  19. Optical 3D laser measurement system for navigation of autonomous mobile robot

    NASA Astrophysics Data System (ADS)

    Básaca-Preciado, Luis C.; Sergiyenko, Oleg Yu.; Rodríguez-Quinonez, Julio C.; García, Xochitl; Tyrsa, Vera V.; Rivas-Lopez, Moises; Hernandez-Balbuena, Daniel; Mercorelli, Paolo; Podrygalo, Mikhail; Gurko, Alexander; Tabakova, Irina; Starostenko, Oleg

    2014-03-01

    In our current research, we are developing a practical autonomous mobile robot navigation system which is capable of performing obstacle avoiding task on an unknown environment. Therefore, in this paper, we propose a robot navigation system which works using a high accuracy localization scheme by dynamic triangulation. Our two main ideas are (1) integration of two principal systems, 3D laser scanning technical vision system (TVS) and mobile robot (MR) navigation system. (2) Novel MR navigation scheme, which allows benefiting from all advantages of precise triangulation localization of the obstacles, mostly over known camera oriented vision systems. For practical use, mobile robots are required to continue their tasks with safety and high accuracy on temporary occlusion condition. Presented in this work, prototype II of TVS is significantly improved over prototype I of our previous publications in the aspects of laser rays alignment, parasitic torque decrease and friction reduction of moving parts. The kinematic model of the MR used in this work is designed considering the optimal data acquisition from the TVS with the main goal of obtaining in real time, the necessary values for the kinematic model of the MR immediately during the calculation of obstacles based on the TVS data.

  20. Calibration of NASA Turbulent Air Motion Measurement System

    NASA Technical Reports Server (NTRS)

    Barrick, John D. W.; Ritter, John A.; Watson, Catherine E.; Wynkoop, Mark W.; Quinn, John K.; Norfolk, Daniel R.

    1996-01-01

    A turbulent air motion measurement system (TAMMS) was integrated onboard the Lockheed 188 Electra airplane (designated NASA 429) based at the Wallops Flight Facility in support of the NASA role in global tropospheric research. The system provides air motion and turbulence measurements from an airborne platform which is capable of sampling tropospheric and planetary boundary-layer conditions. TAMMS consists of a gust probe with free-rotating vanes mounted on a 3.7-m epoxy-graphite composite nose boom, a high-resolution inertial navigation system (INS), and data acquisition system. A variation of the tower flyby method augmented with radar tracking was implemented for the calibration of static pressure position error and air temperature probe. Additional flight calibration maneuvers were performed remote from the tower in homogeneous atmospheric conditions. System hardware and instrumentation are described and the calibration procedures discussed. Calibration and flight results are presented to illustrate the overall ability of the system to determine the three-component ambient wind fields during straight and level flight conditions.

  1. Comparison of different 3D navigation systems by a clinical "user".

    PubMed

    Cartellieri, M; Kremser, J; Vorbeck, F

    2001-01-01

    Three-dimensional navigation systems are routinely used in endoscopic skull base surgery, neurosurgery, maxillo-facial and endoscopic sinus surgery. Their precision can, however, change in the course of one experiment. We have compared five different 3D navigation systems and discuss here possible reasons for the limits of system precision. A plexiglass cube on which test points were marked served as a test-model. Two well-trained system users measured the distances between the test points in each of the five systems. The results were compared with reference data provided by the NUMEREX device at the Technical University of Vienna. The accuracy data shown by all these 3D navigation systems ranged from 0.0 mm to 6.67 mm. The accuracy data of a system calculated in advance did not always correspond with the system precision on the screen. The system precision in the center of the cube was higher than on its surface, which made us conclude that the angle between the tracker system and the pointing device touching the test point may be critical for system precision. Applying an automatic registration step did not result in greater system precision. Slice thickness and the angle of the pointing device seem to be responsible for system precision. PMID:11271433

  2. DIY-style GIS service in mobile navigation system integrated with web and wireless GIS

    NASA Astrophysics Data System (ADS)

    Yan, Yongbin; Wu, Jianping; Fan, Caiyou; Wang, Minqi; Dai, Sheng

    2007-06-01

    Mobile navigation system based on handheld device can not only provide basic GIS services, but also enable these GIS services to be provided without location limit, to be more instantly interacted between users and devices. However, we still see that most navigation systems have common defects on user experience like limited map format, few map resources, and unable location share. To overcome the above defects, we propose DIY-style GIS service which provide users a more free software environment and allow uses to customize their GIS services. These services include defining geographical coordinate system of maps which helps to hugely enlarge the map source, editing vector feature, related property information and hotlink images, customizing covered area of download map via General Packet Radio Service (GPRS), and sharing users' location information via SMS (Short Message Service) which establishes the communication between users who needs GIS services. The paper introduces the integration of web and wireless GIS service in a mobile navigation system and presents an implementation sample of a DIY-Style GIS service in a mobile navigation system.

  3. Real-time Imaging Orientation Determination System to Verify Imaging Polarization Navigation Algorithm

    PubMed Central

    Lu, Hao; Zhao, Kaichun; Wang, Xiaochu; You, Zheng; Huang, Kaoli

    2016-01-01

    Bio-inspired imaging polarization navigation which can provide navigation information and is capable of sensing polarization information has advantages of high-precision and anti-interference over polarization navigation sensors that use photodiodes. Although all types of imaging polarimeters exist, they may not qualify for the research on the imaging polarization navigation algorithm. To verify the algorithm, a real-time imaging orientation determination system was designed and implemented. Essential calibration procedures for the type of system that contained camera parameter calibration and the inconsistency of complementary metal oxide semiconductor calibration were discussed, designed, and implemented. Calibration results were used to undistort and rectify the multi-camera system. An orientation determination experiment was conducted. The results indicated that the system could acquire and compute the polarized skylight images throughout the calibrations and resolve orientation by the algorithm to verify in real-time. An orientation determination algorithm based on image processing was tested on the system. The performance and properties of the algorithm were evaluated. The rate of the algorithm was over 1 Hz, the error was over 0.313°, and the population standard deviation was 0.148° without any data filter. PMID:26805851

  4. Real-time Imaging Orientation Determination System to Verify Imaging Polarization Navigation Algorithm.

    PubMed

    Lu, Hao; Zhao, Kaichun; Wang, Xiaochu; You, Zheng; Huang, Kaoli

    2016-01-01

    Bio-inspired imaging polarization navigation which can provide navigation information and is capable of sensing polarization information has advantages of high-precision and anti-interference over polarization navigation sensors that use photodiodes. Although all types of imaging polarimeters exist, they may not qualify for the research on the imaging polarization navigation algorithm. To verify the algorithm, a real-time imaging orientation determination system was designed and implemented. Essential calibration procedures for the type of system that contained camera parameter calibration and the inconsistency of complementary metal oxide semiconductor calibration were discussed, designed, and implemented. Calibration results were used to undistort and rectify the multi-camera system. An orientation determination experiment was conducted. The results indicated that the system could acquire and compute the polarized skylight images throughout the calibrations and resolve orientation by the algorithm to verify in real-time. An orientation determination algorithm based on image processing was tested on the system. The performance and properties of the algorithm were evaluated. The rate of the algorithm was over 1 Hz, the error was over 0.313°, and the population standard deviation was 0.148° without any data filter. PMID:26805851

  5. Rooftop Unitary Air Conditioner with Integral Dedicated Outdoor Air System

    SciTech Connect

    Tiax Llc

    2006-02-28

    Energy use of rooftop and other unitary air-conditioners in commercial applications accounts for about 1 quad (10{sup 15} Btu) of primary energy use annually in the U.S. [Reference 7]. The realization that this cooling equipment accounts for the majority of commercial building cooled floorspace and the majority also of commercial building energy use has spurred development of improved-efficiency equipment as well as development of stricter standards addressing efficiency levels. Another key market driver affecting design of rooftop air-conditioning equipment has been concern regarding comfort and the control of humidity. Trends for increases in outdoor air ventilation rates in certain applications, and the increasing concern about indoor air quality problems associated with humidity levels and moisture in buildings points to a need for improved dehumidification capability in air-conditioning equipment of all types. In many cases addressing this issue exacerbates energy efficiency, and vice versa. The integrated dedicated outdoor air system configuration developed in this project addresses both energy and comfort/humidity issues.

  6. A Hybrid Indoor Localization and Navigation System with Map Matching for Pedestrians Using Smartphones

    PubMed Central

    Tian, Qinglin; Salcic, Zoran; Wang, Kevin I-Kai; Pan, Yun

    2015-01-01

    Pedestrian dead reckoning is a common technique applied in indoor inertial navigation systems that is able to provide accurate tracking performance within short distances. Sensor drift is the main bottleneck in extending the system to long-distance and long-term tracking. In this paper, a hybrid system integrating traditional pedestrian dead reckoning based on the use of inertial measurement units, short-range radio frequency systems and particle filter map matching is proposed. The system is a drift-free pedestrian navigation system where position error and sensor drift is regularly corrected and is able to provide long-term accurate and reliable tracking. Moreover, the whole system is implemented on a commercial off-the-shelf smartphone and achieves real-time positioning and tracking performance with satisfactory accuracy. PMID:26690170

  7. A Hybrid Indoor Localization and Navigation System with Map Matching for Pedestrians Using Smartphones.

    PubMed

    Tian, Qinglin; Salcic, Zoran; Wang, Kevin I-Kai; Pan, Yun

    2015-01-01

    Pedestrian dead reckoning is a common technique applied in indoor inertial navigation systems that is able to provide accurate tracking performance within short distances. Sensor drift is the main bottleneck in extending the system to long-distance and long-term tracking. In this paper, a hybrid system integrating traditional pedestrian dead reckoning based on the use of inertial measurement units, short-range radio frequency systems and particle filter map matching is proposed. The system is a drift-free pedestrian navigation system where position error and sensor drift is regularly corrected and is able to provide long-term accurate and reliable tracking. Moreover, the whole system is implemented on a commercial off-the-shelf smartphone and achieves real-time positioning and tracking performance with satisfactory accuracy. PMID:26690170

  8. Lesions of the Basal Forebrain Cholinergic System in Mice Disrupt Idiothetic Navigation

    PubMed Central

    Hamlin, Adam S.; Windels, Francois; Boskovic, Zoran; Sah, Pankaj; Coulson, Elizabeth J.

    2013-01-01

    Loss of integrity of the basal forebrain cholinergic neurons is a consistent feature of Alzheimer’s disease, and measurement of basal forebrain degeneration by magnetic resonance imaging is emerging as a sensitive diagnostic marker for prodromal disease. It is also known that Alzheimer’s disease patients perform poorly on both real space and computerized cued (allothetic) or uncued (idiothetic) recall navigation tasks. Although the hippocampus is required for allothetic navigation, lesions of this region only mildly affect idiothetic navigation. Here we tested the hypothesis that the cholinergic medial septo-hippocampal circuit is important for idiothetic navigation. Basal forebrain cholinergic neurons were selectively lesioned in mice using the toxin saporin conjugated to a basal forebrain cholinergic neuronal marker, the p75 neurotrophin receptor. Control animals were able to learn and remember spatial information when tested on a modified version of the passive place avoidance test where all extramaze cues were removed, and animals had to rely on idiothetic signals. However, the exploratory behaviour of mice with cholinergic basal forebrain lesions was highly disorganized during this test. By contrast, the lesioned animals performed no differently from controls in tasks involving contextual fear conditioning and spatial working memory (Y maze), and displayed no deficits in potentially confounding behaviours such as motor performance, anxiety, or disturbed sleep/wake cycles. These data suggest that the basal forebrain cholinergic system plays a specific role in idiothetic navigation, a modality that is impaired early in Alzheimer’s disease. PMID:23320088

  9. Solution to the problem of the close integration of satellite and inertial platform navigation systems

    NASA Astrophysics Data System (ADS)

    Pogorelov, V. A.; Sokolov, S. V.

    2015-11-01

    The problem of the close integration of a satellite and inertial navigation system (NA) constructed on the basis of a gyro-stabilized platform is solved. The features of the synthesis of an algorithm for nonlinear estimation of the NS state vector in view of the continuous character for the autonomous measurements and the discrete character for satellite measurements are studied. The developed algorithm for solving the navigation problem on the basis of the integrated NS allows one to provide a stable high-precision estimation of the parameters of motion for a movable object, including in the absence of satellite signals.

  10. Solar Hot-Air System --Memphis, Tennessee

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Solar collectors using air as collection medium provide space heating for four-building office complex in Memphis. 98 page report furnishes details on installation, including: description of system; system startup and acceptance-test results; technical data on collector; installation manuals for collectors, air handler and heat-storage unit.

  11. Memory, navigation and theta rhythm in the hippocampal-entorhinal system

    PubMed Central

    Buzsáki, György; Moser, Edvard I

    2014-01-01

    Theories on the functions of the hippocampal system are based largely on two fundamental discoveries: the amnestic consequences of removing the hippocampus and associated structures in the famous patient H.M. and the observation that spiking activity of hippocampal neurons is associated with the spatial position of the rat. In the footsteps of these discoveries, many attempts were made to reconcile these seemingly disparate functions. Here we propose that mechanisms of memory and planning have evolved from mechanisms of navigation in the physical world and hypothesize that the neuronal algorithms underlying navigation in real and mental space are fundamentally the same. We review experimental data in support of this hypothesis and discuss how specific firing patterns and oscillatory dynamics in the entorhinal cortex and hippocampus can support both navigation and memory. PMID:23354386

  12. Single gimbal/strapdown inertial navigation system for use on spin stabilized flight test vehicles

    SciTech Connect

    Watts, A.C.; Andreas, R.D.

    1980-01-01

    A hybrid strapdown inertial navigation system intended for use on spin stabilized flight test vehicles is described. The configuration of the navigator which is briefly described consists of three floated rate integrating gyros, one of which is used in conjunction with the gimbal with the remaining two operated in a rate gyro mode. Outputs from the two strapdown gyros and three accelerometers are digitized and processed by a high performance computer. The navigation algorithms utilize a direction cosine matrix formulation for the attitude computation implemented in the digital computer. The implementation of this algorithm for the single gimbal configuration is described. An accuracy model and results for a reentry vehicle flight test trajectory are presented. The flight test performance from launch to reentry is presented.

  13. Human vs. robot operator error in a needle-based navigation system for percutaneous liver interventions

    NASA Astrophysics Data System (ADS)

    Maier-Hein, Lena; Walsh, Conor J.; Seitel, Alexander; Hanumara, Nevan C.; Shepard, Jo-Anne; Franz, A. M.; Pianka, F.; Müller, Sascha A.; Schmied, Bruno; Slocum, Alexander H.; Gupta, Rajiv; Meinzer, Hans-Peter

    2009-02-01

    Computed tomography (CT) guided percutaneous punctures of the liver for cancer diagnosis and therapy (e.g. tumor biopsy, radiofrequency ablation) are well-established procedures in clinical routine. One of the main challenges related to these interventions is the accurate placement of the needle within the lesion. Several navigation concepts have been introduced to compensate for organ shift and deformation in real-time, yet, the operator error remains an important factor influencing the overall accuracy of the developed systems. The aim of this study was to investigate whether the operator error and, thus, the overall insertion error of an existing navigation system could be further reduced by replacing the user with the medical robot Robopsy. For this purpose, we performed navigated needle insertions in a static abdominal phantom as well as in a respiratory liver motion simulator and compared the human operator error with the targeting error performed by the robot. According to the results, the Robopsy driven needle insertion system is able to more accurately align the needle and insert it along its axis compared to a human operator. Integration of the robot into the current navigation system could thus improve targeting accuracy in clinical use.

