Science.gov

Sample records for air oxidation reactor

  1. Air trichloroethylene oxidation in a corona plasma-catalytic reactor

    NASA Astrophysics Data System (ADS)

    Masoomi-Godarzi, S.; Ranji-Burachaloo, H.; Khodadadi, A. A.; Vesali-Naseh, M.; Mortazavi, Y.

    2014-08-01

    The oxidative decomposition of trichloroethylene (TCE; 300 ppm) by non-thermal corona plasma was investigated in dry air at atmospheric pressure and room temperature, both in the absence and presence of catalysts including MnOx, CoOx. The catalysts were synthesized by a co-precipitation method. The morphology and structure of the catalysts were characterized by BET surface area measurement and Fourier Transform Infrared (FTIR) methods. Decomposition of TCE and distribution of products were evaluated by a gas chromatograph (GC) and an FTIR. In the absence of the catalyst, TCE removal is increased with increases in the applied voltage and current intensity. Higher TCE removal and CO2 selectivity is observed in presence of the corona and catalysts, as compared to those with the plasma alone. The results show that MnOx and CoOx catalysts can dissociate the in-plasma produced ozone to oxygen radicals, which enhances the TCE decomposition.

  2. Surface-catalyzed air oxidation reactions of hydrazines: Tubular reactor studies

    NASA Technical Reports Server (NTRS)

    Kilduff, Jan E.; Davis, Dennis D.; Koontz, Steven L.

    1988-01-01

    The surface-catalyzed air oxidation reactions of hydrazine, monomethylhydrazine, unsymmetrical dimethylhydrazine, symmetrical dimethylhydrazine, trimethylhydrazine and tetramethylhydrazine were investigated in a metal-powder packed turbular flow reactor at 55 plus or minus 3 C. Hydrazine was completely reacted on all surfaces studied. The major products of monomethylhydrazine (MMH) oxidation were methanol, methane and methyldiazene. The di-, tri- and tetra-methyl hydrazines were essentially unreactive under these conditions. The relative catalytic reactivities toward MMH are: Fe greater than Al2O3 greater than Ti greater than Zn greater than 316 SS greater than Cr greater than Ni greater than Al greater than 304L SS. A kinetic scheme and mechanism involving adsorption, oxidative dehydrogenation and reductive elimination reactions on a metal oxide surface are proposed.

  3. In situ secondary organic aerosol formation from ambient pine forest air using an oxidation flow reactor

    NASA Astrophysics Data System (ADS)

    Palm, Brett B.; Campuzano-Jost, Pedro; Ortega, Amber M.; Day, Douglas A.; Kaser, Lisa; Jud, Werner; Karl, Thomas; Hansel, Armin; Hunter, James F.; Cross, Eben S.; Kroll, Jesse H.; Peng, Zhe; Brune, William H.; Jimenez, Jose L.

    2016-03-01

    An oxidation flow reactor (OFR) is a vessel inside which the concentration of a chosen oxidant can be increased for the purpose of studying SOA formation and aging by that oxidant. During the BEACHON-RoMBAS (Bio-hydro-atmosphere interactions of Energy, Aerosols, Carbon, H2O, Organics & Nitrogen-Rocky Mountain Biogenic Aerosol Study) field campaign, ambient pine forest air was oxidized by OH radicals in an OFR to measure the amount of SOA that could be formed from the real mix of ambient SOA precursor gases, and how that amount changed with time as precursors changed. High OH concentrations and short residence times allowed for semicontinuous cycling through a large range of OH exposures ranging from hours to weeks of equivalent (eq.) atmospheric aging. A simple model is derived and used to account for the relative timescales of condensation of low-volatility organic compounds (LVOCs) onto particles; condensational loss to the walls; and further reaction to produce volatile, non-condensing fragmentation products. More SOA production was observed in the OFR at nighttime (average 3 µg m-3 when LVOC fate corrected) compared to daytime (average 0.9 µg m-3 when LVOC fate corrected), with maximum formation observed at 0.4-1.5 eq. days of photochemical aging. SOA formation followed a similar diurnal pattern to monoterpenes, sesquiterpenes, and toluene+p-cymene concentrations, including a substantial increase just after sunrise at 07:00 local time. Higher photochemical aging (> 10 eq. days) led to a decrease in new SOA formation and a loss of preexisting OA due to heterogeneous oxidation followed by fragmentation and volatilization. When comparing two different commonly used methods of OH production in OFRs (OFR185 and OFR254-70), similar amounts of SOA formation were observed. We recommend the OFR185 mode for future forest studies. Concurrent gas-phase measurements of air after OH oxidation illustrate the decay of primary VOCs, production of small oxidized organic

  4. In situ secondary organic aerosol formation from ambient pine forest air using an oxidation flow reactor

    DOE PAGES

    Palm, Brett B.; Campuzano-Jost, Pedro; Ortega, Amber M.; ...

    2016-03-08

    An oxidation flow reactor (OFR) is a vessel inside which the concentration of a chosen oxidant can be increased for the purpose of studying SOA formation and aging by that oxidant. During the BEACHON-RoMBAS (Bio-hydro-atmosphere interactions of Energy, Aerosols, Carbon, H2O, Organics & Nitrogen–Rocky Mountain Biogenic Aerosol Study) field campaign, ambient pine forest air was oxidized by OH radicals in an OFR to measure the amount of SOA that could be formed from the real mix of ambient SOA precursor gases, and how that amount changed with time as precursors changed. High OH concentrations and short residence times allowed formore » semicontinuous cycling through a large range of OH exposures ranging from hours to weeks of equivalent (eq.) atmospheric aging. A simple model is derived and used to account for the relative timescales of condensation of low-volatility organic compounds (LVOCs) onto particles; condensational loss to the walls; and further reaction to produce volatile, non-condensing fragmentation products. More SOA production was observed in the OFR at nighttime (average 3 µg m−3 when LVOC fate corrected) compared to daytime (average 0.9 µg m−3 when LVOC fate corrected), with maximum formation observed at 0.4–1.5 eq. days of photochemical aging. SOA formation followed a similar diurnal pattern to monoterpenes, sesquiterpenes, and toluene+p-cymene concentrations, including a substantial increase just after sunrise at 07:00 local time. Higher photochemical aging (> 10 eq. days) led to a decrease in new SOA formation and a loss of preexisting OA due to heterogeneous oxidation followed by fragmentation and volatilization. When comparing two different commonly used methods of OH production in OFRs (OFR185 and OFR254-70), similar amounts of SOA formation were observed. We recommend the OFR185 mode for future forest studies. Concurrent gas-phase measurements of air after OH oxidation illustrate the decay of primary VOCs, production of

  5. Experimental coupling and modelling of wet air oxidation and packed-bed biofilm reactor as an enhanced phenol removal technology.

    PubMed

    Minière, Marine; Boutin, Olivier; Soric, Audrey

    2017-01-25

    Experimental coupling of wet air oxidation process and aerobic packed-bed biofilm reactor is presented. It has been tested on phenol as a model refractory compound. At 30 MPa and 250 °C, wet air oxidation batch experiments led to a phenol degradation of 97% and a total organic carbon removal of 84%. This total organic carbon was mainly due to acetic acid. To study the interest of coupling processes, wet air oxidation effluent was treated in a biological treatment process. This step was made up of two packed-bed biofilm reactors in series: the first one acclimated to phenol and the second one to acetic acid. After biological treatment, phenol and total organic carbon removal was 99 and 97% respectively. Thanks to parameters from literature, previous studies (kinetic and thermodynamic) and experimental data from this work (hydrodynamic parameters and biomass characteristics), both treatment steps were modelled. This modelling allows the simulation of the coupling process. Experimental results were finally well reproduced by the continuous coupled process model: relative error on phenol removal efficiency was 1 and 5.5% for wet air oxidation process and packed-bed biofilm reactor respectively.

  6. Catalytic wet air oxidation of phenol over CeO2-TiO2 catalyst in the batch reactor and the packed-bed reactor.

    PubMed

    Yang, Shaoxia; Zhu, Wanpeng; Wang, Jianbing; Chen, Zhengxiong

    2008-05-30

    CeO2-TiO2 catalysts are prepared by coprecipitation method, and the activity and stability in the catalytic wet air oxidation (CWAO) of phenol are investigated in a batch reactor and packed-bed reactor. CeO2-TiO2 mixed oxides show the higher activity than pure CeO2 and TiO2, and CeO2-TiO2 1/1 catalyst displays the highest activity in the CWAO of phenol. In a batch reactor, COD and TOC removals are about 100% and 77% after 120 min in the CWAO of phenol over CeO2-TiO2 1/1 catalyst at reaction temperature of 150 degrees C, the total pressure of 3 MPa, phenol concentration of 1000 mg/L, and catalyst dosage of 4 g/L. In a packed-bed reactor using CeO2-TiO2 1/1 particle catalyst, over 91% COD and 80% TOC removals are obtained at the reaction temperature of 140 degrees C, the air total pressure of 3.5 MPa, the phenol concentration of 1000 mg/L for 100 h continue reaction. Leaching of metal ions of CeO2-TiO2 1/1 particle catalyst is very low during the continuous reaction. CeO2-TiO2 1/1 catalyst exhibits the excellent activity and stability in the CWAO of phenol.

  7. Stabilized three-stage oxidation of DME/air mixture in a micro flow reactor with a controlled temperature profile

    SciTech Connect

    Oshibe, Hiroshi; Nakamura, Hisashi; Tezuka, Takuya; Hasegawa, Susumu; Maruta, Kaoru

    2010-08-15

    Ignition and combustion characteristics of a stoichiometric dimethyl ether (DME)/air mixture in a micro flow reactor with a controlled temperature profile which was smoothly ramped from room temperature to ignition temperature were investigated. Special attention was paid to the multi-stage oxidation in low temperature condition. Normal stable flames in a mixture flow in the high velocity region, and non-stationary pulsating flames and/or repetitive extinction and ignition (FREI) in the medium velocity region were experimentally confirmed as expected from our previous study on a methane/air mixture. In addition, stable double weak flames were observed in the low velocity region for the present DME/air mixture case. It is the first observation of stable double flames by the present methodology. Gas sampling was conducted to obtain major species distributions in the flow reactor. The results indicated that existence of low-temperature oxidation was conjectured by the production of CH{sub 2}O occured in the upstream side of the experimental first luminous flame, while no chemiluminescence from it was seen. One-dimensional computation with detailed chemistry and transport was conducted. At low mixture velocities, three-stage oxidation was confirmed from profiles of the heat release rate and major chemical species, which was broadly in agreement with the experimental results. Since the present micro flow reactor with a controlled temperature profile successfully presented the multi-stage oxidations as spatially separated flames, it is shown that this flow reactor can be utilized as a methodology to separate sets of reactions, even for other practical fuels, at different temperature. (author)

  8. Secondary Organic Aerosol Formation from Ambient Air in an Oxidation Flow Reactor at GoAmazon2014/5

    NASA Astrophysics Data System (ADS)

    Palm, Brett B.; de Sa, Suzane S.; Campuzano-Jost, Pedro; Day, Douglas A.; Hu, Weiwei; Seco, Roger; Park, Jeong-Hoo; Guenther, Alex; Kim, Saewung; Brito, Joel; Wurm, Florian; Artaxo, Paulo; Yee, Lindsay; Isaacman-VanWertz, Gabrial; Goldstein, Allen; Newburn, Matt K.; Lizabeth Alexander, M.; Martin, Scot T.; Brune, William H.; Jimenez, Jose L.

    2016-04-01

    During GoAmazon2014/5, ambient air was exposed to controlled concentrations of OH or O3 in situ using an oxidation flow reactor (OFR). Oxidation ranged from hours-several weeks of aging. Oxidized air was sampled by several instruments (e.g., HR-AMS, ACSM, PTR-TOF-MS, SMPS, CCN) at both the T3 site (IOP1: Feb 1-Mar 31, 2014, and IOP2: Aug 15-Oct 15, 2014) and T2 site (between IOPs and into 2nd IOP). The oxidation of ambient air in the OFR led to substantial and variable secondary organic aerosol (SOA) formation from any SOA-precursor gases, known and unknown, that entered the OFR. In general, more SOA was produced during the nighttime than daytime, suggesting that SOA-precursor gases were found in relatively higher concentrations at night. Similarly, more SOA was formed in the dry season (IOP2) than wet season (IOP1). The maximum amount of SOA produced during nighttime from OH oxidation ranged from less than 1 μg/m3 on some nights to greater than 10 μg/m3 on other nights. O3 oxidation of ambient air also led to SOA formation, although several times less than from OH oxidation. The amount of SOA formation sometimes, but not always, correlated with measured gas-phase biogenic and/or anthropogenic SOA precursors (e.g., SV-TAG sesquiterpenes, PTR-TOFMS aromatics, isoprene, and monoterpenes). The SOA mass formed in the OFR from OH oxidation was up to an order of magnitude larger than could be explained from aerosol yields of measured primary VOCs. This along with measurements from previous campaigns suggests that most SOA was formed from intermediate S/IVOC sources (e.g., VOC oxidation products, evaporated POA, or direct emissions). To verify the SOA yields of VOCs under OFR experimental conditions, atmospherically-relevant concentrations of several VOCs were added individually into ambient air in the OFR and oxidized by OH or O3. SOA yields in the OFR were similar to published chamber yields. Preliminary PMF factor analysis showed production of secondary factors in

  9. Wet air oxidation for the treatment of industrial wastes. Chemical aspects, reactor design and industrial applications in Europe

    SciTech Connect

    Debellefontaine, H.; Foussard, J.N.

    2000-07-01

    Aqueous wastes containing organic pollutants can be efficiently treated by wet air oxidation (WAO), i.e., oxidation (or combustion) by molecular oxygen in the liquid phase, at high temperature (200--325 C) and pressure (up to 175 bar). This method is suited to the elimination of special aqueous wastes from the chemical industry as well as to the treatment of domestic sludge. It is an enclosed process, with a limited interaction with the environment, as opposed to incineration. Usually, the operating cost is lower than 95 Euro M{sup {minus}3} and the preferred COD load ranges from 10 to 80 kg m{sup {minus}3}. Only a handful of industrial reactors are in operation world-wide, mainly because of the high capital investment they require. This paper reviews the major results obtained with the WAO process and assess its field of possible application to industrial wastes. In addition, as only a very few studies have been devoted to the scientific design of such reactors (bubble columns), what needs to be known for this scientific design is discussed. At present, a computer program aimed at determining the performance of a wet air oxidation reactor depending on the various operating parameters has been implemented at the laboratory. Some typical results are presented, pointing out the most important parameters and the specific behavior of these units.

  10. AIR COOLED NEUTRONIC REACTOR

    DOEpatents

    Fermi, E.; Szilard, L.

    1958-05-27

    A nuclear reactor of the air-cooled, graphite moderated type is described. The active core consists of a cubicle mass of graphite, approximately 25 feet in each dimension, having horizontal channels of square cross section extending between two of the opposite faces, a plurality of cylindrical uranium slugs disposed in end to end abutting relationship within said channels providing a space in the channels through which air may be circulated, and a cadmium control rod extending within a channel provided in the moderator. Suitable shielding is provlded around the core, as are also provided a fuel element loading and discharge means, and a means to circulate air through the coolant channels through the fuel charels to cool the reactor.

  11. Determination of the Clean Air Delivery Rate (CADR) of Photocatalytic Oxidation (PCO) Purifiers for Indoor Air Pollutants Using a Closed-Loop Reactor. Part I: Theoretical Considerations.

    PubMed

    Dumont, Éric; Héquet, Valérie

    2017-03-06

    This study demonstrated that a laboratory-scale recirculation closed-loop reactor can be an efficient technique for the determination of the Clean Air Delivery Rate (CADR) of PhotoCatalytic Oxidation (PCO) air purification devices. The recirculation closed-loop reactor was modeled by associating equations related to two ideal reactors: one is a perfectly mixed reservoir and the other is a plug flow system corresponding to the PCO device itself. Based on the assumption that the ratio between the residence time in the PCO device and the residence time in the reservoir τP/τR tends to 0, the model highlights that a lab closed-loop reactor can be a suitable technique for the determination of the efficiency of PCO devices. Moreover, if the single-pass removal efficiency is lower than 5% of the treated flow rate, the decrease in the pollutant concentration over time can be characterized by a first-order decay model in which the time constant is proportional to the CADR. The limits of the model are examined and reported in terms of operating conditions (experiment duration, ratio of residence times, and flow rate ranges).

  12. Looking North at Reactor Number One and Air Vent on ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Looking North at Reactor Number One and Air Vent on Fourth Floor of Oxide Building - Hematite Fuel Fabrication Facility, Oxide Building & Oxide Loading Dock, 3300 State Road P, Festus, Jefferson County, MO

  13. Catalytic wet air oxidation of coke-plant wastewater on ruthenium-based eggshell catalysts in a bubbling bed reactor.

    PubMed

    Yang, M; Sun, Y; Xu, A H; Lu, X Y; Du, H Z; Sun, C L; Li, C

    2007-07-01

    Catalytic wet air of coke-plant wastewater was studied in a bubbling bed reactor. Two types of supported Ru-based catalysts, eggshell and uniform catalysts, were employed. Compared with the results in the wet air oxidation of coke-plant wastewater, supported Ru uniform catalysts showed high activity for chemical oxygen demand (COD) and ammonia/ammonium compounds (NH3-N) removal at temperature of 250 degrees C and pressure of 4.8 MPa, and it has been demonstrated that the catalytic activity of uniform catalyst depended strongly on the distribution of active sites of Ru on catalyst. Compared to the corresponding uniform catalysts with the same Ru loading (0.25 wt.% and 0.1 wt.%, respectively), the eggshell catalysts showed higher activities for CODcr removal and much higher activities for NH3-N degradation. The high activity of eggshell catalyst for treatment of coke-plant wastewater can be attributed to the higher density of active Ru sites in the shell layer than that of the corresponding uniform catalyst with the same Ru loading. It has been also evidenced that the active Ru sites in the internal core of uniform catalyst have very little or no contribution to CODcr and NH3-N removal in the total oxidation of coke-plant wastewater.

