Science.gov

Sample records for air operations center

  1. Sections. March Air Force Base, Riverside, California, Combat Operations Center, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Sections. March Air Force Base, Riverside, California, Combat Operations Center, Combat Operations Building. By Moffatt and Nichol, Engineers, 122 West Fifth Street, Long Beach, California; for the Corps of Engineers, U.S. Army, Office of the District Engineer, Los Angeles, California. Drawing no. AW-60-02-03, sheet no. 14, approved March, 1962; specifications no. ENG-04-353-62-66; D.O. series AW 1596/15, Rev. "A"; file drawer 1290. Last revised 3 October 1966. Scale one-eighth inch to one foot. 30x36 inches. pencil on paper - March Air Force Base, Strategic Air Command, Combat Operations Center, 5220 Riverside Drive, Moreno Valley, Riverside County, CA

  2. Elevations. March Air Force Base, Riverside, California, Combat Operations Center, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Elevations. March Air Force Base, Riverside, California, Combat Operations Center, Combat Operations Building. By Moffatt and Nichol, Engineers, 122 West Fifth Street, Long Beach, California; for the Corps of Engineers, U.S. Army, Office of the District Engineer, Los Angeles, California. Drawing no. AW-60-02-03, sheet no. 14, approved March, 1962; specifications no. ENG-04-353-62-66; D.O. series AW 1596/14, Rev. "B"; file drawer 77-1/102. Last revised 3 October 1966. Scale one-eighth inch to one foot. 30x36 inches. photocopy on paper - March Air Force Base, Strategic Air Command, Combat Operations Center, 5220 Riverside Drive, Moreno Valley, Riverside County, CA

  3. Belief network-based situation assessment for air operations centers

    NASA Astrophysics Data System (ADS)

    Call, Catherine; Gonsalves, Paul

    2006-05-01

    In dynamic environments (e.g. an Air Operations Center (AOC)), effective real-time monitoring of mission execution is highly dependent on situation awareness (SA). But whereas an individual's perception of mission progress is biased by his or her immediate tasks and environment, the combined perspectives of key individuals provides an effects-based assessment of the mission overall. Belief networks (BNs) are an ideal tool for modeling and meeting the requirements of SA: at the individual level BNs emulate a skilled human's information fusion and reasoning process in a multi-task environment in the presence of uncertainty. At the mission level, BNs are intelligently combined to yield a common operating picture. While belief networks offer significant advantages for SA in this manner, the work of defining and combining the models is difficult due to factors such as multiple-counting and conflicting reports. To address these issues, we develop a system consisting of three distinct functional elements: an off-line mechanism for rapid construction of a BN library of SA models tailored to different air combat operation situations and derived from knowledge elicitation with subject matter experts; an off-line mechanism to adapt and combine BN models that supports the ability to adjust the SA models over time and in response to novel situations not initially available or anticipated during model construction; and an on-line combination of SA models to support an enhanced SA and the ability to monitor execution status in real time and informed by and responsive to the individuals and situations involved.

  4. Hybrid methodology for situation assessment model development within an air operations center domain

    NASA Astrophysics Data System (ADS)

    Ho, Stephen; Gonsalves, Paul; Call, Catherine

    2007-04-01

    Within the dynamic environment of an Air Operations Center (AOC), effective decision-making is highly dependent on timely and accurate situation assessment. In previous research efforts the capabilities and potential of a Bayesian belief network (BN) model-based approach to support situation assessment have been demonstrated. In our own prior research, we have presented and formalized a hybrid process for situation assessment model development that seeks to ameliorate specific concerns and drawbacks associated with using a BN-based model construct. Specifically, our hybrid methodology addresses the significant knowledge acquisition requirements and the associated subjective nature of using subject matter experts (SMEs) for model development. Our methodology consists of two distinct functional elements: an off-line mechanism for rapid construction of a Bayesian belief network (BN) library of situation assessment models tailored to different situations and derived from knowledge elicitation with SMEs; and an on-line machine-learning-based mechanism to learn, tune, or adapt BN model parameters and structure. The adaptation supports the ability to adjust the models over time to respond to novel situations not initially available or anticipated during initial model construction, thus ensuring that the models continue to meet the dynamic requirements of performing the situation assessment function within dynamic application environments such as an AOC. In this paper, we apply and demonstrate the hybrid approach within the specific context of an AOC-based air campaign monitoring scenario. We detail both the initial knowledge elicitation and subsequent machine learning phases of the model development process, as well as demonstrate model performance within an operational context.

  5. EVALUATION OF PROPYLENE CARBONATE IN AIR LOGISTICS CENTER (ALC) DEPAINTING OPERATIONS

    EPA Science Inventory

    This report summarizes a two-phase, laboratory-scale screening study that evaluated solvent blends containing propylene carbonate (PC) as a potential replacement for methyl ethyl ketone (MEK) in aircraft radome depainting operations. he study was conducted at Oklahoma City Air Lo...

  6. EVALUATION OF PROPYLENE CARBONATE IN AIR LOGISTICS CENTER (ALC) DEPAINTING OPERATIONS

    EPA Science Inventory

    This report summarizes a two-phase, laboratory-scale screening study that evaluated solvent blends containing propylene carbonate (PC) as a potential replacement for methyl ethyl ketone (MEK) in aircraft radome depainting operations. The study was conducted at Oklahoma City Air L...

  7. Design and Operational Evaluation of the Traffic Management Advisor at the Ft. Worth Air Route Traffic Control Center

    NASA Technical Reports Server (NTRS)

    Swenson, Harry N.; Vincent, Danny; Tobias, Leonard (Technical Monitor)

    1997-01-01

    NASA and the FAA have designed and developed and an automation tool known as the Traffic Management Advisor (TMA). The system was operationally evaluated at the Ft. Worth Air Route Traffic Control Center (ARTCC). The TMA is a time-based strategic planning tool that provides Traffic Management Coordinators and En Route Air Traffic Controllers the ability to efficiently optimize the capacity of a demand impacted airport. The TMA consists of trajectory prediction, constraint-based runway scheduling, traffic flow visualization and controllers advisories. The TMA was used and operationally evaluated for forty-one rush traffic periods during a one month period in the Summer of 1996. The evaluations included all shifts of air traffic operations as well as periods of inclement weather. Performance data was collected for engineering and human factor analysis and compared with similar operations without the TMA. The engineering data indicates that the operations with the TMA show a one to two minute per aircraft delay reduction during rush periods. The human factor data indicate a perceived reduction in en route controller workload as well as an increase in job satisfaction. Upon completion of the evaluation, the TMA has become part of the normal operations at the Ft. Worth ARTCC.

  8. Planning, Establishing and Operating A Successful Off-Campus Center: The Role of Institutional Research. AIR 1985 Annual Forum Paper.

    ERIC Educational Resources Information Center

    Nidiffer, Leone R.

    The Office of Institutional Research's role in planning and operating an off-campus center for California State University (CSU), Hayward, is described. Although the center would promote enrollment of nontraditional students, the planning and operating decisions are applicable to other higher education activities. Needs assessment for the center…

  9. Media Center: Operations Handbook.

    ERIC Educational Resources Information Center

    Dependents Schools (DOD), Washington, DC.

    This guide to basic technical procedures recommended in the operation of within-school media centers is intended for all Department of Defense Dependent Schools (DoDDS) media specialists, clerks, aides, and technicians. The first four sections refer to the general media program functions identified in the related manual, "A is for Apple:…

  10. Emergency Operation Center

    NASA Technical Reports Server (NTRS)

    Chinea, Anoushka Z.

    1995-01-01

    The Emergency Operation Center (EOC) is a site from which NASA LaRC Emergency Preparedness Officials exercise control and direction in an emergency. Research was conducted in order to determine what makes an effective EOC. Specifically information concerning the various types of equipment and communication capability that an efficient EOC should contain (i.e., computers, software, telephone systems, radio systems, etc.) was documented. With this information a requirements document was written stating a brief description of the equipment and required quantity to be used in an EOC and then compared to current capabilities at the NASA Langley Research Center.

  11. Air Risk Information Support Center

    SciTech Connect

    Shoaf, C.R.; Guth, D.J.

    1990-12-31

    The Air Risk Information Support Center (Air RISC) was initiated in early 1988 by the US Environmental Protection Agency`s (EPA) Office of Health and Environmental Assessment (OHEA) and the Office of Air Quality Planning and Standards (OAQPS) as a technology transfer effort that would focus on providing information to state and local environmental agencies and to EPA Regional Offices in the areas of health, risk, and exposure assessment for toxic air pollutants. Technical information is fostered and disseminated by Air RISCs three primary activities: (1) a {open_quotes}hotline{close_quotes}, (2) quick turn-around technical assistance projects, and (3) general technical guidance projects. 1 ref., 2 figs.

  12. Assessment and forecasting of lightning potential and its effect on launch operations at Cape Canaveral Air Force Station and John F. Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Weems, J.; Wyse, N.; Madura, J.; Secrist, M.; Pinder, C.

    1991-01-01

    Lightning plays a pivotal role in the operation decision process for space and ballistic launches at Cape Canaveral Air Force Station and Kennedy Space Center. Lightning forecasts are the responsibility of Detachment 11, 4th Weather Wing's Cape Canaveral Forecast Facility. These forecasts are important to daily ground processing as well as launch countdown decisions. The methodology and equipment used to forecast lightning are discussed. Impact on a recent mission is summarized.

  13. Space Operations Learning Center

    NASA Technical Reports Server (NTRS)

    Lui, Ben; Milner, Barbara; Binebrink, Dan; Kuok, Heng

    2012-01-01

    The Space Operations Learning Center (SOLC) is a tool that provides an online learning environment where students can learn science, technology, engineering, and mathematics (STEM) through a series of training modules. SOLC is also an effective media for NASA to showcase its contributions to the general public. SOLC is a Web-based environment with a learning platform for students to understand STEM through interactive modules in various engineering topics. SOLC is unique in its approach to develop learning materials to teach schoolaged students the basic concepts of space operations. SOLC utilizes the latest Web and software technologies to present this educational content in a fun and engaging way for all grade levels. SOLC uses animations, streaming video, cartoon characters, audio narration, interactive games and more to deliver educational concepts. The Web portal organizes all of these training modules in an easily accessible way for visitors worldwide. SOLC provides multiple training modules on various topics. At the time of this reporting, seven modules have been developed: Space Communication, Flight Dynamics, Information Processing, Mission Operations, Kids Zone 1, Kids Zone 2, and Save The Forest. For the first four modules, each contains three components: Flight Training, Flight License, and Fly It! Kids Zone 1 and 2 include a number of educational videos and games designed specifically for grades K-6. Save The Forest is a space operations mission with four simulations and activities to complete, optimized for new touch screen technology. The Kids Zone 1 module has recently been ported to Facebook to attract wider audience.

  14. NSI operations center

    NASA Technical Reports Server (NTRS)

    Zanley, Nancy L.

    1991-01-01

    The NASA Science Internet (NSI) Network Operations Staff is responsible for providing reliable communication connectivity for the NASA science community. As the NSI user community expands, so does the demand for greater interoperability with users and resources on other networks (e.g., NSFnet, ESnet), both nationally and internationally. Coupled with the science community's demand for greater access to other resources is the demand for more reliable communication connectivity. Recognizing this, the NASA Science Internet Project Office (NSIPO) expands its Operations activities. By January 1990, Network Operations was equipped with a telephone hotline, and its staff was expanded to six Network Operations Analysts. These six analysts provide 24-hour-a-day, 7-day-a-week coverage to assist site managers with problem determination and resolution. The NSI Operations staff monitors network circuits and their associated routers. In most instances, NSI Operations diagnoses and reports problems before users realize a problem exists. Monitoring of the NSI TCP/IP Network is currently being done with Proteon's Overview monitoring system. The Overview monitoring system displays a map of the NSI network utilizing various colors to indicate the conditions of the components being monitored. Each node or site is polled via the Simple Network Monitoring Protocol (SNMP). If a circuit goes down, Overview alerts the Network Operations staff with an audible alarm and changes the color of the component. When an alert is received, Network Operations personnel immediately verify and diagnose the problem, coordinate repair with other networking service groups, track problems, and document problem and resolution into a trouble ticket data base. NSI Operations offers the NSI science community reliable connectivity by exercising prompt assessment and resolution of network problems.

  15. Workstation-Based Real-Time Mesoscale Modeling Designed for Weather Support to Operations at the Kennedy Space Center and Cape Canaveral Air Station

    NASA Technical Reports Server (NTRS)

    Manobianco, John; Zack, John W.; Taylor, Gregory E.

    1996-01-01

    This paper describes the capabilities and operational utility of a version of the Mesoscale Atmospheric Simulation System (MASS) that has been developed to support operational weather forecasting at the Kennedy Space Center (KSC) and Cape Canaveral Air Station (CCAS). The implementation of local, mesoscale modeling systems at KSC/CCAS is designed to provide detailed short-range (less than 24 h) forecasts of winds, clouds, and hazardous weather such as thunderstorms. Short-range forecasting is a challenge for daily operations, and manned and unmanned launches since KSC/CCAS is located in central Florida where the weather during the warm season is dominated by mesoscale circulations like the sea breeze. For this application, MASS has been modified to run on a Stardent 3000 workstation. Workstation-based, real-time numerical modeling requires a compromise between the requirement to run the system fast enough so that the output can be used before expiration balanced against the desire to improve the simulations by increasing resolution and using more detailed physical parameterizations. It is now feasible to run high-resolution mesoscale models such as MASS on local workstations to provide timely forecasts at a fraction of the cost required to run these models on mainframe supercomputers. MASS has been running in the Applied Meteorology Unit (AMU) at KSC/CCAS since January 1994 for the purpose of system evaluation. In March 1995, the AMU began sending real-time MASS output to the forecasters and meteorologists at CCAS, Spaceflight Meteorology Group (Johnson Space Center, Houston, Texas), and the National Weather Service (Melbourne, Florida). However, MASS is not yet an operational system. The final decision whether to transition MASS for operational use will depend on a combination of forecaster feedback, the AMU's final evaluation results, and the life-cycle costs of the operational system.

  16. Emergency Operations Center at Johnson Space Center

    NASA Technical Reports Server (NTRS)

    Caylor, Gary C.

    1997-01-01

    In June 1966, at the start of the Gulf Coast hurricane season, the Johnson Space Center (JSC) celebrated the opening of its new 4,000-square foot, state-of-the-art Emergency Operations Center (EOC). The new EOC has been upgraded and enhanced to support a wide spectrum of emergencies affecting JSC and neighboring communities. One of the main features of the EOC is its premier computerized dispatch center. The new system unites many of JSC's critical emergency functions into one integrated network. It automatically monitors fire alarms, security entrances, and external cameras. It contains the JSC inventory of hazardous materials, by building and room, and can call up Material Safety Data Sheets for most of the generic hazardous materials used on-site. The EOC is available for community use during area emergencies such as hurricanes and is a welcome addition to the Clear Lake/Galveston Bay Area communities' emergency response resources.

  17. Remote Science Operation Center research

    NASA Technical Reports Server (NTRS)

    Banks, P. M.

    1986-01-01

    Progress in the following areas is discussed: the design, planning and operation of a remote science payload operations control center; design and planning of a data link via satellite; and the design and prototyping of an advanced workstation environment for multi-media (3-D computer aided design/computer aided engineering, voice, video, text) communications and operations.

  18. Application of 50 MHz doppler radar wind profiler to launch operations at Kennedy Space Center and Cape Canaveral Air Station

    NASA Technical Reports Server (NTRS)

    Schumann, Robin S.; Taylor, Gregory E.; Smith, Steve A.; Wilfong, Timothy L.

    1994-01-01

    This paper presents a case study where a significant wind shift, not detected by jimspheres, was detected by the 50 MHz DRWP (Doppler Radar Wind Profiler) and evaluated to be acceptable prior to the launch of a Shuttle. This case study illustrates the importance of frequent upper air wind measurements for detecting significant rapidly changing features as well as for providing confidence that the features really exist and are not due to instrumentation error. Had the release of the jimsphere been timed such that it would have detected the entire wind shift, there would not have been sufficient time to release another jimsphere to confirm the existence of the feature prior to the scheduled launch. We found that using a temporal median filter on the one minute spectral estimates coupled with a constraining window about a first guess velocity effectively removes nearly all spurious signals from the velocity profile generated by NASA's 50 MHz DRWP while boosting the temporal resolution to as high as one profile every 3 minutes. The higher temporal resolution of the 50 MHz DRWP using the signal processing algorithm described in this paper ensures the detection of rapidly changing features as well as provides the confidence that the features are genuine. Further benefit is gained when the profiles generated by the DRWP are examined in relation to the profiles measured by jimspheres and/or rawinsondes. The redundancy offered by using two independent measurements can dispel or confirm any suspicion regarding instrumentation error or malfunction and wind profiles can be examined in light of their respective instruments' strengths and weaknesses.

  19. A Sounding-based Severe Weather Tool to Support Daily Operations at Kennedy Space Center and Cape Canaveral Air Force Station

    NASA Technical Reports Server (NTRS)

    Bauman, William H.; Roeder, William P.

    2014-01-01

    People and property at Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS) are at risk when severe weather occurs. Strong winds, hail and tornadoes can injure individuals and cause costly damage to structures if not properly protected. NASA's Launch Services Program and Ground Systems Development and Operations Program and other KSC programs use the daily and weekly severe weather forecasts issued by the 45th Weather Squadron (45 WS) to determine if they need to limit an activity such as working on gantries, or protect property such as a vehicle on a pad. The 45 WS requested the Applied Meteorology Unit (AMU) develop a warm season (May-September) severe weather tool for use in the Meteorological Interactive Data Display System (MIDDS) based on the late morning, 1500 UTC (1100 local time), CCAFS (XMR) sounding. The 45 WS frequently makes decisions to issue a severe weather watch and other severe weather warning support products to NASA and the 45th Space Wing in the late morning, after the 1500 UTC sounding. The results of this work indicate that certain stability indices based on the late morning XMR soundings can depict differences between days with reported severe weather and days with no reported severe weather. The AMU determined a frequency of reported severe weather for the stability indices and implemented an operational tool in MIDDS.

  20. Remote Operations Control Center (ROCC)

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Undergraduate students Kristina Wines and Dena Renzo at Rensselaer Poloytech Institute (RPI) in Troy, NY, monitor the progress of the Isothermal Dendritic Growth Experiment (IDGE) during the U.S. Microgravity Payload-4 (USMP-4) mission (STS-87), Nov. 19 - Dec.5, 1997). Remote Operations Control Center (ROCC) like this one will become more common during operations with the International Space Station. The Isothermal Dendritic Growth Experiment (IDGE), flown on three Space Shuttle missions, is yielding new insights into virtually all industrially relevant metal and alloy forming operations. Photo credit: Rensselaer Polytechnic Institute (RPI)

  1. Air Corrosivity in U.S. Outdoor-Air-Cooled Data Centers is Similar to That in Conventional Data Centers

    SciTech Connect

    Coles, Henry C.; Han, Taewon; Price, Phillip N.; Gadgil, Ashok J.; Tschudi, William F.

    2011-07-17

    There is a concern that environmental-contamination caused corrosion may negatively affect Information Technology (IT) equipment reliability. Nineteen data centers in the United States and two in India were evaluated using Corrosion Classification Coupons (CCC) to assess environmental air quality as it may relate IT equipment reliability. The data centers were of two basic types: closed and outside-air cooled. A closed data center provides cool air to the IT equipment using air conditioning in which only a small percent age of the recirculation air is make-up air continuously supplied from outside to meet human health requirements. An outside-air cooled data center uses outside air directly as the primary source for IT equipment cooling. Corrosion measuring coupons containing copper and silver metal strips were placed in both closed and outside-air cooled data centers. The coupons were placed at each data center (closed and outside-air cooled types) with the location categorized into three groups: (1) Outside - coupons sheltered, located near or at the supply air inlet, but located before any filtering, (2) Supply - starting just after initial air filtering continuing inside the plenums and ducts feeding the data center rooms, and (3) Inside located inside the data center rooms near the IT equipment. Each coupon was exposed for thirty days and then sent to a laboratory for a corrosion rate measurement analysis. The goal of this research was to investigate whether gaseous contamination is a concern for U.S. data center operators as it relates to the reliability of IT equipment. More specifically, should there be an increased concern if outside air for IT equipment cooling is used To begin to answer this question limited exploratory measurements of corrosion rates in operating data centers in various locations were undertaken. This study sought to answer the following questions: (1) What is the precision of the measurements (2) What are the approximate statistical

  2. The Virtual Mission Operations Center

    NASA Technical Reports Server (NTRS)

    Moore, Mike; Fox, Jeffrey

    1994-01-01

    Spacecraft management is becoming more human intensive as spacecraft become more complex and as operations costs are growing accordingly. Several automation approaches have been proposed to lower these costs. However, most of these approaches are not flexible enough in the operations processes and levels of automation that they support. This paper presents a concept called the Virtual Mission Operations Center (VMOC) that provides highly flexible support for dynamic spacecraft management processes and automation. In a VMOC, operations personnel can be shared among missions, the operations team can change personnel and their locations, and automation can be added and removed as appropriate. The VMOC employs a form of on-demand supervisory control called management by exception to free operators from having to actively monitor their system. The VMOC extends management by exception, however, so that distributed, dynamic teams can work together. The VMOC uses work-group computing concepts and groupware tools to provide a team infrastructure, and it employs user agents to allow operators to define and control system automation.

  3. Statistical Analysis of Model Data for Operational Space Launch Weather Support at Kennedy Space Center and Cape Canaveral Air Force Station

    NASA Technical Reports Server (NTRS)

    Bauman, William H., III

    2010-01-01

    The 12-km resolution North American Mesoscale (NAM) model (MesoNAM) is used by the 45th Weather Squadron (45 WS) Launch Weather Officers at Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS) to support space launch weather operations. The 45 WS tasked the Applied Meteorology Unit to conduct an objective statistics-based analysis of MesoNAM output compared to wind tower mesonet observations and then develop a an operational tool to display the results. The National Centers for Environmental Prediction began running the current version of the MesoNAM in mid-August 2006. The period of record for the dataset was 1 September 2006 - 31 January 2010. The AMU evaluated MesoNAM hourly forecasts from 0 to 84 hours based on model initialization times of 00, 06, 12 and 18 UTC. The MesoNAM forecast winds, temperature and dew point were compared to the observed values of these parameters from the sensors in the KSC/CCAFS wind tower network. The data sets were stratified by model initialization time, month and onshore/offshore flow for each wind tower. Statistics computed included bias (mean difference), standard deviation of the bias, root mean square error (RMSE) and a hypothesis test for bias = O. Twelve wind towers located in close proximity to key launch complexes were used for the statistical analysis with the sensors on the towers positioned at varying heights to include 6 ft, 30 ft, 54 ft, 60 ft, 90 ft, 162 ft, 204 ft and 230 ft depending on the launch vehicle and associated weather launch commit criteria being evaluated. These twelve wind towers support activities for the Space Shuttle (launch and landing), Delta IV, Atlas V and Falcon 9 launch vehicles. For all twelve towers, the results indicate a diurnal signal in the bias of temperature (T) and weaker but discernable diurnal signal in the bias of dewpoint temperature (T(sub d)) in the MesoNAM forecasts. Also, the standard deviation of the bias and RMSE of T, T(sub d), wind speed and wind

  4. 24. SITE BUILDING 002 SCANNER BUILDING OPERATIONS CENTER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. SITE BUILDING 002 - SCANNER BUILDING - OPERATIONS CENTER -- MWOC IN OPEARATION AT 1924 ZULU TIME. 26 OCTOBER, 1999. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  5. Roof plan, Combat Operations Center, Building No. 2605. (Also includes ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Roof plan, Combat Operations Center, Building No. 2605. (Also includes a typical roof section, with new fiberglass and urethane insulation layers.) By Federal Builders, 575 Carreon Drive, Colton, California. Sheet 1 of 1, dated 18 May 1992. Scale one-eighth inch to one foot. 24x36 inches. ink on paper - March Air Force Base, Strategic Air Command, Combat Operations Center, 5220 Riverside Drive, Moreno Valley, Riverside County, CA

  6. Extreme Ultraviolet Explorer Science Operation Center

    NASA Technical Reports Server (NTRS)

    Wong, G. S.; Kronberg, F. A.; Meriwether, H. D.; Wong, L. S.; Grassi, C. L.

    1993-01-01

    The EUVE Science Operations Center (ESOC) is a satellite payload operations center for the Extreme Ultraviolet Explorer project, located on the Berkeley campus of the University of California. The ESOC has the primary responsibility for commanding the EUVE telescopes and monitoring their telemetry. The ESOC is one of a very few university-based satellite operations facilities operating with NASA. This article describes the history, operation, and advantages of the ESOC as an on-campus operations center.

  7. 27. SITE BUILDING 002 SCANNER BUILDING OPERATIONS CENTER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    27. SITE BUILDING 002 - SCANNER BUILDING - OPERATIONS CENTER - MWOC MONITOR NO. 4 IN OPERATION AT 2002 ZULU, OCTOBER 26, 1999 CAPE COD, AS PAVE PAWS. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  8. 26. SITE BUILDING 002 SCANNER BUILDING OPERATIONS CENTER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. SITE BUILDING 002 - SCANNER BUILDING - OPERATIONS CENTER - MWOC IN OPERATION AT 1945 ZULU TIME, 26 OCTOBER, 1999. "SPACE TRACK BOARD" DATA SHOWING ITEMS #16609 MIR (RUSSIA) AND #25544 ISS (INTERNATIONAL SPACE STATION) BEING TRACKED. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  9. 25. SITE BUILDING 002 SCANNER BUILDING OPERATIONS CENTER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. SITE BUILDING 002 - SCANNER BUILDING - OPERATIONS CENTER - MWOC IN OPERATION AT 1930 ZULU TIME, 26 OCTOBER, 1999. MWOC SCREEN ALSO SHOWS RADAR "FACE A" AND "FACE B" ACTIVE STATUS. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  10. PNNL’s Building Operations Control Center

    SciTech Connect

    Belew, Shan

    2015-09-29

    PNNL's Building Operations Control Center (BOCC) video provides an overview of the center, its capabilities, and its objectives. The BOCC was relocated to PNNL's new 3820 Systems Engineering Building in 2015. Although a key focus of the BOCC is on monitoring and improving the operations of PNNL buildings, the center's state-of-the-art computational, software and visualization resources also have provided a platform for PNNL buildings-related research projects.

  11. PNNL?s Building Operations Control Center

    ScienceCinema

    Belew, Shan

    2016-06-14

    PNNL's Building Operations Control Center (BOCC) video provides an overview of the center, its capabilities, and its objectives. The BOCC was relocated to PNNL's new 3820 Systems Engineering Building in 2015. Although a key focus of the BOCC is on monitoring and improving the operations of PNNL buildings, the center's state-of-the-art computational, software and visualization resources also have provided a platform for PNNL buildings-related research projects.

  12. X-33 Flight Operations Center

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In response to Clause 17 of the Cooperative Agreement NCC8-115, Lockheed Martin Skunk Works has compiled an Annual Performance Report of the X-33/RLV Program. This report consists of individual reports from all industry team members, as well as NASA team centers. Contract award was announced on July 2, 1996 and the first milestone was hand delivered to NASA MSFC on July 17, 1996. With the dedication of the launch site, and continuing excellence in technological achievement, the third year of the Cooperative Agreement has been one of outstanding accomplishment and excitement.

  13. The advantages and disadvantages of centralized control of air power at operational level

    NASA Astrophysics Data System (ADS)

    Arisoy, Uǧur

    2014-05-01

    People do not want to see and hear a war. In today's world, if war is inevitable, the use of air power is seen as the preferable means of conducting operations instead of financially burdensome land battles which are more likely to cause heavy loss of life. The use of Air Power has gained importance in NATO operations in the Post-Cold War era. For example, air power has undertaken a decisive role from the beginning to the end of the operation in Libya. From this point of view, the most important issue to consider is how to direct air power more effectively at operational level. NATO's Core JFAC (Joint Force Air Command) was established in 2012 to control joint air power at operational level from a single center. US had experienced JFAC aproach in the Operation Desert Storm in 1991. UK, France, Germany, Italy and Spain are also directing their air power from their JFAC structures. Joint air power can be directed from a single center at operational level by means of JFAC. JFAC aproach provides complex planning progress of Air Power to be controled faster in a single center. An Air Power with a large number of aircrafts, long range missiles of cutting-edge technology may have difficulties in achieving results unless directed effectively. In this article, directing air power more effectively at operational level has been studied in the framework of directing air power from a single center carried out by SWOT analysis technique. "Directing Air Power at operational level from a single center similar to JFAC-like structure" is compared with "Directing Air Power at operational level from two centers similar to AC (Air Command) + CAOC (Combined Air Operations Center) structure" As a result of this study, it is assessed that directing air power at operational level from a single center would bring effectiveness to the air campaign. The study examines directing air power at operational level. Developments at political, strategic and tactical levels have been ignored.

  14. Computer Maintenance Operations Center (CMOC), additional computer support equipment ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Computer Maintenance Operations Center (CMOC), additional computer support equipment - Beale Air Force Base, Perimeter Acquisition Vehicle Entry Phased-Array Warning System, Techinical Equipment Building, End of Spencer Paul Road, north of Warren Shingle Road (14th Street), Marysville, Yuba County, CA

  15. Computer Maintenance Operations Center (CMOC), showing duplexed cyber 170174 computers ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Computer Maintenance Operations Center (CMOC), showing duplexed cyber 170-174 computers - Beale Air Force Base, Perimeter Acquisition Vehicle Entry Phased-Array Warning System, Techinical Equipment Building, End of Spencer Paul Road, north of Warren Shingle Road (14th Street), Marysville, Yuba County, CA

  16. Remote Operations and Ground Control Centers

    NASA Technical Reports Server (NTRS)

    Bryant, Barry S.; Lankford, Kimberly; Pitts, R. Lee

    2004-01-01

    The Payload Operations Integration Center (POIC) at the Marshall Space Flight Center supports the International Space Station (ISS) through remote interfaces around the world. The POIC was originally designed as a gateway to space for remote facilities; ranging from an individual user to a full-scale multiuser environment. This achievement was accomplished while meeting program requirements and accommodating the injection of modern technology on an ongoing basis to ensure cost effective operations. This paper will discuss the open POIC architecture developed to support similar and dissimilar remote operations centers. It will include technologies, protocols, and compromises which on a day to day basis support ongoing operations. Additional areas covered include centralized management of shared resources and methods utilized to provide highly available and restricted resources to remote users. Finally, the effort of coordinating the actions of participants will be discussed.

  17. Air Traffic Management Research at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Lee, Katharine

    2005-01-01

    Since the late 1980's, NASA Ames researchers have been investigating ways to improve the air transportation system through the development of decision support automation. These software advances, such as the Center-TRACON Automation System (eTAS) have been developed with teams of engineers, software developers, human factors experts, and air traffic controllers; some ASA Ames decision support tools are currently operational in Federal Aviation Administration (FAA) facilities and some are in use by the airlines. These tools have provided air traffic controllers and traffic managers the capabilities to help reduce overall delays and holding, and provide significant cost savings to the airlines as well as more manageable workload levels for air traffic service providers. NASA is continuing to collaborate with the FAA, as well as other government agencies, to plan and develop the next generation of decision support tools that will support anticipated changes in the air transportation system, including a projected increase to three times today's air-traffic levels by 2025. The presentation will review some of NASA Ames' recent achievements in air traffic management research, and discuss future tool developments and concepts currently under consideration.

  18. Operating and Managing a Backup Control Center

    NASA Technical Reports Server (NTRS)

    Marsh, Angela L.; Pirani, Joseph L.; Bornas, Nicholas

    2010-01-01

    Due to the criticality of continuous mission operations, some control centers must plan for alternate locations in the event an emergency shuts down the primary control center. Johnson Space Center (JSC) in Houston, Texas is the Mission Control Center (MCC) for the International Space Station (ISS). Due to Houston s proximity to the Gulf of Mexico, JSC is prone to threats from hurricanes which could cause flooding, wind damage, and electrical outages to the buildings supporting the MCC. Marshall Space Flight Center (MSFC) has the capability to be the Backup Control Center for the ISS if the situation is needed. While the MSFC Huntsville Operations Support Center (HOSC) does house the BCC, the prime customer and operator of the ISS is still the JSC flight operations team. To satisfy the customer and maintain continuous mission operations, the BCC has critical infrastructure that hosts ISS ground systems and flight operations equipment that mirrors the prime mission control facility. However, a complete duplicate of Mission Control Center in another remote location is very expensive to recreate. The HOSC has infrastructure and services that MCC utilized for its backup control center to reduce the costs of a somewhat redundant service. While labor talents are equivalent, experiences are not. Certain operations are maintained in a redundant mode, while others are simply maintained as single string with adequate sparing levels of equipment. Personnel at the BCC facility must be trained and certified to an adequate level on primary MCC systems. Negotiations with the customer were done to match requirements with existing capabilities, and to prioritize resources for appropriate level of service. Because some of these systems are shared, an activation of the backup control center will cause a suspension of scheduled HOSC activities that may share resources needed by the BCC. For example, the MCC is monitoring a hurricane in the Gulf of Mexico. As the threat to MCC

  19. SPOT4 Operational Control Center (CMP)

    NASA Technical Reports Server (NTRS)

    Zaouche, G.

    1993-01-01

    CNES(F) is responsible for the development of a new generation of Operational Control Center (CMP) which will operate the new heliosynchronous remote sensing satellite (SPOT4). This Operational Control Center takes large benefit from the experience of the first generation of control center and from the recent advances in computer technology and standards. The CMP is designed for operating two satellites all the same time with a reduced pool of controllers. The architecture of this CMP is simple, robust, and flexible, since it is based on powerful distributed workstations interconnected through an Ethernet LAN. The application software uses modern and formal software engineering methods, in order to improve quality and reliability, and facilitate maintenance. This software is table driven so it can be easily adapted to other operational needs. Operation tasks are automated to the maximum extent, so that it could be possible to operate the CMP automatically with very limited human interference for supervision and decision making. This paper provides an overview of the SPOTS mission and associated ground segment. It also details the CMP, its functions, and its software and hardware architecture.

  20. Multi-Center Traffic Management Advisor Operational Field Test Results

    NASA Technical Reports Server (NTRS)

    Farley, Todd; Landry, Steven J.; Hoang, Ty; Nickelson, Monicarol; Levin, Kerry M.; Rowe, Dennis W.

    2005-01-01

    The Multi-Center Traffic Management Advisor (McTMA) is a research prototype system which seeks to bring time-based metering into the mainstream of air traffic control (ATC) operations. Time-based metering is an efficient alternative to traditional air traffic management techniques such as distance-based spacing (miles-in-trail spacing) and managed arrival reservoirs (airborne holding). While time-based metering has demonstrated significant benefit in terms of arrival throughput and arrival delay, its use to date has been limited to arrival operations at just nine airports nationally. Wide-scale adoption of time-based metering has been hampered, in part, by the limited scalability of metering automation. In order to realize the full spectrum of efficiency benefits possible with time-based metering, a much more modular, scalable time-based metering capability is required. With its distributed metering architecture, multi-center TMA offers such a capability.

  1. Air-Operated Sump Pump

    NASA Technical Reports Server (NTRS)

    Nolt, Gary D.

    1988-01-01

    Pump removes liquid seepage from small, restricted area and against large pressure head. Developed for moving small amounts of water and oil from sump pit 85 ft (25.91 m) deep. Fits in space only 6 1/2 in. (16.5 cm) in diameter and 18 in. (45.7 cm) long. In discharge part of pumping cycle, air forces liquid out of pump chamber through pipe. During filling part of pumping cycle, water enters pump chamber from sump pit. Float in chamber next to pump chamber controls pressurization through timer and solenoid valve.

  2. Space Operations Center: A concept analysis

    NASA Technical Reports Server (NTRS)

    Livingston, L. E.

    1979-01-01

    The Space Operations Center is a concept for a shuttle-service, permanent, manned facility in low Earth orbit. An analysis of this concept was conducted and the results are reported. It is noted that there are no NASA plans at present to implement such a concept. The results are intended for consideration in future planning.

  3. A Virtual Mission Operations Center - Collaborative Environment

    NASA Technical Reports Server (NTRS)

    Medina, Barbara; Bussman, Marie

    2002-01-01

    Development of technologies that enable significant reductions in the cost of space mission operations is critical if constellations, formations, federations and sensor webs, are to be economically feasible. One approach to cost reduction is to infuse automation technologies into mission operations centers so that fewer personnel are needed for mission support. But missions are more culturally and politically adverse to the risks of automation. Reducing the mission risk associated with increased use of automation within a MOC is therefore of great importance. The belief that mission risk increases as more automation is used stems from the fact that there is inherently less direct human oversight to investigate and resolve anomalies in an unattended MOC. The Virtual Missions Operations Center - Collaborative Environment (VMOC-CE) project was launched to address this concern. The goal of the VMOC-CE project is to identify, develop, and infuse technology to enable mission operations between onsite operators and on-call personnel in geographically dispersed locations. VMOC-CE enables missions to more readily adopt automation because off-site operators and engineers can more easily identify, investigate, and resolve anomalies without having to be present in the MOC. The VMOC-CE intent is to have a single access point for all resources used in a collaborative mission operations environment. Team members will be able to interact during spacecraft operations, specifically for resolving anomalies, utilizing a desktop computer and the Internet. Mission operations management can use the VMOC-CE as a tool to participate in and monitor status of anomaly resolution or other mission operations issues. In this paper we present the VMOC-CE project, system capabilities and technologies, operations concept, and results of its pilot in support of the Earth Science Mission Operations System (ESMOS).

  4. Air Pollution Potential from Electroplating Operations.

    ERIC Educational Resources Information Center

    Diamond, Philip

    Measurements were made of emission rates from electroplating operations considered to have maximum air pollution potential. Sampling was performed at McClellan and additional data from a previous survey at Hill Air Force Base was used. Values obtained were extremely low. Based on existing Federal standards, no collectors are specifically required…

  5. The GLAST LAT Instrument Science Operations Center

    NASA Astrophysics Data System (ADS)

    Cameron, Robert A.

    2007-07-01

    The Gamma-ray Large Area Space Telescope (GLAST) is scheduled for launch in late 2007. Operations support and science data processing for the Large Area Telescope (LAT) instrument on GLAST will be provided by the LAT Instrument Science Operations Center (ISOC) at the Stanford Linear Accelerator Center (SLAC). The ISOC supports GLAST mission operations in conjunction with other GLAST mission ground system elements and supports the research activities of the LAT scientific collaboration. The ISOC will be responsible for monitoring the health and safety of the LAT, preparing command loads for the LAT, maintaining embedded flight software which controls the LAT detector and data acquisition flight hardware, maintaining the operating configuration of the LAT and its calibration, and applying event reconstruction processing to down-linked LAT data to recover information about detected gamma-ray photons. The SLAC computer farm will be used to process LAT event data and generate science products, to be made available to the LAT collaboration through the ISOC and to the broader scientific community through the GLAST Science Support Center at NASA/GSFC. ISOC science operations will optimize the performance of the LAT and oversee automated science processing of LAT data to detect and monitor transient gamma-ray sources.

  6. Forecast skill of a high-resolution real-time mesoscale model designed for weather support of operations at Kennedy Space Center and Cape Canaveral Air Station

    NASA Technical Reports Server (NTRS)

    Taylor, Gregory E.; Zack, John W.; Manobianco, John

    1994-01-01

    NASA funded Mesoscale Environmental Simulations and Operations (MESO), Inc. to develop a version of the Mesoscale Atmospheric Simulation System (MASS). The model has been modified specifically for short-range forecasting in the vicinity of KSC/CCAS. To accomplish this, the model domain has been limited to increase the number of horizontal grid points (and therefore grid resolution) and the model' s treatment of precipitation, radiation, and surface hydrology physics has been enhanced to predict convection forced by local variations in surface heat, moisture fluxes, and cloud shading. The objective of this paper is to (1) provide an overview of MASS including the real-time initialization and configuration for running the data pre-processor and model, and (2) to summarize the preliminary evaluation of the model's forecasts of temperature, moisture, and wind at selected rawinsonde station locations during February 1994 and July 1994. MASS is a hydrostatic, three-dimensional modeling system which includes schemes to represent planetary boundary layer processes, surface energy and moisture budgets, free atmospheric long and short wave radiation, cloud microphysics, and sub-grid scale moist convection.

  7. The GLAST LAT Instrument Science Operations Center

    NASA Astrophysics Data System (ADS)

    Cameron, Robert A.; LAT ISOC, GLAST

    2006-12-01

    The Gamma-ray Large Area Space Telescope (GLAST) is scheduled for launch in late 2007. The major science instrument on GLAST is the Large Area Telescope (LAT). Operations support and science data processing for the LAT instrument on GLAST will be performed by the LAT Instrument Science Operations Center (ISOC) at the Stanford Linear Accelerator Center (SLAC). The ISOC supports GLAST mission operations in cooperation with other GLAST mission ground system elements and supports the science research activities of the LAT collaboration. The ISOC will be responsible for monitoring the health and safety of the LAT, preparing command loads for the LAT, maintaining and updating embedded flight software which controls the LAT detector and data acquisition flight hardware, maintaining the operating configration of the LAT and its calibration, and applying event reconstruction processing to downlinked LAT data to recover information about detected gamma-ray photons. The SLAC computer farm will be used to process the large volume of LAT event data and generate science products to be made available to the LAT collaboration through the ISOC and to the broader scientific community through the GLAST Science Support Center at GSFC. Science operations in the ISOC will optimize the performance of the LAT and oversee automated science processing of LAT data to detect and monitor transient gamma-ray sources. We describe the use of collaboration-wide data challenges and service challenges to test and exercise LAT data processing and science operations before launch. This work is supported by Stanford University and the Stanford Linear Accelerator Center (SLAC) under DoE contract number DE-AC03-76SFO0515. Non-US sources of funding also support the efforts of GLAST LAT collaborators in France, Italy, Japan, and Sweden.

  8. Payload Operations Control Center (POCC). [spacelab flight operations

    NASA Technical Reports Server (NTRS)

    Shipman, D. L.; Noneman, S. R.; Terry, E. S.

    1981-01-01

    The Spacelab payload operations control center (POCC) timeline analysis program which is used to provide POCC activity and resource information as a function of mission time is described. This program is fully automated and interactive, and is equipped with tutorial displays. The tutorial displays are sufficiently detailed for use by a program analyst having no computer experience. The POCC timeline analysis program is designed to operate on the VAX/VMS version V2.1 computer system.

  9. Anatomy of a Security Operations Center

    NASA Technical Reports Server (NTRS)

    Wang, John

    2010-01-01

    Many agencies and corporations are either contemplating or in the process of building a cyber Security Operations Center (SOC). Those Agencies that have established SOCs are most likely working on major revisions or enhancements to existing capabilities. As principle developers of the NASA SOC; this Presenters' goals are to provide the GFIRST community with examples of some of the key building blocks of an Agency scale cyber Security Operations Center. This presentation viII include the inputs and outputs, the facilities or shell, as well as the internal components and the processes necessary to maintain the SOC's subsistence - in other words, the anatomy of a SOC. Details to be presented include the SOC architecture and its key components: Tier 1 Call Center, data entry, and incident triage; Tier 2 monitoring, incident handling and tracking; Tier 3 computer forensics, malware analysis, and reverse engineering; Incident Management System; Threat Management System; SOC Portal; Log Aggregation and Security Incident Management (SIM) systems; flow monitoring; IDS; etc. Specific processes and methodologies discussed include Incident States and associated Work Elements; the Incident Management Workflow Process; Cyber Threat Risk Assessment methodology; and Incident Taxonomy. The Evolution of the Cyber Security Operations Center viII be discussed; starting from reactive, to proactive, and finally to proactive. Finally, the resources necessary to establish an Agency scale SOC as well as the lessons learned in the process of standing up a SOC viII be presented.

  10. Hanford Site air operating permit application

    SciTech Connect

    1995-05-01

    The Clean Air Act Amendments of 1990, which amended the Federal Clean Air Act of 1977, required that the US Environmental Protection Agency develop a national Air Operating Permit Program, which in turn would require each state to develop an Air Operating Permit Program to identify all sources of ``regulated`` pollutants. Regulated pollutants include ``criteria`` pollutants (oxides of nitrogen, sulfur oxides, total suspended particulates, carbon monoxide, particulate matter greater than 10 micron, lead) plus 189 other ``Hazardous`` Air Pollutants. The Hanford Site, owned by the US Government and operated by the US Department of Energy, Richland Operations Office, is located in southcentral Washington State and covers 560 square miles of semi-arid shrub and grasslands located just north of the confluence of the Snake and Yakima Rivers with the Columbia River. This land, with restricted public access, provides a buffer for the smaller areas historically used for the production of nuclear materials, waste storage, and waste disposal. About 6 percent of the land area has been disturbed and is actively used. The Hanford Site Air Operating Permit Application consists of more than 1,100 sources and in excess of 300 emission points. Before January 1995, the maintenance and operations contractor and the environmental restoration contractor for the US Department of Energy completed an air emission inventory on the Hanford Site. The inventory has been entered into a database so that the sources and emission points can be tracked and updated information readily can be retrieved. The Hanford Site Air Operating Permit Application contains information current as of April 19, 1995.

  11. The GLAST LAT Instrument Science Operations Center

    NASA Astrophysics Data System (ADS)

    Cameron, Robert A.; Silva, E. do Couto e.; Dubois, R.; LAT ISOC, GLAST

    2006-09-01

    Operations support and science data processing for the Large Area Telescope (LAT) instrument on the Gamma-ray Large Area Space Telescope (GLAST) will be provided by the LAT Instrument Science Operations Center (ISOC) at the Stanford Linear Accelerator Center (SLAC). The ISOC supports GLAST mission operations in cooperation with other GLAST mission ground system elements and supports the science activities of the LAT collaboration. The ISOC will be responsible for monitoring the health and safety of the LAT, preparing command sequences for the LAT, maintaining and updating embedded flight software which controls the LAT detector and data acquisition flight hardware, maintaining the LAT configuration and calibration, and applying event reconstruction processing to downlinked LAT data to recover information about detected gamma-ray photons. The SLAC computer farm will be used to process the large volume of LAT event data and generate science products to be made available to the LAT collaboration through the ISOC and to the broader scientific community through the GLAST Science Support Center at GSFC. Science operations in the ISOC will optimize the performance of the LAT and oversee automated science processing of LAT data to detect and monitor transient gamma-ray sources. We describe the use of collaboration-wide data challenges to test and exercise LAT data processing before launch.

  12. Low excess air operations of oil boilers

    SciTech Connect

    Butcher, T.A.; Celebi, Y.; Litzke, Wai Lin

    1997-09-01

    To quantify the benefits which operation at very low excess air operation may have on heat exchanger fouling BNL has recently started a test project. The test allows simultaneous measurement of fouling rate, flue gas filterable soot, flue gas sulfuric acid content, and flue gas sulfur dioxide.

  13. Space Operations Center - A concept analysis

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The Space Operations Center (SOC) which is a concept for a Shuttle serviced, permanent, manned facility in low earth orbit is viewed as a major candidate for the manned space flight following the completion of an operational Shuttle. The primary objectives of SOC are: (1) the construction, checkout, and transfer to operational orbit of large, complex space systems, (2) on-orbit assembly, launch, recovery, and servicing of manned and unmanned spacecraft, (3) managing operations of co-orbiting free-flying satellites, and (4) the development of reduced dependence on earth for control and resupply. The structure of SOC, a self-contained orbital facility containing several Shuttle launched modules, includes the service, habitation, and logistics modules as well as construction, and flight support facilities. A schedule is proposed for the development of SOC over ten years and costs for the yearly programs are estimated.

  14. Space Operations Center: Shuttle interaction study

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The implication of using the Shuttle with the Space Operation Center (SOC), including constraints that the Shuttle will place upon the SOC design. The study identifies the considerations involved in the use of the Shuttle as a part of the SOC concept, and also identifies the constraints to the SOC imposed by the Shuttle in its interactions with the SOC, and on the design or technical solutions which allow satisfactory accomplishment of the interactions.

  15. 33 CFR 334.700 - Choctawhatchee Bay, aerial gunnery ranges, Air Proving Ground Center, Air Research and...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... gunnery ranges, Air Proving Ground Center, Air Research and Development Command, Eglin Air Force Base, Fla... gunnery ranges, Air Proving Ground Center, Air Research and Development Command, Eglin Air Force Base, Fla... regulations in this section shall be enforced by the Commander, Air Proving Ground Center, Eglin AFB, and...

  16. A Virtual Mission Operations Center: Collaborative Environment

    NASA Technical Reports Server (NTRS)

    Medina, Barbara; Bussman, Marie; Obenschain, Arthur F. (Technical Monitor)

    2002-01-01

    The Virtual Mission Operations Center - Collaborative Environment (VMOC-CE) intent is to have a central access point for all the resources used in a collaborative mission operations environment to assist mission operators in communicating on-site and off-site in the investigation and resolution of anomalies. It is a framework that as a minimum incorporates online chat, realtime file sharing and remote application sharing components in one central location. The use of a collaborative environment in mission operations opens up the possibilities for a central framework for other project members to access and interact with mission operations staff remotely. The goal of the Virtual Mission Operations Center (VMOC) Project is to identify, develop, and infuse technology to enable mission control by on-call personnel in geographically dispersed locations. In order to achieve this goal, the following capabilities are needed: Autonomous mission control systems Automated systems to contact on-call personnel Synthesis and presentation of mission control status and history information Desktop tools for data and situation analysis Secure mechanism for remote collaboration commanding Collaborative environment for remote cooperative work The VMOC-CE is a collaborative environment that facilitates remote cooperative work. It is an application instance of the Virtual System Design Environment (VSDE), developed by NASA Goddard Space Flight Center's (GSFC) Systems Engineering Services & Advanced Concepts (SESAC) Branch. The VSDE is a web-based portal that includes a knowledge repository and collaborative environment to serve science and engineering teams in product development. It is a "one stop shop" for product design, providing users real-time access to product development data, engineering and management tools, and relevant design specifications and resources through the Internet. The initial focus of the VSDE has been to serve teams working in the early portion of the system

  17. [Design, equipment, and management for air conditioning in operating room].

