43 CFR 2651.6 - Airport and air navigation facilities.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Airport and air navigation facilities... Village Selections § 2651.6 Airport and air navigation facilities. (a) Every airport and air navigation.... (b) The surface of all other lands of existing airport sites, airway beacons, or other navigation...
43 CFR 2651.6 - Airport and air navigation facilities.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Airport and air navigation facilities... Village Selections § 2651.6 Airport and air navigation facilities. (a) Every airport and air navigation.... (b) The surface of all other lands of existing airport sites, airway beacons, or other navigation...
43 CFR 2651.6 - Airport and air navigation facilities.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Airport and air navigation facilities... Village Selections § 2651.6 Airport and air navigation facilities. (a) Every airport and air navigation.... (b) The surface of all other lands of existing airport sites, airway beacons, or other navigation...
Code of Federal Regulations, 2012 CFR
2012-10-01
... and Air Navigation Aids (Short Title: SCATANA). 87.395 Section 87.395 Telecommunication FEDERAL... Communications § 87.395 Plan for the Security Control of Air Traffic and Air Navigation Aids (Short Title: SCATANA). (a) The Plan for the Security Control of Air Traffic and Air Navigation Aids (SCATANA) is...
Code of Federal Regulations, 2014 CFR
2014-10-01
... and Air Navigation Aids (Short Title: SCATANA). 87.395 Section 87.395 Telecommunication FEDERAL... Communications § 87.395 Plan for the Security Control of Air Traffic and Air Navigation Aids (Short Title: SCATANA). (a) The Plan for the Security Control of Air Traffic and Air Navigation Aids (SCATANA) is...
Code of Federal Regulations, 2013 CFR
2013-10-01
... and Air Navigation Aids (Short Title: SCATANA). 87.395 Section 87.395 Telecommunication FEDERAL... Communications § 87.395 Plan for the Security Control of Air Traffic and Air Navigation Aids (Short Title: SCATANA). (a) The Plan for the Security Control of Air Traffic and Air Navigation Aids (SCATANA) is...
Code of Federal Regulations, 2011 CFR
2011-10-01
... and Air Navigation Aids (Short Title: SCATANA). 87.395 Section 87.395 Telecommunication FEDERAL... Communications § 87.395 Plan for the Security Control of Air Traffic and Air Navigation Aids (Short Title: SCATANA). (a) The Plan for the Security Control of Air Traffic and Air Navigation Aids (SCATANA) is...
Code of Federal Regulations, 2010 CFR
2010-10-01
... and Air Navigation Aids (Short Title: SCATANA). 87.395 Section 87.395 Telecommunication FEDERAL... Communications § 87.395 Plan for the Security Control of Air Traffic and Air Navigation Aids (Short Title: SCATANA). (a) The Plan for the Security Control of Air Traffic and Air Navigation Aids (SCATANA) is...
47 CFR 22.365 - Antenna structures; air navigation safety.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 47 Telecommunication 2 2014-10-01 2014-10-01 false Antenna structures; air navigation safety. 22... Antenna structures; air navigation safety. Licensees that own their antenna structures must not allow these antenna structures to become a hazard to air navigation. In general, antenna structure owners are...
47 CFR 22.365 - Antenna structures; air navigation safety.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 47 Telecommunication 2 2012-10-01 2012-10-01 false Antenna structures; air navigation safety. 22... Antenna structures; air navigation safety. Licensees that own their antenna structures must not allow these antenna structures to become a hazard to air navigation. In general, antenna structure owners are...
47 CFR 22.365 - Antenna structures; air navigation safety.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 47 Telecommunication 2 2013-10-01 2013-10-01 false Antenna structures; air navigation safety. 22... Antenna structures; air navigation safety. Licensees that own their antenna structures must not allow these antenna structures to become a hazard to air navigation. In general, antenna structure owners are...
47 CFR 22.365 - Antenna structures; air navigation safety.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 2 2011-10-01 2011-10-01 false Antenna structures; air navigation safety. 22... Antenna structures; air navigation safety. Licensees that own their antenna structures must not allow these antenna structures to become a hazard to air navigation. In general, antenna structure owners are...
47 CFR 22.365 - Antenna structures; air navigation safety.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 2 2010-10-01 2010-10-01 false Antenna structures; air navigation safety. 22... Antenna structures; air navigation safety. Licensees that own their antenna structures must not allow these antenna structures to become a hazard to air navigation. In general, antenna structure owners are...
Air Navigation. Aerospace Education II.
ERIC Educational Resources Information Center
Cox, Rodney V., Jr.
This revised textbook, published for the Air Force ROTC program, contains a discussion of basic and essential understandings about air navigation. The first part of the book describes maps, air navigation charts, flight planning, and pilotage preflight. Basic differences between ground maps and air charts are described and the methods of…
33 CFR 165.1319 - Safety Zone Regulations, Seafair Blue Angels Air Show Performance, Seattle, WA.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Safety Zone Regulations, Seafair Blue Angels Air Show Performance, Seattle, WA. 165.1319 Section 165.1319 Navigation and Navigable... Thirteenth Coast Guard District § 165.1319 Safety Zone Regulations, Seafair Blue Angels Air Show Performance...
33 CFR 165.1319 - Safety Zone Regulations, Seafair Blue Angels Air Show Performance, Seattle, WA.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Safety Zone Regulations, Seafair Blue Angels Air Show Performance, Seattle, WA. 165.1319 Section 165.1319 Navigation and Navigable... Thirteenth Coast Guard District § 165.1319 Safety Zone Regulations, Seafair Blue Angels Air Show Performance...
33 CFR 165.1319 - Safety Zone Regulations, Seafair Blue Angels Air Show Performance, Seattle, WA.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Safety Zone Regulations, Seafair Blue Angels Air Show Performance, Seattle, WA. 165.1319 Section 165.1319 Navigation and Navigable... Thirteenth Coast Guard District § 165.1319 Safety Zone Regulations, Seafair Blue Angels Air Show Performance...
33 CFR 165.1319 - Safety Zone Regulations, Seafair Blue Angels Air Show Performance, Seattle, WA.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Safety Zone Regulations, Seafair Blue Angels Air Show Performance, Seattle, WA. 165.1319 Section 165.1319 Navigation and Navigable... Thirteenth Coast Guard District § 165.1319 Safety Zone Regulations, Seafair Blue Angels Air Show Performance...
33 CFR 334.865 - Naval Air Station North Island, San Diego, California, restricted area.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Naval Air Station North Island, San Diego, California, restricted area. 334.865 Section 334.865 Navigation and Navigable Waters CORPS... REGULATIONS § 334.865 Naval Air Station North Island, San Diego, California, restricted area. (a) The area...
33 CFR 334.865 - Naval Air Station North Island, San Diego, California, restricted area.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Naval Air Station North Island, San Diego, California, restricted area. 334.865 Section 334.865 Navigation and Navigable Waters CORPS... REGULATIONS § 334.865 Naval Air Station North Island, San Diego, California, restricted area. (a) The area...
33 CFR 334.865 - Naval Air Station North Island, San Diego, California, restricted area.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Naval Air Station North Island, San Diego, California, restricted area. 334.865 Section 334.865 Navigation and Navigable Waters CORPS... REGULATIONS § 334.865 Naval Air Station North Island, San Diego, California, restricted area. (a) The area...
33 CFR 334.1180 - Strait of Juan de Fuca, Wash.; air-to-surface weapon range, restricted area.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Strait of Juan de Fuca, Wash.; air-to-surface weapon range, restricted area. 334.1180 Section 334.1180 Navigation and Navigable... REGULATIONS § 334.1180 Strait of Juan de Fuca, Wash.; air-to-surface weapon range, restricted area. (a) The...
33 CFR 334.1180 - Strait of Juan de Fuca, Wash.; air-to-surface weapon range, restricted area.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Strait of Juan de Fuca, Wash.; air-to-surface weapon range, restricted area. 334.1180 Section 334.1180 Navigation and Navigable... REGULATIONS § 334.1180 Strait of Juan de Fuca, Wash.; air-to-surface weapon range, restricted area. (a) The...
33 CFR 334.1180 - Strait of Juan de Fuca, Wash.; air-to-surface weapon range, restricted area.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Strait of Juan de Fuca, Wash.; air-to-surface weapon range, restricted area. 334.1180 Section 334.1180 Navigation and Navigable... REGULATIONS § 334.1180 Strait of Juan de Fuca, Wash.; air-to-surface weapon range, restricted area. (a) The...
33 CFR 334.1180 - Strait of Juan de Fuca, Wash.; air-to-surface weapon range, restricted area.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Strait of Juan de Fuca, Wash.; air-to-surface weapon range, restricted area. 334.1180 Section 334.1180 Navigation and Navigable... REGULATIONS § 334.1180 Strait of Juan de Fuca, Wash.; air-to-surface weapon range, restricted area. (a) The...
33 CFR 334.1180 - Strait of Juan de Fuca, Wash.; air-to-surface weapon range, restricted area.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Strait of Juan de Fuca, Wash.; air-to-surface weapon range, restricted area. 334.1180 Section 334.1180 Navigation and Navigable... REGULATIONS § 334.1180 Strait of Juan de Fuca, Wash.; air-to-surface weapon range, restricted area. (a) The...
1990-09-01
than many of the other officer career fields. In 1986, Marchewka reported that job dissatisfaction among navigators was *probably because their jobs are...Company, Inc., 1935. 30. Marchewka , Maj Peter S. Job Attitudes of USAF Pilots and Navigators. Unpublished report No. 86-1610. Air Command and Staff
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Weekley Bayou, an arm of Boggy Bayou, Fla., at Eglin Air Force Base; restricted area. 334.740 Section 334.740 Navigation and Navigable... REGULATIONS § 334.740 Weekley Bayou, an arm of Boggy Bayou, Fla., at Eglin Air Force Base; restricted area. (a...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Weekley Bayou, an arm of Boggy Bayou, Fla., at Eglin Air Force Base; restricted area. 334.740 Section 334.740 Navigation and Navigable... REGULATIONS § 334.740 Weekley Bayou, an arm of Boggy Bayou, Fla., at Eglin Air Force Base; restricted area. (a...
47 CFR 24.55 - Antenna structures; air navigation safety.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 47 Telecommunication 2 2013-10-01 2013-10-01 false Antenna structures; air navigation safety. 24... SERVICES PERSONAL COMMUNICATIONS SERVICES Technical Standards § 24.55 Antenna structures; air navigation safety. Licensees that own their antenna structures must not allow these antenna structures to become a...
47 CFR 24.55 - Antenna structures; air navigation safety.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 2 2011-10-01 2011-10-01 false Antenna structures; air navigation safety. 24... SERVICES PERSONAL COMMUNICATIONS SERVICES Technical Standards § 24.55 Antenna structures; air navigation safety. Licensees that own their antenna structures must not allow these antenna structures to become a...
47 CFR 24.55 - Antenna structures; air navigation safety.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 47 Telecommunication 2 2012-10-01 2012-10-01 false Antenna structures; air navigation safety. 24... SERVICES PERSONAL COMMUNICATIONS SERVICES Technical Standards § 24.55 Antenna structures; air navigation safety. Licensees that own their antenna structures must not allow these antenna structures to become a...
47 CFR 24.55 - Antenna structures; air navigation safety.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 2 2010-10-01 2010-10-01 false Antenna structures; air navigation safety. 24... SERVICES PERSONAL COMMUNICATIONS SERVICES Technical Standards § 24.55 Antenna structures; air navigation safety. Licensees that own their antenna structures must not allow these antenna structures to become a...
47 CFR 24.55 - Antenna structures; air navigation safety.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 47 Telecommunication 2 2014-10-01 2014-10-01 false Antenna structures; air navigation safety. 24... SERVICES PERSONAL COMMUNICATIONS SERVICES Technical Standards § 24.55 Antenna structures; air navigation safety. Licensees that own their antenna structures must not allow these antenna structures to become a...
Air Navigation. Flying Training. AFM 51-40. NAVAIR 00-80V-49.
ERIC Educational Resources Information Center
Air Training Command, Randolph AFB, TX.
This manual provides information on all phases of air navigation for navigators and student navigators in training. It develops the art of navigation from the simplest concepts to the most advanced procedures and techniques. The text contains explanations on how to measure, map, and chart the earth; how to use basic instruments to obtain…
47 CFR 27.56 - Antenna structures; air navigation safety.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 47 Telecommunication 2 2012-10-01 2012-10-01 false Antenna structures; air navigation safety. 27... SERVICES MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES Technical Standards § 27.56 Antenna structures; air navigation safety. A licensee that owns its antenna structure(s) must not allow such antenna structure(s) to...
47 CFR 27.56 - Antenna structures; air navigation safety.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 47 Telecommunication 2 2013-10-01 2013-10-01 false Antenna structures; air navigation safety. 27... SERVICES MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES Technical Standards § 27.56 Antenna structures; air navigation safety. A licensee that owns its antenna structure(s) must not allow such antenna structure(s) to...
47 CFR 27.56 - Antenna structures; air navigation safety.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 2 2011-10-01 2011-10-01 false Antenna structures; air navigation safety. 27... SERVICES MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES Technical Standards § 27.56 Antenna structures; air navigation safety. A licensee that owns its antenna structure(s) must not allow such antenna structure(s) to...
47 CFR 27.56 - Antenna structures; air navigation safety.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 47 Telecommunication 2 2014-10-01 2014-10-01 false Antenna structures; air navigation safety. 27... SERVICES MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES Technical Standards § 27.56 Antenna structures; air navigation safety. A licensee that owns its antenna structure(s) must not allow such antenna structure(s) to...
Gagliardo, Anna; Ioalè, Paolo; Filannino, Caterina; Wikelski, Martin
2011-01-01
A large body of evidence has shown that anosmic pigeons are impaired in their navigation. However, the role of odours in navigation is still subject to debate. While according to the olfactory navigation hypothesis homing pigeons possess a navigational map based on the distribution of environmental odours, the olfactory activation hypothesis proposes that odour perception is only needed to activate a navigational mechanism based on cues of another nature. Here we tested experimentally whether the perception of artificial odours is sufficient to allow pigeons to navigate, as expected from the olfactory activation hypothesis. We transported three groups of pigeons in air-tight containers to release sites 53 and 61 km from home in three different olfactory conditions. The Control group received natural environmental air; both the Pure Air and the Artificial Odour groups received pure air filtered through an active charcoal filter. Only the Artificial Odour group received additional puffs of artificial odours until release. We then released pigeons while recording their tracks with 1 Hz GPS data loggers. We also followed non-homing pigeons using an aerial data readout to a Cessna plane, allowing, for the first time, the tracking of non-homing homing pigeons. Within the first hour after release, the pigeons in both the Artificial Odour and the Pure Air group (receiving no environmental odours) showed impaired navigational performances at each release site. Our data provide evidence against an activation role of odours in navigation, and document that pigeons only navigate well when they perceive environmental odours.
75 FR 8286 - Proposed Amendment of Area Navigation Route Q-15; California
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-24
...- day traffic flow on Q-15 within the NAS. Area Navigation Routes are published in paragraph 2006 of FAA... http://www.faa.gov/air_traffic/publications/airspace_amendments/ . You may review the public docket... affect air traffic procedures and air navigation, it is certified that this proposed rule, when...
33 CFR 334.1280 - Bristol Bay, Alaska; air-to-air weapon range, Alaskan Air Command, U.S. Air Force.
Code of Federal Regulations, 2012 CFR
2012-07-01
... weapon range, Alaskan Air Command, U.S. Air Force. 334.1280 Section 334.1280 Navigation and Navigable... REGULATIONS § 334.1280 Bristol Bay, Alaska; air-to-air weapon range, Alaskan Air Command, U.S. Air Force. (a... enforced by the Commander, Alaskan Air Command, U.S. Air Force, Seattle, Washington, or such agencies as he...
33 CFR 334.1280 - Bristol Bay, Alaska; air-to-air weapon range, Alaskan Air Command, U.S. Air Force.
Code of Federal Regulations, 2013 CFR
2013-07-01
... weapon range, Alaskan Air Command, U.S. Air Force. 334.1280 Section 334.1280 Navigation and Navigable... REGULATIONS § 334.1280 Bristol Bay, Alaska; air-to-air weapon range, Alaskan Air Command, U.S. Air Force. (a... enforced by the Commander, Alaskan Air Command, U.S. Air Force, Seattle, Washington, or such agencies as he...
33 CFR 334.1280 - Bristol Bay, Alaska; air-to-air weapon range, Alaskan Air Command, U.S. Air Force.
Code of Federal Regulations, 2014 CFR
2014-07-01
... weapon range, Alaskan Air Command, U.S. Air Force. 334.1280 Section 334.1280 Navigation and Navigable... REGULATIONS § 334.1280 Bristol Bay, Alaska; air-to-air weapon range, Alaskan Air Command, U.S. Air Force. (a... enforced by the Commander, Alaskan Air Command, U.S. Air Force, Seattle, Washington, or such agencies as he...
33 CFR 334.1280 - Bristol Bay, Alaska; air-to-air weapon range, Alaskan Air Command, U.S. Air Force.
Code of Federal Regulations, 2010 CFR
2010-07-01
... weapon range, Alaskan Air Command, U.S. Air Force. 334.1280 Section 334.1280 Navigation and Navigable... REGULATIONS § 334.1280 Bristol Bay, Alaska; air-to-air weapon range, Alaskan Air Command, U.S. Air Force. (a... enforced by the Commander, Alaskan Air Command, U.S. Air Force, Seattle, Washington, or such agencies as he...
33 CFR 334.1280 - Bristol Bay, Alaska; air-to-air weapon range, Alaskan Air Command, U.S. Air Force.
Code of Federal Regulations, 2011 CFR
2011-07-01
... weapon range, Alaskan Air Command, U.S. Air Force. 334.1280 Section 334.1280 Navigation and Navigable... REGULATIONS § 334.1280 Bristol Bay, Alaska; air-to-air weapon range, Alaskan Air Command, U.S. Air Force. (a... enforced by the Commander, Alaskan Air Command, U.S. Air Force, Seattle, Washington, or such agencies as he...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Choctawhatchee Bay, aerial gunnery ranges, Air Proving Ground Center, Air Research and Development Command, Eglin Air Force Base, Fla... gunnery ranges, Air Proving Ground Center, Air Research and Development Command, Eglin Air Force Base, Fla...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Choctawhatchee Bay, aerial gunnery ranges, Air Proving Ground Center, Air Research and Development Command, Eglin Air Force Base, Fla... gunnery ranges, Air Proving Ground Center, Air Research and Development Command, Eglin Air Force Base, Fla...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Naval Air Station Pensacola, Pensacola Bay, Pensacola and Gulf Breeze, Fla.; naval restricted area. 334.775 Section 334.775 Navigation... RESTRICTED AREA REGULATIONS § 334.775 Naval Air Station Pensacola, Pensacola Bay, Pensacola and Gulf Breeze...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Naval Air Station Pensacola, Pensacola Bay, Pensacola and Gulf Breeze, Fla.; naval restricted area. 334.775 Section 334.775 Navigation... RESTRICTED AREA REGULATIONS § 334.775 Naval Air Station Pensacola, Pensacola Bay, Pensacola and Gulf Breeze...
Basic Navigator Battery: An Experimental Selection Composite for Undergraduate Navigator Training.
ERIC Educational Resources Information Center
Shanahan, Frank M.; Kantor, Jeffrey E.
High rates of attrition among students in Undergraduate Navigator Training (UNT) is a major concern for Air Training Command. The main objective of this research was to evaluate the Basic Navigator Battery (BNB), a multi-test experimental selection instrument, for its potential to increase the validity of the Air Force Officer Qualifying Test…
33 CFR 334.560 - Banana River at Patrick Air Force Base, Fla.; restricted area.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Banana River at Patrick Air Force Base, Fla.; restricted area. 334.560 Section 334.560 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.560 Banana...
132. STANDARD NAVAL AIR STATIONS CELESTIAL NAVIGATION, ELEVATIONS AND SECTIONS, ...
132. STANDARD NAVAL AIR STATIONS CELESTIAL NAVIGATION, ELEVATIONS AND SECTIONS, BUDOCKS, OCTOBER 14, 1943. QP ACC 9689. - Quonset Point Naval Air Station, Roger Williams Way, North Kingstown, Washington County, RI
4D Dynamic Required Navigation Performance Final Report
NASA Technical Reports Server (NTRS)
Finkelsztein, Daniel M.; Sturdy, James L.; Alaverdi, Omeed; Hochwarth, Joachim K.
2011-01-01
New advanced four dimensional trajectory (4DT) procedures under consideration for the Next Generation Air Transportation System (NextGen) require an aircraft to precisely navigate relative to a moving reference such as another aircraft. Examples are Self-Separation for enroute operations and Interval Management for in-trail and merging operations. The current construct of Required Navigation Performance (RNP), defined for fixed-reference-frame navigation, is not sufficiently specified to be applicable to defining performance levels of such air-to-air procedures. An extension of RNP to air-to-air navigation would enable these advanced procedures to be implemented with a specified level of performance. The objective of this research effort was to propose new 4D Dynamic RNP constructs that account for the dynamic spatial and temporal nature of Interval Management and Self-Separation, develop mathematical models of the Dynamic RNP constructs, "Required Self-Separation Performance" and "Required Interval Management Performance," and to analyze the performance characteristics of these air-to-air procedures using the newly developed models. This final report summarizes the activities led by Raytheon, in collaboration with GE Aviation and SAIC, and presents the results from this research effort to expand the RNP concept to a dynamic 4D frame of reference.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Gulf of Mexico south and west of Apalachicola, San Blas, and St. Joseph bays; air-to-air firing practice range, Tyndall Air Force Base, Fla. 334... Apalachicola, San Blas, and St. Joseph bays; air-to-air firing practice range, Tyndall Air Force Base, Fla. (a...
Acoustic Sensors for Air and Surface Navigation Applications
Kapoor, Rohan; Ramasamy, Subramanian; Schyndel, Ron Van
2018-01-01
This paper presents the state-of-the-art and reviews the state-of-research of acoustic sensors used for a variety of navigation and guidance applications on air and surface vehicles. In particular, this paper focuses on echolocation, which is widely utilized in nature by certain mammals (e.g., cetaceans and bats). Although acoustic sensors have been extensively adopted in various engineering applications, their use in navigation and guidance systems is yet to be fully exploited. This technology has clear potential for applications in air and surface navigation/guidance for intelligent transport systems (ITS), especially considering air and surface operations indoors and in other environments where satellite positioning is not available. Propagation of sound in the atmosphere is discussed in detail, with all potential attenuation sources taken into account. The errors introduced in echolocation measurements due to Doppler, multipath and atmospheric effects are discussed, and an uncertainty analysis method is presented for ranging error budget prediction in acoustic navigation applications. Considering the design challenges associated with monostatic and multi-static sensor implementations and looking at the performance predictions for different possible configurations, acoustic sensors show clear promises in navigation, proximity sensing, as well as obstacle detection and tracking. The integration of acoustic sensors in multi-sensor navigation systems is also considered towards the end of the paper and a low Size, Weight and Power, and Cost (SWaP-C) sensor integration architecture is presented for possible introduction in air and surface navigation systems. PMID:29414894
77 FR 65461 - Amendment of Area Navigation Route Q-1; CA
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-29
... existing ENVIE, CA, and EBINY, OR, waypoints for traffic flow metering with the Oakland Air Route Traffic... FAA is adding two waypoints along to route for air traffic control purposes. In addition, the route... is a routine matter that will only affect air traffic procedures and air navigation, it is certified...
Human Factors Considerations for Performance-Based Navigation
NASA Technical Reports Server (NTRS)
Barhydt, Richard; Adams, Catherine A.
2006-01-01
A transition toward a performance-based navigation system is currently underway in both the United States and around the world. Performance-based navigation incorporates Area Navigation (RNAV) and Required Navigation Performance (RNP) procedures that do not rely on the location of ground-based navigation aids. These procedures offer significant benefits to both operators and air traffic managers. Under sponsorship from the Federal Aviation Administration (FAA), the National Aeronautics and Space Administration (NASA) has undertaken a project to document human factors issues that have emerged during RNAV and RNP operations and propose areas for further consideration. Issues were found to include aspects of air traffic control and airline procedures, aircraft systems, and procedure design. Major findings suggest the need for human factors-specific instrument procedure design guidelines. Ongoing industry and government activities to address air-ground communication terminology, procedure design improvements, and chart-database commonality are strongly encouraged.
Area navigation and required navigation performance procedures and depictions
DOT National Transportation Integrated Search
2012-09-30
Area navigation (RNAV) and required navigation performance (RNP) procedures are fundamental to the implementation of a performance based navigation (PBN) system, which is a key enabling technology for the Next Generation Air Transportation System (Ne...
An on-line monitoring system for navigation equipment
NASA Astrophysics Data System (ADS)
Wang, Bo; Yang, Ping; Liu, Jing; Yang, Zhengbo; Liang, Fei
2017-10-01
Civil air navigation equipment is the most important infrastructure of Civil Aviation, which is closely related to flight safety. In addition to regular flight inspection, navigation equipment's patrol measuring, maintenance measuring, running measuring under special weather conditions are the important means of ensuring aviation flight safety. According to the safety maintenance requirements of Civil Aviation Air Traffic Control navigation equipment, this paper developed one on-line monitoring system with independent intellectual property rights for navigation equipment, the system breakthroughs the key technologies of measuring navigation equipment on-line including Instrument Landing System (ILS) and VHF Omni-directional Range (VOR), which also meets the requirements of navigation equipment ground measurement set by the ICAO DOC 8071, it provides technical means of the ground on-line measurement for navigation equipment, improves the safety of navigation equipment operation, and reduces the impact of measuring navigation equipment on airport operation.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Tampa Bay south of MacDill Air Force Base, Fla.; small-arms firing range and aircraft jettison, U.S. Air Force, MacDill Air Force Base... Force Base, Fla.; small-arms firing range and aircraft jettison, U.S. Air Force, MacDill Air Force Base...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Tampa Bay south of MacDill Air Force Base, Fla.; small-arms firing range and aircraft jettison, U.S. Air Force, MacDill Air Force Base... Force Base, Fla.; small-arms firing range and aircraft jettison, U.S. Air Force, MacDill Air Force Base...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Tampa Bay south of MacDill Air Force Base, Fla.; small-arms firing range and aircraft jettison, U.S. Air Force, MacDill Air Force Base... Force Base, Fla.; small-arms firing range and aircraft jettison, U.S. Air Force, MacDill Air Force Base...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Tampa Bay south of MacDill Air Force Base, Fla.; small-arms firing range and aircraft jettison, U.S. Air Force, MacDill Air Force Base... Force Base, Fla.; small-arms firing range and aircraft jettison, U.S. Air Force, MacDill Air Force Base...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-15
... navigational facilities, adding new obstacles, or changing air traffic requirements. These changes are designed... Control, Airports, Incorporation by reference, and Navigation (Air). [[Page 62430
33 CFR 334.560 - Banana River at Patrick Air Force Base, Fla.; restricted area.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Commander, 45th Space Wing, Patrick Air Force Base, Florida, and such agencies as he/she may designate. [29... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Banana River at Patrick Air Force... River at Patrick Air Force Base, Fla.; restricted area. (a) The area. The waters within an area...
33 CFR 334.560 - Banana River at Patrick Air Force Base, Fla.; restricted area.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Commander, 45th Space Wing, Patrick Air Force Base, Florida, and such agencies as he/she may designate. [29... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Banana River at Patrick Air Force... River at Patrick Air Force Base, Fla.; restricted area. (a) The area. The waters within an area...
33 CFR 334.560 - Banana River at Patrick Air Force Base, Fla.; restricted area.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Commander, 45th Space Wing, Patrick Air Force Base, Florida, and such agencies as he/she may designate. [29... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Banana River at Patrick Air Force... River at Patrick Air Force Base, Fla.; restricted area. (a) The area. The waters within an area...
33 CFR 334.560 - Banana River at Patrick Air Force Base, Fla.; restricted area.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Commander, 45th Space Wing, Patrick Air Force Base, Florida, and such agencies as he/she may designate. [29... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Banana River at Patrick Air Force... River at Patrick Air Force Base, Fla.; restricted area. (a) The area. The waters within an area...
33 CFR 165.768 - Security Zone; MacDill Air Force Base, Tampa Bay, FL.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Security Zone; MacDill Air Force....768 Security Zone; MacDill Air Force Base, Tampa Bay, FL. (a) Location. The following area is a... title. All waters within Tampa Bay, Florida in the vicinity of MacDill Air Force Base, including...
NASA Technical Reports Server (NTRS)
Ponchak, Denise (Compiler)
2006-01-01
The Integrated Communications, Navigation and Surveillance (ICNS) Technologies Conference and Workshop provides a forum for government, industry, and academic communities performing research and technology development for advanced digital communications, navigation, and surveillance security systems and associated applications supporting the national and global air transportation systems. The event s goals are to understand current efforts and recent results in near- and far-term research and technology demonstration; identify integrated digital communications, navigation and surveillance research requirements necessary for a safe, high-capacity, advanced air transportation system; foster collaboration and coordination among all stakeholders; and discuss critical issues and develop recommendations to achieve the future integrated CNS vision for the national and global air transportation system.
NASA Technical Reports Server (NTRS)
Fujikawa, Gene (Compiler)
2004-01-01
The Integrated Communications, Navigational and Surveillance (ICNS) Technologies Conference and Workshop provides a forum for Government, industry, and academic communities performing research and technology development for advanced digital communications, navigation, and surveillance security systems and associated applications supporting the national and global air transportation systems. The event's goals are to understand current efforts and recent results in near-and far-term research and technology demonstration; identify integrated digital communications, navigation and surveillance research requirements necessary for a safe, high-capacity, advanced air transportation system; foster collaboration and coordination among all stakeholders; and discuss critical issues and develop recommendations to achieve the future integrated CNS vision for the national and global air transportation system.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-01
... navigational facilities, adding new obstacles, or changing air traffic requirements. These changes are designed... control, Airports, Incorporation by reference, and Navigation (air). Issued in Washington, DC, on...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-28
... navigational facilities, adding new obstacles, or changing air traffic requirements. These changes are designed... Control, Airports, Incorporation by reference, and Navigation (air). Issued in Washington, DC, on...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Gulf of Mexico south and west of Apalachicola, San Blas, and St. Joseph bays; air-to-air firing practice range, Tyndall Air Force Base, Fla. 334..., DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.670 Gulf of Mexico south and west of...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Gulf of Mexico south and west of Apalachicola, San Blas, and St. Joseph bays; air-to-air firing practice range, Tyndall Air Force Base, Fla. 334..., DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.670 Gulf of Mexico south and west of...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Gulf of Mexico south and west of Apalachicola, San Blas, and St. Joseph bays; air-to-air firing practice range, Tyndall Air Force Base, Fla. 334..., DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.670 Gulf of Mexico south and west of...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Gulf of Mexico south and west of Apalachicola, San Blas, and St. Joseph bays; air-to-air firing practice range, Tyndall Air Force Base, Fla. 334..., DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.670 Gulf of Mexico south and west of...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-12
... navigational facilities, adding new obstacles, or changing air traffic requirements. These changes are designed... Control, Airports, Incorporation by reference, and Navigation (Air). Issued in Washington, DC, on November...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-06
... navigational facilities, adding new obstacles, or changing air traffic requirements. These changes are designed... Control, Airports, Incorporation by reference, and Navigation (Air). Issued in Washington, DC, on October...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-26
... navigational facilities, adding new obstacles, or changing air traffic requirements. These changes are designed... control, Airports, Incorporation by reference, and Navigation (air). Issued in Washington, DC, on November...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-15
... navigational facilities, adding new obstacles, or changing air traffic requirements. These changes are designed... traffic control, Airports, Incorporation by reference, and Navigation (air). Issued in Washington, DC, on...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-01
... navigational facilities, adding new obstacles, or changing air traffic requirements. These changes are designed... control, Airports, Incorporation by reference, and Navigation (air). Dated: Issued in Washington, DC, on...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-15
... navigational facilities, adding new obstacles, or changing air traffic requirements. These changes are designed... control, Airports, Incorporation by reference, and Navigation (air). Issued in Washington, DC on October...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-14
... navigational facilities, adding new obstacles, or changing air traffic requirements. These changes are designed... Control, Airports, Incorporation by reference, and Navigation (air). Issued in Washington, DC, on April 26...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-11
... navigational facilities, adding new obstacles, or changing air traffic requirements. These changes are designed... Control, Airports, Incorporation by reference, and Navigation (Air). Issued in Washington, DC, on June 24...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-19
... navigational facilities, adding new obstacles, or changing air traffic requirements. These changes are designed... control, Airports, Incorporation by reference, and Navigation (Air). Issued in Washington, DC, on August 2...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-27
... navigational facilities, adding new obstacles, or changing air traffic requirements. These changes are designed... Control, Airports, Incorporation by reference, and Navigation (Air). Issued in Washington, DC on December...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-28
... navigational facilities, adding new obstacles, or changing air traffic requirements. These changes are designed... control, Airports, Incorporation by reference, and Navigation (air). Issued in Washington, DC, on March 16...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-28
... navigational facilities, adding new obstacles, or changing air traffic requirements. These changes are designed... Control, Airports, Incorporation by reference, and Navigation (Air). Issued in Washington, DC, on October...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-28
... navigational facilities, adding new obstacles, or changing air traffic requirements. These changes are designed... Control, Airports, Incorporation by reference, and Navigation (air). Issued in Washington, DC, on October...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-08
... navigational facilities, adding new obstacles, or changing air traffic requirements. These changes are designed... Control, Airports, Incorporation by reference, and Navigation (air). Issued in Washington, DC, on July 22...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-14
... navigational facilities, adding new obstacles, or changing air traffic requirements. These changes are designed... Traffic Control, Airports, Incorporation by reference, and Navigation (Air). Issued in Washington, DC, on...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-27
... navigational facilities, adding new obstacles, or changing air traffic requirements. These changes are designed... traffic control, Airports, Incorporation by reference, and Navigation (Air). Issued in Washington, DC, on...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-15
... navigational facilities, adding new obstacles, or changing air traffic requirements. These changes are designed... Control, Airports, Incorporation by reference, and Navigation (Air). Issued in Washington, DC on September...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-19
... navigational facilities, adding new obstacles, or changing air traffic requirements. These changes are designed... Control, Airports, Incorporation by reference, and Navigation (Air). Issued in Washington, DC, on August 2...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-01
... navigational facilities, adding new obstacles, or changing air traffic requirements. These changes are designed... Control, Airports, Incorporation by reference, and Navigation (Air). Issued in Washington, DC, on April 12...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-28
... navigational facilities, adding new obstacles, or changing air traffic requirements. These changes are designed... Control, Airports, Incorporation by reference, and Navigation (Air). Issued in Washington, DC on September...
