Science.gov

Sample records for air noise

  1. AIR DISTRIBUTION NOISE CONTROL IN CRITICAL AUDITORIUMS.

    ERIC Educational Resources Information Center

    HOOVER, R.M.

    THE ACHIEVEMENT OF EXTREMELY LOW AIR-CONDITIONING NOISE LEVELS REQUIRED FOR MODERN AUDITORIUMS ARE THE RESULT OF CAREFUL PLANNING AND THOROUGH DETAILING. PROBLEMS FACED AND TECHNIQUES USED IN ARRIVING AT LEVELS AS LOW AS NC-15 FOR A SINGLE SYSTEM SERVING A HALL ARE DESCRIBED. SIX CASE HISTORIES ARE EXAMINED AND THE FOLLOWING OBSERVATIONS ARE…

  2. A review of air transport noise

    NASA Technical Reports Server (NTRS)

    Hubbard, H. H.; Maglieri, D. J.

    1974-01-01

    Flight vehicles are characterized according to their manner of operation and type of propulsion system, and their associated sources of noise are identified. Available noise reduction technology as it relates to engine cycle design and to power plant component design is summarized. Such components as exhaust jets, fans, propellers, rotors, airflow-surface interactions, and reciprocating engine exhausts are discussed, along with their noise reduction potentials. Significant aircraft noise reductions are noted to have been accomplished by the application of available technology in support of noise certification rules. Improved analytical prediction methods, and well controlled validation experiments supported by advanced design aeroacoustic facilities, are required as a basis for an effective integrated systems approach to aircraft noise control.

  3. Airport-related air pollution and noise.

    PubMed

    Cohen, Beverly S; Bronzaft, Arline L; Heikkinen, Maire; Goodman, Jerome; Nádas, Arthur

    2008-02-01

    To provide quantitative evidence of the impact on people of a neighboring metropolitan airport, La Guardia Airport (LGA) in New York City, (1) airborne particulate matter (PM) was measured to determine whether concentration differences could be detected between homes that are upwind and downwind of the airport; (2) 24-hr noise measurements were made in 12 homes near the airport; and (3) the impact of noise was assessed by a Community Wellness and Health Promotion Survey. Particulate matter concentrations were higher during active airport operating hours than during nonoperating hours, and the percent increase varied inversely with distance from the airport. Hourly differences between paired upwind and downwind sites were not remarkable. Residents living near the airport were exposed to noise levels as much as four times greater than those experienced by residents in a quiet, comparison home. Impulse noise events were detected from both aircraft and vehicular traffic. More than 55% of the people living within the flight path were bothered by aircraft noise, and 63% by highway noise; these were significantly higher percentages than for residents in the nonflight area. The change in PM concentrations with distance during operating compared with nonoperating hours; traffic-related impulse noise events; and the elevated annoyance with highway noise, as well as aircraft noise among residents in the flight path area, show airport-related motor vehicle traffic to be a major contributor to the negative impact of airports on people in the surrounding communities.

  4. Air Traffic Control Decision Support Tools for Noise Mitigation

    NASA Technical Reports Server (NTRS)

    Tobias, Leonard

    2001-01-01

    NASA has initiated a new five year program this year, the Quiet Aircraft Technology (QAT) Program, a program which will investigate airframe and engine system noise reduction. QAT will also address community noise impact. As part of this community noise impact component, NASA will investigate air traffic management (ATM) challenges in reducing noise. In particular, controller advisory automation aids will be developed to aid the air traffic controller in addressing noise concerns as he/she manages traffic in busy terminal areas. NASA has developed controller automation tools to address capacity concerns and the QAT strategy for ATM Low Noise Operations is to build upon this tool set to create added advisories for noise mitigation. The tools developed for capacity will be briefly reviewed, followed by the QAT plans to address ATM noise concerns. A major NASA goal in global civil aviation is to triple the aviation system throughput in all-weather conditions while maintaining safety. A centerpiece of this activity is the Center/TRACON Automation System (CTAS), an evolving suite of air traffic controller decision support tools (DSTs) to enhance capacity of arrivals and departures in both the enroute center and the TRACON. Two of these DSTs, the Traffic Management Advisor (TMA) and the passive Final approach Spacing Tool (pFAST), are in daily use at the Fort Worth Center and the Dallas/Fort Worth (DFW) TRACON, respectively, where capacity gains of 5-13% have been reported in recent NASA evaluations. Under the Federal Aviation Administration's (FAA) Free Flight Phase One Program, TMA and pFAST are each being implemented at six to eight additional sites. In addition, other DSTs are being developed by NASA under the umbrella of CTAS. This means that new software will be built upon CTAS, and the paradigm of real-time simulation evaluation followed by field site development and evaluation will be the pathway for the new tools. Additional information is included in the

  5. Study of noise transmission from an air compressor

    NASA Astrophysics Data System (ADS)

    Nathak, Subhro; Puranik, Anand; Schut, Jeffrey; Wells, Lee; Rao, M. D.

    2005-09-01

    The paper discusses the reduction of noise from a Porter Cable 4-gal, 135-psi air compressor. The objectives were to identify the major sources of noise, implement possible noise control measures, and evaluate their effectiveness. Sound measurements were taken according to a procedure that was developed and based on the standards for power tools. Broadband analysis (1/12 octave band) was done to determine the main sources of noise. Ranking of noise sources was done accordingly. The major source of noise was determined to be the piston cylinder assembly and efforts were taken to reduce this main source of noise. The noise control treatments included manufacturing of new parts, use of gasket made of cork between the housing and the cylinder sleeve to isolate the vibrations, implementing a silencer at the exhaust side of the piston and finally, an enclosure encircling the piston/cylinder assembly. The sound-pressure level measurements of the prototype were compared to the baseline measurements to test the effectiveness of the treatments. The overall sound pressure level was reduced from 101.5 to 94.3 dB with the implementation of enclosure around the piston/cylinder assembly and the silencer at the exhaust side of the piston.

  6. Attenuating noise generated by variable-air-volume systems

    SciTech Connect

    Stokes, R.

    1985-03-01

    Sound generated by HVAC systems is receiving much attention because they are generally the principal contributors to room background sound levels that may become irritating and distracting noise if not controlled. This article discusses the creation of a quiet working environment through an analysis of the three traditional sound paths associated with air handling systems: radiated sound, inlet or return air sound and discharge sound. Recommended standards are given as well as a brief overview of materials used to fabricate HVAC system components.

  7. 32 CFR 256.10 - Air installations compatible use zone noise descriptors.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 2 2011-07-01 2011-07-01 false Air installations compatible use zone noise... installations compatible use zone noise descriptors. (a) Composite Noise Rating (CNR) and Noise Exposure... noise contours and these noise contours shall be plotted on maps accompanying AICUZ studies. (c)...

  8. Correlates of sophisticated listener judgments of esophageal air intake noise.

    PubMed

    Knox, A W; Eccleston, V; Maurer, J F; Gordon, M C

    1987-02-01

    Twenty-four laryngectomies, ranging widely in speaking ability, read a standard passage for audio recording. Four experienced voice clinicians rated the acceptability of the speakers' air intake noise. Independently, overall speech proficiency ratings were obtained for 18 of the subjects. Five objective measures of the subjects' esophageal speech were obtained using a real-time intensity display on a storage oscilloscope. Judges' reliability was determined by Pearson Product Moment Correlations. Ratings were submitted to multiple regression analysis. The means of air intake noise acceptability were the criterion variables; the objective measures and speech proficiency scores were the predictor variables. Three predictors were positively correlated (less than .01) with air intake acceptability: the number of syllables per intake, the sound intensity of the intake, and the rate of speech. Syllables per intake provided the largest share of the variance.

  9. Road traffic noise, air pollution components and cardiovascular events.

    PubMed

    de Kluizenaar, Yvonne; van Lenthe, Frank J; Visschedijk, Antoon J H; Zandveld, Peter Y J; Miedema, Henk M E; Mackenbach, Johan P

    2013-01-01

    Traffic noise and air pollution have been associated with cardiovascular health effects. Until date, only a limited amount of prospective epidemiological studies is available on long-term effects of road traffic noise and combustion related air pollution. This study investigates the relationship between road traffic noise and air pollution and hospital admissions for ischemic heart disease (IHD: International Classification of Diseases (ICD9) 410-414) or cerebrovascular disease (cerebrovascular event [CVE]: ICD9 430-438). We linked baseline questionnaire data to 13 years of follow-up on hospital admissions and road traffic noise and air pollution exposure, for a large random sample (N = 18,213) of inhabitants of the Eindhoven region, Netherlands. Subjects with cardiovascular event during follow-up on average had higher road traffic noise day, evening, night level (L den) and air pollution exposure at the home. After adjustment for confounders (age, sex, body mass index, smoking, education, exercise, marital status, alcohol use, work situation, financial difficulties), increased exposure did not exert a significant increased risk of hospital admission for IHD or cerebrovascular disease. Relative risks (RRs) for a 5 (th) to 95 (th) percentile interval increase were 1.03 (0.88-1.20) for L den; 1.04 (0.90-1.21) for particulate matter (PM 10 ); 1.05 (0.91-1.20) for elemental carbon (EC); and 1.12 (096-1.32) for nitrogen dioxide (NO 2 ) in the full model. While the risk estimate seemed highest for NO 2 , for a 5 (th) to 95 (th) percentile interval increase, expressed as RRs per 1 μg/m 3 increases, hazard ratios seemed highest for EC (RR 1.04 [0.92-1.18]). In the subgroup of study participants with a history of cardiovascular disease, RR estimates seemed highest for noise exposure (1.19 [0.87-1.64] for L den); in the subgroup of elderly RR seemed highest for air pollution exposure (RR 1.24 [0.93-1.66] for NO 2 ).

  10. 40 CFR 204.52 - Portable air compressor noise emission standard.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Portable air compressor noise emission standard. 204.52 Section 204.52 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) NOISE ABATEMENT PROGRAMS NOISE EMISSION STANDARDS FOR CONSTRUCTION EQUIPMENT Portable Air Compressors §...

  11. 40 CFR 204.52 - Portable air compressor noise emission standard.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Portable air compressor noise emission standard. 204.52 Section 204.52 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) NOISE ABATEMENT PROGRAMS NOISE EMISSION STANDARDS FOR CONSTRUCTION EQUIPMENT Portable Air Compressors §...

  12. 42 CFR 84.140 - Air velocity and noise levels; hoods and helmets; minimum requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Air velocity and noise levels; hoods and helmets; minimum requirements. 84.140 Section 84.140 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND... PROTECTIVE DEVICES Supplied-Air Respirators § 84.140 Air velocity and noise levels; hoods and...

  13. 42 CFR 84.140 - Air velocity and noise levels; hoods and helmets; minimum requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Air velocity and noise levels; hoods and helmets; minimum requirements. 84.140 Section 84.140 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND... PROTECTIVE DEVICES Supplied-Air Respirators § 84.140 Air velocity and noise levels; hoods and...

  14. 42 CFR 84.140 - Air velocity and noise levels; hoods and helmets; minimum requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Air velocity and noise levels; hoods and helmets; minimum requirements. 84.140 Section 84.140 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND... PROTECTIVE DEVICES Supplied-Air Respirators § 84.140 Air velocity and noise levels; hoods and...

  15. 42 CFR 84.140 - Air velocity and noise levels; hoods and helmets; minimum requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Air velocity and noise levels; hoods and helmets; minimum requirements. 84.140 Section 84.140 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND... PROTECTIVE DEVICES Supplied-Air Respirators § 84.140 Air velocity and noise levels; hoods and...

  16. 42 CFR 84.140 - Air velocity and noise levels; hoods and helmets; minimum requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Air velocity and noise levels; hoods and helmets; minimum requirements. 84.140 Section 84.140 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND... PROTECTIVE DEVICES Supplied-Air Respirators § 84.140 Air velocity and noise levels; hoods and...

  17. Impact of air gun noise on the behaviour of marine fish and squid.

    PubMed

    Fewtrell, J L; McCauley, R D

    2012-05-01

    In this study various species of captive marine fish and one species of squid were exposed to the noise from a single air gun. Six trials were conducted off the coast of Western Australia with each trial using a different noise exposure regime. Noise levels received by the animals ranged between 120 and 184 dB re 1 μPa(2).s (SEL). Behavioural observations of the fish and squid were made before, during and after air gun noise exposure. Results indicate that as air gun noise levels increase, fish respond by moving to the bottom of the water column and swimming faster in more tightly cohesive groups. Significant increases in alarm responses were observed in fish and squid to air gun noise exceeding 147-151 dB re 1 μPa SEL. An increase in the occurrence of alarm responses was also observed as noise level increased.

  18. 42 CFR 84.1139 - Air velocity and noise levels; hoods and helmets; minimum requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Air velocity and noise levels; hoods and helmets; minimum requirements. 84.1139 Section 84.1139 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH... Efficiency Respirators and Combination Gas Masks § 84.1139 Air velocity and noise levels; hoods and...

  19. 42 CFR 84.202 - Air velocity and noise levels; hoods and helmets; minimum requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Air velocity and noise levels; hoods and helmets; minimum requirements. 84.202 Section 84.202 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND... PROTECTIVE DEVICES Chemical Cartridge Respirators § 84.202 Air velocity and noise levels; hoods and...

  20. 42 CFR 84.1139 - Air velocity and noise levels; hoods and helmets; minimum requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Air velocity and noise levels; hoods and helmets; minimum requirements. 84.1139 Section 84.1139 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH... Efficiency Respirators and Combination Gas Masks § 84.1139 Air velocity and noise levels; hoods and...

  1. 42 CFR 84.202 - Air velocity and noise levels; hoods and helmets; minimum requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Air velocity and noise levels; hoods and helmets; minimum requirements. 84.202 Section 84.202 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND... PROTECTIVE DEVICES Chemical Cartridge Respirators § 84.202 Air velocity and noise levels; hoods and...

  2. 42 CFR 84.1139 - Air velocity and noise levels; hoods and helmets; minimum requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Air velocity and noise levels; hoods and helmets; minimum requirements. 84.1139 Section 84.1139 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH... Efficiency Respirators and Combination Gas Masks § 84.1139 Air velocity and noise levels; hoods and...

  3. 42 CFR 84.1139 - Air velocity and noise levels; hoods and helmets; minimum requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Air velocity and noise levels; hoods and helmets; minimum requirements. 84.1139 Section 84.1139 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH... Efficiency Respirators and Combination Gas Masks § 84.1139 Air velocity and noise levels; hoods and...

  4. 42 CFR 84.202 - Air velocity and noise levels; hoods and helmets; minimum requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Air velocity and noise levels; hoods and helmets; minimum requirements. 84.202 Section 84.202 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND... PROTECTIVE DEVICES Chemical Cartridge Respirators § 84.202 Air velocity and noise levels; hoods and...

  5. 42 CFR 84.1139 - Air velocity and noise levels; hoods and helmets; minimum requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Air velocity and noise levels; hoods and helmets; minimum requirements. 84.1139 Section 84.1139 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH... Efficiency Respirators and Combination Gas Masks § 84.1139 Air velocity and noise levels; hoods and...

  6. 42 CFR 84.202 - Air velocity and noise levels; hoods and helmets; minimum requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Air velocity and noise levels; hoods and helmets; minimum requirements. 84.202 Section 84.202 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND... PROTECTIVE DEVICES Chemical Cartridge Respirators § 84.202 Air velocity and noise levels; hoods and...

  7. 42 CFR 84.202 - Air velocity and noise levels; hoods and helmets; minimum requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Air velocity and noise levels; hoods and helmets; minimum requirements. 84.202 Section 84.202 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND... PROTECTIVE DEVICES Chemical Cartridge Respirators § 84.202 Air velocity and noise levels; hoods and...

  8. AIR CONVECTION NOISE OF PENCIL-BEAM INTERFERMETER FOR LONG TRACE PROFILER.

    SciTech Connect

    YASHCHUK, V.V.; IRICK, S.C.; MACDOWELL, A.A.; MCKINNEY, W.R.; TAKACS, P.Z.

    2006-08-14

    In this work, we investigate the effect of air convection on laser-beam pointing noise essential for the long trace profiler (LTP). We describe this pointing error with noise power density (NPD) frequency distributions. It is shown that the NPD spectra due to air convection have a very characteristic form. In the range of frequencies from {approx}0.05 Hz to {approx}0.5 Hz, the spectra can be modeled with an inverse-power-law function. Depending on the intensity of air convection that is controlled with a resistive heater of 100 to 150 mW along a one-meter-long optical path, the power index lies between 2 and 3 at an overall rms noise of {approx}0.5 to 1 microradian. The efficiency of suppression of the convection noise by blowing air across the beam optical path is also discussed. Air-blowing leads to a white-noise-like spectrum. Air blowing was applied to the reference channel of an LTP allowing demonstration of the contribution of air convection noise to the LTP reference beam. The ability to change (with the blowing technique presented) the spectral characteristics of the beam pointing noise due to air convection allows one to investigate the contribution of the convection effect, and thus make corrections to the power spectral density spectra measured with the LTP.

  9. Effects of long-term air jet noise and dietary sodium chloride in borderline hypertensive rats.

    PubMed

    Tucker, D C; Hunt, R A

    1993-10-01

    The hypothesis that simultaneous exposure to a high (8%) sodium chloride diet and behavioral stress (air jet noise) would act synergistically to increase blood pressure was investigated in male borderline hypertensive rats. Rats were fed either a 1% or an 8% sodium chloride diet beginning at 6 weeks of age. Rats in the Air Noise condition were restrained and exposed to random blasts of air jet noise for 2 h/d, 5 d/wk, from 7 to 17 weeks of age. Controls either were placed in identical restrainers and test chambers but not exposed to air jet noise (Restrained Control) or were left undisturbed (Maturation Control). Biweekly indirect blood pressure measurements showed that by 17 weeks of age, the high-sodium chloride diet and air jet noise exposure produced additive increases in blood pressure. Direct blood pressure measurements at 18 weeks of age confirmed the higher systolic pressures in borderline hypertensive rats exposed to both an 8% sodium chloride diet and air jet noise. After ganglionic blockade, the blood pressure of rats in the Air Noise group remained higher than that of Restrained and Maturation Controls, suggesting that the increased blood pressure of air jet noise-exposed rats was not maintained by increased autonomic activity. Blood pressure after maximal vasodilation by hydralazine was increased in rats exposed to both an 8% sodium chloride diet and air jet noise compared with other groups. Baroreceptor reflex sensitivity (tested by graded doses of angiotensin II) did not differ among groups.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. Air convection noise of pencil-beam interferometer for long traceprofiler

    SciTech Connect

    Yashchuk, Valeriy V.; Irick, Steve C.; MacDowell, Alastair A.; McKinney, Wayne R.; Takacs, Peter Z.

    2006-07-12

    In this work, we investigate the effect of air convection onlaser-beam pointing noise essential for the long trace profiler (LTP). Wedescribe this pointing error with noise power density (NPD) frequencydistributions. It is shown that the NPD spectra due to air convectionhave a very characteristic form. In the range of frequencies from ~;0.05Hz to ~;0.5 Hz, the spectra can be modeled with an inverse-power-lawfunction. Depending on the intensity of air convection that is controlledwith a resistive heater of 100 to 150 mW along a one-meter-long opticalpath, the power index lies between 2 and 3 at an overall rms noise of~;0.5 to 1 microradian. The efficiency of suppression of the convectionnoise by blowing air across the beam optical path is also discussed.Air-blowing leads to a white-noise-like spectrum. Air blowing was appliedto the reference channel of an LTP allowing demonstration of thecontribution of air convection noise to the LTP reference beam. Theability to change (with the blowing technique presented) the spectralcharacteristics of the beam pointing noise due to air convection allowsone to investigate the contribution of the convection effect, and thusmake corrections to the power spectral density spectra measured with theLTP.

  11. Single and Combined Effects of Air, Road, and Rail Traffic Noise on Sleep and Recuperation

    PubMed Central

    Basner, Mathias; Müller, Uwe; Elmenhorst, Eva-Maria

    2011-01-01

    Study Objective: Traffic noise disturbs sleep and may impair recuperation. There is limited information on single and combined effects of air, road, and rail traffic noise on sleep and recuperation. Design: Repeated measures. Setting: Polysomnographic laboratory study. Participants: 72 healthy subjects, mean ± standard deviation 40 ± 13 years, range 18-71 years, 32 male. Interventions: Exposure to 40, 80, or 120 rail, road, and/or air traffic noise events. Measurement and Results: Subjects were investigated for 11 consecutive nights, which included 8 noise exposure nights and one noise-free control night. Noise effects on sleep structure and continuity were subtle, even in nights with combined exposure, most likely because of habituation and an increase in arousal thresholds both within and across nights. However, cardiac arousals did not habituate across nights. Noise exposure significantly affected subjective assessments of sleep quality and recuperation, whereas objective performance was unaffected, except for a small increase in mean PVT reaction time (+4 ms, adjusted P < 0.05). Road traffic noise led to the strongest changes in sleep structure and continuity, whereas subjective assessments of sleep were worse after nights with air and rail traffic noise exposure. In contrast to daytime annoyance, cortical arousal probabilities and cardiac responses were significantly lower for air than for road and rail traffic noise (all P < 0.0001). These differences were explained by sound pressure level rise time and high frequency (> 3 kHz) noise event components. Conclusions: Road, rail, and air traffic noise differentially affect objective and subjective assessments of sleep. Differences in the degree of noise-induced sleep fragmentation between traffic modes were explained by the specific spectral and temporal composition of noise events, indicating potential targets for active and passive noise control. Field studies are needed to validate our findings in a setting

  12. [The problems of assessment of the high noise impact on the experts of the Air Force].

    PubMed

    Zinkin, V N; Sheshegov, P M

    2012-01-01

    Air Force specialists are exposed to high intensity noise levels exceeded the maximum permissible levels. Infrasound as a productive factor in accordance with the general technical requirements (OTT) Air Force-86 is not included in the list of standardized factors. The adverse acoustic environment makes the risk of occupational (sensorineural deafness) and professionally-related diseases of the nervous and cardiovascular systems. The system of physical fitness for military service in the Air Force and serving in the Air Force with high-intensity sources of noise, the system of treatment and preventive measures for adverse effects of noise and the procedure for examination of persons with diseases caused by the influence of noise are needed to be reviewed in accordance with the existing state legislative frameworks. PMID:22545451

  13. Noise Effects on Health in the Context of Air Pollution Exposure

    PubMed Central

    Stansfeld, Stephen A.

    2015-01-01

    For public health policy and planning it is important to understand the relative contribution of environmental noise on health compared to other environmental stressors. Air pollution is the primary environmental stressor in relation to cardiovascular morbidity and mortality. This paper reports a narrative review of studies in which the associations of both environmental noise and air pollution with health have been examined. Studies of hypertension, myocardial infarction, stroke, mortality and cognitive outcomes were included. Results suggest independent effects of environmental noise from road traffic, aircraft and, with fewer studies, railway noise on cardiovascular outcomes after adjustment for air pollution. Comparative burden of disease studies demonstrate that air pollution is the primary environmental cause of disability adjusted life years lost (DALYs). Environmental noise is ranked second in terms of DALYs in Europe and the DALYs attributed to noise were more than those attributed to lead, ozone and dioxins. In conclusion, in planning and health impact assessment environmental noise should be considered an independent contributor to health risk which has a separate and substantial role in ill-health separate to that of air pollution. PMID:26473905

  14. Noise Effects on Health in the Context of Air Pollution Exposure.

    PubMed

    Stansfeld, Stephen A

    2015-10-14

    For public health policy and planning it is important to understand the relative contribution of environmental noise on health compared to other environmental stressors. Air pollution is the primary environmental stressor in relation to cardiovascular morbidity and mortality. This paper reports a narrative review of studies in which the associations of both environmental noise and air pollution with health have been examined. Studies of hypertension, myocardial infarction, stroke, mortality and cognitive outcomes were included. Results suggest independent effects of environmental noise from road traffic, aircraft and, with fewer studies, railway noise on cardiovascular outcomes after adjustment for air pollution. Comparative burden of disease studies demonstrate that air pollution is the primary environmental cause of disability adjusted life years lost (DALYs). Environmental noise is ranked second in terms of DALYs in Europe and the DALYs attributed to noise were more than those attributed to lead, ozone and dioxins. In conclusion, in planning and health impact assessment environmental noise should be considered an independent contributor to health risk which has a separate and substantial role in ill-health separate to that of air pollution.

  15. Noise Effects on Health in the Context of Air Pollution Exposure.

    PubMed

    Stansfeld, Stephen A

    2015-10-01

    For public health policy and planning it is important to understand the relative contribution of environmental noise on health compared to other environmental stressors. Air pollution is the primary environmental stressor in relation to cardiovascular morbidity and mortality. This paper reports a narrative review of studies in which the associations of both environmental noise and air pollution with health have been examined. Studies of hypertension, myocardial infarction, stroke, mortality and cognitive outcomes were included. Results suggest independent effects of environmental noise from road traffic, aircraft and, with fewer studies, railway noise on cardiovascular outcomes after adjustment for air pollution. Comparative burden of disease studies demonstrate that air pollution is the primary environmental cause of disability adjusted life years lost (DALYs). Environmental noise is ranked second in terms of DALYs in Europe and the DALYs attributed to noise were more than those attributed to lead, ozone and dioxins. In conclusion, in planning and health impact assessment environmental noise should be considered an independent contributor to health risk which has a separate and substantial role in ill-health separate to that of air pollution. PMID:26473905

  16. Annoyance due to noise and air pollution to the residents of heavily frequented streets

    NASA Technical Reports Server (NTRS)

    Wanner, H. U.; Wehrli, B.; Nemecek, J.; Turrian, V.

    1980-01-01

    The residents of different streets with varying traffic density and building density were questioned about annoyance due to traffic noise and air pollution. Results show that annoyance felt is dependent not only on the measured noise levels and/or air pollution concentrations, but that there do exist interactions between the residential quarters and annoyance. These interactions should be considered when fixing the limits and standards.

  17. Spatial variation in environmental noise and air pollution in New York City.

    PubMed

    Kheirbek, Iyad; Ito, Kazuhiko; Neitzel, Richard; Kim, Jung; Johnson, Sarah; Ross, Zev; Eisl, Holger; Matte, Thomas

    2014-06-01

    Exposure to environmental noise from traffic is common in urban areas and has been linked to increased risks of adverse health effects including cardiovascular disease. Because traffic sources also produce air pollutants that increase the risk of cardiovascular morbidity, associations between traffic exposures and health outcomes may involve confounding and/or synergisms between air pollution and noise. While prior studies have characterized intraurban spatial variation in air pollution in New York City (NYC), limited data exists on the levels and spatial variation in noise levels. We measured 1-week equivalent continuous sound pressure levels (Leq) at 56 sites during the fall of 2012 across NYC locations with varying traffic intensity and building density that are routinely monitored for combustion-related air pollutants. We evaluated correlations among several noise metrics used to characterize noise exposures, including Leq during different time periods (night, day, weekday, weekend), Ldn (day-night noise), and measures of intermittent noise defined as the ratio of peak levels to median and background levels. We also examined correlations between sound pressure levels and co-located simultaneous measures of nitric oxide (NO), nitrogen dioxide (NO2), fine particulate matter (PM2.5), and black carbon (BC) as well as estimates of traffic and building density around the monitoring sites. Noise levels varied widely across the 56 monitoring sites; 1-week Leq varied by 21.6 dBA (range 59.1-80.7 dBA) with the highest levels observed during the weekday, daytime hours. Indices of average noise were well correlated with each other (r > 0.83), while indices of intermittent noise were not well correlated with average noise levels (r < 0.41). One-week Leq correlated well with NO, NO2, and EC levels (r = 0.61 to 0.68) and less so with PM2.5 levels (r = 0.45). We observed associations between 1-week noise levels and traffic intensity within 100 m of the monitoring sites (r = 0

  18. Spatial variation in environmental noise and air pollution in New York City.

    PubMed

    Kheirbek, Iyad; Ito, Kazuhiko; Neitzel, Richard; Kim, Jung; Johnson, Sarah; Ross, Zev; Eisl, Holger; Matte, Thomas

    2014-06-01

    Exposure to environmental noise from traffic is common in urban areas and has been linked to increased risks of adverse health effects including cardiovascular disease. Because traffic sources also produce air pollutants that increase the risk of cardiovascular morbidity, associations between traffic exposures and health outcomes may involve confounding and/or synergisms between air pollution and noise. While prior studies have characterized intraurban spatial variation in air pollution in New York City (NYC), limited data exists on the levels and spatial variation in noise levels. We measured 1-week equivalent continuous sound pressure levels (Leq) at 56 sites during the fall of 2012 across NYC locations with varying traffic intensity and building density that are routinely monitored for combustion-related air pollutants. We evaluated correlations among several noise metrics used to characterize noise exposures, including Leq during different time periods (night, day, weekday, weekend), Ldn (day-night noise), and measures of intermittent noise defined as the ratio of peak levels to median and background levels. We also examined correlations between sound pressure levels and co-located simultaneous measures of nitric oxide (NO), nitrogen dioxide (NO2), fine particulate matter (PM2.5), and black carbon (BC) as well as estimates of traffic and building density around the monitoring sites. Noise levels varied widely across the 56 monitoring sites; 1-week Leq varied by 21.6 dBA (range 59.1-80.7 dBA) with the highest levels observed during the weekday, daytime hours. Indices of average noise were well correlated with each other (r > 0.83), while indices of intermittent noise were not well correlated with average noise levels (r < 0.41). One-week Leq correlated well with NO, NO2, and EC levels (r = 0.61 to 0.68) and less so with PM2.5 levels (r = 0.45). We observed associations between 1-week noise levels and traffic intensity within 100 m of the monitoring sites (r = 0

  19. Modeling population exposure to community noise and air pollution in a large metropolitan area.

    PubMed

    Gan, Wen Qi; McLean, Kathleen; Brauer, Michael; Chiarello, Sarah A; Davies, Hugh W

    2012-07-01

    Epidemiologic studies have shown that both air pollution and community noise are associated with cardiovascular disease mortality. Because road traffic is a major contributor to these environmental pollutants in metropolitan areas, it is plausible that the observed associations may be confounded by coexistent pollutants. As part of a large population-based cohort study to address this concern, we used a noise prediction model to assess annual average community noise levels from transportation sources in metropolitan Vancouver, Canada. The modeled annual average noise level was 64 (inter quartile range 60-68) dB(A) for the region. This model was evaluated by comparing modeled annual daytime A-weighted equivalent continuous noise levels (L(day)) with measured 5-min daytime A-weighted equivalent continuous noise levels (L(eq,day,5 min)) at 103 selected roadside sites in the study region. On average, L(day) was 6.2 (95% CI, 6.0-7.9) dB(A) higher than, but highly correlated (r=0.62; 95% CI, 0.48-0.72) with, L(eq,day,5 min). These results suggest that our model-based noise exposure assessment could approximately reflect actual noise exposure in the study region. Overall, modeled noise levels were not strongly correlated with land use regression estimates of traffic-related air pollutants including black carbon, particulate matter with aerodynamic diameter ≤2.5 μm (PM(2.5)), NO(2) and NO; the highest correlation was with black carbon (r=0.48), whereas the lowest correlation was with PM(2.5) (r=0.18). There was no consistent effect of traffic proximity on the correlations between community noise levels and traffic-related air pollutant concentrations. These results, consistent with previous studies, suggest that it is possible to assess potential adverse cardiovascular effects from long-term exposures to community noise and traffic-related air pollution in prospective epidemiologic studies.

  20. Evaluation studies of noise and air pollution during festival seasons in India.

    PubMed

    Battalwar, D G; Meshram, S U; Yenkie, M K N; Puri, P J

    2012-07-01

    The present research work is based on assessment of noise levels and ambient air quality at selected locations during festival seasons in Nagpur city. The noise levels were exceeding the permissible limits almost at every location during the festival period. The huge emissions of smoke arising out bursting of firecrackers have significantly resulted into air pollution; particularly in terms of Sulphur Dioxide (SO2) and Respirable Suspended Particulate Matter (Fine Dust). The immediate effect of increasing noise levels is impairing of hearing that may cause auditory fatigue and finally lead to deafness. PMID:24749201

  1. Some insights into the relationship between urban air pollution and noise levels.

    PubMed

    Kim, Ki-Hyun; Ho, Duy Xuan; Brown, Richard J C; Oh, J-M; Park, Chan Goo; Ryu, In Cheol

    2012-05-01

    The relationship between noise and air pollution was investigated in eight different districts across Seoul, Korea, between September and November 2010. The noise levels in each district were measured at both roadside and non-roadside locations. It was found that the maximum levels of noise were generally at frequencies of around 1000 Hz. The equivalent noise levels (L(eq)), over all districts, averaged 61.4 ± 7.36 dB which is slightly lower than the noise guidelines set by the World Health Organization (WHO) of 70 dB for industrial, commercial, traffic, and outdoor areas. Comparison of L(eq) levels in each district consistently indicates that noise levels are higher at roadside sites than non-roadside sites. In addition the relative dominance of noise during daytime as compared to nighttime was also apparent. Moreover, the results of an analysis relating sound levels with air pollutant levels indicate strongly that the correlation between these two parameters is the strongest at roadside sites (relative to non-roadside sites) and during nighttime (relative to daytime). The results of our data analysis point to a positive, but complex, correlation between noise levels and air pollution.

  2. Combined effects of road traffic noise and ambient air pollution in relation to risk for stroke?

    PubMed

    Sørensen, Mette; Lühdorf, Pernille; Ketzel, Matthias; Andersen, Zorana J; Tjønneland, Anne; Overvad, Kim; Raaschou-Nielsen, Ole

    2014-08-01

    Exposure to road traffic noise and air pollution have both been associated with risk for stroke. The few studies including both exposures show inconsistent results. We aimed to investigate potential mutual confounding and combined effects between road traffic noise and air pollution in association with risk for stroke. In a population-based cohort of 57,053 people aged 50-64 years at enrollment, we identified 1999 incident stroke cases in national registries, followed by validation through medical records. Mean follow-up time was 11.2 years. Present and historical residential addresses from 1987 to 2009 were identified in national registers and road traffic noise and air pollution were modeled for all addresses. Analyses were done using Cox regression. A higher mean annual exposure at time of diagnosis of 10 µg/m(3) nitrogen dioxide (NO2) and 10 dB road traffic noise at the residential address was associated with ischemic stroke with incidence rate ratios (IRR) of 1.11 (95% CI: 1.03, 1.20) and 1.16 (95% CI: 1.07, 1.24), respectively, in single exposure models. In two-exposure models road traffic noise (IRR: 1.15) and not NO2 (IRR: 1.02) was associated with ischemic stroke. The strongest association was found for combination of high noise and high NO2 (IRR=1.28; 95% CI=1.09-1.52). Fatal stroke was positively associated with air pollution and not with traffic noise. In conclusion, in mutually adjusted models road traffic noise and not air pollution was associated ischemic stroke, while only air pollution affected risk for fatal strokes. There were indications of combined effects.

  3. Noise reduction by the application of an air-bubble curtain in offshore pile driving

    NASA Astrophysics Data System (ADS)

    Tsouvalas, A.; Metrikine, A. V.

    2016-06-01

    Underwater noise pollution is a by-product of marine industrial operations. In particular, the noise generated when a foundation pile is driven into the soil with an impact hammer is considered to be harmful for the aquatic species. In an attempt to reduce the ecological footprint, several noise mitigation techniques have been investigated. Among the various solutions proposed, the air-bubble curtain is often applied due to its efficacy in noise reduction. In this paper, a model is proposed for the investigation of the sound reduction during marine piling when an air-bubble curtain is placed around the pile. The model consists of the pile, the surrounding water and soil media, and the air-bubble curtain which is positioned at a certain distance from the pile surface. The solution approach is semi-analytical and is based on the dynamic sub-structuring technique and the modal decomposition method. Two main results of the paper can be distinguished. First, a new model is proposed that can be used for predictions of the noise levels in a computationally efficient manner. Second, an analysis is presented of the principal mechanisms that are responsible for the noise reduction due to the application of the air-bubble curtain in marine piling. The understanding of these mechanisms turns to be crucial for the exploitation of the maximum efficiency of the system. It is shown that the principal mechanism of noise reduction depends strongly on the frequency content of the radiated sound and the characteristics of the bubbly medium. For piles of large diameter which radiate most of the acoustic energy at relatively low frequencies, the noise reduction is mainly attributed to the mismatch of the acoustic impedances between the seawater and the bubbly layer. On the contrary, for smaller piles and when the radiated acoustic energy is concentrated at frequencies close to, or higher than, the resonance frequency of the air bubbles, the sound absorption within the bubbly layer

  4. Road, rail, and air transportation noise in residential and workplace neighborhoods and blood pressure (RECORD Study).

    PubMed

    Méline, Julie; Van Hulst, Andraea; Thomas, Frederique; Chaix, Basile

    2015-01-01

    Associations between road traffic noise and hypertension have been repeatedly documented, whereas associations with rail or total road, rail, and air (RRA) traffic noise have rarely been investigated. Moreover, most studies of noise in the environment have only taken into account the residential neighborhood. Finally, few studies have taken into account individual/neighborhood confounders in the relationship between noise and hypertension. We performed adjusted multilevel regression analyses using data from the 7,290 participants of the RECORD Study to investigate the associations of outdoor road, rail, air, and RRA traffic noise estimated at the place of residence, at the workplace, and in the neighborhoods around the residence and workplace with systolic blood pressure (SBP), diastolic blood pressure (DBP), and hypertension. Associations were documented between higher outdoor RRA and road traffic noise estimated at the workplace and a higher SBP [+1.36 mm of mercury, 95% confidence interval (CI): +0.12, +2.60 for 65-80 dB(A) vs 30-45 dB(A)] and DBP [+1.07 (95% CI: +0.28, +1.86)], after adjustment for individual/neighborhood confounders. These associations remained after adjustment for risk factors of hypertension. Associations were documented neither with rail traffic noise nor for hypertension. Associations between transportation noise at the workplace and blood pressure (BP) may be attributable to the higher levels of road traffic noise at the workplace than at the residence. To better understand why only noise estimated at the workplace was associated with BP, our future work will combine Global Positioning System (GPS) tracking, assessment of noise levels with sensors, and ambulatory monitoring of BP. PMID:26356373

  5. Road, rail, and air transportation noise in residential and workplace neighborhoods and blood pressure (RECORD Study)

    PubMed Central

    Méline, Julie; Van Hulst, Andraea; Thomas, Frederique; Chaix, Basile

    2015-01-01

    Associations between road traffic noise and hypertension have been repeatedly documented, whereas associations with rail or total road, rail, and air (RRA) traffic noise have rarely been investigated. Moreover, most studies of noise in the environment have only taken into account the residential neighborhood. Finally, few studies have taken into account individual/neighborhood confounders in the relationship between noise and hypertension. We performed adjusted multilevel regression analyses using data from the 7,290 participants of the RECORD Study to investigate the associations of outdoor road, rail, air, and RRA traffic noise estimated at the place of residence, at the workplace, and in the neighborhoods around the residence and workplace with systolic blood pressure (SBP), diastolic blood pressure (DBP), and hypertension. Associations were documented between higher outdoor RRA and road traffic noise estimated at the workplace and a higher SBP [+1.36 mm of mercury, 95% confidence interval (CI): +0.12, +2.60 for 65-80 dB(A) vs 30-45 dB(A)] and DBP [+1.07 (95% CI: +0.28, +1.86)], after adjustment for individual/neighborhood confounders. These associations remained after adjustment for risk factors of hypertension. Associations were documented neither with rail traffic noise nor for hypertension. Associations between transportation noise at the workplace and blood pressure (BP) may be attributable to the higher levels of road traffic noise at the workplace than at the residence. To better understand why only noise estimated at the workplace was associated with BP, our future work will combine Global Positioning System (GPS) tracking, assessment of noise levels with sensors, and ambulatory monitoring of BP. PMID:26356373

  6. Impacts of Noise Barriers on Near-Road Air Quality

    EPA Science Inventory

    Numerous health studies show an increase in adverse health effects for populations near large roadways. A study was designed to assess traffic emission impacts on air quality near a heavily traveled highway. The portion of highway studied included a section of open field and a se...

  7. Aircraft noise annoyance at three joint air carrier and general aviation airports

    NASA Technical Reports Server (NTRS)

    Fidell, S.; Horonjeff, R.; Mills, J.; Baldwin, E.; Teffeteller, S.; Pearsons, K.

    1985-01-01

    The results of social surveys conducted near three airports that support both general aviation and scheduled air carrier operations are presented and discussed. Inferences supported by these data include: (1) the nature of noise exposure and community reaction at smaller airports may differ from that at larger airports; (2) survey techniques are capable of identifying changes in annoyance associated with numerically small changes in noise exposure; (3) changes in the prevalence of annoyance are causally produced by changes in noise exposure; and (4) changes in annoyance associated with changes in exposure vary with time.

  8. Influence of traffic-related noise and air pollution on self-reported fatigue.

    PubMed

    Jazani, Reza Khani; Saremi, Mahnaz; Rezapour, Tara; Kavousi, Amir; Shirzad, Hadi

    2015-01-01

    A growing body of evidence suggests that exposure to environmental pollutions is related to health problems. It is, however, questionable whether this condition affects working performance in occupational settings. The aim of this study is to determine the predictive value of age as well as traffic related air and noise pollutions for fatigue. 246 traffic officers participated in this study. Air pollution data were obtained from the local Air Quality Control Company. A sound level meter was used for measuring ambient noise. Fatigue was evaluated by the MFI-20 questionnaire. The general and physical scales showed the highest, while the reduced activity scale showed the lowest level of fatigue. Age had an independent direct effect on reduced activity and physical fatigue. The average of daytime equivalent noise level was between 71.63 and 88.51 dB(A). In the case of high noise exposure, older officers feel more fatigue than younger ones. Exposure to PM10 and O3 resulted in general and physical fatigue. Complex Interactions between SO2, CO and NO2 were found. Exposure to noise and some components of air pollution, especially O3 and PM10, increases fatigue. The authorities should adopt and rigorously implement environmental protection policies in order to protect people.

  9. Influence of traffic-related noise and air pollution on self-reported fatigue.

    PubMed

    Jazani, Reza Khani; Saremi, Mahnaz; Rezapour, Tara; Kavousi, Amir; Shirzad, Hadi

    2015-01-01

    A growing body of evidence suggests that exposure to environmental pollutions is related to health problems. It is, however, questionable whether this condition affects working performance in occupational settings. The aim of this study is to determine the predictive value of age as well as traffic related air and noise pollutions for fatigue. 246 traffic officers participated in this study. Air pollution data were obtained from the local Air Quality Control Company. A sound level meter was used for measuring ambient noise. Fatigue was evaluated by the MFI-20 questionnaire. The general and physical scales showed the highest, while the reduced activity scale showed the lowest level of fatigue. Age had an independent direct effect on reduced activity and physical fatigue. The average of daytime equivalent noise level was between 71.63 and 88.51 dB(A). In the case of high noise exposure, older officers feel more fatigue than younger ones. Exposure to PM10 and O3 resulted in general and physical fatigue. Complex Interactions between SO2, CO and NO2 were found. Exposure to noise and some components of air pollution, especially O3 and PM10, increases fatigue. The authorities should adopt and rigorously implement environmental protection policies in order to protect people. PMID:26323778

  10. 77 FR 18297 - Air Traffic Noise, Fuel Burn, and Emissions Modeling Using the Aviation Environmental Design Tool...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-27

    ... Federal Aviation Administration Air Traffic Noise, Fuel Burn, and Emissions Modeling Using the Aviation... Aviation Environmental Design Tool version 2a (AEDT 2a) to analyze noise, fuel burn, and emissions for FAA... assess noise, fuel burn, and emissions impacts of such actions under the National Environmental...

  11. The effects of aircraft noise at Williams Air Force Base Auxiliary Field on residential property values

    SciTech Connect

    Morey, M.J.

    1990-11-01

    This report considers the environmental consequences of moving the flight training operations of the US Air Force's 82nd Flying Training Wing from the auxiliary airfield, Coolidge-Florence Municipal Airport (CFMA), to a more remote location in Pinal County, Arizona. It examines how actual noise from touch-and-go flights of T-37 aircraft and perceived (anticipated) noise affect the market value of residential property near CFMA. Noise, measured by a noise index, is correlated with market values through a regression analysis applied to a hedonic price model of the Coolidge-Florence housing market. Prices and characteristics of 42 residential properties sold in 1987 and 1988 were used to estimate a perceived noise effect. The report finds that the coefficient on the measure of perceived noise, based on the noise exposure forecast (NEF) index, is statistically insignificant, even though the sign and value are consistent with those estimated in other studies. It concludes that current flights do not have a significant effect on residential property values, partially because there is no housing near CFMA. This and larger studies indicate that flight operations at a new auxiliary airfield would not affect property values if runways were at least 12,000 feet away from housing. 12 refs., 2 tabs.

  12. The Covariance between Air Pollution Annoyance and Noise Annoyance, and Its Relationship with Health-Related Quality of Life.

    PubMed

    Shepherd, Daniel; Dirks, Kim; Welch, David; McBride, David; Landon, Jason

    2016-01-01

    Air pollution originating from road traffic is a known risk factor of respiratory and cardiovascular disease (both in terms of chronic and acute effects). While adverse effects on cardiovascular health have also been linked with noise (after controlling for air pollution), noise exposure has been commonly linked to sleep impairment and negative emotional reactions. Health is multi-faceted, both conceptually and operationally; Health-Related Quality of Life (HRQOL) is one of many measures capable of probing health. In this study, we examine pre-collected data from postal surveys probing HRQOL obtained from a variety of urban, suburban, and rural contexts across the North Island of New Zealand. Analyses focus on the covariance between air pollution annoyance and noise annoyances, and their independent and combined effects on HRQOL. Results indicate that the highest ratings of air pollution annoyance and noise annoyances were for residents living close to the motorway, while the lowest were for rural residents. Most of the city samples indicated no significant difference between air pollution- and noise-annoyance ratings, and of all of the correlations between air pollution- and noise-annoyance, the highest were found in the city samples. These findings suggest that annoyance is driven by exposure to environmental factors and not personality characteristics. Analysis of HRQOL indicated that air pollution annoyance predicts greater variability in the physical HRQOL domain while noise annoyance predicts greater variability in the psychological, social and environmental domains. The lack of an interaction effect between air pollution annoyance and noise annoyance suggests that air pollution and noise impact on health independently. These results echo those obtained from objective measures of health and suggest that mitigation of traffic effects should address both air and noise pollution. PMID:27509512

  13. The Covariance between Air Pollution Annoyance and Noise Annoyance, and Its Relationship with Health-Related Quality of Life.

    PubMed

    Shepherd, Daniel; Dirks, Kim; Welch, David; McBride, David; Landon, Jason

    2016-08-06

    Air pollution originating from road traffic is a known risk factor of respiratory and cardiovascular disease (both in terms of chronic and acute effects). While adverse effects on cardiovascular health have also been linked with noise (after controlling for air pollution), noise exposure has been commonly linked to sleep impairment and negative emotional reactions. Health is multi-faceted, both conceptually and operationally; Health-Related Quality of Life (HRQOL) is one of many measures capable of probing health. In this study, we examine pre-collected data from postal surveys probing HRQOL obtained from a variety of urban, suburban, and rural contexts across the North Island of New Zealand. Analyses focus on the covariance between air pollution annoyance and noise annoyances, and their independent and combined effects on HRQOL. Results indicate that the highest ratings of air pollution annoyance and noise annoyances were for residents living close to the motorway, while the lowest were for rural residents. Most of the city samples indicated no significant difference between air pollution- and noise-annoyance ratings, and of all of the correlations between air pollution- and noise-annoyance, the highest were found in the city samples. These findings suggest that annoyance is driven by exposure to environmental factors and not personality characteristics. Analysis of HRQOL indicated that air pollution annoyance predicts greater variability in the physical HRQOL domain while noise annoyance predicts greater variability in the psychological, social and environmental domains. The lack of an interaction effect between air pollution annoyance and noise annoyance suggests that air pollution and noise impact on health independently. These results echo those obtained from objective measures of health and suggest that mitigation of traffic effects should address both air and noise pollution.

  14. The Covariance between Air Pollution Annoyance and Noise Annoyance, and Its Relationship with Health-Related Quality of Life

    PubMed Central

    Shepherd, Daniel; Dirks, Kim; Welch, David; McBride, David; Landon, Jason

    2016-01-01

    Air pollution originating from road traffic is a known risk factor of respiratory and cardiovascular disease (both in terms of chronic and acute effects). While adverse effects on cardiovascular health have also been linked with noise (after controlling for air pollution), noise exposure has been commonly linked to sleep impairment and negative emotional reactions. Health is multi-faceted, both conceptually and operationally; Health-Related Quality of Life (HRQOL) is one of many measures capable of probing health. In this study, we examine pre-collected data from postal surveys probing HRQOL obtained from a variety of urban, suburban, and rural contexts across the North Island of New Zealand. Analyses focus on the covariance between air pollution annoyance and noise annoyances, and their independent and combined effects on HRQOL. Results indicate that the highest ratings of air pollution annoyance and noise annoyances were for residents living close to the motorway, while the lowest were for rural residents. Most of the city samples indicated no significant difference between air pollution- and noise-annoyance ratings, and of all of the correlations between air pollution- and noise-annoyance, the highest were found in the city samples. These findings suggest that annoyance is driven by exposure to environmental factors and not personality characteristics. Analysis of HRQOL indicated that air pollution annoyance predicts greater variability in the physical HRQOL domain while noise annoyance predicts greater variability in the psychological, social and environmental domains. The lack of an interaction effect between air pollution annoyance and noise annoyance suggests that air pollution and noise impact on health independently. These results echo those obtained from objective measures of health and suggest that mitigation of traffic effects should address both air and noise pollution. PMID:27509512

  15. Air backed mandrel type fiber optic hydrophone with low noise floor

    NASA Astrophysics Data System (ADS)

    Rajesh, R.; V, Sreehari C.; N, Praveen Kumar; Awasthi, R. L.; K, Vivek; B, Vishnu M.; Santhanakrishnan, T.; Moosad, K. P. B.; Mathew, Basil

    2014-10-01

    Low noise fiber optic hydrophone based on optical fiber coil wound on air-backed mandrel was developed. The sensor can be effectively used for underwater acoustic sensing. The design and characterization of the hydrophone is illustrated in this paper. A fiber Mach-Zehnder Interferometer (MZI) was developed and coupled with a Distributed Feedback (DFB) fiber laser source and an optical phase demodulation system, with an active modulation in one of the arms. The sensor head design was optimized to achieve noise spectral density <10 μrad/√Hz, for yielding sufficient sensitivity to sense acoustic pressure close to Deep Sea Sate Zero (DSS0).

  16. Noise reduction evaluation of grids in a supersonic air stream with application to Space Shuttle

    NASA Technical Reports Server (NTRS)

    Seiner, J. M.; Manning, J. C.; Nystrom, P.; Pao, S. P.

    1977-01-01

    Near field acoustic measurements were obtained for a model supersonic air jet perturbed by a screen. Noise reduction potential in the vicinity of the space shuttle vehicle during ground launch when the rocket exhaust flow is perturbed by a grid was determined. Both 10 and 12 mesh screens were utilized for this experiment, and each exhibited a noise reduction only at very low frequencies in the near field forward arc. A power spectrum analysis revealed that a modest reduction of from 3 to 5 decibels exists below a Strouhal number S sub t = 0.11. Above S sub t = 0.11 screen harmonics increased the observed sound pressure level. The favorable noise reductions obtained with screens for S sub t 0.11 may be of substantial interest for the space shuttle at ground launch.

  17. Evaluation of air quality and noise impact assessments, Deaf Smith County

    SciTech Connect

    Not Available

    1986-05-01

    In this report, several issues are identified regarding the air quality and noise impact assessments presented in the final salt repository environmental assessment (EA) prepared by the US Department of Energy for the Deaf Smith County, Texas, site. Necessary revisions to the data and methods used to develop the EA impact assessment are described. Then, a comparative evaluation is presented in which estimated impacts based upon the revised data and methods are compared with the impacts published in the EA. The evaluation indicates that the conclusions of the EA air quality and noise impacts sections would be unchanged. Consequently, the guideline findings presented in Chapter 6 of the EA are also unchanged by the revised analysis. 13 tabs.

  18. Impact of Diwali celebrations on urban air and noise quality in Delhi City, India.

    PubMed

    Mandal, Papiya; Prakash, Mamta; Bassin, J K

    2012-01-01

    A study was conducted in the residential areas of Delhi, India, to assess the variation in ambient air quality and ambient noise levels during pre-Diwali month (DM), Diwali day (DD) and post-Diwali month during the period 2006 to 2008. The use of fireworks during DD showed 1.3 to 4.0 times increase in concentration of respirable particulate matter (PM(10)) and 1.6 to 2.5 times increase in concentration of total suspended particulate matter (TSP) than the concentration during DM. There was a significant increase in sulfur dioxide (SO(2)) concentration but the concentration of nitrogen dioxide (NO(2)) did not show any considerable variation. Ambient noise level were 1.2 to 1.3 times higher than normal day. The study also showed a strong correlation between PM(10) and TSP (R (2) ≥ 0.9) and SO(2) and NO(2) (R (2) ≥ 0.9) on DD. The correlation between noise level and gaseous pollutant were moderate (R (2) ≥ 0.5). The average concentration of the pollutants during DD was found higher in 2007 which could be due to adverse meteorological conditions. The statistical interpretation of data indicated that the celebration of Diwali festival affects the ambient air and noise quality. The study would provide public awareness about the health risks associated with the celebrations of Diwali festival so as to take proper precautions. PMID:21424668

  19. Improving environmental noise suppression for micronewton force sensing based on electrostatic by injecting air damping.

    PubMed

    Zheng, Yelong; Song, Le; Hu, Gang; Zhao, Meirong; Tian, Yanling; Zhang, Zihui; Fang, Fengzhou

    2014-05-01

    A micro/nano force can be traced to the International System of Units by means of an electrostatic force balance weight system. However, the micro/nano force measurement system is susceptible to environmental disturbances. Various methods have been proposed to reduce the effect of environmental disturbances and obtain high resolution and fast response. In this paper, we introduce a combination of air damping and inherent damping from the internal molecular friction of spring suspension. This will optimize system stability and improve environmental noise suppression. Results from the air damping model show that the damping ratio increases from 0.0005 to 0.1, which improves the vibration resistance. We found that the system with air damping has the advantages of fast response and low scatter. PMID:24880403

  20. Improving environmental noise suppression for micronewton force sensing based on electrostatic by injecting air damping.

    PubMed

    Zheng, Yelong; Song, Le; Hu, Gang; Zhao, Meirong; Tian, Yanling; Zhang, Zihui; Fang, Fengzhou

    2014-05-01

    A micro/nano force can be traced to the International System of Units by means of an electrostatic force balance weight system. However, the micro/nano force measurement system is susceptible to environmental disturbances. Various methods have been proposed to reduce the effect of environmental disturbances and obtain high resolution and fast response. In this paper, we introduce a combination of air damping and inherent damping from the internal molecular friction of spring suspension. This will optimize system stability and improve environmental noise suppression. Results from the air damping model show that the damping ratio increases from 0.0005 to 0.1, which improves the vibration resistance. We found that the system with air damping has the advantages of fast response and low scatter.

  1. Wavelet based de-noising of breath air absorption spectra profiles for improved classification by principal component analysis

    NASA Astrophysics Data System (ADS)

    Kistenev, Yu. V.; Shapovalov, A. V.; Borisov, A. V.; Vrazhnov, D. A.; Nikolaev, V. V.; Nikiforova, O. Yu.

    2015-11-01

    The comparison results of different mother wavelets used for de-noising of model and experimental data which were presented by profiles of absorption spectra of exhaled air are presented. The impact of wavelets de-noising on classification quality made by principal component analysis are also discussed.

