Science.gov

Sample records for air navigation tacan

  1. TACAN operational description for the space shuttle orbital flight test program

    NASA Technical Reports Server (NTRS)

    Hughes, C. L.; Hudock, P. J.

    1979-01-01

    The TACAN subsystems (three TACAN transponders, six antennas, a subsystem operating program, and redundancy management software in a tutorial form) are discussed and the interaction between these subsystems and the shuttle navigation system are identified. The use of TACAN during the first space transportation system (STS-1), is followed by a brief functional description of the TACAN hardware, then proceeds to cover the software units with a view to the STS-1, and ends with a discussion on the shuttle usage of the TACAN data and anticipated performance.

  2. Air Navigation. Aerospace Education II.

    ERIC Educational Resources Information Center

    Gromling, F. C.; Mackin, T. E.

    This book, which can be used only in the Air Force ROTC program, elucidates ideas about air navigation techniques. The book is divided into two main parts. The first part describes the earth's surface and different components of navigation. A chapter on charts provides ideas about different kinds of charts and a variety of symbols used in…

  3. Operational Use of GPS Navigation for Space Shuttle Entry

    NASA Technical Reports Server (NTRS)

    Goodman, John L.; Propst, Carolyn A.

    2008-01-01

    The STS-118 flight of the Space Shuttle Endeavour was the first shuttle mission flown with three Global Positioning System (GPS) receivers in place of the three legacy Tactical Air Navigation (TACAN) units. This marked the conclusion of a 15 year effort involving procurement, missionization, integration, and flight testing of a GPS receiver and a parallel effort to formulate and implement shuttle computer software changes to support GPS. The use of GPS data from a single receiver in parallel with TACAN during entry was successfully demonstrated by the orbiters Discovery and Atlantis during four shuttle missions in 2006 and 2007. This provided the confidence needed before flying the first all GPS, no TACAN flight with Endeavour. A significant number of lessons were learned concerning the integration of a software intensive navigation unit into a legacy avionics system. These lessons have been taken into consideration during vehicle design by other flight programs, including the vehicle that will replace the Space Shuttle, Orion.

  4. Space Shuttle Orbiter entry through landing navigation

    NASA Technical Reports Server (NTRS)

    Ewell, J. J., Jr.

    1982-01-01

    The Space Shuttle Orbiter navigation system must be capable of determining its position and velocity throughout a variety of operational regimes. The design and operation of the entry through landing navigation system is described as it operates during a nominal end of mission from the orbital coasting phase throughout atmospheric flight and landing. Design and operation of the Kalman filter is described. Stabilization of the altitude channel prior to acquisition of external measurement data is described. Utilization of the Tactical Air Navigation (TACAN), barometric altimeter, and Microwave Scan Beam Landing System external measurement data is described. A comparison is made between predicted performance and the navigation accuracy observed during flight.

  5. Space Shuttle Orbiter descent navigation

    NASA Technical Reports Server (NTRS)

    Montez, M. N.; Madden, M. F.

    1982-01-01

    The entry operational sequence (OPS 3) begins approximately 2 hours prior to the deorbit maneuver and continues through atmospheric entry, terminal area energy management (TAEM), approach and landing, and rollout. During this flight phase, the navigation state vector is estimated by the Space Shuttle Orbiter onboard navigation system. This estimate is computed using a six-element sequential Kalman filter, which blends inertial measurement unit (IMU) delta-velocity data with external navaid data. The external navaids available to the filter are tactical air navigation (TACAN), barometric altimeter, and microwave scan beam landing system (MSBLS). Attention is given to the functional design of the Orbiter navigation system, the descent navigation sensors and measurement processing, predicted Kalman gains, correlation coefficients, and current flights navigation performance.

  6. 43 CFR 2651.6 - Airport and air navigation facilities.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Airport and air navigation facilities... Village Selections § 2651.6 Airport and air navigation facilities. (a) Every airport and air navigation.... (b) The surface of all other lands of existing airport sites, airway beacons, or other...

  7. 43 CFR 2651.6 - Airport and air navigation facilities.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Airport and air navigation facilities... Village Selections § 2651.6 Airport and air navigation facilities. (a) Every airport and air navigation.... (b) The surface of all other lands of existing airport sites, airway beacons, or other...

  8. 43 CFR 2651.6 - Airport and air navigation facilities.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Airport and air navigation facilities... Village Selections § 2651.6 Airport and air navigation facilities. (a) Every airport and air navigation.... (b) The surface of all other lands of existing airport sites, airway beacons, or other...

  9. 43 CFR 2651.6 - Airport and air navigation facilities.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Airport and air navigation facilities... Village Selections § 2651.6 Airport and air navigation facilities. (a) Every airport and air navigation.... (b) The surface of all other lands of existing airport sites, airway beacons, or other...

  10. 47 CFR 22.365 - Antenna structures; air navigation safety.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 2 2014-10-01 2014-10-01 false Antenna structures; air navigation safety. 22... Antenna structures; air navigation safety. Licensees that own their antenna structures must not allow these antenna structures to become a hazard to air navigation. In general, antenna structure owners...

  11. 47 CFR 22.365 - Antenna structures; air navigation safety.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 2 2011-10-01 2011-10-01 false Antenna structures; air navigation safety. 22... Antenna structures; air navigation safety. Licensees that own their antenna structures must not allow these antenna structures to become a hazard to air navigation. In general, antenna structure owners...

  12. 47 CFR 22.365 - Antenna structures; air navigation safety.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Antenna structures; air navigation safety. 22... Antenna structures; air navigation safety. Licensees that own their antenna structures must not allow these antenna structures to become a hazard to air navigation. In general, antenna structure owners...

  13. 47 CFR 22.365 - Antenna structures; air navigation safety.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 2 2012-10-01 2012-10-01 false Antenna structures; air navigation safety. 22... Antenna structures; air navigation safety. Licensees that own their antenna structures must not allow these antenna structures to become a hazard to air navigation. In general, antenna structure owners...

  14. 47 CFR 22.365 - Antenna structures; air navigation safety.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 2 2013-10-01 2013-10-01 false Antenna structures; air navigation safety. 22... Antenna structures; air navigation safety. Licensees that own their antenna structures must not allow these antenna structures to become a hazard to air navigation. In general, antenna structure owners...

  15. Autonomous navigation system. [gyroscopic pendulum for air navigation

    NASA Technical Reports Server (NTRS)

    Merhav, S. J. (Inventor)

    1981-01-01

    An inertial navigation system utilizing a servo-controlled two degree of freedom pendulum to obtain specific force components in the locally level coordinate system is described. The pendulum includes a leveling gyroscope and an azimuth gyroscope supported on a two gimbal system. The specific force components in the locally level coordinate system are converted to components in the geographical coordinate system by means of a single Euler transformation. The standard navigation equations are solved to determine longitudinal and lateral velocities. Finally, vehicle position is determined by a further integration.

  16. 132. STANDARD NAVAL AIR STATIONS CELESTIAL NAVIGATION, ELEVATIONS AND SECTIONS, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    132. STANDARD NAVAL AIR STATIONS CELESTIAL NAVIGATION, ELEVATIONS AND SECTIONS, BUDOCKS, OCTOBER 14, 1943. QP ACC 9689. - Quonset Point Naval Air Station, Roger Williams Way, North Kingstown, Washington County, RI

  17. 47 CFR 24.55 - Antenna structures; air navigation safety.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 2 2014-10-01 2014-10-01 false Antenna structures; air navigation safety. 24... SERVICES PERSONAL COMMUNICATIONS SERVICES Technical Standards § 24.55 Antenna structures; air navigation safety. Licensees that own their antenna structures must not allow these antenna structures to become...

  18. 47 CFR 27.56 - Antenna structures; air navigation safety.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 2 2014-10-01 2014-10-01 false Antenna structures; air navigation safety. 27... SERVICES MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES Technical Standards § 27.56 Antenna structures; air navigation safety. A licensee that owns its antenna structure(s) must not allow such antenna structure(s)...

  19. 47 CFR 24.55 - Antenna structures; air navigation safety.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 2 2013-10-01 2013-10-01 false Antenna structures; air navigation safety. 24... SERVICES PERSONAL COMMUNICATIONS SERVICES Technical Standards § 24.55 Antenna structures; air navigation safety. Licensees that own their antenna structures must not allow these antenna structures to become...

  20. 47 CFR 27.56 - Antenna structures; air navigation safety.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 2 2013-10-01 2013-10-01 false Antenna structures; air navigation safety. 27... SERVICES MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES Technical Standards § 27.56 Antenna structures; air navigation safety. A licensee that owns its antenna structure(s) must not allow such antenna structure(s)...

  1. 47 CFR 24.55 - Antenna structures; air navigation safety.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 2 2011-10-01 2011-10-01 false Antenna structures; air navigation safety. 24... SERVICES PERSONAL COMMUNICATIONS SERVICES Technical Standards § 24.55 Antenna structures; air navigation safety. Licensees that own their antenna structures must not allow these antenna structures to become...

  2. 47 CFR 27.56 - Antenna structures; air navigation safety.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 2 2012-10-01 2012-10-01 false Antenna structures; air navigation safety. 27... SERVICES MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES Technical Standards § 27.56 Antenna structures; air navigation safety. A licensee that owns its antenna structure(s) must not allow such antenna structure(s)...

  3. 47 CFR 27.56 - Antenna structures; air navigation safety.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Antenna structures; air navigation safety. 27... SERVICES MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES Technical Standards § 27.56 Antenna structures; air navigation safety. A licensee that owns its antenna structure(s) must not allow such antenna structure(s)...

  4. 47 CFR 24.55 - Antenna structures; air navigation safety.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 2 2012-10-01 2012-10-01 false Antenna structures; air navigation safety. 24... SERVICES PERSONAL COMMUNICATIONS SERVICES Technical Standards § 24.55 Antenna structures; air navigation safety. Licensees that own their antenna structures must not allow these antenna structures to become...

  5. 47 CFR 24.55 - Antenna structures; air navigation safety.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Antenna structures; air navigation safety. 24... SERVICES PERSONAL COMMUNICATIONS SERVICES Technical Standards § 24.55 Antenna structures; air navigation safety. Licensees that own their antenna structures must not allow these antenna structures to become...

  6. 47 CFR 27.56 - Antenna structures; air navigation safety.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 2 2011-10-01 2011-10-01 false Antenna structures; air navigation safety. 27... SERVICES MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES Technical Standards § 27.56 Antenna structures; air navigation safety. A licensee that owns its antenna structure(s) must not allow such antenna structure(s)...

  7. Development of visual-display aid to air navigation

    NASA Technical Reports Server (NTRS)

    Matcovich, T. J.

    1973-01-01

    The developments are discussed in the design of a liquid-crystal, visual display, air navigation aid, which uses two VOR signals to locate the aircraft. The system concepts, liquid crystal materials, stability tests, and the electronic system are described. It is concluded that a navigational aid of this type is technically feasible, but not at the projected low cost.

  8. Development and flight tests of a Kalman filter for navigation during terminal area and landing operations

    NASA Technical Reports Server (NTRS)

    Schmidt, S. F.; Flanagan, P. F.; Sorenson, J. A.

    1978-01-01

    A Kalman filter for aircraft terminal area and landing navigation was implemented and flight tested in the NASA Ames STOLAND avionics computer onboard a Twin Otter aircraft. This system combines navaid measurements from TACAN, MODILS, air data, radar altimeter sensors along with measurements from strap-down accelerometer and attitude angle sensors. The flight test results demonstrate that the Kalman filter provides improved estimates of the aircraft position and velocity as compared with estimates from the more standard complementary filter. The onboard computer implementation requirements to achieve this improved performance are discussed.

  9. 47 CFR 87.395 - Plan for the Security Control of Air Traffic and Air Navigation Aids (Short Title: SCATANA).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... and Air Navigation Aids (Short Title: SCATANA). 87.395 Section 87.395 Telecommunication FEDERAL... Communications § 87.395 Plan for the Security Control of Air Traffic and Air Navigation Aids (Short Title: SCATANA). (a) The Plan for the Security Control of Air Traffic and Air Navigation Aids (SCATANA)...

  10. 47 CFR 87.395 - Plan for the Security Control of Air Traffic and Air Navigation Aids (Short Title: SCATANA).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... and Air Navigation Aids (Short Title: SCATANA). 87.395 Section 87.395 Telecommunication FEDERAL... Communications § 87.395 Plan for the Security Control of Air Traffic and Air Navigation Aids (Short Title: SCATANA). (a) The Plan for the Security Control of Air Traffic and Air Navigation Aids (SCATANA)...

  11. 47 CFR 87.395 - Plan for the Security Control of Air Traffic and Air Navigation Aids (Short Title: SCATANA).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... and Air Navigation Aids (Short Title: SCATANA). 87.395 Section 87.395 Telecommunication FEDERAL... Communications § 87.395 Plan for the Security Control of Air Traffic and Air Navigation Aids (Short Title: SCATANA). (a) The Plan for the Security Control of Air Traffic and Air Navigation Aids (SCATANA)...

  12. 47 CFR 87.395 - Plan for the Security Control of Air Traffic and Air Navigation Aids (Short Title: SCATANA).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... and Air Navigation Aids (Short Title: SCATANA). 87.395 Section 87.395 Telecommunication FEDERAL... Communications § 87.395 Plan for the Security Control of Air Traffic and Air Navigation Aids (Short Title: SCATANA). (a) The Plan for the Security Control of Air Traffic and Air Navigation Aids (SCATANA)...

  13. 47 CFR 87.395 - Plan for the Security Control of Air Traffic and Air Navigation Aids (Short Title: SCATANA).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... and Air Navigation Aids (Short Title: SCATANA). 87.395 Section 87.395 Telecommunication FEDERAL... Communications § 87.395 Plan for the Security Control of Air Traffic and Air Navigation Aids (Short Title: SCATANA). (a) The Plan for the Security Control of Air Traffic and Air Navigation Aids (SCATANA)...

  14. Space Shuttle Navigation in the GPS Era

    NASA Technical Reports Server (NTRS)

    Goodman, John L.

    2001-01-01

    The Space Shuttle navigation architecture was originally designed in the 1970s. A variety of on-board and ground based navigation sensors and computers are used during the ascent, orbit coast, rendezvous, (including proximity operations and docking) and entry flight phases. With the advent of GPS navigation and tightly coupled GPS/INS Units employing strapdown sensors, opportunities to improve and streamline the Shuttle navigation process are being pursued. These improvements can potentially result in increased safety, reliability, and cost savings in maintenance through the replacement of older technologies and elimination of ground support systems (such as Tactical Air Control and Navigation (TACAN), Microwave Landing System (MLS) and ground radar). Selection and missionization of "off the shelf" GPS and GPS/INS units pose a unique challenge since the units in question were not originally designed for the Space Shuttle application. Various options for integrating GPS and GPS/INS units with the existing orbiter avionics system were considered in light of budget constraints, software quality concerns, and schedule limitations. An overview of Shuttle navigation methodology from 1981 to the present is given, along with how GPS and GPS/INS technology will change, or not change, the way Space Shuttle navigation is performed in the 21 5 century.

  15. Learning at Air Navigation Services after Initial Training

    ERIC Educational Resources Information Center

    Teperi, Anna-Maria; Leppanen, Anneli

    2010-01-01

    Purpose: This study aims to find out the means used for individual, group and organizational learning at work at one air navigation service provider after the initial training period. The study also aims to find out what practices need to be improved to enhance learning at work. Design/methodology/approach: The data for the study were collected…

  16. Testing Microwave Landing Systems With Satellite Navigation

    NASA Technical Reports Server (NTRS)

    Kiriazes, John J.

    1990-01-01

    Less time and equipment needed to perform tests. Satellite-based Global Positioning System (GPS) measures accuracy of microwave scanning-beam landing system (MSBLS) at airports used to support Shuttle landings. Provides time and three-dimensional information on position and velocity with unprecedented accuracy. Useful for testing other electronic navigation aids like LORAN, TACAN and microwave landing systems (MLS).

  17. 14 CFR 171.61 - Air navigation certificate: Revocation and termination.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Air navigation certificate: Revocation and... TRANSPORTATION (CONTINUED) NAVIGATIONAL FACILITIES NON-FEDERAL NAVIGATION FACILITIES True Lights § 171.61 Air navigation certificate: Revocation and termination. (a) Except as provided in paragraph (b) of this...

  18. 14 CFR 171.61 - Air navigation certificate: Revocation and termination.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Air navigation certificate: Revocation and... TRANSPORTATION (CONTINUED) NAVIGATIONAL FACILITIES NON-FEDERAL NAVIGATION FACILITIES True Lights § 171.61 Air navigation certificate: Revocation and termination. (a) Except as provided in paragraph (b) of this...

  19. 14 CFR 171.61 - Air navigation certificate: Revocation and termination.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Air navigation certificate: Revocation and... TRANSPORTATION (CONTINUED) NAVIGATIONAL FACILITIES NON-FEDERAL NAVIGATION FACILITIES True Lights § 171.61 Air navigation certificate: Revocation and termination. (a) Except as provided in paragraph (b) of this...

  20. GPS Auto-Navigation Design for Unmanned Air Vehicles

    NASA Technical Reports Server (NTRS)

    Nilsson, Caroline C. A.; Heinzen, Stearns N.; Hall, Charles E., Jr.; Chokani, Ndaona

    2003-01-01

    A GPS auto-navigation system is designed for Unmanned Air Vehicles. The objective is to enable the air vehicle to be used as a test-bed for novel flow control concepts. The navigation system uses pre-programmed GPS waypoints. The actual GPS position, heading, and velocity are collected by the flight computer, a PC104 system running in Real-Time Linux, and compared with the desired waypoint. The navigator then determines the necessity of a heading correction and outputs the correction in the form of a commanded bank angle, for a level coordinated turn, to the controller system. This controller system consists of 5 controller! (pitch rate PID, yaw damper, bank angle PID, velocity hold, and altitude hold) designed for a closed loop non-linear aircraft model with linear aerodynamic coefficients. The ability and accuracy of using GPS data, is validated by a GPS flight. The autopilots are also validated in flight. The autopilot unit flight validations show that the designed autopilots function as designed. The aircraft model, generated on Matlab SIMULINK is also enhanced by the flight data to accurately represent the actual aircraft.

  1. Air Navigation. Flying Training. AFM 51-40. NAVAIR 00-80V-49.

    ERIC Educational Resources Information Center

    Air Training Command, Randolph AFB, TX.

    This manual provides information on all phases of air navigation for navigators and student navigators in training. It develops the art of navigation from the simplest concepts to the most advanced procedures and techniques. The text contains explanations on how to measure, map, and chart the earth; how to use basic instruments to obtain…

  2. Semiotic evaluation of Lithuania military air navigation charts

    NASA Astrophysics Data System (ADS)

    Ovodas, Donatas; Česnulevičius, Algimantas

    2014-06-01

    Research of semiotic aspects Lithuanian military air navigation charts was based on the semantic, graphic and information load analysis. The aim of semantic analysis was to determine how the conventional cartographical symbols, used in air navigation charts, correspond with carto-linguistic and carto-semiotic requirements. The analysis of all the markings was performed complex and collected by questionnaire were interviewed various respondents: pilots, cartographers and other chart users. The researches seek two aims: evaluate information and graphical load of military air navigation charts. Information load evaluated to calculate all objects and phenomenon, which was in 25 cm² of map. Charts analysis showed that in low flight charts (LFC) average information load are 4 - 5 times richer than in the operational maps. Map signs optimization on LFC has to be managed very carefully, choosing signs that can reduce the load of information and helps for the information transfer process. Graphical load of maps evaluated of aeronautical maps is not great (5 - 12%) and does not require reduction the information load and generalization of charts. Air navigation charts analysis pointed that not all air navigation sings correspond carto-semiotic requirements and must be improved. The authors suggested some new sings for military air navigation chart, which are simpler, equivalent to human psychophysical perception criteria, creates faster communication and less load on the chart. Badania semiotycznych aspektów litewskich wojskowych map żeglugi powietrznej bazowały na semantycznej, graficznej i informacyjnej analizie treści tych map. Celem analizy semantycznej było określenie na ile tradycyjne symbole kartograficzne stosowane na mapach nawigacji lotniczej są zgodne z wymogami języka kartograficznego oraz zasadami stosowania znaków kartograficznych. Powyższe analizy przeprowadzono w sposób kompleksowy, informacje zebrano za pomocą ankiet, przeprowadzając wywiady w r

  3. Navigation systems for approach and landing of VTOL aircraft

    NASA Technical Reports Server (NTRS)

    Schmidt, S. F.; Mohr, R. L.

    1979-01-01

    The formulation and implementation of navigation systems used for research investigations in the V/STOLAND avionics system are described. The navigation systems prove position and velocity in a cartestian reference frame aligned with the runway. They use filtering techniques to combine the raw position data from navaids (e.g., TACAN, MLS) with data from onboard inertial sensors. The filtering techniques which use both complementary and Kalman filters, are described. The software for the navigation systems is also described.

  4. 76 FR 77939 - Proposed Provision of Navigation Services for the Next Generation Air Transportation System...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-15

    ...The Federal Aviation Administration (FAA) seeks comments on a proposed transition of the U.S. National Airspace System (NAS) navigation infrastructure to enable performance-based navigation (PBN) as part of the Next Generation Air Transportation System (NextGen). The FAA plans to transition from defining airways, routes and procedures using VHF Omni-directional Range (VOR) and other legacy......

  5. 14 CFR 171.61 - Air navigation certificate: Revocation and termination.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., each air navigation certificate of “Lawful Authority to Operate a True Light” is hereby revoked, and... certificate under regulations then in effect, and who has not surrendered that certificate under § 151.86(e... to make that application under regulations then in effect, and who has not terminated...

  6. 14 CFR 171.61 - Air navigation certificate: Revocation and termination.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ..., each air navigation certificate of “Lawful Authority to Operate a True Light” is hereby revoked, and... certificate under regulations then in effect, and who has not surrendered that certificate under § 151.86(e... to make that application under regulations then in effect, and who has not terminated...

  7. 75 FR 25794 - Regulated Navigation Area: Red Bull Air Race World Championship, Upper New York Bay, Lower Hudson...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-10

    ..., 2008, issue of the Federal Register (73 FR 3316). Public Meeting We do not now plan to hold a public... SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AA08 Regulated Navigation Area: Red Bull Air Race World... State Park, New Jersey and Ellis Island, New Jersey and New York for the Red Bull Air Race...

  8. Coupled Inertial Navigation and Flush Air Data Sensing Algorithm for Atmosphere Estimation

    NASA Technical Reports Server (NTRS)

    Karlgaard, Christopher D.; Kutty, Prasad; Schoenenberger, Mark

    2015-01-01

    This paper describes an algorithm for atmospheric state estimation that is based on a coupling between inertial navigation and flush air data sensing pressure measurements. In this approach, the full navigation state is used in the atmospheric estimation algorithm along with the pressure measurements and a model of the surface pressure distribution to directly estimate atmospheric winds and density using a nonlinear weighted least-squares algorithm. The approach uses a high fidelity model of atmosphere stored in table-look-up form, along with simplified models of that are propagated along the trajectory within the algorithm to provide prior estimates and covariances to aid the air data state solution. Thus, the method is essentially a reduced-order Kalman filter in which the inertial states are taken from the navigation solution and atmospheric states are estimated in the filter. The algorithm is applied to data from the Mars Science Laboratory entry, descent, and landing from August 2012. Reasonable estimates of the atmosphere and winds are produced by the algorithm. The observability of winds along the trajectory are examined using an index based on the discrete-time observability Gramian and the pressure measurement sensitivity matrix. The results indicate that bank reversals are responsible for adding information content to the system. The algorithm is then applied to the design of the pressure measurement system for the Mars 2020 mission. The pressure port layout is optimized to maximize the observability of atmospheric states along the trajectory. Linear covariance analysis is performed to assess estimator performance for a given pressure measurement uncertainty. The results indicate that the new tightly-coupled estimator can produce enhanced estimates of atmospheric states when compared with existing algorithms.

  9. Wind-Based Navigation of a Hot-air Balloon on Titan: A Feasibility Study

    NASA Technical Reports Server (NTRS)

    Furfaro, Roberto; Lunine, Jonathan I.; Elfes, Alberto; Reh, Kim

    2008-01-01

    Current analysis of data streamed back to Earth by the Cassini spacecraft features Titan as one of the most exciting places in the solar system. NASA centers and universities around the US, as well as the European Space Agency, are studying the possibility of sending, as part of the next mission to this giant moon of Saturn, a hot-air balloon (Montgolfier-type) for further and more in-depth exploration. The basic idea would be to design a reliable, semi-autonomous, and yet cheap Montgolfier capable of using continuous flow of waste heat from a power source to lift the balloon and sustain its altitude in the Titan environment. In this paper we study the problem of locally navigating a hot-air balloon in the nitrogen-based Titan atmosphere. The basic idea is to define a strategy (i.e. design of a suitable guidance system) that allows autonomous and semi-autonomous navigation of the balloon using the available (and partial) knowledge of the wind structure blowing on the saturnian satellite surface. Starting from first principles we determined the appropriate thermal and dynamical models describing (a) the vertical dynamics of the balloon and (b) the dynamics of the balloon moving on a vertical plane (2-D motion). Next, various non-linear fuzzy-based control strategies have been evaluated, analyzed and implemented in MATLAB to numerically simulate the capability of the system to simultaneously maintain altitude, as well as a scientifically desirable trajectory. We also looked at the ability of the balloon to perform station keeping. The results of the simulation are encouraging and show the effectiveness of such a system to cheaply and effectively perform semiautonomous exploration of Titan.

  10. Volcaniclastic sequences at the foot of Tacaná Volcano, southern México: implications for hazard assessment

    NASA Astrophysics Data System (ADS)

    Murcia, H.; Macías, J. L.

    2014-07-01

    Extensive volcaniclastic deposits have originated from the Tacaná Volcanic Complex (TVC) throughout its evolution. The valleys of the Coatán and Cahuacán rivers have been the main routes for descending flows which have occasionally reached the Pacific Ocean. As a result, three fans have been deposited or increased their volume. The most recent, Tapachula, is 13 km long and covers an area of ~48 km2 that has been largely urbanized by the city of Tapachula, which is located 30 km SW of the TVC. The ~0.7-km3 fan is bounded by the Coatán River to the west and the Cahuacán River to the east and is composed of a complex succession of volcaniclastic deposits accumulated between ~23,000 and ~1,300 years ago in response to remobilization of debris along the Coatán River basin. Collectively, the three fans consist of 34 stacked units grouped into five stratigraphic sequences. From the oldest to the youngest, these sequences are as follows: (1) Pre-Tacaná (Chanjale Fan), comprising five units associated with the remobilization of material produced during the formation of the Chanjale Caldera ~1 Myr ago; (2) Mal Paso (Mal Paso Fan), comprising four units emplaced between ~100,000 and >>23,000 years ago; (3) Lower Tapachula (Tapachula Fan), consisting of two units deposited around 23,000 years ago; (4) Upper Tapachula (Tapachula Fan), consisting of 14 units emplaced between ~14,300 and ~1,300 years ago; and (5) the topmost sequence, Coatán, is made up of 11 units deposited during the past ~1,300 years inside the valley of the Coatán River. Today, ~200,000 people live on top of the Tapachula Fan, which makes the city vulnerable to future lahars from the TVC.

  11. Air-Flow Navigated Crystal Growth for TIPS Pentacene-Based Organic Thin-Film Transistors

    SciTech Connect

    He, Zhengran; Chen, Jihua; Sun, Zhenzhong; Szulczewski, Greg; Li, Dawen

    2012-01-01

    6,13-bis(triisopropylsilylethynyl)pentacene (TIPS pentacene) is a promising active channel material of organic thin-film transistors (OTFTs) due to its solubility, stability, and high mobility. However, the growth of TIPS pentacene crystals is intrinsically anisotropic and thus leads to significant variation in the performance of OTFTs. In this paper, air flow is utilized to effectively reduce the TIPS pentacene crystal anisotropy and enhance performance consistency in OTFTs, and the resulted films are examined with optical microscopy, grazing-incidence X-ray diffraction, and thin-film transistor measurements. Under air-flow navigation (AFN), TIPS pentacene drop-cast from toluene solution has been observed to form thin films with improved crystal orientation and increased areal coverage on substrates, which subsequently lead to a four-fold increase of average hole mobility and one order of magnitude enhancement in performance consistency defined by the ratio of average mobility to the standard deviation of the field-effect mobilities.

  12. The Global Framework for Providing Information about Volcanic-Ash Hazards to International Air Navigation

    NASA Astrophysics Data System (ADS)

    Romero, R. W.; Guffanti, M.

    2009-12-01

    The International Civil Aviation Organization (ICAO) created the International Airways Volcano Watch (IAVW) in 1987 to establish a requirement for international dissemination of information about airborne ash hazards to safe air navigation. The IAVW is a set of operational protocols and guidelines that member countries agree to follow in order to implement a global, multi-faceted program to support the strategy of ash-cloud avoidance. Under the IAVW, the elements of eruption reporting, ash-cloud detecting, and forecasting expected cloud dispersion are coordinated to culminate in warnings sent to air traffic controllers, dispatchers, and pilots about the whereabouts of ash clouds. Nine worldwide Volcanic Ash Advisory Centers (VAAC) established under the IAVW have the responsibility for detecting the presence of ash in the atmosphere, primarily by looking at imagery from civilian meteorological satellites, and providing advisories about the location and movement of ash clouds to aviation meteorological offices and other aviation users. Volcano Observatories also are a vital part of the IAVW, as evidenced by the recent introduction of a universal message format for reporting the status of volcanic activity, including precursory unrest, to aviation users. Since 2003, the IAVW has been overseen by a standing group of scientific, technical, and regulatory experts that assists ICAO in the development of standards and other regulatory material related to volcanic ash. Some specific problems related to the implementation of the IAVW include: the lack of implementation of SIGMET (warning to aircraft in flight) provisions and delayed notifications of volcanic eruptions. Expected future challenges and developments involve the improvement in early notifications of volcanic eruptions, the consolidation of the issuance of SIGMETs, and the possibility of determining a “safe” concentration of volcanic ash.

  13. Vertical Navigation Control Laws and Logic for the Next Generation Air Transportation System

    NASA Technical Reports Server (NTRS)

    Hueschen, Richard M.; Khong, Thuan H.

    2013-01-01

    A vertical navigation (VNAV) outer-loop control system was developed to capture and track the vertical path segments of energy-efficient trajectories that are being developed for high-density operations in the evolving Next Generation Air Transportation System (NextGen). The VNAV control system has a speed-on-elevator control mode to pitch the aircraft for tracking a calibrated airspeed (CAS) or Mach number profile and a path control mode for tracking the VNAV altitude profile. Mode control logic was developed for engagement of either the speed or path control modes. The control system will level the aircraft to prevent it from flying through a constraint altitude. A stability analysis was performed that showed that the gain and phase margins of the VNAV control system significantly exceeded the design gain and phase margins. The system performance was assessed using a six-deg-of-freedom non-linear transport aircraft simulation and the performance is illustrated with time-history plots of recorded simulation data.

  14. Civil air navigation using GNSS enhanced by wide area satellite based augmentation systems

    NASA Astrophysics Data System (ADS)

    Dautermann, Thomas

    2014-05-01

    Advancement in augmented satellite navigation enables a new class of instrument approach procedures for aircraft. These approaches are based on regional augmentation systems which broadcast corrections via a geostationary satellite. The enhanced GNSS navigation solution using the corrections from the satellite provides the necessary accuracy and integrity to perform approaches with vertical and lateral angular guidance to a given runway threshold. This enables cost effective and simple procedure generation with low descent minima even for small airports. Moreover, it supports high precision en-route navigation and future high precision flight guidance applications.

  15. Navigation of the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Edwards, A., Jr.

    1983-01-01

    Navigational systems and operations for the Space Shuttle are described. All navigational instrumentation is controlled from within the pressurized main cabin. Measurements of the state vector and the attitude are made with an inertial measurement unit (IMU), which uses data initialized at the moment of take-off. Orbital location is calculated in approximations using the initial propulsion conditions, models of the gravity field, and aerodynamic drag forces. Updates are periodically received from ground tracking stations. IMU continues attitude information, and additional references are made with an automated startracker device. Information can also be gathered by optical alignment, and future systems will include radar tracking in an approach mode. Deorbit is accompanied by IMU altitude measurements as well as calculations of altitude based on drag measurements. Barometric measurements begin at about 80,000 ft altitude. Signals are received from TACAN beginning at 145,000 ft, and the microwave scanning beam landing system is started at 20,000 ft. Various radionavigation systems are also employed in all flight phases.

  16. 77 FR 50420 - Proposed Provision of Navigation Services for the Next Generation Air Transportation System...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-21

    ... published a Federal Register Notice (76 FR 77939) requesting comments on the FAA's plans for providing PBN... discontinuance of VOR navigation services. Comment #21: Comments from military and general aviation expressed... stakeholders, and the FAA will ] engage stakeholders in the discontinuance process. Comment #23: Military...

  17. Evaluation of the impact of ionospheric disturbances on air navigation augmentation system using multi-point GPS receivers

    NASA Astrophysics Data System (ADS)

    Omatsu, N.; Otsuka, Y.; Shiokawa, K.; Saito, S.

    2013-12-01

    In recent years, GPS has been utilized for navigation system for airplanes. Propagation delays in the ionosphere due to total electron content (TEC) between GPS satellite and receiver cause large positioning errors. In precision measurement using GPS, the ionospheric delay correction is generally conducted using both GPS L1 and L2 frequencies. However, L2 frequency is not internationally accepted as air navigation band, so it is not available for positioning directly in air navigation. In air navigation, not only positioning accuracy but safety is important, so augmentation systems are required to ensure the safety. Augmentation systems such as the satellite-based augmentation system (SBAS) or the ground-based augmentation system (GBAS) are being developed and some of them are already in operation. GBAS is available in a relatively narrow area around airports. In general, it corrects for the combined effects of multiple sources of positioning errors simultaneously, including satellite clock and orbital information errors, ionospheric delay errors, and tropospheric delay errors, using the differential corrections broadcast by GBAS ground station. However, if the spatial ionospheric delay gradient exists in the area, correction errors remain even after correction by GBAS. It must be a threat to GBAS. In this study, we use the GPS data provided by the Geographical Survey Institute in Japan. From the GPS data, TEC is obtained every 30 seconds. We select 4 observation points from 24.4 to 35.6 degrees north latitude in Japan, and analyze TEC data of these points from 2001 to 2011. Then we reveal dependences of Rate of TEC change Index (ROTI) on latitude, season, and solar activity statistically. ROTI is the root-mean-square deviation of time subtraction of TEC within 5 minutes. In the result, it is the midnight of the spring and the summer of the solar maximum in the point of 26.4 degrees north latitude that the value of ROTI becomes the largest. We think it is caused by

  18. Verification and Validation of Numerical Models for Air/Water Flow on Coastal and Navigation Fluid-Structure Interaction Applications

    NASA Astrophysics Data System (ADS)

    Kees, C. E.; Farthing, M.; Dimakopoulos, A.; DeLataillade, T.

    2015-12-01

    Performance analysis and optimization of coastal and navigation structures is becoming feasible due to recent improvements in numerical methods for multiphase flows and the steady increase in capacity and availability of high performance computing resources. Now that the concept of fully three-dimensional air/water flow modelling for real world engineering analysis is achieving acceptance by the wider engineering community, it is critical to expand careful comparative studies on verification,validation, benchmarking, and uncertainty quantification for the variety of competing numerical methods that are continuing to evolve. Furthermore, uncertainty still remains about the relevance of secondary processes such as surface tension, air compressibility, air entrainment, and solid phase (structure) modelling so that questions about continuum mechanical theory and mathematical analysis of multiphase flow are still required. Two of the most popular and practical numerical approaches for large-scale engineering analysis are the Volume-Of-Fluid (VOF) and Level Set (LS) approaches. In this work we will present a publically available verification and validation test set for air-water-structure interaction problems as well as computational and physical model results including a hybrid VOF-LS method, traditional VOF methods, and Smoothed Particle Hydrodynamics (SPH) results. The test set repository and test problem formats will also be presented in order to facilitate future comparative studies and reproduction of scientific results.