  14. Determination of the Clean Air Delivery Rate (CADR) of Photocatalytic Oxidation (PCO) Purifiers for Indoor Air Pollutants Using a Closed-Loop Reactor. Part II: Experimental Results.

    PubMed

    Héquet, Valérie; Batault, Frédéric; Raillard, Cécile; Thévenet, Frédéric; Le Coq, Laurence; Dumont, Éric

    2017-03-06

    The performances of a laboratory PhotoCatalytic Oxidation (PCO) device were determined using a recirculation closed-loop pilot reactor. The closed-loop system was modeled by associating equations related to two ideal reactors: a perfectly mixed reservoir with a volume of VR = 0.42 m³ and a plug flow system corresponding to the PCO device with a volume of VP = 5.6 × 10(-3) m³. The PCO device was composed of a pleated photocatalytic filter (1100 cm²) and two 18-W UVA fluorescent tubes. The Clean Air Delivery Rate (CADR) of the apparatus was measured under different operating conditions. The influence of three operating parameters was investigated: (i) light irradiance I from 0.10 to 2.0 mW·cm(-2); (ii) air velocity v from 0.2 to 1.9 m·s(-1); and (iii) initial toluene concentration C₀ (200, 600, 1000 and 4700 ppbv). The results showed that the conditions needed to apply a first-order decay model to the experimental data (described in Part I) were fulfilled. The CADR values, ranging from 0.35 to 3.95 m³·h(-1), were mainly dependent on the light irradiance intensity. A square root influence of the light irradiance was observed. Although the CADR of the PCO device inserted in the closed-loop reactor did not theoretically depend on the flow rate (see Part I), the experimental results did not enable the confirmation of this prediction. The initial concentration was also a parameter influencing the CADR, as well as the toluene degradation rate. The maximum degradation rate rmax ranged from 342 to 4894 ppbv/h. Finally, this study evidenced that a recirculation closed-loop pilot could be used to develop a reliable standard test method to assess the effectiveness of PCO devices.

  15. Surface diffusion control of the photocatalytic oxidation in air/TiO2 heterogeneous reactors

    NASA Astrophysics Data System (ADS)

    Tsekov, R.; Evstatieva, E.; Smirniotis, P. G.

    2002-10-01

    The diffusion of superoxide radical anions on the surface of TiO 2 catalysts is theoretically considered as an important step in the kinetics of photocatalytic oxidation of toxic pollutants. A detailed analysis is performed to discriminate the effects of rotation and adsorption bond vibrations on the diffusion coefficient. A resonant dependence of the diffusivity on the lattice parameters of the TiO 2 surface is discovered showing that the most rapid diffusion takes place when the lattice parameters are twice as large as the the bond length of the superoxide radical anions. Whereas the rotation and vibrations normal to the catalyst surface are important, the anion bond vibrations do not affect the diffusivity due to their low amplitudes as compared to the lattice parameters.

  16. Real-time measurements of secondary organic aerosol formation and aging from ambient air in an oxidation flow reactor in the Los Angeles area

    SciTech Connect

    Ortega, Amber M.; Hayes, Patrick L.; Peng, Zhe; Palm, Brett B.; Hu, Weiwei; Day, Douglas A.; Li, Rui; Cubison, Michael J.; Brune, William H.; Graus, Martin; Warneke, Carsten; Gilman, Jessica B.; Kuster, William C.; de Gouw, Joost; Gutierrez-Montes, Candido; Jimenez, Jose L.

    2016-06-15

    Field studies in polluted areas over the last decade have observed large formation of secondary organic aerosol (SOA) that is often poorly captured by models. The study of SOA formation using ambient data is often confounded by the effects of advection, vertical mixing, emissions, and variable degrees of photochemical aging. An oxidation flow reactor (OFR) was deployed to study SOA formation in real-time during the California Research at the Nexus of Air Quality and Climate Change (CalNex) campaign in Pasadena, CA, in 2010. A high-resolution aerosol mass spectrometer (AMS) and a scanning mobility particle sizer (SMPS) alternated sampling ambient and reactor-aged air. The reactor produced OH concentrations up to 4 orders of magnitude higher than in ambient air. OH radical concentration was continuously stepped, achieving equivalent atmospheric aging of 0.8 days–6.4 weeks in 3 min of processing every 2 h. Enhancement of organic aerosol (OA) from aging showed a maximum net SOA production between 0.8–6 days of aging with net OA mass loss beyond 2 weeks. Reactor SOA mass peaked at night, in the absence of ambient photochemistry and correlated with trimethylbenzene concentrations. Reactor SOA formation was inversely correlated with ambient SOA and Ox, which along with the short-lived volatile organic compound correlation, indicates the importance of very reactive (τOH ~ 0.3 day) SOA precursors (most likely semivolatile and intermediate volatility species, S/IVOCs) in the Greater Los Angeles Area. Evolution of the elemental composition in the reactor was similar to trends observed in the atmosphere (O : C vs. H : C slope ~ –0.65). Oxidation state of carbon (OSc) in reactor SOA increased steeply with age and remained elevated (OSC ~ 2) at the highest photochemical ages probed. The ratio of OA in the reactor output to excess CO (ΔCO, ambient CO above regional background) vs. photochemical age is similar to

  17. Real-time measurements of secondary organic aerosol formation and aging from ambient air in an oxidation flow reactor in the Los Angeles area

    DOE PAGES

    Ortega, Amber M.; Hayes, Patrick L.; Peng, Zhe; ...

    2016-06-15

    Field studies in polluted areas over the last decade have observed large formation of secondary organic aerosol (SOA) that is often poorly captured by models. The study of SOA formation using ambient data is often confounded by the effects of advection, vertical mixing, emissions, and variable degrees of photochemical aging. An oxidation flow reactor (OFR) was deployed to study SOA formation in real-time during the California Research at the Nexus of Air Quality and Climate Change (CalNex) campaign in Pasadena, CA, in 2010. A high-resolution aerosol mass spectrometer (AMS) and a scanning mobility particle sizer (SMPS) alternated sampling ambient andmore » reactor-aged air. The reactor produced OH concentrations up to 4 orders of magnitude higher than in ambient air. OH radical concentration was continuously stepped, achieving equivalent atmospheric aging of 0.8 days–6.4 weeks in 3 min of processing every 2 h. Enhancement of organic aerosol (OA) from aging showed a maximum net SOA production between 0.8–6 days of aging with net OA mass loss beyond 2 weeks. Reactor SOA mass peaked at night, in the absence of ambient photochemistry and correlated with trimethylbenzene concentrations. Reactor SOA formation was inversely correlated with ambient SOA and Ox, which along with the short-lived volatile organic compound correlation, indicates the importance of very reactive (τOH ~ 0.3 day) SOA precursors (most likely semivolatile and intermediate volatility species, S/IVOCs) in the Greater Los Angeles Area. Evolution of the elemental composition in the reactor was similar to trends observed in the atmosphere (O : C vs. H : C slope ~ –0.65). Oxidation state of carbon (OSc) in reactor SOA increased steeply with age and remained elevated (OSC ~ 2) at the highest photochemical ages probed. The ratio of OA in the reactor output to excess CO (ΔCO, ambient CO above regional background) vs. photochemical age is similar to previous studies at low to moderate ages and

  18. Real-time measurements of secondary organic aerosol formation and aging from ambient air in an oxidation flow reactor in the Los Angeles area

    NASA Astrophysics Data System (ADS)

    Ortega, Amber M.; Hayes, Patrick L.; Peng, Zhe; Palm, Brett B.; Hu, Weiwei; Day, Douglas A.; Li, Rui; Cubison, Michael J.; Brune, William H.; Graus, Martin; Warneke, Carsten; Gilman, Jessica B.; Kuster, William C.; de Gouw, Joost; Gutiérrez-Montes, Cándido; Jimenez, Jose L.

    2016-06-01

    Field studies in polluted areas over the last decade have observed large formation of secondary organic aerosol (SOA) that is often poorly captured by models. The study of SOA formation using ambient data is often confounded by the effects of advection, vertical mixing, emissions, and variable degrees of photochemical aging. An oxidation flow reactor (OFR) was deployed to study SOA formation in real-time during the California Research at the Nexus of Air Quality and Climate Change (CalNex) campaign in Pasadena, CA, in 2010. A high-resolution aerosol mass spectrometer (AMS) and a scanning mobility particle sizer (SMPS) alternated sampling ambient and reactor-aged air. The reactor produced OH concentrations up to 4 orders of magnitude higher than in ambient air. OH radical concentration was continuously stepped, achieving equivalent atmospheric aging of 0.8 days-6.4 weeks in 3 min of processing every 2 h. Enhancement of organic aerosol (OA) from aging showed a maximum net SOA production between 0.8-6 days of aging with net OA mass loss beyond 2 weeks. Reactor SOA mass peaked at night, in the absence of ambient photochemistry and correlated with trimethylbenzene concentrations. Reactor SOA formation was inversely correlated with ambient SOA and Ox, which along with the short-lived volatile organic compound correlation, indicates the importance of very reactive (τOH ˜ 0.3 day) SOA precursors (most likely semivolatile and intermediate volatility species, S/IVOCs) in the Greater Los Angeles Area. Evolution of the elemental composition in the reactor was similar to trends observed in the atmosphere (O : C vs. H : C slope ˜ -0.65). Oxidation state of carbon (OSc) in reactor SOA increased steeply with age and remained elevated (OSC ˜ 2) at the highest photochemical ages probed. The ratio of OA in the reactor output to excess CO (ΔCO, ambient CO above regional background) vs. photochemical age is similar to previous studies at low to moderate ages and also extends to

  19. Catalytic wet air oxidation of bisphenol A solution in a batch-recycle trickle-bed reactor over titanate nanotube-based catalysts.

    PubMed

    Kaplan, Renata; Erjavec, Boštjan; Senila, Marin; Pintar, Albin

    2014-10-01

    Catalytic wet air oxidation (CWAO) is classified as an advanced oxidation process, which proved to be highly efficient for the removal of emerging organic pollutant bisphenol A (BPA) from water. In this study, BPA was successfully removed in a batch-recycle trickle-bed reactor over bare titanate nanotube-based catalysts at very short space time of 0.6 min gCAT g(-1). The as-prepared titanate nanotubes, which underwent heat treatment at 600 °C, showed high activity for the removal of aqueous BPA. Liquid-phase recycling (5- or 10-fold recycle) enabled complete BPA conversion already at 200 °C, together with high conversion of total organic carbon (TOC), i.e., 73 and 98 %, respectively. The catalyst was chemically stable in the given range of operating conditions for 189 h on stream.

  20. Ammonia oxidizing bacteria and archaea in horizontal flow biofilm reactors treating ammonia-contaminated air at 10 °C.

    PubMed

    Gerrity, Seán; Clifford, Eoghan; Kennelly, Colm; Collins, Gavin

    2016-05-01

    The objective of this study was to demonstrate the feasibility of novel, Horizontal Flow Biofilm Reactor (HFBR) technology for the treatment of ammonia (NH3)-contaminated airstreams. Three laboratory-scale HFBRs were used for remediation of an NH3-containing airstream at 10 °C during a 90-d trial to test the efficacy of low-temperature treatment. Average ammonia removal efficiencies of 99.7 % were achieved at maximum loading rates of 4.8 g NH3 m(3) h(-1). Biological nitrification of ammonia to nitrite (NO2 (-)) and nitrate (NO3 (-)) was mediated by nitrifying bacterial and archaeal biofilm populations. Ammonia-oxidising bacteria (AOB) were significantly more abundant than ammonia-oxidising archaea (AOA) vertically at each of seven sampling zones along the vertical HFBRs. Nitrosomonas and Nitrosospira, were the two most dominant bacterial genera detected in the HFBRs, while an uncultured archaeal clone dominated the AOA community. The bacterial community composition across the three HFBRs was highly conserved, although variations occurred between HFBR zones and were driven by physicochemical variables. The study demonstrates the feasibility of HFBRs for the treatment of ammonia-contaminated airstreams at low temperatures; identifies key nitrifying microorganisms driving the removal process; and provides insights for process optimisation and control. The findings are significant for industrial applications of gas oxidation technology in temperate climates.

  1. An Innovative Reactor Technology to Improve Indoor Air Quality

    SciTech Connect

    Rempel, Jane

    2013-03-30

    As residential buildings achieve tighter envelopes in order to minimize energy used for space heating and cooling, accumulation of indoor air pollutants such as volatile organic compounds (VOCs), becomes a major concern causing poor air quality and increased health risks. Current VOC removal methods include sorbents, ultraviolet photocatalytic oxidation (UVPCO), and increased ventilation, but these methods do not capture or destroy all VOCs or are prohibitively expensive to implement. TIAX's objective in this program was to develop a new VOC removal technology for residential buildings. This novel air purification technology is based on an innovative reactor and light source design along with UVPCO properties of the chosen catalyst to purify indoor air and enhance indoor air quality (IAQ). During the program we designed, fabricated and tested a prototype air purifier to demonstrate its feasibility and effectiveness. We also measured kinetics of VOC destruction on photocatalysts, providing deep insight into reactor design.

  2. Solid oxide electrochemical reactor science.

    SciTech Connect

    Sullivan, Neal P.; Stechel, Ellen Beth; Moyer, Connor J.; Ambrosini, Andrea; Key, Robert J.

    2010-09-01

    Solid-oxide electrochemical cells are an exciting new technology. Development of solid-oxide cells (SOCs) has advanced considerable in recent years and continues to progress rapidly. This thesis studies several aspects of SOCs and contributes useful information to their continued development. This LDRD involved a collaboration between Sandia and the Colorado School of Mines (CSM) ins solid-oxide electrochemical reactors targeted at solid oxide electrolyzer cells (SOEC), which are the reverse of solid-oxide fuel cells (SOFC). SOECs complement Sandia's efforts in thermochemical production of alternative fuels. An SOEC technology would co-electrolyze carbon dioxide (CO{sub 2}) with steam at temperatures around 800 C to form synthesis gas (H{sub 2} and CO), which forms the building blocks for a petrochemical substitutes that can be used to power vehicles or in distributed energy platforms. The effort described here concentrates on research concerning catalytic chemistry, charge-transfer chemistry, and optimal cell-architecture. technical scope included computational modeling, materials development, and experimental evaluation. The project engaged the Colorado Fuel Cell Center at CSM through the support of a graduate student (Connor Moyer) at CSM and his advisors (Profs. Robert Kee and Neal Sullivan) in collaboration with Sandia.

  3. Looking Northeast in Oxide Building at Reactors on Second Floor ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Looking Northeast in Oxide Building at Reactors on Second Floor Including Reactor One (Left) and Reactor Two (Right) - Hematite Fuel Fabrication Facility, Oxide Building & Oxide Loading Dock, 3300 State Road P, Festus, Jefferson County, MO

  4. Nuclear reactor shield including magnesium oxide

    DOEpatents

    Rouse, Carl A.; Simnad, Massoud T.

    1981-01-01

    An improvement in nuclear reactor shielding of a type used in reactor applications involving significant amounts of fast neutron flux, the reactor shielding including means providing structural support, neutron moderator material, neutron absorber material and other components as described below, wherein at least a portion of the neutron moderator material is magnesium in the form of magnesium oxide either alone or in combination with other moderator materials such as graphite and iron.

  5. Staged membrane oxidation reactor system

    DOEpatents

    Repasky, John Michael; Carolan, Michael Francis; Stein, VanEric Edward; Chen, Christopher Ming-Poh

    2014-05-20

    Ion transport membrane oxidation system comprising (a) two or more membrane oxidation stages, each stage comprising a reactant zone, an oxidant zone, one or more ion transport membranes separating the reactant zone from the oxidant zone, a reactant gas inlet region, a reactant gas outlet region, an oxidant gas inlet region, and an oxidant gas outlet region; (b) an interstage reactant gas flow path disposed between each pair of membrane oxidation stages and adapted to place the reactant gas outlet region of a first stage of the pair in flow communication with the reactant gas inlet region of a second stage of the pair; and (c) one or more reactant interstage feed gas lines, each line being in flow communication with any interstage reactant gas flow path or with the reactant zone of any membrane oxidation stage receiving interstage reactant gas.

  6. Staged membrane oxidation reactor system

    DOEpatents

    Repasky, John Michael; Carolan, Michael Francis; Stein, VanEric Edward; Chen, Christopher Ming-Poh

    2013-04-16

    Ion transport membrane oxidation system comprising (a) two or more membrane oxidation stages, each stage comprising a reactant zone, an oxidant zone, one or more ion transport membranes separating the reactant zone from the oxidant zone, a reactant gas inlet region, a reactant gas outlet region, an oxidant gas inlet region, and an oxidant gas outlet region; (b) an interstage reactant gas flow path disposed between each pair of membrane oxidation stages and adapted to place the reactant gas outlet region of a first stage of the pair in flow communication with the reactant gas inlet region of a second stage of the pair; and (c) one or more reactant interstage feed gas lines, each line being in flow communication with any interstage reactant gas flow path or with the reactant zone of any membrane oxidation stage receiving interstage reactant gas.