  2. Influence of solid noise barriers on near-road and on-road air quality

    NASA Astrophysics Data System (ADS)

    Baldauf, Richard W.; Isakov, Vlad; Deshmukh, Parikshit; Venkatram, Akula; Yang, Bo; Zhang, K. Max

    2016-03-01

    Public health concerns regarding adverse health effects for populations spending significant amounts of time near high traffic roadways has increased substantially in recent years. Roadside features, including solid noise barriers, have been investigated as potential methods that can be implemented in a relatively short time period to reduce air pollution exposures from nearby traffic. A field study was conducted to determine the influence of noise barriers on both on-road and downwind pollutant concentrations near a large highway in Phoenix, Arizona, USA. Concentrations of nitrogen dioxide, carbon monoxide, ultrafine particles, and black carbon were measured using a mobile platform and fixed sites along two limited-access stretches of highway that contained a section of noise barrier and a section with no noise barrier at-grade with the surrounding terrain. Results of the study showed that pollutant concentrations behind the roadside barriers were significantly lower relative to those measured in the absence of barriers. The reductions ranged from 50% within 50 m from the barrier to about 30% as far as 300 m from the barrier. Reductions in pollutant concentrations generally began within the first 50 m of the barrier edge; however, concentrations were highly variable due to vehicle activity behind the barrier and along nearby urban arterial roadways. The concentrations on the highway, upwind of the barrier, varied depending on wind direction. Overall, the on-road concentrations in front of the noise barrier were similar to those measured in the absence of the barrier, contradicting previous modeling results that suggested roadside barriers increase pollutant levels on the road. Thus, this study suggests that noise barriers do reduce potential pollutant exposures for populations downwind of the road, and do not likely increase exposures to traffic-related pollutants for vehicle passengers on the highway.

  3. Modeling the impact of solid noise barriers on near road air quality

    NASA Astrophysics Data System (ADS)

    Venkatram, Akula; Isakov, Vlad; Deshmukh, Parikshit; Baldauf, Richard

    2016-09-01

    Studies based on field measurements, wind tunnel experiments, and controlled tracer gas releases indicate that solid, roadside noise barriers can lead to reductions in downwind near-road air pollutant concentrations. A tracer gas study showed that a solid barrier reduced pollutant concentrations as much as 80% next to the barrier relative to an open area under unstable meteorological conditions, which corresponds to typical daytime conditions when residents living or children going to school near roadways are most likely to be exposed to traffic emissions. The data from this tracer gas study and a wind tunnel simulation were used to develop a model to describe dispersion of traffic emissions near a highway in the presence of a solid noise barrier. The model is used to interpret real-world data collected during a field study conducted in a complex urban environment next to a large highway in Phoenix, Arizona, USA. We show that the analysis of the data with the model yields useful information on the emission factors and the mitigation impact of the barrier on near-road air quality. The estimated emission factors for the four species, ultrafine particles, CO, NO2, and black carbon, are consistent with data cited in the literature. The results suggest that the model accounted for reductions in pollutant concentrations from a 4.5 m high noise barrier, ranging from 40% next to the barrier to 10% at 300 m from the barrier.

  4. A PIV Study of Slotted Air Injection for Jet Noise Reduction

    NASA Technical Reports Server (NTRS)

    Henderson, Brenda S.; Wernet, Mark P.

    2012-01-01

    Results from acoustic and Particle Image Velocimetry (PIV) measurements are presented for single and dual-stream jets with fluidic injection on the core stream. The fluidic injection nozzles delivered air to the jet through slots on the interior of the nozzle at the nozzle trailing edge. The investigations include subsonic and supersonic jet conditions. Reductions in broadband shock noise and low frequency mixing noise were obtained with the introduction of fluidic injection on single stream jets. Fluidic injection was found to eliminate shock cells, increase jet mixing, and reduce turbulent kinetic energy levels near the end of the potential core. For dual-stream subsonic jets, the introduction of fluidic injection reduced low frequency noise in the peak jet noise direction and enhanced jet mixing. For dual-stream jets with supersonic fan streams and subsonic core streams, the introduction of fluidic injection in the core stream impacted the jet shock cell structure but had little effect on mixing between the core and fan streams.

  5. Effect of long-term outdoor air pollution and noise on cognitive and psychological functions in adults.

    PubMed

    Tzivian, Lilian; Winkler, Angela; Dlugaj, Martha; Schikowski, Tamara; Vossoughi, Mohammad; Fuks, Kateryna; Weinmayr, Gudrun; Hoffmann, Barbara

    2015-01-01

    It has been hypothesized that air pollution and ambient noise might impact neurocognitive function. Early studies mostly investigated the associations of air pollution and ambient noise exposure with cognitive development in children. More recently, several studies investigating associations with neurocognitive function, mood disorders, and neurodegenerative disease in adult populations were published, yielding inconsistent results. The purpose of this review is to summarize the current evidence on air pollution and noise effects on mental health in adults. We included studies in adult populations (≥18 years old) published in English language in peer-reviewed journals. Fifteen articles related to long-term effects of air pollution and eight articles on long-term effects of ambient noise were extracted. Both exposures were separately shown to be associated with one or several measures of global cognitive function, verbal and nonverbal learning and memory, activities of daily living, depressive symptoms, elevated anxiety, and nuisance. No study considered both exposures simultaneously and few studies investigated progression of neurocognitive decline or psychological factors. The existing evidence generally supports associations of environmental factors with mental health, but does not suffice for an overall conclusion about the independent effect of air pollution and noise. There is a need for studies investigating simultaneously air pollution and noise exposures in association mental health, for longitudinal studies to corroborate findings from cross-sectional analyses, and for parallel toxicological and epidemiological studies to elucidate mechanisms and pathways of action.

  6. Spatial and temporal associations of road traffic noise and air pollution in London: Implications for epidemiological studies.

    PubMed

    Fecht, Daniela; Hansell, Anna L; Morley, David; Dajnak, David; Vienneau, Danielle; Beevers, Sean; Toledano, Mireille B; Kelly, Frank J; Anderson, H Ross; Gulliver, John

    2016-03-01

    Road traffic gives rise to noise and air pollution exposures, both of which are associated with adverse health effects especially for cardiovascular disease, but mechanisms may differ. Understanding the variability in correlations between these pollutants is essential to understand better their separate and joint effects on human health. We explored associations between modelled noise and air pollutants using different spatial units and area characteristics in London in 2003-2010. We modelled annual average exposures to road traffic noise (LAeq,24h, Lden, LAeq,16h, Lnight) for ~190,000 postcode centroids in London using the UK Calculation of Road Traffic Noise (CRTN) method. We used a dispersion model (KCLurban) to model nitrogen dioxide, nitrogen oxide, ozone, total and the traffic-only component of particulate matter ≤2.5μm and ≤10μm. We analysed noise and air pollution correlations at the postcode level (~50 people), postcodes stratified by London Boroughs (~240,000 people), neighbourhoods (Lower layer Super Output Areas) (~1600 people), 1km grid squares, air pollution tertiles, 50m, 100m and 200m in distance from major roads and by deprivation tertiles. Across all London postcodes, we observed overall moderate correlations between modelled noise and air pollution that were stable over time (Spearman's rho range: |0.34-0.55|). Correlations, however, varied considerably depending on the spatial unit: largest ranges were seen in neighbourhoods and 1km grid squares (both Spearman's rho range: |0.01-0.87|) and was less for Boroughs (Spearman's rho range: |0.21-0.78|). There was little difference in correlations between exposure tertiles, distance from road or deprivation tertiles. Associations between noise and air pollution at the relevant geographical unit of analysis need to be carefully considered in any epidemiological analysis, in particular in complex urban areas. Low correlations near roads, however, suggest that independent effects of road noise and

  7. Spatial and temporal associations of road traffic noise and air pollution in London: Implications for epidemiological studies.

    PubMed

    Fecht, Daniela; Hansell, Anna L; Morley, David; Dajnak, David; Vienneau, Danielle; Beevers, Sean; Toledano, Mireille B; Kelly, Frank J; Anderson, H Ross; Gulliver, John

    2016-03-01

    Road traffic gives rise to noise and air pollution exposures, both of which are associated with adverse health effects especially for cardiovascular disease, but mechanisms may differ. Understanding the variability in correlations between these pollutants is essential to understand better their separate and joint effects on human health. We explored associations between modelled noise and air pollutants using different spatial units and area characteristics in London in 2003-2010. We modelled annual average exposures to road traffic noise (LAeq,24h, Lden, LAeq,16h, Lnight) for ~190,000 postcode centroids in London using the UK Calculation of Road Traffic Noise (CRTN) method. We used a dispersion model (KCLurban) to model nitrogen dioxide, nitrogen oxide, ozone, total and the traffic-only component of particulate matter ≤2.5μm and ≤10μm. We analysed noise and air pollution correlations at the postcode level (~50 people), postcodes stratified by London Boroughs (~240,000 people), neighbourhoods (Lower layer Super Output Areas) (~1600 people), 1km grid squares, air pollution tertiles, 50m, 100m and 200m in distance from major roads and by deprivation tertiles. Across all London postcodes, we observed overall moderate correlations between modelled noise and air pollution that were stable over time (Spearman's rho range: |0.34-0.55|). Correlations, however, varied considerably depending on the spatial unit: largest ranges were seen in neighbourhoods and 1km grid squares (both Spearman's rho range: |0.01-0.87|) and was less for Boroughs (Spearman's rho range: |0.21-0.78|). There was little difference in correlations between exposure tertiles, distance from road or deprivation tertiles. Associations between noise and air pollution at the relevant geographical unit of analysis need to be carefully considered in any epidemiological analysis, in particular in complex urban areas. Low correlations near roads, however, suggest that independent effects of road noise and

  8. High Pressure Air Jet in the Endoscopic Preparation Room: Risk of Noise Exposure on Occupational Health

    PubMed Central

    Lu, Lung-Sheng; Wu, Cheng-Kun

    2015-01-01

    After high-level disinfection of gastrointestinal endoscopes, they are hung to dry in order to prevent residual water droplets impact on patient health. To allow for quick drying and clinical reuse, some endoscopic units use a high pressure air jet (HPAJ) to remove the water droplets on the endoscopes. The purpose of this study was to evaluate the excessive noise exposure with the use of HPAJ in endoscopic preparation room and to investigate the risk to occupational health. Noise assessment was taken during 7 automatic endoscopic reprocessors (AERs) and combined with/without HPAJ use over an 8-hour time-weighted average (TWA). Analytical procedures of the NIOSH and the ISO for noise-induced hearing loss were estimated to develop analytic models. The peak of the noise spectrum of combined HPAJ and 7 AERs was significantly higher than that of the 7 AERs alone (108.3 ± 1.36 versus 69.3 ± 3.93 dBA, P < 0.0001). The risk of hearing loss (HL > 2.5 dB) was 2.15% at 90 dBA, 11.6% at 95 dBA, and 51.3% at 100 dBA. The odds ratio was 49.1 (95% CI: 11.9 to 203.6). The noise generated by the HPAJ to work over TWA seriously affected the occupational health and safety of those working in an endoscopic preparation room. PMID:25710009

  9. Annoyance Caused by Noise and Air Pollution during Pregnancy: Associated Factors and Correlation with Outdoor NO2 and Benzene Estimations.

    PubMed

    Fernández-Somoano, Ana; Llop, Sabrina; Aguilera, Inmaculada; Tamayo-Uria, Ibon; Martínez, María Dolores; Foraster, Maria; Ballester, Ferran; Tardón, Adonina

    2015-06-18

    This study aimed to describe the degree of annoyance among pregnant women in a Spanish cohort and to examine associations with proximity to traffic, NO2 and benzene exposure. We included 2457 participants from the Spanish Childhood and Environment study. Individual exposures to outdoor NO2 and benzene were estimated, temporally adjusted for pregnancy. Interviews about sociodemographic variables, noise and air pollution were carried out. Levels of annoyance were assessed using a scale from 0 (none) to 10 (strong and unbearable); a level of 8 to 10 was considered high. The reported prevalence of high annoyance levels from air pollution was 11.2% and 15.0% from noise; the two variables were moderately correlated (0.606). Significant correlations between NO2 and annoyance from air pollution (0.154) and that from noise (0.181) were observed. Annoyance owing to noise and air pollution had a low prevalence in our Spanish population compared with other European populations. Both factors were associated with proximity to traffic. In multivariate models, annoyance from air pollution was related to NO2, building age, and country of birth; annoyance from noise was only related to the first two. The health burden of these exposures can be increased by stress caused by the perception of pollution sources.

  10. Annoyance Caused by Noise and Air Pollution during Pregnancy: Associated Factors and Correlation with Outdoor NO2 and Benzene Estimations

    PubMed Central

    Fernández-Somoano, Ana; Llop, Sabrina; Aguilera, Inmaculada; Tamayo-Uria, Ibon; Martínez, María Dolores; Foraster, Maria; Ballester, Ferran; Tardón, Adonina

    2015-01-01

    This study aimed to describe the degree of annoyance among pregnant women in a Spanish cohort and to examine associations with proximity to traffic, NO2 and benzene exposure. We included 2457 participants from the Spanish Childhood and Environment study. Individual exposures to outdoor NO2 and benzene were estimated, temporally adjusted for pregnancy. Interviews about sociodemographic variables, noise and air pollution were carried out. Levels of annoyance were assessed using a scale from 0 (none) to 10 (strong and unbearable); a level of 8 to 10 was considered high. The reported prevalence of high annoyance levels from air pollution was 11.2% and 15.0% from noise; the two variables were moderately correlated (0.606). Significant correlations between NO2 and annoyance from air pollution (0.154) and that from noise (0.181) were observed. Annoyance owing to noise and air pollution had a low prevalence in our Spanish population compared with other European populations. Both factors were associated with proximity to traffic. In multivariate models, annoyance from air pollution was related to NO2, building age, and country of birth; annoyance from noise was only related to the first two. The health burden of these exposures can be increased by stress caused by the perception of pollution sources. PMID:26095869

  11. Airport noise

    NASA Technical Reports Server (NTRS)

    Pendley, R. E.

    1982-01-01

    The problem of airport noise at several airports and air bases is detailed. Community reactions to the noise, steps taken to reduce jet engine noise, and the effect of airport use restrictions and curfews on air transportation are discussed. The adverse effect of changes in allowable operational noise on airport safety and altenative means for reducing noise pollution are considered. Community-airport relations and public relations are discussed.

  12. A study of the prediction of cruise noise and laminar flow control noise criteria for subsonic air transports

    NASA Technical Reports Server (NTRS)

    Swift, G.; Mungur, P.

    1979-01-01

    General procedures for the prediction of component noise levels incident upon airframe surfaces during cruise are developed. Contributing noise sources are those associated with the propulsion system, the airframe and the laminar flow control (LFC) system. Transformation procedures from the best prediction base of each noise source to the transonic cruise condition are established. Two approaches to LFC/acoustic criteria are developed. The first is a semi-empirical extension of the X-21 LFC/acoustic criteria to include sensitivity to the spectrum and directionality of the sound field. In the second, the more fundamental problem of how sound excites boundary layer disturbances is analyzed by deriving and solving an inhomogeneous Orr-Sommerfeld equation in which the source terms are proportional to the production and dissipation of sound induced fluctuating vorticity. Numerical solutions are obtained and compared with corresponding measurements. Recommendations are made to improve and validate both the cruise noise prediction methods and the LFC/acoustic criteria.

  13. Long-Term Urban Particulate Air Pollution, Traffic Noise, and Arterial Blood Pressure

    PubMed Central

    Moebus, Susanne; Hertel, Sabine; Viehmann, Anja; Nonnemacher, Michael; Dragano, Nico; Möhlenkamp, Stefan; Jakobs, Hermann; Kessler, Christoph; Erbel, Raimund; Hoffmann, Barbara

    2011-01-01

    Background: Recent studies have shown an association of short-term exposure to fine particulate matter (PM) with transient increases in blood pressure (BP), but it is unclear whether long-term exposure has an effect on arterial BP and hypertension. Objectives: We investigated the cross-sectional association of residential long-term PM exposure with arterial BP and hypertension, taking short-term variations of PM and long-term road traffic noise exposure into account. Methods: We used baseline data (2000–2003) on 4,291 participants, 45–75 years of age, from the Heinz Nixdorf Recall Study, a population-based prospective cohort in Germany. Urban background exposure to PM with aerodynamic diameter ≤ 2.5 μm (PM2.5) and ≤ 10 μm (PM10) was assessed with a dispersion and chemistry transport model. We used generalized additive models, adjusting for short-term PM, meteorology, traffic proximity, and individual risk factors. Results: An interquartile increase in PM2.5 (2.4 μg/m3) was associated with estimated increases in mean systolic and diastolic BP of 1.4 mmHg [95% confidence interval (CI): 0.5, 2.3] and 0.9 mmHg (95% CI: 0.4, 1.4), respectively. The observed relationship was independent of long-term exposure to road traffic noise and robust to the inclusion of many potential confounders. Residential proximity to high traffic and traffic noise exposure showed a tendency toward higher BP and an elevated prevalence of hypertension. Conclusions: We found an association of long-term exposure to PM with increased arterial BP in a population-based sample. This finding supports our hypothesis that long-term PM exposure may promote atherosclerosis, with air-pollution–induced increases in BP being one possible biological pathway. PMID:21827977

  14. Environmental Resources of Selected Areas of Hawaii: Climate, Ambient Air Quality, and Noise (DRAFT)

    SciTech Connect

    Lombardi, D.A.; Blasing, T.J.; Easterly, C.E.; Hamilton, C.B.

    1994-06-01

    This report has been prepared to make available and archive background scientific data and related information on climate, ambient air quality, and ambient noise levels collected during the preparation of the environmental impact statement (EIS) for Phases 3 and 4 of the Hawaii Geothermal Project (HGP) as defined by the state of hawaii in its April 1989 proposal to Congress. The US Department of Energy (DOE) published a notice in the Federal Register on May 17, 1994 withdrawing its Notice of Intent of February 14, 1992, to prepare the HGP-EIS. Since the state of Hawaii is no longer pursuing or planning to pursue the HGP, DOE considers the project to be terminated. The report presents a general description of the climate and air quality for the islands of Hawaii (henceforth referred to as Hawaii), Maui, and Oahu. It also presents a literature review as baseline information on the health effects of hydrogen sulfide. the scientific background data and related information is being made available for use by others in conducting future scientific research in these areas. This report describes the environmental resources present in the areas studied (i.e., the affected environment) and does not represent an assessment of environmental impacts.

  15. Environmental resources of selected areas of Hawaii: Climate, ambient air quality, and noise

    SciTech Connect

    Lombardi, D.A.; Blasing, T.J.; Easterly, C.E.; Reed, R.M.; Hamilton, C.B.

    1995-03-01

    This report has been prepared to make available and archive background scientific data and related information on climate, ambient air quality, and ambient noise levels collected during the preparation of the environmental impact statement (EIS) for Phases 3 and 4 of the Hawaii Geothermal Project (HGP) as defined by the state of Hawaii in its April 1989 proposal to Congress. The US Department of Energy (DOE) published a notice withdrawing its Notice of Intent to prepare the HGP-EIS. Since the state of Hawaii is no longer pursuing or planning to pursue the HGP, DOE considers the project to be terminated. The report presents a general description of the climate add air quality for the islands of Hawaii (henceforth referred to as Hawaii), Maui and Oahu. It also presents a literature review as baseline information on the health effects of sulfide. The scientific background data and related information is being made available for use by others in conducting future scientific research in these areas. This report describes the environmental resources present in the areas studied (i.e., the affected environment) and does not represent an assessment of environmental impacts.

  16. Energy and Environment 1990: Transportation-induced noise and air pollution

    SciTech Connect

    Not Available

    1990-01-01

    Contents: public reaction to low levels of aircraft noise; airport noise insulation of homes surrounding stapleton international airport; sound insulation and thermal performance modifications: case study for three dwellings near bwi airport; single-number ratings for outdoor-indoor sound insulation; control of wheel squeal noise in rail transit cars; knowledge-based preprocessor for traffic noise prediction; barrier overlap analysis procedure; atmospheric effects on traffic noise propagation; predicting stop-and-go traffic noise with stamina 2.0; feasibility of transparent noise barriers; field testing of the effectiveness of open-graded asphalt pavement in reducing tire noise from highway vehicles; cost of noise barrier construction in the united states; comparisons of emissions of transit buses using methanol and diesel fuel; high-speed rail system noise assessment; energy-related, environmental, and economic benefits of florida's high-speed rail and maglev systems proposals.

  17. The impacts of short-term exposure to noise and traffic-related air pollution on heart rate variability in young healthy adults.

    PubMed

    Huang, Jing; Deng, Furong; Wu, Shaowei; Lu, Henry; Hao, Yu; Guo, Xinbiao

    2013-01-01

    Traffic-related air pollution and noise are associated with cardiovascular diseases, and alternation of heart rate variability (HRV), which reflects cardiac autonomic function, is one of the mechanisms. However, few studies considered the impacts of noise when exploring associations between air pollution and HRV. We explored whether noise modifies associations between short-term exposure to traffic-related air pollution and HRV in young healthy adults. In this randomized, crossover study, 40 young healthy adults stayed for 2 h in a traffic center and, on a separate occasion, in a park. Personal exposure to traffic-related air pollutants and noise were measured and ambulatory electrocardiogram was performed. Effects were estimated using mixed-effects regression models. Traffic-related air pollution and noise were both associated with HRV, and effects of air pollutants were amplified at high noise level (>65.6 A-weighted decibels (dB[A])) compared with low noise level (≤ 65.6 dB[A]). High frequency (HF) decreased by -4.61% (95% confidence interval, -6.75% to-2.42%) per 10 μg/m(3) increment in fine particle (PM2.5) at 5-min moving average, but effects became insignificant at low noise level (P>0.05). Similar effects modification was observed for black carbon (BC) and carbon monoxide (CO). We conclude that noise is an important factor influencing the effects of air pollution on HRV.

  18. The Okinawa study: an estimation of noise-induced hearing loss on the basis of the records of aircraft noise exposure around Kadena Air Base

    NASA Astrophysics Data System (ADS)

    Hiramatsu, K.; Matsui, T.; Ito, A.; Miyakita, T.; Osada, Y.; Yamamoto, T.

    2004-10-01

    Aircraft noise measurements were recorded at the residential areas in the vicinity of Kadena Air Base, Okinawa in 1968 and 1972 at the time of the Vietnam war. The estimated equivalent continuous A-weighted sound pressure level LAeq for 24 h was 85 dB.The time history of sound level during 24 h was estimated from the measurement conducted in 1968, and the sound level was converted into the spectrum level at the centre frequency of the critical band of temporary threshold shift (TTS) using the results of spectrum analysis of aircraft noise operated at the airfield. With the information of spectrum level and its time history, TTS was calculated as a function of time and level change. The permanent threshold shift was also calculated by means of Robinson's method and ISO's method. The results indicate the noise exposure around Kadena Air Base was hazardous to hearing and is likely to have caused hearing loss to people living in its vicinity.

  19. Evaluation of the effects of exposure to organic solvents and hazardous noise among US Air Force Reserve personnel.

    PubMed

    Hughes, Hayley; Hunting, Katherine L

    2013-01-01

    Hearing loss affects many workers including those in the military and may be caused by noise, medications, and chemicals. Exposures to some chemicals may lead to an increase in the incidence of hearing loss when combined with hazardous noise. This retrospective study evaluated the risk for hearing loss among Air Force Reserve personnel exposed to occupational noise with and without exposures to toluene, styrene, xylene, benzene, and JP-8 (jet fuel). Risk factors associated with hearing loss were determined using logistic and linear regression. Stratified analysis was used to evaluate potential interaction between solvent and noise exposure. The majority of the subjects were male (94.6%) and 35 years or older on the date of their first study audiogram (66%). Followed for an average of 3.2 years, 9.2% of the study subjects had hearing loss in at least one ear. Increasing age (odds ratio [OR] = 1.03 per year of age) and each year of follow-up time (OR = 1.23) were significantly associated with hearing loss. Low and moderate solvent exposures were not associated with hearing loss. Linear regression demonstrated that hearing loss was significantly associated with age at first study audiogram, length of follow-up time, and exposure to noise. Hearing decreased by 0.04 decibels for every decibel increase in noise level or by almost half a decibel (0.4 dB) for every 10 decibel increase in noise level. PMID:24231416

  20. Measuring combined exposure to environmental pressures in urban areas: an air quality and noise pollution assessment approach.

    PubMed

    Vlachokostas, Ch; Achillas, Ch; Michailidou, A V; Moussiopoulos, Nu

    2012-02-01

    This study presents a methodological scheme developed to provide a combined air and noise pollution exposure assessment based on measurements from personal portable monitors. Provided that air and noise pollution are considered in a co-exposure approach, they represent a significant environmental hazard to public health. The methodology is demonstrated for the city of Thessaloniki, Greece. The results of an extensive field campaign are presented and the variations in personal exposure between modes of transport, routes, streets and transport microenvironments are evaluated. Air pollution and noise measurements were performed simultaneously along several commuting routes, during the morning and evening rush hours. Combined exposure to environmental pollutants is highlighted based on the Combined Exposure Factor (CEF) and Combined Dose and Exposure Factor (CDEF). The CDEF takes into account the potential relative uptake of each pollutant by considering the physical activities of each citizen. Rather than viewing environmental pollutants separately for planning and environmental sustainability considerations, the possibility of an easy-to-comprehend co-exposure approach based on these two indices is demonstrated. Furthermore, they provide for the first time a combined exposure assessment to these environmental pollutants for Thessaloniki and in this sense they could be of importance for local public authorities and decision makers. A considerable environmental burden for the citizens of Thessaloniki, especially for VOCs and noise pollution levels is observed. The material herein points out the importance of measuring public health stressors and the necessity of considering urban environmental pollution in a holistic way.

  1. Noise emitted from road, rail and air traffic and their effects on sleep

    NASA Astrophysics Data System (ADS)

    Griefahn, Barbara; Marks, Anke; Robens, Sibylle

    2006-08-01

    This study compared the effects of road, rail, and aircraft noise and tested the applicability of the equivalent noise level for the evaluation of sleep disturbances. Sixteen women and 16 men (19-28 years) slept during 3 consecutive weeks in the laboratory. Eight persons slept in quiet throughout. Twenty-four persons were exposed to road, rail, or aircraft noise with weekly permuted changes. Each week consisted of a random sequence of a quiet night (32 dBA) and 3 nights with equivalent noise levels of 39, 44, and 50 dBA and maximum levels of 50-62, 56-68, and 62-74 dBA, respectively. The polysomnogram was recorded during all nights, sleep quality was assessed and performance tests were completed in the morning. Subjectively evaluated sleep quality decreased and reaction time increased gradually with noise levels, whereas most physiological variables revealed the same reactions to both the lower and considerably stronger reactions to the highest noise load. Aircraft noise, rail and road traffic noise caused similar after-effects but physiological sleep parameters were most severely affected by rail noise. The equivalent noise level seems to be a suitable predictor for subjectively evaluated sleep quality but not for physiological sleep disturbances.

  2. Influence of Solid Noise Barriers on Near-Road and On-Road Air Quality

    EPA Science Inventory

    Public health concerns regarding adverse health effects for populations spending significant amounts of time near high traffic roadways has increased substantially in recent years. Roadside features, including solid noise barriers, have been investigated as potential methods to ...

  3. Reconstruction of Rayleigh-Lamb dispersion spectrum based on noise obtained from an air-jet forcing.

    PubMed

    Larose, Eric; Roux, Philippe; Campillo, Michel

    2007-12-01

    The time-domain cross correlation of incoherent and random noise recorded by a series of passive sensors contains the impulse response of the medium between these sensors. By using noise generated by a can of compressed air sprayed on the surface of a plexiglass plate, we are able to reconstruct not only the time of flight but the whole wave forms between the sensors. From the reconstruction of the direct A(0) and S(0) waves, we derive the dispersion curves of the flexural waves, thus estimating the mechanical properties of the material without a conventional electromechanical source. The dense array of receivers employed here allow a precise frequency-wavenumber study of flexural waves, along with a thorough evaluation of the rate of convergence of the correlation with respect to the record length, the frequency, and the distance between the receivers. The reconstruction of the actual amplitude and attenuation of the impulse response is also addressed in this paper.

  4. High Blood Pressure and Long-Term Exposure to Indoor Noise and Air Pollution from Road Traffic

    PubMed Central

    Künzli, Nino; Aguilera, Inmaculada; Rivera, Marcela; Agis, David; Vila, Joan; Bouso, Laura; Deltell, Alexandre; Marrugat, Jaume; Ramos, Rafel; Sunyer, Jordi; Elosua, Roberto; Basagaña, Xavier

    2014-01-01

    Background: Traffic noise has been associated with prevalence of hypertension, but reports are inconsistent for blood pressure (BP). To ascertain noise effects and to disentangle them from those suspected to be from traffic-related air pollution, it may be essential to estimate people’s noise exposure indoors in bedrooms. Objectives: We analyzed associations between long-term exposure to indoor traffic noise in bedrooms and prevalent hypertension and systolic (SBP) and diastolic (DBP) BP, considering long-term exposure to outdoor nitrogen dioxide (NO2). Methods: We evaluated 1,926 cohort participants at baseline (years 2003–2006; Girona, Spain). Outdoor annual average levels of nighttime traffic noise (Lnight) and NO2 were estimated at postal addresses with a detailed traffic noise model and a land-use regression model, respectively. Individual indoor traffic Lnight levels were derived from outdoor Lnight with application of insulations provided by reported noise-reducing factors. We assessed associations for hypertension and BP with multi-exposure logistic and linear regression models, respectively. Results: Median levels were 27.1 dB(A) (indoor Lnight), 56.7 dB(A) (outdoor Lnight), and 26.8 μg/m3 (NO2). Spearman correlations between outdoor and indoor Lnight with NO2 were 0.75 and 0.23, respectively. Indoor Lnight was associated both with hypertension (OR = 1.06; 95% CI: 0.99, 1.13) and SBP (β = 0.72; 95% CI: 0.29, 1.15) per 5 dB(A); and NO2 was associated with hypertension (OR = 1.16; 95% CI: 0.99, 1.36), SBP (β = 1.23; 95% CI: 0.21, 2.25), and DBP (β⊇= 0.56; 95% CI: –0.03, 1.14) per 10 μg/m3. In the outdoor noise model, Lnight was associated only with hypertension and NO2 with BP only. The indoor noise–SBP association was stronger and statistically significant with a threshold at 30 dB(A). Conclusion: Long-term exposure to indoor traffic noise was associated with prevalent hypertension and SBP, independently of NO2. Associations were less

  5. Numerical simulation of tonal fan noise of computers and air conditioning systems

    NASA Astrophysics Data System (ADS)

    Aksenov, A. A.; Gavrilyuk, V. N.; Timushev, S. F.

    2016-07-01

    Current approaches to fan noise simulation are mainly based on the Lighthill equation and socalled aeroacoustic analogy, which are also based on the transformed Lighthill equation, such as the wellknown FW-H equation or the Kirchhoff theorem. A disadvantage of such methods leading to significant modeling errors is associated with incorrect solution of the decomposition problem, i.e., separation of acoustic and vortex (pseudosound) modes in the area of the oscillation source. In this paper, we propose a method for tonal noise simulation based on the mesh solution of the Helmholtz equation for the Fourier transform of pressure perturbation with boundary conditions in the form of the complex impedance. A noise source is placed on the surface surrounding each fan rotor. The acoustic fan power is determined by the acoustic-vortex method, which ensures more accurate decomposition and determination of the pressure pulsation amplitudes in the near field of the fan.

  6. The variable immunological self: Genetic variation and nongenetic noise in Aire-regulated transcription

    PubMed Central

    Venanzi, Emily S.; Melamed, Rachel; Mathis, Diane; Benoist, Christophe

    2008-01-01

    The Aire transcription factor plays an important role in immunological self-tolerance by mediating the ectopic expression of peripheral self-antigens by thymic medullary epithelial cells (MECs), and the deletion of thymocytes that recognize them. In Aire-deficient humans or mice, central tolerance is incomplete and multiorgan autoimmune disease results. We examined the variability of Aire's effects on ectopic transcription among individual mice of three different inbred strains. Aire's function was, overall, quite similar in the three backgrounds, although generally stronger in C57BL/6 than in BALB/c or NOD mice, and a minority of Aire-regulated genes did show clear differences. Gene expression profiling of wild-type MECs from single mice, or from the two thymic lobes of the same mouse, revealed significantly greater variability in Aire-controlled ectopic gene expression than in Aire-independent transcripts. This “noisy” ectopic expression did not result from parental or early developmental imprinting, but from programming occurring after the formation of the thymic anlage, resulting from epigenetic effects or from the stochastic nature of Aire activity. Together, genetic and nongenetic variability in ectopic expression of peripheral antigens in the thymus make for differences in the portion of self determinants presented for tolerance induction. This variable self may be beneficial in preventing uniform holes in the T-cell repertoire in individuals of a species, but at the cost of variable susceptibility to autoimmunity. PMID:18838677

  7. The influence of tree stands and a noise barrier on near-roadway air quality

    EPA Science Inventory

    Prediction of air pollution exposure levels of people living near or commuting on roadways is still very problematic due to the highly localized nature of traffic intensity, fleet composition, and extremely complex air flow patterns in urban areas. Both modelling and field studie...

  8. 32 CFR 256.10 - Air installations compatible use zone noise descriptors.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... NEF, for meters of policy, noise planning and decisionmaking, areas quieter than Ldn 65 shall be... area between Ldn 65 and Ldn 75 shall be considered approximately equivalent to the previously used CNR... would previously have been used, data shall be collected sufficient to permit computation of Ldn...

  9. Exposures to road traffic, noise, and air pollution as risk factors for type 2 diabetes: A feasibility study in Bulgaria.

    PubMed

    Dzhambov, Angel M; Dimitrova, Donka D

    2016-01-01

    Type 2 diabetes mellitus (T2DM) is a growing public health problem in Bulgaria. While individual and lifestyle determinants have been researched; till date there has been no study on environmental risks such as road traffic, noise, and air pollution. As a first step toward designing a large-scale population-based survey, we aimed at exploring the overall associations of prevalent T2DM with exposures to road traffic, noise, and air pollution. A total of 513 residents of Plovdiv city, Bulgaria were recruited. Individual data on self-reported doctor-diagnosed T2DM and confounding factors were linked to objective and self-rated exposure indicators. Logistic and log-link Poisson regressions were conducted. In the fully adjusted logistic models, T2DM was positively associated with exposures to L(den) 71-80 dB (odds ratio (OR) = 4.49, 95% confidence interval (CI): 1.38, 14.68), fine particulate matter (PM) 2.5 25.0-66.8 μg/m 3 (OR = 1.32, 95% CI: 0.28, 6.24), benzo alpha pyrene 6.0-14.02 ng/m 3 (OR = 1.76, 95% CI: 0.52, 5.98) and high road traffic (OR = 1.40, 95% CI: 0.48, 4.07). L(den) remained a significant risk factor in the: Poisson regression model. Other covariates with consistently high multivariate effects were age, gender, body mass index, family history of T2DM, subjective sleep disturbance, and especially bedroom location. We concluded that residential noise exposure might be associated with elevated risk of prevalent T2DM. The inferences made by this research and the lessons learned from its limitations could guide the designing of a longitudinal epidemiological survey in Bulgaria. PMID:27157686

  10. Exposures to road traffic, noise, and air pollution as risk factors for type 2 diabetes: A feasibility study in Bulgaria.

    PubMed

    Dzhambov, Angel M; Dimitrova, Donka D

    2016-01-01

    Type 2 diabetes mellitus (T2DM) is a growing public health problem in Bulgaria. While individual and lifestyle determinants have been researched; till date there has been no study on environmental risks such as road traffic, noise, and air pollution. As a first step toward designing a large-scale population-based survey, we aimed at exploring the overall associations of prevalent T2DM with exposures to road traffic, noise, and air pollution. A total of 513 residents of Plovdiv city, Bulgaria were recruited. Individual data on self-reported doctor-diagnosed T2DM and confounding factors were linked to objective and self-rated exposure indicators. Logistic and log-link Poisson regressions were conducted. In the fully adjusted logistic models, T2DM was positively associated with exposures to L(den) 71-80 dB (odds ratio (OR) = 4.49, 95% confidence interval (CI): 1.38, 14.68), fine particulate matter (PM) 2.5 25.0-66.8 μg/m 3 (OR = 1.32, 95% CI: 0.28, 6.24), benzo alpha pyrene 6.0-14.02 ng/m 3 (OR = 1.76, 95% CI: 0.52, 5.98) and high road traffic (OR = 1.40, 95% CI: 0.48, 4.07). L(den) remained a significant risk factor in the: Poisson regression model. Other covariates with consistently high multivariate effects were age, gender, body mass index, family history of T2DM, subjective sleep disturbance, and especially bedroom location. We concluded that residential noise exposure might be associated with elevated risk of prevalent T2DM. The inferences made by this research and the lessons learned from its limitations could guide the designing of a longitudinal epidemiological survey in Bulgaria.

  11. Exposures to road traffic, noise, and air pollution as risk factors for type 2 diabetes: A feasibility study in Bulgaria

    PubMed Central

    Dzhambov, Angel M; Dimitrova, Donka D

    2016-01-01

    Type 2 diabetes mellitus (T2DM) is a growing public health problem in Bulgaria. While individual and lifestyle determinants have been researched; till date there has been no study on environmental risks such as road traffic, noise, and air pollution. As a first step toward designing a large-scale population-based survey, we aimed at exploring the overall associations of prevalent T2DM with exposures to road traffic, noise, and air pollution. A total of 513 residents of Plovdiv city, Bulgaria were recruited. Individual data on self-reported doctor-diagnosed T2DM and confounding factors were linked to objective and self-rated exposure indicators. Logistic and log-link Poisson regressions were conducted. In the fully adjusted logistic models, T2DM was positively associated with exposures to Lden 71-80 dB (odds ratio (OR) = 4.49, 95% confidence interval (CI): 1.38, 14.68), fine particulate matter (PM)2.5 25.0-66.8 μg/m3 (OR = 1.32, 95% CI: 0.28, 6.24), benzo alpha pyrene 6.0-14.02 ng/m3 (OR = 1.76, 95% CI: 0.52, 5.98) and high road traffic (OR = 1.40, 95% CI: 0.48, 4.07). Lden remained a significant risk factor in the: Poisson regression model. Other covariates with consistently high multivariate effects were age, gender, body mass index, family history of T2DM, subjective sleep disturbance, and especially bedroom location. We concluded that residential noise exposure might be associated with elevated risk of prevalent T2DM. The inferences made by this research and the lessons learned from its limitations could guide the designing of a longitudinal epidemiological survey in Bulgaria. PMID:27157686

  12. THE INFLUENCE OF A NOISE BARRIER AND VEGETATION ON AIR QUALITY NEAR A ROADWAY

    EPA Science Inventory

    A growing number of epidemiological studies conducted throughout the world have identified an increase in occurrence of adverse health effects for populations residing, working or attending school near major roadways. In addition, several air quality studies have identified incr...

  13. Impacts of Western Area Power Administration`s power marketing alternatives on air quality and noise

    SciTech Connect

    Chun, K.C.; Chang, Y.S.; Rabchuk, J.A.

    1995-05-01

    The Western Area Power Administration, which is responsible for marketing electricity produced at the hydroelectric power-generating facilities operated by the Bureau of Reclamation on the Upper Colorado River, has proposed changes in the levels of its commitment (sales) of long-term firm capacity and energy to its customers. This report describes (1) the existing conditions of air resources (climate and meteorology, ambient air quality, and acoustic environment) of the region potentially affected by the proposed action and (2) the methodology used and the results of analyses conducted to assess the potential impacts on air resources of the proposed action and the commitment-level alternatives. Analyses were performed for the potential impacts of both commitment-level alternatives and supply options, which include combinations of electric power purchases and different operational scenarios of the hydroelectric power-generating facilities.

  14. Willingness to pay to avoid health risks from road-traffic-related air pollution and noise across five countries.

    PubMed

    Istamto, Tifanny; Houthuijs, Danny; Lebret, Erik

    2014-11-01

    We conducted a multi-country study to estimate the perceived economic values of traffic-related air pollution and noise health risks within the framework of a large European project. We used contingent valuation as a method to assess the willingness-to-pay (WTP) for both types of pollutants simultaneously. We asked respondents how much they would be willing to pay annually to avoid certain health risks from specific pollutants. Three sets of vignettes with different levels of information were provided prior to the WTP questions. These vignettes described qualitative general health risks, a quantitative single health risk related to a pollutant, and a quantitative scenario of combined health risks related to a pollutant. The mean WTP estimates to avoid road-traffic air pollution effects for the three vignettes were: €130 per person per year (pp/y) for general health risks, €80 pp/y for a half year shorter in life expectancy, and €330 pp/y to a 50% decrease in road-traffic air pollution. Their medians were €40 pp/y, €10 pp/y and €50 pp/y, respectively. The mean WTP estimates to avoid road-traffic noise effects for the three vignettes were: €90 pp/y for general health risks, €100 pp/y for a 13% increase in severe annoyance, and €320 pp/y for a combined-risk scenario related to an increase of a noise level from 50 dB to 65 dB. Their medians were €20 pp/y, €20 pp/y and €50 pp/y, respectively. Risk perceptions and attitudes as well as environmental and pollutant concerns significantly affected WTP estimates. The observed differences in crude WTP estimates between countries changed considerably when perception-related variables were included in the WTP regression models. For this reason, great care should be taken when performing benefit transfer from studies in one country to another.

  15. Development of an air bubble curtain to reduce underwater noise of percussive piling.

    PubMed

    Würsig, B; Greene, C R; Jefferson, T A

    2000-02-01

    Underwater bubbles can inhibit sound transmission through water due to density mismatch and concomitant reflection and absorption of sound waves. For the present study, a perforated rubber hose was used to produce a bubble curtain, or screen, around pile-driving activity in 6-8-m depth waters of western Hong Kong. The percussive hammer blow sounds of the pile driver were measured on 2 days at distances of 250, 500, and 1000 m; broadband pulse levels were reduced by 3-5 dB by the bubble curtain. Sound intensities were measured from 100 Hz to 25.6 kHz, and greatest sound reduction by the bubble curtain was evident from 400 to 6400 Hz. Indo-Pacific hump-backed dolphins (Sousa chinensis) occurred in the immediate area of the industrial activity before and during pile driving, but with a lower abundance immediately after it. While hump-backed dolphins generally showed no overt behavioral changes with and without pile driving, their speeds of travel increased during pile driving, indicating that bubble screening did not eliminate all behavioral responses to the loud noise. Because the bubble curtain effectively lowered sound levels within 1 km of the activity, the experiment and its application during construction represented a success, and this measure should be considered for other appropriate areas with high industrial noises and resident or migrating sound-sensitive animals.

  16. Airframe noise

    NASA Astrophysics Data System (ADS)

    Crighton, David G.

    1991-08-01

    Current understanding of airframe noise was reviewed as represented by experiment at model and full scale, by theoretical modeling, and by empirical correlation models. The principal component sources are associated with the trailing edges of wing and tail, deflected trailing edge flaps, flap side edges, leading edge flaps or slats, undercarriage gear elements, gear wheel wells, fuselage and wing boundary layers, and panel vibration, together with many minor protrusions like radio antennas and air conditioning intakes which may contribute significantly to perceived noise. There are also possibilities for interactions between the various mechanisms. With current engine technology, the principal airframe noise mechanisms dominate only at low frequencies, typically less than 1 kHz and often much lower, but further reduction of turbomachinery noise in particular may make airframe noise the principal element of approach noise at frequencies in the sensitive range.

  17. Aircraft noise: accounting for changes in air traffic with time of day.

    PubMed

    Schäffer, Beat; Bütikofer, Rudolf; Plüss, Stefan; Thomann, Georg

    2011-01-01

    Aircraft noise contours are estimated using model calculations and, due to their impact on land use planning, they need to be highly accurate. During night time, not only the number and dominant types of aircraft may differ from daytime but also the flight paths flown may differ. To determine to which detail these variations in flight paths need to be considered, calculations were performed exemplarily for two airports using all available radar data over 1 year, taking into account their changes over the day. The results of this approach were compared with results of a simpler approach which does not consider such changes. While both calculations yielded similar results for the day and close to the airport, differences increased with distance as well as with the period of day (day

  18. Air

    MedlinePlus

    ... do to protect yourself from dirty air . Indoor air pollution and outdoor air pollution Air can be polluted indoors and it can ... this chart to see what things cause indoor air pollution and what things cause outdoor air pollution! Indoor ...

  19. Computer programs for producing single-event aircraft noise data for specific engine power and meteorological conditions for use with USAF (United States Air Force) community noise model (NOISEMAP)

    NASA Astrophysics Data System (ADS)

    Mohlman, H. T.

    1983-04-01

    The Air Force community noise prediction model (NOISEMAP) is used to describe the aircraft noise exposure around airbases and thereby aid airbase planners to minimize exposure and prevent community encroachment which could limit mission effectiveness of the installation. This report documents two computer programs (OMEGA 10 and OMEGA 11) which were developed to prepare aircraft flight and ground runup noise data for input to NOISEMAP. OMEGA 10 is for flight operations and OMEGA 11 is for aircraft ground runups. All routines in each program are documented at a level useful to a programmer working with the code or a reader interested in a general overview of what happens within a specific subroutine. Both programs input normalized, reference aircraft noise data; i.e., data at a standard reference distance from the aircraft, for several fixed engine power settings, a reference airspeed and standard day meteorological conditions. Both programs operate on these normalized, reference data in accordance with user-defined, non-reference conditions to derive single-event noise data for 22 distances (200 to 25,000 feet) in a variety of physical and psycho-acoustic metrics. These outputs are in formats ready for input to NOISEMAP.

  20. The associations between traffic-related air pollution and noise with blood pressure in children: results from the GINIplus and LISAplus studies.

    PubMed

    Liu, Chuang; Fuertes, Elaine; Tiesler, Carla M T; Birk, Matthias; Babisch, Wolfgang; Bauer, Carl-Peter; Koletzko, Sibylle; von Berg, Andrea; Hoffmann, Barbara; Heinrich, Joachim

    2014-01-01

    Although traffic emits both air pollution and noise, studies jointly examining the effects of both of these exposures on blood pressure (BP) in children are scarce. We investigated associations between land-use regression modeled long-term traffic-related air pollution and BP in 2368 children aged 10 years from Germany (1454 from Munich and 914 from Wesel). We also studied this association with adjustment of long-term noise exposure (defined as day-evening-night noise indicator "Lden" and night noise indicator "Lnight") in a subgroup of 605 children from Munich inner city. In the overall analysis including 2368 children, NO2, PM2.5 mass (particles with aerodynamic diameters below 2.5μm), PM10 mass (particles with aerodynamic diameters below 10μm) and PM2.5 absorbance were not associated with BP. When restricting the analysis to the subgroup of children with noise information (N=605), a significant association between NO2 and diastolic BP was observed (-0.88 (95% confidence interval: -1.67, -0.08)). However, upon adjusting the models for noise exposure, only noise remained independently and significantly positively associated with diastolic BP. Diastolic BP increased by 0.50 (-0.03, 1.02), 0.59 (0.05, 1.13), 0.55 (0.03, 1.07), and 0.58 (0.05, 1.11)mmHg for every five decibel increase in Lden and by 0.59 (-0.05, 1.22), 0.69 (0.04, 1.33), 0.64 (0.02, 1.27), and 0.68 (0.05, 1.32)mmHg for every five decibel increase in Lnight, in different models of NO2, PM2.5 mass, PM10 mass and PM2.5 absorbance as the main exposure, respectively. In conclusion, air pollution was not consistently associated with BP with adjustment for noise, noise was independently and positively associated with BP in children.

  1. Long-Term Air Pollution and Traffic Noise Exposures and Mild Cognitive Impairment in Older Adults: A Cross-Sectional Analysis of the Heinz Nixdorf Recall Study

    PubMed Central

    Tzivian, Lilian; Dlugaj, Martha; Winkler, Angela; Weinmayr, Gudrun; Hennig, Frauke; Fuks, Kateryna B.; Vossoughi, Mohammad; Schikowski, Tamara; Weimar, Christian; Erbel, Raimund; Jöckel, Karl-Heinz; Moebus, Susanne; Hoffmann, Barbara

    2016-01-01

    Background: Mild cognitive impairment (MCI) describes the intermediate state between normal cognitive aging and dementia. Adverse effects of air pollution (AP) on cognitive functions have been proposed, but investigations of simultaneous exposure to noise are scarce. Objectives: We analyzed the cross-sectional associations of long-term exposure to AP and traffic noise with overall MCI and amnestic (aMCI) and nonamnestic (naMCI) MCI. Methods: At the second examination of the population-based Heinz Nixdorf Recall study, cognitive assessment was completed in 4,086 participants who were 50–80 years old. Of these, 592 participants were diagnosed as having MCI (aMCI, n = 309; naMCI, n = 283) according to previously published criteria using five neuropsychological subtests. We assessed long-term residential concentrations for size-fractioned particulate matter (PM) and nitrogen oxides with land use regression, and for traffic noise [weighted 24-hr (LDEN) and night-time (LNIGHT) means]. Logistic regression models adjusted for individual risk factors were calculated to estimate the association of environmental exposures with MCI in single- and two-exposure models. Results: Most air pollutants and traffic noise were associated with overall MCI and aMCI. For example, an interquartile range increase in PM2.5 and a 10 A-weighted decibel [dB(A)] increase in LDEN were associated with overall MCI as follows [odds ratio (95% confidence interval)]: 1.16 (1.05, 1.27) and 1.40 (1.03, 1.91), respectively, and with aMCI as follows: 1.22 (1.08, 1.38) and 1.53 (1.05, 2.24), respectively. In two-exposure models, AP and noise associations were attenuated [e.g., for aMCI, PM2.5 1.13 (0.98, 1.30) and LDEN 1.46 (1.11, 1.92)]. Conclusions: Long-term exposures to air pollution and traffic noise were positively associated with MCI, mainly with the amnestic subtype. Citation: Tzivian L, Dlugaj M, Winkler A, Weinmayr G, Hennig F, Fuks KB, Vossoughi M, Schikowski T, Weimar C, Erbel R, Jöckel KH

  2. Does traffic-related air pollution explain associations of aircraft and road traffic noise exposure on children's health and cognition? A secondary analysis of the United Kingdom sample from the RANCH project.

    PubMed

    Clark, Charlotte; Crombie, Rosanna; Head, Jenny; van Kamp, Irene; van Kempen, Elise; Stansfeld, Stephen A

    2012-08-15

    The authors examined whether air pollution at school (nitrogen dioxide) is associated with poorer child cognition and health and whether adjustment for air pollution explains or moderates previously observed associations between aircraft and road traffic noise at school and children's cognition in the 2001-2003 Road Traffic and Aircraft Noise Exposure and Children's Cognition and Health (RANCH) project. This secondary analysis of a subsample of the United Kingdom RANCH sample examined 719 children who were 9-10 years of age from 22 schools around London's Heathrow airport for whom air pollution data were available. Data were analyzed using multilevel modeling. Air pollution exposure levels at school were moderate, were not associated with a range of cognitive and health outcomes, and did not account for or moderate associations between noise exposure and cognition. Aircraft noise exposure at school was significantly associated with poorer recognition memory and conceptual recall memory after adjustment for nitrogen dioxide levels. Aircraft noise exposure was also associated with poorer reading comprehension and information recall memory after adjustment for nitrogen dioxide levels. Road traffic noise was not associated with cognition or health before or after adjustment for air pollution. Moderate levels of air pollution do not appear to confound associations of noise on cognition and health, but further studies of higher air pollution levels are needed.

  3. a Survey on Health Effects due to Aircraft Noise on Residents Living around Kadena Air Base in the Ryukyus

    NASA Astrophysics Data System (ADS)

    Hiramatsu, K.; Yamamoto, T.; Taira, K.; Ito, A.; Nakasone, T.

    1997-08-01

    Results are reported of a questionnaire survey relating to a scale for general health, the Todai Health Index, in a town, bordering on a large U.S. airbase in the Ryukyus. The level of aircraft noise exposure, in the town, expressed by WECPNL, ranges from 75 to 95 or more. The sample size was 1200, including a 200 person “control” group. Results of the analysis of the responses in terms of the noise exposure suggest that the exposed residents suffer psychosomatic effects, especially perceived psychological disorders, due to the noise exposure to military aircraft, and that such responses increase with the level of noise exposure.

  4. The impact of an urban park on air pollution and noise levels in the Mediterranean city of Tel-Aviv, Israel.

    PubMed

    Cohen, Pninit; Potchter, Oded; Schnell, Izhak

    2014-12-01

    This study examines the influence of urban parks on air quality and noise in the city of Tel-Aviv, Israel, by investigation of an urban park, an urban square and a street canyon. Simultaneous monitoring of several air pollutants and noise levels were conducted. The results showed that urban parks can reduce NOx, CO and PM10 and increase O3 concentrations and that park's mitigation effect is greater at higher NOx and PM10 levels. During extreme events, mean values of 413 ppb NOx and 80 μG/m3 PM10 were measured in the street while mean values of 89 ppb NOx and 24 μG/m3 PM10 were measured in the park. Whereas summer highest O3 values of 84 ppb were measured in the street, 94 ppb were measured in the park. The benefit of the urban park in reducing NOx and PM10 concentrations is more significant than the disadvantage of increased O3 levels. Furthermore, urban parks can reduce noise by ∼5 dB(A).

  5. Monte Carlo simulation of a quantum noise limited Čerenkov detector based on air-spaced light guiding taper for megavoltage x-ray imaging

    SciTech Connect

    Teymurazyan, A.; Rowlands, J. A.; Pang, G.

    2014-04-15

    Purpose: Electronic Portal Imaging Devices (EPIDs) have been widely used in radiation therapy and are still needed on linear accelerators (Linacs) equipped with kilovoltage cone beam CT (kV-CBCT) or MRI systems. Our aim is to develop a new high quantum efficiency (QE) Čerenkov Portal Imaging Device (CPID) that is quantum noise limited at dose levels corresponding to a single Linac pulse. Methods: Recently a new concept of CPID for MV x-ray imaging in radiation therapy was introduced. It relies on Čerenkov effect for x-ray detection. The proposed design consisted of a matrix of optical fibers aligned with the incident x-rays and coupled to an active matrix flat panel imager (AMFPI) for image readout. A weakness of such design is that too few Čerenkov light photons reach the AMFPI for each incident x-ray and an AMFPI with an avalanche gain is required in order to overcome the readout noise for portal imaging application. In this work the authors propose to replace the optical fibers in the CPID with light guides without a cladding layer that are suspended in air. The air between the light guides takes on the role of the cladding layer found in a regular optical fiber. Since air has a significantly lower refractive index (∼1 versus 1.38 in a typical cladding layer), a much superior light collection efficiency is achieved. Results: A Monte Carlo simulation of the new design has been conducted to investigate its feasibility. Detector quantities such as quantum efficiency (QE), spatial resolution (MTF), and frequency dependent detective quantum efficiency (DQE) have been evaluated. The detector signal and the quantum noise have been compared to the readout noise. Conclusions: Our studies show that the modified new CPID has a QE and DQE more than an order of magnitude greater than that of current clinical systems and yet a spatial resolution similar to that of current low-QE flat-panel based EPIDs. Furthermore it was demonstrated that the new CPID does not require an

  6. Effects of background noise on total noise annoyance

    NASA Technical Reports Server (NTRS)

    Willshire, K. F.

    1987-01-01

    Two experiments were conducted to assess the effects of combined community noise sources on annoyance. The first experiment baseline relationships between annoyance and noise level for three community noise sources (jet aircraft flyovers, traffic and air conditioners) presented individually. Forty eight subjects evaluated the annoyance of each noise source presented at four different noise levels. Results indicated the slope of the linear relationship between annoyance and noise level for the traffic noise was significantly different from that of aircraft and of air conditioner noise, which had equal slopes. The second experiment investigated annoyance response to combined noise sources, with aircraft noise defined as the major noise source and traffic and air conditioner noise as background noise sources. Effects on annoyance of noise level differences between aircraft and background noise for three total noise levels and for both background noise sources were determined. A total of 216 subjects were required to make either total or source specific annoyance judgements, or a combination of the two, for a wide range of combined noise conditions.

  7. Making noise comfortable for people

    SciTech Connect

    Leventhall, H.G.; Wise, S.S.

    1998-10-01

    Typical HVAC noise may produce an uncomfortable environment, leading to the associated problems of general dissatisfaction and reduced productivity. It is not sufficient to have good thermal, lighting, and air cleanliness conditions if the noise is disturbing. In this paper, noise comfort is considered, with special emphasis on the developing criteria for low-frequency noise.