  19. Autocalibrating vision guided navigation of unmanned air vehicles via tactical monocular cameras in GPS denied environments

    NASA Astrophysics Data System (ADS)

    Celik, Koray

    This thesis presents a novel robotic navigation strategy by using a conventional tactical monocular camera, proving the feasibility of using a monocular camera as the sole proximity sensing, object avoidance, mapping, and path-planning mechanism to fly and navigate small to medium scale unmanned rotary-wing aircraft in an autonomous manner. The range measurement strategy is scalable, self-calibrating, indoor-outdoor capable, and has been biologically inspired by the key adaptive mechanisms for depth perception and pattern recognition found in humans and intelligent animals (particularly bats), designed to assume operations in previously unknown, GPS-denied environments. It proposes novel electronics, aircraft, aircraft systems, systems, and procedures and algorithms that come together to form airborne systems which measure absolute ranges from a monocular camera via passive photometry, mimicking that of a human-pilot like judgement. The research is intended to bridge the gap between practical GPS coverage and precision localization and mapping problem in a small aircraft. In the context of this study, several robotic platforms, airborne and ground alike, have been developed, some of which have been integrated in real-life field trials, for experimental validation. Albeit the emphasis on miniature robotic aircraft this research has been tested and found compatible with tactical vests and helmets, and it can be used to augment the reliability of many other types of proximity sensors.

  20. Investigation of air transportation technology at Ohio University, 1980. [general aviation aircraft and navigation aids

    NASA Technical Reports Server (NTRS)

    Mcfarland, R. H.

    1981-01-01

    Specific configurations of first and second order all digital phase locked loops were analyzed for both ideal and additive gaussian noise inputs. In addition, a design for a hardware digital phase locked loop capable of either first or second order operation was evaluated along with appropriate experimental data obtained from testing of the hardware loop. All parameters chosen for the analysis and the design of the digital phase locked loop were consistent with an application to an Omega navigation receiver although neither the analysis nor the design are limited to this application. For all cases tested, the experimental data showed close agreement with the analytical results indicating that the Markov chain model for first and second order digital phase locked loops are valid.

  1. Chemical and isotopic compositions of thermal springs, fumaroles and bubbling gases at Tacaná Volcano (Mexico-Guatemala): implications for volcanic surveillance

    NASA Astrophysics Data System (ADS)

    Rouwet, Dmitri; Inguaggiato, Salvatore; Taran, Yuri; Varley, Nicholas; Santiago S., José A.

    2009-04-01

    This study presents baseline data for future geochemical monitoring of the active Tacaná volcano-hydrothermal system (Mexico-Guatemala). Seven groups of thermal springs, related to a NW/SE-oriented fault scarp cutting the summit area (4,100m a.s.l.), discharge at the northwest foot of the volcano (1,500-2,000m a.s.l.); another one on the southern ends of Tacaná (La Calera). The near-neutral (pH from 5.8 to 6.9) thermal ( T from 25.7°C to 63.0°C) HCO3-SO4 waters are thought to have formed by the absorption of a H2S/SO2-CO2-enriched steam into a Cl-rich geothermal aquifer, afterwards mixed by Na/HCO3-enriched meteoric waters originating from the higher elevations of the volcano as stated by the isotopic composition (δD and δ18O) of meteoric and spring waters. Boiling temperature fumaroles (89°C at ~3,600m a.s.l. NW of the summit), formed after the May 1986 phreatic explosion, emit isotopically light vapour (δD and δ18O as low as -128 and -19.9‰, respectively) resulting from steam separation from the summit aquifer. Fumarolic as well as bubbling gases at five springs are CO2-dominated. The δ13CCO2 for all gases show typical magmatic values of -3.6 ± 1.3‰ vs V-PDB. The large range in 3He/4He ratios for bubbling, dissolved and fumarolic gases [from 1.3 to 6.9 atmospheric 3He/4He ratio ( R A)] is ascribed to a different degree of near-surface boiling processes inside a heterogeneous aquifer at the contact between the volcanic edifice and the crystalline basement (4He source). Tacaná volcano offers a unique opportunity to give insight into shallow hydrothermal and deep magmatic processes affecting the CO2/3He ratio of gases: bubbling springs with lower gas/water ratios show higher 3He/4He ratios and consequently lower CO2/3He ratios (e.g. Zarco spring). Typical Central American CO2/3He and 3He/4He ratios are found for the fumarolic Agua Caliente and Zarco gases (3.1 ± 1.6 × 1010 and 6.0 ± 0.9 R A, respectively). The L/ S (5.9 ± 0.5) and ( L + S)/ M

  2. A Common Communications, Navigation and Surveillance Infrastructure for Accommodating Space Vehicles in the Next Generation Air Transportation System

    NASA Technical Reports Server (NTRS)

    VanSuetendael, RIchard; Hayes, Alan; Birr, Richard

    2008-01-01

    Suborbital space flight and space tourism are new potential markets that could significantly impact the National Airspace System (NAS). Numerous private companies are developing space flight capabilities to capture a piece of an emerging commercial space transportation market. These entrepreneurs share a common vision that sees commercial space flight as a profitable venture. Additionally, U.S. space exploration policy and national defense will impose significant additional demands on the NAS. Air traffic service providers must allow all users fair access to limited airspace, while ensuring that the highest levels of safety, security, and efficiency are maintained. The FAA's Next Generation Air Transportation System (NextGen) will need to accommodate spacecraft transitioning to and from space through the NAS. To accomplish this, space and air traffic operations will need to be seamlessly integrated under some common communications, navigation and surveillance (CNS) infrastructure. As part of NextGen, the FAA has been developing the Automatic Dependent Surveillance Broadcast (ADS-B) which utilizes the Global Positioning System (GPS) to track and separate aircraft. Another key component of NextGen, System-Wide Information Management/ Network Enabled Operations (SWIM/NEO), is an open architecture network that will provide NAS data to various customers, system tools and applications. NASA and DoD are currently developing a space-based range (SBR) concept that also utilizes GPS, communications satellites and other CNS assets. The future SBR will have very similar utility for space operations as ADS-B and SWIM has for air traffic. Perhaps the FAA, NASA, and DoD should consider developing a common space-based CNS infrastructure to support both aviation and space transportation operations. This paper suggests specific areas of research for developing a CNS infrastructure that can accommodate spacecraft and other new types of vehicles as an integrated part of NextGen.

  3. Evaluation of several navigation algorithms for application to general aviation

    NASA Technical Reports Server (NTRS)

    Conrad, B.; Korsak, A. J.; Jackson, C. T., Jr.

    1975-01-01

    Using data obtained in flight, three position determining algorithms for use by general aviation aircraft were evaluated representing increasing software requirements. These were a DME only, DME/air data and blended DME/air data. Although each step represented additional software with resultant increase in position accuracy, all could be performed on a programmable electronic desk calculator. Results from the computation of aircraft position using the three algorithms are presented. The algorithms employed can be extended to accept VOR, TACAN bearing, ADF, or other NAVAID Data. To obtain the flight data an experimental system was configured and flown on a general aviation aircraft. Principal hardware elements (all with low-cost potential) were a programmable calculator, a single DME receiver (multiplexed for multiple DME use) and a low-cost air speed sensor (shed-vortex principle). The flight test demonstrated satisfactory performance of these principal elements.

  4. Fully self-contained vision-aided navigation and landing of a micro air vehicle independent from external sensor inputs

    NASA Astrophysics Data System (ADS)

    Brockers, Roland; Susca, Sara; Zhu, David; Matthies, Larry

    2012-06-01

    Direct-lift micro air vehicles have important applications in reconnaissance. In order to conduct persistent surveillance in urban environments, it is essential that these systems can perform autonomous landing maneuvers on elevated surfaces that provide high vantage points without the help of any external sensor and with a fully contained on-board software solution. In this paper, we present a micro air vehicle that uses vision feedback from a single down looking camera to navigate autonomously and detect an elevated landing platform as a surrogate for a roof top. Our method requires no special preparation (labels or markers) of the landing location. Rather, leveraging the planar character of urban structure, the landing platform detection system uses a planar homography decomposition to detect landing targets and produce approach waypoints for autonomous landing. The vehicle control algorithm uses a Kalman filter based approach for pose estimation to fuse visual SLAM (PTAM) position estimates with IMU data to correct for high latency SLAM inputs and to increase the position estimate update rate in order to improve control stability. Scale recovery is achieved using inputs from a sonar altimeter. In experimental runs, we demonstrate a real-time implementation running on-board a micro aerial vehicle that is fully self-contained and independent from any external sensor information. With this method, the vehicle is able to search autonomously for a landing location and perform precision landing maneuvers on the detected targets.

  5. Fully Self-Contained Vision-Aided Navigation and Landing of a Micro Air Vehicle Independent from External Sensor Inputs

    NASA Technical Reports Server (NTRS)

    Brockers, Roland; Susca, Sara; Zhu, David; Matthies, Larry

    2012-01-01

    Direct-lift micro air vehicles have important applications in reconnaissance. In order to conduct persistent surveillance in urban environments, it is essential that these systems can perform autonomous landing maneuvers on elevated surfaces that provide high vantage points without the help of any external sensor and with a fully contained on-board software solution. In this paper, we present a micro air vehicle that uses vision feedback from a single down looking camera to navigate autonomously and detect an elevated landing platform as a surrogate for a roof top. Our method requires no special preparation (labels or markers) of the landing location. Rather, leveraging the planar character of urban structure, the landing platform detection system uses a planar homography decomposition to detect landing targets and produce approach waypoints for autonomous landing. The vehicle control algorithm uses a Kalman filter based approach for pose estimation to fuse visual SLAM (PTAM) position estimates with IMU data to correct for high latency SLAM inputs and to increase the position estimate update rate in order to improve control stability. Scale recovery is achieved using inputs from a sonar altimeter. In experimental runs, we demonstrate a real-time implementation running on-board a micro aerial vehicle that is fully self-contained and independent from any external sensor information. With this method, the vehicle is able to search autonomously for a landing location and perform precision landing maneuvers on the detected targets.

  6. Late Holocene Peléan-style eruption at Tacaná volcano, Mexico and Guatemala: past, present, and future hazards

    USGS Publications Warehouse

    Macías, J. L.; Espíndola, J. M.; Garcia-Palomo, A.; Scott, K.M.; Hughes, S.; Mora, J C.

    2000-01-01

    Tacaná volcano, located on the border between Mexico and Guatemala, marks the northern extent of the Central American volcanic chain. Composed of three volcanic structures, it is a volcanic complex that has had periodic explosive eruptions for at least the past 40 k.y. The most recent major eruption occurred at the San Antonio volcano, the youngest volcanic edifice forming the complex, about 1950 yr ago. The Peléan style eruption, issued from the southwest part of the dome, and swept a 30° sector with a hot block and ash flow that traveled about 14 km along the Cahoacán ravine. Deposits from this event are well exposed around the town of Mixcun and were therefore given the name of that town, the Mixcun flow deposit. The Mixcun flow deposit is, in the channel facies, a light gray, massive, thick (>10 m), matrix-supported unit with dispersed lithic clasts of gravel to boulder size, divisible in some sections into a variable number of flow units. The overbank facies is represented by a thin (2 and has a minimum estimated volume of 0.12 km3. Basaltic-andesite inclusions (54% SiO2) and various signs of disequilibrium in the mineral assemblage of the two-pyroxene andesitic products (60%–63% SiO2) suggest that magma mixing may have triggered the eruption. Following deposition of the Mixcun flow deposit andesitic to dacitic (62%–64% SiO2) lava flows were extruded and a dacitic dome (64.4% SiO2) at the San Antonio summit formed. Syn-eruptive and posteruptive lahars flooded the main drainages of the Cahoacán and Izapa-Mixcun valleys in the area of the present city of Tapachula (population 250000) and the pre-Hispanic center of Izapa. Three radiocarbon ages date this event between A.D. 25 and 72 (range ±1σ, 38 B.C.–A.D. 216), which correlates with a halt in construction at Izapa (Hato phase of ca. 50 B.C.–A.D. 100), probably due to temporary abandonment of the city caused by lahars. Another similar event would produce extensive damage to the towns (population

  7. Flight Test Result for the Ground-Based Radio Navigation System Sensor with an Unmanned Air Vehicle

    PubMed Central

    Jang, Jaegyu; Ahn, Woo-Guen; Seo, Seungwoo; Lee, Jang Yong; Park, Jun-Pyo

    2015-01-01

    The Ground-based Radio Navigation System (GRNS) is an alternative/backup navigation system based on time synchronized pseudolites. It has been studied for some years due to the potential vulnerability issue of satellite navigation systems (e.g., GPS or Galileo). In the framework of our study, a periodic pulsed sequence was used instead of the randomized pulse sequence recommended as the RTCM (radio technical commission for maritime services) SC (special committee)-104 pseudolite signal, as a randomized pulse sequence with a long dwell time is not suitable for applications requiring high dynamics. This paper introduces a mathematical model of the post-correlation output in a navigation sensor, showing that the aliasing caused by the additional frequency term of a periodic pulsed signal leads to a false lock (i.e., Doppler frequency bias) during the signal acquisition process or in the carrier tracking loop of the navigation sensor. We suggest algorithms to resolve the frequency false lock issue in this paper, relying on the use of a multi-correlator. A flight test with an unmanned helicopter was conducted to verify the implemented navigation sensor. The results of this analysis show that there were no false locks during the flight test and that outliers stem from bad dilution of precision (DOP) or fluctuations in the received signal quality. PMID:26569251

  8. Flight Test Result for the Ground-Based Radio Navigation System Sensor with an Unmanned Air Vehicle.

    PubMed

    Jang, Jaegyu; Ahn, Woo-Guen; Seo, Seungwoo; Lee, Jang Yong; Park, Jun-Pyo

    2015-01-01

    The Ground-based Radio Navigation System (GRNS) is an alternative/backup navigation system based on time synchronized pseudolites. It has been studied for some years due to the potential vulnerability issue of satellite navigation systems (e.g., GPS or Galileo). In the framework of our study, a periodic pulsed sequence was used instead of the randomized pulse sequence recommended as the RTCM (radio technical commission for maritime services) SC (special committee)-104 pseudolite signal, as a randomized pulse sequence with a long dwell time is not suitable for applications requiring high dynamics. This paper introduces a mathematical model of the post-correlation output in a navigation sensor, showing that the aliasing caused by the additional frequency term of a periodic pulsed signal leads to a false lock (i.e., Doppler frequency bias) during the signal acquisition process or in the carrier tracking loop of the navigation sensor. We suggest algorithms to resolve the frequency false lock issue in this paper, relying on the use of a multi-correlator. A flight test with an unmanned helicopter was conducted to verify the implemented navigation sensor. The results of this analysis show that there were no false locks during the flight test and that outliers stem from bad dilution of precision (DOP) or fluctuations in the received signal quality. PMID:26569251

  9. Integrated inertial navigation system/Global Positioning System (INS/GPS) for manned return vehicle autoland application

    NASA Astrophysics Data System (ADS)

    Braden, Kevin; Browning, Clint; Gelderloos, Hendrik; Smith, Fred; Marttila, Chuck

    It is noted that with the development of the International Space Station Freedom, people will permanently live in space and require routine access and an assured crew return capability in case of emergencies in space. The extended duration in space requires a manned return vehicle that is less demanding on the crew and provides an autonomous deorbit, entry, and autoland capability. The authors discuss an autoland capability with an integrated differential GPS/INS that provides the required position and velocity accuracies without the need for tactical aircraft navigation (TACAN) and Microwave Landing System (MLS) navigation aides. Simulation results are used to demonstrate the feasibility of autoland using differential GPS aided with a high-precision altimeter. This concept applies to several manned space applications, such as Assured Crew Return Vehicle (ACRV), Assured Shuttle Availability (ASA), Advanced Manned Launch System (AMLS), and National Aerospace Plane (NASP), and to unmanned return vehicles such as the Propulsion Avionics Module (P/AM).

  10. 33 CFR 334.1280 - Bristol Bay, Alaska; air-to-air weapon range, Alaskan Air Command, U.S. Air Force.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Bristol Bay, Alaska; air-to-air weapon range, Alaskan Air Command, U.S. Air Force. 334.1280 Section 334.1280 Navigation and Navigable... REGULATIONS § 334.1280 Bristol Bay, Alaska; air-to-air weapon range, Alaskan Air Command, U.S. Air Force....

  11. 33 CFR 334.1280 - Bristol Bay, Alaska; air-to-air weapon range, Alaskan Air Command, U.S. Air Force.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Bristol Bay, Alaska; air-to-air weapon range, Alaskan Air Command, U.S. Air Force. 334.1280 Section 334.1280 Navigation and Navigable... REGULATIONS § 334.1280 Bristol Bay, Alaska; air-to-air weapon range, Alaskan Air Command, U.S. Air Force....

  12. 33 CFR 334.1280 - Bristol Bay, Alaska; air-to-air weapon range, Alaskan Air Command, U.S. Air Force.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Bristol Bay, Alaska; air-to-air weapon range, Alaskan Air Command, U.S. Air Force. 334.1280 Section 334.1280 Navigation and Navigable... REGULATIONS § 334.1280 Bristol Bay, Alaska; air-to-air weapon range, Alaskan Air Command, U.S. Air Force....

  13. 33 CFR 334.1280 - Bristol Bay, Alaska; air-to-air weapon range, Alaskan Air Command, U.S. Air Force.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Bristol Bay, Alaska; air-to-air weapon range, Alaskan Air Command, U.S. Air Force. 334.1280 Section 334.1280 Navigation and Navigable... REGULATIONS § 334.1280 Bristol Bay, Alaska; air-to-air weapon range, Alaskan Air Command, U.S. Air Force....

  14. 33 CFR 334.1280 - Bristol Bay, Alaska; air-to-air weapon range, Alaskan Air Command, U.S. Air Force.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Bristol Bay, Alaska; air-to-air weapon range, Alaskan Air Command, U.S. Air Force. 334.1280 Section 334.1280 Navigation and Navigable... REGULATIONS § 334.1280 Bristol Bay, Alaska; air-to-air weapon range, Alaskan Air Command, U.S. Air Force....

  15. Magmatic controls on eruption dynamics of the 1950 yr B.P. eruption of San Antonio Volcano, Tacaná Volcanic Complex, Mexico-Guatemala

    NASA Astrophysics Data System (ADS)

    Mora, Juan Carlos; Gardner, James Edward; Macías, José Luis; Meriggi, Lorenzo; Santo, Alba Patrizia

    2013-07-01

    San Antonio Volcano, in the Tacaná Volcanic Complex, erupted ~ 1950 yr. B.P., with a Pelean type eruption that produced andesitic pyroclastic surges and block-and-ash flows destroying part of the volcano summit and producing a horse-shoe shaped crater open to the SW. Between 1950 and 800 yr B.P. the eruption continued with effusive andesites followed by a dacite lava flow and a summit dome, all from a single magma batch. All products consist of phenocrysts and microphenocrysts of zoned plagioclase, amphibole, pyroxene, magnetite ± ilmenite, set in partially crystallized groundmass of glass and microlites of the same mineral phases, except for the lack of amphibole. Included in the andesitic blocks of the block-and-ash flow deposit are basaltic andesite enclaves with elongated and ellipsoidal forms and chilled margins. The enclaves have intersertal textures with brown glass between microphenocrysts of plagioclase, hornblende, pyroxene, and olivine, and minor proportions of phenocrysts of plagioclase, hornblende, and pyroxene. A compositional range obtained of blocks and enclaves resulted from mixing between andesite (866 °C ± 22) and basaltic andesite (enclaves, 932 °C ± 22), which may have triggered the explosive Pelean eruption. Vestiges of that mixing are preserved as complex compositional zones in plagioclase and clinopyroxene-rich reaction rims in amphibole in the andesite. Whole-rock chemistry, geothermometry, experimental petrology and modeling results suggest that after the mixing event the eruption tapped hybrid andesitic magma (≤ 900 °C) and ended with effusive dacitic magma (~ 825 °C), all of which were stored at ~ 200 MPa water pressure. A complex open-system evolution that involved crustal end-members best explains the generation of effusive dacite from the hybrid andesite. Amphibole in the dacite is rimmed by reaction products of plagioclase, orthopyroxene, and Fe-Ti oxides produced by decompression during ascent. Amphibole in the andesite

  16. 32 CFR 245.5 - Terms.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... limited to, Global Positioning System (GPS), Tactical Air Navigation (TACAN), VHF Omnidirectional range... defense sector. A geographical subdivision of an air defense region. Air traffic control system command... System, ensuring safe and efficient air travel within the United States. Anchor annex flight....

  17. 32 CFR 245.5 - Terms.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... limited to, Global Positioning System (GPS), Tactical Air Navigation (TACAN), VHF Omnidirectional range... defense sector. A geographical subdivision of an air defense region. Air traffic control system command... System, ensuring safe and efficient air travel within the United States. Anchor annex flight....

  18. 32 CFR 245.5 - Terms.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... limited to, Global Positioning System (GPS), Tactical Air Navigation (TACAN), VHF Omnidirectional range... defense sector. A geographical subdivision of an air defense region. Air traffic control system command... System, ensuring safe and efficient air travel within the United States. Anchor annex flight....

  19. Micro Navigator

    NASA Technical Reports Server (NTRS)

    Blaes, B. R.; Kia, T.; Chau, S. N.

    2001-01-01

    Miniature high-performance low-mass space avionics systems are desired for planned future outer planetary exploration missions (i.e. Europa Orbiter/Lander, Pluto-Kuiper Express). The spacecraft fuel and mass requirements enabling orbit insertion is the driving requirement. The Micro Navigator is an integrated autonomous Guidance, Navigation & Control (GN&C)micro-system that would provide the critical avionics function for navigation, pointing, and precision landing. The Micro Navigator hardware and software allow fusion of data from multiple sensors to provide a single integrated vehicle state vector necessary for six degrees of freedom GN&C. The benefits of this MicroNavigator include: 1) The Micro Navigator employs MEMS devices that promise orders of magnitude reductions in mass power and volume of inertial sensors (accelerometers and gyroscopes), celestial sensing devices (startracker, sun sensor), and computing element; 2) The highly integrated nature of the unit will reduce the cost of flight missions. a) The advanced miniaturization technologies employed by the Micro Navigator lend themselves to mass production, and therefore will reduce production cost of spacecraft. b) The integral approach simplifies interface issues associated with discrete components and reduces cost associated with integration and test of multiple components; and 3) The integration of sensors and processing elements into a single unit will allow the Micro Navigator to encapsulate attitude information and determination functions into a single object. This is particularly beneficial for object-oriented software architectures that are used in advanced spacecraft. Additional information is contained in the original extended abstract.

  20. Interplanetary navigation

    NASA Technical Reports Server (NTRS)

    Stuart, J. R.

    1984-01-01

    The evolution of NASA's planetary navigation techniques is traced, and radiometric and optical data types are described. Doppler navigation; the Deep Space Network; differenced two-way range techniques; differential very long base interferometry; and optical navigation are treated. The Doppler system enables a spacecraft in cruise at high absolute declination to be located within a total angular uncertainty of 1/4 microrad. The two-station range measurement provides a 1 microrad backup at low declinations. Optical data locate the spacecraft relative to the target to an angular accuracy of 5 microrad. Earth-based radio navigation and its less accurate but target-relative counterpart, optical navigation, thus form complementary measurement sources, which provide a powerful sensory system to produce high-precision orbit estimates.

  1. A mixed simulation and hardware-in-the-loop display and controller for autonomous sensing and navigation by unmanned air vehicles

    NASA Astrophysics Data System (ADS)

    Collins, Gaemus E.; Vegdahl, Philip S.; Riehl, James R.

    2007-04-01

    This paper describes our recent work combining a high-fidelity battlefield software simulaton, a suite of autonomous sensor and navigation control algorithms for unmanned air vehicles (UAVs), and a hardware-in-the-loop control interface. The complete system supports multiple real and simulated UAVs that search for and track multiple real and simulated targets. Targets communicate their real-time locations to the simulator through a wireless GPS link. Data from real target(s) is used to create target(s) in the simulation testbed that may exist alongside additional simulated targets. The navigation and video sensors onboard the UAVs are tasked (via another wireless link) by our control algorithm suite to search for and track targets that exist in the simulation. Video data is streamed to an image plane video tracker (IPVT), which produces detections that can be fed to a global tracker within the control suite. Routing and gimbal control algorithms use information from the global tracker to task the UAVs, thus completing an information feedback control loop. Additional sensors (such as the ground moving target indicator (GMTI) radar) can exist within the simulation and generate simulated detections to augment the tracking information obtained from the IPVT. Our simulator is part of Toyon's Simulation of the Locations and Attack of Mobile Enemy Missiles (SLAMEM (R)) tool. SLAMEM contains detailed models for ground targets, surveillance platforms, sensors, attack aircraft, UAVs, data exploitation, multi-source fusion, sensor retasking, and attack nomination. SLAMEM models road networks, foliage cover, populated regions, and terrain, using the terrain elevation data (DTED).

  2. Air

    MedlinePlus

    ... do to protect yourself from dirty air . Indoor air pollution and outdoor air pollution Air can be polluted indoors and it can ... this chart to see what things cause indoor air pollution and what things cause outdoor air pollution! Indoor ...

  3. Celestial Navigation

    ERIC Educational Resources Information Center

    Rosenkrantz, Kurt

    2005-01-01

    In the unit described in this article, students discover the main principles of navigation, build tools to observe celestial bodies, and apply their new skills to finding their position on Earth. Along the way students see how science, mathematics, technology, and history are intertwined.

  4. Potential applications of satellite navigation

    NASA Astrophysics Data System (ADS)

    Schaenzer, G.

    The applicability of Navstar GPS to civil air navigation is discussed. The accuracy of current air-navigation systems is reviewed; the basic principle and accuracy of GPS navigation are characterized; the relatively low cost of GPS receiving equipment is pointed out; and particular attention is given to hybrid systems combining GPS with inertial navigation. It is predicted that CAT III landings will be possible using such hybrid systems when the GPS satellites are fully deployed, even without access to the military GPS code. Techniques for GPS-based precision landings, reduced-noise landings, landings on parallel runways, control of taxiing maneuvers, and aircraft-based geodetic measurements are briefly described and illustrated with diagrams.

  5. Viking navigation

    NASA Technical Reports Server (NTRS)

    Oneil, W. J.; Rudd, R. P.; Farless, D. L.; Hildebrand, C. E.; Mitchell, R. T.; Rourke, K. H.; Euler, E. A.

    1979-01-01

    A comprehensive description of the navigation of the Viking spacecraft throughout their flight from Earth launch to Mars landing is given. The flight path design, actual inflight control, and postflight reconstruction are discussed in detail. The preflight analyses upon which the operational strategies and performance predictions were based are discussed. The inflight results are then discussed and compared with the preflight predictions and, finally, the results of any postflight analyses are presented.

  6. Selected bibliography of OMEGA, VLF and LF techniques applied to aircraft navigation systems

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A bibliography is presented which includes references to the OMEGA navigation system, very low frequencies, time-frequency measurements, air traffic control, radio navigation, and applications of OMEGA.

  7. INL Autonomous Navigation System

    2005-03-30

    The INL Autonomous Navigation System provides instructions for autonomously navigating a robot. The system permits high-speed autonomous navigation including obstacle avoidance, waypoing navigation and path planning in both indoor and outdoor environments.

  8. Basic Navigator Battery: An Experimental Selection Composite for Undergraduate Navigator Training.

    ERIC Educational Resources Information Center

    Shanahan, Frank M.; Kantor, Jeffrey E.

    High rates of attrition among students in Undergraduate Navigator Training (UNT) is a major concern for Air Training Command. The main objective of this research was to evaluate the Basic Navigator Battery (BNB), a multi-test experimental selection instrument, for its potential to increase the validity of the Air Force Officer Qualifying Test…

  9. Fundamentals of satellite navigation

    NASA Astrophysics Data System (ADS)

    Stiller, A. H.

    The basic operating principles and capabilities of conventional and satellite-based navigation systems for air, sea, and land vehicles are reviewed and illustrated with diagrams. Consideration is given to autonomous onboard systems; systems based on visible or radio beacons; the Transit, Cicada, Navstar-GPS, and Glonass satellite systems; the physical laws and parameters of satellite motion; the definition of time in satellite systems; and the content of the demodulated GPS data signal. The GPS and Glonass data format frames are presented graphically, and tables listing the GPS and Glonass satellites, their technical characteristics, and the (past or scheduled) launch dates are provided.

  10. Aircraft Instrument, Fire Protection, Warning, Communication, Navigation and Cabin Atmosphere Control System (Course Outline), Aviation Mechanics 3 (Air Frame): 9067.04.

    ERIC Educational Resources Information Center

    Dade County Public Schools, Miami, FL.

    This document presents an outline for a 135-hour course designed to familiarize the student with manipulative skills and theoretical knowledge concerning aircraft instrument systems like major flight and engine instruments; fire protection and fire fighting systems; warning systems and navigation systems; aircraft cabin control systems, such as…

  11. Apollo Onboard Navigation Techniques

    NASA Technical Reports Server (NTRS)

    Interbartolo, Michael

    2009-01-01

    This viewgraph presentation reviews basic navigation concepts, describes coordinate systems and identifies attitude determination techniques including Primary Guidance, Navigation and Control System (PGNCS) IMU management and Command and Service Module Stabilization and Control System/Lunar Module (LM) Abort Guidance System (AGS) attitude management. The presentation also identifies state vector determination techniques, including PGNCS coasting flight navigation, PGNCS powered flight navigation and LM AGS navigation.

  12. Comprehension of Navigation Directions

    NASA Technical Reports Server (NTRS)

    Schneider, Vivian I.; Healy, Alice F.

    2000-01-01

    In an experiment simulating communication between air traffic controllers and pilots, subjects were given navigation instructions varying in length telling them to move in a space represented by grids on a computer screen. The subjects followed the instructions by clicking on the grids in the locations specified. Half of the subjects read the instructions, and half heard them. Half of the subjects in each modality condition repeated back the instructions before following them,and half did not. Performance was worse for the visual than for the auditory modality on the longer messages. Repetition of the instructions generally depressed performance, especially with the longer messages, which required more output than did the shorter messages, and especially with the visual modality, in which phonological recoding from the visual input to the spoken output was necessary. These results are explained in terms of the degrading effects of output interference on memory for instructions.

  13. Dynamic Transportation Navigation

    NASA Astrophysics Data System (ADS)

    Meng, Xiaofeng; Chen, Jidong

    Miniaturization of computing devices, and advances in wireless communication and sensor technology are some of the forces that are propagating computing from the stationary desktop to the mobile outdoors. Some important classes of new applications that will be enabled by this revolutionary development include intelligent traffic management, location-based services, tourist services, mobile electronic commerce, and digital battlefield. Some existing application classes that will benefit from the development include transportation and air traffic control, weather forecasting, emergency response, mobile resource management, and mobile workforce. Location management, i.e., the management of transient location information, is an enabling technology for all these applications. In this chapter, we present the applications of moving objects management and their functionalities, in particular, the application of dynamic traffic navigation, which is a challenge due to the highly variable traffic state and the requirement of fast, on-line computations.

  14. Microcomputers and astronomical navigation.

    NASA Astrophysics Data System (ADS)

    Robin-Jouan, Y.

    1996-04-01

    Experienced navigators remember ancient astronomical navigation and its limitations. Using microcomputers in small packages and selecting up-to-date efficient methods will overcome many of these limitations. Both features lead to focus on observations, and encourage an increase in their numbers. With no intention of competing with satellite navigation, sextant navigation in the open sea can then be accessed again by anybody. It can be considered for demonstrative use or as a complement to the GPS.

  15. Navigating the Internet.

    PubMed Central

    Powsner, S M; Roderer, N K

    1994-01-01

    Navigating any complex set of information resources requires tools for both browsing and searching. A number of tools are available today for using Internet resources, and more are being developed. This article reviews existing navigational tools, including two developed at the Yale University School of Medicine, and points out their strengths and weaknesses. A major shortcoming of the present Internet navigation methods is the lack of controlled descriptions of the available resources. As a result, navigating the Internet is very difficult. PMID:7841913

  16. Evolution of patient navigation.

    PubMed

    Shockney, Lillie D

    2010-08-01

    The role of nurses in patient navigation has evolved over more than four decades. Navigators in cancer care can guide patients through the physical, emotional, and financial challenges that come with a diagnosis of cancer and facilitate communication among healthcare providers. Navigation has the potential to improve patient outcomes and system efficiency. Oncology nurses are well suited to help patients with cancer navigate the healthcare system from diagnosis and treatment through survivorship and palliative care. PMID:20682496

  17. Human Factors Considerations for Performance-Based Navigation

    NASA Technical Reports Server (NTRS)

    Barhydt, Richard; Adams, Catherine A.

    2006-01-01

    A transition toward a performance-based navigation system is currently underway in both the United States and around the world. Performance-based navigation incorporates Area Navigation (RNAV) and Required Navigation Performance (RNP) procedures that do not rely on the location of ground-based navigation aids. These procedures offer significant benefits to both operators and air traffic managers. Under sponsorship from the Federal Aviation Administration (FAA), the National Aeronautics and Space Administration (NASA) has undertaken a project to document human factors issues that have emerged during RNAV and RNP operations and propose areas for further consideration. Issues were found to include aspects of air traffic control and airline procedures, aircraft systems, and procedure design. Major findings suggest the need for human factors-specific instrument procedure design guidelines. Ongoing industry and government activities to address air-ground communication terminology, procedure design improvements, and chart-database commonality are strongly encouraged.

  18. Navigator program risk management

    NASA Technical Reports Server (NTRS)

    Wessen, Randii R.; Padilla, Deborah A.

    2004-01-01

    In this paper, program risk management as applied to the Navigator Program: In Search of New Worlds will be discussed. The Navigator Program's goals are to learn how planetary systems form and to search for those worlds that could or do harbor life.

  19. Maps and navigation methods

    NASA Technical Reports Server (NTRS)

    Duval, A

    1922-01-01

    Different maps and scales are discussed with particular emphasis on their use in aviation. The author makes the observation that current navigation methods are slow and dangerous and should be replaced by scientific methods of navigation based on loxodromy and the use of the compass.

  20. Oncology nurse navigator.

    PubMed

    Case, Mary Ann B

    2011-02-01

    The purpose of this integrative review is to explore the presence of the oncology nurse as navigator on measurable patient outcomes. Eighteen primary nursing research studies were found using combinations of the following key words: advocate, cancer, case manager, coach, certification, guide, navigator, nurse, oncology, patient navigator, pivot nurse, and continuity of care. Nurse researchers identified nursing-sensitive patient outcomes related to the time to diagnosis and appropriate treatment, effect on mood states, satisfaction, support, continuity of care, and cost outcomes. Navigator roles are expanding globally, and nurses should continue to embrace opportunities to ensure the safe passage of patients with cancer along the entire trajectory of illness and to evaluate the implications for educational preparation, research, and practice of navigators of all kinds. PMID:21278039

  1. 14 CFR 135.161 - Communication and navigation equipment for aircraft operations under VFR over routes navigated by...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Communication and navigation equipment for aircraft operations under VFR over routes navigated by pilotage. 135.161 Section 135.161 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS...

  2. 33 CFR 334.490 - Atlantic Ocean off Georgia Coast; air-to-air and air-to-water gunnery and bombing ranges for...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Atlantic Ocean off Georgia Coast; air-to-air and air-to-water gunnery and bombing ranges for fighter and bombardment aircraft, U.S. Air Force. 334.490 Section 334.490 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE DANGER ZONE...

  3. Algorithm for navigated ESS.

    PubMed

    Baudoin, T; Grgić, M V; Zadravec, D; Geber, G; Tomljenović, D; Kalogjera, L

    2013-12-01

    ENT navigation has given new opportunities in performing Endoscopic Sinus Surgery (ESS) and improving surgical outcome of the patients` treatment. ESS assisted by a navigation system could be called Navigated Endoscopic Sinus Surgery (NESS). As it is generally accepted that the NESS should be performed only in cases of complex anatomy and pathology, it has not yet been established as a state-of-the-art procedure and thus not used on a daily basis. This paper presents an algorithm for use of a navigation system for basic ESS in the treatment of chronic rhinosinusitis (CRS). The algorithm includes five units that should be highlighted using a navigation system. They are as follows: 1) nasal vestibule unit, 2) OMC unit, 3) anterior ethmoid unit, 4) posterior ethmoid unit, and 5) sphenoid unit. Each unit has a shape of a triangular pyramid and consists of at least four reference points or landmarks. As many landmarks as possible should be marked when determining one of the five units. Navigated orientation in each unit should always precede any surgical intervention. The algorithm should improve the learning curve of trainees and enable surgeons to use the navigation system routinely and systematically. PMID:24260766

  4. 33 CFR 334.700 - Choctawhatchee Bay, aerial gunnery ranges, Air Proving Ground Center, Air Research and...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Choctawhatchee Bay, aerial gunnery ranges, Air Proving Ground Center, Air Research and Development Command, Eglin Air Force Base, Fla... gunnery ranges, Air Proving Ground Center, Air Research and Development Command, Eglin Air Force Base,...