  14. Study of industry information requirements for flight control and navigation systems of STOL aircraft

    NASA Technical Reports Server (NTRS)

    Gorham, J. A.

    1976-01-01

    Answers to specific study questions are used to ascertain the data requirements associated with a guidance, navigation and control system for a future civil STOL airplane. Results of the study were used to recommend changes for improving the outputs of the STOLAND flight experiments program.

  15. Calibration of Viking imaging system pointing, image extraction, and optical navigation measure

    NASA Technical Reports Server (NTRS)

    Breckenridge, W. G.; Fowler, J. W.; Morgan, E. M.

    1977-01-01

    Pointing control and knowledge accuracy of Viking Orbiter science instruments is controlled by the scan platform. Calibration of the scan platform and the imaging system was accomplished through mathematical models. The calibration procedure and results obtained for the two Viking spacecraft are described. Included are both ground and in-flight scan platform calibrations, and the additional calibrations unique to optical navigation.

  16. Design and Flight Performance of the Orion Pre-Launch Navigation System

    NASA Technical Reports Server (NTRS)

    Zanetti, Renato

    2016-01-01

    Launched in December 2014 atop a Delta IV Heavy from the Kennedy Space Center, the Orion vehicle's Exploration Flight Test-1 (EFT-1) successfully completed the objective to test the prelaunch and entry components of the system. Orion's pre-launch absolute navigation design is presented, together with its EFT-1 performance.

  17. A Short Tutorial on Inertial Navigation System and Global Positioning System Integration

    NASA Technical Reports Server (NTRS)

    Smalling, Kyle M.; Eure, Kenneth W.

    2015-01-01

    The purpose of this document is to describe a simple method of integrating Inertial Navigation System (INS) information with Global Positioning System (GPS) information for an improved estimate of vehicle attitude and position. A simple two dimensional (2D) case is considered. The attitude estimates are derived from sensor data and used in the estimation of vehicle position and velocity through dead reckoning within the INS. The INS estimates are updated with GPS estimates using a Kalman filter. This tutorial is intended for the novice user with a focus on bringing the reader from raw sensor measurements to an integrated position and attitude estimate. An application is given using a remotely controlled ground vehicle operating in assumed 2D environment. The theory is developed first followed by an illustrative example.

  18. Surgical cartographic navigation system for endoscopic bypass grafting.

    PubMed

    Voruganti, Arun; Mayoral, Rafael; Jacobs, Stephan; Grunert, Ronny; Moeckel, Hendrik; Korb, Werner

    2007-01-01

    Endoscopic bypass grafting with the da Vinci system is still challenging and needs high level of experience and skill of the surgeon. Therefore, it is necessary to support the surgeon with enhanced vision and augmented reality. The augmentation of the patient model into the view of the endoscope is a direct approach to enhance support. The results of a preclinical study are shown in this paper. The method applied is suitable for endoscopic bypass grafting and in general applicable to minimal invasive surgery. The system was designed as an open architecture to facilitate easy transfer of the methodology into other surgical domain applications. PMID:18002243

  19. Optical air data systems and methods

    NASA Technical Reports Server (NTRS)

    Caldwell, Loren M. (Inventor); Tang, Shoou-yu (Inventor); Acott, Phillip E. (Inventor); Spaeth, Lisa G. (Inventor); O'Brien, Martin (Inventor)

    2011-01-01

    Systems and methods for sensing air includes at least one, and in some embodiments three, transceivers for projecting the laser energy as laser radiation to the air. The transceivers are scanned or aligned along several different axes. Each transceiver receives laser energy as it is backscattered from the air. A computer processes signals from the transceivers to distinguish molecular scattered laser radiation from aerosol scattered laser radiation and determines air temperatures, wind speeds, and wind directions based on the scattered laser radiation. Applications of the system to wind power site evaluation, wind turbine control, traffic safety, general meteorological monitoring and airport safety are presented.

  20. A sensor system for the navigation of an underwater vehicle

    SciTech Connect

    Smith, R. |; Frost, A.; Probert, P.

    1999-07-01

    A sensor system for an underwater vehicle is described. The vehicle is equipped with inclinometers, gyroscopes, a magnetometer, a pressure gauge, and a sonar system. The sensor models used for the inclinometers and gyroscopes are straightforward; however, the magnetometer can be corrupted by variations in the earth`s field caused by: external objects and internal magnetic fields. The authors show how to use inclinometer data to adjust for a limited set of external field variation. The authors also show how to calibrate the magnetometer to compensate for static and thruster-dependent internal fields. The sonar unit uses range differentials between cheap time-of-flight sonar to follow a target. This reduces signal processing since data association is only required on target acquisition, and removes the need to scan an entire landscape, which is usually slow. The gyroscopes are fused via a second indirect filter system. The vehicle attitude is represented as a quaternion; these have a low computational burden, and lack discontinuities and singularities. The simplicity of the indirect filter permits very fast update rates, so that the system may follow rapid vehicle rotations.

  1. Obstacle detection and warning system for aircraft navigation at airports

    NASA Astrophysics Data System (ADS)

    Gallo, Laurent

    2000-06-01

    This paper speaks about work conducted in 1998 and 1999 by AEROSPATIALE MATRA in development of an obstacle detection system, which has been tested on a demonstrator aircraft in Toulouse. The purpose of this mock- up was to verify the feasibility of a passive technology, and to consider the limits of its use.

  2. The Brown-Roberts-Wells (BRW) arc: its concept as a spatial navigation system.

    PubMed

    Wells, T H; Cosman, E R; Ball, R E

    1987-01-01

    The Brown-Roberts-Wells (BRW) Arc System can be compared to spatial navigation because both utilize the concept of direction to and spatial location of a point in space by referencing to a horizontal angle (azimuth) and a vertical angle (declination) relative to the horizon. The BRW system also permits the determination of the distance from a reference surface of the arc system to the point (target). The methods of determining these parameters are explained in detail with illustrations. PMID:3329834

  3. Precise Point Positioning with the BeiDou Navigation Satellite System

    PubMed Central

    Li, Min; Qu, Lizhong; Zhao, Qile; Guo, Jing; Su, Xing; Li, Xiaotao

    2014-01-01

    By the end of 2012, China had launched 16 BeiDou-2 navigation satellites that include six GEOs, five IGSOs and five MEOs. This has provided initial navigation and precise pointing services ability in the Asia-Pacific regions. In order to assess the navigation and positioning performance of the BeiDou-2 system, Wuhan University has built up a network of BeiDou Experimental Tracking Stations (BETS) around the World. The Position and Navigation Data Analyst (PANDA) software was modified to determine the orbits of BeiDou satellites and provide precise orbit and satellite clock bias products from the BeiDou satellite system for user applications. This article uses the BeiDou/GPS observations of the BeiDou Experimental Tracking Stations to realize the BeiDou and BeiDou/GPS static and kinematic precise point positioning (PPP). The result indicates that the precision of BeiDou static and kinematic PPP reaches centimeter level. The precision of BeiDou/GPS kinematic PPP solutions is improved significantly compared to that of BeiDou-only or GPS-only kinematic PPP solutions. The PPP convergence time also decreases with the use of combined BeiDou/GPS systems. PMID:24406856

  4. Remnant-Preserving Anterior Cruciate Ligament Reconstruction Using a Three-Dimensional Fluoroscopic Navigation System

    PubMed Central

    Inui, Hiroshi; Sanada, Takaki; Nakamura, Kensuke; Yamagami, Ryota; Masuda, Hironari; Tanaka, Sakae; Nakagawa, Takumi

    2014-01-01

    Introduction Recently, remnant-preserving anterior cruciate ligament (ACL) reconstruction has been increasingly performed to achieve revascularization, cell proliferation, and recovery of high-quality proprioception. However, poor arthroscopic visualization makes accurate socket placement during remnant-preserving ACL reconstruction difficult. This study describes a surgical technique used to create an anatomical femoral socket with a three-dimensional (3D) fluoroscopy based navigation system during technically demanding remnant-preserving ACL reconstruction. Surgical Technique After a reference frame was attached to the femur, an intraoperative image of the distal femur was obtained, transferred to the navigation system and reconstructed into a 3D image. A navigation computer helped the surgeon visualize the entire lateral wall of the femoral notch and lateral intercondylar ridge, even when the remnant of the ruptured ACL impeded arthroscopic visualization of the bone surface. When a guide was placed, the virtual femoral tunnel overlapped the reconstructed 3D image in real time; therefore, only minimal soft tissue debridement was required. Materials and Methods We treated 47 patients with remnant-preserving ACL reconstruction using this system. The center of the femoral socket aperture was calculated according to the quadrant technique using 3D computed tomography imaging. Results The femoral socket locations were considered to be an anatomical footprint in accordance with previous cadaveric studies. Conclusions The 3D fluoroscopy-based navigation can assist surgeons in creating anatomical femoral sockets during remnant-preserving ACL reconstruction. PMID:25229047

  5. Femur-mounted navigation system for the arthroscopic treatment of femoroacetabular impingement

    NASA Astrophysics Data System (ADS)

    Park, S. H.; Hwang, D. S.; Yoon, Y. S.

    2013-07-01

    Femoroacetabular impingement stems from an abnormal shape of the acetabulum and proximal femur. It is treated by resection of damaged soft tissue and by the shaping of bone to resemble normal features. The arthroscopic treatment of femoroacetabular impingement has many advantages, including minimal incisions, rapid recovery, and less pain. However, in some cases, revision is needed owing to the insufficient resection of damaged bone from a misreading of the surgical site. The limited view of arthroscopy is the major reason for the complications. In this research, a navigation method for the arthroscopic treatment of femoroacetabular impingement is developed. The proposed navigation system consists of femur attachable measurement device and user interface. The bone mounted measurement devices measure points on head-neck junction for registration and position of surgical instrument. User interface shows the three-dimensional model of patient's femur and surgical instrument position that is tracked by measurement device. Surgeon can know the three-dimensional anatomical structure of hip joint and surgical instrument position on surgical site using navigation system. Surface registration was used to obtain relation between patient's coordinate at the surgical site and coordinate of three-dimensional model of femur. In this research, we evaluated the proposed navigation system using plastic model bone. It is expected that the surgical tool tracking position accuracy will be less than 1 mm.

  6. Flight test results of the strapdown ring laser gyro tetrad inertial navigation system

    NASA Technical Reports Server (NTRS)

    Carestia, R. A.; Hruby, R. J.; Bjorkman, W. S.

    1983-01-01

    A helicopter flight test program undertaken to evaluate the performance of Tetrad (a strap down, laser gyro, inertial navigation system) is described. The results of 34 flights show a mean final navigational velocity error of 5.06 knots, with a standard deviation of 3.84 knots; a corresponding mean final position error of 2.66 n. mi., with a standard deviation of 1.48 n. mi.; and a modeled mean position error growth rate for the 34 tests of 1.96 knots, with a standard deviation of 1.09 knots. No laser gyro or accelerometer failures were detected during the flight tests. Off line parity residual studies used simulated failures with the prerecorded flight test and laboratory test data. The airborne Tetrad system's failure--detection logic, exercised during the tests, successfully demonstrated the detection of simulated ""hard'' failures and the system's ability to continue successfully to navigate by removing the simulated faulted sensor from the computations. Tetrad's four ring laser gyros provided reliable and accurate angular rate sensing during the 4 yr of the test program, and no sensor failures were detected during the evaluation of free inertial navigation performance.

  7. SEXTANT X-Ray Pulsar Navigation Demonstration: Flight System and Test Results

    NASA Technical Reports Server (NTRS)

    Winternitz, Luke M. B.; Mitchell, Jason W.; Hassouneh, Munther A.; Valdez, Jennifer E.; Price, Samuel R.; Semper, Sean R.; Yu, Wayne H.; Ray, Paul S.; Wood, Kent S.; Arzoumanian, Zaven; Gendreau, Keith C.

    2016-01-01

    The Station Explorer for X-ray Timing and Navigation Technology (SEXTANT) is a technology demonstration enhancement to the Neutron-star Interior Composition Explorer (NICER) mission. NICER is a NASA Explorer Mission of Opportunity that will be hosted on the International Space Station (ISS). SEXTANT will, for the first time, demonstrate real-time, on-board X-ray Pulsar Navigation (XNAV), a significant milestone in the quest to establish a GPS-like navigation capability available throughout our Solar System and beyond. This paper gives an overview of the SEXTANT system architecture and describes progress prior to environmental testing of the NICER flight instrument. It provides descriptions and development status of the SEXTANT flight software and ground system, as well as detailed description and results from the flight software functional and performance testing within the highfidelity Goddard Space Flight Center (GSFC) X-ray Navigation Laboratory Testbed (GXLT) software and hardware simulation environment. Hardware-in-the-loop simulation results are presented, using the engineering model of the NICER timing electronics and the GXLT pulsar simulator-the GXLT precisely controls NASA GSFC's unique Modulated X-ray Source to produce X-rays that make the NICER detector electronics appear as if they were aboard the ISS viewing a sequence of millisecond pulsars.

  8. SEXTANT X-Ray Pulsar Navigation Demonstration: Flight System and Test Results

    NASA Technical Reports Server (NTRS)

    Winternitz, Luke; Mitchell, Jason W.; Hassouneh, Munther A.; Valdez, Jennifer E.; Price, Samuel R.; Semper, Sean R.; Yu, Wayne H.; Ray, Paul S.; Wood, Kent S.; Arzoumanian, Zaven; Gendreau, Keith C.

    2016-01-01

    The Station Explorer for X-ray Timing and Navigation Technology (SEXTANT) is a technology demonstration enhancement to the Neutron-star Interior Composition Explorer (NICER) mission. NICER is a NASA Explorer Mission of Opportunity that will be hosted on the International Space Station (ISS). SEXTANT will, for the first time, demonstrate real-time, on-board X-ray Pulsar Navigation (XNAV), a significant milestone in the quest to establish a GPS-like navigation capability available throughout our Solar System and beyond. This paper gives an overview of the SEXTANT system architecture and describes progress prior to environmental testing of the NICER flight instrument. It provides descriptions and development status of the SEXTANT flight software and ground system, as well as detailed description and results from the flight software functional and performance testing within the high-fidelity Goddard Space Flight Center (GSFC) X-ray Navigation Laboratory Testbed (GXLT) software and hardware simulation environment. Hardware-in-the-loop simulation results are presented, using the engineering model of the NICER timing electronics and the GXLT pulsar simulator-the GXLT precisely controls NASA GSFC's unique Modulated X-ray Source to produce X-rays that make the NICER detector electronics appear as if they were aboard the ISS viewing a sequence of millisecond pulsars

  9. The feasibility of real-time bladder mapping using a stereotactic navigational system

    NASA Astrophysics Data System (ADS)

    Draga, Ronald O. P.; Noordmans, Herke Jan; Lock, M. T. W. Tycho; Grimbergen, Matthijs C. M.; Bosch, J. L. H. Ruud

    2010-02-01

    Stereotactic navigational devices have been implemented in neurosurgery, orthopedics and ear-nose-throat to improve surgical accuracy. However, the feasibility of navigating inside the bladder has not yet been investigated. Occasionally, transurethral resections of bladder tumors (TURBTs) are impeded by bleeding and cloudiness inside the bladder and, consequently, the bladder lesions are not found back easily. In addition, small bladder lesions are often concealed when viewed with the camera some distance away from the bladder wall due to low contrast differences. The aim of the study is to investigate the feasibility of real-time bladder mapping using the Medtronic Stealthstation system, without the use of pre-operative images. Seven patients scheduled for a TURBT were included in the study. During the TURBT procedure, the spatial coordinates of the bladder lesions were recorded two times independently, after filling the bladder with a fixed volume of 390 ml. The distance between the spatial coordinates of two consecutive measurements, in millimeters, was calculated. We found that bladder lesions can be found back using the navigational system with an accuracy of less than 12 mm. Real-time bladder navigation is feasible without the necessity of pre-operative images or calibration. If the coordinates are directly superimposed on the video image this could facilitate the retrieval of bladder lesions during TURBT. This system could reduce the stress for the surgeon and decrease the operating time.