Code of Federal Regulations, 2013 CFR
2013-07-01
.... Naval Mine Warfare Test Station, or of U.S. Naval Air Station property. A person in the water or a... areas, U.S. Naval Air Test Center, Patuxent River, Md. 334.180 Section 334.180 Navigation and Navigable... REGULATIONS § 334.180 Patuxent River, Md.; restricted areas, U.S. Naval Air Test Center, Patuxent River, Md...
Code of Federal Regulations, 2014 CFR
2014-07-01
.... Naval Mine Warfare Test Station, or of U.S. Naval Air Station property. A person in the water or a... areas, U.S. Naval Air Test Center, Patuxent River, Md. 334.180 Section 334.180 Navigation and Navigable... REGULATIONS § 334.180 Patuxent River, Md.; restricted areas, U.S. Naval Air Test Center, Patuxent River, Md...
Code of Federal Regulations, 2012 CFR
2012-07-01
.... Naval Mine Warfare Test Station, or of U.S. Naval Air Station property. A person in the water or a... areas, U.S. Naval Air Test Center, Patuxent River, Md. 334.180 Section 334.180 Navigation and Navigable... REGULATIONS § 334.180 Patuxent River, Md.; restricted areas, U.S. Naval Air Test Center, Patuxent River, Md...
Code of Federal Regulations, 2011 CFR
2011-07-01
.... Naval Mine Warfare Test Station, or of U.S. Naval Air Station property. A person in the water or a... areas, U.S. Naval Air Test Center, Patuxent River, Md. 334.180 Section 334.180 Navigation and Navigable... REGULATIONS § 334.180 Patuxent River, Md.; restricted areas, U.S. Naval Air Test Center, Patuxent River, Md...
Code of Federal Regulations, 2010 CFR
2010-07-01
.... Naval Mine Warfare Test Station, or of U.S. Naval Air Station property. A person in the water or a... areas, U.S. Naval Air Test Center, Patuxent River, Md. 334.180 Section 334.180 Navigation and Navigable... REGULATIONS § 334.180 Patuxent River, Md.; restricted areas, U.S. Naval Air Test Center, Patuxent River, Md...
33 CFR 334.865 - Naval Air Station North Island, San Diego, California, restricted area.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Naval Air Station North Island... REGULATIONS § 334.865 Naval Air Station North Island, San Diego, California, restricted area. (a) The area... designee. (6) When security conditions dictate, Naval security forces may impose strict enforcement of...
33 CFR 334.865 - Naval Air Station North Island, San Diego, California, restricted area.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Naval Air Station North Island... REGULATIONS § 334.865 Naval Air Station North Island, San Diego, California, restricted area. (a) The area... designee. (6) When security conditions dictate, Naval security forces may impose strict enforcement of...
2008-10-31
Navigation Services Working Group Jan de Regt FAA Tony Richardson JPDO Technical Support James Roberts DoD AFFSA Eric Rolfe JPDO Air Navigation...Kirsch DHS Drew Kuepper DoD eragency Architecture and Engineering Division Jay Merkle JPDO Int Paul Polski DHS ing GroupElizabeth Lynn ye JPDO Air
Code of Federal Regulations, 2011 CFR
2011-07-01
... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Gulf of Mexico, south from Choctawhatchee Bay; guided missiles test operations area, Headquarters Air Proving Ground Command, U.S. Air Force... Mexico, south from Choctawhatchee Bay; guided missiles test operations area, Headquarters Air Proving...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Atlantic Ocean and connecting waters in vicinity of Myrtle Island, Va.; Air Force practice bombing, rocket firing, and gunnery range... waters in vicinity of Myrtle Island, Va.; Air Force practice bombing, rocket firing, and gunnery range...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Atlantic Ocean and connecting waters in vicinity of Myrtle Island, Va.; Air Force practice bombing, rocket firing, and gunnery range... waters in vicinity of Myrtle Island, Va.; Air Force practice bombing, rocket firing, and gunnery range...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Atlantic Ocean and connecting waters in vicinity of Myrtle Island, Va.; Air Force practice bombing, rocket firing, and gunnery range... waters in vicinity of Myrtle Island, Va.; Air Force practice bombing, rocket firing, and gunnery range...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Atlantic Ocean and connecting waters in vicinity of Myrtle Island, Va.; Air Force practice bombing, rocket firing, and gunnery range... waters in vicinity of Myrtle Island, Va.; Air Force practice bombing, rocket firing, and gunnery range...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Atlantic Ocean and connecting waters in vicinity of Myrtle Island, Va.; Air Force practice bombing, rocket firing, and gunnery range... waters in vicinity of Myrtle Island, Va.; Air Force practice bombing, rocket firing, and gunnery range...
DOT National Transportation Integrated Search
1995-04-01
Improved navigational technology, such as microwave landing systems (MLS) or : global positioning systems (GPS), installed in today's commercial aircraft : enable the air traffic control (ATC) system to better utilize its airspace. : This increased e...
33 CFR 165.768 - Security Zone; MacDill Air Force Base, Tampa Bay, FL.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Security Zone; MacDill Air Force....768 Security Zone; MacDill Air Force Base, Tampa Bay, FL. (a) Location. The following area is a security zone which exists concurrent with an Army Corps of Engineers restricted area in § 334.635 of this...
33 CFR 165.768 - Security Zone; MacDill Air Force Base, Tampa Bay, FL.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Security Zone; MacDill Air Force....768 Security Zone; MacDill Air Force Base, Tampa Bay, FL. (a) Location. The following area is a security zone which exists concurrent with an Army Corps of Engineers restricted area in § 334.635 of this...
33 CFR 165.768 - Security Zone; MacDill Air Force Base, Tampa Bay, FL.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Security Zone; MacDill Air Force....768 Security Zone; MacDill Air Force Base, Tampa Bay, FL. (a) Location. The following area is a security zone which exists concurrent with an Army Corps of Engineers restricted area in § 334.635 of this...
33 CFR 165.768 - Security Zone; MacDill Air Force Base, Tampa Bay, FL.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Security Zone; MacDill Air Force....768 Security Zone; MacDill Air Force Base, Tampa Bay, FL. (a) Location. The following area is a security zone which exists concurrent with an Army Corps of Engineers restricted area in § 334.635 of this...
77 FR 22523 - Safety Zone; 2012 Ocean City Air Show; Atlantic Ocean, Ocean City, MD
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-16
...-AA00 Safety Zone; 2012 Ocean City Air Show; Atlantic Ocean, Ocean City, MD AGENCY: Coast Guard, DHS... the navigable waters of the Atlantic Ocean in Ocean City, MD. This action is necessary to provide for the safety of life on navigable waters during the 2012 Ocean City Air Show. This action is intended to...
33 CFR 334.640 - Gulf of Mexico south of Apalachee Bay, Fla.; Air Force rocket firing range.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Bay, Fla.; Air Force rocket firing range. 334.640 Section 334.640 Navigation and Navigable Waters... REGULATIONS § 334.640 Gulf of Mexico south of Apalachee Bay, Fla.; Air Force rocket firing range. (a) The... meanderings of the shore to the point of beginning. (b) The regulations. (1) The fact that aerial rocket...
33 CFR 334.640 - Gulf of Mexico south of Apalachee Bay, Fla.; Air Force rocket firing range.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Bay, Fla.; Air Force rocket firing range. 334.640 Section 334.640 Navigation and Navigable Waters... REGULATIONS § 334.640 Gulf of Mexico south of Apalachee Bay, Fla.; Air Force rocket firing range. (a) The... meanderings of the shore to the point of beginning. (b) The regulations. (1) The fact that aerial rocket...
33 CFR 334.640 - Gulf of Mexico south of Apalachee Bay, Fla.; Air Force rocket firing range.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Bay, Fla.; Air Force rocket firing range. 334.640 Section 334.640 Navigation and Navigable Waters... REGULATIONS § 334.640 Gulf of Mexico south of Apalachee Bay, Fla.; Air Force rocket firing range. (a) The... meanderings of the shore to the point of beginning. (b) The regulations. (1) The fact that aerial rocket...
33 CFR 334.640 - Gulf of Mexico south of Apalachee Bay, Fla.; Air Force rocket firing range.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Bay, Fla.; Air Force rocket firing range. 334.640 Section 334.640 Navigation and Navigable Waters... REGULATIONS § 334.640 Gulf of Mexico south of Apalachee Bay, Fla.; Air Force rocket firing range. (a) The... meanderings of the shore to the point of beginning. (b) The regulations. (1) The fact that aerial rocket...
33 CFR 334.640 - Gulf of Mexico south of Apalachee Bay, Fla.; Air Force rocket firing range.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Bay, Fla.; Air Force rocket firing range. 334.640 Section 334.640 Navigation and Navigable Waters... REGULATIONS § 334.640 Gulf of Mexico south of Apalachee Bay, Fla.; Air Force rocket firing range. (a) The... meanderings of the shore to the point of beginning. (b) The regulations. (1) The fact that aerial rocket...
14 CFR 65.35 - Knowledge requirements.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Knowledge requirements. 65.35 Section 65.35 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRMEN... assistance service; (f) Air navigation, and aids to air navigation; and (g) Aviation weather. ...
14 CFR 65.35 - Knowledge requirements.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Knowledge requirements. 65.35 Section 65.35 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRMEN... assistance service; (f) Air navigation, and aids to air navigation; and (g) Aviation weather. ...
14 CFR 65.35 - Knowledge requirements.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Knowledge requirements. 65.35 Section 65.35 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRMEN... assistance service; (f) Air navigation, and aids to air navigation; and (g) Aviation weather. ...
Tightly-Coupled Image-Aided Inertial Navigation Using the Unscented Kalman Filter
2007-01-01
Integrated GPS/MEMS Inertial Navigation Package. In Proceedings of ION GNSS 2004, pp. 825–832, September 2004. [2] R. G. Brown and P. Y. Hwang ...Tightly-Coupled Image-Aided Inertial Navigation Using the Unscented Kalman Filter S. Ebcin, Air Force Institute of Technology M. Veth, Air Force...inertial sen- sors using an extended Kalman filter (EKF) algo- rithm. In this approach, the image feature corre- spondence search was aided using the
Implementation of Satellite Techniques in the Air Transport
NASA Astrophysics Data System (ADS)
Fellner, Andrzej; Jafernik, Henryk
2016-06-01
The article shows process of the implementation satellite systems in Polish aviation which contributed to accomplishment Performance-Based Navigation (PBN) concept. Since 1991 authors have introduced Satellite Navigation Equipment in Polish Air Forces. The studies and researches provide to the Polish Air Force alternative approaches, modernize their navigation and landing systems and achieve compatibility with systems of the North Atlantic Treaty Organization (NATO) and International Civil Aviation Organization (ICAO). Acquired experience, conducted military tests and obtained results enabled to take up work scientifically - research in the environment of the civil aviation. Therefore in 2008 there has been launched cooperation with Polish Air Navigation Services Agency (PANSA). Thanks to cooperation, there have been compiled and fulfilled three fundamental international projects: EGNOS APV MIELEC (EGNOS Introduction in European Eastern Region - APV Mielec), HEDGE (Helicopters Deploy GNSS in Europe), SHERPA (Support ad-Hoc to Eastern Region Pre-operational in GNSS). The successful completion of these projects enabled implementation 21 procedures of the RNAV GNSS final approach at Polish airports, contributing to the implementation of PBN in Poland as well as ICAO resolution A37-11. Results of conducted research which served for the implementation of satellite techniques in the air transport constitute the meaning of this material.
Issues in symbol design for electronic displays of navigation information
DOT National Transportation Integrated Search
2004-10-24
An increasing number of electronic displays, ranging from small hand-held displays for general aviation to installed displays for air transport, are showing navigation information, such as symbols representing navigational aids. The wide range of dis...
Evaluation of a technique to simplify area navigation and required navigation performance charts
DOT National Transportation Integrated Search
2013-06-30
Performance based navigation (PBN), an enabler for the Federal Aviation Administration's Next Generation Air Transportation System (NextGEN), supports the design of more precise flight procedures. However, these new procedures can be visually complex...
The impact of inertial navigation on air safety.
DOT National Transportation Integrated Search
1971-05-01
An analysis of inertial navigation system performance data was carried out to assess the probable impact of inertial navigation on the aircraft collision risk in the North Atlantic region. These data were used to calculate the collision risk between ...
Considerations for an Integrated UAS CNS Architecture
NASA Technical Reports Server (NTRS)
Templin, Fred L.; Jain, Raj; Sheffield, Greg; Taboso-Bellesteros, Pedro; Ponchak, Denise
2017-01-01
The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) is investigating revolutionary and advanced universal, reliable, always available, cyber secure and affordable Communication, Navigation, Surveillance (CNS) options for all altitudes of UAS operations. In Spring 2015, NASA issued a Call for Proposals under NASA Research Announcements (NRA) NNH15ZEA001N, Amendment 7 Subtopic 2.4. Boeing was selected to conduct a study with the objective to determine the most promising candidate technologies for Unmanned Air Systems (UAS) air-to-air and air-to-ground data exchange and analyze their suitability in a post-NextGen NAS environment. The overall objectives are to develop UAS CNS requirements and then develop architectures that satisfy the requirements for UAS in both controlled and uncontrolled air space. This contract is funded under NASAs Aeronautics Research Mission Directorates (ARMD) Aviation Operations and Safety Program (AOSP) Safe Autonomous Systems Operations (SASO) project and proposes technologies for the Unmanned Air Systems Traffic Management (UTM) service.There is a need for accommodating large-scale populations of Unmanned Air Systems (UAS) in the national air space. Scale obviously impacts capacity planning for Communication, Navigation, and Surveillance (CNS) technologies. For example, can wireless communications data links provide the necessary capacity for accommodating millions of small UASs (sUAS) nationwide? Does the communications network provide sufficient Internet Protocol (IP) address space to allow air traffic control to securely address both UAS teams as a whole as well as individual UAS within each team? Can navigation and surveillance approaches assure safe route planning and safe separation of vehicles even in crowded skies?Our objective is to identify revolutionary and advanced CNS alternatives supporting UASs operating at all altitudes and in all airspace while accurately navigating in the absence of navigational aids. These CNS alternatives must be reliable, redundant, always available, cyber-secure, and affordable for all types of vehicles including small UAS to large transport category aircraft. The approach will identify CNS technology candidates that can meet the needs of the range of UAS missions to specific air traffic management applications where they will be most beneficial and cost effective.
33 CFR 165.1319 - Safety Zone Regulations, Seafair Blue Angels Air Show Performance, Seattle, WA.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Safety Zone Regulations, Seafair... Thirteenth Coast Guard District § 165.1319 Safety Zone Regulations, Seafair Blue Angels Air Show Performance... Federal Register. (b) Location. The following is a safety zone: All waters of Lake Washington encompassed...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Wisconsin Air National Guard, Volk Field military exercise area located in Lake Michigan offshore from Manitowoc and Sheboygan..., DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.845 Wisconsin...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Wisconsin Air National Guard, Volk Field military exercise area located in Lake Michigan offshore from Manitowoc and Sheboygan..., DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.845 Wisconsin...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Wisconsin Air National Guard, Volk Field military exercise area located in Lake Michigan offshore from Manitowoc and Sheboygan..., DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.845 Wisconsin...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Wisconsin Air National Guard, Volk Field military exercise area located in Lake Michigan offshore from Manitowoc and Sheboygan..., DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.845 Wisconsin...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Wisconsin Air National Guard, Volk Field military exercise area located in Lake Michigan offshore from Manitowoc and Sheboygan..., DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.845 Wisconsin...
Learning at Air Navigation Services after Initial Training
ERIC Educational Resources Information Center
Teperi, Anna-Maria; Leppanen, Anneli
2010-01-01
Purpose: This study aims to find out the means used for individual, group and organizational learning at work at one air navigation service provider after the initial training period. The study also aims to find out what practices need to be improved to enhance learning at work. Design/methodology/approach: The data for the study were collected…
Radio/FADS/IMU integrated navigation for Mars entry
NASA Astrophysics Data System (ADS)
Jiang, Xiuqiang; Li, Shuang; Huang, Xiangyu
2018-03-01
Supposing future orbiting and landing collaborative exploration mission as the potential project background, this paper addresses the issue of Mars entry integrated navigation using radio beacon, flush air data sensing system (FADS), and inertial measurement unit (IMU). The range and Doppler information sensed from an orbiting radio beacon, the dynamic pressure and heating data sensed from flush air data sensing system, and acceleration and attitude angular rate outputs from an inertial measurement unit are integrated in an unscented Kalman filter to perform state estimation and suppress the system and measurement noise. Computer simulations show that the proposed integrated navigation scheme can enhance the navigation accuracy, which enables precise entry guidance for the given Mars orbiting and landing collaborative exploration mission.
Requirements for an Integrated UAS CNS Architecture
NASA Technical Reports Server (NTRS)
Templin, Fred L.; Jain, Raj; Sheffield, Greg; Taboso-Ballesteros, Pedro; Ponchak, Denise
2017-01-01
Communications, Navigation and Surveillance (CNS) requirements must be developed in order to establish a CNS architecture supporting Unmanned Air Systems integration in the National Air Space (UAS in the NAS). These requirements must address cybersecurity, future communications, satellite-based navigation and APNT, and scalable surveillance and situational awareness. CNS integration, consolidation and miniaturization requirements are also important to support the explosive growth in small UAS deployment. Air Traffic Management (ATM) must also be accommodated to support critical Command and Control (C2) for Air Traffic Controllers (ATC). This document therefore presents UAS CNS requirements that will guide the architecture.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Gulf of Mexico and Apalachicola Bay south of Apalachicola, Fla., Drone Recovery Area, Tyndall Air Force Base, Fla. 334.660 Section 334... DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.660 Gulf of Mexico and Apalachicola Bay south of...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Gulf of Mexico and Apalachicola Bay south of Apalachicola, Fla., Drone Recovery Area, Tyndall Air Force Base, Fla. 334.660 Section 334... DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.660 Gulf of Mexico and Apalachicola Bay south of...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Gulf of Mexico and Apalachicola Bay south of Apalachicola, Fla., Drone Recovery Area, Tyndall Air Force Base, Fla. 334.660 Section 334... DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.660 Gulf of Mexico and Apalachicola Bay south of...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Gulf of Mexico and Apalachicola Bay south of Apalachicola, Fla., Drone Recovery Area, Tyndall Air Force Base, Fla. 334.660 Section 334... DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.660 Gulf of Mexico and Apalachicola Bay south of...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Gulf of Mexico and Apalachicola Bay south of Apalachicola, Fla., Drone Recovery Area, Tyndall Air Force Base, Fla. 334.660 Section 334... DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.660 Gulf of Mexico and Apalachicola Bay south of...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-26
... file V-243 are being vectored between the Bowling Green, KY (BWG), VOR Tactical Air Navigation (VORTAC... Administration proposes to amend 14 CFR part 71 as follows: PART 71--DESIGNATION OF CLASS A, B, C, D, AND E...] radials; Choo Choo; to Bowling Green, KY. * * * * * Paragraph 6011 United States Area Navigation Routes...
14 CFR 171.205 - Minimum requirements for approval.
Code of Federal Regulations, 2010 CFR
2010-01-01
... (CONTINUED) NAVIGATIONAL FACILITIES NON-FEDERAL NAVIGATION FACILITIES VHF Marker Beacons § 171.205 Minimum... marker beacon facility under this subpart: (1) The facility's performances, as determined by air and...
Pragmatic Divestment of KC-135 Navigators in the Special Operations Air Refueling Mission
2015-03-26
publicly expressed opinions, and the bandwagon effect of majority opinion. This technique replaces direct debate by a carefully designed program of... effective , comprehensive solution. Ultimately, the panel of experts arrived at conclusions supporting the hypothesis that navigator divestment and SOAR...manpower, personnel, and training effects after navigators are phased out
Investigation of Air Transportation Technology at Ohio University, 1989-1990
NASA Technical Reports Server (NTRS)
Lilley, Robert W.
1990-01-01
The activities of the participants in the Joint University Program (JUP) at Ohio University are briefly surveyed. During 1989 to 1990, five topics received emphasis. A spectrum-efficient weather data uplink system was designed, constructed, and flight tested. An integrated Global Positioning System/Inertial Navigation System (GPS/INS) study continued, utilizing the Redundant strapdown Inertial Measurement Unit (IMU) on loan from NASA. The Ridge Regression theory was refined and applied to air navigation scenarios. System Identification theory was applied to GPS data to point the way to better understanding of the effects of Selective Availability on civilian users of this navigation system. An analysis of thought-related (electroencephalographic) signals for application to control of computer systems that could have significance in aiding paraplegics or for hands-off systems control in industrial or air traffic control areas was carried out.
GPS Auto-Navigation Design for Unmanned Air Vehicles
NASA Technical Reports Server (NTRS)
Nilsson, Caroline C. A.; Heinzen, Stearns N.; Hall, Charles E., Jr.; Chokani, Ndaona
2003-01-01
A GPS auto-navigation system is designed for Unmanned Air Vehicles. The objective is to enable the air vehicle to be used as a test-bed for novel flow control concepts. The navigation system uses pre-programmed GPS waypoints. The actual GPS position, heading, and velocity are collected by the flight computer, a PC104 system running in Real-Time Linux, and compared with the desired waypoint. The navigator then determines the necessity of a heading correction and outputs the correction in the form of a commanded bank angle, for a level coordinated turn, to the controller system. This controller system consists of 5 controller! (pitch rate PID, yaw damper, bank angle PID, velocity hold, and altitude hold) designed for a closed loop non-linear aircraft model with linear aerodynamic coefficients. The ability and accuracy of using GPS data, is validated by a GPS flight. The autopilots are also validated in flight. The autopilot unit flight validations show that the designed autopilots function as designed. The aircraft model, generated on Matlab SIMULINK is also enhanced by the flight data to accurately represent the actual aircraft.
Bio-Inspired Navigation of Chemical Plumes
2006-07-01
Bio-Inspired Navigation of Chemical Plumes Maynard J. Porter III, Captain, USAF Department of Electrical and Computer Engineering Air Force Institute...Li. " Chemical plume tracing via an autonomous underwater vehicle". IEEE Journal of Ocean Engineering , 30(2):428— 442, 2005. [6] G. A. Nevitt...Electrical and Computer Engineering Air Force Institute of Technology Dayton, OH 45433-7765, U.S.A. juan.vasquez@afit.edu May 31, 2006 Abstract - The
Institute of Navigation, Annual Meeting, 47th, Williamsburg, VA, June 10-12, 1991, Proceedings
NASA Astrophysics Data System (ADS)
1991-11-01
The present volume of navigation and exploration discusses space exploration, mapping and geodesy, aircraft navigation, undersea navigation, land and vehicular location, international and legal aspects of navigation, the history of navigation technology and applications, Loran development and implementation, GPS and GLONASS developments, and search and rescue. Topics addressed include stabilization of low orbiting spacecraft using GPS, the employment of laser navigation for automatic rendezvous and docking systems, enhanced pseudostatic processing, and the expanding role of sensor fusion. Attention is given to a gravity-aided inertial navigation system, recent developments in aviation products liability and navigation, the ICAO future air navigation system, and Loran's implementation in NAS. Also discussed are Inmarsat integrated navigation/communication activities, the GPS program status, the evolution of military GPS technology into the Navcore V receiver engine, and Sarsat location algorithms.
Data management of Shuttle radiofrequency navigation aids
NASA Technical Reports Server (NTRS)
Stokes, R. E.; Presser, P.
1982-01-01
It is noted that the Shuttle navigation system employs redundant tactical air navigation (tacan) and microwave scanning beam landing system (MSBLS) equipment for use in navigation during descent from altitudes of about 150,000 feet through rollout. Attention is given here to the multiple tacan and MSBLS units (three each) that were placed onboard to provide the necessary protection in the event of possible failures. The goals, features, approach, and performance of onboard software required to manage multiple tacan MSBLS units and to provide the corresponding data for navigation processing are described.
Improved navigation by combining VOR/DME information with air or inertial data
NASA Technical Reports Server (NTRS)
Bobick, J. C.; Bryson, A. E., Jr.
1972-01-01
The improvement was determined in navigational accuracy obtainable by combining VOR/DME information (from one or two stations) with air data (airspeed and heading) or with data from an inertial navigation system (INS) by means of a maximum-likelihood filter. It was found that the addition of air data to the information from one VOR/DME station reduces the RMS position error by a factor of about 2, whereas the addition of inertial data from a low-quality INS reduces the RMS position error by a factor of about 3. The use of information from two VOR/DME stations with air or inertial data yields large factors of improvement in RMS position accuracy over the use of a single VOR/DME station, roughly 15 to 20 for the air-data case and 25 to 35 for the inertial-data case. As far as position accuracy is concerned, at most one VOR station need be used. When continuously updating an INS with VOR/DME information, the use of a high-quality INS (0.01 deg/hr gyro drift) instead of a low-quality INS (1.0 deg/hr gyro drift) does not substantially improve position accuracy.
78 FR 70900 - Proposed Modification of Area Navigation (RNAV) Route Q-20, TX
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-27
... reduced track distances. Q-20 extends between the Corona, NM, VHF Omnidirectional Range/Tactical Air... States Area Navigation Routes. * * * * * Q-20 CNX, NM to JCT, TX [Amended] Corona (CNX), NM VORTAC (Lat...
Requirements for an Integrated UAS CNS Architecture
NASA Technical Reports Server (NTRS)
Templin, Fred; Jain, Raj; Sheffield, Greg; Taboso, Pedro; Ponchak, Denise
2017-01-01
The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) is investigating revolutionary and advanced universal, reliable, always available, cyber secure and affordable Communication, Navigation, Surveillance (CNS) options for all altitudes of UAS operations. In Spring 2015, NASA issued a Call for Proposals under NASA Research Announcements (NRA) NNH15ZEA001N, Amendment 7 Subtopic 2.4. Boeing was selected to conduct a study with the objective to determine the most promising candidate technologies for Unmanned Air Systems (UAS) air-to-air and air-to-ground data exchange and analyze their suitability in a post-NextGen NAS environment. The overall objectives are to develop UAS CNS requirements and then develop architectures that satisfy the requirements for UAS in both controlled and uncontrolled air space. This contract is funded under NASAs Aeronautics Research Mission Directorates (ARMD) Aviation Operations and Safety Program (AOSP) Safe Autonomous Systems Operations (SASO) project and proposes technologies for the Unmanned Air Systems Traffic Management (UTM) service. Communications, Navigation and Surveillance (CNS) requirements must be developed in order to establish a CNS architecture supporting Unmanned Air Systems integration in the National Air Space (UAS in the NAS). These requirements must address cybersecurity, future communications, satellite-based navigation APNT, and scalable surveillance and situational awareness. CNS integration, consolidation and miniaturization requirements are also important to support the explosive growth in small UAS deployment. Air Traffic Management (ATM) must also be accommodated to support critical Command and Control (C2) for Air Traffic Controllers (ATC). This document therefore presents UAS CNS requirements that will guide the architecture.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Potomac River, Marine Corps Base... DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.235 Potomac River, Marine Corps Base Quantico... the navigable waters of the Potomac River extending approximately 500 meters from the high-water mark...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Potomac River, Marine Corps Base... DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.235 Potomac River, Marine Corps Base Quantico... the navigable waters of the Potomac River extending approximately 500 meters from the high-water mark...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Potomac River, Marine Corps Base... DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.235 Potomac River, Marine Corps Base Quantico... the navigable waters of the Potomac River extending approximately 500 meters from the high-water mark...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Potomac River, Marine Corps Base... DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.235 Potomac River, Marine Corps Base Quantico... the navigable waters of the Potomac River extending approximately 500 meters from the high-water mark...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-20
...-AA00 Safety Zone; 2013 Naval Air Station Key West Air Spectacular, Boca Chica Channel; Boca Chica, FL... Air Station Key West Air Spectacular. The safety zone is necessary to provide for the safety of life on navigable waters during the air show and air show practices. Persons and vessels are prohibited...
Considerations for an Integrated UAS CNS Architecture
NASA Technical Reports Server (NTRS)
Templin, Fred L.; Jain, Raj; Sheffield, Greg; Taboso-Bellesteros, Pedro; Ponchak, Denise
2017-01-01
The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) is investigating revolutionary and advanced universal, reliable, always available, cyber secure and affordable Communication, Navigation, Surveillance (CNS) options for all altitudes of UAS operations. In Spring 2015, NASA issued a Call for Proposals under NASA Research Announcements (NRA) NNH15ZEA001N, Amendment 7 Subtopic 2.4. Boeing was selected to conduct a study with the objective to determine the most promising candidate technologies for Unmanned Air Systems (UAS) air-to-air and air-to-ground data exchange and analyze their suitability in a post-NextGen NAS environment. The overall objectives are to develop UAS CNS requirements and then develop architectures that satisfy the requirements for UAS in both controlled and uncontrolled air space. This contract is funded under NASAs Aeronautics Research Mission Directorates (ARMD) Aviation Operations and Safety Program (AOSP) Safe Autonomous Systems Operations (SASO) project and proposes technologies for the Unmanned Air Systems Traffic Management (UTM) service.There is a need for accommodating large-scale populations of Unmanned Air Systems (UAS) in the national air space. Scale obviously impacts capacity planning for Communication, Navitation, and Surveillance (CNS) technologies. For example, can wireless communications data links provide the necessary capacity for accommodating millions of small UASs (sUAS) nationwide? Does the communications network provide sufficient Internet Protocol (IP) address space to allow air traffic control to securely address both UAS teams as a whole as well as individual UAS within each team? Can navigation and surveillance approaches assure safe route planning and safe separation of vehicles even in crowded skies?Our objective is to identify revolutionary and advanced CNS alternatives supporting UASs operating at all altitudes and in all airspace while accurately navigating in the absence of navigational aids. These CNS alternatives must be reliable, redundant, always available, cyber-secure, and affordable for all types of vehicles including small UAS to large transport category aircraft. The approach will identify CNS technology candidates that can meet the needs of the range of UAS missions to specific air traffic management applications where they will be most beneficial and cost effective.
Code of Federal Regulations, 2011 CFR
2011-07-01
..., Fla.; Air Force missile testing area, Patrick Air Force Base, Fla. 334.590 Section 334.590 Navigation... RESTRICTED AREA REGULATIONS § 334.590 Atlantic Ocean off Cape Canaveral, Fla.; Air Force missile testing area... during firing periods to be specified by the Commander, Air Force Missile Test Center, Patrick Air Force...
Code of Federal Regulations, 2013 CFR
2013-07-01
..., Fla.; Air Force missile testing area, Patrick Air Force Base, Fla. 334.590 Section 334.590 Navigation... RESTRICTED AREA REGULATIONS § 334.590 Atlantic Ocean off Cape Canaveral, Fla.; Air Force missile testing area... during firing periods to be specified by the Commander, Air Force Missile Test Center, Patrick Air Force...
Code of Federal Regulations, 2012 CFR
2012-07-01
..., Fla.; Air Force missile testing area, Patrick Air Force Base, Fla. 334.590 Section 334.590 Navigation... RESTRICTED AREA REGULATIONS § 334.590 Atlantic Ocean off Cape Canaveral, Fla.; Air Force missile testing area... during firing periods to be specified by the Commander, Air Force Missile Test Center, Patrick Air Force...
Code of Federal Regulations, 2014 CFR
2014-07-01
..., Fla.; Air Force missile testing area, Patrick Air Force Base, Fla. 334.590 Section 334.590 Navigation... RESTRICTED AREA REGULATIONS § 334.590 Atlantic Ocean off Cape Canaveral, Fla.; Air Force missile testing area... during firing periods to be specified by the Commander, Air Force Missile Test Center, Patrick Air Force...
1951-03-14
human "We have been very much occupied In perfect. engineering to the improvement of the air-navigation ing the machines and the tools which the...a man-machine system which will ever, if he were only considered as an instrument, yield optimal results in the way of efficiency and a tool , a motor...operation of machines and equipment and system development, which will permit tools , the emphasis has been upon the adjustment of an orderly and
North Atlantic (NAT) aided inertial navigation system simulation volume I. : technical results
DOT National Transportation Integrated Search
1973-07-01
Current air traffic operations over the North ATlantic (NAT) and the application of hybrid navigation systems to obtain more accurate performance on these NAT routes are reviewed. A digital computer simulation program (NATNAV - North ATlantic NAVigat...
The Global Positioning System: Theory and operation
NASA Astrophysics Data System (ADS)
Tucker, Lester Plunkett
Scope and method of study. The purpose of this study is to document the theory, development, and training needs of the United States Global Positioning System for the United States Air Force. This subject area had very little information and to assess the United States Air Force training needs required an investigation into existing training accomplished on the Global Positioning System. The United States Air Force has only one place to obtain the data at Headquarters Air Education and Training Command. Findings and conclusion. The United States Air Force, at the time of this study, does not have a theory and operations course dealing with the newest technology advancement in world navigation. Although this new technology is being provided on aircraft in the form of new navigation hardware, no official course of study is provided by the United States Air Force to it's pilots and navigators dealing with theory and operation. Based on the latest reports dealing with the Global Positioning System, a course on the Global Positioning System was developed in the Instructional Systems Design format to provide background information and understanding of this new technology. Readers of this study must be aware that the information contained in this study is very dynamic. Technology is advancing so fast in this area that it might make this information obsolete in a short amount of time.
14 CFR 125.287 - Initial and recurrent pilot testing requirements.
Code of Federal Regulations, 2010 CFR
2010-01-01
... TRANSPORTATION (CONTINUED) AIR CARRIERS AND OPERATORS FOR COMPENSATION OR HIRE: CERTIFICATION AND OPERATIONS... air navigation aids appropriate to the operation of pilot authorization, including, when applicable, instrument approach facilities and procedures; (5) Air traffic control procedures, including IFR procedures...