  5. Navigation lights color study

    NASA Astrophysics Data System (ADS)

    Barbosa, Jose G.; Alberg, Matthew T.

    2015-05-01

    The chromaticity of navigation lights are defined by areas on the International Commission on Illumination (CIE) 1931 chromaticity diagram. The corner coordinates for these areas are specified in the International Regulations for Prevention of Collisions at Sea, 1972 (72 COLREGS). The navigation light's color of white, red, green, and yellow are bounded by these areas. The chromaticity values specified by the COLREGS for navigation lights were intended for the human visual system (HVS). The HVS can determine the colors of these lights easily under various conditions. For digital color camera imaging systems the colors of these lights are dependent on the camera's color spectral sensitivity, settings, and color correction. At night the color of these lights are used to quickly determine the relative course of vessels. If these lights are incorrectly identified or there is a delay in identifying them this could be a potential safety of ship concern. Vessels that use camera imaging systems exclusively for sight, at night, need to detect, identify, and discriminate navigation lights for navigation and collision avoidance. The introduction of light emitting diode (LED) lights and lights with different spectral signatures have the potential to be imaged very differently with an RGB color filter array (CFA) color camera than with the human eye. It has been found that some green navigation lights' images appear blue verse green. This has an impact on vessels that use camera imaging systems exclusively for navigation. This paper will characterize color cameras ability to properly reproducing navigation lights' color and survey a set of navigation light to determine if they conform to the COLREGS.

  6. Navigation Systems for Ablation

    PubMed Central

    Wood, B. J.; Kruecker, J.; Abi-Jaoudeh, N; Locklin, J.; Levy, E.; Xu, S.; Solbiati, L.; Kapoor, A.; Amalou, H.; Venkatesan, A.

    2010-01-01

    Navigation systems, devices and intra-procedural software are changing the way we practice interventional oncology. Prior to the development of precision navigation tools integrated with imaging systems, thermal ablation of hard-to-image lesions was highly dependent upon operator experience, spatial skills, and estimation of positron emission tomography-avid or arterial-phase targets. Numerous navigation systems for ablation bring the opportunity for standardization and accuracy that extends our ability to use imaging feedback during procedures. Existing systems and techniques are reviewed, and specific clinical applications for ablation are discussed to better define how these novel technologies address specific clinical needs, and fit into clinical practice. PMID:20656236

  7. Spatial cognition and navigation

    NASA Technical Reports Server (NTRS)

    Aretz, Anthony J.

    1989-01-01

    An experiment that provides data for the development of a cognitive model of pilot flight navigation is described. The experiment characterizes navigational awareness as the mental alignment of two frames of reference: (1) the ego centered reference frame that is established by the forward view out of the cockpit and (2) the world centered reference frame that is established by the aircraft's location on a map. The data support a model involving at least two components: (1) the perceptual encoding of the navigational landmarks and (2) the mental rotation of the map's world reference frame into alignment with the ego centered reference frame. The quantitative relationships of these two factors are provided as possible inputs for a computational model of spatial cognition during flight navigation.

  8. Inertial/multisensor navigation

    NASA Technical Reports Server (NTRS)

    Alikiotis, Dimitri

    1987-01-01

    A Multisensor Navigation System as proposed by the Ohio University Avionics Engineering Center is illustrated. The proposed system incorporates radio (Lorac-C), satellite (Global Positioning System) and an inertial navigation system (INS). The inertial part of the system will be of a low grade since the INS will be used primarily for filtering the GPS data and for short term stability. Loran-C and GPS will be used for long term stability.

  9. Stellar Inertial Navigation Workstation

    NASA Technical Reports Server (NTRS)

    Johnson, W.; Johnson, B.; Swaminathan, N.

    1989-01-01

    Software and hardware assembled to support specific engineering activities. Stellar Inertial Navigation Workstation (SINW) is integrated computer workstation providing systems and engineering support functions for Space Shuttle guidance and navigation-system logistics, repair, and procurement activities. Consists of personal-computer hardware, packaged software, and custom software integrated together into user-friendly, menu-driven system. Designed to operate on IBM PC XT. Applied in business and industry to develop similar workstations.

  10. Onboard Navigation Systems Characteristics

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The space shuttle onboard navigation systems characteristics are described. A standard source of equations and numerical data for use in error analyses and mission simulations related to space shuttle development is reported. The sensor characteristics described are used for shuttle onboard navigation performance assessment. The use of complete models in the studies depend on the analyses to be performed, the capabilities of the computer programs, and the availability of computer resources.

  11. Odometry and insect navigation.

    PubMed

    Wolf, Harald

    2011-05-15

    Animals have needed to find their way about almost since a free-living life style evolved. Particularly, if an animal has a home--shelter or nesting site--true navigation becomes necessary to shuttle between this home and areas of other activities, such as feeding. As old as navigation is in the animal kingdom, as diverse are its mechanisms and implementations, depending on an organism's ecology and its endowment with sensors and actuators. The use of landmarks for piloting or the use of trail pheromones for route following have been examined in great detail and in a variety of animal species. The same is true for senses of direction--the compasses for navigation--and the construction of vectors for navigation from compass and distance cues. The measurement of distance itself--odometry--has received much less attention. The present review addresses some recent progress in the understanding of odometers in invertebrates, after outlining general principles of navigation to put odometry in its proper context. Finally, a number of refinements that increase navigation accuracy and safety are addressed. PMID:21525309

  12. 33 CFR 209.325 - Navigation lights, aids to navigation, navigation charts, and related data policy, practices and...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Navigation lights, aids to navigation, navigation charts, and related data policy, practices and procedure. 209.325 Section 209.325 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE ADMINISTRATIVE PROCEDURE § 209.325 Navigation...

  13. Airborne gravimetry, altimetry, and GPS navigation errors

    NASA Technical Reports Server (NTRS)

    Colombo, Oscar L.

    1992-01-01

    Proper interpretation of airborne gravimetry and altimetry requires good knowledge of aircraft trajectory. Recent advances in precise navigation with differential GPS have made it possible to measure gravity from the air with accuracies of a few milligals, and to obtain altimeter profiles of terrain or sea surface correct to one decimeter. These developments are opening otherwise inaccessible regions to detailed geophysical mapping. Navigation with GPS presents some problems that grow worse with increasing distance from a fixed receiver: the effect of errors in tropospheric refraction correction, GPS ephemerides, and the coordinates of the fixed receivers. Ionospheric refraction and orbit error complicate ambiguity resolution. Optimal navigation should treat all error sources as unknowns, together with the instantaneous vehicle position. To do so, fast and reliable numerical techniques are needed: efficient and stable Kalman filter-smoother algorithms, together with data compression and, sometimes, the use of simplified dynamics.

  14. Coordinating sensing and local navigation

    NASA Astrophysics Data System (ADS)

    Slack, Marc G.

    1991-07-01

    Based on Navigation Templates (or NaTs), this work presents a new paradigm for local navigation which addresses the noisy and uncertain nature of sensor data. Rather than creating a new navigation plan each time the robot's perception of the world changes, the technique incorporates perceptual changes directly into the existing navigation plan. In this way, the robot's navigation plan is quickly and continuously modified, resulting in actions that remain coordinated with its changing perception of the world.

  15. Voyager navigation strategy and accuracy

    NASA Technical Reports Server (NTRS)

    Jones, J. B.; Mcdanell, J. P.; Bantell, M. H., Jr.; Chadwick, C.; Jacobson, R. A.; Miller, L. J.; Synnott, S. P.; Van Allen, R. E.

    1977-01-01

    The paper presents the results of the prelaunch navigation studies conducted for the Mariner spacecraft launched toward encounters with the giant planets. The navigation system and the strategy for using this system are described. The requirements on the navigation system demanded by the goals of the project are mentioned, and the predicted navigational capability relative to each of the requirements is discussed. Baseline navigation results for three possible trajectories are analyzed.

  16. Coordinating sensing and local navigation

    NASA Technical Reports Server (NTRS)

    Slack, Marc G.

    1991-01-01

    Based on Navigation Templates (or NaTs), this work presents a new paradigm for local navigation which addresses the noisy and uncertain nature of sensor data. Rather than creating a new navigation plan each time the robot's perception of the world changes, the technique incorporates perceptual changes directly into the existing navigation plan. In this way, the robot's navigation plan is quickly and continuously modified, resulting in actions that remain coordinated with its changing perception of the world.

  17. Aerocapture navigation at Neptune

    NASA Technical Reports Server (NTRS)

    Haw, Robert J.

    2003-01-01

    A proposed Neptune orbiter Aerocapture mission will use solar electric propulsion to send an orbiter to Neptune. Navigation feasibility of direct-entry aerocapture for orbit insertion at Neptune is shown. The navigation strategy baselines optical imaging and (delta)VLBI measurement in order to satisfy the flight system's atmosphere entry flight path angle, which is targeted to enter Neptune with an entry flight path angle of -11.6 . Error bars on the entry flight path angle of plus/minus0.55 (3(sigma)) are proposed. This requirement can be satisfied with a data cutoff 3.2 days prior to arrival. There is some margin in the arrival template to tighten (i.e. reduce) the entry corridor either by scheduling a data cutoff closer to Neptune or alternatively, reducing uncertainties by increasing the fidelity of the optical navigation camera.

  18. Mariner 9 navigation

    NASA Technical Reports Server (NTRS)

    Neil, W. J.; Jordan, J. F.; Zielenbach, J. W.; Wong, S. K.; Mitchell, R. T.; Webb, W. A.; Koskela, P. E.

    1973-01-01

    A final, comprehensive description of the navigation of Mariner 9-the first U.S. spacecraft to orbit another planet is provided. The Mariner 9 navigation function included not only precision flight path control but also pointing of the spacecraft's scientific instruments mounted on a two degree of freedom scan platform. To the extent appropriate, each section describes the perflight analyses on which the operational strategies and performance predictions were based. Inflight results are then discussed and compared with the preflight predictions. Postflight analyses, which were primarily concerned with developing a thorough understanding of unexpected in-flight results, are also presented.

  19. Cassini tour navigation strategy

    NASA Technical Reports Server (NTRS)

    Roth, Duane; Alwar, Vijay; Bordi, John; Goodson, Troy; Hahn, Yungsun; Ionasescu, Rodica; Jones, Jeremy; Owen, William; Pojman, Joan; Roundhill, Ian; Santos, Shawna; Strange, Nathan; Wagner, Sean; Wong, Mau

    2003-01-01

    The Cassini-Huygens spacecraft was launched on October 15, 1997 as a joint NASA/ESA mission to explore Saturn. After a 7 year cruise the spacecraft will enter orbit around Saturn on 1 July 2004 for a 4 year investigation of the Saturnian system. The Cassini Navigation Team is responsible for designing the reference trajectory and conducting operations to realize this design. This paper describes the strategy for achieving project requirements, the characteristics of the Cassini navigation challenge, and the underlying assumptions.

  20. Navigating between the Dimensions

    ERIC Educational Resources Information Center

    Fleron, Julian F.; Ecke, Volker

    2011-01-01

    Generations have been inspired by Edwin A. Abbott's profound tour of the dimensions in his novella "Flatland: A Romance of Many Dimensions" (1884). This well-known satire is the story of a flat land inhabited by geometric shapes trying to navigate the subtleties of their geometric, social, and political positions. In this article, the authors…

  1. Astronomy and Navigation

    NASA Astrophysics Data System (ADS)

    Pimenta, Fernando

    Different people, seafaring in different parts of the world, used strategies well adapted to their environment with the purpose of safely reaching their destination. Astronomical elements, present in their navigation "toolkit" for orientation, calendar purposes, and time reckoning, contributed to their conceptualization of space and time and were eventually integrated in their ritual, social organization, and social power structure.

  2. Learning for autonomous navigation

    NASA Technical Reports Server (NTRS)

    Angelova, Anelia; Howard, Andrew; Matthies, Larry; Tang, Benyang; Turmon, Michael; Mjolsness, Eric

    2005-01-01

    Autonomous off-road navigation of robotic ground vehicles has important applications on Earth and in space exploration. Progress in this domain has been retarded by the limited lookahead range of 3-D sensors and by the difficulty of preprogramming systems to understand the traversability of the wide variety of terrain they can encounter.

  3. Navigation for everyday life

    SciTech Connect

    Fu, D.D.; Hammond, K.J.; Swain, M.J.

    1996-12-31

    Past work in navigation has worked toward the goal of producing an accurate map of the environment. While no one can deny the usefulness of such a map, the ideal of producing a complete map becomes unrealistic when an agent is faced with performing real tasks. And yet an agent accomplishing recurring tasks should navigate more efficiently as time goes by. We present a system which integrates navigation, planning, and vision. In this view, navigation supports the needs of a larger system as opposed to being a task in its own right. Whereas previous approaches assume an unknown and unstructured environment, we assume a structured environment whose organization is known, but whose specifics are unknown. The system is endowed with a wide range of visual capabilities as well as search plans for informed exploration of a simulated store constructed from real visual data. We demonstrate the agent finding items while mapping the world. In repeatedly retrieving items, the agent`s performance improves as the learned map becomes more useful.

  4. Recent Events in Guidance, Navigation and Control

    NASA Technical Reports Server (NTRS)

    Polites, Michael E.; Bullman, Jack (Technical Monitor)

    2001-01-01

    This article summarizes recent events in Guidance, Navigation, and Control (GN&C) in space, weapons and missiles, and aircraft. The section on space includes recent developments with the following NASA spacecraft and space vehicles: Near Earth Asteroid Rendezvous, Deep Space 1, Microwave Anisotropy Probe, Earth Observer-1, Compton Gamma Ray Observatory, the International Space Station, X-38, and X-40A. The section on weapons and missiles includes recent developments with the following missiles: Joint Air-to-Surface Standoff Missile, Storm Shadow/Scalp EG precision standoff missile, Hellfire missile, AIM-120C Advanced medium-range air-to-air missile, Derby missile, Arrow 2, and the Standard Missile SM-3. The section on aircraft includes recent developments with the following aircraft: Joint Strike Fighter, X-31, V-22, Couger/SUDer Puma Mk. 2, Predator B 001, and the Unmanned Combat Air Vehicle.

  5. Next Generation GPS Ground Control Segment (OCX) Navigation Design

    NASA Technical Reports Server (NTRS)

    Bertiger, Willy; Bar-Sever, Yoaz; Harvey, Nate; Miller, Kevin; Romans, Larry; Weiss, Jan; Doyle, Larry; Solorzano, Tara; Petzinger, John; Stell, Al

    2010-01-01

    In February 2010, a Raytheon-led team was selected by The Air Force to develop, implement, and operate the next generation GPS ground control segment (OCX). To meet and exceed the demanding OCX navigation performance requirements, the Raytheon team partnered with ITT (Navigation lead) and JPL to adapt major elements of JPL's navigation technology, proven in the operations of the Global Differential GPS (GDGPS) System. Key design goals for the navigation subsystem include accurate ephemeris and clock accuracy (user range error), ease of model upgrades, and a smooth and safe transition from the legacy system to OCX.We will describe key elements of the innovative architecture of the OCX navigation subsystem,and demonstrate the anticipated performance of the system through high fidelity simulations withactual GPS measurements.

  6. 4D Dynamic Required Navigation Performance Final Report

    NASA Technical Reports Server (NTRS)

    Finkelsztein, Daniel M.; Sturdy, James L.; Alaverdi, Omeed; Hochwarth, Joachim K.

    2011-01-01

    New advanced four dimensional trajectory (4DT) procedures under consideration for the Next Generation Air Transportation System (NextGen) require an aircraft to precisely navigate relative to a moving reference such as another aircraft. Examples are Self-Separation for enroute operations and Interval Management for in-trail and merging operations. The current construct of Required Navigation Performance (RNP), defined for fixed-reference-frame navigation, is not sufficiently specified to be applicable to defining performance levels of such air-to-air procedures. An extension of RNP to air-to-air navigation would enable these advanced procedures to be implemented with a specified level of performance. The objective of this research effort was to propose new 4D Dynamic RNP constructs that account for the dynamic spatial and temporal nature of Interval Management and Self-Separation, develop mathematical models of the Dynamic RNP constructs, "Required Self-Separation Performance" and "Required Interval Management Performance," and to analyze the performance characteristics of these air-to-air procedures using the newly developed models. This final report summarizes the activities led by Raytheon, in collaboration with GE Aviation and SAIC, and presents the results from this research effort to expand the RNP concept to a dynamic 4D frame of reference.

  7. Space shuttle navigation analysis. Volume 2: Baseline system navigation

    NASA Technical Reports Server (NTRS)

    Jones, H. L.; Luders, G.; Matchett, G. A.; Rains, R. G.

    1980-01-01

    Studies related to the baseline navigation system for the orbiter are presented. The baseline navigation system studies include a covariance analysis of the Inertial Measurement Unit calibration and alignment procedures, postflight IMU error recovery for the approach and landing phases, on-orbit calibration of IMU instrument biases, and a covariance analysis of entry and prelaunch navigation system performance.

  8. 33 CFR 334.490 - Atlantic Ocean off Georgia Coast; air-to-air and air-to-water gunnery and bombing ranges for...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Atlantic Ocean off Georgia Coast; air-to-air and air-to-water gunnery and bombing ranges for fighter and bombardment aircraft, U.S. Air... ARMY, DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.490 Atlantic Ocean...

  9. 33 CFR 334.490 - Atlantic Ocean off Georgia Coast; air-to-air and air-to-water gunnery and bombing ranges for...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Atlantic Ocean off Georgia Coast; air-to-air and air-to-water gunnery and bombing ranges for fighter and bombardment aircraft, U.S. Air... ARMY, DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.490 Atlantic Ocean...

  10. 33 CFR 334.490 - Atlantic Ocean off Georgia Coast; air-to-air and air-to-water gunnery and bombing ranges for...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Atlantic Ocean off Georgia Coast; air-to-air and air-to-water gunnery and bombing ranges for fighter and bombardment aircraft, U.S. Air... ARMY, DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.490 Atlantic Ocean...

  11. Terrain-Adaptive Navigation Architecture

    NASA Technical Reports Server (NTRS)

    Helmick, Daniel M.; Angelova, Anelia; Matthies, Larry H.; Helmick, Daniel M.

    2008-01-01

    A navigation system designed for a Mars rover has been designed to deal with rough terrain and/or potential slip when evaluating and executing paths. The system also can be used for any off-road, autonomous vehicles. The system enables vehicles to autonomously navigate different terrain challenges including dry river channel systems, putative shorelines, and gullies emanating from canyon walls. Several of the technologies within this innovation increase the navigation system s capabilities compared to earlier rover navigation algorithms.

  12. Coastal Piloting & Charting: Navigation 101.

    ERIC Educational Resources Information Center

    Osinski, Alison

    This curriculum guide for a beginning course on marine navigation describes marine navigation (the art of and science of determining position of a ship and its movement from one position to another in order to keep track of where the ship is and where it is going) and defines dead reckoning, piloting, electronic navigation, and celestial…

  13. Self-navigating robot

    NASA Technical Reports Server (NTRS)

    Thompson, A. M.

    1978-01-01

    Rangefinding equipment and onboard navigation system determine best route from point to point. Research robot has two TV cameras and laser for scanning and mapping its environment. Path planner finds most direct, unobstructed route that requires minimum expenditure of energy. Distance is used as measure of energy expense, although other measures such as time or power consumption (which would depend on the topography of the path) may be used.

  14. Multisensor robot navigation system

    NASA Astrophysics Data System (ADS)

    Persa, Stelian; Jonker, Pieter P.

    2002-02-01

    Almost all robot navigation systems work indoors. Outdoor robot navigation systems offer the potential for new application areas. The biggest single obstacle to building effective robot navigation systems is the lack of accurate wide-area sensors for trackers that report the locations and orientations of objects in an environment. Active (sensor-emitter) tracking technologies require powered-device installation, limiting their use to prepared areas that are relative free of natural or man-made interference sources. The hybrid tracker combines rate gyros and accelerometers with compass and tilt orientation sensor and DGPS system. Sensor distortions, delays and drift required compensation to achieve good results. The measurements from sensors are fused together to compensate for each other's limitations. Analysis and experimental results demonstrate the system effectiveness. The paper presents a field experiment for a low-cost strapdown-IMU (Inertial Measurement Unit)/DGPS combination, with data processing for the determination of 2-D components of position (trajectory), velocity and heading. In the present approach we have neglected earth rotation and gravity variations, because of the poor gyroscope sensitivities of our low-cost ISA (Inertial Sensor Assembly) and because of the relatively small area of the trajectory. The scope of this experiment was to test the feasibility of an integrated DGPS/IMU system of this type and to develop a field evaluation procedure for such a combination.

  15. Navigation in virtual environments

    NASA Astrophysics Data System (ADS)

    Arthur, Erik; Hancock, Peter A.; Telke, Susan

    1996-06-01

    Virtual environments show great promise in the area of training. ALthough such synthetic environments project homeomorphic physical representations of real- world layouts, it is not known how individuals develop models to match such environments. To evaluate this process, the present experiment examined the accuracy of triadic representations of objects having learned them previously under different conditions. The layout consisted of four different colored spheres arranged on a flat plane. These objects could be viewed in either a free navigation virtual environment condition (NAV) or a single body position virtual environment condition. The first condition allowed active exploration of the environment while the latter condition allowed the participant only a passive opportunity to observe form a single viewpoint. These viewing conditions were a between-subject variable with ten participants randomly assigned to each condition. Performance was assessed by the response latency to judge the accuracy of a layout of three objects over different rotations. Results showed linear increases in response latency as the rotation angle increased from the initial perspective in SBP condition. The NAV condition did not show a similar effect of rotation angle. These results suggest that the spatial knowledge acquisition from virtual environments through navigation is similar to actual navigation.

  16. 33 CFR 334.865 - Naval Air Station North Island, San Diego, California, restricted area.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Naval Air Station North Island, San Diego, California, restricted area. 334.865 Section 334.865 Navigation and Navigable Waters CORPS... REGULATIONS § 334.865 Naval Air Station North Island, San Diego, California, restricted area. (a) The...

  17. 33 CFR 334.865 - Naval Air Station North Island, San Diego, California, restricted area.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Naval Air Station North Island, San Diego, California, restricted area. 334.865 Section 334.865 Navigation and Navigable Waters CORPS... REGULATIONS § 334.865 Naval Air Station North Island, San Diego, California, restricted area. (a) The...

  18. 33 CFR 334.865 - Naval Air Station North Island, San Diego, California, restricted area.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Naval Air Station North Island, San Diego, California, restricted area. 334.865 Section 334.865 Navigation and Navigable Waters CORPS... REGULATIONS § 334.865 Naval Air Station North Island, San Diego, California, restricted area. (a) The...

  19. 33 CFR 100.736 - Annual Fort Myers Beach air show; Fort Myers Beach, FL.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Annual Fort Myers Beach air show; Fort Myers Beach, FL. 100.736 Section 100.736 Navigation and Navigable Waters COAST GUARD, DEPARTMENT... Fort Myers Beach air show; Fort Myers Beach, FL. (a)(1) Regulated Area. The regulated area is formed...

  20. 33 CFR 100.736 - Annual Fort Myers Beach air show; Fort Myers Beach, FL.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Annual Fort Myers Beach air show; Fort Myers Beach, FL. 100.736 Section 100.736 Navigation and Navigable Waters COAST GUARD, DEPARTMENT... Fort Myers Beach air show; Fort Myers Beach, FL. (a)(1) Regulated Area. The regulated area is formed...

  1. 33 CFR 100.736 - Annual Fort Myers Beach air show; Fort Myers Beach, FL.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Annual Fort Myers Beach air show; Fort Myers Beach, FL. 100.736 Section 100.736 Navigation and Navigable Waters COAST GUARD, DEPARTMENT... Fort Myers Beach air show; Fort Myers Beach, FL. (a)(1) Regulated Area. The regulated area is formed...

  2. 33 CFR 100.736 - Annual Fort Myers Beach air show; Fort Myers Beach, FL.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Annual Fort Myers Beach air show; Fort Myers Beach, FL. 100.736 Section 100.736 Navigation and Navigable Waters COAST GUARD, DEPARTMENT... Fort Myers Beach air show; Fort Myers Beach, FL. (a)(1) Regulated Area. The regulated area is formed...

  3. 33 CFR 100.736 - Annual Fort Myers Beach air show; Fort Myers Beach, FL.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Annual Fort Myers Beach air show; Fort Myers Beach, FL. 100.736 Section 100.736 Navigation and Navigable Waters COAST GUARD, DEPARTMENT... Fort Myers Beach air show; Fort Myers Beach, FL. (a)(1) Regulated Area. The regulated area is formed...

  4. Autonomous navigation - The ARMMS concept

    NASA Astrophysics Data System (ADS)

    Wood, L. J.; Jones, J. B.; Mease, K. D.; Kwok, J. H.; Goltz, G. L.; Kechichian, J. A.

    1984-08-01

    A conceptual design is outlined for the navigation subsystem of the Autonomous Redundancy and Maintenance Management Subsystem (ARMMS). The principal function of this navigation subsystem is to maintain the spacecraft over a specified equatorial longitude to within + or - 3 deg. In addition, the navigation subsystem must detect and correct internal faults. It comprises elements for a navigation executive and for orbit determination, trajectory, maneuver planning, and maneuver command. Each of these elements is described. The navigation subsystem is to be used in the DSCS III spacecraft.

  5. 33 CFR 209.325 - Navigation lights, aids to navigation, navigation charts, and related data policy, practices and...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Navigation lights, aids to... ADMINISTRATIVE PROCEDURE § 209.325 Navigation lights, aids to navigation, navigation charts, and related data... procedure to be used by all Corps of Engineers installations and activities in connection with aids...

  6. 33 CFR 209.325 - Navigation lights, aids to navigation, navigation charts, and related data policy, practices and...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Navigation lights, aids to... ADMINISTRATIVE PROCEDURE § 209.325 Navigation lights, aids to navigation, navigation charts, and related data... procedure to be used by all Corps of Engineers installations and activities in connection with aids...

  7. 33 CFR 209.325 - Navigation lights, aids to navigation, navigation charts, and related data policy, practices and...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Navigation lights, aids to... ADMINISTRATIVE PROCEDURE § 209.325 Navigation lights, aids to navigation, navigation charts, and related data... procedure to be used by all Corps of Engineers installations and activities in connection with aids...

  8. 33 CFR 209.325 - Navigation lights, aids to navigation, navigation charts, and related data policy, practices and...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Navigation lights, aids to... ADMINISTRATIVE PROCEDURE § 209.325 Navigation lights, aids to navigation, navigation charts, and related data... procedure to be used by all Corps of Engineers installations and activities in connection with aids...

  9. Integrated navigation method based on inertial navigation system and Lidar

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoyue; Shi, Haitao; Pan, Jianye; Zhang, Chunxi

    2016-04-01

    An integrated navigation method based on the inertial navigational system (INS) and Lidar was proposed for land navigation. Compared with the traditional integrated navigational method and dead reckoning (DR) method, the influence of the inertial measurement unit (IMU) scale factor and misalignment was considered in the new method. First, the influence of the IMU scale factor and misalignment on navigation accuracy was analyzed. Based on the analysis, the integrated system error model of INS and Lidar was established, in which the IMU scale factor and misalignment error states were included. Then the observability of IMU error states was analyzed. According to the results of the observability analysis, the integrated system was optimized. Finally, numerical simulation and a vehicle test were carried out to validate the availability and utility of the proposed INS/Lidar integrated navigational method. Compared with the test result of a traditional integrated navigation method and DR method, the proposed integrated navigational method could result in a higher navigation precision. Consequently, the IMU scale factor and misalignment error were effectively compensated by the proposed method and the new integrated navigational method is valid.

  10. Energy Navigation: Simulation Evaluation and Benefit Analysis

    NASA Technical Reports Server (NTRS)

    Williams, David H.; Oseguera-Lohr, Rosa M.; Lewis, Elliot T.

    2011-01-01

    This paper presents results from two simulation studies investigating the use of advanced flight-deck-based energy navigation (ENAV) and conventional transport-category vertical navigation (VNAV) for conducting a descent through a busy terminal area, using Continuous Descent Arrival (CDA) procedures. This research was part of the Low Noise Flight Procedures (LNFP) element within the Quiet Aircraft Technology (QAT) Project, and the subsequent Airspace Super Density Operations (ASDO) research focus area of the Airspace Project. A piloted simulation study addressed development of flight guidance, and supporting pilot and Air Traffic Control (ATC) procedures for high density terminal operations. The procedures and charts were designed to be easy to understand, and to make it easy for the crew to make changes via the Flight Management Computer Control-Display Unit (FMC-CDU) to accommodate changes from ATC.

  11. 33 CFR 401.35 - Navigation underway.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Navigation underway. 401.35 Section 401.35 Navigation and Navigable Waters SAINT LAWRENCE SEAWAY DEVELOPMENT CORPORATION, DEPARTMENT OF TRANSPORTATION SEAWAY REGULATIONS AND RULES Regulations Seaway Navigation § 401.35...

  12. 33 CFR 401.35 - Navigation underway.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Navigation underway. 401.35 Section 401.35 Navigation and Navigable Waters SAINT LAWRENCE SEAWAY DEVELOPMENT CORPORATION, DEPARTMENT OF TRANSPORTATION SEAWAY REGULATIONS AND RULES Regulations Seaway Navigation § 401.35...

  13. 33 CFR 401.53 - Obstructing navigation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Obstructing navigation. 401.53 Section 401.53 Navigation and Navigable Waters SAINT LAWRENCE SEAWAY DEVELOPMENT CORPORATION, DEPARTMENT OF TRANSPORTATION SEAWAY REGULATIONS AND RULES Regulations Seaway Navigation § 401.53...

  14. 33 CFR 401.35 - Navigation underway.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Navigation underway. 401.35 Section 401.35 Navigation and Navigable Waters SAINT LAWRENCE SEAWAY DEVELOPMENT CORPORATION, DEPARTMENT OF TRANSPORTATION SEAWAY REGULATIONS AND RULES Regulations Seaway Navigation § 401.35...

  15. 33 CFR 401.35 - Navigation underway.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Navigation underway. 401.35 Section 401.35 Navigation and Navigable Waters SAINT LAWRENCE SEAWAY DEVELOPMENT CORPORATION, DEPARTMENT OF TRANSPORTATION SEAWAY REGULATIONS AND RULES Regulations Seaway Navigation § 401.35...

  16. 33 CFR 401.53 - Obstructing navigation.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Obstructing navigation. 401.53 Section 401.53 Navigation and Navigable Waters SAINT LAWRENCE SEAWAY DEVELOPMENT CORPORATION, DEPARTMENT OF TRANSPORTATION SEAWAY REGULATIONS AND RULES Regulations Seaway Navigation § 401.53...

  17. 33 CFR 401.53 - Obstructing navigation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Obstructing navigation. 401.53 Section 401.53 Navigation and Navigable Waters SAINT LAWRENCE SEAWAY DEVELOPMENT CORPORATION, DEPARTMENT OF TRANSPORTATION SEAWAY REGULATIONS AND RULES Regulations Seaway Navigation § 401.53...

  18. 33 CFR 401.53 - Obstructing navigation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Obstructing navigation. 401.53 Section 401.53 Navigation and Navigable Waters SAINT LAWRENCE SEAWAY DEVELOPMENT CORPORATION, DEPARTMENT OF TRANSPORTATION SEAWAY REGULATIONS AND RULES Regulations Seaway Navigation § 401.53...

  19. 33 CFR 401.35 - Navigation underway.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Navigation underway. 401.35 Section 401.35 Navigation and Navigable Waters SAINT LAWRENCE SEAWAY DEVELOPMENT CORPORATION, DEPARTMENT OF TRANSPORTATION SEAWAY REGULATIONS AND RULES Regulations Seaway Navigation § 401.35...

  20. 33 CFR 401.53 - Obstructing navigation.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Obstructing navigation. 401.53 Section 401.53 Navigation and Navigable Waters SAINT LAWRENCE SEAWAY DEVELOPMENT CORPORATION, DEPARTMENT OF TRANSPORTATION SEAWAY REGULATIONS AND RULES Regulations Seaway Navigation § 401.53...

  1. Control algorithms for autonomous robot navigation

    SciTech Connect

    Jorgensen, C.C.

    1985-09-20

    This paper examines control algorithm requirements for autonomous robot navigation outside laboratory environments. Three aspects of navigation are considered: navigation control in explored terrain, environment interactions with robot sensors, and navigation control in unanticipated situations. Major navigation methods are presented and relevance of traditional human learning theory is discussed. A new navigation technique linking graph theory and incidental learning is introduced.

  2. Aeronautic Instruments. Section VI : Aerial Navigation and Navigating Instruments

    NASA Technical Reports Server (NTRS)

    Eaton, H N

    1923-01-01

    This report outlines briefly the methods of aerial navigation which have been developed during the past few years, with a description of the different instruments used. Dead reckoning, the most universal method of aerial navigation, is first discussed. Then follows an outline of the principles of navigation by astronomical observation; a discussion of the practical use of natural horizons, such as sea, land, and cloud, in making extant observations; the use of artificial horizons, including the bubble, pendulum, and gyroscopic types. A description is given of the recent development of the radio direction finder and its application to navigation.

  3. Learning for Autonomous Navigation

    NASA Technical Reports Server (NTRS)

    Angelova, Anelia; Howard, Andrew; Matthies, Larry; Tang, Benyang; Turmon, Michael; Mjolsness, Eric

    2005-01-01

    Robotic ground vehicles for outdoor applications have achieved some remarkable successes, notably in autonomous highway following (Dickmanns, 1987), planetary exploration (1), and off-road navigation on Earth (1). Nevertheless, major challenges remain to enable reliable, high-speed, autonomous navigation in a wide variety of complex, off-road terrain. 3-D perception of terrain geometry with imaging range sensors is the mainstay of off-road driving systems. However, the stopping distance at high speed exceeds the effective lookahead distance of existing range sensors. Prospects for extending the range of 3-D sensors is strongly limited by sensor physics, eye safety of lasers, and related issues. Range sensor limitations also allow vehicles to enter large cul-de-sacs even at low speed, leading to long detours. Moreover, sensing only terrain geometry fails to reveal mechanical properties of terrain that are critical to assessing its traversability, such as potential for slippage, sinkage, and the degree of compliance of potential obstacles. Rovers in the Mars Exploration Rover (MER) mission have got stuck in sand dunes and experienced significant downhill slippage in the vicinity of large rock hazards. Earth-based off-road robots today have very limited ability to discriminate traversable vegetation from non-traversable vegetation or rough ground. It is impossible today to preprogram a system with knowledge of these properties for all types of terrain and weather conditions that might be encountered.

  4. Ionospheric modelling for navigation

    NASA Astrophysics Data System (ADS)

    Aragon Angel, M. A.

    Signals transmitted to and from satellites for communication and navigation purposes must pass through the ionosphere Ionospheric irregularities most common at equatorial latitudes although they could occur anywhere can have a major impact on system performance and reliability and commercial navigation service satellite-based providers need to account for their effects For a GNSS single-frequency receiver the Slant Total Electron Content STEC must be known by the user through broadcast corrections In this context there are several sets of broadcast parameters that can be defined to take into account this ionospheric term The chosen model to generate the ionospheric correction coefficients for the present study is the NeQuick model although with a number of adaptations intended to improve effective ionospheric effect modelling performances The aim of this study is to describe a possible adaptation to the NeQuick model for real time purposes and suitable for single frequency users Therefore it will be necessary to determine the performance of this modified NeQuick model in correcting the ionospheric delay In order to generate the ionospheric corrections for single frequency receivers using the NeQuick model a certain approach should be followed to adapt the performance of NeQuick since this model was originally developed to provide TEC using averaged monthly information of the solar activity and not daily one Thus to use NeQuick for real time applications as an ionospheric broadcasted model such as Klobuchar solar daily information at the user point

  5. 33 CFR 207.185 - Taylors Bayou, Tex., Beaumont Navigation District Lock; use, administration, and navigation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Taylors Bayou, Tex., Beaumont Navigation District Lock; use, administration, and navigation. 207.185 Section 207.185 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE NAVIGATION...

  6. 33 CFR 207.185 - Taylors Bayou, Tex., Beaumont Navigation District Lock; use, administration, and navigation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Taylors Bayou, Tex., Beaumont Navigation District Lock; use, administration, and navigation. 207.185 Section 207.185 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE NAVIGATION...

  7. 33 CFR 207.185 - Taylors Bayou, Tex., Beaumont Navigation District Lock; use, administration, and navigation.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Taylors Bayou, Tex., Beaumont Navigation District Lock; use, administration, and navigation. 207.185 Section 207.185 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE NAVIGATION...