  8. Comparative intelligibility of speech materials processed by standard Air Force voice communication systems in the presence of simulated cockpit noise

    NASA Astrophysics Data System (ADS)

    Moore, T. J.; Nixon, C. W.; McKinley, R. L.

    1981-06-01

    Among the systems evaluated was the ARC-164 radio which will serve as the reference system against which the performance of jam-resistant, secure systems developed in the immediate future will be compared. Relative differences found between male and female talkers under various levels of simulated cockpit noise are reported.

  9. Core Noise Reduction

    NASA Technical Reports Server (NTRS)

    Hultgren, Lennart S.

    2011-01-01

    This presentation is a technical summary of and outlook for NASA-internal and NASA-sponsored external research on core (combustor and turbine) noise funded by the Fundamental Aeronautics Program Subsonic Fixed Wing (SFW) Project. Sections of the presentation cover: the SFW system-level noise metrics for the 2015, 2020, and 2025 timeframes; turbofan design trends and their aeroacoustic implications; the emerging importance of core noise and its relevance to the SFW Reduce-Perceived-Noise Technical Challenge; and the current research activities in the core noise area. Recent work1 on the turbine-transmission loss of combustor noise is briefly described, two2,3 new NRA efforts in the core-noise area are outlined, and an effort to develop CMC-based acoustic liners for broadband noise reduction suitable for turbofan-core application is delineated. The NASA Fundamental Aeronautics Program has the principal objective of overcoming today's national challenges in air transportation. The reduction of aircraft noise is critical to enabling the anticipated large increase in future air traffic. The Subsonic Fixed Wing Project's Reduce-Perceived-Noise Technical Challenge aims to develop concepts and technologies to dramatically reduce the perceived aircraft noise outside of airport boundaries.

  10. Core-Noise

    NASA Technical Reports Server (NTRS)

    Hultgren, Lennart S.

    2010-01-01

    This presentation is a technical progress report and near-term outlook for NASA-internal and NASA-sponsored external work on core (combustor and turbine) noise funded by the Fundamental Aeronautics Program Subsonic Fixed Wing (SFW) Project. Sections of the presentation cover: the SFW system level noise metrics for the 2015, 2020, and 2025 timeframes; the emerging importance of core noise and its relevance to the SFW Reduced-Noise-Aircraft Technical Challenge; the current research activities in the core-noise area, with some additional details given about the development of a high-fidelity combustion-noise prediction capability; the need for a core-noise diagnostic capability to generate benchmark data for validation of both high-fidelity work and improved models, as well as testing of future noise-reduction technologies; relevant existing core-noise tests using real engines and auxiliary power units; and examples of possible scenarios for a future diagnostic facility. The NASA Fundamental Aeronautics Program has the principal objective of overcoming today's national challenges in air transportation. The SFW Reduced-Noise-Aircraft Technical Challenge aims to enable concepts and technologies to dramatically reduce the perceived aircraft noise outside of airport boundaries. This reduction of aircraft noise is critical for enabling the anticipated large increase in future air traffic. Noise generated in the jet engine core, by sources such as the compressor, combustor, and turbine, can be a significant contribution to the overall noise signature at low-power conditions, typical of approach flight. At high engine power during takeoff, jet and fan noise have traditionally dominated over core noise. However, current design trends and expected technological advances in engine-cycle design as well as noise-reduction methods are likely to reduce non-core noise even at engine-power points higher than approach. In addition, future low-emission combustor designs could increase

  11. HVAC equipment and noise

    SciTech Connect

    Cerami, V.J.

    1996-03-01

    The purpose of this article is to define how the selection of HVAC equipment and layout impact the achievable noise criteria (NC) levels in occupied spaces. It will focus on the design of HVAC systems that employ floor-by-floor air handling/air conditioning units and their acoustical ramifications. This is of increasing importance since tenants require incorporation of noise limits in lease agreements.

  12. Advanced computer technology - An aspect of the Terminal Configured Vehicle program. [air transportation capacity, productivity, all-weather reliability and noise reduction improvements

    NASA Technical Reports Server (NTRS)

    Berkstresser, B. K.

    1975-01-01

    NASA is conducting a Terminal Configured Vehicle program to provide improvements in the air transportation system such as increased system capacity and productivity, increased all-weather reliability, and reduced noise. A typical jet transport has been equipped with highly flexible digital display and automatic control equipment to study operational techniques for conventional takeoff and landing aircraft. The present airborne computer capability of this aircraft employs a multiple computer simple redundancy concept. The next step is to proceed from this concept to a reconfigurable computer system which can degrade gracefully in the event of a failure, adjust critical computations to remaining capacity, and reorder itself, in the case of transients, to the highest order of redundancy and reliability.

  13. Noise generated by a flight weight, air flow control valve in a vertical takeoff and landing aircraft thrust vectoring system

    NASA Technical Reports Server (NTRS)

    Huff, Ronald G.

    1989-01-01

    Tests were conducted in the NASA Lewis Research Center's Powered Lift Facility to experimentally evaluate the noise generated by a flight weight, 12 in. butterfly valve installed in a proposed vertical takeoff and landing thrust vectoring system. Fluctuating pressure measurements were made in the circular duct upstream and downstream of the valve. This data report presents the results of these tests. The maximum overall sound pressure level is generated in the duct downstream of the valve and reached a value of 180 dB at a valve pressure ratio of 2.8. At the higher valve pressure ratios the spectra downstream of the valve is broad banded with its maximum at 1000 Hz.

  14. Core Noise - Increasing Importance

    NASA Technical Reports Server (NTRS)

    Hultgren, Lennart S.

    2011-01-01

    This presentation is a technical summary of and outlook for NASA-internal and NASA-sponsored external research on core (combustor and turbine) noise funded by the Fundamental Aeronautics Program Subsonic Fixed Wing (SFW) Project. Sections of the presentation cover: the SFW system-level noise metrics for the 2015, 2020, and 2025 timeframes; turbofan design trends and their aeroacoustic implications; the emerging importance of core noise and its relevance to the SFW Reduced-Perceived-Noise Technical Challenge; and the current research activities in the core-noise area, with additional details given about the development of a high-fidelity combustor-noise prediction capability as well as activities supporting the development of improved reduced-order, physics-based models for combustor-noise prediction. The need for benchmark data for validation of high-fidelity and modeling work and the value of a potential future diagnostic facility for testing of core-noise-reduction concepts are indicated. The NASA Fundamental Aeronautics Program has the principal objective of overcoming today's national challenges in air transportation. The SFW Reduced-Perceived-Noise Technical Challenge aims to develop concepts and technologies to dramatically reduce the perceived aircraft noise outside of airport boundaries. This reduction of aircraft noise is critical to enabling the anticipated large increase in future air traffic. Noise generated in the jet engine core, by sources such as the compressor, combustor, and turbine, can be a significant contribution to the overall noise signature at low-power conditions, typical of approach flight. At high engine power during takeoff, jet and fan noise have traditionally dominated over core noise. However, current design trends and expected technological advances in engine-cycle design as well as noise-reduction methods are likely to reduce non-core noise even at engine-power points higher than approach. In addition, future low-emission combustor

  15. Core-Noise Research

    NASA Technical Reports Server (NTRS)

    Hultgren, Lennart S.

    2012-01-01

    This presentation is a technical summary of and outlook for NASA-internal and NASA-sponsored external research on core noise funded by the Fundamental Aeronautics Program Subsonic Fixed Wing (SFW) Project. Sections of the presentation cover: the SFW system-level noise metrics for the 2015 (N+1), 2020 (N+2), and 2025 (N+3) timeframes; SFW strategic thrusts and technical challenges; SFW advanced subsystems that are broadly applicable to N+3 vehicle concepts, with an indication where further noise research is needed; the components of core noise (compressor, combustor and turbine noise) and a rationale for NASA's current emphasis on the combustor-noise component; the increase in the relative importance of core noise due to turbofan design trends; the need to understand and mitigate core-noise sources for high-efficiency small gas generators; and the current research activities in the core-noise area, with additional details given about forthcoming updates to NASA's Aircraft Noise Prediction Program (ANOPP) core-noise prediction capabilities, two NRA efforts (Honeywell International, Phoenix, AZ and University of Illinois at Urbana-Champaign, respectively) to improve the understanding of core-noise sources and noise propagation through the engine core, and an effort to develop oxide/oxide ceramic-matrix-composite (CMC) liners for broadband noise attenuation suitable for turbofan-core application. Core noise must be addressed to ensure that the N+3 noise goals are met. Focused, but long-term, core-noise research is carried out to enable the advanced high-efficiency small gas-generator subsystem, common to several N+3 conceptual designs, needed to meet NASA's technical challenges. Intermediate updates to prediction tools are implemented as the understanding of the source structure and engine-internal propagation effects is improved. The NASA Fundamental Aeronautics Program has the principal objective of overcoming today's national challenges in air transportation. The

  16. Rotorcraft noise

    NASA Technical Reports Server (NTRS)

    Huston, R. J. (Compiler)

    1982-01-01

    The establishment of a realistic plan for NASA and the U.S. helicopter industry to develop a design-for-noise methodology, including plans for the identification and development of promising noise reduction technology was discussed. Topics included: noise reduction techniques, scaling laws, empirical noise prediction, psychoacoustics, and methods of developing and validing noise prediction methods.

  17. 32 CFR 989.32 - Noise.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... ANALYSIS PROCESS (EIAP) § 989.32 Noise. Aircraft noise data files used for analysis during EIAP will be... System for Aircraft Noise for military training routes and military operating areas. Guidance on standardized Air Force noise data development and analysis procedures is available from HQ AFCEE/TDB....

  18. JPL noise control program

    NASA Technical Reports Server (NTRS)

    Klascius, A. F.

    1975-01-01

    Exposures of personnel to noise pollution at the Jet Propulsion Laboratories, Pasadena, California, were investigated. As a result of the study several protective measures were taken: (1) employees exposed to noise hazards were required to wear ear-protection devices, (2) mufflers and air diversion devices were installed around the wind tunnels; and (3) all personnel that are required to wear ear protection are given annual audimeter tests.

  19. Active noise reduction

    NASA Astrophysics Data System (ADS)

    Carter, J.

    1984-01-01

    Active Noise Reduction (ANR) techniques, singly and in combination with passive hearing protectors, offer the potential for increased sound protection, enhanced voice communications and improved wearability features for personnel exposed to unacceptable noise conditions. An enhanced closed loop active noise reduction system was miniaturized and incorporated into a standard Air Force flight helmet (HGU-26/P). This report describes the theory of design and operation, prototype configuration and operation, and electroacoustic performance and specifications for the ANR system. This system is theoretically capable of producing in excess of 30 decibels of active noise reduction. Electroacoustic measurements on a flat plate coupler demonstrated approximately 20 decibels of active noise reduction with the prototype unit. A performance evaluation of the integrated ANR unit will be conducted under laboratory and field conditions by government personnel to determine the feasibility of the system for use in military applications.

  20. Combustion noise

    NASA Technical Reports Server (NTRS)

    Strahle, W. C.

    1977-01-01

    A review of the subject of combustion generated noise is presented. Combustion noise is an important noise source in industrial furnaces and process heaters, turbopropulsion and gas turbine systems, flaring operations, Diesel engines, and rocket engines. The state-of-the-art in combustion noise importance, understanding, prediction and scaling is presented for these systems. The fundamentals and available theories of combustion noise are given. Controversies in the field are discussed and recommendations for future research are made.

  1. Community noise

    NASA Technical Reports Server (NTRS)

    Bragdon, C. R.

    1982-01-01

    Airport and community land use planning as they relate to airport noise reduction are discussed. Legislation, community relations, and the physiological effect of airport noise are considered. Noise at the Logan, Los Angeles, and Minneapolis/St. Paul airports is discussed.

  2. Rotor noise

    NASA Astrophysics Data System (ADS)

    Schmitz, F. H.

    1991-08-01

    The physical characteristics and sources of rotorcraft noise as they exist today are presented. Emphasis is on helicopter-like vehicles, that is, on rotorcraft in nonaxial flight. The mechanisms of rotor noise are reviewed in a simple physical manner for the most dominant sources of rotorcraft noise. With simple models, the characteristic time- and frequency-domain features of these noise sources are presented for idealized cases. Full-scale data on several rotorcraft are then reviewed to allow for the easy identification of the type and extent of the radiating noise. Methods and limitations of using scaled models to test for several noise sources are subsequently presented. Theoretical prediction methods are then discussed and compared with experimental data taken under very controlled conditions. Finally, some promising noise reduction technology is reviewed.

  3. Rotor noise

    NASA Technical Reports Server (NTRS)

    Schmitz, F. H.

    1991-01-01

    The physical characteristics and sources of rotorcraft noise as they exist today are presented. Emphasis is on helicopter-like vehicles, that is, on rotorcraft in nonaxial flight. The mechanisms of rotor noise are reviewed in a simple physical manner for the most dominant sources of rotorcraft noise. With simple models, the characteristic time- and frequency-domain features of these noise sources are presented for idealized cases. Full-scale data on several rotorcraft are then reviewed to allow for the easy identification of the type and extent of the radiating noise. Methods and limitations of using scaled models to test for several noise sources are subsequently presented. Theoretical prediction methods are then discussed and compared with experimental data taken under very controlled conditions. Finally, some promising noise reduction technology is reviewed.

  4. Interior Noise

    NASA Technical Reports Server (NTRS)

    Mixson, John S.; Wilby, John F.

    1991-01-01

    The generation and control of flight vehicle interior noise is discussed. Emphasis is placed on the mechanisms of transmission through airborne and structure-borne paths and the control of cabin noise by path modification. Techniques for identifying the relative contributions of the various source-path combinations are also discussed along with methods for the prediction of aircraft interior noise such as those based on the general modal theory and statistical energy analysis.

  5. Noise Protection

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Environmental Health Systems puts forth an increasing effort in the U.S. to develop ways of controlling noise, particularly in industrial environments due to Federal and State laws, labor union insistence and new findings relative to noise pollution impact on human health. NASA's Apollo guidance control system aided in the development of a noise protection product, SMART. The basis of all SMART products is SMART compound a liquid plastic mixture with exceptional energy/sound absorbing qualities. The basic compound was later refined for noise protection use.

  6. Brontides: natural explosive noises.

    PubMed

    Gold, T; Soter, S

    1979-04-27

    Episodes of explosive noises of natural origin, or brontides, have been well documented, often in association with seismic activity and in a few cases as precursors to major earthquakes. Ground-to-air acoustic transmission from shallow earthquakes can account for many of these episodes, but not for all, and other causes, such as the sudden eruption of gas from high-pressure sources in the ground may at times have been responsible. Confusion with distant thunder or artillery at times of anomalous sound propagation complicates the analysis, and more recently the greatly increased frequency of artificial explosive noises and sonic booms has tended to mask the recognition of natural brontides. PMID:17757998

  7. Jet mixer noise suppressor using acoustic feedback

    NASA Technical Reports Server (NTRS)

    Rice, Edward J. (Inventor)

    1995-01-01

    The present invention generally relates to providing an improved jet mixer noise suppressor for high speed jets that rapidly mixes high speed air flow with a lower speed air flow, and more particularly, relates to an improved jet mixer noise suppressor that uses feedback of acoustic waves produced by the interaction of shear flow instability waves with an obstacle downstream of the jet nozzle.

  8. Jet mixer noise suppressor using acoustic feedback

    NASA Technical Reports Server (NTRS)

    Rice, Edward J. (Inventor)

    1994-01-01

    The present invention generally relates to providing an improved jet mixer noise suppressor for high speed jets that rapidly mixes high speed air flow with a lower speed air flow, and more particularly, relates to an improved jet mixer noise suppressor that uses feedback of acoustic waves produced by the interaction of sheer flow instability waves with an obstacle downstream of the jet nozzle.

  9. Noise Pollution

    MedlinePlus

    ... menu Learn the Issues Air Chemicals and Toxics Climate Change Emergencies Greener Living Health and Safety Land and Cleanup Pesticides Waste Water Science & Technology Air Climate Change Ecosystems Health Land, Waste and Cleanup Pesticides Substances ...

  10. Landslide noise.

    PubMed

    Cadman, J D; Goodman, R E

    1967-12-01

    Acoustical monitoring of real landslides has revealed the existence of subaudible noise activity prior to failure and has enabled prediction of the depth of the seat of sliding when conducted in boreholes beneath the surface. Recordings of noise generated in small slopes of moist sand, tilted to failure in laboratory tests, have been analyzed to determine the foci of discrete subaudible noise events. The noises emitted shortly before failure were plotted close to the true sliding surface observed after failure. The foci of earlier events lay either within the central portion of the sliding mass or in a region behind the failure surface. The head and toe zones were devoid of strong seismic activity. PMID:17734306

  11. Active Control of Environmental Noise

    NASA Astrophysics Data System (ADS)

    Wright, S. E.; Vuksanovic, B.

    1996-02-01

    Most of the current research on active noise control is confined to restricted spaces such as earphones, active silencers, air-conditioning ducts, truck cabins and aircraft fuselages. In this paper the basic concepts of environmental noise reduction by using active noise control in unconfined spaces are explored. The approach is to develop a controlled acoustic shadow, generated by a wall of secondary sources, to reduce unwanted sound in the direction of a complaint area. The basic acoustic theory is considered, followed by computer modelling, and some results to show the effectiveness of the approach. EA Technology and Yorkshire electric in the United Kingdom are supporting this work.

  12. An Assessment of Commuter Aircraft Noise Impact

    NASA Technical Reports Server (NTRS)

    Fidell, Sanford; Pearsons, Karl S.; Silvati, Laura; Sneddon, Matthew

    1996-01-01

    This report examines several approaches to understanding 'the commuter aircraft noise problem.' The commuter aircraft noise problem in the sense addressed in this report is the belief that some aspect(s) of community response to noise produced by commuter aircraft operations may not be fully assessed by conventional environmental noise metrics and methods. The report offers alternate perspectives and approaches for understanding this issue. The report also develops a set of diagnostic screening questions; describes commuter aircraft noise situations at several airports; and makes recommendations for increasing understanding of the practical consequences of greater heterogeneity in the air transport fleet serving larger airports.

  13. Propulsion system noise reduction

    NASA Technical Reports Server (NTRS)

    Feiler, C. E.; Heidelberg, L. J.; Karchmer, A. M.; Lansing, D. L.; Miller, B. A.; Rice, E. J.

    1975-01-01

    The progress in propulsion system noise reduction is reviewed. The noise technology areas discussed include: fan noise; advances in suppression including conventional acoustic treatment, high Mach number inlets, and wing shielding; engine core noise; flap noise from both under-the-wing and over-the-wing powered-lift systems; supersonic jet noise suppression; and the NASA program in noise prediction.

  14. Noise control of radiological monitoring equipment

    SciTech Connect

    Rubick, R.D.; Stevens, W.W.; Burke, L.L.

    1998-12-31

    Although vacuum pumps on continuous air monitors (CAMs) do not produce noise levels above regulatory limits, engineering controls were used to establish a safer work environment. Operations performed in areas where CAMs are located are highly specialized and require precision work when handling nuclear materials, heavy metals, and inert gases. Traditional methods for controlling noise such as enclosing or isolating the source and the use of personal protection equipment were evaluated. An innovative solution was found by retrofitting CAMs with air powered multistage ejectors pumps. By allowing the air to expand in several chambers to create a vacuum, one can eliminate the noise hazard altogether. In facilities with adequate pressurized air, use of these improved ejector pumps may be a cost-effective replacement for noisy vacuum pumps. A workplace designed or engineered with noise levels as low as possible or as close to background adds to increased concentration, attention to detail, and increased production.

  15. Community noise sources and noise control issues

    NASA Technical Reports Server (NTRS)

    Nihart, Gene L.

    1992-01-01

    The topics covered include the following: community noise sources and noise control issues; noise components for turbine bypass turbojet engine (TBE) turbojet; engine cycle selection and noise; nozzle development schedule; NACA nozzle design; NACA nozzle test results; nearly fully mixed (NFM) nozzle design; noise versus aspiration rate; peak noise test results; nozzle test in the Low Speed Aeroacoustic Facility (LSAF); and Schlieren pictures of NACA nozzle.

  16. Community noise sources and noise control issues

    NASA Astrophysics Data System (ADS)

    Nihart, Gene L.

    1992-04-01

    The topics covered include the following: community noise sources and noise control issues; noise components for turbine bypass turbojet engine (TBE) turbojet; engine cycle selection and noise; nozzle development schedule; NACA nozzle design; NACA nozzle test results; nearly fully mixed (NFM) nozzle design; noise versus aspiration rate; peak noise test results; nozzle test in the Low Speed Aeroacoustic Facility (LSAF); and Schlieren pictures of NACA nozzle.

  17. Industrial jet noise: Coanda nozzles

    NASA Astrophysics Data System (ADS)

    Li, P.; Halliwell, N. A.

    1985-04-01

    Within the U.K. manufacturing industries noise from industrial jets ranks third as a major contributor to industrial deafness. Noise control is hindered because use is made of the air once it has exuded from the nozzle exit. Important tasks include swarf removal, paint spreading, cooling, etc. Nozzles which employ the Coanda effect appear to offer the possibility of significant noise reduction whilst maintaining high thrust efficiency when compared with the commonly used simple open pipe or ordinary convergent nozzle. In this paper the performance of Coanda-type nozzles is examined in detail and an index rating for nozzle performance is introduced. Results show that far field stagnation pressure distributions are Gaussian and similar in all cases with a dispersion coefficient σ = 0·64. Noise reduction and thrust efficiency are shown to be closely related to the design geometry of the central body of the nozzle. Performance is based on four fundamental characteristics, these being the noise level at 1 m from the exit and at a 90° station to the nozzle axis, and the thrust on a chosen profile, the noise reduction and the thrust efficiency. Physically, performance is attributed to flow near field effects where, although all nozzles are choked, shock cell associated noise is absent.

  18. Control of Environmental Noise

    ERIC Educational Resources Information Center

    Jensen, Paul

    1973-01-01

    Discusses the physical properties, sources, physiological effects, and legislation pertaining to noise, especially noise characteristics in the community. Indicates that noise reduction steps can be taken more intelligently after determination of the true noise sources and paths. (CC)

  19. Interior noise prediction methodology: ATDAC theory and validation

    NASA Technical Reports Server (NTRS)

    Mathur, Gopal P.; Gardner, Bryce K.

    1992-01-01

    The Acoustical Theory for Design of Aircraft Cabins (ATDAC) is a computer program developed to predict interior noise levels inside aircraft and to evaluate the effects of different aircraft configurations on the aircraft acoustical environment. The primary motivation for development of this program is the special interior noise problems associated with advanced turboprop (ATP) aircraft where there is a tonal, low frequency noise problem. Prediction of interior noise levels requires knowledge of the energy sources, the transmission paths, and the relationship between the energy variable and the sound pressure level. The energy sources include engine noise, both airborne and structure-borne; turbulent boundary layer noise; and interior noise sources such as air conditioner noise and auxiliary power unit noise. Since propeller and engine noise prediction programs are widely available, they are not included in ATDAC. Airborne engine noise from any prediction or measurement may be input to this program. This report describes the theory and equations implemented in the ATDAC program.

  20. Noise pollution resources compendium

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Abstracts of reports concerning noise pollution are presented. The abstracts are grouped in the following areas of activity: (1) sources of noise, (2) noise detection and measurement, (3) noise abatement and control, (4) physical effects of noise and (5) social effects of noise.

  1. Noise Abatement

    NASA Astrophysics Data System (ADS)

    1983-01-01

    SMART, Sound Modification and Regulated Temperature compound, is a liquid plastic mixture with exceptional energy and sound absorbing qualities. It is derived from a very elastic plastic which was an effective noise abatement material in the Apollo Guidance System. Discovered by a NASA employee, it is marketed by Environmental Health Systems, Inc. (EHS). The product has been successfully employed by a diaper company with noisy dryers and a sugar company with noisy blowers. The company also manufactures an audiometric test booth and acoustical office partitions.

  2. Acoustic noise during functional magnetic resonance imaginga)

    PubMed Central

    Ravicz, Michael E.; Melcher, Jennifer R.; Kiang, Nelson Y.-S.

    2007-01-01

    Functional magnetic resonance imaging (fMRI) enables sites of brain activation to be localized in human subjects. For studies of the auditory system, acoustic noise generated during fMRI can interfere with assessments of this activation by introducing uncontrolled extraneous sounds. As a first step toward reducing the noise during fMRI, this paper describes the temporal and spectral characteristics of the noise present under typical fMRI study conditions for two imagers with different static magnetic field strengths. Peak noise levels were 123 and 138 dB re 20 μPa in a 1.5-tesla (T) and a 3-T imager, respectively. The noise spectrum (calculated over a 10-ms window coinciding with the highest-amplitude noise) showed a prominent maximum at 1 kHz for the 1.5-T imager (115 dB SPL) and at 1.4 kHz for the 3-T imager (131 dB SPL). The frequency content and timing of the most intense noise components indicated that the noise was primarily attributable to the readout gradients in the imaging pulse sequence. The noise persisted above background levels for 300-500 ms after gradient activity ceased, indicating that resonating structures in the imager or noise reverberating in the imager room were also factors. The gradient noise waveform was highly repeatable. In addition, the coolant pump for the imager’s permanent magnet and the room air handling system were sources of ongoing noise lower in both level and frequency than gradient coil noise. Knowledge of the sources and characteristics of the noise enabled the examination of general approaches to noise control that could be applied to reduce the unwanted noise during fMRI sessions. PMID:11051496

  3. Effects of environmental noise on sleep.

    PubMed

    Hume, Kenneth I; Brink, Mark; Basner, Mathias

    2012-01-01

    This paper summarizes the findings from the past 3 year's research on the effects of environmental noise on sleep and identifies key future research goals. The past 3 years have seen continued interest in both short term effects of noise on sleep (arousals, awakenings), as well as epidemiological studies focusing on long term health impacts of nocturnal noise exposure. This research corroborated findings that noise events induce arousals at relatively low exposure levels, and independent of the noise source (air, road, and rail traffic, neighbors, church bells) and the environment (home, laboratory, hospital). New epidemiological studies support already existing evidence that night-time noise is likely associated with cardiovascular disease and stroke in the elderly. These studies collectively also suggest that nocturnal noise exposure may be more relevant for the genesis of cardiovascular disease than daytime noise exposure. Relative to noise policy, new effect-oriented noise protection concepts, and rating methods based on limiting awakening reactions were introduced. The publications of WHO's ''Night Noise Guidelines for Europe'' and ''Burden of Disease from Environmental Noise'' both stress the importance of nocturnal noise exposure for health and well-being. However, studies demonstrating a causal pathway that directly link noise (at ecological levels) and disturbed sleep with cardiovascular disease and/or other long term health outcomes are still missing. These studies, as well as the quantification of the impact of emerging noise sources (e.g., high speed rail, wind turbines) have been identified as the most relevant issues that should be addressed in the field on the effects of noise on sleep in the near future. PMID:23257581

  4. Acoustic noise during functional magnetic resonance imaging.

    PubMed

    Ravicz, M E; Melcher, J R; Kiang, N Y

    2000-10-01

    Functional magnetic resonance imaging (fMRI) enables sites of brain activation to be localized in human subjects. For studies of the auditory system, acoustic noise generated during fMRI can interfere with assessments of this activation by introducing uncontrolled extraneous sounds. As a first step toward reducing the noise during fMRI, this paper describes the temporal and spectral characteristics of the noise present under typical fMRI study conditions for two imagers with different static magnetic field strengths. Peak noise levels were 123 and 138 dB re 20 microPa in a 1.5-tesla (T) and a 3-T imager, respectively. The noise spectrum (calculated over a 10-ms window coinciding with the highest-amplitude noise) showed a prominent maximum at 1 kHz for the 1.5-T imager (115 dB SPL) and at 1.4 kHz for the 3-T imager (131 dB SPL). The frequency content and timing of the most intense noise components indicated that the noise was primarily attributable to the readout gradients in the imaging pulse sequence. The noise persisted above background levels for 300-500 ms after gradient activity ceased, indicating that resonating structures in the imager or noise reverberating in the imager room were also factors. The gradient noise waveform was highly repeatable. In addition, the coolant pump for the imager's permanent magnet and the room air-handling system were sources of ongoing noise lower in both level and frequency than gradient coil noise. Knowledge of the sources and characteristics of the noise enabled the examination of general approaches to noise control that could be applied to reduce the unwanted noise during fMRI sessions. PMID:11051496

  5. Recent Progress in Aircraft Noise Research

    NASA Technical Reports Server (NTRS)

    Envia, Edmane; Thomas, Russell

    2007-01-01

    An overview of the acoustics research at NASA under the Subsonic Fixed Wing project is given. The presentation describes the rationale behind the noise reduction goals of the project in the context of the next generation air transportation system, and the emphasis placed on achieving these goals through a combination of the in-house and collaborative efforts with industry, universities and other government agencies. The presentation also describes the in-house research plan which is focused on the development of advanced noise and flow diagnostic techniques, next generation noise prediction tools, and novel noise reduction techniques that are applicable across a wide range of aircraft.

  6. Community Response to Noise

    NASA Astrophysics Data System (ADS)

    Fidell, Sandy

    The primary effects of community noise on residential populations are speech interference, sleep disturbance, and annoyance. This chapter focuses on transportation noise in general and on aircraft noise in particular because aircraft noise is one of the most prominent community noise sources, because airport/community controversies are often the most contentious and widespread, and because industrial and other specialized formsofcommunitynoise generally posemorelocalized problems.

  7. Criteria for multiple noises in residential buildings using combined rating system

    NASA Astrophysics Data System (ADS)

    Jeon, Jin Yong; Ryu, Jong Kwan; Jeong, Young

    2005-04-01

    Multiple residential noises such as floor impact, air-borne, bathroom, drainage, and traffic noises were classified using a combined rating system developed from a social noise survey and auditory experiments. The effect of individual noise perception on the evaluation of the overall noise environment was investigated through a questionnaire survey on annoyance, disturbance, and noise sensitivity. In addition, auditory experiments were undertaken to determine the allowable sound pressure level for each residential noise source and the percent satisfaction for individual noise levels. From the results of the survey and the auditory experiments, a combined rating system was developed and annoyance criteria for multiple residential noises were suggested.

  8. Hypertension and Exposure to Noise near Airports (HYENA): study design and noise exposure assessment.

    PubMed

    Jarup, Lars; Dudley, Marie-Louise; Babisch, Wolfgang; Houthuijs, Danny; Swart, Wim; Pershagen, Göran; Bluhm, Gösta; Katsouyanni, Klea; Velonakis, Manolis; Cadum, Ennio; Vigna-Taglianti, Federica

    2005-11-01

    An increasing number of people live near airports with considerable noise and air pollution. The Hypertension and Exposure to Noise near Airports (HYENA) project aims to assess the impact of airport-related noise exposure on blood pressure (BP) and cardiovascular disease using a cross-sectional study design. We selected 6,000 persons (45-70 years of age) who had lived at least 5 years near one of six major European airports. We used modeled aircraft noise contours, aiming to maximize exposure contrast. Automated BP instruments are used to reduce observer error. We designed a standardized questionnaire to collect data on annoyance, noise disturbance, and major confounders. Cortisol in saliva was collected in a subsample of the study population (n = 500) stratified by noise exposure level. To investigate short-term noise effects on BP and possible effects on nighttime BP dipping, we measured 24-hr BP and assessed continuous night noise in another subsample (n = 200). To ensure comparability between countries, we used common noise models to assess individual noise exposure, with a resolution of 1 dB(A). Modifiers of individual exposure, such as the orientation of living and bedroom toward roads, window-opening habits, and sound insulation, were assessed by the questionnaire. For four airports, we estimated exposure to air pollution to explore modifying effects of air pollution on cardiovascular disease. The project assesses exposure to traffic-related air pollutants, primarily using data from another project funded by the European Union (APMoSPHERE, Air Pollution Modelling for Support to Policy on Health and Environmental Risks in Europe). PMID:16263498

  9. The Flight Track Noise Impact Model

    NASA Technical Reports Server (NTRS)

    Burn, Melissa; Carey, Jeffrey; Czech, Joseph; Wingrove, Earl R., III

    1997-01-01

    To meet its objective of assisting the U.S. aviation industry with the technological challenges of the future, NASA must identify research areas that have the greatest potential for improving the operation of the air transportation system. To accomplish this, NASA is building an Aviation System Analysis Capability (ASAC). The Flight Track Noise Impact Model (FTNIM) has been developed as part of the ASAC. Its primary purpose is to enable users to examine the impact that quieter aircraft technologies and/or operations might have on air carrier operating efficiency at any one of 8 selected U.S. airports. The analyst selects an airport and case year for study, chooses a set of flight tracks for use in the case, and has the option of reducing the noise of the aircraft by 3, 6, or 10 decibels. Two sets of flight tracks are available for each airport: one that represents actual current conditions, including noise abatement tracks, which avoid flying over noise-sensitive areas; and a second set that offers more efficient routing. FTNIM computes the resultant noise impact and the time and distance saved for each operation on the more efficient, alternate tracks. Noise impact is characterized in three ways: the size of the noise contour footprint, the number of people living within the contours, and the number of homes located in the same contours. Distance and time savings are calculated by comparing the noise abatement flight path length to the more efficient alternate routing.

  10. Noise and blast

    NASA Technical Reports Server (NTRS)

    Hodge, D. C.; Garinther, G. R.

    1973-01-01

    Noise and blast environments are described, providing a definition of units and techniques of noise measurement and giving representative booster-launch and spacecraft noise data. The effects of noise on hearing sensitivity and performance are reviewed, and community response to noise exposure is discussed. Physiological, or nonauditory, effects of noise exposure are also treated, as are design criteria and methods for minimizing the noise effects of hearing sensitivity and communications. The low level sound detection and speech reception are included, along with subjective and behavioral responses to noise.

  11. Active noise control: A tutorial for HVAC designers

    SciTech Connect

    Gelin, L.J.

    1997-08-01

    This article will identify the capabilities and limitations of ANC in its application to HVAC noise control. ANC can be used in ducted HVAC systems to cancel ductborne, low-frequency fan noise by injecting sound waves of equal amplitude and opposite phase into an air duct, as close as possible to the source of the unwanted noise. Destructive interference of the fan noise and injected noise results in sound cancellation. The noise problems that it solves are typically described as rumble, roar or throb, all of which are difficult to address using traditional noise control methods. This article will also contrast the use of active against passive noise control techniques. The main differences between the two noise control measures are acoustic performance, energy consumption, and design flexibility. The article will first present the fundamentals and basic physics of ANC. The application to real HVAC systems will follow.

  12. Circular cylinders with soft porous cover for flow noise reduction

    NASA Astrophysics Data System (ADS)

    Geyer, Thomas F.; Sarradj, Ennes

    2016-03-01

    The use of porous materials is one of several approaches to passively control or minimize the generation of flow noise. In order to investigate the possible reduction of noise from struts and other protruding parts (for example components of the landing gear or pantographs), acoustic measurements were taken in a small aeroacoustic wind tunnel on a set of circular cylinders with a soft porous cover. The aim of this study was to identify those materials that result in the best noise reduction, which refers to both tonal noise and broadband noise. The porous covers were characterized by their air flow resistivity, a parameter describing the permeability of an open-porous material. The results show that materials with low air flow resistivities lead to a noticeable flow noise reduction. Thereby, the main effect of the porous cylinder covers is that the spectral peak of the aeolian tone due to vortex shedding appears much narrower, but is not suppressed completely. Based on the measurement results, a basic model for the estimation of the total peak level of the aeolian tone was derived. In addition to the minimization of the vortex shedding noise, a reduction of broadband noise can be observed, especially at higher Reynolds numbers. The noise reduction increases with decreasing air flow resistivity of the porous covers, which means that materials that are highly permeable to air result in the best noise reduction.

  13. A Guide to Airborne, Impact, and Structure Borne Noise--Control in Multifamily Dwellings.

    ERIC Educational Resources Information Center

    Berendt, Raymond D.; And Others

    The control of noise on buildings is discussed extensively in this document, incorporating a broad range of criteria appropriate for isolating air borne, impact, and structure-borne noise associated with residential construction. Subject areas include--(1) noise types, sources, and transmission, (2) general principles of noise control, (3)…

  14. The negative affect hypothesis of noise sensitivity.

    PubMed

    Shepherd, Daniel; Heinonen-Guzejev, Marja; Heikkilä, Kauko; Dirks, Kim N; Hautus, Michael J; Welch, David; McBride, David

    2015-05-01

    Some studies indicate that noise sensitivity is explained by negative affect, a dispositional tendency to negatively evaluate situations and the self. Individuals high in such traits may report a greater sensitivity to other sensory stimuli, such as smell, bright light and pain. However, research investigating the relationship between noise sensitivity and sensitivity to stimuli associated with other sensory modalities has not always supported the notion of a common underlying trait, such as negative affect, driving them. Additionally, other explanations of noise sensitivity based on cognitive processes have existed in the clinical literature for over 50 years. Here, we report on secondary analyses of pre-existing laboratory (n = 74) and epidemiological (n = 1005) data focusing on the relationship between noise sensitivity to and annoyance with a variety of olfactory-related stimuli. In the first study a correlational design examined the relationships between noise sensitivity, noise annoyance, and perceptual ratings of 16 odors. The second study sought differences between mean noise and air pollution annoyance scores across noise sensitivity categories. Results from both analyses failed to support the notion that, by itself, negative affectivity explains sensitivity to noise.

  15. The Negative Affect Hypothesis of Noise Sensitivity

    PubMed Central

    Shepherd, Daniel; Heinonen-Guzejev, Marja; Heikkilä, Kauko; Dirks, Kim N.; Hautus, Michael J.; Welch, David; McBride, David

    2015-01-01

    Some studies indicate that noise sensitivity is explained by negative affect, a dispositional tendency to negatively evaluate situations and the self. Individuals high in such traits may report a greater sensitivity to other sensory stimuli, such as smell, bright light and pain. However, research investigating the relationship between noise sensitivity and sensitivity to stimuli associated with other sensory modalities has not always supported the notion of a common underlying trait, such as negative affect, driving them. Additionally, other explanations of noise sensitivity based on cognitive processes have existed in the clinical literature for over 50 years. Here, we report on secondary analyses of pre-existing laboratory (n = 74) and epidemiological (n = 1005) data focusing on the relationship between noise sensitivity to and annoyance with a variety of olfactory-related stimuli. In the first study a correlational design examined the relationships between noise sensitivity, noise annoyance, and perceptual ratings of 16 odors. The second study sought differences between mean noise and air pollution annoyance scores across noise sensitivity categories. Results from both analyses failed to support the notion that, by itself, negative affectivity explains sensitivity to noise. PMID:25993104

  16. Noise, Health, and Architecture.

    ERIC Educational Resources Information Center

    Beranek, Leo L.

    There is reasonable agreement that hearing impairment is related to noise exposure. This hearing loss due to noise is considered a serious health injury, but there is still difficulty in delineating the importance of noise related to people's general non-auditory well-being and health. Beside hearing loss, noise inhibits satisfactory speech…

  17. Research In Helicopter Noise

    NASA Technical Reports Server (NTRS)

    Yu, Yung H.; Schmitz, Frederic H.; Morse, Andrew H.

    1991-01-01

    Progress in aeroacoustical theory and experiments reviewed. Report summarizes continuing U.S. Army programs of research into causes of noise generated by helicopters. Topics of study include high-speed impulsive noise, blade/vortex-interaction noise, and low-frequency harmonic noise.

  18. Active Noise Control for Dishwasher noise

    NASA Astrophysics Data System (ADS)

    Lee, Nokhaeng; Park, Youngjin

    2016-09-01

    The dishwasher is a useful home appliance and continually used for automatically washing dishes. It's commonly placed in the kitchen with built-in style for practicality and better use of space. In this environment, people are easily exposed to dishwasher noise, so it is an important issue for the consumers, especially for the people living in open and narrow space. Recently, the sound power levels of the noise are about 40 - 50 dBA. It could be achieved by removal of noise sources and passive means of insulating acoustical path. For more reduction, such a quiet mode with the lower speed of cycle has been introduced, but this deteriorates the washing capacity. Under this background, we propose active noise control for dishwasher noise. It is observed that the noise is propagating mainly from the lower part of the front side. Control speakers are placed in the part for the collocation. Observation part of estimating sound field distribution and control part of generating the anti-noise are designed for active noise control. Simulation result shows proposed active noise control scheme could have a potential application for dishwasher noise reduction.

  19. Deployable Engine Air Brake

    NASA Technical Reports Server (NTRS)

    2014-01-01

    On approach, next-generation aircraft are likely to have airframe noise levels that are comparable to or in excess of engine noise. ATA Engineering, Inc. (ATA) is developing a novel quiet engine air brake (EAB), a device that generates "equivalent drag" within the engine through stream thrust reduction by creating a swirling outflow in the turbofan exhaust nozzle. Two Phase II projects were conducted to mature this technology: (1) a concept development program (CDP) and (2) a system development program (SDP).

  20. Aircraft and airport noise control prospective outlook

    SciTech Connect

    Shapiro, N.

    1982-01-01

    In a perspective look at aircraft and airport noise control over the past ten years or more - or more is added here because the Federal Aviation Regulation Part 36 of 1969 is a more significant milestone for the air transportation system than is the Noise Control Act of 1972 - we see an appreciable reduction in the noise emitted by newly designed and newly produced airplanes, particularly those powered by the new high bypass engines, but only, at best, a moderate alleviation of airport noise. The change in airport noise exposure was the consequence of the introduction of some new, quieter airplanes into the airlines fleets and some operational modifications or restrictions at the airports.

  1. Current structural vibration problems associated with noise

    NASA Technical Reports Server (NTRS)

    Mixson, J. S.

    1974-01-01

    As the performance of aerospace vehicles has increased, the noise generated by the propulsion system and by the passage of the vehicle through the air has also increased. Further increases in performance are now underway for space vehicles such as the space shuttle vehicle and for short distance takeoff and landing (STOL) aircraft, and are being planned for supersonic aircraft. The flight profiles and design features of these high-performance vehicles are reviewed and an estimate made of selected noise-induced structural vibration problems. Considerations for the prevention of acoustic fatigue, noise transmission, and electronic instrument malfunction are discussed.

  2. Helicopter rotor trailing edge noise. [noise prediction

    NASA Technical Reports Server (NTRS)

    Schlinker, R. H.; Amier, R. K.

    1981-01-01

    A two dimensional section of a helicopter main rotor blade was tested in an acoustic wind tunnel at close to full-scale Reynolds numbers to obtain boundary layer data and acoustic data for use in developing an acoustic scaling law and testing a first principles trailing edge noise theory. Results were extended to the rotating frame coordinate system to develop a helicopter rotor trailing edge noise prediction. Comparisons of the calculated noise levels with helicopter flyover spectra demonstrate that trailing edge noise contributes significantly to the total helicopter noise spectrum at high frequencies. This noise mechanism is expected to control the minimum rotor noise. In the case of noise radiation from a local blade segment, the acoustic directivity pattern is predicted by the first principles trailing edge noise theory. Acoustic spectra are predicted by a scaling law which includes Mach number, boundary layer thickness and observer position. Spectrum shape and sound pressure level are also predicted by the first principles theory but the analysis does not predict the Strouhal value identifying the spectrum peak.

  3. En route noise annoyance laboratory test: Preliminary results

    NASA Technical Reports Server (NTRS)

    Mccurdy, David A.

    1990-01-01

    Until recently concerns about the impact of aircraft noise on people have centered around the takeoff and landing operations of aircraft in the vicinity of airport terminals. The development of the advanced turboprop (propfan) engine, modifications to air corridors, and the desire to maintain a natural environment in national parks and recreation areas have now focused attention on the impact at ground level of the en route noise produced by aircraft at cruise conditions and altitudes. Compared to terminal area noise, en route noise is characterized by relatively low noise levels, lack of high frequency spectral content, and long durations. Much research has been directed towards understanding and quantifying the annoyance caused by terminal area aircraft noise, but relatively little research has been conducted for en route noise. To address this need, a laboratory experiment was conducted to quantify the annoyance of people on the ground to en route noise generated by aircraft at cruise conditions. The objectives of the experiment are to determine the annoyance prediction ability of noise measurement procedures and corrections when applied to en route noise; to determine differences in annoyance response to en route noise and takeoff/landing noise; and to determine differences in annoyance response to advanced turboprop en route noise and conventional jet en route noise.

  4. Noise impact study of a new 2004 noise abatement procedure at the Louisville airport

    NASA Astrophysics Data System (ADS)

    Sizov, Natalia V.; Clarke, John-Paul B.; Ren, Liling; Elmer, Kevin R.; Shivashankara, Belur N.

    2005-09-01

    A flight demonstration test in September 2004 at Louisville was a continuation of research conducted in 2002 by a team sponsored by the Federal Aviation Administration's Center of Excellence for Air Traffic Systems. A continuous descent procedure was designed primarily to minimize environmental impacts such as community noise and aircraft emissions, and to maximize savings in fuel and flight time. The test was designed to show the operational suitability of the new area navigation arrival procedure that begins at cruise altitude and which may be used in daily operation on two opposite facing runways. Flyover noise measurements were taken during a two-week testing period, and a three-week baseline period. The latest research focused on detailed analysis of aircraft performance, collecting noise data and noise prediction. The noise measurements confirm increased repeatability and predictability of noise levels that resulted from the well-designed procedure. The Integrated Noise Model was used to compare noise levels of test and baseline flights. And noise predictions using precise flight data confirm that a continuous descent approach reduces noise levels by 4 to 6 decibels which in turn reduces contour area by as much as 30 percent.

  5. Aviation noise effects

    NASA Astrophysics Data System (ADS)

    Newman, J. S.; Beattie, K. R.

    1985-03-01

    This report summarizes the effects of aviation noise in many areas, ranging from human annoyance to impact on real estate values. It also synthesizes the findings of literature on several topics. Included in the literature were many original studies carried out under FAA and other Federal funding over the past two decades. Efforts have been made to present the critical findings and conclusions of pertinent research, providing, when possible, a bottom line conclusion, criterion or perspective. Issues related to aviation noise are highlighted, and current policy is presented. Specific topic addressed include: annoyance; Hearing and hearing loss; noise metrics; human response to noise; speech interference; sleep interference; non-auditory health effects of noise; effects of noise on wild and domesticated animals; low frequency acoustical energy; impulsive noise; time of day weightings; noise contours; land use compatibility; and real estate values. This document is designed for a variety of users, from the individual completely unfamiliar with aviation noise to experts in the field.

  6. Hearing and underwater noise exposure

    NASA Astrophysics Data System (ADS)

    Smith, P. F.

    1985-08-01

    Exposure of divers to intense noise in water is increasing, yet there is no general hearing conservation standard for such exposures. This paper reviews three theories of underwater hearing as well as empirical data in order to identify some requirements that an underwater conservation standard must meet. Among the problems considered are hearing sensitivity in water, the frequency and dynamic ranges of the water-immersed ear, and nonauditory effects of underwater sound. It is concluded that: first, no well developed theoretical basis exists for extrapolating hearing conservation standards for airborne noise to the underwater situation; second, the empirical data on underwater hearing suggest that the frequency range covered by an underwater hearing conservation standard must be broader than is the case in air; third, in order to establish a general hearing conservation standard for underwater noise exposure further research is required on the dynamic range of the ear in water; fourth, underwater noise exposure may involve hazards to other body systems than the ear; and fifth, some exposure conditions may interfere with job performance of divers.

  7. Noise suppression by flexible fan silencers

    SciTech Connect

    Partyka, J.; Kelly, T.R.J.

    1995-12-31

    This paper presents the results on noise testing of a fan only, as well as the results of a steel silencer and of flexible silencers that were connected directly to a fan. On-site facilities and free-field method set by the British Standards Institution were used to measure and then compare the fan only and different practical silencer configuration setups. In order to determine the fan-silencer combination that would give the maximum noise attenuation, total noise intensity, noise contributed to by the fan motor only, as well as aerodynamical noise created through air interacting with the fan parts were considered to obtain decibel readings for the octave bands. Subsequently, the optimal configuration found was the setup with flexible silencers on the fan inlet and the fan outlet. If only one silencer is used, it should be installed on the fan inlet. The aerodynamic noise affects the low frequencies. The flow noise is then overtaken at 1 kHz by the mechanical noise.

  8. Occupational noise exposure and hearing levels

    SciTech Connect

    Ambasankaran, M.; Brahmachari, D.; Chadda, V.K.; Phadnis, M.G.; Raju, A.; Ramamurthy, A.; Shah, V.R.

    1981-07-01

    A study was made at the Bhabha Atomic Research Center to measure the hearing levels of persons working in a noise environment. Two different workplaces, central air-conditioning plant and glass blowing shops, where a number of persons were exposed to noise levels exceeding 85 dB(A) were chosen. The occupational exposure to noise was determined using a sound level meter, an octave band filter and a personal noise dose meter. The hearing levels of persons exposed to these high levels of noise and a control group not exposed to occupational noise were measured by means of a pure-tone audiometer in a specially-built booth. These persons, aged between 20 to 60 years, were divided into four age groups for the study. The low ambient noise levels in the booth were measured using correlation technique since such low signals cannot be detected by an ordinary sound level meter. The audiometric findings and the results of the noise level survey are discussed in this paper.

  9. Fluidic Chevrons for Jet Noise Reduction

    NASA Technical Reports Server (NTRS)

    Kinzie, Kevin; Henderson, Brenda; Whitmire, Julia

    2004-01-01

    Chevron mixing devices are used to reduce noise from commercial separate-flow turbofan engines. Mechanical chevron serrations at the nozzle trailing edge generate axial vorticity that enhances jet plume mixing and consequently reduces far-field noise. Fluidic chevrons generated with air injected near the nozzle trailing edge create a vorticity field similar to that of the mechanical chevrons and allow more flexibility in controlling acoustic and thrust performance than a passive mechanical design. In addition, the design of such a system has the future potential for actively controlling jet noise by pulsing or otherwise optimally distributing the injected air. Scale model jet noise experiments have been performed in the NASA Langley Low Speed Aeroacoustic Wind Tunnel to investigate the fluidic chevron concept. Acoustic data from different fluidic chevron designs are shown. Varying degrees of noise reduction are achieved depending on the injection pattern and injection flow conditions. CFD results were used to select design concepts that displayed axial vorticity growth similar to that associated with mechanical chevrons and qualitatively describe the air injection flow and the impact on acoustic performance.

  10. Propagation of Environmental Noise

    ERIC Educational Resources Information Center

    Lyon, R. H.

    1973-01-01

    Solutions for environmental noise pollution lie in systematic study of many basic processes such as reflection, scattering, and spreading. Noise propagation processes should be identified in different situations and assessed for their relative importance. (PS)

  11. Noise Reduction Techniques

    NASA Astrophysics Data System (ADS)

    Hallas, Tony

    There are two distinct kinds of noise - structural and color. Each requires a specific method of attack to minimize. The great challenge is to reduce the noise without reducing the faint and delicate detail in the image. My most-used and favorite noise suppression is found in Photoshop CS 5 Camera Raw. If I cannot get the desired results with the first choice, I will use Noise Ninja, which has certain advantages in some situations that we will cover.

  12. An anechoic chamber facility for investigating aerodynamic noise

    NASA Technical Reports Server (NTRS)

    Massier, P. F.; Parthasarathy, S. P.

    1972-01-01

    The aerodynamic noise facility was designed to be used primarily for investigating the noise-generating mechanisms of high-temperature supersonic and subsonic jets. The facility consists of an anechoic chamber, an exhaust jet silencer, instrumentation equipment, and an air heater with associated fuel and cooling systems. Compressed air, when needed for jet noise studies, is provided by the wind tunnel compressor facility on a continuous basis. The chamber is 8.1 m long, 5.0 m wide, and 3.0 m high. Provisions have been made for allowing outside air to be drawn into the anechoic chamber in order to replenish the air that is entrained by the jet as it flows through the chamber. Also, openings are provided in the walls and in the ceiling for the purpose of acquiring optical measurements. Calibration of the chamber for noise reflections from the wall was accomplished in octave bands between 31.2 Hz and 32 kHz.

  13. Handbook of noise ratings

    NASA Technical Reports Server (NTRS)

    Pearsons, K. S.; Bennett, R. L.

    1974-01-01

    The handbook was compiled to provide information in a concise form, describing the multitude of noise rating schemes. It is hoped that by describing the noise rating methods in a single volume the user will have better access to the definitions, application and calculation procedures of the current noise rating methods.

  14. Characteristics of USB noise

    NASA Technical Reports Server (NTRS)

    Gibson, J. S.; Searle, N.

    1976-01-01

    An extensive series of noise measurements, for a variety of geometric and operational parameters, was made on models of upper surface blowing (USB) powered lift systems. The data obtained were analyzed and the effects and trends of parametric variation defined. The behavior and nature of USB noise and the design of USB systems with low noise characteristics is examined.

  15. [Aviation noise as an ecological environmental factor].

    PubMed

    Vorob'ev, O A; Krylov, Iu V; Zaritskiĭ, V V; Skrebnev, S V; Shcherbachenko, G E

    1995-01-01

    Average diurnal doses of noise, received by aviation engineers servicing up-to-date aircrafts and living near air fields, were analyzed. The doses appeared to outnumber the normal values, especially during the work and the sleep. The examinees living in 1-2 km from air fields were proved to have significantly higher auditory thresholds for 1,000-8,000 Hz, in comparison with the examinees residing 5-6 km apart. The excessive noise associated with no occupational matters worsens the hearing restoration after the work, promotes accumulation of the hearing fatigue. Those facts were proved by experiments with audiometry and impedometry. The studies stressed the importance of aviation noise as ecologic factor.

  16. The effect of noise-abatement profiles on noise immissions and human annoyance underneath a subsequent climbpath

    NASA Astrophysics Data System (ADS)

    Garbell, Maurice A.

    1990-04-01

    En route noise emissions on the ground can be affected by the detailed characteristics of intended noise-abatement climb profiles and procedures to an extent of 10 or more nautical miles from the start of the takeoff roll of a large or heavy air-carrier-type aircraft. Suggestions submitted to the noise abatement officials of the airports at Frankfurt, Federal Republic of Germany, and Zurick, Switzerland, and the aircarriers Lufthansa German Airlines and SWISSAIR are explained and discussed.

  17. Optical Johnson noise thermometry

    NASA Technical Reports Server (NTRS)

    Shepard, R. L.; Blalock, T. V.; Maxey, L. C.; Roberts, M. J.; Simpson, M. L.

    1989-01-01

    A concept is being explored that an optical analog of the electrical Johnson noise may be used to measure temperature independently of emissivity. The concept is that a laser beam may be modulated on reflection from a hot surface by interaction of the laser photons with the thermally agitated conduction electrons or the lattice phonons, thereby adding noise to the reflected laser beam. If the reflectance noise can be detected and quantified in a background of other noise in the optical and signal processing systems, the reflectance noise may provide a noncontact measurement of the absolute surface temperature and may be independent of the surface's emissivity.

  18. Infrared sky noise study

    NASA Technical Reports Server (NTRS)

    Westphal, J. A.

    1972-01-01

    The hardware and techniques to measure and compare sky noise at several sites were studied, and a device was developed that would maximize its output and minimize its output for modulation. The instrument and its functions are described. The nature of sky emissions and the fluctuation, gaseous sources of sky noise, and aerosol sources are discussed. It is concluded that sky noise really exists, and the spatial distribution of the sky noise sources are such that observed noise values are linear functions of chopping stroke.

  19. Interpreting Transistor Noise

    NASA Astrophysics Data System (ADS)

    Pospieszalski, M. W.

    2010-10-01

    The simple noise models of field effect and bipolar transistors reviewed in this article are quite useful in engineering practice, as illustrated by measured and modeled results. The exact and approximate expressions for the noise parameters of FETs and bipolar transistors reveal certain common noise properties and some general noise properties of both devices. The usefulness of these expressions in interpreting the dependence of measured noise parameters on frequency, bias, and temperature and, consequently, in checking of consistency of measured data has been demonstrated.