  7. Staged membrane oxidation reactor system

    DOEpatents

    Repasky, John Michael; Carolan, Michael Francis; Stein, VanEric Edward; Chen, Christopher Ming-Poh

    2012-09-11

    Ion transport membrane oxidation system comprising (a) two or more membrane oxidation stages, each stage comprising a reactant zone, an oxidant zone, one or more ion transport membranes separating the reactant zone from the oxidant zone, a reactant gas inlet region, a reactant gas outlet region, an oxidant gas inlet region, and an oxidant gas outlet region; (b) an interstage reactant gas flow path disposed between each pair of membrane oxidation stages and adapted to place the reactant gas outlet region of a first stage of the pair in flow communication with the reactant gas inlet region of a second stage of the pair; and (c) one or more reactant interstage feed gas lines, each line being in flow communication with any interstage reactant gas flow path or with the reactant zone of any membrane oxidation stage receiving interstage reactant gas.

  8. Multi-stage, isothermal CO preferential oxidation reactor

    DOEpatents

    Skala, Glenn William; Brundage, Mark A.; Borup, Rodney Lynn; Pettit, William Henry; Stukey, Kevin; Hart-Predmore, David James; Fairchok, Joel

    2000-01-01

    A multi-stage, isothermal, carbon monoxide preferential oxidation (PrOx) reactor comprising a plurality of serially arranged, catalyzed heat exchangers, each separated from the next by a mixing chamber for homogenizing the gases exiting one heat exchanger and entering the next. In a preferred embodiment, at least some of the air used in the PrOx reaction is injected directly into the mixing chamber between the catalyzed heat exchangers.

  9. Soot oxidation in a corona plasma-catalytic reactor

    NASA Astrophysics Data System (ADS)

    Ranji-Burachaloo, H.; Masoomi-Godarzi, S.; Khodadadi, A. A.; Vesali-Naseh, M.; Mortazavi, Y.

    2014-08-01

    Oxidation of soot by corona plasma was investigated at conditions of exhaust gases from diesel engines, both in the absence and presence of CoOx as a catalyst. The CoOx catalyst nanoparticles were synthesized by a precipitation method. The BET surface area of the catalyst was 50 m2/g, corresponding to 23 nm particles. An aluminum grid was sequentially dip-coated for several times by suspensions of the soot in toluene and/or fine catalyst powder in DI water. The grid was used as the plate of a pin-to-plate corona reactor. Air at 180 °C was passed through the corona reactor to oxidize the soot, oxidation products of which were analyzed by both gas chromatograph and FTIR with a gas cell. Soot oxidation rate linearly increased with an increase of input energy. When the soot was deposited on a layer of the CoOx catalyst, the soot oxidation rate increased up to 2 times. The only product of the plasma (catalytic) oxidation of soot was CO2 determined by FTIR. O produced in the plasma discharge oxidized the soot and the active surface oxygen enhanced its rate.

  10. AIR DUCTS STAND NEXT TO (AND OUTSIDE OF) REACTOR CABINET ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    AIR DUCTS STAND NEXT TO (AND OUTSIDE OF) REACTOR CABINET AT THE SOUTHWEST AND NORTHEAST CORNERS OF THE REACTOR'S THERMAL SHIELD. THEY WILL BE ENVELOPED IN BIOLOGICAL CONCRETE SHIELD. IN THE SUB-BASEMENT, THE TWO DUCTS WILL JOIN TOGETHER AND EXIT THE BUILDING TO THE FAN HOUSE. CAMERA FACING NORTH. INL NEGATIVE NO. 1625. Unknown Photographer, 3/6/1951 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  11. Containment system for supercritical water oxidation reactor

    DOEpatents

    Chastagner, Philippe

    1994-01-01

    A system for containment of a supercritical water oxidation reactor in the event of a rupture of the reactor. The system includes a containment for housing the reaction vessel and a communicating chamber for holding a volume of coolant, such as water. The coolant is recirculated and sprayed to entrain and cool any reactants that might have escaped from the reaction vessel. Baffles at the entrance to the chamber prevent the sprayed coolant from contacting the reaction vessel. An impact-absorbing layer is positioned between the vessel and the containment to at least partially absorb momentum of any fragments propelled by the rupturing vessel. Remote, quick-disconnecting fittings exterior to the containment, in cooperation with shut-off valves, enable the vessel to be isolated and the system safely taken off-line. Normally-closed orifices throughout the containment and chamber enable decontamination of interior surfaces when necessary.

  12. Containment system for supercritical water oxidation reactor

    DOEpatents

    Chastagner, P.

    1994-07-05

    A system is described for containment of a supercritical water oxidation reactor in the event of a rupture of the reactor. The system includes a containment for housing the reaction vessel and a communicating chamber for holding a volume of coolant, such as water. The coolant is recirculated and sprayed to entrain and cool any reactants that might have escaped from the reaction vessel. Baffles at the entrance to the chamber prevent the sprayed coolant from contacting the reaction vessel. An impact-absorbing layer is positioned between the vessel and the containment to at least partially absorb momentum of any fragments propelled by the rupturing vessel. Remote, quick-disconnecting fittings exterior to the containment, in cooperation with shut-off valves, enable the vessel to be isolated and the system safely taken off-line. Normally-closed orifices throughout the containment and chamber enable decontamination of interior surfaces when necessary. 2 figures.

  13. Catalytic Reactor For Oxidizing Mercury Vapor

    DOEpatents

    Helfritch, Dennis J.

    1998-07-28

    A catalytic reactor (10) for oxidizing elemental mercury contained in flue gas is provided. The catalyst reactor (10) comprises within a flue gas conduit a perforated corona discharge plate (30a, b) having a plurality of through openings (33) and a plurality of projecting corona discharge electrodes (31); a perforated electrode plate (40a, b, c) having a plurality of through openings (43) axially aligned with the through openings (33) of the perforated corona discharge plate (30a, b) displaced from and opposing the tips of the corona discharge electrodes (31); and a catalyst member (60a, b, c, d) overlaying that face of the perforated electrode plate (40a, b, c) opposing the tips of the corona discharge electrodes (31). A uniformly distributed corona discharge plasma (1000) is intermittently generated between the plurality of corona discharge electrode tips (31) and the catalyst member (60a, b, c, d) when a stream of flue gas is passed through the conduit. During those periods when corona discharge (1000) is not being generated, the catalyst molecules of the catalyst member (60a, b, c, d) adsorb mercury vapor contained in the passing flue gas. During those periods when corona discharge (1000) is being generated, ions and active radicals contained in the generated corona discharge plasma (1000) desorb the mercury from the catalyst molecules of the catalyst member (60a, b, c, d), oxidizing the mercury in virtually simultaneous manner. The desorption process regenerates and activates the catalyst member molecules.

  14. Implementation of model predictive control on a hydrothermal oxidation reactor

    SciTech Connect

    Muske, K.R.; Dell`Orco, P.C.; Le, L.A.; Flesner, R.L.

    1998-12-31

    This paper describes the model-based control algorithm developed for a hydrothermal oxidation reactor at the Pantex Department of Energy facility in Amarillo, Texas. The combination of base hydrolysis and hydrothermal oxidation is used for the disposal of PBX 9404 high explosive at Pantex. The reactor oxidizes the organic compounds in the hydrolysate solutions obtained from the base hydrolysis process. The objective of the model predictive controller is to minimize the total aqueous nitrogen compounds in the effluent of the reactor. The controller also maintains a desired excess oxygen concentration in the reactor effluent to ensure the complete destruction of the organic carbon compounds in the hydrolysate.

  15. Analysis of modified wet-air oxidation for soil detoxification

    SciTech Connect

    Unterberg, W.; Willms, R.S.; Balinsky, A.M.; Reible, D.D.; Wetzel, D.M.

    1987-09-01

    This report presents the results of research on wet-air oxidation as a method for the destruction of hazardous wastes. For organics in the presence of large amounts of water, the water need not be vaporized during wet-air oxidation, an attractive characteristic for energy conservation. The feasibility of using wet-air oxidation was investigated in terms of the effects of temperature, pressure, and the presence or absence of soil on the oxidation rate of three model compounds. Wet-air oxidation is a semi-commercial process that has been used to treat a variety of weakly toxic chemical wastes and for the regeneration of activated carbon. In the study, wet-air oxidation research was carried out in a 1-liter batch reactor at temperatures from 130 to 275/sup 0/C and pressures from 703-1760 x 10/sup 3/ kg/sq m on three substances: m-xylene, tetrachloroethylene (TCE), and malathion, both with and without addition of soil. Any attempt to balance the effect of residence time and the cost of energy requires an accurate description of the oxidation kinetics for the compound or waste stream in question. Due to the sampling technique used during the investigation and the inherent nature of the wet-air oxidation process, a variety of potential problems with the interpretation and analysis of the raw concentration-time data were encountered during the study.

  16. Storage of LWR (light-water-reactor) spent fuel in air

    SciTech Connect

    Thomas, L.E.; Charlot, L.A.; Coleman, J.E. ); Knoll, R.W. )

    1989-12-01

    An experimental program is being conducted at Pacific Northwest Laboratory (PNL) to determine the oxidation response of light-water-reactor (LWR) spent fuels under conditions appropriate to fuel storage in air. The program is designed to investigate several independent variables that might affect the oxidation behavior of spent fuel. Included are temperature (135 to 230{degree}C), fuel burnup (to about 34 MWd/kgM), reactor type (pressurized and boiling water reactors), moisture level in the air, and the presence of a high gamma field. In continuing tests with declad spent fuel and nonirradiated UO{sub 2} specimens, oxidation rates were monitored by weight-gain measurements and the microstructures of subsamples taken during the weighing intervals were characterized by several analytical methods. The oxidation behavior indicated by weight gain and time to form powder will be reported in Volume III of this series. The characterization results obtained from x-ray diffractometry, transmission electron microscopy, scanning electron microscopy, and Auger electron spectrometry of oxidized fuel samples are presented in this report. 28 refs., 21 figs., 3 tabs.

  17. Cross-flow electrochemical reactor cells, cross-flow reactors, and use of cross-flow reactors for oxidation reactions

    DOEpatents

    Balachandran, Uthamalingam; Poeppel, Roger B.; Kleefisch, Mark S.; Kobylinski, Thaddeus P.; Udovich, Carl A.

    1994-01-01

    This invention discloses cross-flow electrochemical reactor cells containing oxygen permeable materials which have both electron conductivity and oxygen ion conductivity, cross-flow reactors, and electrochemical processes using cross-flow reactor cells having oxygen permeable monolithic cores to control and facilitate transport of oxygen from an oxygen-containing gas stream to oxidation reactions of organic compounds in another gas stream. These cross-flow electrochemical reactors comprise a hollow ceramic blade positioned across a gas stream flow or a stack of crossed hollow ceramic blades containing a channel or channels for flow of gas streams. Each channel has at least one channel wall disposed between a channel and a portion of an outer surface of the ceramic blade, or a common wall with adjacent blades in a stack comprising a gas-impervious mixed metal oxide material of a perovskite structure having electron conductivity and oxygen ion conductivity. The invention includes reactors comprising first and second zones seprated by gas-impervious mixed metal oxide material material having electron conductivity and oxygen ion conductivity. Prefered gas-impervious materials comprise at least one mixed metal oxide having a perovskite structure or perovskite-like structure. The invention includes, also, oxidation processes controlled by using these electrochemical reactors, and these reactions do not require an external source of electrical potential or any external electric circuit for oxidation to proceed.

  18. Carbon monoxide oxidation rates computed for automobile thermal reactor conditions

    NASA Technical Reports Server (NTRS)

    Brokaw, R. S.; Bittker, D. A.

    1972-01-01

    Carbon monoxide oxidation rates in thermal reactors for exhaust manifolds are computed by integrating differential equations for system of twenty-nine reversible chemical reactions. Reactors are noncatalytic replacements for conventional exhaust manifolds and are a system for reducing carbon monoxide and hydrocarbons in automobile exhausts.

  19. System and method for air temperature control in an oxygen transport membrane based reactor

    DOEpatents

    Kelly, Sean M

    2016-09-27

    A system and method for air temperature control in an oxygen transport membrane based reactor is provided. The system and method involves introducing a specific quantity of cooling air or trim air in between stages in a multistage oxygen transport membrane based reactor or furnace to maintain generally consistent surface temperatures of the oxygen transport membrane elements and associated reactors. The associated reactors may include reforming reactors, boilers or process gas heaters.

  20. Process for treating effluent from a supercritical water oxidation reactor

    DOEpatents

    Barnes, C.M.; Shapiro, C.

    1997-11-25

    A method for treating a gaseous effluent from a supercritical water oxidation reactor containing entrained solids is provided comprising the steps of expanding the gas/solids effluent from a first to a second lower pressure at a temperature at which no liquid condenses; separating the solids from the gas effluent; neutralizing the effluent to remove any acid gases; condensing the effluent; and retaining the purified effluent to the supercritical water oxidation reactor. 6 figs.

  1. Process for treating effluent from a supercritical water oxidation reactor

    DOEpatents

    Barnes, Charles M.; Shapiro, Carolyn

    1997-01-01

    A method for treating a gaseous effluent from a supercritical water oxidation reactor containing entrained solids is provided comprising the steps of expanding the gas/solids effluent from a first to a second lower pressure at a temperature at which no liquid condenses; separating the solids from the gas effluent; neutralizing the effluent to remove any acid gases; condensing the effluent; and retaining the purified effluent to the supercritical water oxidation reactor.

  2. STUDY ON AIR INGRESS MITIGATION METHODS IN THE VERY HIGH TEMPERATURE GAS COOLED REACTOR (VHTR)

    SciTech Connect

    Chang H. Oh

    2011-03-01

    An air-ingress accident followed by a pipe break is considered as a critical event for a very high temperature gas-cooled reactor (VHTR). Following helium depressurization, it is anticipated that unless countermeasures are taken, air will enter the core through the break leading to oxidation of the in-core graphite structure. Thus, without mitigation features, this accident might lead to severe exothermic chemical reactions of graphite and oxygen. Under extreme circumstances, a loss of core structural integrity may occur along with excessive release of radiological inventory. Idaho National Laboratory under the auspices of the U.S. Department of Energy is performing research and development (R&D) that focuses on key phenomena important during challenging scenarios that may occur in the VHTR. Phenomena Identification and Ranking Table (PIRT) studies to date have identified the air ingress event, following on the heels of a VHTR depressurization, as very important (Oh et al. 2006, Schultz et al. 2006). Consequently, the development of advanced air ingress-related models and verification and validation (V&V) requirements are part of the experimental validation plan. This paper discusses about various air-ingress mitigation concepts applicable for the VHTRs. The study begins with identifying important factors (or phenomena) associated with the air-ingress accident by using a root-cause analysis. By preventing main causes of the important events identified in the root-cause diagram, the basic air-ingress mitigation ideas can be conceptually derived. The main concepts include (1) preventing structural degradation of graphite supporters; (2) preventing local stress concentration in the supporter; (3) preventing graphite oxidation; (4) preventing air ingress; (5) preventing density gradient driven flow; (4) preventing fluid density gradient; (5) preventing fluid temperature gradient; (6) preventing high temperature. Based on the basic concepts listed above, various air

  3. Liquid metal reactor air cooling baffle

    DOEpatents

    Hunsbedt, Anstein

    1994-01-01

    A baffle is provided between a relatively hot containment vessel and a relatively cold silo for enhancing air cooling performance. The baffle includes a perforate inner wall positionable outside the containment vessel to define an inner flow riser therebetween, and an imperforate outer wall positionable outside the inner wall to define an outer flow riser therebetween. Apertures in the inner wall allow thermal radiation to pass laterally therethrough to the outer wall, with cooling air flowing upwardly through the inner and outer risers for removing heat.

  4. Liquid metal reactor air cooling baffle

    DOEpatents

    Hunsbedt, A.

    1994-08-16

    A baffle is provided between a relatively hot containment vessel and a relatively cold silo for enhancing air cooling performance. The baffle includes a perforate inner wall positionable outside the containment vessel to define an inner flow riser therebetween, and an imperforate outer wall positionable outside the inner wall to define an outer flow riser therebetween. Apertures in the inner wall allow thermal radiation to pass laterally therethrough to the outer wall, with cooling air flowing upwardly through the inner and outer risers for removing heat. 3 figs.

  5. Oxidative coupling of methane using inorganic membrane reactor

    SciTech Connect

    Ma, Y.H.; Moser, W.R.; Dixon, A.G.

    1995-12-31

    The goal of this research is to improve the oxidative coupling of methane in a catalytic inorganic membrane reactor. A specific target is to achieve conversion of methane to C{sub 2} hydrocarbons at very high selectivity and relatively higher yields than in fixed bed reactors by controlling the oxygen supply through the membrane. A membrane reactor has the advantage of precisely controlling the rate of delivery of oxygen to the catalyst. This facility permits balancing the rate of oxidation and reduction of the catalyst. In addition, membrane reactors minimize the concentration of gas phase oxygen thus reducing non selective gas phase reactions, which are believed to be a main route for formation of CO{sub x} products. Such gas phase reactions are a cause for decreased selectivity in oxidative coupling of methane in conventional flow reactors. Membrane reactors could also produce higher product yields by providing better distribution of the reactant gases over the catalyst than the conventional plug flow reactors. Modeling work which aimed at predicting the observed experimental trends in porous membrane reactors was also undertaken in this research program.

  6. Transpiring wall supercritical water oxidation test reactor design report

    SciTech Connect

    Haroldsen, B.L.; Ariizumi, D.Y.; Mills, B.E.; Brown, B.G.; Rousar, D.C.