    PubMed

    Fuji, Kumiko; Mizuno, Ju

    2011-11-01

    In order to maintain air cleanliness in the operating room (OR) permanently, air exchange rate in the OR should be more than 15 times x hr(-1), the laminar air flow should be kept, and the numbers of the persons in the OR and the numbers of opening and closing OR door should be limited. High efficiency particulate air (HEPA) filter is effective in collection and removal of airborne microbes, and is used in the biological clean room. We need to design, equip, and manage the OR environment according to Guideline for Design and Operation of Hospital HVAC Systems HEAS-02-2004 established by Healthcare Engineering Association of Japan and Guideline for Prevention of Surgical Site Infection (SSI) established by the Center for Disease Control and Prevention (CDC) in the USA. PMID:22175178

  18. Atlanta Air Route Traffic Control Center's involvement in aviation weather

    NASA Technical Reports Server (NTRS)

    Wood, W. D.

    1979-01-01

    The distribution of weather information throughout the Air Traffic Control System is discussed along with the development of meteorological radar, and the modifications to the Air Route Traffic Control Center radars for locating and determining the severity of storms' cells. The planned improvements in the availability of weather data to the control centers are listed.

  19. 14 CFR 298.52 - Air taxi operations by commuter air carriers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Air taxi operations by commuter air... (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS EXEMPTIONS FOR AIR TAXI AND COMMUTER AIR CARRIER OPERATIONS Commuter Air Carrier Authorizations § 298.52 Air taxi operations by commuter air carriers. (a) A...

  20. 14 CFR 298.52 - Air taxi operations by commuter air carriers.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Air taxi operations by commuter air... (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS EXEMPTIONS FOR AIR TAXI AND COMMUTER AIR CARRIER OPERATIONS Commuter Air Carrier Authorizations § 298.52 Air taxi operations by commuter air carriers. (a) A...

  1. 14 CFR 298.52 - Air taxi operations by commuter air carriers.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Air taxi operations by commuter air... (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS EXEMPTIONS FOR AIR TAXI AND COMMUTER AIR CARRIER OPERATIONS Commuter Air Carrier Authorizations § 298.52 Air taxi operations by commuter air carriers. (a) A...

  2. 14 CFR 298.52 - Air taxi operations by commuter air carriers.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Air taxi operations by commuter air... (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS EXEMPTIONS FOR AIR TAXI AND COMMUTER AIR CARRIER OPERATIONS Commuter Air Carrier Authorizations § 298.52 Air taxi operations by commuter air carriers. (a) A...

  3. 14 CFR 298.52 - Air taxi operations by commuter air carriers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Air taxi operations by commuter air... (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS EXEMPTIONS FOR AIR TAXI AND COMMUTER AIR CARRIER OPERATIONS Commuter Air Carrier Authorizations § 298.52 Air taxi operations by commuter air carriers. (a) A...

  4. 10. "TEST STAND 15, AIR FORCE FLIGHT TEST CENTER." ca. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. "TEST STAND 1-5, AIR FORCE FLIGHT TEST CENTER." ca. 1958. Test Area 1-115. Original is a color print, showing Test Stand 1-5 from below, also showing the superstructure of TS1-4 at left. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Leuhman Ridge near Highways 58 & 395, Boron, Kern County, CA

  5. Autonomous Satellite Operations Via Secure Virtual Mission Operations Center

    NASA Technical Reports Server (NTRS)

    Miller, Eric; Paulsen, Phillip E.; Pasciuto, Michael

    2011-01-01

    The science community is interested in improving their ability to respond to rapidly evolving, transient phenomena via autonomous rapid reconfiguration, which derives from the ability to assemble separate but collaborating sensors and data forecasting systems to meet a broad range of research and application needs. Current satellite systems typically require human intervention to respond to triggers from dissimilar sensor systems. Additionally, satellite ground services often need to be coordinated days or weeks in advance. Finally, the boundaries between the various sensor systems that make up such a Sensor Web are defined by such things as link delay and connectivity, data and error rate asymmetry, data reliability, quality of service provisions, and trust, complicating autonomous operations. Over the past ten years, researchers from the NASA Glenn Research Center (GRC), General Dynamics, Surrey Satellite Technology Limited (SSTL), Cisco, Universal Space Networks (USN), the U.S. Geological Survey (USGS), the Naval Research Laboratory, the DoD Operationally Responsive Space (ORS) Office, and others have worked collaboratively to develop a virtual mission operations capability. Called VMOC (Virtual Mission Operations Center), this new capability allows cross-system queuing of dissimilar mission unique systems through the use of a common security scheme and published application programming interfaces (APIs). Collaborative VMOC demonstrations over the last several years have supported the standardization of spacecraft to ground interfaces needed to reduce costs, maximize space effects to the user, and allow the generation of new tactics, techniques and procedures that lead to responsive space employment.

  6. Design basis for the NRC Operations Center

    SciTech Connect

    Lindell, M.K.; Wise, J.A.; Griffin, B.N.; Desrosiers, A.E.; Meitzler, W.D.

    1983-05-01

    This report documents the development of a design for a new NRC Operations Center (NRCOC). The project was conducted in two phases: organizational analysis and facility design. In order to control the amount of traffic, congestion and noise within the facility, it is recommended that information flow in the new NRCOC be accomplished by means of an electronic Status Information Management System. Functional requirements and a conceptual design for this system are described. An idealized architectural design and a detailed design program are presented that provide the appropriate amount of space for operations, equipment and circulation within team areas. The overall layout provides controlled access to the facility and, through the use of a zoning concept, provides each team within the NRCOC the appropriate balance of ready access and privacy determined from the organizational analyses conducted during the initial phase of the project.

  7. Diaphragms in air-operated valves

    SciTech Connect

    Groeger, J.E.

    1996-12-01

    The author will present current issues related to diaphgrams in air-operated valves. Altran Materials Engineering, Inc., often performs root-cause analyses for nuclear power plant owners. The author will discuss various analyses that have been performed or are currently underway.

  8. The Deep Impact Network Experiment Operations Center

    NASA Technical Reports Server (NTRS)

    Torgerson, J. Leigh; Clare, Loren; Wang, Shin-Ywan

    2009-01-01

    Delay/Disruption Tolerant Networking (DTN) promises solutions in solving space communications challenges arising from disconnections as orbiters lose line-of-sight with landers, long propagation delays over interplanetary links, and other phenomena. DTN has been identified as the basis for the future NASA space communications network backbone, and international standardization is progressing through both the Consultative Committee for Space Data Systems (CCSDS) and the Internet Engineering Task Force (IETF). JPL has developed an implementation of the DTN architecture, called the Interplanetary Overlay Network (ION). ION is specifically implemented for space use, including design for use in a real-time operating system environment and high processing efficiency. In order to raise the Technology Readiness Level of ION, the first deep space flight demonstration of DTN is underway, using the Deep Impact (DI) spacecraft. Called the Deep Impact Network (DINET), operations are planned for Fall 2008. An essential component of the DINET project is the Experiment Operations Center (EOC), which will generate and receive the test communications traffic as well as "out-of-DTN band" command and control of the DTN experiment, store DTN flight test information in a database, provide display systems for monitoring DTN operations status and statistics (e.g., bundle throughput), and support query and analyses of the data collected. This paper describes the DINET EOC and its value in the DTN flight experiment and potential for further DTN testing.

  9. Environmental Quality Information Analysis Center (EQIAC) operating procedures handbook

    SciTech Connect

    Walsh, T.E. ); Das, S. )

    1992-08-01

    The Operating Procedures Handbook of the Environmental Quality Information Analysis Center (EQIAC) is intended to be kept current as EQIAC develops and evolves. Its purpose is to provide a comprehensive guide to the mission, infrastructure, functions, and operational procedures of EQIAC. The handbook is a training tool for new personnel and a reference manual for existing personnel. The handbook will be distributed throughout EQIAC and maintained in binders containing current dated editions of the individual sections. The handbook will be revised at least annually to reflect the current structure and operational procedures of EQIAC. The EQIAC provides information on environmental issues such as compliance, restoration, and environmental monitoring do the Air Force and DOD contractors.

  10. ARCHITECTURAL DRAWING, MILITARY AIR COMMAND COMMUNICATION CENTER PRECAST CONCRETE WALL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ARCHITECTURAL DRAWING, MILITARY AIR COMMAND COMMUNICATION CENTER PRECAST CONCRETE WALL DETAILS. DATED 03/15/1971 - Wake Island Airfield, Terminal Building, West Side of Wake Avenue, Wake Island, Wake Island, UM

  11. NASA Principal Center for Review of Clean Air Act Regulations

    NASA Technical Reports Server (NTRS)

    Clark-Ingram, Marceia; Munafo, Paul M. (Technical Monitor)

    2002-01-01

    The Clean Air Act (CAA) regulations have greatly impacted materials and processes utilized in the manufacture of aerospace hardware. Code JE/ NASA's Environmental Management Division at NASA Headquarters recognized the need for a formal, Agency-wide review process of CAA regulations. Marshall Space Flight Center (MSFC) was selected as the 'Principal Center for Review of Clean Air Act Regulations'. This presentation describes the centralized support provided by MSFC for the management and leadership of NASA's CAA regulation review process.

  12. Virtual Testbed Aerospace Operations Center (VT-AOC)

    NASA Astrophysics Data System (ADS)

    Dunaway, Bradley; Broadstock, Tom

    2003-09-01

    The Air Force is conducting research in new technologies for next-generation Aerospace Operations Centers (AOCs). The Virtual Testbed Aerospace Operations Center (VT-AOC) will support advanced research in information technologies that operate in or are closely tied to AOCs. The VT-AOC will provide a context for developing, demonstrating, and testing new processes and tools in a realistic environment. To generate the environment, the VT-AOC will incorporate multiple mixed-resolution simulations that are capable of driving existing and future AOC command and control (C2) systems. The VT-AOC will provide the capability to capture existing or proposed C2 processes and then evaluate them operating in conjunction with new technologies. The VT-AOC will also be capable of connecting with other facilities to support increasingly more complex experiments and demonstrations. Together, these capabilities support key initiatives such as Agile Research and Development/Science and Technology (R&D/S&T), Predictive Battlespace Awareness, and Effects-Based Operations.

  13. TEXAS JOINT CENTER FOR AIR QUALITY

    EPA Science Inventory

    Status of Subawards
     
    Five of the six subaward projects are complete.  Final reporting from the Texas A&M Galveston project was prevented due to Hurricane Ike in August 2008.  Joint Center staff visited project sites i...

  14. 3. EAGLE ROCK CONTROL CENTER, OPERATIONS CONTROL. AS SYSTEM BECOMES ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. EAGLE ROCK CONTROL CENTER, OPERATIONS CONTROL. AS SYSTEM BECOMES INCREASINGLY AUTOMATED, EAGLE ROCK WILL BECOME MORE AND MORE THE CENTRAL CONTROL SYSTEM OF THE METROPOLITAN WATER DISTRICT. - Eagle Rock Operations Control Center, Pasadena, Los Angeles County, CA

  15. 35. James River Visitor Center. Opened as an open air ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    35. James River Visitor Center. Opened as an open air visitor center in 1962, it was enclosed and a heating system installed in 1984 to allow use through the cooler months and help reduce vandalism. Looking northeast. - Blue Ridge Parkway, Between Shenandoah National Park & Great Smoky Mountains, Asheville, Buncombe County, NC

  16. Development and Preliminary Results of CTAS on Airline Operational Control Center Operations

    NASA Technical Reports Server (NTRS)

    Zelenka, Richard; Beatty, Roger; Engelland, Shawn

    2004-01-01

    Continued growth and expansion of air traffic and increased air carrier economic pressures have mandated greater flexibility and collaboration in air traffic management. The ability of airspace users to select their own routes, so called "free-flight", and to more actively manage their fleet operations for maximum economic advantage are receiving great attention. A first step toward greater airspace user and service provider collaboration is information sharing. In this work, arrival scheduling and airspace management data generated by the NASA/FAA Center/TRACON Automation System (CTAS) and used by the FAA service provider is shared with an airline with extensive operations within the CTAS operational domain. The design and development of a specialized airline CTAS "repeater" system is described, as well as some preliminary results of the impact and benefits of this information on the air carrier's operations. FAA controller per aircraft scheduling information, such as that provided by CTAS, has never before been shared in real-time with an airline. Expected airline benefits include improved fleet planning and arrival gate management, more informed "hold-go decisions, and avoidance of costly aircraft diversions to alternate airports when faced with uncertain airborne arrival delays.

  17. Development and Preliminary Results of CTAS on Airline Operational Control Center Operations

    NASA Technical Reports Server (NTRS)

    Zelenka, Richard; Beatty, Roger; Falcone, Richard; Engelland, Shawn; Tobias, Leonard (Technical Monitor)

    1998-01-01

    Continued growth and expansion of air traffic and increased air carrier economic pressures have mandated greater flexibility and collaboration in air traffic management. The ability of airspace users to select their own routes, so called "free-flight", and to more actively manage their fleet operations for maximum economic advantage are receiving great attention. A first step toward greater airspace user and service provider collaboration is information sharing. In this work, arrival scheduling and airspace management data generated by the NASA/FAA Center/TRACON Automation System (CTAS) and used by the FAA service provider is shared with an airline with extensive operations within the CTAS operational domain. The design and development of a specialized airline CTAS "repeater" system is described, as well as some preliminary results of the impact and benefits of this information on the air carrier's operations. FAA controller per aircraft scheduling information, such as that provided by CTAS, has never before been shared in real-time with an airline. Expected airline benefits include improved fleet planning and arrival gate management, more informed "hold-go" decisions, and avoidance of costly aircraft diversions to alternate airports when faced with uncertain airborne arrival delays.

  18. 33 CFR 334.700 - Choctawhatchee Bay, aerial gunnery ranges, Air Proving Ground Center, Air Research and...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Choctawhatchee Bay, aerial gunnery ranges, Air Proving Ground Center, Air Research and Development Command, Eglin Air Force Base, Fla... gunnery ranges, Air Proving Ground Center, Air Research and Development Command, Eglin Air Force Base,...

  19. Kepler Science Operations Center Pipeline Framework

    NASA Technical Reports Server (NTRS)

    Klaus, Todd C.; McCauliff, Sean; Cote, Miles T.; Girouard, Forrest R.; Wohler, Bill; Allen, Christopher; Middour, Christopher; Caldwell, Douglas A.; Jenkins, Jon M.

    2010-01-01

    The Kepler mission is designed to continuously monitor up to 170,000 stars at a 30 minute cadence for 3.5 years searching for Earth-size planets. The data are processed at the Science Operations Center (SOC) at NASA Ames Research Center. Because of the large volume of data and the memory and CPU-intensive nature of the analysis, significant computing hardware is required. We have developed generic pipeline framework software that is used to distribute and synchronize the processing across a cluster of CPUs and to manage the resulting products. The framework is written in Java and is therefore platform-independent, and scales from a single, standalone workstation (for development and research on small data sets) to a full cluster of homogeneous or heterogeneous hardware with minimal configuration changes. A plug-in architecture provides customized control of the unit of work without the need to modify the framework itself. Distributed transaction services provide for atomic storage of pipeline products for a unit of work across a relational database and the custom Kepler DB. Generic parameter management and data accountability services are provided to record the parameter values, software versions, and other meta-data used for each pipeline execution. A graphical console allows for the configuration, execution, and monitoring of pipelines. An alert and metrics subsystem is used to monitor the health and performance of the pipeline. The framework was developed for the Kepler project based on Kepler requirements, but the framework itself is generic and could be used for a variety of applications where these features are needed.

  20. Evaluating the Impact of AIRS Observations on Regional Forecasts at the SPoRT Center

    NASA Technical Reports Server (NTRS)

    Zavodsky, Bradley

    2011-01-01

    NASA Short-term Prediction Research and Transition (SPoRT) Center collaborates with operational partners of different sizes and operational goals to improve forecasts using targeted projects and data sets. Modeling and DA activities focus on demonstrating utility of NASA data sets and capabilities within operational systems. SPoRT has successfully assimilated the Atmospheric Infrared Sounder (AIRS) radiance and profile data. A collaborative project is underway with the Joint Center for Satellite Data Assimilation (JCSDA) to use AIRS profiles to better understand the impact of AIRS radiances assimilated within Gridpoint Statistical Interpolation (GSI) in hopes of engaging the operational DA community in a reassessment of assimilation methodologies to more effectively assimilate hyperspectral radiances.

  1. Huntsville Operations Support Center (HOSC) Spacelab Payload Operations Control Center (SL POCC)

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Spacelab-3 launched aboard STS-51B, with the major science objective being to perform engineering tests on two new facilities: the rodent animal holding facility and the primate animal holding facility. In addition, scientists observed the animals to obtain first hand knowledge of the effects of launch and reentry stresses and behavior. The need for suitable animal housing to support research in space led to the development of the Research Animal Holding Facility at the Ames Research Center. Scientists often study animals to find clues to human physiology and behavior. Rats, insects, and microorganisms had already been studied aboard the Shuttle on previous missions. On Spacelab-3, scientists had a chance to observe a large number of animals living in space in a specially designed and independently controlled housing facility. Marshall Space Flight Center (MSFC) had management responsibility for the Spacelab-3 mission. This photograph depicts activities during the mission at the Huntsville Operations Support Center (HOSC) Spacelab Payload Operations Control Center (SL POCC) at MSFC.

  2. Huntsville Operations Support Center (HOSC) Spacelab Payload Operations Control Center (SL POCC)

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Spacelab-3 launched aboard STS-51B, with the major science objective being to perform engineering tests on two new facilities: the rodent animal holding facility and the primate animal holding facility. In addition, scientists observed the animals to obtain first hand knowledge of the effects of launch and reentry stresses and behavior. The need for suitable animal housing to support research in space led to the development of the Research Animal Holding Facility at the Ames Research Center. Scientists often study animals to find clues to human physiology and behavior. Rats, insects, and microorganisms had already been studied aboard the Shuttle on previous missions. On Spacelab-3, scientists had a chance to observe a large number of animals living in space in a specially designed and independently controlled housing facility. Marshall Space Flight Center (MSFC) had management responsibility for the Spacelab 3 mission. This photograph depicts activities during the mission at the Huntsville Operations Support Center (HOSC) Spacelab Payload Operations Control Center (SL POCC) at MSFC.

  3. Continuous Air Monitor Operating Experience Review

    SciTech Connect

    L. C. Cadwallader; S. A. Bruyere

    2008-09-01

    Continuous air monitors (CAMs) are used to sense radioactive particulates in room air of nuclear facilities. CAMs alert personnel of potential inhalation exposures to radionuclides and can also actuate room ventilation isolation for public and environmental protection. This paper presents the results of a CAM operating experience review of the DOE Occurrence Reporting and Processing System (ORPS) database from the past 18 years. Regulations regarding these monitors are briefly reviewed. CAM location selection and operation are briefly discussed. Operating experiences reported by the U.S. Department of Energy and in other literature sources were reviewed to determine the strengths and weaknesses of these monitors. Power losses, human errors, and mechanical issues cause the majority of failures. The average “all modes” failure rate is 2.65E-05/hr. Repair time estimates vary from an average repair time of 9 hours (with spare parts on hand) to 252 hours (without spare parts on hand). These data should support the use of CAMs in any nuclear facility, including the National Ignition Facility and the international ITER experiment.

  4. Nextgen Technologies for Mid-Term and Far-Term Air Traffic Control Operations

    NASA Technical Reports Server (NTRS)

    Prevot, Thomas

    2009-01-01

    This paper describes technologies for mid-term and far-term air traffic control operations in the Next Generation Air Transportation System (NextGen). The technologies were developed and evaluated with human-in-the-loop simulations in the Airspace Operations Laboratory (AOL) at the NASA Ames Research Center. The simulations were funded by several research focus areas within NASA's Airspace Systems program and some were co-funded by the FAA's Air Traffic Organization for Planning, Research and Technology.

  5. Operating systems in the air transportation environment.

    NASA Technical Reports Server (NTRS)

    Cherry, G. W.

    1971-01-01

    Consideration of the problems facing air transport at present, and to be expected in the future. In the Northeast Corridor these problems involve community acceptance, airway and airport congestion and delays, passenger acceptance, noise reduction, and improvements in low-density short-haul economics. In the development of a superior short-haul operating system, terminal-configured vs cruise-configured vehicles are evaluated. CTOL, STOL, and VTOL aircraft of various types are discussed. In the field of noise abatement, it is shown that flight procedural techniques are capable of supplementing ?quiet engine' technology.

  6. 75 FR 36069 - Clean Air Act Operating Permit Program; Petition for Objection to a Federal Operating Permit for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-24

    ... From the Federal Register Online via the Government Publishing Office ] ENVIRONMENTAL PROTECTION AGENCY Clean Air Act Operating Permit Program; Petition for Objection to a Federal Operating Permit for Waste Management of Louisiana L.L.C., Woodside Landfill and Recycling Center (WLRC), Walker,...

  7. Tritium Room Air Monitor Operating Experience Review

    SciTech Connect

    L. C. Cadwallader; B. J. Denny

    2008-09-01

    Monitoring the breathing air in tritium facility rooms for airborne tritium is a radiological safety requirement and a best practice for personnel safety. Besides audible alarms for room evacuation, these monitors often send signals for process shutdown, ventilation isolation, and cleanup system actuation to mitigate releases and prevent tritium spread to the environment. Therefore, these monitors are important not only to personnel safety but also to public safety and environmental protection. This paper presents an operating experience review of tritium monitor performance on demand during small (1 mCi to 1 Ci) operational releases, and intentional airborne inroom tritium release tests. The tritium tests provide monitor operation data to allow calculation of a statistical estimate for the reliability of monitors annunciating in actual tritium gas airborne release situations. The data show a failure to operate rate of 3.5E-06/monitor-hr with an upper bound of 4.7E-06, a failure to alarm on demand rate of 1.4E-02/demand with an upper bound of 4.4E-02, and a spurious alarm rate of 0.1 to 0.2/monitor-yr.

  8. Operating The Central Process Systems At Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Weiler, Carly P.

    2004-01-01

    As a research facility, the Glenn Research Center (GRC) trusts and expects all the systems, controlling their facilities to run properly and efficiently in order for their research and operations to occur proficiently and on time. While there are many systems necessary for the operations at GRC, one of those most vital systems is the Central Process Systems (CPS). The CPS controls operations used by GRC's wind tunnels, propulsion systems lab, engine components research lab, and compressor, turbine and combustor test cells. Used widely throughout the lab, it operates equipment such as exhausters, chillers, cooling towers, compressors, dehydrators, and other such equipment. Through parameters such as pressure, temperature, speed, flow, etc., it performs its primary operations on the major systems of Electrical Dispatch (ED), Central Air Dispatch (CAD), Central Air Equipment Building (CAEB), and Engine Research Building (ERB). In order for the CPS to continue its operations at Glenn, a new contract must be awarded. Consequently, one of my primary responsibilities was assisting the Source Evaluation Board (SEB) with the process of awarding the recertification contract of the CPS. The job of the SEB was to evaluate the proposals of the contract bidders and then to present their findings to the Source Selecting Official (SSO). Before the evaluations began, the Center Director established the level of the competition. For this contract, the competition was limited to those companies classified as a small, disadvantaged business. After an industry briefing that explained to qualified companies the CPS and type of work required, each of the interested companies then submitted proposals addressing three components: Mission Suitability, Cost, and Past Performance. These proposals were based off the Statement of Work (SOW) written by the SEB. After companies submitted their proposals, the SEB reviewed all three components and then presented their results to the SSO. While the

  9. Space Operations Learning Center Facebook Application

    NASA Technical Reports Server (NTRS)

    Lui, Ben; Milner, Barbara; Binebrink, Dan; Kuok, Heng

    2012-01-01

    The proposed Space Operations Learning Center (SOLC) Facebook module, initially code-named Spaceville, is intended to be an educational online game utilizing the latest social networking technology to reach a broad audience base and inspire young audiences to be interested in math, science, and engineering. Spaceville will be a Facebook application/ game with the goal of combining learning with a fun game and social environment. The mission of the game is to build a scientific outpost on the Moon or Mars and expand the colony. Game activities include collecting resources, trading resources, completing simple science experiments, and building architectures such as laboratories, habitats, greenhouses, machine shops, etc. The player is awarded with points and achievement levels. The player s ability increases as his/her points and levels increase. A player can interact with other players using multiplayer Facebook functionality. As a result, a player can discover unexpected treasures through scientific missions, engineering, and working with others. The player creates his/her own avatar with his/her selection of its unique appearance, and names the character. The player controls the avatar to perform activities such as collecting oxygen molecules or building a habitat. From observations of other successful social online games such as Farmville and Restaurant City, a common element of these games is having eye-catching and cartoonish characters, and interesting animations for all activities. This will create a fun, educational, and rewarding environment. The player needs to accumulate points in order to be awarded special items needed for advancing to higher levels. Trophies will be awarded to the player when certain goals are reached or tasks are completed. In order to acquire some special items needed for advancement in the game, the player will need to visit his/her neighboring towns to discover the items. This is the social aspect of the game that requires the

  10. NASA's Principal Center for Review of Clean Air Act Regulations

    NASA Technical Reports Server (NTRS)

    Clark-Ingram, Marceia

    2003-01-01

    Marshall Space Flight Center (MSFC) was selected as the Principal Center for review of Clean Air Act (CAA) regulations. The CAA Principal Center is tasked to: 1) Provide centralized support to NASA/HDQ Code JE for the management and leadership of NASA's CAA regulation review process; 2) Identify potential impact from proposed CAA regulations to NASA program hardware and supporting facilities. The Shuttle Environmental Assurance Initiative, one of the responsibilities of the NASA CAA Working Group (WG), is described in part of this viewgraph presentation.

  11. Space Operations Center System Analysis: Requirements for a Space Operations Center, revision A

    NASA Technical Reports Server (NTRS)

    Woodcock, G. R.

    1982-01-01

    The system and program requirements for a space operations center as defined by systems analysis studies are presented as a guide for future study and systems definition. Topics covered include general requirements for safety, maintainability, and reliability, service and habitat modules, the health maintenance facility; logistics modules; the docking tunnel; and subsystem requirements (structures, electrical power, environmental control/life support; extravehicular activity; data management; communications and tracking; docking/berthing; flight control/propulsion; and crew support). Facilities for flight support, construction, satellite and mission servicing, and fluid storage are included as well as general purpose support equipment.

  12. 14 CFR 375.30 - Operations other than commercial air operations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... (AVIATION PROCEEDINGS) SPECIAL REGULATIONS NAVIGATION OF FOREIGN CIVIL AIRCRAFT WITHIN THE UNITED STATES Authorized Operations § 375.30 Operations other than commercial air operations. Foreign civil aircraft...

  13. 14 CFR 375.30 - Operations other than commercial air operations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... (AVIATION PROCEEDINGS) SPECIAL REGULATIONS NAVIGATION OF FOREIGN CIVIL AIRCRAFT WITHIN THE UNITED STATES Authorized Operations § 375.30 Operations other than commercial air operations. Foreign civil aircraft...

  14. 14 CFR 375.30 - Operations other than commercial air operations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... (AVIATION PROCEEDINGS) SPECIAL REGULATIONS NAVIGATION OF FOREIGN CIVIL AIRCRAFT WITHIN THE UNITED STATES Authorized Operations § 375.30 Operations other than commercial air operations. Foreign civil aircraft...

  15. 14 CFR 375.30 - Operations other than commercial air operations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... (AVIATION PROCEEDINGS) SPECIAL REGULATIONS NAVIGATION OF FOREIGN CIVIL AIRCRAFT WITHIN THE UNITED STATES Authorized Operations § 375.30 Operations other than commercial air operations. Foreign civil aircraft...

  16. 14 CFR 375.30 - Operations other than commercial air operations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... (AVIATION PROCEEDINGS) SPECIAL REGULATIONS NAVIGATION OF FOREIGN CIVIL AIRCRAFT WITHIN THE UNITED STATES Authorized Operations § 375.30 Operations other than commercial air operations. Foreign civil aircraft...

  17. Air cushion vehicles for arctic operation

    NASA Astrophysics Data System (ADS)

    Koleser, J.; Lavis, D. R.

    1986-09-01

    Attention is given to the results of the NAVSEA FY85 Surface Ship Concept Formulation Design Study for an initial operational capability year-2000 air cushion vehicle (ACV) suitable for logistics and general search/rescue duties in the Arctic. Two designs were developed during the study; the first utilized an ACV design synthesis math model while the second evolved as a derivative of an existing U.S. production craft. Both are regarded as feasible from an engineering and naval architectural standpoint. Results of performance and cost trade-off studies suggest that, for an Arctic ACV, gas turbines are the preferred power plant choice and an aluminum alloy is the preferred hull structural material choice. The most appropriate skirt height is approximately 12 ft.

  18. Space operation center - The key to space industrialization

    NASA Technical Reports Server (NTRS)

    Nassiff, S. H.

    1981-01-01

    The concept of a Shuttle-serviced Space Operations Center (SOC) and SOC program development are reviewed. The subjects discussed include: projected operational support capabilities, SOC elements and subsystems, and supporting research and technology.

  19. Space operation center - The key to space industrialization

    NASA Astrophysics Data System (ADS)

    Nassiff, S. H.

    1981-02-01

    The concept of a Shuttle-serviced Space Operations Center (SOC) and SOC program development are reviewed. The subjects discussed include: projected operational support capabilities, SOC elements and subsystems, and supporting research and technology.

  20. 32 CFR 245.18 - Transportation security operations center (TSOC).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 2 2010-07-01 2010-07-01 false Transportation security operations center (TSOC). 245.18 Section 245.18 National Defense Department of Defense (Continued) OFFICE OF THE SECRETARY OF...) Procedures for Implementation of ESCAT § 245.18 Transportation security operations center (TSOC). TSOC...

  1. Human Centered Autonomous and Assistant Systems Testbed for Exploration Operations

    NASA Technical Reports Server (NTRS)

    Malin, Jane T.; Mount, Frances; Carreon, Patricia; Torney, Susan E.

    2001-01-01

    The Engineering and Mission Operations Directorates at NASA Johnson Space Center are combining laboratories and expertise to establish the Human Centered Autonomous and Assistant Systems Testbed for Exploration Operations. This is a testbed for human centered design, development and evaluation of intelligent autonomous and assistant systems that will be needed for human exploration and development of space. This project will improve human-centered analysis, design and evaluation methods for developing intelligent software. This software will support human-machine cognitive and collaborative activities in future interplanetary work environments where distributed computer and human agents cooperate. We are developing and evaluating prototype intelligent systems for distributed multi-agent mixed-initiative operations. The primary target domain is control of life support systems in a planetary base. Technical approaches will be evaluated for use during extended manned tests in the target domain, the Bioregenerative Advanced Life Support Systems Test Complex (BIO-Plex). A spinoff target domain is the International Space Station (ISS) Mission Control Center (MCC). Prodl}cts of this project include human-centered intelligent software technology, innovative human interface designs, and human-centered software development processes, methods and products. The testbed uses adjustable autonomy software and life support systems simulation models from the Adjustable Autonomy Testbed, to represent operations on the remote planet. Ground operations prototypes and concepts will be evaluated in the Exploration Planning and Operations Center (ExPOC) and Jupiter Facility.

  2. Mist control at a machining center, Part 2: Mist control following installation of air cleaners.

    PubMed

    Yacher, J M; Heitbrink, W A; Burroughs, G E

    2000-01-01

    At a machining center used to produce transaxle and transmission parts, aerosol instrumentation was used to quantitatively evaluate size-dependent mist generation of a synthetic metalworking fluid (MWF) consisting primarily of water and triethanolamine (TEA). This information was used to select an air cleaner for controlling the mist. During most machining operations, the MWF was flooded over the part. These machining operations were performed in a nearly complete enclosure that was exhausted to an air cleaner consisting of three sections: a fall-out chamber, a trifilter section to capture metal chips and mist, and a 1.13 m3/sec (2400 ft3/min) blower. The partnering company requested that National Institute for Occupational Safety and Health (NIOSH) researchers perform an evaluation of the effectiveness of a commercially available air cleaner. After NIOSH researchers characterized mist generation at the machining centers and found that performance of a test air cleaner appeared to be suitable, the company installed more than 25 air cleaners on different machining centers in this plant and enclosed the corresponding fluid filtration unit. The facility also has implemented a maintenance program for the air cleaners that involves regularly scheduled filter changes; performance is ensured by monitoring static pressure. A NIOSH-conducted air sampling evaluation showed that area TEA concentrations were reduced from a geometric mean of 0.25 to 0.03 mg/m3. Personal total particulate concentrations were reduced from a geometric mean of 0.22 to 0.06 mg/m3. These results show the effectiveness of this combination of enclosure, ventilation, and filtration to greatly reduce the exposure to MWF mist generated in modern machining centers. PMID:10782201

  3. The meteorological monitoring system for the Kennedy Space Center/Cape Canaveral Air Station

    NASA Technical Reports Server (NTRS)

    Dianic, Allan V.

    1994-01-01

    The Kennedy Space Center (KSC) and Cape Canaveral Air Station (CCAS) are involved in many weather-sensitive operations. Manned and unmanned vehicle launches, which occur several times each year, are obvious example of operations whose success and safety are dependent upon favorable meteorological conditions. Other operations involving NASA, Air Force, and contractor personnel, including daily operations to maintain facilities, refurbish launch structures, prepare vehicles for launch, and handle hazardous materials, are less publicized but are no less weather-sensitive. The Meteorological Monitoring System (MMS) is a computer network which acquires, processes, disseminates, and monitors near real-time and forecast meteorological information to assist operational personnel and weather forecasters with the task of minimizing the risk to personnel, materials, and the surrounding population. CLIPS has been integrated into the MMS to provide quality control analysis and data monitoring. This paper describes aspects of the MMS relevant to CLIPS including requirements, actual implementation details, and results of performance testing.

  4. [A trouble in air conditioning in the operating area].

    PubMed

    Katsumata, Kiyoshi; Kaneko, Takehiko; Owaki, Akira

    2004-07-01

    We experienced malfunction of air conditioning system in the operating area. Rust inside the circulating pipe to the operating area was an obstacle to inflow of cold and hot water. Installing an additional air conditioning system and treatment with chemicals to remove the dust made it possible to adjust room temperature appropriately. Anesthesiologists should be interested and understand equipments used in the operation area such as air conditioning system. PMID:15298259

  5. Operation of the EPRI Nondestructive Evaluation Center

    SciTech Connect

    Stone, R.M.; Ammirato, F.V.; Becker, F.L.; Bremser, K.; Krzywosz, K.J.; MacDonald, D.E.; Nottingham, L.D.; Selby, G.P.; Shankar, R.; Stephens, H.M. Applied Research Co., Charlotte, NC )

    1989-11-01

    This report describes the Electric Power Research Institute (EPRI) funded nondestructive evaluation (NDE) and life assessment project activities carried out at the EPRI NDE Center in 1988. The primary support for this program is provided through contract RP 1570-2 with the EPRI Nuclear Division. Supplementary funding is provided by other contracts with the EPRI Nuclear, Coal Combustion, and Electrical Systems Divisions. The major objective of this program is to provide improved and field-qualified NDE equipment, procedures, and personnel training to the electric utility industry. A second program objective involves the validation, provision, and maintenance of life assessment codes for selected plant components. Significant assistance has been provided to the utility industry under this project in the form of improved, field-ready equipment and procedures; critically needed assessments of inspection method capability; demonstrations of effectiveness of examination methods; rapid response for critical, short-term problems; assistance with selected life assessment computer codes; and training for specific utility industry needs. These efforts have specifically involved heat exchanger, piping, steam turbine, generator, and heavy section problems. Certain components of both nuclear and fossil plants have been addressed. 56 refs., 48 figs., 13 tabs.

  6. Operation of the EPRI Nondestructive Evaluation Center

    SciTech Connect

    Stone, R.M.; Ammirato, F.V.; Becker, F.L.; Jeong, Y.H.; Krzywosz, K.J.; MacDonald, D.E.; Nottingham, L.D.; Selby, G.P.; Shankar, R.; Stephens, H.M.; Stramm, J.N.; Walker, S.M.; Willetts, A.J. Applied Research Co., Charlotte, NC )

    1990-09-01

    This report describes the Electric Power Research Institute (EPRI) funded nondestructive evaluation (NDE) and life assessment project activities carried out at the EPRI NDE Center in 1989. The primary support for this program is provided through contract RP 1570-2 with the EPRI Nuclear Division. Supplementary funding is provided by other contracts with the EPRI Nuclear and Generation and Storage Divisions. The major objective of this program is to provide improved and field-qualified NDE equipment, procedures, and personnel training to the electric utility industry. A second program objective involves the validation, provision, and maintenance of life assessment codes for selected plant components. Significant assistance has been provided to the utility industry under this project in the form of improved, field-theory equipment and procedures; critically needed assessments of inspection method capability; demonstrations of effectiveness of examination methods; rapid response for critical, short-term problems; assistance with selected life assessment computer codes; and training for specific utility industry needs. These efforts have specifically involved heat exchanger, piping, steam turbine, generator, and heavy section problems. Certain components of both nuclear and fossil plants have been addressed.

  7. Decision Support for Emergency Operations Centers

    NASA Technical Reports Server (NTRS)

    Harvey, Craig; Lawhead, Joel; Watts, Zack

    2005-01-01

    The Flood Disaster Mitigation Decision Support System (DSS) is a computerized information system that allows regional emergency-operations government officials to make decisions regarding the dispatch of resources in response to flooding. The DSS implements a real-time model of inundation utilizing recently acquired lidar elevation data as well as real-time data from flood gauges, and other instruments within and upstream of an area that is or could become flooded. The DSS information is updated as new data become available. The model generates realtime maps of flooded areas and predicts flood crests at specified locations. The inundation maps are overlaid with information on population densities, property values, hazardous materials, evacuation routes, official contact information, and other information needed for emergency response. The program maintains a database and a Web portal through which real-time data from instrumentation are gathered into the database. Also included in the database is a geographic information system, from which the program obtains the overlay data for areas of interest as needed. The portal makes some portions of the database accessible to the public. Access to other portions of the database is restricted to government officials according to various levels of authorization. The Flood Disaster Mitigation DSS has been integrated into a larger DSS named REACT (Real-time Emergency Action Coordination Tool), which also provides emergency operations managers with data for any type of impact area such as floods, fires, bomb

  8. Offutt Air Force Base, Looking Glass Airborne Command Post, Operational ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Offutt Air Force Base, Looking Glass Airborne Command Post, Operational & Hangar Access Aprons, Spanning length of northeast half of Project Looking Glass Historic District, Bellevue, Sarpy County, NE

  9. NASA AMES Remote Operations Center for 2001

    NASA Astrophysics Data System (ADS)

    Sims, M.; Marshall, J.; Cox, S.; Galal, K.

    1999-01-01

    There is a Memorandum of Agreement between NASA Ames, JPL, West Virginia University and University of Arizona which led to funding for the MECA microscope and to the establishment of an Ames facility for science analysis of microscopic and other data. The data and analysis will be by agreement of the Mars Environmental Compatibility Assessment (MECA), Robotic Arm Camera (RAC) and other PI's. This facility is intended to complement other analysis efforts with one objective of this facility being to test the latest information technologies in support of actual mission science operations. Additionally, it will be used as a laboratory for the exploration of collaborative science activities. With a goal of enhancing the science return for both Human Exploration and Development of Space (HEDS) and Astrobiology we shall utilize various tools such as superresolution and the Virtual Environment Vehicle Interface (VEVI) virtual reality visualization tools. In this presentation we will describe the current planning for this facility.

  10. Citizen Science Air Monitor (CSAM) Operating Procedures

    EPA Science Inventory

    The Citizen Science Air Monitor (CSAM) is an air monitoring system designed for measuring nitrogen dioxide (NO2) and particulate matter (PM) pollutants simultaneously. This self-contained system consists of a CairPol CairClip NO2 sensor, a Thermo Scientific personal DataRAM PM2.5...

  11. Kennedy Space Center Medical Operations and Medical Kit

    NASA Technical Reports Server (NTRS)

    Scarpa, Philip

    2011-01-01

    This slide presentation reviews the emergency medical operations at Kennedy Space center, the KSC launch and landing contingency modes, the triage site, the medical kit, and the medications available.

  12. COMMUNICATING RISK INFORMATION TO STATE AND LOCAL AIR POLLUTION CONTROL AGENCIES VIA U.S. EPA'S AIR RISK INFORMATION SUPPORT CENTER (AIR RISC)

    EPA Science Inventory

    The Air Risk Information Support Center (Air RISC) has been organized by U.S. EPA's offices of Air Quality Planning and Standards and Health and Environmental Assessment. The center has been developed in cooperation with the State and Territorial air Pollution Control Program Adm...

  13. Computer support for cooperative tasks in Mission Operations Centers

    SciTech Connect

    Fox, J.; Moore, M.

    1994-10-01

    Traditionally, spacecraft management has been performed by fixed teams of operators in Mission Operations Centers. The team cooperatively (1) ensures that payload(s) on spacecraft perform their work and (2) maintains the health and safety of the spacecraft through commanding and monitoring the spacecraft`s subsystems. In the future, the task demands will increase and overload the operators. This paper describes the traditional spacecraft management environment and describes a new concept in which groupware will be used to create a Virtual Mission Operations Center. Groupware tools will be used to better utilize available resources through increased automation and dynamic sharing of personnel among missions.

  14. Computer support for cooperative tasks in Mission Operations Centers

    NASA Technical Reports Server (NTRS)

    Fox, Jeffrey; Moore, Mike

    1994-01-01

    Traditionally, spacecraft management has been performed by fixed teams of operators in Mission Operations Centers. The team cooperatively: (1) ensures that payload(s) on spacecraft perform their work; and (2) maintains the health and safety of the spacecraft through commanding and monitoring the spacecraft's subsystems. In the future, the task demands will increase and overload the operators. This paper describes the traditional spacecraft management environment and describes a new concept in which groupware will be used to create a Virtual Mission Operations Center. Groupware tools will be used to better utilize available resources through increased automation and dynamic sharing of personnel among missions.

  15. Operation of the Computer Software Management and Information Center (COSMIC)

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The major operational areas of the COSMIC center are described. Quantitative data on the software submittals, program verification, and evaluation are presented. The dissemination activities are summarized. Customer services and marketing activities of the center for the calendar year are described. Those activities devoted to the maintenance and support of selected programs are described. A Customer Information system, the COSMIC Abstract Recording System Project, and the COSMIC Microfiche Project are summarized. Operational cost data are summarized.

  16. Joint Space Operations Center (JSpOC) Mission System (JMS)

    NASA Astrophysics Data System (ADS)

    Morton, M.; Roberts, T.

    2011-09-01

    US space capabilities benefit the economy, national security, international relationships, scientific discovery, and our quality of life. Realizing these space responsibilities is challenging not only because the space domain is increasingly congested, contested, and competitive but is further complicated by the legacy space situational awareness (SSA) systems approaching end of life and inability to provide the breadth of SSA and command and control (C2) of space forces in this challenging domain. JMS will provide the capabilities to effectively employ space forces in this challenging domain. Requirements for JMS were developed based on regular, on-going engagement with the warfighter. The use of DoD Architecture Framework (DoDAF) products facilitated requirements scoping and understanding and transferred directly to defining and documenting the requirements in the approved Capability Development Document (CDD). As part of the risk reduction efforts, the Electronic System Center (ESC) JMS System Program Office (SPO) fielded JMS Capability Package (CP) 0 which includes an initial service oriented architecture (SOA) and user defined operational picture (UDOP) along with force status, sensor management, and analysis tools. Development efforts are planned to leverage and integrate prototypes and other research projects from Defense Advanced Research Projects Agency, Air Force Research Laboratories, Space Innovation and Development Center, and Massachusetts Institute of Technology/Lincoln Laboratories. JMS provides a number of benefits to the space community: a reduction in operational “transaction time” to accomplish key activities and processes; ability to process the increased volume of metric observations from new sensors (e.g., SBSS, SST, Space Fence), as well as owner/operator ephemerides thus enhancing the high accuracy near-real-time catalog, and greater automation of SSA data sharing supporting collaboration with government, civil, commercial, and foreign

  17. Integrating Automation into a Multi-Mission Operations Center

    NASA Technical Reports Server (NTRS)

    Surka, Derek M.; Jones, Lori; Crouse, Patrick; Cary, Everett A, Jr.; Esposito, Timothy C.

    2007-01-01

    NASA Goddard Space Flight Center's Space Science Mission Operations (SSMO) Project is currently tackling the challenge of minimizing ground operations costs for multiple satellites that have surpassed their prime mission phase and are well into extended mission. These missions are being reengineered into a multi-mission operations center built around modern information technologies and a common ground system infrastructure. The effort began with the integration of four SMEX missions into a similar architecture that provides command and control capabilities and demonstrates fleet automation and control concepts as a pathfinder for additional mission integrations. The reengineered ground system, called the Multi-Mission Operations Center (MMOC), is now undergoing a transformation to support other SSMO missions, which include SOHO, Wind, and ACE. This paper presents the automation principles and lessons learned to date for integrating automation into an existing operations environment for multiple satellites.

  18. AVESTAR Center for Operational Excellence of Clean Energy Plants

    SciTech Connect

    Zitney, Stephen

    2012-01-01

    To address challenges in attaining operational excellence for clean energy plants, the U.S. Department of Energy's National Energy Technology Laboratory has launched a world-class facility for Advanced Virtual Energy Simulation Training and Research (AVESTAR{trademark}). The AVESTAR Center brings together state-of-the-art, real time,high-fidelity dynamic simulators with operator training systems and 3D virtual immersive training systems into an integrated energy plant and control room environment. This presentation will highlight the AVESTAR Center simulators, facilities, and comprehensive training, education, and research programs focused on the operation and control of high-efficiency, near-zero-emission energy plants.

  19. AVESTAR Center for Operational Excellence of Clean Energy Plants

    SciTech Connect

    Zitney, Stephen

    2012-05-01

    To address challenges in attaining operational excellence for clean energy plants, the U.S.Department of Energy’s National Energy Technology Laboratory has launched a world-class facility for Advanced Virtual Energy Simulation Training and Research (AVESTAR™). The AVESTAR Center brings together state-of-the-art, real time,high-fidelity dynamic simulators with operator training systems and 3D virtual immersive training systems into an integrated energy plant and control room environment. This presentation will highlight the AVESTAR Center simulators, facilities, and comprehensive training, education, and research programs focused on the operation and control of high-efficiency, near-zero-emission energy plants.

  20. Air damping effect on the air-based CMUT operation

    NASA Astrophysics Data System (ADS)

    Cha, Bu-Sang; Kanashima, Takeshi; Lee, Seung-Mok; Okuyama, Masanori

    2015-08-01

    The vibration amplitude, damping ratio and viscous damping force in capacitive micromachinedultrasonic transducers (CMUTs) with a perforated membrane have been calculated theoretically and compared with the experimental data on its vibration behavior. The electrical bias of the DC and the AC voltages and the operation frequency conditions influence the damping effect because leads to variations in the gap height and the vibration velocity of the membrane. We propose a new estimation method to determine the damping ratio by the decay rate of the vibration amplitudes of the perforated membrane plate are measured using a laser vibrometer at each frequency, and the damping ratios were calculated from those results. The influences of the vibration frequency and the electrostatic force on the damping effect under the various operation conditions have been studied.

  1. Logistics Operations Management Center: Maintenance Support Baseline (LOMC-MSB)

    NASA Technical Reports Server (NTRS)

    Kurrus, R.; Stump, F.

    1995-01-01

    The Logistics Operations Management Center Maintenance Support Baseline is defined. A historical record of systems, applied to and deleted from, designs in support of future management and/or technical analysis is provided. All Flight elements, Ground Support Equipment, Facility Systems and Equipment and Test Support Equipment for which LOMC has responsibilities at Kennedy Space Center and other locations are listed. International Space Station Alpha Program documentation is supplemented. The responsibility of the Space Station Launch Site Support Office is established.

  2. 26. EASTERNMOST HYDRAULIC RAM IN CENTER RANK (STILL OPERABLE), LOWER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. EASTERNMOST HYDRAULIC RAM IN CENTER RANK (STILL OPERABLE), LOWER LEVEL OF STAGE, LOOKING SOUTH. THE CENTER BANK OF RAMS MOVED SMALL SECTIONS OF STAGE IN THE CENTER OF EACH LARGE MOVABLE SECTION. THE WEST EDGE OF THIS SECTION HAS BEEN EXTENDED TO THE WEST EDGE OF THE LARGE SECTION WHICH ORIGINALLY SURROUNDED IT. THE SOUTH RAM FOR THE LARGE SECTION IS VISIBLE IN THE BACKGROUND. THE SMALL MOVABLE SECTIONS COULD NOT TILT BUT COULD BE LOWERED TO THE LOWER LEVEL OF THE STAGE WITH HINGED PANELS UNDER EACH LARGE SECTION FILLING THE VOID. - Auditorium Building, 430 South Michigan Avenue, Chicago, Cook County, IL

  3. Activity in the Shuttle Action Center (SAC) of the Huntsville Operations Support Center (HOSC)

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Launched on June 20, 1996, the STS-78 mission's primary payload was the Life and Microgravity Spacelab (LMS), which was managed by the Marshall Space Flight Center (MSFC). During the 17 day space flight, the crew conducted a diverse slate of experiments divided into a mix of life science and microgravity investigations. In a manner very similar to future International Space Station operations, LMS researchers from the United States and their European counterparts shared resources such as crew time and equipment. Five space agencies (NASA/USA, European Space Agency/Europe (ESA), French Space Agency/France, Canadian Space Agency /Canada, and Italian Space Agency/Italy) along with research scientists from 10 countries worked together on the design, development and construction of the LMS. This photo was taken in the Shuttle Action Center (SAC) of the Huntsville Operations Support Center (HOSC) Spacelab Payload Operations Control Center (SL POCC) at MSFC during the mission.