  10. FLYCON-R: Wireless Integrated Communication and Navigation System

    NASA Astrophysics Data System (ADS)

    Palomo, Jose Maria; Gomez de Aguero, Sergio; Latorre, Antonio; Fernandez, Antonio; Pina, Fernando; Tarziu, Andrei; Balan, Mugurel; Sanchez Gestido, Manuel; Concari, Paolo

    2015-09-01

    This paper presents the FLYCON-R system, which is an integrated communication and ranging system based on OFDM signal. FLYCON-R supports high data rates and flexible data communications, providing also relative ranging measurements based on Time of Arrival (ToA) from the Radio Frequency signals. Deimos Space (Spain and Romania) and ISS are carrying out the FLYCON-R project for ESA under the Romanian task force initiative. FLYCON-R (Prototype of Integrated Nav-Com sensor based on WiMax Standard for Formation Flying) aims to upgrade the previously existing FLYCON proof of concept (PoC) to a more advanced, elegant breadboard version, ready for on-ground flight testing and as near as possible to a future flight version. The paper presents as well the preliminary results of the flight tests performed on the Spanish R&D PERIGEO project, using the FLYCON PoC prototypes.

  11. Phased Antenna Array for Global Navigation Satellite System Signals

    NASA Technical Reports Server (NTRS)

    Turbiner, Dmitry (Inventor)

    2015-01-01

    Systems and methods for phased array antennas are described. Supports for phased array antennas can be constructed by 3D printing. The array elements and combiner network can be constructed by conducting wire. Different parameters of the antenna, like the gain and directivity, can be controlled by selection of the appropriate design, and by electrical steering. Phased array antennas may be used for radio occultation measurements.

  12. The course correction implementation of the inertial navigation system based on the information from the aircraft satellite navigation system before take-off

    NASA Astrophysics Data System (ADS)

    Markelov, V.; Shukalov, A.; Zharinov, I.; Kostishin, M.; Kniga, I.

    2016-04-01

    The use of the correction course option before aircraft take-off after inertial navigation system (INS) inaccurate alignment based on the platform attitude-and-heading reference system in azimuth is considered in the paper. A course correction is performed based on the track angle defined by the information received from the satellite navigation system (SNS). The course correction includes a calculated track error definition during ground taxiing along straight sections before take-off with its input in the onboard digital computational system like amendment for using in the current flight. The track error calculation is performed by the statistical evaluation of the track angle comparison defined by the SNS information with the current course measured by INS for a given number of measurements on the realizable time interval. The course correction testing results and recommendation application are given in the paper. The course correction based on the information from SNS can be used for improving accuracy characteristics for determining an aircraft path after making accelerated INS preparation concerning inaccurate initial azimuth alignment.

  13. Air leakage in residential solar heating systems

    NASA Astrophysics Data System (ADS)

    Shingleton, J. G.; Cassel, D. E.; Overton, R. L.

    1981-02-01

    A series of computer simulations was performed to evaluate the effects of component air leakage on system thermal performance for a typical residential solar heating system, located in Madison, Wisconsin. Auxiliary energy required to supplement solar energy for space heating was determined using the TRNSYS computer program, for a range of air leakage rates at the solar collector and pebble bed storage unit. The effects of heat transfer and mass transfer between the solar equipment room and the heated building were investigated. The effect of reduced air infiltration into the building due to pressurized by the solar air heating system were determined. A simple method of estimating the effect of collector array air leakage on system thermal performance was evaluated, using the f CHART method.

  14. PERCEPT Indoor Navigation System for the Blind and Visually Impaired: Architecture and Experimentation

    PubMed Central

    Ganz, Aura; Schafer, James; Gandhi, Siddhesh; Puleo, Elaine; Wilson, Carole; Robertson, Meg

    2012-01-01

    We introduce PERCEPT system, an indoor navigation system for the blind and visually impaired. PERCEPT will improve the quality of life and health of the visually impaired community by enabling independent living. Using PERCEPT, blind users will have independent access to public health facilities such as clinics, hospitals, and wellness centers. Access to healthcare facilities is crucial for this population due to the multiple health conditions that they face such as diabetes and its complications. PERCEPT system trials with 24 blind and visually impaired users in a multistory building show PERCEPT system effectiveness in providing appropriate navigation instructions to these users. The uniqueness of our system is that it is affordable and that its design follows orientation and mobility principles. We hope that PERCEPT will become a standard deployed in all indoor public spaces, especially in healthcare and wellness facilities. PMID:23316225

  15. PERCEPT Indoor Navigation System for the Blind and Visually Impaired: Architecture and Experimentation.

    PubMed

    Ganz, Aura; Schafer, James; Gandhi, Siddhesh; Puleo, Elaine; Wilson, Carole; Robertson, Meg

    2012-01-01

    We introduce PERCEPT system, an indoor navigation system for the blind and visually impaired. PERCEPT will improve the quality of life and health of the visually impaired community by enabling independent living. Using PERCEPT, blind users will have independent access to public health facilities such as clinics, hospitals, and wellness centers. Access to healthcare facilities is crucial for this population due to the multiple health conditions that they face such as diabetes and its complications. PERCEPT system trials with 24 blind and visually impaired users in a multistory building show PERCEPT system effectiveness in providing appropriate navigation instructions to these users. The uniqueness of our system is that it is affordable and that its design follows orientation and mobility principles. We hope that PERCEPT will become a standard deployed in all indoor public spaces, especially in healthcare and wellness facilities. PMID:23316225

  16. Design and implementation of interactive strap-down inertial navigation simulation system for UAV

    NASA Astrophysics Data System (ADS)

    Cheng, Chuan-qi; Cheng, Xiang; Hao, Xiang-yang; Zhao, Man-dan

    2016-01-01

    Strap-down inertial navigation system (SINS) is widely used in military field, to facilitate the study of SINS algorithms and various coupled navigation algorithms, a simulation system of SINS is designed. Based on modular design, with good portability and expansibility, the system consists of four independent modules: analysis module of motion state, trajectory simulator, IMU simulation module and SINS calculation module. With graphical interface, the system can control every motion state of the trajectory, which is convenient to generate various trajectories efficiently. Using rotation vector attitude algorithm to process simulation data, experiment results show that the attitude, velocity and position error is consistent with the theoretical value, which verifies the rationality of the simulation model and the availability of the simulation system.

  17. Optical system components for navigation grade fiber optic gyroscopes

    NASA Astrophysics Data System (ADS)

    Heimann, Marcus; Liesegang, Maximilian; Arndt-Staufenbiel, Norbert; Schröder, Henning; Lang, Klaus-Dieter

    2013-10-01

    Interferometric fiber optic gyroscopes belong to the class of inertial sensors. Due to their high accuracy they are used for absolute position and rotation measurement in manned/unmanned vehicles, e.g. submarines, ground vehicles, aircraft or satellites. The important system components are the light source, the electro optical phase modulator, the optical fiber coil and the photodetector. This paper is focused on approaches to realize a stable light source and fiber coil. Superluminescent diode and erbium doped fiber laser were studied to realize an accurate and stable light source. Therefor the influence of the polarization grade of the source and the effects due to back reflections to the source were studied. During operation thermal working conditions severely affect accuracy and stability of the optical fiber coil, which is the sensor element. Thermal gradients that are applied to the fiber coil have large negative effects on the achievable system accuracy of the optic gyroscope. Therefore a way of calculating and compensating the rotation rate error of a fiber coil due to thermal change is introduced. A simplified 3 dimensional FEM of a quadrupole wound fiber coil is used to determine the build-up of thermal fields in the polarization maintaining fiber due to outside heating sources. The rotation rate error due to these sources is then calculated and compared to measurement data. A simple regression model is used to compensate the rotation rate error with temperature measurement at the outside of the fiber coil. To realize a compact and robust optical package for some of the relevant optical system components an approach based on ion exchanged waveguides in thin glass was developed. This waveguides are used to realize 1x2 and 1x4 splitter with fiber coupling interface or direct photodiode coupling.

  18. Conformal, Transparent Printed Antenna Developed for Communication and Navigation Systems

    NASA Technical Reports Server (NTRS)

    Lee, Richard Q.; Simons, Rainee N.

    1999-01-01

    Conformal, transparent printed antennas have advantages over conventional antennas in terms of space reuse and aesthetics. Because of their compactness and thin profile, these antennas can be mounted on video displays for efficient integration in communication systems such as palmtop computers, digital telephones, and flat-panel television displays. As an array of multiple elements, the antenna subsystem may save weight by reusing space (via vertical stacking) on photovoltaic arrays or on Earth-facing sensors. Also, the antenna could go unnoticed on automobile windshields or building windows, enabling satellite uplinks and downlinks or other emerging high-frequency communications.

  19. Fluid-bed air-supply system

    DOEpatents

    Zielinski, Edward A.; Comparato, Joseph R.

    1979-01-01

    The air-supply system for a fluidized-bed furnace includes two air conduits for the same combustion zone. The conduits feed separate sets of holes in a distributor plate through which fluidizing air flows to reach the bed. During normal operation, only one conduit and set of holes is used, but the second conduit and set of holes is employed during start-up.

  20. 78 FR 2683 - Carriage Standards for Bridge Navigational Watch Alarm Systems (BNWAS) Aboard U.S. Flagged Vessels

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-14

    ... SECURITY Coast Guard Carriage Standards for Bridge Navigational Watch Alarm Systems (BNWAS) Aboard U.S... Guard announces the implementation date of carriage standards for Bridge Navigational Watch Alarm Systems (BNWAS), in accordance with the Articles of the International Convention for the Safety of Life...

  1. Optimization of computation efficiency in underwater acoustic navigation system.

    PubMed

    Lee, Hua

    2016-04-01

    This paper presents a technique for the estimation of the relative bearing angle between the unmanned underwater vehicle (UUV) and the base station for the homing and docking operations. The key requirement of this project includes computation efficiency and estimation accuracy for direct implementation onto the UUV electronic hardware, subject to the extreme constraints of physical limitation of the hardware due to the size and dimension of the UUV housing, electric power consumption for the requirement of UUV survey duration and range coverage, and heat dissipation of the hardware. Subsequent to the design and development of the algorithm, two phases of experiments were conducted to illustrate the feasibility and capability of this technique. The presentation of this paper includes system modeling, mathematical analysis, and results from laboratory experiments and full-scale sea tests. PMID:27106337

  2. Local and global navigational coordinate systems in desert ants.

    PubMed

    Collett, Matthew; Collett, Thomas S

    2009-04-01

    While foraging, the desert ant Cataglyphis fortis keeps track of its position with respect to its nest through a process of path integration (PI). Once it finds food, it can then follow a direct home vector to its nest. Furthermore, it remembers the coordinates of a food site, and uses these coordinates to return to the site. Previous studies suggest, however, that it does not associate any coordinates remembered from previous trips with familiar views such that it can produce a home vector when displaced to a familiar site. We ask here whether a desert ant uses any association between PI coordinates and familiar views to ensure consistent PI coordinates as it travels along a habitual route. We describe an experiment in which we manipulated the PI coordinates an ant has when reaching a distinctive point along a habitual route on the way to a feeder. The subsequent home vectors of the manipulated ants, when displaced from the food-site to a test ground, show that also when a route memory is evoked at a significant point on the way to a food site, C. fortis does not reset its PI coordinates to those it normally has at that point. We use this result to argue that local vector memories, which encode the metric properties of a segment of a habitual route, must be encoded in a route-based coordinate system that is separate from the nest-based global coordinates. We propose a model for PI-based guidance that can account for several puzzling observations, and that naturally produces the route-based coordinate system required for learning and following local vectors. PMID:19282486

  3. A mixed simulation and hardware-in-the-loop display and controller for autonomous sensing and navigation by unmanned air vehicles

    NASA Astrophysics Data System (ADS)

    Collins, Gaemus E.; Vegdahl, Philip S.; Riehl, James R.

    2007-04-01

    This paper describes our recent work combining a high-fidelity battlefield software simulaton, a suite of autonomous sensor and navigation control algorithms for unmanned air vehicles (UAVs), and a hardware-in-the-loop control interface. The complete system supports multiple real and simulated UAVs that search for and track multiple real and simulated targets. Targets communicate their real-time locations to the simulator through a wireless GPS link. Data from real target(s) is used to create target(s) in the simulation testbed that may exist alongside additional simulated targets. The navigation and video sensors onboard the UAVs are tasked (via another wireless link) by our control algorithm suite to search for and track targets that exist in the simulation. Video data is streamed to an image plane video tracker (IPVT), which produces detections that can be fed to a global tracker within the control suite. Routing and gimbal control algorithms use information from the global tracker to task the UAVs, thus completing an information feedback control loop. Additional sensors (such as the ground moving target indicator (GMTI) radar) can exist within the simulation and generate simulated detections to augment the tracking information obtained from the IPVT. Our simulator is part of Toyon's Simulation of the Locations and Attack of Mobile Enemy Missiles (SLAMEM (R)) tool. SLAMEM contains detailed models for ground targets, surveillance platforms, sensors, attack aircraft, UAVs, data exploitation, multi-source fusion, sensor retasking, and attack nomination. SLAMEM models road networks, foliage cover, populated regions, and terrain, using the terrain elevation data (DTED).