    1996-02-01

    Sandia National Laboratories is working with GenCorp, Aerojet and Foster Wheeler Development Corporation to develop a transpiring wall supercritical water oxidation reactor. The transpiring wall reactor promises to mitigate problems of salt deposition and corrosion by forming a protective boundary layer of pure supercritical water. A laboratory scale test reactor has been assembled to demonstrate the concept. A 1/4 scale transpiring wall reactor was designed and fabricated by Aerojet using their platelet technology. Sandia`s Engineering Evaluation Reactor serves as a test bed to supply, pressurize and heat the waste; collect, measure and analyze the effluent; and control operation of the system. This report describes the design, test capabilities, and operation of this versatile and unique test system with the transpiring wall reactor.

  7. Investigation of vessel exterior air cooling for a HLMC reactor

    SciTech Connect

    Sienicki, J. J.; Spencer, B. W.

    2000-01-13

    The Secure Transportable Autonomous Reactor (STAR) concept under development at Argonne National Laboratory provides a small (300 MWt) reactor module for steam supply that incorporates design features to attain proliferation resistance, heightened passive safety, and improved cost competitiveness through extreme simplification. Examples are the achievement of 100%+ natural circulation heat removal from the low power density/low pressure drop ultra-long lifetime core and utilization of lead-bismuth eutectic (LBE) coolant enabling elimination of main coolant pumps as well as the need for an intermediate heat transport circuit. It is required to provide a passive means of removing decay heat and effecting reactor cooldown in the event that the normal steam generator heat sink, including its normal shutdown heat removal mode, is postulated to be unavailable. In the present approach, denoted as the Reactor Exterior Cooling System (RECS), passive decay heat removal is provided by cooling the outside of the containment/guard vessel with air. RECS is similar to the Reactor Vessel Auxiliary Cooling System (RVACS) incorporated into the PRISM design. However, to enhance the heat removal, RECS incorporates fins on the containment vessel exterior to enhance heat transfer to air as well as removable steel venetian conductors that provide a conduction heat transfer path across the reactor vessel-containment vessel gap to enhance heat transfer between the vessels. The objective of the present work is to investigate the effectiveness of air cooling in removing heat from the vessel and limiting the coolant temperature increase following a sudden complete loss of the steam generator heat sink.

  8. Operation of staged membrane oxidation reactor systems

    SciTech Connect

    Repasky, John Michael

    2012-10-16

    A method of operating a multi-stage ion transport membrane oxidation system. The method comprises providing a multi-stage ion transport membrane oxidation system with at least a first membrane oxidation stage and a second membrane oxidation stage, operating the ion transport membrane oxidation system at operating conditions including a characteristic temperature of the first membrane oxidation stage and a characteristic temperature of the second membrane oxidation stage; and controlling the production capacity and/or the product quality by changing the characteristic temperature of the first membrane oxidation stage and/or changing the characteristic temperature of the second membrane oxidation stage.

  9. OXIDATIVE COUPLING OF METHANE USING INORGANIC MEMBRANE REACTORS

    SciTech Connect

    Dr. Y.H. Ma; Dr. W.R. Moser; Dr. A.G. Dixon; Dr. A.M. Ramachandra; Dr. Y. Lu; C. Binkerd

    1998-04-01

    The objective of this research is to study the oxidative coupling of methane in catalytic inorganic membrane reactors. A specific target is to achieve conversion of methane to C{sub 2} hydrocarbons at very high selectivity and higher yields than in conventional non-porous, co-feed, fixed bed reactors by controlling the oxygen supply through the membrane. A membrane reactor has the advantage of precisely controlling the rate of delivery of oxygen to the catalyst. This facility permits balancing the rate of oxidation and reduction of the catalyst. In addition, membrane reactors minimize the concentration of gas phase oxygen thus reducing non selective gas phase reactions, which are believed to be a main route for the formation of CO{sub x} products. Such gas phase reactions are a cause of decreased selectivity in the oxidative coupling of methane in conventional flow reactors. Membrane reactors could also produce higher product yields by providing better distribution of the reactant gases over the catalyst than the conventional plug flow reactors. Membrane reactor technology also offers the potential for modifying the membranes both to improve catalytic properties as well as to regulate the rate of the permeation/diffusion of reactants through the membrane to minimize by-product generation. Other benefits also exist with membrane reactors, such as the mitigation of thermal hot-spots for highly exothermic reactions such as the oxidative coupling of methane. The application of catalytically active inorganic membranes has potential for drastically increasing the yield of reactions which are currently limited by either thermodynamic equilibria, product inhibition, or kinetic selectivity.

  10. Effect of microstructure on air oxidation resistance of nuclear graphite

    SciTech Connect

    Contescu, Cristian I; Guldan, Tyler R; Wang, Peng; Burchell, Timothy D

    2012-01-01

    Oxidation resistance in air of three grades of nuclear graphite with different structures was compared using a standard thermogravimetric method. Differences in the oxidation behavior have been identified with respect to both (i) the rate of oxidation in identical conditions and the derived apparent activation energy and pre-exponential factor and (ii) the penetration depth of the oxidant and the development of the oxidized layer. These differences were ascribed to structural differences between the three graphite grades, in particular the grain size and shape of the graphite filler, and the associated textural properties, such as total BET surface area and porosity distribution in the un-oxidized material. It was also found that the amount of strongly bonded surface oxygen complexes measured by thermodesorption significantly exceeds the amount afforded by the low BET surface area, and therefore low temperature oxygen chemisorption is not a reliable method for determining the amount of surface sites (re)active during air oxidation. The relationship between nuclear graphite microstructure and its oxidation resistance demonstrated in this work underlines the importance of performing comprehensive oxidation characterization studies of the new grades of nuclear graphite considered as candidates for very high temperature gas-cooled reactors.

  11. NEUTRONIC REACTOR POWER PLANT

    DOEpatents

    Metcalf, H.E.

    1962-12-25

    This patent relates to a nuclear reactor power plant incorporating an air-cooled, beryllium oxide-moderated, pebble bed reactor. According to the invention means are provided for circulating a flow of air through tubes in the reactor to a turbine and for directing a sidestream of the circu1ating air through the pebble bed to remove fission products therefrom as well as assist in cooling the reactor. (AEC)

  12. Reactor process using metal oxide ceramic membranes

    DOEpatents

    Anderson, Marc A.

    1994-01-01

    A reaction vessel for use in photoelectrochemical reactions includes as its reactive surface a metal oxide porous ceramic membrane of a catalytic metal such as titanium. The reaction vessel includes a light source and a counter electrode. A provision for applying an electrical bias between the membrane and the counter electrode permits the Fermi levels of potential reaction to be favored so that certain reactions may be favored in the vessel. The electrical biasing is also useful for the cleaning of the catalytic membrane. Also disclosed is a method regenerating a porous metal oxide ceramic membrane used in a photoelectrochemical catalytic process by periodically removing the reactants and regenerating the membrane using a variety of chemical, thermal, and electrical techniques.

  13. Reactor process using metal oxide ceramic membranes

    DOEpatents

    Anderson, M.A.

    1994-05-03

    A reaction vessel for use in photoelectrochemical reactions includes as its reactive surface a metal oxide porous ceramic membrane of a catalytic metal such as titanium. The reaction vessel includes a light source and a counter electrode. A provision for applying an electrical bias between the membrane and the counter electrode permits the Fermi levels of potential reaction to be favored so that certain reactions may be favored in the vessel. The electrical biasing is also useful for the cleaning of the catalytic membrane. Also disclosed is a method regenerating a porous metal oxide ceramic membrane used in a photoelectrochemical catalytic process by periodically removing the reactants and regenerating the membrane using a variety of chemical, thermal, and electrical techniques. 2 figures.

  14. Characterizing the Amount and Chemistry of Biogenic SOA Formation from Pine Forest Air Using a Flow Reactor

    NASA Astrophysics Data System (ADS)

    Palm, B. B.; Ortega, A. M.; Campuzano Jost, P.; Day, D. A.; Fry, J.; Zarzana, K. J.; Draper, D. C.; Brown, S. S.; Kaser, L.; Karl, T.; Jud, W.; Hansel, A.; Hodzic, A.; Dube, W. P.; Wagner, N. L.; Brune, W. H.; Jimenez, J. L.

    2013-12-01

    The amount and chemistry of biogenic secondary organic aerosol (SOA) formation was characterized as a function of oxidant exposure using a Potential Aerosol Mass (PAM) oxidative flow reactor, sampling air in a terpene- and MBO-dominated pine forest during the 2011 BEACHON-RoMBAS field campaign at the U.S. Forest Service Manitou Forest Experimental Observatory in the Colorado Rocky Mountains. In the reactor, a chosen oxidant (OH, O3, or NO3) was generated and stepped over a range of values up to 10,000 times ambient levels, accelerating the gas-phase and heterogeneous oxidative aging of volatile organic compounds (VOCs), inorganic gases, and preexisting aerosol. The resulting SOA formation was measured using an Aerodyne HR-ToF-AMS, a TSI SMPS and a PTR-TOF-MS. Oxidative processing in the flow reactor was equivalent to a few hours up to ~20 days of atmospheric aging during the ~4-min reactor residence time. During BEACHON-RoMBAS, OH oxidation led to a net production of up to several μg/m3 of SOA at intermediate exposures (1-10 equivalent days) but resulted in net loss of OA mass (up to ~30%) at higher OH exposures (10-20 equivalent days), demonstrating the competing effects of functionalization/condensation vs. fragmentation/evaporation reactions as OH exposure increased. O3 and NO3 oxidation led to smaller (up to 0.5 μg/m3) SOA production, and loss of SOA mass due to fragmentation reactions was not observed. OH oxidation resulted in f44 vs. f43 and Van Krevelen diagram (H:C vs. O:C) slopes similar to ambient oxidation, suggesting the flow reactor oxidation pathways are similar to those in ambient air. Organic nitrate SOA production was observed from NO3 radical oxidation only. New particle formation was observed from OH oxidation, but not O3 or NO3 oxidation under our experimental conditions. An enhancement of SOA production under the influence of anthropogenic pollution (Denver) was also observed. High-resolution AMS measurements showed that the O:C and H

  15. Reactor vessel using metal oxide ceramic membranes

    DOEpatents

    Anderson, Marc A.; Zeltner, Walter A.

    1992-08-11

    A reaction vessel for use in photoelectrochemical reactions includes as its reactive surface a metal oxide porous ceramic membrane of a catalytic metal such as titanium. The reaction vessel includes a light source and a counter electrode. A provision for applying an electrical bias between the membrane and the counter electrode permits the Fermi levels of potential reaction to be favored so that certain reactions may be favored in the vessel. The electrical biasing is also useful for the cleaning of the catalytic membrane.

  16. Oxidation of calcium sulfite slurries in a continuous reactor

    SciTech Connect

    Reynolds, S.D.

    1984-01-01

    The oxidation of calcium sulfate in a gas-solid-liquid system has been studied in a continuous stirred reactor. This oxidation reaction is of interest since it occurs in limestone scrubber systems for flue gas desulfurization. The overall oxidation process consists of oxygen absorption, dissolution of calcium sulfite, and liquid phase reaction, but the emphasis in this work has been done on the dissolution step. The dissolution of calcium sulfite into a solution of adipic acid was studied in the continuous stirred reactor. A model was developed to describe these experiments and good agreement between model and experiment was obtained. Experiments were also performed in which the dissolution of calcium sulfite into adipic acid solutions in the presence of calcium sulfate was examined. A model was developed for this system in which a shift in the equilibrium solubility of calcium sulfite due to the presence of calcium sulfate was included. Moderate success was achieved with this method, as the model described the dissolution experiments with added calcium sulfate and the oxidation experiments. The effect of manganese catalyst on the reaction was also studied. A brief examination of the gas-liquid mass transfer step was made using the model for slurry oxidation.

  17. Kinetics of wet air oxidation (WAO) of alcaloide factory wastewater.

    PubMed

    Kunukcu, Y Kaçar

    2005-01-01

    Wet air oxidation (WAO) of Afyon alcaloide factory wastewater, a typical high strength industrial wastewater, was carried out. The process was performed in a specifically designed titanium bubble reactor at temperatures in the range of 140-160 degrees C. The kinetics of WAO of alcaloide factory wastewater was modeled by assuming two distinct steps. The rates of destruction were measured with respect to reduction in COD. The oxidation reaction was found to be first order with respect to COD concentration and also second order with respect to oxygen concentration in both steps. The values of activation energies were found to be in the range of 4.93 x 10(4)-7.85 x 10(4) kJ/kmol.

  18. Graphene oxide as an effective catalyst for wet air oxidation of phenol.

    PubMed

    Yang, Shaoxia; Cui, Yuhong; Sun, Yu; Yang, Hongwei

    2014-09-15

    The graphene oxide (GO) and chemically reduced graphene oxides, used as catalysts in absence of any metals, were investigated in the catalytic wet air oxidation (CWAO) of phenol in a batch reactor. The characterization of the materials was measured with scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman, fourier transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS). The carbon materials exhibited good phenol and total organic compounds (TOC) removals in the CWAO of phenol. The GO had the highest catalytic activity, total phenol removal was achieved after 40 min, and ca. 84% TOC removal was obtained after 120 min at reaction temperature of 155°C, total pressure of 2.5 MPa and catalyst loading of 0.2 gL(-1).

  19. Process for treating effluent from a supercritical water oxidation reactor

    SciTech Connect

    Barnes, C.M.; Shapiro, C.

    1995-12-31

    The present invention relates generally to a method for treating and recycling the effluent from a supercritical water oxidation reactor and more specifically to a method for treating and recycling the effluent by expanding the effluent without extensive cooling. Supercritical water oxidation is the oxidation of fuel, generally waste material, in a body of water under conditions above the thermodynamic critical point of water. The current state of the art in supercritical water oxidation plant effluent treatment is to cool the reactor effluent through heat exchangers or direct quench, separate the cooled liquid into a gas/vapor stream and a liquid/solid stream, expand the separated effluent, and perform additional purification on gaseous, liquid, brine and solid effluent. If acid gases are present, corrosion is likely to occur in the coolers. During expansion, part of the condensed water will revaporize. Vaporization can damage the valves due to cavitation and erosion. The present invention expands the effluent stream without condensing the stream. Radionuclides and suspended solids are more efficiently separated in the vapor phase. By preventing condensation, the acids are kept in the much less corrosive gaseous phase thereby limiting the damage to treatment equipment. The present invention also reduces the external energy consumption, by utilizing the expansion step to also cool the effluent.

  20. Modelling oxidation behaviour in operating defective nuclear reactor fuel elements

    NASA Astrophysics Data System (ADS)

    Higgs, Jamie D.

    CANDU nuclear reactors are powered by ceramic uranium dioxide (UO 2) fuel pellets encased in a zirconium-alloy sheath. Occasionally, holes develop in the sheath, allowing steam ingress into the fuel-to-sheath gap, thus exposing the fuel to an oxidizing environment. Oxidation of UO2 fuel may lead to a reduction of fuel thermal conductivity and melting point, both reducing the margin to prevent fuel centre-line melting during transient or even normal operating conditions. Along with increasing fuel temperature, fuel oxidation also enhances the release of radioactive fission products into the reactor coolant. For the first time, a mechanistic treatment has been considered to predict fuel oxidation behaviour in operating defective fuel elements by coupling fuel oxidation kinetics, interstitial oxygen diffusion and heat transfer with sheath oxidation and hydriding rates and gas phase transport in both the fuel-to-sheath gap and within the fuel cracks. The three highly non-linear phenomena (solid-state oxygen diffusion, gas-phase transport and heat transfer) coupled in this treatment were modelled using a finite element technique. The result is a numerical tool that can provide predictions of both the temperature and oxygen-to-uranium (O/U) ratio profile both radially and axially along the fuel element length. The two-dimensional (azimuthally-symmetric) model has been compared to oxygen profile measurements from commercial reactor defective fuel with operating linear power ratings ranging from 26 to 51 kW m-1. Model predictions agree well with experimental observations. Defect size, linear power rating and post-defect residence time (PDRT) appear to be the factors that most influence the extent and rate of fuel oxidation. Thermodynamic modelling of hyperstoichiometric fuel provided the boundary conditions for the fuel oxidation kinetics model. A refined thermodynamic treatment for hyperstoichiometric UO2 has been established. Neutron diffraction experiments at Los Alamos

  1. Salt deposition studies in a supercritical water oxidation reactor

    SciTech Connect

    LaJeunesse, C.A.; Rice, S.F.; Hanush, R.G.; Aiken, J.D.

    1993-10-01

    Supercritical water oxidation (SCWO), a method for destroying aqueous organic waste, is a relatively new technology discovered about fifteen years ago. SCWO occurs at moderate temperatures and pressures where the ability of water to dissolve hydrocarbons and other organic chemicals is greatly enhanced. Depending on the feed stream and residence time, the dissolved organic waste reacts with an oxidizer to produce innocuous combustion products. However, oxidation of organic material containing heteroatoms, such as sulfur or phosphorous, forms sulfuric or phosphoric acid in the absence of metal ions. In situ neutralization with sodium hydroxide then forms salts that are insoluble at supercritical conditions. These salts deposit in the reactor affecting the processing of the organic material. To design a system that can accommodate the formation of these salts, it is important to understand the deposition process quantitatively. This paper is an interim report on an experimental program designed to understand the salt deposition phenomena.

  2. Transpiring wall supercritical water oxidation reactor salt deposition studies

    SciTech Connect

    Haroldsen, B.L.; Mills, B.E.; Ariizumi, D.Y.; Brown, B.G.