Code of Federal Regulations, 2010 CFR
2010-07-01
..., Fla.; Air Force missile testing area, Patrick Air Force Base, Fla. 334.590 Section 334.590 Navigation... RESTRICTED AREA REGULATIONS § 334.590 Atlantic Ocean off Cape Canaveral, Fla.; Air Force missile testing area, Patrick Air Force Base, Fla. (a) The danger zone. An area in the Atlantic Ocean immediately offshore from...
76 FR 18395 - Safety Zone; Naval Air Station Corpus Christi Air Show, Oso Bay, Corpus Christi, TX
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-04
...-AA00 Safety Zone; Naval Air Station Corpus Christi Air Show, Oso Bay, Corpus Christi, TX AGENCY: Coast... zone on the navigable waters of Oso Bay in Corpus Christi, Texas in support of the 2011 Naval Air Station Corpus Christi Air Show. This temporary safety zone is necessary to provide for the safety of...
GPS aviation outage prediction and reporting systems
DOT National Transportation Integrated Search
1997-11-01
Use of GPS for instrument flight rule (IFR) air navigation requires that the system have integrity. Integrity is the ability to detect when a satellite is out of tolerance and should not be used in the navigation solution and then warns the pilot in ...
Autonomous navigation system. [gyroscopic pendulum for air navigation
NASA Technical Reports Server (NTRS)
Merhav, S. J. (Inventor)
1981-01-01
An inertial navigation system utilizing a servo-controlled two degree of freedom pendulum to obtain specific force components in the locally level coordinate system is described. The pendulum includes a leveling gyroscope and an azimuth gyroscope supported on a two gimbal system. The specific force components in the locally level coordinate system are converted to components in the geographical coordinate system by means of a single Euler transformation. The standard navigation equations are solved to determine longitudinal and lateral velocities. Finally, vehicle position is determined by a further integration.
76 FR 57644 - Air Installations Compatible Use Zones
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-16
... DEPARTMENT OF DEFENSE Office of the Secretary 32 CFR Part 256 [DoD Instruction 4165.57] Air... removes the DoD's rule concerning air installations compatible use zones. The underlying DoD Instruction...; navigation (air); noise control. PART 256--[REMOVED] 0 Accordingly, by the authority of 5 U.S.C. 301, 32 CFR...
General Electric Unattended Power System Study. Addendum
1980-05-01
AND NAVIGATION SYSTEMS ELECTRONIC SYSTEMS DIVISION AIR FORCE SYSTEMS COMMAND UNITED STATES AIR FORCE Hascom Air Force Base, Massachusetts DTIC C-3 B I...MITRE Corporation under Project No. 633A. The contract is sponsored by the Electronic Systems *Division, Air Force Systems Command, Hanscom Air Force...is delivered fully integrated, tested, and certified. The system consists of a combustion system, vapor generator, turbo- alternator, air -cooled
76 FR 26607 - Safety Zone; Air Power Over Hampton Roads, Back River, Hampton, VA
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-09
...-AA00 Safety Zone; Air Power Over Hampton Roads, Back River, Hampton, VA AGENCY: Coast Guard, DHS... the safety of life on navigable waters during the Air Power Over Hampton Roads Air Show. This action.... This safety zone is in the interest of public safety during the Hampton Roads Air Show and will be...
14 CFR 77.35 - Aeronautical studies.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Aeronautical studies. 77.35 Section 77.35... OBJECTS AFFECTING NAVIGABLE AIRSPACE Aeronautical Studies of Effect of Proposed Construction on Navigable Airspace § 77.35 Aeronautical studies. (a) The Regional Manager, Air Traffic Division of the region in...
Functional Description of Air Traffic Control
DOT National Transportation Integrated Search
1971-04-01
The document contains a description of air traffic control in terms of generic operational functions. The functions are grouped by flight phase and by major system function (navigation, surveillance, control and communication). More detailed descript...
Recent Events in Guidance, Navigation and Control
NASA Technical Reports Server (NTRS)
Polites, Michael E.; Bullman, Jack (Technical Monitor)
2001-01-01
This article summarizes recent events in Guidance, Navigation, and Control (GN&C) in space, weapons and missiles, and aircraft. The section on space includes recent developments with the following NASA spacecraft and space vehicles: Near Earth Asteroid Rendezvous, Deep Space 1, Microwave Anisotropy Probe, Earth Observer-1, Compton Gamma Ray Observatory, the International Space Station, X-38, and X-40A. The section on weapons and missiles includes recent developments with the following missiles: Joint Air-to-Surface Standoff Missile, Storm Shadow/Scalp EG precision standoff missile, Hellfire missile, AIM-120C Advanced medium-range air-to-air missile, Derby missile, Arrow 2, and the Standard Missile SM-3. The section on aircraft includes recent developments with the following aircraft: Joint Strike Fighter, X-31, V-22, Couger/SUDer Puma Mk. 2, Predator B 001, and the Unmanned Combat Air Vehicle.
14 CFR 77.21 - Department of Defense (DOD) airport imaginary surfaces.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Department of Defense (DOD) airport imaginary surfaces. 77.21 Section 77.21 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Determining Obstructions to Air Navigation or Navigational Aids or Facilities § 77.21 Department of Defense...
14 CFR 77.21 - Department of Defense (DOD) airport imaginary surfaces.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Department of Defense (DOD) airport imaginary surfaces. 77.21 Section 77.21 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Determining Obstructions to Air Navigation or Navigational Aids or Facilities § 77.21 Department of Defense...
14 CFR 77.21 - Department of Defense (DOD) airport imaginary surfaces.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Department of Defense (DOD) airport imaginary surfaces. 77.21 Section 77.21 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Determining Obstructions to Air Navigation or Navigational Aids or Facilities § 77.21 Department of Defense...
14 CFR 77.35 - Aeronautical studies.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Aeronautical studies. 77.35 Section 77.35... OBJECTS AFFECTING NAVIGABLE AIRSPACE (Eff. until 1-18-11) Aeronautical Studies of Effect of Proposed Construction on Navigable Airspace § 77.35 Aeronautical studies. (a) The Regional Manager, Air Traffic Division...
77 FR 19928 - Amendment of Class E Airspace; Hugo, CO
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-03
.... Decommissioning of the Hugo Tactical Air Navigation System (TACAN) has made this action necessary for the safety... legal description is better clarified at the request of the National Aeronautical Navigation Services... to publication, it was discovered by NANS that the legal description needed editing by removing the...
78 FR 65556 - Establishment of Class E Airspace; Cut Bank, MT
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-01
...-0532; Airspace Docket No. 13-ANM-21] Establishment of Class E Airspace; Cut Bank, MT AGENCY: Federal... at the Cut Bank VHF Omni-Directional Radio Range Tactical Air Navigational Aid (VORTAC) navigation aid, Cut Bank, MT, to facilitate vectoring of Instrument Flight Rules (IFR) aircraft under control of...
An analysis of the adaptability of Loran-C to air navigation
NASA Technical Reports Server (NTRS)
Littlefield, J. A.
1981-01-01
The sources of position errors characteristics of the Loran-C navigation system were identified. Particular emphasis was given to their point on entry as well as their elimination. It is shown that the ratio of realized accuracy to theoretical accuracy of the Loran-C is highly receiver dependent.
78 FR 31840 - Safety Zone; USO Patriotic Festival Air Show, Atlantic Ocean; Virginia Beach, VA
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-28
...-AA00 Safety Zone; USO Patriotic Festival Air Show, Atlantic Ocean; Virginia Beach, VA AGENCY: Coast... provide for the safety of life on navigable waters during the USO Patriotic Festival Air Show. This action... Patriotic Festival Air Show, Atlantic Ocean; Virginia Beach, VA. (a) Regulated Area. The following area is a...
Canino-Rodríguez, José M; García-Herrero, Jesús; Besada-Portas, Juan; Ravelo-García, Antonio G; Travieso-González, Carlos; Alonso-Hernández, Jesús B
2015-03-04
The limited efficiency of current air traffic systems will require a next-generation of Smart Air Traffic System (SATS) that relies on current technological advances. This challenge means a transition toward a new navigation and air-traffic procedures paradigm, where pilots and air traffic controllers perform and coordinate their activities according to new roles and technological supports. The design of new Human-Computer Interactions (HCI) for performing these activities is a key element of SATS. However efforts for developing such tools need to be inspired on a parallel characterization of hypothetical air traffic scenarios compatible with current ones. This paper is focused on airborne HCI into SATS where cockpit inputs came from aircraft navigation systems, surrounding traffic situation, controllers' indications, etc. So the HCI is intended to enhance situation awareness and decision-making through pilot cockpit. This work approach considers SATS as a system distributed on a large-scale with uncertainty in a dynamic environment. Therefore, a multi-agent systems based approach is well suited for modeling such an environment. We demonstrate that current methodologies for designing multi-agent systems are a useful tool to characterize HCI. We specifically illustrate how the selected methodological approach provides enough guidelines to obtain a cockpit HCI design that complies with future SATS specifications.
Canino-Rodríguez, José M.; García-Herrero, Jesús; Besada-Portas, Juan; Ravelo-García, Antonio G.; Travieso-González, Carlos; Alonso-Hernández, Jesús B.
2015-01-01
The limited efficiency of current air traffic systems will require a next-generation of Smart Air Traffic System (SATS) that relies on current technological advances. This challenge means a transition toward a new navigation and air-traffic procedures paradigm, where pilots and air traffic controllers perform and coordinate their activities according to new roles and technological supports. The design of new Human-Computer Interactions (HCI) for performing these activities is a key element of SATS. However efforts for developing such tools need to be inspired on a parallel characterization of hypothetical air traffic scenarios compatible with current ones. This paper is focused on airborne HCI into SATS where cockpit inputs came from aircraft navigation systems, surrounding traffic situation, controllers’ indications, etc. So the HCI is intended to enhance situation awareness and decision-making through pilot cockpit. This work approach considers SATS as a system distributed on a large-scale with uncertainty in a dynamic environment. Therefore, a multi-agent systems based approach is well suited for modeling such an environment. We demonstrate that current methodologies for designing multi-agent systems are a useful tool to characterize HCI. We specifically illustrate how the selected methodological approach provides enough guidelines to obtain a cockpit HCI design that complies with future SATS specifications. PMID:25746092
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-02
... facilities, adding new obstacles, or changing air traffic requirements. These changes are designed to provide... control, Airports, Incorporation by reference, and Navigation (air). Issued in Washington, DC, on 22...
NASA Technical Reports Server (NTRS)
1972-01-01
A terminal area simulation is described which permits analysis and synthesis of current and advanced air traffic management system configurations including ground and airborne instrumentation and new and modified aircraft characteristics. Ground elements in the simulation include navigation aids, surveillance radars, communication links, air-route structuring, ATC procedures, airport geometries and runway handling constraints. Airborne elements include traffic samples with individual aircraft performance and operating characteristics and aircraft navigation equipment. The simulation also contains algorithms for conflict detection, conflict resolution, sequencing and pilot-controller data links. The simulation model is used to determine the sensitivities of terminal area traffic flow, safety and congestion to aircraft performance characteristics, avionics systems, and other ATC elements.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-12
... navigational facilities, adding new obstacles, or changing air traffic requirements. These changes are designed... criteria of the Regulatory Flexibility Act. List of Subjects in 14 CFR part 97 Air Traffic Control...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-01
... navigational facilities, adding new obstacles, or changing air traffic requirements. These changes are designed... criteria of the Regulatory Flexibility Act. List of Subjects in 14 CFR Part 97 Air traffic control...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-26
... navigational facilities, adding new obstacles, or changing air traffic requirements. These changes are designed... criteria of the Regulatory Flexibility Act. List of Subjects in 14 CFR Part 97 Air traffic control...
DEMONSTRATION OF AUTONOMOUS AIR MONITORING THROUGH ROBOTICS
This project included modifying an existing teleoperated robot to include autonomous navigation, large object avoidance, and air monitoring and demonstrating that prototype robot system in indoor and outdoor environments. An existing teleoperated "Surveyor" robot developed by ARD...
Journal of Air Transportation, Volume 8, No. 2. Volume 8, No. 2
NASA Technical Reports Server (NTRS)
Bowen, Brent (Editor); Kabashkin, Igor (Editor); Nickerson, Jocelyn (Editor)
2003-01-01
The mission of the Journal of Air Transportation (JAT) is to provide the global community immediate key resource information in all areas of air transportation. This journal contains articles on the following:Fuel Consumption Modeling of a Transport Category Aircraft: A FlightOperationsQualityAssurance (F0QA) Analysis;Demand for Air Travel in the United States: Bottom-Up Econometric Estimation and Implications for Forecasts by Origin and Destination Pairs;Blind Flying on the Beam: Aeronautical Communication, Navigation and Surveillance: Its Origins and the Politics of Technology: Part I1 Political Oversight and Promotion;Blind Flying on the Beam: Aeronautical Communication, Navigation and Surveillance: Its Origins and the Politics of Technology: Part 111: Emerging Technologies;Ethics Education in University Aviation Management Programs in the US: Part Two B-Statistical Analysis of Current Practice;Integrating Human Factors into the Human-computer Interface: and How Best to Display Meteorological Information for Critical Aviation Decision-making and Performance.
76 FR 31235 - Safety Zone; Ocean City Air Show, Atlantic Ocean, Ocean City, MD
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-31
...-AA00 Safety Zone; Ocean City Air Show, Atlantic Ocean, Ocean City, MD AGENCY: Coast Guard, DHS. ACTION... in the vicinity of Ocean City, MD to support the Ocean City Air Show. This action is necessary to provide for the safety of life on navigable waters during the Ocean City Air Show. This action is intended...
NASA Technical Reports Server (NTRS)
Hughes, David
2005-01-01
Satellite navigation and surveillance products and services can cut costs, improve accuracy, expand coverage and enhance safety. But the global transformation of air traffic management (ATM) that satellites and ground augmentation systems have promised is being realized much more slowly than expected. "There are still a lot of nations that could benefit [from satellite navigation and surveillance] that haven't invested dime in new equipment." says Tim Katanik, manager of business development for navigation and landing systems Raytheon. But then things usually move slowly in this industry, he adds.
WORLD WAR III The 1960's Version
NASA Astrophysics Data System (ADS)
Brocklebank, Roy
2005-09-01
This article is based on a lecture to the Royal Institute of Navigation History of Air Navigation Group at Tangmere Museum on 12 May 2004. The author served as a navigator-radar or a radar bomb aimer within RAF Bomber Command during the mid-1960s. This article is based on his experience of this time in Bomber Command and describes how the Medium Bomber Force would have carried out their war operations had nuclear deterrence failed. In its day these plans were TOP SECRET.
Cockpit displayed traffic information and distributed management in air traffic control
NASA Technical Reports Server (NTRS)
Kreifeldt, J. G.
1980-01-01
A graphical display of information (such as surrounding aircraft and navigation routes) in the cockpit on a cathode ray tube has been proposed for improving the safety, orderliness, and expeditiousness of the air traffic control system. An investigation of this method at NASA-Ames indicated a large reduction in controller verbal work load without increasing pilot verbal load; the visual work may be increased. The cockpit displayed traffic and navigation information system reduced response delays permitting pilots to maintain their spacing more closely and precisely than when depending entirely on controller-issued radar vectors and speed command.
14 CFR Appendix B to Part 63 - Flight Navigator Training Course Requirements
Code of Federal Regulations, 2011 CFR
2011-01-01
.... Hazards. Air masses. Front weather. Fog. Thunderstorms. Icing. World weather and climate. Weather maps and... required standards, but the period between inspections shall not exceed 12 months. (j) Change of ownership, name, or location—(1) Change of ownership. Approval of a flight navigator course shall not be continued...
14 CFR Appendix B to Part 63 - Flight Navigator Training Course Requirements
Code of Federal Regulations, 2012 CFR
2012-01-01
.... Hazards. Air masses. Front weather. Fog. Thunderstorms. Icing. World weather and climate. Weather maps and... required standards, but the period between inspections shall not exceed 12 months. (j) Change of ownership, name, or location—(1) Change of ownership. Approval of a flight navigator course shall not be continued...
14 CFR Appendix B to Part 63 - Flight Navigator Training Course Requirements
Code of Federal Regulations, 2014 CFR
2014-01-01
.... Hazards. Air masses. Front weather. Fog. Thunderstorms. Icing. World weather and climate. Weather maps and... required standards, but the period between inspections shall not exceed 12 months. (j) Change of ownership, name, or location—(1) Change of ownership. Approval of a flight navigator course shall not be continued...
14 CFR Appendix B to Part 63 - Flight Navigator Training Course Requirements
Code of Federal Regulations, 2013 CFR
2013-01-01
.... Hazards. Air masses. Front weather. Fog. Thunderstorms. Icing. World weather and climate. Weather maps and... required standards, but the period between inspections shall not exceed 12 months. (j) Change of ownership, name, or location—(1) Change of ownership. Approval of a flight navigator course shall not be continued...
Multiple environment unmanned vehicle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hobart, Clinton G.; Morse, William D.; Bickerstaff, Robert James
A MEUV that is able to navigate aerial, aquatic, and terrestrial environments through the use of different mission mobility attachments is disclosed. The attachments allow the MEUV to be deployed from the air or through the water prior to any terrestrial navigation. The mobility attachments can be removed or detached by and from the vehicle during a mission.
Code of Federal Regulations, 2013 CFR
2013-01-01
... route being flown, and (3) The duration of the very high frequency communications gap. [Doc. No. 6258... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Communication and navigation equipment for... Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS AND...
Code of Federal Regulations, 2014 CFR
2014-01-01
... route being flown, and (3) The duration of the very high frequency communications gap. [Doc. No. 6258... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Communication and navigation equipment for... Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS AND...
Code of Federal Regulations, 2011 CFR
2011-01-01
... route being flown, and (3) The duration of the very high frequency communications gap. [Doc. No. 6258... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Communication and navigation equipment for... Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS AND...
Code of Federal Regulations, 2010 CFR
2010-01-01
... route being flown, and (3) The duration of the very high frequency communications gap. [Doc. No. 6258... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Communication and navigation equipment for... Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS AND...
Code of Federal Regulations, 2012 CFR
2012-01-01
... route being flown, and (3) The duration of the very high frequency communications gap. [Doc. No. 6258... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Communication and navigation equipment for... Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS AND...
ERIC Educational Resources Information Center
Federal Aviation Administration (DOT), Washington, DC.
This question book was developed by the Federal Aviation Administration (FAA) for testing applicants who are preparing for certification as airline transport pilots, aircraft dispatchers, or flight navigators. The publication contains several innovative features that are a departure from previous FAA publications related to air carrier personnel…
78 FR 45474 - Proposed Establishment of Class E Airspace; Cut Bank, MT
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-29
...-0532; Airspace Docket No. 13-ANM-21] Proposed Establishment of Class E Airspace; Cut Bank, MT AGENCY... action proposes to establish Class E airspace at the Cut Bank VHF Omni-Directional Radio Range Tactical Air Navigational Aid (VORTAC) navigation aid, Cut Bank, MT, to facilitate vectoring of Instrument...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-15
... navigation for en route through non-precision instrument approaches. GPS is an internationally accepted... Localizer Performance with Vertical guidance (LPV). These approaches are equivalent to Category I ILS, but... approach procedures with LPV or localizer performance (LP) non-precision lines of minima to all qualified...
33 CFR 165.1106 - San Diego Bay, California-safety zone.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false San Diego Bay, California-safety... Diego Bay, California—safety zone. (a) The waters of San Diego Bay enclosed by the following boundaries are a safety zone: From a point located on the boundary of Coast Guard Air Station San Diego...
33 CFR 165.1106 - San Diego Bay, California-safety zone.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false San Diego Bay, California-safety... Diego Bay, California—safety zone. (a) The waters of San Diego Bay enclosed by the following boundaries are a safety zone: From a point located on the boundary of Coast Guard Air Station San Diego...
33 CFR 165.1106 - San Diego Bay, California-safety zone.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false San Diego Bay, California-safety... Diego Bay, California—safety zone. (a) The waters of San Diego Bay enclosed by the following boundaries are a safety zone: From a point located on the boundary of Coast Guard Air Station San Diego...
33 CFR 165.1106 - San Diego Bay, California-safety zone.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false San Diego Bay, California-safety... Diego Bay, California—safety zone. (a) The waters of San Diego Bay enclosed by the following boundaries are a safety zone: From a point located on the boundary of Coast Guard Air Station San Diego...
33 CFR 165.1106 - San Diego Bay, California-safety zone.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false San Diego Bay, California-safety... Diego Bay, California—safety zone. (a) The waters of San Diego Bay enclosed by the following boundaries are a safety zone: From a point located on the boundary of Coast Guard Air Station San Diego...
Multiple environment unmanned vehicle
Hobart, Clinton G.; Morse, William D.; Bickerstaff, Robert James
2017-02-28
A MEUV that is able to navigate aerial, aquatic, and terrestrial environments through the use of different mission mobility attachments is disclosed. The attachments allow the MEUV to be deployed from the air or through the water prior to any terrestrial navigation. The mobility attachments can be removed or detached by and from the vehicle during a mission.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-19
... security zones as RNAs. The Marine Air Terminal, United Nations, and United Nations West Channel Closure... United Nations General Assembly RNA Regulated Navigation Area UN United Nations A. Public Participation... comment, it will be considered as having been received by the Coast Guard when it is received at the...
2009-06-01
Chambliss; Colonel Michael Stickney; Colonel Eric Mathewson; Lieutenant Colonel Robert Kiebler; Lieutenant Colonel Kenneth Kilmurray; Lieutenant...16 Peter Layton , Group Captain, Royal Air Force, “Hedging Strategies, UCAVs, budgets, and improbable threats,” Armed Forces Journal...10 Colonel Eric Mathewson, US Air Force HAF/A2 DCS ISR, “Air Force ISR in a Changed World: ISR Transformation, the Importance
Flight assessment of a data-link-based navigation-guidance concept
NASA Technical Reports Server (NTRS)
Abbott, T. S.
1983-01-01
With the proposed introduction of a data-link provision into the Air-Traffic-control (ATC) system, the capability will exist to supplement the ground-air, voice (radio) link with digital, data-link information. Additionally, ATC computers could provide, via the data link guidance and navigation information to the pilot which could then be presented in much the same manner as conventional navigation information. The primary objective of this study was to assess the feasibility and acceptability of using 4-sec and 12-sec information updating to drive conventional cockpit-navigation-instrument formats for path-tracking guidance. A flight test, consisting of 19 tracking tasks, was conducted and, through the use of pilot questionnaires and performance data, the following results were obtained. From a performance standpoint, the 4-sec and 12-sec updating led to a slight degradation in path-tracking performance, relative to continuous updating. From the pilot's viewpoint, the 12-sec data interval was suitable for long path segments (greater than 2 min of flight time), but it was difficult to use on shorter segments because of higher work load and insufficient stabilization time. Overall, it was determined that the utilization of noncontinuous data for navigation was both feasible and acceptable for the prescribed task.
Marcus, Pamela M; Huang, Grace C; Beck, Vicki; Miller, Michael J
2010-12-01
We assessed the educational impact of a primetime network TV storyline that addressed cancer patient navigators. An online survey was administered after the episode aired. Exposed respondents saw the episode (n = 336); unexposed respondents did not (n = 211). Exposed respondents were more likely to report they would recommend a patient navigator (61% vs. 48%, p = 0.01). Clips of the episode were shown to raise awareness of patient navigators in a Congressional Committee meeting before the Patient Navigator Act was signed into law (2005). Entertainment education can have a positive impact on cancer knowledge and can contribute to policy-level decisions.
77 FR 5168 - Amendment of Class D Airspace; Mount Clemens, MI
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-02
... Regulations (14 CFR) part 71 by updating the geographic coordinates of Selfridge Air National Guard Base and... Class D airspace within the Mount Clemens, MI, area by updating the geographic coordinates of Selfridge Air National Guard Base (ANGB) and the Selfridge Tactical Air Navigation (TACAN). This action does not...
Joint University Program for Air Transportation Research, 1985
NASA Technical Reports Server (NTRS)
Morrell, Frederick R. (Compiler)
1987-01-01
Air transportation research being carried on at the Massachusetts Institute of Technology, Princeton University, and Ohio University is discussed. Global Positioning System experiments, Loran-C monitoring, inertial navigation, the optimization of aircraft trajectories through severe microbursts, fault tolerant flight control systems, and expert systems for air traffic control are among the topics covered.
GPS navigation algorithms for Autonomous Airborne Refueling of Unmanned Air Vehicles
NASA Astrophysics Data System (ADS)
Khanafseh, Samer Mahmoud
Unmanned Air Vehicles (UAVs) have recently generated great interest because of their potential to perform hazardous missions without risking loss of life. If autonomous airborne refueling is possible for UAVs, mission range and endurance will be greatly enhanced. However, concerns about UAV-tanker proximity, dynamic mobility and safety demand that the relative navigation system meets stringent requirements on accuracy, integrity, and continuity. In response, this research focuses on developing high-performance GPS-based navigation architectures for Autonomous Airborne Refueling (AAR) of UAVs. The AAR mission is unique because of the potentially severe sky blockage introduced by the tanker. To address this issue, a high-fidelity dynamic sky blockage model was developed and experimentally validated. In addition, robust carrier phase differential GPS navigation algorithms were derived, including a new method for high-integrity reacquisition of carrier cycle ambiguities for recently-blocked satellites. In order to evaluate navigation performance, world-wide global availability and sensitivity covariance analyses were conducted. The new navigation algorithms were shown to be sufficient for turn-free scenarios, but improvement in performance was necessary to meet the difficult requirements for a general refueling mission with banked turns. Therefore, several innovative methods were pursued to enhance navigation performance. First, a new theoretical approach was developed to quantify the position-domain integrity risk in cycle ambiguity resolution problems. A mechanism to implement this method with partially-fixed cycle ambiguity vectors was derived, and it was used to define tight upper bounds on AAR navigation integrity risk. A second method, where a new algorithm for optimal fusion of measurements from multiple antennas was developed, was used to improve satellite coverage in poor visibility environments such as in AAR. Finally, methods for using data-link extracted measurements as an additional inter-vehicle ranging measurement were also introduced. The algorithms and methods developed in this work are generally applicable to realize high-performance GPS-based navigation in partially obstructed environments. Navigation performance for AAR was quantified through covariance analysis, and it was shown that the stringent navigation requirements for this application are achievable. Finally, a real-time implementation of the algorithms was developed and successfully validated in autopiloted flight tests.
78 FR 32556 - Safety Zone; 2013 Ocean City Air Show, Atlantic Ocean; Ocean City, MD
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-31
...-AA00 Safety Zone; 2013 Ocean City Air Show, Atlantic Ocean; Ocean City, MD AGENCY: Coast Guard, DHS... navigable waters of the Atlantic Ocean in the vicinity of Ocean City, MD to support the Ocean City Air Show... June 9, 2013, Ocean City, MD will host an air show event between Talbot Street and 33rd Street over the...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Gulf of Mexico, south from... Mexico, south from Choctawhatchee Bay; guided missiles test operations area, Headquarters Air Proving... Mexico south from Choctawhatchee Bay within an area described as follows: Beginning at a point five...
Code of Federal Regulations, 2014 CFR
2014-07-01
... Station, Point Mugu, Small Arms Range, Ventura County, California; danger zone. 334.1125 Section 334.1125 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE DANGER ZONE... Arms Range, Ventura County, California; danger zone. (a) The area. A triangular area extending...
Code of Federal Regulations, 2012 CFR
2012-07-01
... Station, Point Mugu, Small Arms Range, Ventura County, California; danger zone. 334.1125 Section 334.1125 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE DANGER ZONE... Arms Range, Ventura County, California; danger zone. (a) The area. A triangular area extending...
Code of Federal Regulations, 2013 CFR
2013-07-01
... Station, Point Mugu, Small Arms Range, Ventura County, California; danger zone. 334.1125 Section 334.1125 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE DANGER ZONE... Arms Range, Ventura County, California; danger zone. (a) The area. A triangular area extending...
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Special Operating Rules for the Conduct of Instrument Flight Rules (IFR) Area Navigation (RNAV) Operations using Global Positioning Systems (GPS) in... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Special Operating Rules for the Conduct of Instrument Flight Rules (IFR) Area Navigation (RNAV) Operations using Global Positioning Systems (GPS) in... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Special Operating Rules for the Conduct of Instrument Flight Rules (IFR) Area Navigation (RNAV) Operations using Global Positioning Systems (GPS) in... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL...
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Special Operating Rules for the Conduct of Instrument Flight Rules (IFR) Area Navigation (RNAV) Operations using Global Positioning Systems (GPS) in... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL...
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Special Operating Rules for the Conduct of Instrument Flight Rules (IFR) Area Navigation (RNAV) Operations using Global Positioning Systems (GPS) in... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL...
33 CFR 334.1360 - Pacific Ocean at Barber's Point, Island of Oahu, Hawaii; danger zone.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., Island of Oahu, Hawaii; danger zone. 334.1360 Section 334.1360 Navigation and Navigable Waters CORPS OF....1360 Pacific Ocean at Barber's Point, Island of Oahu, Hawaii; danger zone. (a) The danger zone. The... shall be enforced by the Commanding Officer, Naval Air Station, Barber's Point, Hawaii, 96862, and such...
DOT National Transportation Integrated Search
1974-02-01
The volume presents a detailed description of the subsystems that comprise the Satellite-Based Advanced Air Traffic Management System. Described in detail are the surveillance, navigation, communications, data processing, and airport subsystems. The ...
DOT National Transportation Integrated Search
1974-02-01
The volume presents the results of the subsystem performance requirements study for an Advanced Air Traffic Management System (AATMS). The study determined surveillance and navigation subsystem requirements for terminal and enroute area operations. I...
NASA Technical Reports Server (NTRS)
Edwards, F. G.; Foster, J. D.
1973-01-01
Unpowered automatic approaches and landings with a CV990 aircraft were conducted to study navigation, guidance, and control problems associated with terminal area approach and landing for the space shuttle. The flight tests were designed to study from 11,300 m to touchdown the performance of a navigation and guidance concept which utilized blended radio/inertial navigation using VOR, DME, and ILS as the ground navigation aids. In excess of fifty automatic approaches and landings were conducted. Preliminary results indicate that this concept may provide sufficient accuracy to accomplish automatic landing of the shuttle orbiter without air-breathing engines on a conventional size runway.
Code of Federal Regulations, 2011 CFR
2011-01-01
..., including a detailed description of the type, volume, duration, time, and place of the operations to be conducted in the area; (c) A description of the air navigation, air traffic control, surveillance, and...
Code of Federal Regulations, 2010 CFR
2010-01-01
..., including a detailed description of the type, volume, duration, time, and place of the operations to be conducted in the area; (c) A description of the air navigation, air traffic control, surveillance, and...
Broadcast control of air traffic
NASA Technical Reports Server (NTRS)
Litchford, G. B.
1972-01-01
Applications of wide range broadcast procedures to improve air traffic control and make more airspace available are discussed. A combination of the Omega navigation system and the very high frequency omnirange (VOR) is recommended as a means for accomplishing improved air traffic control. The benefits to be derived by commercial and general aviation are described. The air/ground communications aspects of the improved air traffic control system are explained. Research and development programs for implementing the broadcast concept are recommended.
33 CFR 334.30 - Gulf of Maine off Pemaquid Point, Maine; naval sonobuoy test area.
Code of Federal Regulations, 2014 CFR
2014-07-01
..., Maine; naval sonobuoy test area. 334.30 Section 334.30 Navigation and Navigable Waters CORPS OF....30 Gulf of Maine off Pemaquid Point, Maine; naval sonobuoy test area. (a) The area. The test area or... enforced by the Commanding Officer, U.S. Naval Air Station, Brunswick, Maine, or such agencies as he may...
33 CFR 334.30 - Gulf of Maine off Pemaquid Point, Maine; naval sonobuoy test area.
Code of Federal Regulations, 2011 CFR
2011-07-01
..., Maine; naval sonobuoy test area. 334.30 Section 334.30 Navigation and Navigable Waters CORPS OF....30 Gulf of Maine off Pemaquid Point, Maine; naval sonobuoy test area. (a) The area. The test area or... enforced by the Commanding Officer, U.S. Naval Air Station, Brunswick, Maine, or such agencies as he may...
33 CFR 334.30 - Gulf of Maine off Pemaquid Point, Maine; naval sonobuoy test area.
Code of Federal Regulations, 2013 CFR
2013-07-01
..., Maine; naval sonobuoy test area. 334.30 Section 334.30 Navigation and Navigable Waters CORPS OF....30 Gulf of Maine off Pemaquid Point, Maine; naval sonobuoy test area. (a) The area. The test area or... enforced by the Commanding Officer, U.S. Naval Air Station, Brunswick, Maine, or such agencies as he may...
33 CFR 334.30 - Gulf of Maine off Pemaquid Point, Maine; naval sonobuoy test area.
Code of Federal Regulations, 2012 CFR
2012-07-01
..., Maine; naval sonobuoy test area. 334.30 Section 334.30 Navigation and Navigable Waters CORPS OF....30 Gulf of Maine off Pemaquid Point, Maine; naval sonobuoy test area. (a) The area. The test area or... enforced by the Commanding Officer, U.S. Naval Air Station, Brunswick, Maine, or such agencies as he may...
33 CFR 334.30 - Gulf of Maine off Pemaquid Point, Maine; naval sonobuoy test area.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., Maine; naval sonobuoy test area. 334.30 Section 334.30 Navigation and Navigable Waters CORPS OF....30 Gulf of Maine off Pemaquid Point, Maine; naval sonobuoy test area. (a) The area. The test area or... enforced by the Commanding Officer, U.S. Naval Air Station, Brunswick, Maine, or such agencies as he may...
241. BUILDINGS 455, 456, 509, 510 AND 457 (CELESTIAL NAVIGATION ...
241. BUILDINGS 455, 456, 509, 510 AND 457 (CELESTIAL NAVIGATION COMPLEX), 1942-43. BUREAU OF YARDS AND DOCKS STANDARD PLANS. VIEW NORTH ACROSS WASP ST. SHOWING THE 4 TRAINING SILOS FROM LEFT TO RIGHT: BUILDINGS 455, 456, 509, AND 510; AND, BESIDE THEM, BUILDING 457. - Quonset Point Naval Air Station, Roger Williams Way, North Kingstown, Washington County, RI
ERIC Educational Resources Information Center
Dade County Public Schools, Miami, FL.