  8. 33 CFR 207.185 - Taylors Bayou, Tex., Beaumont Navigation District Lock; use, administration, and navigation.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Taylors Bayou, Tex., Beaumont Navigation District Lock; use, administration, and navigation. 207.185 Section 207.185 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE NAVIGATION...

  9. 33 CFR 207.185 - Taylors Bayou, Tex., Beaumont Navigation District Lock; use, administration, and navigation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Taylors Bayou, Tex., Beaumont Navigation District Lock; use, administration, and navigation. 207.185 Section 207.185 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE NAVIGATION...

  10. Space shuttle navigation analysis. Volume 1: GPS aided navigation

    NASA Technical Reports Server (NTRS)

    Matchett, G. A.; Vogel, M. A.; Macdonald, T. J.

    1980-01-01

    Analytical studies related to space shuttle navigation are presented. Studies related to the addition of NAVSTAR Global Positioning System user equipment to the shuttle avionics suite are presented. The GPS studies center about navigation accuracy covariance analyses for both developmental and operational phases of GPS, as well as for various orbiter mission phases.

  11. Comprehension of Navigation Directions

    NASA Technical Reports Server (NTRS)

    Healy, Alice F.; Schneider, Vivian I.

    2002-01-01

    Subjects were shown navigation instructions varying in length directing them to move in a space represented by grids on a computer screen. They followed the instructions by clicking on the grids in the locations specified. Some subjects repeated back the instructions before following them, some did not, and others repeated back the instructions in reduced form, including only the critical words. The commands in each message were presented simultaneously for half of the subjects and sequentially for the others. For the longest messages, performance was better on the initial commands and worse on the final commands with simultaneous than with sequential presentation. Instruction repetition depressed performance, but reduced repetition removed this disadvantage. Effects of presentation format were attributed to visual scanning strategies. The advantage for reduced repetition was attributable either to enhanced visual scanning or to reduced output interference. A follow-up study with auditory presentation supported the visual scanning explanation.

  12. Automated satellite image navigation

    NASA Astrophysics Data System (ADS)

    Bassett, Robert M.

    1992-12-01

    The automated satellite image navigation method (Auto-Avian) developed and tested by Spaulding (1990) at the Naval Postgraduate School is investigated. The Auto-Avian method replaced the manual procedure of selecting Ground Control Points (GCP's) with an autocorrelation process that utilizes the World Vector Shoreline (WVS) provided by the Defense Mapping Agency (DMA) as a string of GCP's to rectify satellite images. The automatic cross-correlation of binary reference (WVS) and search (image) windows eliminated the subjective error associated with the manual selection of GCP's and produced accuracies comparable to the manual method. The scope of Spaulding's (1990) research was expanded. The worldwide application of the Auto-Avian method was demonstrated in three world regions (eastern North Pacific Ocean, eastern North Atlantic Ocean, and Persian Gulf). Using five case studies, the performance of the Auto-Avian method on 'less than optimum' images (i.e., islands, coastlines affected by lateral distortion and/or cloud cover) was investigated.

  13. Sensory bases of navigation.

    PubMed

    Gould, J L

    1998-10-01

    Navigating animals need to know both the bearing of their goal (the 'map' step), and how to determine that direction (the 'compass' step). Compasses are typically arranged in hierarchies, with magnetic backup as a last resort when celestial information is unavailable. Magnetic information is often essential to calibrating celestial cues, though, and repeated recalibration between celestial and magnetic compasses is important in many species. Most magnetic compasses are based on magnetite crystals, but others make use of induction or paramagnetic interactions between short-wavelength light and visual pigments. Though odors may be used in some cases, most if not all long-range maps probably depend on magnetite. Magnetitebased map senses are used to measure only latitude in some species, but provide the distance and direction of the goal in others. PMID:9778524

  14. Stardust Navigation Covariance Analysis

    NASA Astrophysics Data System (ADS)

    Menon, Premkumar R.

    2000-01-01

    The Stardust spacecraft was launched on February 7, 1999 aboard a Boeing Delta-II rocket. Mission participants include the National Aeronautics and Space Administration (NASA), the Jet Propulsion Laboratory (JPL), Lockheed Martin Astronautics (LMA) and the University of Washington. The primary objective of the mission is to collect in-situ samples of the coma of comet Wild-2 and return those samples to the Earth for analysis. Mission design and operational navigation for Stardust is performed by the Jet Propulsion Laboratory (JPL). This paper will describe the extensive JPL effort in support of the Stardust pre-launch analysis of the orbit determination component of the mission covariance study. A description of the mission and it's trajectory will be provided first, followed by a discussion of the covariance procedure and models. Predicted accuracy's will be examined as they relate to navigation delivery requirements for specific critical events during the mission. Stardust was launched into a heliocentric trajectory in early 1999. It will perform an Earth Gravity Assist (EGA) on January 15, 2001 to acquire an orbit for the eventual rendezvous with comet Wild-2. The spacecraft will fly through the coma (atmosphere) on the dayside of Wild-2 on January 2, 2004. At that time samples will be obtained using an aerogel collector. After the comet encounter Stardust will return to Earth when the Sample Return Capsule (SRC) will separate and land at the Utah Test Site (UTTR) on January 15, 2006. The spacecraft will however be deflected off into a heliocentric orbit. The mission is divided into three phases for the covariance analysis. They are 1) Launch to EGA, 2) EGA to Wild-2 encounter and 3) Wild-2 encounter to Earth reentry. Orbit determination assumptions for each phase are provided. These include estimated and consider parameters and their associated a-priori uncertainties. Major perturbations to the trajectory include 19 deterministic and statistical maneuvers

  15. Magellan aerobrake navigation

    NASA Technical Reports Server (NTRS)

    Giorgini, Jon; Wong, S. Kuen; You, Tung-Han; Chadbourne, Pam; Lim, Lily

    1995-01-01

    The Magellan spacecraft has been aerobraked into a 197 x 541 km near-circular orbit around Venus from which it is conducting a high-resolution gravity mapping mission. This was the first interplanetary aerobrake maneuver and involved flying the spacecraft through the upper reaches of the Venusian atmosphere 730 times over a 70 day period. Round-trip light-time varied from 9.57 to 18.83 minutes during this period. Navigation for this dynamic phase of the Magellan mission was planned and executed in the face of budget-driven down-sizing with all spacecraft safe modes disabled and a flight-team one-third the size of comparable interplanetary missions. Successful execution of this manuever using spacecraft hardware not designed to operate in a planetary atmosphere, demonstrated a practical cost-saving technique for both large and small future interplanetary missions.

  16. 33 CFR 334.1180 - Strait of Juan de Fuca, Wash.; air-to-surface weapon range, restricted area.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Strait of Juan de Fuca, Wash.; air-to-surface weapon range, restricted area. 334.1180 Section 334.1180 Navigation and Navigable... REGULATIONS § 334.1180 Strait of Juan de Fuca, Wash.; air-to-surface weapon range, restricted area. (a)...

  17. 33 CFR 334.1180 - Strait of Juan de Fuca, Wash.; air-to-surface weapon range, restricted area.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Strait of Juan de Fuca, Wash.; air-to-surface weapon range, restricted area. 334.1180 Section 334.1180 Navigation and Navigable... REGULATIONS § 334.1180 Strait of Juan de Fuca, Wash.; air-to-surface weapon range, restricted area. (a)...

  18. 33 CFR 334.1180 - Strait of Juan de Fuca, Wash.; air-to-surface weapon range, restricted area.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Strait of Juan de Fuca, Wash.; air-to-surface weapon range, restricted area. 334.1180 Section 334.1180 Navigation and Navigable... REGULATIONS § 334.1180 Strait of Juan de Fuca, Wash.; air-to-surface weapon range, restricted area. (a)...

  19. 33 CFR 334.1180 - Strait of Juan de Fuca, Wash.; air-to-surface weapon range, restricted area.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Strait of Juan de Fuca, Wash.; air-to-surface weapon range, restricted area. 334.1180 Section 334.1180 Navigation and Navigable... REGULATIONS § 334.1180 Strait of Juan de Fuca, Wash.; air-to-surface weapon range, restricted area. (a)...

  20. 33 CFR 334.1180 - Strait of Juan de Fuca, Wash.; air-to-surface weapon range, restricted area.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Strait of Juan de Fuca, Wash.; air-to-surface weapon range, restricted area. 334.1180 Section 334.1180 Navigation and Navigable... REGULATIONS § 334.1180 Strait of Juan de Fuca, Wash.; air-to-surface weapon range, restricted area. (a)...

  1. 33 CFR 334.640 - Gulf of Mexico south of Apalachee Bay, Fla.; Air Force rocket firing range.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Gulf of Mexico south of Apalachee Bay, Fla.; Air Force rocket firing range. 334.640 Section 334.640 Navigation and Navigable Waters... REGULATIONS § 334.640 Gulf of Mexico south of Apalachee Bay, Fla.; Air Force rocket firing range. (a)...

  2. 33 CFR 334.740 - Weekley Bayou, an arm of Boggy Bayou, Fla., at Eglin Air Force Base; restricted area.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Weekley Bayou, an arm of Boggy Bayou, Fla., at Eglin Air Force Base; restricted area. 334.740 Section 334.740 Navigation and Navigable... REGULATIONS § 334.740 Weekley Bayou, an arm of Boggy Bayou, Fla., at Eglin Air Force Base; restricted area....

  3. 33 CFR 334.740 - Weekley Bayou, an arm of Boggy Bayou, Fla., at Eglin Air Force Base; restricted area.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Weekley Bayou, an arm of Boggy Bayou, Fla., at Eglin Air Force Base; restricted area. 334.740 Section 334.740 Navigation and Navigable... REGULATIONS § 334.740 Weekley Bayou, an arm of Boggy Bayou, Fla., at Eglin Air Force Base; restricted area....

  4. 33 CFR 334.640 - Gulf of Mexico south of Apalachee Bay, Fla.; Air Force rocket firing range.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Gulf of Mexico south of Apalachee Bay, Fla.; Air Force rocket firing range. 334.640 Section 334.640 Navigation and Navigable Waters... REGULATIONS § 334.640 Gulf of Mexico south of Apalachee Bay, Fla.; Air Force rocket firing range. (a)...

  5. 241. BUILDINGS 455, 456, 509, 510 AND 457 (CELESTIAL NAVIGATION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    241. BUILDINGS 455, 456, 509, 510 AND 457 (CELESTIAL NAVIGATION COMPLEX), 1942-43. BUREAU OF YARDS AND DOCKS STANDARD PLANS. VIEW NORTH ACROSS WASP ST. SHOWING THE 4 TRAINING SILOS FROM LEFT TO RIGHT: BUILDINGS 455, 456, 509, AND 510; AND, BESIDE THEM, BUILDING 457. - Quonset Point Naval Air Station, Roger Williams Way, North Kingstown, Washington County, RI

  6. 14 CFR 125.203 - Communication and navigation equipment.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Communication and navigation equipment. 125.203 Section 125.203 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS AND OPERATORS FOR COMPENSATION OR HIRE: CERTIFICATION AND OPERATIONS CERTIFICATION AND OPERATIONS: AIRPLANES HAVING...

  7. 14 CFR 121.305 - Flight and navigational equipment.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Flight and navigational equipment. 121.305 Section 121.305 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS AND OPERATORS FOR COMPENSATION OR HIRE: CERTIFICATION AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND...

  8. Introductory Course on Satellite Navigation

    ERIC Educational Resources Information Center

    Giger, Kaspar; Knogl, J. Sebastian

    2012-01-01

    Satellite navigation is widely used for personal navigation and more and more in precise and safety-critical applications. Thus, the subject is suited for attracting the interest of young people in science and engineering. The practical applications allow catching the students' attention for the theoretical background. Educational material on the…

  9. A Navigation Compendium. Revised Edition.

    ERIC Educational Resources Information Center

    Naval Training Command, Pensacola, FL.

    This unit of instruction was prepared for use in navigation study at the Officer Candidate School, the various Naval ROTC Units, and within the fleet. It is considered a naval text. It covers a wide and expanding subject area with brevity. Basic and elementary navigational terms and instruments are presented and described. The use of charts and…

  10. Space Weather Effects on Aircraft Navigation

    NASA Astrophysics Data System (ADS)

    Stanley, J. C.; Cade, W. B.

    2012-12-01

    Many aircraft today use satellites for GPS navigation, arrival and departure to and from airspaces, and for "shooting" non-precision and precision Instrument Approaches into airports. Also in development is an Air Traffic Control system based on satellite technology that seeks to modernize current air traffic control and improve safety, eventually phasing out radar (though not yet in the very near future). Due to the general, commercial, and military aviation fields all becoming more and more reliant on satellite and GPS technologies, the effects of space weather events on these systems is of paramount concern to militaries, airlines, private pilots, and other aviation operators. In this study we analyze data from airlines and other resources regarding effects on satellite and GPS systems, which is crucial to the conduct of safe flight operations now and improving systems for future and continued use.

  11. The real-world navigator

    NASA Technical Reports Server (NTRS)

    Balabanovic, Marko; Becker, Craig; Morse, Sarah K.; Nourbakhsh, Illah R.

    1994-01-01

    The success of every mobile robot application hinges on the ability to navigate robustly in the real world. The problem of robust navigation is separable from the challenges faced by any particular robot application. We offer the Real-World Navigator as a solution architecture that includes a path planner, a map-based localizer, and a motion control loop that combines reactive avoidance modules with deliberate goal-based motion. Our architecture achieves a high degree of reliability by maintaining and reasoning about an explicit description of positional uncertainty. We provide two implementations of real-world robot systems that incorporate the Real-World Navigator. The Vagabond Project culminated in a robot that successfully navigated a portion of the Stanford University campus. The Scimmer project developed successful entries for the AIAA 1993 Robotics Competition, placing first in one of the two contests entered.

  12. Celestial Navigation in the 21st Century

    NASA Astrophysics Data System (ADS)

    Kaplan, George H.

    2014-05-01

    Despite the ubiquity of GPS receivers in modern life for both timekeeping and geolocation, other forms of navigation remain important because of the weakness of the GPS signals (and those from similar sat-nav systems) and the ease with which they can be jammed. GPS jammers are available for sale on the Internet. The defense and civil aviation communities are particularly concerned about “GPS denial”, whether intentional or accidental, during critical operations.Automated star trackers for navigation have been available since the 1950s. Modern compact observing systems, operating in the far-red and near-IR bands, can detect useful numbers of stars even in the daytime at sea level. A capability to measure the directions of stars relative to some local set of coordinate axes is advantageous for many types of vehicles, whether on the ground, at sea, in the air, or in space, because it provides a direct connection to the inertial reference system represented by current star catalogs. Such a capability can yield precise absolute orientation information not available in any other way. Automated celestial observing systems can be effectively coupled to inertial navigation systems (INS), providing “truth” data for constraining the drift in the INS navigation solution, even if stellar observations are not continuously available due to weather. However, obtaining precise latitude and longitude from stellar observations alone, on a moving platform, remains a challenge, because it requires a determination of the direction to the center of the Earth, i.e., the gravity vertical. General relativity tells us that on-board (“lab”) measurements cannot separate the acceleration of gravity from the acceleration of the platform. Various schemes for overcoming this fundamental problem have been used in the past, at low accuracy, and better ones have been proposed for modern applications. This paper will review some recent developments in this rapidly advancing field.

  13. Vision assisted aircraft lateral navigation

    NASA Astrophysics Data System (ADS)

    Mohideen, Mohamed Ibrahim; Ramegowda, Dinesh; Seiler, Peter

    2013-05-01

    Surface operation is currently one of the least technologically equipped phases of aircraft operation. The increased air traffic congestion necessitates more aircraft operations in degraded weather and at night. The traditional surface procedures worked well in most cases as airport surfaces have not been congested and airport layouts were less complex. Despite the best efforts of FAA and other safety agencies, runway incursions continue to occur frequently due to incorrect surface operation. Several studies conducted by FAA suggest that pilot induced error contributes significantly to runway incursions. Further, the report attributes pilot's lack of situational awareness - local (e.g., minimizing lateral deviation), global (e.g., traffic in the vicinity) and route (e.g., distance to next turn) - to the problem. An Enhanced Vision System (EVS) is one concept that is being considered to resolve these issues. These systems use on-board sensors to provide situational awareness under poor visibility conditions. In this paper, we propose the use of an Image processing based system to estimate the aircraft position and orientation relative to taxiway markings to use as lateral guidance aid. We estimate aircraft yaw angle and lateral offset from slope of the taxiway centerline and horizontal position of vanishing line. Unlike automotive applications, several cues such as aircraft maneuvers along assigned route with minimal deviations, clear ground markings, even taxiway surface, limited aircraft speed are available and enable us to implement significant algorithm optimizations. We present experimental results to show high precision navigation accuracy with sensitivity analysis with respect to camera mount, optics, and image processing error.

  14. Mortality among US commercial pilots and navigators.

    PubMed

    Nicholas, J S; Lackland, D T; Dosemeci, M; Mohr, L C; Dunbar, J B; Grosche, B; Hoel, D G

    1998-11-01

    The airline industry may be an occupational setting with specific health risks. Two environmental agents to which flight crews are known to be exposed are cosmic radiation and magnetic fields generated by the aircraft's electrical system. Other factors to be considered are circadian disruption and conditions specific to air travel, such as noise, vibration, mild hypoxia, reduced atmospheric pressure, low humidity, and air quality. This study investigated mortality among US commercial pilots and navigators, using proportional mortality ratios for cancer and noncancer end points. Proportional cancer mortality ratios and mortality odds ratios were also calculated for comparison to the proportional mortality ratios for cancer causes of death. Results indicated that US pilots and navigators have experienced significantly increased mortality due to cancer of the kidney and renal pelvis, motor neuron disease, and external causes. In addition, increased mortality due to prostate cancer, brain cancer, colon cancer, and cancer of the lip, buccal cavity, and pharynx was suggested. Mortality was significantly decreased for 11 causes. To determine if these health outcomes are related to occupational exposures, it will be necessary to quantify each exposure separately, to study the potential synergy of effects, and to couple this information with disease data on an individual basis. PMID:9830605

  15. The navigation of homing pigeons: Do they use sun Navigation?

    NASA Technical Reports Server (NTRS)

    Walcott, C.

    1972-01-01

    Experiments to determine the dependence of homing pigeons on the sun as a navigational cue are discussed. Various methods were employed to interrupt the circadian rhythms of the pigeons prior to release. It was determined that the sun may serve as a compass, but that topographic features are more important for navigation. The effects of a magnetic field produced by electric equipment carried by the bird were also investigated. It was concluded that magnetic fields may have a small effect on the homing ability. The exact nature of the homing pigeon's navigational ability is still unknown after years of elaborate experimentation.

  16. 33 CFR 334.700 - Choctawhatchee Bay, aerial gunnery ranges, Air Armament Center, Eglin Air Force Base, Fla.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... gunnery ranges, Air Armament Center, Eglin Air Force Base, Fla. 334.700 Section 334.700 Navigation and... Air Force Base, Fla. (a) The danger zones—(1) Aerial gunnery range in west part of Choctawhatchee Bay. The danger zone shall encompass all navigable waters of the United States as defined at 33 CFR...

  17. 33 CFR 334.700 - Choctawhatchee Bay, aerial gunnery ranges, Air Armament Center, Eglin Air Force Base, Fla.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... gunnery ranges, Air Armament Center, Eglin Air Force Base, Fla. 334.700 Section 334.700 Navigation and... Air Force Base, Fla. (a) The danger zones—(1) Aerial gunnery range in west part of Choctawhatchee Bay. The danger zone shall encompass all navigable waters of the United States as defined at 33 CFR...

  18. The navigation toolkit

    NASA Technical Reports Server (NTRS)

    Rich, William F.; Strom, Stephen W.

    1994-01-01

    This report summarizes the experience of the authors in managing, designing, and implementing an object-oriented applications framework for orbital navigation analysis for the Flight Design and Dynamics Department of the Rockwell Space Operations Company in Houston, in support of the Mission Operations Directorate of NASA's Johnson Space Center. The 8 person year project spanned 1.5 years and produced 30,000 lines of C++ code, replacing 150,000 lines of Fortran/C. We believe that our experience is important because it represents a 'second project' experience and generated real production-quality code - it was not a pilot. The project successfully demonstrated the use of 'continuous development' or rapid prototyping techniques. Use of formal methods and executable models contributed to the quality of the code. Keys to the success of the project were a strong architectural vision and highly skilled workers. This report focuses on process and methodology, and not on a detailed design description of the product. But the true importance of the object-oriented paradigm is its liberation of the developer to focus on the problem rather than the means used to solve the problem.

  19. Titan Probe navigation analysis

    NASA Technical Reports Server (NTRS)

    Vijayaraghavan, A.; Wood, L. J.

    1986-01-01

    In the proposed Cassini mission, a combined Saturn Orbiter/Titan Probe spacecraft will be launched from the Space Shuttle to arrive at Saturn around 2002, by means of a delta-VEGA trajectory. After Saturn-orbit insertion and a pericrone raise maneuver, the probe will be released to enter the Titan atmosphere and impact onto its surface. During its descent phase and impact onto Titan, the probe will maintain radio contact with the orbiter. Since the Titan-probe experimental phase lasts for only about four hours, probe-orbiter geometry and probe-delivery accuracy are critical to successful completion of this part of the mission. From a preliminary navigation analysis for probe delivery accuracy, it seems feasible to deliver the probe within 50 km (1-sigma value) of the desired aim-point in the Titan B-plane. The covariance study, however, clearly indicates the need for optical data, in addition to radio metric data. A Monte Carlo study indicates that a Delta-V capability of 98 m/sec for trajectory correction maneuvers will be sufficient to cover 99 percent of all contingencies during the segment from Saturn-orbit insertion to Titan-probe release.

  20. Lunar Navigation Architecture Design Considerations

    NASA Technical Reports Server (NTRS)

    D'Souza, Christopher; Getchius, Joel; Holt, Greg; Moreau, Michael

    2009-01-01

    The NASA Constellation Program is aiming to establish a long-term presence on the lunar surface. The Constellation elements (Orion, Altair, Earth Departure Stage, and Ares launch vehicles) will require a lunar navigation architecture for navigation state updates during lunar-class missions. Orion in particular has baselined earth-based ground direct tracking as the primary source for much of its absolute navigation needs. However, due to the uncertainty in the lunar navigation architecture, the Orion program has had to make certain assumptions on the capabilities of such architectures in order to adequately scale the vehicle design trade space. The following paper outlines lunar navigation requirements, the Orion program assumptions, and the impacts of these assumptions to the lunar navigation architecture design. The selection of potential sites was based upon geometric baselines, logistical feasibility, redundancy, and abort support capability. Simulated navigation covariances mapped to entry interface flightpath- angle uncertainties were used to evaluate knowledge errors. A minimum ground station architecture was identified consisting of Goldstone, Madrid, Canberra, Santiago, Hartebeeshoek, Dongora, Hawaii, Guam, and Ascension Island (or the geometric equivalent).

  1. 14 CFR 121.389 - Flight navigator and specialized navigation equipment.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Flight navigator and specialized navigation....389 Flight navigator and specialized navigation equipment. (a) No certificate holder may operate an... flight navigator certificate; or (2) Specialized means of navigation approved in accordance with §...

  2. 14 CFR 121.389 - Flight navigator and specialized navigation equipment.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Flight navigator and specialized navigation....389 Flight navigator and specialized navigation equipment. (a) No certificate holder may operate an... flight navigator certificate; or (2) Specialized means of navigation approved in accordance with §...

  3. 14 CFR 121.389 - Flight navigator and specialized navigation equipment.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Flight navigator and specialized navigation....389 Flight navigator and specialized navigation equipment. (a) No certificate holder may operate an... flight navigator certificate; or (2) Specialized means of navigation approved in accordance with §...

  4. 14 CFR 121.389 - Flight navigator and specialized navigation equipment.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Flight navigator and specialized navigation....389 Flight navigator and specialized navigation equipment. (a) No certificate holder may operate an... flight navigator certificate; or (2) Specialized means of navigation approved in accordance with §...

  5. 14 CFR 121.389 - Flight navigator and specialized navigation equipment.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Flight navigator and specialized navigation....389 Flight navigator and specialized navigation equipment. (a) No certificate holder may operate an... flight navigator certificate; or (2) Specialized means of navigation approved in accordance with §...

  6. Navigable networks as Nash equilibria of navigation games

    NASA Astrophysics Data System (ADS)

    Gulyás, András; Bíró, József J.; Kőrösi, Attila; Rétvári, Gábor; Krioukov, Dmitri

    2015-07-01

    Common sense suggests that networks are not random mazes of purposeless connections, but that these connections are organized so that networks can perform their functions well. One function common to many networks is targeted transport or navigation. Here, using game theory, we show that minimalistic networks designed to maximize the navigation efficiency at minimal cost share basic structural properties with real networks. These idealistic networks are Nash equilibria of a network construction game whose purpose is to find an optimal trade-off between the network cost and navigability. We show that these skeletons are present in the Internet, metabolic, English word, US airport, Hungarian road networks, and in a structural network of the human brain. The knowledge of these skeletons allows one to identify the minimal number of edges, by altering which one can efficiently improve or paralyse navigation in the network.

  7. Navigable networks as Nash equilibria of navigation games.

    PubMed

    Gulyás, András; Bíró, József J; Kőrösi, Attila; Rétvári, Gábor; Krioukov, Dmitri

    2015-01-01

    Common sense suggests that networks are not random mazes of purposeless connections, but that these connections are organized so that networks can perform their functions well. One function common to many networks is targeted transport or navigation. Here, using game theory, we show that minimalistic networks designed to maximize the navigation efficiency at minimal cost share basic structural properties with real networks. These idealistic networks are Nash equilibria of a network construction game whose purpose is to find an optimal trade-off between the network cost and navigability. We show that these skeletons are present in the Internet, metabolic, English word, US airport, Hungarian road networks, and in a structural network of the human brain. The knowledge of these skeletons allows one to identify the minimal number of edges, by altering which one can efficiently improve or paralyse navigation in the network. PMID:26138277

  8. Navigable networks as Nash equilibria of navigation games

    PubMed Central

    Gulyás, András; Bíró, József J.; Kőrösi, Attila; Rétvári, Gábor; Krioukov, Dmitri

    2015-01-01

    Common sense suggests that networks are not random mazes of purposeless connections, but that these connections are organized so that networks can perform their functions well. One function common to many networks is targeted transport or navigation. Here, using game theory, we show that minimalistic networks designed to maximize the navigation efficiency at minimal cost share basic structural properties with real networks. These idealistic networks are Nash equilibria of a network construction game whose purpose is to find an optimal trade-off between the network cost and navigability. We show that these skeletons are present in the Internet, metabolic, English word, US airport, Hungarian road networks, and in a structural network of the human brain. The knowledge of these skeletons allows one to identify the minimal number of edges, by altering which one can efficiently improve or paralyse navigation in the network. PMID:26138277

  9. Experiment D009: Simple navigation

    NASA Technical Reports Server (NTRS)

    Silva, R. M.; Jorris, T. R.; Vallerie, E. M., III

    1971-01-01

    Space position-fixing techniques have been investigated by collecting data on the observable phenomena of space flight that could be used to solve the problem of autonomous navigation by the use of optical data and manual computations to calculate the position of a spacecraft. After completion of the developmental and test phases, the product of the experiment would be a manual-optical technique of orbital space navigation that could be used as a backup to onboard and ground-based spacecraft-navigation systems.

  10. NASA tracking ship navigation systems

    NASA Technical Reports Server (NTRS)

    Mckenna, J. J.

    1976-01-01

    The ship position and attitude measurement system that was installed aboard the tracking ship Vanguard is described. An overview of the entire system is given along with a description of how precise time and frequency is utilized. The instrumentation is broken down into its basic components. Particular emphasis is given to the inertial navigation system. Each navigation system used, a mariner star tracker, navigation satellite system, Loran C and OMEGA in conjunction with the inertial system is described. The accuracy of each system is compared along with their limitations.

  11. Navigation/Prop Software Suite

    NASA Technical Reports Server (NTRS)

    Bruchmiller, Tomas; Tran, Sanh; Lee, Mathew; Bucker, Scott; Bupane, Catherine; Bennett, Charles; Cantu, Sergio; Kwong, Ping; Propst, Carolyn

    2012-01-01

    Navigation (Nav)/Prop software is used to support shuttle mission analysis, production, and some operations tasks. The Nav/Prop suite containing configuration items (CIs) resides on IPS/Linux workstations. It features lifecycle documents, and data files used for shuttle navigation and propellant analysis for all flight segments. This suite also includes trajectory server, archive server, and RAT software residing on MCC/Linux workstations. Navigation/Prop represents tool versions established during or after IPS Equipment Rehost-3 or after the MCC Rehost.

  12. Multi-aircraft dynamics, navigation and operation

    NASA Astrophysics Data System (ADS)

    Houck, Sharon Wester

    Air traffic control stands on the brink of a revolution. Fifty years from now, we will look back and marvel that we ever flew by radio beacons and radar alone, much as we now marvel that early aviation pioneers flew by chronometer and compass alone. The microprocessor, satellite navigation systems, and air-to-air data links are the technical keys to this revolution. Many airports are near or at capacity now for at least portions of the day, making it clear that major increases in airport capacity will be required in order to support the projected growth in air traffic. This can be accomplished by adding airports, adding runways at existing airports, or increasing the capacity of the existing runways. Technology that allows use of ultra closely spaced (750 ft to 2500 ft) parallel approaches would greatly reduce the environmental impact of airport capacity increases. This research tackles the problem of multi aircraft dynamics, navigation, and operation, specifically in the terminal area, and presents new findings on how ultra closely spaced parallel approaches may be accomplished. The underlying approach considers how multiple aircraft are flown in visual conditions, where spacing criteria is much less stringent, and then uses this data to study the critical parameters for collision avoidance during an ultra closely spaced parallel approach. Also included is experimental and analytical investigations on advanced guidance systems that are critical components of precision approaches. Together, these investigations form a novel approach to the design and analysis of parallel approaches for runways spaced less than 2500 ft apart. This research has concluded that it is technically feasible to reduce the required runway spacing during simultaneous instrument approaches to less than the current minimum of 3400 ft with the use of advanced navigation systems while maintaining the currently accepted levels of safety. On a smooth day with both pilots flying a tunnel

  13. Bore hole navigator

    SciTech Connect

    Hoffman, G.J.

    1987-09-29

    A bore hole navigator is described comprising a two axis platform for lowering down a bore hole on a cable with its longitudinal axis parallel to the local bore hole direction. The two axis platform has an outer gimbal, bearing supported on the outer gimbal axis for rotation about the longitudinal axis of the platform, and an inner gimbal axis orthogonal the the outer gimbal axis. The inner gimbal axis has multiple axis segments spaced along the longitudinal axis of the platform and each bearing supported on the outer gimbal. The inner gimbal axis segment has a two axis gyro mounted thereon with its spin axis orthogonal to the respective inner gimbal axis segment, a first gyro sensitive axis parallel to the respective inner gimbal axis segment and a second gyro sensitive axis orthogonal to the spin axis. The second inner gimbal axis segment has a pitch torquer thereon operative to provide a controllable torque about the respective inner gimbal axis segment. The third inner gimbal axis segment has a pitch resolver thereon operative to measure rotation of the respective inner gimbal axis segment with respect to the outer gimbal. The first, second and third inner gimbal axis segments are coupled to rotate together. The outer gimbal has a yaw torquer thereon to provide a controllable torque about the outer gimbal axis, and a yaw resolver thereon to measure rotation of the outer gimbal about the outer gimbal axis. The outer gimbal also has a single axis accelerometer therein having its sensitive axis orthogonal to the outer gimbal axis and the inner gimbal axis segments.

  14. Navigating "Assisted Dying".

    PubMed

    Schipper, Harvey

    2016-02-01

    Carter is a bellwether decision, an adjudication on a narrow point of law whose implications are vast across society, and whose impact may not be realized for years. Coupled with Quebec's Act Respecting End-of-life Care it has sharply changed the legal landscape with respect to actively ending a person's life. "Medically assisted dying" will be permitted under circumstances, and through processes, which have yet to be operationally defined. This decision carries with it moral assumptions, which mean that it will be difficult to reach a unifying consensus. For some, the decision and Act reflect a modern acknowledgement of individual autonomy. For others, allowing such acts is morally unspeakable. Having opened the Pandora's Box, the question becomes one of navigating a tolerable societal path. I believe it is possible to achieve a workable solution based on the core principle that "medically assisted dying" should be a very rarely employed last option, subject to transparent ongoing review, specifically as to why it was deemed necessary. My analysis is based on 1. The societal conditions in which have fostered demand for "assisted dying", 2. Actions in other jurisdictions, 3. Carter and Quebec Bill 52, 4. Political considerations, 5. Current medical practice. Leading to a series of recommendations regarding. 1. Legislation and regulation, 2. The role of professional regulatory agencies, 3. Medical professions education and practice, 4. Public education, 5. Health care delivery and palliative care. Given the burden of public opinion, and the legal steps already taken, a process for assisted-dying is required. However, those legal and regulatory steps should only be considered a necessary and defensive first step in a two stage process. The larger goal, the second step, is to drive the improvement of care, and thus minimize assisted-dying. PMID:27169205

  15. Wellborne inertial navigation system

    SciTech Connect

    Kelsey, J.R.

    1983-01-01

    A phototype wireline tool which includes a downhole inertial platform and a surface computer to spatially map a well is described. The hardware consists of a single-gimbaled inertial platform with accelerometers and gyros to obtain three-axis motion information. The gyroscope and accelerometer outputs are transmitted to a computer at the surface which calculates probe attitude relative to north, east, and vertical. Double integration of the accelerometer data provides the position information. A conventional 7-conductor wireline is used for the system data transmission. System accuracy is enhanced by advances made in the computer software which processes the data received from the tool. The software uses statistical sampling estimation to obtain optimal estimates of the system errors. Measurement errors are determined by periodically stopping the tool during the logging procedure and observing the indicated velocity measurements. This procedure, known as Kalman filtering, results in increased accuracy of the data. Present mapping systems have an X-Y-Z location accuracy of +- 100 to +- 200 feet for a typical well depth of 10,000 feet. Test results show that the new system is accurate to about +- 1 foot per 1000 feet of well depth. Unlike conventional systems, the inertial navigator does not require any sort of projection of the cable length (which may not be accurately known). Also this system provides continuous data throughout the wellbore and logging speeds on the order of 10 ft/sec appear possible. The hardware and software associated with this mapping system are described and the recent field test results are reported.

  16. NES: How to Navigate the Virtual Campus

    NASA Video Gallery

    This video describes how to navigate the NASA Explorer Schools public website. Information includes descriptions of the left navigation, using the breadcrumbs, understanding the various announcemen...

  17. Navigating the Rockets Educator Guide

    NASA Video Gallery

    In this brief video overview, learn how to navigate the Rockets Educator Guide. Get a glimpse of the resources available in the guide, including a pictorial history, an overview of the physics cont...

  18. Almanac services for celestial navigation

    NASA Astrophysics Data System (ADS)

    Nelmes, S.; Whittaker, J.

    2015-08-01

    Celestial navigation remains a vitally important back up to Global Navigation Satellite Systems (GNSS) and relies on the use of almanac services. HM Nautical Almanac Office (HMNAO) provides a number of these services. The printed book, The Nautical Almanac, produced yearly and now available as an electronic publication, is continuously being improved, making use of the latest ideas and ephemerides to provide the user with their required data. HMNAO also produces NavPac, a software package that assists the user in calculating their position as well as providing additional navigational and astronomical tools. A new version of NavPac will be released in 2015 that will improve the user experience. The development of applications for mobile devices is also being considered. HMNAO continues to combine the latest improvements and theories of astrometry with the creation of books and software that best meet the needs of celestial navigation users.

  19. Orion Cislunar Guidance and Navigation

    NASA Technical Reports Server (NTRS)

    D'Souza, Christopher; Crain, Timothy; Clark, Fred C.

    2007-01-01

    The Orion vehicle is being designed to provide nominal crew transport to the lunar transportation stack in low Earth orbit, crew abort prior during transit to the moon, and crew return to Earth once lunar orbit is achieved. Design of guidance and navigation algorithms to perform maneuvers in support of these functions is dependent on the support provided by navigation infrastructure, the performance of the onboard GN&C system, and the choice of trajectory maneuver methodology for outbound and return mission phases. This paper documents the preliminary integrated analyses performed by members of the Orion Orbit GN&C System team investigating the navigation update accuracy of a modern equivalent to the Apollo era ground tracking network and the expected onboard dispersion and navigation errors during a lunar mission using a linear covariance error analysis technique.

  20. Autonomous navigation using lunar beacons

    NASA Technical Reports Server (NTRS)

    Khatib, A. R.; Ellis, J.; French, J.; Null, G.; Yunck, T.; Wu, S.