  4. MRI-based microrobotic system for the propulsion and navigation of ferromagnetic microcapsules.

    PubMed

    Belharet, Karim; Folio, David; Ferreira, Antoine

    2010-06-01

    This paper presents real-time MRI-based control of a ferromagnetic microcapsule for endovascular navigation. The concept was studied for future development of microdevices designed to perform minimally invasive interventions in remote sites accessible through the human cardiovascular system. A system software architecture is presented illustrating the different software modules to allow 3-D navigation of a microdevice in blood vessels, namely: (i) vessel path planner, (ii) magnetic gradient steering, (iii) tracking and (iv) closed-loop navigation control. First, the position recognition of the microrobot into the blood vessel is extracted using Frangi vesselness filtering from the pre-operation images (3-D MRI imaging). Then, a set of minimal trajectories is predefined, using path-planning algorithms, to guide the microrobot from the injection point to the tumor area through the anarchic vessel network. Based on the pre-computed path, a Generalized Predictive Controller (GPC) is proposed for robust time-multiplexed navigation along a two-dimensional (2D) path in presence of pulsative flow. PMID:20497068

  5. Kalman filtering for GPS/magnetometer integrated navigation system

    NASA Astrophysics Data System (ADS)

    Guo, Hang; Yu, Min; Zou, Chengwu; Huang, Wenwen

    2010-06-01

    This paper investigated the data processing method for a GPS/IMU/magnetometer integrated system with Kalman filtering (KF). As a result of GPS/IMU/magnetometer land vehicle system, dead-reckoning of magnetometer and accelerometer integrated subsystem bridged very well the GPS signal outage due to the trees on the two sides of the road. Both differential GPS data processing method and the carrier-phase method with magnetometers' outputs for predicting the car position, velocity, and acceleration (PVA) are presented. The results from DGPS with Kinematical Positioning (KINPOS) software shown that the averages of the north, east, and down direction standard deviation (short for "std") are 0.014, 0.010, and 0.018 m, respectively. The std of velocities and accelerations derived by the position and velocity differentiation are 10, 7, 13 mm/s, 7, 5, 9 mm/s 2, respectively. This method for getting velocities and accelerations requires higher accurate position coordinates. But the position accuracy has frequently been degraded in this case when the car drove under the trees or other similar kinematical environments. That caused the larger velocity and acceleration errors. While the results from the carrier-phase method are std of the velocities = 2.1 mm/s, 1.3 mm/s, 3.7 mm/s in north, east, down, and std of the accelerations = 1.5 mm/s 2, 0.9 mm/s 2, 2.3 mm/s 2 for the static test period; as compared with KINPOS software results, std of the velocity difference between the carrier-phase method and the DGPS method = 7 mm/s, 6.9 mm/s, 9.7 mm/s in north, east, down direction, and std of acceleration difference = 5.0 mm/s 2, 4.5 mm/s 2, 7.5 mm/s 2 in north, east, down direction for the kinematical test period. Obviously, errors come from both the carrier-phase method and DGPS velocity and acceleration results derived directly by the position differentiation. In addition, better accuracy of positions than that before KF has been got by means of velocities and accelerations derived

  6. Development of the NASA VALT digital navigation system. [for approach and landing procedures of VTOL aircraft

    NASA Technical Reports Server (NTRS)

    Mcconnell, W. J., Jr.; Skutecki, E. R.; Calzado, A. J.

    1975-01-01

    The research to develop and fabricate a terminal area navigation system for use in the NASA VTOL Approach and Landing Technology (VALT) program. The results of that effort are reported. The navigation system developed and fabricated was based on a general purpose airborne digital computer. A set of flight hardware units was fabricated to create the necessary analog, digital and human interface with the computer. A comprehensive package of software was created to implement the control and guidance laws required for automatic and flight director approaches that are curved in two planes. A technique was developed that enables the generation of randomly shaped lateral paths from simple input data. The lateral path concept combines straight line and elliptical-curved segments to fit a continuous curved path to the data points. A simple, fixed base simulation was put together to assist in developing and evaluating the system. The simulation was used to obtain system performance data during simulated curved-path approaches.

  7. A real-time navigation monitoring expert system for the Space Shuttle Mission Control Center

    NASA Technical Reports Server (NTRS)

    Wang, Lui; Fletcher, Malise

    1993-01-01

    The ONAV (Onboard Navigation) Expert System has been developed as a real time console assistant for use by ONAV flight controllers in the Mission Control Center at the Johnson Space Center. This expert knowledge based system is used to monitor the Space Shuttle onboard navigation system, detect faults, and advise flight operations personnel. This application is the first knowledge-based system to use both telemetry and trajectory data from the Mission Operations Computer (MOC). To arrive at this stage, from a prototype to real world application, the ONAV project has had to deal with not only AI issues but operating environment issues. The AI issues included the maturity of AI languages and the debugging tools, verification, and availability, stability and size of the expert pool. The environmental issues included real time data acquisition, hardware suitability, and how to achieve acceptance by users and management.

  8. Magnetic Navigation System for Thoracoscopic Surgery: a Partial Lung Resection with Transbronchial Marking

    NASA Astrophysics Data System (ADS)

    Shimada, Junichi; Itoh, Kazuhiro; Terauchi, Kunihiko; Yanada, Masashi; Shimomura, Masanori; Nishikawa, Atsushi

    In order to detect and track a small magnet embedded in the vicinity of a target tumor during surgery, we have developed a magnetic navigation system based on three-dimensional measurements with micro-fluxgate magnetic sensors. In this paper, we present an image overlay method for superimposing the embedded magnetic marker through a bronchoscope. To evaluate the performance of the proposed system and its applicability in clinical use, we set up an in vivo experiment, in which surgeons used this system to perform thoracoscopic surgery on a pig with transbronchial marking and oblique-viewing, and we succeeded in a partial resection of the pig lung including the target area. Next, we tried a wedge resection for a lung tumor in a clinical case. We successfully performed the partial resection of the lung including the target area, which corresponded to the tumor lesion, under the guidance of the magnetic navigation system.

  9. A rotating inertial navigation system with the rotating axis error compensation consisting of fiber optic gyros

    NASA Astrophysics Data System (ADS)

    Zha, Feng; Hu, Bai-qing; Qin, Fang-jun; Luo, Yin-bo

    2012-03-01

    An effective and flexible rotation and compensation scheme is designed to improve the accuracy of rotating inertial navigation system (RINS). The accuracy of single-axial RINS is limited by the errors on the rotating axis. A novel inertial measurement unit (IMU) scheme with error compensation for the rotating axis of fiber optic gyros (FOG) RINS is presented. In the scheme, two couples of inertial sensors with similar error characteristics are mounted oppositely on the rotating axes to compensate the sensors error. Without any change for the rotation cycle, this scheme improves the system's precision and reliability, and also offers the redundancy for the system. The results of 36 h navigation simulation prove that the accuracy of the system is improved notably compared with normal strapdown INS, besides the heading accuracy is increased by 3 times compared with single-axial RINS, and the position accuracy is improved by 1 order of magnitude.

  10. A real-time navigation monitoring expert system for the Space Shuttle Mission Control Center

    NASA Astrophysics Data System (ADS)

    Wang, Lui; Fletcher, Malise

    1993-03-01

    The ONAV (Onboard Navigation) Expert System has been developed as a real time console assistant for use by ONAV flight controllers in the Mission Control Center at the Johnson Space Center. This expert knowledge based system is used to monitor the Space Shuttle onboard navigation system, detect faults, and advise flight operations personnel. This application is the first knowledge-based system to use both telemetry and trajectory data from the Mission Operations Computer (MOC). To arrive at this stage, from a prototype to real world application, the ONAV project has had to deal with not only AI issues but operating environment issues. The AI issues included the maturity of AI languages and the debugging tools, verification, and availability, stability and size of the expert pool. The environmental issues included real time data acquisition, hardware suitability, and how to achieve acceptance by users and management.

  11. On-line smoothing for an integrated navigation system with low-cost MEMS inertial sensors.

    PubMed

    Chiang, Kai-Wei; Duong, Thanh Trung; Liao, Jhen-Kai; Lai, Ying-Chih; Chang, Chin-Chia; Cai, Jia-Ming; Huang, Shih-Ching

    2012-01-01

    The integration of the Inertial Navigation System (INS) and the Global Positioning System (GPS) is widely applied to seamlessly determine the time-variable position and orientation parameters of a system for navigation and mobile mapping applications. For optimal data fusion, the Kalman filter (KF) is often used for real-time applications. Backward smoothing is considered an optimal post-processing procedure. However, in current INS/GPS integration schemes, the KF and smoothing techniques still have some limitations. This article reviews the principles and analyzes the limitations of these estimators. In addition, an on-line smoothing method that overcomes the limitations of previous algorithms is proposed. For verification, an INS/GPS integrated architecture is implemented using a low-cost micro-electro-mechanical systems inertial measurement unit and a single-frequency GPS receiver. GPS signal outages are included in the testing trajectories to evaluate the effectiveness of the proposed method in comparison to conventional schemes. PMID:23443403

  12. New Navigation System for Automatic Guided Vehicles Using an Ultrasonic Sensor Array

    NASA Astrophysics Data System (ADS)

    Tabata, Katsuhiko; Nishida, Yoshifumi; Iida, Yoshihiro; Iwai, Toshiaki

    We propose a new navigation system for Automatic Guided Vehicles (AGV) used as a carrier in the factory. The guided marker of the navigation system is composed of ultrasonic transducers instead of the traditional markers such as electromagnetic tape, light reflective tape and so on. The proposed system is available to be used not only indoors but also outdoors and adaptable to a temporary route. The ultrasonic sensor is generically susceptible to noise, so that we make the following propositions. First, a phased array of the ultrasonic sensors is employed in searching a land marker to improve the signal-to-noise ratio. Second, the specific ID with 7bits is assigned as the land marker to avoid the system errors ascribable to an ultrasonic interference. In addition, the proposed system is quite compact in virtue of the embedded technology of a microcomputer and Field Programmable Gate Array (FPGA). This paper reports the development of the proto-type system of navigation system and confirmation of its fundamental performances.

  13. Architecting the Communication and Navigation Networks for NASA's Space Exploration Systems

    NASA Technical Reports Server (NTRS)

    Bhassin, Kul B.; Putt, Chuck; Hayden, Jeffrey; Tseng, Shirley; Biswas, Abi; Kennedy, Brian; Jennings, Esther H.; Miller, Ron A.; Hudiburg, John; Miller, Dave; Jeffries, Alan; Sartwell, Tom

    2007-01-01

    NASA is planning a series of short and long duration human and robotic missions to explore the Moon and then Mars. A key objective of the missions is to grow, through a series of launches, a system of systems communication, navigation, and timing infrastructure at minimum cost while providing a network-centric infrastructure that maximizes the exploration capabilities and science return. There is a strong need to use architecting processes in the mission pre-formulation stage to describe the systems, interfaces, and interoperability needed to implement multiple space communication systems that are deployed over time, yet support interoperability with each deployment phase and with 20 years of legacy systems. In this paper we present a process for defining the architecture of the communications, navigation, and networks needed to support future space explorers with the best adaptable and evolable network-centric space exploration infrastructure. The process steps presented are: 1) Architecture decomposition, 2) Defining mission systems and their interfaces, 3) Developing the communication, navigation, networking architecture, and 4) Integrating systems, operational and technical views and viewpoints. We demonstrate the process through the architecture development of the communication network for upcoming NASA space exploration missions.

  14. Land, sea, and air unmanned systems research and development at SPAWAR Systems Center Pacific

    NASA Astrophysics Data System (ADS)

    Nguyen, Hoa G.; Laird, Robin; Kogut, Greg; Andrews, John; Fletcher, Barbara; Webber, Todd; Arrieta, Rich; Everett, H. R.

    2009-05-01

    The Space and Naval Warfare (SPAWAR) Systems Center Pacific (SSC Pacific) has a long and extensive history in unmanned systems research and development, starting with undersea applications in the 1960s and expanding into ground and air systems in the 1980s. In the ground domain, we are addressing force-protection scenarios using large unmanned ground vehicles (UGVs) and fixed sensors, and simultaneously pursuing tactical and explosive ordnance disposal (EOD) operations with small man-portable robots. Technology thrusts include improving robotic intelligence and functionality, autonomous navigation and world modeling in urban environments, extended operational range of small teleoperated UGVs, enhanced human-robot interaction, and incorporation of remotely operated weapon systems. On the sea surface, we are pushing the envelope on dynamic obstacle avoidance while conforming to established nautical rules-of-the-road. In the air, we are addressing cooperative behaviors between UGVs and small vertical-takeoff- and-landing unmanned air vehicles (UAVs). Underwater applications involve very shallow water mine countermeasures, ship hull inspection, oceanographic data collection, and deep ocean access. Specific technology thrusts include fiber-optic communications, adaptive mission controllers, advanced navigation techniques, and concepts of operations (CONOPs) development. This paper provides a review of recent accomplishments and current status of a number of projects in these areas.

  15. Troubleshooting the residential air conditioning system

    SciTech Connect

    Puzio, H.

    1996-01-01

    In order to effectively diagnose problems in a residential air conditioning system, the technician should develop and follow a logical step-by-step troubleshooting procedure. A list of problems, along with possible causes and solutions, that a technician may encounter when servicing a residential air conditioner is presented.

  16. Solar-powered hot-air system

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Solar-powered air heater supplies part or all of space heating requirements of residential or commercial buildings and is interfaced with air to water heat exchanger to heat domestic hot water. System has potential application in drying agricultural products such as cotton, lumber, corn, grains, and peanuts.

  17. Air Systems Provide Life Support to Miners

    NASA Technical Reports Server (NTRS)

    2014-01-01

    Through a Space Act Agreement with Johnson Space Center, Paragon Space Development Corporation, of Tucson, Arizona, developed the Commercial Crew Transport-Air Revitalization System, designed to provide clean air for crewmembers on short-duration space flights. The technology is now being used to help save miners' lives in the event of an underground disaster.

  18. AEROMETRIC INFORMATION RETRIEVAL SYSTEM (AIRS) - GRAPHICS

    EPA Science Inventory

    Aerometric Information Retrieval System (AIRS) is a computer-based repository of information about airborne pollution in the United States and various World Health Organization (WHO) member countries. AIRS is administered by the U.S. Environmental Protection Agency, and runs on t...

  19. AEROMETRIC INFORMATION RETRIEVAL SYSTEM (AIRS) EXECUTIVE

    EPA Science Inventory

    Aerometric Information Retrieval System (AIRS) is a computer-based repository of information about airborne pollution in the United States and various World Health Organization (WHO) member countries. AIRS is administered by the U.S. Environmental Protection Agency, and runs on t...

  20. AEROMETRIC INFORMATION RETRIEVAL SYSTEM - AIRS FACILITY SUBSYSTEM

    EPA Science Inventory

    Aerometric Information Retrieval System (AIRS) is a computer-based repository of information about airborne pollution in the United States and various World Health Organization (WHO) member countries. AIRS is administered by the U.S. Environmental Protection Agency, and runs on t...

  1. Study for incorporating time-synchronized approach control into the CH-47/VALT digital navigation system

    NASA Technical Reports Server (NTRS)

    Mcconnell, W. J., Jr.

    1979-01-01

    Techniques for obtaining time synchronized (4D) approach control in the VALT research helicopter is described. Various 4D concepts and their compatibility with the existing VALT digital computer navigation and guidance system hardware and software are examined. Modifications to various techniques were investigated in order to take advantage of the unique operating characteristics of the helicopter in the terminal area. A 4D system is proposed, combining the direct to maneuver with the existing VALT curved path generation capability.

  2. Testing Air-Filtering Systems

    PubMed Central

    Songer, Joseph R.; Sullivan, James F.; Hurd, James W.