  4. STS-35 TV OPS Area of the Spacelab Payload Operations Control Center (SL POCC)

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The primary objective of the STS-35 mission was round the clock observation of the celestial sphere in ultraviolet and X-Ray astronomy with the Astro-1 observatory which consisted of four telescopes: the Hopkins Ultraviolet Telescope (HUT); the Wisconsin Ultraviolet Photo-Polarimeter Experiment (WUPPE); the Ultraviolet Imaging Telescope (UIT); and the Broad Band X-Ray Telescope (BBXRT). The Huntsville Operations Support Center (HOSC) Spacelab Payload Operations Control Center (SL POCC) at the Marshall Space Flight Center (MSFC) was the air/ground communication channel used between the astronauts and ground control teams during the Spacelab missions. Teams of controllers and researchers directed on-orbit science operations, sent commands to the spacecraft, received data from experiments aboard the Space Shuttle, adjusted mission schedules to take advantage of unexpected science opportunities or unexpected results, and worked with crew members to resolve problems with their experiments. Pictured is the TV OPS area of the SL POCC.

  5. Air vehicle displays in the operational environment

    NASA Astrophysics Data System (ADS)

    Desjardins, Daniel D.; Byrd, James C.

    2007-04-01

    Displays in the operational environment can be direct-view or virtual-view, and are analyzed in terms of a broad range of performance parameters. These parameters include image area, field of view, eye-relief, weight and power, luminance and contrast ratio, night vision goggle compatibility (type and class), resolution (pixels per inch or line pairs per milliradian), image intensification, viewing angle, grayscale (shades or levels), dimming range, video capability (frame rate, refresh), operating and storage altitude, operating and storage temperature range, shock and vibration limits, mean time between failure, color vs. monochrome, and display engine technology. This study further looks at design class: custom, versus rugged commercial, versus commercial off-the-shelf designs and issues such as whether the design meets requirements for the operational environment and modes of use, ease of handling, failure modes and soldier recommended upgrades.

  6. Institutional environmental impact statement (space shuttle development and operations) amendment no. 1. [space shuttle operations at Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Data are presented to support the environmental impact statement on space shuttle actions at Kennedy Space Center. Studies indicate that land use to accommodate space shuttle operations may have the most significant impact. The impacts on air, water and noise quality are predicted to be less on the on-site environment. Considerations of operating modes indicate that long and short term land use will not affect wildlife productivity. The potential for adverse environmental impact is small and such impacts will be local, short in duration, controllable, and environmentally acceptable.

  7. An Attached Payload Operations Center (APOC) at the Goddard Space Flight Center (GSFC), volume 1

    NASA Technical Reports Server (NTRS)

    1983-01-01

    A management overview of the Attached Payload Operations Center (APOC) functional requirements and design are presented. The rationale for developing the APOC concept and the assumptions utilized are presented. A summary of the concept complete with major functional areas and associated data flows is provided. The attributes of this concept are formalized and the necessary resources needed for its development and operation presented.

  8. International Space Station Payload Operations Integration Center (POIC) Overview

    NASA Technical Reports Server (NTRS)

    Ijames, Gayleen N.

    2012-01-01

    Objectives and Goals: Maintain and operate the POIC and support integrated Space Station command and control functions. Provide software and hardware systems to support ISS payloads and Shuttle for the POIF cadre, Payload Developers and International Partners. Provide design, development, independent verification &validation, configuration, operational product/system deliveries and maintenance of those systems for telemetry, commanding, database and planning. Provide Backup Control Center for MCC-H in case of shutdown. Provide certified personnel and systems to support 24x7 facility operations per ISS Program. Payloads CoFR Implementation Plan (SSP 52054) and MSFC Payload Operations CoFR Implementation Plan (POIF-1006).

  9. 78 FR 22911 - Delta Air Lines, Inc., Reservation Sales and Customer Care Call Center, Seatac, WA; Delta Air...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-17

    ... Notice of determination was published in the Federal Register on February 8, 2013 (78 FR 8591). Based on... Employment and Training Administration Delta Air Lines, Inc., Reservation Sales and Customer Care Call Center, Seatac, WA; Delta Air Lines, Inc., Reservation Sales and Customer Care Call Center, Sioux City,...

  10. APEX (Air Pollution Exercise) Volume 2: Computer Operator's Manual.

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Research Triangle Park, NC. Office of Manpower Development.

    The Computer Operator's Manual is part of a set of 21 manuals (AA 001 009-001 029) used in APEX (Air Pollution Exercise), a computerized college and professional level "real world" game simulation of a community with urban and rural problems, industrial activities, and air pollution difficulties. The information in the manual is sufficiently basic…

  11. NASA Langley Teacher Resource Center at the Virginia Air and Space Center

    NASA Technical Reports Server (NTRS)

    Maher, Kim L.

    1999-01-01

    Nation's education goals through expanding and enhancing the scientific an technological competence of students and educators. To help disseminate NASA instructional materials and educational information, NASA's Education Division has established the Educator Resource Center Network. Through this network (ERCN), educators are provided the opportunity to receive free instructional information, materials, consultation, and training workshops on NASA educational products. The Office of Education at NASA Langley Research Center offers an extension of its Precollege Education program by supporting the NASA LARC Educator Resource Center at the Virginia Air & Space Center, the official visitor center for NASA LARC. This facility is the principal distribution point for educators in the five state service region that includes Virginia, West Virginia, Kentucky, North Carolina and South Carolina. The primary goal, to provide expertise and facilities to help educators access and utilize science, mathematics, and technology instructional products aligned with national standards and appropriate state frameworks and based on NASA's unique mission and results, has been accomplished. This ERC had 15,200 contacts and disseminated over 190,000 instructional items during the period of performance. In addition the manager attended 35 conferences, workshops, and educational meetings as an GR, presenter, or participant. The objective to demonstrate and facilitate the use of educational technologies has been accomplished through the following: The ERC's web page has been developed as a cyber-gateway to a multitude of NASA and other educational resources as well as to Our own database of current resource materials. NASA CORE CD-ROM technology is regularly demonstrated and promoted using the center's computers. NASA TV is available, demonstrated to educators, and used to facilitate the downlinking of NASA educational programming.

  12. AVESTAR Center for operational excellence of electricity generation plants

    SciTech Connect

    Zitney, S.

    2012-01-01

    To address challenges in attaining operational excellence for clean energy plants, the U.S.Department of Energy’s National Energy Technology Laboratory has launched a world-class facility for Advanced Virtual Energy Simulation Training and Research (AVESTAR™). The AVESTAR Center brings together state-of-the-art, real time,high-fidelity dynamic simulators with operator training systems and 3D virtual immersive training systems into an integrated energy plant and control room environment.

  13. Space operations center applications of satellite service equipment

    NASA Technical Reports Server (NTRS)

    Mccaffrey, R. W.

    1982-01-01

    Satellite servicing requirements for a continuously manned Space Operations Center (SOC) are discussed. Applications for Orbiter developed service equipment are described, together with representative satellite servicing operations for use on SOC. These services cover the full mission cycle from orbital deployment to on-orbit maintenance/repair and, eventually, removal from orbit. An orbiting base, such as the SOC, can provide many of the same services at less cost than the Space Shuttle transportation system.

  14. Operations Research Applied to Libraries and Information Centers.

    ERIC Educational Resources Information Center

    Westerman, Mel

    The greater organizational complexity of libraries and information centers in recent years has given rise to more complex problems for managers. To facilitate solutions, operations research (OR) techniques have been developed that consider the quantitative dimensions of problems along with their political and organizational aspects. Eight standard…

  15. Initiating Sustainable Operations at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Adams, Daniel E.; Orrell, Josh

    2003-01-01

    Marshall Space Flight Center conducted a preliminary sustainability assessment to identify sustainable projects for potential implementation at its facility in Huntsville, Alabama. This presentation will discuss the results of that assessment, highlighting current and future initiatives aimed at integrating sustainability into daily operations.

  16. 33 CFR 334.700 - Choctawhatchee Bay, aerial gunnery ranges, Air Armament Center, Eglin Air Force Base, Fla.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... gunnery ranges, Air Armament Center, Eglin Air Force Base, Fla. 334.700 Section 334.700 Navigation and... Air Force Base, Fla. (a) The danger zones—(1) Aerial gunnery range in west part of Choctawhatchee Bay. The danger zone shall encompass all navigable waters of the United States as defined at 33 CFR...

  17. 33 CFR 334.700 - Choctawhatchee Bay, aerial gunnery ranges, Air Armament Center, Eglin Air Force Base, Fla.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... gunnery ranges, Air Armament Center, Eglin Air Force Base, Fla. 334.700 Section 334.700 Navigation and... Air Force Base, Fla. (a) The danger zones—(1) Aerial gunnery range in west part of Choctawhatchee Bay. The danger zone shall encompass all navigable waters of the United States as defined at 33 CFR...

  18. CNC Turning Center Advanced Operations. Computer Numerical Control Operator/Programmer. 444-332.

    ERIC Educational Resources Information Center

    Skowronski, Steven D.; Tatum, Kenneth

    This student guide provides materials for a course designed to introduce the student to the operations and functions of a two-axis computer numerical control (CNC) turning center. The course consists of seven units. Unit 1 presents course expectations and syllabus, covers safety precautions, and describes the CNC turning center components, CNC…

  19. Crystal Growth Team in the Spacelab Payload Operations Control Center (SL POCC) During the STS-42

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The primary payload for Space Shuttle Mission STS-42, launched January 22, 1992, was the International Microgravity Laboratory-1 (IML-1), a pressurized manned Spacelab module. The goal of IML-1 was to explore in depth the complex effects of weightlessness of living organisms and materials processing. Around-the-clock research was performed on the human nervous system's adaptation to low gravity and effects of microgravity on other life forms such as shrimp eggs, lentil seedlings, fruit fly eggs, and bacteria. Materials processing experiments were also conducted, including crystal growth from a variety of substances such as enzymes, mercury iodide, and a virus. The Huntsville Operations Support Center (HOSC) Spacelab Payload Operations Control Center (SL POCC) at the Marshall Space Flight Center (MSFC) was the air/ground communication channel used between the astronauts and ground control teams during the Spacelab missions. Featured is the Crystal Growth team in the SL POCC during STS-42, IML-1 mission.

  20. Activities in the Spacelab Payload Operations Control Center (SL POCC) During the STS-42 IML-1

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The primary payload for Space Shuttle Mission STS-42, launched January 22, 1992, was the International Microgravity Laboratory-1 (IML-1), a pressurized manned Spacelab module. The goal of IML-1 was to explore in depth the complex effects of weightlessness of living organisms and materials processing. Around-the-clock research was performed on the human nervous system's adaptation to low gravity and effects of microgravity on other life forms such as shrimp eggs, lentil seedlings, fruit fly eggs, and bacteria. Materials processing experiments were also conducted, including crystal growth from a variety of substances such as enzymes, mercury iodide, and a virus. The Huntsville Operations Support Center (HOSC) Spacelab Payload Operations Control Center (SL POCC) at the Marshall Space Flight Center (MSFC) was the air/ground communication channel used between the astronauts and ground control teams during the Spacelab missions. Featured are activities in the SL POCC during STS-42, IML-1 mission.

  1. Critical Point Facility (CPE) Group in the Spacelab Payload Operations Control Center (SL POCC)

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The primary payload for Space Shuttle Mission STS-42, launched January 22, 1992, was the International Microgravity Laboratory-1 (IML-1), a pressurized manned Spacelab module. The goal of IML-1 was to explore in depth the complex effects of weightlessness of living organisms and materials processing. Around-the-clock research was performed on the human nervous system's adaptation to low gravity and effects of microgravity on other life forms such as shrimp eggs, lentil seedlings, fruit fly eggs, and bacteria. Materials processing experiments were also conducted, including crystal growth from a variety of substances such as enzymes, mercury iodide, and a virus. The Huntsville Operations Support Center (HOSC) Spacelab Payload Operations Control Center (SL POCC) at the Marshall Space Flight Center (MSFC) was the air/ground communication channel used between the astronauts and ground control teams during the Spacelab missions. Featured is the Critical Point Facility (CPE) group in the SL POCC during STS-42, IML-1 mission.

  2. Critical Point Facility (CPF) Team in the Spacelab Payload Operations Control Center (SL POCC)

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The primary payload for Space Shuttle Mission STS-42, launched January 22, 1992, was the International Microgravity Laboratory-1 (IML-1), a pressurized manned Spacelab module. The goal of IML-1 was to explore in depth the complex effects of weightlessness of living organisms and materials processing. Around-the-clock research was performed on the human nervous system's adaptation to low gravity and effects of microgravity on other life forms such as shrimp eggs, lentil seedlings, fruit fly eggs, and bacteria. Materials processing experiments were also conducted, including crystal growth from a variety of substances such as enzymes, mercury iodide, and a virus. The Huntsville Operations Support Center (HOSC) Spacelab Payload Operations Control Center (SL POCC) at the Marshall Space Flight Center (MSFC) was the air/ground communication channel used between the astronauts and ground control teams during the Spacelab missions. Featured is the Critical Point Facility (CPF) team in the SL POCC during the IML-1 mission.

  3. Gravity Plant Physiology Facility (GPPF) Team in the Spacelab Payload Operations Control Center (SL

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The primary payload for Space Shuttle Mission STS-42, launched January 22, 1992, was the International Microgravity Laboratory-1 (IML-1), a pressurized manned Spacelab module. The goal of IML-1 was to explore in depth the complex effects of weightlessness of living organisms and materials processing. Around-the-clock research was performed on the human nervous system's adaptation to low gravity and effects of microgravity on other life forms such as shrimp eggs, lentil seedlings, fruit fly eggs, and bacteria. Materials processing experiments were also conducted, including crystal growth from a variety of substances such as enzymes, mercury iodide, and a virus. The Huntsville Operations Support Center (HOSC) Spacelab Payload Operations Control Center (SL POCC) at the Marshall Space Flight Center (MSFC) was the air/ground communication channel used between the astronauts and ground control teams during the Spacelab missions. Featured is the Gravity Plant Physiology Facility (GPPF) team in the SL POCC during the IML-1 mission.

  4. Land, sea, and air unmanned systems research and development at SPAWAR Systems Center Pacific

    NASA Astrophysics Data System (ADS)

    Nguyen, Hoa G.; Laird, Robin; Kogut, Greg; Andrews, John; Fletcher, Barbara; Webber, Todd; Arrieta, Rich; Everett, H. R.

    2009-05-01

    The Space and Naval Warfare (SPAWAR) Systems Center Pacific (SSC Pacific) has a long and extensive history in unmanned systems research and development, starting with undersea applications in the 1960s and expanding into ground and air systems in the 1980s. In the ground domain, we are addressing force-protection scenarios using large unmanned ground vehicles (UGVs) and fixed sensors, and simultaneously pursuing tactical and explosive ordnance disposal (EOD) operations with small man-portable robots. Technology thrusts include improving robotic intelligence and functionality, autonomous navigation and world modeling in urban environments, extended operational range of small teleoperated UGVs, enhanced human-robot interaction, and incorporation of remotely operated weapon systems. On the sea surface, we are pushing the envelope on dynamic obstacle avoidance while conforming to established nautical rules-of-the-road. In the air, we are addressing cooperative behaviors between UGVs and small vertical-takeoff- and-landing unmanned air vehicles (UAVs). Underwater applications involve very shallow water mine countermeasures, ship hull inspection, oceanographic data collection, and deep ocean access. Specific technology thrusts include fiber-optic communications, adaptive mission controllers, advanced navigation techniques, and concepts of operations (CONOPs) development. This paper provides a review of recent accomplishments and current status of a number of projects in these areas.

  5. Data Processing at KAGUYA Operation and Analysis Center

    NASA Astrophysics Data System (ADS)

    Hoshino, Hirokazu; Yamamoto, Yukio; Sobue, Shin-Ichi; Yonekura, Katsuhide; Ogawa, Mina; Iwana, Yasunori; Matsui, Kai; Okumura, Hayato; Kato, Manabu

    2010-07-01

    The functions of KAGUYA(SELENE) Operation and Analysis Center (SOAC) are to operate three satellites: the main orbiter KAGUYA and two small satellites, Relay satellite OKINA and VRAD (VLBI (Very Long Baseline Interferometry) RADio source) satellite OUNA; and to process, archive and provide mission data. SOAC has two main functional areas, “Tracking and Control system” and “Mission Operation and Data Analysis system.” The former is for operational planning of bus and mission instruments including satellite navigation, and for the implementation of those plans and for the evaluation of satellite conditions. The latter is the system that processes, archives and provides mission data, and which principal investigators use to generate higher-level data products. Data up to the end of the operation in June 2009 have been processed and the total amount of Level-2 data products reaches about 50 TB. The data products have been released to the public since November 2009.

  6. Extended Operation of Stirling Convertors at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Oriti, Salvatore

    2011-01-01

    Glenn Research Center (GRC) is supporting life and reliability database for free-piston Stirilng conversion via extended convertor operation Ongoing convertor operation: 18 convertors (4 TDCs from Infinia, 14 ASCs from Sunpower). 350,000 total convertor hours of operation. 218,000 on Infinia units and 132,000 on Sunpower units. Demonstrating steady convertor performance requires precise maintenance of operating conditions. Sources of disruption : Investigative tests: Varying operating frequency, hot-end temp, cold-end temp. Hot end control method: Constant heat input mode requires more user-adjustment than constant temperature mode. Long-term transients in hot end insulation were observed. Support facility: Open-bath circulator fluid concentration drifting. Nuisance shutdowns (instrumentation failure, EMI, power outages). Ambient temperature fluctuations due to room HVAC.

  7. AVESTAR Center for clean energy plant operators of the future

    SciTech Connect

    Zitney, S.

    2012-01-01

    Clean energy plants in the modern grid era will increasingly exploit carbon capture, utilization, and storage (CCUS), fuel/product flexibility, and load following. Integrated power/process plants will require next generation of well-trained engineering and operations professionals. High-fidelity dynamic simulators are well suited for training, education, and R&D on clean energy plant operations. Combining Operator Training System (OTS) with 3D virtual Immersive Training System (ITS) enables simultaneous training of control room and plant field operators of the future. Strong collaboration between industry, academia, and government is required to address advanced R&D challenges. AVESTAR Center brings together simulation technology and world-class expertise focused on accelerating development of clean energy plants and operators of the future.

  8. 14 CFR 375.40 - Permits for commercial air operations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... (AVIATION PROCEEDINGS) SPECIAL REGULATIONS NAVIGATION OF FOREIGN CIVIL AIRCRAFT WITHIN THE UNITED STATES... operations. (a) Permit required. Except for aircraft being operated under a foreign air carrier permit, an exemption, or as otherwise provided in subpart D or H of this part, foreign civil aircraft may engage...

  9. 14 CFR 375.40 - Permits for commercial air operations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... (AVIATION PROCEEDINGS) SPECIAL REGULATIONS NAVIGATION OF FOREIGN CIVIL AIRCRAFT WITHIN THE UNITED STATES... operations. (a) Permit required. Except for aircraft being operated under a foreign air carrier permit, an exemption, or as otherwise provided in subpart D or H of this part, foreign civil aircraft may engage...

  10. 14 CFR 375.40 - Permits for commercial air operations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... (AVIATION PROCEEDINGS) SPECIAL REGULATIONS NAVIGATION OF FOREIGN CIVIL AIRCRAFT WITHIN THE UNITED STATES... operations. (a) Permit required. Except for aircraft being operated under a foreign air carrier permit, an exemption, or as otherwise provided in Subpart D or H of this part, foreign civil aircraft may engage...

  11. 14 CFR 375.40 - Permits for commercial air operations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... (AVIATION PROCEEDINGS) SPECIAL REGULATIONS NAVIGATION OF FOREIGN CIVIL AIRCRAFT WITHIN THE UNITED STATES... operations. (a) Permit required. Except for aircraft being operated under a foreign air carrier permit, an exemption, or as otherwise provided in Subpart D or H of this part, foreign civil aircraft may engage...

  12. 14 CFR 375.40 - Permits for commercial air operations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... (AVIATION PROCEEDINGS) SPECIAL REGULATIONS NAVIGATION OF FOREIGN CIVIL AIRCRAFT WITHIN THE UNITED STATES... operations. (a) Permit required. Except for aircraft being operated under a foreign air carrier permit, an exemption, or as otherwise provided in subpart D or H of this part, foreign civil aircraft may engage...

  13. 42 CFR 84.142 - Air supply source; hand-operated or motor driven air blowers; Type A supplied-air respirators...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Air supply source; hand-operated or motor driven air blowers; Type A supplied-air respirators; minimum requirements. 84.142 Section 84.142 Public....142 Air supply source; hand-operated or motor driven air blowers; Type A supplied-air...

  14. 42 CFR 84.142 - Air supply source; hand-operated or motor driven air blowers; Type A supplied-air respirators...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Air supply source; hand-operated or motor driven air blowers; Type A supplied-air respirators; minimum requirements. 84.142 Section 84.142 Public....142 Air supply source; hand-operated or motor driven air blowers; Type A supplied-air...

  15. 42 CFR 84.142 - Air supply source; hand-operated or motor driven air blowers; Type A supplied-air respirators...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Air supply source; hand-operated or motor driven air blowers; Type A supplied-air respirators; minimum requirements. 84.142 Section 84.142 Public....142 Air supply source; hand-operated or motor driven air blowers; Type A supplied-air...

  16. 42 CFR 84.142 - Air supply source; hand-operated or motor driven air blowers; Type A supplied-air respirators...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Air supply source; hand-operated or motor driven air blowers; Type A supplied-air respirators; minimum requirements. 84.142 Section 84.142 Public....142 Air supply source; hand-operated or motor driven air blowers; Type A supplied-air...

  17. Space operations center: Shuttle interaction study extension, executive summary

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The Space Operations Center (SOC) is conceived as a permanent facility in low Earth orbit incorporating capabilities for space systems construction; space vehicle assembly, launching, recovery and servicing; and the servicing of co-orbiting satellites. The Shuttle Transportation System is an integral element of the SOC concept. It will transport the various elements of the SOC into space and support the assembly operation. Subsequently, it will regularly service the SOC with crew rotations, crew supplies, construction materials, construction equipment and components, space vehicle elements, and propellants and spare parts. The implications to the SOC as a consequence of the Shuttle supporting operations are analyzed. Programmatic influences associated with propellant deliveries, spacecraft servicing, and total shuttle flight operations are addressed.

  18. System security in the space flight operations center

    NASA Technical Reports Server (NTRS)

    Wagner, David A.

    1988-01-01

    The Space Flight Operations Center is a networked system of workstation-class computers that will provide ground support for NASA's next generation of deep-space missions. The author recounts the development of the SFOC system security policy and discusses the various management and technology issues involved. Particular attention is given to risk assessment, security plan development, security implications of design requirements, automatic safeguards, and procedural safeguards.

  19. Crew-Centered Operations: What HAL 9000 Should Have Been

    NASA Technical Reports Server (NTRS)

    Korsmeyer, David J.; Clancy, Daniel J.; Crawford, James M.; Drummond, Mark E.

    2005-01-01

    To date, manned space flight has maintained the locus of control for the mission on the ground. Mission control performs tasks such as activity planning, system health management, resource allocation, and astronaut health monitoring. Future exploration missions require the locus of control to shift to on-board due light speed constraints and potential loss of communication. The lunar campaign must begin to utilize a shared control approach to validate and understand the limitations of the technology allowing astronauts to oversee and direct aspects of operation that require timely decision making. Crew-centered Operations require a system-level approach that integrates multiple technologies together to allow a crew-prime concept of operations. This paper will provide an overview of the driving mission requirements, highlighting the limitations of existing approaches to mission operations and identifying the critical technologies necessary to enable a crew-centered mode of operations. The paper will focus on the requirements, trade spaces, and concepts for fulfillment of this capability. The paper will provide a broad overview of relevant technologies including: Activity Planning and Scheduling; System Monitoring; Repair and Recovery; Crew Work Practices.

  20. Space Weather Operational Products in the NOAA Space Environment Center

    NASA Astrophysics Data System (ADS)

    Murtagh, W. J.; Onsager, T. G.

    2006-12-01

    The NOAA Space Environment Center (SEC) is the Nation's official source of space weather alerts and warnings, and provides real-time monitoring and forecasting of solar and geophysical events. The SEC, a 24- hour/day operations center, provides space weather products to the scientific and user communities in the United States and around the world. This presentation will provide a brief overview of the SEC current suite of space weather products, with an emphasis on models and products recently introduced into the Operations Center. Customer uses of products will be discussed, which will highlight the diverse customer base for space weather services. Also, models in SEC's testbed will be introduced. SEC's testbed facility is dedicated to moving space environment models from a research-development mode to an operational mode. The status of efforts to replace NASA's aging real-time monitor (ACE) in the solar wind ahead of Earth, an "upstream data buoy", will also be described. Numerous existing and planned space weather products and models rely on near real-time solar wind data.

  1. Eielson Air Force Base Operable Unit 2 baseline risk assessment

    SciTech Connect

    Lewis, R.E.; Jarvis, T.T.; Jarvis, M.R.; Whelan, G.

    1994-10-01

    Operable Unit 2 at Eielson Air Force Base (AFB) near Fairbanks, is one of several operable units characterized by petroleum, oil, and lubricant contamination, and by the presence of organic products floating at the water table, as a result of Air Force operations since the 1940s. The base is approximately 19,270 acres in size, and comprises the areas for military operations and a residential neighborhood for military dependents. Within Operable Unit 2, there are seven source areas. These source areas were grouped together primarily because of the contaminants released and hence are not necessarily in geographical proximity. Source area ST10 includes a surface water body (Hardfill Lake) next to a fuel spill area. The primary constituents of concern for human health include benzene, toluene, ethylbenzene, and xylenes (BTEX). Monitored data showed these volatile constituents to be present in groundwater wells. The data also showed an elevated level of trace metals in groundwater.

  2. Hybrid Verification of an Air Traffic Operational Concept

    NASA Technical Reports Server (NTRS)

    Munoz, Cesar A.

    2005-01-01

    A concept of operations for air traffic management consists of a set of flight rules and procedures aimed to keep aircraft safely separated. This paper reports on the formal verification of separation properties of the NASA's Small Aircraft Transportation System, Higher Volume Operations (SATS HVO) concept for non-towered, non-radar airports. Based on a geometric description of the SATS HVO air space, we derive analytical formulas to compute spacing requirements on nominal approaches. Then, we model the operational concept by a hybrid non-deterministic asynchronous state transition system. Using an explicit state exploration technique, we show that the spacing requirements are always satisfied on nominal approaches. All the mathematical development presented in this paper has been formally verified in the Prototype Verification System (PVS). Keywords. Formal verification, hybrid systems, air traffic management, theorem proving

  3. Broad Band X-Ray Telescope (BBXRT) Work Station in the Spacelab Payload Operations Control Center

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The primary objective of the STS-35 mission was round the clock observation of the celestial sphere in ultraviolet and X-Ray astronomy with the Astro-1 observatory which consisted of four telescopes: the Hopkins Ultraviolet Telescope (HUT); the Wisconsin Ultraviolet Photo-Polarimeter Experiment (WUPPE); the Ultraviolet Imaging Telescope (UIT); and the Broad Band X-Ray Telescope (BBXRT). The Huntsville Operations Support Center (HOSC) Spacelab Payload Operations Control Center (SL POCC) at the Marshall Space Flight Center (MSFC) was the air/ground communication channel used between the astronauts and ground control teams during the Spacelab missions. Teams of controllers and researchers directed on-orbit science operations, sent commands to the spacecraft, received data from experiments aboard the Space Shuttle, adjusted mission schedules to take advantage of unexpected science opportunities or unexpected results, and worked with crew members to resolve problems with their experiments. Due to loss of data used for pointing and operating the ultraviolet telescopes, MSFC ground teams were forced to aim the telescopes with fine tuning by the flight crew. This photo captures the activity of WUPPE (Wisconsin Ultraviolet Photo-Polarimeter Experiment) data review at the Science Operations Area during the mission. This image shows mission activities at the Broad Band X-Ray Telescope (BBXRT) Work Station in the Science Operations Area (SOA).

  4. Operational space weather product development and validation at the joint SMC-AFRL Rapid Prototyping Center

    NASA Astrophysics Data System (ADS)

    Quigley, S.

    The Air Force Research Laboratory (AFRL/VSB) and Detachment 11, Space &Missile Systems Center (SMC, Det 11/CIT) have combined efforts to design, develop, test, and implement graphical products for the Air Force's space weather operations center. These products are generated to analyze, specify, and forecast the effects of the near-earth space environment on Department of Defense systems and communications. Jointly-developed products that have been, or will soon be added to real-time operations include: 1) the Operational Space Environment Network Display (OpSEND) suit - a set of four products that address HF communication, UHF satellite communication scintillation, radar auroral clutter, and GP S single- frequency errors; 2) a solar radio background and burst effects (SoRBE) product suite; and C) a meteor effects (ME) product suite. The RPC is also involved in a rather substantial "V&V" effort to produce multiple operational product verifications and validations, with an added end goal of a generalized validation software package. The presentation will provide a general overview of the RPC and each of the products mentioned above, to include background science, operational history, inputs, outputs, dissemination, and customer uses for each.

  5. Preliminary estimates of operating costs for lighter than air transports

    NASA Technical Reports Server (NTRS)

    Smith, C. L.; Ardema, M. D.

    1975-01-01

    A preliminary set of operating cost relationships are presented for airship transports. The starting point for the development of the relationships is the direct operating cost formulae and the indirect operating cost categories commonly used for estimating costs of heavier than air commercial transports. Modifications are made to the relationships to account for the unique features of airships. To illustrate the cost estimating method, the operating costs of selected airship cargo transports are computed. Conventional fully buoyant and hybrid semi-buoyant systems are investigated for a variety of speeds, payloads, ranges, and altitudes. Comparisons are made with aircraft transports for a range of cargo densities.

  6. Preliminary estimates of operating costs for lighter than air transports

    NASA Technical Reports Server (NTRS)

    Smith, C. L.; Ardema, M. D.

    1975-01-01

    Presented is a preliminary set of operating cost relationships for airship transports. The starting point for the development of the relationships is the direct operating cost formulae and the indirect operating cost categories commonly used for estimating costs of heavier than air commercial transports. Modifications are made to the relationships to account for the unique features of airships. To illustrate the cost estimating method, the operating costs of selected airship cargo transports are computed. Conventional fully buoyant and hybrid semi-buoyant systems are investigated for a variety of speeds, payloads, ranges, and altitudes. Comparisons are made with aircraft transports for a range of cargo densities.

  7. The application of automated operations at the Institutional Processing Center

    NASA Technical Reports Server (NTRS)

    Barr, Thomas H.

    1993-01-01

    The JPL Institutional and Mission Computing Division, Communications, Computing and Network Services Section, with its mission contractor, OAO Corporation, have for some time been applying automation to the operation of JPL's Information Processing Center (IPC). Automation does not come in one easy to use package. Automation for a data processing center is made up of many different software and hardware products supported by trained personnel. The IPC automation effort formally began with console automation, and has since spiraled out to include production scheduling, data entry, report distribution, online reporting, failure reporting and resolution, documentation, library storage, and operator and user education, while requiring the interaction of multi-vendor and locally developed software. To begin the process, automation goals are determined. Then a team including operations personnel is formed to research and evaluate available options. By acquiring knowledge of current products and those in development, taking an active role in industry organizations, and learning of other data center's experiences, a forecast can be developed as to what direction technology is moving. With IPC management's approval, an implementation plan is developed and resources identified to test or implement new systems. As an example, IPC's new automated data entry system was researched by Data Entry, Production Control, and Advance Planning personnel. A proposal was then submitted to management for review. A determination to implement the new system was made and elements/personnel involved with the initial planning performed the implementation. The final steps of the implementation were educating data entry personnel in the areas effected and procedural changes necessary to the successful operation of the new system.

  8. Common Operating and Response Environment - U.S. Air Force

    2009-10-02

    CORE is an architecture to bridge the gaps between disparate data integration and delivery of disparate information visualization. The CORE Technology Program includes a suite of tools and user-centered staff that can facilitate rapid delivery of a deployable integrated information to users. Integration of Air Force data streams, summarizing the information and providing team members with the information they need to rapidly understand and respond.

  9. Battlefield tracheal intubation training using virtual simulation: a multi center operational assessment of video laryngoscope technology.

    PubMed

    Boedeker, Ben H; Boedeker, Kirsten A; Bernhagen, Mary A; Miller, David J; Lacy, Timothy

    2011-01-01

    Airway management is an essential skill in providing care in trauma situations. The video laryngoscope is a tool which offers improvement in teaching airway management skills and in managing airways of trauma patients on the far forward battlefield. An Operational Assessment (OA) of videolaryngoscope technology for medical training and airway management was conducted by the Center for Advanced Technology and Telemedicine (at the University of Nebraska Medical Center, Omaha, NE) for the US Air Force Modernization Command to validate this technology in the provision of Out of OR airway management and airway management training in military simulation centers. The value for both the training and performance of intubations was highly rated and the majority of respondents indicated interest in having a video laryngoscope in their facility. PMID:21335763

  10. The Effects of Very Light Jet Air Taxi Operations on Commercial Air Traffic

    NASA Technical Reports Server (NTRS)

    Smith, Jeremy C.; Dollyhigh, Samuel M.

    2006-01-01

    This study investigates the potential effects of Very Light Jet (VLJ) air taxi operations adding to delays experienced by commercial passenger air transportation in the year 2025. The affordable cost relative to existing business jets and ability to use many of the existing small, minimally equipped, but conveniently located airports is projected to stimulate a large demand for the aircraft. The resulting increase in air traffic operations will mainly be at smaller airports, but this study indicates that VLJs have the potential to increase further the pressure of demand at some medium and large airports, some of which are already operating at or near capacity at peak times. The additional delays to commercial passenger air transportation due to VLJ air taxi operations are obtained from simulation results using the Airspace Concepts Evaluation System (ACES) simulator. The direct increase in operating cost due to additional delays is estimated. VLJs will also cause an increase in traffic density, and this study shows increased potential for conflicts due to VLJ operations.

  11. Operational status of the Los Alamos neutron science center (LANSCE)

    SciTech Connect

    Jones, Kevin W; Erickson, John L; Schoenberg, Kurt F

    2010-01-01

    The Los Alamos Neutron Science Center (LANSCE) accelerator and beam delivery complex generates the proton beams that serve three neutron production sources; the thermal and cold source for the Manuel Lujan Jr. Neutron Scattering Center, the Weapons Neutron Research (WNR) high-energy neutron source, and a pulsed Ultra-Cold Neutron Source. These three sources are the foundation of strong and productive multi-disciplinary research programs that serve a diverse and robust user community. The facility also provides multiplexed beams for the production of medical radioisotopes and proton radiography of dynamic events. The recent operating history of these sources will be reviewed and plans for performance improvement will be discussed, together with the underlying drivers for the proposed LANSCE Refurbishment project. The details of this latter project are presented in a separate contribution.

  12. The MMS Science Data Center. Operations, Capabilities, and Data Availability.

    NASA Astrophysics Data System (ADS)

    Larsen, Kristopher; Pankratz, Chris; Giles, Barbara; Kokkonen, Kim; Putnam, Brian; Schafer, Corey; Baker, Dan; Burch, Jim

    2016-04-01

    On September 1, 2015 the Magnetospheric MultiScale (MMS) constellation of satellites completed their six-month commissioning period and began collecting data under nominal conditions. Science operations for the mission are conducted at the Science Operations Center (SOC) at the Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, Colorado, USA. The Science Data Center (SDC) is a component of the SOC responsible for the data production, management, distribution, archiving, and visualization of the data from the Solving Magnetospheric Acceleration, Reconnection, and Turbulence (SMART) instrument package on board the spacecraft. The mission collects several gigabytes of particle and field data per day, but the constraints on download volumes require efficient tools to manage the selection, transmission, and analysis of data to determine the highest value science data to downlink. This is the Scientist-in-the-Loop (SITL) program and is a critical piece of the MMS science data operations. As of March 2016, MMS science data is available to the entire science community. This includes both the survey data as well as the ultra-high resolution burst data downlinked through the SITL process. This presentation will explain the data and demonstrate the tools available to the community via the SDC so as to encourage as many scientists as possible to look at the wealth of magnetospheric data being produced and made available from MMS.

  13. Auditing and assessing air quality in concentrated feeding operations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The potential adverse effects of concentrated animal feeding operations (CAFO) on the environment are a growing concern. The air quality issues of most concerns to CAFO vary, but generally include ammonia, hydrogen sulfide, particulate matter (PM), volatile organic compounds (VOC), green house gase...

  14. Operational air sampling report, July--December 1991

    SciTech Connect

    Lyons, C.L.

    1992-11-01

    Air sampling is one of the more useful ways of assessing the effectiveness of operational radiation safety programs at the Nevada Test Site (NTS). Air sampling programs document NTS airborne radionuclide concentrations in various work locations and environments. These concentrations generally remain well below the Derived Air Concentration (DAC) values prescribed by the Department of Energy (DOE 5480.11, Attachment 1) or the Derived Concentration Guide (DCG) values prescribed by the Department of Energy DOE 5400.5, Chapter Ill. The Defense Nuclear Agency (DNA) tunnel complexes, Area 12 Test Support Compound and the Area 6 Decontamination Pad and Laundry air sampling programs are summarized in this report. Evaluations are based on Analytical Services Department (ASD) Counting Laboratory analyses and Health Protection Department (HPD)/Radiological Field Operations Section (RFOS) radiation protection technician's (RPT) or health physicists' calculations for air samples collected July 1 through December 31, 1991. Of the NTS operational air sampling programs in the tunnel complexes, the initial mining and event reentry and recovery operations represent the only real airborne radioactive inhalation potentials to personnel. Monthly filter and scintillation cell samples were taken and counted in RDA-200 Radon Detectors to document working levels of radon/thoron daughters and picocurie/liter (PCVL) concentrations of radon gas. Weekly Drierite samples for tritium analysis were taken in the active tunnel complexes to document any changes in normal background levels or reentry drifts as they are advanced toward ground zero (GZ) areas. Underground water sources are considered primary transporters of tritium from old event areas.

  15. Operational air sampling report, July--December 1991

    SciTech Connect

    Lyons, C.L.

    1992-11-01

    Air sampling is one of the more useful ways of assessing the effectiveness of operational radiation safety programs at the Nevada Test Site (NTS). Air sampling programs document NTS airborne radionuclide concentrations in various work locations and environments. These concentrations generally remain well below the Derived Air Concentration (DAC) values prescribed by the Department of Energy (DOE 5480.11, Attachment 1) or the Derived Concentration Guide (DCG) values prescribed by the Department of Energy DOE 5400.5, Chapter Ill. The Defense Nuclear Agency (DNA) tunnel complexes, Area 12 Test Support Compound and the Area 6 Decontamination Pad and Laundry air sampling programs are summarized in this report. Evaluations are based on Analytical Services Department (ASD) Counting Laboratory analyses and Health Protection Department (HPD)/Radiological Field Operations Section (RFOS) radiation protection technician`s (RPT) or health physicists` calculations for air samples collected July 1 through December 31, 1991. Of the NTS operational air sampling programs in the tunnel complexes, the initial mining and event reentry and recovery operations represent the only real airborne radioactive inhalation potentials to personnel. Monthly filter and scintillation cell samples were taken and counted in RDA-200 Radon Detectors to document working levels of radon/thoron daughters and picocurie/liter (PCVL) concentrations of radon gas. Weekly Drierite samples for tritium analysis were taken in the active tunnel complexes to document any changes in normal background levels or reentry drifts as they are advanced toward ground zero (GZ) areas. Underground water sources are considered primary transporters of tritium from old event areas.

  16. A Multiple Agent Model of Human Performance in Automated Air Traffic Control and Flight Management Operations

    NASA Technical Reports Server (NTRS)

    Corker, Kevin; Pisanich, Gregory; Condon, Gregory W. (Technical Monitor)

    1995-01-01

    A predictive model of human operator performance (flight crew and air traffic control (ATC)) has been developed and applied in order to evaluate the impact of automation developments in flight management and air traffic control. The model is used to predict the performance of a two person flight crew and the ATC operators generating and responding to clearances aided by the Center TRACON Automation System (CTAS). The purpose of the modeling is to support evaluation and design of automated aids for flight management and airspace management and to predict required changes in procedure both air and ground in response to advancing automation in both domains. Additional information is contained in the original extended abstract.

  17. Middleware Evaluation and Benchmarking for Use in Mission Operations Centers

    NASA Technical Reports Server (NTRS)

    Antonucci, Rob; Waktola, Waka

    2005-01-01

    Middleware technologies have been promoted as timesaving, cost-cutting alternatives to the point-to-point communication used in traditional mission operations systems. However, missions have been slow to adopt the new technology. The lack of existing middleware-based missions has given rise to uncertainty about middleware's ability to perform in an operational setting. Most mission architects are also unfamiliar with the technology and do not know the benefits and detriments to architectural choices - or even what choices are available. We will present the findings of a study that evaluated several middleware options specifically for use in a mission operations system. We will address some common misconceptions regarding the applicability of middleware-based architectures, and we will identify the design decisions and tradeoffs that must be made when choosing a middleware solution. The Middleware Comparison and Benchmark Study was conducted at NASA Goddard Space Flight Center to comprehensively evaluate candidate middleware products, compare and contrast the performance of middleware solutions with the traditional point- to-point socket approach, and assess data delivery and reliability strategies. The study focused on requirements of the Global Precipitation Measurement (GPM) mission, validating the potential use of middleware in the GPM mission ground system. The study was jointly funded by GPM and the Goddard Mission Services Evolution Center (GMSEC), a virtual organization for providing mission enabling solutions and promoting the use of appropriate new technologies for mission support. The study was broken into two phases. To perform the generic middleware benchmarking and performance analysis, a network was created with data producers and consumers passing data between themselves. The benchmark monitored the delay, throughput, and reliability of the data as the characteristics were changed. Measurements were taken under a variety of topologies, data demands

  18. Characterizing Air Toxics from Oil Field Operations in Los Angeles

    NASA Astrophysics Data System (ADS)

    McCarthy, M. C.; Brown, S. G.; DeWinter, J. L.; Bai, S.; O'Brien, T.; Vaughn, D.; Peltier, R.; Soltis, J.; Field, R. A.; Murphy, S. M.; Roberts, P. T.

    2014-12-01

    The Inglewood Oil Field in urban Los Angeles has been in operation for more than 70 years. Neighborhoods surrounding the oil field are concerned with the potential emissions of air toxics from oil field operations. The Baldwin Hills Air Quality Study focused on (1) quantifying air toxics concentrations originating from the Inglewood Oil Field operations, including drilling and well workovers, and (2) assessing the health risk of both acute and chronic exposure to air toxics emitted from oil field operations. Key pollutants identified for characterization included diesel particulate matter (DPM), cadmium, benzene, nickel, formaldehyde, mercury, manganese, acrolein, arsenic, and lead. The field study began in November 2012 and ended in November 2013. Four types of instruments were used to characterize oil field operations: (1) Aethalometers to measure black carbon (BC; as a proxy for DPM); (2) X-ray fluorescence spectrometer (XRF) for metals; (3) Proton-Transfer-Reaction Time-of-Flight Mass Spectrometry (PTR-TOFMS) for volatile organic compounds; and (4) meteorological sensors to help assess the wind patterns, temperature, and humidity that influence pollutant concentrations. Overall concentrations of most of the species measured in the study were quite low for an urban area. We determined that there were statistically significant increases in concentrations of DPM associated with oil field operations when winds were from the west-southwest. BC concentrations increased by 0.036 to 0.056 μg/m3, on average, when winds originated from the west-southwest, compared to annual mean BC concentrations of approximately 0.67 μg/m3. West-southwest winds occurred 53% of the time during the study. No other pollutants showed strong statistical evidence of chronic or acute risk from oil field operations.

  19. Extended Operation of Stirling Convertors at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Oriti, Salvatore, M.

    2012-01-01

    NASA Glenn Research Center (GRC) has been supporting development of free-piston Stirling conversion technology for spaceflight electrical power generation since 1999. GRC has also been supporting the development of the Advanced Stirling Radioisotope Generator (ASRG) since 2006. A key element of the ASRG project is providing life, reliability, and performance data for the Advanced Stirling Convertor (ASC). The Thermal Energy Conversion branch at GRC is conducting extended operation of several free-piston Stirling convertors. The goal of this effort is to generate long-term performance data (tens of thousands of hours) on multiple units to build a life and reliability database. Currently, GRC is operating 18 convertors. This hardware set includes Technology Demonstration Convertors (TDCs) from Infinia Corporation, of which one pair (TDCs #13 and #14) has accumulated over 60,000 hr (6.8 years) of operation. Also under test are various Sunpower, Inc. convertors that were fabricated during the ASC development activity, including ASC-0, ASC-E (including those in the ASRG engineering unit), and ASC-E2. The ASC-E2s also completed, or are in progress of completing workmanship vibration testing, performance mapping, and extended operation. Two ASC-E2 units will also be used for durability testing, during which components will be stressed to levels above nominal mission usage. Extended operation data analyses from these tests are covered in this paper.

  20. Federal Radiological Monitoring and Assessment Center Overview of FRMAC Operations

    SciTech Connect

    1998-03-01

    In the event of a major radiological emergency, 17 federal agencies with various statutory responsibilities have agreed to coordinate their efforts at the emergency scene under the umbrella of the Federal Radiological Emergency Response Plan. This cooperative effort will ensure that all federal radiological assistance fully supports their efforts to protect the public. the mandated federal cooperation ensures that each agency can obtain the data critical to its specific responsibilities. This Overview of Federal Radiological Monitoring and Assessment Center (FRMAC) describes the FRMAC response activities to a major radiological emergency. It also describes the federal assets and subsequent operational activities which provide federal radiological monitoring and assessment of the off-site areas.

  1. Department of Energy Support for Operations of the WMO/GAW Quality Control/Science Activity Center for the Americas

    SciTech Connect

    Hicks, B. B.

    2003-11-13

    As a formal activity of the World Meteorological Organization's Global Atmosphere Watch, to provide, through agency collaboration, a center of excellence in the United States that would impose quality assurance techniques on data collected by national air and precipitation quality networks operating in the Americas (north, south, and central).

  2. Maintenance and operation of the USDOE Alternative Fuel Center

    SciTech Connect

    Erwin, J.; Moulton, D.S.; Hetrick, D.L.

    1994-08-01

    The Alternative Fuels Utilization Program (AFUP) of the Office of Energy Efficiency and Renewable Energy has investigated the possibilities and limitations of expanded scope of fuel alternatives and replacement means for transportation fuels from alternative sources. Under the AFUP, the Alternative Fuel Center (AFC) was created to solve problems in the DOE programs that were grappling with the utilization of shale oil and coal liquids for transportation fuels. In year one of this contract, a timeline was set to coordinate uses and operations of the AFC hydrogenation pilot plant among test fuels production project work, facility maintenance, other government work, and work for industry for second-generation operations. In year two, consistent with assisting the AFUP in accomplishing its general goals, the work was done with fuel producers, regulators, and users in mind. AFC capabilities and results were disseminated through tours and outside presentations.

  3. A simulation approach to a virtual base defense operating center

    NASA Astrophysics Data System (ADS)

    Athmer, Keith; Gaughan, Chris

    2010-04-01

    The TRADOC Maneuver Support Center of Excellence (MSCoE) is the Army proponent for protection and in turn, has the mission to support fixed site protection issues. To this end, the Maneuver Support Battle Lab (MSBL) developed a Virtual Base Defense Operating Center (VBDOC) capability that was initiated in support of the Force Protection Joint Experiment (FPJE) to examine data fusion enhancements and improvements to the Common Operating Picture (COP) display. Furthermore BDOC Standard Operating Procedures (SOPs), Tactics, Techniques and Procedures (TTPs), and Unmanned Ground Vehicle (UGV) capabilities were examined in order to optimize manpower, reduce exposure of friendly personnel, and improve force protection. The Modeling and Simulation (M&S) architecture was especially important due to the cost of providing realistic environments, such as Chemical Biological Radiological Nuclear (CBRN) hazards, and the availability of soldiers for experimentation. The VBDOC simulation architecture contains a force-on-force simulation, a CBRN simulation, a desktop UGV Advanced Concepts Research Tool (ACRT) and a sensor controller using the Distributed Interactive Simulation (DIS) protocol. This simulation architecture stimulated actual Command and Control (C2) systems including the Joint Battlespace Command and Control System (JBC2S) and the Joint Warning and Reporting Network (JWARN). These C2 systems, along with video feeds from various sensors and unmanned vehicles, were used by Battle Captains and staffs for situational awareness of the battlefield while conducting the experiment. The VBDOC capability offers a controlled environment to study fixed site protection issues, such as future Concept of Operation (CONOP)/TTP/SOP development and refinement, examining emerging concepts, and assessing specific technology capabilities.