    1996-09-01

    Sandia National Laboratories has teamed with Foster Wheeler Development Corp. and GenCorp, Aerojet to develop and evaluate a new supercritical water oxidation reactor design using a transpiring wall liner. In the design, pure water is injected through small pores in the liner wall to form a protective boundary layer that inhibits salt deposition and corrosion, effects that interfere with system performance. The concept was tested at Sandia on a laboratory-scale transpiring wall reactor that is a 1/4 scale model of a prototype plant being designed for the Army to destroy colored smoke and dye at Pine Bluff Arsenal in Arkansas. During the tests, a single-phase pressurized solution of sodium sulfate (Na{sub 2}SO{sub 4}) was heated to supercritical conditions, causing the salt to precipitate out as a fine solid. On-line diagnostics and post-test observation allowed us to characterize reactor performance at different flow and temperature conditions. Tests with and without the protective boundary layer demonstrated that wall transpiration provides significant protection against salt deposition. Confirmation tests were run with one of the dyes that will be processed in the Pine Bluff facility. The experimental techniques, results, and conclusions are discussed.

  3. Oxidative Stress and Air Pollution Exposure

    PubMed Central

    Lodovici, Maura; Bigagli, Elisabetta

    2011-01-01

    Air pollution is associated with increased cardiovascular and pulmonary morbidity and mortality. The mechanisms of air pollution-induced health effects involve oxidative stress and inflammation. As a matter of fact, particulate matter (PM), especially fine (PM2.5, PM < 2.5 μm) and ultrafine (PM0.1, PM < 0.1 μm) particles, ozone, nitrogen oxides, and transition metals, are potent oxidants or able to generate reactive oxygen species (ROS). Oxidative stress can trigger redox-sensitive pathways that lead to different biological processes such as inflammation and cell death. However, it does appear that the susceptibility of target organ to oxidative injury also depends upon its ability to upregulate protective scavenging systems. As vehicular traffic is known to importantly contribute to PM exposure, its intensity and quality must be strongly relevant determinants of the qualitative characteristics of PM spread in the atmosphere. Change in the composition of this PM is likely to modify its health impact. PMID:21860622

  4. Oxidation flow reactors (OFRs): overview of recent field and modeling studies

    NASA Astrophysics Data System (ADS)

    Jimenez, Jose-Luis; Palm, Brett B.; Peng, Zhe; Hu, Weiwei; Ortega, Amber M.; Li, Rui; Campuzano-Jost, Pedro; Day, Douglas A.; Stark, Harald; Brune, William H.; de Gouw, Joost; Schroder, Jason

    2016-04-01

    Oxidation flow reactors (OFRs) are popular tools for studying SOA formation and aging in both laboratory and field experiments. In an OFR, the concentration of an oxidant (OH, O3, or NO3) can be increased, leading to hours-months of equivalent atmospheric oxidation during the several-minute OFR residence time. Using gas- and particle-phase measurements from several recent field campaigns, we demonstrate SOA formation after oxidation of ambient air in an OFR. Typically, more SOA formation is observed from nighttime air than daytime air. This indicates that the concentration of SOA-forming gases in ambient air is relatively higher at night. Measured ambient VOCs are not able to explain the magnitude of SOA formation in the OFR, suggesting that typically unmeasured S/IVOCs (possibly VOC oxidation products or direct emissions) play a substantial intermediary role in ambient SOA formation. We also present highlights from recent OFR oxidant chemistry modeling studies. HOx, Ox, and photolysis chemistry was modeled for two common OH production methods (utilizing 185+254 nm UV light, or 254 nm only). OH exposure (OHexp) can be estimated within a factor of ~2 using model-derived equations, and can be verified in situ using VOC decay measurements. OHexp is strongly dependent on external OH reactivity, which may cause significant OH suppression in some circumstances (e.g., lab/source studies with high precursor concentrations). UV light photolysis and reaction with oxygen atoms are typically not major reaction pathways. Modeling the fate of condensable low-volatility organic gases (LVOCs) formed in an OFR suggests that LVOC fate is dependent on particle condensational sink. E.g., for the range of particle condensational sink at a remote pine forest, anywhere from 20-80% of produced LVOCs were predicted to condense onto aerosols for an OHexp of ~1 day, with the remainder lost to OFR or sampling line walls. Similar to large chamber wall loss corrections, a correction is needed

  5. Coated mesh photocatalytic reactor for air treatment applications: comparative study of support materials.

    PubMed

    Passalía, Claudio; Nocetti, Emanuel; Alfano, Orlando; Brandi, Rodolfo

    2016-06-14

    An experimental comparative study of different meshes as support materials for photocatalytic applications in gas phase is presented. The photocatalytic oxidation of dichloromethane in air was addressed employing different coated meshes in a laboratory-scale, continuous reactor. Two fiberglass meshes and a stainless steel mesh were studied regarding the catalyst load, adherence, and catalytic activity. Titanium dioxide photocatalyst was immobilized on the meshes by dip-coating cycles. Results indicate the feasibility of the dichloromethane elimination in the three cases. When the number of coating cycles was doubled, the achieved conversion levels were increased twofold for stainless steel and threefold for the fiberglass meshes. One of the fiberglass meshes (FG2) showed the highest reactivity per mass of catalyst and per catalytic surface area.

  6. Interim results from UO/sub 2/ fuel oxidation tests in air

    SciTech Connect

    Campbell, T.K.; Gilbert, E.R.; Thornhill, C.K.; White, G.D.; Piepel, G.F.; Griffin, C.W.j

    1987-08-01

    An experimental program is being conducted at Pacific Northwest Laboratory (PNL) to extend the characterization of spent fuel oxidation in air. To characterize oxidation behavior of irradiated UO/sub 2/, fuel oxidation tests were performed on declad light-water reactor spent fuel and nonirradited UO/sub 2/ pellets in the temperature range of 135 to 250/sup 0/C. These tests were designed to determine the important independent variables that might affect spent fuel oxidation behavior. The data from this program, when combined with the test results from other programs, will be used to develop recommended spent fuel dry-storage temperature limits in air. This report describes interim test results. The initial PNL investigations of nonirradiated and spent fuels identified the important testing variables as temperature, fuel burnup, radiolysis of the air, fuel microstructure, and moisture in the air. Based on these initial results, a more extensive statistically designed test matrix was developed to study the effects of temperature, burnup, and moisture on the oxidation behavior of spent fuel. Oxidation tests were initiated using both boiling-water reactor and pressurized-water reactor fuels from several different reactors with burnups from 8 to 34 GWd/MTU. A 10/sup 5/ R/h gamma field was applied to the test ovens to simulate dry storage cask conditions. Nonirradiated fuel was included as a control. This report describes experimental results from the initial tests on both the spent and nonirradiated fuels and results to date on the tests in a 10/sup 5/ R/h gamma field. 33 refs., 51 figs., 6 tabs.

  7. Catalytic wet air oxidation with Ni- and Fe-doped mixed oxides derived from hydrotalcites.

    PubMed

    Ovejero, G; Rodríguez, A; Vallet, A; Gómez, P; García, J

    2011-01-01

    Catalytic wet air oxidation of Basic Yellow 11 (BY11), a basic dye, was studied in a batch reactor. Layered double hydroxides with the hydrotalcite-like structure containing nickel or iron cations have been prepared by coprecipitation and subsequently calcined leading to Ni- and Fe-doped mixed oxides, respectively. Compared with the results in the wet air oxidation of BY11, these catalysts showed high activity for total organic carbon (TOC), toxicity and dye removal at 120 degrees C and 50 bars after 120 min. It has been demonstrated that the activity depended strongly on the presence of catalyst. The results show that catalysts containing nickel provide a higher extent of oxidation of the dye whereas the reaction carried out with the iron catalyst is faster. The Ni and Fe dispersion determined from the TPR results was higher for the catalysts with a lower Ni or Fe content and decreased for higher Ni or Fe contents. On the basis of activity and selectivity, the Ni containing catalyst with the medium (3%) Ni content was found to be the best catalyst. Finally, a relationship between metal content of the catalyst and reaction rate has been established.

  8. The study of leachate treatment by using three advanced oxidation process based wet air oxidation.

    PubMed

    Karimi, Behroz; Ehrampoush, Mohammad Hassan; Ebrahimi, Asghar; Mokhtari, Mehdi

    2013-01-02

    Wet air oxidation is regarded as appropriate options for wastewater treatment with average organic compounds. The general purpose of this research is to determine the efficiency of three wet air oxidation methods, wet oxidation with hydrogen peroxide and absorption with activated carbon in removing organic matter and nitrogenous compounds from Isfahan's urban leachate. A leachate sample with the volume of 1.5 liters entered into a steel reactor with the volume of three liters and was put under a 10-bar pressure, at temperatures of 100, 200, and 300° as well as three retention times of 30, 60, and 90 minutes. The sample was placed at 18 stages of leachate storage ponds in Isfahan Compost Plant with the volume of 20 liters, using three WPO, WAO methods and a combination of WAO/GAC for leachate pre-treatment. Thirty percent of pure oxygen and hydrogen peroxide were applied as oxidation agents. The COD removal efficiency in WAO method is 7.8-33.3%, in BOD is 14.7-50.6%, the maximum removal percentage (efficiency) for NH4-N is 53.3% and for NO3-N is 56.4-73.9%. The removal efficiency of COD and BOD5 is 4.6%-34 and 24%-50 respectively in WPO method. Adding GAC to the reactor, the removal efficiency of all parameters was improved. The maximum removal efficiency was increased 48% for COD, 31%-43.6 for BOD5 by a combinational method, and the ratio of BOD5/COD was also increased to 90%. In this paper, WAO and WPO process was used for Leachate pre-treatment and WAO/GAC combinational process was applied for improving the organic matter removal and leachate treatment; it was also determined that the recent process is much more efficient in removing resistant organic matter.

  9. The study of leachate treatment by using three advanced oxidation process based wet air oxidation

    PubMed Central

    2013-01-01

    Wet air oxidation is regarded as appropriate options for wastewater treatment with average organic compounds. The general purpose of this research is to determine the efficiency of three wet air oxidation methods, wet oxidation with hydrogen peroxide and absorption with activated carbon in removing organic matter and nitrogenous compounds from Isfahan's urban leachate. A leachate sample with the volume of 1.5 liters entered into a steel reactor with the volume of three liters and was put under a 10-bar pressure, at temperatures of 100, 200, and 300° as well as three retention times of 30, 60, and 90 minutes. The sample was placed at 18 stages of leachate storage ponds in Isfahan Compost Plant with the volume of 20 liters, using three WPO, WAO methods and a combination of WAO/GAC for leachate pre-treatment. Thirty percent of pure oxygen and hydrogen peroxide were applied as oxidation agents. The COD removal efficiency in WAO method is 7.8-33.3%, in BOD is 14.7-50.6%, the maximum removal percentage (efficiency) for NH4-N is 53.3% and for NO3-N is 56.4-73.9%. The removal efficiency of COD and BOD5 is 4.6%-34 and 24%-50 respectively in WPO method. Adding GAC to the reactor, the removal efficiency of all parameters was improved. The maximum removal efficiency was increased 48% for COD, 31%-43.6 for BOD5 by a combinational method, and the ratio of BOD5/COD was also increased to 90%. In this paper, WAO and WPO process was used for Leachate pre-treatment and WAO/GAC combinational process was applied for improving the organic matter removal and leachate treatment; it was also determined that the recent process is much more efficient in removing resistant organic matter. PMID:23369258

  10. Experimental Validation of Stratified Flow Phenomena, Graphite Oxidation, and Mitigation Strategies of Air Ingress Accidents

    SciTech Connect

    Chang Ho Oh; Eung Soo Kim; Hee Cheon No; Nam Zin Cho

    2008-12-01

    The US Department of Energy is performing research and development (R&D) that focuses on key phenomena that are important during challenging scenarios that may occur in the Next Generation Nuclear Plant (NGNP) Program / GEN-IV Very High Temperature Reactor (VHTR). Phenomena identification and ranking studies (PIRT) to date have identified the air ingress event, following on the heels of a VHTR depressurization, as very important (Schultz et al., 2006). Consequently, the development of advanced air ingress-related models and verification and validation (V&V) are very high priority for the NGNP program. Following a loss of coolant and system depressurization, air will enter the core through the break. Air ingress leads to oxidation of the in-core graphite structure and fuel. The oxidation will accelerate heat-up of the bottom reflector and the reactor core and will cause the release of fission products eventually. The potential collapse of the bottom reflector because of burn-off and the release of CO lead to serious safety problems. For estimation of the proper safety margin we need experimental data and tools, including accurate multi-dimensional thermal-hydraulic and reactor physics models, a burn-off model, and a fracture model. We also need to develop effective strategies to mitigate the effects of oxidation. The results from this research will provide crucial inputs to the INL NGNP/VHTR Methods R&D project. This project is focused on (a) analytical and experimental study of air ingress caused by density-driven, stratified, countercurrent flow, (b) advanced graphite oxidation experiments, (c) experimental study of burn-off in the bottom reflector, (d) structural tests of the burnt-off bottom reflector, (e) implementation of advanced models developed during the previous tasks into the GAMMA code, (f) full air ingress and oxidation mitigation analyses, (g) development of core neutronic models, (h) coupling of the core neutronic and thermal hydraulic models, and (i

  11. Evaluation of a Combined Ultraviolet Photocatalytic Oxidation(UVPCO)/Chemisorbent Air Cleaner for Indoor Air Applications

    SciTech Connect

    Hodgson, Alfred T.; Destaillats, Hugo; Hotchi, Toshifumi; Fisk,William J.

    2007-02-01

    We previously reported that gas-phase byproducts of incomplete oxidation were generated when a prototype ultraviolet photocatalytic oxidation (UVPCO) air cleaner was operated in the laboratory with indoor-relevant mixtures of VOCs at realistic concentrations. Under these conditions, there was net production of formaldehyde and acetaldehyde, two important indoor air toxicants. Here, we further explore the issue of byproduct generation. Using the same UVPCO air cleaner, we conducted experiments to identify common VOCs that lead to the production of formaldehyde and acetaldehyde and to quantify their production rates. We sought to reduce the production of formaldehyde and acetaldehyde to acceptable levels by employing different chemisorbent scrubbers downstream of the UVPCO device. Additionally, we made preliminary measurements to estimate the capacity and expected lifetime of the chemisorbent media. For most experiments, the system was operated at 680-780 m{sup 3}/h (400-460 cfm). A set of experiments was conducted with common VOCs introduced into the UVPCO device individually and in mixture. Compound conversion efficiencies and the production of formaldehyde and acetaldehyde were determined by comparison of compound concentrations upstream and downstream of the reactor. There was general agreement between compound conversions efficiencies determined individually and in the mixture. This suggests that competition among compounds for active sites on the photocatalyst surface will not limit the performance of the UVPCO device when the total VOC concentration is low. A possible exception was the very volatile alcohols, for which there were some indications of competitive adsorption. The results also showed that formaldehyde was produced from many commonly encountered VOCs, while acetaldehyde was generated by specific VOCs, particularly ethanol. The implication is that formaldehyde concentrations are likely to increase when an effective UVPCO air cleaner is used in

  12. Preliminary Study of Lead-Oxide Cooled Fast Reactor with Natural Uranium as an Input Fuel with Reactor Shuffling Strategy

    NASA Astrophysics Data System (ADS)

    Mahmudah, Rida SN; Su’ud, Zaki

    2017-01-01

    A preliminary study of lead-oxide cooled fast reactor with natural uranium as an input fuel using reactor shuffling strategy has been conducted. In this study, reactor core is divided into four zone with the same volume, each zone use different uranium enrichment. The enrichment number is estimated so that in the end of reactor’s operation, we only need to add natural uranium as the fresh input fuel. This study used UN-PuN as the fuel and lead oxide as the coolant. Several parameter studies have been conducted to determine the most suitable input condition. It is confirmed in this study that with fuel : cladding : coolant ratio of 53 : 10 : 37, and uranium enrichment in the first to the fourth zone of 0%, 6.25%, 7.5% and 8%, respectively, the reactor can operate as long as 20 years of operation with terminal k-eff of 1.0004.

  13. Passive air cooling of liquid metal-cooled reactor with double vessel leak accommodation capability

    DOEpatents

    Hunsbedt, Anstein; Boardman, Charles E.

    1995-01-01

    A passive and inherent shutdown heat removal method with a backup air flow path which allows decay heat removal following a postulated double vessel leak event in a liquid metal-cooled nuclear reactor. The improved reactor design incorporates the following features: (1) isolation capability of the reactor cavity environment in the event that simultaneous leaks develop in both the reactor and containment vessels; (2) a reactor silo liner tank which insulates the concrete silo from the leaked sodium, thereby preserving the silo's structural integrity; and (3) a second, independent air cooling flow path via tubes submerged in the leaked sodium which will maintain shutdown heat removal after the normal flow path has been isolated.

  14. Passive air cooling of liquid metal-cooled reactor with double vessel leak accommodation capability

    DOEpatents

    Hunsbedt, A.; Boardman, C.E.

    1995-04-11

    A passive and inherent shutdown heat removal method with a backup air flow path which allows decay heat removal following a postulated double vessel leak event in a liquid metal-cooled nuclear reactor is disclosed. The improved reactor design incorporates the following features: (1) isolation capability of the reactor cavity environment in the event that simultaneous leaks develop in both the reactor and containment vessels; (2) a reactor silo liner tank which insulates the concrete silo from the leaked sodium, thereby preserving the silo`s structural integrity; and (3) a second, independent air cooling flow path via tubes submerged in the leaked sodium which will maintain shutdown heat removal after the normal flow path has been isolated. 5 figures.