  20. Noise Reduction of Aircraft Flap

    NASA Technical Reports Server (NTRS)

    Hutcheson, Florence V. (Inventor); Brooks, Thomas F. (Inventor)

    2009-01-01

    A reduction in noise radiating from a side of a deployed aircraft flap is achieved by locating a slot adjacent the side of the flap, and then forcing air out through the slot with a suitable mechanism. One, two or even three or more slots are possible, where the slot is located at one;or more locations selected from a group of locations comprising a top surface of the flap, a bottom surface of the flap, an intersection of the top and side surface of the flap, an intersection of the bottom and side surfaces of the flap, and a side surface of the flap. In at least one embodiment the slot is substantially rectangular. A device for adjusting a rate of the air forced out through the slot can also be provided.

  1. Toward meaningful noise research.

    PubMed

    Holding, D H; Baker, M A

    1987-10-01

    The present review considers a series of studies of noise conducted in collaboration with Dr. Michel Loeb. This review attempts to provide a theoretical perspective as well as to summarize the most important findings of those studies. The work reviewed shows that noise effects interact with other variables, such that a noise effect on one sex is reversed for the other, and is also reversed at different times of the day. A second experiment confirmed this finding with a different arithmetic task. Further work indicated parallels between noise and fatigue, with aftereffects depending upon both work and noise. The final experiment repeated some of these findings with a different task battery of information processing tasks while showing that noise effects further depend on the meaningfulness of the noise background.

  2. Ultra low 1/f noise in suspended bilayer graphene

    NASA Astrophysics Data System (ADS)

    Kumar, Manohar; Laitinen, Antti; Cox, Daniel; Hakonen, Pertti J.

    2015-06-01

    We have studied 1/f noise power SI in suspended bilayer graphene devices. Around the Dirac point, we observe ultra low noise amplitude on the order of f *SI/Ib2=10-9 . The low frequency noise level is barely sensitive to intrinsic carrier density, but temperature and external doping are found to influence the noise power. In our current-annealed samples, the 1/f noise is dominated by resistance fluctuations at the contacts. Temperature dependence of the 1/f noise suggests the presence of trap states in the contact regions, with a nearly exponential distribution function displaying a characteristic energy of 0.12 eV. At 80 K, the noise displays an air pressure sensitivity that corresponds to ˜0.3 ppm gas detection sensitivity; this indicates the potential of suspended graphene as a platform for gas sensing applications.

  3. Judgments of aircraft noise in a traffic noise background

    NASA Technical Reports Server (NTRS)

    Powell, C. A.; Rice, C. G.

    1975-01-01

    An investigation was conducted to determine subjective response to aircraft noise in different road traffic backgrounds. In addition, two laboratory techniques for presenting the aircraft noise with the background noise were evaluated. For one technique, the background noise was continuous over an entire test session; for the other, the background noise level was changed with each aircraft noise during a session. Subjective response to aircraft noise was found to decrease with increasing background noise level, for a range of typical indoor noise levels. Subjective response was found to be highly correlated with the Noise Pollution Level (NPL) measurement scale.

  4. Hypotension and Environmental Noise: A Replication Study

    PubMed Central

    Lercher, Peter; Widmann, Ulrich; Thudium, Jürg

    2014-01-01

    Up to now, traffic noise effect studies focused on hypertension as health outcome. Hypotension has not been considered as a potential health outcome although in experiments some people also responded to noise with decreases of blood pressure. Currently, the characteristics of these persons are not known and whether this down regulation of blood pressure is an experimental artifact, selection, or can also be observed in population studies is unanswered. In a cross-sectional replication study, we randomly sampled participants (age 20–75, N = 807) from circular areas (radius = 500 m) around 31 noise measurement sites from four noise exposure strata (35–44, 45–54, 55–64, >64 Leq, dBA). Repeated blood pressure measurements were available for a smaller sample (N = 570). Standardized information on socio-demographics, housing, life style and health was obtained by door to door visits including anthropometric measurements. Noise and air pollution exposure was assigned by GIS based on both calculation and measurements. Reported hypotension or hypotension medication past year was the main outcome studied. Exposure-effect relationships were modeled with multiple non-linear logistic regression techniques using separate noise estimations for total, highway and rail exposure. Reported hypotension was significantly associated with rail and total noise exposure and strongly modified by weather sensitivity. Reported hypotension medication showed associations of similar size with rail and total noise exposure without effect modification by weather sensitivity. The size of the associations in the smaller sample with BMI as additional covariate was similar. Other important cofactors (sex, age, BMI, health) and moderators (weather sensitivity, adjacent main roads and associated annoyance) need to be considered as indispensible part of the observed relationship. This study confirms a potential new noise effect pathway and discusses potential patho-physiological routes of actions

  5. Poultry Plant Noise Control

    NASA Technical Reports Server (NTRS)

    1982-01-01

    A demonstration conducted last winter at the Tip Top Poultry Plant intended to show poultry plant managers from all over the U.S. potential solutions to the problem of plant noise. Plastic covers used over sound absorbing materials need to meet cleanability requirements, high- pressure water cleaning and other harsh maintenance procedures peculiar to the poultry processing industry. For the demonstration, Fiber Flex, Inc. manufactured and donated 750 noise panels; Owens-Corning Fiberglas Corporation donated the fiberglas cores; and the cover material was purchased from Howe and Bainbridge. The Engineering Experiment Station (EES) conducted before and after noise surveys and is evaluating the effect of noise reduction on turnover and productivity in the demonstration plant. EES plans to conduct a noise abatement workshop and update a handbook to help poultry processors with noise problems. EES study and demonstration may be applicable to other food processing plants where similar sanitary constraints exist.

  6. Frequency noise properties of lasers for interferometry in nanometrology.

    PubMed

    Hrabina, Jan; Lazar, Josef; Holá, Miroslava; Cíp, Ondřej

    2013-02-07

    In this contribution we focus on laser frequency noise properties and their influence on the interferometric displacement measurements. A setup for measurement of laser frequency noise is proposed and tested together with simultaneous measurement of fluctuations in displacement in the Michelson interferometer. Several laser sources, including traditional He-Ne and solid-state lasers, and their noise properties are evaluated and compared. The contribution of the laser frequency noise to the displacement measurement is discussed in the context of other sources of uncertainty associated with the interferometric setup, such as, mechanics, resolution of analog-to-digital conversion, frequency bandwidth of the detection chain, and variations of the refractive index of air.

  7. Noise in biological circuits

    SciTech Connect

    Simpson, Michael L; Allen, Michael S.; Cox, Chris D.; Dar, Roy D.; Karig, David K; McCollum, James M.; Cooke, John F

    2009-01-01

    Noise biology focuses on the sources, processing, and biological consequences of the inherent stochastic fluctuations in molecular transitions or interactions that control cellular behavior. These fluctuations are especially pronounced in small systems where the magnitudes of the fluctuations approach or exceed the mean value of the molecular population. Noise biology is an essential component of nanomedicine where the communication of information is across a boundary that separates small synthetic and biological systems that are bound by their size to reside in environments of large fluctuations. Here we review the fundamentals of the computational, analytical, and experimental approaches to noise biology. We review results that show that the competition between the benefits of low noise and those of low population has resulted in the evolution of genetic system architectures that produce an uneven distribution of stochasticity across the molecular components of cells and, in some cases, use noise to drive biological function. We review the exact and approximate approaches to gene circuit noise analysis and simulation, and reviewmany of the key experimental results obtained using flow cytometry and time-lapse fluorescent microscopy. In addition, we consider the probative value of noise with a discussion of using measured noise properties to elucidate the structure and function of the underlying gene circuit. We conclude with a discussion of the frontiers of and significant future challenges for noise biology.

  8. Landing gear noise attenuation

    NASA Technical Reports Server (NTRS)

    Moe, Jeffrey W. (Inventor); Whitmire, Julia (Inventor); Kwan, Hwa-Wan (Inventor); Abeysinghe, Amal (Inventor)

    2011-01-01

    A landing gear noise attenuator mitigates noise generated by airframe deployable landing gear. The noise attenuator can have a first position when the landing gear is in its deployed or down position, and a second position when the landing gear is in its up or stowed position. The noise attenuator may be an inflatable fairing that does not compromise limited space constraints associated with landing gear retraction and stowage. A truck fairing mounted under a truck beam can have a compliant edge to allow for non-destructive impingement of a deflected fire during certain conditions.

  9. Effect of Pulsed Blowing on Farfield Noise

    NASA Technical Reports Server (NTRS)

    Gaeta, R. J.; Ahuja, K. K.; Hellman, B.; Combier, R.

    2003-01-01

    This portion of the report documents the results of an experimental program, which focused on pulsed blowing from the trailing edge of a CCW. The main objective of this study was to assess whether pulsed blowing resulted in more, less, or the same amount of radiated noise to the farfield. Results show that a reduction in far-field noise of up to 5 dB is measured when pulse flow is compared to steady flow for an equivalent lift configuration. This reduction is in the spectral region associated with the trailing edge jet noise. This result is due to the unique advantage that pulsed flow has over steady flow. For a range of frequencies, more lift is experienced with the same mass flow as the steady case. Thus, for an equivalent lift and slot height, the pulsed system can operate at lower jet velocities, and hence lower jet noise. At low frequencies (below 1 kHz), the pulsed flow configuration generated more noise in the farfield. This is most likely due to the pulsing mechanism itself. Since the high pressure air feeding the pulsing mechanism was first passed through a high performance muffler, it is likely that this increase in not due to upstream valve noise. Most likely, the impulsive component of the air that periodically fills the plenum causes a broadband source that reaches the farfield. Although the benefit of a pulse trailing edge jet is evident from a mass flow usage and jet noise perspective, attention should be paid towards the design of a viable pulsing system. Future research program in this area should concentrate on the development of a "quiet" pulsing device.

  10. Core Noise: Overview of Upcoming LDI Combustor Test

    NASA Technical Reports Server (NTRS)

    Hultgren, Lennart S.

    2012-01-01

    This presentation is a technical summary of and outlook for NASA-internal and NASA-sponsored external research on core (combustor and turbine) noise funded by the Fundamental Aeronautics Program Fixed Wing Project. The presentation covers: the emerging importance of core noise due to turbofan design trends and its relevance to the NASA N+3 noise-reduction goal; the core noise components and the rationale for the current emphasis on combustor noise; and the current and planned research activities in the combustor-noise area. Two NASA-sponsored research programs, with particular emphasis on indirect combustor noise, "Acoustic Database for Core Noise Sources", Honeywell Aerospace (NNC11TA40T) and "Measurement and Modeling of Entropic Noise Sources in a Single-Stage Low-Pressure Turbine", U. Illinois/U. Notre Dame (NNX11AI74A) are briefly described. Recent progress in the development of CMC-based acoustic liners for broadband noise reduction suitable for turbofan-core application is outlined. Combustor-design trends and the potential impacts on combustor acoustics are discussed. A NASA GRC developed nine-point lean-direct-injection (LDI) fuel injector is briefly described. The modification of an upcoming thermo-acoustic instability evaluation of the GRC injector in a combustor rig to also provide acoustic information relevant to community noise is presented. The NASA Fundamental Aeronautics Program has the principal objective of overcoming today's national challenges in air transportation. The reduction of aircraft noise is critical to enabling the anticipated large increase in future air traffic. The Quiet Performance Research Theme of the Fixed Wing Project aims to develop concepts and technologies to dramatically reduce the perceived community noise attributable to aircraft with minimal impact on weight and performance.

  11. Noise duration for a single overflight.

    PubMed

    Makarewicz, Rufin; Wojciechowska, Hanna

    2003-07-01

    Overflights in national parks and preserves interfere with communication and sounds of nature. The percentage of time that an aircraft is audible, P, can be used as a noise metric. To calculate P the overflight time for a single aircraft, tau, has to be known. The method of tau calculation is based on the assumption that an aircraft is a point source and the noise propagation is governed by geometrical spreading, air absorption, and refraction. The atmosphere is characterized by the effective sound speed gradient. Analytical formulas for tau are derived for down- and crosswind flights.

  12. [Research progress in health impact of traffic noise].

    PubMed

    Huang, Jing; Guo, Bin; Guo, Xin-biao

    2015-06-18

    Traffic noise pollution problem is increasingly emerging with the rapid development of urban traffic. Researchers have paid close attention to the health effects of traffic noise. This review has summarized the recent research progress in the health effects of traffic noise both at home and abroad. Traffic noise can have various adverse health effects, and most of them are extra-auditory effects. The main aspects include that traffic noise can affect the cardiovascular system, which is verified by the evidence that exposure to traffic noise significantly increases the risk for cardiovascular diseases, such as high blood pressure, myocardial infarction, coronary heart disease, and so on. In addition, traffic noise can induce adverse effects on nervous system, leading to the increasing levels of anxiety, noise annoyance, and occurrence of insomnia. Furthermore, traffic noise is significantly associated with adverse pregnant outcomes, and can affect the endocrine system and digestive system. As traffic noise and traffic related air pollutants co-exist in the traffic environment, whether there are joint effects between these two factors have become areas of research focus nowadays. Although there is sufficient evidence that traffic noise has adverse health effects, inadequacies still existe. Analysis of the shortages of current studies and the prospects of the future studies are pointed out in this review.

  13. [Research progress in health impact of traffic noise].

    PubMed

    Huang, Jing; Guo, Bin; Guo, Xin-biao

    2015-06-18

    Traffic noise pollution problem is increasingly emerging with the rapid development of urban traffic. Researchers have paid close attention to the health effects of traffic noise. This review has summarized the recent research progress in the health effects of traffic noise both at home and abroad. Traffic noise can have various adverse health effects, and most of them are extra-auditory effects. The main aspects include that traffic noise can affect the cardiovascular system, which is verified by the evidence that exposure to traffic noise significantly increases the risk for cardiovascular diseases, such as high blood pressure, myocardial infarction, coronary heart disease, and so on. In addition, traffic noise can induce adverse effects on nervous system, leading to the increasing levels of anxiety, noise annoyance, and occurrence of insomnia. Furthermore, traffic noise is significantly associated with adverse pregnant outcomes, and can affect the endocrine system and digestive system. As traffic noise and traffic related air pollutants co-exist in the traffic environment, whether there are joint effects between these two factors have become areas of research focus nowadays. Although there is sufficient evidence that traffic noise has adverse health effects, inadequacies still existe. Analysis of the shortages of current studies and the prospects of the future studies are pointed out in this review. PMID:26080892

  14. Broadband Noise Reduction of a Low-Speed Fan Noise Using Trailing Edge Blowing

    NASA Technical Reports Server (NTRS)

    Sutliff, Daniel L.

    2005-01-01

    An experimental proof-of-concept test was conducted to demonstrate reduction of rotor-stator interaction noise through the use of rotor-trailing edge blowing. The velocity deficit from the viscous wake of the rotor blades was reduced by injecting air into the wake from a continuous trailing edge slot. Hollow blades with interior guide vanes create flow channels through which externally supplied air flows from the blade root to the trailing edge. A previous paper documented the substantial tonal reductions of this Trailing Edge Rotor Blowing (TERB) fan. This report documents the broadband characteristics of TERB. The Active Noise Control Fan (ANCF), located at the NASA Glenn Research Center, was used as the proof-of-concept test bed. Two-component hotwire data behind the rotor, unsteady surface pressures on the stator vane, and farfield directivity acoustic data were acquired at blowing rates of 1.1, 1.5, and 1.8 percent of the total fan mass flow. The results indicate a substantial reduction in the rotor wake turbulent velocity and in the stator vane unsteady surface pressures. Based on the physics of the noise generation, these indirect measurements indicate the prospect of broadband noise reduction. However, since the broadband noise generated by the ANCF is rotor-dominated, any change in the rotor-stator interaction broadband noise levels is barely distinguishable in the farfield measurements.

  15. Noise levels associated with urban land use.

    PubMed

    King, Gavin; Roland-Mieszkowski, Marek; Jason, Timothy; Rainham, Daniel G

    2012-12-01

    Recent trends towards the intensification of urban development to increase urban densities and avoid sprawl should be accompanied by research into the potential for related health impacts from environmental exposure. The objective of the current study was to examine the effect of the built environment and land use on levels of environmental noise. Two different study areas were selected using a combination of small area census geography, land use information, air photography, and ground-truthing. The first study area represented residential land use and consisted of two- to three-story single-family homes. The second study area was characteristic of mixed-use urban planning with apartment buildings as well as commercial and institutional development. Study areas were subdivided into six grids, and a location was randomly selected within each grid for noise monitoring. Each location was sampled four times over a 24-h day, resulting in a total of 24 samples for each of the two areas. Results showed significant variability in noise within study areas and significantly higher levels of environmental noise in the mixed-use area. Both study areas exceeded recommended noise limits when evaluated against World Health Organization guidelines and yielded average noise events values in the moderate to serious annoyance range with the potential to obscure normal conversation and cause sleep disturbance.

  16. Noise levels associated with urban land use.

    PubMed

    King, Gavin; Roland-Mieszkowski, Marek; Jason, Timothy; Rainham, Daniel G

    2012-12-01

    Recent trends towards the intensification of urban development to increase urban densities and avoid sprawl should be accompanied by research into the potential for related health impacts from environmental exposure. The objective of the current study was to examine the effect of the built environment and land use on levels of environmental noise. Two different study areas were selected using a combination of small area census geography, land use information, air photography, and ground-truthing. The first study area represented residential land use and consisted of two- to three-story single-family homes. The second study area was characteristic of mixed-use urban planning with apartment buildings as well as commercial and institutional development. Study areas were subdivided into six grids, and a location was randomly selected within each grid for noise monitoring. Each location was sampled four times over a 24-h day, resulting in a total of 24 samples for each of the two areas. Results showed significant variability in noise within study areas and significantly higher levels of environmental noise in the mixed-use area. Both study areas exceeded recommended noise limits when evaluated against World Health Organization guidelines and yielded average noise events values in the moderate to serious annoyance range with the potential to obscure normal conversation and cause sleep disturbance. PMID:22707308

  17. Sounds and Noises. A Position Paper on Noise Pollution.

    ERIC Educational Resources Information Center

    Chapman, Thomas L.

    This position paper focuses on noise pollution and the problems and solutions associated with this form of pollution. The paper is divided into the following five sections: Noise and the Ear, Noise Measurement, III Effects of Noise, Acoustics and Action, and Programs and Activities. The first section identifies noise and sound, the beginnings of…

  18. Proceedings of Noise-con 81: Applied noise control technology

    SciTech Connect

    Royster, L.H.; Hart, F.D.; Stewart, N.D.

    1981-01-01

    The conference was divided into sessions covering noise control regulations and benefits; noise source identification; barriers and enclosures; mufflers; hearing protection devices; textile and fibre industries; metal fabrication industry; transportation and aircraft noise control; punch-press noise control and miscellaneous topics; woodworking industry; tobacco and packaging industries; community noise; and applications of damping materials. One paper has been abstracted separately.

  19. Sounding Off about Noise

    ERIC Educational Resources Information Center

    Crumpton, Michael A.

    2005-01-01

    Noise in a community college library can be part of the nature of the environment. It can also become a huge distraction for those who see the library as their sanctuary for quiet study and review of resources. This article describes the steps that should be taken by library staff in order to be proactive about noise and the library environment,…

  20. Noise Pollution, Teachers' Edition.

    ERIC Educational Resources Information Center

    O'Donnell, Patrick A.; Lavaroni, Charles W.

    One of three in a series about pollution, this teacher's guide for a unit on noise pollution is designed for use in junior high school grades. It offers suggestions for extending the information and activities contained in the textual material for students. Chapter 1 discusses the problem of noise pollution and involves students in processes of…

  1. Predicted airframe noise levels

    NASA Technical Reports Server (NTRS)

    Raney, J. P.

    1980-01-01

    Calculated values of airframe noise levels corresponding to FAA noise certification conditions for six aircraft are presented. The aircraft are: DC-9-30; Boeing 727-200; A300-B2 Airbus; Lockheed L-1011; DC-10-10; and Boeing 747-200B. The prediction methodology employed is described and discussed.

  2. Speech communications in noise

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The physical characteristics of speech, the methods of speech masking measurement, and the effects of noise on speech communication are investigated. Topics include the speech signal and intelligibility, the effects of noise on intelligibility, the articulation index, and various devices for evaluating speech systems.

  3. Noise in miniature microphones.

    PubMed

    Thompson, Stephen C; LoPresti, Janice L; Ring, Eugene M; Nepomuceno, Henry G; Beard, John J; Ballad, William J; Carlson, Elmer V

    2002-02-01

    The internal noise spectrum in miniature electret microphones of the type used in the manufacture of hearing aids is measured. An analogous circuit model of the microphone is empirically fit to the measured data and used to determine the important sources of noise within the microphone. The dominant noise source is found to depend on the frequency. Below 40 Hz and above 9 kHz, the dominant source is electrical noise from the amplifier circuit needed to buffer the electrical signal from the microphone diaphragm. Between approximately 40 Hz and 1 kHz, the dominant source is thermal noise originating in the acoustic flow resistance of the small hole pierced in the diaphragm to equalize barometric pressure. Between approximately 1 kHz and 9 kHz, the noise originates in the acoustic flow resistances of sound entering the microphone and propagating to the diaphragm. To further reduce the microphone internal noise in the audio band requires attacking these sources. A prototype microphone having reduced acoustical noise is measured and discussed. PMID:11863188

  4. Noise in miniature microphones

    NASA Astrophysics Data System (ADS)

    Thompson, Stephen C.; Lopresti, Janice L.; Ring, Eugene M.; Nepomuceno, Henry G.; Beard, John J.; Ballad, William J.; Carlson, Elmer V.

    2002-02-01

    The internal noise spectrum in miniature electret microphones of the type used in the manufacture of hearing aids is measured. An analogous circuit model of the microphone is empirically fit to the measured data and used to determine the important sources of noise within the microphone. The dominant noise source is found to depend on the frequency. Below 40 Hz and above 9 kHz, the dominant source is electrical noise from the amplifier circuit needed to buffer the electrical signal from the microphone diaphragm. Between approximately 40 Hz and 1 kHz, the dominant source is thermal noise originating in the acoustic flow resistance of the small hole pierced in the diaphragm to equalize barometric pressure. Between approximately 1 kHz and 9 kHz, the noise originates in the acoustic flow resistances of sound entering the microphone and propagating to the diaphragm. To further reduce the microphone internal noise in the audio band requires attacking these sources. A prototype microphone having reduced acoustical noise is measured and discussed.

  5. Jet Noise Suppression

    NASA Technical Reports Server (NTRS)

    Gliebe, P. R.; Brausch, J. F.; Majjigi, R. K.; Lee, R.

    1991-01-01

    The objectives of this chapter are to review and summarize the jet noise suppression technology, to provide a physical and theoretical model to explain the measured jet noise suppression characteristics of different concepts, and to provide a set of guidelines for evolving jet noise suppression designs. The underlying principle for all jet noise suppression devices is to enhance rapid mixing (i.e., diffusion) of the jet plume by geometric and aerothermodynamic means. In the case of supersonic jets, the shock-cell broadband noise reduction is effectively accomplished by the elimination or mitigation of the shock-cell structure. So far, the diffusion concepts have predominantly concentrated on jet momentum and energy (kinetic and thermal) diffusion, in that order, and have yielded better noise reduction than the simple conical nozzles. A critical technology issue that needs resolution is the effect of flight on the noise suppression potential of mechanical suppressor nozzles. A more thorough investigation of this mechanism is necessary for the successful development and design of an acceptable noise suppression device for future high-speed civil transports.

  6. Noise: The Ignored Contaminant

    ERIC Educational Resources Information Center

    Miller, Maurice H.

    1977-01-01

    Noise is the single most omnipresent noxious contaminant in the American environment, yet little attention has been paid to its dangers and relatively small amounts of money spent to control it. Compares the effects and management of hearing impairment due to noise with those resulting from other causes. (Editor)

  7. NASA Glenn's Contributions to Aircraft Engine Noise Research

    NASA Technical Reports Server (NTRS)

    Huff, Dennis L.

    2013-01-01

    This report reviews all engine noise research conducted at the NASA Glenn Research Center over the past 70 years. This report includes a historical perspective of the Center and the facilities used to conduct the research. Major noise research programs are highlighted to show their impact on industry and on the development of aircraft noise reduction technology. Noise reduction trends are discussed, and future aircraft concepts are presented. Since the 1960s, research results show that the average perceived noise level has been reduced by about 20 decibels (dB). Studies also show that, depending on the size of the airport, the aircraft fleet mix, and the actual growth in air travel, another 15 to 17 dB reduction will be required to achieve NASA's long-term goal of providing technologies to limit objectionable noise to the boundaries of an average airport.

  8. NASA Glenn's Contributions to Aircraft Engine Noise Research

    NASA Technical Reports Server (NTRS)

    Huff, Dennis L.

    2014-01-01

    This presentation reviews engine noise research conducted at the NASA Glenn Research Center over the past 70 years. This report includes a historical perspective of the Center and the facilities used to conduct the research. Major noise research programs are highlighted to show their impact on industry and on the development of aircraft noise reduction technology. Noise reduction trends are discussed, and future aircraft concepts are presented. Since the 1960s, research results show that the average perceived noise level has been reduced by about 20 decibels (dB). Studies also show that, depending on the size of the airport, the aircraft fleet mix, and the actual growth in air travel, another 15 to 17 dB reduction will be required to achieve NASAs long-term goal of providing technologies to limit objectionable noise to the boundaries of an average airport.

  9. Impact of Fluidic Chevrons on Jet Noise

    NASA Technical Reports Server (NTRS)

    Henderson, Brenda S.; Kinzie, Kevin W.; Whitmire, Julia; Abeysinghe, Amal

    2005-01-01

    The impact of alternating fluidic core chevrons on the production of jet noise is investigated. Core nozzles for a representative 1/9th scale, bypass ratio 5 model system were manufactured with slots cut near the trailing edges to allow for air injection into the core and fan streams. The injectors followed an alternating pattern around the nozzle perimeter so that the injection alternated between injection into the core stream and injection into the fan stream. For the takeoff condition and a forward flight Mach number of 0.10, the overall sound pressure levels at the peak jet noise angle decrease with increasing injection pressure. Sound pressure levels increase for observation angles less than 110o at higher injection pressures due to increases in high frequency noise. Greater increases in high frequency noise are observed when the number of injectors increases from 8 to 12. When the forward flight Mach number is increased to 0.28, jet noise reduction (relative to the baseline) is observed at aft angles for increasing injection pressure while significant increases in jet noise are observed at forward observation angles due to substantial acoustic radiation at high frequencies. A comparison between inflow and alternating injectors shows that, for equal mass injection rates, the inflow nozzle produces greater low frequency noise reduction (relative to the baseline) than the alternating injectors at 90o and aft observation angles and a forward flight Mach number of 0.28. Preliminary computational fluid dynamic simulations indicate that the spatial decay rate of the hot potential core flow is less for the inflow nozzle than for the alternating nozzles which indicates that gentle mixing may be preferred over sever mixing when fluidic chevrons are used for jet noise reduction.

  10. [Urban noise pollution].

    PubMed

    Chouard, C H

    2001-07-01

    Noise is responsible for cochlear and general damages. Hearing loss and tinnitus greatly depend on sound intensity and duration. Short-duration sound of sufficient intensity (gunshot or explosion) will not be described because they are not currently encountered in our normal urban environment. Sound levels of less than 75 d (A) are unlikely to cause permanent hearing loss, while sound levels of about 85 d (A) with exposures of 8 h per day will produce permanent hearing loss after many years. Popular and largely amplified music is today one of the most dangerous causes of noise induced hearing loss. The intensity of noises (airport, highway) responsible for stress and general consequences (cardiovascular) is generally lower. Individual noise sensibility depends on several factors. Strategies to prevent damage from sound exposure should include the use of individual hearing protection devices, education programs beginning with school-age children, consumer guidance, increased product noise labelling, and hearing conservation programs for occupational settings. PMID:11476007

  11. Noise in coevolving networks

    NASA Astrophysics Data System (ADS)

    Diakonova, Marina; Eguíluz, Víctor M.; San Miguel, Maxi

    2015-09-01

    Coupling dynamics of the states of the nodes of a network to the dynamics of the network topology leads to generic absorbing and fragmentation transitions. The coevolving voter model is a typical system that exhibits such transitions at some critical rewiring. We study the robustness of these transitions under two distinct ways of introducing noise. Noise affecting all the nodes destroys the absorbing-fragmentation transition, giving rise in finite-size systems to two regimes: bimodal magnetization and dynamic fragmentation. Noise targeting a fraction of nodes preserves the transitions but introduces shattered fragmentation with its characteristic fraction of isolated nodes and one or two giant components. Both the lack of absorbing state for homogeneous noise and the shift in the absorbing transition to higher rewiring for targeted noise are supported by analytical approximations.

  12. Low-noise fan exit guide vanes

    NASA Technical Reports Server (NTRS)

    Jones, Michael G. (Inventor); Parrott, Tony L. (Inventor); Heidelberg, Laurence J. (Inventor); Envia, Edmane (Inventor)

    2008-01-01

    Low-noise fan exit guide vanes are disclosed. According to the present invention a fan exit guide vane has an outer shell substantially shaped as an airfoil and defining an interior cavity. A porous portion of the outer shell allows communication between the fluctuations in the air passing over the guide vane and the interior cavity. At least one acoustically resonant chamber is located within the interior cavity. The resonant chamber is in communication with the porous portion of the outer perimeter. The resonant chamber is configured to reduce the noise generated at a predetermined frequency. In various preferred embodiments, there is a plurality of acoustically resonant chambers located within the interior cavity. The resonant chambers can be separated by one or more partitions within the interior cavity. In these embodiments, the resonant chambers can be configured to reduce the noise generated over a range of predetermined frequencies.

  13. The status of airport noise prediction, with special reference to the United Kingdom and Europe

    NASA Astrophysics Data System (ADS)

    Large, J. B.; House, M. E.

    1981-08-01

    The current status of airport noise prediction is reviewed with reference to both air-to-ground noise and near-ground noise such as noise generated by road traffic, auxiliary power units, engine ground running, approaching aircraft, and aircraft on taxiways and aprons. Methodologies for contour calculation and assessment are outlined, and areas for further study and refinement of procedures are indicated. In particular, the need for greater accuracy is emphasized in assessments made for legislative and statutory purposes.

  14. IAQ and noise control working together

    SciTech Connect

    Guenther, F.

    1996-01-01

    There has been growing concern that glass fiber products used in air handling and duct systems are a contributing factor to some indoor air quality (IAQ) problems. However, there is inadequate quantitative information to determine the degree of risk involves for the wide range of applications. Also, there is no indication that quantitative data will be achievable for design purposes for many years. As a result, current regulations and design trends range from the complete elimination of exposed fibrous material to the status quo. Since the main purpose of internal duct lining is for noise control, its removal requires other noise control solutions. The purpose of this article is to examine positions taken by various interest groups and provide examples of current research. Important practical guidelines are offered that provide middle ground qualitative solutions until a quantitative approach emerges.

  15. Nature of orchestral noise.

    PubMed

    O'Brien, Ian; Wilson, Wayne; Bradley, Andrew

    2008-08-01

    Professional orchestral musicians are at risk of exposure to excessive noise when at work. This is an industry-wide problem that threatens not only the hearing of orchestral musicians but also the way orchestras operate. The research described in this paper recorded noise levels within a professional orchestra over three years in order to provide greater insight to the orchestral noise environment; to guide future research into orchestral noise management and hearing conservation strategies; and to provide a basis for the future education of musicians and their managers. Every rehearsal, performance, and recording from May 2004 to May 2007 was monitored, with the woodwind, brass, and percussion sections monitored in greatest detail. The study recorded dBALEQ and dBC peak data, which are presented in graphical form with accompanying summarized data tables. The findings indicate that the principal trumpet, first and third horns, and principal trombone are at greatest risk of exposure to excessive sustained noise levels and that the percussion and timpani are at greatest risk of exposure to excessive peak noise levels. However, the findings also strongly support the notion that the true nature of orchestral noise is a great deal more complex than this simple statement would imply.

  16. [The fetus and noise].

    PubMed

    Brezinka, C; Lechner, T; Stephan, K

    1997-01-01

    From 23 weeks of gestation some and from 28 weeks all healthy fetuses are capable of reacting to sound stimulation. The intrauterine acoustic environment is dominated by maternal sounds--heartbeat, breathing, the mother's voice, borborygmi and sounds caused by body movements. Background noise is never below 28 dB and can rise to 84 dB when the mother is singing. Noises that are meant to reach the fetus must be louder than the background noise and must be of low frequency as high frequency sounds are damped by maternal tissue. Vibroacoustic stimulation tests (VAST) have become popular in pregnancy surveillance over the last 20 years, mostly using an artificial larynx. Advantages and problems of the various VAST protocols in fetal monitoring are discussed in the light of animal experiments and clinical studies. Health legislation laws in most countries forbid pregnant women to work in surroundings with a high noise level (80 dB continuous noise and/or rapid impulse noise changes of 40 dB). Whereas regulations for pregnant women are easy to enforce in industry, pregnant women employed in discos or performing as musicians spend most of their working day exposed to noise impact higher than the recommended limit.

  17. Analyzing nocturnal noise stratification.

    PubMed

    Rey Gozalo, Guillermo; Barrigón Morillas, Juan Miguel; Gómez Escobar, Valentín

    2014-05-01

    Pollution associated to traffic can be considered as one of the most relevant pollution sources in our cities; noise is one of the major components of traffic pollution; thus, efforts are necessary to search adequate noise assessment methods and low pollution city designs. Different methods have been proposed for the evaluation of noise in cities, including the categorization method, which is based on the functionality concept. Until now, this method has only been studied (with encouraging results) for short-term, diurnal measurements, but nocturnal noise presents a behavior clearly different on respect to the diurnal one. In this work 45 continuous measurements of approximately one week each in duration are statistically analyzed to identify differences between the proposed categories. The results show that the five proposed categories highlight the noise stratification of the studied city in each period of the day (day, evening, and night). A comparison of the continuous measurements with previous short-term measurements indicates that the latter can be a good approximation of the former in diurnal period, reducing the resource expenditure for noise evaluation. Annoyance estimated from the measured noise levels was compared with the response of population obtained from a questionnaire with good agreement. The categorization method can yield good information about the distribution of a pollutant associated to traffic in our cities in each period of the day and, therefore, is a powerful tool for town planning and the design of pollution prevention policies.

  18. Noise-Induced Hearing Loss

    MedlinePlus

    ... Info » Hearing, Ear Infections, and Deafness Noise-Induced Hearing Loss On this page: What is noise-induced hearing ... additional information about NIHL? What is noise-induced hearing loss? Every day, we experience sound in our environment, ...

  19. Flight effects of fan noise

    NASA Astrophysics Data System (ADS)

    Chestnutt, D.

    1982-09-01

    Simulation of inflight fan noise and flight effects was discussed. The status of the overall program on the flight effects of fan noise was reviewed, and flight to static noise comparisons with the JT15D engine were displayed.

  20. Flight effects of fan noise

    NASA Technical Reports Server (NTRS)

    Chestnutt, D. (Editor)

    1982-01-01

    Simulation of inflight fan noise and flight effects was discussed. The status of the overall program on the flight effects of fan noise was reviewed, and flight to static noise comparisons with the JT15D engine were displayed.

  1. Air Pollution

    MedlinePlus

    Air pollution is a mixture of solid particles and gases in the air. Car emissions, chemicals from factories, ... Ozone, a gas, is a major part of air pollution in cities. When ozone forms air pollution, it's ...

  2. Study of active noise control system for a commercial HVAC unit

    NASA Astrophysics Data System (ADS)

    Devineni, Naga

    Acoustic noise is a common problem in everyday life. If the appliances that are present in the work and living areas generate noise then it's a serious problem. One such appliance is the Heating, Ventilation and Air-conditioning system (HVAC) in which blower fan and compressor units are housed together. Operation of a HVAC system creates two kinds of noise. One is the noise due to the air flow and the other is the result of the compressor. Both of them exhibit different signal properties and need different strategies to control them. There has been previous efforts in designing noise control systems that can control noise from the HVAC system. These include passive methods which use sound absorption materials to attenuate noise and active methods which cancel noise by generating anti-noise. Passive methods are effective in limiting the high frequency noise, but are inefficient in controlling low frequency noise from the compressor. Compressor noise is one of the strong low frequency components that propagate through the walls, therefore there is need for deploying active signal processing methods that consider the signal properties into consideration to cancel the noise acoustically. The quasi periodic nature of the compressor noise is exploited in noise modeling which aids in implementing an adaptive linear prediction filter in estimating the anti noise [12]. In this thesis, a multi channel architecture has been studied for a specific HVAC system in order to improve noise cancellation by creating larger quiet zone. In addition to the multi-channel architecture, a real time narrow band Active Noise Control (ANC) was employed to cancel noise under practical conditions.

  3. Noise considerations for tiltrotor

    NASA Technical Reports Server (NTRS)

    Huston, Robert J.; Golub, Robert A.; Yu, James C.

    1989-01-01

    A projection is made of the technology-development requirements faced by aircraft designers contemplating the evolution of V-22-type tilt-rotor aircraft technology into a civilian tilt-rotor commuter aircraft of the requisite scale and payload. These research challenges are noted to often involve the reduction of noise level to values tolerated by passengers within the cabin and communities in the vicinity of airports, especially during hover and in the course of transition from vertical to horizontal flight (and vice-versa). Noise-generation and noise-radiation characteristics research has been undertaken using the XV-15 tilt-rotor proof-of-concept aircraft.

  4. Propfan noise propagation

    NASA Technical Reports Server (NTRS)

    George, Albert R.; Sim, Ben WEL-C.

    1993-01-01

    The unconventional supersonic tip speed of advanced propellers has led to uncertainties about Propfan's noise acceptability and compliance with Federal Aviation Noise Regulation (FAR 36). Overhead flight testing of the Propfan with an SR-7L blade during 1989's Propfan Test Assessment (PTA) Program have shown unexpectedly high far-field sound pressure levels. This study here attempts to provide insights into the acoustics of a single-rotating propeller (SRP) with supersonic tip speed. At the same time, the role of the atmosphere in shaping the far-field noise characteristics is investigated.

  5. Control of jet noise

    NASA Astrophysics Data System (ADS)

    Schreck, Stefan

    To investigate the possibility of active control of jet noise, knowledge of the noise generation mechanisms in natural jets is essential. Once these mechanisms are determined, active control can be used to manipulate the noise production processes. We investigated the evolution of the flow fields and the acoustic fields of rectangular and circular jets. A predominant flapping mode was found in the supersonic rectangular jets. We hope to increase the spreading of supersonic jets by active control of the flapping mode found in rectangular supersonic jets.

  6. Quantum phase slip noise

    NASA Astrophysics Data System (ADS)

    Semenov, Andrew G.; Zaikin, Andrei D.

    2016-07-01

    Quantum phase slips (QPSs) generate voltage fluctuations in superconducting nanowires. Employing the Keldysh technique and making use of the phase-charge duality arguments, we develop a theory of QPS-induced voltage noise in such nanowires. We demonstrate that quantum tunneling of the magnetic flux quanta across the wire yields quantum shot noise which obeys Poisson statistics and is characterized by a power-law dependence of its spectrum SΩ on the external bias. In long wires, SΩ decreases with increasing frequency Ω and vanishes beyond a threshold value of Ω at T →0 . The quantum coherent nature of QPS noise yields nonmonotonous dependence of SΩ on T at small Ω .

  7. Fourth Aircraft Interior Noise Workshop

    NASA Technical Reports Server (NTRS)

    Stephens, David G. (Compiler)

    1992-01-01

    The fourth in a series of NASA/SAE Interior Noise Workshops was held on May 19 and 20, 1992. The theme of the workshop was new technology and applications for aircraft noise with emphasis on source noise prediction; cabin noise prediction; cabin noise control, including active and passive methods; and cabin interior noise procedures. This report is a compilation of the presentations made at the meeting which addressed the above issues.

  8. Airport noise predicts song timing of European birds.

    PubMed

    Dominoni, Davide M; Greif, Stefan; Nemeth, Erwin; Brumm, Henrik

    2016-09-01

    Anthropogenic noise is of increasing concern to biologists and medical scientists. Its detrimental effects on human health have been well studied, with the high noise levels from air traffic being of particular concern. However, less is known about the effects of airport noise pollution on signal masking in wild animals. Here, we report a relationship between aircraft noise and two major features of the singing behavior of birds. We found that five of ten songbird species began singing significantly earlier in the morning in the vicinity of a major European airport than their conspecifics at a quieter control site. As birds at both sites started singing before the onset of air traffic in the morning, this suggests that the birds in the vicinity of the airport advanced their activity to gain more time for unimpaired singing before the massive plane noise set in. In addition, we found that during the day, chaffinches avoided singing during airplane takeoffs, but only when the noise exceeded a certain threshold, further suggesting that the massive noise caused by the airport can impair acoustic communication in birds. Overall, our study indicates that birds may be adjusting their mating signals and time budgets in response to aircraft noise.

  9. Airport noise predicts song timing of European birds.

    PubMed

    Dominoni, Davide M; Greif, Stefan; Nemeth, Erwin; Brumm, Henrik

    2016-09-01

    Anthropogenic noise is of increasing concern to biologists and medical scientists. Its detrimental effects on human health have been well studied, with the high noise levels from air traffic being of particular concern. However, less is known about the effects of airport noise pollution on signal masking in wild animals. Here, we report a relationship between aircraft noise and two major features of the singing behavior of birds. We found that five of ten songbird species began singing significantly earlier in the morning in the vicinity of a major European airport than their conspecifics at a quieter control site. As birds at both sites started singing before the onset of air traffic in the morning, this suggests that the birds in the vicinity of the airport advanced their activity to gain more time for unimpaired singing before the massive plane noise set in. In addition, we found that during the day, chaffinches avoided singing during airplane takeoffs, but only when the noise exceeded a certain threshold, further suggesting that the massive noise caused by the airport can impair acoustic communication in birds. Overall, our study indicates that birds may be adjusting their mating signals and time budgets in response to aircraft noise. PMID:27648232

  10. Cochlear implant optimized noise reduction.

    PubMed

    Mauger, Stefan J; Arora, Komal; Dawson, Pam W

    2012-12-01

    Noise-reduction methods have provided significant improvements in speech perception for cochlear implant recipients, where only quality improvements have been found in hearing aid recipients. Recent psychoacoustic studies have suggested changes to noise-reduction techniques specifically for cochlear implants, due to differences between hearing aid recipient and cochlear implant recipient hearing. An optimized noise-reduction method was developed with significantly increased temporal smoothing of the signal-to-noise ratio estimate and a more aggressive gain function compared to current noise-reduction methods. This optimized noise-reduction algorithm was tested with 12 cochlear implant recipients over four test sessions. Speech perception was assessed through speech in noise tests with three noise types; speech-weighted noise, 20-talker babble and 4-talker babble. A significant speech perception improvement using optimized noise reduction over standard processing was found in babble noise and speech-weighted noise and over a current noise-reduction method in speech-weighted noise. Speech perception in quiet was not degraded. Listening quality testing for noise annoyance and overall preference found significant improvements over the standard processing and over a current noise-reduction method in speech-weighted and babble noise types. This optimized method has shown significant speech perception and quality improvements compared to the standard processing and a current noise-reduction method.

  11. Television noise reduction device

    NASA Technical Reports Server (NTRS)

    Gordon, B. L.; Stamps, J. C. (Inventor)

    1975-01-01

    A noise reduction system that divides the color video signal into its luminance and chrominance components is reported. The luminance component of a given frame is summed with the luminance component of at least one preceding frame which was stored on a disc recorder. The summation is carried out so as to achieve a signal amplitude equivalent to that of the original signal. The averaged luminance signal is then recombined with the chrominance signal to achieve a noise-reduced television signal.

  12. Noise Abatement Materials

    NASA Technical Reports Server (NTRS)

    1986-01-01

    A former NASA employee who discovered a kind of plastic that soaked up energy, dampened vibrations, and was a good noise abatement material, founded a company to market noise deadening adhesives, sheets, panels and enclosures. Known as SMART products, they are 75-80% lighter than ordinary soundproofing material and have demonstrated a high degree of effectiveness. The company, Varian Associates, makes enclosures for high voltage terminals and other electronic system components, and easily transportable audiometric test booths.

  13. Thermal-mechanical-noise-based CMUT characterization and sensing.

    PubMed

    Gurun, Gokce; Hochman, Michael; Hasler, Paul; Degertekin, F Levent

    2012-06-01

    When capacitive micromachined ultrasonic transducers (CMUTs) are monolithically integrated with custom-designed low-noise electronics, the output noise of the system can be dominated by the CMUT thermal-mechanical noise both in air and in immersion even for devices with low capacitance. Because the thermal-mechanical noise can be related to the electrical admittance of the CMUTs, this provides an effective means of device characterization. This approach yields a novel method to test the functionality and uniformity of CMUT arrays and the integrated electronics when a direct connection to CMUT array element terminals is not available. Because these measurements can be performed in air at the wafer level, the approach is suitable for batch manufacturing and testing. We demonstrate this method on the elements of an 800-μm-diameter CMUT-on-CMOS array designed for intravascular imaging in the 10 to 20 MHz range. Noise measurements in air show the expected resonance behavior and spring softening effects. Noise measurements in immersion for the same array provide useful information on both the acoustic cross talk and radiation properties of the CMUT array elements. The good agreement between a CMUT model based on finite difference and boundary element methods and the noise measurements validates the model and indicates that the output noise is indeed dominated by thermal-mechanical noise. The measurement method can be exploited to implement CMUT-based passive sensors to measure immersion medium properties, or other parameters affecting the electro-mechanics of the CMUT structure. PMID:22718877

  14. Disturbance caused by aircraft noise

    NASA Technical Reports Server (NTRS)

    Josse, R.

    1980-01-01

    Noise pollution caused by the presence of airfields adjacent to residential areas is studied. Noise effects on the sleep of residents near airports and the degree of the residents noise tolerance are evaluated. What aircraft noises are annoying and to what extent the annoyance varies with sound level are discussed.

  15. Reducing environmental noise impacts: A USAREUR noise management program handbook

    NASA Astrophysics Data System (ADS)

    Feather, Timothy D.; Shekell, Ted K.

    1991-06-01

    Noise pollution is a major environmental problem faced by the U.S. Army in Europe. Noise-related complaints from German citizens can escalate into intense political issues in German communities. This in turn hampers efficient operation of military training and often times threatens the Army's mission. In order to remedy these problems, USAREUR has developed a noise management program. A successful noise management program will limit the impact of unavoidable noise on the populace. This report, a component of the noise management program, is a reference document for noise management planning. It contains guidelines and rules-of-thumb for noise management. This document contains procedures which operation and training level personnel can understand and apply in their day to day noise management planning. Noise mitigation tips are given. Basic technical information that will aid in understanding noise mitigation is provided along with noise management through land use planning. Noise management for specific components of the military community, (airfields, base operations, training areas, and housing and recreation areas) are addressed. The nature of noise generated, means of noise abatement at the source, path, and receiver (both physical and organizational/public relations methods), and a case study example are described.

  16. Breaking wind waves as a source of ambient noise.

    PubMed

    Tkalich, Pavlo; Chan, Eng Soon

    2002-08-01

    A theoretical model for the prediction of ambient noise level due to collective oscillations of air bubbles under breaking wind waves is presented. The model uses a budget of the energy flux from the breaking waves to quantify acoustic power radiation by a bubble cloud. A shift of the noise spectra to lower frequency due to collective bubble oscillation is assumed. The model derives good estimates of the magnitude, slope, and frequency range of the noise spectra using the wind speed or height of breaking waves.

  17. Why use noise?

    PubMed

    Pelli, D G; Farell, B

    1999-03-01

    Measuring the dependence of visual sensitivity on parameters of the visual stimulus is a mainstay of vision science. However, it is not widely appreciated that visual sensitivity is a product of two factors that are each invariant with respect to many properties of the stimulus and task. By estimating these two factors, one can isolate visual processes more easily than by using sensitivity measures alone. The underlying idea is that noise limits all forms of communication, including vision. As an empirical matter, it is often useful to measure the human observer's threshold with and without a noise background added to the display, to disentangle the observer's ability from the observer's intrinsic noise. And when we know how much noise there is, it is often useful to calculate ideal performance of the task at hand, as a benchmark for human performance. This strips away the intrinsic difficulty of the task to reveal a pure measure of human ability. Here we show how to do the factoring of sensitivity into efficiency and equivalent noise, and we document the invariances of the two factors.

  18. Aircraft noise synthesis system

    NASA Technical Reports Server (NTRS)

    Mccurdy, David A.; Grandle, Robert E.

    1987-01-01

    A second-generation Aircraft Noise Synthesis System has been developed to provide test stimuli for studies of community annoyance to aircraft flyover noise. The computer-based system generates realistic, time-varying, audio simulations of aircraft flyover noise at a specified observer location on the ground. The synthesis takes into account the time-varying aircraft position relative to the observer; specified reference spectra consisting of broadband, narrowband, and pure-tone components; directivity patterns; Doppler shift; atmospheric effects; and ground effects. These parameters can be specified and controlled in such a way as to generate stimuli in which certain noise characteristics, such as duration or tonal content, are independently varied, while the remaining characteristics, such as broadband content, are held constant. The system can also generate simulations of the predicted noise characteristics of future aircraft. A description of the synthesis system and a discussion of the algorithms and methods used to generate the simulations are provided. An appendix describing the input data and providing user instructions is also included.

  19. Assessment System for Aircraft Noise (ASAN): Development of alpha-test prototype system software

    NASA Astrophysics Data System (ADS)

    Reddingius, Nicholaas H.; Smyth, John S.

    1990-02-01

    The Alpha-Test version of the Assessment System for Aircraft Noise (ASAN) is described. ASAN was developed for the United States Air Force's Noise and Sonic Boom Impact Technology Advanced Development Program Office (NSBIT ADPO). The Purpose of ASAN is to provide Air Force route and environmental planners with a set of tools for preparing the noise portion of environmental impact statements (EIS), environmental assessments (EA), and findings of no significant impact (FONSI). ASAN provides a consistent set of procedures and models which represent the current state-of-the-art in noise engineering practice. A brief overview is given of the technical issues of developing the ASAN system.

  20. NASA's Aeroacoustic Tools and Methods for Analysis of Aircraft Noise

    NASA Technical Reports Server (NTRS)

    Rizzi, Stephen A.; Lopes, Leonard V.; Burley, Casey L.

    2015-01-01

    Aircraft community noise is a significant concern due to continued growth in air traffic, increasingly stringent environmental goals, and operational limitations imposed by airport authorities. The ability to quantify aircraft noise at the source and ultimately at observers is required to develop low noise aircraft designs and flight procedures. Predicting noise at the source, accounting for scattering and propagation through the atmosphere to the observer, and assessing the perception and impact on a community requires physics-based aeroacoustics tools. Along with the analyses for aero-performance, weights and fuel burn, these tools can provide the acoustic component for aircraft MDAO (Multidisciplinary Design Analysis and Optimization). Over the last decade significant progress has been made in advancing the aeroacoustic tools such that acoustic analyses can now be performed during the design process. One major and enabling advance has been the development of the system noise framework known as Aircraft NOise Prediction Program2 (ANOPP2). ANOPP2 is NASA's aeroacoustic toolset and is designed to facilitate the combination of acoustic approaches of varying fidelity for the analysis of noise from conventional and unconventional aircraft. The toolset includes a framework that integrates noise prediction and propagation methods into a unified system for use within general aircraft analysis software. This includes acoustic analyses, signal processing and interfaces that allow for the assessment of perception of noise on a community. ANOPP2's capability to incorporate medium fidelity shielding predictions and wind tunnel experiments into a design environment is presented. An assessment of noise from a conventional and Hybrid Wing Body (HWB) aircraft using medium fidelity scattering methods combined with noise measurements from a model-scale HWB recently placed in NASA's 14x22 wind tunnel are presented. The results are in the form of community noise metrics and

  1. Rotor noise in maneuvering flight

    NASA Astrophysics Data System (ADS)

    Chen, Hsuan-Nien

    The objective of this research is to understand the physics of rotor noise in the maneuvering flight. To achieve this objective, an integrated noise prediction system is constructed, namely GenHel-MFW-PSU-WOPWOP. This noise prediction system includes a flight simulation code, a high fidelity free vortex-wake code, and a rotor acoustic prediction code. By using this noise prediction system, rotor maneuver noise characteristics are identified. Unlike periodic rotor noise, a longer duration is required to describe rotor maneuver noise. The variation of helicopter motion, blade motion and blade airloads are all influencing the noise prediction results in both noise level and directivity in the maneuvering flight. In this research, two types of rotor maneuver noise are identified, steady maneuver noise and transient maneuver noise. In the steady maneuver, rotor noise corresponds to a steady maneuver condition, which has nearly steady properties in flight dynamics and aerodynamics. Transient maneuver noise is the result of the transition between two steady maneuvers. In a transient maneuver, the helicopter experiences fluctuations in airload and helicopter angular rates, which lead to excess rotor noise. Even though the transient maneuver only exists for a fairly short period of time, the corresponding transient maneuver noise could be significant when compared to steady maneuver noise. The blade tip vortices also present complex behaviors in the transient maneuver condition. With stronger vortex circulation strength and the potential for vortex bundling, blade vortex-interaction (BVI) noise may increase significantly during a transient maneuver. In this research, it is shown that even with small pilot controls, significant BVI noise can be generated during a transient flight condition. Finally, through this research, the importance of transient maneuver noise is demonstrated and recognized.

  2. The Aviation System Analysis Capability Noise Impact Model

    NASA Technical Reports Server (NTRS)

    Ege, Russell A.; Brown, Jerome; Bradley, Kevin; Grandi, Fabio

    1999-01-01

    To meet its objective of assisting the US aviation industry with the technological challenges of the future, NASA must identify research areas that have the greatest potential for improving the operation of the air transportation system. To accomplish this, NASA is building an Aviation System Analysis Capability (ASAC). The Noise Impact Model (NIM) has been developed as part of the ASAC. Its primary purpose is to enable users to examine the impact that quieter aircraft technologies and/or operation might have on community noise impact and air carrier operating efficiency at any of 16 large and medium size US airports. The analyst chooses an airport and case year for study, selects a runway use configuration and set of flight tracks for the scenario, and has the option of reducing the noise of the aircraft that operate at the airport by 3, 6, and 10 decibels, NIM computes the resultant noise impact and estimates any airline operational improvements. Community noise impact is characterized in three ways: the size of the noise contour footprint, the number of people living within the contours, and the number of homes located in the same contours. Distance and time savings are calculated by comparing the noise abatement flight path length to a less circuitous alternated routing. For a more efficient runway use configuration, the increase in capacity and reduction in delay are shown.

  3. The Aviation System Analysis Capability Noise Impact Model

    NASA Technical Reports Server (NTRS)

    Wingrove, Earl R., III; Ege, Russell; Burn, Melissa; Carey, Jeffrey; Bradley, Kevin

    1998-01-01

    To meet its objective of assisting the U.S. aviation industry with the technological challenges of the future, NASA must identify research areas that have the greatest potential for improving the operation of the air transportation system. To accomplish this, NASA is building an Aviation System Analysis Capability (ASAC). The Noise Impact Model (NIM) has been developed as part of the ASAC. Its primary purpose is to enable users to examine the impact that quieter aircraft technologies and/or operations might have on community noise impact and air carrier operating efficiency at any of 16 large- and medium-sized U.S. airports. The analyst chooses an airport and case year for study, selects a runway use configuration and set of flight tracks for the scenario, and has the option of reducing the noise of the aircraft that operate at the airport by 3, 6, or 10 decibels. NIM computes the resultant noise impact and estimates any airline operations improvements. Community noise impact is characterized in three ways: the size of the noise contour footprint, the number of people living within the.contours, and the number of homes located in the same contours. Distance and time savings are calculated by comparing the noise abatement flight path length to a less circuitous alternate routing. For a more efficient runway use configuration, the increase in capacity and reduction in delay are shown.