    1963-01-01

    A procedure was developed for evaluating high-efficiency filters mounted in exhaust ducts at the National Animal Disease Laboratory. An aerosol of the test organism, Escherichia coli B T3 bacteriophage, was generated in a chamber attached to a ceiling exhaust register in concentrations of at least 1000 viable organisms per ft3 of air. Samples were collected from both the pre- and postfilter areas, and the number of organisms per ft3 of air was determined. The efficiency of the filter was calculated from these figures. A total of 269 high-efficiency filters were tested. Of these, 249 had efficiencies of 98% or greater. The remaining 20, with efficiencies of less than 98%, were repaired and retested. No filter was accepted with an efficiency of less than 98%. Images Fig. 2 PMID:14063779

  3. Evaluation of a navigation system for ENT with surgical efficiency criteria.

    PubMed

    Strauss, Gero; Koulechov, Kirill; Röttger, Stefan; Bahner, Jenny; Trantakis, Christos; Hofer, Mathias; Korb, Werner; Burgert, Oliver; Meixensberger, Juergen; Manzey, Dietrich; Dietz, Andreas; Lüth, Tim

    2006-04-01

    The aim of this study is the evaluation of a navigation system (NaviBase) for ENT surgery. For this purpose, a new methodology for the evaluation of surgical and ergonomic system properties has been developed. The practicability of the evaluation instruments will be examined using the example of the overall assessment of the system in comparison with the current surgical standard and with other systems using clinical efficiency criteria. The evaluation is based on 102 ENT surgical applications; of these, 89 were functional endoscopic sinus surgeries (FESS). The evaluation of surgical and ergonomic performance factors was performed by seven ENT surgeons. To evaluate surgical system properties, the Level of Quality (LOQ) in 89 cases of the FESS was determined. It compares the existing information of the surgeon with that of the navigation system on a scale of 0 to 100 and with a mean value of 50 and places it in a relationship to the clinical impact. The intraoperative change of the planned surgical strategy (Change of Surgical Strategy) was documented. The ergonomic factors of the system with the categories of Overall Confidence (Trust), awareness of the situation (Situation Awareness), influence on the operating team, requirements for specific skills (Skill Set Requirement), and cognitive load (Workload Shift) were recorded for all surgical procedures as Level of Reliance (LOR). In the evaluation of the surgical system properties, an average evaluation of the quality of the information, as an LOQ of 63.59, resulted. Every second application of the navigation system (47.9%), on average, led to a change in the surgical strategy. An extension/enhancement of the indication of the endonasal approach through the use of the navigation system was shown in 7 of 102 (6.8%) cases. The completion of the resection in the FESS was rated by 74% of group I and 11% of group II as better in comparison with the standard approach. Total confidence shows a positive evaluation of 3

  4. Development and hardware-in-the-loop test of a guidance, navigation and control system for on-orbit servicing

    NASA Astrophysics Data System (ADS)

    Benninghoff, Heike; Rems, Florian; Boge, Toralf

    2014-09-01

    The rendezvous phase is one of the most important phases in future orbital servicing missions. To ensure a safe approach to a non-cooperative target satellite, a guidance, navigation and control system which uses measurements from optical sensors like cameras was designed and developed. During ground-based rendezvous, stability problems induced by delayed position measurements can be compensated by using a specially adapted navigation filter. Within the VIBANASS (VIsion BAsed NAvigation Sensor System) test campaign, hardware-in-the-loop tests on the terrestrial, robotic based facility EPOS 2.0 were performed to test and verify the developed guidance, navigation and control algorithms using real sensor measurements. We could demonstrate several safe rendezvous test cases in a closed loop mode integrating the VIBANASS camera system and the developed guidance, navigation and control system to a dynamic rendezvous simulation.

  5. a European Global Navigation Satellite System — the German Market and Value Adding Chain Effects

    NASA Astrophysics Data System (ADS)

    Vollerthun, A.; Wieser, M.

    2002-03-01

    Since Europe is considering to establish a "market-driven" European Global Navigation Satellite System, the German Center of Aerospace initiated a market research to justify a German investment in such a European project. The market research performed included the following market segments: aviation, railway, road traffic, shipping, surveying, farming, military, space applications, leisure, and sport. In these market segments, the forementioned inputs were determined for satellite navigation hardware (receivers) as well as satellite navigation services. The forecast period was from year 2007 to 2017. For the considered period, the market amounts to a total of DM 83.0 billion (approx. US $50 billion), whereas the satellite navigation equipment market makes up DM 39.8 billion, and charges for value-added-services amount to DM 43.2 billion. On closer examination road traffic can be identified as the dominant market share, both in the receiver-market and service-market. With a share of 96% for receivers and 73% for services the significance of the road traffic segment becomes obvious. The second part of this paper investigates the effects the market potential has on the Value-Adding-Chain. Therefore, all participants in the Value-Adding-Chain are identified, using industrial cost structure models the employment effect is analyzed, and possible tax revenues for the state are examined.

  6. Rats with lesions of the vestibular system require a visual landmark for spatial navigation.

    PubMed

    Stackman, Robert W; Herbert, Aaron M

    2002-01-01

    The role of the vestibular system in acquisition and performance of a spatial navigation task was examined in rats. Male Long-Evans rats received sham or bilateral sodium arsanilate-induced vestibular lesions. After postoperative recovery, under partial water-deprivation, rats were trained (16 trials/day) to find a water reward in one corner of a black square enclosure. A cue card fixed to one wall of the enclosure served as a stable landmark cue. The orientation of the rat at the start of each trial was pseudo-randomized such that the task could not be solved by an egocentric response strategy. Rats with vestibular lesions acquired the task in fewer trials than the sham treated control rats. Vestibular lesions did not influence the motivation or motor function necessary to perform the task. Performance of sham rats was maintained during probe trials in which the cue card was removed from the enclosure, while lesioned rats were markedly impaired. Rotation of the cue card (+/-90 degrees ) caused an equivalent shift in corner choice behavior of the lesioned rats. However, sham rats often disregarded the rotated cue card and made place responses. These results suggest that the vestibular lesions disrupt idiothetic navigation or path integration and render navigational behavior critically dependent upon external landmarks. These results are consistent with the navigational abilities of humans with bilateral vestibular dysfunction. PMID:11755687

  7. Engagement of neural circuits underlying 2D spatial navigation in a rodent virtual reality system

    PubMed Central

    Aronov, Dmitriy; Tank, David W.

    2015-01-01

    SUMMARY Virtual reality (VR) enables precise control of an animal’s environment and otherwise impossible experimental manipulations. Neural activity in navigating rodents has been studied on virtual linear tracks. However, the spatial navigation system’s engagement in complete two-dimensional environments has not been shown. We describe a VR setup for rats, including control software and a large-scale electrophysiology system, which supports 2D navigation by allowing animals to rotate and walk in any direction. The entorhinal-hippocampal circuit, including place cells, grid cells, head direction cells and border cells, showed 2D activity patterns in VR similar to those in the real world. Hippocampal neurons exhibited various remapping responses to changes in the appearance or the shape of the virtual environment, including a novel form in which a VR-induced cue conflict caused remapping to lock to geometry rather than salient cues. These results suggest a general-purpose tool for novel types of experimental manipulations in navigating rats. PMID:25374363

  8. An adaptive localization system for outdoor/indoor navigation for autonomous robots

    NASA Astrophysics Data System (ADS)

    Pacis, E. B.; Sights, B.; Ahuja, G.; Kogut, G.; Everett, H. R.

    2006-05-01

    Many envisioned applications of mobile robotic systems require the robot to navigate in complex urban environments. This need is particularly critical if the robot is to perform as part of a synergistic team with human forces in military operations. Historically, the development of autonomous navigation for mobile robots has targeted either outdoor or indoor scenarios, but not both, which is not how humans operate. This paper describes efforts to fuse component technologies into a complete navigation system, allowing a robot to seamlessly transition between outdoor and indoor environments. Under the Joint Robotics Program's Technology Transfer project, empirical evaluations of various localization approaches were conducted to assess their maturity levels and performance metrics in different exterior/interior settings. The methodologies compared include Markov localization, global positioning system, Kalman filtering, and fuzzy-logic. Characterization of these technologies highlighted their best features, which were then fused into an adaptive solution. A description of the final integrated system is discussed, including a presentation of the design, experimental results, and a formal demonstration to attendees of the Unmanned Systems Capabilities Conference II in San Diego in December 2005.

  9. Global Navigation Satellite System Multipath Mitigation Using a Wave-Absorbing Shield.

    PubMed

    Yang, Haiyan; Yang, Xuhai; Sun, Baoqi; Su, Hang

    2016-01-01

    Code multipath is an unmanaged error source in precise global navigation satellite system (GNSS) observation processing that limits GNSS positioning accuracy. A new technique for mitigating multipath by installing a wave-absorbing shield is presented in this paper. The wave-absorbing shield was designed according to a GNSS requirement of received signals and collected measurements to achieve good performance. The wave-absorbing shield was installed at the KUN1 and SHA1 sites of the international GNSS Monitoring and Assessment System (iGMAS). Code and carrier phase measurements of three constellations were collected on the dates of the respective installations plus and minus one week. Experiments were performed in which the multipath of the measurements obtained at different elevations was mitigated to different extents after applying the wave-absorbing shield. The results of an analysis and comparison show that the multipath was mitigated by approximately 17%-36% on all available frequencies of BeiDou Navigation Satellite System (BDS), Global Positioning System (GPS), and Global Navigation Satellite System (GLONASS) satellites. The three-dimensional accuracies of BDS, GPS, and GLONASS single-point positioning (SPP) were, respectively, improved by 1.07, 0.63 and 0.49 m for the KUN1 site, and by 0.72, 0.79 and 0.73 m for the SHA1 site. Results indicate that the multipath of the original observations was mitigated by using the wave-absorbing shield. PMID:27556466

  10. Design, Implementation and Evaluation of an Indoor Navigation System for Visually Impaired People.

    PubMed

    Martinez-Sala, Alejandro Santos; Losilla, Fernando; Sánchez-Aarnoutse, Juan Carlos; García-Haro, Joan

    2015-01-01

    Indoor navigation is a challenging task for visually impaired people. Although there are guidance systems available for such purposes, they have some drawbacks that hamper their direct application in real-life situations. These systems are either too complex, inaccurate, or require very special conditions (i.e., rare in everyday life) to operate. In this regard, Ultra-Wideband (UWB) technology has been shown to be effective for indoor positioning, providing a high level of accuracy and low installation complexity. This paper presents SUGAR, an indoor navigation system for visually impaired people which uses UWB for positioning, a spatial database of the environment for pathfinding through the application of the A* algorithm, and a guidance module. The interaction with the user takes place using acoustic signals and voice commands played through headphones. The suitability of the system for indoor navigation has been verified by means of a functional and usable prototype through a field test with a blind person. In addition, other tests have been conducted in order to show the accuracy of different relevant parts of the system. PMID:26703610

  11. Design, Implementation and Evaluation of an Indoor Navigation System for Visually Impaired People

    PubMed Central

    Martinez-Sala, Alejandro Santos; Losilla, Fernando; Sánchez-Aarnoutse, Juan Carlos; García-Haro, Joan

    2015-01-01

    Indoor navigation is a challenging task for visually impaired people. Although there are guidance systems available for such purposes, they have some drawbacks that hamper their direct application in real-life situations. These systems are either too complex, inaccurate, or require very special conditions (i.e., rare in everyday life) to operate. In this regard, Ultra-Wideband (UWB) technology has been shown to be effective for indoor positioning, providing a high level of accuracy and low installation complexity. This paper presents SUGAR, an indoor navigation system for visually impaired people which uses UWB for positioning, a spatial database of the environment for pathfinding through the application of the A* algorithm, and a guidance module. The interaction with the user takes place using acoustic signals and voice commands played through headphones. The suitability of the system for indoor navigation has been verified by means of a functional and usable prototype through a field test with a blind person. In addition, other tests have been conducted in order to show the accuracy of different relevant parts of the system. PMID:26703610

  12. a New Survey on Self-Tuning Integrated Low-Cost Gps/ins Vehicle Navigation System in Harsh Environment

    NASA Astrophysics Data System (ADS)

    Navidi, N.; Landry, R., Jr.

    2015-08-01

    Nowadays, Global Positioning System (GPS) receivers are aided by some complementary radio navigation systems and Inertial Navigation Systems (INS) to obtain more accuracy and robustness in land vehicular navigation. Extended Kalman Filter (EKF) is an acceptable conventional method to estimate the position, the velocity, and the attitude of the navigation system when INS measurements are fused with GPS data. However, the usage of the low-cost Inertial Measurement Units (IMUs) based on the Micro-Electro-Mechanical Systems (MEMS), for the land navigation systems, reduces the precision and stability of the navigation system due to their inherent errors. The main goal of this paper is to provide a new model for fusing low-cost IMU and GPS measurements. The proposed model is based on EKF aided by Fuzzy Inference Systems (FIS) as a promising method to solve the mentioned problems. This model considers the parameters of the measurement noise to adjust the measurement and noise process covariance. The simulation results show the efficiency of the proposed method to reduce the navigation system errors compared with EKF.

  13. Evaluation of the Terminal Sequencing and Spacing System for Performance Based Navigation Arrivals

    NASA Technical Reports Server (NTRS)

    Thipphavong, Jane; Jung, Jaewoo; Swenson, Harry N.; Martin, Lynne; Lin, Melody; Nguyen, Jimmy

    2013-01-01

    NASA has developed the Terminal Sequencing and Spacing (TSS) system, a suite of advanced arrival management technologies combining timebased scheduling and controller precision spacing tools. TSS is a ground-based controller automation tool that facilitates sequencing and merging arrivals that have both current standard ATC routes and terminal Performance-Based Navigation (PBN) routes, especially during highly congested demand periods. In collaboration with the FAA and MITRE's Center for Advanced Aviation System Development (CAASD), TSS system performance was evaluated in human-in-the-loop (HITL) simulations with currently active controllers as participants. Traffic scenarios had mixed Area Navigation (RNAV) and Required Navigation Performance (RNP) equipage, where the more advanced RNP-equipped aircraft had preferential treatment with a shorter approach option. Simulation results indicate the TSS system achieved benefits by enabling PBN, while maintaining high throughput rates-10% above baseline demand levels. Flight path predictability improved, where path deviation was reduced by 2 NM on average and variance in the downwind leg length was 75% less. Arrivals flew more fuel-efficient descents for longer, spending an average of 39 seconds less in step-down level altitude segments. Self-reported controller workload was reduced, with statistically significant differences at the p less than 0.01 level. The RNP-equipped arrivals were also able to more frequently capitalize on the benefits of being "Best-Equipped, Best- Served" (BEBS), where less vectoring was needed and nearly all RNP approaches were conducted without interruption.