  15. Air-bubbling, hollow-fiber reactor with cell bleeding and cross-flow filtration.

    PubMed

    Nishii, K; Sode, K; Karube, I

    1990-05-01

    Continuous asymmetric reduction of dyhydrooxoisophorone (DOIP) to 4-hydroxy-2,2,6-trimethylcyclo-hexanone (4-HTMCH) was achieved by a thermophilic bacterium Bacillus stearothermophilus NK86-0151. Three reactors were used: an air-bubbling hollow-fiber reactor with cell bleeding and cross-flow filtration, an air-lift reactor, and a CSTR with PAA immobilized cells. The maximum cell concentration of 11.1 g dry wt L(-1) was obtained in an air-bubbling hollow-fiber reactor, while in the other reactors the cell densities were between 3.5 and 4.1 g dry wt L(-1) The optimum bleed ratio was 0.1 at the dilution rate 0.3 h(-1) in the hollow-fiber reactor. The highest viable cell concentration was maintained in the dilution range of 0.4-0.7 h(-1) by a combination of proper cell bleeding and cross-flow filtration. The maximum volumetric productivity of 4-HTMCH reached 826 mg L(-1) h(-1) at the dilution rate 0.54 h(-1). This value was 4 and 2 times higher than those in the air-lift reactor and CSTR, respectively. The increasing viable cell concentration increased the volumetric productivity of 4-HTMCH. A cell free product solution was continuously obtained by cross-flow filtration.

  16. 75 FR 8246 - Approval and Promulgation of Air Quality Implementation Plans; Indiana; Volatile Organic Compound...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-24

    ..., Distillation, and Reactor Processes, filed with the Publisher of the Indiana Register on November 3, 2009, and... Chemical Manufacturing Industry Air Oxidation, Distillation, and Reactor Processes, filed with...

  17. Effect of Gadolinium Doping on the Air Oxidation of Uranium Dioxide

    SciTech Connect

    Scheele, Randall D.; Hanson, Brady D.; Cumblidge, Stephen E.; Jenson, Evan D.; Kozelisky, Anne E.; Sell, Rachel L.; MacFarlan, Paul J.; Snow, Lanee A.

    2004-12-04

    Researchers at the Pacific Northwest National Laboratory (PNNL) investigated the effects of gadolinia concentration on the air oxidization of gadolinia-doped uranium dioxide using thermogravimetry and differential scanning calorimetry to determine if such doping could improve uranium dioxide's stability as a nuclear fuel during potential accident scenarios in a nuclear reactor or during long-term disposal. We undertook this study to determine whether the resistance of the uranium dioxide to oxidation to the orthorhombic U3O8 with its attendant crystal expansion could be prevented by addition of gadolinia. Our studies found that gadolinium has little effect on the thermal initiation of the first step of the reported two-step air oxidation of UO2; however, increasing gadolinia content does stabilize the initial tetragonal or cubic product allowing significant oxidation before the second expansive step to U3O8 begins.

  18. [Experimental research on combined water and air backwashing reactor technology for biological activated carbon].

    PubMed

    Xie, Zhi-Gang; Qiu, Xue-Min; Zhao, Yan-Ling

    2012-01-01

    To proper control the backwashing process of biological activated carbon (BAC) reactor and improve the overall operation performance, the evaluative indexes such as backwashing wastewater turbidity, organic pollutants removal rate of pre and post-backwashing, and the variation of biomass and biological activity in carbon column are used to compare and analyze the effect of three different combined water and air backwashing methods on the operation of BAC reactor. The result shows that intermittent combined water and air backwashing method is most suitable to BAC reactor. The biological activaty obviously increases by 62.5% after intermittent combined water and air backwashing process. While, the biological activaty using the backwashing method of air plus water and the backwashing method of water and air compounded plus water washing increases by 55.6%, 38.5%, respectively. After backwashing 308h, the reactor recovered to its normal function after intermittent combined water and air backwashing process with the removal rate of UV254 reaching to 60.0%. The fulvic-like fluorescence peak of backwashing water are very weak, and are characterized by low-excitation wavelength tryptophan like (peak S) and high excitation wavelength of tryptophan (peak T), which are caused by the microbial debris washed down. The three-dimensional fluorescence spectra also show that microbial fragments are easy to be washed clean with intermittent combined water and air backwashing.

  19. Modeling and Experimental Studies of Mercury Oxidation and Adsorption in a Fixed-Bed Reactor

    SciTech Connect

    Buitrago, Paula A.; Morrill, Mike; Lighty, JoAnn S.; Silcox, Geoffrey D.

    2009-06-15

    This report presents experimental and modeling mercury oxidation and adsorption data. Fixed-bed and single-particle models of mercury adsorption were developed. The experimental data were obtained with two reactors: a 300-W, methane-fired, tubular, quartz-lined reactor for studying homogeneous oxidation reactions and a fixed-bed reactor, also of quartz, for studying heterogeneous reactions. The latter was attached to the exit of the former to provide realistic combustion gases. The fixed-bed reactor contained one gram of coconut-shell carbon and remained at a temperature of 150°C. All methane, air, SO2, and halogen species were introduced through the burner to produce a radical pool representative of real combustion systems. A Tekran 2537A Analyzer coupled with a wet conditioning system provided speciated mercury concentrations. At 150°C and in the absence of HCl or HBr, the mercury uptake was about 20%. The addition of 50 ppm HCl caused complete capture of all elemental and oxidized mercury species. In the absence of halogens, SO2 increased the mercury adsorption efficiency to up to 30 percent. The extent of adsorption decreased with increasing SO2 concentration when halogens were present. Increasing the HCl concentration to 100 ppm lessened the effect of SO2. The fixed-bed model incorporates Langmuir adsorption kinetics and was developed to predict adsorption of elemental mercury and the effect of multiple flue gas components. This model neglects intraparticle diffusional resistances and is only applicable to pulverized carbon sorbents. It roughly describes experimental data from the literature. The current version includes the ability to account for competitive adsorption between mercury, SO2, and NO2. The single particle model simulates in-flight sorbent capture of elemental mercury. This model was developed to include Langmuir and Freundlich isotherms, rate equations, sorbent feed rate, and

  20. Specific features of aluminum nanoparticle water and wet air oxidation

    SciTech Connect

    Lozhkomoev, Aleksandr S. Glazkova, Elena A. Svarovskaya, Natalia V. Bakina, Olga V. Kazantsev, Sergey O. Lerner, Marat I.

    2015-10-27

    The oxidation processes of the electrically exploded aluminum nanopowders in water and in wet air are examined in the paper. The morphology of the intermediate reaction products of aluminum oxidation has been studied using the transmission electron microscopy. It was shown that the aluminum nanopowder water oxidation causes the formation of the hollow spheres with mesoporous boehmite nanosheets coating. The wedge-like bayerite particles are formed during aluminum nanopowder wet air oxidation.

  1. A long life zinc oxide-titanium oxide sorbent for moving bed reactors

    SciTech Connect

    Copeland, R.; Cesario, M.; Dubovik, M.; Feinberg, D.; Windecker, B.; Yang, J.

    1996-12-31

    Coal Fired Gasifier Combined Cycles (GCCs) have both high efficiency and very low emissions. GCCs are in critical need of a method to remove the H{sub 2}S produced from the sulfur in the coal from the hot gases. There has been extensive research on hot gas clean-up systems, focused on the use of a zinc oxide based sorbent (e.g., zinc titanate). However, the previous sorbents show significant losses in sulfur capacity with cycling. TDA Research, Inc. recently increased the zinc oxide content and sulfur loadings while simultaneously improving the attrition resistance. The improved fabrication method produces long life, low cost sorbent containing zinc oxide. The authors are currently testing sorbents at conditions simulating a moving bed reactor for GCC [i.e., 20 atm, 482 C (900 F) to 538 C (1,000 F), and 1% H{sub 2}S].

  2. Degradation of paracetamol by catalytic wet air oxidation and sequential adsorption - Catalytic wet air oxidation on activated carbons.

    PubMed

    Quesada-Peñate, I; Julcour-Lebigue, C; Jáuregui-Haza, U J; Wilhelm, A M; Delmas, H

    2012-06-30

    The concern about the fate of pharmaceutical products has raised owing to the increasing contamination of rivers, lakes and groundwater. The aim of this paper is to evaluate two different processes for paracetamol removal. The catalytic wet air oxidation (CWAO) of paracetamol on activated carbon was investigated both as a water treatment technique using an autoclave reactor and as a regenerative treatment of the carbon after adsorption in a sequential fixed bed process. Three activated carbons (ACs) from different source materials were used as catalysts: two microporous basic ACs (S23 and C1) and a meso- and micro-porous acidic one (L27). During the first CWAO experiment the adsorption capacity and catalytic performance of fresh S23 and C1 were higher than those of fresh L27 despite its higher surface area. This situation changed after AC reuse, as finally L27 gave the best results after five CWAO cycles. Respirometry tests with activated sludge revealed that in the studied conditions the use of CWAO enhanced the aerobic biodegradability of the effluent. In the ADOX process L27 also showed better oxidation performances and regeneration efficiency. This different ageing was examined through AC physico-chemical properties.

  3. Air pollution, oxidative stress, and Alzheimer's disease.

    PubMed

    Moulton, Paula Valencia; Yang, Wei

    2012-01-01

    Alzheimer's disease (AD) is the most common form of dementia affecting millions of people worldwide and will continue to affect millions more with population aging on the rise. AD causality is multifactorial. Known causal factors include genetic predisposition, age, and sex. Environmental toxins such as air pollution (AP) have also been implicated in AD causation. Exposure to AP can lead to chronic oxidative stress (OS), which is involved in the pathogenesis of AD. Whereas AP plays a role in AD pathology, the epidemiological evidence for this association is limited. Given the significant prevalence of AP exposure combined with increased population aging, epidemiological evidence for this link is important to consider. In this paper, we examine the existing evidence supporting the relationship between AP, OS, and AD and provide recommendations for future research on the population level, which will provide evidence in support of public health interventions.

  4. Sulfide-oxidizing bacteria establishment in an innovative microaerobic reactor with an internal silicone membrane for sulfur recovery from wastewater.

    PubMed

    Valdés, F; Camiloti, P R; Rodriguez, R P; Delforno, T P; Carrillo-Reyes, J; Zaiat, M; Jeison, D

    2016-06-01

    A novel bioreactor, employing a silicone membrane for microaeration, was studied for partial sulfide oxidation to elemental sulfur. The objective of this study was to assess the feasibility of using an internal silicone membrane reactor (ISMR) to treat dissolved sulfide and to characterize its microbial community. The ISMR is an effective system to eliminate sulfide produced in anaerobic reactors. Sulfide removal efficiencies reached 96 % in a combined anaerobic/microaerobic reactor and significant sulfate production did not occur. The oxygen transfer was strongly influenced by air pressure and flow. Pyrosequencing analysis indicated various sulfide-oxidizing bacteria (SOB) affiliated to the species Acidithiobacillus thiooxidans, Sulfuricurvum kujiense and Pseudomonas stutzeri attached to the membrane and also indicated similarity between the biomass deposited on the membrane wall and the biomass drawn from the material support, supported the establishment of SOB in an anaerobic sludge under microaerobic conditions. Furthermore, these results showed that the reactor configuration can develop SOB under microaerobic conditions and can improve and reestablish the sulfide conversion to elemental sulfur.

  5. Use of Beryllium and Beryllium Oxide in Space Reactors

    SciTech Connect

    Snead, L. L.; Zinkle, S. J.

    2005-02-06

    Beryllium and beryllium oxide are attractive candidate materials for neutron reflector application in space reactors due to their beneficial combination of low density and high neutron moderation and reflection capabilities. Drawbacks to their use include the expense of working with toxic materials, a limited industrial infrastructure, and material properties that are challenging in the non-irradiated state and seriously degrade under neutron irradiation. As an example of neutron effects, mechanical properties degrade under relevant conditions to the point where encasement in structural alloys is necessary. Such measures are required if neutron fluence exceeds {approx}1x1024 n/m2 (E>0.1 MeV). At high temperatures (>500 deg. C for Be and >600 deg. C for BeO), irradiation-induced swelling may also limit the maximum allowable dose without additional engineering measures. Significant volumetric swelling (>5%) can occur in these materials during neutron irradiation at elevated temperatures for neutron fluences above 1x1025 n/m2. This paper will review Be and BeO fabrication considerations, and summarize the effects of neutron irradiation on material properties.

  6. Ammonia-oxidizing microbial communities in reactors with efficient nitrification at low-dissolved oxygen.

    PubMed

    Fitzgerald, Colin M; Camejo, Pamela; Oshlag, J Zachary; Noguera, Daniel R

    2015-03-01

    Ammonia-oxidizing microbial communities involved in ammonia oxidation under low dissolved oxygen (DO) conditions (<0.3 mg/L) were investigated using chemostat reactors. One lab-scale reactor (NS_LowDO) was seeded with sludge from a full-scale wastewater treatment plant (WWTP) not adapted to low-DO nitrification, while a second reactor (JP_LowDO) was seeded with sludge from a full-scale WWTP already achieving low-DO nitrifiaction. The experimental evidence from quantitative PCR, rDNA tag pyrosequencing, and fluorescence in situ hybridization (FISH) suggested that ammonia-oxidizing bacteria (AOB) in the Nitrosomonas genus were responsible for low-DO nitrification in the NS_LowDO reactor, whereas in the JP_LowDO reactor nitrification was not associated with any known ammonia-oxidizing prokaryote. Neither reactor had a significant population of ammonia-oxidizing archaea (AOA) or anaerobic ammonium oxidation (anammox) organisms. Organisms isolated from JP_LowDO were capable of autotrophic and heterotrophic ammonia utilization, albeit without stoichiometric accumulation of nitrite or nitrate. Based on the experimental evidence we propose that Pseudomonas, Xanthomonadaceae, Rhodococcus, and Sphingomonas are involved in nitrification under low-DO conditions.

  7. Ammonia-oxidizing microbial communities in reactors with efficient nitrification at low-dissolved oxygen

    PubMed Central

    Fitzgerald, Colin M.; Camejo, Pamela; Oshlag, J. Zachary; Noguera, Daniel R.

    2015-01-01

    Ammonia-oxidizing microbial communities involved in ammonia oxidation under low dissolved oxygen (DO) conditions (<0.3 mg/L) were investigated using chemostat reactors. One lab-scale reactor (NS_LowDO) was seeded with sludge from a full-scale wastewater treatment plant (WWTP) not adapted to low-DO nitrification, while a second reactor (JP_LowDO) was seeded with sludge from a full-scale WWTP already achieving low-DO nitrifiaction. The experimental evidence from quantitative PCR, rDNA tag pyrosequencing, and fluorescence in situ hybridization (FISH) suggested that ammonia-oxidizing bacteria (AOB) in the Nitrosomonas genus were responsible for low-DO nitrification in the NS_LowDO reactor, whereas in the JP_LowDO reactor nitrification was not associated with any known ammonia-oxidizing prokaryote. Neither reactor had a significant population of ammonia-oxidizing archaea (AOA) or anaerobic ammonium oxidation (anammox) organisms. Organisms isolated from JP_LowDO were capable of autotrophic and heterotrophic ammonia utilization, albeit without stoichiometric accumulation of nitrite or nitrate. Based on the experimental evidence we propose that Pseudomonas, Xanthomonadaceae, Rhodococcus, and Sphingomonas are involved in nitrification under low-DO conditions. PMID:25506762

  8. Impact of conversion to mixed-oxide fuels on reactor structural components

    SciTech Connect

    Yahr, G.T.

    1997-04-01

    The use of mixed-oxide (MOX) fuel to replace conventional uranium fuel in commercial light-water power reactors will result in an increase in the neutron flux. The impact of the higher flux on the structural integrity of reactor structural components must be evaluated. This report briefly reviews the effects of radiation on the mechanical properties of metals. Aging degradation studies and reactor operating experience provide a basis for determining the areas where conversion to MOX fuels has the potential to impact the structural integrity of reactor components.

  9. Conversion and Estrogenicity of 17β-estradiol During Photolytic/Photocatalytic Oxidation and Catalytic Wet-air Oxidation.

    PubMed

    Bistan, Mirjana; Tišler, Tatjana; Pintar, Albin

    2012-06-01

    Estrogen 17β-estradiol (E2), produced by human body and excreted into municipal wastewaters, belongs to the group of endocrine disrupting compounds that are resistant to biological degradation. The aim of this study was to assess the efficiency of E2 removal from aqueous solutions by means of catalytic wet-air oxidation (CWAO) and photolytic/photocatalytic oxidation. CWAO experiments were conducted in a trickle-bed reactor at temperatures up to 230 °C and oxygen partial pressure of 10 bar over TiO2 and Ru/TiO2 solids. Photolytic/photocatalytic oxidation was carried out in a batch slurry reactor employing a TiO2 P-25 (Degussa) catalyst under visible or UV light. HPLC analysis and yeast estrogen screen assay were used to evaluate the removal of E2 and estrogenicity of treated samples. The latter was completely removed during photolytic/photocatalytic oxidation under UV (365 nm) light and photocatalytic oxidation under visible light. In CWAO experiments, complete removal of both E2 and estrogenicity from the feed solution were noticed in the presence of TiO2 and Ru/TiO2 catalysts.

  10. AIR QUALITY CRITERIA FOR OZONE AND RELATED PHOTOCHEMICAL OXIDANTS

    EPA Science Inventory

    The Clean Air Act requires periodic (5-year) update revision of criteria and National Ambient Air Quality Standards (NAAQS) for Ozone. The previous revision of the criteria contained in the Air Quality Criteria Document (AQCD) for Ozone and Related Photochemical Oxidants was co...