  4. United States Air Force Child Care Center Infant Care Guide.

    ERIC Educational Resources Information Center

    Craig, Ardyn; And Others

    Intended to guide Air Force infant caregivers in providing high quality group care for infants 6 weeks to 6 months of age, this infant care guide must be used in conjunction with other Air Force regulations on day care, such as AFR 215-1, Volume VI (to be renumbered AFR 215-27). After a brief introductory chapter (Chapter I), Chapter II indicates…

  5. 14 CFR 294.3 - General requirements for Canadian charter air taxi operators.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... air taxi operators. 294.3 Section 294.3 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS CANADIAN CHARTER AIR TAXI OPERATORS General § 294.3 General requirements for Canadian charter air taxi operators. A Canadian charter air taxi operator...

  6. Synthesized voice approach callouts for air transport operations

    NASA Technical Reports Server (NTRS)

    Simpson, C. A.

    1980-01-01

    A flight simulation experiment was performed to determine the effectiveness of synthesized voice approach callouts for air transport operations. Flight deck data was first collected on scheduled air carrier operations to describe existing pilot-not-flying callout procedures in the flight context and to document the types and amounts of other auditory cockpit information during different types of air carrier operations. A flight simulation scenario for a wide-body jet transport airline training simulator was developed in collaboration with a major U.S. air carrier and flown by three-man crews of qualified line pilots as part of their normally scheduled recurrent training. Each crew flew half their approaches using the experimental synthesized voice approach callout system (SYNCALL) and the other half using the company pilot-not-flying approach callout procedures (PNF). Airspeed and sink rate performance was better with the SYNCALL system than with the PNF system for non-precision approaches. For the one-engine approach, for which SYNCALL made inappropriate deviation callouts, airspeed performance was worse with SYNCALL than with PNF. Reliability of normal altitude approach callouts was comparable for PNF on the line and in the simulator and for SYNCALL in the simulator.

  7. STS-35 Mission Manager Actions Room at the Marshall Space Flight Center Spacelab Payload Operations

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The primary objective of the STS-35 mission was round the clock observation of the celestial sphere in ultraviolet and X-Ray astronomy with the Astro-1 observatory which consisted of four telescopes: the Hopkins Ultraviolet Telescope (HUT); the Wisconsin Ultraviolet Photo-Polarimeter Experiment (WUPPE); the Ultraviolet Imaging Telescope (UIT); and the Broad Band X-Ray Telescope (BBXRT). The Huntsville Operations Support Center (HOSC) Spacelab Payload Operations Control Center (SL POCC) at the Marshall Space Flight Center (MSFC) was the air/ground communication channel used between the astronauts and ground control teams during the Spacelab missions. Teams of controllers and researchers directed on-orbit science operations, sent commands to the spacecraft, received data from experiments aboard the Space Shuttle, adjusted mission schedules to take advantage of unexpected science opportunities or unexpected results, and worked with crew members to resolve problems with their experiments. Due to loss of data used for pointing and operating the ultraviolet telescopes, MSFC ground teams were forced to aim the telescopes with fine tuning by the flight crew. This photo captures the activities at the Mission Manager Actions Room during the mission.

  8. Spacelab Payload Operations Control Center (POCC) Control Room During STS-35 Mission

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The primary objective of the STS-35 mission was round the clock observation of the celestial sphere in ultraviolet and X-Ray astronomy with the Astro-1 observatory which consisted of four telescopes: the Hopkins Ultraviolet Telescope (HUT); the Wisconsin Ultraviolet Photo-Polarimeter Experiment (WUPPE); the Ultraviolet Imaging Telescope (UIT); and the Broad Band X-Ray Telescope (BBXRT). The Huntsville Operations Support Center (HOSC) Spacelab Payload Operations Control Center (SL POCC) at the Marshall Space Flight Center (MSFC) was the air/ground communication channel used between the astronauts and ground control teams during the Spacelab missions. Teams of controllers and researchers directed on-orbit science operations, sent commands to the spacecraft, received data from experiments aboard the Space Shuttle, adjusted mission schedules to take advantage of unexpected science opportunities or unexpected results, and worked with crew members to resolve problems with their experiments. Due to loss of data used for pointing and operating the ultraviolet telescopes, MSFC ground teams were forced to aim the telescopes with fine tuning by the flight crew. This photo is an overview of the MSFC Payload Control Room (PCR).

  9. The Network Operations Control Center upgrade task: Lessons learned

    NASA Technical Reports Server (NTRS)

    Sherif, J. S.; Tran, T.-L.; Lee, S.

    1994-01-01

    This article synthesizes and describes the lessons learned from the Network Operations Control Center (NOCC) upgrade project, from the requirements phase through development and test and transfer. At the outset, the NOCC upgrade was being performed simultaneously with two other interfacing and dependent upgrades at the Signal Processing Center (SPC) and Ground Communications Facility (GCF), thereby adding a significant measure of complexity to the management and overall coordination of the development and transfer-to-operations (DTO) effort. Like other success stories, this project carried with it the traditional elements of top management support and exceptional dedication of cognizant personnel. Additionally, there were several NOCC-specific reasons for success, such as end-to-end system engineering, adoption of open-system architecture, thorough requirements management, and use of appropriate off-the-shelf technologies. On the other hand, there were several difficulties, such as ill-defined external interfaces, transition issues caused by new communications protocols, ambivalent use of two sets of policies and standards, and mistailoring of the new JPL management standard (due to the lack of practical guidelines). This article highlights the key lessons learned, as a means of constructive suggestions for the benefit of future projects.

  10. NASA - Johnson Space Center's New Capabilities for Air Purification

    NASA Technical Reports Server (NTRS)

    Graf, John

    2015-01-01

    NASA has some unique and challenging air purification problems that cannot be adequately met with COTS technology: 1) ammonia removal from air, 2) hydrazine removal from air, 3) CO conversion to CO2 in low temperature, high humidity environments. NASA has sponsored the development of new sorbents and new catalysts. These new sorbents and catalysts work better than COTS technology for our application. If attendees have a need for an effective ammonia sorbent, an effective hydrazine sorbent, or an effective CO conversion catalyst, we should learn to see if NASA sponsored technology development can help.

  11. Standard operating procedure for air quality stationary source management at Air Force installations in the Air Force Materiel Command

    SciTech Connect

    Powell, C.M.; Ryckman, S.J.

    1997-12-31

    To sustain compliance and avoid future enforcement actions associated with air quality stationary sources and to provide installation commanders with a certification process for Title V permitting, and Air Force Materiel Command (AFMC) Standard Operating Procedure (SOP) for Stationary Source Management has been developed. The SOP consists of two major sections: Stationary Source Planning and Administration, and Stationary Source Operations These two main sections are further subdivided into twelve subsections which delineate requirements (e.g. maintaining inventories, applying for and maintaining permits, keeping records, reporting and certifying compliance) and assign ownership of processes and responsibilities (e.g. appointing a manager/alternate for each identified stationary air source). In addition, the SOP suggests training that should be provided from operator to commander levels to ensure that all personnel involved with a stationary air source are aware of their responsibilities. Implementation of the SOP should provide for the essential control necessary for installation commanders to eliminate stationary air source non-compliance and to certify compliance in accordance with the Title V Operating Permit requirements. This paper will discuss: the background and purpose for the SOPs content, the twelve subsections of the SOP, the success of implementation at various installations, the relevance or the recommended training, the success of negotiating with various labor unions for SOP implementation and the success of the SOP in reference to its intended purpose.

  12. Operating manual for Ford's Farm Range air samplers

    SciTech Connect

    Glissmeyer, J.A.; Halverson, M.A.

    1980-10-01

    An air-sampling program was designed for a target enclosure at the Ford's Farm Range, Aberdeen Proving Ground, Maryland, where the Army test-fires tungsten and depleted-uranium armor penetrators. The primary potential particle inhalation hazard is depleted uranium. The sampling program includes workplace and filtered exhaust air sampling. Conventional isokinetic stack sampling was employed for the filtered exhaust air. Because of the need for rapid monitor response to concentration increases and decreases, conventional radioactive particle monitors were not used. Instead, real-time aerosol monitors employing a light-scattering technique were used for monitors requiring a fast response. For other monitoring functions, piezoelectric and beta-attenuation respirable-particle sampling techniques were used. The application of these technologies to the monitoring of airborne radioactive contaminants is addressed. Sampler installation and operation are detailed.

  13. AVESTAR Center for Operational Excellence of Electricity Generation Plants

    SciTech Connect

    Zitney, Stephen

    2012-08-29

    To address industry challenges in attaining operational excellence for electricity generation plants, the U.S. Department of Energy’s (DOE) National Energy Technology Laboratory (NETL) has launched a world-class facility for Advanced Virtual Energy Simulation Training and Research (AVESTARTM). This presentation will highlight the AVESTARTM Center simulators, facilities, and comprehensive training, education, and research programs focused on the operation and control of high-efficiency, near-zero-emission electricity generation plants. The AVESTAR Center brings together state-of-the-art, real-time, high-fidelity dynamic simulators with full-scope operator training systems (OTSs) and 3D virtual immersive training systems (ITSs) into an integrated energy plant and control room environment. AVESTAR’s initial offering combines--for the first time--a “gasification with CO2 capture” process simulator with a “combined-cycle” power simulator together in a single OTS/ITS solution for an integrated gasification combined cycle (IGCC) power plant with carbon dioxide (CO2) capture. IGCC systems are an attractive technology option for power generation, especially when capturing and storing CO2 is necessary to satisfy emission targets. The AVESTAR training program offers a variety of courses that merge classroom learning, simulator-based OTS learning in a control-room operations environment, and immersive learning in the interactive 3D virtual plant environment or ITS. All of the courses introduce trainees to base-load plant operation, control, startups, and shutdowns. Advanced courses require participants to become familiar with coordinated control, fuel switching, power-demand load shedding, and load following, as well as to problem solve equipment and process malfunctions. Designed to ensure work force development, training is offered for control room and plant field operators, as well as engineers and managers. Such comprehensive simulator-based instruction allows

  14. Applied patent RFID systems for building reacting HEPA air ventilation system in hospital operation rooms.

    PubMed

    Lin, Jesun; Pai, Jar-Yuan; Chen, Chih-Cheng

    2012-12-01

    RFID technology, an automatic identification and data capture technology to provide identification, tracing, security and so on, was widely applied to healthcare industry in these years. Employing HEPA ventilation system in hospital is a way to ensure healthful indoor air quality to protect patients and healthcare workers against hospital-acquired infections. However, the system consumes lots of electricity which cost a lot. This study aims to apply the RFID technology to offer a unique medical staff and patient identification, and reacting HEPA air ventilation system in order to reduce the cost, save energy and prevent the prevalence of hospital-acquired infection. The system, reacting HEPA air ventilation system, contains RFID tags (for medical staffs and patients), sensor, and reacting system which receives the information regarding the number of medical staff and the status of the surgery, and controls the air volume of the HEPA air ventilation system accordingly. A pilot program was carried out in a unit of operation rooms of a medical center with 1,500 beds located in central Taiwan from Jan to Aug 2010. The results found the air ventilation system was able to function much more efficiently with less energy consumed. Furthermore, the indoor air quality could still keep qualified and hospital-acquired infection or other occupational diseases could be prevented. PMID:22081235

  15. Encapsulated graphene field-effect transistors for air stable operation

    SciTech Connect

    Alexandrou, Konstantinos Kymissis, Ioannis; Petrone, Nicholas; Hone, James

    2015-03-16

    In this work, we report the fabrication of encapsulated graphene field effects transistors (GFETs) with excellent air stability operation in ambient environment. Graphene's 2D nature makes its electronics properties very sensitive to the surrounding environment, and thus, non-encapsulated graphene devices show extensive vulnerability due to unintentional hole doping from the presence of water molecules and oxygen limiting their performance and use in real world applications. Encapsulating GFETs with a thin layer of parylene-C and aluminum deposited on top of the exposed graphene channel area resulted in devices with excellent electrical performance stability for an extended period of time. Moisture penetration is reduced significantly and carrier mobility degraded substantially less when compared to non-encapsulated control devices. Our CMOS compatible encapsulation method minimizes the problems of environmental doping and lifetime performance degradation, enabling the operation of air stable devices for next generation graphene-based electronics.

  16. Varying duty operation of air-cooled condenser units

    NASA Astrophysics Data System (ADS)

    Milman, O. O.; Kondratev, A. V.; Ptakhin, A. V.; Dunaev, S. N.; Kirjukhin, A. V.

    2016-05-01

    Results of experimental investigations of operation modes of air-cooled condensers (ACC) under design and varying duty conditions are presented. ACCs with varying cooling airflow rates under constant heat load and with constant cooling airflow under varying heat load are examined. Diagrams of heat transfer coefficients and condensation pressures on the heat load and cooling airflow are obtained. It is found that, if the relative heat load is in the range from 0.6 to 1.0 of the nominal value, the ACC heat transfer coefficient varies insignificantly, unlike that of the water-cooled surface condensers. The results of the determination of "zero points" are given, i.e., the attainable pressure in air-cooled condensing units (ACCU), if there is no heat load for several values of working water temperature at the input of water-jet ejectors and liquid ring vacuum pump. The results of the experimental determination of atmospheric air suction into the ACC vacuum system. The effect of additional air suctions in the steam pipe on ACCU characteristics is analyzed. The thermal mapping of ACC heat exchange surfaces from the cooling air inlet is carried out. The dependence of the inefficient heat exchange zone on the additional air suction into the ACC vacuum system is given. It is shown that, if there is no additional air suction into the ACC vacuum system, the inefficient heat exchange zone is not located at the bottom of the first pass tubes, and their portion adjacent to the bottom steam pipe works efficiently. Design procedures for the ACC varying duty of capacitors are presented, and their adequacy for the ACCU varying duty estimation is analyzed.

  17. 14 CFR 25.1527 - Ambient air temperature and operating altitude.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Ambient air temperature and operating... Information Operating Limitations § 25.1527 Ambient air temperature and operating altitude. The extremes of the ambient air temperature and operating altitude for which operation is allowed, as limited...

  18. 14 CFR 25.1527 - Ambient air temperature and operating altitude.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Ambient air temperature and operating... Information Operating Limitations § 25.1527 Ambient air temperature and operating altitude. The extremes of the ambient air temperature and operating altitude for which operation is allowed, as limited...

  19. 14 CFR 25.1527 - Ambient air temperature and operating altitude.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Ambient air temperature and operating... Information Operating Limitations § 25.1527 Ambient air temperature and operating altitude. The extremes of the ambient air temperature and operating altitude for which operation is allowed, as limited...

  20. 14 CFR 25.1527 - Ambient air temperature and operating altitude.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Ambient air temperature and operating... Information Operating Limitations § 25.1527 Ambient air temperature and operating altitude. The extremes of the ambient air temperature and operating altitude for which operation is allowed, as limited...

  1. 14 CFR 25.1527 - Ambient air temperature and operating altitude.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Ambient air temperature and operating... Information Operating Limitations § 25.1527 Ambient air temperature and operating altitude. The extremes of the ambient air temperature and operating altitude for which operation is allowed, as limited...

  2. Better-Than-Visual Technologies for Next Generation Air Transportation System Terminal Maneuvering Area Operations

    NASA Technical Reports Server (NTRS)

    Prinzel, Lawrence J., III; Bailey, Randall E.; Shelton, Kevin J.; Jones, Denise R.; Kramer, Lynda J.; Arthur, Jarvis J., III; Williams, Steve P.; Barmore, Bryan E.; Ellis, Kyle E.; Rehfeld, Sherri A.

    2011-01-01

    A consortium of industry, academia and government agencies are devising new concepts for future U.S. aviation operations under the Next Generation Air Transportation System (NextGen). Many key capabilities are being identified to enable NextGen, including the concept of Equivalent Visual Operations (EVO) replicating the capacity and safety of today's visual flight rules (VFR) in all-weather conditions. NASA is striving to develop the technologies and knowledge to enable EVO and to extend EVO towards a Better-Than-Visual (BTV) operational concept. The BTV operational concept uses an electronic means to provide sufficient visual references of the external world and other required flight references on flight deck displays that enable VFR-like operational tempos and maintain and improve the safety of VFR while using VFR-like procedures in all-weather conditions. NASA Langley Research Center (LaRC) research on technologies to enable the concept of BTV is described.

  3. An Operational Concept for Flying FMS Trajectories in Center and TRACON Airspace

    NASA Technical Reports Server (NTRS)

    Palmer, Everett; Williams, David; Prevot, Thomas; Romanhn, Stephan; Goka, Tsuyoshi; Smith, Nancy; Crane, Barry; Null, Cynthia (Technical Monitor)

    1998-01-01

    Current Flight Management Systems (FMS) do a good job of constructing and flying an optimal trajectory for a single aircraft. Unfortunately, flight crews are often unable to fly these FMS routes during arrivals at busy airports. The Center TRACON Automation System (CTAS) has been designed to aid Center and TRACON (Terminal Radar Approach Control) controllers in assigning runways, sequencing and vectoring all classes of aircraft. CTAS bases its advisories on trajectory predictions for arriving aircraft using algorithms very similar to those in airborne FMS systems. This paper presents near and far term operational concepts for how a ground ATM (air traffic management) automation system like CTAS could work more effectively with the airborne automation in FMS equipped aircraft. The concepts for a more compatible air-ground system include: 1) a common route databases for both CTAS and FMS; 2) datalink to downlink information on aircraft weight, final approach speed and trajectory intent and to uplink wind information; 3) new FMS functions to allow flight crews to easily update their FMS trajectory to match the trajectory suggested by the ground automation with voice clearances, and 4) in the far term, datalink to downlink user preferred trajectories and to uplink trajectory clearances in the terminal area. The paper analyses some of the human factors issues that may result in allowing aircraft to fly FMS routes during enroute descent and in the terminal area. A series of linked human in the loop flight deck and air traffic control simulations and a field test with the NASA 757 are being conducted at NASA's Ames and Langley Research Centers to address these issues and to evaluate the operational feasibility of these approaches to more efficient flight and increased airport throughput.

  4. Space Operations Center, shuttle interaction study, volume 1

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The feasibility of the shuttle remote manipulator system (SRMS)-aided space operations center (SOC)/orbiter berthing was evaluated to determine: (1) whether the initial rates between the SOC and the orbiter can be removed by the arm; (2) what is the best strategy to be used; (3) whether the post-capture and maneuvering loads are within the capability of the SRMS; (4) can the SOC berthing port be brought in the immediate proximity of the orbiter berthing port; and (5) what is the best way to remove the residual relative motions. Various notational conventions are established and various important locations on the orbiter and SOC structures are defined. Reference frames are defined together with the mass properties of both the SOC and the orbiter.

  5. The Kepler Science Operations Center Pipeline Framework Extensions

    NASA Technical Reports Server (NTRS)

    Klaus, Todd C.; Cote, Miles T.; McCauliff, Sean; Girouard, Forrest R.; Wohler, Bill; Allen, Christopher; Chandrasekaran, Hema; Bryson, Stephen T.; Middour, Christopher; Caldwell, Douglas A.; Jenkins, Jon M.

    2010-01-01

    The Kepler Science Operations Center (SOC) is responsible for several aspects of the Kepler Mission, including managing targets, generating on-board data compression tables, monitoring photometer health and status, processing the science data, and exporting the pipeline products to the mission archive. We describe how the generic pipeline framework software developed for Kepler is extended to achieve these goals, including pipeline configurations for processing science data and other support roles, and custom unit of work generators that control how the Kepler data are partitioned and distributed across the computing cluster. We describe the interface between the Java software that manages the retrieval and storage of the data for a given unit of work and the MATLAB algorithms that process these data. The data for each unit of work are packaged into a single file that contains everything needed by the science algorithms, allowing these files to be used to debug and evolve the algorithms offline.

  6. The National Space Science Data Center: An operational perspective

    NASA Technical Reports Server (NTRS)

    Blitstein, Ronald; Green, James L.

    1991-01-01

    The National Space Science Data Center (NSSDC) manages over 110,000 data tapes with over 4,000 data sets. The size of the digital archive is approximately 6,000 GBytes and is expected to grow to more than 28,000 GBytes by 1995. The NSSDC is involved in several initiatives to better serve the scientific community and improve the management of current and future data holdings. These initiatives address the need to manage data to ensure ready access by the user and manage the media to ensure continuing accessibility and integrity of the data. An operational view of the NSSDC, outlining current policies and procedures that have been implemented to ensure the effective use of available resources to support service and mission goals, and maintain compliance with prescribed data management directives is presented.

  7. The National Space Science Data Center: An operational perspective

    NASA Technical Reports Server (NTRS)

    Blitstein, Ronald; Green, James L.

    1992-01-01

    The National Space Science Data Center (NSSDC) manages over 110,000 data tapes with over 4,000 data sets. The size of the digital archive is approximately 6,000 GBytes and is expected to grow to more than 28,000 GBytes by 1995. The NSSDC is involved in several initiatives to better serve the scientific community and improve the management of current and future data holdings. These initiatives address the need to manage data to ensure ready access by the user and manage the media to ensure continuing accessibility and integrity of the data. This paper will present an operational view of the NSSDC, outlining current policies and procedures that were implemented to ensure the effective use of available resources to support service and mission goals, and maintain compliance with prescribed data management directives.

  8. Photometric Analysis in the Kepler Science Operations Center Pipeline

    NASA Technical Reports Server (NTRS)

    Twicken, Joseph D.; Clarke, Bruce D.; Bryson, Stephen T.; Tenenbaum, Peter; Wu, Hayley; Jenkins, Jon M.; Girouard, Forrest; Klaus, Todd C.

    2010-01-01

    We describe the Photometric Analysis (PA) software component and its context in the Kepler Science Operations Center (SOC) pipeline. The primary tasks of this module are to compute the photometric flux and photocenters (centroids) for over 160,000 long cadence (thirty minute) and 512 short cadence (one minute) stellar targets from the calibrated pixels in their respective apertures. We discuss the science algorithms for long and short cadence PA: cosmic ray cleaning; background estimation and removal; aperture photometry; and flux-weighted centroiding. We discuss the end-to-end propagation of uncertainties for the science algorithms. Finally, we present examples of photometric apertures, raw flux light curves, and centroid time series from Kepler flight data. PA light curves, centroid time series, and barycentric timestamp corrections are exported to the Multi-mission Archive at Space Telescope [Science Institute] (MAST) and are made available to the general public in accordance with the NASA/Kepler data release policy.

  9. Semi-automatic development of Payload Operations Control Center software

    NASA Technical Reports Server (NTRS)

    Ballin, Sidney

    1988-01-01

    This report summarizes the current status of CTA's investigation of methods and tools for automating the software development process in NASA Goddard Space Flight Center, Code 500. The emphasis in this effort has been on methods and tools in support of software reuse. The most recent phase of the effort has been a domain analysis of Payload Operations Control Center (POCC) software. This report summarizes the results of the domain analysis, and proposes an approach to semi-automatic development of POCC Application Processor (AP) software based on these results. The domain analysis enabled us to abstract, from specific systems, the typical components of a POCC AP. We were also able to identify patterns in the way one AP might be different from another. These two perspectives--aspects that tend to change from AP to AP, and aspects that tend to remain the same--suggest an overall approach to the reuse of POCC AP software. We found that different parts of an AP require different development technologies. We propose a hybrid approach that combines constructive and generative technologies. Constructive methods emphasize the assembly of pre-defined reusable components. Generative methods provide for automated generation of software from specifications in a very-high-level language (VHLL).

  10. THE CHARACTERISTIC IMPEDANCE OF RECTANGULAR TRANSMISSION LINES WITH THIN CENTER CONDUCTOR AND AIR DIELECTRIC

    EPA Science Inventory

    The characteristic impedance of large-scale rectangular strip transmission line facilities used for such purposes as EMI susceptibility testing, biological exposures, etc., is discussed. These lines are characterized by a thin center conductor and an air dielectric. Impedance dat...

  11. Use of Virtual Mission Operations Center Technology to Achieve JPDO's Virtual Tower Vision

    NASA Technical Reports Server (NTRS)

    Ivancic, William D.; Paulsen, Phillip E.

    2006-01-01

    The Joint Program Development Office has proposed that the Next Generation Air Transportation System (NGATS) consolidate control centers. NGATS would be managed from a few strategically located facilities with virtual towers and TRACONS. This consolidation is about combining the delivery locations for these services not about decreasing service. By consolidating these locations, cost savings in the order of $500 million have been projected. Evolving to spaced-based communication, navigation, and surveillance offers the opportunity to reduce or eliminate much of the ground-based infrastructure cost. Dynamically adjusted airspace offers the opportunity to reduce the number of sectors and boundary inconsistencies; eliminate or reduce "handoffs;" and eliminate the distinction between Towers, TRACONS, and Enroute Centers. To realize a consolidation vision for air traffic management there must be investment in networking. One technology that holds great potential is the use of Virtual Mission Operations Centers to provide secure, automated, intelligent management of the NGATS. This paper provides a conceptual framework for incorporating VMOC into the NGATS.

  12. Mississippi State University Center for Air Sea Technology FY95 Research Program

    NASA Technical Reports Server (NTRS)

    Yeske, Lanny; Corbin, James H.

    1995-01-01

    The Mississippi State University (MSU) Center for Air Sea Technology (CAST) evolved from the Institute for Naval Oceanography's (INO) Experimental Center for Mesoscale Ocean Prediction (ECMOP) which was started in 1989. MSU CAST subsequently began operation on 1 October 1992 under an Office of Naval Research (ONR) two-year grant which ended on 30 September 1994. In FY95 MSU CAST was successful in obtaining five additional research grants from ONR, as well as several other research contracts from the Naval Oceanographic Office via NASA, the Naval Research Laboratory, the Army Corps of Engineers, and private industry. In the past, MSU CAST technical research and development has produced tools, systems, techniques, and procedures that improve efficiency and overcome deficiency for both the operational and research communities residing with the Department of Defense, private industry, and university ocean modeling community. We continued this effort with the following thrust areas: to develop advanced methodologies and tools for model evaluation, validation and visualization, both oceanographic and atmospheric; to develop a system-level capability for conducting temporally and ; spatially scaled ocean simulations driven by or are responsive to ocean models, and take into consideration coupling to atmospheric models; to continue the existing oceanographic/atmospheric data management task with emphasis on distributed databases in a network environment, with database optimization and standardization, including use of Mosaic and World Wide Web (WWW) access; and to implement a high performance parallel computing technology for CAST ocean models

  13. VOCS IN AMBIENT AIR NEAR WORLD TRADE CENTER SITE

    EPA Science Inventory

    Beginning on September 22, 2001 and continuing through February 2002, ambient air samples were collected at three sites within a block of ground zero and at a fourth site on the 16th floor of a building at 290 Broadway. Grab samples were collected in evacuated, electro-polished...

  14. The MMS Science Data Center: Operations, Capabilities, and Resource.

    NASA Astrophysics Data System (ADS)

    Larsen, K. W.; Pankratz, C. K.; Giles, B. L.; Kokkonen, K.; Putnam, B.; Schafer, C.; Baker, D. N.

    2015-12-01

    The Magnetospheric MultiScale (MMS) constellation of satellites completed their six month commissioning period in August, 2015 and began science operations. Science operations for the Solving Magnetospheric Acceleration, Reconnection, and Turbulence (SMART) instrument package occur at the Laboratory for Atmospheric and Space Physics (LASP). The Science Data Center (SDC) at LASP is responsible for the data production, management, distribution, and archiving of the data received. The mission will collect several gigabytes per day of particles and field data. Management of these data requires effective selection, transmission, analysis, and storage of data in the ground segment of the mission, including efficient distribution paths to enable the science community to answer the key questions regarding magnetic reconnection. Due to the constraints on download volume, this includes the Scientist-in-the-Loop program that identifies high-value science data needed to answer the outstanding questions of magnetic reconnection. Of particular interest to the community is the tools and associated website we have developed to provide convenient access to the data, first by the mission science team and, beginning March 1, 2016, by the entire community. This presentation will demonstrate the data and tools available to the community via the SDC and discuss the technologies we chose and lessons learned.

  15. Impacts of Center of Mass Shifts on Messenger Spacecraft Operations

    NASA Technical Reports Server (NTRS)

    O'Shaughnessy, D. J.; Vaughan, R. M.; Chouinard, T. L., III; Jaekle, D. E.

    2007-01-01

    The MESSENGER (MErcury Surface, Space ENvironment, GEochemistry, and Ranging) has successfully completed its first three years of flight operations following launch on August 3, 2004. As part of NASA s Discovery Program, MESSENGER will observe Mercury during flybys in 2008 and 2009, as well as from orbit beginning in March 2011. This paper discusses the impact that center of mass (CM) location changes have had on many mission activities, particularly angular momentum management and maneuver execution. Momentum trends were altered significantly following the first deep-space maneuver, and these changes were related to a change in the CM. The CM location also impacts maneuver execution, and uncertainties in its location led to the significant direction errors experienced at trajectory correction maneuver 11. Because of the spacecraft sensitivity to CM location, efforts to estimate its position are important to momentum and maneuver prediction. This paper summarizes efforts to estimate the CM from flight data, as well as the operational strategy to handle CM uncertainties and their impact on momentum trends and maneuver execution accuracy.

  16. DUSTRAN – AN ATMOSPHERIC DISPERSION MODEL FOR CONSEQUENCE ASSESSMENT APPLICATIONS IN EMERGENCY OPERATIONS CENTERS

    SciTech Connect

    Rishel, Jeremy P.; Glantz, Clifford S.

    2008-09-30

    A new atmospheric dispersion modeling system is being tested for consequence assessment applications in emergency response operations. DUSTRAN is an operational, fully documented atmospheric dispersion modeling system designed originally to allow U.S. Department of Defense personnel to rapidly predict and assess the potential air quality impacts of military maneuvers at military training and testing ranges. This model also can be applied at emergency operations centers where it can fill the niche between on-site, plume-based modeling systems and the National Atmospheric Release Advisory Center off-site, particle-based modeling system. DUSTRAN offers a user-friendly graphical user interface based on the Environmental Systems Research Institute ArcMap geographic information system software that allows DUSTRAN to be easily customized to operate at any location in the world. DUSTRAN employs the U.S. Environmental Protection Agency regulatory CALPUFF modeling system to create a three-dimensional wind field and simulate downwind plume transport and diffusion. Other dispersion models also can be integrated into the DUSTRAN componentized architecture, allowing the user to choose the appropriate dispersion modeling engine for a given application. The DUSTRAN architecture also supports the development and integration of a variety of source-term models.

  17. AIR LEVELS OF CARCINOGENIC POLYCYCLIC AROMATIC HYDROCARBONS FOLLOWING THE WORLD TRADE CENTER DISASTER

    EPA Science Inventory

    The catastrophic collapse of the World Trade Center (WTC) on September 11, 2001, created an immense dust cloud followed by fires that emitted soot into the air of New York City (NYC) well into December. The subsequent cleanup used diesel equipment that further polluted the air un...

  18. Release of air toxics during coating operations -- Understanding the process

    SciTech Connect

    Brush, P.A.; Fultz, B.S.

    1997-12-31

    Air toxics emissions, specifically volatile organic compounds (VOC), occur during the mixing, application, and drying of coatings. However, the means by which these emissions are quantified are generally a gross exaggeration. Many times this over-estimation results in the placement of permit emission limits on facilities that restrict operations unnecessarily. This paper will present and discuss the coating application process giving special attention to the points in the process and time periods over which VOCs may be released to the atmosphere. Finally, the highly conservative nature of emission estimation techniques and the methods by which permit limits are developed will be discussed and an alternative approach suggested that more closely represents VOC releases that occur during coating operations; thereby, allowing facilities to realize their operational potential without compromising the potential health impacts to offsite receptors.

  19. Demonstration of AIRS Total Ozone Products to Operations to Enhance User Readiness

    NASA Technical Reports Server (NTRS)

    Berndt, Emily; Zavodsky, Bradley; Jedlovec, Gary

    2014-01-01

    Cyclogenesis is a key forecast challenge at operational forecasting centers such as WPC and OPC, so these centers have a particular interest in unique products that can identify key storm features. In some cases, explosively developing extratropical cyclones can produce hurricane force, non-convective winds along the East Coast and north Atlantic as well as the Pacific Ocean, with the potential to cause significant damage to life and property. Therefore, anticipating cyclogenesis for these types of storms is crucial for furthering the NOAA goal of a "Weather Ready Nation". Over the last few years, multispectral imagery (i.e. RGB) products have gained popularity among forecasters. The GOES-R satellite champion at WPC/OPC has regularly evaluated the Air Mass RGB products from GOES Sounder, MODIS, and SEVIRI to aid in forecasting cyclogenesis as part of ongoing collaborations with SPoRT within the framework of the GOES-R Proving Ground. WPC/OPC has used these products to identify regions of stratospheric air associated with tropopause folds that can lead to cyclogenesis and hurricane force winds. RGB products combine multiple channels or channel differences into multi-color imagery in which different colors represent a particular cloud or air mass type. Initial interaction and feedback from forecasters evaluating the legacy Air Mass RGBs revealed some uncertainty regarding what physical processes the qualitative RGB products represent and color interpretation. To enhance forecaster confidence and interpretation of the Air Mass RGB, NASA SPoRT has transitioned a total column ozone product from AIRS retrievals to the WPC/OPC. The use of legacy AIRS demonstrates future JPSS capabilities possible with CrIS or OMPS. Since stratospheric air can be identified by anomalous potential vorticity and warm, dry, ozone-rich air, hyperspectral infrared sounder ozone products can be used in conjunction with the Air Mass RGB for identifying the role of stratospheric air in explosive

  20. Towards more stable operation of the Tokyo Tier2 center

    NASA Astrophysics Data System (ADS)

    Nakamura, T.; Mashimo, T.; Matsui, N.; Sakamoto, H.; Ueda, I.

    2014-06-01

    The Tokyo Tier2 center, which is located at the International Center for Elementary Particle Physics (ICEPP) in the University of Tokyo, was established as a regional analysis center in Japan for the ATLAS experiment. The official operation with WLCG was started in 2007 after the several years development since 2002. In December 2012, we have replaced almost all hardware as the third system upgrade to deal with analysis for further growing data of the ATLAS experiment. The number of CPU cores are increased by factor of two (9984 cores in total), and the performance of individual CPU core is improved by 20% according to the HEPSPEC06 benchmark test at 32bit compile mode. The score is estimated as 18.03 (SL6) per core by using Intel Xeon E5-2680 2.70 GHz. Since all worker nodes are made by 16 CPU cores configuration, we deployed 624 blade servers in total. They are connected to 6.7 PB of disk storage system with non-blocking 10 Gbps internal network backbone by using two center network switches (NetIron MLXe-32). The disk storage is made by 102 of RAID6 disk arrays (Infortrend DS S24F-G2840-4C16DO0) and served by equivalent number of 1U file servers with 8G-FC connection to maximize the file transfer throughput per storage capacity. As of February 2013, 2560 CPU cores and 2.00 PB of disk storage have already been deployed for WLCG. Currently, the remaining non-grid resources for both CPUs and disk storage are used as dedicated resources for the data analysis by the ATLAS Japan collaborators. Since all hardware in the non-grid resources are made by same architecture with Tier2 resource, they will be able to be migrated as the Tier2 extra resource on demand of the ATLAS experiment in the future. In addition to the upgrade of computing resources, we expect the improvement of connectivity on the wide area network. Thanks to the Japanese NREN (NII), another 10 Gbps trans-Pacific line from Japan to Washington will be available additionally with existing two 10 Gbps lines

  1. Launch Complex 39A, SWMU 008, Operations, Maintenance, and Monitoring Report, Kennedy Space Center, FL

    NASA Technical Reports Server (NTRS)

    Wilson, Deborah M.

    2016-01-01

    This Operations, Maintenance, and Monitoring Report (OMMR) presents the findings, observations, and results from Year 1 operation of the air sparging (AS) groundwater interim measure (IM) for High-Concentration Plumes (HCPs) and Low-Concentration Plumes (LCPs) within the perimeter fence line at Launch Complex 39A (LC39A) located at Kennedy Space Center (KSC), Florida. The objective of the LC39A groundwater IM is to actively decrease concentrations of trichloroethene (TCE), cis-1,2-dichloroethene (cDCE), and vinyl chloride (VC) in groundwater in the HCP and LCP within the pad perimeter fence line via AS to levels less than Florida Department of Environmental Protection (FDEP) Groundwater Cleanup Target Levels (GCTLs). The objective was developed because LC39A is currently being leased to Space Exploration Technologies (SpaceX), and the original IM for monitored natural attenuation (MNA) over an extended period of time was not suitable for future planned site use.

  2. Modeling the Environmental Impact of Air Traffic Operations

    NASA Technical Reports Server (NTRS)

    Chen, Neil

    2011-01-01

    There is increased interest to understand and mitigate the impacts of air traffic on the climate, since greenhouse gases, nitrogen oxides, and contrails generated by air traffic can have adverse impacts on the climate. The models described in this presentation are useful for quantifying these impacts and for studying alternative environmentally aware operational concepts. These models have been developed by leveraging and building upon existing simulation and optimization techniques developed for the design of efficient traffic flow management strategies. Specific enhancements to the existing simulation and optimization techniques include new models that simulate aircraft fuel flow, emissions and contrails. To ensure that these new models are beneficial to the larger climate research community, the outputs of these new models are compatible with existing global climate modeling tools like the FAA's Aviation Environmental Design Tool.

  3. CONVENIENT SAMPLING OF AIR BACTERIA IN OPERATING ROOMS.

    PubMed

    WARNER, P; GLASSCO, A; KROEKER, J

    1964-02-22

    A convenient arrangement for sampling air bacteria in operating rooms with a slit sampler (the Fort Detrick sampler) is described. Its purpose is to contribute as far as possible to the convenience of the surgical staff and thereby to the safety of the patient. It has the advantages of recording minute-to-minute changes in bacterial air count; it is unobtrusive and yet can be continually observed by a technician; it is not noisy and avoids the dangers of explosion and static electricity; it is inexpensive, and parts are easily replaced; and finally it provides a means of keeping permanent photographic records of bacterial counts. Results of a preliminary trial of this method appeared to be satisfactory. PMID:14118695

  4. McClellan Nuclear Radiation Center (MNRC) TRIGA reactor: Four years of operations

    SciTech Connect

    Heidel, C.C.; Richards, W.J.

    1994-07-01

    McClellan Air Force Base, at Sacramento, California, is headquarters for the Sacramento Air Force Logistics Center (SM-ALC). McClellan Air Force Base provides extensive inspection and maintenance capabilities for the F-111, F-1 5, and other military aircraft. Criticality of the MNRC TRIGA reactor was obtained on January 20, 1990 with 63 standard TRIGA fuel elements, three fuel-followed control rods and one air-followed control rod. Presently there are 93 fuel elements in the reactor core. The reactor can be operated at 1 MW steady state power, producing pulses up to three dollars worth of reactivity addition, and can be square waved up to 1 MW. The reactor core contains a circular grid plate and a graphite reflector assembly surrounding the core. Four tangential beam ports installed in the reflector assembly provide a thermal neutron flux to four radiography bays. The reactor tank is twenty-four (24) feet deep, seven and one-half (7.5) feet in diameter, and has a protrusion in the upper portion of the reactor tank. This protrusion is scheduled for use as a neutron thermal collimator in the future. Besides the neutron radiography capabilities, the reactor contains a pneumatic rabbit system, a central thimble, an in-core irradiation facility, and three additional cutouts that provide locations for additional irradiation facilities. The central thimble can be removed along with the B-ring locations of the upper portion of the grid plate to provide an additional and larger in-core irradiation facility. A new upper grid plate has been manufactured to expand one triangular cutout so that larger experiments can be inserted directly into the reactor core. Some operational problems experienced during the first four years of operations are the timeout of the CSC and DAC watchdogs, deterioration of the heat exchanger gaskets, and loss of thermocouples in the instrumented fuel elements. (author)

  5. Short-Term Prediction Research and Transition (SPoRT) Center: Transitioning Satellite Data to Operations

    NASA Technical Reports Server (NTRS)

    Zavodsky, Bradley

    2012-01-01

    The Short-term Prediction Research and Transition (SPoRT) Center located at NASA Marshall Space Flight Center has been conducting testbed activities aimed at transitioning satellite products to National Weather Service operational end users for the last 10 years. SPoRT is a NASA/NOAA funded project that has set the bar for transition of products to operational end users through a paradigm of understanding forecast challenges and forecaster needs, displaying products in end users decision support systems, actively assessing the operational impact of these products, and improving products based on forecaster feedback. Aiming for quality partnerships rather than a large quantity of data users, SPoRT has become a community leader in training operational forecasters on the use of up-and-coming satellite data through the use of legacy instruments and proxy data. Traditionally, SPoRT has supplied satellite imagery and products from NASA instruments such as the Moderate-resolution Imaging Spectroradiometer (MODIS) and the Atmospheric Infrared Sounder (AIRS). However, recently, SPoRT has been funded by the GOES-R and Joint Polar Satellite System (JPSS) Proving Grounds to accelerate the transition of selected imagery and products to help improve forecaster awareness of upcoming operational data from the Visible Infrared Imager Radiometer Suite (VIIRS), Cross-track Infrared Sounder (CrIS), Advanced Baseline Imager (ABI), and Geostationary Lightning Mapper (GLM). This presentation provides background on the SPoRT Center, the SPoRT paradigm, and some example products that SPoRT is excited to work with forecasters to evaluate.

  6. Modelling of dynamic targeting in the Air Operations Centre

    NASA Astrophysics Data System (ADS)

    Lo, Edward H. S.; Au, T. Andrew

    2007-12-01

    Air Operations Centres (AOCs) are high stress multitask environments for planning and executing of theatre-wide airpower. Operators have multiple responsibilities to ensure that the orchestration of air assets is coordinated to maximum effect. AOCs utilise a dynamic targeting process to immediately prosecute time-sensitive targets. For this process to work effectively, a timely decision must be made regarding the appropriate course of action before the action is enabled. A targeting solution is typically developed using a number of inter-related processes in the kill chain - the Find, Fix, Track, Target, Engage, and Assess (F2T2EA) model. The success of making a right decision about dynamic targeting is ultimately limited by the cognitive and cooperative skills of the team prosecuting the mission and their associated workload. This paper presents a model of human interaction and tasks within the dynamic targeting sequence. The complex network of tasks executed by the team can be analysed by undertaking simulation of the model to identify possible information-processing bottlenecks and overloads. The model was subjected to various tests to generate typical outcomes, operator utilisation, duration as well as rates of output in the dynamic targeting process. This capability will allow for future "what-if" evaluations of numerous concepts for team formation or task reallocation, complementing live exercises and experiments.

  7. Trajectory Assessment and Modification Tools for Next Generation Air Traffic Management Operations

    NASA Technical Reports Server (NTRS)

    Brasil, Connie; Lee, Paul; Mainini, Matthew; Lee, Homola; Lee, Hwasoo; Prevot, Thomas; Smith, Nancy

    2011-01-01

    This paper reviews three Next Generation Air Transportation System (NextGen) based high fidelity air traffic control human-in-the-loop (HITL) simulations, with a focus on the expected requirement of enhanced automated trajectory assessment and modification tools to support future air traffic flow management (ATFM) planning positions. The simulations were conducted at the National Aeronautics and Space Administration (NASA) Ames Research Centers Airspace Operations Laboratory (AOL) in 2009 and 2010. The test airspace for all three simulations assumed the mid-term NextGenEn-Route high altitude environment utilizing high altitude sectors from the Kansas City and Memphis Air Route Traffic Control Centers. Trajectory assessment, modification and coordination decision support tools were developed at the AOL in order to perform future ATFM tasks. Overall tool usage results and user acceptability ratings were collected across three areas of NextGen operatoins to evaluate the tools. In addition to the usefulness and usability feedback, feasibility issues, benefits, and future requirements were also addressed. Overall, the tool sets were rated very useful and usable, and many elements of the tools received high scores and were used frequently and successfully. Tool utilization results in all three HITLs showed both user and system benefits including better airspace throughput, reduced controller workload, and highly effective communication protocols in both full Data Comm and mixed-equipage environments.

  8. ATMOSPHERIC DEPOSITION MONITORING -- CLEAN AIR STATUS AND TRENDS NETWORK (CASTNET) OPERATION

    EPA Science Inventory

    CAMD operates a national monitoring network mandated by the 1990 Clean Air Act Amendments (CAAA) to determine the effectiveness of promulgated emission reductions. The Clean Air Status and Trends Network (CASTNET) provides data for determining relationships between emissions, air...

  9. 14 CFR 93.219 - Allocation of slots for essential air service operations and applicable limitations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... SPECIAL AIR TRAFFIC RULES Allocation of Commuter and Air Carrier IFR Operations at High Density Traffic... or from a High Density Traffic Airport under the Department of Transportation's Essential Air...

  10. 14 CFR 93.219 - Allocation of slots for essential air service operations and applicable limitations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... SPECIAL AIR TRAFFIC RULES Allocation of Commuter and Air Carrier IFR Operations at High Density Traffic... or from a High Density Traffic Airport under the Department of Transportation's Essential Air...

  11. 14 CFR 93.219 - Allocation of slots for essential air service operations and applicable limitations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... SPECIAL AIR TRAFFIC RULES Allocation of Commuter and Air Carrier IFR Operations at High Density Traffic... or from a High Density Traffic Airport under the Department of Transportation's Essential Air...

  12. 14 CFR 93.219 - Allocation of slots for essential air service operations and applicable limitations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... SPECIAL AIR TRAFFIC RULES Allocation of Commuter and Air Carrier IFR Operations at High Density Traffic... or from a High Density Traffic Airport under the Department of Transportation's Essential Air...

  13. 14 CFR 93.219 - Allocation of slots for essential air service operations and applicable limitations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... SPECIAL AIR TRAFFIC RULES Allocation of Commuter and Air Carrier IFR Operations at High Density Traffic... or from a High Density Traffic Airport under the Department of Transportation's Essential Air...

  14. Processing and Preparation of Advanced Stirling Convertors for Extended Operation at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Oriti, Salvatore M.; Cornell, Peggy A.

    2008-01-01

    The U.S. Department of Energy (DOE), Lockheed Martin Space Company (LMSC), Sunpower Inc., and NASA Glenn Research Center (GRC) have been developing an Advanced Stirling Radioisotope Generator (ASRG) for use as a power system on space science missions. This generator will make use of the free-piston Stirling convertors to achieve higher conversion efficiency than currently available alternatives. NASA GRC is supporting the development of the ASRG by providing extended operation of several Sunpower Inc. Advanced Stirling Convertors (ASCs). In the past year and a half, eight ASCs have operated in continuous, unattended mode in both air and thermal vacuum environments. Hardware, software, and procedures were developed to prepare each convertor for extended operation with intended durations on the order of tens of thousands of hours. Steps taken to prepare a convertor for long-term operation included geometry measurements, thermocouple instrumentation, evaluation of working fluid purity, evacuation with bakeout, and high purity charge. Actions were also taken to ensure the reliability of support systems, such as data acquisition and automated shutdown checkouts. Once a convertor completed these steps, it underwent short-term testing to gather baseline performance data before initiating extended operation. These tests included insulation thermal loss characterization, low-temperature checkout, and full-temperature and power demonstration. This paper discusses the facilities developed to support continuous, unattended operation, and the processing results of the eight ASCs currently on test.

  15. Annual Operational Summary Migrant Family Housing Centers, 1978 Open Season.

    ERIC Educational Resources Information Center

    California State Dept. of Employment Development, Sacramento. Migrant Services Section.

    During the 1978 agricultural season, migrant farmworkers and their families occupied 2,079 rental units at 26 migrant housing centers provided by the Office of Migrant Services. Supportive services at the centers included day care centers for children two to five years of age, a few infant care facilities, and access to medical serivces,…

  16. Design and operation of a thermionic converter in air

    SciTech Connect

    Horner, M.H.; Begg, L.L.; Smith, J.N. Jr.; Geller, C.B.; Kallnowski, J.E.

    1995-01-01

    An electrically heated thermionic converter has been designed, built and successfully tested in air. Several unique features were incorporated in this converter: an integral cesium reservoir, innovative ceramic-to-metal seals, a heat rejection system coupling the collector to a low temperature heat sink and an innovative cylindrical heater filament. The converter was operated for extended periods of time with the emitter at about 1900 K. the collector at about 700 K, and a power density of over 2 w(e)/sq. cm. Input power transients were run between 50% and 100% thermal power, at up to 1% per second, without instabilities in performance.

  17. Contingency Operations Support to NASA Johnson Space Center Medical Operations Division

    NASA Technical Reports Server (NTRS)

    Stepaniak, Philip; Patlach, Bob; Swann, Mark; Adams, Adrien

    2005-01-01

    The Wyle Laboratories Contingency Operations Group provides support to the NASA Johnson Space Center (JSC) Medical Operations Division in the event of a space flight vehicle accident or JSC mishap. Support includes development of Emergency Medical System (EMS) requirements, procedures, training briefings and real-time support of mishap investigations. The Contingency Operations Group is compliant with NASA documentation that provides guidance in these areas and maintains contact with the United States Department of Defense (DOD) to remain current on military plans to support NASA. The contingency group also participates in Space Operations Medical Support Training Courses (SOMSTC) and represents the NASA JSC Medical Operations Division at contingency exercises conducted worldwide by the DOD or NASA. The events of September 11, 2001 have changed how this country prepares and protects itself from possible terrorist attacks on high-profile targets. As a result, JSC is now considered a high-profile target and thus, must prepare for and develop a response to a Weapons of Mass Destruction (WMD) incident. The Wyle Laboratories Contingency Operations Group supports this plan, specifically the medical response, by providing expertise and manpower.