  4. High speed jet noise research at NASA Lewis

    NASA Technical Reports Server (NTRS)

    Krejsa, Eugene A.; Cooper, B. A.; Kim, C. M.; Khavaran, Abbas

    1992-01-01

    The source noise portion of the High Speed Research Program at NASA LeRC is focused on jet noise reduction. A number of jet noise reduction concepts are being investigated. These include two concepts, the Pratt & Whitney ejector suppressor nozzle and the General Electric (GE) 2D-CD mixer ejector nozzle, that rely on ejectors to entrain significant amounts of ambient air to mix with the engine exhaust to reduce the final exhaust velocity. Another concept, the GE 'Flade Nozzle' uses fan bypass air at takeoff to reduce the mixed exhaust velocity and to create a fluid shield around a mixer suppressor. Additional concepts are being investigated at Georgia Tech Research Institute and at NASA LeRC. These will be discussed in more detail in later figures. Analytical methods for jet noise prediction are also being developed. Efforts in this area include upgrades to the GE MGB jet mixing noise prediction procedure, evaluation of shock noise prediction procedures, and efforts to predict jet noise directly from the unsteady Navier-Stokes equation.

  5. Aircraft turbofan noise

    NASA Technical Reports Server (NTRS)

    Groeneweg, J. F.; Rice, E. J.

    1983-01-01

    Turbofan noise generation and suppression in aircraft engines are reviewed. The chain of physical processes which connect unsteady flow interactions with fan blades to far field noise is addressed. Mechanism identification and description, duct propagation, radiation and acoustic suppression are discussed. The experimental technique of fan inflow static tests are discussed. Rotor blade surface pressure and wake velocity measurements aid in the determination of the types and strengths of the generation mechanisms. Approaches to predicting or measuring acoustic mode content, optimizing treatment impedance to maximize attenuation, translating impedance into porous wall structure and interpreting far field directivity patterns are illustrated by comparisons of analytical and experimental results. The interdependence of source and acoustic treatment design to minimize far field noise is emphasized. Area requiring further research are discussed and the relevance of aircraft turbofan results to quieting other turbomachinery installations is addressed.

  6. Road Traffic Noise

    NASA Astrophysics Data System (ADS)

    Beckenbauer, Thomas

    Road traffic is the most interfering noise source in developed countries. According to a publication of the European Union (EU) at the end of the twentieth century [1], about 40% of the population in 15 EU member states is exposed to road traffic noise at mean levels exceeding 55 dB(A). Nearly 80 million people, 20% of the population, are exposed to levels exceeding 65 dB(A) during daytime and more than 30% of the population is exposed to levels exceeding 55 dB(A) during night time. Such high noise levels cause health risks and social disorders (aggressiveness, protest, and helplessness), interference of communication and disturbance of sleep; the long- and short-term consequences cause adverse cardiovascular effects, detrimental hormonal responses (stress hormones), and possible disturbance of the human metabolism (nutrition) and the immune system. Even performance at work and school could be impaired.

  7. [Noise in fishing vessels].

    PubMed

    Peretti, Alessandro; Nataletti, Pietro; Bonfiglio, Paolo; di Bisceglie, Anita Pasqua

    2013-01-01

    The present research concerns the noise analysis of five vessels during navigation and fishing activities. In locations where staff operates, sound levels (produced substantially by the engine) were close to 90 dB(A); within the rest areas the noise is also quite significant. On the basis of working time, exposure levels ranged between 80 and 90 dB(A). In order to identify interventions able to reduce the risk, reverberation times, sound insulation of the different areas and the vibrations produced by the engine were measured on the same vessels docked in port. Noise level reduction as a result of sound absorptive treatments were estimated using an analytical model. PMID:24303698

  8. Aircraft turbofan noise

    NASA Astrophysics Data System (ADS)

    Groeneweg, J. F.; Rice, E. J.

    1987-01-01

    Turbofan noise generation and suppression in aircraft engines are reviewed. The chain of physical processes which connect unsteady flow interactions with fan blades to far field noise is addressed. Mechanism identification and description, duct propagation, radiation, and acoustic suppression are discussed. The experimental techniques of fan inflow static tests are discussed. Rotor blade surface pressure and wake velocity measurements aid in the determination of the types and strengths of the generation mechanisms. Approaches to predicting or measuring acoustic mode content, optimizing treatment impedance to maximize attenuation, translating impedance into porous wall structure, and interpreting far field directivity patterns are illustrated by comparisons of analytical and experimental results. The interdependence of source and acoustic treatment design to minimize far field noise is emphasized. Areas requiring further research are discussed, and the relevance of aircraft turbofan results to quieting other turbomachinery installation is addressed.

  9. Aircraft turbofan noise

    NASA Astrophysics Data System (ADS)

    Groeneweg, J. F.; Rice, E. J.

    1983-03-01

    Turbofan noise generation and suppression in aircraft engines are reviewed. The chain of physical processes which connect unsteady flow interactions with fan blades to far field noise is addressed. Mechanism identification and description, duct propagation, radiation and acoustic suppression are discussed. The experimental technique of fan inflow static tests are discussed. Rotor blade surface pressure and wake velocity measurements aid in the determination of the types and strengths of the generation mechanisms. Approaches to predicting or measuring acoustic mode content, optimizing treatment impedance to maximize attenuation, translating impedance into porous wall structure and interpreting far field directivity patterns are illustrated by comparisons of analytical and experimental results. The interdependence of source and acoustic treatment design to minimize far field noise is emphasized. Area requiring further research are discussed and the relevance of aircraft turbofan results to quieting other turbomachinery installations is addressed.

  10. How to Map Noise.

    PubMed

    Hinton, John

    2002-01-01

    Noise mapping is a method of presenting complex noise information in a clear and simple way either on a physical map or in a database. This mapping information can be either calculated or measured using a variety of techniques and methods. Furthermore, the results of such exercises can be presented in many different ways and used for a number of different purposes. This paper attempts to examine these issues in the light of the "mapping requirements" outlined in the recently proposed Directive of the European Parliament and of the Council, relating to the Assessment and Management of Environmental Noise (Comm (2000) 468 final). This proposed Directive was laid before the Parliament and Council in the autumn of 2000. The First Reading of the proposal was successfully negotiated just before Christmas 2000. The Second Reading is likely to commence shortly.

  11. Air Abrasion

    MedlinePlus

    ... delivered directly to your desktop! more... What Is Air Abrasion? Article Chapters What Is Air Abrasion? What Happens? The Pros and Cons Will I Feel Anything? Is Air Abrasion for Everyone? print full article print this ...

  12. Comparator With Noise Suppression

    NASA Technical Reports Server (NTRS)

    Batts, C. N.

    1985-01-01

    Comparator continuously and automatically adjusts noise immunity period. High-gain amplifier used in conjunction with multivibrator 4 to provide clear pulse to multivibrator 1 at first negative-going zero crossing of input signal. Once multivibrator 1 cleared, output goes to zero volts and not retriggered until next time positive input exceeds reference level. Since input signal noise at zero crossing does not exceed reference level, no effect on multivibrator 1 operation. Circuit fabricated using standard solid-state operational amplifiers, multivibrators, OR gates, and passive elements.

  13. USAF Bioenvironmental Noise Data Handbook. Volume 152: C-12A in-flight crew noise

    NASA Astrophysics Data System (ADS)

    Hille, H. K.

    1982-09-01

    The C-12A is a military version of the Beechcraft Super King Air 200. This report provides measured data defining the bioacoustic environments at flight crew/passenger locations inside this aircraft during normal flight operations. Data are reported for five locations in a wide variety of physical and psychoacoustic measures: overall and band sound pressure levels, C-weighted and A-weighted sound levels, preferred speech interference level, perceived noise level, and limiting times for total daily exposure of personnel with and without standard Air Force ear protectors. Refer to Volume 1 of this handbook, USAF Bioenvironmental Noise Data Handbook, Vol 1: Organization, Content and Application, AMRL-TR-75-50(1) 1975, for discussion of the objective and design of the handbook, the types of data presented, measurement procedures, instrumentation, data processing, definitions of quantities, symbols, equations, applications, limitations, etc.

  14. Noise sources and noise suppression in CMOS imagers

    NASA Astrophysics Data System (ADS)

    Pain, Bedabrata; Cunningham, Thomas J.; Hancock, Bruce R.

    2004-01-01

    Mechanisms for noise coupling in CMOS imagers are complex, since unlike a CCD, a CMOS imager has to be considered as a full digital-system-on-a-chip, with a highly sensitive front-end. In this paper, we analyze the noise sources in a photodiode CMOS imager, and model their propagation through the signal chain to determine the nature and magnitude of noise coupling. We present methods for reduction of noise, and present measured data to show their viability. For temporal read noise reduction, we present pixel signal chain design techniques to achieve near 2 electrons read noise. We model the front-end reset noise both for conventional photodiode and CTIA type of pixels. For the suppression of reset noise, we present a column feedback-reset method to reduce reset noise below 6 electrons. For spatial noise reduction, we present the design of column signal chain that suppresses both spatial noise and power supply coupling noise. We conclude by identifying problems in low-noise design caused by dark current spatial distribution.

  15. [Aircraft noise: changes in biochemical parameters].

    PubMed

    Marth, E; Gallasch, E; Fueger, G F; Möse, J R

    1988-01-01

    The effect of stress caused by aircraft noise was studied on 14 female and 11 male volunteers, who were of a age ranging from 21 to 42 years and of a mean age of 25 years. The volunteers were exposed to an aircraft simulator that stimulated the low level flight of an air force plane and produced a maximum noise level of 105 dB(A) for 3 sec. in a short time. Before and immediately after the exposure, the concentration of ACTH was measured by means of a radioimmunoassay. The ACTH is a hormone, responsible for initiating a chain reaction that is characteristic for a stress reaction. In 100% of the cases the concentration of this hormone increased. It reached a pathological level in 28% of the cases. The effect on the lipid metabolism was expressed by an increase of total cholesterol and a decrease of the triglycerides in the serum. A slight increase in blood sugar which, together with the free fatty acids, is relatively quickly reduced to energy, could be determined. The aircraft noise did not influence the activity of the liver transaminases in any way. A short-term exposure to aircraft noise is able to stimulate a stress reaction, whereby, the determination of the ACTH offers valuable informations.

  16. Noise-abatement method for explosives testing.

    PubMed

    Pfeifer, H E; Odell, B N; Arganbright, V E

    1980-09-01

    When Lawrence Livermore Laboratory started detonating explosives at its Site 300 test location in the sparsely populated hills east of the Laboratory, residents in neighboring areas complained of sudden loud noises. A combined literature and research study, coupled with an experimental test program, indicated the combination of air temperatures and winds at various elevations was primarily responsible for blast or sound waves being returned to the surface. To solve the noise problem, the Laboratory devised a method for determining the maximum amount of explosives that could be detonated aboveground under various atmospheric conditions without creating excessive noise in populated areas. This method for predicting explosives weight limits using pressure-distance-weight nomograms and the slope of a sound-velocity curve is described in this paper. The sound-velocity curve is computed with temperature information from the U.S. Weather Bureau and wind data from a target-acquisition radar system. By following this method, the Laboratory has been able to detonate thousands of shots without creating excessive noise in nearby communities. PMID:7457390

  17. Exploring Noise: Sound Pollution.

    ERIC Educational Resources Information Center

    Rillo, Thomas J.

    1979-01-01

    Part one of a three-part series about noise pollution and its effects on humans. This section presents the background information for teachers who are preparing a unit on sound. The next issues will offer learning activities for measuring the effects of sound and some references. (SA)

  18. Noise Control through Education.

    ERIC Educational Resources Information Center

    Pennino, Martha

    1979-01-01

    Discussed are the public education and information programs on noise pollution control currently in operation within the Metropolitan Washington, D.C. area that have been either developed or implemented under the auspices of the Metropolitan Washington Council of Governments. (BT)

  19. Curing the noise epidemic

    NASA Astrophysics Data System (ADS)

    Mazer, Susan

    2005-09-01

    The argument is made that design does not stop when the fixed architectural and acoustical components are in place. Spaces live and breathe with the people who reside in them. Research and examples are presented that show that noise, auditory clutter, thrives on itself in hospitals. Application of the Lombard reflex studies fit into the hospital setting, but do not offer solutions as to how one might reduce the impact. In addition, the basis for looking at the noise component as a physical as well cultural dynamic will be addressed. Whether the result of the wrong conversation in the wrong place or the right conversation in an unfortunate place, talk mixed with sounds of technology is shown to cause its own symptoms. From heightened anxiety and stress to medical errors, staff burnout, or HIPAA violations, the case is made that noise is pandemic in hospitals and demands financial and operational investment. An explanation of how to reduce noise by design of the dynamic environment - equipment, technology, staff protocols is also provided.

  20. Noise: A Health Problem.

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Washington, DC. Office of Noise Abatement and Control.

    This booklet contains nine sections describing ways in which noise may endanger health and well-being. Secions are included on: (1) hearing loss; (2) heart disease; (3) other reactions by the body; (4) effects on the unborn; (5) special effects on children; (6) intrusion at home and work; (7) sleep disruption; (8) mental and social well-being; and…

  1. Noise Assessment Guidelines.

    ERIC Educational Resources Information Center

    Schultz, Theodore J.; McMahon, Nancy M.

    The Department of Housing and Urban Development (HUD), in its efforts to provide decent housing and a suitable living environment, is concerned with noise as a major source of environmental pollution. To this end, these guidelines are presented to provide site screening techniques. The procedures described have been developed so that people…

  2. Mapping urban environmental noise: a land use regression method.

    PubMed

    Xie, Dan; Liu, Yi; Chen, Jining

    2011-09-01

    Forecasting and preventing urban noise pollution are major challenges in urban environmental management. Most existing efforts, including experiment-based models, statistical models, and noise mapping, however, have limited capacity to explain the association between urban growth and corresponding noise change. Therefore, these conventional methods can hardly forecast urban noise at a given outlook of development layout. This paper, for the first time, introduces a land use regression method, which has been applied for simulating urban air quality for a decade, to construct an urban noise model (LUNOS) in Dalian Municipality, Northwest China. The LUNOS model describes noise as a dependent variable of surrounding various land areas via a regressive function. The results suggest that a linear model performs better in fitting monitoring data, and there is no significant difference of the LUNOS's outputs when applied to different spatial scales. As the LUNOS facilitates a better understanding of the association between land use and urban environmental noise in comparison to conventional methods, it can be regarded as a promising tool for noise prediction for planning purposes and aid smart decision-making.

  3. Playback Experiments for Noise Exposure.

    PubMed

    Holles, Sophie; Simpson, Stephen D; Lecchini, David; Radford, Andrew N

    2016-01-01

    Playbacks are a useful tool for conducting well-controlled and replicated experiments on the effects of anthropogenic noise, particularly for repeated exposures. However, playbacks are unlikely to fully reproduce original sources of anthropogenic noise. Here we examined the sound pressure and particle acceleration of boat noise playbacks in a field experiment and reveal that although there remain recognized limitations, the signal-to-noise ratios of boat playbacks to ambient noise do not exceed those of a real boat. The experimental setup tested is therefore of value for use in experiments on the effects of repeated exposure of aquatic animals to boat noise. PMID:26610992

  4. Fighting noise with noise in realistic quantum teleportation

    NASA Astrophysics Data System (ADS)

    Fortes, Raphael; Rigolin, Gustavo

    2015-07-01

    We investigate how the efficiency of the quantum teleportation protocol is affected when the qubits involved in the protocol are subjected to noise or decoherence. We study all types of noise usually encountered in real-world implementations of quantum communication protocols, namely, the bit-flip, phase-flip (phase damping), depolarizing, and amplitude-damping noise. Several realistic scenarios are studied in which a part or all of the qubits employed in the execution of the quantum teleportation protocol are subjected to the same or different types of noise. We find noise scenarios not yet known in which more noise or less entanglement lead to more efficiency. Furthermore, we show that if noise is unavoidable it is better to subject the qubits to different noise channels in order to obtain an increase in the efficiency of the protocol.

  5. Reduction of turbomachinery noise

    NASA Technical Reports Server (NTRS)

    Waitz, Ian A. (Inventor); Brookfield, John M. (Inventor); Sell, Julian (Inventor); Hayden, Belva J. (Inventor); Ingard, K. Uno (Inventor)

    1999-01-01

    In the invention, propagating broad band and tonal acoustic components of noise characteristic of interaction of a turbomachine blade wake, produced by a turbomachine blade as the blade rotates, with a turbomachine component downstream of the rotating blade, are reduced. This is accomplished by injection of fluid into the blade wake through a port in the rotor blade. The mass flow rate of the fluid injected into the blade wake is selected to reduce the momentum deficit of the wake to correspondingly increase the time-mean velocity of the wake and decrease the turbulent velocity fluctuations of the wake. With this fluid injection, reduction of both propagating broad band and tonal acoustic components of noise produced by interaction of the blade wake with a turbomachine component downstream of the rotating blade is achieved. In a further noise reduction technique, boundary layer fluid is suctioned into the turbomachine blade through a suction port on the side of the blade that is characterized as the relatively low-pressure blade side. As with the fluid injection technique, the mass flow rate of the fluid suctioned into the blade is here selected to reduce the momentum deficit of the wake to correspondingly increase the time-mean velocity of the wake and decrease the turbulent velocity fluctuations of the wake; reduction of both propagating broad band and tonal acoustic components of noise produced by interaction of the blade wake with a turbomachine component downstream of the rotating blade is achieved with this suction technique. Blowing and suction techniques are also provided in the invention for reducing noise associated with the wake produced by fluid flow around a stationary blade upstream of a rotating turbomachine.

  6. Tandem Cylinder Noise Predictions

    NASA Technical Reports Server (NTRS)

    Lockhard, David P.; Khorrami, Mehdi R.; CHoudhari, Meelan M.; Hutcheson, Florence V.; Brooks, Thomas F.; Stead, Daniel J.

    2007-01-01

    In an effort to better understand landing-gear noise sources, we have been examining a simplified configuration that still maintains some of the salient features of landing-gear flow fields. In particular, tandem cylinders have been studied because they model a variety of component level interactions. The present effort is directed at the case of two identical cylinders spatially separated in the streamwise direction by 3.7 diameters. Experimental measurements from the Basic Aerodynamic Research Tunnel (BART) and Quiet Flow Facility (QFF) at NASA Langley Research Center (LaRC) have provided steady surface pressures, detailed off-surface measurements of the flow field using Particle Image Velocimetry (PIV), hot-wire measurements in the wake of the rear cylinder, unsteady surface pressure data, and the radiated noise. The experiments were conducted at a Reynolds number of 166 105 based on the cylinder diameter. A trip was used on the upstream cylinder to insure a fully turbulent shedding process and simulate the effects of a high Reynolds number flow. The parallel computational effort uses the three-dimensional Navier-Stokes solver CFL3D with a hybrid, zonal turbulence model that turns off the turbulence production term everywhere except in a narrow ring surrounding solid surfaces. The current calculations further explore the influence of the grid resolution and spanwise extent on the flow and associated radiated noise. Extensive comparisons with the experimental data are used to assess the ability of the computations to simulate the details of the flow. The results show that the pressure fluctuations on the upstream cylinder, caused by vortex shedding, are smaller than those generated on the downstream cylinder by wake interaction. Consequently, the downstream cylinder dominates the noise radiation, producing an overall directivity pattern that is similar to that of an isolated cylinder. Only calculations based on the full length of the model span were able to

  7. Noise issues in Kanagawa Prefecture

    NASA Astrophysics Data System (ADS)

    Yokoshima, Shigenori; Tamura, Akihiro

    2001-05-01

    In Kanagawa Prefecture, bordering Tokyo Metropolis and the third most densely populated prefecture in Japan, various noises have caused serious problems in terms of living environment preservation and human health protection. This paper describes present states of noise issues in Kanagawa. Road traffic noise, remaining one of serious pollution issues, was monitored at a total 217 sites along trunk roads in Kanagawa from fiscal year 2000 to 2002. The percentage of the sites that achieve environmental quality standards for road traffic noise was approximately 20%. Noise caused by Tokaido Shinkansen trains, of which the total daily number is 287, also has negative impacts on inhabitants along the railway. As a result of the noise measurement from fiscal year 1994 to 2002, about 80% of the measurement sites exceeded environmental quality standards for Shinkansen railway noise during the years. In the areas surrounding the Atsugi Base, noise generated by training flights damagingly affects inhabitants' daily life. The number of complaints due to the noise was largest among noise issues. Moreover, neighborhood noises, noises emitted during the nighttime operation of bars, restaurants and shops, and noises produced by work in out-of-door yards have recently provoked social issues.

  8. 23 CFR 772.3 - Noise standards.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 23 Highways 1 2010-04-01 2010-04-01 false Noise standards. 772.3 Section 772.3 Highways FEDERAL... OF HIGHWAY TRAFFIC NOISE AND CONSTRUCTION NOISE § 772.3 Noise standards. The highway traffic noise prediction requirements, noise analyses, noise abatement criteria, and requirements for informing...

  9. 23 CFR 772.3 - Noise standards.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 23 Highways 1 2011-04-01 2011-04-01 false Noise standards. 772.3 Section 772.3 Highways FEDERAL... OF HIGHWAY TRAFFIC NOISE AND CONSTRUCTION NOISE § 772.3 Noise standards. The highway traffic noise prediction requirements, noise analyses, noise abatement criteria, and requirements for informing...

  10. The Traffic Noise Index: A Method of Controlling Noise Nuisance.

    ERIC Educational Resources Information Center

    Langdon, F. J.; Scholes, W. E.

    This building research survey is an analysis of the social nuisance caused by urban motor ways and their noise. The Traffic Noise Index is used to indicate traffic noises and their effects on architectural designs and planning, while suggesting the need for more and better window insulation and acoustical barriers. Overall concern is for--(1)…

  11. Jet engine noise source and noise footprint computer programs

    NASA Technical Reports Server (NTRS)

    Dunn, D. G.; Peart, N. A.; Miller, D. L.; Crowley, K. C.

    1972-01-01

    Calculation procedures are presented for predicting maximum passby noise levels and contours (footprints) of conventional jet aircraft with or without noise suppression devices. The procedures have been computerized and a user's guide is presented for the computer programs to be used in predicting the noise characteristics during aircraft takeoffs, fly-over, and/or landing operations.

  12. Comparison of the polynomial model against explicit measurements of noise components for different mammography systems

    NASA Astrophysics Data System (ADS)

    Monnin, P.; Bosmans, H.; Verdun, F. R.; Marshall, N. W.

    2014-10-01

    Given the adverse impact of image noise on the perception of important clinical details in digital mammography, routine quality control measurements should include an evaluation of noise. The European Guidelines, for example, employ a second-order polynomial fit of pixel variance as a function of detector air kerma (DAK) to decompose noise into quantum, electronic and fixed pattern (FP) components and assess the DAK range where quantum noise dominates. This work examines the robustness of the polynomial method against an explicit noise decomposition method. The two methods were applied to variance and noise power spectrum (NPS) data from six digital mammography units. Twenty homogeneously exposed images were acquired with PMMA blocks for target DAKs ranging from 6.25 to 1600 µGy. Both methods were explored for the effects of data weighting and squared fit coefficients during the curve fitting, the influence of the additional filter material (2 mm Al versus 40 mm PMMA) and noise de-trending. Finally, spatial stationarity of noise was assessed. Data weighting improved noise model fitting over large DAK ranges, especially at low detector exposures. The polynomial and explicit decompositions generally agreed for quantum and electronic noise but FP noise fraction was consistently underestimated by the polynomial method. Noise decomposition as a function of position in the image showed limited noise stationarity, especially for FP noise; thus the position of the region of interest (ROI) used for noise decomposition may influence fractional noise composition. The ROI area and position used in the Guidelines offer an acceptable estimation of noise components. While there are limitations to the polynomial model, when used with care and with appropriate data weighting, the method offers a simple and robust means of examining the detector noise components as a function of detector exposure.

  13. Comparison of the polynomial model against explicit measurements of noise components for different mammography systems.

    PubMed

    Monnin, P; Bosmans, H; Verdun, F R; Marshall, N W

    2014-10-01

    Given the adverse impact of image noise on the perception of important clinical details in digital mammography, routine quality control measurements should include an evaluation of noise. The European Guidelines, for example, employ a second-order polynomial fit of pixel variance as a function of detector air kerma (DAK) to decompose noise into quantum, electronic and fixed pattern (FP) components and assess the DAK range where quantum noise dominates. This work examines the robustness of the polynomial method against an explicit noise decomposition method. The two methods were applied to variance and noise power spectrum (NPS) data from six digital mammography units. Twenty homogeneously exposed images were acquired with PMMA blocks for target DAKs ranging from 6.25 to 1600 µGy. Both methods were explored for the effects of data weighting and squared fit coefficients during the curve fitting, the influence of the additional filter material (2 mm Al versus 40 mm PMMA) and noise de-trending. Finally, spatial stationarity of noise was assessed.Data weighting improved noise model fitting over large DAK ranges, especially at low detector exposures. The polynomial and explicit decompositions generally agreed for quantum and electronic noise but FP noise fraction was consistently underestimated by the polynomial method. Noise decomposition as a function of position in the image showed limited noise stationarity, especially for FP noise; thus the position of the region of interest (ROI) used for noise decomposition may influence fractional noise composition. The ROI area and position used in the Guidelines offer an acceptable estimation of noise components. While there are limitations to the polynomial model, when used with care and with appropriate data weighting, the method offers a simple and robust means of examining the detector noise components as a function of detector exposure.

  14. Trends in aircraft noise control

    NASA Technical Reports Server (NTRS)

    Hubbard, H. H.; Conrad, E. W.

    1975-01-01

    Flight vehicles are characterized according to their manner of operation and type of propulsion system; and their associated sources of noise are identified. Available noise reduction technology as it relates to engine cycle design and to powerplant component design is summarized. Such components as exhaust jets, fans, propellers, rotors, blown flaps, and reciprocating-engine exhausts are discussed, along with their noise reduction potentials. Significant aircraft noise reductions are noted to have been accomplished by the application of available technology in support of noise certification rules. Further noise reductions to meet more stringent future noise regulations will require substantial additional technology developments. Improved analytical prediction methods, and well-controlled validation experiments supported by advanced-design aeroacoustic facilities, are required as a basis for an effective integrated systems approach to aircraft noise control.

  15. High noise immunity one shot

    NASA Technical Reports Server (NTRS)

    Schaffer, G. L.

    1972-01-01

    Multivibrator circuit, which includes constant current source, isolates line noise from timing circuitry and field effect transistor controls circuit's operational modes. Circuit has high immunity to supply line noise.

  16. Ambient air pollution and annoyance responses from pregnant women

    NASA Astrophysics Data System (ADS)

    Llop, Sabrina; Ballester, Ferran; Estarlich, Marisa; Esplugues, Ana; Fernández-Patier, Rosalia; Ramón, Rosa; Marco, Alfredo; Aguirre, Amelia; Sunyer, Jordi; Iñiguez, Carmen; INMA-Valencia cohort

    ObjectivesTo describe the degree of annoyance caused by air pollution and noise in pregnant women in a birth cohort; to determine the modifying factors and their relation with exposure to ambient nitrogen dioxide (NO 2). MethodsThe study population was 855 pregnant women in Valencia, Spain. Annoyance caused by air pollution and noise, and explanatory factors were obtained from 786 pregnant women through a questionnaire. NO 2 levels were determined combining measurements at 93 points within the area of study and using geostatistical techniques (kriging). ResultsIn all 7.9% of the women reported high annoyance caused by air pollution and 13.1% high annoyance caused by noise. There was a significant difference in the degree of annoyance due to both air pollution and noise depending on the area where the women lived and their working status. The degree of annoyance correlated better with measured NO 2 at the municipality level (air pollution: r=0.53; noise: r=0.44) than at the individual level (air pollution and noise: r=0.21). On multivariate analysis, being a housewife, higher NO 2 levels and high traffic density were associated with higher degrees of annoyance. ConclusionsThere was a high percentage of women who perceived medium-high annoyance due to noise and air pollution. Annoyance caused by environmental pollutants could lead to some psychological effects, which impair the quality of life, or even physiological ones, which affect prenatal development.

  17. Small foamed polystyrene shield protects low-frequency microphones from wind noise

    NASA Technical Reports Server (NTRS)

    Tedrick, R. N.

    1964-01-01

    A foamed polystyrene noise shield for microphones has been designed in teardrop shape to minimize air turbulence. The shield slips on and off the microphone head easily and is very effective in low-frequency sound intensity measurements.

  18. Sounds Alive: A Noise Workbook.

    ERIC Educational Resources Information Center

    Dickman, Donna McCord

    Sarah Screech, Danny Decibel, Sweetie Sound and Neil Noisy describe their experiences in the world of sound and noise to elementary students. Presented are their reports, games and charts which address sound measurement, the effects of noise on people, methods of noise control, and related areas. The workbook is intended to stimulate students'…

  19. School Noise and Its Control

    ERIC Educational Resources Information Center

    Ikenberrgy, Larry D.

    1974-01-01

    Sources of noises affecting schools and their hindrance of learning are presented. Noise levels for different activities are tabled and possible methods for controlling such noises are suggested. Internal to the school, shop and music levels are the most severe. More care in site selection and design considerations are recommended. (LS)

  20. Rotary wing aerodynamically generated noise

    NASA Technical Reports Server (NTRS)

    Schmitz, F. J.; Morse, H. A.

    1982-01-01

    The history and methodology of aerodynamic noise reduction in rotary wing aircraft are presented. Thickness noise during hover tests and blade vortex interaction noise are determined and predicted through the use of a variety of computer codes. The use of test facilities and scale models for data acquisition are discussed.

  1. Practical Ranges of Loudness Levels of Various Types of Environmental Noise, Including Traffic Noise, Aircraft Noise, and Industrial Noise

    PubMed Central

    Salomons, Erik M.; Janssen, Sabine A.

    2011-01-01

    In environmental noise control one commonly employs the A-weighted sound level as an approximate measure of the effect of noise on people. A measure that is more closely related to direct human perception of noise is the loudness level. At constant A-weighted sound level, the loudness level of a noise signal varies considerably with the shape of the frequency spectrum of the noise signal. In particular the bandwidth of the spectrum has a large effect on the loudness level, due to the effect of critical bands in the human hearing system. The low-frequency content of the spectrum also has an effect on the loudness level. In this note the relation between loudness level and A-weighted sound level is analyzed for various environmental noise spectra, including spectra of traffic noise, aircraft noise, and industrial noise. From loudness levels calculated for these environmental noise spectra, diagrams are constructed that show the relation between loudness level, A-weighted sound level, and shape of the spectrum. The diagrams show that the upper limits of the loudness level for broadband environmental noise spectra are about 20 to 40 phon higher than the lower limits for narrowband spectra, which correspond to the loudness levels of pure tones. The diagrams are useful for assessing limitations and potential improvements of environmental noise control methods and policy based on A-weighted sound levels. PMID:21776205

  2. Noise in biology

    NASA Astrophysics Data System (ADS)

    Tsimring, Lev S.

    2014-02-01

    Noise permeates biology on all levels, from the most basic molecular, sub-cellular processes to the dynamics of tissues, organs, organisms and populations. The functional roles of noise in biological processes can vary greatly. Along with standard, entropy-increasing effects of producing random mutations, diversifying phenotypes in isogenic populations, limiting information capacity of signaling relays, it occasionally plays more surprising constructive roles by accelerating the pace of evolution, providing selective advantage in dynamic environments, enhancing intracellular transport of biomolecules and increasing information capacity of signaling pathways. This short review covers the recent progress in understanding mechanisms and effects of fluctuations in biological systems of different scales and the basic approaches to their mathematical modeling.

  3. Scaling aircraft noise perception.

    NASA Technical Reports Server (NTRS)

    Ollerhead, J. B.

    1973-01-01

    Following a brief review of the background to the study, an extensive experiment is described which was undertaken to assess the practical differences between numerous alternative methods for calculating the perceived levels of individual aircraft flyover wounds. One hundred and twenty recorded sounds, including jets, turboprops, piston aircraft and helicopters were rated by a panel of subjects in a pair comparison test. The results were analyzed to evaluate a number of noise rating procedures, in terms of their ability to accurately estimate both relative and absolute perceived noise levels over a wider dynamic range (84-115 dB SPL) than had generally been used in previous experiments. Performances of the different scales were examined in detail for different aircraft categories, and the merits of different band level summation procedures, frequency weighting functions, duration and tone corrections were investigated.

  4. Active noise reduction

    NASA Astrophysics Data System (ADS)

    Geyer, Carolyn R.

    Active noise reduction (ANR) techniques are described with reference to their application to crewmembers during aircraft operation to enhance productivity and safety. ANR concepts and theory are explained, and the development of protective ANR systems for direct implementation are described. Sound attenuation testing was conducted to study the feasibility of aircraft-powered ANR systems, and the positive results spurred their development for compatibility with flight helmets. The Helmets Limited ANR system uses a bypass mode at times of limited available power and complements the use of passive sound attenuation. Subjective testing results show that the device is effective, and a planned program of intensive evaluation is discussed. The aircraft that require an ANR system are listed, and key areas of implementation include battery power and the combination of ANR circuitry and helmet oxygen masks. It is suggested that ANR techniques can positively impact the efficiency and performance of crewmembers in high-noise-level aircraft.

  5. Noise in Biology

    PubMed Central

    Tsimring, Lev S.

    2014-01-01

    Noise permeates biology on all levels, from the most basic molecular, sub-cellular processes to the dynamics of tissues, organs, organisms, and populations. The functional roles of noise in biological processes can vary greatly. Along with standard, entropy-increasing effects of producing random mutations, diversifying phenotypes in isogenic populations, limiting information capacity of signaling relays, it occasionally plays more surprising constructive roles by accelerating the pace of evolution, providing selective advantage in dynamic environments, enhancing intracellular transport of biomolecules and increasing information capacity of signaling pathways. This short review covers the recent progress in understanding mechanisms and effects of fluctuations in biological systems of different scales and the basic approaches to their mathematical modeling. PMID:24444693

  6. Supersonics--Airport Noise

    NASA Technical Reports Server (NTRS)

    Bridges, James

    2007-01-01

    At this, the first year-end meeting of the Fundamental Aeronautics Program, an overview of the Airport Noise discipline of the Supersonics Project leads the presentation of technical plans and achievements in this area of the Project. The overview starts by defining the Technical Challenges targeted by Airport Noise efforts, and the Approaches planned to meet these challenges. These are fleshed out in Elements, namely Prediction, Diagnostics, and Engineering, and broken down into Tasks. The Tasks level is where individual researchers' work is defined and from whence the technical presentations to follow this presentation come. This overview also presents the Milestones accomplished to date and to be completed in the next year. Finally, the NASA Research Announcement cooperative agreement activities are covered and tied to the Tasks and Milestones.

  7. 75 FR 9327 - Aircraft Noise Certification Documents for International Operations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-02

    ... of the national standards laboratories of the United States, Canada, the United Kingdom, Australia... carriage of noise certification documents on board aircraft that leave the United States (73 FR 63098). A... standard since other countries may not recognize the underlying U.S. system. For U.S. air...

  8. Bloch vector projection noise

    NASA Technical Reports Server (NTRS)

    Wang, Li-Jun; Bacon, A. M.; Zhao, H.-Z.; Thomas, J. E.

    1994-01-01

    In the optical measurement of the Bloch vector components describing a system of N two-level atoms, the quantum fluctuations in these components are coupled into the measuring optical field. This paper develops the quantum theory of optical measurement of Bloch vector projection noise. The preparation and probing of coherence in an effective two-level system consisting of the two ground states in an atomic three-level lambda-scheme are analyzed.

  9. Noise Emission Assessment

    NASA Astrophysics Data System (ADS)

    Hübner, G.; Schorer, E.

    The acoustical efficiency of machines varies in the range of 10-9 to 10-5. This means even high power machines generate sound powers of a few Watts only. Due to the high sensitivity of the human ear however, such low sound powers create close to the machine loudnesses higher than 100 phon (64 sone). Consequently, the assessment of machinery noise emission requires relations to these subjective properties.

  10. Aerodynamic noise sources

    NASA Astrophysics Data System (ADS)

    Munin, A. G.; Kuznetsov, V. M.; Leontev, E. A.

    A general theory is developed for aerodynamic sound generation and its propagation in an inhomogeneous medium. Results of theoretical and experimental studies of the acoustic characteristics of jets are discussed, and a solution is presented to the problem concerning the noise from a section, free rotor, and a rotor located inside a channel. Sound propagation in a channel with flow and selection of soundproofing liners for the channel walls are also discussed.

  11. Cabin acoustical noise

    NASA Astrophysics Data System (ADS)

    Homick, J. L.

    1981-12-01

    Using a hand-held sound pressure level meter the crew made one octave band and A-weight sound level measurements at four locations in the Orbiter on Mission Day 1. The data were voice recorded and transmitted to the ground prior to the first inflight sleep period. The data obtained are summarized. From a physiological point of view the noise levels measured on STS-1 were not hazardous to the crewmens' hearing.

  12. Noise suppressor for turbo fan jet engines

    NASA Technical Reports Server (NTRS)

    Cheng, D. Y. (Inventor)

    1983-01-01

    A noise suppressor is disclosed for installation on the discharge or aft end of a turbo fan engine. Within the suppressor are fixed annular airfoils which are positioned to reduce the relative velocity between the high temperature fast moving jet exhaust and the low temperature slow moving air surrounding it. Within the suppressor nacelle is an exhaust jet nozzle which constrains the shape of the jet exhaust to a substantially uniform elongate shape irrespective of the power setting of the engine. Fixed ring airfoils within the suppressor nacelle therefore have the same salutary effects irrespective of the power setting at which the engine is operated.

  13. Control of jet noise

    NASA Technical Reports Server (NTRS)

    Schreck, Stefan

    1993-01-01

    This reports describes experiments conducted at the High-Speed Jet Facility at the University of Southern California on supersonic jets. The goal of the study was to develop methods for controlling the noise emitted from supersonic jets by passive and/or active means. Work by Seiner et al (1991) indicates that eddy Mach wave radiation is the dominant noise source in a heated high speed jet. Eddy Mach radiation is caused by turbulent eddies traveling at supersonic speed in the shear layer of the jet. The convection velocity of the eddies decays with increasing distance from the nozzle exit due to the mixing of the jet stream with the ambient fluid. Once the convection speed reaches subsonic velocities, eddy Mach wave radiation ceases. To control noise, a rapid decay of the convection velocity is desired. This may be accomplished by enhanced mixing in the jet. In this study, small aspect ratio rectangular jet nozzles were tested. A flapping mode was noticed in the jets. By amplifying screech components of the jets and destabilizing the jet columns with a collar device, the flapping mode was excited. The result was a rapid decay of the jet velocity. A reduction in eddy Mach radiation in rectangular supersonic jets may be achieved with this device.

  14. Control of jet noise

    NASA Astrophysics Data System (ADS)

    Schreck, Stefan

    This reports describes experiments conducted at the High-Speed Jet Facility at the University of Southern California on supersonic jets. The goal of the study was to develop methods for controlling the noise emitted from supersonic jets by passive and/or active means. Work by Seiner et al (1991) indicates that eddy Mach wave radiation is the dominant noise source in a heated high speed jet. Eddy Mach radiation is caused by turbulent eddies traveling at supersonic speed in the shear layer of the jet. The convection velocity of the eddies decays with increasing distance from the nozzle exit due to the mixing of the jet stream with the ambient fluid. Once the convection speed reaches subsonic velocities, eddy Mach wave radiation ceases. To control noise, a rapid decay of the convection velocity is desired. This may be accomplished by enhanced mixing in the jet. In this study, small aspect ratio rectangular jet nozzles were tested. A flapping mode was noticed in the jets. By amplifying screech components of the jets and destabilizing the jet columns with a collar device, the flapping mode was excited. The result was a rapid decay of the jet velocity. A reduction in eddy Mach radiation in rectangular supersonic jets may be achieved with this device.

  15. The effects of aquaculture noise on hearing, growth and disease resistance of rainbow trout Oncorhynchus mykiss

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Intensive aquaculture production often utilizes equipment (e.g., aerators, air and water pumps, harvesters, blowers, filtration systems, and maintenance machinery) that increases noise levels in fish culture tanks. Consequently, chronic exposure to elevated noise levels in tanks could negatively imp...

  16. Effects of aquaculture noise on hearing, growth, and disease resistance of rainbow trout Oncorhynchus mykiss

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Intensive aquaculture production often utilizes equipment (e.g., aerators, air and water pumps, harvesters, blowers, filtration systems, and maintenance machinery) that increases noise levels in fish culture tanks. Consequently, chronic exposure to elevated noise levels in tanks could negatively imp...

  17. Application of stiffened cylinder analysis to ATP interior noise studies

    NASA Technical Reports Server (NTRS)

    Wilby, E. G.; Wilby, J. F.

    1983-01-01

    An analytical model developed to predict the interior noise of propeller driven aircraft was applied to experimental configurations for a Fairchild Swearingen Metro II fuselage exposed to simulated propeller excitation. The floor structure of the test fuselage was of unusual construction - mounted on air springs. As a consequence, the analytical model was extended to include a floor treatment transmission coefficient which could be used to describe vibration attenuation through the mounts. Good agreement was obtained between measured and predicted noise reductions when the foor treatment transmission loss was about 20 dB - a value which is consistent with the vibration attenuation provided by the mounts. The analytical model was also adapted to allow the prediction of noise reductions associated with boundary layer excitation as well as propeller and reverberant noise.

  18. [Aviation noise: specifics of the biological action and protection].

    PubMed

    2012-01-01

    Purpose of the work was to examine the acoustic and work environment of air forces personnel, to look for the specific effects of aviation noise on human organism, and to put out evidence-based guidelines for protection. On-site acoustics measurements, hygiene inspection of labor conditions and analysis of disease incidence including review of clinical investigations results were carried out. It was demonstrated that the aviation noise spectrum spreads to the sound and infrasound high-frequency bands referring the aviation personnel environment to class 3.2-4 of harmful and hazardous occupations. The combination of noise and infrasound provokes specific (occupational) and nonspecific diseases. Choice of the protectors should be made with consideration of specifics of the biological effects of aviation noise. PMID:22953534

  19. Noise radiated from a rotating submerged elastic cylindrical thin shell

    NASA Astrophysics Data System (ADS)

    Caspall, Jayme J.; Yoda, Minami; Rogers, Peter H.

    2002-11-01

    Although the aeroacoustics of high Reynolds number boundary layers is reasonably well understood, less is known about the hydroacoustics of such flows, and the effect of fluid loading. The noise generated by the turbulent boundary layer around an elastic, thin-walled and cylindrical shell rotating in quiescent water was studied in the Georgia Tech. Underwater Acoustic Tank for Reynolds numbers up to 200000. The steel shell, which is filled with air, has a diameter D of 0.625 m, a wall thickness of 0.004D, and an aspect ratio of unity; the tank dimensions are 19D by 12D by 11D. Extraneous noise sources (e.g., bearing and motor vibration) were isolated from the net signal to estimate flow noise. Radiated noise power was calculated from hydrophone data under a diffuse field assumption. To our knowledge, these results are unique in both their structural acoustics and fluid mechanics scaling.

  20. Workshop on Jet Exhaust Noise Reduction for Tactical Aircraft - NASA Perspective

    NASA Technical Reports Server (NTRS)

    Huff, Dennis L.; Henderson, Brenda S.

    2007-01-01

    Jet noise from supersonic, high performance aircraft is a significant problem for takeoff and landing operations near air bases and aircraft carriers. As newer aircraft with higher thrust and performance are introduced, the noise tends to increase due to higher jet exhaust velocities. Jet noise has been a subject of research for over 55 years. Commercial subsonic aircraft benefit from changes to the engine cycle that reduce the exhaust velocities and result in significant noise reduction. Most of the research programs over the past few decades have concentrated on commercial aircraft. Progress has been made by introducing new engines with design features that reduce the noise. NASA has recently started a new program called "Fundamental Aeronautics" where three projects (subsonic fixed wing, subsonic rotary wing, and supersonics) address aircraft noise. For the supersonics project, a primary goal is to understand the underlying physics associated with jet noise so that improved noise prediction tools and noise reduction methods can be developed for a wide range of applications. Highlights from the supersonics project are presented including prediction methods for broadband shock noise, flow measurement methods, and noise reduction methods. Realistic expectations are presented based on past history that indicates significant jet noise reduction cannot be achieved without major changes to the engine cycle. NASA s past experience shows a few EPNdB (effective perceived noise level in decibels) can be achieved using low noise design features such as chevron nozzles. Minimal thrust loss can be expected with these nozzles (< 0.5%) and they may be retrofitted on existing engines. In the long term, it is desirable to use variable cycle engines that can be optimized for lower jet noise during takeoff operations and higher thrust for operational performance. It is also suggested that noise experts be included early in the design process for engine nozzle systems to participate

  1. Noise-induced annoyance and morbidity results from the pan-European LARES study.

    PubMed

    Niemann, H; Bonnefoy, X; Braubach, M; Hecht, K; Maschke, C; Rodrigues, C; Röbbel, N

    2006-01-01

    Traffic noise (road noise, railway noise, aircraft noise, noise of parking cars), is the most dominant source of annoyance in the living environment of many European countries. This is followed by neighbourhood noise (neighbouring apartments, staircase and noise within the apartment). The subjective experience of noise stress can, through central nervous processes, lead to an inadequate neuro-endocrine reaction and finally lead to regulatory diseases. Within the context of the LARES-survey (Large Analysis and Review of European housing and health Status), noise annoyance in the housing environment was collected and evaluated in connection with medically diagnosed illnesses. Adults who indicated chronically severe annoyance by neighbourhood noise were found to have an increased health risk for the cardiovascular system and the movement apparatus, as well as an increased risk of depression and migraine. Furthermore adults with chronically strong annoyance by traffic noise additionally showed an increased risk for respiratory health problems. With regards to older people both neighbourhood and traffic noise indicated in general a lower risk of noise annoyance induced illness than in adults. It can be assumed that the effect of noise-induced annoyance in older people is concealed by physical consequences of age (with a strong increase of illnesses). With children the effects of noise-induced annoyance from traffic, as well as neighbourhood noise, are evident in the respiratory system. The increased risk of illness in the respiratory system in children does not seem to be caused primarily by air pollutants, but rather, as the results for neighbourhood noise demonstrate, by emotional stress. PMID:17687182

  2. 76 FR 57644 - Air Installations Compatible Use Zones

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-16

    ... of the Secretary 32 CFR Part 256 Air Installations Compatible Use Zones AGENCY: Department of Defense. ACTION: Final rule. SUMMARY: This final rule removes the DoD's rule concerning air installations...; Federal buildings and facilities; navigation (air); noise control. PART 256-- 0 Accordingly, by...

  3. Noise tolerant spatiotemporal chaos computing

    SciTech Connect

    Kia, Behnam; Kia, Sarvenaz; Ditto, William L.; Lindner, John F.; Sinha, Sudeshna

    2014-12-01

    We introduce and design a noise tolerant chaos computing system based on a coupled map lattice (CML) and the noise reduction capabilities inherent in coupled dynamical systems. The resulting spatiotemporal chaos computing system is more robust to noise than a single map chaos computing system. In this CML based approach to computing, under the coupled dynamics, the local noise from different nodes of the lattice diffuses across the lattice, and it attenuates each other's effects, resulting in a system with less noise content and a more robust chaos computing architecture.

  4. Handbook for industrial noise control

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The basic principles of sound, measuring techniques, and instrumentation associated with general purpose noise control are discussed. Means for identifying and characterizing a noise problem so that subsequent work may provide the most efficient and cost effective solution are outlined. A methodology for choosing appropriate noise control materials and the proper implementation of control procedures is detailed. The most significant NASA sponsored contributions to the state of the art development of optimum noise control technologies are described including cases in which aeroacoustics and related research have shed some light on ways of reducing noise generation at its source.

  5. Emerging Community Noise Reduction Approaches

    NASA Technical Reports Server (NTRS)

    Envia, Edmane

    2012-01-01

    An overview of the current NASA research portfolio in the area of aircraft noise reduction is presented. The emphasis of the research described herein is on meeting the aggressive near- and mid-term national goals for reducing aircraft noise emissions, which NASA internal studies have shown to be feasible using noise reduction technologies currently being developed in-house or in partnership with NASA s industry and academic partners. While NASA has an active research effort in airframe noise reduction, this overview focuses on propulsion noise reduction only.

  6. Fan Noise Reduction: An Overview

    NASA Technical Reports Server (NTRS)

    Envia, Edmane

    2001-01-01

    Fan noise reduction technologies developed as part of the engine noise reduction element of the Advanced Subsonic Technology Program are reviewed. Developments in low-noise fan stage design, swept and leaned outlet guide vanes, active noise control, fan flow management, and scarfed inlet are discussed. In each case, a description of the method is presented and, where available, representative results and general conclusions are discussed. The review concludes with a summary of the accomplishments of the AST-sponsored fan noise reduction research and a few thoughts on future work.

  7. Audiometric profile of civilian pilots according to noise exposure

    PubMed Central

    Falcão, Taiana Pacheco; Luiz, Ronir Raggio; Schütz, Gabriel Eduardo; Mello, Márcia Gomide da Silva; Câmara, Volney de Magalhães

    2014-01-01

    OBJECTIVE To evaluate the audiometric profile of civilian pilots according to the noise exposure level. METHODS This observational cross-sectional study evaluated 3,130 male civilian pilots aged between 17 and 59 years. These pilots were subjected to audiometric examinations for obtaining or revalidating the functional capacity certificate in 2011. The degree of hearing loss was classified as normal, suspected noise-induced hearing loss, and no suspected hearing loss with other associated complications. Pure-tone air-conduction audiometry was performed using supra-aural headphones and acoustic stimulus of the pure-tone type, containing tone thresholds of frequencies between 250 Hz and 6,000 Hz. The independent variables were professional categories, length of service, hours of flight, and right or left ear. The dependent variable was pilots with suspected noise-induced hearing loss. The noise exposure level was considered low/medium or high, and the latter involved periods > 5,000 flight hours and > 10 years of flight service. RESULTS A total of 29.3% pilots had suspected noise-induced hearing loss, which was bilateral in 12.8% and predominant in the left ear (23.7%). The number of pilots with suspected hearing loss increased as the noise exposure level increased. CONCLUSIONS Hearing loss in civilian pilots may be associated with noise exposure during the period of service and hours of flight. PMID:25372170

  8. The Airframe Noise Reduction Challenge

    NASA Technical Reports Server (NTRS)

    Lockhard, David P.; Lilley, Geoffrey M.

    2004-01-01

    The NASA goal of reducing external aircraft noise by 10 dB in the near-term presents the acoustics community with an enormous challenge. This report identifies technologies with the greatest potential to reduce airframe noise. Acoustic and aerodynamic effects will be discussed, along with the likelihood of industry accepting and implementing the different technologies. We investigate the lower bound, defined as noise generated by an aircraft modified with a virtual retrofit capable of eliminating all noise associated with the high lift system and landing gear. However, the airframe noise of an aircraft in this 'clean' configuration would only be about 8 dB quieter on approach than current civil transports. To achieve the NASA goal of 10 dB noise reduction will require that additional noise sources be addressed. Research shows that energy in the turbulent boundary layer of a wing is scattered as it crosses trailing edge. Noise generated by scattering is the dominant noise mechanism on an aircraft flying in the clean configuration. Eliminating scattering would require changes to much of the aircraft, and practical reduction devices have yet to receive serious attention. Evidence suggests that to meet NASA goals in civil aviation noise reduction, we need to employ emerging technologies and improve landing procedures; modified landing patterns and zoning restrictions could help alleviate aircraft noise in communities close to airports.

  9. Proceedings of noise-con 91

    SciTech Connect

    Quinlan, D.A.; Prasad, M.G.

    1991-01-01

    This volume covers the following topics related to noise control: control of mine ventilation fans; physical phenomena; gas turbine exhaust system silencing; computer models for estimating electric utility environmental noise; noise from rotary coal car unloading; noise analysis.

  10. Pressure dependence of jet noise and silencing of blow-offs

    NASA Astrophysics Data System (ADS)

    Maa, D.-Y.; Li, P.-Z.

    1981-12-01

    Improvements in methods of jet noise prediction and reduction are discussed. Measurements were performed on a cold-air jet exiting through convergent nozzles of varying diameters, and on superheated jet streams at an oil refinery. A critical value was determined for the stagnation pressure, beyond which the jet becomes choked and shock-cell noise occurs along with turbulent noise. The turbulent noise was isolated by making the lip of the jet irregular, then measuring the A-weighted sound level. Blow-down studies were also made of the shock-cell noise, which was found to happen above the frequency peak of the turbulent noise. The interaction of microjets grouped together is considered, noting that a form of the Coanda effect causes the formation of a single jet. A micropore muffler is presented, which consists of a pipe drilled with many holes, and a diffuse-muffler is mentioned, which contains randomly distributed holes internally to dampen the noise emission.

  11. Results of the flight noise measurement program using a standard and modified SH-3A helicopter

    NASA Technical Reports Server (NTRS)

    Pegg, R. J.; Henderson, H. R.; Hilton, D. A.

    1973-01-01

    A field noise measurement program has been conducted using both a standard SH-3A helicopter and an SH-3A helicopter modified to reduce external noise levels. Modifications included reducing rotor speed, increasing the number of rotor blades, modifying the blade-tip shapes, and acoustically treating the engine air intakes and exhaust. The purpose of this study was to document the noise characteristics recorded on the ground of each helicopter during flyby, hover, landing, and take-off operations. Based on an analysis of the measured results, the average of the overhead, overall, ontrack noise levels was approximately 4 db lower for the modified helicopter than for the standard helicopter. The improved in-flight noise characteristics, and associated small footprint areas and time durations, were judged to be mainly due to tail-rotor noise reductions. The noise reductions were obtained at the expense of required power increases at airspeeds greater than 70 knots for the modified helicopter.

  12. Air resources

    SciTech Connect

    1995-10-01

    This section describes the ambient (surrounding) air quality of the TVA region, discusses TVA emission contributions to ambient air quality, and identifies air quality impacts to human health and welfare. Volume 2 Technical Document 2, Environmental Consequences, describes how changes in TVA emissions could affect regional air quality, human health, environmental resources, and materials. The primary region of the affected environment is broadly defined as the state of Tennessee, as well as southern Kentucky, western Virginia, southern West Virginia, western North Carolina, and northern Georgia, Alabama, and Mississippi. This area represents the watershed of the Tennessee River and the 201 counties of the greater TVA service area. Emissions from outside the Tennessee Valley region contribute to air quality in the Valley. Also, TVA emissions are transported outside the Valley and have some impact on air quality beyond the primary study area. Although the study area experiences a number of air quality problems, overall air quality is good.

  13. Auralization Architectures for NASA?s Next Generation Aircraft Noise Prediction Program

    NASA Technical Reports Server (NTRS)

    Rizzi, Stephen A.; Lopes, Leonard V.; Burley, Casey L.; Aumann, Aric R.

    2013-01-01

    Aircraft community noise is a significant concern due to continued growth in air traffic, increasingly stringent environmental goals, and operational limitations imposed by airport authorities. The assessment of human response to noise from future aircraft can only be afforded through laboratory testing using simulated flyover noise. Recent work by the authors demonstrated the ability to auralize predicted flyover noise for a state-of-the-art reference aircraft and a future hybrid wing body aircraft concept. This auralization used source noise predictions from NASA's Aircraft NOise Prediction Program (ANOPP) as input. The results from this process demonstrated that auralization based upon system noise predictions is consistent with, and complementary to, system noise predictions alone. To further develop and validate the auralization process, improvements to the interfaces between the synthesis capability and the system noise tools are required. This paper describes the key elements required for accurate noise synthesis and introduces auralization architectures for use with the next-generation ANOPP (ANOPP2). The architectures are built around a new auralization library and its associated Application Programming Interface (API) that utilize ANOPP2 APIs to access data required for auralization. The architectures are designed to make the process of auralizing flyover noise a common element of system noise prediction.

  14. Auditory Risk of Air Rifles

    PubMed Central

    Lankford, James E.; Meinke, Deanna K.; Flamme, Gregory A.; Finan, Donald S.; Stewart, Michael; Tasko, Stephen; Murphy, William J.