    1983-01-01

    The concept of using lunar beacon signal transmission for on-board navigation for earth satellites and near-earth spacecraft is described. The system would require powerful transmitters on the earth-side of the moon's surface and black box receivers with antennae and microprocessors placed on board spacecraft for autonomous navigation. Spacecraft navigation requires three position and three velocity elements to establish location coordinates. Two beacons could be soft-landed on the lunar surface at the limits of allowable separation and each would transmit a wide-beam signal with cones reaching GEO heights and be strong enough to be received by small antennae in near-earth orbit. The black box processor would perform on-board computation with one-way Doppler/range data and dynamical models. Alternatively, GEO satellites such as the GPS or TDRSS spacecraft can be used with interferometric techniques to provide decimeter-level accuracy for aircraft navigation.

  1. SEXTANT: Navigating by Cosmic Beacon

    NASA Video Gallery

    Imagine a technology that would allow space travelers to transmit gigabytes of data per second over interplanetary distances or to navigate to Mars and beyond using powerful beams of light emanatin...

  2. Autonomous Navigation Using Celestial Objects

    NASA Technical Reports Server (NTRS)

    Folta, David; Gramling, Cheryl; Leung, Dominic; Belur, Sheela; Long, Anne

    1999-01-01

    In the twenty-first century, National Aeronautics and Space Administration (NASA) Enterprises envision frequent low-cost missions to explore the solar system, observe the universe, and study our planet. Satellite autonomy is a key technology required to reduce satellite operating costs. The Guidance, Navigation, and Control Center (GNCC) at the Goddard Space Flight Center (GSFC) currently sponsors several initiatives associated with the development of advanced spacecraft systems to provide autonomous navigation and control. Autonomous navigation has the potential both to increase spacecraft navigation system performance and to reduce total mission cost. By eliminating the need for routine ground-based orbit determination and special tracking services, autonomous navigation can streamline spacecraft ground systems. Autonomous navigation products can be included in the science telemetry and forwarded directly to the scientific investigators. In addition, autonomous navigation products are available onboard to enable other autonomous capabilities, such as attitude control, maneuver planning and orbit control, and communications signal acquisition. Autonomous navigation is required to support advanced mission concepts such as satellite formation flying. GNCC has successfully developed high-accuracy autonomous navigation systems for near-Earth spacecraft using NASA's space and ground communications systems and the Global Positioning System (GPS). Recently, GNCC has expanded its autonomous navigation initiative to include satellite orbits that are beyond the regime in which use of GPS is possible. Currently, GNCC is assessing the feasibility of using standard spacecraft attitude sensors and communication components to provide autonomous navigation for missions including: libration point, gravity assist, high-Earth, and interplanetary orbits. The concept being evaluated uses a combination of star, Sun, and Earth sensor measurements along with forward-link Doppler

  3. Visual Navigation in Nocturnal Insects.

    PubMed

    Warrant, Eric; Dacke, Marie

    2016-05-01

    Despite their tiny eyes and brains, nocturnal insects have evolved a remarkable capacity to visually navigate at night. Whereas some use moonlight or the stars as celestial compass cues to maintain a straight-line course, others use visual landmarks to navigate to and from their nest. These impressive abilities rely on highly sensitive compound eyes and specialized visual processing strategies in the brain. PMID:27053732

  4. The navigation of space probes

    NASA Technical Reports Server (NTRS)

    Fliegel, H. F.; Ohandley, D. A.; Zielenbach, J. W.

    1974-01-01

    A new navigational method combining electronic measurement procedures and celestial mechanics makes it possible to conduct a space probe very close to a desired point in the neighborhood of a remote planet. Approaches for the determination of the position of the space probe in space are discussed, giving attention to the effects of errors in the employed data. The application of the navigational methods in a number of space missions is also considered.

  5. FLASH LIDAR Based Relative Navigation

    NASA Technical Reports Server (NTRS)

    Brazzel, Jack; Clark, Fred; Milenkovic, Zoran

    2014-01-01

    Relative navigation remains the most challenging part of spacecraft rendezvous and docking. In recent years, flash LIDARs, have been increasingly selected as the go-to sensors for proximity operations and docking. Flash LIDARS are generally lighter and require less power that scanning Lidars. Flash LIDARs do not have moving parts, and they are capable of tracking multiple targets as well as generating a 3D map of a given target. However, there are some significant drawbacks of Flash Lidars that must be resolved if their use is to be of long-term significance. Overcoming the challenges of Flash LIDARs for navigation-namely, low technology readiness level, lack of historical performance data, target identification, existence of false positives, and performance of vision processing algorithms as intermediaries between the raw sensor data and the Kalman filter-requires a world-class testing facility, such as the Lockheed Martin Space Operations Simulation Center (SOSC). Ground-based testing is a critical step for maturing the next-generation flash LIDAR-based spacecraft relative navigation. This paper will focus on the tests of an integrated relative navigation system conducted at the SOSC in January 2014. The intent of the tests was to characterize and then improve the performance of relative navigation, while addressing many of the flash LIDAR challenges mentioned above. A section on navigation performance and future recommendation completes the discussion.

  6. Optical Navigation Image of Ganymede

    NASA Technical Reports Server (NTRS)

    1996-01-01

    NASA's Galileo spacecraft, now in orbit around Jupiter, returned this optical navigation image June 3, 1996, showing that the spacecraft is accurately targeted for its first flyby of the giant moon Ganymede on June 27. The missing data in the frame is the result of a special editing feature recently added to the spacecraft's computer to transmit navigation images more quickly. This is first in a series of optical navigation frames, highly edited onboard the spacecraft, that will be used to fine-tune the spacecraft's trajectory as Galileo approaches Ganymede. The image, used for navigation purposes only, is the product of new computer processing capabilities on the spacecraft that allow Galileo to send back only the information required to show the spacecraft is properly targeted and that Ganymede is where navigators calculate it to be. 'This navigation image is totally different from the pictures we'll be taking for scientific study of Ganymede when we get close to it later this month,' said Galileo Project Scientist Dr. Torrence Johnson. On June 27, Galileo will fly just 844 kilometers (524 miles) above Ganymede and return the most detailed, full-frame, high-resolution images and other measurements of the satellite ever obtained. Icy Ganymede is the largest moon in the solar system and three-quarters the size of Mars. It is one of the four large Jovian moons that are special targets of study for the Galileo mission. Of the more than 5 million bits contained in a single image, Galileo performed on-board editing to send back a mere 24,000 bits containing the essential information needed to assure proper targeting. Only the light-to-dark transitions of the crescent Ganymede and reference star locations were transmitted to Earth. The navigation image was taken from a distance of 9.8 million kilometers (6.1 million miles). On June 27th, the spacecraft will be 10,000 times closer to Ganymede.

  7. 33 CFR 334.744 - Eglin Poquito Housing at Eglin Air Force Base, Fla.; restricted area.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Air Force Base, Fla.; restricted area. 334.744 Section 334.744 Navigation and Navigable Waters CORPS... REGULATIONS § 334.744 Eglin Poquito Housing at Eglin Air Force Base, Fla.; restricted area. (a) The area. The restricted area shall encompass all navigable waters of the United States, as defined at 33 CFR part...

  8. 33 CFR 334.740 - North Shore Choctawhatchee Bay, Eglin Air Force Base, Fla.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Shore Choctawhatchee Bay, Eglin Air Force Base, Fla. (a) The area. The restricted area shall encompass all navigable waters of the United States as defined at 33 CFR part 329 within the area bounded by a..., Eglin Air Force Base, Fla. 334.740 Section 334.740 Navigation and Navigable Waters CORPS OF...

  9. 33 CFR 334.740 - North Shore Choctawhatchee Bay, Eglin Air Force Base, Fla.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Shore Choctawhatchee Bay, Eglin Air Force Base, Fla. (a) The area. The restricted area shall encompass all navigable waters of the United States as defined at 33 CFR part 329 within the area bounded by a..., Eglin Air Force Base, Fla. 334.740 Section 334.740 Navigation and Navigable Waters CORPS OF...

  10. 33 CFR 334.740 - North Shore Choctawhatchee Bay, Eglin Air Force Base, Fla.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Shore Choctawhatchee Bay, Eglin Air Force Base, Fla. (a) The area. The restricted area shall encompass all navigable waters of the United States as defined at 33 CFR part 329 within the area bounded by a..., Eglin Air Force Base, Fla. 334.740 Section 334.740 Navigation and Navigable Waters CORPS OF...

  11. 46 CFR 120.420 - Navigation lights.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Navigation lights. 120.420 Section 120.420 Shipping... Systems § 120.420 Navigation lights. All vessels must have navigation lights that are in compliance with... than 19.8 meters (65 feet) in length must also have navigation lights that meet UL 1104,...

  12. 46 CFR 183.420 - Navigation lights.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Navigation lights. 183.420 Section 183.420 Shipping...) ELECTRICAL INSTALLATION Lighting Systems § 183.420 Navigation lights. All vessels must have navigation lights..., except that a vessel of more than 19.8 meters (65 feet) in length must also have navigation lights...

  13. 46 CFR 183.420 - Navigation lights.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Navigation lights. 183.420 Section 183.420 Shipping...) ELECTRICAL INSTALLATION Lighting Systems § 183.420 Navigation lights. All vessels must have navigation lights..., except that a vessel of more than 19.8 meters (65 feet) in length must also have navigation lights...

  14. 46 CFR 120.420 - Navigation lights.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Navigation lights. 120.420 Section 120.420 Shipping... Systems § 120.420 Navigation lights. All vessels must have navigation lights that are in compliance with... than 19.8 meters (65 feet) in length must also have navigation lights that meet UL 1104,...

  15. 46 CFR 183.420 - Navigation lights.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Navigation lights. 183.420 Section 183.420 Shipping...) ELECTRICAL INSTALLATION Lighting Systems § 183.420 Navigation lights. All vessels must have navigation lights..., except that a vessel of more than 19.8 meters (65 feet) in length must also have navigation lights...

  16. 46 CFR 120.420 - Navigation lights.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Navigation lights. 120.420 Section 120.420 Shipping... Systems § 120.420 Navigation lights. All vessels must have navigation lights that are in compliance with... than 19.8 meters (65 feet) in length must also have navigation lights that meet UL 1104,...

  17. 46 CFR 183.420 - Navigation lights.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Navigation lights. 183.420 Section 183.420 Shipping...) ELECTRICAL INSTALLATION Lighting Systems § 183.420 Navigation lights. All vessels must have navigation lights..., except that a vessel of more than 19.8 meters (65 feet) in length must also have navigation lights...

  18. 46 CFR 120.420 - Navigation lights.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Navigation lights. 120.420 Section 120.420 Shipping... Systems § 120.420 Navigation lights. All vessels must have navigation lights that are in compliance with... than 19.8 meters (65 feet) in length must also have navigation lights that meet UL 1104,...

  19. 46 CFR 120.420 - Navigation lights.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Navigation lights. 120.420 Section 120.420 Shipping... Systems § 120.420 Navigation lights. All vessels must have navigation lights that are in compliance with... than 19.8 meters (65 feet) in length must also have navigation lights that meet UL 1104,...

  20. 46 CFR 183.420 - Navigation lights.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Navigation lights. 183.420 Section 183.420 Shipping...) ELECTRICAL INSTALLATION Lighting Systems § 183.420 Navigation lights. All vessels must have navigation lights..., except that a vessel of more than 19.8 meters (65 feet) in length must also have navigation lights...

  1. 33 CFR 66.10-15 - Aids to navigation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Aids to navigation. 66.10-15 Section 66.10-15 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY AIDS TO NAVIGATION PRIVATE AIDS TO NAVIGATION Uniform State Waterway Marking System § 66.10-15 Aids to navigation....

  2. 33 CFR 66.10-15 - Aids to navigation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Aids to navigation. 66.10-15 Section 66.10-15 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY AIDS TO NAVIGATION PRIVATE AIDS TO NAVIGATION Uniform State Waterway Marking System § 66.10-15 Aids to navigation....

  3. 33 CFR 66.10-15 - Aids to navigation.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Aids to navigation. 66.10-15 Section 66.10-15 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY AIDS TO NAVIGATION PRIVATE AIDS TO NAVIGATION Uniform State Waterway Marking System § 66.10-15 Aids to navigation....

  4. 33 CFR 66.10-15 - Aids to navigation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Aids to navigation. 66.10-15 Section 66.10-15 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY AIDS TO NAVIGATION PRIVATE AIDS TO NAVIGATION Uniform State Waterway Marking System § 66.10-15 Aids to navigation....

  5. 33 CFR 66.10-15 - Aids to navigation.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Aids to navigation. 66.10-15 Section 66.10-15 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY AIDS TO NAVIGATION PRIVATE AIDS TO NAVIGATION Uniform State Waterway Marking System § 66.10-15 Aids to navigation....

  6. 33 CFR 66.10-35 - Navigation lights.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Navigation lights. 66.10-35 Section 66.10-35 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY AIDS TO NAVIGATION PRIVATE AIDS TO NAVIGATION Uniform State Waterway Marking System § 66.10-35 Navigation lights....

  7. Modelling group navigation: transitive social structures improve navigational performance

    PubMed Central

    Flack, Andrea; Biro, Dora; Guilford, Tim; Freeman, Robin

    2015-01-01

    Collective navigation demands that group members reach consensus on which path to follow, a task that might become more challenging when the group's members have different social connections. Group decision-making mechanisms have been studied successfully in the past using individual-based modelling, although many of these studies have neglected the role of social connections between the group's interacting members. Nevertheless, empirical studies have demonstrated that individual recognition, previous shared experiences and inter-individual familiarity can influence the cohesion and the dynamics of the group as well as the relative spatial positions of specific individuals within it. Here, we use models of collective motion to study the impact of social relationships on group navigation by introducing social network structures into a model of collective motion. Our results show that groups consisting of equally informed individuals achieve the highest level of accuracy when they are hierarchically organized with the minimum number of preferred connections per individual. We also observe that the navigational accuracy of a group will depend strongly on detailed aspects of its social organization. More specifically, group navigation does not only depend on the underlying social relationships, but also on how much weight leading individuals put on following others. Also, we show that groups with certain social structures can compensate better for an increased level of navigational error. The results have broader implications for studies on collective navigation and motion because they show that only by considering a group's social system can we fully elucidate the dynamics and advantages of joint movements. PMID:26063820

  8. Modelling group navigation: transitive social structures improve navigational performance.

    PubMed

    Flack, Andrea; Biro, Dora; Guilford, Tim; Freeman, Robin

    2015-07-01

    Collective navigation demands that group members reach consensus on which path to follow, a task that might become more challenging when the group's members have different social connections. Group decision-making mechanisms have been studied successfully in the past using individual-based modelling, although many of these studies have neglected the role of social connections between the group's interacting members. Nevertheless, empirical studies have demonstrated that individual recognition, previous shared experiences and inter-individual familiarity can influence the cohesion and the dynamics of the group as well as the relative spatial positions of specific individuals within it. Here, we use models of collective motion to study the impact of social relationships on group navigation by introducing social network structures into a model of collective motion. Our results show that groups consisting of equally informed individuals achieve the highest level of accuracy when they are hierarchically organized with the minimum number of preferred connections per individual. We also observe that the navigational accuracy of a group will depend strongly on detailed aspects of its social organization. More specifically, group navigation does not only depend on the underlying social relationships, but also on how much weight leading individuals put on following others. Also, we show that groups with certain social structures can compensate better for an increased level of navigational error. The results have broader implications for studies on collective navigation and motion because they show that only by considering a group's social system can we fully elucidate the dynamics and advantages of joint movements. PMID:26063820

  9. Mission Operations and Navigation Toolkit Environment

    NASA Technical Reports Server (NTRS)

    Sunseri, Richard F.; Wu, Hsi-Cheng; Hanna, Robert A.; Mossey, Michael P.; Duncan, Courtney B.; Evans, Scott E.; Evans, James R.; Drain, Theodore R.; Guevara, Michelle M.; Martin Mur, Tomas J.; Attiyah, Ahlam A.

    2009-01-01

    MONTE (Mission Operations and Navigation Toolkit Environment) Release 7.3 is an extensible software system designed to support trajectory and navigation analysis/design for space missions. MONTE is intended to replace the current navigation and trajectory analysis software systems, which, at the time of this reporting, are used by JPL's Navigation and Mission Design section. The software provides an integrated, simplified, and flexible system that can be easily maintained to serve the needs of future missions in need of navigation services.

  10. Guidance by odors in honeybee navigation.

    PubMed

    Menzel, Randolf; Greggers, Uwe

    2013-10-01

    Animal navigation is guided by multiple sensory cues. Here, we ask whether and how olfactory stimuli emanating from places other than the trained feeding site redirect the flight paths of honeybees. The flight trajectories of individual bees were registered using harmonic radar tracking. Sensory cues (compass direction, distance, visual cues en route and close to the feeding site) associated with the trained flight route dominated wayfinding, but a learned odorant carried by air flow induced excursions into the wind. These redirections were largely restricted to rather small deviations from the trained route (<60°, <200 m) and occurred only if the animal did not receive the trained odorant stimulus at the trained feeding site. Under certain conditions, larger excursions were observed. These findings are discussed in the context of odor guidance of honeybees over longer distances (>300 m from the hive). PMID:23974855

  11. 14 CFR 125.267 - Flight navigator and long-range navigation equipment.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Flight navigator and long-range navigation... Requirements § 125.267 Flight navigator and long-range navigation equipment. (a) No certificate holder may... current flight navigator certificate; or (2) Two independent, properly functioning, and approved...

  12. 14 CFR 125.267 - Flight navigator and long-range navigation equipment.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Flight navigator and long-range navigation... Requirements § 125.267 Flight navigator and long-range navigation equipment. (a) No certificate holder may... current flight navigator certificate; or (2) Two independent, properly functioning, and approved...

  13. 14 CFR 125.267 - Flight navigator and long-range navigation equipment.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Flight navigator and long-range navigation... Requirements § 125.267 Flight navigator and long-range navigation equipment. (a) No certificate holder may... current flight navigator certificate; or (2) Two independent, properly functioning, and approved...

  14. 14 CFR 125.267 - Flight navigator and long-range navigation equipment.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Flight navigator and long-range navigation... Requirements § 125.267 Flight navigator and long-range navigation equipment. (a) No certificate holder may... current flight navigator certificate; or (2) Two independent, properly functioning, and approved...

  15. 14 CFR 125.267 - Flight navigator and long-range navigation equipment.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Flight navigator and long-range navigation... Requirements § 125.267 Flight navigator and long-range navigation equipment. (a) No certificate holder may...-range means of navigation which enable a reliable determination to be made of the position of...

  16. Behavioral Mapless Navigation Using Rings

    NASA Technical Reports Server (NTRS)

    Monroe, Randall P.; Miller, Samuel A.; Bradley, Arthur T.

    2012-01-01

    This paper presents work on the development and implementation of a novel approach to robotic navigation. In this system, map-building and localization for obstacle avoidance are discarded in favor of moment-by-moment behavioral processing of the sonar sensor data. To accomplish this, we developed a network of behaviors that communicate through the passing of rings, data structures that are similar in form to the sonar data itself and express the decisions of each behavior. Through the use of these rings, behaviors can moderate each other, conflicting impulses can be mediated, and designers can easily connect modules to create complex emergent navigational techniques. We discuss the development of a number of these modules and their successful use as a navigation system in the Trinity omnidirectional robot.

  17. Navigation systems. [for interplanetary flight

    NASA Technical Reports Server (NTRS)

    Jordan, J. F.

    1985-01-01

    The elements of the measurement and communications network comprising the global deep space navigation system (DSN) for NASA missions are described. Among the measurement systems discussed are: VLBI, two-way Doppler and range measurements, and optical measurements carried out on board the spacecraft. Processing of navigation measurement is carried out using two modules: an N-body numerical integration of the trajectory (and state transition partial derivatives) based on pre-guessed initial conditions; and partial derivatives of simulated observables corresponding to each actual observation. Calculations of velocity correction parameters is performed by precise modelling of all physical phenomena influencing the observational measurements, including: planetary motions; tracking station locations, gravity field structure, and transmission media effects. Some of the contributions to earth-relative orbit estimate errors for the Doppler/range system on board Voyager are discussed in detail. A line drawing of the DSN navigation system is provided.

  18. Surgical navigation in oral implantology.

    PubMed

    Miller, Robert J; Bier, Jurgen

    2006-03-01

    The ability to generate 3-dimensional volumetric images of the maxillofacial area has allowed surgeons to evaluate anatomy before surgery and plan for the placement of implants in ideal positions. However, the ability to transfer that information to surgical reality has been the most challenging part of implant dentistry. With the advent of computer-assisted surgery, the surgeon may now navigate through the entire implant procedure with extremely high accuracy. A new portable laptop navigated system for oral implantology is discussed as an adjunct for complex implant cases. PMID:16569960

  19. Navigation: traveling the water highways!

    USGS Publications Warehouse

    Fisher, Marion; Vandas, Stephen; Farrar, Frank, (artist)

    1996-01-01

    NAVIGATION is travel or transportation over water. Many different kinds of boats and ships are used on rivers and oceans to move people and products from one place to another. Navigation was extremely important for foreign and domestic trade and travel in the early days of our country before cars, trucks, trains, and airplanes were invented. In those days, rivers were used as "roads" to connect inland settlements to river and coastal ports. Communities established at these commercial ports became important economic, cultural, and social hubs in the development of our Nation.

  20. Seamless Resource-Adaptive Navigation

    NASA Astrophysics Data System (ADS)

    Schwartz, Tim; Stahl, Christoph; Baus, Jörg; Wahlster, Wolfgang

    Research in the project RENA (REsource-Adapative NAvigation) together with DFKI GmbH, BMW Research and Technology AG, and Eyeled GmbH has been concerned with the conceptual and methodological foundations and the design of a resource-adaptive platform for seamless outdoor and indoor navigation that can serve as a basis for product development by the companies in the RENA consortium. Future in-car assistance systems will have a user interface, which adapts to the driveŕs current exposure caused by the actual traffic situation.

  1. A greedy-navigator approach to navigable city plans

    NASA Astrophysics Data System (ADS)

    Lee, Sang Hoon; Holme, Petter

    2013-01-01

    We use a set of four theoretical navigability indices for street maps to investigate the shape of the resulting street networks, if they are grown by optimizing these indices. The indices compare the performance of simulated navigators (having a partial information about the surroundings, like humans in many real situations) to the performance of optimally navigating individuals. We show that our simple greedy shortcut construction strategy generates the emerging structures that are different from real road network, but not inconceivable. The resulting city plans, for all navigation indices, share common qualitative properties such as the tendency for triangular blocks to appear, while the more quantitative features, such as degree distributions and clustering, are characteristically different depending on the type of metrics and routing strategies. We show that it is the type of metrics used which determines the overall shapes characterized by structural heterogeneity, but the routing schemes contribute to more subtle details of locality, which is more emphasized in case of unrestricted connections when the edge crossing is allowed.

  2. 33 CFR 183.222 - Flotation material and air chambers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Flotation material and air... SECURITY (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Flotation Requirements for Outboard Boats Rated for Engines of More Than 2 Horsepower General § 183.222 Flotation material and air...

  3. 33 CFR 183.112 - Flotation material and air chambers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Flotation material and air... SECURITY (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Flotation Requirements for Inboard Boats, Inboard/Outdrive Boats, and Airboats § 183.112 Flotation material and air chambers. (a)...

  4. DEMONSTRATION OF AUTONOMOUS AIR MONITORING THROUGH ROBOTICS

    EPA Science Inventory

    This project included modifying an existing teleoperated robot to include autonomous navigation, large object avoidance, and air monitoring and demonstrating that prototype robot system in indoor and outdoor environments. An existing teleoperated "Surveyor" robot developed by ARD...

  5. 33 CFR 334.670 - Gulf of Mexico south and west of Apalachicola, San Blas, and St. Joseph bays; air-to-air firing...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Gulf of Mexico south and west of Apalachicola, San Blas, and St. Joseph bays; air-to-air firing practice range, Tyndall Air Force Base, Fla. 334..., DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.670 Gulf of Mexico south and west...

  6. 33 CFR 334.670 - Gulf of Mexico south and west of Apalachicola, San Blas, and St. Joseph bays; air-to-air firing...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Gulf of Mexico south and west of Apalachicola, San Blas, and St. Joseph bays; air-to-air firing practice range, Tyndall Air Force Base, Fla. 334..., DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.670 Gulf of Mexico south and west...

  7. Self-Navigating THE TERRAIN

    ERIC Educational Resources Information Center

    Anyaso, Hilary Hurd

    2008-01-01

    There's some good news in the academy regarding Black women: They occupy a number of high-profile executive posts in higher education. But whether Black women scholars want to follow in their footsteps or continue in a teaching or research capacity, the bad news is that many feel they are left to navigate the personal and professional politics of…

  8. Navigation - Project CAPE Teaching Module.

    ERIC Educational Resources Information Center

    Caldwell, Nadine; May, Charlaron

    Ten lessons are included in this interdisciplinary unit on navigation, designed to supplement fifth and sixth grade social studies and science curricula. Each lesson includes: (1) lesson concepts; (2) competency goals; (3) objectives; (4) materials; (5) list of key vocabulary words; (6) background information; (7) teacher preparation; (8) list of…

  9. Evaluation of STOL navigation avionics

    NASA Technical Reports Server (NTRS)

    Dunn, W. R., Jr.

    1977-01-01

    Research projects, including work on a vector magnetometer for aircraft attitude measurement, are summarized. The earth's electric field phenomena was investigated in its application to aircraft control and navigation. Research on electronic aircraft cabin noise suppression is reviewed and strapdown inertial reference unit technical support is outlined.

  10. Multiple source navigation signal generator

    NASA Astrophysics Data System (ADS)

    Bojda, Petr

    2010-09-01

    The paper presents a FPGA based digital VOR/LOC signal generator. It provides the composite signal, which consists of the particular signals of several predefined navigation sources - VOR beacons. Design of the generator is implemented into the two different FPGA DSP platforms.

  11. SMALL CRAFT OPERATION AND NAVIGATION.

    ERIC Educational Resources Information Center

    Louisiana State Dept. of Education, Baton Rouge.

    THIS REFERENCE TEXTBOOK WAS PREPARED FOR USE IN THE FIRST PART OF A TWO-PART COURSE IN MARINE NAVIGATION AND SMALL CRAFT OPERATION ON INLAND AND INTERNATIONAL WATERS. THE MATERIAL WAS DEVELOPED BY AN INDIVIDUAL AUTHOR FOR USE IN TRADE SCHOOL PREPARATORY AND EXTENSION CLASSES FOR MALE ADULTS WHO PLAN TO OPERATE BOATS. IT IS MAINLY CONCERNED WITH…

  12. Synchronous navigation for CT colonography

    NASA Astrophysics Data System (ADS)

    Huang, Adam; Summers, Ronald M.; Roy, Dave

    2006-03-01

    We present a synchronous navigation module for CT colonography (CTC) reading. The need for such a system arises because most CTC protocols require a patient to be scanned in both supine and prone positions to increase sensitivity in detecting colonic polyps. However, existing clinical practices are limited to reading one scan at a time. Such limitation is due to the fact that building a reference system between scans for the highly flexible colon is a nontrivial task. The conventional centerline approach, generating only the longitudinal distance along the colon, falls short in providing the necessary orientation information to synchronize the virtual navigation cameras in both scanned positions. In this paper we describe a synchronous navigation system by using the teniae coli as anatomical references. Teniae coli are three parallel bands of longitudinal smooth muscle on the surface of the colon. They are morphologically distinguishable and form a piecewise triple helix structure from the appendix to the sigmoid colon. Because of these characteristics, they are ideal references to synchronize virtual cameras in both scanned positions. Our new navigation system consists of two side-by-side virtual colonoscopic view panels (for the supine and prone data sets respectively) and one single camera control unit (which controls both the supine and prone virtual cameras). The capability to examine the same colonic region simultaneously in both scanned images can raise an observer's confidence in polyp identification and potentially improve the performance of CT colonography.

  13. 14 CFR 129.17 - Aircraft communication and navigation equipment for operations under IFR or over the top.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... equipment for operations under IFR or over the top. 129.17 Section 129.17 Aeronautics and Space FEDERAL... navigation equipment for operations under IFR or over the top. (a) Aircraft navigation equipment requirements—General. No foreign air carrier may conduct operations under IFR or over the top unless— (1) The en...

  14. 14 CFR 129.17 - Aircraft communication and navigation equipment for operations under IFR or over the top.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... equipment for operations under IFR or over the top. 129.17 Section 129.17 Aeronautics and Space FEDERAL... navigation equipment for operations under IFR or over the top. (a) Aircraft navigation equipment requirements—General. No foreign air carrier may conduct operations under IFR or over the top unless— (1) The en...

  15. 14 CFR 129.17 - Aircraft communication and navigation equipment for operations under IFR or over the top.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... equipment for operations under IFR or over the top. 129.17 Section 129.17 Aeronautics and Space FEDERAL... navigation equipment for operations under IFR or over the top. (a) Aircraft navigation equipment requirements—General. No foreign air carrier may conduct operations under IFR or over the top unless— (1) The en...

  16. 14 CFR 129.17 - Aircraft communication and navigation equipment for operations under IFR or over the top.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... equipment for operations under IFR or over the top. 129.17 Section 129.17 Aeronautics and Space FEDERAL... navigation equipment for operations under IFR or over the top. (a) Aircraft navigation equipment requirements—General. No foreign air carrier may conduct operations under IFR or over the top unless— (1) The en...

  17. 14 CFR 129.17 - Aircraft communication and navigation equipment for operations under IFR or over the top.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... equipment for operations under IFR or over the top. 129.17 Section 129.17 Aeronautics and Space FEDERAL... navigation equipment for operations under IFR or over the top. (a) Aircraft navigation equipment requirements—General. No foreign air carrier may conduct operations under IFR or over the top unless— (1) The en...

  18. 33 CFR 334.235 - Potomac River, Marine Corps Base Quantico (MCB Quantico) in vicinity of Marine Corps Air Facility...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Potomac River, Marine Corps Base Quantico (MCB Quantico) in vicinity of Marine Corps Air Facility (MCAF), restricted area. 334.235 Section 334.235 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED...

  19. 33 CFR 67.35-10 - Private aids to navigation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Private aids to navigation. 67.35-10 Section 67.35-10 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY AIDS TO NAVIGATION AIDS TO NAVIGATION ON ARTIFICIAL ISLANDS AND FIXED STRUCTURES Applications §...

  20. 33 CFR 401.54 - Interference with navigation aids.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Interference with navigation aids. 401.54 Section 401.54 Navigation and Navigable Waters SAINT LAWRENCE SEAWAY DEVELOPMENT CORPORATION... with navigation aids. (a) Aids to navigation shall not be interfered with or used as moorings. (b)...

  1. 33 CFR 401.54 - Interference with navigation aids.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Interference with navigation aids. 401.54 Section 401.54 Navigation and Navigable Waters SAINT LAWRENCE SEAWAY DEVELOPMENT CORPORATION... with navigation aids. (a) Aids to navigation shall not be interfered with or used as moorings. (b)...

  2. 33 CFR 67.35-10 - Private aids to navigation.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Private aids to navigation. 67.35-10 Section 67.35-10 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY AIDS TO NAVIGATION AIDS TO NAVIGATION ON ARTIFICIAL ISLANDS AND FIXED STRUCTURES Applications §...

  3. 33 CFR 67.35-10 - Private aids to navigation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Private aids to navigation. 67.35-10 Section 67.35-10 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY AIDS TO NAVIGATION AIDS TO NAVIGATION ON ARTIFICIAL ISLANDS AND FIXED STRUCTURES Applications §...

  4. 33 CFR 401.54 - Interference with navigation aids.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Interference with navigation aids. 401.54 Section 401.54 Navigation and Navigable Waters SAINT LAWRENCE SEAWAY DEVELOPMENT CORPORATION... with navigation aids. (a) Aids to navigation shall not be interfered with or used as moorings. (b)...

  5. 33 CFR 67.35-10 - Private aids to navigation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Private aids to navigation. 67.35-10 Section 67.35-10 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY AIDS TO NAVIGATION AIDS TO NAVIGATION ON ARTIFICIAL ISLANDS AND FIXED STRUCTURES Applications §...

  6. 33 CFR 401.54 - Interference with navigation aids.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Interference with navigation aids. 401.54 Section 401.54 Navigation and Navigable Waters SAINT LAWRENCE SEAWAY DEVELOPMENT CORPORATION... with navigation aids. (a) Aids to navigation shall not be interfered with or used as moorings. (b)...

  7. 33 CFR 401.54 - Interference with navigation aids.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Interference with navigation aids. 401.54 Section 401.54 Navigation and Navigable Waters SAINT LAWRENCE SEAWAY DEVELOPMENT CORPORATION... with navigation aids. (a) Aids to navigation shall not be interfered with or used as moorings. (b)...

  8. 33 CFR 67.35-10 - Private aids to navigation.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Private aids to navigation. 67.35-10 Section 67.35-10 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY AIDS TO NAVIGATION AIDS TO NAVIGATION ON ARTIFICIAL ISLANDS AND FIXED STRUCTURES Applications §...

  9. 33 CFR 164.13 - Navigation underway: tankers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Navigation underway: tankers. 164.13 Section 164.13 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PORTS AND WATERWAYS SAFETY NAVIGATION SAFETY REGULATIONS § 164.13 Navigation underway:...

  10. 33 CFR 164.78 - Navigation under way: Towing vessels.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Navigation under way: Towing vessels. 164.78 Section 164.78 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PORTS AND WATERWAYS SAFETY NAVIGATION SAFETY REGULATIONS § 164.78 Navigation under...

  11. 33 CFR 164.11 - Navigation under way: General.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Navigation under way: General. 164.11 Section 164.11 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PORTS AND WATERWAYS SAFETY NAVIGATION SAFETY REGULATIONS § 164.11 Navigation under way:...

  12. 33 CFR 164.11 - Navigation under way: General.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Navigation under way: General. 164.11 Section 164.11 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PORTS AND WATERWAYS SAFETY NAVIGATION SAFETY REGULATIONS § 164.11 Navigation under way:...

  13. 33 CFR 164.11 - Navigation under way: General.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Navigation under way: General. 164.11 Section 164.11 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PORTS AND WATERWAYS SAFETY NAVIGATION SAFETY REGULATIONS § 164.11 Navigation under way:...

  14. 33 CFR 164.78 - Navigation under way: Towing vessels.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Navigation under way: Towing vessels. 164.78 Section 164.78 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PORTS AND WATERWAYS SAFETY NAVIGATION SAFETY REGULATIONS § 164.78 Navigation under...

  15. 33 CFR 164.13 - Navigation underway: tankers.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Navigation underway: tankers. 164.13 Section 164.13 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PORTS AND WATERWAYS SAFETY NAVIGATION SAFETY REGULATIONS § 164.13 Navigation underway:...

  16. 33 CFR 164.13 - Navigation underway: tankers.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Navigation underway: tankers. 164.13 Section 164.13 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PORTS AND WATERWAYS SAFETY NAVIGATION SAFETY REGULATIONS § 164.13 Navigation underway:...

  17. 33 CFR 164.13 - Navigation underway: tankers.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Navigation underway: tankers. 164.13 Section 164.13 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PORTS AND WATERWAYS SAFETY NAVIGATION SAFETY REGULATIONS § 164.13 Navigation underway:...

  18. 33 CFR 164.11 - Navigation under way: General.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Navigation under way: General. 164.11 Section 164.11 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PORTS AND WATERWAYS SAFETY NAVIGATION SAFETY REGULATIONS § 164.11 Navigation under way:...

  19. 33 CFR 263.21 - Small navigation project authority.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Small navigation project authority. 263.21 Section 263.21 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE CONTINUING AUTHORITIES PROGRAMS Navigation Policy § 263.21 Small navigation...

  20. 33 CFR 164.78 - Navigation under way: Towing vessels.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Navigation under way: Towing vessels. 164.78 Section 164.78 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PORTS AND WATERWAYS SAFETY NAVIGATION SAFETY REGULATIONS § 164.78 Navigation under...

  1. 33 CFR 164.13 - Navigation underway: tankers.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Navigation underway: tankers. 164.13 Section 164.13 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PORTS AND WATERWAYS SAFETY NAVIGATION SAFETY REGULATIONS § 164.13 Navigation underway:...

  2. 33 CFR 164.78 - Navigation under way: Towing vessels.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Navigation under way: Towing vessels. 164.78 Section 164.78 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PORTS AND WATERWAYS SAFETY NAVIGATION SAFETY REGULATIONS § 164.78 Navigation under...