  18. Kennedy Space Center Orion Processing Team Planning for Ground Operations

    NASA Technical Reports Server (NTRS)

    Letchworth, Gary; Schlierf, Roland

    2011-01-01

    Topics in this presentation are: Constellation Ares I/Orion/Ground Ops Elements Orion Ground Operations Flow Orion Operations Planning Process and Toolset Overview, including: 1 Orion Concept of Operations by Phase 2 Ops Analysis Capabilities Overview 3 Operations Planning Evolution 4 Functional Flow Block Diagrams 5 Operations Timeline Development 6 Discrete Event Simulation (DES) Modeling 7 Ground Operations Planning Document Database (GOPDb) Using Operations Planning Tools for Operability Improvements includes: 1 Kaizen/Lean Events 2 Mockups 3 Human Factors Analysis

  19. Data Validation in the Kepler Science Operations Center Pipeline

    NASA Technical Reports Server (NTRS)

    Wu, Hayley; Twicken, Joseph D.; Tenenbaum, Peter; Clarke, Bruce D.; Li, Jie; Quintana, Elisa V.; Allen, Christopher; Chandrasekaran, Hema; Jenkins, Jon M.; Caldwell, Douglas A.; Wohler, Bill; Girouard, Forrest; McCauliff, Sean; Cote, Miles T.; Klaus, Todd C.

    2010-01-01

    We present an overview of the Data Validation (DV) software component and its context within the Kepler Science Operations Center (SOC) pipeline and overall Kepler Science mission. The SOC pipeline performs a transiting planet search on the corrected light curves for over 150,000 targets across the focal plane array. We discuss the DV strategy for automated validation of Threshold Crossing Events (TCEs) generated in the transiting planet search. For each TCE, a transiting planet model is fitted to the target light curve. A multiple planet search is conducted by repeating the transiting planet search on the residual light curve after the model flux has been removed; if an additional detection occurs, a planet model is fitted to the new TCE. A suite of automated tests are performed after all planet candidates have been identified. We describe a centroid motion test to determine the significance of the motion of the target photocenter during transit and to estimate the coordinates of the transit source within the photometric aperture; a series of eclipsing binary discrimination tests on the parameters of the planet model fits to all transits and the sequences of odd and even transits; and a statistical bootstrap to assess the likelihood that the TCE would have been generated purely by chance given the target light curve with all transits removed. Keywords: photometry, data validation, Kepler, Earth-size planets

  20. Data validation in the Kepler Science Operations Center pipeline

    NASA Astrophysics Data System (ADS)

    Wu, Hayley; Twicken, Joseph D.; Tenenbaum, Peter; Clarke, Bruce D.; Li, Jie; Quintana, Elisa V.; Allen, Christopher; Chandrasekaran, Hema; Jenkins, Jon M.; Caldwell, Douglas A.; Wohler, Bill; Girouard, Forrest; McCauliff, Sean; Cote, Miles T.; Klaus, Todd C.

    2010-07-01

    We present an overview of the Data Validation (DV) software component and its context within the Kepler Science Operations Center (SOC) pipeline and overall Kepler Science mission. The SOC pipeline performs a transiting planet search on the corrected light curves for over 150,000 targets across the focal plane array. We discuss the DV strategy for automated validation of Threshold Crossing Events (TCEs) generated in the transiting planet search. For each TCE, a transiting planet model is fitted to the target light curve. A multiple planet search is conducted by repeating the transiting planet search on the residual light curve after the model flux has been removed; if an additional detection occurs, a planet model is fitted to the new TCE. A suite of automated tests are performed after all planet candidates have been identified. We describe a centroid motion test to determine the significance of the motion of the target photocenter during transit and to estimate the coordinates of the transit source within the photometric aperture; a series of eclipsing binary discrimination tests on the parameters of the planet model fits to all transits and the sequences of odd and even transits; and a statistical bootstrap to assess the likelihood that the TCE would have been generated purely by chance given the target light curve with all transits removed.

  1. Presearch Data Conditioning in the Kepler Science Operations Center Pipeline

    NASA Technical Reports Server (NTRS)

    Twicken, Joseph D.; Chandrasekaran, Hema; Jenkins, Jon M.; Gunter, Jay P.; Girouard, Forrest; Klaus, Todd C.

    2010-01-01

    We describe the Presearch Data Conditioning (PDC) software component and its context in the Kepler Science Operations Center (SOC) pipeline. The primary tasks of this component are to correct systematic and other errors, remove excess flux due to aperture crowding, and condition the raw flux light curves for over 160,000 long cadence (thirty minute) and 512 short cadence (one minute) targets across the focal plane array. Long cadence corrected flux light curves are subjected to a transiting planet search in a subsequent pipeline module. We discuss the science algorithms for long and short cadence PDC: identification and correction of unexplained (i.e., unrelated to known anomalies) discontinuities; systematic error correction; and excess flux removal. We discuss the propagation of uncertainties from raw to corrected flux. Finally, we present examples of raw and corrected flux time series for flight data to illustrate PDC performance. Corrected flux light curves produced by PDC are exported to the Multi-mission Archive at Space Telescope [Science Institute] (MAST) and will be made available to the general public in accordance with the NASA/Kepler data release policy.

  2. 14 CFR 298.21 - Filing for registration by air taxi operators.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Filing for registration by air taxi operators. 298.21 Section 298.21 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS EXEMPTIONS FOR AIR TAXI AND COMMUTER AIR CARRIER OPERATIONS Registration for Exemption by Air...

  3. Report on the establishment and operation of the Federal Energy Regulatory Commission's Daycare Center

    SciTech Connect

    Not Available

    1991-09-16

    We have completed an inspection of the Federal Energy Regulatory Commission's (FERC) Daycare Center (Center). The purpose of the inspection was to review for efficiency, economy and compliance with laws and regulations, FERC's establishment and operation of the Center. The inspection objectives were to review: (1) FERC's compliance with Federal laws and requirements of the General Services Administration and the District of Columbia; (2) the source and amount of funds for establishing and operating the Center; and (3) the organizational relationships between FERC, the Center and the contractor operating the Center.

  4. 75 FR 55791 - Clean Air Act Operating Permit Program; Petition for Objection to State Operating Permit for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-14

    ... AGENCY Clean Air Act Operating Permit Program; Petition for Objection to State Operating Permit for Alliant Energy--WPL Edgewater Generating Station AGENCY: Environmental Protection Agency (EPA). ACTION: Notice of final order on petition to object to Clean Air Act operating permit. SUMMARY: This...

  5. Transit Model Fitting in the Kepler Science Operations Center Pipeline

    NASA Astrophysics Data System (ADS)

    Li, Jie; Burke, C. J.; Jenkins, J. M.; Quintana, E. V.; Rowe, J. F.; Seader, S. E.; Tenenbaum, P.; Twicken, J. D.

    2012-05-01

    We describe the algorithm and performance of the transit model fitting of the Kepler Science Operations Center (SOC) Pipeline. Light curves of long cadence targets are subjected to the Transiting Planet Search (TPS) component of the Kepler SOC Pipeline. Those targets for which a Threshold Crossing Event (TCE) is generated in the transit search are subsequently processed in the Data Validation (DV) component. The light curves may span one or more Kepler observing quarters, and data may not be available for any given target in all quarters. Transit model parameters are fitted in DV to transit-like signatures in the light curves of target stars with TCEs. The fitted parameters are used to generate a predicted light curve based on the transit model. The residual flux time series of the target star, with the predicted light curve removed, is fed back to TPS to search for additional TCEs. The iterative process of transit model fitting and transiting planet search continues until no TCE is generated from the residual flux time series or a planet candidate limit is reached. The transit model includes five parameters to be fitted: transit epoch time (i.e. central time of first transit), orbital period, impact parameter, ratio of planet radius to star radius and ratio of semi-major axis to star radius. The initial values of the fit parameters are determined from the TCE values provided by TPS. A limb darkening model is included in the transit model to generate the predicted light curve. The transit model fitting results are used in the diagnostic tests in DV, such as the centroid motion test, eclipsing binary discrimination tests, etc., which helps to validate planet candidates and identify false positive detections. Funding for the Kepler Mission has been provided by the NASA Science Mission Directorate.

  6. 78 FR 42323 - Pilot Certification and Qualification Requirements for Air Carrier Operations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-15

    ... rulemaking (ANPRM) entitled ``New Pilot Certification Requirements for Air Carrier Operations'' (75 FR 6164... Requirements for Air Carrier Operations NPRM (77 FR 12374), which published in the Federal Register on February... for Air Carrier Operations NPRM (77 FR 12374), the FAA proposed to amend the existing requirements...

  7. The Bibliographical Center for Research, Rocky Mountain Regions, Inc.: A Cost Study of the Center's Present Operations.

    ERIC Educational Resources Information Center

    Maier, Joan M.; And Others

    This cost study analyzes the operating costs of the Bibliographical Center so that the Center can adopt the best possible combination of procedures with which to achieve its service objectives at the lowest possible cost to its members. This study provides data, upon which a fee schedule can be based, that is derived from the form of the input and…

  8. Regulation study for the facility control system design at the Facility Operations Center at TA55

    SciTech Connect

    1994-03-16

    NMT-8 is proposing to upgrade the existing Facility Control System (FCS) located within the Facility Operations Center (FOC) at the TA-55 Plutonium Processing and Handling Facility (PPHF). The FCS modifications will upgrade the existing electronics to provide better reliability of system functions. Changes include replacement of the FCS computers and field multiplex units which are used for transmitting systems data. Data collected at the FCS include temperature, pressure, contact closures, etc., and are used for monitoring and/or control of key systems at TA-55. Monitoring is provided for the electrical power system status, PF-4 HVAC air balance status (Static Differential pressure), HVAC fan system status, site chill water return temperature, fire system information, and radioactive constant air monitors alarm information, site compressed air pressure and other key systems used at TA-55. Control output signals are provided for PF-4 HVAC systems, and selected alarms for criticality, fire, loss of pressure in confinement systems. A detailed description of the FCS modifications is provided in Section 2.

  9. Student Funded University Counseling Centers: Operational Challenges for Year 2000.

    ERIC Educational Resources Information Center

    Gillespie, Janet F.; And Others

    Changes in administrative policies and budgetary cutbacks add to the vulnerability of many university counseling centers. Two possible solutions, currently existing within two state-affiliated universities, entail housing student counseling in student health centers and either linking counseling administratively with health services or keeping…

  10. Organizing and Operating an Archives and Record Retention Center.

    ERIC Educational Resources Information Center

    Franklin, Ann Y.

    1984-01-01

    Examines creation of Archives and Records Retention Center in school district's Library Media Services department. Highlights include production of policies and procedures manuals, definition of archives and records, functions of library consultant/archivist, functions of center (receiving, processing, researching, protecting, destroying,…

  11. AIR POLLUTION CONTROL ALTERNATIVES FOR SHALE OIL PRODUCTION OPERATIONS

    EPA Science Inventory

    The report consolidates, evaluates, and presents available air pollution emission data and air pollution control technology relevant to oil shale production, for use by project developers in preparing environmental impact statements and permit applications under Clean Air Act and...

  12. Tu-144LL SST Flying Laboratory on Taxiway at Zhukovsky Air Development Center near Moscow, Russia

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The sleek lines of the Tupolev Tu-144LL are evident as it sits on the taxiway at the Zhukovsky Air Development Center near Moscow, Russia. NASA teamed with American and Russian aerospace industries for an extended period in a joint international research program featuring the Russian-built Tu-144LL supersonic aircraft. The object of the program was to develop technologies for a proposed future second-generation supersonic airliner to be developed in the 21st Century. The aircraft's initial flight phase began in June 1996 and concluded in February 1998 after 19 research flights. A shorter follow-on program involving seven flights began in September 1998 and concluded in April 1999. All flights were conducted in Russia from Tupolev's facility at the Zhukovsky Air Development Center near Moscow. The centerpiece of the research program was the Tu 144LL, a first-generation Russian supersonic jetliner that was modified by its developer/builder, Tupolev ANTK (aviatsionnyy nauchno-tekhnicheskiy kompleks-roughly, aviation technical complex), into a flying laboratory for supersonic research. Using the Tu-144LL to conduct flight research experiments, researchers compared full-scale supersonic aircraft flight data with results from models in wind tunnels, computer-aided techniques, and other flight tests. The experiments provided unique aerodynamic, structures, acoustics, and operating environment data on supersonic passenger aircraft. Data collected from the research program was being used to develop the technology base for a proposed future American-built supersonic jetliner. Although actual development of such an advanced supersonic transport (SST) is currently on hold, commercial aviation experts estimate that a market for up to 500 such aircraft could develop by the third decade of the 21st Century. The Tu-144LL used in the NASA-sponsored research program was a 'D' model with different engines than were used in production-model aircraft. Fifty experiments were proposed

  13. Activities in the Payload Operations Control Center at MSFC During the IML-1 Mission

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This photograph shows activities during the International Microgravity Laboratory-1 (IML-1) mission (STS-42) in the Payload Operations Control Center (POCC) at the Marshall Space Flight Center. Members of the Fluid Experiment System (FES) group monitor the progress of their experiment through video at the POCC. The IML-1 mission was the first in a series of Shuttle flights dedicated to fundamental materials and life sciences research. The mission was to explore, in depth, the complex effects of weightlessness on living organisms and materials processing. The crew conducted experiments on the human nervous system's adaptation to low gravity and the effects on other life forms such as shrimp eggs, lentil seedlings, fruit fly eggs, and bacteria. Low gravity materials processing experiments included crystal growth from a variety of substances such as enzymes, mercury, iodine, and virus. The International space science research organizations that participated in this mission were: The U.S. National Aeronautics and Space Administion, the European Space Agency, the Canadian Space Agency, the French National Center for Space Studies, the German Space Agency, and the National Space Development Agency of Japan. The POCC was the air/ground communication charnel used between astronauts aboard the Spacelab and scientists, researchers, and ground control teams during the Spacelab missions. The facility made instantaneous video and audio communications possible for scientists on the ground to follow the progress and to send direct commands of their research almost as if they were in space with the crew.

  14. Activities in the Payload Operation Control Center at MSFC During the IML-1 Mission

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This photograph shows activities during the International Microgravity Laboratory-1 (IML-1) mission (STS-42) in the Payload Operations Control Center (POCC) at the Marshall Space Flight Center. The IML-1 mission was the first in a series of Shuttle flights dedicated to fundamental materials and life sciences research. The mission was to explore, in depth, the complex effects of weightlessness on living organisms and materials processing. The crew conducted experiments on the human nervous system's adaptation to low gravity and the effects on other life forms such as shrimp eggs, lentil seedlings, fruit fly eggs, and bacteria. Low gravity materials processing experiments included crystal growth from a variety of substances such as enzymes, mercury, iodine, and virus. The International space science research organizations that participated in this mission were: The U.S. National Aeronautics and Space Administration, the European Space Agency, the Canadian Space Agency, the French National Center for Space Studies, the German Space Agency, and the National Space Development Agency of Japan. The POCC was the air/ground communication charnel used between the astronauts aboard the Spacelab and scientists, researchers, and ground control teams during the Spacelab missions. The facility made instantaneous video and audio communications possible for scientists on the ground to follow the progress and to send direct commands of their research almost as if they were in space with the crew.

  15. Validation and Verification of Operational Land Analysis Activities at the Air Force Weather Agency

    NASA Technical Reports Server (NTRS)

    Shaw, Michael; Kumar, Sujay V.; Peters-Lidard, Christa D.; Cetola, Jeffrey

    2012-01-01

    The NASA developed Land Information System (LIS) is the Air Force Weather Agency's (AFWA) operational Land Data Assimilation System (LDAS) combining real time precipitation observations and analyses, global forecast model data, vegetation, terrain, and soil parameters with the community Noah land surface model, along with other hydrology module options, to generate profile analyses of global soil moisture, soil temperature, and other important land surface characteristics. (1) A range of satellite data products and surface observations used to generate the land analysis products (2) Global, 1/4 deg spatial resolution (3) Model analysis generated at 3 hours. AFWA recognizes the importance of operational benchmarking and uncertainty characterization for land surface modeling and is developing standard methods, software, and metrics to verify and/or validate LIS output products. To facilitate this and other needs for land analysis activities at AFWA, the Model Evaluation Toolkit (MET) -- a joint product of the National Center for Atmospheric Research Developmental Testbed Center (NCAR DTC), AFWA, and the user community -- and the Land surface Verification Toolkit (LVT), developed at the Goddard Space Flight Center (GSFC), have been adapted to operational benchmarking needs of AFWA's land characterization activities.

  16. Operating capability and current status of the reactivated NASA Lewis Research Center Hypersonic Tunnel Facility

    NASA Technical Reports Server (NTRS)

    Thomas, Scott R.; Trefny, Charles J.; Pack, William D.

    1995-01-01

    The NASA Lewis Research Center's Hypersonic Tunnel Facility (HTF) is a free-jet, blowdown propulsion test facility that can simulate up to Mach-7 flight conditions with true air composition. Mach-5, -6, and -7 nozzles, each with a 42 inch exit diameter, are available. Previously obtained calibration data indicate that the test flow uniformity of the HTF is good. The facility, without modifications, can accommodate models approximately 10 feet long. The test gas is heated using a graphite core induction heater that generates a nonvitiated flow. The combination of clean-air, large-scale, and Mach-7 capabilities is unique to the HTF and enables an accurate propulsion performance determination. The reactivation of the HTF, in progress since 1990, includes refurbishing the graphite heater, the steam generation plant, the gaseous oxygen system, and all control systems. All systems were checked out and recertified, and environmental systems were upgraded to meet current standards. The data systems were also upgraded to current standards and a communication link with NASA-wide computers was added. In May 1994, the reactivation was complete, and an integrated systems test was conducted to verify facility operability. This paper describes the reactivation, the facility status, the operating capabilities, and specific applications of the HTF.

  17. Data Processing Center of Radioastron Project: 3 years of operation.

    NASA Astrophysics Data System (ADS)

    Shatskaya, Marina

    ASC DATA PROCESSING CENTER (DPC) of Radioastron Project is a fail-safe complex centralized system of interconnected software/ hardware components along with organizational procedures. Tasks facing of the scientific data processing center are organization of service information exchange, collection of scientific data, storage of all of scientific data, data science oriented processing. DPC takes part in the informational exchange with two tracking stations in Pushchino (Russia) and Green Bank (USA), about 30 ground telescopes, ballistic center, tracking headquarters and session scheduling center. Enormous flows of information go to Astro Space Center. For the inquiring of enormous data volumes we develop specialized network infrastructure, Internet channels and storage. The computer complex has been designed at the Astro Space Center (ASC) of Lebedev Physical Institute and includes: - 800 TB on-line storage, - 2000 TB hard drive archive, - backup system on magnetic tapes (2000 TB); - 24 TB redundant storage at Pushchino Radio Astronomy Observatory; - Web and FTP servers, - DPC management and data transmission networks. The structure and functions of ASC Data Processing Center are fully adequate to the data processing requirements of the Radioastron Mission and has been successfully confirmed during Fringe Search, Early Science Program and first year of Key Science Program.

  18. Activities During Spacelab-J Mission at Payload Operations and Control Center

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The group of Japanese researchers of the Spacelab-J (SL-J) were thumbs-up in the Payload Operations Control Center (POCC) at the Marshall Space Flight Center after the successful launch of Space Shuttle Orbiter Endeavour that carried their experiments. The SL-J was a joint mission of NASA and the National Space Development Agency of Japan (NASDA) utilizing a marned Spacelab module. The mission conducted microgravity investigations in materials and life sciences. Materials science investigations covered such fields as biotechnology, electronic materials, fluid dynamics and transport phenomena, glasses and ceramics, metals and alloys, and acceleration measurements. Life sciences included experiments on human health, cell separation and biology, developmental biology, animal and human physiology and behavior, space radiation, and biological rhythms. Test subjects included the crew, Japanese koi fish (carp), cultured animal and plant cells, chicken embryos, fruit flies, fungi and plant seeds, frogs, and frog eggs. The POCC was the air/ground communications channel between the astronauts and ground control teams during the Spacelab missions. The Spacelab science operations were a cooperative effort between the science astronaut crew in orbit and their colleagues in the POCC. Spacelab-J was launched aboard the Space Shuttle Orbiter Endeavour on September 12, 1992.

  19. A Concept for Robust, High Density Terminal Air Traffic Operations

    NASA Technical Reports Server (NTRS)

    Isaacson, Douglas R.; Robinson, John E.; Swenson, Harry N.; Denery, Dallas G.

    2010-01-01

    This paper describes a concept for future high-density, terminal air traffic operations that has been developed by interpreting the Joint Planning and Development Office s vision for the Next Generation (NextGen) Air Transportation System and coupling it with emergent NASA and other technologies and procedures during the NextGen timeframe. The concept described in this paper includes five core capabilities: 1) Extended Terminal Area Routing, 2) Precision Scheduling Along Routes, 3) Merging and Spacing, 4) Tactical Separation, and 5) Off-Nominal Recovery. Gradual changes are introduced to the National Airspace System (NAS) by phased enhancements to the core capabilities in the form of increased levels of automation and decision support as well as targeted task delegation. NASA will be evaluating these conceptual technological enhancements in a series of human-in-the-loop simulations and will accelerate development of the most promising capabilities in cooperation with the FAA through the Efficient Flows Into Congested Airspace Research Transition Team.

  20. Fatigue and associated performance decrements in air transport operations

    NASA Technical Reports Server (NTRS)

    Lyman, E. G.; Orlady, H. W.

    1981-01-01

    A study of safety reports was conducted to examine the hypothesis that fatigue and associated performance decrements occur in air transport operations, and that these are associated with some combination of factors: circadian desynchronosis, duty time; pre-duty activity; sleep; work scheduling; workload; and environmental deprivation. The findings are based on a selected sample of reported incidents in which the reporter associated fatigue with the occurrence. In comparing the fatigue reports with a control set, significant performance decrements were found to exist related to time-of-day, awareness and attention to duty, less significantly, final phases of flights. The majority of the fatigue incidents involved such unsafe events as altitude deviations, takeoffs and landing without clearance, and the like. Considerations of duty and sleep are the major factors in the reported fatigue conditions.

  1. Meteorological regimes for the classification of aerospace air quality predictions for NASA-Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Stephens, J. B.; Sloan, J. C.

    1976-01-01

    A method is described for developing a statistical air quality assessment for the launch of an aerospace vehicle from the Kennedy Space Center in terms of existing climatological data sets. The procedure can be refined as developing meteorological conditions are identified for use with the NASA-Marshall Space Flight Center Rocket Exhaust Effluent Diffusion (REED) description. Classical climatological regimes for the long range analysis can be narrowed as the synoptic and mesoscale structure is identified. Only broad synoptic regimes are identified at this stage of analysis. As the statistical data matrix is developed, synoptic regimes will be refined in terms of the resulting eigenvectors as applicable to aerospace air quality predictions.

  2. A-Train Data for Assessing Air Quality From the Atmospheric Science Data Center

    NASA Astrophysics Data System (ADS)

    Hunt, L. A.

    2008-05-01

    archive and distribution center for data from the TES instrument. The TES instrument is a high-resolution imaging infrared Fourier-transform spectrometer that operates in both nadir and limb-sounding modes. TES standard Level 2 data products include global-scale vertical profile and total column measurements of ozone, water vapor, HDO, carbon monoxide, methane, and nitric acid for 16 orbits every other day. Additional products include atmospheric temperature profiles, surface temperatures, and land surface emissivity. A recent reprocessing effort has produced a new version of the data which includes additional limb species and a new summary product. In the past year, Level 3 TES products have been released which provide daily or monthly global survey chemical species data interpolated onto a global latitude/longitude grid at selected pressure levels. Browse images for the Level 3 and associated Level 2 data are available with these new Level 3 products. Between global surveys, TES can make special observations using its ability to point at a specific location for a few minutes on any given orbit. This capability is used for targets such as gas-emitting volcanoes, for regional air quality studies, and in conjunction with field campaigns. The ASDC provides data access, services and tools for over 40 projects in the discipline areas of Earth's radiation budget, clouds, aerosols and tropospheric chemistry. Additional information is available from our web site, http://eosweb.larc.nasa.gov.

  3. 76 FR 12730 - Clean Air Act Operating Permit Program; Objection to State Operating Permit for U.S. Steel...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-08

    ... From the Federal Register Online via the Government Publishing Office ENVIRONMENTAL PROTECTION AGENCY Clean Air Act Operating Permit Program; Objection to State Operating Permit for U.S. Steel-Granite.... Steel--Granite City Works (USS). Sections 307(b) and 505(b)(2) of the Clean Air Act (Act) provide that...

  4. 77 FR 59186 - Clean Air Act Operating Permit Program; Petition for Objection to State Operating Permit for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-26

    ..., 2011, and submitted by the Environmental Integrity Project and the Southern Alliance for Clean Energy... AGENCY Clean Air Act Operating Permit Program; Petition for Objection to State Operating Permit for...: Pursuant to Clean Air Act (CAA) Section 505(b)(2), the EPA Administrator signed an Order, dated August...

  5. 14 CFR 203.5 - Compliance as condition on operations in air transportation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Compliance as condition on operations in... DEFENSES § 203.5 Compliance as condition on operations in air transportation. It shall be a condition on... 18900 as fully as if that air carrier or foreign air carrier had in fact filed a properly...

  6. 14 CFR 203.5 - Compliance as condition on operations in air transportation.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Compliance as condition on operations in... DEFENSES § 203.5 Compliance as condition on operations in air transportation. It shall be a condition on... 18900 as fully as if that air carrier or foreign air carrier had in fact filed a properly...

  7. 14 CFR 203.5 - Compliance as condition on operations in air transportation.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Compliance as condition on operations in... DEFENSES § 203.5 Compliance as condition on operations in air transportation. It shall be a condition on... 18900 as fully as if that air carrier or foreign air carrier had in fact filed a properly...

  8. 14 CFR 203.5 - Compliance as condition on operations in air transportation.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Compliance as condition on operations in... DEFENSES § 203.5 Compliance as condition on operations in air transportation. It shall be a condition on... 18900 as fully as if that air carrier or foreign air carrier had in fact filed a properly...

  9. 42 CFR 84.142 - Air supply source; hand-operated or motor driven air blowers; Type A supplied-air respirators...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Air supply source; hand-operated or motor driven air blowers; Type A supplied-air respirators; minimum requirements. 84.142 Section 84.142 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL...

  10. 78 FR 10608 - David Grant United States Air Force Medical Center Specialty Care Travel Reimbursement...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-14

    ... appropriately trained provider within 4 weeks or sooner, if required, and within 1-hour travel time from the beneficiary's residence. The geographic area that represents 1-hour travel time surrounding an MTF is referred... of the Secretary David Grant United States Air Force Medical Center Specialty Care...

  11. Air Route Traffic Control Center. Controller Over-The-Shoulder Training Review: Instruction Manual.

    ERIC Educational Resources Information Center

    Federal Aviation Administration (DOT), Washington, DC.

    The instruction manual provides 12 step-by-step instructions for air traffic control supervisors in conducting over-the-shoulder training observations of enroute center controllers. Since the primary purpose of the review is to quickly identify training needs and requirements, the control responsibilities are approached from a deficiency…

  12. Informational webinar for EPA STAR RFA on "Air, Climate and Energy (ACE) Centers: Science Supporting Solutions"

    EPA Science Inventory

    The purpose of this webinar presentation is to discuss the application process and required elements for the Air, Climate and Energy (ACE) Centers: Science Supporting Solutions RFA. EPA is seeking research on the development of sound science to systematically inform policy makers...

  13. Regional Data Assimilation of AIRS Profiles and Radiances at the SPoRT Center

    NASA Technical Reports Server (NTRS)

    Zavodsky, Brad; Chou, Shih-hung; Jedlovec, Gary

    2009-01-01

    This slide presentation reviews the Short Term Prediction Research and Transition (SPoRT) Center's mission to improve short-term weather prediction at the regional and local scale. It includes information on the cold bias in Weather Research and Forcasting (WRF), troposphere recordings from the Atmospheric Infrared Sounder (AIRS), and vertical resolution of analysis grid.

  14. Options for organization and operation of space applications transfer centers

    NASA Technical Reports Server (NTRS)

    Robinson, A. C.; Madigan, J. A.

    1976-01-01

    The benefits of developing regional facilities for transfer of NASA developed technology are discussed. These centers are designed to inform, persuade, and serve users. Included will be equipment for applications and demonstrations of the processes, a library, training facilities, and meeting rooms. The staff will include experts in the various techniques, as well as personnel involved in finding and persuading potential users.

  15. Improving operating room performance in a center of excellence.

    PubMed

    Young, David W

    2004-08-01

    The financial success of centers of excellence typically depends on effective utilization of the OR. Therefore, it's important to align the strategy, structure, information and reporting systems, culture, and behavior of both entities. Moving from management based on anecdote to a data-driven process can enhance the quality of decision-making. PMID:15372812

  16. Operative center of the geophysical prognosis in Izmiran

    NASA Astrophysics Data System (ADS)

    Belov, A. V.; Gaidash, S. P.; Kanonidi, K. D.; Kanonidi, K. K.; Kuznetsov, V. D.; Eroshenko, E. A.

    2005-11-01

    IZMIRAN was founded about 65 years ago with one of the goals of carrying out geomagnetic prognoses. More or less, this activity has been developed during its entire history, but about 6 years ago this aim became sufficiently feasible due to the organization of the Forecasting Center of helio-geo-physical conditions. This Center appeared in response to new technologies, numerous new data available and new social demand. The Center uses the extended experimental basis of IZMIRAN and all available Internet sources. Its main tasks consist of continuous monitoring of the processes at the Sun and in the near-Earth environment, development of different kinds of prognoses and delivering them to users. The main product is a short-term (1-6 days) prognosis of geomagnetic activity (mainly daily Ap-index and maximum Kp-index), a long-term (from weeks to years) prognosis and detailed forecasting on the special fixed dates. Among its consumers it is worth mentioning the Russian Space Agency, the Russian Ministry of Civil Defense, Emergencies and Disaster Relief, railway departments, a number of medical institutions, and mass media. In this work we discuss some activities of the Center, along with presenting several examples of the real influence of geomagnetic disturbances on different sides of human activity. Our six years of experience show a growing interest in prognoses of this type and this tendency seems to be retained.

  17. Operant Strategies with Delinquents at the Kennedy Youth Center.

    ERIC Educational Resources Information Center

    Wotkiewicz, Helen; Minor, John A.

    This paper describes a portion of the Kennedy Youth Center program concerned with motivating previously intractable sociopathic youths in the academic and industrial arts schools. Male delinquents considered uneducable in traditional education programs, have been advanced two years in the one year they spent as participants in the differential…

  18. Operational air quality forecast guidance for the United States

    NASA Astrophysics Data System (ADS)

    Stajner, Ivanka; Lee, Pius; Tong, Daniel; Pan, Li; McQueen, Jeff; Huang, Jinaping; Djalalova, Irina; Wilczak, James; Huang, Ho-Chun; Wang, Jun; Stein, Ariel; Upadhayay, Sikchya

    2016-04-01

    NOAA provides operational air quality predictions for ozone and wildfire smoke over the United States (U.S.) and predictions of airborne dust over the contiguous 48 states at http://airquality.weather.gov. These predictions are produced using U.S. Environmental Protection Agency (EPA) Community Model for Air Quality (CMAQ) and NOAA's HYSPLIT model (Stein et al., 2015) with meteorological inputs from the North American Mesoscale Forecast System (NAM). The current efforts focus on improving test predictions of fine particulate matter (PM2.5) from CMAQ. Emission inputs for ozone and PM2.5 predictions include inventory information from the U.S. EPA and recently added contributions of particulate matter from intermittent wildfires and windblown dust that rely on near real-time information. Current testing includes refinement of the vertical grid structure in CMAQ and inclusion of contributions of dust transport from global sources into the U.S. domain using the NEMS Global Aerosol Capability (NGAC). The addition of wildfire smoke and dust contributions in CMAQ reduced model underestimation of PM2.5 in summertime. Wintertime overestimation of PM2.5 was reduced by suppressing emissions of soil particles when the terrain is covered by snow or ice. Nevertheless, seasonal biases and biases in the diurnal cycle of PM2.5 are still substantial. Therefore, a new bias correction procedure based on an analog ensemble approach was introduced (Djalalova et al., 2015). It virtually eliminates biases in monthly means or in the diurnal cycle, but it also reduces day-to-day variability in PM2.5 predictions. Refinements to the bias correction procedure are being developed. Upgrades for the representation of wildfire smoke emissions within the domain and from global sources are in testing. Another area of active development includes approaches to scale emission inventories for nitrogen oxides in order to reproduce recent changes observed by the AirNow surface monitoring network and by

  19. Rome Air Development Center Air Force technical objective document fiscal year 1987

    NASA Astrophysics Data System (ADS)

    1985-12-01

    This TOD describes the RADC technical programs in support of the Air Force Command, Control, Communications, and Intelligence (C3I) mission. The technical objectives have been aligned with the VANGUARD mission areas of Command, Control, and Communications (C3), Reconnaissance and Intelligence, Strategic Systems (Defense) and Technology as a means of focusing the RADC support of VANGUARD. This document is prepared to provide industry and universities with the midterm technical objectives in these areas.

  20. A Peak Wind Probability Forecast Tool for Kennedy Space Center and Cape Canaveral Air Force Station

    NASA Technical Reports Server (NTRS)

    Crawford, Winifred; Roeder, William

    2008-01-01

    This conference abstract describes the development of a peak wind forecast tool to assist forecasters in determining the probability of violating launch commit criteria (LCC) at Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS) in east-central Florida. The peak winds are an important forecast element for both the Space Shuttle and Expendable Launch Vehicle (ELV) programs. The LCC define specific peak wind thresholds for each launch operation that cannot be exceeded in order to ensure the safety of the vehicle. The 45th Weather Squadron (45 WS) has found that peak winds are a challenging parameter to forecast, particularly in the cool season months of October through April. Based on the importance of forecasting peak winds, the 45 WS tasked the Applied Meteorology Unit (AMU) to develop a short-range peak-wind forecast tool to assist in forecasting LCC violatioas.The tool will include climatologies of the 5-minute mean end peak winds by month, hour, and direction, and probability distributions of the peak winds as a function of the 5-minute mean wind speeds.

  1. A BATTERY-OPERATED AIR SAMPLER FOR REMOTE AREAS

    EPA Science Inventory

    An air sampling system developed to evaluate air quality in biosphere reserves or in other remote areas is described. The equipment consists of a Dupont P-4000 pump and a specially designed battery pack containing Gates batteries. This air sampling system was tested in Southern U...

  2. Baseline meteorological soundings for parametric environmental investigations at Kennedy Space Center and Vandenberg Air Force Base

    NASA Technical Reports Server (NTRS)

    Susko, M.; Stephens, J. B.

    1976-01-01

    Meteorological soundings representative of the atmospheric environment at the Kennedy Space Center, Florida and Vandenberg Air Force Base, California, are presented. Synthetic meteorological soundings at Kennedy Space Center, including fall, spring, and a sea breeze, and at Vandenberg Air Force Base (sea breeze with low and high level inversion and stationary upper level troughs) are shown. Soundings of frontal passages are listed. The Titan launch soundings at Kennedy Space Center present a wide range of meteorological conditions, both seasonal and time of day variations. The meteorological data input of altitude, wind speed, wind direction, temperature, and pressure may be used as meteorological inputs for the NASA/MSFC Multilayer Diffusion Model or other models to obtain quantitative estimates of effluent concentrations associated with the potential emission of major combustion products in the lower atmosphere to simulate actual launches of space vehicles. The Titan launch soundings are also of value in terms of rocket effluent measurements for analysis purposes.

  3. Guidelines and Ethical Considerations for Assessment Center Operations: International Task Force on Assessment Center Guidelines.

    ERIC Educational Resources Information Center

    Public Personnel Management, 2000

    2000-01-01

    This update of the International Personnel Management Association's guidelines for organizational psychologists, human resource management specialists, and others addresses elements of assessment centers, policy statements, assessor training, informed participation, and participants' rights. (SK)

  4. Air assist fuel nozzle reduces aircraft gas turbine engine emissions at idle operation

    NASA Technical Reports Server (NTRS)

    Briehl, D.; Papathakos, L. C.

    1972-01-01

    Reduction in unburned hydrocarbons from jet engine by use of air assist fuel nozzle is discussed. Operation of nozzle for improving combustion efficiency by improving fuel atomization is analyzed. Advantages to be achieved by air assist fuel nozzle are analyzed.

  5. AN OPERATIONAL EVALUATION OF THE ETA-CMAQ AIR QUALITY FORECAST MODEL

    EPA Science Inventory

    The National Oceanic and Atmospheric Administration (NOAA), in collaboration with the Environmental Protection Agency (EPA), are developing an Air Quality Forecasting Program that will eventually result in an operational Nationwide Air Quality Forecasting System. The initial pha...

  6. Operation of the EPRI nondestructive evaluation center: 1985 annual report

    SciTech Connect

    Nemzek, T.A.; Stone, R.M.; Ammirato, F.V.; Becker, F.L.; Krzywosz, K.; Pherigo, G.L.; Wilson, G.H. III

    1986-08-01

    This report describes the Electric Power Research Institute (EPRI) Nuclear Division funded nondestructive evaluation (NDE) project activities carried out at the EPRI NDE Center in 1985. The continuing objective of the Center is transfer of research and development results funded by EPRI and other related projects to useful field application. This is being accomplished by qualification and refinement of equipment and techniques, training under realistic conditions, and encouragement of greater involvement of the academic community in NDE education. Significant assistance has been provided to the nuclear utility industry under this project in the form of improved, field-ready equipment and procedures; critically needed assessments of inspection method capability; demonstrations of effectiveness of examination methods; rapid response for critical, short-term problems; and training for specific utility industry needs. This effort has specifically addressed steam generator, piping, steam turbine, and heavy section inspection problems.

  7. 23 CFR 752.8 - Privately operated information centers and systems.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 23 Highways 1 2012-04-01 2012-04-01 false Privately operated information centers and systems. 752.8 Section 752.8 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RIGHT-OF-WAY AND ENVIRONMENT LANDSCAPE AND ROADSIDE DEVELOPMENT § 752.8 Privately operated information centers...

  8. 23 CFR 752.8 - Privately operated information centers and systems.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 23 Highways 1 2013-04-01 2013-04-01 false Privately operated information centers and systems. 752.8 Section 752.8 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RIGHT-OF-WAY AND ENVIRONMENT LANDSCAPE AND ROADSIDE DEVELOPMENT § 752.8 Privately operated information centers...

  9. 23 CFR 752.8 - Privately operated information centers and systems.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 23 Highways 1 2014-04-01 2014-04-01 false Privately operated information centers and systems. 752.8 Section 752.8 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RIGHT-OF-WAY AND ENVIRONMENT LANDSCAPE AND ROADSIDE DEVELOPMENT § 752.8 Privately operated information centers...

  10. 23 CFR 752.8 - Privately operated information centers and systems.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 23 Highways 1 2011-04-01 2011-04-01 false Privately operated information centers and systems. 752.8 Section 752.8 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RIGHT-OF-WAY AND ENVIRONMENT LANDSCAPE AND ROADSIDE DEVELOPMENT § 752.8 Privately operated information centers...

  11. 20 CFR 670.525 - What residential support services must Job Corps center operators provide?

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 20 Employees' Benefits 4 2013-04-01 2013-04-01 false What residential support services must Job Corps center operators provide? 670.525 Section 670.525 Employees' Benefits EMPLOYMENT AND TRAINING ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) THE JOB CORPS UNDER TITLE I OF THE WORKFORCE INVESTMENT ACT Program Activities and Center Operations...

  12. 20 CFR 670.525 - What residential support services must Job Corps center operators provide?

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 20 Employees' Benefits 4 2012-04-01 2012-04-01 false What residential support services must Job Corps center operators provide? 670.525 Section 670.525 Employees' Benefits EMPLOYMENT AND TRAINING ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) THE JOB CORPS UNDER TITLE I OF THE WORKFORCE INVESTMENT ACT Program Activities and Center Operations...

  13. 20 CFR 670.525 - What residential support services must Job Corps center operators provide?

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 20 Employees' Benefits 4 2014-04-01 2014-04-01 false What residential support services must Job Corps center operators provide? 670.525 Section 670.525 Employees' Benefits EMPLOYMENT AND TRAINING ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) THE JOB CORPS UNDER TITLE I OF THE WORKFORCE INVESTMENT ACT Program Activities and Center Operations...

  14. 20 CFR 670.525 - What residential support services must Job Corps center operators provide?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false What residential support services must Job Corps center operators provide? 670.525 Section 670.525 Employees' Benefits EMPLOYMENT AND TRAINING ADMINISTRATION, DEPARTMENT OF LABOR THE JOB CORPS UNDER TITLE I OF THE WORKFORCE INVESTMENT ACT Program Activities and Center Operations § 670.525...

  15. 20 CFR 670.525 - What residential support services must Job Corps center operators provide?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 20 Employees' Benefits 3 2011-04-01 2011-04-01 false What residential support services must Job Corps center operators provide? 670.525 Section 670.525 Employees' Benefits EMPLOYMENT AND TRAINING ADMINISTRATION, DEPARTMENT OF LABOR THE JOB CORPS UNDER TITLE I OF THE WORKFORCE INVESTMENT ACT Program Activities and Center Operations § 670.525...

  16. 76 FR 3157 - Joint Operations Center Relocation Project, Sacramento County, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-19

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF THE INTERIOR Bureau of Reclamation Joint Operations Center Relocation Project, Sacramento County, CA AGENCY: Bureau of..., will prepare a joint EIS/EIR for the proposed Joint Operations Center (JOC) Relocation...

  17. Guidelines for Operation of Wyoming Summer Migrant Education Centers. Revised.

    ERIC Educational Resources Information Center

    Wyoming State Dept. of Education, Cheyenne.

    Instructions for administrators of Wyoming summer educational programs serving preschool through high school migrant students include guidelines for career education, responsibilities of program components, and staff job descriptions. Funds management, operational instructions, salary determinants, evaluation and recordkeeping requirements, and…

  18. A Near-Term Concept for Trajectory Based Operations with Air/Ground Data Link Communication

    NASA Technical Reports Server (NTRS)

    McNally, David; Mueller, Eric; Thipphavong, David; Paielli, Russell; Cheng, Jinn-Hwei; Lee, Chuhan; Sahlman, Scott; Walton, Joe

    2010-01-01

    An operating concept and required system components for trajectory-based operations with air/ground data link for today's en route and transition airspace is proposed. Controllers are fully responsible for separation as they are today, and no new aircraft equipage is required. Trajectory automation computes integrated solutions to problems like metering, weather avoidance, traffic conflicts and the desire to find and fly more time/fuel efficient flight trajectories. A common ground-based system supports all levels of aircraft equipage and performance including those equipped and not equipped for data link. User interface functions for the radar controller's display make trajectory-based clearance advisories easy to visualize, modify if necessary, and implement. Laboratory simulations (without human operators) were conducted to test integrated operation of selected system components with uncertainty modeling. Results are based on 102 hours of Fort Worth Center traffic recordings involving over 37,000 individual flights. The presence of uncertainty had a marginal effect (5%) on minimum-delay conflict resolution performance, and windfavorable routes had no effect on detection and resolution metrics. Flight plan amendments and clearances were substantially reduced compared to today s operations. Top-of-descent prediction errors are the largest cause of failure indicating that better descent predictions are needed to reliably achieve fuel-efficient descent profiles in medium to heavy traffic. Improved conflict detections for climbing flights could enable substantially more continuous climbs to cruise altitude. Unlike today s Conflict Alert, tactical automation must alert when an altitude amendment is entered, but before the aircraft starts the maneuver. In every other failure case tactical automation prevented losses of separation. A real-time prototype trajectory trajectory-automation system is running now and could be made ready for operational testing at an en route

  19. Educational Applications of Astronomy & Space Flight Operations at the Kennedy Space Center

    NASA Astrophysics Data System (ADS)

    Erickson, L. K.

    1999-09-01

    Within two years, the Kennedy Space Center will complete a total redesign of NASA's busiest Visitor's Center. Three million visitors per year will be witness to a new program focused on expanding the interests of the younger public in NASA's major space programs, in space operations, and in astronomy. This project, being developed through the Visitor's Center director, a NASA faculty fellow, and the Visitor's Center contractor, is centered on the interaction between NASA programs, the visiting youth, and their parents. The goal of the Center's program is to provide an appealing learning experience for teens and pre teens using stimulating displays and interactive exhibits that are also educational.

  20. Flight crew fatigue III: North Sea helicopter air transport operations.

    PubMed

    Gander, P H; Barnes, R M; Gregory, K B; Graeber, R C; Connell, L J; Rosekind, M R

    1998-09-01

    We studied 32 helicopter pilots before, during, and after 4-5 d trips from Aberdeen, Scotland, to service North Sea oil rigs. On duty days, subjects awoke 1.5 h earlier than pretrip or posttrip, after having slept nearly an hour less. Subjective fatigue was greater posttrip than pretrip. By the end of trip days, fatigue was greater and mood more negative than by the end of pretrip days. During trips, daily caffeine consumption increased 42%, reports of headache doubled, reports of back pain increased 12-fold, and reports of burning eyes quadrupled. In the cockpits studied, thermal discomfort and high vibration levels were common. Subjective workload during preflight, taxi, climb, and cruise was related to the crewmembers' ratings of the quality of the aircraft systems. During descent and approach, workload was affected by weather at the landing site. During landing, it was influenced by the quality of the landing site and air traffic control. Beginning duty later, and greater attention to aircraft comfort and maintenance, should reduce fatigue in these operations. PMID:9749937

  1. Bacterial plume emanating from the air surrounding swine confinement operations.

    PubMed

    Green, Christopher F; Gibbs, Shawn G; Tarwater, Patrick M; Mota, Linda C; Scarpino, Pasquale V

    2006-01-01

    The objective of this study was to evaluate the levels of bacteria in the air plume immediately upwind at 25 m and downwind at locations 25 m, 50 m, 100 m, and 150 m from a confined animal feeding operation (CAFO). It was hypothesized that this would give insight into determining the maximal distance that bacterial organisms release from a CAFO could travel, which would be important in determining the optimal siting distance for future CAFO in relation to high population areas. The Andersen two-stage sampler was used to collect all of the bacterial samples from the animal confinement facilities. The data show a marked increase in bacterial CFUs/m3 inside the facility (18,132 CFU/m3 average) versus upwind (63 CFU/m3 average) anda steady down wind decrease out to approximately 150 m. Staphylococcus aureus was found to account for 76% of the organisms recovered. We conclude that the optimal placement of a swine CAFO would be at least 200 m from a residential area. PMID:16482973

  2. 14 CFR Section 10 - Functional Classification-Operating Expenses of Group I Air Carriers

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Functional Classification-Operating... REPORTS FOR LARGE CERTIFICATED AIR CARRIERS Profit and Loss Classification Section 10 Functional Classification—Operating Expenses of Group I Air Carriers 5100Flying Operations. (a) This function shall...

  3. Federal Radiological Monitoring and Assessment Center Monitoring Manual Volume 1, Operations

    SciTech Connect

    NSTec Aerial Measurement Systems

    2012-07-31

    The Monitoring division is primarily responsible for the coordination and direction of: Aerial measurements to delineate the footprint of radioactive contaminants that have been released into the environment. Monitoring of radiation levels in the environment; Sampling to determine the extent of contaminant deposition in soil, water, air and on vegetation; Preliminary field analyses to quantify soil concentrations or depositions; and Environmental and personal dosimetry for FRMAC field personnel, during a Consequence Management Response Team (CMRT) and Federal Radiological Monitoring and Assessment Center (FRMAC) response. Monitoring and sampling techniques used during CM/FRMAC operations are specifically selected for use during radiological emergencies where large numbers of measurements and samples must be acquired, analyzed, and interpreted in the shortest amount of time possible. In addition, techniques and procedures are flexible so that they can be used during a variety of different scenarios; e.g., accidents involving releases from nuclear reactors, contamination by nuclear waste, nuclear weapon accidents, space vehicle reentries, or contamination from a radiological dispersal device. The Monitoring division also provides technicians to support specific Health and Safety Division activities including: The operation of the Hotline; FRMAC facility surveys; Assistance with Health and Safety at Check Points; and Assistance at population assembly areas which require support from the FRMAC. This volume covers deployment activities, initial FRMAC activities, development and implementation of the monitoring and assessment plan, the briefing of field teams, and the transfer of FRMAC to the EPA.

  4. Maintenance and operation of the US Alternative Fuel Center

    SciTech Connect

    Erwin, J.; Ferrill, J.L.; Hetrick, D.L.

    1994-08-01

    The Alternative Fuels Utilization Program (AFUP) of the Office of Energy Efficiency and Renewable Energy has investigated the possibilities and limitations of expanded scope of fuel alternatives and replacement means for transportation fuels from alternative sources. Under the AFUP, the Alternative Fuel Center (AFC) was created to solve problems in the DOE programs that were grappling with the utilization of shale oil and coal liquids for transportation fuels. This report covers the first year at the 3-year contract. The principal objective was to assist the AFUP in accomplishing its general goals with two new fuel initiatives selected for tasks in the project year: (1) Production of low-sulfur, low-olefin catalytically cracked gasoline blendstock; and (2) production of low-reactivity/low-emission gasoline. Supporting goals included maintaining equipment in good working order, performing reformulated gasoline tests, and meeting the needs of other government agencies and industries for fuel research involving custom processing, blending, or analysis of experimental fuels.

  5. Review and critique of April 10, 1985 exercise at the new NRC Operations Center

    SciTech Connect

    Laats, E.T.; Charlton, T.R.; Bryan, G.R.; Beelman, R.J.; Bray, M.A.; Bethke, G.A.; King, M.A.