This document presents an outline for a 135-hour course designed to familiarize the student with manipulative skills and theoretical knowledge concerning aircraft instrument systems like major flight and engine instruments; fire protection and fire fighting systems; warning systems and navigation systems; aircraft cabin control systems, such as…
Effects of ATC automation on precision approaches to closely space parallel runways
NASA Technical Reports Server (NTRS)
Slattery, R.; Lee, K.; Sanford, B.
1995-01-01
Improved navigational technology (such as the Microwave Landing System and the Global Positioning System) installed in modern aircraft will enable air traffic controllers to better utilize available airspace. Consequently, arrival traffic can fly approaches to parallel runways separated by smaller distances than are currently allowed. Previous simulation studies of advanced navigation approaches have found that controller workload is increased when there is a combination of aircraft that are capable of following advanced navigation routes and aircraft that are not. Research into Air Traffic Control automation at Ames Research Center has led to the development of the Center-TRACON Automation System (CTAS). The Final Approach Spacing Tool (FAST) is the component of the CTAS used in the TRACON area. The work in this paper examines, via simulation, the effects of FAST used for aircraft landing on closely spaced parallel runways. The simulation contained various combinations of aircraft, equipped and unequipped with advanced navigation systems. A set of simulations was run both manually and with an augmented set of FAST advisories to sequence aircraft, assign runways, and avoid conflicts. The results of the simulations are analyzed, measuring the airport throughput, aircraft delay, loss of separation, and controller workload.
DOT National Transportation Integrated Search
1973-02-01
The volume provides a functional description and specification for the Satellite-Based Advanced Air Traffic Management System. The system description is presented in terms of the surveillance, navigation, and communications functions along with the a...
Proposed English Standards Promote Aviation Safety.
ERIC Educational Resources Information Center
Chatham, Robert L.; Thomas, Shelley
2000-01-01
Discusses the International Civil Aviation Organization's (ICAO) Air Navigation's Commission approval of a task to develop minimum skill level requirements in English for air traffic control. The ICAO collaborated with the Defense Language Institute English Language Center to propose a minimum standard for English proficiency for international…
1981-01-01
cruisc air combat , etc. These are selected from the keyboard located at the forward end o.f the left console. Tie miscion phase packager of...and brightness test - low ambient phase Color discrimination performance was assessed by a comparative procedure which best reflects the operational...flight information for air to air , air to surface, and navigation phases of the mission. UP FRONT CONTROL (UPC- MASTER fHEAD-UP MASTER DISPLAY
A United Framework for Solving Multiagent Task Assignment Problems
2007-12-01
Presented to the Faculty Graduate School of Engineering and Management Air Force Institute of Technology Air University Air Education and Training Command in...Member Date Date Accepted: 170-e<.. 01 DateM.V.THOMAS Dean, Graduate School of E,ngineering and Management Air Force Institute of Technology AFIT...actions in two different problem groups: using shame [37] for autonomous robots navigating a minefield, and a waiter - refiller service environment [94
A Survey of Aviation English Tests
ERIC Educational Resources Information Center
Alderson, J. Charles
2010-01-01
The Lancaster Language Testing Research Group was commissioned in 2006 by the European Organisation for the Safety of Air Navigation (Eurocontrol) to conduct a validation study of the development of a test called ELPAC (English Language Proficiency for Aeronautical Communication), intended to assess the language proficiency of air traffic…
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Gulf of Mexico, southeast of St... AND RESTRICTED AREA REGULATIONS § 334.680 Gulf of Mexico, southeast of St. Andrew Bay East Entrance... the Gulf of Mexico, southeast of St. Andrew Bay East Entrance within a rectangular area beginning at a...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Gulf of Mexico, southeast of St... AND RESTRICTED AREA REGULATIONS § 334.680 Gulf of Mexico, southeast of St. Andrew Bay East Entrance... the Gulf of Mexico, southeast of St. Andrew Bay East Entrance within a rectangular area beginning at a...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Gulf of Mexico, southeast of St... AND RESTRICTED AREA REGULATIONS § 334.680 Gulf of Mexico, southeast of St. Andrew Bay East Entrance... the Gulf of Mexico, southeast of St. Andrew Bay East Entrance within a rectangular area beginning at a...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Gulf of Mexico, southeast of St... AND RESTRICTED AREA REGULATIONS § 334.680 Gulf of Mexico, southeast of St. Andrew Bay East Entrance... the Gulf of Mexico, southeast of St. Andrew Bay East Entrance within a rectangular area beginning at a...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Gulf of Mexico, southeast of St... AND RESTRICTED AREA REGULATIONS § 334.680 Gulf of Mexico, southeast of St. Andrew Bay East Entrance... the Gulf of Mexico, southeast of St. Andrew Bay East Entrance within a rectangular area beginning at a...
Code of Federal Regulations, 2012 CFR
2012-07-01
... Michigan south of Northerly Island at entrance to Burnham Park Yacht Harbor, Chicago, Ill.; danger zone... the center line of the runway at the south end of the air strip on Northerly Island; thence 183°, 500... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Waters of Lake Michigan south of...
Code of Federal Regulations, 2013 CFR
2013-07-01
... Michigan south of Northerly Island at entrance to Burnham Park Yacht Harbor, Chicago, Ill.; danger zone... the center line of the runway at the south end of the air strip on Northerly Island; thence 183°, 500... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Waters of Lake Michigan south of...
Code of Federal Regulations, 2014 CFR
2014-07-01
... Michigan south of Northerly Island at entrance to Burnham Park Yacht Harbor, Chicago, Ill.; danger zone... the center line of the runway at the south end of the air strip on Northerly Island; thence 183°, 500... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Waters of Lake Michigan south of...
Air traffic management system design using satellite based geo-positioning and communications assets
NASA Technical Reports Server (NTRS)
Horkin, Phil
1995-01-01
The current FAA and ICAO FANS vision of Air Traffic Management will transition the functions of Communications, Navigation, and Surveillance to satellite based assets in the 21st century. Fundamental to widespread acceptance of this vision is a geo-positioning system that can provide worldwide access with best case differential GPS performance, but without the associated problems. A robust communications capability linking-up aircraft and towers to meet the voice and data requirements is also essential. The current GPS constellation does not provide continuous global coverage with a sufficient number of satellites to meet the precision landing requirements as set by the world community. Periodic loss of the minimum number of satellites in view creates an integrity problem, which prevents GPS from becoming the primary system for navigation. Furthermore, there is reluctance on the part of many countries to depend on assets like GPS and GLONASS which are controlled by military communities. This paper addresses these concerns and provides a system solving the key issues associated with navigation, automatic dependent surveillance, and flexible communications. It contains an independent GPS-like navigation system with 27 satellites providing global coverage with a minimum of six in view at all times. Robust communications is provided by a network of TDMA/FDMA communications payloads contained on these satellites. This network can support simultaneous communications for up to 30,000 links, nearly enough to simultaneously support three times the current global fleet of jumbo air passenger aircraft. All of the required hardware is directly traceable to existing designs.
Space Shuttle Navigation in the GPS Era
NASA Technical Reports Server (NTRS)
Goodman, John L.
2001-01-01
The Space Shuttle navigation architecture was originally designed in the 1970s. A variety of on-board and ground based navigation sensors and computers are used during the ascent, orbit coast, rendezvous, (including proximity operations and docking) and entry flight phases. With the advent of GPS navigation and tightly coupled GPS/INS Units employing strapdown sensors, opportunities to improve and streamline the Shuttle navigation process are being pursued. These improvements can potentially result in increased safety, reliability, and cost savings in maintenance through the replacement of older technologies and elimination of ground support systems (such as Tactical Air Control and Navigation (TACAN), Microwave Landing System (MLS) and ground radar). Selection and missionization of "off the shelf" GPS and GPS/INS units pose a unique challenge since the units in question were not originally designed for the Space Shuttle application. Various options for integrating GPS and GPS/INS units with the existing orbiter avionics system were considered in light of budget constraints, software quality concerns, and schedule limitations. An overview of Shuttle navigation methodology from 1981 to the present is given, along with how GPS and GPS/INS technology will change, or not change, the way Space Shuttle navigation is performed in the 21 5 century.
Global Positioning System: Observations on Quarterly Reports from the Air Force
2016-10-17
Positioning System : Observations on Quarterly Reports from the Air Force The satellite-based Global Positioning System (GPS) provides positioning, navigation...infrastructure, and transportation safety. The Department of Defense (DOD)—specifically, the Air Force—develops and operates the GPS system , which...programs, including the most recent detailed assessment of the next generation operational control system (OCX) and development of military GPS
Joint University Program for Air Transportation Research, 1982
NASA Technical Reports Server (NTRS)
1983-01-01
A summary of the research on air transportation is addressed including navigation; guidance, control and display concepts; and hardware, with special emphasis on applications to general aviation aircraft. Completed works and status reports are presented also included are annotated bibliographies of all published research sponsored on these grants since 1972.
Results from a GPS Shuttle Training Aircraft flight test
NASA Technical Reports Server (NTRS)
Saunders, Penny E.; Montez, Moises N.; Robel, Michael C.; Feuerstein, David N.; Aerni, Mike E.; Sangchat, S.; Rater, Lon M.; Cryan, Scott P.; Salazar, Lydia R.; Leach, Mark P.
1991-01-01
A series of Global Positioning System (GPS) flight tests were performed on a National Aeronautics and Space Administration's (NASA's) Shuttle Training Aircraft (STA). The objective of the tests was to evaluate the performance of GPS-based navigation during simulated Shuttle approach and landings for possible replacement of the current Shuttle landing navigation aid, the Microwave Scanning Beam Landing System (MSBLS). In particular, varying levels of sensor data integration would be evaluated to determine the minimum amount of integration required to meet the navigation accuracy requirements for a Shuttle landing. Four flight tests consisting of 8 to 9 simulation runs per flight test were performed at White Sands Space Harbor in April 1991. Three different GPS receivers were tested. The STA inertial navigation, tactical air navigation, and MSBLS sensor data were also recorded during each run. C-band radar aided laser trackers were utilized to provide the STA 'truth' trajectory.
2009-09-01
Interface IFR Instrument Flight Rules LANTIRN Low-Altitude Navigation and Targeting Infrared for Night MANTIRN Medium Altitude Navigation and...MANTIRN categories, and IFR weather categories. Aside from the category of personnel (computer specialist NCOs rather than pilots), the main...of the node, (2) Adding a description, (3) Implementing event arguments , local variables, and state transitions, (4) Implementing a code that is
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false The Narrows and Gulf of Mexico... DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.710 The Narrows and Gulf of Mexico adjacent to.... The waters of The Narrows and the Gulf of Mexico easterly of the periphery of a circular area 5...
Can low-cost VOR and Omega receivers suffice for RNAV - A new computer-based navigation technique
NASA Technical Reports Server (NTRS)
Hollaar, L. A.
1978-01-01
It is shown that although RNAV is particularly valuable for the personal transportation segment of general aviation, it has not gained complete acceptance. This is due, in part, to its high cost and the necessary special-handling air traffic control. VOR/DME RNAV calculations are ideally suited for analog computers, and the use of microprocessor technology has been suggested for reducing RNAV costs. Three navigation systems, VOR, Omega, and DR, are compared for common navigational difficulties, such as station geometry, siting errors, ground disturbances, and terminal area coverage. The Kalman filtering technique is described with reference to the disadvantages when using a system including standard microprocessors. An integrated navigation system, using input data from various low-cost sensor systems, is presented and current simulation studies are noted.
Development of a 3-D Pen Input Device
2008-09-01
of a unistroke which can be written on any surface or in the air while correcting integration errors from the...navigation frame of a unistroke, which can be written on any surface or in the air while correcting integration errors from the measurements of the IMU... be written on any surface or in the air while correcting integration errors from the measurements of the IMU (Inertial Measurement Unit) of the
NASA Technical Reports Server (NTRS)
Oum, Tae Hoon (Editor); Bowen, Brent D. (Editor)
1998-01-01
This report (Volume 1) is comprised of 5 sessions of the Air Transport Research Group (ATRG) Conference held in Antwerp, Belgium, July 1998. The sessions contain 3-4 papers (presentations) each. The session numbers and their respective headings are: (1) Airline alliances; (2) Airline Competition and Market Structure; (4) Liberalization, Open Skies, and Policy Issues; (5) Yield Management and Other Models; and (11) Air Traffic Control (ATC) and Air Navigational Systems (ANS).
The personal aircraft: Status and issues
NASA Technical Reports Server (NTRS)
Anders, Scott G.; Asbury, Scott C.; Brentner, Kenneth S.; Bushnell, Dennis M.; Glass, Christopher E.; Hodges, William T.; Morris, Shelby J., Jr.; Scott, Michael A.
1994-01-01
Paper summarizes the status of personal air transportation with emphasis upon VTOL and converticar capability. The former obviates the need for airport operations for personal aircraft whereas the latter provides both ground and air capability in the same vehicle. Fully automatic operation, ATC and navigation is stressed along with consideration of acoustic, environmental and cost issues.
Air Force Officer Qualifying Test Form O: Development and Standardization.
ERIC Educational Resources Information Center
Rogers, Deborah L.; And Others
This report presents the rationale, development, and standardization of the Air Force Officer Qualifying Test (AFOQT) Form O. The test is used to select individuals for officer commissioning programs, and candidates for pilot and navigator training. Form O contains 380 items organized in 16 subtests. All items are administered in a single test…
NASA Technical Reports Server (NTRS)
Phillips, Brent; Swanda, Ronald L.; Lewis, Michael S.; Kenagy, Randy; Donahue, George; Homans, Al; Kerczewski, Robert; Pozesky, Marty
2004-01-01
The NASA Glenn Research Center organized and hosted the Fourth Integrated Communications, Navigation, and Surveillance (ICNS) Technologies Conference and Workshop, which took place April 26-30, 2004 at the Hyatt Fair Lakes Hotel in Fairfax, Virginia. This fourth conference of the annual series followed the very successful first ICNS Conference (May 1-3, 2001 in Cleveland, Ohio), second ICNS conference (April 29-May 2, 2002 in Vienna, Virginia), and third ICNS conference (May 19-22, 2003 in Annapolis, Maryland). The purpose of the Fourth ICNS Conference was to assemble government, industry and academic communities performing research and development for advanced digital communications, surveillance and navigation systems and associated applications supporting the national and global air transportation systems to: 1) Understand current efforts and recent results in near- and far-term R&D and technology demonstration; 2) Identify integrated digital communications, navigation and surveillance R&D requirements necessary for a safe, secure and reliable, high-capacity, advanced air transportation system; 3) Provide a forum for fostering collaboration and coordination; and 4) Discuss critical issues and develop recommendations to achieve the future integrated CNS vision for national and global air transportation. The workshop attracted 316 attendees from government, industry and academia to address these purposes through technical presentations, breakout sessions, and individual and group discussions during the workshop and after-hours events, and included 16 international attendees. An Executive Committee consisting of representatives of several key segments of the aviation community concerned with CNS issues met on the day following the workshop to consider the primary outcomes and recommendations of the workshop. This report presents an overview of the conference, workshop breakout session results, and the findings of the Executive Committee.
Coupled Inertial Navigation and Flush Air Data Sensing Algorithm for Atmosphere Estimation
NASA Technical Reports Server (NTRS)
Karlgaard, Christopher D.; Kutty, Prasad; Schoenenberger, Mark
2015-01-01
This paper describes an algorithm for atmospheric state estimation that is based on a coupling between inertial navigation and flush air data sensing pressure measurements. In this approach, the full navigation state is used in the atmospheric estimation algorithm along with the pressure measurements and a model of the surface pressure distribution to directly estimate atmospheric winds and density using a nonlinear weighted least-squares algorithm. The approach uses a high fidelity model of atmosphere stored in table-look-up form, along with simplified models of that are propagated along the trajectory within the algorithm to provide prior estimates and covariances to aid the air data state solution. Thus, the method is essentially a reduced-order Kalman filter in which the inertial states are taken from the navigation solution and atmospheric states are estimated in the filter. The algorithm is applied to data from the Mars Science Laboratory entry, descent, and landing from August 2012. Reasonable estimates of the atmosphere and winds are produced by the algorithm. The observability of winds along the trajectory are examined using an index based on the discrete-time observability Gramian and the pressure measurement sensitivity matrix. The results indicate that bank reversals are responsible for adding information content to the system. The algorithm is then applied to the design of the pressure measurement system for the Mars 2020 mission. The pressure port layout is optimized to maximize the observability of atmospheric states along the trajectory. Linear covariance analysis is performed to assess estimator performance for a given pressure measurement uncertainty. The results indicate that the new tightly-coupled estimator can produce enhanced estimates of atmospheric states when compared with existing algorithms.
Evaluation of Design Assurance Regulations for Safety of Space Navigation Services
NASA Astrophysics Data System (ADS)
Ratti, B.; Sarno, M.; De Andreis, C.
2005-12-01
The European Space Agency (ESA), the European Community (EC), and the European Organisation for the Safety of Air Navigation (Eurocontrol) are contributing to the development of a Global positioning and Navigation Satellite System, known as GNSS. The development programme is carried out in two main steps:• GNSS-1: the first-generation system, based on signals received from the GPS (USA) and GLONASS (Russia) constellations, and augmentation systems like EGNOS (European Geostationary Navigation Overlay Service)• GNSS-2: the second-generation system, that will achieve the ultimate objective of European sovereignty for position determination, navigation and time dissemination. This system, named Galileo, comprises a global space and ground control infrastructure.The Galileo navigation signal will be used in the frame of safety-critical transport applications, thus it is necessary to assess the space safety assurance activity against the civil safety regulations and safety management system.. RTCA DO-254 and IEC 61508 standards, considered as part of best practice engineering references, for the development of safety- related systems in most applications, were selected during phases B2 and C0 of the Galileo project for this purpose.
Robotic air vehicle. Blending artificial intelligence with conventional software
NASA Technical Reports Server (NTRS)
Mcnulty, Christa; Graham, Joyce; Roewer, Paul
1987-01-01
The Robotic Air Vehicle (RAV) system is described. The program's objectives were to design, implement, and demonstrate cooperating expert systems for piloting robotic air vehicles. The development of this system merges conventional programming used in passive navigation with Artificial Intelligence techniques such as voice recognition, spatial reasoning, and expert systems. The individual components of the RAV system are discussed as well as their interactions with each other and how they operate as a system.
Code of Federal Regulations, 2010 CFR
2010-07-01
... River, Hampton, U.S. Air Force Base, Langley, Va.; restricted area. 334.275 Section 334.275 Navigation... RESTRICTED AREA REGULATIONS § 334.275 North and Southwest Branch, Back River, Hampton, U.S. Air Force Base... Mills Creek in the Southwest Branch of the Back River at latitude 37°03′50″ N, longitude 076°22′00″ W...
Human Factors Considerations for Area Navigation Departure and Arrival Procedures
NASA Technical Reports Server (NTRS)
Barhydt, Richard; Adams, Catherine A.
2006-01-01
Area navigation (RNAV) procedures are being implemented in the United States and around the world as part of a transition to a performance-based navigation system. These procedures are providing significant benefits and have also caused some human factors issues to emerge. Under sponsorship from the Federal Aviation Administration (FAA), the National Aeronautics and Space Administration (NASA) has undertaken a project to document RNAV-related human factors issues and propose areas for further consideration. The component focusing on RNAV Departure and Arrival Procedures involved discussions with expert users, a literature review, and a focused review of the NASA Aviation Safety Reporting System (ASRS) database. Issues were found to include aspects of air traffic control and airline procedures, aircraft systems, and procedure design. Major findings suggest the need for specific instrument procedure design guidelines that consider the effects of human performance. Ongoing industry and government activities to address air-ground communication terminology, design improvements, and chart-database commonality are strongly encouraged. A review of factors contributing to RNAV in-service errors would likely lead to improved system design and operational performance.
True navigation in migrating gulls requires intact olfactory nerves
Wikelski, Martin; Arriero, Elena; Gagliardo, Anna; Holland, Richard A.; Huttunen, Markku J.; Juvaste, Risto; Mueller, Inge; Tertitski, Grigori; Thorup, Kasper; Wild, Martin; Alanko, Markku; Bairlein, Franz; Cherenkov, Alexander; Cameron, Alison; Flatz, Reinhard; Hannila, Juhani; Hüppop, Ommo; Kangasniemi, Markku; Kranstauber, Bart; Penttinen, Maija-Liisa; Safi, Kamran; Semashko, Vladimir; Schmid, Heidi; Wistbacka, Ralf
2015-01-01
During migratory journeys, birds may become displaced from their normal migratory route. Experimental evidence has shown that adult birds can correct for such displacements and return to their goal. However, the nature of the cues used by migratory birds to perform long distance navigation is still debated. In this experiment we subjected adult lesser black-backed gulls migrating from their Finnish/Russian breeding grounds (from >60°N) to Africa (to < 5°N) to sensory manipulation, to determine the sensory systems required for navigation. We translocated birds westward (1080 km) or eastward (885 km) to simulate natural navigational challenges. When translocated westwards and outside their migratory corridor birds with olfactory nerve section kept a clear directional preference (southerly) but were unable to compensate for the displacement, while intact birds and gulls with the ophthalmic branch of the trigeminal nerve sectioned oriented towards their population-specific migratory corridor. Thus, air-borne olfactory information seems to be important for migrating gulls to navigate successfully in some circumstances. PMID:26597351
True navigation in migrating gulls requires intact olfactory nerves.
Wikelski, Martin; Arriero, Elena; Gagliardo, Anna; Holland, Richard A; Huttunen, Markku J; Juvaste, Risto; Mueller, Inge; Tertitski, Grigori; Thorup, Kasper; Wild, Martin; Alanko, Markku; Bairlein, Franz; Cherenkov, Alexander; Cameron, Alison; Flatz, Reinhard; Hannila, Juhani; Hüppop, Ommo; Kangasniemi, Markku; Kranstauber, Bart; Penttinen, Maija-Liisa; Safi, Kamran; Semashko, Vladimir; Schmid, Heidi; Wistbacka, Ralf
2015-11-24
During migratory journeys, birds may become displaced from their normal migratory route. Experimental evidence has shown that adult birds can correct for such displacements and return to their goal. However, the nature of the cues used by migratory birds to perform long distance navigation is still debated. In this experiment we subjected adult lesser black-backed gulls migrating from their Finnish/Russian breeding grounds (from >60°N) to Africa (to < 5°N) to sensory manipulation, to determine the sensory systems required for navigation. We translocated birds westward (1080 km) or eastward (885 km) to simulate natural navigational challenges. When translocated westwards and outside their migratory corridor birds with olfactory nerve section kept a clear directional preference (southerly) but were unable to compensate for the displacement, while intact birds and gulls with the ophthalmic branch of the trigeminal nerve sectioned oriented towards their population-specific migratory corridor. Thus, air-borne olfactory information seems to be important for migrating gulls to navigate successfully in some circumstances.
Navigation Aiding by a Hybrid Laser-Camera Motion Estimator for Micro Aerial Vehicles.
Atman, Jamal; Popp, Manuel; Ruppelt, Jan; Trommer, Gert F
2016-09-16
Micro Air Vehicles (MAVs) equipped with various sensors are able to carry out autonomous flights. However, the self-localization of autonomous agents is mostly dependent on Global Navigation Satellite Systems (GNSS). In order to provide an accurate navigation solution in absence of GNSS signals, this article presents a hybrid sensor. The hybrid sensor is a deep integration of a monocular camera and a 2D laser rangefinder so that the motion of the MAV is estimated. This realization is expected to be more flexible in terms of environments compared to laser-scan-matching approaches. The estimated ego-motion is then integrated in the MAV's navigation system. However, first, the knowledge about the pose between both sensors is obtained by proposing an improved calibration method. For both calibration and ego-motion estimation, 3D-to-2D correspondences are used and the Perspective-3-Point (P3P) problem is solved. Moreover, the covariance estimation of the relative motion is presented. The experiments show very accurate calibration and navigation results.
Management by Trajectory: Trajectory Management Study Report
NASA Technical Reports Server (NTRS)
Leiden, Kenneth; Atkins, Stephen; Fernandes, Alicia D.; Kaler, Curt; Bell, Alan; Kilbourne, Todd; Evans, Mark
2017-01-01
In order to realize the full potential of the Next Generation Air Transportation System (NextGen), improved management along planned trajectories between air navigation service providers (ANSPs) and system users (e.g., pilots and airline dispatchers) is needed. Future automation improvements and increased data communications between aircraft and ground automation would make the concept of Management by Trajectory (MBT) possible.
Passenger Carrying Submersibles: System Safety Analysis
1989-08-01
General Provisions Subpart B Commercial Diving Operations 33 CFR NAVIGATION (As Applicable) Subchapter 0 - Pollution Part 155 Oil Pollution...and Materials: Specifications and Approvals; Subchapter S, Subdivision and Stability; and finally, 33 CFR Subchapter 0, Part 155 Oil Pollution...contamination. Air contamination could also result from inadequate air circulation, loss of temperature/humidity control, or refrigerant or oil leakage
Development and Standardization of the Air Force Officer Qualifying Test Form M.
ERIC Educational Resources Information Center
Miller, Robert E.
Air Force Officer Qualifying Test (AFOQT) Form M was constructed as a replacement for AFOQT Form L in Fiscal Year 1974. The new form serves the same purposes as its predecessor and possesses basically the same characteristics. It yields Pilot, Navigator-Technical, Officer Quality, Verbal, and Quantitative composite scores. Three sets of conversion…
Satellites at work (Space in the seventies)
NASA Technical Reports Server (NTRS)
Corliss, W. R.
1971-01-01
The use of satellites in the areas of communications, meteorology, geodesy, navigation, air traffic control, and earth resources technology is discussed. NASA contributions to various programs are reviewed.
Air-Flow Navigated Crystal Growth for TIPS Pentacene-Based Organic Thin-Film Transistors
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Zhengran; Chen, Jihua; Sun, Zhenzhong
2012-01-01
6,13-bis(triisopropylsilylethynyl)pentacene (TIPS pentacene) is a promising active channel material of organic thin-film transistors (OTFTs) due to its solubility, stability, and high mobility. However, the growth of TIPS pentacene crystals is intrinsically anisotropic and thus leads to significant variation in the performance of OTFTs. In this paper, air flow is utilized to effectively reduce the TIPS pentacene crystal anisotropy and enhance performance consistency in OTFTs, and the resulted films are examined with optical microscopy, grazing-incidence X-ray diffraction, and thin-film transistor measurements. Under air-flow navigation (AFN), TIPS pentacene drop-cast from toluene solution has been observed to form thin films with improved crystalmore » orientation and increased areal coverage on substrates, which subsequently lead to a four-fold increase of average hole mobility and one order of magnitude enhancement in performance consistency defined by the ratio of average mobility to the standard deviation of the field-effect mobilities.« less
NASA Astrophysics Data System (ADS)
Gardner, Gregory S.
This research dissertation summarizes research done on the topic of global air traffic control, to include technology, controlling world organizations and economic considerations. The International Civil Aviation Organization (ICAO) proposed communication, navigation, surveillance, air traffic management system (CNS/ATM) plan is the basis for the development of a single global CNS/ATM system concept as it is discussed within this study. Research will be evaluated on the efficacy of a single technology, Automatic Dependent Surveillance-Broadcast (ADS-B) within the scope of a single global CNS/ATM system concept. ADS-B has been used within the Federal Aviation Administration's (FAA) Capstone program for evaluation since the year 2000. The efficacy of ADS-B was measured solely by using National Transportation Safety Board (NTSB) data relating to accident and incident rates within the Alaskan airspace (AK) and that of the national airspace system (NAS).
Emerging Climate-data Needs in the Air Transport Sector
NASA Astrophysics Data System (ADS)
Thompson, T. R.
2014-12-01
This paper addresses the nature of climate information needed within the air-transport sector. Air transport is not a single economic sector with uniform needs for climate data: airport, airline, and air-navigation services are the principal sub-sectors, each with their own particular climate-related decision contexts. For example, airports function as fixed infrastructure that is primarily affected by probabilities of extreme events that could hamper runway/taxiway operations, interfere with worker availability, or impede travel to and from the airport by passengers. Airlines, in contrast, are more concerned with changes in atmospheric conditions (upper-air turbulence, convective weather events, etc.) that might require consideration in long-term decisions related to flight-planning processes and aircraft equipage. Air-navigation service providers have needs that are primarily concerned with assurance of safe spatial separation of aircraft via sensor data and communications links. In addition to present-day commercial air transport, we discuss what climate data may be needed for new types of air transport that may emerge in the next couple of decades. These include, for example, small aircraft provided on-demand to non-pilot travelers, high-altitude supersonic business and commercial jets, and very large numbers of un-manned aircraft. Finally, we give examples relating to key technical challenges in providing decision-relevant climate data to the air-transport sector. These include: (1) identifying what types of climate data are most relevant the different decisions facing the several segments of this industry; (2) determining decision-appropriate time horizons for forecasts of this data; and (3) coupling the uncertainties inherent in these forecasts to the decision process.
Coupled Inertial Navigation and Flush Air Data Sensing Algorithm for Atmosphere Estimation
NASA Technical Reports Server (NTRS)
Karlgaard, Christopher D.; Kutty, Prasad; Schoenenberger, Mark
2016-01-01
This paper describes an algorithm for atmospheric state estimation based on a coupling between inertial navigation and flush air data-sensing pressure measurements. The navigation state is used in the atmospheric estimation algorithm along with the pressure measurements and a model of the surface pressure distribution to estimate the atmosphere using a nonlinear weighted least-squares algorithm. The approach uses a high-fidelity model of atmosphere stored in table-lookup form, along with simplified models propagated along the trajectory within the algorithm to aid the solution. Thus, the method is a reduced-order Kalman filter in which the inertial states are taken from the navigation solution and atmospheric states are estimated in the filter. The algorithm is applied to data from the Mars Science Laboratory entry, descent, and landing from August 2012. Reasonable estimates of the atmosphere are produced by the algorithm. The observability of winds along the trajectory are examined using an index based on the observability Gramian and the pressure measurement sensitivity matrix. The results indicate that bank reversals are responsible for adding information content. The algorithm is applied to the design of the pressure measurement system for the Mars 2020 mission. A linear covariance analysis is performed to assess estimator performance. The results indicate that the new estimator produces more precise estimates of atmospheric states than existing algorithms.
... Marketplace ENT Careers Marketplace Log in b Search form Log in Toggle navigation b Join Now Donate ... matter in the air from the burning of fossil fuels, as well as common household chemicals, can ...
The psychologist and the bombardier: the Army Air Forces' aircrew classification program in WWII.
Holmes, Marcia E
2014-03-01
During World War II, psychologists in the Army Air Forces were given an unprecedented opportunity to showcase their discipline by developing examinations to test the aptitude of aviation cadets as pilots, navigators, or bombardiers. These psychologists enjoyed success in classifying pilots and navigators, but became quickly frustrated by their results for bombardiers. The trouble lay not in their choice of tests but in their performance measures for bombardiering, a difficulty that came to be known as 'the problem of the criterion.' This episode in the history of military mental testing exemplifies the challenges faced by psychologists at the moment they were poised to gain the support of the armed services, and highlights how these new hazards shaped postwar military psychology. Copyright © 2013 Elsevier Ltd. All rights reserved.
Navigation and guidance requirements for commercial VTOL operations
NASA Technical Reports Server (NTRS)
Hoffman, W. C.; Hollister, W. M.; Howell, J. D.
1974-01-01
The NASA Langley Research Center (LaRC) has undertaken a research program to develop the navigation, guidance, control, and flight management technology base needed by Government and industry in establishing systems design concepts and operating procedures for VTOL short-haul transportation systems in the 1980s time period. The VALT (VTOL Automatic Landing Technology) Program encompasses the investigation of operating systems and piloting techniques associated with VTOL operations under all-weather conditions from downtown vertiports; the definition of terminal air traffic and airspace requirements; and the development of avionics including navigation, guidance, controls, and displays for automated takeoff, cruise, and landing operations. The program includes requirements analyses, design studies, systems development, ground simulation, and flight validation efforts.
Precise time technology for selected Air Force systems: Present status and future requirements
NASA Technical Reports Server (NTRS)
Yannoni, N. F.
1981-01-01
Precise time and time interval (PTTI) technology is becoming increasingly significant to Air Force operations as digital techniques find expanded utility in military missions. Timing has a key role in the function as well as in navigation. A survey of the PTTI needs of several Air Force systems is presented. Current technology supporting these needs was reviewed and new requirements are emphasized for systems as they transfer from initial development to final operational deployment.
Maintenance-free lead acid battery for inertial navigation systems aircraft
NASA Astrophysics Data System (ADS)
Johnson, William R.; Vutetakis, David G.
1995-05-01
Historically, Aircraft Inertial Navigation System (INS) Batteries have utilized vented nickel-cadmium batteries for emergency DC power. The United States Navy and Air Force developed separate systems during their respective INS developments. The Navy contracted with Litton Industries to produce the LTN-72 and Air Force contracted with Delco to produce the Carousel IV INS for the large cargo and specialty aircraft applications. Over the years, a total of eight different battery national stock numbers (NSNs) have entered the stock system along with 75 battery spare part NSNs. The Standard Hardware Acquisition and Reliability Program is working with the Aircraft Battery Group at Naval Surface Warfare Center Crane Division, Naval Air Systems Command (AIR 536), Wright Laboratory, Battelle Memorial Institute, and Concorde Battery Corporation to produce a standard INS battery. This paper discusses the approach taken to determine whether the battery should be replaced and to select the replacement chemistry. The paper also discusses the battery requirements, aircraft that the battery is compatible with, and status of Navy flight evaluation. Projected savings in avoided maintenance in Navy and Air Force INS Systems is projected to be $14.7 million per year with a manpower reduction of 153 maintenance personnel. The new INS battery is compatible with commercially sold INS systems which represents 66 percent of the systems sold.
Federal Aviation Administration Annual Report .
1996-01-01
FY 1995. Equipment installations completed during the year included en route automated radar tracking system ( Micro -EARTS), VSCS, large facility...provide a better means for exchanging ATC information between the FAA and Mexico’s air navigation authority, Servicios a la Navegacion en el Espacio...air traffic operations research initiative SBIR Small Business Innovation Research SENEAM Servicios a la Navegacion en el Espacio Aereo
Airborne gravimetry, altimetry, and GPS navigation errors
NASA Technical Reports Server (NTRS)
Colombo, Oscar L.