  3. 33 CFR 164.78 - Navigation under way: Towing vessels.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Navigation under way: Towing vessels. 164.78 Section 164.78 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PORTS AND WATERWAYS SAFETY NAVIGATION SAFETY REGULATIONS § 164.78 Navigation under way: Towing vessels. (a) The owner, master,...

  4. 33 CFR 162.240 - Tongass Narrows, Alaska; navigation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Tongass Narrows, Alaska; navigation. 162.240 Section 162.240 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PORTS AND WATERWAYS SAFETY INLAND WATERWAYS NAVIGATION REGULATIONS § 162.240 Tongass Narrows, Alaska; navigation. (a)...

  5. 33 CFR 263.21 - Small navigation project authority.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Small navigation project authority. 263.21 Section 263.21 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE CONTINUING AUTHORITIES PROGRAMS Navigation Policy § 263.21 Small navigation project authority. (a) Legislative...

  6. NAVIGATION PERFORMANCE IN HIGH EARTH ORBITS USING NAVIGATOR GPS RECEIVER

    NASA Technical Reports Server (NTRS)

    Bamford, William; Naasz, Bo; Moreau, Michael C.

    2006-01-01

    NASA GSFC has developed a GPS receiver that can acquire and track GPS signals with sensitivity significantly lower than conventional GPS receivers. This opens up the possibility of using GPS based navigation for missions in high altitude orbit, such as Geostationary Operational Environmental Satellites (GOES) in a geostationary orbit, and the Magnetospheric MultiScale (MMS) Mission, in highly eccentric orbits extending to 12 Earth radii and higher. Indeed much research has been performed to study the feasibility of using GPS navigation in high Earth orbits and the performance achievable. Recently, GSFC has conducted a series of hardware in-the-loop tests to assess the performance of this new GPS receiver in various high Earth orbits of interest. Tracking GPS signals to down to approximately 22-25 dB-Hz, including signals from the GPS transmitter side-lobes, steady-state navigation performance in a geostationary orbit is on the order of 10 meters. This paper presents the results of these tests, as well as sensitivity analysis to such factors as ionosphere masks, use of GPS side-lobe signals, and GPS receiver sensitivity.

  7. Shuttle unified navigation filter, revision 1

    NASA Technical Reports Server (NTRS)

    Muller, E. S., Jr.

    1973-01-01

    Equations designed to meet the navigation requirements of the separate shuttle mission phases are presented in a series of reports entitled, Space Shuttle GN and C Equation Document. The development of these equations is based on performance studies carried out for each particular mission phase. Although navigation equations have been documented separately for each mission phase, a single unified navigation filter design is embodied in these separate designs. The purpose of this document is to present the shuttle navigation equations in a form in which they would most likely be coded-as the single unified navigation filter used in each mission phase. This document will then serve as a single general reference for the navigation equations replacing each of the individual mission phase navigation documents (which may still be used as a description of a particular navigation phase).

  8. 33 CFR 66.05-100 - Designation of navigable waters as State waters for private aids to navigation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... as State waters for private aids to navigation. 66.05-100 Section 66.05-100 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY AIDS TO NAVIGATION PRIVATE AIDS TO NAVIGATION State Aids to Navigation § 66.05-100 Designation of navigable waters as State waters for private aids...

  9. 33 CFR 66.05-100 - Designation of navigable waters as State waters for private aids to navigation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... as State waters for private aids to navigation. 66.05-100 Section 66.05-100 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY AIDS TO NAVIGATION PRIVATE AIDS TO NAVIGATION State Aids to Navigation § 66.05-100 Designation of navigable waters as State waters for private aids...

  10. 33 CFR 66.05-100 - Designation of navigable waters as State waters for private aids to navigation.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... as State waters for private aids to navigation. 66.05-100 Section 66.05-100 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY AIDS TO NAVIGATION PRIVATE AIDS TO NAVIGATION State Aids to Navigation § 66.05-100 Designation of navigable waters as State waters for private aids...

  11. 33 CFR 66.05-100 - Designation of navigable waters as State waters for private aids to navigation.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... as State waters for private aids to navigation. 66.05-100 Section 66.05-100 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY AIDS TO NAVIGATION PRIVATE AIDS TO NAVIGATION State Aids to Navigation § 66.05-100 Designation of navigable waters as State waters for private aids...

  12. 33 CFR 66.05-100 - Designation of navigable waters as State waters for private aids to navigation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... as State waters for private aids to navigation. 66.05-100 Section 66.05-100 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY AIDS TO NAVIGATION PRIVATE AIDS TO NAVIGATION State Aids to Navigation § 66.05-100 Designation of navigable waters as State waters for private aids...

  13. 33 CFR 334.742 - Eglin Camp Pinchot, Fla., at Eglin Air Force Base, Fla.; restricted area.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Eglin Air Force Base, Fla.; restricted area. 334.742 Section 334.742 Navigation and Navigable Waters... REGULATIONS § 334.742 Eglin Camp Pinchot, Fla., at Eglin Air Force Base, Fla.; restricted area. (a) The area. The restricted area shall encompass all navigable waters of the United States, as defined at 33...

  14. 33 CFR 334.775 - Naval Air Station Pensacola, Pensacola Bay, Pensacola and Gulf Breeze, Fla.; naval restricted area.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Naval Air Station Pensacola, Pensacola Bay, Pensacola and Gulf Breeze, Fla.; naval restricted area. 334.775 Section 334.775 Navigation... RESTRICTED AREA REGULATIONS § 334.775 Naval Air Station Pensacola, Pensacola Bay, Pensacola and Gulf...

  15. 33 CFR 334.775 - Naval Air Station Pensacola, Pensacola Bay, Pensacola and Gulf Breeze, Fla.; naval restricted area.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Naval Air Station Pensacola, Pensacola Bay, Pensacola and Gulf Breeze, Fla.; naval restricted area. 334.775 Section 334.775 Navigation... RESTRICTED AREA REGULATIONS § 334.775 Naval Air Station Pensacola, Pensacola Bay, Pensacola and Gulf...

  16. Air Navigation Systems: Chapter 6. Navigation and the Pioneering Flights Part II

    NASA Astrophysics Data System (ADS)

    Steele, Philip

    Part I of this chapter was included in the January 1997 issue of the Journal, Vol. 50, p. 65.The Smith Brothers, 1919. Captain Ross M. Smith, of the Australian Flying Corps based in Palestine, flew a Handley Page 0/400 late in 1918 on a special flight to Baghdad and beyond, carrying as passenger Major General W. G. H. Salmond, the RAF's Middle East Commander. Flying as co-pilot was Brigadier-General Borton, Commander of the Palestine Brigade. Smith had been flying, in support of Lawrence's forces, another 0/00 which Borton had brought from England.

  17. 18 CFR 1304.410 - Navigation restrictions.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 2 2012-04-01 2012-04-01 false Navigation restrictions... Miscellaneous § 1304.410 Navigation restrictions. (a) Except for the placement of riprap along the shoreline... established for commercial navigation. (b) Structures shall not be located in such a way as to block...

  18. 18 CFR 1304.410 - Navigation restrictions.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 2 2014-04-01 2014-04-01 false Navigation restrictions... Miscellaneous § 1304.410 Navigation restrictions. (a) Except for the placement of riprap along the shoreline... established for commercial navigation. (b) Structures shall not be located in such a way as to block...

  19. 18 CFR 1304.410 - Navigation restrictions.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Navigation restrictions... Miscellaneous § 1304.410 Navigation restrictions. (a) Except for the placement of riprap along the shoreline... established for commercial navigation. (b) Structures shall not be located in such a way as to block...

  20. 18 CFR 1304.410 - Navigation restrictions.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 2 2013-04-01 2012-04-01 true Navigation restrictions... Miscellaneous § 1304.410 Navigation restrictions. (a) Except for the placement of riprap along the shoreline... established for commercial navigation. (b) Structures shall not be located in such a way as to block...

  1. 18 CFR 1304.410 - Navigation restrictions.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Navigation restrictions... Miscellaneous § 1304.410 Navigation restrictions. (a) Except for the placement of riprap along the shoreline... established for commercial navigation. (b) Structures shall not be located in such a way as to block...

  2. 32 CFR 644.3 - Navigation Projects.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 4 2010-07-01 2010-07-01 true Navigation Projects. 644.3 Section 644.3 National... HANDBOOK Project Planning Civil Works § 644.3 Navigation Projects. (a) Land to be acquired in fee. All... construction and borrow areas. (3) In navigation-only projects, the right to permanently flood should...

  3. Lunar roving vehicle navigation system performance review

    NASA Technical Reports Server (NTRS)

    Smith, E. C.; Mastin, W. C.

    1973-01-01

    The design and operation of the lunar roving vehicle (LRV) navigation system are briefly described. The basis for the premission LRV navigation error analysis is explained and an example included. The real time mission support operations philosophy is presented. The LRV navigation system operation and accuracy during the lunar missions are evaluated.

  4. Shuttle OFT Level C navigation requirements

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Detailed requirements for the orbital operations computer loads, OPS 2, and OPS 8 are given. These requirements represent the total on-orbit/rendezvous navigation baseline requirements for the following principal functions: on-orbital/rendezvous navigation sequencer; on-orbit/rendezvous UPP sequencer; on-orbit rendezvous navigation; on-orbit prediction; on-orbit user parameter processing; and landing Site update.

  5. 75 FR 19544 - Inland Navigation Rules

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-15

    ...By this final rule, the Coast Guard is placing the Inland Navigation Rules into the Code of Federal Regulations. This move is in accordance with the Coast Guard and Maritime Transportation Act of 2004, which repeals the Inland Navigation Rules as of the effective date of these regulations. Future updates of the Inland Navigation Rules will be accomplished through rulemaking rather than......

  6. 32 CFR 644.3 - Navigation projects.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 4 2012-07-01 2011-07-01 true Navigation projects. 644.3 Section 644.3 National... HANDBOOK Project Planning Civil Works § 644.3 Navigation projects. (a) Land to be acquired in fee. All... construction and borrow areas. (3) In navigation-only projects, the right to permanently flood should...

  7. 32 CFR 644.3 - Navigation projects.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 4 2013-07-01 2013-07-01 false Navigation projects. 644.3 Section 644.3... ESTATE HANDBOOK Project Planning Civil Works § 644.3 Navigation projects. (a) Land to be acquired in fee..., and temporary construction and borrow areas. (3) In navigation-only projects, the right to...

  8. 32 CFR 644.3 - Navigation projects.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 4 2011-07-01 2011-07-01 false Navigation projects. 644.3 Section 644.3... ESTATE HANDBOOK Project Planning Civil Works § 644.3 Navigation projects. (a) Land to be acquired in fee..., and temporary construction and borrow areas. (3) In navigation-only projects, the right to...

  9. 32 CFR 644.3 - Navigation projects.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 4 2014-07-01 2013-07-01 true Navigation projects. 644.3 Section 644.3 National... HANDBOOK Project Planning Civil Works § 644.3 Navigation projects. (a) Land to be acquired in fee. All... construction and borrow areas. (3) In navigation-only projects, the right to permanently flood should...

  10. 46 CFR 129.430 - Navigational lighting.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Navigational lighting. 129.430 Section 129.430 Shipping... INSTALLATIONS Lighting Systems § 129.430 Navigational lighting. (a) Each vessel of less than 100 gross tons and less than 19.8 meters (65 feet) in length must have navigational lighting in compliance with...

  11. 46 CFR 129.430 - Navigational lighting.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Navigational lighting. 129.430 Section 129.430 Shipping... INSTALLATIONS Lighting Systems § 129.430 Navigational lighting. (a) Each vessel of less than 100 gross tons and less than 19.8 meters (65 feet) in length must have navigational lighting in compliance with...

  12. 46 CFR 129.430 - Navigational lighting.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Navigational lighting. 129.430 Section 129.430 Shipping... INSTALLATIONS Lighting Systems § 129.430 Navigational lighting. (a) Each vessel of less than 100 gross tons and less than 19.8 meters (65 feet) in length must have navigational lighting in compliance with...

  13. 46 CFR 129.430 - Navigational lighting.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Navigational lighting. 129.430 Section 129.430 Shipping... INSTALLATIONS Lighting Systems § 129.430 Navigational lighting. (a) Each vessel of less than 100 gross tons and less than 19.8 meters (65 feet) in length must have navigational lighting in compliance with...

  14. 46 CFR 129.430 - Navigational lighting.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Navigational lighting. 129.430 Section 129.430 Shipping... INSTALLATIONS Lighting Systems § 129.430 Navigational lighting. (a) Each vessel of less than 100 gross tons and less than 19.8 meters (65 feet) in length must have navigational lighting in compliance with...

  15. Autonomous Guidance, Navigation and Control

    NASA Technical Reports Server (NTRS)

    Bordano, A. J.; Mcswain, G. G.; Fernandes, S. T.

    1991-01-01

    The NASA Autonomous Guidance, Navigation and Control (GN&C) Bridging program is reviewed to demonstrate the program plan and GN&C systems for the Space Shuttle. The ascent CN&C system is described in terms of elements such as the general-purpose digital computers, sensors for the navigation subsystem, the guidance-system software, and the flight-control subsystem. Balloon-based and lidar wind soundings are used for operations assessment on the day of launch, and the guidance software is based on dedicated units for atmospheric powered flight, vacuum powered flight, and abort-specific situations. Optimization of the flight trajectories is discussed, and flight-control responses are illustrated for wavelengths of 500-6000 m. Alternate sensors are used for load relief, and adaptive GN&C systems based on alternate gain synthesis are used for systems failures.

  16. NAVIGATION IN TOTAL KNEE ARTHROPLASTY

    PubMed Central

    da Mota e Albuquerque, Roberto Freire

    2015-01-01

    Navigation was the most significant advance in instrumentation for total knee arthroplasty over the last decade. It provides surgeons with a precision tool for carrying out surgery, with the possibility of intraoperative simulation and objective control over various anatomical and surgical parameters and references. Since the first systems, which were basically used to control the alignment of bone cutting referenced to the mechanical axis of the lower limb, many other surgical steps have been incorporated, such as component rotation, ligament balancing and arranging the symmetry of flexion and extension spaces, among others. Its efficacy as a precision tool with an effective capacity for promoting better alignment of the lower-limb axis has been widely proven in the literature, but the real value of optimized alignment and the impact of navigation on clinical results and the longevity of arthroplasty have yet to be established. PMID:27026979

  17. 33 CFR 334.560 - Banana River at Patrick Air Force Base, Fla.; restricted area.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Banana River at Patrick Air Force... River at Patrick Air Force Base, Fla.; restricted area. (a) The area. The waters within an area... Commander, 45th Space Wing, Patrick Air Force Base, Florida, and such agencies as he/she may designate....

  18. 33 CFR 334.560 - Banana River at Patrick Air Force Base, Fla.; restricted area.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Banana River at Patrick Air Force... River at Patrick Air Force Base, Fla.; restricted area. (a) The area. The waters within an area... Commander, 45th Space Wing, Patrick Air Force Base, Florida, and such agencies as he/she may designate....

  19. 33 CFR 165.768 - Security Zone; MacDill Air Force Base, Tampa Bay, FL.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Security Zone; MacDill Air Force....768 Security Zone; MacDill Air Force Base, Tampa Bay, FL. (a) Location. The following area is a... title. All waters within Tampa Bay, Florida in the vicinity of MacDill Air Force Base,...

  20. 33 CFR 334.560 - Banana River at Patrick Air Force Base, Fla.; restricted area.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Banana River at Patrick Air Force... River at Patrick Air Force Base, Fla.; restricted area. (a) The area. The waters within an area... Commander, 45th Space Wing, Patrick Air Force Base, Florida, and such agencies as he/she may designate....

  1. 33 CFR 165.768 - Security Zone; MacDill Air Force Base, Tampa Bay, FL.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Security Zone; MacDill Air Force....768 Security Zone; MacDill Air Force Base, Tampa Bay, FL. (a) Location. The following area is a... title. All waters within Tampa Bay, Florida in the vicinity of MacDill Air Force Base,...

  2. 33 CFR 165.768 - Security Zone; MacDill Air Force Base, Tampa Bay, FL.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Security Zone; MacDill Air Force....768 Security Zone; MacDill Air Force Base, Tampa Bay, FL. (a) Location. The following area is a... title. All waters within Tampa Bay, Florida in the vicinity of MacDill Air Force Base,...

  3. 33 CFR 334.560 - Banana River at Patrick Air Force Base, Fla.; restricted area.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Banana River at Patrick Air Force... River at Patrick Air Force Base, Fla.; restricted area. (a) The area. The waters within an area... Commander, 45th Space Wing, Patrick Air Force Base, Florida, and such agencies as he/she may designate....

  4. 33 CFR 165.768 - Security Zone; MacDill Air Force Base, Tampa Bay, FL.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Security Zone; MacDill Air Force....768 Security Zone; MacDill Air Force Base, Tampa Bay, FL. (a) Location. The following area is a... title. All waters within Tampa Bay, Florida in the vicinity of MacDill Air Force Base,...

  5. 33 CFR 165.768 - Security Zone; MacDill Air Force Base, Tampa Bay, FL.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Security Zone; MacDill Air Force....768 Security Zone; MacDill Air Force Base, Tampa Bay, FL. (a) Location. The following area is a... title. All waters within Tampa Bay, Florida in the vicinity of MacDill Air Force Base,...

  6. 33 CFR 334.560 - Banana River at Patrick Air Force Base, Fla.; restricted area.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Banana River at Patrick Air Force... River at Patrick Air Force Base, Fla.; restricted area. (a) The area. The waters within an area... Commander, 45th Space Wing, Patrick Air Force Base, Florida, and such agencies as he/she may designate....

  7. ED navigators prevent unnecessary admissions.

    PubMed

    2012-02-01

    RN Navigators in the emergency department at Montefiore Medical Center work with social workers to prevent unnecessary admissions. Program targets the homeless and patients with tenuous living situations. CMs work with the emergency department staff to identify patients who don't meet admission criteria but can't be safely discharged. The hospital collaborates with a local housing assistance agency which sends a van to transport appropriate patients to a shelter. PMID:22299178

  8. Automatic AVHRR image navigation software

    NASA Technical Reports Server (NTRS)

    Baldwin, Dan; Emery, William

    1992-01-01

    This is the final report describing the work done on the project entitled Automatic AVHRR Image Navigation Software funded through NASA-Washington, award NAGW-3224, Account 153-7529. At the onset of this project, we had developed image navigation software capable of producing geo-registered images from AVHRR data. The registrations were highly accurate but required a priori knowledge of the spacecraft's axes alignment deviations, commonly known as attitude. The three angles needed to describe the attitude are called roll, pitch, and yaw, and are the components of the deviations in the along scan, along track and about center directions. The inclusion of the attitude corrections in the navigation software results in highly accurate georegistrations, however, the computation of the angles is very tedious and involves human interpretation for several steps. The technique also requires easily identifiable ground features which may not be available due to cloud cover or for ocean data. The current project was motivated by the need for a navigation system which was automatic and did not require human intervention or ground control points. The first step in creating such a system must be the ability to parameterize the spacecraft's attitude. The immediate goal of this project was to study the attitude fluctuations and determine if they displayed any systematic behavior which could be modeled or parameterized. We chose a period in 1991-1992 to study the attitude of the NOAA 11 spacecraft using data from the Tiros receiving station at the Colorado Center for Astrodynamic Research (CCAR) at the University of Colorado.

  9. True navigation in migrating gulls requires intact olfactory nerves.

    PubMed

    Wikelski, Martin; Arriero, Elena; Gagliardo, Anna; Holland, Richard A; Huttunen, Markku J; Juvaste, Risto; Mueller, Inge; Tertitski, Grigori; Thorup, Kasper; Wild, Martin; Alanko, Markku; Bairlein, Franz; Cherenkov, Alexander; Cameron, Alison; Flatz, Reinhard; Hannila, Juhani; Hüppop, Ommo; Kangasniemi, Markku; Kranstauber, Bart; Penttinen, Maija-Liisa; Safi, Kamran; Semashko, Vladimir; Schmid, Heidi; Wistbacka, Ralf

    2015-01-01

    During migratory journeys, birds may become displaced from their normal migratory route. Experimental evidence has shown that adult birds can correct for such displacements and return to their goal. However, the nature of the cues used by migratory birds to perform long distance navigation is still debated. In this experiment we subjected adult lesser black-backed gulls migrating from their Finnish/Russian breeding grounds (from >60°N) to Africa (to < 5°N) to sensory manipulation, to determine the sensory systems required for navigation. We translocated birds westward (1080 km) or eastward (885 km) to simulate natural navigational challenges. When translocated westwards and outside their migratory corridor birds with olfactory nerve section kept a clear directional preference (southerly) but were unable to compensate for the displacement, while intact birds and gulls with the ophthalmic branch of the trigeminal nerve sectioned oriented towards their population-specific migratory corridor. Thus, air-borne olfactory information seems to be important for migrating gulls to navigate successfully in some circumstances. PMID:26597351

  10. Juvenile Osprey Navigation during Trans-Oceanic Migration

    PubMed Central

    Horton, Travis W.; Bierregaard, Richard O.; Zawar-Reza, Peyman; Holdaway, Richard N.; Sagar, Paul

    2014-01-01

    To compensate for drift, an animal migrating through air or sea must be able to navigate. Although some species of bird, fish, insect, mammal, and reptile are capable of drift compensation, our understanding of the spatial reference frame, and associated coordinate space, in which these navigational behaviors occur remains limited. Using high resolution satellite-monitored GPS track data, we show that juvenile ospreys (Pandion haliaetus) are capable of non-stop constant course movements over open ocean spanning distances in excess of 1500 km despite the perturbing effects of winds and the lack of obvious landmarks. These results are best explained by extreme navigational precision in an exogenous spatio-temporal reference frame, such as positional orientation relative to Earth's magnetic field and pacing relative to an exogenous mechanism of keeping time. Given the age (<1 year-old) of these birds and knowledge of their hatching site locations, we were able to transform Enhanced Magnetic Model coordinate locations such that the origin of the magnetic coordinate space corresponded with each bird's nest. Our analyses show that trans-oceanic juvenile osprey movements are consistent with bicoordinate positional orientation in transformed magnetic coordinate or geographic space. Through integration of movement and meteorological data, we propose a new theoretical framework, chord and clock navigation, capable of explaining the precise spatial orientation and temporal pacing performed by juvenile ospreys during their long-distance migrations over open ocean. PMID:25493430

  11. An embedded omnidirectional vision navigator for automatic guided vehicles

    NASA Astrophysics Data System (ADS)

    Feng, Weijia; Zhang, Baofeng; Röning, Juha; Cao, Zuoliang; Zong, Xiaoning

    2011-01-01

    Omnidirectional vision appears the definite significance since its advantage of acquiring full 360° horizontal field of vision information simultaneously. In this paper, an embedded original omnidirectional vision navigator (EOVN) based on fish-eye lens and embedded technology has been researched. Fish-eye lens is one of the special ways to establish omnidirectional vision. However, it appears with an unavoidable inherent and enormous distortion. A unique integrated navigation method which is conducted on the basis of targets tracking has been proposed. It is composed of multi-target recognition and tracking, distortion rectification, spatial location and navigation control. It is called RTRLN. In order to adapt to the different indoor and outdoor navigation environments, we implant mean-shift and dynamic threshold adjustment into the Particle Filter algorithm to improve the efficiency and robustness of tracking capability. RTRLN has been implanted in an independent development embedded platform. EOVN likes a smart crammer based on COMS+FPGA+DSP. It can guide various vehicles in outdoor environments by tracking the diverse marks hanging in the air. The experiments prove that the EOVN is particularly suitable for the guidance applications which need high requirements on precision and repeatability. The research achievements have a good actual applied inspection.

  12. Juvenile Osprey Navigation during Trans-Oceanic Migration.

    PubMed

    Horton, Travis W; Bierregaard, Richard O; Zawar-Reza, Peyman; Holdaway, Richard N; Sagar, Paul

    2014-01-01

    To compensate for drift, an animal migrating through air or sea must be able to navigate. Although some species of bird, fish, insect, mammal, and reptile are capable of drift compensation, our understanding of the spatial reference frame, and associated coordinate space, in which these navigational behaviors occur remains limited. Using high resolution satellite-monitored GPS track data, we show that juvenile ospreys (Pandion haliaetus) are capable of non-stop constant course movements over open ocean spanning distances in excess of 1500 km despite the perturbing effects of winds and the lack of obvious landmarks. These results are best explained by extreme navigational precision in an exogenous spatio-temporal reference frame, such as positional orientation relative to Earth's magnetic field and pacing relative to an exogenous mechanism of keeping time. Given the age (<1 year-old) of these birds and knowledge of their hatching site locations, we were able to transform Enhanced Magnetic Model coordinate locations such that the origin of the magnetic coordinate space corresponded with each bird's nest. Our analyses show that trans-oceanic juvenile osprey movements are consistent with bicoordinate positional orientation in transformed magnetic coordinate or geographic space. Through integration of movement and meteorological data, we propose a new theoretical framework, chord and clock navigation, capable of explaining the precise spatial orientation and temporal pacing performed by juvenile ospreys during their long-distance migrations over open ocean. PMID:25493430

  13. True navigation in migrating gulls requires intact olfactory nerves

    PubMed Central

    Wikelski, Martin; Arriero, Elena; Gagliardo, Anna; Holland, Richard A.; Huttunen, Markku J.; Juvaste, Risto; Mueller, Inge; Tertitski, Grigori; Thorup, Kasper; Wild, Martin; Alanko, Markku; Bairlein, Franz; Cherenkov, Alexander; Cameron, Alison; Flatz, Reinhard; Hannila, Juhani; Hüppop, Ommo; Kangasniemi, Markku; Kranstauber, Bart; Penttinen, Maija-Liisa; Safi, Kamran; Semashko, Vladimir; Schmid, Heidi; Wistbacka, Ralf

    2015-01-01

    During migratory journeys, birds may become displaced from their normal migratory route. Experimental evidence has shown that adult birds can correct for such displacements and return to their goal. However, the nature of the cues used by migratory birds to perform long distance navigation is still debated. In this experiment we subjected adult lesser black-backed gulls migrating from their Finnish/Russian breeding grounds (from >60°N) to Africa (to < 5°N) to sensory manipulation, to determine the sensory systems required for navigation. We translocated birds westward (1080 km) or eastward (885 km) to simulate natural navigational challenges. When translocated westwards and outside their migratory corridor birds with olfactory nerve section kept a clear directional preference (southerly) but were unable to compensate for the displacement, while intact birds and gulls with the ophthalmic branch of the trigeminal nerve sectioned oriented towards their population-specific migratory corridor. Thus, air-borne olfactory information seems to be important for migrating gulls to navigate successfully in some circumstances. PMID:26597351

  14. The Taxiway Navigation and Situation Awareness (T-NASA) System

    NASA Technical Reports Server (NTRS)

    Foyle, David C.; Sridhar, Banavar (Technical Monitor)

    1997-01-01

    The goal of NASA's Terminal Area Productivity (TAP) Low-Visibility Landing and Surface Operations (LVLASO) subelement is to improve the efficiency of airport surface operations for commercial aircraft operating in weather conditions to Category IIIB while maintaining a high degree of safety. Currently, surface operations are one of the least technologically sophisticated components of the air transport system, being conducted in the 1990's with the same basic technology as in the 1930's. Pilots are given little or no explicit information about their current position, and routing information is limited to ATC communications and airport charts. In TAP/LVLASO, advanced technologies such as satellite navigation systems, digital data communications, advanced information presentation technology, and ground surveillance systems will be integrated into flight deck displays to enable expeditious and safe traffic movement on the airport surface. The cockpit display suite is called the T-NASA (Taxiway Navigation and Situation Awareness) System. This system has three integrated components: 1) Moving Map track-up airport surface display with own-ship, traffic and graphical route guidance 2) Scene-Linked Symbology - route/taxi information virtually projected via a Head-up Display (HUD) onto the forward scene; and, 3) 3-D Audio Ground Collision Avoidance and Navigation system - spatially-localized auditory traffic and navigation alerts. In the current paper, the design philosophy of the T-NASA system will be presented, and the T-NASA system display components described.

  15. Celestial Navigation for the Novice

    NASA Astrophysics Data System (ADS)

    Sadler, Philip M.

    2011-01-01

    What kinds of astronomical lab activities can introductory astronomy students carry out easily in daytime? The most impressive is the determination of their latitude and longitude from observations of the sun. The "shooting of a noon sight” and its "reduction to a position” is a technique still practiced by navigators in this age of GPS. Indeed, the U.S. Coast Guard exams for ocean-going licenses and include celestial navigation. These techniques continue to be used by the military and by private sailors as a backup to electronic navigation systems. We present a method to establish one's latitude and longitude to better than 30 miles from measurements of the sun's altitude that is easily within the capability non-science majors. This is a practical application of astronomy in use the world over. The streamlined method used is based on an easy-to-build protractor and string quadrant. Participants will leave with all materials to conduct this activity in their own classroom.

  16. Astronomical Methods in Aerial Navigation

    NASA Technical Reports Server (NTRS)

    Beij, K Hilding

    1925-01-01

    The astronomical method of determining position is universally used in marine navigation and may also be of service in aerial navigation. The practical application of the method, however, must be modified and adapted to conform to the requirements of aviation. Much of this work of adaptation has already been accomplished, but being scattered through various technical journals in a number of languages, is not readily available. This report is for the purpose of collecting under one cover such previous work as appears to be of value to the aerial navigator, comparing instruments and methods, indicating the best practice, and suggesting future developments. The various methods of determining position and their application and value are outlined, and a brief resume of the theory of the astronomical method is given. Observation instruments are described in detail. A complete discussion of the reduction of observations follows, including a rapid method of finding position from the altitudes of two stars. Maps and map cases are briefly considered. A bibliography of the subject is appended.

  17. Design and performance analysis of a low-cost aided dead reckoning navigator

    NASA Astrophysics Data System (ADS)

    Gebre-Egziabher, Demoz

    The Federal Aviation Administration is leading the National Airspace System (NAS) modernization effort, in part, by supplanting traditional air traffic services with the Global Positioning System (GPS) aided by the Wide and Local Area Augmentation Systems (WAAS & LAAS). Making GPS the primary-means of navigation will enhance safety, flexibility and efficiency of operations for all aircraft ranging from single engine general aviation aircraft to complex commercial jet-liners. This transformation of the NAS will be gradual and the build-up to a primary-means GPS capability is expected to occur concurrently with the de-commissioning of a significant number of existing ground-based navigational facilities. If an alternate means of navigation is not available during this transition period, temporary interruptions of GPS services due to intentional or unintentional interference could present significant problems for aircraft lacking backup navigation capability. To successfully deal with such outage scenarios, a NAS architecture consisting of a skeletal network of Distance Measuring Equipment (DME) transponders to provide a redundant navigation capability alongside GPS/WAAS during this transition period is proposed. DME range measurements fused with a low cost dead-reckoning system can provide a navigation performance comparable to VOR and LORAN. This navigation scheme allows reducing the number of operational radio-navigation aids while maintaining an adequate coverage for navigation during the transition to a primary-means GPS NAS. The dead-reckoning navigation system is based on the fusion of a single low-end DME receiver with low cost inertial, air-data and magnetic sensors. These sensors are already part of the newer general aviation aircraft's suite of navigation sensors. Estimator architectures for fusing the information from the various sensors is presented. The performance of this navigator depends on the calibration and on-line estimation of sensor errors

  18. 78 FR 68861 - Certain Navigation Products, Including GPS Devices, Navigation and Display Systems, Radar Systems...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-15

    ..., Navigational Aids, Mapping Systems and Related Software; Institution of Investigation Pursuant to 19 U.S.C... and display systems, radar systems, navigational aids, mapping systems and related software by reason... products, including GPS devices, navigation and display systems, radar systems, navigational aids,...

  19. 77 FR 42637 - Navigation and Navigable Waters; Technical, Organizational, and Conforming Amendments; Corrections

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-20

    ... 21, 2012 (77 FR 37305), the Coast Guard published a final rule entitled ``Navigation and Navigable... Register of Thursday, June 21, 2012 (77 FR 37305). The regulations related to technical, organizational and... SECURITY Coast Guard 33 CFR Parts 84 and 115 RIN 1625-AB86 Navigation and Navigable Waters;...

  20. Proceedings of the Fourth Integrated Communications, Navigation, and Surveillance (ICNS) Conference and Workshop

    NASA Technical Reports Server (NTRS)

    Fujikawa, Gene (Compiler)

    2004-01-01

    The Integrated Communications, Navigational and Surveillance (ICNS) Technologies Conference and Workshop provides a forum for Government, industry, and academic communities performing research and technology development for advanced digital communications, navigation, and surveillance security systems and associated applications supporting the national and global air transportation systems. The event's goals are to understand current efforts and recent results in near-and far-term research and technology demonstration; identify integrated digital communications, navigation and surveillance research requirements necessary for a safe, high-capacity, advanced air transportation system; foster collaboration and coordination among all stakeholders; and discuss critical issues and develop recommendations to achieve the future integrated CNS vision for the national and global air transportation system.

  1. Proceedings of the Sixth Integrated Communications, Navigation and Surveillance (ICNS) Conference & Workshop 2006

    NASA Technical Reports Server (NTRS)

    Ponchak, Denise (Compiler)

    2006-01-01

    The Integrated Communications, Navigation and Surveillance (ICNS) Technologies Conference and Workshop provides a forum for government, industry, and academic communities performing research and technology development for advanced digital communications, navigation, and surveillance security systems and associated applications supporting the national and global air transportation systems. The event s goals are to understand current efforts and recent results in near- and far-term research and technology demonstration; identify integrated digital communications, navigation and surveillance research requirements necessary for a safe, high-capacity, advanced air transportation system; foster collaboration and coordination among all stakeholders; and discuss critical issues and develop recommendations to achieve the future integrated CNS vision for the national and global air transportation system.

  2. The vertical accelerometer, a new instrument for air navigation

    NASA Technical Reports Server (NTRS)

    Laboccetta, Letterio

    1923-01-01

    This report endeavors to show the possibility of determining the rate of acceleration and the advantage of having such an accelerometer in addition to other aviation instruments. Most of the discussions concern balloons.

  3. Cooperative navigation and localization for multiple UUVs

    NASA Astrophysics Data System (ADS)

    Zhang, Li-Chuan; Xu, De-Min; Liu, Ming-Yong; Yan, Wei-Sheng

    2009-09-01

    The authors proposed a moving long baseline algorithm based on the extended Kalman filter (EKF) for cooperative navigation and localization of multi-unmanned underwater vehicles (UUVs). Research on cooperative navigation and localization for multi-UUVs is important to solve navigation problems that restrict long and deep excursions. The authors investigated improvements in navigation accuracy. In the moving long base line (MLBL) structure, the master UUV is equipped with a high precision navigation system as a node of the moving long baseline, and the slave UUV is equipped with a low precision navigation system. They are both equipped with acoustic devices to measure relative location. Using traditional triangulation methods to calculate the position of the slave UUV may cause a faulty solution. An EKF was designed to solve this, combining the proprioceptive and exteroceptive sensors. Research results proved that the navigational accuracy is improved significantly with the MLBL method based on EKF.

  4. 14 CFR 375.30 - Operations other than commercial air operations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... (AVIATION PROCEEDINGS) SPECIAL REGULATIONS NAVIGATION OF FOREIGN CIVIL AIRCRAFT WITHIN THE UNITED STATES Authorized Operations § 375.30 Operations other than commercial air operations. Foreign civil aircraft...

  5. 14 CFR 375.30 - Operations other than commercial air operations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... (AVIATION PROCEEDINGS) SPECIAL REGULATIONS NAVIGATION OF FOREIGN CIVIL AIRCRAFT WITHIN THE UNITED STATES Authorized Operations § 375.30 Operations other than commercial air operations. Foreign civil aircraft...

  6. 14 CFR 375.30 - Operations other than commercial air operations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... (AVIATION PROCEEDINGS) SPECIAL REGULATIONS NAVIGATION OF FOREIGN CIVIL AIRCRAFT WITHIN THE UNITED STATES Authorized Operations § 375.30 Operations other than commercial air operations. Foreign civil aircraft...

  7. 14 CFR 375.30 - Operations other than commercial air operations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... (AVIATION PROCEEDINGS) SPECIAL REGULATIONS NAVIGATION OF FOREIGN CIVIL AIRCRAFT WITHIN THE UNITED STATES Authorized Operations § 375.30 Operations other than commercial air operations. Foreign civil aircraft...

  8. 14 CFR 375.30 - Operations other than commercial air operations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... (AVIATION PROCEEDINGS) SPECIAL REGULATIONS NAVIGATION OF FOREIGN CIVIL AIRCRAFT WITHIN THE UNITED STATES Authorized Operations § 375.30 Operations other than commercial air operations. Foreign civil aircraft...