  11. Air-lift reactor system for the treatment of waste-gas-containing monochlorobenzene.

    PubMed

    Joshi, Pradnya R; Deshmukh, Sharvari C; Morone, Amruta P; Kanade, Gajanan; Pandey, R A

    2013-01-01

    An air-lift bioreactor (ALR) system, applied for the treatment of waste-gas-containing monochlorobenzene (MCB) was seeded with pure culture of Acinetobacter calcoaceticus, isolated from soil as a starter seed. It was found that MCB was biologically converted to chloride as chloride was mineralized in the ALR. After the built up of the biomass in the ALR, the reactor parameters which have major influence on the removal efficiency and elimination capacity were studied using response surface methodology. The data generated by running the reactor for 150 days at varying conditions were fed to the model with a target to obtain the removal efficiency above 95% and the elimination capacity greater than 60%. The data analysis indicated that inlet loading was the major parameter affecting the elimination capacity and removal efficiency of >95%. The reactor when operated at optimized conditions resulted in enhanced performance of the reactor.

  12. A Theoretical Investigation of Oxidation Efficiency of a Volatile Removal Assembly Reactor Under Microgravity Conditions

    NASA Technical Reports Server (NTRS)

    Guo, Boyun

    2005-01-01

    Volatile Removal Assembly (VRA) is a subsystem of the Closed Environment Life Support System (CELSS) installed in the International Space Station. It is used for removing contaminants (volatile organics) in the wastewater produced by the space station crews. The major contaminants are formic acid, ethanol, and propylene glycol. The VRA contains a slim packbed reactor (3.5 cm diameter and four 28 cm long tubes in series) to perform catalyst oxidation of wastewater at elevated pressure and temperature under microgravity conditions. In the reactor, the contaminants are burned with oxygen gas (O2) to form water and carbon dioxide (CO2) that dissolves in the water stream. Optimal design of the reactor requires a thorough understanding about how the reactor performs under microgravity conditions. The objective of this study was to develop a mathematical model to interpret experimental data obtained from normal and microgravity conditions, and to predict the performance of VRA reactor under microgravity conditions. Catalyst oxidation kinetics and the total oxygen-water contact area control the efficiency of catalyst oxidation for mass transfer, which depends on oxygen gas holdup and distribution in the reactor. The process involves bubbly flow in porous media with chemical reactions in microgravity environment. This presents a unique problem in fluid dynamics that has not been studied. Guo et al. (2004) developed a mathematical model that predicts oxygen holdup in the VRA reactor. No mathematical model has been found in the literature that can be used to predict the efficiency of catalyst oxidation under microgravity conditions.

  13. Modeling the radical chemistry in an oxidation flow reactor: radical formation and recycling, sensitivities, and the OH exposure estimation equation.

    PubMed

    Li, Rui; Palm, Brett B; Ortega, Amber M; Hlywiak, James; Hu, Weiwei; Peng, Zhe; Day, Douglas A; Knote, Christoph; Brune, William H; de Gouw, Joost A; Jimenez, Jose L

    2015-05-14

    Oxidation flow reactors (OFRs) containing low-pressure mercury (Hg) lamps that emit UV light at both 185 and 254 nm ("OFR185") to generate OH radicals and O3 are used in many areas of atmospheric science and in pollution control devices. The widely used potential aerosol mass (PAM) OFR was designed for studies on the formation and oxidation of secondary organic aerosols (SOA), allowing for a wide range of oxidant exposures and short experiment duration with reduced wall loss effects. Although fundamental photochemical and kinetic data applicable to these reactors are available, the radical chemistry and its sensitivities have not been modeled in detail before; thus, experimental verification of our understanding of this chemistry has been very limited. To better understand the chemistry in the OFR185, a model has been developed to simulate the formation, recycling, and destruction of radicals and to allow the quantification of OH exposure (OHexp) in the reactor and its sensitivities. The model outputs of OHexp were evaluated against laboratory calibration experiments by estimating OHexp from trace gas removal and were shown to agree within a factor of 2. A sensitivity study was performed to characterize the dependence of the OHexp, HO2/OH ratio, and O3 and H2O2 output concentrations on reactor parameters. OHexp is strongly affected by the UV photon flux, absolute humidity, reactor residence time, and the OH reactivity (OHR) of the sampled air, and more weakly by pressure and temperature. OHexp can be strongly suppressed by high OHR, especially under low UV light conditions. A OHexp estimation equation as a function of easily measurable quantities was shown to reproduce model results within 10% (average absolute value of the relative errors) over the whole operating range of the reactor. OHexp from the estimation equation was compared with measurements in several field campaigns and shows agreement within a factor of 3. The improved understanding of the OFR185 and

  14. PBF Reactor Building (PER620) basement. Camera facing north. Cooling air ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Reactor Building (PER-620) basement. Camera facing north. Cooling air compressor for control rods; inner cooler and after cooler; associated piping. Photographer: John Capek. Date: August 21, 1970. INEEL negative no. 70-3493 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  15. Air pollution and circulating biomarkers of oxidative stress

    PubMed Central

    Staimer, Norbert; Vaziri, Nosratola D.

    2013-01-01

    Chemical components of air pollutant exposures that induce oxidative stress and subsequent inflammation may be partly responsible for associations of cardiovascular morbidity and mortality with airborne particulate matter and combustion-related pollutant gasses. However, epidemiologic evidence regarding this is limited. An exposure-assessment approach is to measure the oxidative potential of particle mixtures because it is likely that hundreds of correlated chemicals are involved in overall effects of air pollution on health. Oxidative potential likely depends on particle composition and size distribution, especially ultrafine particle concentration, and on transition metals and certain semivolatile and volatile organic chemicals. For health effects, measuring systemic oxidative stress in the blood is one feasible approach, but there is no universal biomarker of oxidative stress and there are many potential target molecules (lipids, proteins, DNA, nitric oxide, etc.), which may be more or less suitable for specific study goals. Concurrent with the measurement of oxidative stress, it is important to measure gene and/or protein expression of endogenous antioxidant enzymes because they can modify relations between oxidative stress biomarkers and air pollutants. Conversely, the expression and activities of these enzymes are modified by oxidative stress. This interplay will likely determine the observed effects of air pollutants on systemic inflammatory and thrombotic mediators and related clinical outcomes. Studies are needed to assess the reliability and validity of oxidative stress biomarkers, evaluate differences in associations between oxidative stress biomarkers and various pollutant measurements (mass, chemical components, and oxidative potential), and evaluate impacts of antioxidant responses on these relations. PMID:23626660

  16. Oxide modified air electrode surface for high temperature electrochemical cells

    DOEpatents

    Singh, Prabhakar; Ruka, Roswell J.

    1992-01-01

    An electrochemical cell is made having a porous cermet electrode (16) and a porous lanthanum manganite electrode (14), with solid oxide electrolyte (15) between them, where the lanthanum manganite surface next to the electrolyte contains a thin discontinuous layer of high surface area cerium oxide and/or praseodymium oxide, preferably as discrete particles (30) in contact with the air electrode and electrolyte.

  17. Air Monitoring of Emissions from the Fukushima Daiichi Reactor

    SciTech Connect

    McNaughton, Michael; Allen, Shannon P.; Archuleta, Debra C.; Brock, Burgandy; Coronado, Melissa A.; Dewart, Jean M.; Eisele, William F. Jr.; Fuehne, David P.; Gadd, Milan S.; Green, Andrew A.; Lujan, Joan J.; MacDonell, Carolyn; Whicker, Jeffrey J.

    2012-06-12

    In response to the disasters in Japan on March 11, 2011, and the subsequent emissions from Fukushima-Daiichi, we monitored the air near Los Alamos using four air-monitoring systems: the standard AIRNET samplers, the standard rad-NESHAP samplers, the NEWNET system, and high-volume air samplers. Each of these systems has advantages and disadvantages. In combination, they provide a comprehensive set of measurements of airborne radionuclides near Los Alamos during the weeks following March 11. We report air-monitoring measurements of the fission products released from the Fukushima-Daiichi nuclear-power-plant accident in 2011. Clear gamma-spectrometry peaks were observed from Cs-134, Cs-136, Cs-137, I-131, I132, Te-132, and Te-129m. These data, together with measurements of other radionuclides, are adequate for an assessment and assure us that radionuclides from Fukushima Daiichi did not present a threat to human health at or near Los Alamos. The data demonstrate the capabilities of the Los Alamos air-monitoring systems.

  18. Controlled CO preferential oxidation

    DOEpatents

    Meltser, M.A.; Hoch, M.M.

    1997-06-10

    Method is described for controlling the supply of air to a PROX (PReferential OXidation for CO cleanup) reactor for the preferential oxidation in the presence of hydrogen wherein the concentration of the hydrogen entering and exiting the PROX reactor is monitored, the difference there between correlated to the amount of air needed to minimize such difference, and based thereon the air supply to the PROX reactor adjusted to provide such amount and minimize such difference. 2 figs.

  19. Catalytic wet air oxidation of aniline with nanocasted Mn-Ce-oxide catalyst.

    PubMed

    Levi, R; Milman, M; Landau, M V; Brenner, A; Herskowitz, M

    2008-07-15

    The catalytic wet air oxidation of aqueous solution containing 1000 ppm aniline was conducted in a trickle-bed reactor packed with a novel nanocasted Mn-Ce-oxide catalyst (surface area of 300 m2/g) prepared using SBA-15 silica as a hard template. A range of liquid hourly space velocities (5-20 h(-1)) and temperatures (110-140 degrees C) at 10 bar of oxygen were tested. The experiments were conducted to provide the intrinsic performance of the catalysts. Complete aniline conversion, 90% TOC conversion, and 80% nitrogen mineralization were achieved at 140 degrees C and 5 h(-1). Blank experiments yielded relatively low homogeneous aniline (<35%) and negligible TOC conversions. Fast deactivation of the catalysts was experienced due to leaching caused by complexation with aniline. Acidification of the solution with HCI (molar HCI to aniline ratio of 1.2) was necessary to avoid colloidization and leaching of the nanoparticulate catalyst components. The catalyst displayed stable performance for over 200 h on stream.

  20. Enhanced xylene removal by photocatalytic oxidation using fiber-illuminated honeycomb reactor at ppb level.

    PubMed

    Wu, Yi-Ting; Yu, Yi-Hui; Nguyen, Van-Huy; Lu, Kung-Te; Wu, Jeffrey Chi-Sheng; Chang, Luh-Maan; Kuo, Chi-Wen

    2013-11-15

    The removal of volatile organic compounds (VOCs) at ppb level is one of the most critical challenges in clean rooms for the semiconductor industry. Photocatalytic oxidation is an innovative and promising technology for ppb-level VOCs degradation. We have designed a fiber-illuminated honeycomb reactor (FIHR) in which the removal efficiency of m-xylene is significantly enhanced to 96.5% as compared to 22.0% for UV irradiation only. The results indicate that photocatalysts not only play the role to substantially oxidize m-xylene, but also alter the chemical properties of xylene under UV illumination. Using the FIHR with Mn-TiO2 photocatalyst not only increased the m-xylene removal efficiency, but also increased the CO2 selectivity. Interestingly, Mn-TiO2 in FIHR also showed a very good reusability, 93% removal efficiency was still achieved in 72-h in reaction. Thus, the FIHR gave very high removal efficiency for xylene at ppb level under room temperature. The FIHR has great potential application in the clean room for the air purification system in the future.

  1. Fast Reactor Alternative Studies: Effects of Transuranic Groupings on Metal and Oxide Sodium Fast Reactor Designs

    SciTech Connect

    R. Ferrer; M. Asgari; S. Bays; B. Forget

    2007-09-01

    A 1000 MWth commercial-scale Sodium Fast Reactor (SFR) design with a conversion ratio (CR) of 0.50 was selected in this study to perform perturbations on the external feed coming from Light Water Reactor Spent Nuclear Fuel (LWR SNF) and separation groupings in the reprocessing scheme. A secondary SFR design with a higher conversion ratio (CR=0.75) was also analyzed as a possible alternative, although no perturbations were applied to this model.

  2. Modeling of an annular photocatalytic reactor for water purification: oxidation of pesticides.

    PubMed

    Puma, Gianluca L I; Khor, Jen Nee; Brucato, Alberto

    2004-07-01

    Photocatalytic oxidation (PCO) over titanium dioxide (TiO2) is a "green" sustainable process for the treatment and purification of water and wastewater. However, the application of PCO for wastewater treatment on an industrial scale is currently hindered by a lack of simple mathematical models that can be readily applied to reactor design. Current models are either too simplistic or too rigorous to be useful in photocatalytic reactor design, scale-up, and optimization. In this paper a simple mathematical model is presented for slurry, annular, photocatalytic reactors that still retains the essential elements of a rigorous approach while providing simple solutions. The model extends the applicability of the thin-film model of photocatalytic reactors previously presented to include the case of geometrically thick photoreactors (i.e., those reactors in which the thickness of the annular zone is significant as compared to the outer radius of the reactor). The model uses a novel six-flux absorption-scattering model to represent the radiation field in the reaction space, which assumes that scattered photons follow the route of the six directions of the Cartesian coordinates. The model was successfully validated with experimental results from the photocatalytic oxidation of the pesticide isoproturon in an experimental reactor. The mathematical model presented may be used as a tool for the design, scale-up, and optimization of annular photocatalytic reactors for water treatment and purification.

  3. Wet-air oxidation cleans up black wastewater

    SciTech Connect

    Not Available

    1993-09-01

    Sterling Organics produces the analgesic paracetamol (acetaminophen) at its Dudley, England, plant. The wastewater from the batch process contains intermediates such as para-aminophenol (PAP) and byproducts such as thiosulfates, sulfites and sulfides. To stay ahead of increasingly strict environmental legislation, Sterling Organics installed a wet-air oxidation system at the Dudley facility in August 1992. The system is made by Zimpro Environmental Inc. (Rothschild, Wis.). Zimpro's wet-air oxidation system finds a way around the limitations of purely chemical or physical processes. In the process, compressed air at elevated temperature and pressure oxidizes the process intermediates and byproducts and removes the color from the wastewater.

  4. A Comparison of Photocatalytic Oxidation Reactor Performance for Spacecraft Cabin Trace Contaminant Control Applications

    NASA Technical Reports Server (NTRS)

    Perry, Jay L.; Frederick, Kenneth R.; Scott, Joseph P.; Reinermann, Dana N.

    2011-01-01

    Photocatalytic oxidation (PCO) is a maturing process technology that shows potential for spacecraft life support system application. Incorporating PCO into a spacecraft cabin atmosphere revitalization system requires an understanding of basic performance, particularly with regard to partial oxidation product production. Four PCO reactor design concepts have been evaluated for their effectiveness for mineralizing key trace volatile organic com-pounds (VOC) typically observed in crewed spacecraft cabin atmospheres. Mineralization efficiency and selectivity for partial oxidation products are compared for the reactor design concepts. The role of PCO in a spacecraft s life support system architecture is discussed.

  5. In-Reactor Oxidation of Zircaloy-4 Under Low Water Vapor Pressures

    SciTech Connect

    Luscher, Walter G.; Senor, David J.; Clayton, Kevin; Longhurst, Glen

    2015-01-01

    Complementary in- and ex-reactor oxidation tests have been performed to evaluate the oxidation and hydrogen absorption performance of Zircaloy-4 (Zr-4) under relatively low partial pressures (300 and 1000 Pa) of water vapor at specified test temperatures (330° and 370°C). Data from these tests will be used to support fabrication of components intended for isotope-producing targets and provide information regarding the temperature and pressure dependence of oxidation and hydrogen absorption of Zr-4 over the specified range of test conditions. Comparisons between in- and ex- reactor test results were performed to evaluate the influence of irradiation.

  6. In-reactor oxidation of zircaloy-4 under low water vapor pressures

    SciTech Connect

    Luscher, Walter G.; Senor, David J.; Clayton, Kevin K.; Longhurst, Glen R.

    2015-01-01

    Complementary in- and ex-reactor oxidation tests have been performed to evaluate the oxidation and hydrogen absorption performance of Zircaloy-4 (Zr-4) under relatively low partial pressures (300 and 1000 Pa) of water vapor at specified test temperatures (330 and 370 ºC). Data from these tests will be used to support the fabrication of components intended for isotope-producing targets and provide information regarding the temperature and pressure dependence of oxidation and hydrogen absorption of Zr- 4 over the specified range of test conditions. Comparisons between in- and ex-reactor test results were performed to evaluate the influence of irradiation.

  7. Operation of Fusion Reactors in One Atmosphere of Air Instead of Vacuum Systems

    NASA Astrophysics Data System (ADS)

    Roth, J. Reece

    2009-07-01

    Engineering design studies of both magnetic and inertial fusion power plants have assumed that the plasma will undergo fusion reactions in a vacuum environment. Operation under vacuum requires an expensive additional major system for the reactor-a vacuum vessel with vacuum pumping, and raises the possibility of sudden unplanned outages if the vacuum containment is breached. It would be desirable in many respects if fusion reactors could be made to operate at one atmosphere with air surrounding the plasma, thus eliminating the requirement of a pressure vessel and vacuum pumping. This would have obvious economic, reliability, and engineering advantages for currently envisaged power plant reactors; it would make possible forms of reactor control not possible under vacuum conditions (i.e. adiabatic compression of the fusion plasma by increasing the pressure of surrounding gas); it would allow reactors used as aircraft engines to operate as turbojets or ramjets in the atmosphere, and it would allow reactors used as fusion rockets to take off from the surface of the earth instead of low earth orbit.

  8. Performance Characterization of a Prototype Ultra-Short Channel Monolith Catalytic Reactor for Air Quality Control Applications

    NASA Technical Reports Server (NTRS)

    Perry, J. L.; Tomes, K. M.; Roychoudhury, S.; Tatara, J. D.