    2016-01-01

    Objective To characterize the impulse noise exposure and auditory risk for air rifle users for both youth and adults. Design Acoustic characteristics were examined and the auditory risk estimates were evaluated using contemporary damage-risk criteria for unprotected adult listeners and the 120-dB peak limit and LAeq75 exposure limit suggested by the World Health Organization (1999) for children. Study sample Impulses were generated by 9 pellet air rifles and 1 BB air rifle. Results None of the air rifles generated peak levels that exceeded the 140 dB peak limit for adults and 8 (80%) exceeded the 120 dB peak SPL limit for youth. In general, for both adults and youth there is minimal auditory risk when shooting less than 100 unprotected shots with pellet air rifles. Air rifles with suppressors were less hazardous than those without suppressors and the pellet air rifles with higher velocities were generally more hazardous than those with lower velocities. Conclusion To minimize auditory risk, youth should utilize air rifles with an integrated suppressor and lower velocity ratings. Air rifle shooters are advised to wear hearing protection whenever engaging in shooting activities in order to gain self-efficacy and model appropriate hearing health behaviors necessary for recreational firearm use. PMID:26840923

  15. Air Pollution.

    ERIC Educational Resources Information Center

    Gilpin, Alan

    A summary of one of our most pressing environmental problems, air pollution, is offered in this book by the Director of Air Pollution Control for the Queensland (Australia) State Government. Discussion of the subject is not restricted to Queensland or Australian problems and policies, however, but includes analysis of air pollution the world over.…

  16. Combustion intensity and distribution relation to noise generation

    NASA Technical Reports Server (NTRS)

    Plett, E. G.; Leshner, M. D.; Summerfield, M.

    1975-01-01

    Experiments with several different flame holder geometries were conducted to investigate the degree to which combustion roughness can be altered by altering the flame intensity and flame distribution in a ducted combustion system. The effect of admitting primary air through a plane-slotted or a slotted-swirl vane flame holder was compared and the combustion roughness and noise was contrasted with that obtained with a closed front-end perforated can. The slotted front-end burners produced much smoother burning and less noise than the closed front-end can. No advantage was apparent with swirl vs nonswirl when approximately the same inlet flow distribution was maintained. Preheated inlet air provided somewhat smoother combustion as compared with ambient temperature air. The combustion roughness with methyl alcohol was briefly compared with that of isooctane; indications are that it burns more smoothly, but more detailed studies are needed to substantiate these indications.

  17. Imaging with ambient noise

    SciTech Connect

    Snieder, Roel; Wapenaar, Kees

    2010-09-15

    Recent developments in seismology, ultrasonics, and underwater acoustics have led to a radical change in the way scientists think about ambient noise--the diffuse waves generated by pressure fluctuations in the atmosphere, the scattering of water waves in the ocean, and any number of other sources that pervade our world. Because diffuse waves consist of the superposition of waves propagating in all directions, they appear to be chaotic and random. That appearance notwithstanding, diffuse waves carry information about the medium through which they propagate.

  18. Acoustics of Jet Surface Interaction - Scrubbing Noise

    NASA Technical Reports Server (NTRS)

    Khavaran, Abbas

    2014-01-01

    Concepts envisioned for the future of civil air transport consist of unconventional propulsion systems in the close proximity to the structure or embedded in the airframe. While such integrated systems are intended to shield noise from the community, they also introduce new sources of sound. Sound generation due to interaction of a jet flow past a nearby solid surface is investigated here using the generalized acoustic analogy theory. The analysis applies to the boundary layer noise generated at and near a wall, and excludes the scattered noise component that is produced at the leading or the trailing edge. While compressibility effects are relatively unimportant at very low Mach numbers, frictional heat generation and thermal gradient normal to the surface could play important roles in generation and propagation of sound in high speed jets of practical interest. A general expression is given for the spectral density of the far field sound as governed by the variable density Pridmore-Brown equation. The propagation Green's function is solved numerically for a high aspect-ratio rectangular jet starting with the boundary conditions on the surface and subject to specified mean velocity and temperature profiles between the surface and the observer. It is shown the magnitude of the Green's function decreases with increasing source frequency and/or jet temperature. The phase remains constant for a rigid surface, but varies with source location when subject to an impedance type boundary condition. The Green's function in the absence of the surface, and flight effects are also investigated

  19. A noise assessment and prediction system

    NASA Astrophysics Data System (ADS)

    Olsen, Robert O.; Noble, John M.

    1990-12-01

    A system has been designed to provide an assessment of noise levels that result from testing activities at Aberdeen Proving Ground, Md. The system receives meteorological data from surface stations and an upper air sounding system. The data from these systems are sent to a meteorological model, which provides forecasting conditions for up to three hours from the test time. The meteorological data are then used as input into an acoustic ray trace model which projects sound level contours onto a two-dimensional display of the surrounding area. This information is sent to the meteorological office for verification, as well as the range control office, and the environmental office. To evaluate the noise level predictions, a series of microphones are located off the reservation to receive the sound and transmit this information back to the central display unit. The computer models are modular allowing for a variety of models to be utilized and tested to achieve the best agreement with data. This technique of prediction and model validation will be used to improve the noise assessment system.

  20. A noise assessment and prediction system

    NASA Technical Reports Server (NTRS)

    Olsen, Robert O.; Noble, John M.

    1990-01-01

    A system has been designed to provide an assessment of noise levels that result from testing activities at Aberdeen Proving Ground, Md. The system receives meteorological data from surface stations and an upper air sounding system. The data from these systems are sent to a meteorological model, which provides forecasting conditions for up to three hours from the test time. The meteorological data are then used as input into an acoustic ray trace model which projects sound level contours onto a two-dimensional display of the surrounding area. This information is sent to the meteorological office for verification, as well as the range control office, and the environmental office. To evaluate the noise level predictions, a series of microphones are located off the reservation to receive the sound and transmit this information back to the central display unit. The computer models are modular allowing for a variety of models to be utilized and tested to achieve the best agreement with data. This technique of prediction and model validation will be used to improve the noise assessment system.

  1. Noise attenuation properties of headsets in a helicopter noise environment

    NASA Astrophysics Data System (ADS)

    Lower, M. C.; Wheeler, P. D.

    Ten subjects wearing each of four headset types were exposed to two helicopter noise environments and the noise received at the ear was measured. The evaluation shows the relative attenuation performance between the headset types; it also shows the effect of live-microphone communication systems on the noise levels being presented to helicopter pilots. Results are compared with a UK noise environment standard. Flight simulation shows that a lightweight headset causes the sound levels required for auditory warnings to be excessive below 1 kHz. Aircrew wearing this headset in this envionment are exposed to hazardous noise levels even with exposures as short as a few minutes. Repeated exposure is likely to damage their hearing. Earmuff or helmet based headsets are likely to be satisfactory since they do not require auditory warnings to be presented at excessive levels and noise levels at the ear are likely to be within acceptable limits.

  2. Oscillator PM Noise Reduction From Correlated AM Noise.

    PubMed

    Hati, Archita; Nelson, Craig W; Howe, David A

    2016-03-01

    We demonstrate a novel technique for reducing the phase modulation (PM) noise of an oscillator in a steady-state condition as well as under vibration. It utilizes correlation between PM noise and amplitude modulation (AM) noise that can originate from the oscillator's loop components. A control voltage proportional to the correlated AM noise is generated and utilized in a feedforward architecture to correct for the steady state as well as the vibration-induced PM noise. An improvement of almost 10-15 dB in PM noise is observed over one decade of offset frequencies for a 635-MHz quartz-MEMS oscillator. This corresponds to more than a factor of five reductions in vibration sensitivity.

  3. Prediction of Externally Blown Flap Noise and Turbomachinery Strut Noise

    NASA Technical Reports Server (NTRS)

    Fink, M. R.

    1975-01-01

    Methods were developed for predicting externally blown flap (EBF) noise and turbomachinery strut noise. Noise radiated by under-the-wing and upper-surface-blowing EBF configurations is calculated as a sum of lift dipole noise, trailing edge noise, and jet quadrupole noise. Resulting predictions of amplitudes and spectra generally were in good agreement with data from small-scale models. These data cover a range of exhaust velocity, flap deflection, exhaust nozzle position, exhaust nozzle shape, and ratio of exhaust nozzle diameter to wing chord. A semi-empirical method for predicting dipole noise radiation from a strut with incident turbulence was in good agreement with data. Leading-edge regions made of perforated plate backed by a bulk acoustic absorber achieved up to 7 db reduction of strut noise caused by incident turbulence at high frequencies. Radial turbulence in a turbofan exit duct was found to have a relatively high level associated with the mean velocity defect in the rotor blade wakes. Use of these turbulence spectra and a dipole noise radiation equation gave general prediction of measured aft-radiated sound power caused by a splitter ring in a full-scale fan exit duct.

  4. Low-noise SQUID

    DOEpatents

    Dantsker, Eugene; Clarke, John

    2000-01-01

    The present invention comprises a high-transition-temperature superconducting device having low-magnitude low-frequency noise-characteristics in magnetic fields comprising superconducting films wherein the films have a width that is less than or equal to a critical width, w.sub.C, which depends on an ambient magnetic field. For operation in the Earth's magnetic field, the critical width is about 6 micrometers (.mu.m). When made with film widths of about 4 .mu.m an inventive high transition-temperature, superconducting quantum interference device (SQUID) excluded magnetic flux vortices up to a threshold ambient magnetic field of about 100 microTesla (.mu.T). SQUIDs were fabricated having several different film strip patterns. When the film strip width was kept at about 4 .mu.m, the SQUIDs exhibited essentially no increase in low-frequency noise, even when cooled in static magnetic fields of magnitude up to 100 .mu.T. Furthermore, the mutual inductance between the inventive devices and a seven-turn spiral coil was at least 85% of that for inductive coupling to a conventional SQUID.

  5. Active Control of Wind Tunnel Noise

    NASA Technical Reports Server (NTRS)

    Hollis, Patrick (Principal Investigator)

    1991-01-01

    The need for an adaptive active control system was realized, since a wind tunnel is subjected to variations in air velocity, temperature, air turbulence, and some other factors such as nonlinearity. Among many adaptive algorithms, the Least Mean Squares (LMS) algorithm, which is the simplest one, has been used in an Active Noise Control (ANC) system by some researchers. However, Eriksson's results, Eriksson (1985), showed instability in the ANC system with an ER filter for random noise input. The Restricted Least Squares (RLS) algorithm, although computationally more complex than the LMS algorithm, has better convergence and stability properties. The ANC system in the present work was simulated by using an FIR filter with an RLS algorithm for different inputs and for a number of plant models. Simulation results for the ANC system with acoustic feedback showed better robustness when used with the RLS algorithm than with the LMS algorithm for all types of inputs. Overall attenuation in the frequency domain was better in the case of the RLS adaptive algorithm. Simulation results with a more realistic plant model and an RLS adaptive algorithm showed a slower convergence rate than the case with an acoustic plant as a delay plant. However, the attenuation properties were satisfactory for the simulated system with the modified plant. The effect of filter length on the rate of convergence and attenuation was studied. It was found that the rate of convergence decreases with increase in filter length, whereas the attenuation increases with increase in filter length. The final design of the ANC system was simulated and found to have a reasonable convergence rate and good attenuation properties for an input containing discrete frequencies and random noise.

  6. Scope for active noise abatement in vehicle diesel engines

    NASA Astrophysics Data System (ADS)

    Summerauer, I.; Boesch, N.

    1984-04-01

    Noise reduction measures must be directed to the engine, the exhaust system, and the cooling system (fan) all of which contribute approximately 90% of the sound energy emitted from commercial diesel trucks. The noise generation processes were visualized and limiting conditions fixed by law were considered in establishing criteria for active solar noise abatement measures. A more effective silencer and better vibration damping on the surface of the silencer and exhaust pipes can reduce noise from the exhaust system. Acoustic emission generated by the fan and air flow can be reduced by decreasing flow velocity or by turning on the fan only when a full cooling output is required (10% of the time). Active measures are needed on the engine itself either at the point of the solid-borne sound transmission or at the point of the solid-borne vibrations. The predominant effect is on the engine casing; oil sump; air suction pipe or air charge line; the flywheel casing; and the clutch housing.

  7. Fan noise research at NASA

    NASA Astrophysics Data System (ADS)

    Groeneweg, John F.

    Results of recent NASA research to reduce aircraft turbofan noise are described. As the bypass ratio of a turbofan engine increases from 5 to as much as 20, the dominant source of engine noise is the fan. A primary mechanism of tone noise generation is the rotor blade wakes interacting with downstream stator vanes. Methods of analyzing rotor-stator tone noise generation are described and sample results are given. The role of an acoustic modal description is emphasized. Wind tunnel tests of model fans and nacelles are described including a novel rotating microphone technique for modal measurement. Sample far field results are given showing the effects of inlet length, and modal measurements are shown which point to a new generation mechanism. Concepts for active fan noise control at the source are addressed. Implications of the research which have general relevance to fan noise generation and control are discussed.

  8. Fan noise research at NASA

    NASA Technical Reports Server (NTRS)

    Groeneweg, John F.

    1994-01-01

    Results of recent NASA research to reduce aircraft turbofan noise are described. As the bypass ratio of a turbofan engine increases from 5 to as much as 20, the dominant source of engine noise is the fan. A primary mechanism of tone noise generation is the rotor blade wakes interacting with downstream stator vanes. Methods of analyzing rotor-stator tone noise generation are described and sample results are given. The role of an acoustic modal description is emphasized. Wind tunnel tests of model fans and nacelles are described including a novel rotating microphone technique for modal measurement. Sample far field results are given showing the effects of inlet length, and modal measurements are shown which point to a new generation mechanism. Concepts for active fan noise control at the source are addressed. Implications of the research which have general relevance to fan noise generation and control are discussed.

  9. Passive Phase Noise Cancellation Scheme

    PubMed Central

    Kenig, Eyal; Cross, M. C.; Lifshitz, Ron; Karabalin, R. B.; Villanueva, L. G.; Matheny, M. H.; Roukes, M. L.

    2013-01-01

    We introduce a new method for reducing phase noise in oscillators, thereby improving their frequency precision. The noise reduction is realized by a passive device consisting of a pair of coupled nonlinear resonating elements that are driven parametrically by the output of a conventional oscillator at a frequency close to the sum of the linear mode frequencies. Above the threshold for parametric instability, the coupled resonators exhibit self-oscillations which arise as a response to the parametric driving, rather than by application of active feedback. We find operating points of the device for which this periodic signal is immune to frequency noise in the driving oscillator, providing a way to clean its phase noise. We present results for the effect of thermal noise to advance a broader understanding of the overall noise sensitivity and the fundamental operating limits. PMID:23004985

  10. USAF Environmental Noise Data Handbook. Volume 150: C-140 in-flight crew noise

    NASA Astrophysics Data System (ADS)

    Hille, H. K.

    1982-09-01

    The C-140 is a USAF transport aircraft used for operational support. This report provides measured data defining the bioacoustic environments at flight crew/passenger locations inside this aircraft during normal flight operations. Date are reported for seven locations in a wide variety of physical and psychoacoustic measures: overall and band sound pressure levels, C-weighted and A-weighted sound levels, preferred speech interference level, perceived noise level, and limiting times for total daily exposure of personnel with and without standard Air Force ear protectors. Refer to Volume 1 of this handbook, USAF Bioenvironmental Noise Data Handbook, Vol. 1: Organization, Content and Application, AMRL-TR-75-50(1) 1975, for discussion of the objective and design of the handbook, the types of data presented, measurement procedures, instrumentation, data processing, definitions of quantities, symbols, equations, applications, limitations, etc.

  11. USAF Bioenvironmental Noise Data Handbook. Volume 155. CH-3 in-flight crew noise

    NASA Astrophysics Data System (ADS)

    Hille, H. K.

    1982-09-01

    The CH-3 is a USAF tactical combat transport helicopter. This report provides measured data defining the bioacoustic environments at flight crew/passenger locations inside this helicopter during normal flight operations. Data are reported for nine locations in a wide variety of physical and psychoacoustic measures: overall and band sound pressure levels, C weighted and A weighted sound levels, preferred speech interference level, perceived noise levels and limiting times for total daily exposure of personnel with and without standard Air Force ear protectors. Refer to Volume 1 of this handbook, USAF Bioenvironmental Noise Data handbook, Vol. 1: Organization, Content and Application, AMRL-TR-75-50(1) 1975, for discussion of the objective and design of the handbook, the types of data presented, measurement procedures, instrumentation, data processing, definitions of quantities, symbols, equations, applications, limitations, etc.

  12. Aircraft community noise impact studies

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The objectives of the study are to: (1) conduct a program to determine the community noise impact of advanced technology engines when installed in a supersonic aircraft, (2) determine the potential reduction of community noise by flight operational techniques for the study aircraft, (3) estimate the community noise impact of the study aircraft powered by suppressed turbojet engines and by advanced duct heating turbofan engines, and (4) compare the impact of the two supersonic designs with that of conventional commercial DC-8 aircraft.

  13. Development of low noise cantilever deflection sensor for multienvironment frequency-modulation atomic force microscopy

    SciTech Connect

    Fukuma, Takeshi; Kimura, Masayuki; Kobayashi, Kei; Matsushige, Kazumi; Yamada, Hirofumi

    2005-05-15

    We have developed a low noise cantilever deflection sensor with a deflection noise density of 17 fm/{radical}(Hz) by optimizing the parameters used in optical beam deflection (OBD) method. Using this sensor, we have developed a multienvironment frequency-modulation atomic force microscope (FM-AFM) that can achieve true molecular resolution in various environments such as in moderate vacuum, air, and liquid. The low noise characteristic of the deflection sensor makes it possible to obtain a maximum frequency sensitivity limited by the thermal Brownian motion of the cantilever in every environment. In this paper, the major noise sources in OBD method are discussed in both theoretical and experimental aspects. The excellent noise performance of the deflection sensor is demonstrated in deflection and frequency measurements. True molecular-resolution FM-AFM images of a polydiacetylene single crystal taken in vacuum, air, and water are presented.

  14. Methods for designing treatments to reduce interior noise of predominant sources and paths in a single engine light aircraft

    NASA Technical Reports Server (NTRS)

    Hayden, Richard E.; Remington, Paul J.; Theobald, Mark A.; Wilby, John F.

    1985-01-01

    The sources and paths by which noise enters the cabin of a small single engine aircraft were determined through a combination of flight and laboratory tests. The primary sources of noise were found to be airborne noise from the propeller and engine casing, airborne noise from the engine exhaust, structureborne noise from the engine/propeller combination and noise associated with air flow over the fuselage. For the propeller, the primary airborne paths were through the firewall, windshield and roof. For the engine, the most important airborne path was through the firewall. Exhaust noise was found to enter the cabin primarily through the panels in the vicinity of the exhaust outlet although exhaust noise entering the cabin through the firewall is a distinct possibility. A number of noise control techniques were tried, including firewall stiffening to reduce engine and propeller airborne noise, to stage isolators and engine mounting spider stiffening to reduce structure-borne noise, and wheel well covers to reduce air flow noise.

  15. Measuring the levels of noise at the İstanbul Atatürk Airport and comparisons with model simulations.

    PubMed

    Sari, Deniz; Ozkurt, Nesimi; Akdag, Ali; Kutukoglu, Murat; Gurarslan, Aliye

    2014-06-01

    Airport noise and its impact on the surrounding areas are major issues in the aviation industry. The İstanbul Atatürk Airport is a major global airport with passenger numbers increasing rapidly per annum. The noise levels for day, evening and night times were modeled around the İstanbul Atatürk Airport according to the European Noise Directive using the actual data records for the year 2011. The "ECAC Doc. 29-Interim" method was used for the computation of the aircraft traffic noise. In the setting the noise model for the local airport topography was taken into consideration together with the noise source data, the airport loadings, features of aircraft and actual air traffic data. Model results were compared with long-term noise measurement values for calibration. According to calibration results, classifications of the aircraft type and flight tracks were revised. For noise model validation, the daily noise measurements at four additional locations were used during the verification period. The input data was re-edited only for these periods and the model was validated. A successful model performance was obtained in several zones around the airport. The validated noise model of the İstanbul Atatürk Airport can be now utilized both for determining the noise levels in the future and for producing new strategies which are about the land use planning, operational considerations for the air traffic management and the noise abatement procedures.

  16. How anthropogenic noise affects foraging.

    PubMed

    Luo, Jinhong; Siemers, Björn M; Koselj, Klemen

    2015-09-01

    The influence of human activity on the biosphere is increasing. While direct damage (e.g. habitat destruction) is relatively well understood, many activities affect wildlife in less apparent ways. Here, we investigate how anthropogenic noise impairs foraging, which has direct consequences for animal survival and reproductive success. Noise can disturb foraging via several mechanisms that may operate simultaneously, and thus, their effects could not be disentangled hitherto. We developed a diagnostic framework that can be applied to identify the potential mechanisms of disturbance in any species capable of detecting the noise. We tested this framework using Daubenton's bats, which find prey by echolocation. We found that traffic noise reduced foraging efficiency in most bats. Unexpectedly, this effect was present even if the playback noise did not overlap in frequency with the prey echoes. Neither overlapping noise nor nonoverlapping noise influenced the search effort required for a successful prey capture. Hence, noise did not mask prey echoes or reduce the attention of bats. Instead, noise acted as an aversive stimulus that caused avoidance response, thereby reducing foraging efficiency. We conclude that conservation policies may seriously underestimate numbers of species affected and the multilevel effects on animal fitness, if the mechanisms of disturbance are not considered.

  17. Noise-induced hearing loss.

    PubMed

    Catlin, F I

    1986-03-01

    Hearing loss affects 30 million people in the United States; of these, 21 million are over the age of 65 years. This disorder may have several causes: heredity, noise, aging, and disease. Hearing loss from noise has been recognized for centuries but was generally ignored until some time after the Industrial Revolution. Hearing loss from occupational exposure to hazardous noise was identified as a compensable disability by the United States courts in 1948 to 1959. Development of noisy jet engines and supersonic aircraft created additional claims for personal and property damage in the 1950s and 1960s. These conditions led to legislation for noise control in the form of the Occupational Safety and Health Act of 1970 and the Noise Control Act of 1972. Protection of the noise-exposed employee was also an objective of the Hearing Conservation Act of 1971. Subsequent studies have confirmed the benefits of periodic hearing tests for workers exposed to hazardous noise and of otologic evaluation as part of the hearing conservation process. Research studies in laboratory animals, using scanning electron microscopical techniques, have demonstrated that damage to the inner ear and organ of hearing can occur even though subjective (conditioned) response to sound stimuli remains unaffected. Some investigators have employed an epidemiologic approach to identify risk factors and to develop profiles to susceptibility to noise-induced hearing loss. The need for joint involvement of workers and employers in the reduction and control of occupational noise hazards is evident.

  18. Noise-induced hearing loss.

    PubMed

    Catlin, F I

    1986-03-01

    Hearing loss affects 30 million people in the United States; of these, 21 million are over the age of 65 years. This disorder may have several causes: heredity, noise, aging, and disease. Hearing loss from noise has been recognized for centuries but was generally ignored until some time after the Industrial Revolution. Hearing loss from occupational exposure to hazardous noise was identified as a compensable disability by the United States courts in 1948 to 1959. Development of noisy jet engines and supersonic aircraft created additional claims for personal and property damage in the 1950s and 1960s. These conditions led to legislation for noise control in the form of the Occupational Safety and Health Act of 1970 and the Noise Control Act of 1972. Protection of the noise-exposed employee was also an objective of the Hearing Conservation Act of 1971. Subsequent studies have confirmed the benefits of periodic hearing tests for workers exposed to hazardous noise and of otologic evaluation as part of the hearing conservation process. Research studies in laboratory animals, using scanning electron microscopical techniques, have demonstrated that damage to the inner ear and organ of hearing can occur even though subjective (conditioned) response to sound stimuli remains unaffected. Some investigators have employed an epidemiologic approach to identify risk factors and to develop profiles to susceptibility to noise-induced hearing loss. The need for joint involvement of workers and employers in the reduction and control of occupational noise hazards is evident. PMID:2938482

  19. Noise exposure and public health.

    PubMed Central

    Passchier-Vermeer, W; Passchier, W F

    2000-01-01

    Exposure to noise constitutes a health risk. There is sufficient scientific evidence that noise exposure can induce hearing impairment, hypertension and ischemic heart disease, annoyance, sleep disturbance, and decreased school performance. For other effects such as changes in the immune system and birth defects, the evidence is limited. Most public health impacts of noise were already identified in the 1960s and noise abatement is less of a scientific but primarily a policy problem. A subject for further research is the elucidation of the mechanisms underlying noise-induced cardiovascular disorders and the relationship of noise with annoyance and nonacoustical factors modifying health outcomes. A high priority study subject is the effects of noise on children, including cognitive effects and their reversibility. Noise exposure is on the increase, especially in the general living environment, both in industrialized nations and in developing world regions. This implies that in the twenty-first century noise exposure will still be a major public health problem. Images Figure 2 PMID:10698728

  20. Fan and pump noise control

    NASA Technical Reports Server (NTRS)

    Misoda, J.; Magliozzi, B.

    1973-01-01

    The development is described of improved, low noise level fan and pump concepts for the space shuttle. In addition, a set of noise design criteria for small fans and pumps was derived. The concepts and criteria were created by obtaining Apollo hardware test data to correlate and modify existing noise estimating procedures. A set of space shuttle selection criteria was used to determine preliminary fan and pump concepts. These concepts were tested and modified to obtain noise sources and characteristics which yield the design criteria and quiet, efficient space shuttle fan and pump concepts.

  1. High level white noise generator

    DOEpatents

    Borkowski, Casimer J.; Blalock, Theron V.

    1979-01-01

    A wide band, stable, random noise source with a high and well-defined output power spectral density is provided which may be used for accurate calibration of Johnson Noise Power Thermometers (JNPT) and other applications requiring a stable, wide band, well-defined noise power spectral density. The noise source is based on the fact that the open-circuit thermal noise voltage of a feedback resistor, connecting the output to the input of a special inverting amplifier, is available at the amplifier output from an equivalent low output impedance caused by the feedback mechanism. The noise power spectral density level at the noise source output is equivalent to the density of the open-circuit thermal noise or a 100 ohm resistor at a temperature of approximately 64,000 Kelvins. The noise source has an output power spectral density that is flat to within 0.1% (0.0043 db) in the frequency range of from 1 KHz to 100 KHz which brackets typical passbands of the signal-processing channels of JNPT's. Two embodiments, one of higher accuracy that is suitable for use as a standards instrument and another that is particularly adapted for ambient temperature operation, are illustrated in this application.

  2. Community response to blast noise

    NASA Astrophysics Data System (ADS)

    Nykaza, Edward T.; Pater, Larry L.; Fidell, Sanford; Schomer, Paul

    2005-09-01

    Although community response to impulsive noise from military operations is usually discussed for NEPA-related purposes in terms of the prevalence of annoyance, it is managed on a local, daily basis in terms of numbers of recent complaints. Reconciling blast noise complaint rates with the annoyance predicted by dosage-effect analysis would be of considerable benefit to the Army, since it would provide insight into the dynamics of community reaction to this distinctive form of noise exposure, and put its assessment and management on a common footing. This paper describes a systematic approach to the challenges of quantifying community reaction to blast noise. [Work supported by ERDC-CERL.

  3. Defect Detection in Correlated Noise

    NASA Astrophysics Data System (ADS)

    Dogandžić, Aleksandar; Eua-Anant, Nawanat

    2004-02-01

    We present methods for detecting NDE defect signals in correlated noise having unknown covariance. The proposed detectors are derived using the statistical theory of generalized likelihood ratio (GLR) tests and multivariate analysis of variance (MANOVA). We consider both real and complex data models. To allow accurate estimation of the noise covariance, we incorporate secondary data containing only noise into detector design. Probability distributions of the GLR test statistics are derived under the null hypothesis, i.e. assuming that the signal is absent, and used for detector design. We apply the proposed methods to simulated and experimental data and demonstrate their superior performance compared with the detectors that neglect noise correlation.

  4. Noise-induced hearing loss

    SciTech Connect

    Catlin, F.I.

    1986-03-01

    Hearing loss affects 30 million people in the United States; of these, 21 million are over the age of 65 years. This disorder may have several causes: heredity, noise, aging, and disease. Hearing loss from noise has been recognized for centuries but was generally ignored until some time after the Industrial Revolution. Hearing loss from occupational exposure to hazardous noise was identified as a compensable disability by the United States courts in 1948 to 1959. Development of noisy jet engines and supersonic aircraft created additional claims for personal and property damage in the 1950s and 1960s. These conditions led to legislation for noise control in the form of the Occupational Safety and Health Act of 1970 and the Noise Control Act of 1972. Protection of the noise-exposed employee was also an objective of the Hearing Conservation Act of 1971. Subsequent studies have confirmed the benefits of periodic hearing tests for workers exposed to hazardous noise and of otologic evaluation as part of the hearing conservation process. Research studies in laboratory animals, using scanning electron microscopical techniques, have demonstrated that damage to the inner ear and organ of hearing can occur even though subjective (conditioned) response to sound stimuli remains unaffected. Some investigators have employed an epidemiologic approach to identify risk factors and to develop profiles to susceptibility to noise-induced hearing loss. The need for joint involvement of workers and employers in the reduction and control of occupational noise hazards is evident. 19 references.

  5. Ground runup noise suppression program. Part 3: Dry suppressor technology base

    NASA Astrophysics Data System (ADS)

    Glass, R.; Lepor, M.

    1982-06-01

    The Ground Runup Noise Suppression Final Report consists of three documents. The first document, Part 1, is an executive summary which provides a brief, technical description and overview of the program conducted at the Naval Ocean Systems Center (NOSC). The second document, Part 2, provides a documented history of NOSC's participation in the Dry Jet Noise Suppression Program. This document, Part 3, is a technical summary of the information and data developed during the program. This report integrates predictive techniques, scale-model test results, and full-scale test results for the new air-cooled noise suppressor technology. All program data are summarized to assist the architect/engineer in the design of air-cooled noise suppressors. Included are aerothermal, aeroacoustic, and pressure data in addition to acoustic material life cycle information. Cost/benefit techniques are included to aid in the selection of air-cooled or water-cooled facilities based on operational requirements.

  6. The effects of noise on man

    SciTech Connect

    Kryter, K.D.

    1985-01-01

    As a reference source of research concerning effects of noise on people, this book reports and analyzes procedures used in regulation and control of noise. Quantitative relations are formed between physical measures of environmental noise and the reactions of people and communities to noise. The author reviews scientific and engineering research published from 1970 to the present. The Effects of Noise on Man, Second Edition discusses: adverse effects of noise and noise-induced hearing loss on speech communications; damage to hearing from ''everyday'' noise; damage to hearing from industrial noise and gunfire; work performance in noise; effects of noise on non-auditory systems of the body and sleep; aircraft and street traffic noise and its effects on health, annoyance, and house depreciation; physical measurements used for the assessment and control of environmental noise; federal standards and guidelines for community noise and proposed modification based on recent research findings.

  7. Ambient habitat noise and vibration at the Georgia Aquarium.

    PubMed

    Scheifele, P M; Johnson, M T; Kretschmer, L; Clark, J G; Kemper, D; Potty, G

    2012-08-01

    Underwater and in-air noise evaluations were completed in performance pool systems at Georgia Aquarium under normal operating conditions and with performance sound tracks playing. Ambient sound pressure levels at in-pool locations, with corresponding vibration measures from life support system (LSS) pumps, were measured in operating configurations, from shut down to full operation. Results indicate noise levels in the low frequency ranges below 100 Hz were the highest produced by the LSS relative to species hearing thresholds. The LSS had an acoustic impact of about 10 dB at frequencies up to 700 Hz, with a 20 dB re 1 μPa impact above 1000 Hz.

  8. The link between noise perception and quality of life in South Australia.

    PubMed

    Nitschke, Monika; Tucker, Graeme; Simon, David L; Hansen, Alana L; Pisaniello, Dino L

    2014-01-01

    Environmental noise is a significant risk factor for a range of short- and long-term adverse health outcomes such as annoyance, cognitive development impairment, sleep disturbance, cardiovascular effects, and psychiatric problems. The aim of this study was to gather standardized quality of life (QOL) data hitherto rarely correlated with noise annoyance by source category. To provide an evidence-base for environmental noise policy development, a representative state-based survey was undertaken in South Australia (SA). A total of 3015 face-to-face interviews were conducted, using a questionnaire addressing noise sources, distances to busy roads and standardized measures of perceived annoyance and QOL. Population weighted descriptive survey and regression analysis. The most common sources of noise annoyances were road transport (27.7%, using a Likert scale, aggregating "little" to "extreme" annoyance), neighbors (22.0%), construction noise (10.0%), air conditioner noise (5.8%), rail transport noise (4.7%), and industry (3.9%). Using the QOL instrument, all eight health dimensions were significantly decreased for those reporting high noise annoyance ("very much" to "extreme") in relation to road transport and neighbors compared to those reporting low annoyance ("none" to "moderate") from these sources. Noise annoyance is common in the SA general population, and the evidence for a strong association with QOL reinforces the need for environmental noise management at a population basis. PMID:24953878

  9. Noise exposure of commercial divers in the Norwegian Sector of the North Sea.

    PubMed

    Nedwell, J R; Mason, T I; Collett, A G; Gardiner, R W K

    2015-01-01

    It is well known that exposure to high noise levels can adversely affect human hearing. Legislation exists in Europe to control or restrict the level of noise to which employees may be exposed during the course of their work. While the noise levels to which a worker may be exposed is well defined in air, human sensitivity to noise is different in high-pressure and mixed-gas conditions. Relatively little research exists to define human hearing in these circumstances, and few measurements exist of the levels of noise to which divers working in these conditions are exposed. A study using specially designed equipment has been undertaken in Norwegian waters to sample the noise levels present during typical saturation dives undertaken by commercial divers working in the Norwegian oil and gas industry. The divers were working in heliox at depths of 30 msw and 120 msw. It found noise levels were generally dominated by self-noise: flow noise while breathing and communications. The noise levels, both when corrected for the difference in hearing sensitivity under pressure in mixed gas and uncorrected, would exceed legislated limits for noise exposure in a working day without the use of noisy tools.

  10. Noise exposure of commercial divers in the Norwegian Sector of the North Sea.

    PubMed

    Nedwell, J R; Mason, T I; Collett, A G; Gardiner, R W K

    2015-01-01

    It is well known that exposure to high noise levels can adversely affect human hearing. Legislation exists in Europe to control or restrict the level of noise to which employees may be exposed during the course of their work. While the noise levels to which a worker may be exposed is well defined in air, human sensitivity to noise is different in high-pressure and mixed-gas conditions. Relatively little research exists to define human hearing in these circumstances, and few measurements exist of the levels of noise to which divers working in these conditions are exposed. A study using specially designed equipment has been undertaken in Norwegian waters to sample the noise levels present during typical saturation dives undertaken by commercial divers working in the Norwegian oil and gas industry. The divers were working in heliox at depths of 30 msw and 120 msw. It found noise levels were generally dominated by self-noise: flow noise while breathing and communications. The noise levels, both when corrected for the difference in hearing sensitivity under pressure in mixed gas and uncorrected, would exceed legislated limits for noise exposure in a working day without the use of noisy tools. PMID:26094290

  11. Fish Hatchery Noise Levels and Noise Reduction Techniques.

    PubMed

    Barnes, M E; Hewitt, C R; Parker, T M

    2015-07-01

    This study examined occupational noise within two rearing facilities at a production fish hatchery and evaluated two simple noise reduction techniques. Ambient noise levels in the hatchery tank room ranged from 50 dB in the absence of flowing water to over 73 dB when water was flowing to all 35 tanks under typical hatchery operating procedures. Covering the open standpipes did not significantly reduce noise levels. However, placing partial tank covers over the top of the tanks above the water inlet significantly reduced noise levels, both with and without the use of standpipe covers. Noise levels in the salmon building rose from 43.2 dB without any flowing water to 77.5 dB with water flowing to all six in-ground tanks. Significant noise reductions were observed when the tanks were completely covered or with standpipe covers. Decibel levels showed the greatest reduction when the tanks and standpipes were both covered. These results indicate that occupational noise levels in aquaculture environments may be reduced through the use of simple and relatively inexpensive techniques.

  12. Fish Hatchery Noise Levels and Noise Reduction Techniques.

    PubMed

    Barnes, M E; Hewitt, C R; Parker, T M

    2015-07-01

    This study examined occupational noise within two rearing facilities at a production fish hatchery and evaluated two simple noise reduction techniques. Ambient noise levels in the hatchery tank room ranged from 50 dB in the absence of flowing water to over 73 dB when water was flowing to all 35 tanks under typical hatchery operating procedures. Covering the open standpipes did not significantly reduce noise levels. However, placing partial tank covers over the top of the tanks above the water inlet significantly reduced noise levels, both with and without the use of standpipe covers. Noise levels in the salmon building rose from 43.2 dB without any flowing water to 77.5 dB with water flowing to all six in-ground tanks. Significant noise reductions were observed when the tanks were completely covered or with standpipe covers. Decibel levels showed the greatest reduction when the tanks and standpipes were both covered. These results indicate that occupational noise levels in aquaculture environments may be reduced through the use of simple and relatively inexpensive techniques. PMID:26373216

  13. Advanced quantum noise correlations

    NASA Astrophysics Data System (ADS)

    Vogl, Ulrich; Glasser, Ryan T.; Clark, Jeremy B.; Glorieux, Quentin; Li, Tian; Corzo, Neil V.; Lett, Paul D.

    2014-01-01

    We use the quantum correlations of twin beams of light to investigate the fundamental addition of noise when one of the beams propagates through a fast-light medium based on phase-insensitive gain. The experiment is based on two successive four-wave mixing processes in rubidium vapor, which allow for the generation of bright two-mode-squeezed twin beams followed by a controlled advancement while maintaining the shared quantum correlations between the beams. The demonstrated effect allows the study of irreversible decoherence in a medium exhibiting anomalous dispersion, and for the first time shows the advancement of a bright nonclassical state of light. The advancement and corresponding degradation of the quantum correlations are found to be operating near the fundamental quantum limit imposed by using a phase-insensitive amplifier.

  14. GRACE star camera noise

    NASA Astrophysics Data System (ADS)

    Harvey, Nate

    2016-08-01

    Extending results from previous work by Bandikova et al. (2012) and Inacio et al. (2015), this paper analyzes Gravity Recovery and Climate Experiment (GRACE) star camera attitude measurement noise by processing inter-camera quaternions from 2003 to 2015. We describe a correction to star camera data, which will eliminate a several-arcsec twice-per-rev error with daily modulation, currently visible in the auto-covariance function of the inter-camera quaternion, from future GRACE Level-1B product releases. We also present evidence supporting the argument that thermal conditions/settings affect long-term inter-camera attitude biases by at least tens-of-arcsecs, and that several-to-tens-of-arcsecs per-rev star camera errors depend largely on field-of-view.

  15. Physiological, Psychological, and Social Effects of Noise

    NASA Technical Reports Server (NTRS)

    Kryter, K. D.

    1984-01-01

    The physiological, and behavioral effects of noise on man are investigated. Basic parameters such as definitions of noise, measuring techniques of noise, and the physiology of the ear are presented prior to the development of topics on hearing loss, speech communication in noise, social effects of noise, and the health effects of noise pollution. Recommendations for the assessment and subsequent control of noise is included.

  16. Using transportation demand models to assess regional noise exposure

    NASA Astrophysics Data System (ADS)

    Kaliski, Kenneth

    2005-09-01

    In the United States, most metropolitan areas run some type of transportation demand model to estimate regional travel patterns, and, to some extent, air pollution. The more advanced of these models accurately represent the geographic contours of the roadways (in contrast to the older straight-line node and link models). This allows an almost seamless integration of these new transportation demand models into noise prediction models. Combined with the locations of individual homes from a separate E911 database, we can readily make estimates of the noise exposure of populations over large areas. In this paper, the regional traffic noise exposure of residences of Chittenden County, VT is estimated and mapped. It was found that 30% of the residences are exposed to noise levels exceeding the WHO sleep disturbance level of 45 dB LAeq(8) and 20% of residences are exposed to levels exceeding the WHO ``serious annoyance'' level of 55 dB LAeq(16). Maps show noise contours as well as individual homes color coded based on relative day and night noise exposure levels. Measured sound level data are given for particular locations to validate the predictions.

  17. Computational Evaluation of Airframe Noise Reduction Concepts at Full Scale

    NASA Technical Reports Server (NTRS)

    Khorrami, Mehdi R.; Duda, Benjamin; Hazir, Andreas; Fares, Ehab

    2016-01-01

    High-fidelity simulations focused on full-scale evaluation of new technologies for mitigating flap and landing gear noise are presented. These noise reduction concepts were selected because of their superior acoustic performance, as demonstrated during NASA wind tunnel tests of an 18%-scale, semi-span model of a Gulfstream aircraft. The full-scale, full-aircraft, time-accurate simulations were performed with the lattice Boltzmann PowerFLOW(Registered Trademark) solver for free air at a Mach number of 0.2. Three aircraft configurations (flaps deflected at 39? without and with main gear deployed, and 0? flaps with main gear extended) were used to determine the aero-acoustic performance of the concepts on component-level (individually) and system-level (concurrent applica-tion) bases. Farfield noise spectra were obtained using a Ffowcs-Williams and Hawkings acoustic analogy approach. Comparison of the predicted spectra without (baseline) and with the noise treatments applied showed that noise reduction benefits between 2-3 dB for the flap and 1.3-1.7 dB for the main landing gear are obtained. It was also found that the full extent of the benefits is being masked by the noise generated from the flap brackets and main gear cavities, which act as prominent secondary sources.

  18. Low-frequency noise from large wind turbines.

    PubMed

    Møller, Henrik; Pedersen, Christian Sejer

    2011-06-01

    As wind turbines get larger, worries have emerged that the turbine noise would move down in frequency and that the low-frequency noise would cause annoyance for the neighbors. The noise emission from 48 wind turbines with nominal electric power up to 3.6 MW is analyzed and discussed. The relative amount of low-frequency noise is higher for large turbines (2.3-3.6 MW) than for small turbines (≤ 2 MW), and the difference is statistically significant. The difference can also be expressed as a downward shift of the spectrum of approximately one-third of an octave. A further shift of similar size is suggested for future turbines in the 10-MW range. Due to the air absorption, the higher low-frequency content becomes even more pronounced, when sound pressure levels in relevant neighbor distances are considered. Even when A-weighted levels are considered, a substantial part of the noise is at low frequencies, and for several of the investigated large turbines, the one-third-octave band with the highest level is at or below 250 Hz. It is thus beyond any doubt that the low-frequency part of the spectrum plays an important role in the noise at the neighbors. PMID:21682397

  19. Low-frequency noise from large wind turbines.

    PubMed

    Møller, Henrik; Pedersen, Christian Sejer

    2011-06-01

    As wind turbines get larger, worries have emerged that the turbine noise would move down in frequency and that the low-frequency noise would cause annoyance for the neighbors. The noise emission from 48 wind turbines with nominal electric power up to 3.6 MW is analyzed and discussed. The relative amount of low-frequency noise is higher for large turbines (2.3-3.6 MW) than for small turbines (≤ 2 MW), and the difference is statistically significant. The difference can also be expressed as a downward shift of the spectrum of approximately one-third of an octave. A further shift of similar size is suggested for future turbines in the 10-MW range. Due to the air absorption, the higher low-frequency content becomes even more pronounced, when sound pressure levels in relevant neighbor distances are considered. Even when A-weighted levels are considered, a substantial part of the noise is at low frequencies, and for several of the investigated large turbines, the one-third-octave band with the highest level is at or below 250 Hz. It is thus beyond any doubt that the low-frequency part of the spectrum plays an important role in the noise at the neighbors.

  20. Hydrology and hydraulics: Water, noise and air quality

    NASA Astrophysics Data System (ADS)

    Brown, S. A.

    The 12 papers deal with the following areas: prediction of channel bed grade changes at highway stream crossing; stream channel grade changes and their effects on highway crossing; assessment of commonly used methods of estimating flood frequency; magnitude and frequency of urban floods in the United States; comparison of prediction methods for soil erosion from highway construction sites; drainage control through vegetation and soil management; effects of dredged highway construction on water quality in a Louisiana wetland.

  1. Applications of Response Surface-Based Methods to Noise Analysis in the Conceptual Design of Revolutionary Aircraft

    NASA Technical Reports Server (NTRS)

    Hill, Geoffrey A.; Olson, Erik D.

    2004-01-01

    Due to the growing problem of noise in today's air transportation system, there have arisen needs to incorporate noise considerations in the conceptual design of revolutionary aircraft. Through the use of response surfaces, complex noise models may be converted into polynomial equations for rapid and simplified evaluation. This conversion allows many of the commonly used response surface-based trade space exploration methods to be applied to noise analysis. This methodology is demonstrated using a noise model of a notional 300 passenger Blended-Wing-Body (BWB) transport. Response surfaces are created relating source noise levels of the BWB vehicle to its corresponding FAR-36 certification noise levels and the resulting trade space is explored. Methods demonstrated include: single point analysis, parametric study, an optimization technique for inverse analysis, sensitivity studies, and probabilistic analysis. Extended applications of response surface-based methods in noise analysis are also discussed.

  2. Active Noise Control of Radiated Noise from Jets Originating NASA

    NASA Technical Reports Server (NTRS)

    Doty, Michael J.; Fuller, Christopher R.; Schiller, Noah H.; Turner, Travis L.

    2013-01-01

    The reduction of jet noise using a closed-loop active noise control system with highbandwidth active chevrons was investigated. The high frequency energy introduced by piezoelectrically-driven chevrons was demonstrated to achieve a broadband reduction of jet noise, presumably due to the suppression of large-scale turbulence. For a nozzle with one active chevron, benefits of up to 0.8 dB overall sound pressure level (OASPL) were observed compared to a static chevron nozzle near the maximum noise emission angle, and benefits of up to 1.9 dB OASPL were observed compared to a baseline nozzle with no chevrons. The closed-loop actuation system was able to effectively reduce noise at select frequencies by 1-3 dB. However, integrated OASPL did not indicate further reduction beyond the open-loop benefits, most likely due to the preliminary controller design, which was focused on narrowband performance.

  3. Assessment of Domestic Appliance Noise.

    NASA Astrophysics Data System (ADS)

    Brooks, Jeanette Rosamond

    Available from UMI in association with The British Library. The aims of this study were: (i) to identify the factors involved in eliciting a subjective reaction to domestic appliance noise, (ii) to identify the noise index (or indices) that correlate highly with a subjective reaction to the noise, and (iii) to investigate the contribution of domestic appliance noise to an individual's daily noise dose. Two series of experimental studies were carried out using several examples of each of five types of domestic appliances. One determined the index values of domestic appliance noise--namely L_{WA} (using ISO 3741), L_{pA} , L_{pD}, L _{p}, PNL, L_{Aeq, 30 sec}, L_{Amax} and L_{AX}; the other determined subjective reactions to domestic appliance noise (judgements of noisiness, annoyance, the acceptability of the appliance noise and appraisals of usefulness). The success or failure of the research hypotheses was assessed statistically by analysis of variance, regression analysis, log linear analysis, Hotelling test, bootstrapping, t-test and post-hoc comparisons. Ratings of annoyance, noisiness and the acceptability of the noise of the appliance were found to be interrelated and interdependent, and not influenced by appraisals of usefulness of the appliances. Noisiness ratings were the most consistent of the subjective ratings investigated, and were influenced by the duration of the exposure, and the actual appliance type under investigation. Significant correlations were obtained between noisiness ratings and all the noise indices under investigation. However, statistical analysis demonstrated that L_ {WA} correlated less successfully with noisiness ratings than all other indices. L_ {Amax},L_{Aeq,30 sec }, and L_{AX} indices were the most successful. It is therefore suggested that the labelling of domestic appliance noise consist of L_{WA} and L _{Aeq} as measured in a standardised test environment. The percentage contribution of domestic appliance noise to the total

  4. An ultralow noise preamplifier for low frequency noise measurements.

    PubMed

    Cannatà, Gianluca; Scandurra, Graziella; Ciofi, Carmine

    2009-11-01

    Low frequency noise measurements are among the most sensitive tools for the investigation of the quality and of the reliability of semiconductor devices. The sensitivity that can be obtained depends on the background noise of the low noise preamplifier coupled to the device under test (DUT) that, at very low frequencies, is dominated by flicker noise. The low frequency noise produced by the DUT, on the other end, is very often the most interesting signal to be detected and analyzed. In this work we propose a very simple topology for the realization of a general purpose low noise preamplifier whose noise performances, at very low frequencies (below 10 Hz), are significantly better than those that can be obtained by the most popular commercial instrumentation. Indeed, a gain of 80 dB with a pass band extending from a few tens of mHz up to a few kHz with an equivalent input voltage noise as low as 14 nV/square root(Hz) (100 mHz), 1.4 nV/square root(Hz) (1 Hz), 1.0 nV/square root(Hz) (10 Hz), and 0.8 nV/square root(Hz) (1 kHz) are consistently obtained by using quite standard electronic components and with no need for trimming and/or calibration steps. Moreover, the junction field-effect transistor input stage of the amplifier is characterized by an equivalent input current noise below 4 fA/square root(Hz) in the entire bandwidth, resulting in negligible background noise degradation for DUT impedances in excess of 100 kohms. PMID:19947746

  5. Fifty Years of Fluidic Injection for Jet Noise Reduction

    NASA Technical Reports Server (NTRS)

    Henderson, Brenda

    2010-01-01

    The paper reviews 50 years of research investigating jet noise reduction through fluidic injection. Both aqueous and gaseous injection concepts for supersonic and subsonic jet exhausts are discussed. Aqueous injection reduces jet noise by reducing main jet temperature through evaporation and main jet velocity through momentum transfer between water droplets and the main jet. In the launch vehicle environment where large quantities of fluid do not have to be carried with the vehicle, water injection is very effective at reducing excess overpressures. For in-flight use, aqueous injection is problematic as most studies show that either large quantities of water or high injection pressures are required to achieve noise reduction. The most effective noise reduction injection systems require water pressures above 2000 kPa (290 psi) and water-to-mainjet mass flow rates above 10% to achieve overall sound pressure level reductions of roughly 6 dB in the peak jet noise direction. Injection at lower pressure (roughly 1034 kPa or 150 psi) has resulted in a 1.6 EPNdb reduction in effective perceived noise level. Gaseous injection reduces noise through jet plume modifications resulting from the introduction of streamwise vorticity in the main jet. In subsonic single-stream jets, air injection usually produces the largest overall sound pressure level reductions (roughly 2 dB) in the peak jet noise direction. In dual-stream jets, properly designed injection systems can reduce overall sound pressure levels and effective perceived noise levels but care must be taken to choose injector designs that limit sound pressure level increases at high frequencies. A reduction of 1.0 EPNdB has been achieved with injection into the fan and core streams. However, air injection into dual-stream subsonic jets has received little attention and the potential for noise reduction is uncertain at this time. For dual-stream supersonic jets, additional research needs to be conducted to determine if

  6. Embedded Acoustic Sensor Array for Engine Fan Noise Source Diagnostic Test: Feasibility of Noise Telemetry via Wireless Smart Sensors

    NASA Technical Reports Server (NTRS)

    Zaman, Afroz; Bauch, Matthew; Raible, Daniel

    2011-01-01

    Aircraft engines have evolved into a highly complex system to meet ever-increasing demands. The evolution of engine technologies has primarily been driven by fuel efficiency, reliability, as well as engine noise concerns. One of the sources of engine noise is pressure fluctuations that are induced on the stator vanes. These local pressure fluctuations, once produced, propagate and coalesce with the pressure waves originating elsewhere on the stator to form a spinning pressure pattern. Depending on the duct geometry, air flow, and frequency of fluctuations, these spinning pressure patterns are self-sustaining and result in noise which eventually radiate to the far-field from engine. To investigate the nature of vane pressure fluctuations and the resulting engine noise, unsteady pressure signatures from an array of embedded acoustic sensors are recorded as a part of vane noise source diagnostics. Output time signatures from these sensors are routed to a control and data processing station adding complexity to the system and cable loss to the measured signal. "Smart" wireless sensors have data processing capability at the sensor locations which further increases the potential of wireless sensors. Smart sensors can process measured data locally and transmit only the important information through wireless communication. The aim of this wireless noise telemetry task was to demonstrate a single acoustic sensor wireless link for unsteady pressure measurement, and thus, establish the feasibility of distributed smart sensors scheme for aircraft engine vane surface unsteady pressure data transmission and characterization.

  7. Noise and Hearing Loss Prevention

    MedlinePlus

    ... SafeInSound Noise and Hearing Loss on the NIOSH Science Blog Smartphone Sound Apps Music-induced Hearing Loss ... SafeInSound Noise and Hearing Loss on the NIOSH Science Blog Smartphone Sound Apps Music-induced Hearing Loss ...

  8. Noise Reduction by Signal Accumulation

    ERIC Educational Resources Information Center

    Kraftmakher, Yaakov

    2006-01-01

    The aim of this paper is to show how the noise reduction by signal accumulation can be accomplished with a data acquisition system. This topic can be used for student projects. In many cases, the noise reduction is an unavoidable part of experimentation. Several techniques are known for this purpose, and among them the signal accumulation is the…

  9. Consumer oriented product noise testing

    NASA Astrophysics Data System (ADS)

    Blomberg, Les

    2005-09-01

    This paper explores the need for product noise measurements and how best to meet that need in the near future. Currently there is only a small market place for quieter consumer products. This is not because of lack of interest. No one really wants to announce to everyone in their house that they just flushed the toilet, few really want the entire neighborhood to know they are mowing their yard, etc. The small market place is primarily due to a lack of regulations on product noise, a lack of information easily available to consumers about which products are quieter, and market consolidation resulting in fewer manufacturers, most of whom are unwilling to emphasize their quieter products at the risk of eroding sales of their noisier ones (that currently have greater market share). In the absence of the EPA fulfilling its statutory requirement to regulate and label product noise under the Noise Control Act of 1972, and with the unwillingness of most industries to voluntarily publish accurate product noise data, there is a significant role for ``Consumer Oriented Product Noise Testing.'' This paper explores the Noise Pollution Clearinghouse's ongoing and planned product noise testing, evaluating its advantages, disadvantages, and limitations.

  10. Predicting Noise From Wind Turbines

    NASA Technical Reports Server (NTRS)

    Grosveld, Ferdinand W.

    1990-01-01

    Computer program WINDY predicts broadband noise spectra of horizontal-axis wind-turbine generators. Enables adequate assessment of impact of broadband wind-turbine noise. Effects of turbulence, trailing-edge wakes, and bluntness taken into account. Program has practical application in design and siting of wind-turbine machines acceptable to community. Written in GW-Basic.

  11. Technologies for Aircraft Noise Reduction

    NASA Technical Reports Server (NTRS)

    Huff, Dennis L.

    2006-01-01

    Technologies for aircraft noise reduction have been developed by NASA over the past 15 years through the Advanced Subsonic Technology (AST) Noise Reduction Program and the Quiet Aircraft Technology (QAT) project. This presentation summarizes highlights from these programs and anticipated noise reduction benefits for communities surrounding airports. Historical progress in noise reduction and technologies available for future aircraft/engine development are identified. Technologies address aircraft/engine components including fans, exhaust nozzles, landing gear, and flap systems. New "chevron" nozzles have been developed and implemented on several aircraft in production today that provide significant jet noise reduction. New engines using Ultra-High Bypass (UHB) ratios are projected to provide about 10 EPNdB (Effective Perceived Noise Level in decibels) engine noise reduction relative to the average fleet that was flying in 1997. Audio files are embedded in the presentation that estimate the sound levels for a 35,000 pound thrust engine for takeoff and approach power conditions. The predictions are based on actual model scale data that was obtained by NASA. Finally, conceptual pictures are shown that look toward future aircraft/propulsion systems that might be used to obtain further noise reduction.

  12. Noise measurement flight test: Data-analyses aerospatiale AS-355F TwinStar helicopter

    NASA Astrophysics Data System (ADS)

    Newman, J. S.; Rickley, E. J.; Beattie, K. R.; Bland, T. L.

    1984-08-01

    This report documents the results of a Federal Aviation Administration (FAA) noise measurement flight test program with the TwinStar twin-jet helicopter. The report contains documentary sections describing the acoustical characteristics of the subject helicopter and provides analyses and discussions addressing topics ranging from acoustical propagation to environmental impact of helicopter noise. This test program was designed to address a series of objectives including: (1) acquisition of acoustical data for use in assessing heliport environmental impact, (2) documentation of directivity characteristics for static operation of helicopters, (3) establishment of ground-to-ground and air-to-ground acoustical propagation relationships for helicopters, (4) determination of noise event duration influences on energy dose acoustical metrics, (5) examination of the differences between noise measured by a surface mounted microphone and a microphone mounted at a height of four feet (1.2 meters), and (6) documentation of noise levels acquired using international helicopter noise certification test procedures.