    1985-07-01

    An emergency preparedness training exercise was conducted. Objectives of the exercise addressed how well the new Operations Center was utilized when responding to an incident at a nuclear power plant. The simulated accident portrayed a small (approx.75 gpm) leak from the Turkey Point Unit 3 primary coolant system, that led to radionuclide release that exceeded EPA guidelines at the site boundary. The Operation Center response was led by NRC Chairman Nunzio J. Palladino and the roles of the simulated power plant and other outside organizations were jointly portrayed by EG and G Idaho, COMEX Corporation and the NRC's Office of Inspection and Enforcement. Overall, the exercise was successful. The new Operations Center facility provided capabilities and services never before available, which significantly aided the performance of the Operations Center staff. The various teams that manned the Center performed credibly. Substantial improvement in team performance was noted over the past several exercises.

  6. 75 FR 145 - Clean Air Act Operating Permit Program; Petition for Objection to State Operating Permit for East...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-04

    ... regarding the EKPC Dale Station on November 24, 2008, requesting that EPA object to the title V operating... AGENCY Clean Air Act Operating Permit Program; Petition for Objection to State Operating Permit for East Kentucky Power Cooperative, Inc.-- William C. Dale Power Station; Clark County, KY AGENCY:...

  7. Responsibilities and practical limitations in the operation of an astronomical data center

    NASA Technical Reports Server (NTRS)

    Warren, W. H., Jr.; Mead, J. M.; Nagy, T. A.

    1982-01-01

    The operation of an astronomical data center requires that many decisions be made concerning the handling of the astronomical catalogs and data distributed. Should a data center be, as Wilkins (1977) described it, passive, in that catalogs and data are collected and distributed blackbox-wise upon request, or should a data center be active and have experts in various fields to scrutinize, correct, reformat, and document data where necessary. These questions will be addressed and illustrated by describing the current operations and future goals of the Astronomical Data Center at NASA/GSFC.

  8. Validation and Verification of the Operational Land Analysis Activities at the Air Force Weather Agency

    NASA Astrophysics Data System (ADS)

    Shaw, M.; Kumar, S.; Peters-Lidard, C. D.; Cetola, J.

    2011-12-01

    The importance of operational benchmarking and uncertainty characterization of land surface modeling can be clear upon considering the wide range of performance characteristics of numerical land surface models realizable through various combinations of factors. Such factors might include model physics and numerics, resolution, and forcing datasets used in operational implementation versus those that might have been involved in any prior development benchmarking. Of course, decisions concerning operational implementation may be better informed through more effective benchmarking of performance under various blends of such aforementioned operational factors. To facilitate this and other needs for land analysis activities at the Air Force Weather Agency (AFWA), the Model Evaluation Toolkit (MET) - a joint product of the National Center for Atmospheric Research Developmental Testbed Center (NCAR DTC), AFWA, and the user community - and the land information system (LIS) Verification Toolkit (LVT) - developed at the Goddard Space Flight Center (GSFC) - have been adapted to the operational benchmarking needs of AFWA's land characterization activities in order to compare the performance of new land modeling and related activities with that of previous activities as well as observational or analyzed datasets. In this talk, three examples of adaptations of MET and LVT to evaluation of LIS-related operations at AFWA will be presented. One example will include comparisons of new surface rainfall analysis capabilities, towards forcing of AFWA's LIS, with previous capabilities. Comparisons will be relative to retrieval-, model-, and measurement-based precipitation fields. Results generated via MET's grid-stat, neighborhood, wavelet, and object based evaluation (MODE) utilities adapted to AFWA's needs will be discussed. This example will be framed in the context of better informing optimal blends of land surface model (LSM) forcing data sources - namely precipitation data- under

  9. Point-of-care ultrasonography during rescue operations on board a Polish Medical Air Rescue helicopter.

    PubMed

    Darocha, Tomasz; Gałązkowski, Robert; Sobczyk, Dorota; Żyła, Zbigniew; Drwiła, Rafał

    2014-12-01

    Point-of-care ultrasound examination has been increasingly widely used in pre-hospital care. The use of ultrasound in rescue medicine allows for a quick differential diagnosis, identification of the most important medical emergencies and immediate introduction of targeted treatment. Performing and interpreting a pre-hospital ultrasound examination can improve the accuracy of diagnosis and thus reduce mortality. The authors' own experiences are presented in this paper, which consist in using a portable, hand-held ultrasound apparatus during rescue operations on board a Polish Medical Air Rescue helicopter. The possibility of using an ultrasound apparatus during helicopter rescue service allows for a full professional evaluation of the patient's health condition and enables the patient to be brought to a center with the most appropriate facilities for their condition. PMID:26674604

  10. Study and Development of an Air Conditioning System Operating on a Magnetic Heat Pump Cycle

    NASA Technical Reports Server (NTRS)

    Wang, Pao-Lien

    1991-01-01

    This report describes the design of a laboratory scale demonstration prototype of an air conditioning system operating on a magnetic heat pump cycle. Design parameters were selected through studies performed by a Kennedy Space Center (KSC) System Simulation Computer Model. The heat pump consists of a rotor turning through four magnetic fields that are created by permanent magnets. Gadolinium was selected as the working material for this demonstration prototype. The rotor was designed to be constructed of flat parallel disks of gadolinium with very little space in between. The rotor rotates in an aluminum housing. The laboratory scale demonstration prototype is designed to provide a theoretical Carnot Cycle efficiency of 62 percent and a Coefficient of Performance of 16.55.

  11. Automated Air Traffic Control Operations with Weather and Time-Constraints: A First Look at (Simulated) Far-Term Control Room Operations

    NASA Technical Reports Server (NTRS)

    Prevot, Thomas; Homola, Jeffrey R.; Martin, Lynne H.; Mercer, Joey S.; Cabrall, Christopher C.

    2011-01-01

    In this paper we discuss results from a recent high fidelity simulation of air traffic control operations with automated separation assurance in the presence of weather and time-constraints. We report findings from a human-in-the-loop study conducted in the Airspace Operations Laboratory (AOL) at the NASA Ames Research Center. During four afternoons in early 2010, fifteen active and recently retired air traffic controllers and supervisors controlled high levels of traffic in a highly automated environment during three-hour long scenarios, For each scenario, twelve air traffic controllers operated eight sector positions in two air traffic control areas and were supervised by three front line managers, Controllers worked one-hour shifts, were relieved by other controllers, took a 3D-minute break, and worked another one-hour shift. On average, twice today's traffic density was simulated with more than 2200 aircraft per traffic scenario. The scenarios were designed to create peaks and valleys in traffic density, growing and decaying convective weather areas, and expose controllers to heavy and light metering conditions. This design enabled an initial look at a broad spectrum of workload, challenge, boredom, and fatigue in an otherwise uncharted territory of future operations. In this paper we report human/system integration aspects, safety and efficiency results as well as airspace throughput, workload, and operational acceptability. We conclude that, with further refinements. air traffic control operations with ground-based automated separation assurance can be an effective and acceptable means to routinely provide very high traffic throughput in the en route airspace.

  12. Modifications to the Objective Lightning Probability Forecast Tool at Kennedy Space Center/Cape Canaveral Air Force Station, Florida

    NASA Technical Reports Server (NTRS)

    Crawford, Winifred; Roeder, William

    2010-01-01

    The 45th Weather Squadron (45 WS) at Cape Canaveral Air Force Station (CCAFS) includes the probability of lightning occurrence in their 24-Hour and Weekly Planning Forecasts, briefed at 0700 EDT for daily operations planning on Kennedy Space Center (KSC) and CCAFS. This forecast is based on subjective analyses of model and observational data and output from an objective tool developed by the Applied Meteorology Unit (AMU). This tool was developed over two phases (Lambert and Wheeler 2005, Lambert 2007). It consists of five equations, one for each warm season month (May-Sep), that calculate the probability of lightning occurrence for the day and a graphical user interface (GUI) to display the output. The Phase I and II equations outperformed previous operational tools by a total of 56%. Based on this success, the 45 WS tasked the AMU with Phase III to improve the tool further.

  13. Update to the Lightning Probability Forecast Equations at Kennedy Space Center/Cape Canaveral Air Force Station, Florida

    NASA Technical Reports Server (NTRS)

    Lambert, Winifred; Roeder, William

    2007-01-01

    This conference presentation describes the improvement of a set of lightning probability forecast equations that are used by the 45th Weather Squadron forecasters for their daily 1100 UTC (0700 EDT) weather briefing during the warm season months of May- September. This information is used for general scheduling of operations at Cape Canaveral Air Force Station and Kennedy Space Center. Forecasters at the Spaceflight Meteorology Group also make thunderstorm forecasts during Shuttle flight operations. Five modifications were made by the Applied Meteorology Unit: increased the period of record from 15 to 17 years, changed the method of calculating the flow regime of the day, calculated a new optimal layer relative humidity, used a new smoothing technique for the daily climatology, and used a new valid area. The test results indicated that the modified equations showed and increase in skill over the current equations, good reliability, and an ability to distinguish between lightning and non-lightning days.

  14. Update to the Lightning Probability Forecast Equations at Kennedy Space Center/Cape Canaveral Air Force Station, Florida

    NASA Technical Reports Server (NTRS)

    Lambert, Winifred; Roeder, William

    2007-01-01

    This conference presentation describes the improvement of a set of lightning probability forecast equations that are used by the 45th Weather Squadron forecasters for their daily 1100 UTC (0700 EDT) weather briefing during the warm season months of May-September. This information is used for general scheduling of operations at Cape Canaveral Air Force Station and Kennedy Space Center. Forecasters at the Spaceflight Meteorology Group also make thunderstorm forecasts during Shuttle flight operations. Five modifications were made by the Applied Meteorology Unit: increased the period of record from 15 to 17 years, changed the method of calculating the flow regime of the day, calculated a new optimal layer relative humidity, used a new smoothing technique for the daily climatology, and used a new valid area. The test results indicated that the modified equations showed and increase in skill over the current equations, good reliability, and an ability to distinguish between lightning and non-lightning days.

  15. Field Operations and Enforcement Manual for Air Pollution Control. Volume I: Organization and Basic Procedures.

    ERIC Educational Resources Information Center

    Weisburd, Melvin I.

    The Field Operations and Enforcement Manual for Air Pollution Control, Volume I, explains in detail the following: sources and classification of pollutants; meteorological influence on air quality; the air pollution control agency; the field enforcement officer; the enforcement process; prosecuting violation; and inspection techniques including…

  16. Forecasting Cool Season Daily Peak Winds at Kennedy Space Center and Cape Canaveral Air Force Station

    NASA Technical Reports Server (NTRS)

    Barrett, Joe, III; Short, David; Roeder, William

    2008-01-01

    The expected peak wind speed for the day is an important element in the daily 24-Hour and Weekly Planning Forecasts issued by the 45th Weather Squadron (45 WS) for planning operations at Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS). The morning outlook for peak speeds also begins the warning decision process for gusts ^ 35 kt, ^ 50 kt, and ^ 60 kt from the surface to 300 ft. The 45 WS forecasters have indicated that peak wind speeds are a challenging parameter to forecast during the cool season (October-April). The 45 WS requested that the Applied Meteorology Unit (AMU) develop a tool to help them forecast the speed and timing of the daily peak and average wind, from the surface to 300 ft on KSC/CCAFS during the cool season. The tool must only use data available by 1200 UTC to support the issue time of the Planning Forecasts. Based on observations from the KSC/CCAFS wind tower network, surface observations from the Shuttle Landing Facility (SLF), and CCAFS upper-air soundings from the cool season months of October 2002 to February 2007, the AMU created multiple linear regression equations to predict the timing and speed of the daily peak wind speed, as well as the background average wind speed. Several possible predictors were evaluated, including persistence, the temperature inversion depth, strength, and wind speed at the top of the inversion, wind gust factor (ratio of peak wind speed to average wind speed), synoptic weather pattern, occurrence of precipitation at the SLF, and strongest wind in the lowest 3000 ft, 4000 ft, or 5000 ft. Six synoptic patterns were identified: 1) surface high near or over FL, 2) surface high north or east of FL, 3) surface high south or west of FL, 4) surface front approaching FL, 5) surface front across central FL, and 6) surface front across south FL. The following six predictors were selected: 1) inversion depth, 2) inversion strength, 3) wind gust factor, 4) synoptic weather pattern, 5) occurrence of

  17. Selection of the air heat exchanger operating in a gas turbine air bottoming cycle

    NASA Astrophysics Data System (ADS)

    Chmielniak, Tadeusz; Czaja, Daniel; Lepszy, Sebastian

    2013-12-01

    A gas turbine air bottoming cycle consists of a gas turbine unit and the air turbine part. The air part includes a compressor, air expander and air heat exchanger. The air heat exchanger couples the gas turbine to the air cycle. Due to the low specific heat of air and of the gas turbine exhaust gases, the air heat exchanger features a considerable size. The bigger the air heat exchanger, the higher its effectiveness, which results in the improvement of the efficiency of the gas turbine air bottoming cycle. On the other hand, a device with large dimensions weighs more, which may limit its use in specific locations, such as oil platforms. The thermodynamic calculations of the air heat exchanger and a preliminary selection of the device are presented. The installation used in the calculation process is a plate heat exchanger, which is characterized by a smaller size and lower values of the pressure drop compared to the shell and tube heat exchanger. Structurally, this type of the heat exchanger is quite similar to the gas turbine regenerator. The method on which the calculation procedure may be based for real installations is also presented, which have to satisfy the economic criteria of financial profitability and cost-effectiveness apart from the thermodynamic criteria.

  18. Operational test report for 241-AW tank inlet air control stations

    SciTech Connect

    Minteer, D.J., Westinghouse Hanford

    1996-07-03

    This document reports the results of operational testing on tank inlet air control stations in 241-AW tank farm. An air control station was installed on each of the six AW tanks. Operational testing consisted of a simple functional test of each station`s air flow controller, aerosol testing of each station`s HEPA filter, and final ventilation system balancing (i.e., tank airflows and vacuum level) using the air control stations. The test was successful and the units were subsequently placed into operation.

  19. 14 CFR 375.50 - Transit flights; scheduled international air service operations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Transit flights; scheduled international... WITHIN THE UNITED STATES Transit Flights § 375.50 Transit flights; scheduled international air service operations. (a) Requirement of notice. Scheduled international air services proposed to be operated...

  20. 30 CFR 71.205 - Approved sampling devices; operation; air flowrate.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Approved sampling devices; operation; air... OF UNDERGROUND COAL MINES Sampling Procedures § 71.205 Approved sampling devices; operation; air... flowrate as prescribed by the Secretary and the Secretary of Health and Human Services for the...

  1. 30 CFR 90.205 - Approved sampling devices; operation; air flowrate.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Approved sampling devices; operation; air... DEVELOPMENT OF PNEUMOCONIOSIS Sampling Procedures § 90.205 Approved sampling devices; operation; air flowrate... flowrate as prescribed by the Secretary and the Secretary of Health and Human Services for the...

  2. 30 CFR 90.205 - Approved sampling devices; operation; air flowrate.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Approved sampling devices; operation; air... DEVELOPMENT OF PNEUMOCONIOSIS Sampling Procedures § 90.205 Approved sampling devices; operation; air flowrate... flowrate as prescribed by the Secretary and the Secretary of Health and Human Services for the...

  3. 30 CFR 70.205 - Approved sampling devices; operation; air flowrate.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Approved sampling devices; operation; air... § 70.205 Approved sampling devices; operation; air flowrate. (a) Sampling devices approved in... Secretary of Health and Human Services for the particular device. (b) Except as provided in paragraph (d)...

  4. 30 CFR 71.205 - Approved sampling devices; operation; air flowrate.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Approved sampling devices; operation; air... OF UNDERGROUND COAL MINES Sampling Procedures § 71.205 Approved sampling devices; operation; air... flowrate as prescribed by the Secretary and the Secretary of Health and Human Services for the...

  5. 30 CFR 70.205 - Approved sampling devices; operation; air flowrate.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Approved sampling devices; operation; air... § 70.205 Approved sampling devices; operation; air flowrate. (a) Sampling devices approved in... Secretary of Health and Human Services for the particular device. (b) Except as provided in paragraph (d)...

  6. 30 CFR 70.205 - Approved sampling devices; operation; air flowrate.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Approved sampling devices; operation; air... § 70.205 Approved sampling devices; operation; air flowrate. (a) Sampling devices approved in... Secretary of Health and Human Services for the particular device. (b) Except as provided in paragraph (d)...

  7. 30 CFR 90.205 - Approved sampling devices; operation; air flowrate.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Approved sampling devices; operation; air... DEVELOPMENT OF PNEUMOCONIOSIS Sampling Procedures § 90.205 Approved sampling devices; operation; air flowrate... flowrate as prescribed by the Secretary and the Secretary of Health and Human Services for the...

  8. 30 CFR 70.205 - Approved sampling devices; operation; air flowrate.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Approved sampling devices; operation; air... § 70.205 Approved sampling devices; operation; air flowrate. (a) Sampling devices approved in... Secretary of Health and Human Services for the particular device. (b) Except as provided in paragraph (d)...

  9. 30 CFR 71.205 - Approved sampling devices; operation; air flowrate.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Approved sampling devices; operation; air... OF UNDERGROUND COAL MINES Sampling Procedures § 71.205 Approved sampling devices; operation; air... flowrate as prescribed by the Secretary and the Secretary of Health and Human Services for the...

  10. 30 CFR 71.205 - Approved sampling devices; operation; air flowrate.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Approved sampling devices; operation; air... OF UNDERGROUND COAL MINES Sampling Procedures § 71.205 Approved sampling devices; operation; air... flowrate as prescribed by the Secretary and the Secretary of Health and Human Services for the...

  11. 30 CFR 71.205 - Approved sampling devices; operation; air flowrate.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Approved sampling devices; operation; air... OF UNDERGROUND COAL MINES Sampling Procedures § 71.205 Approved sampling devices; operation; air... flowrate as prescribed by the Secretary and the Secretary of Health and Human Services for the...

  12. 30 CFR 90.205 - Approved sampling devices; operation; air flowrate.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Approved sampling devices; operation; air... DEVELOPMENT OF PNEUMOCONIOSIS Sampling Procedures § 90.205 Approved sampling devices; operation; air flowrate... flowrate as prescribed by the Secretary and the Secretary of Health and Human Services for the...

  13. 30 CFR 70.205 - Approved sampling devices; operation; air flowrate.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Approved sampling devices; operation; air... § 70.205 Approved sampling devices; operation; air flowrate. (a) Sampling devices approved in... Secretary of Health and Human Services for the particular device. (b) Except as provided in paragraph (d)...

  14. 14 CFR 375.50 - Transit flights; scheduled international air service operations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Transit flights; scheduled international... WITHIN THE UNITED STATES Transit Flights § 375.50 Transit flights; scheduled international air service operations. (a) Requirement of notice. Scheduled international air services proposed to be operated...

  15. 14 CFR 375.50 - Transit flights; scheduled international air service operations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Transit flights; scheduled international... WITHIN THE UNITED STATES Transit Flights § 375.50 Transit flights; scheduled international air service operations. (a) Requirement of notice. Scheduled international air services proposed to be operated...

  16. 14 CFR 375.50 - Transit flights; scheduled international air service operations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Transit flights; scheduled international... WITHIN THE UNITED STATES Transit Flights § 375.50 Transit flights; scheduled international air service operations. (a) Requirement of notice. Scheduled international air services proposed to be operated...

  17. Operational readiness for the Atmospheric Infrared Sounder (AIRS) on the earth observing system aqua spacecraft

    NASA Technical Reports Server (NTRS)

    Pagano, T.; Aumann, H.; Chahine, M.; Karnik, A.; Goodson, G.; Schindler, R.; Elliot, D. A.; Hofstadter, M.

    2001-01-01

    This paper describes the AIRS science objectives, the instrument design and operation, the in-flight operational scenario, and the calibration plan. All aspects of the program are addressed here to demonstrate that the AIRS program is ready to transition to the flight segment of the program.

  18. 14 CFR 375.50 - Transit flights; scheduled international air service operations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Transit flights; scheduled international... WITHIN THE UNITED STATES Transit Flights § 375.50 Transit flights; scheduled international air service operations. (a) Requirement of notice. Scheduled international air services proposed to be operated...

  19. 49 CFR 232.107 - Air source requirements and cold weather operations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Air source requirements and cold weather... source requirements and cold weather operations. (a) Monitoring plans for yard air sources. (1) A... to the equipment and territory of that railroad to cover safe train operations during cold...

  20. 49 CFR 232.107 - Air source requirements and cold weather operations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Air source requirements and cold weather... source requirements and cold weather operations. (a) Monitoring plans for yard air sources. (1) A... to the equipment and territory of that railroad to cover safe train operations during cold...

  1. 49 CFR 232.107 - Air source requirements and cold weather operations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Air source requirements and cold weather... source requirements and cold weather operations. (a) Monitoring plans for yard air sources. (1) A... to the equipment and territory of that railroad to cover safe train operations during cold...

  2. 49 CFR 232.107 - Air source requirements and cold weather operations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Air source requirements and cold weather... source requirements and cold weather operations. (a) Monitoring plans for yard air sources. (1) A... to the equipment and territory of that railroad to cover safe train operations during cold...

  3. 49 CFR 232.107 - Air source requirements and cold weather operations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Air source requirements and cold weather... source requirements and cold weather operations. (a) Monitoring plans for yard air sources. (1) A... to the equipment and territory of that railroad to cover safe train operations during cold...

  4. NASA Dryden Flight Research Center: Unmanned Aircraft Operations

    NASA Technical Reports Server (NTRS)

    Pestana, Mark

    2010-01-01

    This slide presentation reviews several topics related to operating unmanned aircraft in particular sharing aspects of unmanned aircraft from the perspective of a pilot. There is a section on the Global Hawk project which contains information about the first Global Hawk science mission, (i.e., Global Hawk Pacific (GloPac). Included in this information is GloPac science highlights, a listing of the GloPac Instruments. The second Global Hawk science mission was Genesis and Rapid Intensification Process (GRIP), for the NASA Hurricane Science Research Team. Information includes the instrumentation and the flights that were undertaken during the program. A section on Ikhana is next. This section includes views of the Ground Control Station (GCS), and a discussion of how the piloting of UAS is different from piloting in a manned aircraft. There is also discussion about displays and controls of aircraft. There is also discussion about what makes a pilot. The last section relates the use of Ikhana in the western states fire mission.

  5. Impact of new technology weapons on SAC (Strategic Air Command) conventional air operations. Research report

    SciTech Connect

    Bodenheimer, C.E.

    1983-06-01

    Chapter I introduces the issue of conventional-response capability. The point stressed first is that the strategic bomber's primary mission is in support of the single integrated operations plan (SIOP) as a nuclear weapons delivery vehicle. However, as cited by Secretary of Defense Caspar Weinberger, we must have a rapid deployment conventional capability to areas where there are small if any U.S. forces present. The SAC strategic projection force (SPF) is available but with gravity weapons of World War II vintage. New technology can provide answers to the problem by providing highly accurate long-range conventional standoff weapons. Chapter II gives a basic historical perspective on the use of the strategic bomber in past wars. It discusses the development of strategy, weapons, and targets in World War II, Korean War, and Vietnam War. Chapter III presents a very brief look at current US policy, strategy, and guidance. Chapter IV covers the aircraft attrition issue in today's highly lethal defensive environment. Chapter V describes the development of air-to-ground weapons. Chapter VI addresses the potential for the future in the shifting balance of Soviet and US technology. The final chapter makes the point that a decision must be made on weapons-acquisition programs and bomber force structure. New technology-standoff conventional weapons could make AAA and SAM defenses a modern Maginot Line.

  6. A Vision for the MRO/HiRISE Operations Center: Getting the Data to the People

    NASA Technical Reports Server (NTRS)

    Eliason, E. M.; McEwen, A. S.; Delamere, W. A.; Grant, J. A.; Gulick, V. C.; Hansen, C. J.; Herkenhoff, K. E.; Keszthelyi, L.; Kirk, R. L.; Mellon, M. T.

    2002-01-01

    The MRO/HiRISE Operations Center provides a mechanism for Mars investigators to particaipate in selection of targets and access to the aquired images. Additional information is contained in the original extended abstract.

  7. U.S. Naval Base, Pearl Harbor, Operations & Message Center, Behind ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    U.S. Naval Base, Pearl Harbor, Operations & Message Center, Behind Facility No. 1, corner of Avenue E & Seventh Street, connected to Facility Nos. 1B & 1D by wooden bridges, Pearl City, Honolulu County, HI

  8. Transportable Payload Operations Control Center reusable software: Building blocks for quality ground data systems

    NASA Technical Reports Server (NTRS)

    Mahmot, Ron; Koslosky, John T.; Beach, Edward; Schwarz, Barbara

    1994-01-01

    The Mission Operations Division (MOD) at Goddard Space Flight Center builds Mission Operations Centers which are used by Flight Operations Teams to monitor and control satellites. Reducing system life cycle costs through software reuse has always been a priority of the MOD. The MOD's Transportable Payload Operations Control Center development team established an extensive library of 14 subsystems with over 100,000 delivered source instructions of reusable, generic software components. Nine TPOCC-based control centers to date support 11 satellites and achieved an average software reuse level of more than 75 percent. This paper shares experiences of how the TPOCC building blocks were developed and how building block developer's, mission development teams, and users are all part of the process.

  9. Child Care Center Operations and Facilities of Selected League for Innovation Community Colleges.

    ERIC Educational Resources Information Center

    McElhenny, Sara

    The major purpose of this study was to describe community college child care centers in terms of selected operational and physical features. It was expected that findings would provide answers to the following questions: What child care provisions exist on selected community college campuses? How do those child care centers serve their respective…

  10. 38 CFR 61.80 - General operation requirements for supportive housing and service centers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... requirements for supportive housing and service centers. 61.80 Section 61.80 Pensions, Bonuses, and Veterans' Relief DEPARTMENT OF VETERANS AFFAIRS (CONTINUED) VA HOMELESS PROVIDERS GRANT AND PER DIEM PROGRAM § 61.80 General operation requirements for supportive housing and service centers. (a) Supportive...

  11. 38 CFR 61.80 - General operation requirements for supportive housing and service centers.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... requirements for supportive housing and service centers. 61.80 Section 61.80 Pensions, Bonuses, and Veterans' Relief DEPARTMENT OF VETERANS AFFAIRS (CONTINUED) VA HOMELESS PROVIDERS GRANT AND PER DIEM PROGRAM § 61.80 General operation requirements for supportive housing and service centers. (a) Supportive...

  12. Predicting Employment Outcomes of Consumers of State-Operated Comprehensive Rehabilitation Centers

    ERIC Educational Resources Information Center

    Beach, David Thomas

    2009-01-01

    This study used records from a state-operated comprehensive rehabilitation center to investigate possible predictive factors related to completing comprehensive rehabilitation center programs and successful vocational rehabilitation (VR) case closure. An analysis of demographic data of randomly selected comprehensive rehabilitation center…

  13. Design of an air traffic computer simulation system to support investigation of civil tiltrotor aircraft operations

    NASA Technical Reports Server (NTRS)

    Rogers, Ralph V.

    1992-01-01

    This research project addresses the need to provide an efficient and safe mechanism to investigate the effects and requirements of the tiltrotor aircraft's commercial operations on air transportation infrastructures, particularly air traffic control. The mechanism of choice is computer simulation. Unfortunately, the fundamental paradigms of the current air traffic control simulation models do not directly support the broad range of operational options and environments necessary to study tiltrotor operations. Modification of current air traffic simulation models to meet these requirements does not appear viable given the range and complexity of issues needing resolution. As a result, the investigation of systemic, infrastructure issues surrounding the effects of tiltrotor commercial operations requires new approaches to simulation modeling. These models should be based on perspectives and ideas closer to those associated with tiltrotor air traffic operations.

  14. Space Operations Center system analysis. Volume 3, book 2: SOC system definition report, revision A

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The Space Operations Center (SOC) orbital space station program operations are described. A work breakdown structure for the general purpose support equipment, construction and transportation support, and resupply and logistics support systems is given. The basis for the design of each element is presented, and a mass estimate for each element supplied. The SOC build-up operation, construction, flight support, and satellite servicing operations are described. Detailed programmatics and cost analysis are presented.

  15. Space Operations Center system analysis study extension. Volume 4, book 2: SOC system analysis report

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The Space Operations Center (SOC) orbital space station research missions integration, crew requirements, SOC operations, and configurations are analyzed. Potential research and applications missions and their requirements are described. The capabilities of SOC are compared with user requirements. The SOC/space shuttle and shuttle-derived vehicle flight support operations and SOC orbital operations are described. Module configurations and systems options, SOC/external tank configurations, and configurations for geostationary orbits are described. Crew and systems safety configurations are summarized.

  16. 77 FR 12103 - Notice of Request for Approval of a New Information Collection: Exemptions for Air Taxi Operations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-28

    ... Notice of Request for Approval of a New Information Collection: Exemptions for Air Taxi Operations AGENCY... the following collection: Exemptions for Air Taxi Operations, responsibility for which has been... air carriers known as air taxi operators and their filing of a one-page form that enables them...

  17. 14 CFR 330.29 - What information must air taxi operators submit on Form 330 (Final) and Form 330-C?

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false What information must air taxi operators... COMPENSATION OF AIR CARRIERS Application Procedures § 330.29 What information must air taxi operators submit on Form 330 (Final) and Form 330-C? As an air taxi operator, you must complete Form 330 (Final)...

  18. Design Considerations of Istar Hydrocarbon Fueled Combustor Operating in Air Augmented Rocket, Ramjet and Scramjet Modes

    NASA Technical Reports Server (NTRS)

    Andreadis, Dean; Drake, Alan; Garrett, Joseph L.; Gettinger, Christopher D.; Hoxie, Stephen S.

    2002-01-01

    The development and ground test of a rocket-based combined cycle (RBCC) propulsion system is being conducted as part of the NASA Marshall Space Flight Center (MSFC) Integrated System Test of an Airbreathing Rocket (ISTAR) program. The eventual flight vehicle (X-43B) is designed to support an air-launched self-powered Mach 0.7 to 7.0 demonstration of an RBCC engine through all of its airbreathing propulsion modes - air augmented rocket (AAR), ramjet (RJ), and scramjet (SJ). Through the use of analytical tools, numerical simulations, and experimental tests the ISTAR program is developing and validating a hydrocarbon-fueled RBCC combustor design methodology. This methodology will then be used to design an integrated RBCC propulsion system thai: produces robust ignition and combustion stability characteristics while maximizing combustion efficiency and minimizing drag losses. First order analytical and numerical methods used to design hydrocarbon-fueled combustors are discussed with emphasis on the methods and determination of requirements necessary to establish engine operability and performance characteristics.

  19. Design Considerations of ISTAR Hydrocarbon Fueled Combustor Operating in Air Augmented Rocket, Ramjet and Scramjet Modes

    NASA Technical Reports Server (NTRS)

    Andreadis, Dean; Drake, Alan; Garrett, Joseph L.; Gettinger, Christopher D.; Hoxie, Stephen S.

    2003-01-01

    The development and ground test of a rocket-based combined cycle (RBCC) propulsion system is being conducted as part of the NASA Marshall Space Flight Center (MSFC) Integrated System Test of an Airbreathing Rocket (ISTAR) program. The eventual flight vehicle (X-43B) is designed to support an air-launched self-powered Mach 0.7 to 7.0 demonstration of an RBCC engine through all of its airbreathing propulsion modes - air augmented rocket (AAR), ramjet (RJ), and scramjet (SJ). Through the use of analytical tools, numerical simulations, and experimental tests the ISTAR program is developing and validating a hydrocarbon-fueled RBCC combustor design methodology. This methodology will then be used to design an integrated RBCC propulsion system that produces robust ignition and combustion stability characteristics while maximizing combustion efficiency and minimizing drag losses. First order analytical and numerical methods used to design hydrocarbon-fueled combustors are discussed with emphasis on the methods and determination of requirements necessary to establish engine operability and performance characteristics.

  20. Estimate of air carrier and air taxi crash frequencies from high altitude en route flight operations

    SciTech Connect

    Sanzo, D.; Kimura, C.Y.; Prassinos, P.G.

    1996-06-03

    In estimating the frequency of an aircraft crashing into a facility, it has been found convenient to break the problem down into two broad categories. One category estimates the aircraft crash frequency due to air traffic from nearby airports, the so-called near-airport environment. The other category estimates the aircraft crash frequency onto facilities due to air traffic from airways, jet routes, and other traffic flying outside the near-airport environment The total aircraft crash frequency is the summation of the crash frequencies from each airport near the facility under evaluation and from all airways, jet routes, and other traffic near the facility of interest. This paper will examine the problems associated with the determining the aircraft crash frequencies onto facilities outside the near-airport environment. This paper will further concentrate on the estimating the risk of aircraft crashes to ground facilities due to high altitude air carrier and air taxi traffic. High altitude air carrier and air taxi traffic will be defined as all air carrier and air taxi flights above 18,000 feet Mean Sea Level (MSL).

  1. Operability test procedure for 241-U compressed air system and heat pump

    SciTech Connect

    Freeman, R.D.

    1994-08-31

    The 241-U-701 compressed air system supplies instrument quality compressed air to Tank Farm 241-U. The supply piping to the 241-U Tank Farm is not included in the modification. Modifications to the 241-U-701 compressed air system include installation of a 15 HP Reciprocating Air Compressor, Ingersoll-Rand Model 10T3NLM-E15; an air dryer, Hankinson, Model DH-45; and miscellaneous system equipment and piping (valves, filters, etc.) to meet the design. A newly installed heat pump allows the compressor to operate within an enclosed relatively dust free atmosphere and keeps the compressor room within a standard acceptable temperature range, which makes possible efficient compressor operation, reduces maintenance, and maximizes compressor operating life. This document is an Operability Test Procedure (OTP) which will further verify (in addition to the Acceptance Test Procedure) that the 241-U-701 compressed air system and heat pump operate within their intended design parameters. The activities defined in this OTP will be performed to ensure the performance of the new compressed air system will be adequate, reliable and efficient. Completion of this OTP and sign off of the OTP Acceptance of Test Results is necessary for turnover of the compressed air system from Engineering to Operations.

  2. A descriptive survey of management and operations at selected sports medicine centers in the United States.

    PubMed

    Olsen, D

    1996-11-01

    No uniform guidelines for operations or accreditation standards for sports medicine center were available and, at the time of this study, little information on the management and operation of sports medicine centers was available in the literature. The purpose of the study was to determine the management structure and function of selected sports medicine centers in the United States. Questionnaires were mailed to 200 randomly selected centers throughout the United State from a directory of sports medicine centers published in Physician and Sportsmedicine (1992) to gather descriptive information on eight areas, including 1) general background, 2) staffing, 3) services, facilities, and equipment, 4) billing, collections, and revenue, 5) clientele, caseloads, and referrals, 6) ownership and financing, 7) school and club outreach contracts, and 8) marketing strategies and future trends. A total of 71 surveys (35.5%) were returned in the allotted time frame. Data were analyzed using ranges, means, medians, modes, and percentages. Results yielded several conclusions about sports medicine centers. Nearly all (93%) of the centers employed physical therapists; physical therapists were clinical directors at 70.2% of centers; orthopaedists were most often medical directors; rehabilitation was the most frequently offered service (93%); physical therapy produced the highest revenue; sports injuries accounted for a mean 34.5% of patients, who were mostly recreational or high school athletes between 13-60 years of age; primary shareholders were most often physical therapists or physicians; most were involved in outreach services for schools; marketing strategies primarily involved communication with referral sources; and managed care was identified most frequently as a trend affecting the future of sports medicine centers. Findings identified common aspects of sports medicine centers and may assist in establishing guidelines for operations or accreditation of sports medicine

  3. 38 CFR 61.80 - General operation requirements for supportive housing and service centers.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 2 2012-07-01 2012-07-01 false General operation requirements for supportive housing and service centers. 61.80 Section 61.80 Pensions, Bonuses, and Veterans' Relief DEPARTMENT OF VETERANS AFFAIRS (CONTINUED) VA HOMELESS PROVIDERS GRANT AND PER DIEM PROGRAM § 61.80 General operation requirements...

  4. CNC Turning Center Operations and Prove Out. Computer Numerical Control Operator/Programmer. 444-334.

    ERIC Educational Resources Information Center

    Skowronski, Steven D.

    This student guide provides materials for a course designed to instruct the student in the recommended procedures used when setting up tooling and verifying part programs for a two-axis computer numerical control (CNC) turning center. The course consists of seven units. Unit 1 discusses course content and reviews and demonstrates set-up procedures…

  5. The Challenges of Field Testing the Traffic Management Advisor (TMA) in an Operational Air Traffic Control Facility

    NASA Technical Reports Server (NTRS)

    Hoang, Ty; Swenson, Harry N.

    1997-01-01

    The Traffic Management Advisor (TMA), the sequence and schedule tool of the Center/TRACON Automation System (CTAS), was evaluated at the Fort Worth Center (ZFW) in the summer of 1996. This paper describes the challenges encountered during the various phases of the TMA field evaluation, which included system (hardware and software) installation, personnel training, and data collection. Operational procedures were developed and applied to the evaluation process that would ensure air safety. The five weeks of field evaluation imposed minimal impact on the hosting facility and provided valuable engineering and human factors data. The collection of data was very much an opportunistic affair, due to dynamic traffic conditions. One measure of the success of the TMA evaluation is that, rather than remove TMA after the evaluation until it could be fully implemented, the prototype TMA is in continual use at ZFW as the fully operational version is readied for implementation.

  6. Human-Centered Technologies and Procedures for Future Air Traffic Management

    NASA Technical Reports Server (NTRS)

    Smith, Philip; Woods, David; McCoy, Elaine; Billings, Charles; Sarter, Nadine; Denning, Rebecca; Dekker, Sidney

    1997-01-01

    The use of various methodologies to predict the impact of future Air Traffic Management (ATM) concepts and technologies is explored. The emphasis has been on the importance of modeling coordination and cooperation among multiple agents within this system, and on understanding how the interactions among these agents will be influenced as new roles, responsibilities, procedures and technologies are introduced. To accomplish this, we have been collecting data on performance under the current air traffic management system, identifying critical problem areas and looking for examples suggestive of general approaches for solving such problems. Using the results of these field studies, we have developed a set of concrete scenarios centered around future designs, and have studied performance in these scenarios with a set of 40 controllers, dispatchers, pilots and traffic managers.

  7. Effect of outside air ventilation rate on VOC concentrations and emissions in a call center

    SciTech Connect

    Hodgson, A.T.; Faulkner, D.; Sullivan, D.P.; DiBartolomeo, D.L.; Russell, M.L.; Fisk, W.J.

    2002-01-01

    A study of the relationship between outside air ventilation rate and concentrations of VOCs generated indoors was conducted in a call center. Ventilation rates were manipulated in the building's four air handling units (AHUs). Concentrations of VOCs in the AHU returns were measured on 7 days during a 13-week period. Indoor minus outdoor concentrations and emission factors were calculated. The emission factor data was subjected to principal component analysis to identify groups of co-varying compounds based on source type. One vector represented emissions of solvents from cleaning products. Another vector identified occupant sources. Direct relationships between ventilation rate and concentrations were not observed for most of the abundant VOCs. This result emphasizes the importance of source control measures for limiting VOC concentrations in buildings.

  8. Respiratory Symptoms of Vendors in an Open-Air Hawker Center in Brunei Darussalam

    PubMed Central

    Nazurah bt Abdul Wahid, Nurul Nor; Balalla, N. B. P; Koh, David

    2014-01-01

    Objectives: We studied respiratory problems among vendors exposed to cooking fumes in an open-air hawker center. Exposure to cooking fumes from either the use of fossil fuels or liquefied petroleum gas (LPG) has been shown to be associated with adverse respiratory health effects. Methods: We conducted a cross-sectional study among 67 food vendors exposed to cooking fumes as well as 18 merchandise sellers at an open-air hawker center in Brunei Darussalam. Past medical and smoking history and exposure to cooking fumes were obtained. The validated American Thoracic Society Questionnaire with a translated Malay version was used to ask for respiratory symptoms. Results: Compared to merchandise sellers (n = 18), cooking vendors (n = 67) had a higher self-reported respiratory symptoms (50.7% for those cooking and 33.3% for merchandise sellers). Cough (28.3%) was the main respiratory symptom experienced in cooking vendors and breathlessness (22.2%) among merchandise sellers. Half (50.0%) of cooking vendors who worked for more than 10 years had cough and 27.3% had phlegm. Those cooking with charcoal were two times more likely to have cough than those cooking with LPG. Cooking vendors with a job duration of more than 10 years were thrice more likely to have cough. Conclusion: Cooking vendors in the open-air hawker center exposed to cooking fumes had more respiratory symptoms compared to non-exposed merchandise sellers. The type of fuel used for cooking and duration of work was associated with increased prevalence of cough. PMID:25325051

  9. Mission Operations and Data Systems Directorate's operational/development network (MODNET) at Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    1988-01-01

    A brief, informal narrative is provided that summarizes the results of all work accomplished during the period of the contract; June 1, 1987 through September 30, 1988; in support of Mission Operations and Data Systems Directorate's Operational Development Network (MODNET). It includes descriptions of work performed in each functional area and recommendations and conclusions based on the experience and results obtained.

  10. A Multi-Operator Simulation for Investigation of Distributed Air Traffic Management Concepts

    NASA Technical Reports Server (NTRS)

    Peters, Mark E.; Ballin, Mark G.; Sakosky, John S.

    2002-01-01

    This paper discusses the current development of an air traffic operations simulation that supports feasibility research for advanced air traffic management concepts. The Air Traffic Operations Simulation (ATOS) supports the research of future concepts that provide a much greater role for the flight crew in traffic management decision-making. ATOS provides representations of the future communications, navigation, and surveillance (CNS) infrastructure, a future flight deck systems architecture, and advanced crew interfaces. ATOS also provides a platform for the development of advanced flight guidance and decision support systems that may be required for autonomous operations.

  11. Retrospective studies of operating problems in air transport

    NASA Technical Reports Server (NTRS)

    Billings, C. E.; Lauber, J. K.; Cooper, G. E.; Ruffell-Smith, H. P.

    1976-01-01

    An epidemiological model for the study of human errors in aviation is presented. In this approach, retrospective data are used as the basis for formulation of hypotheses as to system factors which may have contributed to such errors. Prospective experimental studies of aviation operations are also required in order to prove or disprove the hypotheses, and to evaluate the effectiveness of intervention techniques designed to solve operational problems in the aviation system.

  12. Forecasting Lightning at Kennedy Space Center/Cape Canaveral Air Force Station, Florida

    NASA Technical Reports Server (NTRS)

    Lambert, Winfred; Wheeler, Mark; Roeder, William

    2005-01-01

    The Applied Meteorology Unit (AMU) developed a set of statistical forecast equations that provide a probability of lightning occurrence on Kennedy Space Center (KSC) I Cape Canaveral Air Force Station (CCAFS) for the day during the warm season (May September). The 45th Weather Squadron (45 WS) forecasters at CCAFS in Florida include a probability of lightning occurrence in their daily 24-hour and weekly planning forecasts, which are briefed at 1100 UTC (0700 EDT). This information is used for general scheduling of operations at CCAFS and KSC. Forecasters at the Spaceflight Meteorology Group also make thunderstorm forecasts for the KSC/CCAFS area during Shuttle flight operations. Much of the current lightning probability forecast at both groups is based on a subjective analysis of model and observational data. The objective tool currently available is the Neumann-Pfeffer Thunderstorm Index (NPTI, Neumann 1971), developed specifically for the KSCICCAFS area over 30 years ago. However, recent studies have shown that 1-day persistence provides a better forecast than the NPTI, indicating that the NPTI needed to be upgraded or replaced. Because they require a tool that provides a reliable estimate of the daily thunderstorm probability forecast, the 45 WS forecasters requested that the AMU develop a new lightning probability forecast tool using recent data and more sophisticated techniques now possible through more computing power than that available over 30 years ago. The equation development incorporated results from two research projects that investigated causes of lightning occurrence near KSCICCAFS and over the Florida peninsula. One proved that logistic regression outperformed the linear regression method used in NPTI, even when the same predictors were used. The other study found relationships between large scale flow regimes and spatial lightning distributions over Florida. Lightning, probabilities based on these flow regimes were used as candidate predictors in

  13. An Analysis of Skill Requirements for Operators of Amphibious Air Cushion Vehicles (ACVs).

    ERIC Educational Resources Information Center

    McKnight, A. James; And Others

    This report describes the skills required in the operation of an amphibious air cushion vehicle (ACV) in Army tactical and logistic missions. The research involved analyzing ACV characteristics, operating requirements, environmental effects, and results of a simulation experiment. The analysis indicates that ACV operation is complicated by an…

  14. National Emission Standards for Hazardous Air Pollutants (NESHAP) Memorandum of Agreement (MOA) Between NASA Headquarters and MSFC (Marshall Space Flight Center) for NASA Principal Center for Review of Clean Air Regulations

    NASA Technical Reports Server (NTRS)

    Caruso, Salvadore V.; Clark-Ingram, Marceia A.

    2000-01-01

    This paper presents a memorandum of agreement on Clean Air Regulations. NASA headquarters (code JE and code M) has asked MSFC to serve as principle center for review of Clean Air Act (CAA) regulations. The purpose of the principle center is to provide centralized support to NASA headquarters for the management and leadership of NASA's CAA regulation review process and to identify the potential impact of proposed CAA reguations on NASA program hardware and supporting facilities. The materials and processes utilized in the manufacture of NASA's programmatic hardware contain HAPs (Hazardous Air Pollutants), VOCs (Volatile Organic Compounds), and ODC (Ozone Depleting Chemicals). This paper is presented in viewgraph form.

  15. The Air Force Air Program and Information Management System (APIMS): A flexible tool for managing your Title V Operating Permits

    SciTech Connect

    Weston, A.A.; Gordon, S.R.

    1999-07-01

    The Air Force Command Core System (CCS) is an integrated, activity-based risk management system designed to support the information needs of Environment, Safety, and Occupational Health (ESOH) professionals. These professionals are responsible for managing a complex and often dynamic set of requirements, and therefore, have a need for an information system that can readily be customized to meet their specific needs. This dynamic environment also drives the need for flexibility in the system. The Air Program Information Management System (APIMS) is a module within CCS designed to not only manage permit compliance and emission inventories, but also support the monitoring, recordkeeping, and reporting requirements related to air quality issues. This paper will describe the underlying foundation of CCS, the information linkages within the database, and then summarize the functionality available within the APIMS module to support the Air Quality Managers' information needs, placing emphasis on the flexibility the system provides to manage Title V Operating Permits.

  16. Design and performance of large telescopes operated in open air

    NASA Astrophysics Data System (ADS)

    Zago, Lorenzo

    1986-01-01

    Innovative designs of enclosures are being studied for the generation of large telescopes which are presently being developed, essentially in order to keep costs from increasing unacceptably with the size of the telescopes. These studies and the generally positive experience with MMT-type buildings, largely open to the wind during observation times, are confirming the trend toward a radical change of philosophy in the concept for telescope enclosures. The aim of the preliminary studies was to achieve a comprehensive view of the different aspects of the open air environment and their influence on the design of the telescope and its performance. The paper describes some of these studies.

  17. Barriers and Facilitators to Use of Air Force Family Support Centers (FSCs): Lessons for Civilian and Military Sectors.

    ERIC Educational Resources Information Center

    Albano, Sondra

    This study focused on non-use of Air Force Family Support Centers (FSCs), a global network of programs and services designed to facilitate family adaptation to the mobile military lifestyle and to help commanders and supervisors respond to family needs. The study used the 1993 Air Force Needs Assessment Survey to investigate what factors…

  18. Joint NASA Ames/Langley Experimental Evaluation of Integrated Air/Ground Operations for En Route Free Maneuvering

    NASA Technical Reports Server (NTRS)

    Barhydt, Richard; Kopardekar, Parimal; Battiste, Vernol; Doble, Nathan; Johnson, Walter; Lee, Paul; Prevot, Thomas; Smith, Nancy

    2005-01-01

    In order to meet the anticipated future demand for air travel, the National Aeronautics and Space Administration (NASA) is investigating a new concept of operations known as Distributed Air-Ground Traffic Management (DAG-TM). Under the En Route Free Maneuvering component of DAG-TM, appropriately equipped autonomous aircraft self separate from other autonomous aircraft and from managed aircraft that continue to fly under today s Instrument Flight Rules (IFR). Controllers provide separation services between IFR aircraft and assign traffic flow management constraints to all aircraft. To address concept feasibility issues pertaining to integrated air/ground operations at various traffic levels, NASA Ames and Langley Research Centers conducted a joint human-in-the-loop experiment. Professional airline pilots and air traffic controllers flew a total of 16 scenarios under four conditions: mixed autonomous/managed operations at three traffic levels and a baseline all-managed condition at the lowest traffic level. These scenarios included en route flights and descents to a terminal area meter fix in airspace modeled after the Dallas Ft. Worth area. Pilots of autonomous aircraft met controller assigned meter fix constraints with high success. Separation violations by subject pilots did not appear to vary with traffic level and were mainly attributable to software errors and procedural lapses. Controller workload was lower for mixed flight conditions, even at higher traffic levels. Pilot workload was deemed acceptable under all conditions. Controllers raised several safety concerns, most of which pertained to the occurrence of near-term conflicts between autonomous and managed aircraft. These issues are being addressed through better compatibility between air and ground systems and refinements to air and ground procedures.