  9. Vision aided inertial navigation system augmented with a coded aperture

    NASA Astrophysics Data System (ADS)

    Morrison, Jamie R.

    Navigation through a three-dimensional indoor environment is a formidable challenge for an autonomous micro air vehicle. A main obstacle to indoor navigation is maintaining a robust navigation solution (i.e. air vehicle position and attitude estimates) given the inadequate access to satellite positioning information. A MEMS (micro-electro-mechanical system) based inertial navigation system provides a small, power efficient means of maintaining a vehicle navigation solution; however, unmitigated error propagation from relatively noisy MEMS sensors results in the loss of a usable navigation solution over a short period of time. Several navigation systems use camera imagery to diminish error propagation by measuring the direction to features in the environment. Changes in feature direction provide information regarding direction for vehicle movement, but not the scale of movement. Movement scale information is contained in the depth to the features. Depth-from-defocus is a classic technique proposed to derive depth from a single image that involves analysis of the blur inherent in a scene with a narrow depth of field. A challenge to this method is distinguishing blurriness caused by the focal blur from blurriness inherent to the observed scene. In 2007, MIT's Computer Science and Artificial Intelligence Laboratory demonstrated replacing the traditional rounded aperture with a coded aperture to produce a complex blur pattern that is more easily distinguished from the scene. A key to measuring depth using a coded aperture then is to correctly match the blur pattern in a region of the scene with a previously determined set of blur patterns for known depths. As the depth increases from the focal plane of the camera, the observable change in the blur pattern for small changes in depth is generally reduced. Consequently, as the depth of a feature to be measured using a depth-from-defocus technique increases, the measurement performance decreases. However, a Fresnel zone

  10. Navigation and guidance requirements for commercial VTOL operations

    NASA Technical Reports Server (NTRS)

    Hoffman, W. C.; Hollister, W. M.; Howell, J. D.

    1974-01-01

    The NASA Langley Research Center (LaRC) has undertaken a research program to develop the navigation, guidance, control, and flight management technology base needed by Government and industry in establishing systems design concepts and operating procedures for VTOL short-haul transportation systems in the 1980s time period. The VALT (VTOL Automatic Landing Technology) Program encompasses the investigation of operating systems and piloting techniques associated with VTOL operations under all-weather conditions from downtown vertiports; the definition of terminal air traffic and airspace requirements; and the development of avionics including navigation, guidance, controls, and displays for automated takeoff, cruise, and landing operations. The program includes requirements analyses, design studies, systems development, ground simulation, and flight validation efforts.

  11. Emergency Navigation without an Infrastructure

    PubMed Central

    Gelenbe, Erol; Bi, Huibo

    2014-01-01

    Emergency navigation systems for buildings and other built environments, such as sport arenas or shopping centres, typically rely on simple sensor networks to detect emergencies and, then, provide automatic signs to direct the evacuees. The major drawbacks of such static wireless sensor network (WSN)-based emergency navigation systems are the very limited computing capacity, which makes adaptivity very difficult, and the restricted battery power, due to the low cost of sensor nodes for unattended operation. If static wireless sensor networks and cloud-computing can be integrated, then intensive computations that are needed to determine optimal evacuation routes in the presence of time-varying hazards can be offloaded to the cloud, but the disadvantages of limited battery life-time at the client side, as well as the high likelihood of system malfunction during an emergency still remain. By making use of the powerful sensing ability of smart phones, which are increasingly ubiquitous, this paper presents a cloud-enabled indoor emergency navigation framework to direct evacuees in a coordinated fashion and to improve the reliability and resilience for both communication and localization. By combining social potential fields (SPF) and a cognitive packet network (CPN)-based algorithm, evacuees are guided to exits in dynamic loose clusters. Rather than relying on a conventional telecommunications infrastructure, we suggest an ad hoc cognitive packet network (AHCPN)-based protocol to adaptively search optimal communication routes between portable devices and the network egress nodes that provide access to cloud servers, in a manner that spares the remaining battery power of smart phones and minimizes the time latency. Experimental results through detailed simulations indicate that smart human motion and smart network management can increase the survival rate of evacuees and reduce the number of drained smart phones in an evacuation process. PMID:25196014

  12. Guidance, Navigation, and Control Program

    NASA Technical Reports Server (NTRS)

    Hinkel, Heather; Tamblyn, Scott; Jackson, William L.; Foster, Chris; Brazzel, Jack; Manning, Thomas R.; Clark, Fred; Spehar, Pete; Barrett, Jim D.; Milenkovic, Zoran

    2011-01-01

    The Rendezvous and Proximity Operations Program (RPOP) is real-time guidance, navigation, and control (GN&C) domain piloting-aid software that provides 3D Orbiter graphics and runs on the Space Shuttle's Criticality-3 Payload and General Support Computer (PGSC) in the crew cockpit. This software provides the crew with Situational Awareness during the rendezvous and proximity operations phases of flight. RPOP can be configured from flight to flight, accounting for mission-specific flight scenarios and target vehicles, via initialization load (I-load) data files. The software provides real-time, automated, closed-loop guidance recommendations and the capability to integrate the crew s manual backup techniques. The software can bring all relative navigation sensor data, including the Orbiter's GPC (general purpose computer) data, into one central application to provide comprehensive situational awareness of the rendezvous and proximity operations trajectory. RPOP also can separately maintain trajectory estimates (past, current, and predicted) based on certain data types and co-plot them, in order to show how the various navigation solutions compare. RPOP s best estimate of the relative trajectory is determined by a relative Kalman filter processing data provided by the sensor suite s most accurate sensor, the trajectory control sensor (TCS). Integrated with the Kalman filter is an algorithm that identifies the reflector that the TCS is tracking. Because RPOP runs on PC laptop computers, the development and certification lifecycles are more agile, flexible, and cheaper than those that govern the Orbiter FSW (flight software) that runs in the GPC. New releases of RPOP can be turned around on a 3- to 6-month template, from new Change Request (CR) to certification, depending on the complexity of the changes.

  13. Crew-Aided Autonomous Navigation

    NASA Technical Reports Server (NTRS)

    Holt, Greg N.

    2015-01-01

    A sextant provides manual capability to perform star/planet-limb sightings and offers a cheap, simple, robust backup navigation source for exploration missions independent from the ground. Sextant sightings from spacecraft were first exercised in Gemini and flew as the lost-communication backup for all Apollo missions. This study characterized error sources of navigation-grade sextants for feasibility of taking star and planetary limb sightings from inside a spacecraft. A series of similar studies was performed in the early/mid-1960s in preparation for Apollo missions. This study modernized and updated those findings in addition to showing feasibility using Linear Covariance analysis techniques. The human eyeball is a remarkable piece of optical equipment and provides many advantages over camera-based systems, including dynamic range and detail resolution. This technique utilizes those advantages and provides important autonomy to the crew in the event of lost communication with the ground. It can also provide confidence and verification of low-TRL automated onboard systems. The technique is extremely flexible and is not dependent on any particular vehicle type. The investigation involved procuring navigation-grade sextants and characterizing their performance under a variety of conditions encountered in exploration missions. The JSC optical sensor lab and Orion mockup were the primary testing locations. For the accuracy assessment, a group of test subjects took sextant readings on calibrated targets while instrument/operator precision was measured. The study demonstrated repeatability of star/planet-limb sightings with bias and standard deviation around 10 arcseconds, then used high-fidelity simulations to verify those accuracy levels met the needs for targeting mid-course maneuvers in preparation for Earth reen.

  14. Emergency navigation without an infrastructure.

    PubMed

    Gelenbe, Erol; Bi, Huibo

    2014-01-01

    Emergency navigation systems for buildings and other built environments, such as sport arenas or shopping centres, typically rely on simple sensor networks to detect emergencies and, then, provide automatic signs to direct the evacuees. The major drawbacks of such static wireless sensor network (WSN)-based emergency navigation systems are the very limited computing capacity, which makes adaptivity very difficult, and the restricted battery power, due to the low cost of sensor nodes for unattended operation. If static wireless sensor networks and cloud-computing can be integrated, then intensive computations that are needed to determine optimal evacuation routes in the presence of time-varying hazards can be offloaded to the cloud, but the disadvantages of limited battery life-time at the client side, as well as the high likelihood of system malfunction during an emergency still remain. By making use of the powerful sensing ability of smart phones, which are increasingly ubiquitous, this paper presents a cloud-enabled indoor emergency navigation framework to direct evacuees in a coordinated fashion and to improve the reliability and resilience for both communication and localization. By combining social potential fields (SPF) and a cognitive packet network (CPN)-based algorithm, evacuees are guided to exits in dynamic loose clusters. Rather than relying on a conventional telecommunications infrastructure, we suggest an ad hoc cognitive packet network (AHCPN)-based protocol to adaptively search optimal communication routes between portable devices and the network egress nodes that provide access to cloud servers, in a manner that spares the remaining battery power of smart phones and minimizes the time latency. Experimental results through detailed simulations indicate that smart human motion and smart network management can increase the survival rate of evacuees and reduce the number of drained smart phones in an evacuation process. PMID:25196014

  15. 33 CFR 162.240 - Tongass Narrows, Alaska; navigation.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Tongass Narrows, Alaska; navigation. 162.240 Section 162.240 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PORTS AND WATERWAYS SAFETY INLAND WATERWAYS NAVIGATION REGULATIONS § 162.240...

  16. 33 CFR 165.10 - Regulated navigation areas.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Regulated navigation areas. 165.10 Section 165.10 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PORTS AND WATERWAYS SAFETY REGULATED NAVIGATION AREAS AND LIMITED ACCESS AREAS...

  17. 33 CFR 117.455 - Houma Navigation Canal.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Houma Navigation Canal. 117.455 Section 117.455 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Louisiana § 117.455 Houma Navigation Canal. The...

  18. 33 CFR 207.306 - Missouri River; administration and navigation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Missouri River; administration and navigation. 207.306 Section 207.306 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE NAVIGATION REGULATIONS § 207.306 Missouri River;...

  19. 33 CFR 165.10 - Regulated navigation areas.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Regulated navigation areas. 165.10 Section 165.10 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PORTS AND WATERWAYS SAFETY REGULATED NAVIGATION AREAS AND LIMITED ACCESS AREAS...

  20. 33 CFR 162.105 - Missouri River; administration and navigation.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Missouri River; administration and navigation. 162.105 Section 162.105 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PORTS AND WATERWAYS SAFETY INLAND WATERWAYS NAVIGATION REGULATIONS §...

  1. 33 CFR 209.315 - Public access to navigation works.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Public access to navigation works. 209.315 Section 209.315 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE ADMINISTRATIVE PROCEDURE § 209.315 Public access to navigation works. While...

  2. 33 CFR 165.10 - Regulated navigation areas.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Regulated navigation areas. 165.10 Section 165.10 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PORTS AND WATERWAYS SAFETY REGULATED NAVIGATION AREAS AND LIMITED ACCESS AREAS...

  3. 33 CFR 117.455 - Houma Navigation Canal.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Houma Navigation Canal. 117.455 Section 117.455 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Louisiana § 117.455 Houma Navigation Canal. The...

  4. 33 CFR 162.105 - Missouri River; administration and navigation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Missouri River; administration and navigation. 162.105 Section 162.105 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PORTS AND WATERWAYS SAFETY INLAND WATERWAYS NAVIGATION REGULATIONS §...

  5. 33 CFR 117.455 - Houma Navigation Canal.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Houma Navigation Canal. 117.455 Section 117.455 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Louisiana § 117.455 Houma Navigation Canal. The...

  6. 33 CFR 207.306 - Missouri River; administration and navigation.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Missouri River; administration and navigation. 207.306 Section 207.306 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE NAVIGATION REGULATIONS § 207.306 Missouri River;...

  7. 33 CFR 162.105 - Missouri River; administration and navigation.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Missouri River; administration and navigation. 162.105 Section 162.105 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PORTS AND WATERWAYS SAFETY INLAND WATERWAYS NAVIGATION REGULATIONS §...

  8. 33 CFR 165.10 - Regulated navigation areas.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Regulated navigation areas. 165.10 Section 165.10 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PORTS AND WATERWAYS SAFETY REGULATED NAVIGATION AREAS AND LIMITED ACCESS AREAS...

  9. 33 CFR 207.306 - Missouri River; administration and navigation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Missouri River; administration and navigation. 207.306 Section 207.306 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE NAVIGATION REGULATIONS § 207.306 Missouri River;...

  10. 33 CFR 64.31 - Determination of hazard to navigation.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Determination of hazard to navigation. 64.31 Section 64.31 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY AIDS TO NAVIGATION MARKING OF STRUCTURES, SUNKEN VESSELS AND OTHER OBSTRUCTIONS...

  11. 33 CFR 165.10 - Regulated navigation areas.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Regulated navigation areas. 165.10 Section 165.10 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PORTS AND WATERWAYS SAFETY REGULATED NAVIGATION AREAS AND LIMITED ACCESS AREAS...

  12. 33 CFR 162.105 - Missouri River; administration and navigation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Missouri River; administration and navigation. 162.105 Section 162.105 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PORTS AND WATERWAYS SAFETY INLAND WATERWAYS NAVIGATION REGULATIONS §...

  13. 33 CFR 209.315 - Public access to navigation works.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Public access to navigation works. 209.315 Section 209.315 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE ADMINISTRATIVE PROCEDURE § 209.315 Public access to navigation works. While...

  14. 33 CFR 117.455 - Houma Navigation Canal.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Houma Navigation Canal. 117.455 Section 117.455 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Louisiana § 117.455 Houma Navigation Canal. The...

  15. 33 CFR 117.455 - Houma Navigation Canal.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Houma Navigation Canal. 117.455 Section 117.455 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Louisiana § 117.455 Houma Navigation Canal. The...

  16. 33 CFR 209.315 - Public access to navigation works.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Public access to navigation works. 209.315 Section 209.315 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE ADMINISTRATIVE PROCEDURE § 209.315 Public access to navigation works. While...

  17. 33 CFR 64.31 - Determination of hazard to navigation.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Determination of hazard to navigation. 64.31 Section 64.31 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY AIDS TO NAVIGATION MARKING OF STRUCTURES, SUNKEN VESSELS AND OTHER OBSTRUCTIONS...

  18. 33 CFR 209.315 - Public access to navigation works.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Public access to navigation works. 209.315 Section 209.315 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE ADMINISTRATIVE PROCEDURE § 209.315 Public access to navigation works. While...

  19. 33 CFR 207.306 - Missouri River; administration and navigation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Missouri River; administration and navigation. 207.306 Section 207.306 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE NAVIGATION REGULATIONS § 207.306 Missouri River;...

  20. 33 CFR 207.306 - Missouri River; administration and navigation.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Missouri River; administration and navigation. 207.306 Section 207.306 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE NAVIGATION REGULATIONS § 207.306 Missouri River;...

  1. 33 CFR 245.20 - Determination of hazard to navigation.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Determination of hazard to navigation. 245.20 Section 245.20 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE REMOVAL OF WRECKS AND OTHER OBSTRUCTIONS § 245.20 Determination of hazard to navigation. (a) Upon receiving a report of...

  2. 33 CFR 66.10-35 - Navigation lights.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Navigation lights. 66.10-35... NAVIGATION PRIVATE AIDS TO NAVIGATION Uniform State Waterway Marking System § 66.10-35 Navigation lights. A red light shall only be used on a solid colored red buoy. A green light shall only be used on a...

  3. 33 CFR 66.10-35 - Navigation lights.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Navigation lights. 66.10-35... NAVIGATION PRIVATE AIDS TO NAVIGATION Uniform State Waterway Marking System § 66.10-35 Navigation lights. A red light shall only be used on a solid colored red buoy. A green light shall only be used on a...

  4. 33 CFR 66.10-35 - Navigation lights.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Navigation lights. 66.10-35... NAVIGATION PRIVATE AIDS TO NAVIGATION Uniform State Waterway Marking System § 66.10-35 Navigation lights. A red light shall only be used on a solid colored red buoy. A green light shall only be used on a...

  5. 33 CFR 66.10-35 - Navigation lights.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Navigation lights. 66.10-35... NAVIGATION PRIVATE AIDS TO NAVIGATION Uniform State Waterway Marking System § 66.10-35 Navigation lights. A red light shall only be used on a solid colored red buoy. A green light shall only be used on a...

  6. Mars Odyssey interplanetary navigation strategy

    NASA Technical Reports Server (NTRS)

    Mase, Robert A.; Antreasian, Peter G.; Bell, Julia L.

    2003-01-01

    The 2001 Mars Odyssey Mission has returned an orbiter to map the planet and search for water. The success of this mission has reestablished confidence in Mars exploration that will pave the way for future orbiters, landers, adn rovers. The spacecraft has completed its journey and is now in the orbital science-gathering phase of the primary mission, which will continue through August 2004. This paper will describe teh strategy that was designed to safely and accurately navigate the spacecraft to Mars, and also relate the in-flight experience.

  7. Navigation Operations for the Magnetospheric Multiscale Mission

    NASA Technical Reports Server (NTRS)

    Long, Anne; Farahmand, Mitra; Carpenter, Russell

    2015-01-01

    The Magnetospheric Multiscale (MMS) mission employs four identical spinning spacecraft flying in highly elliptical Earth orbits. These spacecraft will fly in a series of tetrahedral formations with separations of less than 10 km. MMS navigation operations use onboard navigation to satisfy the mission definitive orbit and time determination requirements and in addition to minimize operations cost and complexity. The onboard navigation subsystem consists of the Navigator GPS receiver with Goddard Enhanced Onboard Navigation System (GEONS) software, and an Ultra-Stable Oscillator. The four MMS spacecraft are operated from a single Mission Operations Center, which includes a Flight Dynamics Operations Area (FDOA) that supports MMS navigation operations, as well as maneuver planning, conjunction assessment and attitude ground operations. The System Manager component of the FDOA automates routine operations processes. The GEONS Ground Support System component of the FDOA provides the tools needed to support MMS navigation operations. This paper provides an overview of the MMS mission and associated navigation requirements and constraints and discusses MMS navigation operations and the associated MMS ground system components built to support navigation-related operations.

  8. PNP: mining of profile navigational patterns

    NASA Astrophysics Data System (ADS)

    Li, Hua-Fu; Shan, Man-Kwan

    2002-03-01

    Web usage mining is a key knowledge discovery research and as such has been well researched. So far, this research has focused mainly on databases containing access log data only. However, many real-world databases contain users profile data and current solutions for this situation are still insufficient. In this paper we have a large database containing of user profile information together with user web-pages navigation patterns. The user profile data includes quantitative attributes, such as salary or age, and categorical attributes, such as sex or marital status. We introduce the concept of profile navigation patterns, which discusses the problem of relating user profile information to navigational behavior. An example of such profile navigation pattern might be 20% of married people between age 25 and 30 have the similar navigational behavior <(a,c)(c,h)(h,i)(i,h)(h,l)>, where a, c, h, i, l are web pages in a web site. The navigation patterns may contain the generic traversal behavior, e.g. trend to backward moves, cycles etc. The objective of mining profile navigation patterns is to identify browser profile for web personalization. We give an algorithm for mining such profile navigation patterns. Our method (algorithm PNP) can discover profile navigation patterns efficiently. We also present new inclination measurements to identify the interesting profile navigational patterns. Experimental results show the efficiency and scalability of PNP.

  9. A New Optimal Guidance Law for Air-to-Air Missiles against Evasive Targets

    NASA Astrophysics Data System (ADS)

    Tsao, Lu-Ping; Lin, Ching-Show

    A new optimal guidance law (OPG) for air-to-air missiles, based on the design concept of decreasing the acceleration requirement commanded in the final phase of engagement, is presented. The closed-form solution of the OPG is derived analytically from the time-varying linear state equations composed of the line-of-sight angle and line-of-sight rate. The optimal proportional navigation law and augmented proportional navigation law, where both the navigation constants are 3, have been proven to be simplified versions of the OPG. The performance of the OPG is evaluated and compared with that of the true proportional navigation law (TPN) and augmented proportional navigation law (APN) in terms of the miss distance, interception time and energy expenditure.

  10. See and avoidance behaviors for autonomous navigation

    NASA Astrophysics Data System (ADS)

    Lee, Dah-Jye; Beard, Randal W.; Merrell, Paul C.; Zhan, Pengcheng

    2004-12-01

    Recent advances in many multi-discipline technologies have allowed small, low-cost fixed wing unmanned air vehicles (UAV) or more complicated unmanned ground vehicles (UGV) to be a feasible solution in many scientific, civil and military applications. Cameras can be mounted on-board of the unmanned vehicles for the purpose of scientific data gathering, surveillance for law enforcement and homeland security, as well as to provide visual information to detect and avoid imminent collisions for autonomous navigation. However, most current computer vision algorithms are highly complex computationally and usually constitute the bottleneck of the guidance and control loop. In this paper, we present a novel computer vision algorithm for collision detection and time-to-impact calculation based on feature density distribution (FDD) analysis. It does not require accurate feature extraction, tracking, or estimation of focus of expansion (FOE). Under a few reasonable assumptions, by calculating the expansion rate of the FDD in space, time-to-impact can be accurately estimated. A sequence of monocular images is studied, and different features are used simultaneously in FDD analysis to show that our algorithm can achieve a fairly good accuracy in collision detection. In this paper we also discuss reactive path planning and trajectory generation techniques that can be accomplished without violating the velocity and heading rate constraints of the UAV.

  11. 33 CFR 207.169 - Oklawaha River, navigation lock and dam at Moss Bluff, Fla.; use, administration, and navigation.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Oklawaha River, navigation lock and dam at Moss Bluff, Fla.; use, administration, and navigation. 207.169 Section 207.169 Navigation... REGULATIONS § 207.169 Oklawaha River, navigation lock and dam at Moss Bluff, Fla.; use, administration,...

  12. 33 CFR 207.169 - Oklawaha River, navigation lock and dam at Moss Bluff, Fla.; use, administration, and navigation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Oklawaha River, navigation lock and dam at Moss Bluff, Fla.; use, administration, and navigation. 207.169 Section 207.169 Navigation... REGULATIONS § 207.169 Oklawaha River, navigation lock and dam at Moss Bluff, Fla.; use, administration,...

  13. 33 CFR 207.169 - Oklawaha River, navigation lock and dam at Moss Bluff, Fla.; use, administration, and navigation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Oklawaha River, navigation lock and dam at Moss Bluff, Fla.; use, administration, and navigation. 207.169 Section 207.169 Navigation... REGULATIONS § 207.169 Oklawaha River, navigation lock and dam at Moss Bluff, Fla.; use, administration,...

  14. 33 CFR 207.169 - Oklawaha River, navigation lock and dam at Moss Bluff, Fla.; use, administration, and navigation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Oklawaha River, navigation lock and dam at Moss Bluff, Fla.; use, administration, and navigation. 207.169 Section 207.169 Navigation... REGULATIONS § 207.169 Oklawaha River, navigation lock and dam at Moss Bluff, Fla.; use, administration,...

  15. 33 CFR 207.169 - Oklawaha River, navigation lock and dam at Moss Bluff, Fla.; use, administration, and navigation.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Oklawaha River, navigation lock and dam at Moss Bluff, Fla.; use, administration, and navigation. 207.169 Section 207.169 Navigation... REGULATIONS § 207.169 Oklawaha River, navigation lock and dam at Moss Bluff, Fla.; use, administration,...

  16. Optic flow and autonomous navigation.

    PubMed

    Campani, M; Giachetti, A; Torre, V

    1995-01-01

    Many animals, especially insects, compute and use optic flow to control their motion direction and to avoid obstacles. Recent advances in computer vision have shown that an adequate optic flow can be computed from image sequences. Therefore studying whether artificial systems, such as robots, can use optic flow for similar purposes is of particular interest. Experiments are reviewed that suggest the possible use of optic flow for the navigation of a robot moving in indoor and outdoor environments. The optic flow is used to detect and localise obstacles in indoor scenes, such as corridors, offices, and laboratories. These routines are based on the computation of a reduced optic flow. The robot is usually able to avoid large obstacles such as a chair or a person. The avoidance performances of the proposed algorithm critically depend on the optomotor reaction of the robot. The optic flow can be used to understand the ego-motion in outdoor scenes, that is, to obtain information on the absolute velocity of the moving vehicle and to detect the presence of other moving objects. A critical step is the correction of the optic flow for shocks and vibrations present during image acquisition. The results obtained suggest that optic flow can be successfully used by biological and artificial systems to control their navigation. Moreover, both systems require fast and accurate optomotor reactions and need to compensate for the instability of the viewed world. PMID:7617428

  17. Intelligent navigation and multivehicle coordination

    NASA Astrophysics Data System (ADS)

    McKay, Mark D.; Anderson, Matthew O.; Kinoshita, Robert A.; Flann, Nicholas S.

    1999-07-01

    The Idaho National Engineering and Environmental Laboratory (INEEL) and Utah State University's Center for Self-Organizing and Intelligent Systems have developed a team of autonomous robotic vehicles. This paper discusses the development of a strategy that uses a sophisticated, highly intelligent sensor platform to allow centralized coordination between smaller and inexpensive robots. The three components of the multi-agent cooperative scheme are small-scale robots, large-scale robots, and the central control station running a mission and path- planning software. The smaller robots are used for activities where the probability of loss increases, such as Unexploded Ordnance (UXO) or mine detonation. The research is aimed at building simple, inexpensive multi-agent vehicles and an intelligent navigation and multi-vehicle coordination system suitable for UXO, environmental remediation or mine detection. These simplified robots are capable of conducting hunting missions using low-cost positioning sensors and intelligent algorithms. Additionally, a larger sensor-rich intelligent system capable of transporting smaller units to outlying remote sites has been developed. The larger system interfaces to the central control station and provides navigation assistance to multiple low-cost vehicles. Finally, mission and path-planning software serves as the operator control unit, allowing central data collection, map creation and tracking, and an interface to the larger system as well as each smaller unit. The power of this scheme is the ability to scale to the appropriate level for the complexity of the mission.

  18. Endoscopic bronchial occlusion with silicone spigots under virtual bronchoscopic navigation

    PubMed Central

    Sato, Shingo; Shiroyama, Takayuki; Nishida, Takuji; Nishihara, Takashi; Okamoto, Norio

    2016-01-01

    Abstract A 68‐year‐old woman with interstitial lung disease related to dermatomyositis and systemic scleroderma was admitted to our hospital with fever and dyspnoea. Although the fever was reduced after antibiotic therapy, a left pneumothorax suddenly occurred on day 27 after admission. A continuous air leak persisted despite chest drainage with three tubes and repeated pleurodesis. Chest computed tomography (CT) images showed a cavitary lesion with a pinhole in the left upper division, which was suspected to be the affected lesion with the air leak. Virtual bronchoscopic navigation images were constructed from CT data. Bronchial occlusion with Endobronchial Watanabe Spigots (EWSs) was performed on day 52. Two medium‐sized EWSs were inserted into the left B1 + 2a and B1 + 2b, and the air leak stopped immediately. No procedure‐related adverse events occurred. All three chest tubes were successfully removed by day 60. This case demonstrates that virtual bronchoscopic navigation can improve bronchial occlusion procedures using EWSs. PMID:27512560

  19. Quantum navigation and ranking in complex networks.

    PubMed

    Sánchez-Burillo, Eduardo; Duch, Jordi; Gómez-Gardeñes, Jesús; Zueco, David

    2012-01-01

    Complex networks are formal frameworks capturing the interdependencies between the elements of large systems and databases. This formalism allows to use network navigation methods to rank the importance that each constituent has on the global organization of the system. A key example is Pagerank navigation which is at the core of the most used search engine of the World Wide Web. Inspired in this classical algorithm, we define a quantum navigation method providing a unique ranking of the elements of a network. We analyze the convergence of quantum navigation to the stationary rank of networks and show that quantumness decreases the number of navigation steps before convergence. In addition, we show that quantum navigation allows to solve degeneracies found in classical ranks. By implementing the quantum algorithm in real networks, we confirm these improvements and show that quantum coherence unveils new hierarchical features about the global organization of complex systems. PMID:22930671

  20. Quantum Navigation and Ranking in Complex Networks

    PubMed Central

    Sánchez-Burillo, Eduardo; Duch, Jordi; Gómez-Gardeñes, Jesús; Zueco, David

    2012-01-01

    Complex networks are formal frameworks capturing the interdependencies between the elements of large systems and databases. This formalism allows to use network navigation methods to rank the importance that each constituent has on the global organization of the system. A key example is Pagerank navigation which is at the core of the most used search engine of the World Wide Web. Inspired in this classical algorithm, we define a quantum navigation method providing a unique ranking of the elements of a network. We analyze the convergence of quantum navigation to the stationary rank of networks and show that quantumness decreases the number of navigation steps before convergence. In addition, we show that quantum navigation allows to solve degeneracies found in classical ranks. By implementing the quantum algorithm in real networks, we confirm these improvements and show that quantum coherence unveils new hierarchical features about the global organization of complex systems. PMID:22930671

  1. Relative Navigation of Formation-Flying Satellites

    NASA Technical Reports Server (NTRS)

    Long, Anne; Kelbel, David; Lee, Taesul; Leung, Dominic; Carpenter, J. Russell; Grambling, Cheryl

    2002-01-01

    This paper compares autonomous relative navigation performance for formations in eccentric, medium and high-altitude Earth orbits using Global Positioning System (GPS) Standard Positioning Service (SPS), crosslink, and celestial object measurements. For close formations, the relative navigation accuracy is highly dependent on the magnitude of the uncorrelated measurement errors. A relative navigation position accuracy of better than 10 centimeters root-mean-square (RMS) can be achieved for medium-altitude formations that can continuously track at least one GPS signal. A relative navigation position accuracy of better than 15 meters RMS can be achieved for high-altitude formations that have sparse tracking of the GPS signals. The addition of crosslink measurements can significantly improve relative navigation accuracy for formations that use sparse GPS tracking or celestial object measurements for absolute navigation.

  2. Indoor inertial waypoint navigation for the blind.

    PubMed

    Riehle, Timothy H; Anderson, Shane M; Lichter, Patrick A; Whalen, William E; Giudice, Nicholas A

    2013-01-01

    Indoor navigation technology is needed to support seamless mobility for the visually impaired. This paper describes the construction and evaluation of an inertial dead reckoning navigation system that provides real-time auditory guidance along mapped routes. Inertial dead reckoning is a navigation technique coupling step counting together with heading estimation to compute changes in position at each step. The research described here outlines the development and evaluation of a novel navigation system that utilizes information from the mapped route to limit the problematic error accumulation inherent in traditional dead reckoning approaches. The prototype system consists of a wireless inertial sensor unit, placed at the users' hip, which streams readings to a smartphone processing a navigation algorithm. Pilot human trials were conducted assessing system efficacy by studying route-following performance with blind and sighted subjects using the navigation system with real-time guidance, versus offline verbal directions. PMID:24110904

  3. Spatial Database Modeling for Indoor Navigation Systems

    NASA Astrophysics Data System (ADS)

    Gotlib, Dariusz; Gnat, Miłosz

    2013-12-01

    For many years, cartographers are involved in designing GIS and navigation systems. Most GIS applications use the outdoor data. Increasingly, similar applications are used inside buildings. Therefore it is important to find the proper model of indoor spatial database. The development of indoor navigation systems should utilize advanced teleinformation, geoinformatics, geodetic and cartographical knowledge. The authors present the fundamental requirements for the indoor data model for navigation purposes. Presenting some of the solutions adopted in the world they emphasize that navigation applications require specific data to present the navigation routes in the right way. There is presented original solution for indoor data model created by authors on the basis of BISDM model. Its purpose is to expand the opportunities for use in indoor navigation.

  4. Memory consolidation of landmarks in good navigators.

    PubMed

    Janzen, Gabriele; Jansen, Clemens; van Turennout, Miranda

    2008-01-01

    Landmarks play an important role in successful navigation. To successfully find your way around an environment, navigationally relevant information needs to be stored and become available at later moments in time. Evidence from functional magnetic resonance imaging (fMRI) studies shows that the human parahippocampal gyrus encodes the navigational relevance of landmarks. In the present event-related fMRI experiment, we investigated memory consolidation of navigationally relevant landmarks in the medial temporal lobe after route learning. Sixteen right-handed volunteers viewed two film sequences through a virtual museum with objects placed at locations relevant (decision points) or irrelevant (nondecision points) for navigation. To investigate consolidation effects, one film sequence was seen in the evening before scanning, the other one was seen the following morning, directly before scanning. Event-related fMRI data were acquired during an object recognition task. Participants decided whether they had seen the objects in the previously shown films. After scanning, participants answered standardized questions about their navigational skills, and were divided into groups of good and bad navigators, based on their scores. An effect of memory consolidation was obtained in the hippocampus: Objects that were seen the evening before scanning (remote objects) elicited more activity than objects seen directly before scanning (recent objects). This increase in activity in bilateral hippocampus for remote objects was observed in good navigators only. In addition, a spatial-specific effect of memory consolidation for navigationally relevant objects was observed in the parahippocampal gyrus. Remote decision point objects induced increased activity as compared with recent decision point objects, again in good navigators only. The results provide initial evidence for a connection between memory consolidation and navigational ability that can provide a basis for successful

  5. [Laser navigation guided cleft lip repair].

    PubMed

    Bing, Shi

    2016-06-01

    A new method using the ideal mid-facial line as the navigating reference was introduced to improve the outcome of cleft lip repair. Using the verticle coordinate crossing the middle point of the intercanthus line, surgeons could observe and correct the distortion of the fine structures in labial-nasal area. This laser projecting mid-facial-line navigation was repeatable, while not interfere the operating. In conclusion, generalizing laser navigation is a valuable supplementary for cleft lip repair. PMID:27526442

  6. Onboard rendezvous navigation for the Space Shuttle

    NASA Astrophysics Data System (ADS)

    Wylie, A. D.; Devezin, H. G.

    The onboard rendezvous navigation software for Shuttle flight 41-C are described. Particular attention is given to the inputs, models, and outputs of the software. The performance of the rendezvous navigation system is compared to predicted performance profiles in connection with the relative vehicle geometry, as well as the location of the navigation sensor tracking arcs. The methods used to process navigational sensor measurements in order to update the state vector are also summarized. A table listing the sources of maneuver targeting errors is provided.

  7. The JPL roadmap for Deep Space navigation

    NASA Technical Reports Server (NTRS)

    Martin-Mur, Tomas J.; Abraham, Douglas S.; Berry, David; Bhaskaran, Shyam; Cesarone, Robert J.; Wood, Lincoln

    2006-01-01

    This paper reviews the tentative set of deep space missions that will be supported by NASA's Deep Space Mission System in the next twenty-five years, and extracts the driving set of navigation capabilities that these missions will require. There will be many challenges including the support of new mission navigation approaches such as formation flying and rendezvous in deep space, low-energy and low-thrust orbit transfers, precise landing and ascent vehicles, and autonomous navigation. Innovative strategies and approaches will be needed to develop and field advanced navigation capabilities.

  8. Passive navigation using image irradiance tracking

    NASA Technical Reports Server (NTRS)

    Menon, P. K. A.; Sridhar, B.

    1989-01-01

    Rotorcraft operating at low altitudes require navigational schemes for locating the terrain and obstacles. Due to the covert nature of missions to be accomplished, a passive navigation scheme is desirable. This paper describes the development of a passive navigation scheme combining image sequences from a vehicle mounted camera with vehicle motion variables. Geometric properties of perspective projection together with an image irradiance tracking scheme at each pixel are used to determine the range to various objects within the field-of-view. Derivation of the numerical algorithm and simulation results are given. Other applications of the proposed approach include navigation for autonomous planetary rovers and telerobots.

  9. Limitations of navigation through Nubaria canal, Egypt

    PubMed Central

    Samuel, Magdy G.