  13. Noise measurement flight test: Data-analyses Aerospatiale AS 350D AStar helicopter

    NASA Astrophysics Data System (ADS)

    Newman, J. S.; Rickley, E. J.; Beattie, K. R.; Bland, T. L.

    1984-09-01

    This report documents the results of a Federal Aviation Administration (FAA) noise measurement flight test program with the AStar helicopter. The report contains documentary sections describing the acoustical characteristics of the subject helicopter and provides analyses and discussions addressing topics ranging from acoustical propagation to environmental impact of helicopter noise. This program was designed to address a series of objectives including: (1) acquisition of acoustical data for use in assessing heliport environmental impact, (2) documentation of directivity characteristics for static operation of helicopters, (3) establishment of ground-to-ground and air-to-ground acoustical propagation relationships for helicopters, (4) determination of noise event duration influences on energy dose acoustical metrics, (5) examination of the differences between noise measured by a surface mounted microphone and a microphone mounted at a height of four feet (1.2 meters), and (6) documentation of noise levels acquired using international helicopter noise certification test procedures.

  14. Spatially resolved 3D noise

    NASA Astrophysics Data System (ADS)

    Haefner, David P.; Preece, Bradley L.; Doe, Joshua M.; Burks, Stephen D.

    2016-05-01

    When evaluated with a spatially uniform irradiance, an imaging sensor exhibits both spatial and temporal variations, which can be described as a three-dimensional (3D) random process considered as noise. In the 1990s, NVESD engineers developed an approximation to the 3D power spectral density (PSD) for noise in imaging systems known as 3D noise. In this correspondence, we describe how the confidence intervals for the 3D noise measurement allows for determination of the sampling necessary to reach a desired precision. We then apply that knowledge to create a smaller cube that can be evaluated spatially across the 2D image giving the noise as a function of position. The method presented here allows for both defective pixel identification and implements the finite sampling correction matrix. In support of the reproducible research effort, the Matlab functions associated with this work can be found on the Mathworks file exchange [1].

  15. Preamplifier Noise in VLF Receivers

    NASA Technical Reports Server (NTRS)

    Burhans, R. W.

    1978-01-01

    Noise specifications for junction field-effect transistors are presented in different ways depending on the particular semiconductor manufacturer. Arithmetic involved in converting these specifications to equivalent RMS noise in microvolts developed at the preamplifier input terminal is reviewed. These methods were useful for estimating the noise performance of high input impedance preamplifiers used with E-field antennas operating in the range of 1 KHz to 10 MHz. Both the JFET MPF-102 transistor and the COS/MOS CA3600 transistor array provided amplification for VLF receivers where the internally generated noise was well below the atmospheric noise level. The CA3600 transistor array provided better performance because of the more symmetrical complementary MOS transistor transfer characteristics than a single N-type biased JFET transistor. The CMOS amplifier resulted in self-compensating gain characteristics over a very wide temperature range from -55 to +125 C.

  16. Multiplicative noise enhances spatial reciprocity

    NASA Astrophysics Data System (ADS)

    Yao, Yao; Chen, Shen-Shen

    2014-11-01

    Recent research has identified the heterogeneity as crucial for the evolution of cooperation in spatial population. However, the influence of heterogeneous noise is still lacking. Inspired by this interesting question, in this work, we try to incorporate heterogeneous noise into the evaluation of utility, where only a proportion of population possesses noise, whose range can also be tuned. We find that increasing heterogeneous noise monotonously promotes cooperation and even translates the full defection phase (of the homogeneous version) into the complete cooperation phase. Moreover, the promotion effect of this mechanism can be attributed to the leading role of cooperators who have the heterogeneous noise. These type of cooperators can attract more agents penetrating into the robust cooperator clusters, which is beyond the text of traditional spatial reciprocity. We hope that our work may shed light on the understanding of the cooperative behavior in the society.

  17. Jet shielding of jet noise

    NASA Technical Reports Server (NTRS)

    Simonich, J. C.; Amiet, R. K.; Schlinker, R. H.

    1986-01-01

    An experimental and theoretical study was conducted to develop a validated first principle analysis for predicting the jet noise reduction achieved by shielding one jet exhaust flow with a second, closely spaced, identical jet flow. A generalized fuel jet noise analytical model was formulated in which the acoustic radiation from a source jet propagates through the velocity and temperature discontinuity of the adjacent shielding jet. Input variables to the prediction procedure include jet Mach number, spacing, temperature, diameter, and source frequency. Refraction, diffraction, and reflection effects, which control the dual jet directivity pattern, are incorporated in the theory. The analysis calculates the difference in sound pressure level between the dual jet configuration and the radiation field based on superimposing two independent jet noise directivity patterns. Jet shielding was found experimentally to reduce noise levels in the common plane of the dual jet system relative to the noise generated by two independent jets.

  18. Squeezed light spin noise spectroscopy

    NASA Astrophysics Data System (ADS)

    Lucivero, Vito Giovanni; Jiménez-Martínez, Ricardo; Kong, Jia; Mitchell, Morgan

    2016-05-01

    Spin noise spectroscopy (SNS) has recently emerged as a powerful technique for determining physical properties of an unperturbed spin system from its power noise spectrum both in atomic and solid state physics. In the presence of a transverse magnetic field, we detect spontaneous spin fluctuations of a dense Rb vapor via Faraday rotation of an off-resonance probe beam, resulting in the excess of spectral noise at the Larmor frequency over a white photon shot-noise background. We report quantum enhancement of the signal-to-noise ratio via polarization squeezing of the probe beam up to 3dB over the full density range up to n = 1013 atoms cm-3, covering practical conditions used in optimized SNS experiments. Furthermore, we show that squeezing improves the trade-off between statistical sensitivity and systematic errors due to line broadening, a previously unobserved quantum advantage.

  19. Highway noise barrier perceived benefit

    NASA Astrophysics Data System (ADS)

    May, D. N.; Osman, M. M.

    1980-05-01

    A laboratory experiment was performed in which 82 subjects judged the benefit of a noise barrier by listening to tape recordings of before-barrier and after-barrier traffic noise. These perceived benefit judgments were related by regression analysis to the barrier attenuation, the before-barrier traffic sound level, and a music background level, all of which were varied over the course of the experiment. Prediction equations were developed for barrier benefit in terms of these sound levels, their purpose being to provide a model for barrier benefit that can be used in barrier site selection and design. An unexpected finding was that barrier benefit was highest when before-barrier sound levels were lowest: i.e., subjects preferred a noise barrier that solved a moderate noise problem over an equally-attenuating barrier that only partially solved a more severe noise problem.

  20. 23 CFR 772.19 - Construction noise.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 23 Highways 1 2011-04-01 2011-04-01 false Construction noise. 772.19 Section 772.19 Highways... ABATEMENT OF HIGHWAY TRAFFIC NOISE AND CONSTRUCTION NOISE § 772.19 Construction noise. The following general... may be affected by noise from construction of the project. The identification is to be...

  1. 23 CFR 772.19 - Construction noise.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 23 Highways 1 2010-04-01 2010-04-01 false Construction noise. 772.19 Section 772.19 Highways... ABATEMENT OF HIGHWAY TRAFFIC NOISE AND CONSTRUCTION NOISE § 772.19 Construction noise. The following general... may be affected by noise from construction of the project. The identification is to be...

  2. 23 CFR 772.11 - Noise abatement.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... OF HIGHWAY TRAFFIC NOISE AND CONSTRUCTION NOISE § 772.11 Noise abatement. (a) In determining and abating traffic noise impacts, primary consideration is to be given to exterior areas. Abatement will usually be necessary only where frequent human use occurs and a lowered noise level would be of...

  3. 23 CFR 772.11 - Noise abatement.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... OF HIGHWAY TRAFFIC NOISE AND CONSTRUCTION NOISE § 772.11 Noise abatement. (a) In determining and abating traffic noise impacts, primary consideration is to be given to exterior areas. Abatement will usually be necessary only where frequent human use occurs and a lowered noise level would be of...

  4. Recent Advances in Studies of Current Noise

    NASA Astrophysics Data System (ADS)

    Blanter, Yaroslav M.

    This is a brief review of recent activities in the field of current noise intended for newcomers. We first briefly discuss main properties of shot noise in nanostructures, and then turn to recent developments, concentrating on issues related to experimental progress: non-symmetrized cumulants and quantum noise; counting statistics; super-Poissonian noise; current noise and interferometry

  5. A Literature Survey of Noise Pollution.

    ERIC Educational Resources Information Center

    Shih, H. H.

    Physically, noise is a complex sound that has little or no periodicity. However, the essential characteristic of noise is its undesirability. Thus, noise can be defined as any annoying or unwanted sound. In recent years, the rapid increase of noise level in our environment has become a national public health hazard. Noise affects man's state of…

  6. The Effects of Noise on Pupil Performance.

    ERIC Educational Resources Information Center

    Slater, Barbara Ruth

    Effects of school noise conditions on student written task performance were studied. Three noise levels were examined--(1) irregular interval noise, 75-90 decibels, (2) average or normal noise, and (3) quiet condition, 45-55 decibels. An attempt was made to reproduce noise conditions typical of the school environment. A second controlled…

  7. Air Pollution.

    ERIC Educational Resources Information Center

    Fox, Donald L.

    1989-01-01

    Materials related to air pollution are reviewed for the period January 1987, to October 1988. The topics are pollution monitoring, air pollution, and environmental chemistry. The organization consists of two major analytical divisions: (1) gaseous methods; and (2) aerosol and particulate methods. (MVL)

  8. Air Pollution.

    EPA Science Inventory

    Air quality is affected by many types of pollutants that are emitted from various sources, including stationary and mobile. These sources release both criteria and hazardous air pollutants, which cause health effects, ecological harm, and material damage. They are generally categ...

  9. Fan Noise Prediction with Applications to Aircraft System Noise Assessment

    NASA Technical Reports Server (NTRS)

    Nark, Douglas M.; Envia, Edmane; Burley, Casey L.

    2009-01-01

    This paper describes an assessment of current fan noise prediction tools by comparing measured and predicted sideline acoustic levels from a benchmark fan noise wind tunnel test. Specifically, an empirical method and newly developed coupled computational approach are utilized to predict aft fan noise for a benchmark test configuration. Comparisons with sideline noise measurements are performed to assess the relative merits of the two approaches. The study identifies issues entailed in coupling the source and propagation codes, as well as provides insight into the capabilities of the tools in predicting the fan noise source and subsequent propagation and radiation. In contrast to the empirical method, the new coupled computational approach provides the ability to investigate acoustic near-field effects. The potential benefits/costs of these new methods are also compared with the existing capabilities in a current aircraft noise system prediction tool. The knowledge gained in this work provides a basis for improved fan source specification in overall aircraft system noise studies.

  10. Air-Coupled Vibrometry

    NASA Astrophysics Data System (ADS)

    Döring, D.; Solodov, I.; Busse, G.

    Sound and ultrasound in air are the products of a multitude of different processes and thus can be favorable or undesirable phenomena. Development of experimental tools for non-invasive measurements and imaging of airborne sound fields is of importance for linear and nonlinear nondestructive material testing as well as noise control in industrial or civil engineering applications. One possible solution is based on acousto-optic interaction, like light diffraction imaging. The diffraction approach usually requires a sophisticated setup with fine optical alignment barely applicable in industrial environment. This paper focuses on the application of the robust experimental tool of scanning laser vibrometry, which utilizes commercial off-the-shelf equipment. The imaging technique of air-coupled vibrometry (ACV) is based on the modulation of the optical path length by the acoustic pressure of the sound wave. The theoretical considerations focus on the analysis of acousto-optical phase modulation. The sensitivity of the ACV in detecting vibration velocity was estimated as ~1 mm/s. The ACV applications to imaging of linear airborne fields are demonstrated for leaky wave propagation and measurements of ultrasonic air-coupled transducers. For higher-intensity ultrasound, the classical nonlinear effect of the second harmonic generation was measured in air. Another nonlinear application includes a direct observation of the nonlinear air-coupled emission (NACE) from the damaged areas in solid materials. The source of the NACE is shown to be strongly localized around the damage and proposed as a nonlinear "tag" to discern and image the defects.

  11. Noise in strong laser-atom interactions: Phase telegraph noise

    SciTech Connect

    Eberly, J.H.; Wodkiewicz, K.; Shore, B.W.

    1984-11-01

    We discuss strong laser-atom interactions that are subjected to jump-type (random telegraph) random-phase noise. Physically, the jumps may arise from laser fluctuations, from collisions of various kinds, or from other external forces. Our discussion is carried out in two stages. First, direct and partially heuristic calculations determine the laser spectrum and also give a third-order differential equation for the average inversion of a two-level atom on resonance. At this stage a number of general features of the interaction are able to be studied easily. The optical analog of motional narrowing, for example, is clearly predicted. Second, we show that the theory of generalized Poisson processes allows laser-atom interactions in the presence of random telegraph noise of all kinds (not only phase noise) to be treated systematically, by means of a master equation first used in the context of quantum optics by Burshtein. We use the Burshtein equation to obtain an exact expression for the two-level atom's steady-state resonance fluorescence spectrum, when the exciting laser exhibits phase telegraph noise. Some comparisons are made with results obtained from other noise models. Detailed treatments of the effects ofmly jumps, or as a model of finite laser bandwidth effects, in which the laser frequency exhibits random jumps. We show that these two types of frequency noise can be distinguished in light-scattering spectra. We also discuss examples which demonstrate both temporal and spectral motional narrowing, nonexponential correlations, and non-Lorentzian spectra. Its exact solubility in finite terms makes the frequency-telegraph noise model an attractive alternative to the white-noise Ornstein-Uhlenbeck frequency noise model which has been previously applied to laser-atom interactions.

  12. Proceedings, inter-noise 84 - international cooperation for noise control. 2 Vols

    SciTech Connect

    Maling, G.C. Jr.

    1984-01-01

    A total of 199 papers were presented on noise control engineering, especially in the areas of community noise control, sound intensity, noise emission sources, active sound attenuation and noise reduction by barriers. 4 papers have been abstracted separately.

  13. General Aviation Interior Noise. Part 3; Noise Control Measure Evaluation

    NASA Technical Reports Server (NTRS)

    Unruh, James F.; Till, Paul D.; Palumbo, Daniel L. (Technical Monitor)

    2002-01-01

    The work reported herein is an extension to the work accomplished under NASA Grant NAG1-2091 on the development of noise/source/path identification techniques for single engine propeller driven General Aviation aircraft. The previous work developed a Conditioned Response Analysis (CRA) technique to identify potential noise sources that contributed to the dominating tonal responses within the aircraft cabin. The objective of the present effort was to improve and verify the findings of the CRA and develop and demonstrate noise control measures for single engine propeller driven General Aviation aircraft.

  14. Review of Integrated Noise Model (INM) Equations and Processes

    NASA Technical Reports Server (NTRS)

    Shepherd, Kevin P. (Technical Monitor); Forsyth, David W.; Gulding, John; DiPardo, Joseph

    2003-01-01

    The FAA's Integrated Noise Model (INM) relies on the methods of the SAE AIR-1845 'Procedure for the Calculation of Airplane Noise in the Vicinity of Airports' issued in 1986. Simplifying assumptions for aerodynamics and noise calculation were made in the SAE standard and the INM based on the limited computing power commonly available then. The key objectives of this study are 1) to test some of those assumptions against Boeing source data, and 2) to automate the manufacturer's methods of data development to enable the maintenance of a consistent INM database over time. These new automated tools were used to generate INM database submissions for six airplane types :737-700 (CFM56-7 24K), 767-400ER (CF6-80C2BF), 777-300 (Trent 892), 717-200 (BR7 15), 757-300 (RR535E4B), and the 737-800 (CFM56-7 26K).

  15. Evaluation of surface decarburization depth by magnetic Barkhausen noise technique

    NASA Astrophysics Data System (ADS)

    Stupakov, O.; Perevertov, O.; Tomáš, I.; Skrbek, B.

    2011-06-01

    Industrially unfavorable process of steel surface decarburization was induced by annealing in air. Two methods of after-anneal surface treatment were used: an acid pickling and a sand blasting. The obtained decarburized layers were examined by optical microscope, wave dispersive spectrometer, and surface X-ray diffraction method. Magnetic Barkhausen noise technique was tested for applicability of non-destructive characterization of the decarburized layer depth. A newly introduced parameter, Barkhausen noise coercivity, was proposed for practical use due to its sensitivity to decarburization and stability to measurement conditions. Other magnetic parameters, e.g. number of Barkhausen noise counts, were found to be sensitive to the compressive residual stress caused by the sand blasting.

  16. The Alternative Low Noise Fan

    NASA Technical Reports Server (NTRS)

    Dittmar, James H.; Elliott, David M.; Jeracki, Robert J.; Moore, Royce D.; Parrott, Tony L.

    2000-01-01

    A 106 bladed fan with a design takeoff tip speed of 1100 ft/sec was hypothesized as reducing perceived noise because of the shift of the blade passing harmonics to frequencies beyond the perceived noise rating range. A 22 in. model of this Alternative Low Noise Fan, ALNF, was tested in the NASA Glenn 9x 15 Wind Tunnel. 'Me fan was tested with a 7 vane long chord stator assembly and a 70 vane conventional stator assembly in both hard and acoustically treated configurations. In addition a partially treated 7 vane configuration was tested wherein the acoustic material between the 7 long chord stators was made inactive. The noise data from the 106 bladed fan with 7 long chord stators in a hard configuration was shown to be around 4 EPNdB quieter than a low tip speed Allison fan at takeoff and around 5 EPNdB quieter at approach. Although the tone noise behaved as hypothesized, the majority of this noise reduction was from reduced broadband noise related to the large number of rotor blades. This 106 bladed ALNF is a research fan designed to push the technology limits and as such is probably not a practical device with present materials technology. However, a low tip speed fan with around 50 blades would be a practical device and calculations indicate that it could be 2 to 3 EPNdB quieter at takeoff and 3 to 4 EPNdB quieter at approach than the Allison fan. 7 vane data compared with 70 vane data indicated that the tone noise was controlled by rotor wake-stator interaction but that the broadband noise is probably controlled by the interaction of the rotor with incoming flows. A possible multiple pure tone noise reduction technique for a fan/acoustic treatment system was identified. The data from the fully treated configuration showed significant noise reductions over a large frequency range thereby providing a real tribute to this bulk absorber treatment design. The tone noise data with the partially treated 7 vane configuration indicated that acoustic material in the

  17. Air transparent soundproof window

    SciTech Connect

    Kim, Sang-Hoon; Lee, Seong-Hyun

    2014-11-15

    A soundproof window or wall which is transparent to airflow is presented. The design is based on two wave theories: the theory of diffraction and the theory of acoustic metamaterials. It consists of a three-dimensional array of strong diffraction-type resonators with many holes centered on each individual resonator. The negative effective bulk modulus of the resonators produces evanescent wave, and at the same time the air holes with subwavelength diameter existed on the surfaces of the window for macroscopic air ventilation. The acoustic performance levels of two soundproof windows with air holes of 20mm and 50mm diameters were measured. The sound level was reduced by about 30 - 35dB in the frequency range of 400 - 5,000Hz with the 20mm window, and by about 20 - 35dB in the frequency range of 700 - 2,200Hz with the 50mm window. Multi stop-band was created by the multi-layers of the window. The attenuation length or the thickness of the window was limited by background noise. The effectiveness of the soundproof window with airflow was demonstrated by a real installation.

  18. Rocket noise - A review

    NASA Astrophysics Data System (ADS)

    McInerny, S. A.

    1990-10-01

    This paper reviews what is known about far-field rocket noise from the controlled studies of the late 1950s and 1960s and from launch data. The peak dimensionless frequency, the dependence of overall sound power on exhaust parameters, and the directivity of the overall sound power of rockets are compared to those of subsonic jets and turbo-jets. The location of the dominant sound source in the rocket exhaust plume and the mean flow velocity in this region are discussed and shown to provide a qualitative explanation for the low peak Strouhal number, fD(e)/V(e), and large angle of maximum directivity. Lastly, two empirical prediction methods are compared with data from launches of a Titan family vehicle (two, solid rocket motors of 5.7 x 10 to the 6th N thrust each) and the Saturn V (five, liquid oxygen/rocket propellant engines of 6.7 x 10 to the 6th N thrust, each). The agreement is favorable. In contrast, these methods appear to overpredict the far-field sound pressure levels generated by the Space Shuttle.

  19. Noise exposure in oil mills

    PubMed Central

    Kumar, G. V. Prasanna; Dewangan, K. N.; Sarkar, Amaresh

    2008-01-01

    Context: Noise of machines in various agro-based industries was found to be the major occupational hazard for the workers of industries. The predominant noise sources need to be identified and the causes of high noise need to be studied to undertake the appropriate measures to reduce the noise level in one of the major agro-based industries, oil mills. Aims: To identify the predominant noise sources in the workrooms of oil mills. To study the causes of noise in oil mills. To measure the extent of noise exposure of oil mill workers. To examine the response of workers towards noise, so that appropriate measures can be undertaken to minimize the noise exposure. Settings and Design: A noise survey was conducted in the three renowned oil mills of north-eastern region of India. Materials and Methods: Information like output capacity, size of power source, maintenance condition of the machines and workroom configurations of the oil mills was collected by personal observations and enquiry with the owner of the mill. Using a Sound Level Meter (SLM) (Model-824, Larson and Davis, USA), equivalent SPL was measured at operator's ear level in the working zone of the workers near each machine of the mills. In order to study the variation of SPL in the workrooms of the oil mill throughout its operation, equivalent SPL was measured at two appropriate locations of working zone of the workers in each mill. For conducting the noise survey, the guidelines of Canadian Centre for Occupational Health and Safety (CCOHS) were followed. Grid points were marked on the floor of the workroom of the oil mill at a spacing of 1 m × 1 m. SPL at grid points were measured at about 1.5 m above the floor. The direction of the SLM was towards the nearby noisy source. To increase accuracy, two replications were taken at each grid point. All the data were recorded for 30 sec. At the end of the experiment, data were downloaded to a personal computer. With the help of utility software of Larson and Davis

  20. Overpressure and noise due to multiple airbag systems in a passenger car

    NASA Astrophysics Data System (ADS)

    Hickling, Robert; Henning, Peter J.; Newton, Gary, Jr.

    2002-11-01

    Multiple airbag systems in passenger cars can generate overpressure and noise that may be hazardous to human hearing. Overpressure is compression of the air inside a closed compartment caused by deployment of the bags. Noise results from the action of the gas inflating the bags. SAE J247 provides a standard for measuring the combination of overpressure and noise in a passenger compartment. A special microphone has recently been developed that meets this standard, which operates down to a fraction of a hertz. Details of the microphone are given. Little appears to have been published on the overpressure and noise of modern multiple airbag systems, but early results [R. Hickling, ''The noise of the automotive safety air cushion,'' Noise Control Eng., May-June, 110-121 (1976)] provide a basic understanding of the phenomenon. Spectral data shows that peak overpressure occurs at about 2 to 3 Hz. A significant reduction in overpressure and noise can be achieved with an aspirating airbag, originally developed at General Motors, whose outer structure is inflated with gas from the inflator, and whose inner structure draws in air from the passenger compartment through one-way cloth valves. Tests have shown that such bags function well when impacted.

  1. Influence of different flight conditions on helicopter noise contours on ground

    NASA Astrophysics Data System (ADS)

    Niesl, G.; Pongratz, R.

    1992-09-01

    Helicopter exterior noise measurements are presented which were performed for the verification of a noise prediction method in the vicinity of heliports. The test campaign has been supported by the German Federal Environmental Agency (FEA). The measurement program covered landing, takeoff, and flyover conditions for the Eurocopter BO 105 and the Sikorsky CH 53. In addition, BO 105 hover and turn flight conditions were measured. The noise on ground was measured with nine microphones arranged in an array of 600 x 500 m. By varying the starting/landing point, 17 measurement positions were achieved for each flight condition covering a field of 600 x 1000 m. The measurements are evaluated in form of noise contour footprints for maximum noise levels during flyover and time integrated noise levels like SEL. Special view is given to the noise reduction effect of steep approach flight conditions with glide path angles between 9 and 15 deg and steep takeoff procedures. It can be shown that the prediction methodology of the German Air Traffic Noise Control Act calculates too high noise levels for helicopters. By modification of the noise data base and the flyover time calculation, the accuracy can be considerably increased.

  2. Development of an acoustic actuator for launch vehicle noise reduction.

    PubMed

    Henderson, Benjamin K; Lane, Steven A; Gussy, Joel; Griffin, Steve; Farinholt, Kevin M

    2002-01-01

    In many active noise control applications, it is necessary that acoustic actuators be mounted in small enclosures due to volume constraints and in order to remain unobtrusive. However, the air spring of the enclosure is detrimental to the low-frequency performance of the actuator. For launch vehicle noise control applications, mass and volume constraints are very limiting, but the low-frequency performance of the actuator is critical. This work presents a novel approach that uses a nonlinear buckling suspension system and partial evacuation of the air within the enclosure to yield a compact, sealed acoustic driver that exhibits a very low natural frequency. Linear models of the device are presented and numerical simulations are given to illustrate the advantages of this design concept. An experimental prototype was built and measurements indicate that this design can significantly improve the low-frequency response of compact acoustic actuators.

  3. Reduction of Flap Side Edge Noise - the Blowing Flap

    NASA Technical Reports Server (NTRS)

    Hutcheson, Florence V.; Brooks, THomas F.

    2005-01-01

    A technique to reduce the noise radiating from a wing-flap side edge is being developed. As an airplane wing with an extended flap is exposed to a subsonic airflow, air is blown outward through thin rectangular chord-wise slots at various locations along the side edges and side surface of the flap to weaken and push away the vortices that originate in that region of the flap and are responsible for important noise emissions. Air is blown through the slots at up to twice the local flow velocity. The blowing is done using one or multiple slots, where a slot is located along the top, bottom or side surface of the flap along the side edge, or also along the intersection of the bottom (or top) and side surfaces.

  4. Airframe Noise Results from the QTD II Flight Test Program

    NASA Technical Reports Server (NTRS)

    Elkoby, Ronen; Brusniak, Leon; Stoker, Robert W.; Khorrami, Mehdi R.; Abeysinghe, Amal; Moe, Jefferey W.

    2007-01-01

    With continued growth in air travel, sensitivity to community noise intensifies and materializes in the form of increased monitoring, regulations, and restrictions. Accordingly, realization of quieter aircraft is imperative, albeit only achievable with reduction of both engine and airframe components of total aircraft noise. Model-scale airframe noise testing has aided in this pursuit; however, the results are somewhat limited due to lack of fidelity of model hardware, particularly in simulating full-scale landing gear. Moreover, simulation of true in-flight conditions is non-trivial if not infeasible. This paper reports on an investigation of full-scale landing gear noise measured as part of the 2005 Quiet Technology Demonstrator 2 (QTD2) flight test program. Conventional Boeing 777-300ER main landing gear were tested, along with two noise reduction concepts, namely a toboggan fairing and gear alignment with the local flow, both of which were down-selected from various other noise reduction devices evaluated in model-scale testing at Virginia Tech. The full-scale toboggan fairings were designed by Goodrich Aerostructures as add-on devices allowing for complete retraction of the main gear. The baseline-conventional gear, faired gear, and aligned gear were all evaluated with the high-lift system in the retracted position and deployed at various flap settings, all at engine idle power setting. Measurements were taken with flyover community noise microphones and a large aperture acoustic phased array, yielding far-field spectra, and localized sources (beamform maps). The results were utilized to evaluate qualitatively and quantitatively the merit of each noise reduction concept. Complete similarity between model-scale and full-scale noise reduction levels was not found and requires further investigation. Far-field spectra exhibited no noise reduction for both concepts across all angles and frequencies. Phased array beamform maps show inconclusive evidence of noise

  5. Airframe-Jet Engine Integration Noise

    NASA Technical Reports Server (NTRS)

    Tam, Christopher; Antcliff, Richard R. (Technical Monitor)

    2003-01-01

    It has been found experimentally that the noise radiated by a jet mounted under the wing of an aircraft exceeds that of the same jet in a stand-alone environment. The increase in noise is referred to as jet engine airframe integration noise. The objectives of the present investigation are, (1) To obtain a better understanding of the physical mechanisms responsible for jet engine airframe integration noise or installation noise. (2) To develop a prediction model for jet engine airframe integration noise. It is known that jet mixing noise consists of two principal components. They are the noise from the large turbulence structures of the jet flow and the noise from the fine scale turbulence. In this investigation, only the effect of jet engine airframe interaction on the fine scale turbulence noise of a jet is studied. The fine scale turbulence noise is the dominant noise component in the sideline direction. Thus we limit out consideration primarily to the sideline.

  6. Noise Pollution--What can be Done?

    ERIC Educational Resources Information Center

    Shaw, Edgar A. G.

    1975-01-01

    Discusses the ratio of energy dissipated as sound to the mechanical output of devices. Considers noise levels, ranges vs. peaks, noise indexes, and health hazards. Indicates some problems vs. solutions in the technology of noise control. (GH)

  7. Noise-induced hearing loss.

    PubMed

    Sliwinska-Kowalska, Mariola; Davis, Adrian

    2012-01-01

    Noise-induced hearing loss (NIHL) still remains a problem in developed countries, despite reduced occupational noise exposure, strict standards for hearing protection and extensive public health awareness campaigns. Therefore NIHL continues to be the focus of noise research activities. This paper summarizes progress achieved recently in our knowledge of NIHL. It includes papers published between the years 2008-2011 (in English), which were identified by a literature search of accessible medical and other relevant databases. A substantial part of this research has been concerned with the risk of NIHL in the entertainment sector, particularly in professional, orchestral musicians. There are also constant concerns regarding noise exposure and hearing risk in "hard to control" occupations, such as farming and construction work. Although occupational noise has decreased since the early 1980s, the number of young people subject to social noise exposure has tripled. If the exposure limits from the Noise at Work Regulations are applied, discotheque music, rock concerts, as well as music from personal music players are associated with the risk of hearing loss in teenagers and young adults. Several recent research studies have increased the understanding of the pathomechanisms of acoustic trauma, the genetics of NIHL, as well as possible dietary and pharmacologic otoprotection in acoustic trauma. The results of these studies are very promising and offer grounds to expect that targeted therapies might help prevent the loss of sensory hair cells and protect the hearing of noise-exposed individuals. These studies emphasize the need to launch an improved noise exposure policy for hearing protection along with developing more efficient norms of NIHL risk assessment.

  8. Patrol Officer Daily Noise Exposure.

    PubMed

    Gilbertson, Lynn R; Vosburgh, Donna J H

    2015-01-01

    Previous research shows that police officers are at a higher risk for noise induced hearing loss (NIHL). Little data exists on the occupational tasks, outside of the firing range, that might lead to the increased risk of NIHL. The current study collected noise dosimetry from patrol officers in a smaller department and a larger department in southern Wisconsin, United States. The noise dosimeters simultaneously measured noise in three virtual dosimeters that had different thresholds, criterion levels, and exchange rates. The virtual dosimeters were set to: the Occupational Safety and Health Administration (OSHA) hearing conservation criteria (OSHA-HC), the OSHA permissible exposure level criteria (OSHA-PEL), and the American Conference of Governmental Industrial Hygienists (ACGIH). In addition to wearing a noise dosimeter during their respective work days, officers completed a log form documenting the type of task performed, the duration of that task, if the task involved the use of a siren, and officer characteristics that may have influenced their noise exposure, such as the type of dispatch radio unit worn. Analysis revealed that the normalized 8-hour time weighted averages (TWA) for all officers fell below the recommended OSHA and ACGIH exposure limits. The tasks involving the use of the siren had significantly higher levels than the tasks without (p = 0.005). The highest noise exposure levels were encountered when patrol officers were assisting other public safety agencies such as a fire department or emergency medical services (79 dBA). Canine officers had higher normalized 8-hr TWA noise exposure than regular patrol officers (p = 0.002). Officers with an evening work schedule had significantly higher noise exposure than the officers with a day or night work schedule (p = 0.023). There were no significant differences in exposure levels between the two departments (p = 0.22). Results suggest that this study population is unlikely to experience NIHL as

  9. Airframe Noise Reduction Studies and Clean-Airframe Noise Investigation

    NASA Technical Reports Server (NTRS)

    Fink, M. R.; Bailey, D. A.

    1980-01-01

    Acoustic wind tunnel tests were conducted of a wing model with modified leading edge slat and trailing edge flap. The modifications were intended to reduce the surface pressure response to convected turbulence and thereby reduce the airframe noise without changing the lift at constant incidence. Tests were conducted at 70.7 and 100 m/sec airspeeds, with Reynolds numbers 1.5 x 10 to the 6th power and 2.1 x 10 to the 6th power. Considerable reduction of noise radiation from the side edges of a 40 deflection single slotted flap was achieved by modification to the side edge regions or the leading edge region of the flap panel. Total far field noise was reduced 2 to 3 dB over several octaves of frequency. When these panels were installed as the aft panel of a 40 deg deflection double slotted flap, 2 dB noise reduction was achieved.

  10. Spin noise amplification and giant noise in optical microcavity

    SciTech Connect

    Ryzhov, I. I.; Poltavtsev, S. V.; Kozlov, G. G.; Zapasskii, V. S.; Kavokin, A. V.; Lagoudakis, P. V.

    2015-06-14

    When studying the spin-noise-induced fluctuations of Kerr rotation in a quantum-well microcavity, we have found a dramatic increase of the noise signal (by more than two orders of magnitude) in the vicinity of anti-crossing of the polariton branches. The effect is explained by nonlinear optical instability of the microcavity giving rise to the light-power-controlled amplification of the polarization noise signal. In the framework of the developed model of built-in amplifier, we also interpret the nontrivial spectral and intensity-related properties of the observed noise signal below the region of anti-crossing of polariton branches. The discovered effect of optically controllable amplification of broadband polarization signals in microcavities in the regime of optical instability may be of interest for detecting weak oscillations of optical anisotropy in fundamental research and for other applications in optical information processing.

  11. Removal of noise from noise-degraded speech signals

    NASA Astrophysics Data System (ADS)

    1989-06-01

    Techniques for the removal of noise from noise-degraded speech signals were reviewed and evaluation with special emphasis on live radio and telephone communications and the extraction of information from similar noisy recordings. The related area on the development of speech-enhancement devices for hearing-impaired people was reviewed. Evaluation techniques were reviewed to determine their suitability, particularly for the assessment of changes in the performance of workers who might use noise-reduction equipments on a daily basis in the applications cited above. The main conclusion was that noise-reduction methods may be useful in improving the performance of human operators who extract information from noisy speech material despite a lack of improvement found in using conventional closed-response intelligibility tests to assess those methods.

  12. Validation of Aircraft Noise Models at Lower Levels of Exposure

    NASA Technical Reports Server (NTRS)

    Page, Juliet A.; Plotkin, Kenneth J.; Carey, Jeffrey N.; Bradley, Kevin A.

    1996-01-01

    Noise levels around airports and airbases in the United States arc computed via the FAA's Integrated Noise Model (INM) or the Air Force's NOISEMAP (NMAP) program. These models were originally developed for use in the vicinity of airports, at distances which encompass a day night average sound level in decibels (Ldn) of 65 dB or higher. There is increasing interest in aircraft noise at larger distances from the airport. including en-route noise. To evaluate the applicability of INM and NMAP at larger distances, a measurement program was conducted at a major air carrier airport with monitoring sites located in areas exposed to an Ldn of 55 dB and higher. Automated Radar Terminal System (ARTS) radar tracking data were obtained to provide actual flight parameters and positive identification of aircraft. Flight operations were grouped according to aircraft type. stage length, straight versus curved flight tracks, and arrival versus departure. Sound exposure levels (SEL) were computed at monitoring locations, using the INM, and compared with measured values. While individual overflight SEL data was characterized by a high variance, analysis performed on an energy-averaging basis indicates that INM and similar models can be applied to regions exposed to an Ldn of 55 dB with no loss of reliability.

  13. The effects of aquaculture production noise on the growth, condition factor, feed conversion, and survival of rainbow trout, Oncorhynchus mykiss

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Intensive aquaculture systems, particularly recirculating systems, utilize equipment such as aerators, air and water pumps, blowers, and filtration systems that inadvertently increase noise levels in fish culture tanks. Sound levels and frequencies measured within intensive aquaculture systems are w...

  14. Model of aircraft noise adaptation

    NASA Technical Reports Server (NTRS)

    Dempsey, T. K.; Coates, G. D.; Cawthorn, J. M.

    1977-01-01

    Development of an aircraft noise adaptation model, which would account for much of the variability in the responses of subjects participating in human response to noise experiments, was studied. A description of the model development is presented. The principal concept of the model, was the determination of an aircraft adaptation level which represents an annoyance calibration for each individual. Results showed a direct correlation between noise level of the stimuli and annoyance reactions. Attitude-personality variables were found to account for varying annoyance judgements.

  15. Aeroacoustics of a porous plug supersonic jet noise suppressor

    NASA Technical Reports Server (NTRS)

    Dosanjh, D. S.; Matambo, T. J.; Das, I. S.

    1983-01-01

    The aeroacoustics of a porous plug supersonic jet noise suppressor was investigated. The needed modifications of the existing multistream coaxial jet rig; the compressed air facility and pressure controls; the design, the fabrication, and the installation of the plenum chamber for the plug nozzle, and the design and the machining of the first contoured plug nozzle were completed. The optical and the aeroacoustic data of the contoured plug nozzles and of the conical convergent nozzle alone were discussed.

  16. Apparatus for reducing aerodynamic noise in a wind tunnel

    NASA Technical Reports Server (NTRS)

    Howard, P. W.; Schutzenhofer, L. A. (Inventor)

    1976-01-01

    An apparatus is described for reducing the background noise produced by the porous walls of the test section of a wind tunnel. A finely meshed screen member is placed over the perforations in the test section walls. The mesh wire screen attached to the interior wall provides a smoother surface for the air stream to flow against reducing the vorticies produced by the edges of the perforations in the test section walls.

  17. Cosmological flux noise and measured noise power spectra in SQUIDs

    NASA Astrophysics Data System (ADS)

    Beck, Christian

    2016-06-01

    The understanding of the origin of 1/f magnetic flux noise commonly observed in superconducting devices such as SQUIDs and qubits is still a major unsolved puzzle. Here we discuss the possibility that a significant part of the observed low-frequency flux noise measured in these devices is ultimately seeded by cosmological fluctuations. We consider a theory where a primordial flux noise field left over in unchanged form from an early inflationary or quantum gravity epoch of the universe intrinsically influences the phase difference in SQUIDs and qubits. The perturbation seeds generated by this field can explain in a quantitatively correct way the form and amplitude of measured low-frequency flux noise spectra in SQUID devices if one takes as a source of fluctuations the primordial power spectrum of curvature fluctuations as measured by the Planck collaboration. Our theoretical predictions are in excellent agreement with recent low-frequency flux noise measurements of various experimental groups. Magnetic flux noise, so far mainly considered as a nuisance for electronic devices, may thus contain valuable information about fluctuation spectra in the very early universe.

  18. Cosmological flux noise and measured noise power spectra in SQUIDs.

    PubMed

    Beck, Christian

    2016-06-20

    The understanding of the origin of 1/f magnetic flux noise commonly observed in superconducting devices such as SQUIDs and qubits is still a major unsolved puzzle. Here we discuss the possibility that a significant part of the observed low-frequency flux noise measured in these devices is ultimately seeded by cosmological fluctuations. We consider a theory where a primordial flux noise field left over in unchanged form from an early inflationary or quantum gravity epoch of the universe intrinsically influences the phase difference in SQUIDs and qubits. The perturbation seeds generated by this field can explain in a quantitatively correct way the form and amplitude of measured low-frequency flux noise spectra in SQUID devices if one takes as a source of fluctuations the primordial power spectrum of curvature fluctuations as measured by the Planck collaboration. Our theoretical predictions are in excellent agreement with recent low-frequency flux noise measurements of various experimental groups. Magnetic flux noise, so far mainly considered as a nuisance for electronic devices, may thus contain valuable information about fluctuation spectra in the very early universe.

  19. Cosmological flux noise and measured noise power spectra in SQUIDs.

    PubMed

    Beck, Christian

    2016-01-01

    The understanding of the origin of 1/f magnetic flux noise commonly observed in superconducting devices such as SQUIDs and qubits is still a major unsolved puzzle. Here we discuss the possibility that a significant part of the observed low-frequency flux noise measured in these devices is ultimately seeded by cosmological fluctuations. We consider a theory where a primordial flux noise field left over in unchanged form from an early inflationary or quantum gravity epoch of the universe intrinsically influences the phase difference in SQUIDs and qubits. The perturbation seeds generated by this field can explain in a quantitatively correct way the form and amplitude of measured low-frequency flux noise spectra in SQUID devices if one takes as a source of fluctuations the primordial power spectrum of curvature fluctuations as measured by the Planck collaboration. Our theoretical predictions are in excellent agreement with recent low-frequency flux noise measurements of various experimental groups. Magnetic flux noise, so far mainly considered as a nuisance for electronic devices, may thus contain valuable information about fluctuation spectra in the very early universe. PMID:27320418

  20. Cosmological flux noise and measured noise power spectra in SQUIDs

    PubMed Central

    Beck, Christian

    2016-01-01

    The understanding of the origin of 1/f magnetic flux noise commonly observed in superconducting devices such as SQUIDs and qubits is still a major unsolved puzzle. Here we discuss the possibility that a significant part of the observed low-frequency flux noise measured in these devices is ultimately seeded by cosmological fluctuations. We consider a theory where a primordial flux noise field left over in unchanged form from an early inflationary or quantum gravity epoch of the universe intrinsically influences the phase difference in SQUIDs and qubits. The perturbation seeds generated by this field can explain in a quantitatively correct way the form and amplitude of measured low-frequency flux noise spectra in SQUID devices if one takes as a source of fluctuations the primordial power spectrum of curvature fluctuations as measured by the Planck collaboration. Our theoretical predictions are in excellent agreement with recent low-frequency flux noise measurements of various experimental groups. Magnetic flux noise, so far mainly considered as a nuisance for electronic devices, may thus contain valuable information about fluctuation spectra in the very early universe. PMID:27320418

  1. Basic research in fan source noise: Inlet distortion and turbulence noise

    NASA Technical Reports Server (NTRS)

    Kantola, R. A.; Warren, R. E.

    1978-01-01

    A widely recognized problem in jet engine fan noise is the discrepancy between inflight and static tests. This discrepancy consists of blade passing frequency tones, caused by ingested turbulence that appear in the static tests but not in flight. To reduce the ingested distortions and turbulence in an anechoic chamber, a reverse cone inlet is used to guide the air into the fan. This inlet also has provisions for boundary layer suction and is used in conjunction with a turbulence control structure (TCS) to condition the air impinging on the fan. The program was very successful in reducing the ingested turbulence, to the point where reductions in the acoustic power at blade passing frequency are as high as 18 db for subsonic tip speeds. Even with this large subsonic tone suppression, the supersonic tip speed tonal content remains largely unchanged, indicating that the TCS did not appreciably attenuate the noise but effects the generation via turbulence reduction. Turbulence mapping of the inlet confirmed that the tone reductions are due to a reduction in turbulence, as the low frequency power spectra of the streamwise and transverse turbulence were reduced by up to ten times and 100 times, respectively.

  2. Aire Gets Company for Immune Tolerance.

    PubMed

    Klein, Ludger

    2015-11-01

    A specialized subset of epithelial cells in the thymus "promiscuously" transcribes thousands of peripheral genes to ensure that developing T cells can test their antigen receptors for dangerous autoreactivity. New findings by Takaba et al. indicate that the transcription factor Fezf2 acts independently of Aire in thymic epithelial cells to generate "genetic noise" for immunological tolerance. PMID:26544932

  3. Aire Gets Company for Immune Tolerance.

    PubMed

    Klein, Ludger

    2015-11-01

    A specialized subset of epithelial cells in the thymus "promiscuously" transcribes thousands of peripheral genes to ensure that developing T cells can test their antigen receptors for dangerous autoreactivity. New findings by Takaba et al. indicate that the transcription factor Fezf2 acts independently of Aire in thymic epithelial cells to generate "genetic noise" for immunological tolerance.

  4. Seismometer Self-Noise and Measuring Methods

    USGS Publications Warehouse

    Ringler, Adam; R. Sleeman,; Hutt, Charles R.; Gee, Lind S.

    2014-01-01

    Seismometer self-noise is usually not considered when selecting and using seismic waveform data in scientific research as it is typically assumed that the self-noise is negligibly small compared to seismic signals. However, instrumental noise is part of the noise in any seismic record, and in particular, at frequencies below a few mHz, the instrumental noise has a frequency-dependent character and may dominate the noise. When seismic noise itself is considered as a carrier of information, as in seismic interferometry (e.g., Chaput et al. 2012), it becomes extremely important to estimate the contribution of instrumental noise to the recordings.

  5. Effects of noise upon human information processing

    NASA Technical Reports Server (NTRS)

    Cohen, H. H.; Conrad, D. W.; Obrien, J. F.; Pearson, R. G.

    1974-01-01

    Studies of noise effects upon human information processing are described which investigated whether or not effects of noise upon performance are dependent upon specific characteristics of noise stimulation and their interaction with task conditions. The difficulty of predicting noise effects was emphasized. Arousal theory was considered to have explanatory value in interpreting the findings of all the studies. Performance under noise was found to involve a psychophysiological cost, measured by vasoconstriction response, with the degree of response cost being related to scores on a noise annoyance sensitivity scale. Noise sensitive subjects showed a greater autonomic response under noise stimulation.

  6. Investigation of noise sources and propagation in external gear pumps

    NASA Astrophysics Data System (ADS)

    Opperwall, Timothy J.

    element vibro-acoustic model as well as the influence of additional models for system components to better understand the essential problems of noise generation in hydraulic systems. This model is a step forward for the field due to the coupling of an advanced internal model of pump operation coupled to a detailed vibro-acoustic model. Several experimental studies were also completed in order to advance the current science. The first study validated the pump model in terms of outlet pressure ripple prediction through comparison to experimentally measured results for the reference pump as well as prototype pumps designed for low outlet pressure ripple. The second study focused on the air-borne noise through sound pressure and intensity measurements on reference and prototype pumps at steady-state operating conditions. A third study over a wide range of operating speeds and pressures was completed to explore the impact of operating condition and system design to greater detail through measuring noise and vibration in the working fluid, the system structures, and the air. Applying the knowledge gained through experimental and simulation studies has brought new advances in the understanding of the physics of noise generation and propagation in hydraulic components and systems. The focus of the combined simulation and modeling approach is to clearly understand the different contributions from noise sources and surpasses the previous methods that focus on the outlet pressure ripple alone as a source of noise. The application of the new modeling and experimental approach allows for new advances which directly contribute to advancing the science of noise in hydraulic applications and the design of new quieter hydrostatic units and hydraulic systems.

  7. Air Pollution

    MedlinePlus

    ... tobacco smoke. How is air pollution linked to climate change? While climate change is a global process, it ... ozone levels are also a concern. Impacts of Climate Change on Human Health in the United States: A ...

  8. Air Apparent.

    ERIC Educational Resources Information Center

    Harbster, David A.

    1988-01-01

    Explains the principle upon which a barometer operates. Describes how to construct two barometric devices for use in the classroom that show air's changing pressure. Cites some conditions for predicting weather. (RT)

  9. Urban air

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    Air pollution and the risk of potential health effects are not sufficiently convincing reasons for people to stop driving their cars, according to a study by the Population Reference Bureau (PRB) released on November 18.While sufficient levels of suspended particulate matter, carbon monoxide, and lead can present health concerns, the study found that many people surveyed for the study were not convinced of the clear linkage between air pollution and health.

  10. Estimating the coherence of noise

    NASA Astrophysics Data System (ADS)

    Wallman, Joel; Granade, Chris; Harper, Robin; Flammia, Steven T.

    2015-11-01

    Noise mechanisms in quantum systems can be broadly characterized as either coherent (i.e., unitary) or incoherent. For a given fixed average error rate, coherent noise mechanisms will generally lead to a larger worst-case error than incoherent noise. We show that the coherence of a noise source can be quantified by the unitarity, which we relate to the average change in purity averaged over input pure states. We then show that the unitarity can be efficiently estimated using a protocol based on randomized benchmarking that is efficient and robust to state-preparation and measurement errors. We also show that the unitarity provides a lower bound on the optimal achievable gate infidelity under a given noisy process.

  11. Noise in Nonlinear Dynamical Systems

    NASA Astrophysics Data System (ADS)

    Moss, Frank; McClintock, P. V. E.

    2009-08-01

    List of contributors; Preface; Introduction to volume three; 1. The effects of coloured quadratic noise on a turbulent transition in liquid He II J. T. Tough; 2. Electrohydrodynamic instability of nematic liquid crystals: growth process and influence of noise S. Kai; 3. Suppression of electrohydrodynamic instabilities by external noise Helmut R. Brand; 4. Coloured noise in dye laser fluctuations R. Roy, A. W. Yu and S. Zhu; 5. Noisy dynamics in optically bistable systems E. Arimondo, D. Hennequin and P. Glorieux; 6. Use of an electronic model as a guideline in experiments on transient optical bistability W. Lange; 7. Computer experiments in nonlinear stochastic physics Riccardo Mannella; 8. Analogue simulations of stochastic processes by means of minimum component electronic devices Leone Fronzoni; 9. Analogue techniques for the study of problems in stochastic nonlinear dynamics P. V. E. McClintock and Frank Moss; Index.

  12. Noise spectroscopy of polymer transistors

    NASA Astrophysics Data System (ADS)

    Harsh, Rishav; Narayan, K. S.

    2015-11-01

    Noise studies constitute an important approach to study polymer based field effect transistors (FETs) from the perspective of disorder physics as well as device application. The current fluctuations in an all organic solution-processable FET in different regimes of operation (I-V) are measured and analyzed. The intrinsic transport noise is sizable and readily observed in the current time series measurements. The ensuing current spectrum (SI(f)) exhibits a typical 1/f characteristics. It is observed that this noise amplitude scales with respect to current bias and indicative of mobility as well as number fluctuations at dielectric-semiconductor interface. FETs with leakage (lossy) dielectric layer indicate characteristic noise spectrum features which can serve as a diagnostic tool to monitor device stability.

  13. Rotor-vortex interaction noise

    NASA Technical Reports Server (NTRS)

    Schlinker, R. H.; Amiet, R. K.

    1983-01-01

    A theoretical and experimental study was conducted to develop a validated first principles analysis for predicting noise generated by helicopter main-rotor shed vortices interacting with the tail rotor. The generalized prediction procedure requires a knowledge of the incident vortex velocity field, rotor geometry, and rotor operating conditions. The analysis includes compressibility effects, chordwise and spanwise noncompactness, and treats oblique intersections with the blade planform. Assessment of the theory involved conducting a model rotor experiment which isolated the blade-vortex interaction noise from other rotor noise mechanisms. An isolated tip vortex, generated by an upstream semispan airfoil, was convected into the model tail rotor. Acoustic spectra, pressure signatures, and directivity were measured. Since assessment of the acoustic prediction required a knowledge of the vortex properties, blade-vortes intersection angle, intersection station, vortex stength, and vortex core radius were documented. Ingestion of the vortex by the rotor was experimentally observed to generate harmonic noise and impulsive waveforms.

  14. Chain reconfiguration in active noise

    NASA Astrophysics Data System (ADS)

    Samanta, Nairhita; Chakrabarti, Rajarshi

    2016-05-01

    In a typical single molecule experiment, the dynamics of an unfolded protein is studied by determining the reconfiguration time using long-range Förster resonance energy transfer, where the reconfiguration time is the characteristic decay time of the position correlation between two residues of the protein. In this paper we theoretically calculate the reconfiguration time for a single flexible polymer in the presence of active noise. The study suggests that though the mean square displacement grows faster, the chain reconfiguration is always slower in the presence of long-lived active noise with exponential temporal correlation. Similar behavior is observed for a worm-like semi-flexible chain and a Zimm chain. However it is primarily the characteristic correlation time of the active noise and not the strength that controls the increase in the reconfiguration time. In brief, such active noise makes the polymer move faster but the correlation loss between the monomers becomes slow.

  15. A comprehensive model for quantum noise characterization in digital mammography

    NASA Astrophysics Data System (ADS)

    Monnin, P.; Bosmans, H.; Verdun, F. R.; Marshall, N. W.

    2016-03-01

    A version of cascaded systems analysis was developed specifically with the aim of studying quantum noise propagation in x-ray detectors. Signal and quantum noise propagation was then modelled in four types of x-ray detectors used for digital mammography: four flat panel systems, one computed radiography and one slot-scan silicon wafer based photon counting device. As required inputs to the model, the two dimensional (2D) modulation transfer function (MTF), noise power spectra (NPS) and detective quantum efficiency (DQE) were measured for six mammography systems that utilized these different detectors. A new method to reconstruct anisotropic 2D presampling MTF matrices from 1D radial MTFs measured along different angular directions across the detector is described; an image of a sharp, circular disc was used for this purpose. The effective pixel fill factor for the FP systems was determined from the axial 1D presampling MTFs measured with a square sharp edge along the two orthogonal directions of the pixel lattice. Expectation MTFs were then calculated by averaging the radial MTFs over all possible phases and the 2D EMTF formed with the same reconstruction technique used for the 2D presampling MTF. The quantum NPS was then established by noise decomposition from homogenous images acquired as a function of detector air kerma. This was further decomposed into the correlated and uncorrelated quantum components by fitting the radially averaged quantum NPS with the radially averaged EMTF2. This whole procedure allowed a detailed analysis of the influence of aliasing, signal and noise decorrelation, x-ray capture efficiency and global secondary gain on NPS and detector DQE. The influence of noise statistics, pixel fill factor and additional electronic and fixed pattern noises on the DQE was also studied. The 2D cascaded model and decompositions performed on the acquired images also enlightened the observed quantum NPS and DQE anisotropy.

  16. Cardiovascular effects of environmental noise: research in Austria.

    PubMed

    Lercher, Peter; Botteldooren, Dick; Widmann, Ulrich; Uhrner, Ulrich; Kammeringer, Ewald

    2011-01-01

    Cardiovascular effects of noise rank second in terms of disability-adjusted life year (DALYs) after annoyance. Although research during the past decade has consolidated the available data base, the most recent meta-analysis still shows wide confidence intervals - indicating imprecise information for public health risk assessment. The alpine area of Tyrol in the Austrian part of the Alps has experienced a massive increase in car and heavy goods traffic (road and rail) during the last 35 years. Over the past 25 years small-, middle-, and large-sized epidemiological health surveys have been conducted - mostly within the framework of environmental health impact assessments. By design, these studies have emphasized a contextually driven environmental stress perspective, where the adverse health effects on account of noise are studied in a broader framework of environmental health, susceptibility, and coping. Furthermore, innovative exposure assessment strategies have been implemented. This article reviews the existing knowledge from these studies over time, and presents the exposure-response curves, with and without interaction assessment, based on standardized re-analyses and discusses it in the light of past and current cardiovascular noise effects research. The findings support relevant moderation by age, gender, and family history in nearly all studies and suggest a strong need for consideration of non-linearity in the exposure-response analyses. On the other hand, air pollution has not played a relevant role as a moderator in the noise-hypertension or the noise-angina pectoris relationship. Finally, different noise modeling procedures can introduce variations in the exposure response curves, with substantive consequences for public health risk assessment of noise exposure. PMID:21537108

  17. Cardiovascular effects of environmental noise: research in Austria.

    PubMed

    Lercher, Peter; Botteldooren, Dick; Widmann, Ulrich; Uhrner, Ulrich; Kammeringer, Ewald

    2011-01-01

    Cardiovascular effects of noise rank second in terms of disability-adjusted life year (DALYs) after annoyance. Although research during the past decade has consolidated the available data base, the most recent meta-analysis still shows wide confidence intervals - indicating imprecise information for public health risk assessment. The alpine area of Tyrol in the Austrian part of the Alps has experienced a massive increase in car and heavy goods traffic (road and rail) during the last 35 years. Over the past 25 years small-, middle-, and large-sized epidemiological health surveys have been conducted - mostly within the framework of environmental health impact assessments. By design, these studies have emphasized a contextually driven environmental stress perspective, where the adverse health effects on account of noise are studied in a broader framework of environmental health, susceptibility, and coping. Furthermore, innovative exposure assessment strategies have been implemented. This article reviews the existing knowledge from these studies over time, and presents the exposure-response curves, with and without interaction assessment, based on standardized re-analyses and discusses it in the light of past and current cardiovascular noise effects research. The findings support relevant moderation by age, gender, and family history in nearly all studies and suggest a strong need for consideration of non-linearity in the exposure-response analyses. On the other hand, air pollution has not played a relevant role as a moderator in the noise-hypertension or the noise-angina pectoris relationship. Finally, different noise modeling procedures can introduce variations in the exposure response curves, with substantive consequences for public health risk assessment of noise exposure.