  19. Measurement of HO{sub x}{center_dot} production rate due to radon decay in air

    SciTech Connect

    Ding, Huiling

    1993-08-01

    Radon in indoor air may cause the exposure of the public to excessive radioactivity. Radiolysis of water vapor in indoor air due to radon decay could produce ({center_dot}OH and HO{sub 2} {center_dot}) that may convert atmospheric constituents to compounds of lower vapor pressure. These lower vapor pressure compounds might then nucleate to form new particles in the indoor atmosphere. Chemical amplification was used to determine HO{sub x}{center_dot} production rate in indoor air caused by radon decay. Average HO{sub x}{center_dot} production rate was found to be (4.31{plus_minus}0.07) {times} 10{sup 5} HO{sub x}{center_dot} per Rn decay per second (Bq) 3.4 to 55.0% at 22C. This work provided G{sub (HO{sub x}{center_dot})}-value, 7.86{plus_minus}0.13 No./100 eV in air by directly measuring [HO{sub x}{center_dot}] formed from the radiolysis procedure. This G value implies that HO{sub x}{center_dot} produced by radon decay in air might be formed by multiple processes and may be result of positive ion-molecule reactions, primary radiolysis, and radical reactions. There is no obvious relation between HO{sub x}{center_dot} production rate and relative humidity. A laser-induced fluorescence (LIF) system has been used for {center_dot}OH production rate measurement; it consists of an excimer laser, a dye laser, a frequency doubler, a gaseous fluorescence chamber, and other optical and electronic parts. This system needs to be improved to eliminate the interferences of light scattering and artificial {center_dot}OH produced from the photolysis of O{sub 3}/H{sub 2}O.

  20. Evaluation of High Density Air Traffic Operations with Automation for Separation Assurance, Weather Avoidance and Schedule Conformance

    NASA Technical Reports Server (NTRS)

    Prevot, Thomas; Mercer, Joey S.; Martin, Lynne Hazel; Homola, Jeffrey R.; Cabrall, Christopher D.; Brasil, Connie L.

    2011-01-01

    In this paper we discuss the development and evaluation of our prototype technologies and procedures for far-term air traffic control operations with automation for separation assurance, weather avoidance and schedule conformance. Controller-in-the-loop simulations in the Airspace Operations Laboratory at the NASA Ames Research Center in 2010 have shown very promising results. We found the operations to provide high airspace throughput, excellent efficiency and schedule conformance. The simulation also highlighted areas for improvements: Short-term conflict situations sometimes resulted in separation violations, particularly for transitioning aircraft in complex traffic flows. The combination of heavy metering and growing weather resulted in an increased number of aircraft penetrating convective weather cells. To address these shortcomings technologies and procedures have been improved and the operations are being re-evaluated with the same scenarios. In this paper we will first describe the concept and technologies for automating separation assurance, weather avoidance, and schedule conformance. Second, the results from the 2010 simulation will be reviewed. We report human-systems integration aspects, safety and efficiency results as well as airspace throughput, workload, and operational acceptability. Next, improvements will be discussed that were made to address identified shortcomings. We conclude that, with further refinements, air traffic control operations with ground-based automated separation assurance can routinely provide currently unachievable levels of traffic throughput in the en route airspace.

  1. How the Space Data Center Is Improving Safety of Space Operations

    NASA Astrophysics Data System (ADS)

    Kelso, T. S.

    2010-09-01

    In an effort to mitigate the risks associated with satellite close approaches in the geostationary belt, satellite operators began to come together in early 2008 to establish a prototype GEO data center. That prototype provided a framework for operators to share orbital data for their fleets to be used to perform conjunction analysis and provide automated notifications of close approaches via the SOCRATES-GEO service. That service was extended to LEO operations in mid-2009 and, as of early 2010, the prototype was supporting 20 operators from over a dozen countries by automatically screening 300 satellites for close approaches twice each day. In April 2010, the prototype data center operated by the Center for Space Standards & Innovation (CSSI) was a key reason AGI was selected by the Space Data Association (SDA) to develop the SDA’s new Space Data Center (SDC). This paper will address how the SDC will use a service-oriented architecture (SOA) to support orbital operations by increasing the efficiency of analysis to mitigate the risk of conjunctions and radio frequency interference, thereby enhancing overall safety of flight.

  2. 14 CFR 10 - Functional Classification-Operating Expenses of Group I Air Carriers

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Functional Classification-Operating Expenses of Group I Air Carriers Section 10 Section Section 10 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS UNIFORM SYSTEM OF ACCOUNTS AND REPORTS FOR LARGE CERTIFICATED AIR...

  3. 14 CFR Section 10 - Functional Classification-Operating Expenses of Group I Air Carriers

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Functional Classification-Operating Expenses of Group I Air Carriers Section 10 Section 10 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS UNIFORM SYSTEM OF ACCOUNTS AND REPORTS FOR LARGE CERTIFICATED AIR CARRIERS...

  4. PROCEDURES FOR EVALUATING OPERATIONS OF AMBIENT AIR MONITORING NETWORKS - A MANUAL

    EPA Science Inventory

    This manual is designed to evaluate the efficiency of ambient air monitoring networks whose primary objective is to document compliance with or progress toward attaining ambient air quality standards. The manual provides methods to evaluate the efficiency of each of six operation...

  5. 14 CFR Appendix C to Part 330 - Forms for Air Taxi Operators

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Forms for Air Taxi Operators C Appendix C to Part 330 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) PROCEDURAL REGULATIONS PROCEDURES FOR COMPENSATION OF AIR CARRIERS Pt. 330, App. C Appendix C...

  6. 78 FR 26103 - Proposed Standard Operating Procedure (SOP) of the Aircraft Certification Service (AIR) Project...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-03

    ... Service (AIR) Project Prioritization and Resource Management ACTION: Notice of availability and request... process used to prioritize certification projects and manage certification project resources when local... Operating Procedure--Aircraft Certification Service Project Prioritization. FOR FURTHER INFORMATION...

  7. AN OPERATIONAL EVALUATION OF THE ETA - CMAQ AIR QUALITY FORECAST MODEL

    EPA Science Inventory

    The National Oceanic and Atmospheric Administration (NOAA), in partnership with the United States Environmental Protection Agency (EPA), are developing an operational, nationwide Air Quality Forecasting (AQF) system. An experimental phase of this program, which couples NOAA's Et...

  8. Analysis of operational requirements for medium density air transportation. Volume 1: Summary

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The medium density air travel market was studied to determine the aircraft design and operational requirements. The impact of operational characteristics on the air travel system and the economic viability of the study aircraft were also evaluated. Medium density is defined in terms of numbers of people transported (20 to 500 passengers per day on round trip routes), and frequency of service ( a minumium of two and maximum of eight round trips per day) for 10 regional carriers. The operational characteristics of aircraft best suited to serve the medium density air transportation market are determined and a basepoint aircraft is designed from which tradeoff studies and parametric variations could be conducted. The impact of selected aircraft on the medium density market, economics, and operations is ascertained. Research and technology objectives for future programs in medium density air transportation are identified and ranked.

  9. Measurements of air concentrations of thorium during grinding and welding operations using thoriated tungsten electrodes

    SciTech Connect

    Crim, E.M.; Bradley, T.D.

    1995-05-01

    An evaluation was performed to determine whether thorium was present in concentrations above the derived air concentration during grinding and welding operations using thoriated tungsten electrodes. A few of the advantages of using thoriated tungsten electrodes in industry include easier arc starting, greater stability, and reduced weld metal contamination. The electrodes used in this evaluation contained 2% thoria (thorium oxide) and were either 2.4 mm or 3.9 mm in diameter. Personal breathing zone and area air samples were collected for the experienced welders participating in this evaluation during grinding operations. The results during the grinding operations for personal and area air samples were generally below the derived air concentration (DAC) for {sup 232}Th for solubility class Y of 0.04 Bq m{sup -3} (1 x 10 {sup -12} {mu}Ci mL{sup -1}) as per 10 CFR 20. The area samples collected during welding operations were below the DAC.

  10. Potential Industrial Applications of the One Atmosphere Uniform Glow Discharge Plasma (OAUGDP) Operating in Ambient Air

    NASA Astrophysics Data System (ADS)

    Reece Roth, J.

    2004-11-01

    The majority of industrial plasma processing with glow discharges has been conducted at pressures below 10 torr. This tends to limit applications to high value workpieces as a result of the high capital cost of vacuum systems and the production constraints of batch processing. It has long been recognized that glow discharge plasmas would play a much larger industrial role if they could be generated at one atmosphere. The One Atmosphere Uniform Glow Discharge Plasma (OAUGDP), developed at the University of Tennessee's Plasma Sciences Laboratory, is a non-thermal RF plasma operating on displacement currents with the time-resolved characteristics of a classical low pressure DC normal glow discharge. As a glow discharge, the OAUGDP operates with maximum electrical efficiency at the Stoletow point, where the energy input per ion-electron pair is a minimum [1, 2]. Several interdisciplinary teams have investigated potential applications of the OAUGDP. These teams included collaborators from the UTK Textiles and Nonwovens Development Center (TANDEC), and the Departments of Electrical and Computer Engineering, Microbiology, and Food Science and Technology, as well as the NASA Langley Research Center. The potential applications of the OAUGDP have all been at one atmosphere and room temperature, using air as the working gas. These applications include sterilizing medical and dental equipment; sterilizable air filters to deal with the "sick building syndrome"; removal of soot from Diesel engine exhaust; subsonic plasma aerodynamic effects, including flow re-attachment to airfoils and boundary layer modification; electrohydrodynamic (EDH) flow control of working gases; increasing the surface energy of materials; improving the adhesion of paints and electroplated layers: improving the wettability and wickability of fabrics; stripping of photoresist; and plasma deposition and directional etching of potential microelectronic relevance. [1] J. R. Roth, Industrial Plasma Engineering

  11. Operational numerical weather prediction on the CYBER 205 at the National Meteorological Center

    NASA Technical Reports Server (NTRS)

    Deaven, D.

    1984-01-01

    The Development Division of the National Meteorological Center (NMC), having the responsibility of maintaining and developing the numerical weather forecasting systems of the center, is discussed. Because of the mission of NMC data products must be produced reliably and on time twice daily free of surprises for forecasters. Personnel of Development Division are in a rather unique situation. They must develop new advanced techniques for numerical analysis and prediction utilizing current state-of-the-art techniques, and implement them in an operational fashion without damaging the operations of the center. With the computational speeds and resources now available from the CYBER 205, Development Division Personnel will be able to introduce advanced analysis and prediction techniques into the operational job suite without disrupting the daily schedule. The capabilities of the CYBER 205 are discussed.

  12. Near real-time AIRS processing and distribution system: from design to operations

    NASA Astrophysics Data System (ADS)

    Wolf, Walter; King, Thomas; Goldberg, Mitchell D.; Zhou, Lihang; Barnet, Chris D.

    2004-10-01

    A near real-time AIRS processing and distribution system is fully operational at NOAA/NESDIS/ORA. The AIRS system went though three separate production phases: design and development, implementation, and operations. The design and development phase consisted of two years of preparation for the near real-time AIRS data. The approach was to fully emulate the AIRS measurement stream. This was accomplished by using a forecast model to represent the geophysical state and computation of simulated AIRS measurements using the characteristics of the AIRS channels. The preparation included file format development and the creation of a program to subset the radiance and product data. The implementation phase lasted over a year and involved utilizing AIRS/AMSU/HSB simulated data quasi-operationally. This simulated data was placed into deliverable files and distributed to the customers for their pre-launch preparations. The operational phase consisted of switching the simulation system to real data and is the current system status. Details of what went right and wrong at each production phase will be presented. This methodology eased the transition to operations and will be applied to other advanced sounders such as IASI and CrIS.

  13. Electromagnetic pulse (EMP) survey of the Idaho State Emergency Operating Center, Boise, Idaho

    SciTech Connect

    Crutcher, R.I.; Buchanan, M.E.; Jones, R.W.

    1992-02-01

    The purpose of this report is to develop an engineering design package to protect the Federal Emergency Management Agency (FEMA) National Radio System (FNARS) facilities from the effects of high- altitude electromagnetic pulses (HEMPs). This report was developed specifically for the Idaho State Emergency Operating Center (EOC) in Boise, Idaho. It is highly probable that there will be a heavy dependence upon high-frequency (hf) radio communications for long- haul communications following a nuclear attack on the continental United States, should one occur. To maintain the viability of the FEMA hf radio network during such a situation, steps must be taken to protect the FNARS facilities against the effects of HEMP that are likely to be created in a nuclear confrontation. The solution must than be to reduce HEMP-induced stresses on the system by means of tailored retrofit hardening measures using commercial protection devices when available. It is the intent of this report to define the particular hardening measures that will minimize the susceptibility of system components to HEMP effects. To the extent economically viable, protective actions have been recommended for implementation, along with necessary changes or additions, during the period of the FNARS upgrade program. This report addresses electromagnetic pulse (EMP) effects only and disregards any condition in which radiation effects may be a factor. It has been established that, except for the source region of a surface burst, EMP effects of high-altitude bursts are more severe than comparable detonations in either air or surface regions. Any system hardened to withstand the more extreme EMP environment will survive the less severe EMP conditions. The threatening environment will therefore be limited to HEMP situations.

  14. Second Line of Defense, Port of Buenos Aires and Exolgan Container Terminal Operational Testing and Evaluation Plan, Buenos Aires, Argentina

    SciTech Connect

    Roberts, Bryan W.

    2012-08-23

    The Office of the Second Line of Defense (SLD) Megaports project team for Argentina will conduct operational testing and evaluation (OT&E) at Exolgan Container Terminal at the Port of Dock Sud from July 16-20, 2012; and at the Port of Buenos Aires from September 3-7, 2012. SLD is installing radiation detection equipment to screen export, import, and transshipment containers at these locations. The purpose of OT&E is to validate and baseline an operable system that meets the SLD mission and to ensure the system continues to perform as expected in an operational environment with Argentina Customs effectively adjudicating alarms.

  15. Operation and maintenance, fire rescue air-pack. Volume 2: Communications

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The operation and maintenance procedures are described for the development model of the fire rescue air pack (FRAP) voice amplifier assembly, including the battery charger. Operational instructions include a general description of the assembly, specifications, and installation and operation. Maintenance instructions include theory of operation, preventive maintenance, repair, adjustment, and a parts list. The FRAP is intended to permit fire rescue personnel to enter a smoke-filled, toxic or oxygen depleted environment carrying their own source of breathing air. The voice amplifier assembly permits the wearer to communicate by voice with other persons in the vicinity. The battery charger assembly provides a means of keeping the amplifier batteries fully charged.

  16. Trade study: Liquid hydrogen transportation - Kennedy Space Center. [cost and operational effectivenss of shipping methods.

    NASA Technical Reports Server (NTRS)

    Gray, D. J.

    1978-01-01

    Cryogenic transportation methods for providing liquid hydrogen requirements are examined in support of shuttle transportation system launch operations at Kennedy Space Center, Florida, during the time frames 1982-1991 in terms of cost and operational effectiveness. Transportation methods considered included sixteen different options employing mobile semi-trailer tankers, railcars, barges and combinations of each method. The study concludes that the most effective method of delivering liquid hydrogen from the vendor production facility in New Orleans to Kennedy Space Center includes maximum utilization of existing mobile tankers and railcars supplemented by maximum capacity mobile tankers procured incrementally in accordance with shuttle launch rates actually achieved.

  17. Demonstrating the Operational Value of Atmospheric Infrared Sounder (AIRS) Retrieved Profiles in the Pre-Convective Environment

    NASA Technical Reports Server (NTRS)

    Kozlowski, Danielle M.; Zavodsky, T.; Jedloved, Gary J.

    2011-01-01

    The Short-term Prediction Research and Transition Center (SPoRT) is a collaborative partnership between NASA and operational forecasting partners, including a number of National Weather Service offices. SPoRT provides real-time NASA products and capabilities to its partners to address specific operational forecast challenges. One operational forecast challenge is forecasting convective weather in data-void regions such as large bodies of water (e.g. Gulf of Mexico). To address this forecast challenge, SPoRT produces a twice-daily three-dimensional analysis that blends a model first-guess from the Advanced Research Weather Research and Forecasting (WRF-ARW) model with retrieved profiles from the Atmospheric Infrared Sounder (AIRS) -- a hyperspectral sounding instrument aboard NASA's Aqua satellite that provides temperature and moisture profiles of the atmosphere. AIRS profiles are unique in that they give a three dimensional view of the atmosphere that is not available through the current rawinsonde network. AIRS has two overpass swaths across North America each day, one valid in the 0700-0900 UTC timeframe and the other in the 1900-2100 UTC timeframe. This is helpful because the rawinsonde network only has data from 0000 UTC and 1200 UTC at specific land-based locations. Comparing the AIRS analysis product with control analyses that include no AIRS data demonstrates the value of the retrieved profiles to situational awareness for the pre-convective (and convective) environment. In an attempt to verify that the AIRS analysis was a good representation of the vertical structure of the atmosphere, both the AIRS and control analyses are compared to a Rapid Update Cycle (RUC) analysis used by operational forecasters. Using guidance from operational forecasters, convective available potential energy (CAPE) was determined to be a vital variable in making convective forecasts and is used herein to demonstrate the utility of the AIRS profiles in changing the vertical

  18. Continuous ECG monitoring on civil air crews during flight operations.

    PubMed

    Sekiguchi, C; Yamaguchi, O; Kitajima, T; Ueda, Y

    1977-09-01

    Cardiovascular disease is one of the disorders resulting in sudden incapacitation and is the most common malady leading to medical retirement. It is very important for us to control this disease among pilots. Generally, pilots undergo medical checkups at health control service on the ground, but they do not undergo these checkups during flight operations. We obtained a continuous ECG recording on four pilots to assess cardiac reserve capacity for mental load during flight operation. Results show that no significant ischemic changes of ST-segment and T-wave during flight were noticed except in one case of atrial fibrillation in which significant depression of ST-segment occurred while walking up a stairway after flight. An increased number of ectopic beats was found in another normal case. In general, it was suspected that mental load is greater at landing than takeoff. PMID:907598

  19. Improvement of the air quality in student health centers with chlorine dioxide.

    PubMed

    Hsu, Ching-Shan; Huang, Da-Ji; Lu, Ming-Chun

    2010-04-01

    This study aims to monitor bioaerosol levels of a local campus of a student health center in Taiwan and then to perform disinfection by applying chlorine dioxide. First, air samples were taken and evaluated in the six areas of the center. The average background bioaerosol levels were 714 +/- 1706 CFU/m(3) for bacterium and 802 +/- 633 CFU/m(3) for fungi. Then, chlorine dioxide was applied through three different procedures: single, multiple and regular disinfections. The results indicated that both multiple and regular disinfections can achieve efficiency levels higher than 59.0%. The regression analysis on bioaerosol levels showed that the number of people present correlating to the number of persons entering the room per door-opening, had a correlation of p < 0.05. Utilizing this analysis result, an empirical model was developed to predict indoor bioaerosol concentrations. It can be inferred that for indoor human activity of health centers, regular disinfection is a very effective process. PMID:20169486

  20. 77 FR 5009 - Clean Air Act Operating Permit Program; Petition for Objection to State Operating Permit for Duke...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-01

    ...This document announces that the EPA Administrator has denied a petition from the Sierra Club, Valley Watch, and Citizen Action Coalition of Indiana (Petitioners) asking EPA to object to a Clean Air Act (Act) Title V operating permit for Duke Energy Indiana--Edwardsport Generating Station (Duke) issued by the Indiana Department of Environmental Management (IDEM). Sections 307(b) and 505(b)(2)......

  1. 75 FR 145 - Clean Air Act Operating Permit Program; Petitions for Objection to State Operating Permit for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-04

    ... Creek Generation, LLC--Cash Creek Generating Station; Henderson County, KY AGENCY: Environmental... merged prevention of significant deterioration (PSD) and title V operating permit issued by the Kentucky Division for Air Quality (KDAQ) to Cash Creek Generation, LLC for its Cash Creek Generating Station...

  2. Air Pollution and Odor in Communities Near Industrial Swine Operations

    PubMed Central

    Wing, Steve; Horton, Rachel Avery; Marshall, Stephen W.; Thu, Kendall; Tajik, Mansoureh; Schinasi, Leah; Schiffman, Susan S.

    2008-01-01

    Background Odors can affect health and quality of life. Industrialized animal agriculture creates odorant compounds that are components of a mixture of agents that could trigger symptoms reported by neighbors of livestock operations. Objective We quantified swine odor episodes reported by neighbors and the relationships of these episodes with environmental measurements. Methods Between September 2003 and September 2005, 101 nonsmoking volunteers living within 1.5 mi of industrial swine operations in 16 neighborhoods in eastern North Carolina completed twice-daily odor diaries for approximately 2 weeks. Meteorological conditions, hydrogen sulfide, and particulate matter ≤ 10 μm in aerodynamic diameter (PM10) were monitored in each neighborhood. We used mixed models to partition odor variance within and between people and between neighborhoods, and to quantify relationships between environmental factors and odor. Results Participants reported 1,655 episodes of swine odor. In nine neighborhoods, odor was reported on more than half of study-days. Odor ratings were related to temperature, PM10, and semivolatile PM10 in standard but not mixed models. In mixed models, odor increased 0.15 ± 0.05 units (mean ± SE) for a 1-ppb increase in H2S, and 0.45 ± 0.14 units for a 10-μg/m3 increase in PM10 at wind speeds > 6.75 miles per hour. The odds of reporting a change in daily activities due to odor increased 62% for each unit increase in average odor during the prior 12 hr (t-value = 7.17). Conclusions This study indicates that malodor from swine operations is commonly present in these communities and that the odors reported by neighbors are related to objective environmental measurements and interruption of activities of daily life. PMID:18941579

  3. NASA Headquarters Space Operations Center: Providing Situational Awareness for Spaceflight Contingency Response

    NASA Technical Reports Server (NTRS)

    Maxwell, Theresa G.; Bihner, William J.

    2010-01-01

    This paper discusses the NASA Headquarters mishap response process for the Space Shuttle and International Space Station programs, and how the process has evolved based on lessons learned from the Space Shuttle Challenger and Columbia accidents. It also describes the NASA Headquarters Space Operations Center (SOC) and its special role in facilitating senior management's overall situational awareness of critical spaceflight operations, before, during, and after a mishap, to ensure a timely and effective contingency response.

  4. Morphological center operator based infrared and visible image fusion through correlation coefficient

    NASA Astrophysics Data System (ADS)

    Bai, Xiangzhi

    2016-05-01

    It is important to well maintain the information of infrared (IR) and visible images, including image regions and details, in a fusion image. To be effective for fusion, an algorithm for fusion IR and visible images based on the morphological center operator through feature extraction and correlation coefficient is given. This paper utilizes the contrast enlargement strategy for fusion. Firstly, the morphological center or anti-center operator identifies the bright and dim features of the IR and visible images, and these identified features are used for fusion based on the correlation coefficient. Secondly, the multi-scale morphological theory is employed to extract the multi-scale features through the correlation coefficient based strategy to form the final fusion features. Finally, the extracted final fusion features are combined to form the final fusion image by utilizing the contrast enlargement strategy. Because of the effectively feature identifying by the morphological center and anti-center operators, the proposed algorithm has good performance for IR and visible image fusion. Experiments on different IR and visible images verified that the proposed algorithm performed effectively.

  5. Lessons Learned from Engineering a Multi-Mission Satellite Operations Center

    NASA Technical Reports Server (NTRS)

    Madden, Maureen; Cary, Everett, Jr.; Esposito, Timothy; Parker, Jeffrey; Bradley, David

    2006-01-01

    NASA's Small Explorers (SMEX) satellites have surpassed their designed science-lifetimes and their flight operations teams are now facing the challenge of continuing operations with reduced funding. At present, these missions are being re-engineered into a fleet-oriented ground system at Goddard Space Flight Center (GSFC). When completed, this ground system will provide command and control of four SMEX missions and will demonstrate fleet automation and control concepts. As a path-finder for future mission consolidation efforts, this ground system will also demonstrate new ground-based technologies that show promise of supporting longer mission lifecycles and simplifying component integration. One of the core technologies being demonstrated in the SMEX Mission Operations Center is the GSFC Mission Services Evolution Center (GMSEC) architecture. The GMSEC architecture uses commercial Message Oriented Middleware with a common messaging standard to realize a higher level of component interoperability, allowing for interchangeable components in ground systems. Moreover, automation technologies utilizing the GMSEC architecture are being evaluated and implemented to provide extended lights-out operations. This mode of operation will provide routine monitoring and control of the heterogeneous spacecraft fleet. The operational concepts being developed will reduce the need for staffed contacts and is seen as a necessity for fleet management. This paper will describe the experiences of the integration team throughout the re-enginering effort of the SMEX ground system. Additionally, lessons learned will be presented based on the team's experiences with integrating multiple missions into a fleet-automated ground system.

  6. Operation of the Pinellas Plant Child Development Center/Partnership School: Environmental assessment

    SciTech Connect

    Not Available

    1990-07-20

    The US Department of Energy Albuquerque Operations Office (DOE/AL), through the DOE Pinellas Area Office (PAO) and GE Neutron Devices (GEND), is proposing a joint venture to operate a Partnership School and Child Development Center at the Pinellas Plant. The Child Development Center/Partnership School proposal has been developed. The building has been constructed, teachers and staff selected, and the building made ready for immediate occupancy. The proposed action addressed by this environmental assessment is the operation and utilization of the school as a Partnership School, a preschool Child Development Center, and a before- and after-hours child care facility. In compliance with the National Environmental Policy Act of 1970, the potential impacts from the operation of the proposed action are assessed. Additionally, since the proposed school is located next to an industrial facility, impacts on the school population from routine plant operations, as well as abnormal events, are analyzed, and changes in plant operation that may be prudent are considered. 25 refs., 8 figs., 9 tabs.

  7. Space Operations Center system analysis. Volume 3, book 1: SOC system definition report, revision A

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The Space Operations Center (SOC) orbital space station program and its elements are described. A work breakdown structure is presented and elements for the habitat and service modules, docking tunnel and airlock modules defined. The basis for the element's design is given. Mass estimates for the elements are presented in the work breakdown structure.

  8. Mission operation center of the Lavochkin scientific production association: Work with the interorbital space booster "Fregat"

    NASA Astrophysics Data System (ADS)

    Kazakevich, Yu. V.; Zefirov, I. V.

    2015-12-01

    This article reviews the history of the Lavochkin Association Mission Operation Center (Laspace MOC), the reasons for its building, purposes and objectives to support Fregat multipurpose rocket booster (FMRB) launch tracking, as well as the basic principles of information exchange. Hardware and software are described in detail.

  9. 38 CFR 61.80 - General operation requirements for supportive housing and service centers.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... requirements for supportive housing and service centers. 61.80 Section 61.80 Pensions, Bonuses, and Veterans' Relief DEPARTMENT OF VETERANS AFFAIRS (CONTINUED) VA HOMELESS PROVIDERS GRANT AND PER DIEM PROGRAM Awards, Monitoring, and Enforcement of Agreements § 61.80 General operation requirements for supportive housing...

  10. 38 CFR 61.80 - General operation requirements for supportive housing and service centers.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... requirements for supportive housing and service centers. 61.80 Section 61.80 Pensions, Bonuses, and Veterans' Relief DEPARTMENT OF VETERANS AFFAIRS (CONTINUED) VA HOMELESS PROVIDERS GRANT AND PER DIEM PROGRAM Awards, Monitoring, and Enforcement of Agreements § 61.80 General operation requirements for supportive housing...

  11. Space Operations Center system analysis study extension. Volume 2: Programmatics and cost

    NASA Technical Reports Server (NTRS)

    1982-01-01

    A summary of Space Operations Center (SOC) orbital space station costs, program options and program recommendations is presented. Program structure, hardware commonality, schedules and program phasing are considered. Program options are analyzed with respect to mission needs, design and technology options, and anticipated funding constraints. Design and system options are discussed.

  12. Regulations for Child Day Care Centers Operated by Religious Bodies or Groups.

    ERIC Educational Resources Information Center

    South Carolina State Dept. of Social Services, Columbia.

    As set forth in this manual, the regulations for child day care centers operated by religious bodies or groups constitute the minimum requirements to be met and maintained by each such facility in South Carolina. Regulation 114-5-20 sets out definitions and procedures for preapplication consultation, original registration, inspection, and…

  13. Applications of operational calculus: equations for the five-point rectangle and robust center point estimators

    SciTech Connect

    Silver, Gary L

    2009-01-01

    Equations for interpolating five data in rectangular array are seldom encountered in textbooks. This paper describes a new method that renders polynomial and exponential equations for the design. Operational center point estimators are often more more resistant to the effects of an outlying datum than the mean.

  14. Martin Marietta Energy Systems, Inc. comprehensive earthquake management plan: Emergency Operations Center training manual

    SciTech Connect

    Not Available

    1990-02-28

    The objective of this training is to: describe the responsibilities, resources, and goals of the Emergency Operations Center and be able to evaluate and interpret this information to best direct and allocate emergency, plant, and other resources to protect life and the Paducah Gaseous Diffusion Plant.

  15. Operational Use of the Air Quality Monitor on ISS and Potential for Air Quality Monitoring Onboard Submarines

    NASA Technical Reports Server (NTRS)

    Limero, Thomas; Jones, Jared; Wallace, William; Mudgett, Paul

    2015-01-01

    The air quality monitor (AQM) began operations on the International Space Station (ISS) in March 2013 and was validated for operational use in January 2014. The AQM is a gas chromatograph-differential mobility spectrometer that currently monitors 22 target compounds in the ISS atmosphere. Data are collected twice per week, although data collection can be more frequent in contingency situations. In its second year, the AQM has provided data to decision-makers on several ISS contaminant related issues in both air and water. AQM has been used in strictly air incidents, such as a potential ammonia leak, and to investigate air contaminants affecting the water processing (excess ethanol). In the latter case data from water monitors and AQM were compared to understand the issue with the water processor. Additionally, the AQM has been moved to different ISS modules to determine whether air is sufficiently mixed between modules so that a central LAB module location is representative of the entire ISS atmosphere. Historic data on the ISS atmosphere in different modules from archival samples (ground lab analysis) suggest that the atmosphere is usually homogenous. This presentation will briefly describe the technical aspects of the AQM operations and summarize the validation results. The main focus of the presentation will be to discuss the results from the AQM survey of the ISS modules and to show how the AQM data has contributed to an understanding of environmental issues that have arisen on ISS. Presentation of a potential ammonia leak (indicated by an alarm) in 2015 will illustrate the use and value of the AQM in such situations.

  16. SPOT satellite family: Past, present, and future of the operations in the mission and control center

    NASA Technical Reports Server (NTRS)

    Philippe, Pacholczyk

    1993-01-01

    SPOT sun-synchronous remote sensing satellites are operated by CNES since February 1986. Today, the SPOT mission and control center (CCM) operates SPOT1, SPOT2, and is ready to operate SPOT3. During these seven years, the way to operate changed and the CCM, initially designed for the control of one satellite, has been modified and upgraded to support these new operating modes. All these events have shown the performances and the limits of the system. A new generation of satellite (SPOT4) will continue the remote sensing mission during the second half of the 90's. Its design takes into account the experience of the first generation and supports several improvements. A new generation of control center (CMP) has been developed and improves the efficiency, quality, and reliability of the operations. The CMP is designed for operating two satellites at the same time during launching, in-orbit testing, and operating phases. It supports several automatic procedures and improves data retrieval and reporting.

  17. Risk reduction methodologies and technologies for the Earth Observing System (EOS) Operations Center (EOC)

    NASA Technical Reports Server (NTRS)

    Hudson, Richard K.; Pingitore, Nelson V.

    1994-01-01

    This paper will discuss proposed Flight Operations methodologies and technologies for the Earth Observing System (EOS) Operations Center (EOC), to reduce risks associated with the operation of complex multi-instrument spacecraft in a multi-spacecraft environment. The EOC goals are to obtain 100 percent science data capture and maintain 100 percent spacecraft health, for each EOS spacecraft. Operations risks to the spacecraft and data loss due to operator command error, mission degradation due to mis-identification of an anomalous trend in component performance or mis-management of resources, and total mission loss due to improper subsystem configuration or mis-identification of an anomalous condition. This paper discusses automation of routine Flight Operations Team (FOT) responsibilities, Expert systems for real-time non-nominal condition decision support, and Telemetry analysis systems for in-depth playback data analysis and trending.

  18. Modified by air plasma polymer tack membranes as drainage material for antiglaucomatous operations

    NASA Astrophysics Data System (ADS)

    Ryazantseva, T. V.; Kravets, L. I.; Elinson, V. M.

    2014-06-01

    The morphological and clinical studies of poly(ethylene terephthalate) track membranes modified by air plasma as drainage materials for antiglaucomatous operations were performed. It was demonstrated their compatibility with eye tissues. Moreover, it was shown that a new drainage has a good lasting hypotensive effect and can be used as operation for refractory glaucoma surgery.

  19. 49 CFR 1542.203 - Security of the air operations area (AOA).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 9 2014-10-01 2014-10-01 false Security of the air operations area (AOA). 1542.203 Section 1542.203 Transportation Other Regulations Relating to Transportation (Continued) TRANSPORTATION SECURITY ADMINISTRATION, DEPARTMENT OF HOMELAND SECURITY CIVIL AVIATION SECURITY AIRPORT SECURITY Operations § 1542.203 Security of the...

  20. Field Operations and Enforcement Manual for Air Pollution Control. Volume III: Inspection Procedures for Specific Industries.

    ERIC Educational Resources Information Center

    Weisburd, Melvin I.

    The Field Operations and Enforcement Manual for Air Pollution Control, Volume III, explains in detail the following: inspection procedures for specific sources, kraft pulp mills, animal rendering, steel mill furnaces, coking operations, petroleum refineries, chemical plants, non-ferrous smelting and refining, foundries, cement plants, aluminum…

  1. 14 CFR Section 10 - Functional Classification-Operating Expenses of Group I Air Carriers

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Functional Classification-Operating... REPORTS FOR LARGE CERTIFICATED AIR CARRIERS Profit and Loss Classification Section 10 Functional... equipment as may be required to meet operating and safety standards; in inspecting or checking property...

  2. 14 CFR Section 10 - Functional Classification-Operating Expenses of Group I Air Carriers

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Functional Classification-Operating... REPORTS FOR LARGE CERTIFICATED AIR CARRIERS Profit and Loss Classification Section 10 Functional... equipment as may be required to meet operating and safety standards; in inspecting or checking property...

  3. Kennedy Space Center Design Visualization

    NASA Technical Reports Server (NTRS)

    Humeniuk, Bob

    2013-01-01

    Perform simulations of ground operations leading up to launch at Kennedy Space Center and Vandenberg Air Force Base in CA since 1987. We use 3D Laser Scanning, Modeling and Simulations to verify that operations are feasible, efficient and safe.

  4. Turbine flowmeters and their applications at the Naval Air Propulsion Center

    NASA Astrophysics Data System (ADS)

    Oberndorfer, R. E.

    1980-04-01

    At the Naval Air Propulsion Center, it has a specific requirement to make accurate mass flow measurements on the fuel flow of a gas turbine engine to determine the performance characteristics. The problem of acquiring mass flow from the inherent volumetric flow data of a turbine flowmeter is discussed. The development of a universal curve from calibration data is discussed. The unique curve fits for flowmeter, viscosity and specific gravity and their use during on-line data acquisition is described. The accuracy of the final mass flow data and its dependence on the errors associated with viscosity, specific gravity, temperature and frequency measurement is discussed. Some techniques used at NAPC to reduce these errors are described.

  5. The center of lateral iso-density contours for inclined cosmic air showers

    NASA Astrophysics Data System (ADS)

    Montanus, J. M. C.

    2016-02-01

    The horizontal lateral density of a cosmic air shower with a non-zero zenith angle is asymmetric. The asymmetry consist of a stretching of the iso-density contours to ellipses and to a shift of the center of the elliptic contours with respect to the core of the shower. The shift is caused by atmospheric attenuation. The modeling of the attenuation results in an equation for the shift as a function of zenith angle and the size of the iso-density contours. A more accurate equation is obtained by investigating the shift in lateral densities of simulated showers. It is shown how the shift can be incorporated in an elliptic lateral density function. A linear approximation for the shift allows for an analytical solution for the shifted elliptic density. Its predictions for the polar variations of the density are compared with data of simulated showers.

  6. The EOSDIS Version 0 Distributed Active Archive Center for physical oceanography and air-sea interaction

    NASA Technical Reports Server (NTRS)

    Hilland, Jeffrey E.; Collins, Donald J.; Nichols, David A.

    1991-01-01

    The Distributed Active Archive Center (DAAC) at the Jet Propulsion Laboratory will support scientists specializing in physical oceanography and air-sea interaction. As part of the NASA Earth Observing System Data and Information System Version 0 the DAAC will build on existing capabilities to provide services for data product generation, archiving, distribution and management of information about data. To meet scientist's immediate needs for data, existing data sets from missions such as Seasat, Geosat, the NOAA series of satellites and the Global Positioning Satellite system will be distributed to investigators upon request. In 1992, ocean topography, wave and surface roughness data from the Topex/Poseidon radar altimeter mission will be archived and distributed. New data products will be derived from Topex/Poseidon and other sensor systems based on recommendations of the science community. In 1995, ocean wind field measurements from the NASA Scatterometer will be supported by the DAAC.

  7. Transportation Secure Data Center: Real-World Data for Environmental and Air Quality Analysis (Fact Sheet)

    SciTech Connect

    Not Available

    2013-01-01

    The National Renewable Energy Laboratory (NREL) and the U.S. Department of Transportation (DOT) have launched the free, web-based Transportation Secure Data Center (TSDC). The TSDC (www.nrel.gov/tsdc) preserves respondent anonymity while making vital transportation data available to a broad group of users through secure, online access. The TSDC database provides free-of-charge web-based access to valuable transportation data that can be used for: Emissions and air pollution modeling, Vehicle energy and power analysis, Climate change impact studies, Alternative fuel station planning, and Validating transportation data from other sources. The TSDC's two levels of access make composite data available with simple online registration, and allow researchers to use detailed spatial data after completing a straight forward application process.

  8. Rating procedure for mixed-air-source unitary air conditioners and heat pumps operating in the cooling mode

    SciTech Connect

    Domanski, P.A.

    1986-02-01

    A procedure is presented for rating split, residential air conditioners and heat pumps operating in the cooling mode that are made up of an evaporator unit combined with a condensing unit that has been rated under current procedures in conjunction with a different evaporator unit. The procedure allows calculation of capacity at the 95/sup 0/ F rating point and seasonal energy efficiency ratio, SEER, without performing laboratory tests of the complete system.

  9. Performance Data Errors in Air Carrier Operations: Causes and Countermeasures

    NASA Technical Reports Server (NTRS)

    Berman, Benjamin A.; Dismukes, R Key; Jobe, Kimberly K.

    2012-01-01

    Several airline accidents have occurred in recent years as the result of erroneous weight or performance data used to calculate V-speeds, flap/trim settings, required runway lengths, and/or required climb gradients. In this report we consider 4 recent studies of performance data error, report our own study of ASRS-reported incidents, and provide countermeasures that can reduce vulnerability to accidents caused by performance data errors. Performance data are generated through a lengthy process involving several employee groups and computer and/or paper-based systems. Although much of the airline indUStry 's concern has focused on errors pilots make in entering FMS data, we determined that errors occur at every stage of the process and that errors by ground personnel are probably at least as frequent and certainly as consequential as errors by pilots. Most of the errors we examined could in principle have been trapped by effective use of existing procedures or technology; however, the fact that they were not trapped anywhere indicates the need for better countermeasures. Existing procedures are often inadequately designed to mesh with the ways humans process information. Because procedures often do not take into account the ways in which information flows in actual flight ops and time pressures and interruptions experienced by pilots and ground personnel, vulnerability to error is greater. Some aspects of NextGen operations may exacerbate this vulnerability. We identify measures to reduce the number of errors and to help catch the errors that occur.

  10. Air

    MedlinePlus

    ... do to protect yourself from dirty air . Indoor air pollution and outdoor air pollution Air can be polluted indoors and it can ... this chart to see what things cause indoor air pollution and what things cause outdoor air pollution! Indoor ...

  11. Future's operation areas: new-generation suppression enemy air defence (SEAD) elements

    NASA Astrophysics Data System (ADS)

    Hazinedar, Ä.°lker

    2015-05-01

    Since air vehicles took place in the theater of operations, they have become the indispensable elements and the strongest attack power of armed forces. In the following period, with technological development, supersonic aircrafts took place in the operation area and this increased effectiveness of air vehicles much more. Air forces have used these aircrafts during important missions like strategic attack and air defense operations. On the other hand, decision makers understood that it was not feasible to intercept fighter aircrafts by executing combat air patrol flight missions. Since there is not enough reaction time to intercept the high speed aircrafts, ground stationed Surface to Air Missiles (SAM) system requirement has emerged. Therefore, SAM systems took place in the operation scene as well. Due to the fact that SAM systems emerged against the attack power, the attack aircrafts are to keep away from the fire of the ground stationed SAM systems. Hence, the requirement of Suppression Enemy Air Defense (SEAD) arose. SEAD elements take under suppression the radar of the SAM systems. In this way, attack aircrafts are able to attack without the risk of SAM systems. The purpose of this study is to find new methods or concepts in order to protect friendly attack aircrafts against ground based surface to air missiles' fires. Modernization of SAM systems and new generation SAM system producing activities have proceeded with positive acceleration. So, current SEAD elements and concepts are not able to cover the requirements due to the increased SAM system ranges. According to the concepts, SEAD weapons` ranges must be longer than the SAM weapons' ranges to protect friendly aircrafts. In this study, new concept was offered to overcome the deficiencies of current SEAD concept. The elements of new concepts were put forward. Classic SEAD concept and new generation concepts were assessed by using SWOT analysis technique. As a result, this study has revealed that, air forces

  12. Financial assessment of the Space Operations Center as a Private Business Venture

    NASA Technical Reports Server (NTRS)

    Simon, M.

    1982-01-01

    The possibility of private financing and operation of the Space Operations Center (SOC) is considered as an alternative to SOC development by the government. A hypothetical revenue model for SOC services is constructed and is compared with NASA estimates of SOC development and operating costs. A present value analysis based on a 1985 to 2000 investment horizon shows a potential for substantial profit in a private SOC venture, although the possibility of large losses is not discounted. Present value estimates range from $8.6 billion down to a low minus $3.3 billion.

  13. Space Operations Center system analysis study extension. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The analysis fo Space Operations Center (SOC) systems is summarized. Design considerations, configurations of the manned orbital space station, planned operational and research missions, and subsystem tradeoffs are considered. Integration into the space transportation system is discussed. A modular design concept permitting growth of the SOC as its functions are expanded is described. Additional considerations are special requirements for habitat modules, design modifications needed to operate in geosynchronous orbits, and use of the external tank for cryogenic propellant storage or as a pressurized hangar. A cost summary is presented.

  14. An Objective Verification of the North American Mesoscale Model for Kennedy Space Center and Cape Canaveral Air Force Station

    NASA Technical Reports Server (NTRS)

    Bauman, William H., III

    2010-01-01

    The 45th Weather Squadron (45 WS) Launch Weather Officers (LWO's) use the 12-km resolution North American Mesoscale (NAM) model (MesoNAM) text and graphical product forecasts extensively to support launch weather operations. However, the actual performance of the model at Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS) has not been measured objectively. In order to have tangible evidence of model performance, the 45 WS tasked the Applied Meteorology Unit (AMU; Bauman et ai, 2004) to conduct a detailed statistical analysis of model output compared to observed values. The model products are provided to the 45 WS by ACTA, Inc. and include hourly forecasts from 0 to 84 hours based on model initialization times of 00, 06, 12 and 18 UTC. The objective analysis compared the MesoNAM forecast winds, temperature (T) and dew pOint (T d), as well as the changes in these parameters over time, to the observed values from the sensors in the KSC/CCAFS wind tower network shown in Table 1. These objective statistics give the forecasters knowledge of the model's strengths and weaknesses, which will result in improved forecasts for operations.

  15. An Objective Verification of the North American Mesoscale Model for Kennedy Space Center and Cape Canaveral Air Force Station

    NASA Technical Reports Server (NTRS)

    Bauman, William H., III

    2010-01-01

    The 45th Weather Squadron (45 WS) Launch Weather Officers use the 12-km resolution North American Mesoscale (NAM) model (MesoNAM) text and graphical product forecasts extensively to support launch weather operations. However, the actual performance of the model at Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS) has not been measured objectively. In order to have tangible evidence of model performance, the 45 WS tasked the Applied Meteorology Unit to conduct a detailed statistical analysis of model output compared to observed values. The model products are provided to the 45 WS by ACTA, Inc. and include hourly forecasts from 0 to 84 hours based on model initialization times of 00, 06, 12 and 18 UTC. The objective analysis compared the MesoNAM forecast winds, temperature and dew point, as well as the changes in these parameters over time, to the observed values from the sensors in the KSC/CCAFS wind tower network. Objective statistics will give the forecasters knowledge of the model's strength and weaknesses, which will result in improved forecasts for operations.

  16. Flow and containment characteristics of an air-curtain fume hood operated at high temperatures.

    PubMed

    Chen, Jia-Kun; Huang, Rong Fung; Hsin, Pei-Yi; Hsu, Ching Min; Chen, Chun-Wann

    2012-01-01

    The flow and leakage characteristics of the air-curtain fume hood under high temperature operation (between 100°C and 250°C) were studied. Laser-assisted flow visualization technique was used to reveal the hot plume movements in the cabinet and the critical conditions for the hood-top leakage. The sulfur hexafluoride tracer-gas concentration test method was employed to examine the containment spillages from the sash opening and the hood top. It was found that the primary parameters dominating the behavior of the flow field and hood performance are the sash height and the suction velocity as an air-curtain hood is operated at high temperatures. At large sash height and low suction velocity, the air curtain broke down and accompanied with three-dimensional flow in the cabinet. Since the suction velocity was low and the sash opening was large, the makeup air drawn down from the hood top became insufficient to counter act the rising hot plume. Under this situation, containment leakage from the sash opening and the hood top was observed. At small sash opening and high suction velocity, the air curtain presented robust characteristics and the makeup air flow from the hood top was sufficiently large. Therefore the containment leakages from the sash opening and the hood top were not observed. According to the results of experiments, quantitative operation sash height and suction velocity corresponding to the operation temperatures were suggested. PMID:22293724

  17. Solar Radio Burst Effects and Meteor Effects: Operational Products Under Development at the Joint SMC-AFRL Rapid Prototyping Center

    NASA Astrophysics Data System (ADS)

    Quigley, S.

    2002-05-01

    The Air Force Research Laboratory (AFRL/VSB) and Detachment 11, Space & Missile Systems Center (SMC, Det 11/CIT) have combined efforts to design, develop, test, and implement graphical products for the Air Force's space weather operations center. These products are generated to analyze, specify, and forecast the effects of the near-earth space environment on Department of Defense systems and communications. Jointly-developed products that will be added to real-time operations in the near future include a solar radio background and burst effects (SoRBE) product suite, and a meteor effects (ME) product suite. The SoRBE product addresses the effect of background and event-level solar radio output on operational DoD systems. Strong bursts of radio wave emissions given off by the sun during solar ``events'' can detrimentally affect radar and satellite communication systems that have operational receiving geometries within the field of view of the sun. For some systems, even the background radiation from the sun can produce effects. The radio frequency interference (RFI) of interest occurs on VHF, UHF, and SHF frequency bands, usually lasting several minutes during a solar flare. While such effects are limited in time and area (typically a few degrees in viewing angle), they can be quite severe in magnitude. The result can be a significant lack in a radar system's ability to detect and/or track an object, and loss of a communication system's ability to receive satellite signals. The ME product will address the detrimental effects of meteors on operational DoD systems. These include impacts on satellites, visible trail observations, and radar clutter. While certain types of individual meteors can produce system effects, the initial ME product will address the more generalized range of meteor shower activity and associated affects. These effects can result in damage to satellites, incorrect assessment of satellite sensor observations, and false target returns on radar

  18. The Effect of Interruptions on Part 121 Air Carrier Operations

    NASA Technical Reports Server (NTRS)

    Damos, Diane L.

    1998-01-01

    The primary purpose of this study was to determine the relative priorities of various events and activities by examining the probability that a given activity was interrupted by a given event. The analysis will begin by providing frequency of interruption data by crew position (captain versus first officer) and event type. Any differences in the pattern of interruptions between the first officers and the captains will be explored and interpreted in terms of standard operating procedures. Subsequent data analyses will focus on comparing the frequency of interruptions for different types of activities and for the same activities under normal versus emergency conditions. Briefings and checklists will receive particular attention. The frequency with which specific activities are interrupted under multiple- versus single-task conditions also will be examined; because the majority of multiple-task data were obtained under laboratory conditions, LOFT-type tapes offer a unique opportunity to examine concurrent task performance under 'real-world' conditions. A second purpose of this study is to examine the effects of the interruptions on performance. More specifically, when possible, the time to resume specific activities will be compared to determine if pilots are slower to resume certain types of activities. Errors in resumption or failures to resume specific activities will be noted and any patterns in these errors will be identified. Again, particular attention will be given to the effects of interruptions on the completion of checklists and briefings. Other types of errors and missed events (i.e., the crew should have responded to the event but did not) will be examined. Any methodology using interruptions to examine task prioritization must be able to identify when an interruption has occurred and describe the ongoing activities that were interrupted. Both of these methodological problems are discussed In detail in the following section,

  19. The web system for operative description of air quality in the city

    NASA Astrophysics Data System (ADS)

    Barth, A. A.; Starchenko, A. V.; Fazliev, A. Z.