1992-01-01
Proper interpretation of airborne gravimetry and altimetry requires good knowledge of aircraft trajectory. Recent advances in precise navigation with differential GPS have made it possible to measure gravity from the air with accuracies of a few milligals, and to obtain altimeter profiles of terrain or sea surface correct to one decimeter. These developments are opening otherwise inaccessible regions to detailed geophysical mapping. Navigation with GPS presents some problems that grow worse with increasing distance from a fixed receiver: the effect of errors in tropospheric refraction correction, GPS ephemerides, and the coordinates of the fixed receivers. Ionospheric refraction and orbit error complicate ambiguity resolution. Optimal navigation should treat all error sources as unknowns, together with the instantaneous vehicle position. To do so, fast and reliable numerical techniques are needed: efficient and stable Kalman filter-smoother algorithms, together with data compression and, sometimes, the use of simplified dynamics.
2012-11-26
CAPE CANAVERAL AIR FORCE STATION, Fla. – This view looking up contrasts the black and white lighthouse at Cape Canaveral Air Force Station against the Florida sky. The Canaveral light is the only one owned by the U.S. Air Force. In 2000, the Coast Guard transferred ownership of the lighthouse structure and its grounds to the Air Force, which is now responsible for maintaining it. The U.S. Coast Guard continues to operate the beacon as an active navigational aid. The first lighthouse at Cape Canaveral was built near the tip of the Cape in 1848. The structure was only about 60 feet high with a rather dim light powered by whale oil. In 1859, work began nearby on a new, taller iron structure. Construction was halted during the Civil War, and the lighthouse finally was finished in 1868. The structure, with a brick lining inside its iron exterior, was painted with its "daymark" black and white horizontal bands in 1873 to make it easier to identify during the day as a navigation point. Between 1892 and 1894, the lighthouse was dismantled and moved to its new home about a mile from the coast, where it stands today. Photo credit: NASA/Ben Smegelsky
2012-11-26
CAPE CANAVERAL AIR FORCE STATION, Fla. – The Cape Canaveral Air Force Station lighthouse takes on a warm glow as dawn breaks and a full moon still shines in the background. The Canaveral light is the only one owned by the U.S. Air Force. In 2000, the Coast Guard transferred ownership of the lighthouse structure and its grounds to the Air Force, which is now responsible for maintaining it. The U.S. Coast Guard continues to operate the beacon as an active navigational aid. The first lighthouse at Cape Canaveral was built near the tip of the Cape in 1848. The structure was only about 60 feet high with a rather dim light powered by whale oil. In 1859, work began nearby on a new, taller iron structure. Construction was halted during the Civil War, and the lighthouse finally was finished in 1868. The structure, with a brick lining inside its iron exterior, was painted with its "daymark" black and white horizontal bands in 1873 to make it easier to identify during the day as a navigation point. Between 1892 and 1894, the lighthouse was dismantled and moved to its new home about a mile from the coast, where it stands today. Photo credit: NASA/Ben Smegelsky
2012-11-26
CAPE CANAVERAL AIR FORCE STATION, Fla. – The Cape Canaveral Air Force Station lighthouse takes on a warm glow as dawn breaks and a full moon still shines in the background. The Canaveral light is the only one owned by the U.S. Air Force. In 2000, the Coast Guard transferred ownership of the lighthouse structure and its grounds to the Air Force, which is now responsible for maintaining it. The U.S. Coast Guard continues to operate the beacon as an active navigational aid. The first lighthouse at Cape Canaveral was built near the tip of the Cape in 1848. The structure was only about 60 feet high with a rather dim light powered by whale oil. In 1859, work began nearby on a new, taller iron structure. Construction was halted during the Civil War, and the lighthouse finally was finished in 1868. The structure, with a brick lining inside its iron exterior, was painted with its "daymark" black and white horizontal bands in 1873 to make it easier to identify during the day as a navigation point. Between 1892 and 1894, the lighthouse was dismantled and moved to its new home about a mile from the coast, where it stands today. Photo credit: NASA/Ben Smegelsky
2012-11-26
CAPE CANAVERAL AIR FORCE STATION, Fla. – This view looking up contrasts the black and white lighthouse at Cape Canaveral Air Force Station against the Florida sky. The Canaveral light is the only one owned by the U.S. Air Force. In 2000, the Coast Guard transferred ownership of the lighthouse structure and its grounds to the Air Force, which is now responsible for maintaining it. The U.S. Coast Guard continues to operate the beacon as an active navigational aid. The first lighthouse at Cape Canaveral was built near the tip of the Cape in 1848. The structure was only about 60 feet high with a rather dim light powered by whale oil. In 1859, work began nearby on a new, taller iron structure. Construction was halted during the Civil War, and the lighthouse finally was finished in 1868. The structure, with a brick lining inside its iron exterior, was painted with its "daymark" black and white horizontal bands in 1873 to make it easier to identify during the day as a navigation point. Between 1892 and 1894, the lighthouse was dismantled and moved to its new home about a mile from the coast, where it stands today. Photo credit: NASA/Ben Smegelsky
Active Volcanoes of the Kurile Islands: A Reference Guide for Aviation Users
Neal, Christina A.; Rybin, Alexander; Chibisova, Marina; Miller, Edward
2008-01-01
Introduction: The many volcanoes of the remote and mostly uninhabited Kurile Island arc (fig. 1; table 1) pose a serious hazard for air traffic in the North Pacific. Ash clouds from Kurile eruptions can impact some of the busiest air travel routes in the world and drift quickly into airspace managed by three countries: Russia, Japan, and the United States. Prevailing westerly winds throughout the region will most commonly send ash from any Kurile eruption directly across the parallel North Pacific airways between North America and Asia (Kristine A. Nelson, National Weather Service, oral commun., 2006; fig. 1). This report presents maps showing locations of the 36 most active Kurile volcanoes plotted on Operational Navigational Charts published by the Defense Mapping Agency (map sheets ONC F-10, F-11, and E-10; figs. 1, 2, 3, 4). These maps are intended to assist aviation and other users in the identification of restless Kurile volcanoes. A regional map is followed by three subsections of the Kurile volcanic arc (North, Central, South). Volcanoes and selected primary geographic features are labeled. All maps contain schematic versions of the principal air routes and selected air navigational fixes in this region.
1981-03-01
Instrarf.ent Landing System (IT,S) f. Microwave Landing System (MLS) . Marker Beacon 2. OPEiRA’TiONAL :. Gen ~eral • b. Navigation (1) inertial (2...system with integrated navigation course guidance. 5. ENVIRONMENT. The pressurization, air conditioning, ox,- gen and liqhting must be suitable for...8217) ,nStruments, ~s s t-r se drsoal, cuae~ area covc. ace and I* i0n to + 1/4 inch. Thie com.uica i on systems must be fanc - i n I lv s imulated ( i. e
A-10 Thunderbolt II (Warthog) Systems Engineering Case Study
2010-01-01
Visual Flight Rules (VFR) navigation aids. The “lean” package added Doppler Navigation for night and adverse weather, and a radar ranger and gun...and a big boost for the technology came in 1965 when the Air Force selected the TF39 engine to power the C-5 Galaxy heavy lift aircraft. Still, there...and Staff College, entitled to wear the Ranger Tab and has a real appreciation for the role of CAS in combat. Upon leaving active duty he served
NASA Astrophysics Data System (ADS)
Omatsu, N.; Otsuka, Y.; Shiokawa, K.; Saito, S.
2013-12-01
In recent years, GPS has been utilized for navigation system for airplanes. Propagation delays in the ionosphere due to total electron content (TEC) between GPS satellite and receiver cause large positioning errors. In precision measurement using GPS, the ionospheric delay correction is generally conducted using both GPS L1 and L2 frequencies. However, L2 frequency is not internationally accepted as air navigation band, so it is not available for positioning directly in air navigation. In air navigation, not only positioning accuracy but safety is important, so augmentation systems are required to ensure the safety. Augmentation systems such as the satellite-based augmentation system (SBAS) or the ground-based augmentation system (GBAS) are being developed and some of them are already in operation. GBAS is available in a relatively narrow area around airports. In general, it corrects for the combined effects of multiple sources of positioning errors simultaneously, including satellite clock and orbital information errors, ionospheric delay errors, and tropospheric delay errors, using the differential corrections broadcast by GBAS ground station. However, if the spatial ionospheric delay gradient exists in the area, correction errors remain even after correction by GBAS. It must be a threat to GBAS. In this study, we use the GPS data provided by the Geographical Survey Institute in Japan. From the GPS data, TEC is obtained every 30 seconds. We select 4 observation points from 24.4 to 35.6 degrees north latitude in Japan, and analyze TEC data of these points from 2001 to 2011. Then we reveal dependences of Rate of TEC change Index (ROTI) on latitude, season, and solar activity statistically. ROTI is the root-mean-square deviation of time subtraction of TEC within 5 minutes. In the result, it is the midnight of the spring and the summer of the solar maximum in the point of 26.4 degrees north latitude that the value of ROTI becomes the largest. We think it is caused by plasma bubbles, and the maximum value of ROTI is about 6 TECU/min. Since it is thought that ROTI is an index representing the spatial ionospheric delay gradient, we can evaluate the effect of spatial ionospheric delay gradient to GBAS. In addition, we will discuss azimuth angle dependence of ROTI. We have found that ROTI tends to be high when the GPS satellites are seen westward. Initial analysis results in Indonesia show a similar feature. This feature could arise from the westward tilt of the plasma bubbles with altitude. More detailed results will be reported in this presentation.
Exercise-Induced Bronchoconstriction Quiz
... the AAAAI Foundation Donate Utility navigation Español Journals Pollen Counts Annual Meeting Member Login / My Membership Search ... have a viral infection, temperatures are low, or pollen and air pollution levels are high. Learn more ...
Code of Federal Regulations, 2010 CFR
2010-01-01
...-Federal Microwave Landing System (MLS) facilities that provide the basis for instrument flight rules (IFR) and air traffic control procedures. ... FACILITIES NON-FEDERAL NAVIGATION FACILITIES Microwave Landing System (MLS) § 171.301 Scope. This subpart...
Forecast of the general aviation air traffic control environment for the 1980's
NASA Technical Reports Server (NTRS)
Hoffman, W. C.; Hollister, W. M.
1976-01-01
The critical information required for the design of a reliable, low cost, advanced avionics system which would enhance the safety and utility of general aviation is stipulated. Sufficient data is accumulated upon which industry can base the design of a reasonably priced system having the capability required by general aviation in and beyond the 1980's. The key features of the Air Traffic Control (ATC) system are: a discrete address beacon system, a separation assurance system, area navigation, a microwave landing system, upgraded ATC automation, airport surface traffic control, a wake vortex avoidance system, flight service stations, and aeronautical satellites. The critical parameters that are necessary for component design are identified. The four primary functions of ATC (control, surveillance, navigation, and communication) and their impact on the onboard avionics system design are assessed.
NASA Technical Reports Server (NTRS)
HarrisonFleming, Cody; Spencer, Melissa; Leveson, Nancy; Wilkinson, Chris
2012-01-01
The generation of minimum operational, safety, performance, and interoperability requirements is an important aspect of safely integrating new NextGen components into the Communication Navigation Surveillance and Air Traffic Management (CNS/ATM) system. These requirements are used as part of the implementation and approval processes. In addition, they provide guidance to determine the levels of design assurance and performance that are needed for each element of the new NextGen procedures, including aircraft, operator, and Air Navigation and Service Provider. Using the enhanced Airborne Traffic Situational Awareness for InTrail Procedure (ATSA-ITP) as an example, this report describes some limitations of the current process used for generating safety requirements and levels of required design assurance. An alternative process is described, as well as the argument for why the alternative can generate more comprehensive requirements and greater safety assurance than the current approach.
Space Weather Effects on Aircraft Navigation
NASA Astrophysics Data System (ADS)
Stanley, J. C.; Cade, W. B.
2012-12-01
Many aircraft today use satellites for GPS navigation, arrival and departure to and from airspaces, and for "shooting" non-precision and precision Instrument Approaches into airports. Also in development is an Air Traffic Control system based on satellite technology that seeks to modernize current air traffic control and improve safety, eventually phasing out radar (though not yet in the very near future). Due to the general, commercial, and military aviation fields all becoming more and more reliant on satellite and GPS technologies, the effects of space weather events on these systems is of paramount concern to militaries, airlines, private pilots, and other aviation operators. In this study we analyze data from airlines and other resources regarding effects on satellite and GPS systems, which is crucial to the conduct of safe flight operations now and improving systems for future and continued use.
In-flight angular alignment of inertial navigation systems by means of radio aids
NASA Technical Reports Server (NTRS)
Tanner, W.
1972-01-01
The principles involved in the angular alignment of the inertial reference by nondirectional data from radio aids are developed and compared with conventional methods of alignment such as gyro-compassing and pendulous vertical determination. The specific problem is considered of the space shuttle reentry and a proposed technique for the alignment of the inertial reference system some time before landing. A description is given of the digital simulation of a transponder interrogation system and of its interaction with the inertial navigation system. Data from reentry simulations are used to demonstrate the effectiveness of in-flight inertial system alignment. Concluding remarks refer to other potential applications such as space shuttle orbit insertion and air navigation of conventional aircraft.
A Multi-Operator Simulation for Investigation of Distributed Air Traffic Management Concepts
NASA Technical Reports Server (NTRS)
Peters, Mark E.; Ballin, Mark G.; Sakosky, John S.
2002-01-01
This paper discusses the current development of an air traffic operations simulation that supports feasibility research for advanced air traffic management concepts. The Air Traffic Operations Simulation (ATOS) supports the research of future concepts that provide a much greater role for the flight crew in traffic management decision-making. ATOS provides representations of the future communications, navigation, and surveillance (CNS) infrastructure, a future flight deck systems architecture, and advanced crew interfaces. ATOS also provides a platform for the development of advanced flight guidance and decision support systems that may be required for autonomous operations.
Navigation Aiding by a Hybrid Laser-Camera Motion Estimator for Micro Aerial Vehicles
Atman, Jamal; Popp, Manuel; Ruppelt, Jan; Trommer, Gert F.
2016-01-01
Micro Air Vehicles (MAVs) equipped with various sensors are able to carry out autonomous flights. However, the self-localization of autonomous agents is mostly dependent on Global Navigation Satellite Systems (GNSS). In order to provide an accurate navigation solution in absence of GNSS signals, this article presents a hybrid sensor. The hybrid sensor is a deep integration of a monocular camera and a 2D laser rangefinder so that the motion of the MAV is estimated. This realization is expected to be more flexible in terms of environments compared to laser-scan-matching approaches. The estimated ego-motion is then integrated in the MAV’s navigation system. However, first, the knowledge about the pose between both sensors is obtained by proposing an improved calibration method. For both calibration and ego-motion estimation, 3D-to-2D correspondences are used and the Perspective-3-Point (P3P) problem is solved. Moreover, the covariance estimation of the relative motion is presented. The experiments show very accurate calibration and navigation results. PMID:27649203
Code of Federal Regulations, 2011 CFR
2011-07-01
... Cedar Point; aerial and surface firing range and target area, U.S. Naval Air Station, Patuxent River... Chesapeake Bay, Point Lookout to Cedar Point; aerial and surface firing range and target area, U.S. Naval Air...) The regulations. (i) Through navigation of surface craft outside the target areas will be permitted at...
2008-09-01
performance criteria including passing/failing training, training grades, class rank (Carretta & Ree, 2003; Olea & Ree, 1994), and several non...are consistent with prior validations of the AFOQT versus academic performance criteria in pilot (Carretta & Ree, 1995; Olea & Ree, 1994; Ree...Carretta, & Teachout, 1995)) and navigator ( Olea & Ree, 1994) training. Subsequent analyses took three different approaches to examine the
Multiple Integrated Navigation Sensors for Improved Occupancy Grid FastSLAM
2011-03-01
to the Faculty Department of Electrical and Computer Engineering Graduate School of Engineering and Management Air Force Institute of Technology Air...autonomous vehicle exploration with applications to search and rescue. To current knowledge , this research presents the first SLAM solution to...solution is a key component of an autonomous vehicle, especially one whose mission involves gaining knowledge of unknown areas. It provides the ability
The vertical accelerometer, a new instrument for air navigation
NASA Technical Reports Server (NTRS)
Laboccetta, Letterio
1923-01-01
This report endeavors to show the possibility of determining the rate of acceleration and the advantage of having such an accelerometer in addition to other aviation instruments. Most of the discussions concern balloons.
Flight evaluation of two-segment approaches using area navigation guidance equipment
NASA Technical Reports Server (NTRS)
Schwind, G. K.; Morrison, J. A.; Nylen, W. E.; Anderson, E. B.
1976-01-01
A two-segment noise abatement approach procedure for use on DC-8-61 aircraft in air carrier service was developed and evaluated. The approach profile and procedures were developed in a flight simulator. Full guidance is provided throughout the approach by a Collins Radio Company three-dimensional area navigation (RNAV) system which was modified to provide the two-segment approach capabilities. Modifications to the basic RNAV software included safety protection logic considered necessary for an operationally acceptable two-segment system. With an aircraft out of revenue service, the system was refined and extensively flight tested, and the profile and procedures were evaluated by representatives of the airlines, airframe manufacturers, the Air Line Pilots Association, and the Federal Aviation Adminstration. The system was determined to be safe and operationally acceptable. It was then placed into scheduled airline service for an evaluation during which 180 approaches were flown by 48 airline pilots. The approach was determined to be compatible with the airline operational environment, although operation of the RNAV system in the existing terminal area air traffic control environment was difficult.
The use of ECDIS equipment to achieve an optimum value for energy efficiency operation index
NASA Astrophysics Data System (ADS)
Acomi, N.; Acomi, O. C.; Stanca, C.
2015-11-01
To reduce air pollution produced by ships, the International Maritime Organization has developed a set of technical, operational and management measures. The subject of our research addresses the operational measures for minimizing CO2 air emissions and the way how the emission value could be influenced by external factors regardless of ship-owners’ will. This study aims to analyse the air emissions for a loaded voyage leg performed by an oil tanker. The formula that allows us to calculate the predicted Energy Efficiency Operational Index involves the estimation of distance and fuel consumption, while the quantity of cargo is known. The electronic chart display and information system, ECDIS Simulation Software, will be used for adjusting the passage plan in real time, given the predicted severe environmental conditions. The distance will be determined using ECDIS, while the prediction of the fuel consumption will consider the sea trial and the vessel experience records. That way it will be possible to compare the estimated EEOI value in the case of great circle navigation in adverse weather condition with the estimated EEOI value for weather navigation.
Flight Test Result for the Ground-Based Radio Navigation System Sensor with an Unmanned Air Vehicle
Jang, Jaegyu; Ahn, Woo-Guen; Seo, Seungwoo; Lee, Jang Yong; Park, Jun-Pyo
2015-01-01
The Ground-based Radio Navigation System (GRNS) is an alternative/backup navigation system based on time synchronized pseudolites. It has been studied for some years due to the potential vulnerability issue of satellite navigation systems (e.g., GPS or Galileo). In the framework of our study, a periodic pulsed sequence was used instead of the randomized pulse sequence recommended as the RTCM (radio technical commission for maritime services) SC (special committee)-104 pseudolite signal, as a randomized pulse sequence with a long dwell time is not suitable for applications requiring high dynamics. This paper introduces a mathematical model of the post-correlation output in a navigation sensor, showing that the aliasing caused by the additional frequency term of a periodic pulsed signal leads to a false lock (i.e., Doppler frequency bias) during the signal acquisition process or in the carrier tracking loop of the navigation sensor. We suggest algorithms to resolve the frequency false lock issue in this paper, relying on the use of a multi-correlator. A flight test with an unmanned helicopter was conducted to verify the implemented navigation sensor. The results of this analysis show that there were no false locks during the flight test and that outliers stem from bad dilution of precision (DOP) or fluctuations in the received signal quality. PMID:26569251
1985-09-01
Job Diagnostic Survey National Norms Managerial Workers ... 40 5 . Comparison of Mean Scores of Affective Outcomes With Norms For Navigators...VV cis cda r-4 * 14 to 0 0 0 m V4 E- 0 ta a 7 27 Issue #2: Feasibility of job redesigni. As mentioned earlier, two questions we:!? answered in...C. Satisfaction with co-workers. Average items #4, #7, and #12 of Section Four. D. Satisfaction with supervision. Average items # 5 , #8, and # 14 of
2009-03-01
the research objectives for this study are presented. It should be noted that sensor cost was not considered for this study. Additionally, further...development costs ) for gravity compensation require- ments of its trident submarine inertial navigation systems and by the Air Force Geo- physics...52]: T (r, φ, λ) = GM ae Nmax∑ n=2 n∑ m=0 (a r )n+1 (Cnm cosmλ+ Snm sinmλ)P nm(cos φ) (31) 44 where r, φ, λ are the geocentric distance, lattitude and
Proposed International Aeronautical Monetary Fund - Legal and Practical Implications
DOT National Transportation Integrated Search
1998-01-01
The proposed international aeronautical monetary fund has its genesis in the Latin American Civil Aviation Commission (LACAC) which proposed the inauguration of the fund to finance air navigation services provided by the satellite based Communication...
Joint University Program for Air Transportation Research, 1989-1990
NASA Technical Reports Server (NTRS)
Morrell, Frederick R. (Compiler)
1990-01-01
Research conducted during the academic year 1989-90 under the NASA/FAA sponsored Joint University Program for Air Transportation research is discussed. Completed works, status reports and annotated bibliographies are presented for research topics, which include navigation, guidance and control theory and practice, aircraft performance, human factors, and expert systems concepts applied to airport operations. An overview of the year's activities for each university is also presented.
Automation for "Direct-to" Clearances in Air-Traffic Control
NASA Technical Reports Server (NTRS)
Erzberger, Heinz; McNally, David
2006-01-01
A method of automation, and a system of computer hardware and software to implement the method, have been invented to assist en-route air-traffic controllers in the issuance of clearances to fly directly to specified waypoints or navigation fixes along straight paths that deviate from previously filed flight plans. Such clearances, called "direct-to" clearances, have been in use since before the invention of this method and system.
Tight real-time synchronization of a microwave clock to an optical clock across a turbulent air path
Bergeron, Hugo; Sinclair, Laura C.; Swann, William C.; Nelson, Craig W.; Deschênes, Jean-Daniel; Baumann, Esther; Giorgetta, Fabrizio R.; Coddington, Ian; Newbury, Nathan R.
2018-01-01
The ability to distribute the precise time and frequency from an optical clock to remote platforms could enable future precise navigation and sensing systems. Here we demonstrate tight, real-time synchronization of a remote microwave clock to a master optical clock over a turbulent 4-km open air path via optical two-way time-frequency transfer. Once synchronized, the 10-GHz frequency signals generated at each site agree to 10−14 at one second and below 10−17 at 1000 seconds. In addition, the two clock times are synchronized to ±13 fs over an 8-hour period. The ability to phase-synchronize 10-GHz signals across platforms supports future distributed coherent sensing, while the ability to time-synchronize multiple microwave-based clocks to a high-performance master optical clock supports future precision navigation/timing systems. PMID:29607352
Design considerations for imaging charge-coupled device
NASA Astrophysics Data System (ADS)
1981-04-01
The image dissector tube, which was formerly used as detector in star trackers, will be replaced by solid state imaging devices. The technology advances of charge transfer devices, like the charge-coupled device (CCD) and the charge-injection device (CID) have made their application to star trackers an immediate reality. The Air Force in 1979 funded an American Aerospace company to develop an imaging CCD (ICCD) star sensor for the Multimission Attitude Determination and Autonomous Navigation (MADAN) system. The MADAN system is a technology development for a strapdown attitude and navigation system which can be used on all Air Force 3-axis stabilized satellites. The system will be autonomous and will provide real-time satellite attitude and position information. The star sensor accuracy provides an overall MADAN attitude accuracy of 2 arcsec for star rates up to 300 arcsec/sec. The ICCD is basically an integrating device. Its pixel resolution in not yet satisfactory for precision applications.
Solar photovoltaic systems in the development of Papua New Guinea
NASA Astrophysics Data System (ADS)
Kinnell, G. H.
Geographic and demographic features of Papua New Guinea are summarized, together with current applications of photovoltaic (PV) systems. The PV systems displace the increasing costs of generating power from diesel and kerosene powered units. PV systems power air navigation aids for the extensive air transport used in the absence of a road system. Remote television and visual aid education is possible with PV modules. A total of 50 kW of PV power is presently implemented, with the bulk dedicated to microwave repeater stations, navigation aids, and radio and lighting supplies. A village pumping installation is in operation, as are office lighting and ventilation, house lighting, and construction camp lighting. Another 350 kW is planned for the next 10 yr to run medical supply refrigeration, and further growth is seen for coupling with government-developed village lighting kits that feature industrial reflectors.
Yanagiya, Masahiro; Matsumoto, Jun; Nagano, Masaaki; Kusakabe, Masashi; Matsumoto, Yoko; Furukawa, Ryutaro; Ohara, Sayaka; Usui, Kazuhiro
2018-01-01
Abstract Rationale: The development of postoperative bronchopleural fistula (BPF) remains a challenge in thoracic surgery. We herein report a case of BPF successfully treated with endoscopic bronchial occlusion under computed tomography (CT) fluoroscopy and virtual bronchoscopic navigation (VBN). Patient concerns: A 63-year-old man underwent right upper lobectomy with concomitant S6a subsegmentectomy for lung adenocarcinoma. On postoperative day 24, he complained of shaking chills with high fever. Diagnoses: BPF with subsequent pneumonia and empyema. Interventions: Despite aggressive surgical interventions for the BPF, air leakage persisted postoperatively. On days 26 and 34 after the final operation, endobronchial occlusions were performed under CT fluoroscopy and VBN. Outcomes: The air leaks greatly decreased and the patient was discharged. Lessons: CT fluoroscopy and VBN can be useful techniques for endobronchial occlusion in the treatment of BPF. PMID:29443771
Bergeron, Hugo; Sinclair, Laura C; Swann, William C; Nelson, Craig W; Deschênes, Jean-Daniel; Baumann, Esther; Giorgetta, Fabrizio R; Coddington, Ian; Newbury, Nathan R
2016-04-01
The ability to distribute the precise time and frequency from an optical clock to remote platforms could enable future precise navigation and sensing systems. Here we demonstrate tight, real-time synchronization of a remote microwave clock to a master optical clock over a turbulent 4-km open air path via optical two-way time-frequency transfer. Once synchronized, the 10-GHz frequency signals generated at each site agree to 10 -14 at one second and below 10 -17 at 1000 seconds. In addition, the two clock times are synchronized to ±13 fs over an 8-hour period. The ability to phase-synchronize 10-GHz signals across platforms supports future distributed coherent sensing, while the ability to time-synchronize multiple microwave-based clocks to a high-performance master optical clock supports future precision navigation/timing systems.
Land, sea, and air unmanned systems research and development at SPAWAR Systems Center Pacific
NASA Astrophysics Data System (ADS)
Nguyen, Hoa G.; Laird, Robin; Kogut, Greg; Andrews, John; Fletcher, Barbara; Webber, Todd; Arrieta, Rich; Everett, H. R.
2009-05-01
The Space and Naval Warfare (SPAWAR) Systems Center Pacific (SSC Pacific) has a long and extensive history in unmanned systems research and development, starting with undersea applications in the 1960s and expanding into ground and air systems in the 1980s. In the ground domain, we are addressing force-protection scenarios using large unmanned ground vehicles (UGVs) and fixed sensors, and simultaneously pursuing tactical and explosive ordnance disposal (EOD) operations with small man-portable robots. Technology thrusts include improving robotic intelligence and functionality, autonomous navigation and world modeling in urban environments, extended operational range of small teleoperated UGVs, enhanced human-robot interaction, and incorporation of remotely operated weapon systems. On the sea surface, we are pushing the envelope on dynamic obstacle avoidance while conforming to established nautical rules-of-the-road. In the air, we are addressing cooperative behaviors between UGVs and small vertical-takeoff- and-landing unmanned air vehicles (UAVs). Underwater applications involve very shallow water mine countermeasures, ship hull inspection, oceanographic data collection, and deep ocean access. Specific technology thrusts include fiber-optic communications, adaptive mission controllers, advanced navigation techniques, and concepts of operations (CONOPs) development. This paper provides a review of recent accomplishments and current status of a number of projects in these areas.
Air Vice-Marshal Wilfrid Oulton
NASA Astrophysics Data System (ADS)
Steele, Philip
1998-09-01
Air Vice-Marshal Wilfrid Oulton, who died on 31 October 1997, aged 86, was one of that select group of distinguished Royal Air Force pilots who became equally distinguished navigators. Much of his early Service experience in World War II was spent in Coastal Command, where his natural flying ability combined with his acquired navigator's knowledge and skill led to exceptional operational achievements.In 1943, German submarines were taking a devastating toll of Allied shipping in the North Atlantic and Wilf Oulton was flying long-range patrols over the Bay of Biscay. In May of that year, commanding a Halifax bomber which had been converted for maritime operations, he attacked with depth charges and sank two U-boats and shared in the destruction of a third. For these outstanding successes, which helped mark the Battle of the Atlantic turning in our favour, he was awarded the DSO.Later, and completely different, with the cessation of hostilities, Oulton was jointly responsible for the introduction of the first Air Traffic Control system at Heathrow. And, different again, his ability to inspire confidence and co-operate extremely well with others led to the most challenging peace-time appointment as Joint Task Force Commander of 'Operation Grapple', which supported the British hydrogen bomb tests at Christmas Island in the Pacific Ocean.
FAA/NASA Joint University Program for Air Transportation Research 1994-1995
NASA Technical Reports Server (NTRS)
Remer, J. H.
1998-01-01
The Joint University Program for Air Transportation Research (JUP) is a coordinated set of three grants co-sponsored by the Federal Aviation Administration (FAA) and the National Aeronautics and Space Administration (NASA). Under JUP, three institutions: the Massachusetts Institute of Technology, Princeton, and Ohio Universities receive research grants and collaborate with FAA and NASA in defining and performing civil aeronautics research in a multitude of areas. Some of these disciplines are artificial intelligence, control theory, atmospheric hazards, navigation, avionics, human factors, flight dynamics, air traffic management, and electronic communications.
2006-05-25
AMLOs ). ALOs and AMLOs are rated United States Air Force pilots or navigators former from the fighter and or bomber community and the latter from the...the final ground--air link in close air support. For airdrop, AMLOs have the expertise to assist Army units with planning and coordination.139 Given...the dispersed nature of the COE, however, the one or two AMLOs assigned to each rce to be tapped into is the ETACs. These Airmen not only “speak
Differential GPS for air transport: Status
NASA Technical Reports Server (NTRS)
Hueschen, Richard M.
1993-01-01
The presentation presents background on what the Global Navigation Satellite System (GNSS) is, desired target dates for initial GNSS capabilities for aircraft operations, and a description of differential GPS (Global Positioning System). The presentation also presents an overview of joint flight tests conducted by LaRC and Honeywell on an integrated differential GPS/inertial reference unit (IRU) navigation system. The overview describes the system tested and the results of the flight tests. The last item presented is an overview of a current grant with Ohio University from LaRC which has the goal of developing a precision DGPS navigation system based on interferometry techniques. The fundamentals of GPS interferometry are presented and its application to determine attitude and heading and precision positioning are shown. The presentation concludes with the current status of the grant.
Energy Navigation: Simulation Evaluation and Benefit Analysis
NASA Technical Reports Server (NTRS)
Williams, David H.; Oseguera-Lohr, Rosa M.; Lewis, Elliot T.
2011-01-01
This paper presents results from two simulation studies investigating the use of advanced flight-deck-based energy navigation (ENAV) and conventional transport-category vertical navigation (VNAV) for conducting a descent through a busy terminal area, using Continuous Descent Arrival (CDA) procedures. This research was part of the Low Noise Flight Procedures (LNFP) element within the Quiet Aircraft Technology (QAT) Project, and the subsequent Airspace Super Density Operations (ASDO) research focus area of the Airspace Project. A piloted simulation study addressed development of flight guidance, and supporting pilot and Air Traffic Control (ATC) procedures for high density terminal operations. The procedures and charts were designed to be easy to understand, and to make it easy for the crew to make changes via the Flight Management Computer Control-Display Unit (FMC-CDU) to accommodate changes from ATC.
2010-09-14
CAPE CANAVERAL, Fla. --The Cape Canaveral Lighthouse stands in the midst of space-age structures, a monolith born in another era of exploration. Located near Launch Complex-36 on Cape Canaveral Air Force Station, the Coast Guard transferred ownership in 2000 of the lighthouse structure and its grounds to the U.S. Air Force. A restoration of the lighthouse was completed by the Air Force in 2007. The Coast Guard continues to maintain the beacon as an active navigational aid. The Cape Canaveral Lighthouse Foundation supports the Air Force with activities associated with the lighthouse. For its history, visit www.nasa.gov/centers/kennedy/about/history/lighthouse.html or canaverallight.org. Photo credit: Frankie Martin
14 CFR 121.117 - Airports: Required data.
Code of Federal Regulations, 2010 CFR
2010-01-01
... and communications aids, and ATC. (b) Each certificate holder conducting supplemental operations must...)Navigational and communications aids. (iv)Construction affecting takeoff, landing, or ground operations. (v)Air... information. (i)Runway visual range measurement equipment. (ii)Prevailing winds under low visibility...
GNSS real time performance monitoring and CNS/ATM implementation
DOT National Transportation Integrated Search
2006-07-01
The global transition to communications, navigation, surveillance / air traffic management (CNS/ATM) technology is moving forward at an increasing pace. A critical part of the CNS/ATM concept is the ability to monitor, analyze, and distribute aeronau...