    2013-01-01

    Alexandria port is the main Egyptian port at the Mediterranean Sea. It is connected to the Nile River through Nubaria canal, which is a main irrigation canal. The canal was designed to irrigate eight hundred thousand acres of agricultural lands, along its course which extends 100 km. The canal has three barrages and four locks to control the flow and allow light navigation by some small barges. Recently, it was decided to improve the locks located on the canal. More than 40 million US$ was invested in these projects. This decision was taken to allow larger barges and increase the transported capacity through the canal. On the other hand, navigation through canals and restricted shallow waterways is affected by several parameters related to both the channel and the vessel. Navigation lane width as well as vessel speed and maneuverability are affected by both the channel and vessel dimensions. Moreover, vessel dimensions and speed will affect the canal stability. In Egypt, there are no guide rules for navigation through narrow and shallow canals such Nubaria. This situation threatens the canal stability and safety of navigation through it. This paper discussed the characteristics of Nubaria canal and the guide rules for navigation in shallow restricted water ways. Dimensions limitation for barges navigating through Nubaria canal is presented. New safe operation rules for navigation in Nubaria canal are also presented. Moreover, the implication of navigation through locks on canal discharge is estimated. PMID:25685482

  10. Relative Navigation of Formation Flying Satellites

    NASA Technical Reports Server (NTRS)

    Long, Anne; Kelbel, David; Lee, Taesul; Leung, Dominic; Carpenter, Russell; Gramling, Cheryl; Bauer, Frank (Technical Monitor)

    2002-01-01

    The Guidance, Navigation, and Control Center (GNCC) at Goddard Space Flight Center (GSFC) has successfully developed high-accuracy autonomous satellite navigation systems using the National Aeronautics and Space Administration's (NASA's) space and ground communications systems and the Global Positioning System (GPS). In addition, an autonomous navigation system that uses celestial object sensor measurements is currently under development and has been successfully tested using real Sun and Earth horizon measurements.The GNCC has developed advanced spacecraft systems that provide autonomous navigation and control of formation flyers in near-Earth, high-Earth, and libration point orbits. To support this effort, the GNCC is assessing the relative navigation accuracy achievable for proposed formations using GPS, intersatellite crosslink, ground-to-satellite Doppler, and celestial object sensor measurements. This paper evaluates the performance of these relative navigation approaches for three proposed missions with two or more vehicles maintaining relatively tight formations. High-fidelity simulations were performed to quantify the absolute and relative navigation accuracy as a function of navigation algorithm and measurement type. Realistically-simulated measurements were processed using the extended Kalman filter implemented in the GPS Enhanced Inboard Navigation System (GEONS) flight software developed by GSFC GNCC. Solutions obtained by simultaneously estimating all satellites in the formation were compared with the results obtained using a simpler approach based on differencing independently estimated state vectors.

  11. Autonomous integrated navigation method based on the strapdown inertial navigation system and Lidar

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoyue; Lin, Zhili; Zhang, Chunxi

    2014-07-01

    An integrated navigation method based on the strapdown inertial navigation system (SINS) and Doppler Lidar was presented and its validity is demonstrated by practical experiments. A very effective and independent integrated navigation mode is realized that both an inertial navigation system (INS) and Lidar are not interfered with or screened by electromagnetic waves. In our work, the SINS error model was first introduced, and the velocity error model was transformed into body reference coordinates. Then the expression for measurement model of SINS/Lidar integrated navigation was deduced under Lidar reference coordinates. For application of land or vehicle navigation, the expression for the measurement model was simplified, and observation analysis was carried out. Finally, numerical simulation and vehicle test results were carried out to validate the availability and utility of the proposed SINS/Lidar integrated navigation method for land navigation.

  12. Using Grid Cells for Navigation

    PubMed Central

    Bush, Daniel; Barry, Caswell; Manson, Daniel; Burgess, Neil

    2015-01-01

    Summary Mammals are able to navigate to hidden goal locations by direct routes that may traverse previously unvisited terrain. Empirical evidence suggests that this “vector navigation” relies on an internal representation of space provided by the hippocampal formation. The periodic spatial firing patterns of grid cells in the hippocampal formation offer a compact combinatorial code for location within large-scale space. Here, we consider the computational problem of how to determine the vector between start and goal locations encoded by the firing of grid cells when this vector may be much longer than the largest grid scale. First, we present an algorithmic solution to the problem, inspired by the Fourier shift theorem. Second, we describe several potential neural network implementations of this solution that combine efficiency of search and biological plausibility. Finally, we discuss the empirical predictions of these implementations and their relationship to the anatomy and electrophysiology of the hippocampal formation. PMID:26247860

  13. Navigation system for flexible endoscopes

    NASA Astrophysics Data System (ADS)

    Hummel, Johann; Figl, Michael; Birkfellner, Wolfgang; Häfner, Michael; Kollmann, Christian; Bergmann, Helmar

    2003-05-01

    Endoscopic Ultrasound (EUS) features flexible endoscopes equipped with a radial or linear array scanhead allowing high resolution examination of organs adjacent to the upper gastrointestinal tract. An optical system based on fibre-glass or a CCD-chip allows additional orientation. However, 3-dimensional orientation and correct identification of the various anatomical structures may be difficult. It therefore seems desirable to merge real-time US images with high resolution CT or MR images acquired prior to EUS to simplify navigation during the intervention. The additional information provided by CT or MR images might facilitate diagnosis of tumors and, ultimately, guided puncture of suspicious lesions. We built a grid with 15 plastic spheres and measured their positions relatively to five fiducial markers placed on the top of the grid. For this measurement we used an optical tracking system (OTS) (Polaris, NDI, Can). Two sensors of an electromagnetic tracking system (EMTS) (Aurora, NDI, Can) were mounted on a flexible endoscope (Pentax GG 38 UX, USA) to enable a free hand ultrasound calibration. To determine the position of the plastic spheres in the emitter coordinate system of the EMTS we applied a point-to-point registration (Horn) using the coordinates of the fiducial markers in both coordinate systems (OTS and EMTS). For the transformation between EMTS to the CT space the Horn algorithm was adopted again using the fiducial markers. Visualization was enabled by the use of the AVW-4.0 library (Biomedical Imaging Resource, Mayo Clinic, Rochester/MN, USA). To evaluate the suitability of our new navigation system we measured the Fiducial Registration Error (FRE) of the diverse registrations and the Target Registration Error (TRE) for the complete transformation from the US space to the CT space. The FRE for the ultrasound calibration amounted to 4.3 mm +/- 4.2 mm, resulting from 10 calibration procedures. For the transformation from the OTS reference system to the

  14. GOES-next navigation operations

    NASA Technical Reports Server (NTRS)

    Fiorello, John L., Jr.; Oh, In-Hwan; Ranne, C. Lee

    1988-01-01

    The next generation of Geostationary Operational Environmental Satellites, GOES-I through -M (hereafter referred to as GOES-Next), begins a new era in the operation of weather satellites by the National Oceanic and Atmospheric Administration (NOAA). With a new spacecraft design, three-axis attitude stabilization, new ground support equipment, and improved methods of image navigation and registration that use on board compensation techniques to correct images for satellite motion, NOAA expects improved performance over the current series of dual-spin spacecraft. To meet these expectations, planning is currently underway for providing the complex and intensive operational environment that will meet the challenge of operating the GOES-Next spacecraft. This paper describes that operational environment.

  15. Autonomous navigation system and method

    SciTech Connect

    Bruemmer, David J; Few, Douglas A

    2009-09-08

    A robot platform includes perceptors, locomotors, and a system controller, which executes instructions for autonomously navigating a robot. The instructions repeat, on each iteration through an event timing loop, the acts of defining an event horizon based on the robot's current velocity, detecting a range to obstacles around the robot, testing for an event horizon intrusion by determining if any range to the obstacles is within the event horizon, and adjusting rotational and translational velocity of the robot accordingly. If the event horizon intrusion occurs, rotational velocity is modified by a proportion of the current rotational velocity reduced by a proportion of the range to the nearest obstacle and translational velocity is modified by a proportion of the range to the nearest obstacle. If no event horizon intrusion occurs, translational velocity is set as a ratio of a speed factor relative to a maximum speed.

  16. 33 CFR 334.340 - Chesapeake Bay off Plumtree Island, Hampton, Va.; Air Force precision test area.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Island, Hampton, Va.; Air Force precision test area. 334.340 Section 334.340 Navigation and Navigable... REGULATIONS § 334.340 Chesapeake Bay off Plumtree Island, Hampton, Va.; Air Force precision test area. (a) The... Command, Langley Air Force Base, Va., shall be responsible for publicizing in advance through the...

  17. 33 CFR 334.340 - Chesapeake Bay off Plumtree Island, Hampton, Va.; Air Force precision test area.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Island, Hampton, Va.; Air Force precision test area. 334.340 Section 334.340 Navigation and Navigable... REGULATIONS § 334.340 Chesapeake Bay off Plumtree Island, Hampton, Va.; Air Force precision test area. (a) The... Command, Langley Air Force Base, Va., shall be responsible for publicizing in advance through the...

  18. 33 CFR 334.340 - Chesapeake Bay off Plumtree Island, Hampton, Va.; Air Force precision test area.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Island, Hampton, Va.; Air Force precision test area. 334.340 Section 334.340 Navigation and Navigable... REGULATIONS § 334.340 Chesapeake Bay off Plumtree Island, Hampton, Va.; Air Force precision test area. (a) The... Command, Langley Air Force Base, Va., shall be responsible for publicizing in advance through the...

  19. 33 CFR 334.340 - Chesapeake Bay off Plumtree Island, Hampton, Va.; Air Force precision test area.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Island, Hampton, Va.; Air Force precision test area. 334.340 Section 334.340 Navigation and Navigable... REGULATIONS § 334.340 Chesapeake Bay off Plumtree Island, Hampton, Va.; Air Force precision test area. (a) The... Command, Langley Air Force Base, Va., shall be responsible for publicizing in advance through the...

  20. 33 CFR 334.340 - Chesapeake Bay off Plumtree Island, Hampton, Va.; Air Force precision test area.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Island, Hampton, Va.; Air Force precision test area. 334.340 Section 334.340 Navigation and Navigable... REGULATIONS § 334.340 Chesapeake Bay off Plumtree Island, Hampton, Va.; Air Force precision test area. (a) The... Command, Langley Air Force Base, Va., shall be responsible for publicizing in advance through the...

  1. 33 CFR 334.775 - Naval Air Station Pensacola, Pensacola Bay, Pensacola and Gulf Breeze, Fla.; naval restricted area.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Naval Air Station Pensacola... RESTRICTED AREA REGULATIONS § 334.775 Naval Air Station Pensacola, Pensacola Bay, Pensacola and Gulf Breeze... from the position latitude 30°20′44″ N., longitude 87°17′18″ W. (near the Naval Air Station, due...

  2. 33 CFR 334.775 - Naval Air Station Pensacola, Pensacola Bay, Pensacola and Gulf Breeze, Fla.; naval restricted area.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Naval Air Station Pensacola... RESTRICTED AREA REGULATIONS § 334.775 Naval Air Station Pensacola, Pensacola Bay, Pensacola and Gulf Breeze... from the position latitude 30°20′44″ N., longitude 87°17′18″ W. (near the Naval Air Station, due...

  3. 33 CFR 334.775 - Naval Air Station Pensacola, Pensacola Bay, Pensacola and Gulf Breeze, Fla.; naval restricted area.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Naval Air Station Pensacola... RESTRICTED AREA REGULATIONS § 334.775 Naval Air Station Pensacola, Pensacola Bay, Pensacola and Gulf Breeze... from the position latitude 30°20′44″ N., longitude 87°17′18″ W. (near the Naval Air Station, due...

  4. Data mining for personal navigation

    NASA Astrophysics Data System (ADS)

    Hariharan, Gurushyam; Franti, Pasi; Mehta, Sandeep

    2002-03-01

    Relevance is the key in defining what data is to be extracted from the Internet. Traditionally, relevance has been defined mainly by keywords and user profiles. In this paper we discuss a fairly untouched dimension to relevance: location. Any navigational information sought by a user at large on earth is evidently governed by his location. We believe that task oriented data mining of the web amalgamated with location information is the key to providing relevant information for personal navigation. We explore the existential hurdles and propose novel approaches to tackle them. We also present naive, task-oriented data mining based approaches and their implementations in Java, to extract location based information. Ad-hoc pairing of data with coordinates (x, y) is very rare on the web. But if the same co-ordinates are converted to a logical address (state/city/street), a wide spectrum of location-based information base opens up. Hence, given the coordinates (x, y) on the earth, the scheme points to the logical address of the user. Location based information could either be picked up from fixed and known service providers (e.g. Yellow Pages) or from any arbitrary website on the Web. Once the web servers providing information relevant to the logical address are located, task oriented data mining is performed over these sites keeping in mind what information is interesting to the contemporary user. After all this, a simple data stream is provided to the user with information scaled to his convenience. The scheme has been implemented for cities of Finland.

  5. 33 CFR 165.100 - Regulated Navigation Area: Navigable waters within the First Coast Guard District.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 CFR 2.36, within the geographic boundaries of the First Coast Guard District, as defined in 33 CFR...: Navigable waters within the First Coast Guard District. 165.100 Section 165.100 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PORTS AND WATERWAYS SAFETY...

  6. 33 CFR 165.100 - Regulated Navigation Area: Navigable waters within the First Coast Guard District.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 CFR 2.36, within the geographic boundaries of the First Coast Guard District, as defined in 33 CFR...: Navigable waters within the First Coast Guard District. 165.100 Section 165.100 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PORTS AND WATERWAYS SAFETY...

  7. 33 CFR 165.100 - Regulated Navigation Area: Navigable waters within the First Coast Guard District.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 CFR 2.36, within the geographic boundaries of the First Coast Guard District, as defined in 33 CFR...: Navigable waters within the First Coast Guard District. 165.100 Section 165.100 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PORTS AND WATERWAYS SAFETY...

  8. 33 CFR 165.100 - Regulated Navigation Area: Navigable waters within the First Coast Guard District.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 CFR 2.36, within the geographic boundaries of the First Coast Guard District, as defined in 33 CFR...: Navigable waters within the First Coast Guard District. 165.100 Section 165.100 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PORTS AND WATERWAYS SAFETY...

  9. Airline Transport Pilot, Aircraft Dispatcher, and Flight Navigator. Question Book. Expires September 1, 1991.

    ERIC Educational Resources Information Center

    Federal Aviation Administration (DOT), Washington, DC.

    This question book was developed by the Federal Aviation Administration (FAA) for testing applicants who are preparing for certification as airline transport pilots, aircraft dispatchers, or flight navigators. The publication contains several innovative features that are a departure from previous FAA publications related to air carrier personnel…

  10. 14 CFR 135.165 - Communication and navigation equipment: Extended over-water or IFR operations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Communication and navigation equipment: Extended over-water or IFR operations. 135.165 Section 135.165 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS AND OPERATORS FOR COMPENSATION OR HIRE: CERTIFICATION AND OPERATIONS...

  11. 14 CFR 91.511 - Communication and navigation equipment for overwater operations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Communication and navigation equipment for overwater operations. 91.511 Section 91.511 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Large and...

  12. 14 CFR 91.511 - Communication and navigation equipment for overwater operations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Communication and navigation equipment for overwater operations. 91.511 Section 91.511 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Large and...

  13. 14 CFR Appendix B to Part 63 - Flight Navigator Training Course Requirements

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    .... Hazards. Air masses. Front weather. Fog. Thunderstorms. Icing. World weather and climate. Weather maps and... required standards, but the period between inspections shall not exceed 12 months. (j) Change of ownership, name, or location—(1) Change of ownership. Approval of a flight navigator course shall not be...

  14. 14 CFR Appendix B to Part 63 - Flight Navigator Training Course Requirements

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    .... Hazards. Air masses. Front weather. Fog. Thunderstorms. Icing. World weather and climate. Weather maps and... required standards, but the period between inspections shall not exceed 12 months. (j) Change of ownership, name, or location—(1) Change of ownership. Approval of a flight navigator course shall not be...

  15. 14 CFR Appendix B to Part 63 - Flight Navigator Training Course Requirements

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    .... Hazards. Air masses. Front weather. Fog. Thunderstorms. Icing. World weather and climate. Weather maps and... required standards, but the period between inspections shall not exceed 12 months. (j) Change of ownership, name, or location—(1) Change of ownership. Approval of a flight navigator course shall not be...

  16. 14 CFR Appendix B to Part 63 - Flight Navigator Training Course Requirements

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    .... Hazards. Air masses. Front weather. Fog. Thunderstorms. Icing. World weather and climate. Weather maps and... required standards, but the period between inspections shall not exceed 12 months. (j) Change of ownership, name, or location—(1) Change of ownership. Approval of a flight navigator course shall not be...

  17. The orbiter air data system

    NASA Technical Reports Server (NTRS)

    Hillje, E. R.

    1985-01-01

    Air data parameters are required during Orbiter atmospheric entry for use by the autoguidance, navigation, and flight control systems, and for crew displays. Conventional aircraft calibrations of the Orbiter air data system were not practicable for the Space Shuttle, therefore extensive wind tunnel testing was required to give confidence in the preflight calibrations. Many challenges became apparent as the program developed; in the overall system design, in the wind tunnel testing program, in the implementation of the air data system calibration, and in the use of the flight data to modify the wind tunnel results. These challenges are discussed along with the methods used to solve the problems.

  18. 77 FR 19302 - Navigation Safety Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-30

    ... Register (73 FR 3316). Docket: For access to the docket to read documents or comments related to this... measures, marine information, diving safety, and aids to navigation systems. The meeting will be open to..., routing measures, marine information, diving safety, and aids to navigation systems. Agenda The...

  19. 77 FR 67658 - Navigation Safety Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-13

    ... FR 3316). Docket: For access to the docket to read documents or comments related to this notice, go... measures, marine information, diving safety, and aids to navigation systems. The meeting will be open to... measures, marine information, diving safety, and aids to navigation systems. Agenda: The NAVSAC will...

  20. 76 FR 63934 - Navigation Safety Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-14

    ... of the Federal Register (73 FR 3316). Docket: For access to the docket to read documents or comments... measures, marine information, diving safety, and aids to navigation systems. The meeting will be open to... information, diving safety, and aids to navigation systems. Agenda The NAVSAC will meet to review, discuss...

  1. Navigator. Volume 45, Number 2, Winter 2009

    ERIC Educational Resources Information Center

    National Science Education Leadership Association, 2009

    2009-01-01

    The National Science Education Leadership Association (NSELA) was formed in 1959 to meet a need to develop science education leadership for K-16 school systems. "Navigator" is published by NSELA to provide the latest NSELA events. This issue of "Navigator" contains the following reports: (1) A Message from the President: Creating Networks of…

  2. Understanding the Social Navigation User Experience

    ERIC Educational Resources Information Center

    Goecks, Jeremy

    2009-01-01

    A social navigation system collects data from its users--its community--about what they are doing, their opinions, and their decisions, aggregates this data, and provides the aggregated data--community data--back to individuals so that they can use it to guide behavior and decisions. Social navigation systems empower users with the ability to…

  3. 46 CFR 185.304 - Navigation underway.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Navigation underway. 185.304 Section 185.304 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS (UNDER 100 GROSS TONS) OPERATIONS Miscellaneous Operating Requirements § 185.304 Navigation underway. (a) The movement of...

  4. 46 CFR 122.304 - Navigation underway.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Navigation underway. 122.304 Section 122.304 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS CARRYING MORE THAN 150... Requirements § 122.304 Navigation underway. (a) The movement of a vessel shall be under the direction...

  5. 46 CFR 122.304 - Navigation underway.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Navigation underway. 122.304 Section 122.304 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS CARRYING MORE THAN 150... Requirements § 122.304 Navigation underway. (a) The movement of a vessel shall be under the direction...

  6. 46 CFR 185.304 - Navigation underway.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Navigation underway. 185.304 Section 185.304 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS (UNDER 100 GROSS TONS) OPERATIONS Miscellaneous Operating Requirements § 185.304 Navigation underway. (a) The movement of...

  7. Characterizing Navigation in Interactive Learning Environments

    ERIC Educational Resources Information Center

    Liang, Hai-Ning; Sedig, Kamran

    2009-01-01

    Interactive learning environments (ILEs) are increasingly used to support and enhance instruction and learning experiences. ILEs maintain and display information, allowing learners to interact with this information. One important method of interacting with information is navigation. Often, learners are required to navigate through the information…

  8. Evolved Navigation Theory and Horizontal Visual Illusions

    ERIC Educational Resources Information Center

    Jackson, Russell E.; Willey, Chela R.

    2011-01-01

    Environmental perception is prerequisite to most vertebrate behavior and its modern investigation initiated the founding of experimental psychology. Navigation costs may affect environmental perception, such as overestimating distances while encumbered (Solomon, 1949). However, little is known about how this occurs in real-world navigation or how…

  9. 46 CFR 185.304 - Navigation underway.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Navigation underway. 185.304 Section 185.304 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS (UNDER 100 GROSS TONS) OPERATIONS Miscellaneous Operating Requirements § 185.304 Navigation underway. (a) The movement of...

  10. 46 CFR 185.304 - Navigation underway.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Navigation underway. 185.304 Section 185.304 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS (UNDER 100 GROSS TONS) OPERATIONS Miscellaneous Operating Requirements § 185.304 Navigation underway. (a) The movement of...

  11. 75 FR 41987 - Inland Navigation Rules; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-20

    ...-1565 Scott.R.Medeiros@uscg.mil . SUPPLEMENTARY INFORMATION: In FR doc 2010-8532 appearing on page 20294... SECURITY Coast Guard 33 CFR Part 100 RIN 1625-AB43 Inland Navigation Rules; Correction ACTION: Final rule... Navigation Rules into the Code of Federal Regulations. That publication contained an error in...

  12. Technologies Old and New: Teaching Ancient Navigation.

    ERIC Educational Resources Information Center

    Spalding, Simon

    1995-01-01

    One educator presents maritime history to students using technologies available to ancient seafarers. Techniques include dead reckoning, the sandglass, the magnetic compass, celestial navigation, and various navigation techniques of precontact Polynesia that depended upon oral transmission of knowledge. The paper notes differences between…

  13. Navigator. Volume 45, Number 3, Spring 2009

    ERIC Educational Resources Information Center

    National Science Education Leadership Association, 2009

    2009-01-01

    The National Science Education Leadership Association (NSELA) was formed in 1959 to meet a need to develop science education leadership for K-16 school systems. "Navigator" is published by NSELA to provide the latest NSELA events. This issue of "Navigator" includes the following items: (1) A Message from the President (Brenda Wojnowski); (2) NSELA…

  14. Memorable Messages for Navigating College Life

    ERIC Educational Resources Information Center

    Nazione, Samantha; Laplante, Carolyn; Smith, Sandi W.; Cornacchione, Jennifer; Russell, Jessica; Stohl, Cynthia

    2011-01-01

    This manuscript details an investigation of memorable messages that help students navigate college life using a control theory framework. Researchers conducted face-to-face interviews with 61 undergraduate students who recalled a specific memorable message that helped them as they navigated college. Results of this formative study show the…

  15. Disputing Viking navigation by polarized skylight.

    PubMed

    Roslund, C; Beckman, C

    1994-07-20

    The widely held notion that the Vikings utilized polarization of skylight on overcast days for navigational purposes is demonstrated to have no scientific basis. The use of polarized skylight for navigation under partly cloudfree skies should be treated with caution and skepticism. PMID:20935849

  16. 46 CFR 169.691 - Navigation lights.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Navigation lights. 169.691 Section 169.691 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS... lights. Navigation light systems must meet the requirements of § 111.75-17 of this chapter except...

  17. 46 CFR 169.691 - Navigation lights.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Navigation lights. 169.691 Section 169.691 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS... lights. Navigation light systems must meet the requirements of § 111.75-17 of this chapter except...

  18. 46 CFR 169.691 - Navigation lights.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Navigation lights. 169.691 Section 169.691 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS... lights. Navigation light systems must meet the requirements of § 111.75-17 of this chapter except...

  19. 46 CFR 169.691 - Navigation lights.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Navigation lights. 169.691 Section 169.691 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS... lights. Navigation light systems must meet the requirements of § 111.75-17 of this chapter except...

  20. Computer-aided navigation in neurosurgery.

    PubMed

    Grunert, P; Darabi, K; Espinosa, J; Filippi, R

    2003-05-01

    The article comprises three main parts: a historical review on navigation, the mathematical basics for calculation and the clinical applications of navigation devices. Main historical steps are described from the first idea till the realisation of the frame-based and frameless navigation devices including robots. In particular the idea of robots can be traced back to the Iliad of Homer, the first testimony of European literature over 2500 years ago. In the second part the mathematical calculation of the mapping between the navigation and the image space is demonstrated, including different registration modalities and error estimations. The error of the navigation has to be divided into the technical error of the device calculating its own position in space, the registration error due to inaccuracies in the calculation of the transformation matrix between the navigation and the image space, and the application error caused additionally by anatomical shift of the brain structures during operation. In the third part the main clinical fields of application in modern neurosurgery are demonstrated, such as localisation of small intracranial lesions, skull-base surgery, intracerebral biopsies, intracranial endoscopy, functional neurosurgery and spinal navigation. At the end of the article some possible objections to navigation-aided surgery are discussed. PMID:12962294

  1. 46 CFR 169.691 - Navigation lights.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Navigation lights. 169.691 Section 169.691 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS... lights. Navigation light systems must meet the requirements of § 111.75-17 of this chapter except...

  2. Linked Autonomous Interplanetary Satellite Orbit Navigation

    NASA Technical Reports Server (NTRS)

    Parker, Jeffrey S.; Anderson, Rodney L.; Born, George H.; Leonard, Jason M.; McGranaghan, Ryan M.; Fujimoto, Kohei

    2013-01-01

    A navigation technology known as LiAISON (Linked Autonomous Interplanetary Satellite Orbit Navigation) has been known to produce very impressive navigation results for scenarios involving two or more cooperative satellites near the Moon, such that at least one satellite must be in an orbit significantly perturbed by the Earth, such as a lunar halo orbit. The two (or more) satellites track each other using satellite-to-satellite range and/or range-rate measurements. These relative measurements yield absolute orbit navigation when one of the satellites is in a lunar halo orbit, or the like. The geometry between a lunar halo orbiter and a GEO satellite continuously changes, which dramatically improves the information content of a satellite-to-satellite tracking signal. The geometrical variations include significant out-of-plane shifts, as well as inplane shifts. Further, the GEO satellite is almost continuously in view of a lunar halo orbiter. High-fidelity simulations demonstrate that LiAISON technology improves the navigation of GEO orbiters by an order of magnitude, relative to standard ground tracking. If a GEO satellite is navigated using LiAISON- only tracking measurements, its position is typically known to better than 10 meters. If LiAISON measurements are combined with simple radiometric ground observations, then the satellite s position is typically known to better than 3 meters, which is substantially better than the current state of GEO navigation. There are two features of LiAISON that are novel and advantageous compared with conventional satellite navigation. First, ordinary satellite-to-satellite tracking data only provides relative navigation of each satellite. The novelty is the placement of one navigation satellite in an orbit that is significantly perturbed by both the Earth and the Moon. A navigation satellite can track other satellites elsewhere in the Earth-Moon system and acquire knowledge about both satellites absolute positions and velocities

  3. 14 CFR 71.11 - Air Traffic Service (ATS) routes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Air Traffic Service (ATS) routes. 71.11... REPORTING POINTS § 71.11 Air Traffic Service (ATS) routes. Unless otherwise specified, the following apply: (a) An Air Traffic Service (ATS) route is based on a centerline that extends from one navigation...

  4. 14 CFR 71.11 - Air Traffic Service (ATS) routes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Air Traffic Service (ATS) routes. 71.11... REPORTING POINTS § 71.11 Air Traffic Service (ATS) routes. Unless otherwise specified, the following apply: (a) An Air Traffic Service (ATS) route is based on a centerline that extends from one navigation...

  5. 14 CFR 129.19 - Air traffic rules and procedures.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Air traffic rules and procedures. 129.19... § 129.19 Air traffic rules and procedures. (a) Each pilot must be familiar with the applicable rules, the navigational and communications facilities, and the air traffic control and other procedures,...

  6. 14 CFR 129.19 - Air traffic rules and procedures.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Air traffic rules and procedures. 129.19... § 129.19 Air traffic rules and procedures. (a) Each pilot must be familiar with the applicable rules, the navigational and communications facilities, and the air traffic control and other procedures,...

  7. 14 CFR 129.19 - Air traffic rules and procedures.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Air traffic rules and procedures. 129.19... § 129.19 Air traffic rules and procedures. (a) Each pilot must be familiar with the applicable rules, the navigational and communications facilities, and the air traffic control and other procedures,...

  8. 14 CFR 129.19 - Air traffic rules and procedures.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Air traffic rules and procedures. 129.19... § 129.19 Air traffic rules and procedures. (a) Each pilot must be familiar with the applicable rules, the navigational and communications facilities, and the air traffic control and other procedures,...

  9. 14 CFR 129.19 - Air traffic rules and procedures.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Air traffic rules and procedures. 129.19... § 129.19 Air traffic rules and procedures. (a) Each pilot must be familiar with the applicable rules, the navigational and communications facilities, and the air traffic control and other procedures,...

  10. 76 FR 57644 - Air Installations Compatible Use Zones

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-16

    ... of the Secretary 32 CFR Part 256 Air Installations Compatible Use Zones AGENCY: Department of Defense. ACTION: Final rule. SUMMARY: This final rule removes the DoD's rule concerning air installations...; Federal buildings and facilities; navigation (air); noise control. PART 256-- 0 Accordingly, by...

  11. ANFIS -Based Navigation for HVAC Service Robot with Image Processing

    NASA Astrophysics Data System (ADS)

    Salleh, Mohd Zoolfadli Md; Rashid, Nahrul Khair Alang Md; Mohd Mustafah, Yasir

    2013-12-01

    In this paper, we present an ongoing work on the autonomous navigation of a mobile service robot for Heat, Ventilation and Air Condition (HVAC) ducting. CCD camera mounted on the front-end of our robot is used to analyze the ducts openings (blob analysis) in order to differentiate them from other landmarks (blower fan, air outlets and etc). Distance between the robot and duct openings is measured using ultrasonic sensor. Controller chosen is ANFIS where its architecture accepts three inputs; recognition of duct openings, robot positions and distance while the outputs is maneuver direction (left or right).45 membership functions are created from which produces 46 training epochs. In order to demonstrate the functionality of the system, a working prototype is developed and tested inside HVAC ducting in ROBOCON Lab, IIUM.

  12. Passive navigation using image irradiance tracking

    NASA Technical Reports Server (NTRS)

    Menon, P. K. A.

    1990-01-01

    Rotorcraft operating at low altitudes require navigational schemes for detecting terrain and obstacles. Due to the nature of the missions to be accomplished and available power onboard, a passive navigation scheme is desirable in this situation. The development of a passive navigation scheme using optical image sequences and vehicle motion variables from an onboard inertial navigation scheme is described. This approach combines the geometric properties of perspective projection and a feedback irradiance tracking scheme at each pixel in the image to determine the range to various objects within the field-of-view. Derivation of the numerical algorithm and simulation results are given. Due to the feedback nature of the implementation, the computational scheme is robust. Other applications of the proposed approach include navigation for autonomous planetary rovers and telerobots.

  13. A STOL terminal area navigation system

    NASA Technical Reports Server (NTRS)

    Neuman, F.; Warner, D. N., Jr.

    1974-01-01

    The mechanization and performance of a STOL terminal area navigation system are described. The purpose of the navigation system is to allow flying with precision 4D-guidance along complex flight paths in the terminal area, and to develop requirements for STOL operations in the 1980s. The navigation aids include an experimental microwave landing system, MODILS. The systems description begins with the navigation aids. It is shown how the data are transformed and combined with other data to obtain position and velocity estimates. Also presented are some of the design changes and other features that were introduced as a result of flight testing. The various ways of displaying navigation-derived data are given. Finally, simulator and flight test results are discussed.

  14. Navigation in spatial networks: A survey

    NASA Astrophysics Data System (ADS)

    Huang, Wei; Chen, Shengyong; Wang, Wanliang

    2014-01-01

    The study on the navigation process in spatial networks has attracted much attention in recent years due to the universal applications in real communication networks. This article surveys recent advances of the navigation problem in spatial networks. Due to the ability to overcome scaling limitations in utilizing geometric information for designing navigation algorithms in spatial networks, we summarize here several important navigation algorithms based on geometric information on both homogeneous and heterogeneous spatial networks. Due to the geometric distance employed, the cost associated with the lengths of additional long-range connections is also taken into account in this survey. Therefore, some contributions reporting how the distribution of long-range links’ lengths affects the average navigation time are summarized. We also briefly discuss two other related processes, i.e. the random walk process and the transportation process. Finally, a few open discussions are included at the end of this survey.

  15. A study of navigation in virtual space

    NASA Technical Reports Server (NTRS)

    Darken, Rudy; Sibert, John L.; Shumaker, Randy

    1994-01-01

    In the physical world, man has developed efficient methods for navigation and orientation. These methods are dependent on the high-fidelity stimuli presented by the environment. When placed in a virtual world which cannot offer stimuli of the same quality due to computing constraints and immature technology, tasks requiring the maintenance of position and orientation knowledge become laborious. In this paper, we present a representative set of techniques based on principles of navigation derived from real world analogs including human and avian navigation behavior and cartography. A preliminary classification of virtual worlds is presented based on the size of the world, the density of objects in the world, and the level of activity taking place in the world. We also summarize an informal study we performed to determine how the tools influenced the subjects' navigation strategies and behavior. We conclude that principles extracted from real world navigation aids such as maps can be seen to apply in virtual environments.

  16. Risk management model of winter navigation operations.

    PubMed

    Valdez Banda, Osiris A; Goerlandt, Floris; Kuzmin, Vladimir; Kujala, Pentti; Montewka, Jakub

    2016-07-15

    The wintertime maritime traffic operations in the Gulf of Finland are managed through the Finnish-Swedish Winter Navigation System. This establishes the requirements and limitations for the vessels navigating when ice covers this area. During winter navigation in the Gulf of Finland, the largest risk stems from accidental ship collisions which may also trigger oil spills. In this article, a model for managing the risk of winter navigation operations is presented. The model analyses the probability of oil spills derived from collisions involving oil tanker vessels and other vessel types. The model structure is based on the steps provided in the Formal Safety Assessment (FSA) by the International Maritime Organization (IMO) and adapted into a Bayesian Network model. The results indicate that ship independent navigation and convoys are the operations with higher probability of oil spills. Minor spills are most probable, while major oil spills found very unlikely but possible. PMID:27207023

  17. BOREAS Level-0 C-130 Navigation Data

    NASA Technical Reports Server (NTRS)

    Strub, Richard; Newcomer, Jeffrey A.; Domingues, Roseanne; Hall, Forrest G. (Editor)

    2000-01-01

    The level-0 C-130 navigation data files contain aircraft attitude and position information acquired during the digital image and photographic data collection missions over the BOReal Ecosystem-Atmosphere Study (BOREAS) study areas. Various portions of the navigation data were collected at 1, 10, and 30 Hz. The level-0 C-130 navigation data collected for BOREAS in 1994 were improved over previous years in that the C-130 onboard navigation system was upgraded to output inertial navigation parameters every 1/30th of a second (i.e., 30 Hz). This upgrade was encouraged by users of the aircraft scanner data with the hope of improving the relative geometric positioning of the collected images.

  18. GPS-based navigation for space applications

    NASA Astrophysics Data System (ADS)

    Champetier, C.; Duhamel, T.; Frezet, M.

    1995-03-01

    We present in this paper a survey of the applications of the GPS (global positioning system) system for spacecraft navigation. The use of the GPS techniques for space missions is a striking example of dual-use of military technology; it can bring vast improvements in performances and, in some cases, for a reduced cost. We only deal in this paper with the functional aspects and performances of GPS uses without addressing the issues of hardware implementation where current developments are leading to an increased miniaturization of the GPS receiver hardware. We start this paper with a general overview of the GPS system and its various uses for space missions. We then focus on four areas where MATRA MARCONI Space has conducted detailed analyses of performances: autonomous navigation for geostationary spacecraft, relative navigation for space rendezvous, differential navigation for landing vehicles, absolute navigation for launchers and reentry vehicles.

  19. Autonomous Deep-Space Optical Navigation Project

    NASA Technical Reports Server (NTRS)

    D'Souza, Christopher

    2014-01-01

    This project will advance the Autonomous Deep-space navigation capability applied to Autonomous Rendezvous and Docking (AR&D) Guidance, Navigation and Control (GNC) system by testing it on hardware, particularly in a flight processor, with a goal of limited testing in the Integrated Power, Avionics and Software (IPAS) with the ARCM (Asteroid Retrieval Crewed Mission) DRO (Distant Retrograde Orbit) Autonomous Rendezvous and Docking (AR&D) scenario. The technology, which will be harnessed, is called 'optical flow', also known as 'visual odometry'. It is being matured in the automotive and SLAM (Simultaneous Localization and Mapping) applications but has yet to be applied to spacecraft navigation. In light of the tremendous potential of this technique, we believe that NASA needs to design a optical navigation architecture that will use this technique. It is flexible enough to be applicable to navigating around planetary bodies, such as asteroids.

  20. Air Pollution

    MedlinePlus

    Air pollution is a mixture of solid particles and gases in the air. Car emissions, chemicals from factories, dust, ... a gas, is a major part of air pollution in cities. When ozone forms air pollution, it's ...