    2009-04-01

    Development and implementation of information-computational system (ICS) is described. The system is oriented on the collective usage of the calculation's facilities in order to determine the air quality on the basis of photochemical model. The ICS has been implemented on the basis of the middleware of ATMOS web-portal [1, 2]. The data and calculation layer of this ICS includes: Mathematical model of pollution transport based on transport differential equations. The model describes propagation, scattering and chemical transformation of the pollutants in the atmosphere [3]. The model may use averaged data value for city or forecast results obtained with help of the Chaser model.[4] Atmospheric boundary layer model (ABLM) [3] is used for operative numerical prediction of the meteorological parameters. These are such parameters as speed and direction of the wind, humidity and temperature of the air, which are necessary for the transport impurity model to operate. The model may use data assimilation of meteorological measurements data (including land based observations and the results of remote sensing of vertical structure of the atmosphere) or the weather forecast results obtained with help of the Semi-Lagrange model [5]. Applications for manipulation of data: An application for downloading parameters of atmospheric surface layer and remote sensing of vertical structure of the atmosphere from the web sites (http://meteo.infospace.ru and http://weather.uwyo.edu); An application for uploading these data into the ICS database; An application for transformation of the uploaded data into the internal data format of the system. At present this ICS is a part of "Climate" web site located in ATMOS portal [5]. The database is based on the data schemes providing the calculation in ICS workflow. The applications manipulated with the data are working in automatic regime. The workflow oriented on computation of physical parameters contains: The application for the calculation of

  20. Re-Engineering the ISS Payload Operations Control Center During Increased Utilization and Critical Onboard Events

    NASA Technical Reports Server (NTRS)

    Marsh, Angela L.; Dudley, Stephanie R. B.

    2014-01-01

    With an increase in the utilization and hours of payload operations being executed onboard the International Space Station (ISS), upgrading the NASA Marshall Space Flight Center (MSFC) Huntsville Operations Support Center (HOSC) ISS Payload Control Area (PCA) was essential to gaining efficiencies and assurance of current and future payload health and science return. PCA houses the Payload Operations Integration Center (POIC) responsible for the execution of all NASA payloads onboard the ISS. POIC Flight Controllers are responsible for the operation of voice, stowage, command, telemetry, video, power, thermal, and environmental control in support of ISS science experiments. The methodologies and execution of the PCA refurbishment were planned and performed within a four month period in order to assure uninterrupted operation of ISS payloads and minimal impacts to payload operations teams. To vacate the PCA, three additional HOSC control rooms were reconfigured to handle ISS realtime operations, Backup Control Center (BCC) to Mission Control in Houston, simulations, and testing functions. This involved coordination and cooperation from teams of ISS operations controllers, multiple engineering and design disciplines, management, and construction companies performing an array of activities simultaneously and in sync delivering a final product with no issues that impacted the schedule. For each console operator discipline, studies of Information Technology (IT) tools and equipment layouts, ergonomics, and lines of sight were performed. Infusing some of the latest IT into the project was an essential goal in ensuring future growth and success of the ISS payload science returns. Engineering evaluations led to a state of the art media wall implementation and more efficient ethernet cabling distribution providing the latest products and the best solution for the POIC. These engineering innovations led to cost savings for the project. Constraints involved in the management

  1. Deep Space Network (DSN), Network Operations Control Center (NOCC) computer-human interfaces

    NASA Technical Reports Server (NTRS)

    Ellman, Alvin; Carlton, Magdi

    1993-01-01

    The Network Operations Control Center (NOCC) of the DSN is responsible for scheduling the resources of DSN, and monitoring all multi-mission spacecraft tracking activities in real-time. Operations performs this job with computer systems at JPL connected to over 100 computers at Goldstone, Australia and Spain. The old computer system became obsolete, and the first version of the new system was installed in 1991. Significant improvements for the computer-human interfaces became the dominant theme for the replacement project. Major issues required innovating problem solving. Among these issues were: How to present several thousand data elements on displays without overloading the operator? What is the best graphical representation of DSN end-to-end data flow? How to operate the system without memorizing mnemonics of hundreds of operator directives? Which computing environment will meet the competing performance requirements? This paper presents the technical challenges, engineering solutions, and results of the NOCC computer-human interface design.

  2. Lessons learned from the introduction of autonomous monitoring to the EUVE science operations center

    NASA Technical Reports Server (NTRS)

    Lewis, M.; Girouard, F.; Kronberg, F.; Ringrose, P.; Abedini, A.; Biroscak, D.; Morgan, T.; Malina, R. F.

    1995-01-01

    The University of California at Berkeley's (UCB) Center for Extreme Ultraviolet Astrophysics (CEA), in conjunction with NASA's Ames Research Center (ARC), has implemented an autonomous monitoring system in the Extreme Ultraviolet Explorer (EUVE) science operations center (ESOC). The implementation was driven by a need to reduce operations costs and has allowed the ESOC to move from continuous, three-shift, human-tended monitoring of the science payload to a one-shift operation in which the off shifts are monitored by an autonomous anomaly detection system. This system includes Eworks, an artificial intelligence (AI) payload telemetry monitoring package based on RTworks, and Epage, an automatic paging system to notify ESOC personnel of detected anomalies. In this age of shrinking NASA budgets, the lessons learned on the EUVE project are useful to other NASA missions looking for ways to reduce their operations budgets. The process of knowledge capture, from the payload controllers for implementation in an expert system, is directly applicable to any mission considering a transition to autonomous monitoring in their control center. The collaboration with ARC demonstrates how a project with limited programming resources can expand the breadth of its goals without incurring the high cost of hiring additional, dedicated programmers. This dispersal of expertise across NASA centers allows future missions to easily access experts for collaborative efforts of their own. Even the criterion used to choose an expert system has widespread impacts on the implementation, including the completion time and the final cost. In this paper we discuss, from inception to completion, the areas where our experiences in moving from three shifts to one shift may offer insights for other NASA missions.

  3. Recent Developments in the Quantification and Regulation of Air Emissions from Animal Feeding Operations.

    PubMed

    Heinzen, Tarah

    2015-03-01

    Animal feeding operations (AFOs) emit various air pollutants, including ammonia, hydrogen sulfide, particulate matter, volatile organic compounds, methane, and nitrous oxide. Several of these pollutants are regulated under federal clean air statutes, yet AFOs have largely escaped regulation under these laws because of challenges in accurately estimating the rate and quantity of emissions from various types of livestock operations. Recent Environmental Protection Agency (EPA) efforts to collect emissions data, develop an emissions model capable of estimating emissions at AFOs nationwide, and establish emissions estimating methodologies for certain key livestock air pollutants suffered from design flaws and omitted pollutants of concern. Moreover, this process seems to have stalled, delaying other regulatory reforms needed to increase transparency and increase regulation of these facilities. Until EPA establishes these methodologies, significant AFO pollution regulation under the Clean Air Act or emissions reporting statutes will be very difficult to achieve, and the public health and environmental impacts of these emissions will continue unabated. PMID:26231239

  4. Organizational structure and operation of defense/aerospace information centers in the United States of America

    NASA Technical Reports Server (NTRS)

    Sauter, H. E.; Lushina, L. N.

    1983-01-01

    U.S. Government aerospace and defense information centers are addressed. DTIC and NASA are described in terms of their history, operational authority, information services provided, user community, sources of information collected, efforts under way to improve services, and external agreements regarding the exchange of documents and/or data bases. Contents show how DTIC and NASA provide aerospace/defense information services in support of U.S. research and development efforts. In a general introduction, the importance of scientific and technical information and the need for information centers to acquire, handle, and disseminate it are stressed.

  5. Pulsed, room-temperature operation of a tunable NaCl color-center laser

    SciTech Connect

    Culpepper, C.F.; Carrig, T.J.; Pinto, J.F.; Georgiou, E.; Pollock, C.R.

    1987-11-01

    A room-temperature, pulsed, color-center laser using OH/sup : /-doped NaCl crystals is reported. Crystals were transversely pumped by a Q-switched Nd:YAG laser at 1.06 ..mu..m and produced output energies of 8.6 mJ in 20-nsec pulses. The tuning range extended from 1.37 to 1.77 ..mu..m. During 40 h of operation (>10/sup 6/ pulses), a gradual power fading was observed. Laser action is tentatively ascribed to F/sub 2//sup //sup +/ centers.

  6. Operation of the 25 kW NASA Lewis Research Center solar regenerative fuel cell testbed facility

    SciTech Connect

    Voecks, G.E.; Rohatgi, N.K.; Jan, D.L.; Ferraro, N.W.; Moore, S.H.; Warshay, M.; Prokopius, P.R.; Edwards, H.S.; Smith, G.D.

    1997-12-31

    Assembly of the NASA Lewis Research Center (LeRC) Solar Regenerative Fuel Cell (RFC) Testbed Facility has been completed and system testing has proceeded. This facility includes the integration of two 25 kW photovoltaic solar cell arrays, a 25 kW proton exchange membrane (PEM) electrolysis unit, four 5 kW PEM fuel cells, high pressure hydrogen and oxygen storage vessels, high purity water storage containers, and computer monitoring, control and data acquisition. The fuel cell and electrolyzer subsystems` installation was carried out by the Jet Propulsion Laboratory (JPL). The photovoltaic arrays and electrical interconnect to the electrolyzer were provided by the US Navy/China Lake Naval Air Warfare Center. JPL is responsible for conducting the testing and operations at the LeRC facility. There are multiple objectives for this program. The near term objectives are: (1) design, assemble, and test the solar RFC power plant system to serve as a pre-prototype operational testbed facility; (2) evaluate performance criteria of the total system, subsystems, and components against various operational duty cycles; and (3) develop automation and controls commensurate with advanced system operating requirements. The long term objectives are: (1) develop a highly reliable, long life, highly efficient solar RFC power system for future manned space missions; and (2) demonstrate the dual use aspects of RFCs applicable to commercial and military applications. The system description and initiation of system testing constitute Phase 1 of multiple activities planned to take place in the next few years. System modeling is being performed in parallel with the experimental testing and will be used to determine the most efficient system design, from the standpoint of weight, volume and cost of electrical power.

  7. Advanced Air Traffic Management Research (Human Factors and Automation): NASA Research Initiatives in Human-Centered Automation Design in Airspace Management

    NASA Technical Reports Server (NTRS)

    Corker, Kevin M.; Condon, Gregory W. (Technical Monitor)

    1996-01-01

    NASA has initiated a significant thrust of research and development focused on providing the flight crew and air traffic managers automation aids to increase capacity in en route and terminal area operations through the use of flexible, more fuel-efficient routing, while improving the level of safety in commercial carrier operations. In that system development, definition of cognitive requirements for integrated multi-operator dynamic aiding systems is fundamental. The core processes of control and the distribution of decision making in that control are undergoing extensive analysis. From our perspective, the human operators and the procedures by which they interact are the fundamental determinants of the safe, efficient, and flexible operation of the system. In that perspective, we have begun to explore what our experience has taught will be the most challenging aspects of designing and integrating human-centered automation in the advanced system. We have performed a full mission simulation looking at the role shift to self-separation on board the aircraft with the rules of the air guiding behavior and the provision of a cockpit display of traffic information and an on-board traffic alert system that seamlessly integrates into the TCAS operations. We have performed and initial investigation of the operational impact of "Dynamic Density" metrics on controller relinquishing and reestablishing full separation authority. (We follow the assumption that responsibility at all times resides with the controller.) This presentation will describe those efforts as well as describe the process by which we will guide the development of error tolerant systems that are sensitive to shifts in operator work load levels and dynamic shifts in the operating point of air traffic management.

  8. Petrologic and petrophysical evaluation of the Dallas Center Structure, Iowa, for compressed air energy storage in the Mount Simon Sandstone.

    SciTech Connect

    Heath, Jason E.; Bauer, Stephen J.; Broome, Scott Thomas; Dewers, Thomas A.; Rodriguez, Mark Andrew

    2013-03-01

    The Iowa Stored Energy Plant Agency selected a geologic structure at Dallas Center, Iowa, for evaluation of subsurface compressed air energy storage. The site was rejected due to lower-than-expected and heterogeneous permeability of the target reservoir, lower-than-desired porosity, and small reservoir volume. In an initial feasibility study, permeability and porosity distributions of flow units for the nearby Redfield gas storage field were applied as analogue values for numerical modeling of the Dallas Center Structure. These reservoir data, coupled with an optimistic reservoir volume, produced favorable results. However, it was determined that the Dallas Center Structure cannot be simplified to four zones of high, uniform permeabilities. Updated modeling using field and core data for the site provided unfavorable results for air fill-up. This report presents Sandia National Laboratories' petrologic and petrophysical analysis of the Dallas Center Structure that aids in understanding why the site was not suitable for gas storage.

  9. Using Web 2.0 (and Beyond?) in Space Flight Operations Control Centers

    NASA Technical Reports Server (NTRS)

    Scott, David W.

    2010-01-01

    Word processing was one of the earliest uses for small workstations, but we quickly learned that desktop computers were far more than e-typewriters. Similarly, "Web 2.0" capabilities, particularly advanced search engines, chats, wikis, blogs, social networking, and the like, offer tools that could significantly improve our efficiency at managing the avalanche of information and decisions needed to operate space vehicles in realtime. However, could does not necessarily equal should. We must wield two-edged swords carefully to avoid stabbing ourselves. This paper examines some Web 2.0 tools, with an emphasis on social media, and suggests which ones might be useful or harmful in real-time space operations co rnotl environments, based on the author s experience as a Payload Crew Communicator (PAYCOM) at Marshall Space Flight Center s (MSFC) Payload Operations Integration Center (POIC) for the International Space Station (ISS) and on discussions with other space flight operations control organizations and centers. There is also some discussion of an offering or two that may come from beyond the current cyber-horizon.

  10. 77 FR 30509 - Notice To Extend Public Comment Period for United States Air Force F-35A Operational Basing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-23

    ... Department of the Air Force Notice To Extend Public Comment Period for United States Air Force F-35A Operational Basing Environmental Impact Statement AGENCY: The United States Air Force, DoD. ACTION: Notification of Extension of Public Comment Period. SUMMARY: The U.S. Air Force is issuing this notice...

  11. Real-Time Kennedy Space Center and Cape Canaveral Air Force Station High-Resolution Model Implementation and Verification

    NASA Technical Reports Server (NTRS)

    Shafer, Jaclyn; Watson, Leela R.

    2015-01-01

    NASA's Launch Services Program, Ground Systems Development and Operations, Space Launch System and other programs at Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS) use the daily and weekly weather forecasts issued by the 45th Weather Squadron (45 WS) as decision tools for their day-to-day and launch operations on the Eastern Range (ER). Examples include determining if they need to limit activities such as vehicle transport to the launch pad, protect people, structures or exposed launch vehicles given a threat of severe weather, or reschedule other critical operations. The 45 WS uses numerical weather prediction models as a guide for these weather forecasts, particularly the Air Force Weather Agency (AFWA) 1.67 km Weather Research and Forecasting (WRF) model. Considering the 45 WS forecasters' and Launch Weather Officers' (LWO) extensive use of the AFWA model, the 45 WS proposed a task at the September 2013 Applied Meteorology Unit (AMU) Tasking Meeting requesting the AMU verify this model. Due to the lack of archived model data available from AFWA, verification is not yet possible. Instead, the AMU proposed to implement and verify the performance of an ER version of the high-resolution WRF Environmental Modeling System (EMS) model configured by the AMU (Watson 2013) in real time. Implementing a real-time version of the ER WRF-EMS would generate a larger database of model output than in the previous AMU task for determining model performance, and allows the AMU more control over and access to the model output archive. The tasking group agreed to this proposal; therefore the AMU implemented the WRF-EMS model on the second of two NASA AMU modeling clusters. The AMU also calculated verification statistics to determine model performance compared to observational data. Finally, the AMU made the model output available on the AMU Advanced Weather Interactive Processing System II (AWIPS II) servers, which allows the 45 WS and AMU staff to customize

  12. Maintenance guide for air-operated valves, pneumatic actuators, and accessories

    SciTech Connect

    Preckwinkle, S.E. )

    1992-07-01

    Air Operated Valves (AOVs) are used extensively in the power generation industry for process control and system isolation functions. Their proper operation is essential to reliable power plant operation. This guide discusses major components such as actuators, valves, and positioners, and explains the inter-relationship of these components. Diagrams indicating the application and operation of various types of actuators are presented as an aid for thorough investigation of malfunctioning equipment. Recent developments on diagnostic equipment for AOVs are covered and valve traces on valves with maintenance related problems are used to demonstrate how the diagnostic equipment can quickly solve complex valve problems. In addition, predictive and preventive maintenance recommendations based on specific failure data are included. The guide also includes a troubleshooting section with tables providing easily accessible information to minimize troubleshooting costs. Appendices augment the guide by providing a glossary of terms and various engineering schedules including useful engineering parameters for the proper maintenance of air operated valves and accessories.

  13. Optimization of non-aqueous electrolytes for Primary lithium/air batteries operated in Ambient Enviroment

    SciTech Connect

    Xu, Wu; Xiao, Jie; Zhang, Jian; Wang, Deyu; Zhang, Jiguang

    2009-07-07

    The selection and optimization of non-aqueous electrolytes for ambient operations of lithium/air batteries has been studied. Organic solvents with low volatility and low moisture absorption are necessary to minimize the change of electrolyte compositions and the reaction between lithium anode and water during discharge process. It is critical to make the electrolytes with high polarity so that it can reduce wetting and flooding of carbon based air electrode and lead to improved battery performance. For ambient operations, the viscosity, ionic conductivity, and oxygen solubility of the electrolyte are less important than the polarity of organic solvents once the electrolyte has reasonable viscosity, conductivity, and oxygen solubility. It has been found that PC/EC mixture is the best solvent system and LiTFSI is the most feasible salt for ambient operations of Li/air batteries. Battery performance is not very sensitive to PC/EC ratio or salt concentration.

  14. Structural Stress Analysis on the Rubber Diaphragm of Air-Operated Valve

    NASA Astrophysics Data System (ADS)

    Lee, Young-Shin; Cho, Taik-Dong; Ko, Sung-Ho; Lee, Hyun-Seung; Shin, Sung-Ky

    Air-operated valves are used extensively in the power-generation industry for process control and system isolation functions. A study on the prevention of damage of an air operated valve is very important. Specially, diaphragm in an actuator of an air-operated valve has the highest damage rate. In this study, the stress of diaphragm with thickness change is analyzed. For this analysis, four experiments were conducted to obtain material properties of rubber. A stress analysis is carried out by commercial FEM code, ANSYS 8.0. It is compared with tension test to verify finite element analysis. From the result of analysis, the maximum stress happened at flange edge part, and the maximum displacement happened between flange edge and spring support. This study also finds out effect of the thickness about variable thickness. Even if a section area is same, the maximum stress is varied with the thickness of edge side.

  15. Comparison of Claus reaction furnace performance with air and COPE O/sub 2/ based operation

    SciTech Connect

    Hegarty, W.P.; Chen, M.S.K.; Goar, B.G.

    1987-01-01

    The COPE (Claus Oxygen-based Process Expansion) process, jointly developed by Air Products and Chemicals, Inc., (APCI) and Goar, Allison and Associates, Inc. (GAA) permits operation of new or retrofitted existing Claus plants with up to 100% O/sub 2/ instead of air. The first commercial operation of the process was at Concoco's Lake Charles refinery in March 1985. The major technical problems overcome by the COPE process were moderation of Reaction Furnace (RF) temperatures and design of a burner system suitable for safe operation with any mixture of air and O/sub 2/. While the original COPE process recycles cooled gas to the reaction furnace to moderate temperature, additional moderation techniques have been studied. To develop the COPE process and to study additional moderation techniques, it was necessary to develop an improved reaction furnance kinetic model. This paper presents the improved reaction furnace computer model and uses it to compare several moderation techniques

  16. The Influence of Shale Rock Fracturing Equipment Operation on Atmospheric Air Quality

    NASA Astrophysics Data System (ADS)

    Bogacki, Marek; Macuda, Jan

    2014-12-01

    The hydraulic fracturing jobs performed on shale rocks are connected with atmospheric emissions of dusts and exhaust gases from high-power motors supplying pump aggregates used for fracturing operations and from other technological devices. The total power of motors driving technological systems depends on the specific character of deposit and well and may range between a dozen to tens of thousands kW. An exemplary set of technological systems used for frac jobs is presented in figure 1. The following substances are emitted to the atmosphere during engine operation, e.g. nitrogen oxides (NOx), sulfur dioxide (SO2), carbon oxide (CO), dust PM10, ammonia, benzo(a)pyrene (B(a)P), benzene, toluene, xylene, formaldehyde, acetaldehyde, acrolein. As a consequence admissible concentrations of these substances in air can be exceeded. The influence of dust and gaseous emissions accompanying shale rock fracturing jobs is addressed in this paper. Model analyses were performed. An exemplary model of a process used for simulating propagation of atmospheric emissions in a specified calculation area (1,150 m × 1,150 m) were based on the analysis of hydraulic fracturing jobs performed in wells in Poland and abroad. For making calculations more actual, the model was located in the Gdańsk area and was ascribed its typical meteorological and orographic parameters. In the center of this area a rig site 150 m x 150 m was distinguished. The emission field was generated by 12 high-power engines supplying pump aggregates, 1680 kW each. The time of work of particular engines was established for 52 hrs (13 frac jobs, each lasting 4 hrs). It was assumed that all engines will operate simultaneously and using 100% of their power. Attention was paid to the correct modelling of the real emission field. Technical parameters of motors and the applied fuels were characterized. Emission indices were worked out by, e.g. U.S. Environmental Protection Agency or European Environment Agency. The

  17. Repair of Corrosion in Air Supply Piping at the NASA Glenn Research Center's 1 by 1 Foot Supersonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Henry, Michael

    2000-01-01

    During a test at the NASA Glenn Research Center's 1 x 1 Supersonic Wing Tunnel, it was discovered that particles entrained in the air flow were damaging the pressure sensitive paint on a test article. An investigation found the source of the entrained particles to be rust on the internal surfaces of the air supply piping. To remedy the situation, the air supply line components made from carbon steel were either refurbished or replaced with new stainless steel components. The refurbishment process included various combinations of chemical cleaning, bead blasting, painting and plating.

  18. Analysis of operational requirements for medium density air transportation, volume 2

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The medium density air travel market is examined and defined in terms of numbers of people transported per route per day and frequency of service. The operational characteristics for aircraft to serve this market are determined and a basepoint aircraft is designed from which tradeoff studies and parametric variations can be conducted. The impact of the operational characteristics on the air travel system is evaluated along with the economic viability of the study aircraft. Research and technology programs for future study consideration are identified.

  19. A Monte Carlo simulation of air ambulance requirements during major combat operations.

    PubMed

    Fulton, Larry; McMurry, Pat; Kerr, Bernie

    2009-06-01

    In this study, we evaluate rules of allocation and planning factors that have an effect on requirements for Army air ambulance companies. The Army uses rules of allocation in scenarios drawn from strategic planning documents to determine how many units of each type are required. Army planners use these rules for determining the number of units required to support specific operational and tactical scenarios. Unrealistic rules result in unrealistic unit requirements. We evaluate quantitatively (via Monte Carlo simulation) planning considerations for air ambulance units during major combat operations (MCO) and estimate that 0.4 airframes per admission would be a reasonable planning factor. PMID:19585774

  20. Operator-centered control of a semi-autonomous industrial robot

    SciTech Connect

    Spelt, P.F.; Jones, S.L.

    1994-12-31

    This paper presents work done by Oak Ridge National Laboratory and Remotec, Inc., to develop a new operator-centered control system for Remotec`s Andros telerobot. Andros robots are presently used by numerous electric utilities, the armed forces, and numerous law enforcement agencies to perform tasks which are hazardous for human operators. This project has automated task components and enhanced the video graphics display of the robot`s position in the environment to significantly reduce operator workload. The procedure of automating a telerobot requires the addition of computer power to the robot, along with a variety of sensors and encoders to provide information about the robots performance in and relationship to its environment The resulting vehicle serves as a platform for research on strategies to integrate automated tasks with those performed by a human operator. The addition of these capabilities will greatly enhance the safety and efficiency of performance in hazardous environments.

  1. Operational status and life extension plans for the Los Alamos Neutron Science Center (LANSCE)

    SciTech Connect

    Garnett, Robert W; Gulley, Mark S; Jones, Kevin W; Erickson, John L

    2010-01-01

    The Los Alamos Neutron Science Center (LANSCE) accelerator and beam delivery complex generates the proton beams that serve three neutron production sources, a proton radiography facility and a medical and research isotope production facility. The recent operating history of the facility, including both achievements and challenges, will be reviewed. Plans for performance improvement will be discussed, together with the underlying drivers for the ongoing LANSCE Risk Mitigation project. The details of this latter project will also be discussed.

  2. Experimental study of high density foods for the Space Operations Center

    NASA Technical Reports Server (NTRS)

    Ahmed, S. M.

    1981-01-01

    The experimental study of high density foods for the Space Operations Center is described. A sensory evaluation of the high density foods was conducted first to test the acceptability of the products. A shelf-life study of the high density foods was also conducted for three different time lengths at three different temperatures. The nutritional analysis of the high density foods is at present incomplete.

  3. POISON CONTROL—Operation of an Information Center in a Rural and Agricultural Community

    PubMed Central

    Bocian, J. J.

    1960-01-01

    The Fresno Community Hospital Poison Control Center has been in operation for about three years, under the sole directorship of the pathologist. All expenses are paid by the hospital. It has served a definite need in the community. As an agricultural and more or less rural community, it shows more poison cases having to do with plants, insecticides, kerosene and fertilizers than do urban communities. PMID:13801875

  4. Operational Status and Life Extension Plans for the Los Alamos Neutron Science Center (LANSCE)

    SciTech Connect

    Erickson, John L.; Rees, Daniel E.

    2011-01-01

    The Los Alamos Neutron Science Center (LANSCE) accelerator and beam delivery complex generates the proton beams that serve three neutron production sources, a proton radiography facility and a medical and research isotope production facility. The recent operating history of the facility, including both achievements and challenges, will be reviewed. Plans for performance improvement will be discussed, together with the underlying drivers for the ongoing LANSCE Linac Risk Mitigation (LRM) project. The details of this latter project will also be discussed.

  5. Space Operations Center system analysis study extension. Volume 4, book 1: SOC system analysis report

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The Space Operations Center (SOC) orbital space station missions are analyzed. Telecommunications missions, space science, Earth sensing, and space testing missions, research and applications missions, defense missions, and satellite servicing missions are modeled and mission needs discussed. The satellite servicing missions are analyzed in detail, including construction and servicing equipment requirements, mission needs and benefits, differential drag characteristics of co-orbiting satellites, and satellite servicing transportation requirements.

  6. Deterrence of ballistic missile systems and their effects on today's air operations

    NASA Astrophysics Data System (ADS)

    Durak, Hasan

    2015-05-01

    Lately, the effect-based approach has gained importance in executing air operations. Thus, it makes more successful in obtaining the desired results by breaking the enemy's determination in a short time. Air force is the first option to be chosen in order to defuse the strategic targets. However, the problems such as the defense of targets and country, radars, range…etc. becoming serious problems. At this level ballistic missiles emerge as a strategic weapon. Ultimate emerging technologies guided by the INS and GPS can also be embedded with multiple warheads and reinforced with conventional explosive, ballistic missiles are weapons that can destroy targets with precision. They have the advantage of high speed, being easily launched from every platform and not being easily detected by air defense systems contrary to other air platforms. While these are the advantages, there are also disadvantages of the ballistic missiles. The high cost, unavailability of nuclear, biological and chemical weapons, and its limited effect while using conventional explosives against destroying the fortified targets are the disadvantages. The features mentioned above should be considered as limitation to the impact of the ballistic missiles. The aim is to impose the requests on enemies without starting a war with all components and to ensure better implementation of the operation functions during the air operations. In this study, effects of ballistic missiles in the future on air battle theatre will be discussed in the beginning, during the process and at the end phase of air operations within the scope of an effect-based approach.

  7. Basement utility room (room 24; air handling room), near the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Basement utility room (room 24; air handling room), near the west end of the combat operations center, looking southwest towards fan system one, air ducts, and walk-in filter rooms. The exterior equipment well is visible at the left - March Air Force Base, Strategic Air Command, Combat Operations Center, 5220 Riverside Drive, Moreno Valley, Riverside County, CA

  8. Re-Engineering the ISS Payload Operations Control Center During Increased Utilization and Critical Onboard Events

    NASA Technical Reports Server (NTRS)

    Dudley, Stephanie R. B.; Marsh, Angela L.

    2014-01-01

    With an increase in utilization and hours of payload operations being executed onboard the International Space Station (ISS), upgrading the NASA Marshall Space Flight Center (MSFC) Huntsville Operations Support Center (HOSC) ISS Payload Control Area (PCA) was essential to gaining efficiencies and assurance of current and future payload health and science return. PCA houses the Payload Operations Integration Center (POIC) responsible for the execution of all NASA payloads onboard the ISS. POIC Flight Controllers are responsible for the operation of voice, stowage, command, telemetry, video, power, thermal, and environmental control in support of ISS science experiments. The methodologies and execution of the PCA refurbishment were planned and performed within a four-month period in order to assure uninterrupted operation of ISS payloads and minimal impacts to payload operations teams. To vacate the PCA, three additional HOSC control rooms were reconfigured to handle ISS real-time operations, Backup Control Center (BCC) to Mission Control in Houston, simulations, and testing functions. This involved coordination and cooperation from teams of ISS operations controllers, multiple engineering and design disciplines, management, and construction companies performing an array of activities simultaneously and in sync delivering a final product with no issues that impacted the schedule. For each console operator discipline, studies of Information Technology (IT) tools and equipment layouts, ergonomics, and lines of sight were performed. Infusing some of the latest IT into the project was an essential goal in ensuring future growth and success of the ISS payload science returns. Engineering evaluations led to a state of the art Video Wall implementation and more efficient ethernet cabling distribution providing the latest products and the best solution for the POIC. These engineering innovations led to cost savings for the project. Constraints involved in the management of

  9. Stirling Convertor Extended Operation Testing and Data Analysis at Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Cornell, Peggy A.; Lewandowski, Edward J.; Oriti, Salvatore M.; Wilson, Scott D.

    2010-01-01

    Extended operation of Stirling convertors is essential to the development of radioisotope power systems and their potential use for longduration missions. To document the reliability of the convertors, regular monitoring and analysis of the extended operation data is particularly valuable, allowing us to better understand and quantify long-life characteristics of the convertors. Furthermore, investigation and comparison of the extended operation data to baseline performance data provides an opportunity to understand system behavior should any off-nominal performance occur. Glenn Research Center (GRC) has tested 16 Stirling convertors under 24-hr unattended extended operation, including four that have operated in a thermal vacuum environment and two that are operating in the Advanced Stirling Radioisotope Generator Engineering Unit. Ten of the sixteen convertors are the Advanced Stirling Convertors (ASC) developed by Sunpower, Inc. with GRC. These are highly efficient (conversion efficiency of up to 38 percent for the ASC-1), low-mass convertors that have evolved through technologically progressive convertor builds. Six convertors at GRC are Technology Demonstration Convertors from Infinia Corporation. They have achieved greater than 27 percent conversion efficiency and have accumulated over 185,000 of the total 265,000 hr of extended operation at GRC. This paper presents the extended operation testing and data analysis of free-piston Stirling convertors at NASA GRC as well as how these tests have contributed to the Stirling convertor s progression toward flight.

  10. Data Management Coordinators Monitor STS-78 Mission at the Huntsville Operations Support Center

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Launched on June 20, 1996, the STS-78 mission's primary payload was the Life and Microgravity Spacelab (LMS), which was managed by the Marshall Space Flight Center (MSFC). During the 17 day space flight, the crew conducted a diverse slate of experiments divided into a mix of life science and microgravity investigations. In a manner very similar to future International Space Station operations, LMS researchers from the United States and their European counterparts shared resources such as crew time and equipment. Five space agencies (NASA/USA, European Space Agency/Europe (ESA), French Space Agency/France, Canadian Space Agency /Canada, and Italian Space Agency/Italy) along with research scientists from 10 countries worked together on the design, development and construction of the LMS. This photo represents Data Management Coordinators monitoring the progress of the mission at the Huntsville Operations Support Center (HOSC) Spacelab Payload Operations Control Center (SL POCC) at MSFC. Pictured are assistant mission scientist Dr. Dalle Kornfeld, Rick McConnel, and Ann Bathew.

  11. Virtual Network Configuration Management System for Data Center Operations and Management

    NASA Astrophysics Data System (ADS)

    Okita, Hideki; Yoshizawa, Masahiro; Uehara, Keitaro; Mizuno, Kazuhiko; Tarui, Toshiaki; Naono, Ken

    Virtualization technologies are widely deployed in data centers to improve system utilization. However, they increase the workload for operators, who have to manage the structure of virtual networks in data centers. A virtual-network management system which automates the integration of the configurations of the virtual networks is provided. The proposed system collects the configurations from server virtualization platforms and VLAN-supported switches, and integrates these configurations according to a newly developed XML-based management information model for virtual-network configurations. Preliminary evaluations show that the proposed system helps operators by reducing the time to acquire the configurations from devices and correct the inconsistency of operators' configuration management database by about 40 percent. Further, they also show that the proposed system has excellent scalability; the system takes less than 20 minutes to acquire the virtual-network configurations from a large scale network that includes 300 virtual machines. These results imply that the proposed system is effective for improving the configuration management process for virtual networks in data centers.

  12. Using full-mission simulation for human factors research in air transport operations

    NASA Technical Reports Server (NTRS)

    Orlady, Harry W.; Hennessy, Robert W.; Obermayer, Richard; Vreuls, Donald; Murphy, Miles R.

    1988-01-01

    This study examined state-of-the-art mission oriented simulation and its use in human factors research. Guidelines were developed for doing full-mission human factors research on crew member behavior during simulated air transport operations. The existing literature was reviewed. However, interviews with experienced investigators provided the most useful information. The fundamental scientific and practical issues of behavioral research in a simulation environment are discussed. Guidelines are presented for planning, scenario development, and the execution of behavioral research using full-mission simulation in the context of air transport flight operations . Research is recommended to enhance the validity and productivity of full-mission research by: (1) validating the need for high-fidelity simulation of all major elements in the operational environment, (2) improving methods for conducting full-mission research, and (3) examining part-task research on specific problems through the use of vehicles which contain higher levels of abstraction (and lower fidelity) of the operational environment.

  13. AIR POLLUTION MEASUREMENTS IN THE VICINITY OF THE WORLD TRADE CENTER - SUMMARY OF MEASUREMENTS CONDUCTED BY EPA-ORD

    EPA Science Inventory

    The U.S. Environmental Protection Agency's Office of Research and Development (EPA-ORD) was requested by EPA's Region 2 office in New York on 9/12/01 to assist with air quality monitoring in response to the collapse of the World Trade Center. Scientists at the U.S. EPA-ORD's Nati...

  14. Centrifugal compressors for automotive air conditioners -- System design and operation strategy

    SciTech Connect

    Yun, H.; Smith, J.L. Jr.

    1996-12-31

    System designs and operation strategies for a motor-driven, variable-speed compression system (described in the companion paper) have been developed. Systems which can cover the required range of operating conditions (i.e., various cooling loads) have been designed. They require a compromise between high efficiency at high cooling loads and compressor surge prevention at low cooling loads. Therefore, compressor operation strategies consist of a variable speed strategy for stable operating points (to match the cooling load at any instant) and a compressor stabilization strategy (to prevent compressor surge instability at low cooling load operations) for unstable operating points. The system design and the operation strategy study results indicate that the novel compression device can improve the overall system efficiency by matching the compressor characteristics with the rest of the air conditioning system.

  15. 75 FR 62639 - Air Ambulance and Commercial Helicopter Operations, Part 91 Helicopter Operations, and Part 135...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-12

    ... in the Federal Register published on April 11, 2000 (65 FR 19477-78) or you may visit http://Dockets..., and alternate airport weather minima. The changes are intended to provide certificate holders and... Weather Minima (Sec. 135.607) ii. IFR Operations at Airports and Heliports Without Weather Reporting...

  16. Developing a Peak Wind Probability Forecast Tool for Kennedy Space Center and Cape Canaveral Air Force Station

    NASA Technical Reports Server (NTRS)

    Lambert, WInifred; Roeder, William

    2007-01-01

    This conference presentation describes the development of a peak wind forecast tool to assist forecasters in determining the probability of violating launch commit criteria (LCC) at Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS) in east-central Florida. The peak winds are an important forecast element for both the Space Shuttle and Expendable Launch Vehicle (ELV) programs. The LCC define specific peak wind thresholds for each launch operation that cannot be exceeded in order to ensure the safety of the vehicle. The 45th Weather Squadron (45 WS) has found that peak winds are a challenging parameter to forecast, particularly in the cool season months of October through April. Based on the importance of forecasting peak winds, the 45 WS tasked the Applied Meteorology Unit (AMU) to develop a short-range peak-wind forecast tool to assist in forecasting LCC violations. The tool will include climatologies of the 5-minute mean and peak winds by month, hour, and direction, and probability distributions of the peak winds as a function of the 5-minute mean wind speeds.

  17. Developing Empirical Lightning Cessation Forecast Guidance for the Cape Canaveral Air Force Station and Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Stano, Geoffrey T.; Fuelberg, Henry E.; Roeder, William P.

    2010-01-01

    This research addresses the 45th Weather Squadron's (45WS) need for improved guidance regarding lightning cessation at Cape Canaveral Air Force Station and Kennedy Space Center (KSC). KSC's Lightning Detection and Ranging (LDAR) network was the primary observational tool to investigate both cloud-to-ground and intracloud lightning. Five statistical and empirical schemes were created from LDAR, sounding, and radar parameters derived from 116 storms. Four of the five schemes were unsuitable for operational use since lightning advisories would be canceled prematurely, leading to safety risks to personnel. These include a correlation and regression tree analysis, three variants of multiple linear regression, event time trending, and the time delay between the greatest height of the maximum dBZ value to the last flash. These schemes failed to adequately forecast the maximum interval, the greatest time between any two flashes in the storm. The majority of storms had a maximum interval less than 10 min, which biased the schemes toward small values. Success was achieved with the percentile method (PM) by separating the maximum interval into percentiles for the 100 dependent storms.

  18. 20 CFR 670.515 - What responsibilities do the center operators have in managing work-based learning?

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... have in managing work-based learning? 670.515 Section 670.515 Employees' Benefits EMPLOYMENT AND... operators have in managing work-based learning? (a) The center operator must emphasize and implement work-based learning programs for students through center program activities, including vocational...

  19. 20 CFR 670.515 - What responsibilities do the center operators have in managing work-based learning?

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... have in managing work-based learning? 670.515 Section 670.515 Employees' Benefits EMPLOYMENT AND... operators have in managing work-based learning? (a) The center operator must emphasize and implement work-based learning programs for students through center program activities, including vocational...

  20. 20 CFR 670.515 - What responsibilities do the center operators have in managing work-based learning?

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... have in managing work-based learning? 670.515 Section 670.515 Employees' Benefits EMPLOYMENT AND... operators have in managing work-based learning? (a) The center operator must emphasize and implement work-based learning programs for students through center program activities, including vocational...

  1. 33 CFR 334.1170 - San Pablo Bay, Calif.; gunnery range, Naval Inshore Operations Training Center, Mare Island...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... range, Naval Inshore Operations Training Center, Mare Island, Vallejo. 334.1170 Section 334.1170... Operations Training Center, Mare Island, Vallejo. (a) The Danger Zone. A sector in San Pablo Bay delineated... regulations. The Commanding Officer, Coastal River Division Eleven, Department of the Navy, Mare...

  2. 33 CFR 334.1170 - San Pablo Bay, Calif.; gunnery range, Naval Inshore Operations Training Center, Mare Island...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... range, Naval Inshore Operations Training Center, Mare Island, Vallejo. 334.1170 Section 334.1170... Operations Training Center, Mare Island, Vallejo. (a) The Danger Zone. A sector in San Pablo Bay delineated... regulations. The Commanding Officer, Coastal River Division Eleven, Department of the Navy, Mare...

  3. 14 CFR Section 11 - Functional Classification-Operating Expenses of Group II and Group III Air Carriers

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Functional Classification-Operating... ACCOUNTS AND REPORTS FOR LARGE CERTIFICATED AIR CARRIERS Profit and Loss Classification Section 11 Functional Classification—Operating Expenses of Group II and Group III Air Carriers 5100Flying Operations....

  4. Test Rack Development for Extended Operation of Advanced Stirling Convertors at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Dugala, Gina M.

    2009-01-01

    The U.S. Department of Energy (DOE), Lockheed Martin Space Company (LMSC), Sun power Inc., and NASA Glenn Research Center (GRC) have been developing an Advanced Stirling Radioisotope Generator (ASRG) for use as a power system on space science missions. This generator will make use of free-piston Stirling convertors to achieve higher conversion efficiency than currently available alternatives. NASA GRC's support of ASRG development includes extended operation testing of Advanced Stirling Convertors (ASCs) developed by Sunpower Inc. In the past year, NASA GRC has been building a test facility to support extended operation of a pair of engineering level ASCs. Operation of the convertors in the test facility provides convertor performance data over an extended period of time. Mechanical support hardware, data acquisition software, and an instrumentation rack were developed to prepare the pair of convertors for continuous extended operation. Short-term tests were performed to gather baseline performance data before extended operation was initiated. These tests included workmanship vibration, insulation thermal loss characterization, low-temperature checkout, and fUll-power operation. Hardware and software features are implemented to ensure reliability of support systems. This paper discusses the mechanical support hardware, instrumentation rack, data acquisition software, short-term tests, and safety features designed to support continuous unattended operation of a pair of ASCs.

  5. A CNES remote operations center for the MSL ChemCam instrument

    SciTech Connect

    Wiens, Roger C; Lafaille, Vivian; Lorgny, Eric; Baroukh, Julien; Gaboriaud, Alain; Saccoccio, Muriel; Perez, Rene; Gasnault, Olivier

    2010-01-01

    For the first time, a CNES remote operations center in Toulouse will be involved in the tactical operations of a Martian rover in order to operate the ChemCam science instrument in the framework of the NASA MSL (Mars Science Laboratory) mission in 2012. CNES/CESR and LANL have developed and delivered to JPL the ChemCam (Chemistry Camera) instrument located on the top of mast and in the body of the rover. This instrument incorporates a Laser-Induced Breakdown Spectrometer (LIBS) and a Remote Micro-Imager (RMI) for determining elemental compositions of rock targets or soil samples at remote distances from the rover (2-7 m). An agreement has been achieved for operating ChemCam, alternatively, from Toulouse (FR) and Los Alamos (NM, USA), through the JPL ground data system in Pasadena (CA, USA) for a complete Martian year (2 years on Earth). After a brief overview of the MSL mission, this paper presents the instrument, the mission operational system and JPL organization requirements for the scientific investigators (PI and Co-Is). This paper emphasizes innovations applied on the ground segment components and on the operational approach to satisfy the requirements and constraints due to these shared and distributed operations over the world.

  6. Design of an air traffic computer simulation system to support investigation of civil tiltrotor aircraft operations

    NASA Technical Reports Server (NTRS)

    Rogers, Ralph V.

    1993-01-01

    The TATSS Project's goal was to develop a design for computer software that would support the attainment of the following objectives for the air traffic simulation model: (1) Full freedom of movement for each aircraft object in the simulation model. Each aircraft object may follow any designated flight plan or flight path necessary as required by the experiment under consideration. (2) Object position precision up to +/- 3 meters vertically and +/- 15 meters horizontally. (3) Aircraft maneuvering in three space with the object position precision identified above. (4) Air traffic control operations and procedures. (5) Radar, communication, navaid, and landing aid performance. (6) Weather. (7) Ground obstructions and terrain. (8) Detection and recording of separation violations. (9) Measures of performance including deviations from flight plans, air space violations, air traffic control messages per aircraft, and traditional temporal based measures.

  7. Spouse abuse among United States Air Force personnel who deployed in support of Operation Iraqi Freedom/Operation Enduring Freedom.

    PubMed

    Rabenhorst, Mandy M; McCarthy, Randy J; Thomsen, Cynthia J; Milner, Joel S; Travis, Wendy J; Foster, Rachel E; Copeland, Carol W

    2013-10-01

    The authors examined spouse abuse perpetration among all married U.S. Air Force personnel who deployed in support of Operation Iraqi Freedom/Operation Enduring Freedom. Using Poisson and conditional Poisson regression, they compared rates of spouse abuse perpetration predeployment and postdeployment in the population of married U.S. Air Force personnel who had a combat-related deployment between October 1, 2001 and October 31, 2008 (N = 156,296). Just over 2% (n = 3,524) of deployers perpetrated at least one substantiated incident of spouse physical or emotional abuse within the 308,197,653 days at risk for abuse during the study period. Male deployers perpetrated spouse abuse at approximately twice the rate of female deployers. Regarding changes in rates of spouse abuse perpetration postdeployment versus predeployment among all deployers, the authors found no differences overall; however, several deployer and incident-related characteristics moderated this effect. Rates of emotional abuse, mild abuse, and abuse not involving alcohol were significantly lower postdeployment, whereas rates of moderate/severe abuse and abuse involving alcohol were significantly higher postdeployment. Although the majority of U.S. Air Force deployers did not perpetrate any substantiated incidents of spouse abuse, there was variability in the impact of deployment on spouse abuse rates before versus after deployment. The finding that rates of moderate/severe spouse abuse incidents involving alcohol were higher postdeployment suggests a need for focused prevention/intervention efforts. PMID:24015706

  8. 14 CFR 294.86 - Industrial/agricultural/other nontransport air operations prohibited.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Industrial/agricultural/other nontransport... Terms, Conditions, and Limitations of This Part § 294.86 Industrial/agricultural/other nontransport air operations prohibited. A registrant shall not engage in flights for the purpose of industrial or...

  9. 14 CFR 294.86 - Industrial/agricultural/other nontransport air operations prohibited.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Industrial/agricultural/other nontransport... Terms, Conditions, and Limitations of This Part § 294.86 Industrial/agricultural/other nontransport air operations prohibited. A registrant shall not engage in flights for the purpose of industrial or...

  10. 14 CFR 294.86 - Industrial/agricultural/other nontransport air operations prohibited.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Industrial/agricultural/other nontransport... Terms, Conditions, and Limitations of This Part § 294.86 Industrial/agricultural/other nontransport air operations prohibited. A registrant shall not engage in flights for the purpose of industrial or...

  11. 14 CFR 294.86 - Industrial/agricultural/other nontransport air operations prohibited.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Industrial/agricultural/other nontransport... Terms, Conditions, and Limitations of This Part § 294.86 Industrial/agricultural/other nontransport air operations prohibited. A registrant shall not engage in flights for the purpose of industrial or...

  12. 14 CFR 294.86 - Industrial/agricultural/other nontransport air operations prohibited.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Industrial/agricultural/other nontransport... Terms, Conditions, and Limitations of This Part § 294.86 Industrial/agricultural/other nontransport air operations prohibited. A registrant shall not engage in flights for the purpose of industrial or...

  13. 30 CFR 90.205 - Approved sampling devices; operation; air flowrate.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Approved sampling devices; operation; air flowrate. 90.205 Section 90.205 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY HEALTH STANDARDS-COAL MINERS WHO HAVE EVIDENCE OF THE DEVELOPMENT OF PNEUMOCONIOSIS Sampling Procedures §...

  14. 49 CFR 1542.203 - Security of the air operations area (AOA).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 9 2011-10-01 2011-10-01 false Security of the air operations area (AOA). 1542.203 Section 1542.203 Transportation Other Regulations Relating to Transportation (Continued) TRANSPORTATION SECURITY ADMINISTRATION, DEPARTMENT OF HOMELAND SECURITY CIVIL AVIATION SECURITY AIRPORT...

  15. 49 CFR 1542.203 - Security of the air operations area (AOA).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 9 2010-10-01 2010-10-01 false Security of the air operations area (AOA). 1542.203 Section 1542.203 Transportation Other Regulations Relating to Transportation (Continued) TRANSPORTATION SECURITY ADMINISTRATION, DEPARTMENT OF HOMELAND SECURITY CIVIL AVIATION SECURITY AIRPORT...

  16. 49 CFR 1542.203 - Security of the air operations area (AOA).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 9 2013-10-01 2013-10-01 false Security of the air operations area (AOA). 1542.203 Section 1542.203 Transportation Other Regulations Relating to Transportation (Continued) TRANSPORTATION SECURITY ADMINISTRATION, DEPARTMENT OF HOMELAND SECURITY CIVIL AVIATION SECURITY AIRPORT...

  17. 49 CFR 1542.203 - Security of the air operations area (AOA).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 9 2012-10-01 2012-10-01 false Security of the air operations area (AOA). 1542.203 Section 1542.203 Transportation Other Regulations Relating to Transportation (Continued) TRANSPORTATION SECURITY ADMINISTRATION, DEPARTMENT OF HOMELAND SECURITY CIVIL AVIATION SECURITY AIRPORT...

  18. 14 CFR 203.5 - Compliance as condition on operations in air transportation.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Compliance as condition on operations in air transportation. 203.5 Section 203.5 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS WAIVER OF WARSAW CONVENTION LIABILITY LIMITS...

  19. 21 CFR 878.5070 - Air-handling apparatus for a surgical operating room.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Air-handling apparatus for a surgical operating room. 878.5070 Section 878.5070 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Therapeutic Devices §...

  20. 21 CFR 878.5070 - Air-handling apparatus for a surgical operating room.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Air-handling apparatus for a surgical operating room. 878.5070 Section 878.5070 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Therapeutic Devices §...