Multi-aircraft dynamics, navigation and operation
NASA Astrophysics Data System (ADS)
Houck, Sharon Wester
Air traffic control stands on the brink of a revolution. Fifty years from now, we will look back and marvel that we ever flew by radio beacons and radar alone, much as we now marvel that early aviation pioneers flew by chronometer and compass alone. The microprocessor, satellite navigation systems, and air-to-air data links are the technical keys to this revolution. Many airports are near or at capacity now for at least portions of the day, making it clear that major increases in airport capacity will be required in order to support the projected growth in air traffic. This can be accomplished by adding airports, adding runways at existing airports, or increasing the capacity of the existing runways. Technology that allows use of ultra closely spaced (750 ft to 2500 ft) parallel approaches would greatly reduce the environmental impact of airport capacity increases. This research tackles the problem of multi aircraft dynamics, navigation, and operation, specifically in the terminal area, and presents new findings on how ultra closely spaced parallel approaches may be accomplished. The underlying approach considers how multiple aircraft are flown in visual conditions, where spacing criteria is much less stringent, and then uses this data to study the critical parameters for collision avoidance during an ultra closely spaced parallel approach. Also included is experimental and analytical investigations on advanced guidance systems that are critical components of precision approaches. Together, these investigations form a novel approach to the design and analysis of parallel approaches for runways spaced less than 2500 ft apart. This research has concluded that it is technically feasible to reduce the required runway spacing during simultaneous instrument approaches to less than the current minimum of 3400 ft with the use of advanced navigation systems while maintaining the currently accepted levels of safety. On a smooth day with both pilots flying a tunnel-in-the-sky display and being guided by a Category I LAAS, it is technically feasible to reduce the runway spacing to 1100 ft. If a Category I LAAS and an "intelligent auto-pilot" that executes both the approach and emergency escape maneuver are used, the technically achievable required runway spacing is reduced to 750 ft. Both statements presume full aircraft state information, including position, velocity, and attitude, is being reliably passed between aircraft at a rate equal to or greater than one Hz.
JPRS Report, Soviet Union, Foreign Military Review, No. 11, November 1986
1987-07-13
Tactical Fighter (pp 44-46) (V. Kuzmin)(not translated) FRG Air Force Third Technical School (pp 46-48) (L. KonstantinovKnot translated) NAVAL FORCES...administration presented a map of Libya marked with 44 objectives passed off as special schools in which terrorists from various regions of the world...to the DMA. The Army Cartographic School (Fort Belvoir, Virginia) trains specialists in preparing the topographic,air navigation and maritime charts
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-20
... navigational facilities, adding new obstacles, or changing air traffic requirements. These changes are designed.... Intl. 20-Sep-12 TX Houston Sugar Land Rgnl.... 2/8058 7/19/12 TAKEOFF MINIMUMS AND (OBSTACLE) DP, Amdt...
14 CFR 1.2 - Abbreviations and symbols.
Code of Federal Regulations, 2010 CFR
2010-01-01
... with runway alignment indicator lights. TACAN means ultra-high frequency tactical air navigational aid... touchdown zone lights. TVOR means very high frequency terminal omnirange station. V Ameans design... safety speed. VFRmeans visual flight rules. VHFmeans very high frequency. VORmeans very high frequency...
Integrated Communications, Navigation and Surveillance Technologies Keynote Address
NASA Technical Reports Server (NTRS)
Lebacqz, J. Victor
2004-01-01
Slides for the Keynote Address present graphics to enhance the discussion of NASA's vision, the National Space Exploration Initiative, current Mars exploration, and aeronautics exploration. The presentation also focuses on development of an Air Transportation System and transformation from present systems.
2012-07-05
Cape Canaveral Air Force Station, Fla. -- As the sun rises, the Cape Canaveral Lighthouse is silhouetted against the early morning sky. The Canaveral light is the only operating lighthouse owned by the U.S. Air Force. In 2000, the Coast Guard transferred ownership of the lighthouse structure and its grounds to the Air Force, which is now responsible for maintaining it. The U.S. Coast Guard continues to operate the modern first-order beacon as an active navigational aid. The first lighthouse at Cape Canaveral was built near the tip of the Cape in 1848. The structure was only about 60 feet high with a rather dim light powered by whale oil. In 1859, work began nearby on a new, taller iron structure. Construction was halted during the Civil War, and the lighthouse finally was finished in 1868. The structure, with a brick lining inside its iron exterior, was painted with its "daymark" black and white horizontal bands in 1873 to make it easier to identify during the day as a navigation point. Between 1892 and 1894, the lighthouse was dismantled and moved to its new home about a mile from the coast, where it stands today. Photo credit: NASA/Ben Smegelsky
2012-07-05
Cape Canaveral Air Force Station, Fla. -- As the sun rises, the Cape Canaveral Lighthouse is silhouetted against the early morning sky. The Canaveral light is the only operating lighthouse owned by the U.S. Air Force. In 2000, the Coast Guard transferred ownership of the lighthouse structure and its grounds to the Air Force, which is now responsible for maintaining it. The U.S. Coast Guard continues to operate the modern first-order beacon as an active navigational aid. The first lighthouse at Cape Canaveral was built near the tip of the Cape in 1848. The structure was only about 60 feet high with a rather dim light powered by whale oil. In 1859, work began nearby on a new, taller iron structure. Construction was halted during the Civil War, and the lighthouse finally was finished in 1868. The structure, with a brick lining inside its iron exterior, was painted with its "daymark" black and white horizontal bands in 1873 to make it easier to identify during the day as a navigation point. Between 1892 and 1894, the lighthouse was dismantled and moved to its new home about a mile from the coast, where it stands today. Photo credit: NASA/Ben Smegelsky
2012-07-05
Cape Canaveral Air Force Station, Fla. -- As the sun rises, the Cape Canaveral Lighthouse is silhouetted against the early morning sky. The Canaveral light is the only operating lighthouse owned by the U.S. Air Force. In 2000, the Coast Guard transferred ownership of the lighthouse structure and its grounds to the Air Force, which is now responsible for maintaining it. The U.S. Coast Guard continues to operate the modern first-order beacon as an active navigational aid. The first lighthouse at Cape Canaveral was built near the tip of the Cape in 1848. The structure was only about 60 feet high with a rather dim light powered by whale oil. In 1859, work began nearby on a new, taller iron structure. Construction was halted during the Civil War, and the lighthouse finally was finished in 1868. The structure, with a brick lining inside its iron exterior, was painted with its "daymark" black and white horizontal bands in 1873 to make it easier to identify during the day as a navigation point. Between 1892 and 1894, the lighthouse was dismantled and moved to its new home about a mile from the coast, where it stands today. Photo credit: NASA/Ben Smegelsky
2012-07-05
Cape Canaveral Air Force Station, Fla. -- As the sun rises, the Cape Canaveral Lighthouse is silhouetted against the early morning sky. The Canaveral light is the only operating lighthouse owned by the U.S. Air Force. In 2000, the Coast Guard transferred ownership of the lighthouse structure and its grounds to the Air Force, which is now responsible for maintaining it. The U.S. Coast Guard continues to operate the modern first-order beacon as an active navigational aid. The first lighthouse at Cape Canaveral was built near the tip of the Cape in 1848. The structure was only about 60 feet high with a rather dim light powered by whale oil. In 1859, work began nearby on a new, taller iron structure. Construction was halted during the Civil War, and the lighthouse finally was finished in 1868. The structure, with a brick lining inside its iron exterior, was painted with its "daymark" black and white horizontal bands in 1873 to make it easier to identify during the day as a navigation point. Between 1892 and 1894, the lighthouse was dismantled and moved to its new home about a mile from the coast, where it stands today. Photo credit: NASA/Ben Smegelsky
2012-07-05
Cape Canaveral Air Force Station, Fla. -- A warm glow envelopes the Cape Canaveral Lighthouse as dawn breaks and a full moon still shines overhead. The Canaveral light is the only operating lighthouse owned by the U.S. Air Force. In 2000, the Coast Guard transferred ownership of the lighthouse structure and its grounds to the Air Force, which is now responsible for maintaining it. The U.S. Coast Guard continues to operate the modern first-order beacon as an active navigational aid. The first lighthouse at Cape Canaveral was built near the tip of the Cape in 1848. The structure was only about 60 feet high with a rather dim light powered by whale oil. In 1859, work began nearby on a new, taller iron structure. Construction was halted during the Civil War, and the lighthouse finally was finished in 1868. The structure, with a brick lining inside its iron exterior, was painted with its "daymark" black and white horizontal bands in 1873 to make it easier to identify during the day as a navigation point. Between 1892 and 1894, the lighthouse was dismantled and moved to its new home about a mile from the coast, where it stands today. Photo credit: NASA/Ben Smegelsky
2012-07-05
Cape Canaveral Air Force Station, Fla. -- As the sun rises, the Cape Canaveral Lighthouse is silhouetted against the early morning sky. The Canaveral light is the only operating lighthouse owned by the U.S. Air Force. In 2000, the Coast Guard transferred ownership of the lighthouse structure and its grounds to the Air Force, which is now responsible for maintaining it. The U.S. Coast Guard continues to operate the modern first-order beacon as an active navigational aid. The first lighthouse at Cape Canaveral was built near the tip of the Cape in 1848. The structure was only about 60 feet high with a rather dim light powered by whale oil. In 1859, work began nearby on a new, taller iron structure. Construction was halted during the Civil War, and the lighthouse finally was finished in 1868. The structure, with a brick lining inside its iron exterior, was painted with its "daymark" black and white horizontal bands in 1873 to make it easier to identify during the day as a navigation point. Between 1892 and 1894, the lighthouse was dismantled and moved to its new home about a mile from the coast, where it stands today. Photo credit: NASA/Ben Smegelsky
2012-07-05
Cape Canaveral Air Force Station, Fla. -- A warm glow envelopes the Cape Canaveral Lighthouse as dawn breaks and a full moon still shines overhead. The Canaveral light is the only operating lighthouse owned by the U.S. Air Force. In 2000, the Coast Guard transferred ownership of the lighthouse structure and its grounds to the Air Force, which is now responsible for maintaining it. The U.S. Coast Guard continues to operate the modern first-order beacon as an active navigational aid. The first lighthouse at Cape Canaveral was built near the tip of the Cape in 1848. The structure was only about 60 feet high with a rather dim light powered by whale oil. In 1859, work began nearby on a new, taller iron structure. Construction was halted during the Civil War, and the lighthouse finally was finished in 1868. The structure, with a brick lining inside its iron exterior, was painted with its "daymark" black and white horizontal bands in 1873 to make it easier to identify during the day as a navigation point. Between 1892 and 1894, the lighthouse was dismantled and moved to its new home about a mile from the coast, where it stands today. Photo credit: NASA/Ben Smegelsky
2012-07-05
Cape Canaveral Air Force Station, Fla. -- A warm glow envelopes the Cape Canaveral Lighthouse as dawn breaks over the Cape.. The Canaveral light is the only operating lighthouse owned by the U.S. Air Force. In 2000, the Coast Guard transferred ownership of the lighthouse structure and its grounds to the Air Force, which is now responsible for maintaining it. The U.S. Coast Guard continues to operate the modern first-order beacon as an active navigational aid. The first lighthouse at Cape Canaveral was built near the tip of the Cape in 1848. The structure was only about 60 feet high with a rather dim light powered by whale oil. In 1859, work began nearby on a new, taller iron structure. Construction was halted during the Civil War, and the lighthouse finally was finished in 1868. The structure, with a brick lining inside its iron exterior, was painted with its "daymark" black and white horizontal bands in 1873 to make it easier to identify during the day as a navigation point. Between 1892 and 1894, the lighthouse was dismantled and moved to its new home about a mile from the coast, where it stands today. Photo credit: NASA/Ben Smegelsky
2012-07-05
Cape Canaveral Air Force Station, Fla. -- As the sun rises, the Cape Canaveral Lighthouse is silhouetted against the early morning sky. The Canaveral light is the only operating lighthouse owned by the U.S. Air Force. In 2000, the Coast Guard transferred ownership of the lighthouse structure and its grounds to the Air Force, which is now responsible for maintaining it. The U.S. Coast Guard continues to operate the modern first-order beacon as an active navigational aid. The first lighthouse at Cape Canaveral was built near the tip of the Cape in 1848. The structure was only about 60 feet high with a rather dim light powered by whale oil. In 1859, work began nearby on a new, taller iron structure. Construction was halted during the Civil War, and the lighthouse finally was finished in 1868. The structure, with a brick lining inside its iron exterior, was painted with its "daymark" black and white horizontal bands in 1873 to make it easier to identify during the day as a navigation point. Between 1892 and 1894, the lighthouse was dismantled and moved to its new home about a mile from the coast, where it stands today. Photo credit: NASA/Ben Smegelsky
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-29
...This rule establishes, amends, suspends, or revokes Standard Instrument Approach Procedures (SIAPs) and associated Takeoff Minimums and Obstacle Departure Procedures for operations at certain airports. These regulatory actions are needed because of the adoption of new or revised criteria, or because of changes occurring in the National Airspace System, such as the commissioning of new navigational facilities, adding new obstacles, or changing air traffic requirements. These changes are designed to provide safe and efficient use of the navigable airspace and to promote safe flight operations under instrument flight rules at the affected airports.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-12
...This establishes, amends, suspends, or revokes Standard Instrument Approach Procedures (SIAPs) and associated Takeoff Minimums and Obstacle Departure Procedures for operations at certain airports. These regulatory actions are needed because of the adoption of new or revised criteria, or because of changes occurring in the National Airspace System, such as the commissioning of new navigational facilities, adding new obstacles, or changing air traffic requirements. These changes are designed to provide safe and efficient use of the navigable airspace and to promote safe flight operations under instrument flight rules at the affected airports.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-01
...This rule establishes, amends, suspends, or revokes Standard Instrument Approach Procedures (SIAPs) and associated Takeoff Minimums and Obstacle Departure Procedures for operations at certain airports. These regulatory actions are needed because of the adoption of new or revised criteria, or because of changes occurring in the National Airspace System, such as the commissioning of new navigational facilities, adding new obstacles, or changing air traffic requirements. These changes are designed to provide safe and efficient use of the navigable airspace and to promote safe flight operations under instrument flight rules at the affected airports.
Fundamentals of satellite navigation
NASA Astrophysics Data System (ADS)
Stiller, A. H.
The basic operating principles and capabilities of conventional and satellite-based navigation systems for air, sea, and land vehicles are reviewed and illustrated with diagrams. Consideration is given to autonomous onboard systems; systems based on visible or radio beacons; the Transit, Cicada, Navstar-GPS, and Glonass satellite systems; the physical laws and parameters of satellite motion; the definition of time in satellite systems; and the content of the demodulated GPS data signal. The GPS and Glonass data format frames are presented graphically, and tables listing the GPS and Glonass satellites, their technical characteristics, and the (past or scheduled) launch dates are provided.
Basic avionics module design for general aviation aircraft
NASA Technical Reports Server (NTRS)
Smyth, R. K.; Smyth, D. E.
1978-01-01
The design of an advanced digital avionics system (basic avionics module) for general aviation aircraft operated with a single pilot under IFR conditions is described. The microprocessor based system provided all avionic functions, including flight management, navigation, and lateral flight control. The mode selection was interactive with the pilot. The system used a navigation map data base to provide operation in the current and planned air traffic control environment. The system design included software design listings for some of the required modules. The distributed microcomputer uses the IEEE 488 bus for interconnecting the microcomputer and sensors.
2008-08-01
objects and “ feel ” the forces applied on the object by the other individual or object. Feedback including active touch or proprioceptive signals (e.g...observer will notice that certain touches will feel “bright” or “cold.” In fact, the “experimenter/observer” has just activated his/her tactile cold...2008). More than a feeling : bringing touch into astronauts’ spatial orientation. Microgravity Science and Technology. (In press). [11] Vos, W.K
47 CFR 27.56 - Antenna structures; air navigation safety.
Code of Federal Regulations, 2010 CFR
2010-10-01
..., WTB, 1270 Fairfield Road, Gettysburg, PA 17325. (b) Maintenance contracts. Antenna structure owners... contracts with other entities to monitor and carry out necessary maintenance of antenna structures. Antenna... make such contractual arrangements continue to be responsible for the maintenance of antenna structures...
14 CFR 1.2 - Abbreviations and symbols.
Code of Federal Regulations, 2011 CFR
2011-01-01
... alignment indicator lights. TACAN means ultra-high frequency tactical air navigational aid. TAS means true... means technical standard order. TVOR means very high frequency terminal omnirange station. V Ameans... 2minmeans minimum takeoff safety speed. VFRmeans visual flight rules. VHFmeans very high frequency. VORmeans...
14 CFR 1.2 - Abbreviations and symbols.
Code of Federal Regulations, 2014 CFR
2014-01-01
... alignment indicator lights. TACAN means ultra-high frequency tactical air navigational aid. TAS means true... means technical standard order. TVOR means very high frequency terminal omnirange station. V Ameans... 2minmeans minimum takeoff safety speed. VFRmeans visual flight rules. VHFmeans very high frequency. VORmeans...
14 CFR 1.2 - Abbreviations and symbols.
Code of Federal Regulations, 2013 CFR
2013-01-01
... alignment indicator lights. TACAN means ultra-high frequency tactical air navigational aid. TAS means true... means technical standard order. TVOR means very high frequency terminal omnirange station. V Ameans... 2minmeans minimum takeoff safety speed. VFRmeans visual flight rules. VHFmeans very high frequency. VORmeans...
14 CFR 1.2 - Abbreviations and symbols.
Code of Federal Regulations, 2012 CFR
2012-01-01
... alignment indicator lights. TACAN means ultra-high frequency tactical air navigational aid. TAS means true... means technical standard order. TVOR means very high frequency terminal omnirange station. V Ameans... 2minmeans minimum takeoff safety speed. VFRmeans visual flight rules. VHFmeans very high frequency. VORmeans...
Fuel storage tanks at FAA facilities : Order 1050.15A : executive summary.
DOT National Transportation Integrated Search
1997-04-30
The Federal Aviation Administration (FAA) has over 4,000 fuel storage tanks (FST) in its inventory. Most of these FSTs are underground storage tanks (UST) that contain fuel for emergency backup generators providing secondary power to air navigational...
The AFJROTC Program at Hopewell High School
ERIC Educational Resources Information Center
Schultes, Charles R., Jr.
1975-01-01
Describes the textbooks, the curricular, and co-curricular activities in the AFJROTC program at Hopewell High School. Includes a description of a specialized, fourth-year course extension which includes celestial navigation, communicative techniques, computer systems, meteorology, and Air Force Role in National Defense. (MLH)
DOT National Transportation Integrated Search
2009-02-01
The next generation air transportation system (NextGen) includes the : policies, procedures, and equipment that will allow satellite-based navigation in the : national airspace system. However, this systems ability to meet forecasted traffic : vol...
Global positioning system : challenges in sustaining and upgrading capabilities persist.
DOT National Transportation Integrated Search
2010-09-01
The Global Positioning System (GPS) provides positioning, navigation, and timing (PNT) data to users worldwide. The U.S. Air Force, which is responsible for GPS acquisition, is in the process of modernizing the system. Last year GAO reported that it ...
DOT National Transportation Integrated Search
2009-04-27
Access to affordable and effective flight-simulation training devices (FSTDs) is critical to safely train airline crews in aviating, navigating, communicating, making decisions, and managing flight-deck and crew resources. This paper provides an over...
DOT National Transportation Integrated Search
1974-02-17
A number of satellite system techniques have been suggested as candidates to provide ATC surveillance, communication, and/or navigation service over CONUS. All techniques determine the aircraft positions by multilateration based on the arrival times ...
Titan Aerial Daughtercraft (TAD) for Surface Studies from a Lander or Balloon
NASA Astrophysics Data System (ADS)
Matthies, L.; Tokumaru, P.; Sherrit, S.; Beauchamp, P.
2014-06-01
Recent rapid progress on autonomous navigation of micro air vehicles for terrestrial applications opens new possibilities for a small aerial vehicle that could deploy from a Titan lander or balloon to acquire samples for analysis on the mothership.
1980-09-01
Lawrence Seaway Navigation Season Extension, Draft Main Report and Environmental Statement. Detroit, Michigan. Potential effects on fish were discussed...to keep channels ice free for winter vessel passage. The stucies were Jone to determine base line ecological conditions and the effects of the...Subjects were: "Ecological effects of air bub- blers in the winter, a partially annotated bibliography" and "Annotated bibliography on winter fish and
Modernizing the Mobility Air Force for Tomorrow’s Air Traffic Management System
2012-01-01
Decision Support System GLONASS Global’naya Navigatsionnaya Sputnikovaya Sistema [Global Navigation Satellite System] GPS Global Positioning System HF high...spreadsheet, November 2009. Eurocontrol, “Link 2000+ Programme: Frequently Asked Questions,” web page, undated(a). As of June 5, 2012: http...www.eurocontrol.int/faq/link2000 ———, “Link 2000+ Programme,” web page, undated(b). As of June 5, 2012: http://www.eurocontrol.int/programmes/link-2000-programme
Gender differences in navigational memory: pilots vs. nonpilots.
Verde, Paola; Piccardi, Laura; Bianchini, Filippo; Guariglia, Cecilia; Carrozzo, Paolo; Morgagni, Fabio; Boccia, Maddalena; Di Fiore, Giacomo; Tomao, Enrico
2015-02-01
The coding of space as near and far is not only determined by arm-reaching distance, but is also dependent on how the brain represents the extension of the body space. Recent reports suggest that the dissociation between reaching and navigational space is not limited to perception and action but also involves memory systems. It has been reported that gender differences emerged only in adverse learning conditions that required strong spatial ability. In this study we investigated navigational versus reaching memory in air force pilots and a control group without flight experience. We took into account temporal duration (working memory and long-term memory) and focused on working memory, which is considered critical in the gender differences literature. We found no gender effects or flight hour effects in pilots but observed gender effects in working memory (but not in learning and delayed recall) in the nonpilot population (Women's mean = 5.33; SD= 0.90; Men's mean = 5.54; SD= 0.90). We also observed a difference between pilots and nonpilots in the maintenance of on-line reaching information: pilots (mean = 5.85; SD=0.76) were more efficient than nonpilots (mean = 5.21; SD=0.83) and managed this type of information similarly to that concerning navigational space. In the navigational learning phase they also showed better navigational memory (mean = 137.83; SD=5.81) than nonpilots (mean = 126.96; SD=15.81) and were significantly more proficient than the latter group. There is no gender difference in a population of pilots in terms of navigational abilities, while it emerges in a control group without flight experience. We found also that pilots performed better than nonpilots. This study suggests that once selected, male and female pilots do not differ from each other in visuo-spatial abilities and spatial navigation.
Wind-Based Navigation of a Hot-air Balloon on Titan: A Feasibility Study
NASA Technical Reports Server (NTRS)
Furfaro, Roberto; Lunine, Jonathan I.; Elfes, Alberto; Reh, Kim
2008-01-01
Current analysis of data streamed back to Earth by the Cassini spacecraft features Titan as one of the most exciting places in the solar system. NASA centers and universities around the US, as well as the European Space Agency, are studying the possibility of sending, as part of the next mission to this giant moon of Saturn, a hot-air balloon (Montgolfier-type) for further and more in-depth exploration. The basic idea would be to design a reliable, semi-autonomous, and yet cheap Montgolfier capable of using continuous flow of waste heat from a power source to lift the balloon and sustain its altitude in the Titan environment. In this paper we study the problem of locally navigating a hot-air balloon in the nitrogen-based Titan atmosphere. The basic idea is to define a strategy (i.e. design of a suitable guidance system) that allows autonomous and semi-autonomous navigation of the balloon using the available (and partial) knowledge of the wind structure blowing on the saturnian satellite surface. Starting from first principles we determined the appropriate thermal and dynamical models describing (a) the vertical dynamics of the balloon and (b) the dynamics of the balloon moving on a vertical plane (2-D motion). Next, various non-linear fuzzy-based control strategies have been evaluated, analyzed and implemented in MATLAB to numerically simulate the capability of the system to simultaneously maintain altitude, as well as a scientifically desirable trajectory. We also looked at the ability of the balloon to perform station keeping. The results of the simulation are encouraging and show the effectiveness of such a system to cheaply and effectively perform semiautonomous exploration of Titan.
Wind-based navigation of a hot-air balloon on Titan: a feasibility study
NASA Astrophysics Data System (ADS)
Furfaro, Roberto; Lunine, Jonathan I.; Elfes, Alberto; Reh, Kim
2008-04-01
Current analysis of data streamed back to Earth by the Cassini spacecraft features Titan as one of the most exciting places in the solar system. NASA centers and universities around the US, as well as the European Space Agency, are studying the possibility of sending, as part of the next mission to this giant moon of Saturn, a hot-air balloon (Montgolfier-type) for further and more in-depth exploration. The basic idea would be to design a reliable, semi-autonomous, and yet cheap Montgolfier capable of using continuous flow of waste heat from a power source to lift the balloon and sustain its altitude in the Titan environment. In this paper we study the problem of locally navigating a hot-air balloon in the nitrogen-based Titan atmosphere. The basic idea is to define a strategy (i.e. design of a suitable guidance system) that allows autonomous and semi-autonomous navigation of the balloon using the available (and partial) knowledge of the wind structure blowing on the saturnian satellite surface. Starting from first principles we determined the appropriate thermal and dynamical models describing (a) the vertical dynamics of the balloon and (b) the dynamics of the balloon moving on a vertical plane (2-D motion). Next, various non-linear fuzzy-based control strategies have been evaluated, analyzed and implemented in MATLAB to numerically simulate the capability of the system to simultaneously maintain altitude, as well as a scientifically desirable trajectory. We also looked at the ability of the balloon to perform station keeping. The results of the simulation are encouraging and show the effectiveness of such a system to cheaply and effectively perform semi-autonomous exploration of Titan.
77 FR 67782 - Proposed Amendment of Class E Airspace; Casper, WY
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-14
..., Natrona County International Airport, Casper, WY, to facilitate vectoring of Instrument Flight Rules (IFR... Range Tactical Air Navigation (VORTAC) has made reconfiguration necessary for the safety and management of aircraft operations at Casper, Natrona County International Airport, Casper, WY. DATES: Comments...
14 CFR 61.125 - Aeronautical knowledge.
Code of Federal Regulations, 2013 CFR
2013-01-01
... magnetic compass for pilotage and dead reckoning; (10) Use of air navigation facilities; (11) Aeronautical... aeronautical knowledge areas of paragraph (b) of this section that apply to the aircraft category and class... operation of aircraft; (6) Weight and balance computations; (7) Use of performance charts; (8) Significance...
Code of Federal Regulations, 2010 CFR
2010-01-01
... FACILITIES NON-FEDERAL NAVIGATION FACILITIES Nondirectional Radio Beacon Facilities § 171.21 Scope. (a) This... radio beacon facilities that are to be involved in the approval of instrument flight rules and air traffic control procedures related to those facilities. (b) A nondirectional radio beacon (“H” facilities...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Scope. 77.1 Section 77.1 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRSPACE OBJECTS... obstructions to air navigation, to determine their effect on the safe and efficient use of airspace; (d...
Vertical Navigation Control Laws and Logic for the Next Generation Air Transportation System
NASA Technical Reports Server (NTRS)
Hueschen, Richard M.; Khong, Thuan H.
2013-01-01
A vertical navigation (VNAV) outer-loop control system was developed to capture and track the vertical path segments of energy-efficient trajectories that are being developed for high-density operations in the evolving Next Generation Air Transportation System (NextGen). The VNAV control system has a speed-on-elevator control mode to pitch the aircraft for tracking a calibrated airspeed (CAS) or Mach number profile and a path control mode for tracking the VNAV altitude profile. Mode control logic was developed for engagement of either the speed or path control modes. The control system will level the aircraft to prevent it from flying through a constraint altitude. A stability analysis was performed that showed that the gain and phase margins of the VNAV control system significantly exceeded the design gain and phase margins. The system performance was assessed using a six-deg-of-freedom non-linear transport aircraft simulation and the performance is illustrated with time-history plots of recorded simulation data.
INS/GNSS Integration for Aerobatic Flight Applications and Aircraft Motion Surveying.
V Hinüber, Edgar L; Reimer, Christian; Schneider, Tim; Stock, Michael
2017-04-26
This paper presents field tests of challenging flight applications obtained with a new family of lightweight low-power INS/GNSS ( inertial navigation system/global satellite navigation system ) solutions based on MEMS ( micro-electro-mechanical- sensor ) machined sensors, being used for UAV ( unmanned aerial vehicle ) navigation and control as well as for aircraft motion dynamics analysis and trajectory surveying. One key is a 42+ state extended Kalman-filter-based powerful data fusion, which also allows the estimation and correction of parameters that are typically affected by sensor aging, especially when applying MEMS-based inertial sensors, and which is not yet deeply considered in the literature. The paper presents the general system architecture, which allows iMAR Navigation the integration of all classes of inertial sensors and GNSS ( global navigation satellite system ) receivers from very-low-cost MEMS and high performance MEMS over FOG ( fiber optical gyro ) and RLG ( ring laser gyro ) up to HRG ( hemispherical resonator gyro ) technology, and presents detailed flight test results obtained under extreme flight conditions. As a real-world example, the aerobatic maneuvers of the World Champion 2016 (Red Bull Air Race) are presented. Short consideration is also given to surveying applications, where the ultimate performance of the same data fusion, but applied on gravimetric surveying, is discussed.
INS/GNSS Integration for Aerobatic Flight Applications and Aircraft Motion Surveying
v. Hinüber, Edgar L.; Reimer, Christian; Schneider, Tim; Stock, Michael
2017-01-01
This paper presents field tests of challenging flight applications obtained with a new family of lightweight low-power INS/GNSS (inertial navigation system/global satellite navigation system) solutions based on MEMS (micro-electro-mechanical- sensor) machined sensors, being used for UAV (unmanned aerial vehicle) navigation and control as well as for aircraft motion dynamics analysis and trajectory surveying. One key is a 42+ state extended Kalman-filter-based powerful data fusion, which also allows the estimation and correction of parameters that are typically affected by sensor aging, especially when applying MEMS-based inertial sensors, and which is not yet deeply considered in the literature. The paper presents the general system architecture, which allows iMAR Navigation the integration of all classes of inertial sensors and GNSS (global navigation satellite system) receivers from very-low-cost MEMS and high performance MEMS over FOG (fiber optical gyro) and RLG (ring laser gyro) up to HRG (hemispherical resonator gyro) technology, and presents detailed flight test results obtained under extreme flight conditions. As a real-world example, the aerobatic maneuvers of the World Champion 2016 (Red Bull Air Race) are presented. Short consideration is also given to surveying applications, where the ultimate performance of the same data fusion, but applied on gravimetric surveying, is discussed. PMID:28445417
Joint University Program for Air Transportation Research, 1984
NASA Technical Reports Server (NTRS)
Morrell, Frederick R. (Compiler)
1987-01-01
The research conducted during 1984 under the NASA/FAA sponsored Joint University Program for Air Transportation Research is summarized. The Joint University Program is a coordinated set of three grants sponsored by NASA Langley Research Center and the Federal Aviation Administration, one each with the Massachusetts Institute of Technology, Ohio University, and Princeton University. Completed works, status reports, and bibliographies are presented for research topics, which include navigation, guidance, control and display concepts. An overview of the year's activities for each of the schools is also presented.
2010-04-01
endangered species, wetlands , floodplains, cultural resources, and socioeconomic resources. Construction of the VORTAC would have minor temporary...ground water, wetlands , and cultural resources. SUMMARY OF PUBLIC REVIEW AND INTERAGENCY COORDINATION: A 30-day public review period was held to... wetlands , floodplains, vegetation, wildlife, and threatened and endangered species); and cultural resources. i Table of Contents COVER SHEET
1990-05-01
et au suivi des trajcctoires d’a&onefs se subdivise en trois parties: (a) un recueil des r~sumis des contributions - le texte integral sera...Organisation for the Safety of Air Navigation EUROCONTROL Engineering Directorate 72, rue de la Loi B- 1040 Bruxelles Belgium PANEL EXECUTIVE From Europe...AIRCRAFT MOTION IN MOVING AIR b R.Brockhaus DETERMINATION DES LOIS DE GUIDAGE QUASI-OPTIMALES EN TEMPS REEL POUR 4 A-3/4 DES TRAJECTOIRES DAVIONS DE COMBAT
2015-10-01
collateral damage. Further mitigating collateral damage, “…the SDB Focused Lethality Munition (FLM) variant incorporates a carbon fiber composite ...Effectiveness Modern attack helicopters execute the CAS mission with various standoff weapons. RW assets are slow moving and susceptible to MANPADS and...small arms fire, and attack helicopters used for CAS are primarily in a medium or low threat environment where enemy air defenses are weak or not
76 FR 79563 - Proposed Amendment of Class E Airspace; Sheridan, WY
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-22
...: Federal Aviation Administration (FAA), DOT. ACTION: Notice of proposed rulemaking (NPRM). SUMMARY: This action proposes to amend Class E airspace at Sheridan County Airport, Sheridan, WY. Decommissioning of the Sheridan Tactical Air Navigation System (TACAN) has made this action necessary for the safety and...
NASA Technical Reports Server (NTRS)
Mcmahon, J.
1972-01-01
Opinions or plans of qualified experts in the field are used for forecasting future requirements for air navigational facilities and services of international civil aviation. ICAO periodically collects information from Stators and operates on anticipated future operations, consolidates this information, and forecasts the future level of activity at different airports.
77 FR 55688 - Amendment of Class E Airspace; Boise, ID
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-11
... needed as a reference. The Donnelly Tactical Air Navigation System (TACAN) has been decommissioned and controlled airspace reconfigured. This action also makes a minor change to the legal description in reference.... No comments were received. The FAA's Aeronautical Products Office requested the legal description for...
14 CFR 91.13 - Careless or reckless operation.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Careless or reckless operation. 91.13 Section 91.13 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Careless or reckless operation. (a) Aircraft operations for the purpose of air navigation. No person may...
14 CFR 91.13 - Careless or reckless operation.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Careless or reckless operation. 91.13 Section 91.13 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Careless or reckless operation. (a) Aircraft operations for the purpose of air navigation. No person may...
14 CFR 91.13 - Careless or reckless operation.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Careless or reckless operation. 91.13 Section 91.13 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Careless or reckless operation. (a) Aircraft operations for the purpose of air navigation. No person may...
14 CFR 91.13 - Careless or reckless operation.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Careless or reckless operation. 91.13 Section 91.13 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Careless or reckless operation. (a) Aircraft operations for the purpose of air navigation. No person may...
Integrated Airport Surface Operations
NASA Technical Reports Server (NTRS)
Koczo, S.