  18. A comprehensive model for quantum noise characterization in digital mammography.

    PubMed

    Monnin, P; Bosmans, H; Verdun, F R; Marshall, N W

    2016-03-01

    A version of cascaded systems analysis was developed specifically with the aim of studying quantum noise propagation in x-ray detectors. Signal and quantum noise propagation was then modelled in four types of x-ray detectors used for digital mammography: four flat panel systems, one computed radiography and one slot-scan silicon wafer based photon counting device. As required inputs to the model, the two dimensional (2D) modulation transfer function (MTF), noise power spectra (NPS) and detective quantum efficiency (DQE) were measured for six mammography systems that utilized these different detectors. A new method to reconstruct anisotropic 2D presampling MTF matrices from 1D radial MTFs measured along different angular directions across the detector is described; an image of a sharp, circular disc was used for this purpose. The effective pixel fill factor for the FP systems was determined from the axial 1D presampling MTFs measured with a square sharp edge along the two orthogonal directions of the pixel lattice. Expectation MTFs were then calculated by averaging the radial MTFs over all possible phases and the 2D EMTF formed with the same reconstruction technique used for the 2D presampling MTF. The quantum NPS was then established by noise decomposition from homogenous images acquired as a function of detector air kerma. This was further decomposed into the correlated and uncorrelated quantum components by fitting the radially averaged quantum NPS with the radially averaged EMTF(2). This whole procedure allowed a detailed analysis of the influence of aliasing, signal and noise decorrelation, x-ray capture efficiency and global secondary gain on NPS and detector DQE. The influence of noise statistics, pixel fill factor and additional electronic and fixed pattern noises on the DQE was also studied. The 2D cascaded model and decompositions performed on the acquired images also enlightened the observed quantum NPS and DQE anisotropy. PMID:26895467

  19. GE MOD-1 noise study

    NASA Technical Reports Server (NTRS)

    Wells, R. J.

    1981-01-01

    Noise studies of the MOD-1 Wind Turbine Generator are summarized, and a simple mathematical noise is presented which is adequate to correlate the sound levels found near the machine. A simple acoustic measure is suggested for use in evaluating far field sound levels. Use of this measure as input to a currently available sound complaint prediction program is discussed. Results of a recent statistical survey relative to the far field variation of this acoustic measure because of atmospheric effects are described.

  20. Emissions and Noise Pervasive Panel

    NASA Technical Reports Server (NTRS)

    Henderson, Brenda; Lee, Chi

    2008-01-01

    Objectives include: Provide interagency coordination of technology development, aimed at engine noise reduction. a) Provide recommendations to the Steering Committee on potential areas of interagency technology collaboration to maximize the use of government investments in noise reduction. b) Serve as a forum for information and technology exchange in order to coordinate gas turbine engine environmental strategies and policies among the member agencies and industry; c) Coordinate activities across panel representatives; and d) Communicate progress to VAATE steering committee.

  1. [Summary of ongoing activities on environmental noise and health at the WHO regional office for Europe].

    PubMed

    Héroux, M E; Braubach, M; Dramac, D; Korol, N; Paunovic, E; Zastenskaya, I

    2014-01-01

    The environmental noise is an important public health issue, according to recent assessment of the burden of diseases among environmental health risk factors in order of importance the environmental noise occupies the second place after air pollution. The World Health Organization (WHO) for the first time published its public health recommendations for the environmental noise in 1999 in the "WHO Guidelines for Community Noise (1999)". These recommendations found their development in WHO Night Noise Guidelines for Europe" (2009). From then onward there have been published new important data on the impact of the environmental noise on the health, that stipulated the revision of existing guidelines. Furthermore, both in the European Union (EU) Directive 2002/49/ EC and the Parma Declaration from 2010 there was pointed out the importance of renewal environmental noise recommendations. Responding to appearing interrogation, WHO Regional Office for Europe has recently initiated the process of the elaboration of new guiding principles known as "WHO Environmental Noise Guidelines for the European Region". The Guidelines will include a systematic review of most critical or important health consequences and also concentrate on health benefits of measures for the reducing noise levels. The Guidelines will consider noise coming from various noise sources such as aircraft, railroad, personal electronic devices and wind turbines. The Guidelines will also consider the particularity of such accommodations as residences, hospitals, and educational facilities. The work in the mentioned spheres is ongoing and the revised Guidelines are expected to be published in mid-2015. The Guidelines will provide up-to-date information on the health risks related to the environmental noise and evidence-based recommendations in order to support for WHO Member States in their efforts to prevent of the excessive noise and the struggle with their negative impact. PMID:25831923

  2. [Summary of ongoing activities on environmental noise and health at the WHO regional office for Europe].

    PubMed

    Héroux, M E; Braubach, M; Dramac, D; Korol, N; Paunovic, E; Zastenskaya, I

    2014-01-01

    The environmental noise is an important public health issue, according to recent assessment of the burden of diseases among environmental health risk factors in order of importance the environmental noise occupies the second place after air pollution. The World Health Organization (WHO) for the first time published its public health recommendations for the environmental noise in 1999 in the "WHO Guidelines for Community Noise (1999)". These recommendations found their development in WHO Night Noise Guidelines for Europe" (2009). From then onward there have been published new important data on the impact of the environmental noise on the health, that stipulated the revision of existing guidelines. Furthermore, both in the European Union (EU) Directive 2002/49/ EC and the Parma Declaration from 2010 there was pointed out the importance of renewal environmental noise recommendations. Responding to appearing interrogation, WHO Regional Office for Europe has recently initiated the process of the elaboration of new guiding principles known as "WHO Environmental Noise Guidelines for the European Region". The Guidelines will include a systematic review of most critical or important health consequences and also concentrate on health benefits of measures for the reducing noise levels. The Guidelines will consider noise coming from various noise sources such as aircraft, railroad, personal electronic devices and wind turbines. The Guidelines will also consider the particularity of such accommodations as residences, hospitals, and educational facilities. The work in the mentioned spheres is ongoing and the revised Guidelines are expected to be published in mid-2015. The Guidelines will provide up-to-date information on the health risks related to the environmental noise and evidence-based recommendations in order to support for WHO Member States in their efforts to prevent of the excessive noise and the struggle with their negative impact.

  3. Blast noise impacts on sleep

    NASA Astrophysics Data System (ADS)

    Nykaza, Edward T.; Pater, Larry L.

    2005-04-01

    Firing large guns during the hours of darkness is essential to combat readiness for the military. At the same time most people are particularly sensitive to noise when sleeping or trying to fall asleep. Laboratory studies done by Griefahn [J. Sound and Vib. 128, 109-119 (1989)] and Luz [see Luz et al., ERDC/CERL, TR-04-26 (2004)] suggest that a time period at night may exist where people are more tolerant to large weapon impulse noise (blast noise) and therefore, are less likely to be awakened from noise events. In the fall of 2004, a field study was conducted around a military installation to determine if such a time period(s) exists. Noise monitors were set up inside and outside of residents homes to record noise levels from live military training activities and actimeters were worn by participants sleeping their natural environment to measure sleep disturbance and awakening. The method and results of this study will be presented. [Work supported by US Army Engineer Research and Development Center CERL.

  4. Seismic Noise Levels Across Antarctica

    NASA Astrophysics Data System (ADS)

    Anthony, R. E.; Aster, R. C.; Wiens, D. A.; Nyblade, A.; Rowe, C. A.

    2011-12-01

    We utilize recently collected west (POLENET) and east Antarctic (AGAP) seismic data from temporary seismic networks, along with existing long-term and previous temporary Antarctic deployments of seismographs to characterize seismic noise across Antarctica, including substantial previously unsampled regions of the continental interior. Power spectral density spectra (PSD) at each broadband station are comprehensively calculated over 1.5 hour, continuous, overlapping time windows to assess noise levels across a period band of ~0.05 to 100 seconds period are estimated and compared to the Peterson (1993) global high- and low- noise models and to noise levels detected elsewhere on Earth. Analysis over hourly to decadal time periods using PSD probability density functions (PDFs; e.g., McNamara and Buland, 2004) allows for the statistical assessment of noise as a function of frequency and time. We assess the resulting time-dependent seismic noise spectral map of the continent in the context of optimizing the location and distribution of future long-term seismic stations in Antarctica. We also assess transient and seasonal variation in primary (~16 s) and secondary (~8 s) microseism peaks, which are both sensitive to near-coastal storms and wave state and to the annual formation and breakup of sea ice.

  5. Comparison of predicted engine core noise with current and proposed aircraft noise certification requirements

    NASA Technical Reports Server (NTRS)

    Vonglahn, U. H.; Groesbeck, D. E.

    1981-01-01

    Predicted engine core noise levels are compared with measured total aircraft noise levels and with current and proposed federal noise certification requirements. Comparisons are made at the FAR-36 measuring stations and include consideration of both full- and cutback-power operation at takeoff. In general, core noise provides a barrier to achieving proposed EPA stage 5 noise levels for all types of aircraft. More specifically, core noise levels will limit further reductions in aircraft noise levels for current widebody commercial aircraft.

  6. New Fan Engine Noise-Reduction Concept Using Trailing Edge Blowing of Fan Blades Demonstrated

    NASA Technical Reports Server (NTRS)

    Heidelberg, Laurence J.

    2002-01-01

    A major source of noise in commercial turbofan engines is the interaction of the fan blade wakes with the fan exit vanes (stators). These wakes can be greatly reduced by filling them with air blown out of the blade trailing edge. Extensive testing of this concept has demonstrated significant noise reductions. These tests were conducted on a low-speed, 4- ft-diameter fan using hollow blades at NASA Glenn Research Center's Aeroacoustic Propulsion Laboratory (AAPL).

  7. Environmental impact of noise levels in and around opencast bauxite mine.

    PubMed

    Kisku, G C; Barman, S C; Kidwai, M M; Bhargava, S K

    2002-01-01

    Until recently, noise pollution has not been paid adequate attention as air, water and land pollution. In order to assess (predict) the impact of bauxite mine noise on employees health and in and around bauxite mine environment, general noise sources and equipment noise were monitored. All these noise sources were compared with prescribed standard noise levels laid down by Central Pollution Control Board (CPCB). Data has also been compared with reference site, north block hill top which is barren and virgin plateau/top covered with grass only and free from human interference. Equipment noise levels were much higher than the other zone of the mine which does not have the corresponding standards. Rock breaker recorded the highest noise level with 73.1 +/- 14.2 to 89.5 +/- 10.1 dB (A) while from ripper dozer it was least with 61.0 +/- 17.3 to 76.2 +/- 6.2 dB (A). Meteorological parameters did not have much influence upon equipment noise up to 100 feet from the source. PMID:12617317

  8. The Effects of Ambient Conditions on Helicopter Harmonic Noise Radiation: Theory and Experiment

    NASA Technical Reports Server (NTRS)

    Greenwood, Eric; Sim, Ben W.; Boyd, D. Douglas, Jr.

    2016-01-01

    The effects of ambient atmospheric conditions, air temperature and density, on rotor harmonic noise radiation are characterized using theoretical models and experimental measurements of helicopter noise collected at three different test sites at elevations ranging from sea level to 7000 ft above sea level. Significant changes in the thickness, loading, and blade-vortex interaction noise levels and radiation directions are observed across the different test sites for an AS350 helicopter flying at the same indicated airspeed and gross weight. However, the radiated noise is shown to scale with ambient pressure when the flight condition of the helicopter is defined in nondimensional terms. Although the effective tip Mach number is identified as the primary governing parameter for thickness noise, the nondimensional weight coefficient also impacts lower harmonic loading noise levels, which contribute strongly to low frequency harmonic noise radiation both in and out of the plane of the horizon. Strategies for maintaining the same nondimensional rotor operating condition under different ambient conditions are developed using an analytical model of single main rotor helicopter trim and confirmed using a CAMRAD II model of the AS350 helicopter. The ability of the Fundamental Rotorcraft Acoustics Modeling from Experiments (FRAME) technique to generalize noise measurements made under one set of ambient conditions to make accurate noise predictions under other ambient conditions is also validated.

  9. Cumulative effects of noise and odour annoyances on environmental and health related quality of life.

    PubMed

    Oiamo, Tor H; Luginaah, Isaac N; Baxter, Jamie

    2015-12-01

    Noise and odour annoyances are important considerations in research on health effects of air pollution and traffic noise. Cumulative exposures can occur via several chemical hazards or a combination of chemical and stressor-based hazards, and related health outcomes can be generalized as manifestations of physiological and/or psychological stress responses. A major research challenge in this field is to understand the combined health effects of physiological and psychological responses to exposure. The SF-12 Health Survey is a health related quality of life (HRQoL) instrument designed for the assessment of functional mental and physical health in clinical practice and therefore well suited to research on physiological health outcomes of exposure. However, previous research has not assessed its sensitivity to psychological stress as measured by noise annoyance and odour annoyance. The current study validated and tested this application of the SF-12 Health Survey in a cross-sectional study (n = 603) that included exposure assessment for traffic noise and air pollution in Windsor, Ontario, Canada. The results indicated that SF-12 scores in Windsor were lower than Canadian normative data. A structural equation model demonstrated that this was partially due to noise and odour annoyances, which were associated with covarying exposures to ambient nitrogen dioxide and traffic noise. More specifically, noise annoyance had a significant and negative effect on both mental and physical health factors of the SF-12 and there was a significant covariance between noise annoyance and odour annoyance. The study confirmed a significant effect of psychological responses to cumulative exposures on HRQoL. The SF-12 Health Survey shows promise with respect to assessing the cumulative health effects of outdoor air pollution and traffic noise.

  10. The subjective importance of noise spectral content

    NASA Astrophysics Data System (ADS)

    Baxter, Donald; Phillips, Jonathan; Denman, Hugh

    2014-01-01

    This paper presents secondary Standard Quality Scale (SQS2) rankings in overall quality JNDs for a subjective analysis of the 3 axes of noise, amplitude, spectral content, and noise type, based on the ISO 20462 softcopy ruler protocol. For the initial pilot study, a Python noise simulation model was created to generate the matrix of noise masks for the softcopy ruler base images with different levels of noise, different low pass filter noise bandwidths and different band pass filter center frequencies, and 3 different types of noise: luma only, chroma only, and luma and chroma combined. Based on the lessons learned, the full subjective experiment, involving 27 observers from Google, NVIDIA and STMicroelectronics was modified to incorporate a wider set of base image scenes, and the removal of band pass filtered noise masks to ease observer fatigue. Good correlation was observed with the Aptina subjective noise study. The absence of tone mapping in the noise simulation model visibly reduced the contrast at high levels of noise, due to the clipping of the high levels of noise near black and white. Under the 34-inch viewing distance, no significant difference was found between the luma only noise masks and the combined luma and chroma noise masks. This was not the intuitive expectation. Two of the base images with large uniform areas, `restaurant' and `no parking', were found to be consistently more sensitive to noise than the texture rich scenes. Two key conclusions are (1) there are fundamentally different sensitivities to noise on a flat patch versus noise in real images and (2) magnification of an image accentuates visual noise in a way that is non-representative of typical noise reduction algorithms generating the same output frequency. Analysis of our experimental noise masks applied to a synthetic Macbeth ColorChecker Chart confirmed the color-dependent nature of the visibility of luma and chroma noise.

  11. 32 CFR 989.32 - Noise.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 6 2010-07-01 2010-07-01 false Noise. 989.32 Section 989.32 National Defense... ANALYSIS PROCESS (EIAP) § 989.32 Noise. Aircraft noise data files used for analysis during EIAP will be... System for Aircraft Noise for military training routes and military operating areas. Guidance...

  12. 75 FR 44046 - Noise Exposure Map Acceptance

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-27

    ... the precise relationship of specific properties to noise exposure contours depicted on a noise... contours, or in interpreting the noise exposure maps to resolve questions concerning, for example, which.... Therefore, the responsibility for the detailed overlaying of noise exposure contours onto the map...

  13. Noise and Children: A Review of Literature

    ERIC Educational Resources Information Center

    Mills, John H.

    1975-01-01

    This paper includes discussion of: noise induced permanent hearing loss, acoustic injuries of the inner ear, temporary hearing loss, hearing aid induced hearing loss, noise and drugs, noise levels in nurseries and hospitals, auditory skills, loudness and perceived noisiness, nonauditory effects of noise, conclusions, and a bibliography of…

  14. An adaptive algorithm for noise rejection.

    PubMed

    Lovelace, D E; Knoebel, S B

    1978-01-01

    An adaptive algorithm for the rejection of noise artifact in 24-hour ambulatory electrocardiographic recordings is described. The algorithm is based on increased amplitude distortion or increased frequency of fluctuations associated with an episode of noise artifact. The results of application of the noise rejection algorithm on a high noise population of test tapes are discussed.

  15. Aerodynamic Noise Generated by Shinkansen Cars

    NASA Astrophysics Data System (ADS)

    KITAGAWA, T.; NAGAKURA, K.

    2000-03-01

    The noise value (A -weighted sound pressure level, SLOW) generated by Shinkansen trains, now running at 220-300 km/h, should be less than 75 dB(A) at the trackside. Shinkansen noise, such as rolling noise, concrete support structure noise, and aerodynamic noise are generated by various parts of Shinkansen trains. Among these aerodynamic noise is important because it is the major contribution to the noise generated by the coaches running at high speed. In order to reduce the aerodynamic noise, a number of improvements to coaches have been made. As a result, the aerodynamic noise has been reduced, but it still remains significant. In addition, some aerodynamic noise generated from the lower parts of cars remains. In order to investigate the contributions of these noises, a method of analyzing Shinkansen noise has been developed and applied to the measured data of Shinkansen noise at speeds between 120 and 315 km/h. As a result, the following conclusions have been drawn: (1) Aerodynamic noise generated from the upper parts of cars was reduced considerably by smoothing car surfaces. (2) Aerodynamic noise generated from the lower parts of cars has a major influence upon the wayside noise.

  16. 23 CFR 772.19 - Construction noise.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 23 Highways 1 2012-04-01 2012-04-01 false Construction noise. 772.19 Section 772.19 Highways... ABATEMENT OF HIGHWAY TRAFFIC NOISE AND CONSTRUCTION NOISE § 772.19 Construction noise. For all Type I and II... construction of the project. The identification is to be performed during the project development studies....

  17. Noise. Ag Ed Environmental Education Series.

    ERIC Educational Resources Information Center

    Tulloch, Rodney W.

    Noise is the subject of the student resource unit to be used with high school vocational agriculture students. The nature of noise as a phenomenon and as a problem is clarified. Sources of noise pollution and the decibel levels they produce are described. Among the effects of noise pollution discussed are hearing loss, annoyance, and accidental…

  18. Air surveillance

    SciTech Connect

    Patton, G.W.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the air surveillance and monitoring programs currently in operation at that Hanford Site. Atmospheric releases of pollutants from Hanford to the surrounding region are a potential source of human exposure. For that reason, both radioactive and nonradioactive materials in air are monitored at a number of locations. The influence of Hanford emissions on local radionuclide concentrations was evaluated by comparing concentrations measured at distant locations within the region to concentrations measured at the Site perimeter. This section discusses sample collection, analytical methods, and the results of the Hanford air surveillance program. A complete listing of all analytical results summarized in this section is reported separately by Bisping (1995).

  19. [The application of air abrasion in dentistry].

    PubMed

    Mandinić, Zoran; Vulićević, Zoran R; Beloica, Milos; Radović, Ivana; Mandić, Jelena; Carević, Momir; Tekić, Jasmina

    2014-01-01

    One of the main objectives of contemporary dentistry is to preserve healthy tooth structure by applying techniques of noninvasive treatment. Air abrasion is a minimally invasive nonmechanical technique of tooth preparation that uses kinetic energy to remove carious tooth structure. A powerful narrow stream of moving aluminum-oxide particles hit the tooth surface and they abrade it without heat, vibration or noise. Variables that affect speed of cutting include air pressure, particle size, powder flow, tip's size, angle and distance from the tooth. It has been proposed that air abrasion can be used to diagnose early occlusal-surface lesions and treat them with minimal tooth preparation using magnifier. Reported advantages of air abrasion include reduced noise, vibration and sensitivity. Air abrasion cavity preparations have more rounded internal contours than those prepared with straight burs. This may increase the longevity of placed restorations because it reduces the incidence of fractures and a consequence of decreased internal stresses. However, air abrasion cannot be used for all patients, i.e. in cases involving severe dust allergy, asthma, chronic obstructive lung disease, recent extraction or other oral surgery, open wounds, advanced periodontal disease, recent placement of orthodontic appliances and oral abrasions, or subgingival caries removal. Many of these conditions increase the risk of air embolism in the oral soft tissues. Dust control is a challenge, and it necessitates the use of rubber dam, high-volume evacuation, protective masks and safety eyewear for both the patient and the therapist.

  20. Aircraft Noise Prediction Program theoretical manual: Propeller aerodynamics and noise

    NASA Technical Reports Server (NTRS)

    Zorumski, W. E. (Editor); Weir, D. S. (Editor)

    1986-01-01

    The prediction sequence used in the aircraft noise prediction program (ANOPP) is described. The elements of the sequence are called program modules. The first group of modules analyzes the propeller geometry, the aerodynamics, including both potential and boundary-layer flow, the propeller performance, and the surface loading distribution. This group of modules is based entirely on aerodynamic strip theory. The next group of modules deals with the first group. Predictions of periodic thickness and loading noise are determined with time-domain methods. Broadband noise is predicted by a semiempirical method. Near-field predictions of fuselage surface pressrues include the effects of boundary layer refraction and scattering. Far-field predictions include atmospheric and ground effects.

  1. Health Effects of Noise Exposure in Children.

    PubMed

    Stansfeld, Stephen; Clark, Charlotte

    2015-06-01

    Environmental noise exposure, such as road traffic noise and aircraft noise, is associated with a range of health outcomes in children. Children demonstrate annoyance responses to noise, and noise is also related to lower well-being and stress responses, such as increased levels of adrenaline and noradrenaline. Noise does not cause more serious mental health problems, but there is growing evidence for an association with increased hyperactivity symptoms. Studies also suggest that noise might cause changes in cardiovascular functioning, and there is some limited evidence for an effect on low birth weight. There is robust evidence for an effect of school noise exposure on children's cognitive skills such as reading and memory, as well as on standardised academic test scores. Environmental noise does not usually reach levels that are likely to affect children's hearing; however, increasing use of personal electronic devices may leave some children exposed to harmful levels of noise. PMID:26231366

  2. Noise properties of Hilbert transform evaluation

    NASA Astrophysics Data System (ADS)

    Pavliček, Pavel; Svak, Vojtěch

    2015-08-01

    The Hilbert transform is a standard method for the calculation of the envelope and phase of a modulated signal in optical measurement methods. Usually, the intensity of light is converted into an electric signal at a detector. Therefore the actual spatially or temporally sampled signal is always affected by noise. Because the noise values of individual samples are independent, the noise can be considered as white. If the envelope and phase are calculated from the noised signal, they will also be affected by the noise. We calculate the variance and spectral density of both the envelope noise and the phase noise. We determine which parameters influence the variance and spectral density of both the envelope noise and the phase noise. Finally, we determine the influence of the noise on the measurement uncertainty in white-light interferometry and fringe-pattern analysis.

  3. Airport noise impact reduction through operations

    NASA Technical Reports Server (NTRS)

    Deloach, R.

    1981-01-01

    The airport-noise levels and annoyance model (ALAMO) developed at NASA Langley Research Center is comprised of a system of computer programs which is capable of quantifying airport community noise impact in terms of noise level, population distribution, and human subjective response to noise. The ALAMO can be used to compare the noise impact of an airport's current operating scenario with the noise impact which would result from some proposed change in airport operations. The relative effectiveness of number of noise-impact reduction alternatives is assessed for a major midwest airport. Significant reductions in noise impact are predicted for certain noise abatement strategies while others are shown to result in relatively little noise relief.

  4. Helicopter noise regulations: An industry perspective

    NASA Technical Reports Server (NTRS)

    Wagner, R. A.

    1978-01-01

    A review of helicopter noise measurement programs and noise reduction/economic studies of FAA is given along with a critique of a study which addresses the economic impact of noise reduction on helicopter noise. Modification of several helicopters to reduce noise and demonstrate the economic impact of the application of the current state-of-the-art technology is discussed. Specific helicopters described include Boeing Vertol 347 Helicopter, Hughes OH-6 Helicopter, and Hughes 269C Helicopter. Other topics covered include: (1) noise trends and possible noise limits; (2) accuracy of helicopter noise prediction techniques; (3) limited change possibilities of derivatives; and (4) rotor impulsive noise. The unique operational capabilities of helicopters and the implications relative to noise regulations and certification are discussed.

  5. Addressing Challenges in Studies of Behavioral Responses of Whales to Noise.

    PubMed

    Cato, Douglas H; Dunlop, Rebecca A; Noad, Michael J; McCauley, Robert D; Kniest, Eric; Paton, David; Kavanagh, Ailbhe S

    2016-01-01

    Studying the behavioral response of whales to noise presents numerous challenges. In addition to the characteristics of the noise exposure, many factors may affect the response and these must be measured and accounted for in the analysis. An adequate sample size that includes matching controls is crucial if meaningful results are to be obtained. Field work is thus complicated, logistically difficult, and expensive. This paper discusses some of the challenges and how they are being met in a large-scale multiplatform project in which humpback whales are exposed to the noise of seismic air guns. PMID:26610954

  6. Addressing Challenges in Studies of Behavioral Responses of Whales to Noise.

    PubMed

    Cato, Douglas H; Dunlop, Rebecca A; Noad, Michael J; McCauley, Robert D; Kniest, Eric; Paton, David; Kavanagh, Ailbhe S

    2016-01-01

    Studying the behavioral response of whales to noise presents numerous challenges. In addition to the characteristics of the noise exposure, many factors may affect the response and these must be measured and accounted for in the analysis. An adequate sample size that includes matching controls is crucial if meaningful results are to be obtained. Field work is thus complicated, logistically difficult, and expensive. This paper discusses some of the challenges and how they are being met in a large-scale multiplatform project in which humpback whales are exposed to the noise of seismic air guns.

  7. Estimating the coherence of noise

    NASA Astrophysics Data System (ADS)

    Wallman, Joel

    To harness the advantages of quantum information processing, quantum systems have to be controlled to within some maximum threshold error. Certifying whether the error is below the threshold is possible by performing full quantum process tomography, however, quantum process tomography is inefficient in the number of qubits and is sensitive to state-preparation and measurement errors (SPAM). Randomized benchmarking has been developed as an efficient method for estimating the average infidelity of noise to the identity. However, the worst-case error, as quantified by the diamond distance from the identity, can be more relevant to determining whether an experimental implementation is at the threshold for fault-tolerant quantum computation. The best possible bound on the worst-case error (without further assumptions on the noise) scales as the square root of the infidelity and can be orders of magnitude greater than the reported average error. We define a new quantification of the coherence of a general noise channel, the unitarity, and show that it can be estimated using an efficient protocol that is robust to SPAM. Furthermore, we also show how the unitarity can be used with the infidelity obtained from randomized benchmarking to obtain improved estimates of the diamond distance and to efficiently determine whether experimental noise is close to stochastic Pauli noise.

  8. Thermal noise in confined fluids.

    PubMed

    Sanghi, T; Aluru, N R

    2014-11-01

    In this work, we discuss a combined memory function equation (MFE) and generalized Langevin equation (GLE) approach (referred to as MFE/GLE formulation) to characterize thermal noise in confined fluids. Our study reveals that for fluids confined inside nanoscale geometries, the correlation time and the time decay of the autocorrelation function of the thermal noise are not significantly different across the confinement. We show that it is the strong cross-correlation of the mean force with the molecular velocity that gives rise to the spatial anisotropy in the velocity-autocorrelation function of the confined fluids. Further, we use the MFE/GLE formulation to extract the thermal force a fluid molecule experiences in a MD simulation. Noise extraction from MD simulation suggests that the frequency distribution of the thermal force is non-Gaussian. Also, the frequency distribution of the thermal force near the confining surface is found to be different in the direction parallel and perpendicular to the confinement. We also use the formulation to compute the noise correlation time of water confined inside a (6,6) carbon-nanotube (CNT). It is observed that inside the (6,6) CNT, in which water arranges itself in a highly concerted single-file arrangement, the correlation time of thermal noise is about an order of magnitude higher than that of bulk water.

  9. Noise from implantable Cooper cable.

    PubMed

    Carrington, V; Zhou, L; Donaldson, N

    2005-09-01

    Cooper cable is made for implanted devices, usually for connection to stimulating electrodes. An experiment has been performed to see whether these cables would be satisfactory for recording electroneurogram (ENG) signals from cuffs. Four cables were subjected to continuous flexion at 2 Hz while submerged in saline. The cables were connected to a low-noise amplifier, and the noise was measured using a spectrum analyser. These cables had not fractured after 184 million flexions, and the noise in the neural band (500-5000 Hz) had not increased owing to age. Noise in the ENG band increased by less than 3 dB owing to the motion. A fifth, worn cable did fail during the experiment, the conductors becoming exposed to the saline, but this was only apparent by extra noise when the cable was in motion. After 184 million flexions, the four cables were given a more severe test: instead of being connected to the amplifier reference node, two of the four cores of each cable were connected to 18V batteries. Two of the cables were then noisier, but only when in motion, presumably because of leakage between cores. Cooper cables are excellent for transmitting neural signals alone; transmission in one cable of neural signals and power supplies should be avoided if possible. PMID:16411634

  10. [Sleep disturbance caused by noise].

    PubMed

    Vallet, M

    1982-05-01

    This contribution is a state-of-the-art of recent knowledge regarding effects from environmental noise on sleep and proposes acoustic thresholds likely to help public authorities in setting up regulations. It recalls physiological sleep aspects and the cyclic organization of the various stages; then it examines noise effects, principally those arising from road traffic, planes and trains. Such effects are firstly considered as changes in sleep organization during night. It is noted that laboratory and home experiments lead to the same conclusions: duration of deep sleep is appreciably reduced for younger people, while the dream phase is disturbed for older people. These disturbances are associated with an average energetic level Leq. Then partial effects are investigated, either electro-encephalographic or cardiac; these effects are more especially associated with isolated acoustic phenomena and determined from the noise peak level. Other variables, e.g. back noise, phenomena number per period, interval between two noises, have an effect on probability of a local phenomenon which can be connected to a given peak level. The conclusion is that two acoustic values must be retained for considering sleep disturbances: the first one is the energetic level inside the room, with a comfort threshold of 35 dB(A) by night, and the second one is the lowest peak level which should not exceed 50 dB(A).

  11. Thermal noise in confined fluids

    NASA Astrophysics Data System (ADS)

    Sanghi, T.; Aluru, N. R.

    2014-11-01

    In this work, we discuss a combined memory function equation (MFE) and generalized Langevin equation (GLE) approach (referred to as MFE/GLE formulation) to characterize thermal noise in confined fluids. Our study reveals that for fluids confined inside nanoscale geometries, the correlation time and the time decay of the autocorrelation function of the thermal noise are not significantly different across the confinement. We show that it is the strong cross-correlation of the mean force with the molecular velocity that gives rise to the spatial anisotropy in the velocity-autocorrelation function of the confined fluids. Further, we use the MFE/GLE formulation to extract the thermal force a fluid molecule experiences in a MD simulation. Noise extraction from MD simulation suggests that the frequency distribution of the thermal force is non-Gaussian. Also, the frequency distribution of the thermal force near the confining surface is found to be different in the direction parallel and perpendicular to the confinement. We also use the formulation to compute the noise correlation time of water confined inside a (6,6) carbon-nanotube (CNT). It is observed that inside the (6,6) CNT, in which water arranges itself in a highly concerted single-file arrangement, the correlation time of thermal noise is about an order of magnitude higher than that of bulk water.

  12. Environmental noise standards for Shanghai

    SciTech Connect

    Zheng Qilong

    1983-01-01

    The current legal limits of noise in different types of neighborhoods in Shanghai are all 5 db higher than the national standards. They are enacted as temporary measures to make them practicable under the special situation in Shanghai and to make it possible for the city to conform with the national standards eventually. Data of 1974-1975 and more recent tests of various neighborhoods in Shanghai indicate the average noise level during the day, at night, and after midnight to be 75.5, 63.5, and 49 db respectively, while the suitable range for conversation or contemplation is 40-60 db and 30-50 db for sleeping. Spot checks in 1981 show less than 50 percent of the urban areas meet the existing legal requirements. Half of the noise pollution originates from traffic while expansion of factories in recent years have shortened the distance between industrial and residential areas. The paper maintains that other than reconstructing the urban region, the noise can be reduced effectively by erecting thick groves of trees or other sound barriers to make Shanghai a quieter city. Various data are presented to support the paper's contention that the current legal noise limits for the city are both necessary and enforceable.

  13. Core Noise: Implications of Emerging N+3 Designs and Acoustic Technology Needs

    NASA Technical Reports Server (NTRS)

    Hultgren, Lennart S.

    2011-01-01

    prediction tools for integrated core assemblies as well as and strategies for noise reduction and control is needed in order to meet the NASA N+3 noise goals. The NASA Fundamental Aeronautics Program has the principal objective of overcoming today's national challenges in air transportation. The SFW Reduced-Perceived-Noise Technical Challenge aims to develop concepts and technologies to dramatically reduce the perceived aircraft noise outside of airport boundaries. This reduction of aircraft noise is critical to enabling the anticipated large increase in future air traffic.

  14. Effects of road traffic background noise on judgments of individual airplane noises. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Powell, C. A.

    1979-01-01

    Two laboratory experiments were conducted to investigate the effects of road-traffic background noise on judgments of individual airplane flyover noises. In the first experiment, 27 subjects judged a set of 16 airplane flyover noises in the presence of traffic-noise sessions of 30-min duration consisting of the combinations of 3 traffic-noise types and 3 noise levels. In the second experiment, 24 subjects judged the same airplane flyover noises in the presence of traffic-noise sessions of 10-min duration consisting of the combinations of 2 traffic-noise types and 4 noise levels. In both experiments the airplane noises were judged less annoying in the presence of high traffic-noise levels than in the presence of low traffic-noise levels.

  15. New aspects of subsonic aerodynamic noise theory

    NASA Technical Reports Server (NTRS)

    Goldstein, M. E.; Howes, W. L.

    1973-01-01

    A theory of aerodynamic noise is presented which differs from Lighthill's theory primarily in the way in which convection of the noise sources is treated. The sound directivity pattern obtained from the present theory agrees better with jet-noise directivity data than does that obtained from Lighthill's theory. The results imply that the shear-noise contribution to jet noise is smaller than previously expected.

  16. Quiet comfort: noise, otherness, and the mobile production of personal space.

    PubMed

    Hagood, Mack

    2011-01-01

    Marketing, news reports, and reviews of Bose QuietComfort noise-canceling headphones position them as essential gear for the mobile rational actor of the neoliberal market—the business traveler. This article concerns noise-canceling headphones’ utility as soundscaping devices, which render a sense of personal space by mediating sound. The airplane and airport are paradoxical spaces in which the pursuit of freedom impedes its own enjoyment. Rather than fight the discomforts of air travel as a systemic problem, travelers use the tactic of soundscaping to suppress the perceived presence of others. Attention to soundscaping enables the scholar to explore relationships between media, space, freedom, otherness, and selfhood in an era characterized by neoliberalism and increased mobility. Air travel is a moment in which people with diverse backgrounds, beliefs, and bodies crowd together in unusually close proximity. Noise is the sound of individualism and difference in conflict. Noise is othered sound, and like any type of othering, the perception of noise is socially constructed and situated in hierarchies of race, class, age, and gender. The normative QuietComfort user in media representations is white, male, rational, monied, and mobile; women, children, and “chatty” passengers are cast as noisemakers. Moreover, in putting on noise-canceling headphones, diverse selves put on the historically Western subjectivity that has been built into their technology, one that suppresses the noise of difference in favor of the smooth circulation of people, information, and commodities.

  17. Quiet comfort: noise, otherness, and the mobile production of personal space.

    PubMed

    Hagood, Mack

    2011-01-01

    Marketing, news reports, and reviews of Bose QuietComfort noise-canceling headphones position them as essential gear for the mobile rational actor of the neoliberal market—the business traveler. This article concerns noise-canceling headphones’ utility as soundscaping devices, which render a sense of personal space by mediating sound. The airplane and airport are paradoxical spaces in which the pursuit of freedom impedes its own enjoyment. Rather than fight the discomforts of air travel as a systemic problem, travelers use the tactic of soundscaping to suppress the perceived presence of others. Attention to soundscaping enables the scholar to explore relationships between media, space, freedom, otherness, and selfhood in an era characterized by neoliberalism and increased mobility. Air travel is a moment in which people with diverse backgrounds, beliefs, and bodies crowd together in unusually close proximity. Noise is the sound of individualism and difference in conflict. Noise is othered sound, and like any type of othering, the perception of noise is socially constructed and situated in hierarchies of race, class, age, and gender. The normative QuietComfort user in media representations is white, male, rational, monied, and mobile; women, children, and “chatty” passengers are cast as noisemakers. Moreover, in putting on noise-canceling headphones, diverse selves put on the historically Western subjectivity that has been built into their technology, one that suppresses the noise of difference in favor of the smooth circulation of people, information, and commodities. PMID:22165166

  18. Advanced Strategy Guideline: Air Distribution Basics and Duct Design

    SciTech Connect

    Burdick, A.

    2011-12-01

    This report discusses considerations for designing an air distribution system for an energy efficient house that requires less air volume to condition the space. Considering the HVAC system early in the design process will allow adequate space for equipment and ductwork and can result in cost savings. Principles discussed that will maximize occupant comfort include delivery of the proper amount of conditioned air for appropriate temperature mixing and uniformity without drafts, minimization of system noise, the impacts of pressure loss, efficient return air duct design, and supply air outlet placement, as well as duct layout, materials, and sizing.

  19. The association between noise exposure and blood pressure and ischemic heart disease: a meta-analysis.

    PubMed Central

    van Kempen, Elise E M M; Kruize, Hanneke; Boshuizen, Hendriek C; Ameling, Caroline B; Staatsen, Brigit A M; de Hollander, Augustinus E M

    2002-01-01

    It has been suggested that noise exposure is associated with blood pressure changes and ischemic heart disease risk, but epidemiologic evidence is still limited. Furthermore, most reviews investigating these relations were not carried out in a systematic way, which makes them more prone to bias. We conducted a meta-analysis of 43 epidemiologic studies published between 1970 and 1999 that investigate the relation between noise exposure (both occupational and community) and blood pressure and/or ischemic heart disease (International Classification of Diseases, Ninth Revision, codes 410-414). We studied a wide range of effects, from blood pressure changes to a myocardial infarction. With respect to the association between noise exposure and blood pressure, small blood pressure differences were evident. Our meta-analysis showed a significant association for both occupational noise exposure and air traffic noise exposure and hypertension: We estimated relative risks per 5 dB(A) noise increase of 1.14 (1.01-1.29) and 1.26 (1.14-1.39), respectively. Air traffic noise exposure was positively associated with the consultation of a general practitioner or specialist, the use of cardiovascular medicines, and angina pectoris. In cross-sectional studies, road traffic noise exposure increases the risk of myocardial infarction and total ischemic heart disease. Although we can conclude that noise exposure can contribute to the prevalence of cardiovascular disease, the evidence for a relation between noise exposure and ischemic heart disease is still inconclusive because of the limitations in exposure characterization, adjustment for important confounders, and the occurrence of publication bias. PMID:11882483

  20. Noise data for a twin-engine commercial jet aircraft flying conventional, steep, and two-segment approaches

    NASA Technical Reports Server (NTRS)

    Hastings, E. C., Jr.; Mueller, A. W.; Hamilton, J. R.

    1977-01-01

    Center-line noise measurements of a twin-engine commercial jet aircraft were made during steep landing approach profiles, and during two-segment approach profiles for comparison with similar measurements made during conventional approaches. The steep and two-segment approaches showed significant noise reductions when compared with the -3 deg base line. The measured noise data were also used to develop a method for estimating the noise under the test aircraft at thrust and altitude conditions typical of current landing procedures and of landing procedures under development for the Advanced Air Traffic Control System.

  1. Air Pollution.

    ERIC Educational Resources Information Center

    Scorer, Richard S.

    The purpose of this book is to describe the basic mechanisms whereby pollution is transported and diffused in the atmosphere. It is designed to give practitioners an understanding of basic mechanics and physics so they may have a correct basis on which to formulate their decisions related to practical air pollution control problems. Since many…

  2. Air Pollution

    PubMed Central

    Clifton, Marjorie

    1964-01-01

    Dr Marjorie Clifton describes the classification of gaseous and nongaseous constituents of air pollution and then outlines the methods of measuring these. The National Survey embraced 150 towns of all sizes throughout England and Wales and provided data on smoke and sulphur dioxide in relation to climate, topography, industrialization, population density, fuel utilization and urban development. Dr W C Turner discusses the relationship between air pollution and mortality from respiratory conditions, and particularly the incidence of chronic bronchitis. He postulates a theory that such respiratory conditions arise as an allergy to the spores of certain moulds, spore formation being encouraged by the air humidity in Greatv Britain and overcrowded and damp living conditions. He describes the results of a twenty-week study undertaken in 1962-3, showing associations between respiratory disease and levels of air pollution. Dr Stuart Carne undertook a survey in general practice to plot the patterns of respiratory illness in London during the winter of 1962-3. There were two peaks of respiratory illnesses coinciding with the fog at the beginning of December and the freeze-up from the end of December until the beginning of March. PMID:14178955

  3. Measurement of hearing aid internal noise.

    PubMed

    Lewis, James D; Goodman, Shawn S; Bentler, Ruth A

    2010-04-01

    Hearing aid equivalent input noise (EIN) measures assume the primary source of internal noise to be located prior to amplification and to be constant regardless of input level. EIN will underestimate internal noise in the case that noise is generated following amplification. The present study investigated the internal noise levels of six hearing aids (HAs). Concurrent with HA processing of a speech-like stimulus with both adaptive features (acoustic feedback cancellation, digital noise reduction, microphone directionality) enabled and disabled, internal noise was quantified for various stimulus levels as the variance across repeated trials. Changes in noise level as a function of stimulus level demonstrated that (1) generation of internal noise is not isolated to the microphone, (2) noise may be dependent on input level, and (3) certain adaptive features may contribute to internal noise. Quantifying internal noise as the variance of the output measures allows for noise to be measured under real-world processing conditions, accounts for all sources of noise, and is predictive of internal noise audibility. PMID:20370034

  4. Measurement of hearing aid internal noise1

    PubMed Central

    Lewis, James D.; Goodman, Shawn S.; Bentler, Ruth A.

    2010-01-01

    Hearing aid equivalent input noise (EIN) measures assume the primary source of internal noise to be located prior to amplification and to be constant regardless of input level. EIN will underestimate internal noise in the case that noise is generated following amplification. The present study investigated the internal noise levels of six hearing aids (HAs). Concurrent with HA processing of a speech-like stimulus with both adaptive features (acoustic feedback cancellation, digital noise reduction, microphone directionality) enabled and disabled, internal noise was quantified for various stimulus levels as the variance across repeated trials. Changes in noise level as a function of stimulus level demonstrated that (1) generation of internal noise is not isolated to the microphone, (2) noise may be dependent on input level, and (3) certain adaptive features may contribute to internal noise. Quantifying internal noise as the variance of the output measures allows for noise to be measured under real-world processing conditions, accounts for all sources of noise, and is predictive of internal noise audibility. PMID:20370034

  5. Shot-noise Fano factor

    NASA Astrophysics Data System (ADS)

    Rajdl, Kamil; Lansky, Petr

    2015-11-01

    A variability measure of the times of uniform events based on a shot-noise process is proposed and studied. The measure is inspired by the Fano factor, which we generalize by considering the time-weighted influence of the events given by a shot-noise response function. The sequence of events is assumed to be an equilibrium renewal process, and based on this assumption we present formulas describing the behavior of the variability measure. The formulas are derived for a general response function, restricted only by some natural conditions, but the main focus is given to the shot noise with exponential decrease. The proposed measure is analyzed and compared with the Fano factor.

  6. Handbook of aircraft noise metrics

    NASA Technical Reports Server (NTRS)

    Bennett, R. L.; Pearsons, K. S.

    1981-01-01

    Information is presented on 22 noise metrics that are associated with the measurement and prediction of the effects of aircraft noise. Some of the instantaneous frequency weighted sound level measures, such as A-weighted sound level, are used to provide multiple assessment of the aircraft noise level. Other multiple event metrics, such as day-night average sound level, were designed to relate sound levels measured over a period of time to subjective responses in an effort to determine compatible land uses and aid in community planning. The various measures are divided into: (1) instantaneous sound level metrics; (2) duration corrected single event metrics; (3) multiple event metrics; and (4) speech communication metrics. The scope of each measure is examined in terms of its: definition, purpose, background, relationship to other measures, calculation method, example, equipment, references, and standards.

  7. Handbook of aircraft noise metrics

    NASA Astrophysics Data System (ADS)

    Bennett, R. L.; Pearsons, K. S.

    1981-03-01

    Information is presented on 22 noise metrics that are associated with the measurement and prediction of the effects of aircraft noise. Some of the instantaneous frequency weighted sound level measures, such as A-weighted sound level, are used to provide multiple assessment of the aircraft noise level. Other multiple event metrics, such as day-night average sound level, were designed to relate sound levels measured over a period of time to subjective responses in an effort to determine compatible land uses and aid in community planning. The various measures are divided into: (1) instantaneous sound level metrics; (2) duration corrected single event metrics; (3) multiple event metrics; and (4) speech communication metrics. The scope of each measure is examined in terms of its: definition, purpose, background, relationship to other measures, calculation method, example, equipment, references, and standards.

  8. Noise suppressing capillary separation system

    DOEpatents

    Yeung, Edward S.; Xue, Yongjun

    1996-07-30

    A noise-suppressing capillary separation system for detecting the real-time presence or concentration of an analyte in a sample is provided. The system contains a capillary separation means through which the analyte is moved, a coherent light source that generates a beam which is split into a reference beam and a sample beam that irradiate the capillary, and a detector for detecting the reference beam and the sample beam light that transmits through the capillary. The laser beam is of a wavelength effective to be absorbed by a chromophore in the capillary. The system includes a noise suppressing system to improve performance and accuracy without signal averaging or multiple scans.

  9. Human response to aircraft noise

    NASA Technical Reports Server (NTRS)

    Powell, Clemans A.; Fields, James M.

    1991-01-01

    The human auditory system and the perception of sound are discussed. The major concentration is on the annnoyance response and methods for relating the physical characteristics of sound to those psychosociological attributes associated with human response. Results selected from the extensive laboratory and field research conducted on human response to aircraft noise over the past several decades are presented along with discussions of the methodology commonly used in conducting that research. Finally, some of the more common criteria, regulations, and recommended practices for the control or limitation of aircraft noise are examined in light of the research findings on human response.

  10. Low noise optical position sensor

    DOEpatents

    Spear, J.D.

    1999-03-09

    A novel optical position sensor is described that uses two component photodiodes electrically connected in parallel, with opposing polarities. A lens provides optical gain and restricts the acceptance angle of the detector. The response of the device to displacements of an optical spot is similar to that of a conventional bi-cell type position sensitive detector. However, the component photodiode design enables simpler electronic amplification with inherently less electrical noise than the bi-cell. Measurements by the sensor of the pointing noise of a focused helium-neon laser as a function of frequency demonstrate high sensitivity and suitability for optical probe beam deflection experiments. 14 figs.

  11. Low noise optical position sensor

    DOEpatents

    Spear, Jonathan David

    1999-01-01

    A novel optical position sensor is described that uses two component photodiodes electrically connected in parallel, with opposing polarities. A lens provides optical gain and restricts the acceptance angle of the detector. The response of the device to displacements of an optical spot is similar to that of a conventional bi-cell type position sensitive detector. However, the component photodiode design enables simpler electronic amplification with inherently less electrical noise than the bi-cell. Measurements by the sensor of the pointing noise of a focused helium-neon laser as a function of frequency demonstrate high sensitivity and suitability for optical probe beam deflection experiments.

  12. Low-noise pulse conditioner

    DOEpatents

    Bird, David A.

    1983-01-01

    A low-noise pulse conditioner is provided for driving electronic digital processing circuitry directly from differentially induced input pulses. The circuit uses a unique differential-to-peak detector circuit to generate a dynamic reference signal proportional to the input peak voltage. The input pulses are compared with the reference signal in an input network which operates in full differential mode with only a passive input filter. This reduces the introduction of circuit-induced noise, or jitter, generated in ground referenced input elements normally used in pulse conditioning circuits, especially speed transducer processing circuits.

  13. The Problems with "Noise Numbers" for Wind Farm Noise Assessment

    ERIC Educational Resources Information Center

    Thorne, Bob

    2011-01-01

    Human perception responds primarily to sound character rather than sound level. Wind farms are unique sound sources and exhibit special audible and inaudible characteristics that can be described as modulating sound or as a tonal complex. Wind farm compliance measures based on a specified noise number alone will fail to address problems with noise…

  14. Operating systems in the air transportation environment.

    NASA Technical Reports Server (NTRS)

    Cherry, G. W.

    1971-01-01

    Consideration of the problems facing air transport at present, and to be expected in the future. In the Northeast Corridor these problems involve community acceptance, airway and airport congestion and delays, passenger acceptance, noise reduction, and improvements in low-density short-haul economics. In the development of a superior short-haul operating system, terminal-configured vs cruise-configured vehicles are evaluated. CTOL, STOL, and VTOL aircraft of various types are discussed. In the field of noise abatement, it is shown that flight procedural techniques are capable of supplementing ?quiet engine' technology.

  15. FAA/NASA En Route Noise Symposium

    NASA Technical Reports Server (NTRS)

    Powell, Clemans A. (Compiler)

    1990-01-01

    Aircraft community noise annoyance is traditionally a concern only in localities near airports. The proposed introduction of large commercial airplanes with advanced turboprop propulsion systems with supersonic propellers has given rise to concerns of noise annoyance in areas previously considered not to be impacted by aircraft noise. A symposium was held to assess the current knowledge of factors important to the impact of en route noise and to aid in the formulation of FAA and NASA programs in the area. Papers were invited on human response to aircraft noise in areas with low ambient noise levels, aircraft noise heard indoors and outdoors, aircraft noise in recreational areas, detection of propeller and jet aircraft noise, and methodological issues relevant to the design of future studies.

  16. Computer program to predict aircraft noise levels

    NASA Technical Reports Server (NTRS)

    Clark, B. J.

    1981-01-01

    Methods developed at the NASA Lewis Research Center for predicting the noise contributions from various aircraft noise sources were programmed to predict aircraft noise levels either in flight or in ground tests. The noise sources include fan inlet and exhaust, jet, flap (for powered lift), core (combustor), turbine, and airframe. Noise propagation corrections are available for atmospheric attenuation, ground reflections, extra ground attenuation, and shielding. Outputs can include spectra, overall sound pressure level, perceived noise level, tone-weighted perceived noise level, and effective perceived noise level at locations specified by the user. Footprint contour coordinates and approximate footprint areas can also be calculated. Inputs and outputs can be in either System International or U.S. customary units. The subroutines for each noise source and propagation correction are described. A complete listing is given.

  17. Adaptive Noise Suppression Using Digital Signal Processing

    NASA Technical Reports Server (NTRS)

    Kozel, David; Nelson, Richard

    1996-01-01

    A signal to noise ratio dependent adaptive spectral subtraction algorithm is developed to eliminate noise from noise corrupted speech signals. The algorithm determines the signal to noise ratio and adjusts the spectral subtraction proportion appropriately. After spectra subtraction low amplitude signals are squelched. A single microphone is used to obtain both eh noise corrupted speech and the average noise estimate. This is done by determining if the frame of data being sampled is a voiced or unvoiced frame. During unvoice frames an estimate of the noise is obtained. A running average of the noise is used to approximate the expected value of the noise. Applications include the emergency egress vehicle and the crawler transporter.

  18. Aircraft noise, hearing ability, and annoyance

    SciTech Connect

    Wu, Trong-Neng; Jim Shoung Lai; Chen-Yang Shen

    1995-11-01

    The relationship between aircraft noise, loss of hearing, and annoyance was explored in a study in two schools located near an international airport in Taiwan. Sixth-grade students (N = 242) were recruited from two schools and were classified into high-and low-noise-exposure groups, based on environmental noise measurements. Person-equivalent 24-h noise exposure was measured to determine noise exposure at the individual level, and it was compared with hearing threshold level and with aircraft noise measured at the environmental level. Individual hearing threshold levels did not differ between environmental high- and low-noise-exposure groups, as evidenced by the lack of difference between the two groups for noise exposure measured at the individual level. However, the proportion of students who were annoyed by aircraft noise was higher in the environmental high-noise-exposure group, although personal 24-h noise exposure was not a factor for annoyance. The results indicated that environmental noise measurement was not an appropriate criterion for assessment of auditory damage (or noise-induced hearing loss) in Taiwan. As well, aircraft-noise exposure in Taiwan did not appear to affect the hearing threshold but nonetheless annoyed school children near the airport. 21 refs., 3 tabs.

  19. Background noise spectra of global seismic stations

    SciTech Connect

    Wada, M.M.; Claassen, J.P.

    1996-08-01

    Over an extended period of time station noise spectra were collected from various sources for use in estimating the detection and location performance of global networks of seismic stations. As the database of noise spectra enlarged and duplicate entries became available, an effort was mounted to more carefully select station noise spectra while discarding others. This report discusses the methodology and criteria by which the noise spectra were selected. It also identifies and illustrates the station noise spectra which survived the selection process and which currently contribute to the modeling efforts. The resulting catalog of noise statistics not only benefits those who model network performance but also those who wish to select stations on the basis of their noise level as may occur in designing networks or in selecting seismological data for analysis on the basis of station noise level. In view of the various ways by which station noise were estimated by the different contributors, it is advisable that future efforts which predict network performance have available station noise data and spectral estimation methods which are compatible with the statistics underlying seismic noise. This appropriately requires (1) averaging noise over seasonal and/or diurnal cycles, (2) averaging noise over time intervals comparable to those employed by actual detectors, and (3) using logarithmic measures of the noise.

  20. Automated Design of Noise-Minimal, Safe Rotorcraft Trajectories

    NASA Technical Reports Server (NTRS)

    Morris, Robert A.; Venable, K. Brent; Lindsay, James

    2012-01-01

    NASA and the international community are investing in the development of a commercial transportation infrastructure that includes the increased use of rotorcraft, specifically helicopters and aircraft such as a 40-passenger civil tilt rotors. Rotorcraft have a number of advantages over fixed wing aircraft, primarily in not requiring direct access to the primary fixed wing runways. As such they can operate at an airport without directly interfering with major air carrier and commuter aircraft operations. However, there is significant concern over the impact of noise on the communities surrounding the transportation facilities. In this paper we propose to address the rotorcraft noise problem by exploiting powerful search techniques coming from artificial intelligence, coupled with simulation and field tests, to design trajectories that are expected to improve on the amount of ground noise generated. This paper investigates the use of simulation based on predictive physical models to facilitate the search for low-noise trajectories using a class of automated search algorithms called local search. A novel feature of this approach is the ability to incorporate constraints into the problem formulation that addresses passenger safety and comfort.