  14. HyMoTrack: A Mobile AR Navigation System for Complex Indoor Environments

    PubMed Central

    Gerstweiler, Georg; Vonach, Emanuel; Kaufmann, Hannes

    2015-01-01

    Navigating in unknown big indoor environments with static 2D maps is a challenge, especially when time is a critical factor. In order to provide a mobile assistant, capable of supporting people while navigating in indoor locations, an accurate and reliable localization system is required in almost every corner of the building. We present a solution to this problem through a hybrid tracking system specifically designed for complex indoor spaces, which runs on mobile devices like smartphones or tablets. The developed algorithm only uses the available sensors built into standard mobile devices, especially the inertial sensors and the RGB camera. The combination of multiple optical tracking technologies, such as 2D natural features and features of more complex three-dimensional structures guarantees the robustness of the system. All processing is done locally and no network connection is needed. State-of-the-art indoor tracking approaches use mainly radio-frequency signals like Wi-Fi or Bluetooth for localizing a user. In contrast to these approaches, the main advantage of the developed system is the capability of delivering a continuous 3D position and orientation of the mobile device with centimeter accuracy. This makes it usable for localization and 3D augmentation purposes, e.g. navigation tasks or location-based information visualization. PMID:26712755

  15. HyMoTrack: A Mobile AR Navigation System for Complex Indoor Environments.

    PubMed

    Gerstweiler, Georg; Vonach, Emanuel; Kaufmann, Hannes

    2015-01-01

    Navigating in unknown big indoor environments with static 2D maps is a challenge, especially when time is a critical factor. In order to provide a mobile assistant, capable of supporting people while navigating in indoor locations, an accurate and reliable localization system is required in almost every corner of the building. We present a solution to this problem through a hybrid tracking system specifically designed for complex indoor spaces, which runs on mobile devices like smartphones or tablets. The developed algorithm only uses the available sensors built into standard mobile devices, especially the inertial sensors and the RGB camera. The combination of multiple optical tracking technologies, such as 2D natural features and features of more complex three-dimensional structures guarantees the robustness of the system. All processing is done locally and no network connection is needed. State-of-the-art indoor tracking approaches use mainly radio-frequency signals like Wi-Fi or Bluetooth for localizing a user. In contrast to these approaches, the main advantage of the developed system is the capability of delivering a continuous 3D position and orientation of the mobile device with centimeter accuracy. This makes it usable for localization and 3D augmentation purposes, e.g. navigation tasks or location-based information visualization. PMID:26712755

  16. The International GNSS Service in a changing landscape of Global Navigation Satellite Systems

    NASA Astrophysics Data System (ADS)

    Dow, John M.; Neilan, R. E.; Rizos, C.

    2009-03-01

    The International GNSS Service (IGS) is an international activity involving more than 200 participating organisations in over 80 countries with a track record of one and a half decades of successful operations. The IGS is a service of the International Association of Geodesy (IAG). It primarily supports scientific research based on highly precise and accurate Earth observations using the technologies of Global Navigation Satellite Systems (GNSS), primarily the US Global Positioning System (GPS). The mission of the IGS is “to provide the highest-quality GNSS data and products in support of the terrestrial reference frame, Earth rotation, Earth observation and research, positioning, navigation and timing and other applications that benefit society”. The IGS will continue to support the IAG’s initiative to coordinate cross-technique global geodesy for the next decade, via the development of the Global Geodetic Observing System (GGOS), which focuses on the needs of global geodesy at the mm-level. IGS activities are fundamental to scientific disciplines related to climate, weather, sea level change, and space weather. The IGS also supports many other applications, including precise navigation, machine automation, and surveying and mapping. This article discusses the IGS Strategic Plan and future directions of the globally-coordinated ~400 station IGS network, tracking data and information products, and outlines the scope of a few of its numerous working groups and pilot projects as the world anticipates a truly multi-system GNSS in the coming decade.

  17. Navigation Ground Data System Engineering for the Cassini/Huygens Mission

    NASA Technical Reports Server (NTRS)

    Beswick, R. M.; Antreasian, P. G.; Gillam, S. D.; Hahn, Y.; Roth, D. C.; Jones, J. B.

    2008-01-01

    The launch of the Cassini/Huygens mission on October 15, 1997, began a seven year journey across the solar system that culminated in the entry of the spacecraft into Saturnian orbit on June 30, 2004. Cassini/Huygens Spacecraft Navigation is the result of a complex interplay between several teams within the Cassini Project, performed on the Ground Data System. The work of Spacecraft Navigation involves rigorous requirements for accuracy and completeness carried out often under uncompromising critical time pressures. To support the Navigation function, a fault-tolerant, high-reliability/high-availability computational environment was necessary to support data processing. Configuration Management (CM) was integrated with fault tolerant design and security engineering, according to the cornerstone principles of Confidentiality, Integrity, and Availability. Integrated with this approach are security benchmarks and validation to meet strict confidence levels. In addition, similar approaches to CM were applied in consideration of the staffing and training of the system administration team supporting this effort. As a result, the current configuration of this computational environment incorporates a secure, modular system, that provides for almost no downtime during tour operations.

  18. Research and development for Onboard Navigation (ONAV) ground based expert/trainer system: ONAV entry knowledge requirements specification update

    NASA Technical Reports Server (NTRS)

    Bochsler, Daniel C.

    1988-01-01

    A revised version of expert knowledge for the onboard navigation (ONAV) entry system is given. Included is some brief background information together with information describing the knowledge that the system does contain.

  19. Perception system and functions for autonomous navigation in a natural environment

    NASA Technical Reports Server (NTRS)

    Chatila, Raja; Devy, Michel; Lacroix, Simon; Herrb, Matthieu

    1994-01-01

    This paper presents the approach, algorithms, and processes we developed for the perception system of a cross-country autonomous robot. After a presentation of the tele-programming context we favor for intervention robots, we introduce an adaptive navigation approach, well suited for the characteristics of complex natural environments. This approach lead us to develop a heterogeneous perception system that manages several different terrain representatives. The perception functionalities required during navigation are listed, along with the corresponding representations we consider. The main perception processes we developed are presented. They are integrated within an on-board control architecture we developed. First results of an ambitious experiment currently underway at LAAS are then presented.

  20. An improved robust hand-eye calibration for endoscopy navigation system

    NASA Astrophysics Data System (ADS)

    He, Wei; Kang, Kumsok; Li, Yanfang; Shi, Weili; Miao, Yu; He, Fei; Yan, Fei; Yang, Huamin; Zhang, Huimao; Mori, Kensaku; Jiang, Zhengang

    2016-03-01

    Endoscopy is widely used in clinical application, and surgical navigation system is an extremely important way to enhance the safety of endoscopy. The key to improve the accuracy of the navigation system is to solve the positional relationship between camera and tracking marker precisely. The problem can be solved by the hand-eye calibration method based on dual quaternions. However, because of the tracking error and the limited motion of the endoscope, the sample motions may contain some incomplete motion samples. Those motions will cause the algorithm unstable and inaccurate. An advanced selection rule for sample motions is proposed in this paper to improve the stability and accuracy of the methods based on dual quaternion. By setting the motion filter to filter out the incomplete motion samples, finally, high precision and robust result is achieved. The experimental results show that the accuracy and stability of camera registration have been effectively improved by selecting sample motion data automatically.

  1. Autonomous Navigation of the SSTI/Lewis Spacecraft Using the Global Positioning System (GPS)

    NASA Technical Reports Server (NTRS)

    Hart, R. C.; Long, A. C.; Lee, T.

    1997-01-01

    The National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) Flight Dynamics Division (FDD) is pursuing the application of Global Positioning System (GPS) technology to improve the accuracy and economy of spacecraft navigation. High-accuracy autonomous navigation algorithms are being flight qualified in conjunction with GSFC's GPS Attitude Determination Flyer (GADFLY) experiment on the Small Satellite Technology Initiative (SSTI) Lewis spacecraft, which is scheduled for launch in 1997. Preflight performance assessments indicate that these algorithms can provide a real-time total position accuracy of better than 10 meters (1 sigma) and velocity accuracy of better than 0.01 meter per second (1 sigma), with selective availability at typical levels. This accuracy is projected to improve to the 2-meter level if corrections to be provided by the GPS Wide Area Augmentation System (WAAS) are included.

  2. Air quality and future energy system planning

    NASA Astrophysics Data System (ADS)

    Sobral Mourao, Zenaida; Konadu, Dennis; Lupton, Rick

    2016-04-01

    Ambient air pollution has been linked to an increasing number of premature deaths throughout the world. Projected increases in demand for food, energy resources and manufactured products will likely contribute to exacerbate air pollution with an increasing impact on human health, agricultural productivity and climate change. Current events such as tampering emissions tests by VW car manufacturers, failure to comply with EU Air Quality directives and WHO guidelines by many EU countries, the problem of smog in Chinese cities and new industrial emissions regulations represent unique challenges but also opportunities for regulators, local authorities and industry. However current models and practices of energy and resource use do not consider ambient air impacts as an integral part of the planing process. Furthermore the analysis of drivers, sources and impacts of air pollution is often fragmented, difficult to understand and lacks effective visualization tools that bring all of these components together. This work aims to develop a model that links impacts of air quality on human health and ecosystems to current and future developments in the energy system, industrial and agricultural activity and patterns of land use. The model will be added to the ForeseerTM tool, which is an integrated resource analysis platform that has been developed at the University of Cambridge initially with funding from BP and more recently through the EPSRC funded Whole Systems Energy Modeling (WholeSEM) project. The basis of the tool is a set of linked physical models for energy, water and land, including the technologies that are used to transform these resources into final services such as housing, food, transport and household goods. The new air quality model will explore different feedback effects between energy, land and atmospheric systems with the overarching goal of supporting better communication about the drivers of air quality and to incorporate concerns about air quality into

  3. Simulation studies of the GOES-I Image Navigation and Registration (INR) system

    NASA Technical Reports Server (NTRS)

    Carr, James L.; Dunhill, Herbert W.; Gamble, Donald W.; Kamel, Ahmed A.

    1990-01-01

    The GOES-I Image Navigation and Registration (INR) system will fly on the next generation of NOAA geostationary meteorological satellites. This system uses observations of stars and earth landmarks made by the Imager and Sounder Instruments themselves to determine the orbit, attitude, and misalignment state of the spacecraft and instruments. An extensive program of simulation and analysis has been conducted to assess the expected performance of the INR system. This paper discusses these activities and presents some computer simulation results showing expected system performance under a variety of conditions including station-keeping.

  4. Human Factors Considerations for Performance-Based Navigation

    NASA Technical Reports Server (NTRS)

    Barhydt, Richard; Adams, Catherine A.

    2006-01-01

    A transition toward a performance-based navigation system is currently underway in both the United States and around the world. Performance-based navigation incorporates Area Navigation (RNAV) and Required Navigation Performance (RNP) procedures that do not rely on the location of ground-based navigation aids. These procedures offer significant benefits to both operators and air traffic managers. Under sponsorship from the Federal Aviation Administration (FAA), the National Aeronautics and Space Administration (NASA) has undertaken a project to document human factors issues that have emerged during RNAV and RNP operations and propose areas for further consideration. Issues were found to include aspects of air traffic control and airline procedures, aircraft systems, and procedure design. Major findings suggest the need for human factors-specific instrument procedure design guidelines. Ongoing industry and government activities to address air-ground communication terminology, procedure design improvements, and chart-database commonality are strongly encouraged.

  5. Selection of models in the problem of error prediction for navigation systems

    NASA Astrophysics Data System (ADS)

    Neusypin, K. A.; Pupkov, K. A.

    1991-07-01

    A selection criterion based on the use of a criterion of observability degree is proposed for inertial navigation system. Models are selected that have a maximum degree of observability, which is determined from the maximum value of the square of the determinant of the observability matrix or the observability Grammian in the nonstationary case. Model reduction is carried out using a numerical criterion for the observability degree.

  6. Systemic Analysis Approaches for Air Transportation

    NASA Technical Reports Server (NTRS)

    Conway, Sheila

    2005-01-01

    Air transportation system designers have had only limited success using traditional operations research and parametric modeling approaches in their analyses of innovations. They need a systemic methodology for modeling of safety-critical infrastructure that is comprehensive, objective, and sufficiently concrete, yet simple enough to be used with reasonable investment. The methodology must also be amenable to quantitative analysis so issues of system safety and stability can be rigorously addressed. However, air transportation has proven itself an extensive, complex system whose behavior is difficult to describe, no less predict. There is a wide range of system analysis techniques available, but some are more appropriate for certain applications than others. Specifically in the area of complex system analysis, the literature suggests that both agent-based models and network analysis techniques may be useful. This paper discusses the theoretical basis for each approach in these applications, and explores their historic and potential further use for air transportation analysis.

  7. Evolution of patient navigation.

    PubMed

    Shockney, Lillie D

    2010-08-01

    The role of nurses in patient navigation has evolved over more than four decades. Navigators in cancer care can guide patients through the physical, emotional, and financial challenges that come with a diagnosis of cancer and facilitate communication among healthcare providers. Navigation has the potential to improve patient outcomes and system efficiency. Oncology nurses are well suited to help patients with cancer navigate the healthcare system from diagnosis and treatment through survivorship and palliative care. PMID:20682496

  8. Detectable distance calculations for a visual navigation system using a scanning semiconductor laser with electronic pumping.

    PubMed

    Kaloshin, G A; Shishkin, S A

    2011-07-10

    Results of detectable distance calculations for a visual navigation system based on a scanning semiconductor laser with electronic pumping (SSLEP) are presented. A semiconductor crystal in the laser is pumped with an electron beam, which is scanned across the crystal in the television-frame scan mode. The navigation system forms three orientation sectors with radiation wavelengths λ=0.52, 0.57, and 0.63 μm. Herein, calculations of energetic characteristics of output radiation are performed for the navigation system described above. The calculations were performed using the Range software package, which considers microphysical and optical characteristics of aerosol and observation path geometry for the case of coastal environment. Finally, comparison of results of the calculations with data obtained in marine and flight experiments is presented. It is demonstrated that minor discrepancies between calculated and measured values of detectable distance are observed in the coastal haze at lower values of meteorological visibility range S(m). As S(m) increases, the discrepancies become significant. PMID:21743551

  9. Control and navigation system for a fixed-wing unmanned aerial vehicle

    NASA Astrophysics Data System (ADS)

    Zhai, Ruiyong; Zhou, Zhaoying; Zhang, Wendong; Sang, Shengbo; Li, Pengwei

    2014-03-01

    This paper presents a flight control and navigation system for a fixed-wing unmanned aerial vehicle (UAV) with low-cost micro-electro-mechanical system (MEMS) sensors. The system is designed under the inner loop and outer loop strategy. The trajectory tracking navigation loop is the outer loop of the attitude loop, while the attitude control loop is the outer loop of the stabilization loop. The proportional-integral-derivative (PID) control was adopted for stabilization and attitude control. The three-dimensional (3D) trajectory tracking control of a UAV could be approximately divided into lateral control and longitudinal control. The longitudinal control employs traditional linear PID feedback to achieve the desired altitude of the UAV, while the lateral control uses a non-linear control method to complete the desired trajectory. The non-linear controller can automatically adapt to ground velocity change, which is usually caused by gust disturbance, thus the UAV has good wind resistance characteristics. Flight tests and survey missions were carried out with our self-developed delta fixed-wing UAV and MEMS-based autopilot to confirm the effectiveness and practicality of the proposed navigation method.

  10. Evaluation of the navigation performance of shipboard-VTOL-landing guidance systems

    NASA Technical Reports Server (NTRS)

    Mcgee, L. A.; Paulk, C. H., Jr.; Steck, S. A.; Schmidt, S. F.; Merz, A. W.

    1979-01-01

    The objective of this study was to explore the performance of a VTOL aircraft landing approach navigation system that receives data (1) from either a microwave scanning beam (MSB) or a radar-transponder (R-T) landing guidance system, and (2) information data-linked from an aviation facility ship. State-of-the-art low-cost-aided inertial techniques and variable gain filters were used in the assumed navigation system. Compensation for ship motion was accomplished by a landing pad deviation vector concept that is a measure of the landing pad's deviation from its calm sea location. The results show that the landing guidance concepts were successful in meeting all of the current Navy navigation error specifications, provided that vector magnitude of the allowable error, rather than the error in each axis, is a permissible interpretation of acceptable performance. The success of these concepts, however, is strongly dependent on the distance measuring equipment bias. In addition, the 'best possible' closed-loop tracking performance achievable with the assumed point-mass VTOL aircraft guidance concept is demonstrated.