1998-01-01
The current air traffic environment in airport terminal areas experiences substantial delays when weather conditions deteriorate to Instrument Meteorological Conditions (IMC). Research activity at NASA has culminated in the development, flight test and demonstration of a prototype Low Visibility Landing and Surface Operations (LVLASO) system. A NASA led industry team and the FAA developed the system which integrated airport surface surveillance systems, aeronautical data links, DGPS navigation, automation systems, and controller and flight deck displays. The LVLASO system was demonstrated at the Hartsfield-Atlanta International Airport using a Boeing 757-200 aircraft during August, 1997. This report documents the contractors role in this testing particularly in the area of data link and DGPS navigation.
Autonomous unmanned air vehicles (UAV) techniques
NASA Astrophysics Data System (ADS)
Hsu, Ming-Kai; Lee, Ting N.
2007-04-01
The UAVs (Unmanned Air Vehicles) have great potentials in different civilian applications, such as oil pipeline surveillance, precision farming, forest fire fighting (yearly), search and rescue, boarder patrol, etc. The related industries of UAVs can create billions of dollars for each year. However, the road block of adopting UAVs is that it is against FAA (Federal Aviation Administration) and ATC (Air Traffic Control) regulations. In this paper, we have reviewed the latest technologies and researches on UAV navigation and obstacle avoidance. We have purposed a system design of Jittering Mosaic Image Processing (JMIP) with stereo vision and optical flow to fulfill the functionalities of autonomous UAVs.
2012-07-05
Cape Canaveral Air Force Station, Fla. -- The lantern room of the Cape Canaveral Lighthouse, with its modern first-order optic, takes on a warm glow as dawn breaks and a full moon still shines overhead. The Canaveral light is the only operating lighthouse owned by the U.S. Air Force. In 2000, the Coast Guard transferred ownership of the lighthouse structure and its grounds to the Air Force, which is now responsible for maintaining it. The U.S. Coast Guard continues to operate the beacon as an active navigational aid. The first lighthouse at Cape Canaveral was built near the tip of the Cape in 1848. The structure was only about 60 feet high with a rather dim light powered by whale oil. In 1859, work began nearby on a new, taller iron structure. Construction was halted during the Civil War, and the lighthouse finally was finished in 1868. The structure, with a brick lining inside its iron exterior, was painted with its "daymark" black and white horizontal bands in 1873 to make it easier to identify during the day as a navigation point. Between 1892 and 1894, the lighthouse was dismantled and moved to its new home about a mile from the coast, where it stands today. Photo credit: NASA/Ben Smegelsky
2012-07-05
Cape Canaveral Air Force Station, Fla. -- The lantern room of the Cape Canaveral Lighthouse, with its modern first-order optic, takes on a warm glow as dawn breaks and a full moon still shines overhead. The Canaveral light is the only operating lighthouse owned by the U.S. Air Force. In 2000, the Coast Guard transferred ownership of the lighthouse structure and its grounds to the Air Force, which is now responsible for maintaining it. The U.S. Coast Guard continues to operate the beacon as an active navigational aid. The first lighthouse at Cape Canaveral was built near the tip of the Cape in 1848. The structure was only about 60 feet high with a rather dim light powered by whale oil. In 1859, work began nearby on a new, taller iron structure. Construction was halted during the Civil War, and the lighthouse finally was finished in 1868. The structure, with a brick lining inside its iron exterior, was painted with its "daymark" black and white horizontal bands in 1873 to make it easier to identify during the day as a navigation point. Between 1892 and 1894, the lighthouse was dismantled and moved to its new home about a mile from the coast, where it stands today. Photo credit: NASA/Ben Smegelsky
2012-07-05
Cape Canaveral Air Force Station, Fla. -- The lantern room of the Cape Canaveral Lighthouse, with its modern first-order optic, takes on a warm glow as dawn breaks and a full moon still shines overhead. The Canaveral light is the only operating lighthouse owned by the U.S. Air Force. In 2000, the Coast Guard transferred ownership of the lighthouse structure and its grounds to the Air Force, which is now responsible for maintaining it. The U.S. Coast Guard continues to operate the beacon as an active navigational aid. The first lighthouse at Cape Canaveral was built near the tip of the Cape in 1848. The structure was only about 60 feet high with a rather dim light powered by whale oil. In 1859, work began nearby on a new, taller iron structure. Construction was halted during the Civil War, and the lighthouse finally was finished in 1868. The structure, with a brick lining inside its iron exterior, was painted with its "daymark" black and white horizontal bands in 1873 to make it easier to identify during the day as a navigation point. Between 1892 and 1894, the lighthouse was dismantled and moved to its new home about a mile from the coast, where it stands today. Photo credit: NASA/Ben Smegelsky
2012-07-05
Cape Canaveral Air Force Station, Fla. -- The lantern room of the Cape Canaveral Lighthouse, with its modern first-order optic, takes on a warm glow as dawn breaks and a full moon still shines overhead. The Canaveral light is the only operating lighthouse owned by the U.S. Air Force. In 2000, the Coast Guard transferred ownership of the lighthouse structure and its grounds to the Air Force, which is now responsible for maintaining it. The U.S. Coast Guard continues to operate the beacon as an active navigational aid. The first lighthouse at Cape Canaveral was built near the tip of the Cape in 1848. The structure was only about 60 feet high with a rather dim light powered by whale oil. In 1859, work began nearby on a new, taller iron structure. Construction was halted during the Civil War, and the lighthouse finally was finished in 1868. The structure, with a brick lining inside its iron exterior, was painted with its "daymark" black and white horizontal bands in 1873 to make it easier to identify during the day as a navigation point. Between 1892 and 1894, the lighthouse was dismantled and moved to its new home about a mile from the coast, where it stands today. Photo credit: NASA/Ben Smegelsky
CD ROM (Compact Disc Read Only Memory): Potential Uses at Air University.
1988-04-01
5 Library Science .................................... 6 Medicine........................................... 7 Law...publishing, business, education, library science , medicine, law, weather, cartography, and navigation will be discussed. Finally, Chapter One will conclude...substantial impact in the following disciplines: publishing, business, education, library science , medicine, law, weather and cartography. This portion of 4
DOT National Transportation Integrated Search
2008-01-28
The Volpe Center designed, implemented, and deployed a Global Positioning System (GPS) Receiver Autonomous Integrity Monitoring (RAIM) prediction system in the mid 1990s to support both Air Force and Federal Aviation Administration (FAA) use of TSO C...
43 CFR 2651.6 - Airport and air navigation facilities.
Code of Federal Regulations, 2011 CFR
2011-10-01
... and to insure safe approaches to airport runways, shall be conveyed by the village corporation to the State of Alaska, and the Secretary will include in the conveyance to any village corporation any and all... LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR LAND RESOURCE MANAGEMENT (2000) ALASKA NATIVE SELECTIONS...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Reporting potentially hazardous... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS... irregularity in a ground facility or navigation aid in flight, the knowledge of which the pilot considers...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Reporting potentially hazardous... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS... or navigation aid in flight, the knowledge of which the pilot in command considers essential to the...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Reporting potentially hazardous... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS... or navigation aid in flight, the knowledge of which the pilot in command considers essential to the...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Reporting potentially hazardous... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS... irregularity in a ground facility or navigation aid in flight, the knowledge of which the pilot considers...
Long-Range Precision-Strike Cruise Missiles in Nato Operations
2014-03-01
turbofan engines, fuels, materials, and terrain contour- matching (TERCOM) navigation systems, would the development of the modern cruise missile begin...This new joint venture directed the “Air Force to share its turbofan engine and high-energy fuel with the Navy, and the Navy to share [its] TERCOM
Autonomous Locator of Thermals (ALOFT) Autonomous Soaring Algorithm
2015-04-03
estimator used on the NRL CICADA Mk 3 micro air vehicle [13]. An extended Kalman filter (EKF) was designed to estimate the airspeed sensor bias and...Boulder, 2007. ALOFT Autonomous Soaring Algorithm 31 13. A.D. Kahn and D.J. Edwards, “Navigation, Guidance and Control for the CICADA Expendable
14 CFR 375.35 - Free transportation.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Free transportation. 375.35 Section 375.35 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) SPECIAL... transportation. (a) Foreign civil aircraft may be navigated in the United States by a foreign air carrier for the...
14 CFR 375.35 - Free transportation.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Free transportation. 375.35 Section 375.35 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) SPECIAL... transportation. (a) Foreign civil aircraft may be navigated in the United States by a foreign air carrier for the...
14 CFR 375.35 - Free transportation.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Free transportation. 375.35 Section 375.35 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) SPECIAL... transportation. (a) Foreign civil aircraft may be navigated in the United States by a foreign air carrier for the...
14 CFR 375.35 - Free transportation.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Free transportation. 375.35 Section 375.35 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) SPECIAL... transportation. (a) Foreign civil aircraft may be navigated in the United States by a foreign air carrier for the...
Computer Programs in Marine Science: Key to Oceanographic Records Documentation No. 5.
ERIC Educational Resources Information Center
Firestone, Mary A.
Presented are abstracts of 700 computer programs in marine science. The programs listed are categorized under a wide range of headings which include physical oceanography, chemistry, coastal and estuarine processes, biology, pollution, air-sea interaction and heat budget, navigation and charting, curve fitting, and applied mathematics. The…
14 CFR 170.13 - Airport Traffic Control Tower (ATCT) establishment criteria.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airport Traffic Control Tower (ATCT... AIR TRAFFIC CONTROL SERVICES AND NAVIGATIONAL FACILITIES Airport Traffic Control Towers § 170.13 Airport Traffic Control Tower (ATCT) establishment criteria. (a) The following criteria along with general...
78 FR 78298 - Proposed Establishment of Class E Airspace; Phoenix, AZ
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-26
...-0956; Airspace Docket No. 13-AWP-17] Proposed Establishment of Class E Airspace; Phoenix, AZ AGENCY... rulemaking (NPRM). SUMMARY: This action proposes to establish Class E airspace at the Phoenix VHF Omni-Directional Radio Range Tactical Air Navigation Aid (VORTAC), Phoenix, AZ, to facilitate vectoring of...
32 CFR Attachment 1 to Part 855 - Glossary of References, Abbreviations, Acronyms, and Terms
Code of Federal Regulations, 2012 CFR
2012-07-01
.... FAR Federal Aviation Regulation. FMS Foreign Military Sales. FOA Field Operating Agency. FSDO Flight... Operations and Transportation. HQ USAF/CEVP Headquarters United States Air Force, Environmental Planning... or flight in navigable airspace as defined in the Federal Aviation Act. Airfield. An area prepared...
32 CFR Attachment 1 to Part 855 - Glossary of References, Abbreviations, Acronyms, and Terms
Code of Federal Regulations, 2014 CFR
2014-07-01
.... FAR Federal Aviation Regulation. FMS Foreign Military Sales. FOA Field Operating Agency. FSDO Flight... Operations and Transportation. HQ USAF/CEVP Headquarters United States Air Force, Environmental Planning... or flight in navigable airspace as defined in the Federal Aviation Act. Airfield. An area prepared...
32 CFR Attachment 1 to Part 855 - Glossary of References, Abbreviations, Acronyms, and Terms
Code of Federal Regulations, 2011 CFR
2011-07-01
.... FAR Federal Aviation Regulation. FMS Foreign Military Sales. FOA Field Operating Agency. FSDO Flight... Operations and Transportation. HQ USAF/CEVP Headquarters United States Air Force, Environmental Planning... or flight in navigable airspace as defined in the Federal Aviation Act. Airfield. An area prepared...
32 CFR Attachment 1 to Part 855 - Glossary of References, Abbreviations, Acronyms, and Terms
Code of Federal Regulations, 2013 CFR
2013-07-01
.... FAR Federal Aviation Regulation. FMS Foreign Military Sales. FOA Field Operating Agency. FSDO Flight... Operations and Transportation. HQ USAF/CEVP Headquarters United States Air Force, Environmental Planning... or flight in navigable airspace as defined in the Federal Aviation Act. Airfield. An area prepared...
32 CFR Attachment 1 to Part 855 - Glossary of References, Abbreviations, Acronyms, and Terms
Code of Federal Regulations, 2010 CFR
2010-07-01
.... FAR Federal Aviation Regulation. FMS Foreign Military Sales. FOA Field Operating Agency. FSDO Flight... Operations and Transportation. HQ USAF/CEVP Headquarters United States Air Force, Environmental Planning... or flight in navigable airspace as defined in the Federal Aviation Act. Airfield. An area prepared...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-26
... traffic and to advance the use of Performance Based Navigation technology. Environmental Review This proposal will be subject to an environmental analysis in accordance with FAA Order 1050.1E, ``Environmental... invited on the overall regulatory, aeronautical, economic, environmental, and energy-related aspects of...
76 FR 70920 - Proposed Amendment of Class E Airspace; Colorado Springs, CO
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-16
...-1191; Airspace Docket No. 11-ANM-21] Proposed Amendment of Class E Airspace; Colorado Springs, CO...: This action proposes to amend Class E airspace at City of Colorado Springs Municipal Airport, Colorado Springs, CO. Decommissioning of the Black Forest Tactical Air Navigation System (TACAN) has made this...
ERIC Educational Resources Information Center
Hodgkinson, Todd; Parks, Stephanie
2016-01-01
The purpose of this article is to familiarize teachers with the concept of executive functioning and to provide them with a collection of strategies that they can use to help support middle and high school students with planning, organization, task-initiation, and impulse control.
78 FR 78299 - Proposed Establishment of Class E Airspace; Truth or Consequences, NM
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-26
...-0995; Airspace Docket No. 13-ASW-30] Proposed Establishment of Class E Airspace; Truth or Consequences... Truth or Consequences VHF Omni-Directional Radio Range Tactical Air Navigation Aid (VORTAC), Truth or Consequences, NM, to facilitate vectoring of Instrument Flight Rules (IFR) aircraft under control of...
78 FR 73085 - Mission Compatibility Evaluation Process
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-05
... daily operating hours or the number of days that equipment in the proposed structure would be in use... structure, operating characteristics, or the equipment in the proposed project. (2) Changing the location of... the DoD involve proposals for the construction of structures that may affect navigable air space...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-19
... following methods: Federal eRulemaking Portal: Go to http://www.regulations.gov . Follow the instructions... software problem is due to a mathematical rounding error, which results in misleading information. At this... air commerce by prescribing regulations for practices, methods, and procedures the Administrator finds...
2008-03-01
Conductor PMC: Perfect Magnetic Conductor RF: Radio Frequency RH: Right-handed SNG : Single Negative TACAN: Tactical Air Navigation UAV: Unmanned Aerial...negative ( SNG ) and double-negative (DNG) materials, and their fascinating properties have driven the interest in MTMs (Engheta and Ziolkowski, 2006
NASA Astrophysics Data System (ADS)
Vela, Adan Ernesto
2011-12-01
From 2010 to 2030, the number of instrument flight rules aircraft operations handled by Federal Aviation Administration en route traffic centers is predicted to increase from approximately 39 million flights to 64 million flights. The projected growth in air transportation demand is likely to result in traffic levels that exceed the abilities of the unaided air traffic controller in managing, separating, and providing services to aircraft. Consequently, the Federal Aviation Administration, and other air navigation service providers around the world, are making several efforts to improve the capacity and throughput of existing airspaces. Ultimately, the stated goal of the Federal Aviation Administration is to triple the available capacity of the National Airspace System by 2025. In an effort to satisfy air traffic demand through the increase of airspace capacity, air navigation service providers are considering the inclusion of advisory conflict-detection and resolution systems. In a human-in-the-loop framework, advisory conflict-detection and resolution decision-support tools identify potential conflicts and propose resolution commands for the air traffic controller to verify and issue to aircraft. A number of researchers and air navigation service providers hypothesize that the inclusion of combined conflict-detection and resolution tools into air traffic control systems will reduce or transform controller workload and enable the required increases in airspace capacity. In an effort to understand the potential workload implications of introducing advisory conflict-detection and resolution tools, this thesis provides a detailed study of the conflict event process and the implementation of conflict-detection and resolution algorithms. Specifically, the research presented here examines a metric of controller taskload: how many resolution commands an air traffic controller issues under the guidance of a conflict-detection and resolution decision-support tool. The goal of the research is to understand how the formulation, capabilities, and implementation of conflict-detection and resolution tools affect the controller taskload (system demands) associated with the conflict-resolution process, and implicitly the controller workload (physical and psychological demands). Furthermore this thesis seeks to establish best practices for the design of future conflict-detection and resolution systems. To generalize conclusions on the conflict-resolution taskload and best design practices of conflict-detection and resolution systems, this thesis focuses on abstracting and parameterizing the behaviors and capabilities of the advisory tools. Ideally, this abstraction of advisory decision-support tools serves as an alternative to exhaustively designing tools, implementing them in high-fidelity simulations, and analyzing their conflict-resolution taskload. Such an approach of simulating specific conflict-detection and resolution systems limits the type of conclusions that can be drawn concerning the design of more generic algorithms. In the process of understanding conflict-detection and resolution systems, evidence in the thesis reveals that the most effective approach to reducing conflict-resolution taskload is to improve conflict-detection systems. Furthermore, studies in the this thesis indicate that there is significant exibility in the design of conflict-resolution algorithms.
High accuracy GNSS based navigation in GEO
NASA Astrophysics Data System (ADS)
Capuano, Vincenzo; Shehaj, Endrit; Blunt, Paul; Botteron, Cyril; Farine, Pierre-André
2017-07-01
Although significant improvements in efficiency and performance of communication satellites have been achieved in the past decades, it is expected that the demand for new platforms in Geostationary Orbit (GEO) and for the On-Orbit Servicing (OOS) on the existing ones will continue to rise. Indeed, the GEO orbit is used for many applications including direct broadcast as well as communications. At the same time, Global Navigation Satellites System (GNSS), originally designed for land, maritime and air applications, has been successfully used as navigation system in Low Earth Orbit (LEO) and its further utilization for navigation of geosynchronous satellites becomes a viable alternative offering many advantages over present ground based methods. Following our previous studies of GNSS signal characteristics in Medium Earth Orbit (MEO), GEO and beyond, in this research we specifically investigate the processing of different GNSS signals, with the goal to determine the best navigation performance they can provide in a GEO mission. Firstly, a detailed selection among different GNSS signals and different combinations of them is discussed, taking into consideration the L1 and L5 frequency bands, and the GPS and Galileo constellations. Then, the implementation of an Orbital Filter is summarized, which adaptively fuses the GN1SS observations with an accurate orbital forces model. Finally, simulation tests of the navigation performance achievable by processing the selected combination of GNSS signals are carried out. The results obtained show an achievable positioning accuracy of less than one meter. In addition, hardware-in-the-loop tests are presented using a COTS receiver connected to our GNSS Spirent simulator, in order to collect real-time hardware-in-the-loop observations and process them by the proposed navigation module.
Juvenile Osprey Navigation during Trans-Oceanic Migration
Horton, Travis W.; Bierregaard, Richard O.; Zawar-Reza, Peyman; Holdaway, Richard N.; Sagar, Paul
2014-01-01
To compensate for drift, an animal migrating through air or sea must be able to navigate. Although some species of bird, fish, insect, mammal, and reptile are capable of drift compensation, our understanding of the spatial reference frame, and associated coordinate space, in which these navigational behaviors occur remains limited. Using high resolution satellite-monitored GPS track data, we show that juvenile ospreys (Pandion haliaetus) are capable of non-stop constant course movements over open ocean spanning distances in excess of 1500 km despite the perturbing effects of winds and the lack of obvious landmarks. These results are best explained by extreme navigational precision in an exogenous spatio-temporal reference frame, such as positional orientation relative to Earth's magnetic field and pacing relative to an exogenous mechanism of keeping time. Given the age (<1 year-old) of these birds and knowledge of their hatching site locations, we were able to transform Enhanced Magnetic Model coordinate locations such that the origin of the magnetic coordinate space corresponded with each bird's nest. Our analyses show that trans-oceanic juvenile osprey movements are consistent with bicoordinate positional orientation in transformed magnetic coordinate or geographic space. Through integration of movement and meteorological data, we propose a new theoretical framework, chord and clock navigation, capable of explaining the precise spatial orientation and temporal pacing performed by juvenile ospreys during their long-distance migrations over open ocean. PMID:25493430
The Taxiway Navigation and Situation Awareness (T-NASA) System
NASA Technical Reports Server (NTRS)
Foyle, David C.; Sridhar, Banavar (Technical Monitor)
1997-01-01
The goal of NASA's Terminal Area Productivity (TAP) Low-Visibility Landing and Surface Operations (LVLASO) subelement is to improve the efficiency of airport surface operations for commercial aircraft operating in weather conditions to Category IIIB while maintaining a high degree of safety. Currently, surface operations are one of the least technologically sophisticated components of the air transport system, being conducted in the 1990's with the same basic technology as in the 1930's. Pilots are given little or no explicit information about their current position, and routing information is limited to ATC communications and airport charts. In TAP/LVLASO, advanced technologies such as satellite navigation systems, digital data communications, advanced information presentation technology, and ground surveillance systems will be integrated into flight deck displays to enable expeditious and safe traffic movement on the airport surface. The cockpit display suite is called the T-NASA (Taxiway Navigation and Situation Awareness) System. This system has three integrated components: 1) Moving Map track-up airport surface display with own-ship, traffic and graphical route guidance 2) Scene-Linked Symbology - route/taxi information virtually projected via a Head-up Display (HUD) onto the forward scene; and, 3) 3-D Audio Ground Collision Avoidance and Navigation system - spatially-localized auditory traffic and navigation alerts. In the current paper, the design philosophy of the T-NASA system will be presented, and the T-NASA system display components described.
NASA Technical Reports Server (NTRS)
Lax, F. M.
1975-01-01
A time-controlled navigation system applicable to the descent phase of flight for airline transport aircraft was developed and simulated. The design incorporates the linear discrete-time sampled-data version of the linearized continuous-time system describing the aircraft's aerodynamics. Using optimal linear quadratic control techniques, an optimal deterministic control regulator which is implementable on an airborne computer is designed. The navigation controller assists the pilot in complying with assigned times of arrival along a four-dimensional flight path in the presence of wind disturbances. The strategic air traffic control concept is also described, followed by the design of a strategic control descent path. A strategy for determining possible times of arrival at specified waypoints along the descent path and for generating the corresponding route-time profiles that are within the performance capabilities of the aircraft is presented. Using a mathematical model of the Boeing 707-320B aircraft along with a Boeing 707 cockpit simulator interfaced with an Adage AGT-30 digital computer, a real-time simulation of the complete aircraft aerodynamics was achieved. The strategic four-dimensional navigation controller for longitudinal dynamics was tested on the nonlinear aircraft model in the presence of 15, 30, and 45 knot head-winds. The results indicate that the controller preserved the desired accuracy and precision of a time-controlled aircraft navigation system.
2011-01-21
and as a result reduce aircraft fuel burn and CO2 emissions .”1 EUROCONTROL, representing 32 European nations, is implementing ADS-B under the...ELS) with possible exemptions. By 1 January 2019, they must also be equipped for ADS-B. Canada has also mandated ADS-B4, and nations currently ...based navigational systems 6 like Global Positioning System (GPS). Also, in some domestic overflight or terminal airspaces that currently have 5NM
Pegasus XL CYGNSS Second Launch Attempt
2016-12-15
In the Mission Director's Center at Cape Canaveral Air Force Station, members of the launch team monitor the progress of preparations to launch eight Cyclone Global Navigation Satellite System, or CYGNSS, spacecraft. The CYGNSS satellites will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes. The data that CYGNSS provides will enable scientists to probe key air-sea interaction processes that take place near the core of storms, which are rapidly changing and play a crucial role in the beginning and intensification of hurricanes.
Meta-image navigation augmenters for unmanned aircraft systems (MINA for UAS)
NASA Astrophysics Data System (ADS)
Òªelik, Koray; Somani, Arun K.; Schnaufer, Bernard; Hwang, Patrick Y.; McGraw, Gary A.; Nadke, Jeremy
2013-05-01
GPS is a critical sensor for Unmanned Aircraft Systems (UASs) due to its accuracy, global coverage and small hardware footprint, but is subject to denial due to signal blockage or RF interference. When GPS is unavailable, position, velocity and attitude (PVA) performance from other inertial and air data sensors is not sufficient, especially for small UASs. Recently, image-based navigation algorithms have been developed to address GPS outages for UASs, since most of these platforms already include a camera as standard equipage. Performing absolute navigation with real-time aerial images requires georeferenced data, either images or landmarks, as a reference. Georeferenced imagery is readily available today, but requires a large amount of storage, whereas collections of discrete landmarks are compact but must be generated by pre-processing. An alternative, compact source of georeferenced data having large coverage area is open source vector maps from which meta-objects can be extracted for matching against real-time acquired imagery. We have developed a novel, automated approach called MINA (Meta Image Navigation Augmenters), which is a synergy of machine-vision and machine-learning algorithms for map aided navigation. As opposed to existing image map matching algorithms, MINA utilizes publicly available open-source geo-referenced vector map data, such as OpenStreetMap, in conjunction with real-time optical imagery from an on-board, monocular camera to augment the UAS navigation computer when GPS is not available. The MINA approach has been experimentally validated with both actual flight data and flight simulation data and results are presented in the paper.
2009-10-07
CAPE CANAVERAL, Fla. – The Cape Canaveral Lighthouse stands in the midst of space-age structures, a monolith born in another era of exploration. Located near Launch Complex 36 on Cape Canaveral Air Force Station, the Coast Guard transferred ownership in 2000 of the lighthouse structure and its grounds to the U.S. Air Force, which is now responsible for maintaining it. A restoration of the lighthouse was completed by the Air Force in 2007. The Coast Guard continues to maintain the beacon as an active navigational aid. For the history of the lighthouse, visit http://www.nasa.gov/centers/kennedy/about/history/lighthouse.html. For current information, visit http://www.CanaveralLight.org. Photo credit: NASA/Jim Grossmann
2009-10-07
CAPE CANAVERAL, Fla. – The Cape Canaveral Lighthouse stands in the midst of space-age structures, a monolith born in another era of exploration. Located near Launch Complex 36 on Cape Canaveral Air Force Station, the Coast Guard transferred ownership in 2000 of the lighthouse structure and its grounds to the U.S. Air Force, which is now responsible for maintaining it. A restoration of the lighthouse was completed by the Air Force in 2007. The Coast Guard continues to maintain the beacon as an active navigational aid. For the history of the lighthouse, visit http://www.nasa.gov/centers/kennedy/about/history/lighthouse.html. For current information, visit http://www.CanaveralLight.org. Photo credit: NASA/Jim Grossmann
FAA/NASA Joint University Program for Air Transportation Research, 1992-1993
NASA Technical Reports Server (NTRS)
Morrell, Frederick R. (Compiler)
1994-01-01
The research conducted during the academic year 1992-1993 under the FAA/NASA sponsored Joint University Program for Air Transportation Research is summarized. The year end review was held at Ohio University, Athens, Ohio, 17-18 June 1993. The Joint University Program is a coordinated set of three grants sponsored by the Federal Aviation Administration and NASA Langley Research Center, one each with the Massachusetts Institute of Technology, Ohio University, and Princeton University. Completed works, status reports, and annotated bibliographies are presented for research topics, which include navigation, guidance, and control theory and practice, aircraft performance, human factors and air traffic management. An overview of the year's activities for each university is also presented.
Global Horizons (Briefing Charts)
2013-08-01
to Austere/Remote Bases • Precision airdrop (L) • Affordable wind profiling system (L) • Air to ground communications (L) • Efficient high power... bird www.youtube.com/watch?v=2QqTcQ1BxIs Autonomy: Swarm of Nano quadrotors – fly in formation, navigate (1 min 42s) www.youtube.com/watch?v
14 CFR 77.15 - Construction or alteration not requiring notice.
Code of Federal Regulations, 2011 CFR
2011-01-01
... be shielded by existing structures of a permanent and substantial character or by natural terrain or..., or settlement where it is evident beyond all reasonable doubt that the structure so shielded will not adversely affect safety in air navigation. (b) Any antenna structure of 20 feet or less in height except one...
77 FR 11796 - Proposed Amendment of Class E Airspace; Rock Springs, WY
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-28
...-0131; Airspace Docket No. 12-ANM-2 Proposed Amendment of Class E Airspace; Rock Springs, WY AGENCY... action proposes to amend Class E airspace at Rock Springs-Sweetwater County Airport, Rock Springs, WY. Decommissioning of the Rock Springs Tactical Air Navigation System (TACAN) has made this action necessary for the...
Code of Federal Regulations, 2014 CFR
2014-07-01
... operations not employing wet air emissions control scrubbers there shall be no discharge of process generated waste water pollutants into navigable waters. (b) Only that volume of water resulting from precipitation that exceeds the maximum safe surge capacity of a process waste water impoundment may be discharged...
Code of Federal Regulations, 2013 CFR
2013-07-01
... operations not employing wet air emissions control scrubbers there shall be no discharge of process generated waste water pollutants into navigable waters. (b) Only that volume of water resulting from precipitation that exceeds the maximum safe surge capacity of a process waste water impoundment may be discharged...
Code of Federal Regulations, 2012 CFR
2012-07-01
... operations not employing wet air emissions control scrubbers there shall be no discharge of process generated waste water pollutants into navigable waters. (b) Only that volume of water resulting from precipitation that exceeds the maximum safe surge capacity of a process waste water impoundment may be discharged...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-02
... for generating power for all the in-flight systems that run on electricity, including pumping breathable air into the fuselage, operating the lights, and running the navigation and communication... turning a propeller blade on a turboprop engine, a rotor shaft on a turboshaft engine, or a fan in front...
Code of Federal Regulations, 2010 CFR
2010-01-01
... presumed to adversely affect aviation safety and therefore is a hazard to air navigation. (b) A... of the Private Residence of the President of the United States Federal Special Federal Aviation Regulation No. 98 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION...
14 CFR 170.23 - LORAN-C establishment criteria.
Code of Federal Regulations, 2010 CFR
2010-01-01
... (CONTINUED) NAVIGATIONAL FACILITIES ESTABLISHMENT AND DISCONTINUANCE CRITERIA FOR AIR TRAFFIC CONTROL...-cost ratio equals or exceeds one). As defined in § 170.3 of this part, the benefit-cost ratio is the ratio of the present value of the LORAN-C life-cycle benefits (PVB) to the present value of LORAN-C life...
1984-01-01
correlated with the discontinuities observed on the CIR film . The aerial photographs were assembled into a mosaic of the New Seville archaeological area...usually) minor digging required to get to their base. _ 11 49 Use of Remote Sensing is somewhat misleadinq here since the air photo intepretation was also
14 CFR 77.15 - Construction or alteration not requiring notice.
Code of Federal Regulations, 2010 CFR
2010-01-01
... existing structures of a permanent and substantial character or by natural terrain or topographic features... where it is evident beyond all reasonable doubt that the structure so shielded will not adversely affect safety in air navigation. (b) Any antenna structure of 20 feet or less in height except one that would...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-29
... Traffic Service (ATS) Routes; Northeast United States AGENCY: Federal Aviation Administration (FAA), DOT... northeast United States. This action is necessary due to the decommissioning of the Lake Henry, PA, VHF... navigation (RNAV) routes; and cancel two VOR Federal airways in the northeast United States (78 FR 38236...
78 FR 48303 - Establishment of Class E Airspace; Tuba City, AZ
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-08
...-2013-0147; Airspace Docket No. 13-AWP-1] Establishment of Class E Airspace; Tuba City, AZ AGENCY... airspace at the Tuba City VHF Omni-Directional Radio Range Tactical Air Navigational Aid (VORTAC), Tuba City, AZ. In that rule, an error was made in the legal description for Tuba City, identifying the...
The Community College Transfer Problem
ERIC Educational Resources Information Center
Roach, Ronald
2009-01-01
Once a high school dropout, Hamilton Cunningham beat the odds in navigating the transition from earning a GED, serving in the U.S. Air Force, and attending community college to enrolling at Howard University in fall 2007 as a sophomore where he is now a Truman Scholar and a Jack Kent Cooke Foundation undergraduate transfer scholarship recipient.…
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-21
... the Aviation Safety and Noise Abatement Act, hereinafter referred to as ``the Act'') and 14 Code of... and management of the navigable airspace and air traffic control systems, or adversely affecting other... compatibility program comprised of actions designed for phased implementation by airport management and adjacent...
An Overview of Flight Test Results for a Formation Flight Autopilot
NASA Technical Reports Server (NTRS)
Hanson, Curtis E.; Ryan, Jack; Allen, Michael J.; Jacobson, Steven R.
2002-01-01
The first flight test phase of the NASA Dryden Flight Research Center Autonomous Formation Flight project has successfully demonstrated precision autonomous station-keeping of an F/A-18 research airplane with a second F/A-18 airplane. Blended inertial navigation system (INS) and global positioning system (GPS) measurements have been communicated across an air-to-air telemetry link and used to compute relative-position estimates. A precision research formation autopilot onboard the trailing airplane controls lateral and vertical spacing while the leading airplane operates under production autopilot control. Four research autopilot gain sets have been designed and flight-tested, and each exceeds the project design requirement of steady-state tracking accuracy within 1 standard deviation of 10 ft. Performance also has been demonstrated using single- and multiple-axis inputs such as step commands and frequency sweeps. This report briefly describes the experimental formation flight systems employed and discusses the navigation, guidance, and control algorithms that have been flight-tested. An overview of the flight test results of the formation autopilot during steady-state tracking and maneuvering flight is presented.
The Aeronautical Data Link: Taxonomy, Architectural Analysis, and Optimization
NASA Technical Reports Server (NTRS)
Morris, A. Terry; Goode, Plesent W.
2002-01-01
The future Communication, Navigation, and Surveillance/Air Traffic Management (CNS/ATM) System will rely on global satellite navigation, and ground-based and satellite based communications via Multi-Protocol Networks (e.g. combined Aeronautical Telecommunications Network (ATN)/Internet Protocol (IP)) to bring about needed improvements in efficiency and safety of operations to meet increasing levels of air traffic. This paper will discuss the development of an approach that completely describes optimal data link architecture configuration and behavior to meet the multiple conflicting objectives of concurrent and different operations functions. The practical application of the approach enables the design and assessment of configurations relative to airspace operations phases. The approach includes a formal taxonomic classification, an architectural analysis methodology, and optimization techniques. The formal taxonomic classification provides a multidimensional correlation of data link performance with data link service, information protocol, spectrum, and technology mode; and to flight operations phase and environment. The architectural analysis methodology assesses the impact of a specific architecture configuration and behavior on the local ATM system performance. Deterministic and stochastic optimization techniques maximize architectural design effectiveness while addressing operational, technology, and policy constraints.
UAV-guided navigation for ground robot tele-operation in a military reconnaissance environment.
Chen, Jessie Y C
2010-08-01
A military reconnaissance environment was simulated to examine the performance of ground robotics operators who were instructed to utilise streaming video from an unmanned aerial vehicle (UAV) to navigate his/her ground robot to the locations of the targets. The effects of participants' spatial ability on their performance and workload were also investigated. Results showed that participants' overall performance (speed and accuracy) was better when she/he had access to images from larger UAVs with fixed orientations, compared with other UAV conditions (baseline- no UAV, micro air vehicle and UAV with orbiting views). Participants experienced the highest workload when the UAV was orbiting. Those individuals with higher spatial ability performed significantly better and reported less workload than those with lower spatial ability. The results of the current study will further understanding of ground robot operators' target search performance based on streaming video from UAVs. The results will also facilitate the implementation of ground/air robots in military environments and will be useful to the future military system design and training community.
2014-06-20
CAPE CANAVERAL, Fla. -- The U.S. Coast Guard operates the beacon of the historic Cape Canaveral Light as an active navigational aid. The lighthouse resides on Cape Canaveral Air Force Station in Florida and is owned by the U.S. Air Force. The first lighthouse on Cape Canaveral was built near the tip of the Cape in 1848. The structure was only about 60 feet high with a rather dim light powered by whale oil. In 1859, work began nearby on a new, taller iron structure. Construction was halted during the Civil War, and the lighthouse was not finished until 1868. The structure, with a brick lining inside its iron exterior, was painted with its "daymark" black and white horizontal bands in 1873 to make it easier to identify during the day as a navigation point. Between 1892 and 1894, the lighthouse was dismantled and moved to a new location about a mile from the coast, where it stands today. For more information on the lighthouse, visit http://www.nasa.gov/centers/kennedy/about/history/lighthouse.html. Photo credit: NASA/Ben Smegelsky
2014-06-20
CAPE CANAVERAL, Fla. -- The historic Cape Canaveral Light on Cape Canaveral Air Force Station in Florida serves as a navigational aid for boaters and fishing interests along Florida's Atlantic coast. The U.S. Coast Guard operates the lighthouse's beacon the U.S. Air Force owns the lighthouse. The first lighthouse on Cape Canaveral was built near the tip of the Cape in 1848. The structure was only about 60 feet high with a rather dim light powered by whale oil. In 1859, work began nearby on a new, taller iron structure. Construction was halted during the Civil War, and the lighthouse was not finished until 1868. The structure, with a brick lining inside its iron exterior, was painted with its "daymark" black and white horizontal bands in 1873 to make it easier to identify during the day as a navigation point. Between 1892 and 1894, the lighthouse was dismantled and moved to a new location about a mile from the coast, where it stands today. For more information on the lighthouse, visit http://www.nasa.gov/centers/kennedy/about/history/lighthouse.html. Photo credit: NASA/Ben Smegelsky
Development of a Free-Flight Simulation Infrastructure
NASA Technical Reports Server (NTRS)
Miles, Eric S.; Wing, David J.; Davis, Paul C.
1999-01-01
In anticipation of a projected rise in demand for air transportation, NASA and the FAA are researching new air-traffic-management (ATM) concepts that fall under the paradigm known broadly as ":free flight". This paper documents the software development and engineering efforts in progress by Seagull Technology, to develop a free-flight simulation (FFSIM) that is intended to help NASA researchers test mature-state concepts for free flight, otherwise referred to in this paper as distributed air / ground traffic management (DAG TM). Under development is a distributed, human-in-the-loop simulation tool that is comprehensive in its consideration of current and envisioned communication, navigation and surveillance (CNS) components, and will allow evaluation of critical air and ground traffic management technologies from an overall systems perspective. The FFSIM infrastructure is designed to incorporate all three major components of the ATM triad: aircraft flight decks, air traffic control (ATC), and (eventually) airline operational control (AOC) centers.
Operational Use of GPS Navigation for Space Shuttle Entry
NASA Technical Reports Server (NTRS)
Goodman, John L.; Propst, Carolyn A.
2008-01-01
The STS-118 flight of the Space Shuttle Endeavour was the first shuttle mission flown with three Global Positioning System (GPS) receivers in place of the three legacy Tactical Air Navigation (TACAN) units. This marked the conclusion of a 15 year effort involving procurement, missionization, integration, and flight testing of a GPS receiver and a parallel effort to formulate and implement shuttle computer software changes to support GPS. The use of GPS data from a single receiver in parallel with TACAN during entry was successfully demonstrated by the orbiters Discovery and Atlantis during four shuttle missions in 2006 and 2007. This provided the confidence needed before flying the first all GPS, no TACAN flight with Endeavour. A significant number of lessons were learned concerning the integration of a software intensive navigation unit into a legacy avionics system. These lessons have been taken into consideration during vehicle design by other flight programs, including the vehicle that will replace the Space Shuttle, Orion.
Sandia National Laboratories proof-of-concept robotic security vehicle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harrington, J.J.; Jones, D.P.; Klarer, P.R.
1989-01-01
Several years ago Sandia National Laboratories developed a prototype interior robot that could navigate autonomously inside a large complex building to air and test interior intrusion detection systems. Recently the Department of Energy Office of Safeguards and Security has supported the development of a vehicle that will perform limited security functions autonomously in a structured exterior environment. The goal of the first phase of this project was to demonstrate the feasibility of an exterior robotic vehicle for security applications by using converted interior robot technology, if applicable. An existing teleoperational test bed vehicle with remote driving controls was modified andmore » integrated with a newly developed command driving station and navigation system hardware and software to form the Robotic Security Vehicle (RSV) system. The RSV, also called the Sandia Mobile Autonomous Navigator (SANDMAN), has been successfully used to demonstrate that teleoperated security vehicles which can perform limited autonomous functions are viable and have the potential to decrease security manpower requirements and improve system capabilities. 2 refs., 3 figs.« less
Autonomous Flight Rules - A Concept for Self-Separation in U.S. Domestic Airspace
NASA Technical Reports Server (NTRS)
Wing, David J.; Cotton, William B.
2011-01-01
Autonomous Flight Rules (AFR) are proposed as a new set of operating regulations in which aircraft navigate on tracks of their choice while self-separating from traffic and weather. AFR would exist alongside Instrument and Visual Flight Rules (IFR and VFR) as one of three available flight options for any appropriately trained and qualified operator with the necessary certified equipment. Historically, ground-based separation services evolved by necessity as aircraft began operating in the clouds and were unable to see each other. Today, technologies for global navigation, airborne surveillance, and onboard computing enable the functions of traffic conflict management to be fully integrated with navigation procedures onboard the aircraft. By self-separating, aircraft can operate with more flexibility and fewer restrictions than are required when using ground-based separation. The AFR concept is described in detail and provides practical means by which self-separating aircraft could share the same airspace as IFR and VFR aircraft without disrupting the ongoing processes of Air Traffic Control.
How do mice follow odor trails?
NASA Astrophysics Data System (ADS)
Zwicker, David; Trastour, Sophie; Mishra, Shruti; Mathis, Alexander; Murthy, Venkatesh; Brenner, Michael P.
2015-11-01
Mice are excellent at following odor trails e.g. to locate food or to find mates. However, it is not yet understood what navigation strategies they use. In principle, they could either evaluate temporal differences between sniffs or they could use concurrent input from the two nostrils. It is unknown to what extend these two strategies contribute to mice's performance. When mice follow trails, odors evaporate from the ground, are transported by flow in the air, and are then inhaled with the two nostrils. In order to differentiate between the two navigation strategies, we determine what information the mouse receives: first, we calculate the airflow by numerically solving the incompressible Navier-Stokes equations. We then determine the spatiotemporal odor concentration from the resulting advection-diffusion equations. Lastly, we determine the odor amount in each nostril by calculating the inhalation volumes using potential flow theory. Taken together, we determine the odor amount in each nostril during each sniff, allowing a detailed study of navigation strategies.
Research Of Airborne Precision Spacing to Improve Airport Arrival Operations
NASA Technical Reports Server (NTRS)
Barmore, Bryan E.; Baxley, Brian T.; Murdoch, Jennifer L.
2011-01-01
In September 2004, the European Organization for the Safety of Air Navigation (EUROCONTROL) and the United States Federal Aviation Administration (FAA) signed a Memorandum of Cooperation to mutually develop, modify, test, and evaluate systems, procedures, facilities, and devices to meet the need for safe and efficient air navigation and air traffic control in the future. In the United States and Europe, these efforts are defined within the architectures of the Next Generation Air Transportation System (NextGen) Program and Single European Sky Air Traffic Management Research (SESAR) Program respectively. Both programs have identified Airborne Spacing as a critical component, with Automatic Dependent Surveillance Broadcast (ADS-B) as a key enabler. Increased interest in reducing airport community noise and the escalating cost of aviation fuel has led to the use of Continuous Descent Arrival (CDA) procedures to reduce noise, emissions, and fuel usage compared to current procedures. To provide these operational enhancements, arrival flight paths into terminal areas are planned around continuous vertical descents that are closer to an optimum trajectory than those in use today. The profiles are designed to be near-idle descents from cruise altitude to the Final Approach Fix (FAF) and are typically without any level segments. By staying higher and faster than conventional arrivals, CDAs also save flight time for the aircraft operator. The drawback is that the variation of optimized trajectories for different types and weights of aircraft requires the Air Traffic Controller to provide more airspace around an aircraft on a CDA than on a conventional arrival procedure. This additional space decreases the throughput rate of the destination airport. Airborne self-spacing concepts have been developed to increase the throughput at high-demand airports by managing the inter-arrival spacing to be more precise and consistent using on-board guidance. It has been proposed that the additional space needed around an aircraft performing a CDA could be reduced or eliminated when using airborne spacing techniques.
The Analysis for Energy Consumption of Marine Air Conditioning System Based on VAV and VWV
NASA Astrophysics Data System (ADS)
Xu, Sai Feng; Yang, Xing Lin; Le, Zou Ying
2018-06-01
For ocean-going vessels sailing in different areas on the sea, the change of external environment factors will cause frequent changes in load, traditional ship air-conditioning system is usually designed with a fixed cooling capacity, this design method causes serious waste of resources. A new type of sea-based air conditioning system is proposed in this paper, which uses the sea-based source heat pump system, combined with variable air volume, variable water technology. The multifunctional cabins' dynamic loads for a ship navigating in a typical Eurasian route were calculated based on Simulink. The model can predict changes in full voyage load. Based on the simulation model, the effects of variable air volume and variable water volume on the energy consumption of the air-conditioning system are analyzed. The results show that: When the VAV is coupled with the VWV, the energy saving rate is 23.2%. Therefore, the application of variable air volume and variable water technology to marine air conditioning systems can achieve economical and energy saving advantages.
NWS Turn Around Don't Drown Program, Signs and Resources
Temperatures Records Astronomical Data WEATHER SAFETY Safety Campaigns Air Quality Cold Drought Floods Fog Heat Wind Safety Wildland Fires Winter Weather INFORMATION CENTER Weather-Ready Nation StormReady Centers Products and Services Contact Us Glossary flood navigation bar-top Flood Safety Flood Safety Flood
Code of Federal Regulations, 2011 CFR
2011-07-01
... employing wet air emissions control scrubbers there shall be no discharge of process generated waste water pollutants into navigable waters. (b) Only that volume of water resulting from precipitation that exceeds the maximum safe surge capacity of a process waste water impoundment may be discharged from that impoundment...
2011-12-01
study new multi-agent algorithms to avoid collision and obstacles. Others, including Hanford et al. [2], have tried to build low-cost experimental...2007. [2] S. D. Hanford , L. N. Long, and J. F. Horn, “A Small Semi-Autonomous Rotary-Wing Unmanned Air Vehicle ( UAV ),” 2003 AIAA Atmospheric
Transformation formulas relating geodetic coordinates to a tangent to Earth, plane coordinate system
NASA Technical Reports Server (NTRS)
Credeur, L.
1981-01-01
Formulas and their approximation were developed to map geodetic position to an Earth tangent plane with an airport centered rectangular coordinate system. The transformations were developed for use in a terminal area air traffic model with deterministic aircraft traffic. The exact configured vehicle's approximation equations used in their precision microwave landing system navigation experiments.
78 FR 17185 - U.S. Air Force Space Command Notice of Test
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-20
... an opportunity for civil users and manufacturers to participate in L2C/L5 evaluation and will result... Positioning, Navigation, and Timing Systems Engineering Forum (NPEF) encourage L2C and L5 users and receiver... ICWG process. Any military or civil users who encounter user equipment problems during or after testing...
75 FR 39149 - Establishment of Low Altitude Area Navigation Route (T-284); Houston, TX
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-08
... of Houston Area Air Traffic System (HAATS) Project, Phase 3C, program actions, the route is pending..., 2010. The Director of the Federal Register approves this incorporation by reference action under 1 CFR part 51, subject to the annual revision of FAA Order 7400.9 and publication of conforming amendments...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-18
... Traffic Service Routes; Windsor Locks Area; CT AGENCY: Federal Aviation Administration (FAA), DOT. ACTION... coordinate for one point in the description of area navigation (RNAV) route T-300. DATES: Effective date 0901... action under 1 CFR part 51, subject to the annual revision of FAA Order 7400.9 and publication of...
Aeronautical engineering: A continuing bibliography with indexes (supplement 280)
NASA Technical Reports Server (NTRS)
1992-01-01
This bibliography lists 647 reports, articles, and other documents introduced into the NASA scientific and technical information system in June, 1991. Subject coverage includes: aerodynamics, air transportation safety, aircraft communication and navigation, aircraft design and performance, aircraft instrumentation, aircraft propulsion, aircraft stability and control, research facilities, astronautics, chemistry and materials, engineering, geosciences, computer sciences, physics, and social sciences.
Using Multi-Angle WorldView-2 Imagery to Determine Ocean Depth Near Oahu, Hawaii
2012-09-01
Reflection geometry used in the definition of BRDF (From McConnon [2010...Visible/InfraRed Imaging Spectrometer BRDF : Bidirectional Reflectance Distribution Function DHMs: Digital Height Maps DNs: Digital Numbers EM...navigation and fisheries management, and are also helpful for improving models of ocean circulation, air-sea interaction, weather forecasting, and
Code of Federal Regulations, 2010 CFR
2010-10-01
..., distribution, cost, and use; (2) Flood control; (3) Navigation; (4) Water supply; (5) Air quality; and (6..., including: (1) Any evidence on the implementation costs or operational impacts for electricity production of...) Cost significantly less to implement; or (ii) Result in improved operation of the project works for...
1986-12-01
established by the Federal Aviation Administration (FAA), take into account limitations of the navigational service available, and in some airspace the Air... Services (C&GS) of the National Ocean Service , National Oceanic and Atmospheric Administration (NOS/NOAA), are based on regional horizontal datums which...Electromagnetic Interference EMS Emergency Medical Service ERDA Energy Research & Development Administration (Now Department of Energy) F 3 Form, Fit, and
NASA Technical Reports Server (NTRS)
Jung, Jaewoo; Swenson, Harry; Thipphavong, Jane; Martin, Lynne Hazel; Chen, Liang; Nguyen, Jimmy
2013-01-01
The growth of global demand for air transportation has put increasing strain on the nation's air traffic management system. To relieve this strain, the International Civil Aviation Organization has urged all nations to adopt Performance-Based Navigation (PBN), which can help to reduce air traffic congestion, decrease aviation fuel consumption, and protect the environment. NASA has developed a Terminal Area Precision Scheduling and Spacing (TAPSS) system that can support increased use of PBN during periods of high traffic, while supporting fuel-efficient, continuous descent approaches. In the original development of this system, arrival aircraft are assigned fuel-efficient Area Navigation (RNAV) Standard Terminal Arrival Routes before their initial descent from cruise, with routing defined to a specific runway. The system also determines precise schedules for these aircraft that facilitate continuous descent through the assigned routes. To meet these schedules, controllers are given a set of advisory tools to precisely control aircraft. The TAPSS system has been evaluated in a series of human-in-the-loop (HITL) air traffic simulations during 2010 and 2011. Results indicated increased airport arrival throughput up to 10 over current operations, and maintained fuel-efficient aircraft decent profiles from the initial descent to landing with reduced controller workload. This paper focuses on results from a joint NASA and FAA HITL simulation conducted in 2012. Due to the FAA rollout of the advance terminal area PBN procedures at mid-sized airports first, the TAPSS system was modified to manage arrival aircraft as they entered Terminal Radar Approach Control (TRACON). Dallas-Love Field airport (DAL) was selected by the FAA as a representative mid-sized airport within a constrained TRACON airspace due to the close proximity of a major airport, in this case Dallas-Ft Worth International Airport, one of the busiest in the world. To address this constraint, RNAV routes and Required Navigation Performance with the particular capability known as Radius-to-Fix (RNP-RF) approaches to a short final were used. The purpose of this simulation was to get feedback on how current operations could benefit with the TAPSS system and also to evaluate the efficacy of the advisory tools to support the broader use of PBN in the US National Airspace System. For this NASA-FAA joint experiment, an Air Traffic Control laboratory at NASA Ames was arranged to simulate arrivals into DAL in Instrument Meteorological Conditions utilizing parallel dependent approaches, with two feeder positions that handed off traffic to one final position. Four FAA controllers participated, alternately covering these three positions. All participants were Full-Performance Level terminal controllers and members of the National Air Traffic Controllers Association. During the simulation, PBN arrival operations were compared and contrasted in three conditions. They were the Baseline, where none of the TAPSS systems TRACON controller decision support advisories were provided, the Limited Advisories, reflecting the existing but dormant capabilities of the current terminal automation equipment with providing a subset of the TAPSS systems advisories; numerical delay, landing sequence, and runway assignment information, and the Full Advisories, with providing the following in addition to the ones in the Limited condition; trajectory slot markers, timelines of estimated times of arrivals and sched
Air traffic management evaluation tool
NASA Technical Reports Server (NTRS)
Sheth, Kapil S. (Inventor); Sridhar, Banavar (Inventor); Bilimoria, Karl D. (Inventor); Grabbe, Shon (Inventor); Chatterji, Gano Broto (Inventor); Schipper, John F. (Inventor)
2010-01-01
Method and system for evaluating and implementing air traffic management tools and approaches for managing and avoiding an air traffic incident before the incident occurs. The invention provides flight plan routing and direct routing or wind optimal routing, using great circle navigation and spherical Earth geometry. The invention provides for aircraft dynamics effects, such as wind effects at each altitude, altitude changes, airspeed changes and aircraft turns to provide predictions of aircraft trajectory (and, optionally, aircraft fuel use). A second system provides several aviation applications using the first system. These applications include conflict detection and resolution, miles-in trail or minutes-in-trail aircraft separation, flight arrival management, flight re-routing, weather prediction and analysis and interpolation of weather variables based upon sparse measurements.
Pegasus XL CYGNSS Second Launch Attempt
2016-12-15
In the Mission Director's Center at Cape Canaveral Air Force Station, Andy Bundy, Avionics lead, left, and Pat Simpkins, director of Kennedy Space Center Engineering, monitor the progress of preparations to launch eight Cyclone Global Navigation Satellite System, or CYGNSS, spacecraft. The CYGNSS satellites will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes. The data that CYGNSS provides will enable scientists to probe key air-sea interaction processes that take place near the core of storms, which are rapidly changing and play a crucial role in the beginning and intensification of hurricanes.
Pegasus XL CYGNSS Second Launch Attempt
2016-12-15
In the Mission Director's Center at Cape Canaveral Air Force Station, Greg Robinson, deputy associate administrator for Programs in the NASA Science Mission Directorate, right, congratulates, Tim Dunn, who was launch director for launch of eight Cyclone Global Navigation Satellite System, or CYGNSS, spacecraft. The satellites will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes. The data that CYGNSS provides will enable scientists to probe key air-sea interaction processes that take place near the core of storms, which are rapidly changing and play a crucial role in the beginning and intensification of hurricanes.
Pegasus XL CYGNSS Second Launch Attempt
2016-12-15
In the Mission Director's Center at Cape Canaveral Air Force Station, Dana Allender, NASA Launch Operations manager, left, and Aly Mendoza-Hill, NASA Mission manager, monitor the progress of preparations to launch eight Cyclone Global Navigation Satellite System, or CYGNSS, spacecraft. The CYGNSS satellites will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes. The data that CYGNSS provides will enable scientists to probe key air-sea interaction processes that take place near the core of storms, which are rapidly changing and play a crucial role in the beginning and intensification of hurricanes.
Pegasus XL CYGNSS Second Launch Attempt
2016-12-15
In the Mission Director's Center at Cape Canaveral Air Force Station, Kennedy Space Center Director Bob Cabana, right, congratulates, Omar Baez, a senior launch director in NASA's Launch Services Program, after the successful launch of eight Cyclone Global Navigation Satellite System, or CYGNSS, spacecraft. The satellites will make frequent and accurate measurements of ocean surface winds throughout the life cycle of tropical storms and hurricanes. The data that CYGNSS provides will enable scientists to probe key air-sea interaction processes that take place near the core of storms, which are rapidly changing and play a crucial role in the beginning and intensification of hurricanes.
CALCM: The untold story of the weapon used to start the Gulf war
NASA Astrophysics Data System (ADS)
Nielson, John T.
1994-07-01
The Conventional Air Launched Cruise Missile (CALCM) was developed from the strategic ALCM, AGM-86, by integrating GPS navigation into the missile in place of terrain correlation (TERCOM). In addition, the nuclear warhead was replaced by conventional explosives. The CALCM was developed, tested, and fielded in a single year (mid-1986 - mid-1987) by the Boeing Company where the author was then employed. Although the GPS technology used, a Rockwell single channel aided receiver, has been eclipsed by newer receivers with additional capabilities and newer technology, many innovative things were done in completing the CALCM integration: the external loading of almanac data along with other mission data, three satellite navigation capability, and the use of a single channel receiver in a dynamic flight environment. This effort demonstrated that GPS outputs can be integrated quickly into an existing weapon system using the traditional loosely coupled 'cascaded filter' approach. Although this approach is not as ideal as a tightly coupled integration using raw GPS data, the use of cascaded filters resulted in a weapon that was able to be rapidly fielded. The Air Force had sufficient confidence in the missile, that after four years of operational testing, 35 of these missiles were targeted at key sites at the start of the Gulf War in 1991. This effort, which was declassified in 1992, resulted in the first weapon in the DoD inventory to be operational using GPS navigation. The effort deserves consideration as a model as to how GPS integration can be performed.
Jan, Shau-Shiun; Kao, Yu-Chun
2013-05-17
The current trend of the civil aviation technology is to modernize the legacy air traffic control (ATC) system that is mainly supported by many ground based navigation aids to be the new air traffic management (ATM) system that is enabled by global positioning system (GPS) technology. Due to the low receiving power of GPS signal, it is a major concern to aviation authorities that the operation of the ATM system might experience service interruption when the GPS signal is jammed by either intentional or unintentional radio-frequency interference. To maintain the normal operation of the ATM system during the period of GPS outage, the use of the current radar system is proposed in this paper. However, the tracking performance of the current radar system could not meet the required performance of the ATM system, and an enhanced tracking algorithm, the interacting multiple model and probabilistic data association filter (IMMPDAF), is therefore developed to support the navigation and surveillance services of the ATM system. The conventional radar tracking algorithm, the nearest neighbor Kalman filter (NNKF), is used as the baseline to evaluate the proposed radar tracking algorithm, and the real flight data is used to validate the IMMPDAF algorithm. As shown in the results, the proposed IMMPDAF algorithm could enhance the tracking performance of the current aviation radar system and meets the required performance of the new ATM system. Thus, the current radar system with the IMMPDAF algorithm could be used as an alternative system to continue aviation navigation and surveillance services of the ATM system during GPS outage periods.
Jan, Shau-Shiun; Kao, Yu-Chun
2013-01-01
The current trend of the civil aviation technology is to modernize the legacy air traffic control (ATC) system that is mainly supported by many ground based navigation aids to be the new air traffic management (ATM) system that is enabled by global positioning system (GPS) technology. Due to the low receiving power of GPS signal, it is a major concern to aviation authorities that the operation of the ATM system might experience service interruption when the GPS signal is jammed by either intentional or unintentional radio-frequency interference. To maintain the normal operation of the ATM system during the period of GPS outage, the use of the current radar system is proposed in this paper. However, the tracking performance of the current radar system could not meet the required performance of the ATM system, and an enhanced tracking algorithm, the interacting multiple model and probabilistic data association filter (IMMPDAF), is therefore developed to support the navigation and surveillance services of the ATM system. The conventional radar tracking algorithm, the nearest neighbor Kalman filter (NNKF), is used as the baseline to evaluate the proposed radar tracking algorithm, and the real flight data is used to validate the IMMPDAF algorithm. As shown in the results, the proposed IMMPDAF algorithm could enhance the tracking performance of the current aviation radar system and meets the required performance of the new ATM system. Thus, the current radar system with the IMMPDAF algorithm could be used as an alternative system to continue aviation navigation and surveillance services of the ATM system during GPS outage periods. PMID:23686142
Global navigation satellite systems performance analysis and augmentation strategies in aviation
NASA Astrophysics Data System (ADS)
Sabatini, Roberto; Moore, Terry; Ramasamy, Subramanian
2017-11-01
In an era of significant air traffic expansion characterized by a rising congestion of the radiofrequency spectrum and a widespread introduction of Unmanned Aircraft Systems (UAS), Global Navigation Satellite Systems (GNSS) are being exposed to a variety of threats including signal interferences, adverse propagation effects and challenging platform-satellite relative dynamics. Thus, there is a need to characterize GNSS signal degradations and assess the effects of interfering sources on the performance of avionics GNSS receivers and augmentation systems used for an increasing number of mission-essential and safety-critical aviation tasks (e.g., experimental flight testing, flight inspection/certification of ground-based radio navigation aids, wide area navigation and precision approach). GNSS signal deteriorations typically occur due to antenna obscuration caused by natural and man-made obstructions present in the environment (e.g., elevated terrain and tall buildings when flying at low altitude) or by the aircraft itself during manoeuvring (e.g., aircraft wings and empennage masking the on-board GNSS antenna), ionospheric scintillation, Doppler shift, multipath, jamming and spurious satellite transmissions. Anyone of these phenomena can result in partial to total loss of tracking and possible tracking errors, depending on the severity of the effect and the receiver characteristics. After designing GNSS performance threats, the various augmentation strategies adopted in the Communication, Navigation, Surveillance/Air Traffic Management and Avionics (CNS + A) context are addressed in detail. GNSS augmentation can take many forms but all strategies share the same fundamental principle of providing supplementary information whose objective is improving the performance and/or trustworthiness of the system. Hence it is of paramount importance to consider the synergies offered by different augmentation strategies including Space Based Augmentation System (SBAS), Ground Based Augmentation System (GBAS), Aircraft Based Augmentation System (ABAS) and Receiver Autonomous Integrity Monitoring (RAIM). Furthermore, by employing multi-GNSS constellations and multi-sensor data fusion techniques, improvements in availability and continuity can be obtained. SBAS is designed to improve GNSS system integrity and accuracy for aircraft navigation and landing, while an alternative approach to GNSS augmentation is to transmit integrity and differential correction messages from ground-based augmentation systems (GBAS). In addition to existing space and ground based augmentation systems, GNSS augmentation may take the form of additional information being provided by other on-board avionics systems, such as in ABAS. As these on-board systems normally operate via separate principles than GNSS, they are not subject to the same sources of error or interference. Using suitable data link and data processing technologies on the ground, a certified ABAS capability could be a core element of a future GNSS Space-Ground-Aircraft Augmentation Network (SGAAN). Although current augmentation systems can provide significant improvement of GNSS navigation performance, a properly designed and flight-certified SGAAN could play a key role in trusted autonomous system and cyber-physical system applications such as UAS Sense-and-Avoid (SAA).
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-09
... navigational facilities, adding new obstacles, or changing air traffic requirements. These changes are designed..., VOR RWY 26L, Amdt 32 Houston, TX, Sugar Land Rgnl, ILS OR LOC RWY 35, Amdt 4 Houston, TX, Sugar Land Rgnl, RNAV (GPS) RWY 35, Amdt 2 Houston, TX, Sugar Land Rgnl, VOR/DME-A, Amdt 2 Marshall, TX, Harrison...
ERIC Educational Resources Information Center
Shollenberger, Tara Krystyna
2014-01-01
Research suggests what leaders should do or the qualities or characteristics they "should" have to be ethical leaders (Brown & Trevino, 2006). The ethical decision-making process that leaders should follow to avoid scandals and unethical behavior are overlooked. Few studies focused on ethical decision-making within higher education.…
Terminal Homing for Autonomous Underwater Vehicle Docking
2016-06-01
underwater domain, accurate navigation. Above the water, light and electromagnetic signals travel well through air and space, mediums that allow for a...DISTRIBUTION CODE 13. ABSTRACT The use of docking stations for autonomous underwater vehicles (AUV) provides the ability to keep a vehicle on...Mechanical and Aerospace Engineering iv THIS PAGE INTENTIONALLY LEFT BLANK v ABSTRACT The use of docking stations for autonomous underwater
The history of aeronautical medicine in Venezuela
NASA Technical Reports Server (NTRS)
Iriarte, D. R.
1986-01-01
The Aerial Medical Service of the Ministry of Transportation and Communications of Venezuela was created on June 1949, and later became the Department of Aeronautical Medicine. Its functions include the medical examinations of future pilots, navigators and flight engineers. The importance of good mental and physical health in all flight and ground personnel to ensure the safety of air travel is discussed.
Intraformation positioning system
NASA Astrophysics Data System (ADS)
Sheldon, Stuart; Zadzora, Timothy
1996-05-01
The IntraFormation Positioning System is a networked relative navigation system currently being developed for rendezvous, join-up, and formation flight of Air Force helicopters and fixed wing aircraft in instrument meteorological conditions. The system is designed to be integrated into existing aircraft and will display relative positions of all aircraft within a formation, as well as the relative positions of other formations participating in coordinated missions. The system uses a Global Positioning System receiver integrated with the aircraft Inertial Navigation System to generate accurate aircraft position and velocity data. These data are transmitted over a data link to all participating aircraft and displayed as graphic symbols at the relative range and bearing to own aircraft on a situational awareness display format similar to a radar plan position indicator. Flight guidance computation is based on the difference between a desired formation slot position and current aircraft position relative to the formation lead aircraft. This information is presented on the flight director display allowing the pilot to null out position errors. The system is being developed for the Air Force Special Operations Command; however, it is applicable to all aircraft desiring improved formation situational awareness and formation flight coordination.
Results of the second flight test of the Loran-C receiver/data collection system
NASA Technical Reports Server (NTRS)
Fischer, J. P.
1979-01-01
The components of the Loran-C navigation system which were developed thus far are a phase-locked-loop receiver and a microcomputer development system. The microcomputer is being used as a means of testing and implementing software to handle sensor control and navigation calculations. Currently, the microcomputer is being used to collect and record data from the receiver in addition to development work. With these components, it was possible to record receiver data over a period of time and then reduce this data to obtain statistical information. It was particularly interesting to load the equipment developed in the laboratory into an aircraft and collect data while in flight. For initial flight tests, some important considerations were how well the entire system will perform in the field, signal strength levels while on the ground and in the air, the amount of noise present, changing of signal-to-noise ratio for various aircraft configurations and maneuvers, receiver overloading due to other equipment and antennas, and the overall usefulness of Loran-C as a navigation aid.
NASA Technical Reports Server (NTRS)
Brockers, Roland; Susca, Sara; Zhu, David; Matthies, Larry
2012-01-01
Direct-lift micro air vehicles have important applications in reconnaissance. In order to conduct persistent surveillance in urban environments, it is essential that these systems can perform autonomous landing maneuvers on elevated surfaces that provide high vantage points without the help of any external sensor and with a fully contained on-board software solution. In this paper, we present a micro air vehicle that uses vision feedback from a single down looking camera to navigate autonomously and detect an elevated landing platform as a surrogate for a roof top. Our method requires no special preparation (labels or markers) of the landing location. Rather, leveraging the planar character of urban structure, the landing platform detection system uses a planar homography decomposition to detect landing targets and produce approach waypoints for autonomous landing. The vehicle control algorithm uses a Kalman filter based approach for pose estimation to fuse visual SLAM (PTAM) position estimates with IMU data to correct for high latency SLAM inputs and to increase the position estimate update rate in order to improve control stability. Scale recovery is achieved using inputs from a sonar altimeter. In experimental runs, we demonstrate a real-time implementation running on-board a micro aerial vehicle that is fully self-contained and independent from any external sensor information. With this method, the vehicle is able to search autonomously for a landing location and perform precision landing maneuvers on the detected targets.
Contributions to the AIAA Guidance, Navigation and Control Conference
NASA Technical Reports Server (NTRS)
Campbell, S. D. (Editor)
2002-01-01
This report contains six papers presented by the Lincoln Laboratory Air Traffic Control Systems Group at the American Institute of Aeronautics & Astronautics (AIAA) Guidance, Navigation and Control (GNC) conference on 6-9 August 2001 in Montreal, Canada. The work reported was sponsored by the NASA Advanced Air Transportation Technologies (AATT) program and the FAA Free Flight Phase 1 (FFP1) program. The papers are based on studies completed at Lincoln Laboratory in collaboration with staff at NASA Ames Research Center. These papers were presented in the Air Traffic Automation Session of the conference and fall into three major areas: Traffic Analysis & Benefits Studies, Weather/Automation Integration and Surface Surveillance. In the first area, a paper by Andrews & Robinson presents an analysis of the efficiency of runway operations at Dallas/Ft. Worth using a tool called PARO, and a paper by Welch, Andrews & Robinson presents a delay benefit results for the Final Approach Spacing Tool (FAST). In the second area, a paper by Campbell, et al describes a new weather distribution systems for the Center/TRACON Automation System (CTAS) that allows ingestion of multiple weather sources, and a paper by Vandevenne, Lloyd & Hogaboom describes the use of the NOAA Eta model as a backup wind data source for CTAS. Also in this area, a paper by Murphy & Campbell presents initial steps towards integrating weather impacted routes into FAST. In the third area, a paper by Welch, Bussolari and Atkins presents an initial operational concept for using surface surveillance to reduce taxi delays.