  11. Observability and performance analysis of integrated GPS/INS navigation systems

    NASA Astrophysics Data System (ADS)

    Shao, Yunfeng

    This primary objective of this thesis is to analyze the performance and observability characteristics of integrated navigation systems which fuse the information from the Global Positioning System (GPS) and Inertial Navigation Systems (INS) of varying quality. It is shown that INS output error characteristics affect the notion of observability with these systems. More specifically; it is shown that when INS sensor quality is low, the traditional metrics of deterministic and stochastic observability are incomplete metrics to describe the system performance. Accordingly, a new metric as well as detailed trade study results that characterize the observability of GPS/INS fusion filter which use low quality inertial sensors is developed. A secondary objective of this thesis is to evaluate the use of an integrated GPS/INS system in two aviation applications of significant current interest. The first application is about monitoring and mitigating the impact of structural flexure of an aircraft carrier which is he host of the GPS-based landing system known as Joint Precision Approach and Landing Systems (JPALS). A mathematic error model is developed and validated using experimental ship motion data. The second application is that of checking the integrity of the GPS signal used in GPS-based landing systems such as JPALS and other landing systems envisioned for future use in commercial aviation. An inertial aided Receiver Autonomous Integrity Monitoring (RAIM) algorithm is designed and its performance improvements with inertial aiding are quantified.

  12. System for controlling air-fuel ratio

    SciTech Connect

    Morozumi, T.

    1982-09-14

    A system for controlling the air-fuel ratio for an internal combustion engine having an induction passage, an exhaust passage , a choke valve in the induction passage, an automatic choke device comprising a positive temperature coefficient (Ptc) heater and a bimetal element connected to the choke valve, a detector for detecting the concentration of a constituent of exhaust gases passing through the exhaust passage, an electronic control circuit, an on-off type electromagnetic valve actuated by the output signal from the electronic control circuit for correcting the air-fuel ratio of the air-fuel mixture supplied by an airfuel mixture supplier, and means for actuating the on-off type electromagnetic valve at a fixed duty ratio during cold engine operation. The electronic control circuit comprises a vacuum sensor for converting the amount of the induced air to an electric quantity, an engine temperature detector for converting the engine temperature to an electric quantity, a first calculating circuit for producing a proper desired air-fuel mixture ratio signal from the output signals of the vacuum sensor and of the engine temperature detector, and a second calculation circuit for producing an actual air-fuel ratio signal from output signals of the vacuum sensor and of the ptc heater. A summing circuit for summing the proper air-fuel ratio signal and the actual air-fuel ratio signal produces a pulse duty ratio correcting signal which is applied to the electronic control circuit for correcting the fixed duty ratio.

  13. 30 CFR 75.1730 - Compressed air; general; compressed air systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Compressed air; general; compressed air systems... Compressed air; general; compressed air systems. (a) All pressure vessels shall be constructed, installed... Safety and Health district office. (b) Compressors and compressed-air receivers shall be equipped...

  14. 30 CFR 75.1730 - Compressed air; general; compressed air systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Compressed air; general; compressed air systems... Compressed air; general; compressed air systems. (a) All pressure vessels shall be constructed, installed... Safety and Health district office. (b) Compressors and compressed-air receivers shall be equipped...

  15. 30 CFR 75.1730 - Compressed air; general; compressed air systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Compressed air; general; compressed air systems... Compressed air; general; compressed air systems. (a) All pressure vessels shall be constructed, installed... Safety and Health district office. (b) Compressors and compressed-air receivers shall be equipped...

  16. 30 CFR 75.1730 - Compressed air; general; compressed air systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Compressed air; general; compressed air systems... Compressed air; general; compressed air systems. (a) All pressure vessels shall be constructed, installed... Safety and Health district office. (b) Compressors and compressed-air receivers shall be equipped...

  17. 30 CFR 75.1730 - Compressed air; general; compressed air systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Compressed air; general; compressed air systems... Compressed air; general; compressed air systems. (a) All pressure vessels shall be constructed, installed... Safety and Health district office. (b) Compressors and compressed-air receivers shall be equipped...

  18. 49 CFR 570.57 - Air brake system and air-over-hydraulic brake subsystem.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 6 2010-10-01 2010-10-01 false Air brake system and air-over-hydraulic brake... STANDARDS Vehicles With GVWR of More Than 10,000 Pounds § 570.57 Air brake system and air-over-hydraulic brake subsystem. The following requirements apply to vehicles with air brake and...

  19. Definition study of land/sea civil user navigational location monitoring systems for NAVSTAR GPS: User requirements and systems concepts

    NASA Technical Reports Server (NTRS)

    Devito, D. M.

    1981-01-01

    A low-cost GPS civil-user mobile terminal whose purchase cost is substantially an order of magnitude less than estimates for the military counterpart is considered with focus on ground station requirements for position monitoring of civil users requiring this capability and the civil user navigation and location-monitoring requirements. Existing survey literature was examined to ascertain the potential users of a low-cost NAVSTAR receiver and to estimate their number, function, and accuracy requirements. System concepts are defined for low cost user equipments for in-situ navigation and the retransmission of low data rate positioning data via a geostationary satellite to a central computing facility.

  20. Loosely Coupled GPS-Aided Inertial Navigation System for Range Safety

    NASA Technical Reports Server (NTRS)

    Heatwole, Scott; Lanzi, Raymond J.

    2010-01-01

    The Autonomous Flight Safety System (AFSS) aims to replace the human element of range safety operations, as well as reduce reliance on expensive, downrange assets for launches of expendable launch vehicles (ELVs). The system consists of multiple navigation sensors and flight computers that provide a highly reliable platform. It is designed to ensure that single-event failures in a flight computer or sensor will not bring down the whole system. The flight computer uses a rules-based structure derived from range safety requirements to make decisions whether or not to destroy the rocket.

  1. The Development of the MSL Guidance, Navigation, and Control System for Entry, Descent, and Landing

    NASA Technical Reports Server (NTRS)

    San Martin, A. Miguel; Lee, Steven W.; Wong, Edward C.

    2013-01-01

    On August 5, 2012, the Mars Science Laboratory (MSL) mission successfully delivered the Curiosity rover to its intended target. It was the most complex and ambitious landing in the history of the red planet. A key component of the landing system, the requirements for which were driven by the mission ambitious science goals, was the Guidance, Navigation, and Control (GN&C) system. This paper will describe the technical challenges of the MSL GN&C system, the resulting architecture and design needed to meet those challenges, and the development process used for its implementation and testing.

  2. Integrated guidance, navigation and control verification plan primary flight system. [space shuttle avionics integration

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The verification process and requirements for the ascent guidance interfaces and the ascent integrated guidance, navigation and control system for the space shuttle orbiter are defined as well as portions of supporting systems which directly interface with the system. The ascent phase of verification covers the normal and ATO ascent through the final OMS-2 circularization burn (all of OPS-1), the AOA ascent through the OMS-1 burn, and the RTLS ascent through ET separation (all of MM 601). In addition, OPS translation verification is defined. Verification trees and roadmaps are given.

  3. Systems and Methods for Automated Vessel Navigation Using Sea State Prediction

    NASA Technical Reports Server (NTRS)

    Huntsberger, Terrance L. (Inventor); Rankin, Arturo (Inventor); Aghazarian, Hrand (Inventor); Howard, Andrew B. (Inventor); Reinhart, Rene Felix (Inventor)

    2015-01-01

    Systems and methods for sea state prediction and autonomous navigation in accordance with embodiments of the invention are disclosed. One embodiment of the invention includes a method of predicting a future sea state including generating a sequence of at least two 3D images of a sea surface using at least two image sensors, detecting peaks and troughs in the 3D images using a processor, identifying at least one wavefront in each 3D image based upon the detected peaks and troughs using the processor, characterizing at least one propagating wave based upon the propagation of wavefronts detected in the sequence of 3D images using the processor, and predicting a future sea state using at least one propagating wave characterizing the propagation of wavefronts in the sequence of 3D images using the processor. Another embodiment includes a method of autonomous vessel navigation based upon a predicted sea state and target location.

  4. Indoor navigation by people with visual impairment using a digital sign system.

    PubMed

    Legge, Gordon E; Beckmann, Paul J; Tjan, Bosco S; Havey, Gary; Kramer, Kevin; Rolkosky, David; Gage, Rachel; Chen, Muzi; Puchakayala, Sravan; Rangarajan, Aravindhan

    2013-01-01

    There is a need for adaptive technology to enhance indoor wayfinding by visually-impaired people. To address this need, we have developed and tested a Digital Sign System. The hardware and software consist of digitally-encoded signs widely distributed throughout a building, a handheld sign-reader based on an infrared camera, image-processing software, and a talking digital map running on a mobile device. Four groups of subjects-blind, low vision, blindfolded sighted, and normally sighted controls-were evaluated on three navigation tasks. The results demonstrate that the technology can be used reliably in retrieving information from the signs during active mobility, in finding nearby points of interest, and following routes in a building from a starting location to a destination. The visually impaired subjects accurately and independently completed the navigation tasks, but took substantially longer than normally sighted controls. This fully functional prototype system demonstrates the feasibility of technology enabling independent indoor navigation by people with visual impairment. PMID:24116156

  5. Precision targeting of liver lesions with a needle-based soft tissue navigation system.

    PubMed

    Maier-Hein, L; Pianka, F; Seitel, A; Müller, S A; Tekbas, A; Seitel, M; Wolf, I; Schmied, B M; Meinzer, H P

    2007-01-01

    In this study, we assessed the targeting precision of a previously reported needle-based soft tissue navigation system. For this purpose, we implanted 10 2-ml agar nodules into three pig livers as tumor models, and two of the authors used the navigation system to target the center of gravity of each nodule. In order to obtain a realistic setting, we mounted the livers onto a respiratory liver motion simulator that models the human body. For each targeting procedure, we simulated the liver biopsy workflow, consisting of four steps: preparation, trajectory planning, registration, and navigation. The lesions were successfully hit in all 20 trials. The final distance between the applicator tip and the center of gravity of the lesion was determined from control computed tomography (CT) scans and was 3.5 +/- 1.1 mm on average. Robust targeting precision of this order of magnitude would significantly improve the clinical treatment standard for various CT-guided minimally invasive interventions in the liver. PMID:18044551

  6. Indoor Navigation by People with Visual Impairment Using a Digital Sign System

    PubMed Central

    Legge, Gordon E.; Beckmann, Paul J.; Tjan, Bosco S.; Havey, Gary; Kramer, Kevin; Rolkosky, David; Gage, Rachel; Chen, Muzi; Puchakayala, Sravan; Rangarajan, Aravindhan

    2013-01-01

    There is a need for adaptive technology to enhance indoor wayfinding by visually-impaired people. To address this need, we have developed and tested a Digital Sign System. The hardware and software consist of digitally-encoded signs widely distributed throughout a building, a handheld sign-reader based on an infrared camera, image-processing software, and a talking digital map running on a mobile device. Four groups of subjects—blind, low vision, blindfolded sighted, and normally sighted controls—were evaluated on three navigation tasks. The results demonstrate that the technology can be used reliably in retrieving information from the signs during active mobility, in finding nearby points of interest, and following routes in a building from a starting location to a destination. The visually impaired subjects accurately and independently completed the navigation tasks, but took substantially longer than normally sighted controls. This fully functional prototype system demonstrates the feasibility of technology enabling independent indoor navigation by people with visual impairment. PMID:24116156

  7. Long-term evolution of the inclined geosynchronous orbit in Beidou Navigation Satellite System

    NASA Astrophysics Data System (ADS)

    Tang, Jingshi; Hou, Xiyun; Liu, Lin

    2016-07-01

    China's Beidou Navigation Satellite System (BDS), unlike other navigation satellite systems, uses several inclined geosynchronous orbits (IGSO) to enhance the accuracy of regional or global navigation. In order to maintain a safe space environment in the vicinity of its operational orbit, it is necessary that the decommissioned satellites be well disposed of. Following up the study on the specific BDS IGSO satellites in the previous COSPAR Scientific Assembly, we now extend the study to understand the underlying dynamics and discuss the long-term evolution of such orbits from a more general perspective. In this paper, we first theoretically analyze the problem using simplified models of 1 and 2 degrees of freedoms (1-/2-dof). Then we extensively investigate the numerically propagated orbits for 200 and 1000 years, applying the results from these simplified models and seeking proper explanations for the underlying dynamics. We especially focus on the eccentricity evolution, which is a major concern regarding the collision hazard. We expect to understand the underlying dynamics governing the long-term evolution of BDS IGSO and gain helpful insight into future disposal strategies.

  8. On-the-fly Locata/inertial navigation system integration for precise maritime application

    NASA Astrophysics Data System (ADS)

    Jiang, Wei; Li, Yong; Rizos, Chris

    2013-10-01

    The application of Global Navigation Satellite System (GNSS) technology has meant that marine navigators have greater access to a more consistent and accurate positioning capability than ever before. However, GNSS may not be able to meet all emerging navigation performance requirements for maritime applications with respect to service robustness, accuracy, integrity and availability. In particular, applications in port areas (for example automated docking) and in constricted waterways, have very stringent performance requirements. Even when an integrated inertial navigation system (INS)/GNSS device is used there may still be performance gaps. GNSS signals are easily blocked or interfered with, and sometimes the satellite geometry may not be good enough for high accuracy and high reliability applications. Furthermore, the INS accuracy degrades rapidly during GNSS outages. This paper investigates the use of a portable ground-based positioning system, known as ‘Locata’, which was integrated with an INS, to provide accurate navigation in a marine environment without reliance on GNSS signals. An ‘on-the-fly’ Locata resolution algorithm that takes advantage of geometry change via an extended Kalman filter is proposed in this paper. Single-differenced Locata carrier phase measurements are utilized to achieve accurate and reliable solutions. A ‘loosely coupled’ decentralized Locata/INS integration architecture based on the Kalman filter is used for data processing. In order to evaluate the system performance, a field trial was conducted on Sydney Harbour. A Locata network consisting of eight Locata transmitters was set up near the Sydney Harbour Bridge. The experiment demonstrated that the Locata on-the-fly (OTF) algorithm is effective and can improve the system accuracy in comparison with the conventional ‘known point initialization’ (KPI) method. After the OTF and KPI comparison, the OTF Locata/INS integration is then assessed further and its performance

  9. The Development of a Simulator System and Hardware Test Bed for Deep Space X-Ray Navigation

    NASA Astrophysics Data System (ADS)

    Doyle, Patrick T.

    2013-03-01

    Currently, there is a considerable interest in developing technologies that will allow using photon measurements from celestial x-ray sources for deep space navigation. The impetus for this is that many envisioned future space missions will require spacecraft to have autonomous navigation capabilities. For missions close to Earth, Global Navigation Satellite Systems (GNSS) such as GPS are readily available for use, but for missions far from Earth, other alternatives must be provided. While existing systems such as the Deep Space Network (DSN) can be used, latencies associated with servicing a fleet of vehicles may not be compatible with some autonomous operations requiring timely updates of their navigation solution. Because of their somewhat predictable emissions, pulsars are the ideal candidates for x-ray sources that can be used to provide key parameters for navigation. Algorithms and simulation tools that will enable designing and analyzing x-ray navigation concepts are presented. The development of a compact x-ray detector system is pivotal to the eventual deployment of such navigation systems. Therefore, results of a high altitude balloon test to evaluate the design of a compact x-ray detector system are described as well.

  10. Monte-Carlo Simulation for Accuracy Assessment of a Single Camera Navigation System

    NASA Astrophysics Data System (ADS)

    Bethmann, F.; Luhmann, T.

    2012-07-01

    The paper describes a simulation-based optimization of an optical tracking system that is used as a 6DOF navigation system for neurosurgery. Compared to classical system used in clinical navigation, the presented system has two unique properties: firstly, the system will be miniaturized and integrated into an operating microscope for neurosurgery; secondly, due to miniaturization a single camera approach has been designed. Single camera techniques for 6DOF measurements show a special sensitivity against weak geometric configurations between camera and object. In addition, the achievable accuracy potential depends significantly on the geometric properties of the tracked objects (locators). Besides quality and stability of the targets used on the locator, their geometric configuration is of major importance. In the following the development and investigation of a simulation program is presented which allows for the assessment and optimization of the system with respect to accuracy. Different system parameters can be altered as well as different scenarios indicating the operational use of the system. Measurement deviations are estimated based on the Monte-Carlo method. Practical measurements validate the correctness of the numerical simulation results.

  11. A Google Glass navigation system for ultrasound and fluorescence dual-mode image-guided surgery

    NASA Astrophysics Data System (ADS)

    Zhang, Zeshu; Pei, Jing; Wang, Dong; Hu, Chuanzhen; Ye, Jian; Gan, Qi; Liu, Peng; Yue, Jian; Wang, Benzhong; Shao, Pengfei; Povoski, Stephen P.; Martin, Edward W.; Yilmaz, Alper; Tweedle, Michael F.; Xu, Ronald X.

    2016-03-01

    Surgical resection remains the primary curative intervention for cancer treatment. However, the occurrence of a residual tumor after resection is very common, leading to the recurrence of the disease and the need for re-resection. We develop a surgical Google Glass navigation system that combines near infrared fluorescent imaging and ultrasonography for intraoperative detection of sites of tumor and assessment of surgical resection boundaries, well as for guiding sentinel lymph node (SLN) mapping and biopsy. The system consists of a monochromatic CCD camera, a computer, a Google Glass wearable headset, an ultrasonic machine and an array of LED light sources. All the above components, except the Google Glass, are connected to a host computer by a USB or HDMI port. Wireless connection is established between the glass and the host computer for image acquisition and data transport tasks. A control program is written in C++ to call OpenCV functions for image calibration, processing and display. The technical feasibility of the system is tested in both tumor simulating phantoms and in a human subject. When the system is used for simulated phantom resection tasks, the tumor boundaries, invisible to the naked eye, can be clearly visualized with the surgical Google Glass navigation system. This system has also been used in an IRB approved protocol in a single patient during SLN mapping and biopsy in the First Affiliated Hospital of Anhui Medical University, demonstrating the ability to successfully localize and resect all apparent SLNs. In summary, our tumor simulating phantom and human subject studies have demonstrated the technical feasibility of successfully using the proposed goggle navigation system during cancer surgery.

  12. Advanced Overfire Air system and design

    SciTech Connect

    Gene berkau

    2004-07-30

    The objective of the proposed project is to design, install and optimize a prototype advanced tangential OFA air system on two mass feed stoker boilers that can burn coal, biomass and a mixture of these fuels. The results will be used to develop a generalized methodology for retrofit designs and optimization of advanced OFA air systems. The advanced OFA system will reduce particulate and NOx emissions and improve overall efficiency by reducing carbon in the ash and excess oxygen. The advanced OFA will also provide capabilities for carrying full load and improved load following and transitional operations.

  13. Inconsistencies between navigation data and radiographs in total knee arthroplasty are system-dependent and affect coronal alignment

    PubMed Central

    Carli, Alberto; Aoude, Ahmed; Reuven, Avishai; Matache, Bogdan; Antoniou, John; Zukor, David J.

    2014-01-01

    Background Few studies have compared the effect of different computer navigation systems on postoperative alignment in patients who have had total knee arthroplasty (TKA). We examined 2 computed tomography (CT)–free computer navigation systems by comparing the accuracy of intraoperative measurements to postoperative alignment. Methods Patients underwent unilateral TKA performed by a single surgeon using 1 of 2 CT-free navigation systems. We compared final intraoperative tibial and femoral coronal angles and mechanical axis with the same angles measured on standing postoperative radiographs. Results Groups of 31 and 50 patients underwent TKA with the 2 systems, respectively. We noted a significant difference in the coronal tibial implant angle (1.29º ± 1.35º) and in the mechanical axis (1.59º ± 2.36º) for one navigation system (both p < 0.001), while only the coronal tibial implant angle showed a significant difference (1.17º ± 1.65º, p < 0.001) for the second system. The number of radiographic outliers also significantly differed. A significantly higher proportion (32%; p < 0.01) of patients in the second cohort exhibited unacceptable malalignment compared with the first cohort (24%). Conclusion Navigation systems for TKA continue to increase in sophistication and popularity. Owing to the significant difference in the proportion of alignment outliers in the 2 navigation systems tested in this study, orthopedic surgeons should not consider all TKA navigation systems equivalent. Additional investigations are needed to compare the accuracy of a variety of CT-free and CT-based navigation systems and to confirm our finding that accuracy is system-dependent. PMID:25265103

  14. Implementation of a Global Navigation Satellite System (GNSS) Augmentation to Tsunami Early Warning Systems

    NASA Astrophysics Data System (ADS)

    LaBrecque, John

    2016-04-01

    The Global Geodetic Observing System has issued a Call for Participation to research scientists, geodetic research groups and national agencies in support of the implementation of the IUGG recommendation for a Global Navigation Satellite System (GNSS) Augmentation to Tsunami Early Warning Systems. The call seeks to establish a working group to be a catalyst and motivating force for the definition of requirements, identification of resources, and for the encouragement of international cooperation in the establishment, advancement, and utilization of GNSS for Tsunami Early Warning. During the past fifteen years the populations of the Indo-Pacific region experienced a series of mega-thrust earthquakes followed by devastating tsunamis that claimed nearly 300,000 lives. The future resiliency of the region will depend upon improvements to infrastructure and emergency response that will require very significant investments from the Indo-Pacific economies. The estimation of earthquake moment magnitude, source mechanism and the distribution of crustal deformation are critical to rapid tsunami warning. Geodetic research groups have demonstrated the use of GNSS data to estimate earthquake moment magnitude, source mechanism and the distribution of crustal deformation sufficient for the accurate and timely prediction of tsunamis generated by mega-thrust earthquakes. GNSS data have also been used to measure the formation and propagation of tsunamis via ionospheric disturbances acoustically coupled to the propagating surface waves; thereby providing a new technique to track tsunami propagation across ocean basins, opening the way for improving tsunami propagation models, and providing accurate warning to communities in the far field. These two new advancements can deliver timely and accurate tsunami warnings to coastal communities in the near and far field of mega-thrust earthquakes. This presentation will present the justification for and the details of the GGOS Call for

  15. Multiple-Agent Air/Ground Autonomous Exploration Systems

    NASA Technical Reports Server (NTRS)

    Fink, Wolfgang; Chao, Tien-Hsin; Tarbell, Mark; Dohm, James M.

    2007-01-01

    Autonomous systems of multiple-agent air/ground robotic units for exploration of the surfaces of remote planets are undergoing development. Modified versions of these systems could be used on Earth to perform tasks in environments dangerous or inaccessible to humans: examples of tasks could include scientific exploration of remote regions of Antarctica, removal of land mines, cleanup of hazardous chemicals, and military reconnaissance. A basic system according to this concept (see figure) would include a unit, suspended by a balloon or a blimp, that would be in radio communication with multiple robotic ground vehicles (rovers) equipped with video cameras and possibly other sensors for scientific exploration. The airborne unit would be free-floating, controlled by thrusters, or tethered either to one of the rovers or to a stationary object in or on the ground. Each rover would contain a semi-autonomous control system for maneuvering and would function under the supervision of a control system in the airborne unit. The rover maneuvering control system would utilize imagery from the onboard camera to navigate around obstacles. Avoidance of obstacles would also be aided by readout from an onboard (e.g., ultrasonic) sensor. Together, the rover and airborne control systems would constitute an overarching closed-loop control system to coordinate scientific exploration by the rovers.

  16. Reliable Alignment in Total Knee Arthroplasty by the Use of an iPod-Based Navigation System

    PubMed Central

    Koenen, Paola; Schneider, Marco M.; Fröhlich, Matthias; Driessen, Arne; Bouillon, Bertil; Bäthis, Holger

    2016-01-01

    Axial alignment is one of the main objectives in total knee arthroplasty (TKA). Computer-assisted surgery (CAS) is more accurate regarding limb alignment reconstruction compared to the conventional technique. The aim of this study was to analyse the precision of the innovative navigation system DASH® by Brainlab and to evaluate the reliability of intraoperatively acquired data. A retrospective analysis of 40 patients was performed, who underwent CAS TKA using the iPod-based navigation system DASH. Pre- and postoperative axial alignment were measured on standardized radiographs by two independent observers. These data were compared with the navigation data. Furthermore, interobserver reliability was measured. The duration of surgery was monitored. The mean difference between the preoperative mechanical axis by X-ray and the first intraoperatively measured limb axis by the navigation system was 2.4°. The postoperative X-rays showed a mean difference of 1.3° compared to the final navigation measurement. According to radiographic measurements, 88% of arthroplasties had a postoperative limb axis within ±3°. The mean additional time needed for navigation was 5 minutes. We could prove very good precision for the DASH system, which is comparable to established navigation devices with only negligible expenditure of time compared to conventional TKA. PMID:27313898

  17. Navigated revision knee arthroplasty using a system designed for primary surgery.

    PubMed

    Massin, Philippe; Boyer, Patrick; Pernin, Jerome; Jeanrot, Cecile

    2008-07-01

    While navigation is now recognized as an efficient tool for improving femoro-tibial alignment of primary knee prostheses, its use in revision surgery has not yet been fully evaluated. We describe a procedure based on a bone morphing acquisition performed on the surface of the original implants, followed by a dependant bone cut sequence (tibia first). Using the current system, a preoperative CT-scan measurement of the original femoral component was required. Knee balancing was achieved using spacer blocks, with the trial tibial component and the original femoral component still in place. Preliminary experience from 19 cases, some with severe bone loss requiring reconstruction, is reported. A retrospective comparison to 10 non-navigated revision cases performed concomitantly by the same operating surgeon was carried out. Although there was no significant difference in the number of outliers for the two series, navigation appeared to be a valuable aid in reconstructing both bone extremities, while controlling the level of the joint line. However, definitive validation requires further prospective and comparative investigations in larger series. PMID:18622792

  18. A biologically inspired meta-control navigation system for the Psikharpax rat robot.

    PubMed

    Caluwaerts, K; Staffa, M; N'Guyen, S; Grand, C; Dollé, L; Favre-Félix, A; Girard, B; Khamassi, M

    2012-06-01

    A biologically inspired navigation system for the mobile rat-like robot named Psikharpax is presented, allowing for self-localization and autonomous navigation in an initially unknown environment. The ability of parts of the model (e.g. the strategy selection mechanism) to reproduce rat behavioral data in various maze tasks has been validated before in simulations. But the capacity of the model to work on a real robot platform had not been tested. This paper presents our work on the implementation on the Psikharpax robot of two independent navigation strategies (a place-based planning strategy and a cue-guided taxon strategy) and a strategy selection meta-controller. We show how our robot can memorize which was the optimal strategy in each situation, by means of a reinforcement learning algorithm. Moreover, a context detector enables the controller to quickly adapt to changes in the environment-recognized as new contexts-and to restore previously acquired strategy preferences when a previously experienced context is recognized. This produces adaptivity closer to rat behavioral performance and constitutes a computational proposition of the role of the rat prefrontal cortex in strategy shifting. Moreover, such a brain-inspired meta-controller may provide an advancement for learning architectures in robotics. PMID:22617382

  19. The Integrated Air Transportation System Evaluation Tool

    NASA Technical Reports Server (NTRS)

    Wingrove, Earl R., III; Hees, Jing; Villani, James A.; Yackovetsky, Robert E. (Technical Monitor)

    2002-01-01

    Throughout U.S. history, our nation has generally enjoyed exceptional economic growth, driven in part by transportation advancements. Looking forward 25 years, when the national highway and skyway systems are saturated, the nation faces new challenges in creating transportation-driven economic growth and wealth. To meet the national requirement for an improved air traffic management system, NASA developed the goal of tripling throughput over the next 20 years, in all weather conditions while maintaining safety. Analysis of the throughput goal has primarily focused on major airline operations, primarily through the hub and spoke system.However, many suggested concepts to increase throughput may operate outside the hub and spoke system. Examples of such concepts include the Small Aircraft Transportation System, civil tiltrotor, and improved rotorcraft. Proper assessment of the potential contribution of these technologies to the domestic air transportation system requires a modeling capability that includes the country's numerous smaller airports, acting as a fundamental component of the National Air space System, and the demand for such concepts and technologies. Under this task for NASA, the Logistics Management Institute developed higher fidelity demand models that capture the interdependence of short-haul air travel with other transportation modes and explicitly consider the costs of commercial air and other transport modes. To accomplish this work, we generated forecasts of the distribution of general aviation based aircraft and GA itinerant operations at each of nearly 3.000 airport based on changes in economic conditions and demographic trends. We also built modules that estimate the demand for travel by different modes, particularly auto, commercial air, and GA. We examined GA demand from two perspectives: top-down and bottom-up, described in detail.

  20. Precise Real-Time Low-Earth-Orbiter Navigation With the Global Positioning System (GPS)

    NASA Astrophysics Data System (ADS)

    Bertiger, W.; Haines, B.; Kuang, D.; Lough, M.; Lichten, S.; Muellerschoen, R. J.; Vigue-Rodi, Y.; Wu, S.

    1999-01-01

    Technology currently is available to support real-time onboard knowledge of the position of a low Earth orbiter at the 5- to 15-m level using the civilian broadcast Global Positioning System (GPS) signal with sophisticated models and filtering techniques onboard the spacecraft. Without these techniques, the standard positioning service yields 50 to 100 m with the current level of selective availability (SA). Proposed augmentations and/or enhancements to the GPS system will make rms accuracies of from 10 centimeters to a few decimeters available to the real-time onboard user. Presently, near-real-time processing of GPS tracking data can routinely provide low-Earth-orbit determination accuracy at the level of 5 cm. Such processing systems can, in fact, be fully automated; recent results from the Jet Propulsion Laboratory (JPL), where ongoing daily processing of low Earth GPS tracking data has been undertaken for several years, are presented in this article, showing orbit determination accuracies at the sub-10-cm level. At the present time, such solutions can be produced with about a 10-h delay after real time, but recent improvements in JPL's processing system soon will enable turnaround at the 1-h level or better for such precise orbit determination. We anticipate that orbit determination at the 1-cm-accuracy level will be demonstrated, with some refinements to the current system, in the not too distant future. Continuing enhancements in the automation of data retrieval and precise orbit processing will result in continuing decreases in latency for ground-based generation of precise orbit products for Earth orbiters. Such ephemerides can be propagated slightly ahead to provide real-time knowledge. However, there are advantages to an onboard, real-time orbit-determination capability. These include unique mission requirements (military, strategic, and scientific), as well as the potential to dramatically lower navigation operations costs through the enabling of a