    2005-01-01

    Contaminated air and process gases, whether in a crewed spacecraft cabin atmosphere, the working volume of a microgravity science or ground-based laboratory experiment facility, or the exhaust from an automobile, are pervasive problems that ultimately effect human health, performance, and well-being. The need for highly-effective, economical decontamination processes spans a wide range of terrestrial and space flight applications. Adsorption processes are used widely for process gas decontamination. Most industrial packed bed adsorption processes use activated carbon because it is cheap and highly effective. Once saturated, however, the adsorbent is a concentrated source of contaminants. Industrial applications either dump or regenerate the activated carbon. Regeneration may be accomplished in-situ or at an off-site location. In either case, concentrated contaminated waste streams must be handled appropriately to minimize environmental impact. As economic and regulatory forces drive toward minimizing waste and environmental impact, thermal catalytic oxidation is becoming more attractive. Through novel reactor and catalyst design, more complete contaminant destruction and greater resistance to poisoning can achieved leading to less waste handling, process down-time, and maintenance. Performance of a prototype thermal catalytic reactor, based on ultra-short channel monolith (USCM) catalyst substrate design, under a variety of process flow and contaminant loading conditions is discussed. The experimental results are evaluated against present and future air quality control and process gas purification processes used on board crewed spacecraft.

  9. RVACS/RACS (reactor vessel auxiliary cooling system/reactor air cooling system) shutdown heat removal in a modular sized LMR (liquid metal reactor)

    SciTech Connect

    Dunn, F.E.; Wigeland, R.A.; Lo, R.K.

    1988-01-01

    Shutdown heat removal by a RVACS for an unprotected loss of flow case in a modular sized LMR has been analyzed with the SASSYS-1 LMR systems analysis code. For this case it was assumed that all power was lost to the primary and intermediate sodium pumps, and feedwater flow to the steam generators was lost. The control rods failed to scram, but reactivity feedback shut down the power to decay heat levels. The only heat removal was by sodium natural circulation from the core to the vessel wall and by cooling of the vessel wall by radiation and air natural circulation in the Reactor Air Cooling System. The case was run until the system temperatures peaked when the decay heat power level dropped below the heat removal rate.

  10. Computational Fluid Dynamics Analyses on Very High Temperature Reactor Air Ingress

    SciTech Connect

    Chang H Oh; Eung S. Kim; Richard Schultz; David Petti; Hyung S. Kang

    2009-07-01

    A preliminary computational fluid dynamics (CFD) analysis was performed to understand density-gradient-induced stratified flow in a Very High Temperature Reactor (VHTR) air-ingress accident. Various parameters were taken into consideration, including turbulence model, core temperature, initial air mole-fraction, and flow resistance in the core. The gas turbine modular helium reactor (GT-MHR) 600 MWt was selected as the reference reactor and it was simplified to be 2-D geometry in modeling. The core and the lower plenum were assumed to be porous bodies. Following the preliminary CFD results, the analysis of the air-ingress accident has been performed by two different codes: GAMMA code (system analysis code, Oh et al. 2006) and FLUENT CFD code (Fluent 2007). Eventually, the analysis results showed that the actual onset time of natural convection (~160 sec) would be significantly earlier than the previous predictions (~150 hours) calculated based on the molecular diffusion air-ingress mechanism. This leads to the conclusion that the consequences of this accident will be much more serious than previously expected.

  11. Mechanism of selective methanol oxidation over vanadium oxide-titanium oxide catalysts: a FT-IT and flow reactor study

    SciTech Connect

    Busca, G.; Elmi, A.S.; Forzatti, P.

    1987-09-24

    The mechanism of the selective oxidation of methanol on two V-Ti oxide catalyst samples, prepared by impregnation and coprecipitation techniques, respectively is investigated. The interaction of methanol and its oxidation products (i.e., formaldehyde, dimethoxymethane, formic acid, and methyl formate) is studied by FR-IR spectroscopy and compares with the results of flow reactor measurements performed at different temperatures, contact times, and methanol/oxygen molar feed ratios. The data are interpreted on the basis of a reaction mechanism which involved the following steps: (i) condensation of methanol with surface VOH groups; (ii) H abstraction from methoxy groups leading to coordinated formaldehyde; (iii) formation of dioxymethylene species by interaction of adsorbed formaldehyde with nucelophilic sites; (iv) reaction of dioxymethylene species with methanol to give dimethoxymethane; (v) successive oxidation of dioxymethylene groups to formate ions; (vi) reaction of these ions either with methanol to produce methyl formate or with water to give formic acid; (vii) decomposition of formate species to produce carbon monoxide; (viii) parallel oxidation of methanol to carbon dioxide. The behaviors of the surface species are compared with those monitored on other systems and the catalyst requirements for the title reaction are discussed.

  12. Air Quality Criteria for Sulfur Oxides.

    ERIC Educational Resources Information Center

    National Air Pollution Control Administration (DHEW), Washington, DC.

    Included is a literature review which comprehensively discusses knowledge of the sulfur oxides commonly found in the atmosphere. The subject content is represented by the 10 chapter titles: Physical and Chemical Properties and the Atmospheric Reactions of the Oxides of Sulfur; Sources and Methods of Measurements of Sulfur Oxides in the Atmosphere;…

  13. A comparison of air and hydrogen peroxide oxygenated microbial fuel cell reactors.

    PubMed

    Tartakovsky, B; Guiot, S R

    2006-01-01

    In this study, a two-compartment continuous flow microbial fuel cell (MFC) reactor was used to compare the efficiencies of cathode oxygenation by air and by hydrogen peroxide. The MFC reactor had neither a proton-selective membrane nor an electron transfer mediator. At startup, the cathodic compartment was continuously aerated and the anodic compartment was fed with a glucose solution. An increase of electrical power generation from 0.008 to 7.2 mW m(-2) of anode surface with a steady-state potential of 215-225 mV was observed within a period of 12 days. The performance of the air-oxygenated MFC reactor progressively declined over time because of biofilm proliferation in the cathodic compartment. Oxygenation of the cathodic compartment using 300 mL d(-1) of 0.3% hydrogen peroxide solution resulted in a power density of up to 22 mW m(-2) (68.2 mA m(-2)) of anode surface at a potential of 340-350 mV. The use of H2O2 for oxygenation was found to improve the long-term stability of the MFC reactor.

  14. Research Reactor Preparations for the Air Shipment of Highly Enriched Uranium from Romania

    SciTech Connect

    K. J. Allen; I. Bolshinsky; L. L. Biro; M. E. Budu; N. V. Zamfir; M. Dragusin; C. Paunoiu; M. Ciocanescu

    2010-03-01

    In June 2009 two air shipments transported both unirradiated (fresh) and irradiated (spent) Russian-origin highly enriched uranium (HEU) nuclear fuel from two research reactors in Romania to the Russian Federation for conversion to low enriched uranium. The Institute for Nuclear Research at Pitesti (SCN Pitesti) shipped 30.1 kg of HEU fresh fuel pellets to Dimitrovgrad, Russia and the Horia Hulubei National Institute of Physics and Nuclear Engineering (IFIN-HH) shipped 23.7 kilograms of HEU spent fuel assemblies from the VVR S research reactor at Magurele, Romania, to Chelyabinsk, Russia. Both HEU shipments were coordinated by the Russian Research Reactor Fuel Return Program (RRRFR) as part of the U.S. Department of Energy Global Threat Reduction Initiative (GTRI), were managed in Romania by the National Commission for Nuclear Activities Control (CNCAN), and were conducted in cooperation with the Russian Federation State Corporation Rosatom and the International Atomic Energy Agency. Both shipments were transported by truck to and from respective commercial airports in Romania and the Russian Federation and stored at secure nuclear facilities in Russia until the material is converted into low enriched uranium. These shipments resulted in Romania becoming the 3rd country under the RRRFR program and the 14th country under the GTRI program to remove all HEU. This paper describes the research reactor preparations and license approvals that were necessary to safely and securely complete these air shipments of nuclear fuel.

  15. Challenges in polyoxometalate-mediated aerobic oxidation catalysis: catalyst development meets reactor design.

    PubMed

    Lechner, Manuel; Güttel, Robert; Streb, Carsten

    2016-11-14

    Selective catalytic oxidation is one of the most widely used chemical processes. Ideally, highly active and selective catalysts are used in combination with molecular oxygen as oxidant, leading to clean, environmentally friendly process conditions. For homogeneous oxidation catalysis, molecular metal oxide anions, so-called polyoxometalates (POMs) are ideal prototypes which combine high reactivity and stability with chemical tunability on the molecular level. Typically, POM-mediated aerobic oxidations are biphasic, using gaseous O2 and liquid reaction mixtures. Therefore, the overall efficiency of the reaction is not only dependent on the chemical components, but requires chemical engineering insight to design reactors with optimized productivity. This Perspective shows that POM-mediated aerobic liquid-phase oxidations are ideal reactions to be carried out in microstructured flow reactors as they enable facile mass and energy transfer, provide large gas-liquid interfaces and can be easily upscaled. Recent advances in POM-mediated aerobic catalytic oxidations are therefore summarized with a focus on technological importance and mechanistic insight. The principles of reactor design are discussed from a chemical engineering point of view with a focus on homogeneous oxidation catalysis using O2 in microfluidic systems. Further, current limitations to catalytic activity are identified and future directions based on combined chemistry and chemical engineering approaches are discussed to show that this approach could lead to sustainable production methods in industrial chemistry based on alternative energy sources and chemical feedstocks.

  16. Real-Time Secondary Aerosol Formation Measurements using a Photooxidation Reactor (PAM) and AMS in Urban Air and Biomass Smoke

    NASA Astrophysics Data System (ADS)

    Ortega, A. M.; Cubison, M.; Hayes, P. L.; Brune, W. H.; Hu, W.; Flynn, J. H.; Grossberg, N.; Lefer, B. L.; Alvarez, S. L.; Rappenglueck, B.; Bon, D.; Graus, M.; Warneke, C.; Gilman, J. B.; Kuster, W. C.; De Gouw, J. A.; Sullivan, A. P.; Jimenez, J. L.

    2011-12-01

    Recent field studies reveal large formation of secondary organic aerosol (SOA) under urban polluted ambient conditions, while SOA formation in biomass burning smoke appears to be variable but sometimes substantial. To study this formation in real-time, a Potential Aerosol Mass (PAM) photooxidation reactor was deployed with submicron aerosol size and chemical composition measurements during two studies: FLAME-3, a biomass-burning study at USDA Fire Sciences Laboratory in Missoula in 2009, MT and CalNex-LA in Pasadena, CA in 2010. A high-resolution aerosol mass spectrometer (HR-AMS) and a scanning mobility particle sizer (SMPS) alternated sampling unprocessed and PAM-processed aerosol. The PAM reactor produces OH concentrations up to 4 orders of magnitude higher than in ambient air, achieving equivalent aging of ~2 weeks in 5 minutes of processing. The OH intensity was also scanned every 20 min. in both field studies. Results show the value of PAM-AMS as a tool for in-situ evaluation of changes in OA concentration and composition due to SOA formation and POA oxidation. In FLAME-3, net SOA formation was variable among smokes from different biomasses; however, OA oxidation was always observed. The average SOA enhancement factor was 1.7 +/- 0.5 of the initial POA. Reactive VOCs such as toluene, monoterpenes, and acetaldehyde, as measured from a PIT-MS, decreased with increased PAM processing; however, formic acid, acetone, and some unidentified OVOCs increased after significant exposure to high oxidant levels suggesting multigenerational chemistry. Results from CalNex-LA show enhancement of SOA and inorganic aerosol from gas-phase precursors. This enhanced OA mass increase from PAM processing is maximum at night and correlates with trimethylbenzene concentrations, which indicates the dominance of short-lived SOA precursors in the LA Basin. A traditional SOA model with mostly aromatic precursors underpredicts the amount of SOA formed by about an order-of-magnitude, which

  17. The burnup dependence of light water reactor spent fuel oxidation

    SciTech Connect

    Hanson, B.D.

    1998-07-01

    Over the temperature range of interest for dry storage or for placement of spent fuel in a permanent repository under the conditions now being considered, UO{sub 2} is thermodynamically unstable with respect to oxidation to higher oxides. The multiple valence states of uranium allow for the accommodation of interstitial oxygen atoms in the fuel matrix. A variety of stoichiometric and nonstoichiometric phases is therefore possible as the fuel oxidizers from UO{sub 2} to higher oxides. The oxidation of UO{sub 2} has been studied extensively for over 40 years. It has been shown that spent fuel and unirradiated UO{sub 2} oxidize via different mechanisms and at different rates. The oxidation of LWR spent fuel from UO{sub 2} to UO{sub 2.4} was studied previously and is reasonably well understood. The study presented here was initiated to determine the mechanism and rate of oxidation from UO{sub 2.4} to higher oxides. During the early stages of this work, a large variability in the oxidation behavior of samples oxidized under nearly identical conditions was found. Based on previous work on the effect of dopants on UO{sub 2} oxidation and this initial variability, it was hypothesized that the substitution of fission product and actinide impurities for uranium atoms in the spent fuel matrix was the cause of the variable oxidation behavior. Since the impurity concentration is roughly proportional to the burnup of a specimen, the oxidation behavior of spent fuel was expected to be a function of both temperature and burnup. This report (1) summarizes the previous oxidation work for both unirradiated UO{sub 2} and spent fuel (Section 2.2) and presents the theoretical basis for the burnup (i.e., impurity concentration) dependence of the rate of oxidation (Sections 2.3, 2.4, and 2.5), (2) describes the experimental approach (Section 3) and results (Section 4) for the current oxidation tests on spent fuel, and (3) establishes a simple model to determine the activation energies

  18. The Oxides of Nitrogen in Air Pollution.

    ERIC Educational Resources Information Center

    California State Air Resources Board, Sacramento.

    Research on the health effects of oxides of nitrogen and on the role of oxides of nitrogen in producing photochemical smog effects is presented in this report. Prepared by the California State Department of Public Health at the request of the State Legislature, it gives a comprehensive review of available information, as well as the need for air…

  19. REACTOR

    DOEpatents

    Szilard, L.

    1963-09-10

    A breeder reactor is described, including a mass of fissionable material that is less than critical with respect to unmoderated neutrons and greater than critical with respect to neutrons of average energies substantially greater than thermal, a coolant selected from sodium or sodium--potassium alloys, a control liquid selected from lead or lead--bismuth alloys, and means for varying the quantity of control liquid in the reactor. (AEC)

  20. AIR POLLUTION, OXIDATIVE STRESS AND NEUROTOXICITY.

    EPA Science Inventory

    Increased incidents of classic and variant forms of neurodegenerative diseases suggest that environmental chemicals and susceptibility factors (e.g., genetics, diseased states, obesity, etc.) may be contributory. Particulate matter (PM) is a type of air pollution that is associat...

  1. Energy-efficient wastewater treatment via the air-based, hybrid membrane biofilm reactor (hybrid MfBR).

    PubMed

    Aybar, M; Pizarro, G; Boltz, J P; Downing, L; Nerenberg, R

    2014-01-01

    We used modeling to predict the energy and cost savings associated with the air-based, hybrid membrane-biofilm reactor (hybrid MfBR). This process is obtained by replacing fine-bubble diffusers in conventional activated sludge with air-supplying, hollow-fiber membrane modules. Evaluated processes included removal of chemical oxygen demand (COD), combined COD and total nitrogen (TN) removal, and hybrid growth (biofilm and suspended). Target concentrations of COD and TN were based on high-stringency water reuse scenarios. Results showed reductions in power requirements as high as 86%. The decrease mainly resulted from the dramatically lower air flows for the MBfR, resulting from its higher oxygen-transfer efficiencies. When the MBfR was used for COD and TN removal, savings up to US$200/1,000 m(3) of treated water were predicted. Cost savings were highly sensitive to the costs of the membrane modules and electrical power. The costs were also very sensitive to membrane oxidation flux for ammonia, and the membrane life. These results suggest the hybrid MBfR may provide significant savings in energy and costs. Further research on the identified key parameters can help confirm these modeling predictions and facilitate scale-up.

  2. FINAL REPORT on Experimental Validation of Stratified Flow Phenomena, Graphite Oxidation, and Mitigation Strategies of Air Ingress Accidents

    SciTech Connect

    Chang H. Oh; Eung S. Kim; Hee C. NO; Nam Z. Cho

    2011-01-01

    The U.S. Department of Energy is performing research and development that focuses on key phenomena that are important during challenging scenarios that may occur in the Next Generation Nuclear Plant (NGNP)/Generation IV very high temperature reactor (VHTR). Phenomena Identification and Ranking studies to date have identified the air ingress event, following on the heels of a VHTR depressurization, as very important. Consequently, the development of advanced air ingress-related models and verification & validation are of very high priority for the NGNP Project. Following a loss of coolant and system depressurization incident, air ingress will occur through the break, leading to oxidation of the in-core graphite structure and fuel. This study indicates that depending on the location and the size of the pipe break, the air ingress phenomena are different. In an effort to estimate the proper safety margin, experimental data and tools, including accurate multidimensional thermal-hydraulic and reactor physics models, a burn-off model, and a fracture model are required. It will also require effective strategies to mitigate the effects of oxidation, eventually. This 3-year project (FY 2008–FY 2010) is focused on various issues related to the VHTR air-ingress accident, including (a) analytical and experimental study of air ingress caused by density-driven, stratified, countercurrent flow, (b) advanced graphite oxidation experiments, (c) experimental study of burn-off in the core bottom structures, (d) structural tests of the oxidized core bottom structures, (e) implementation of advanced models developed during the previous tasks into the GAMMA code, (f) full air ingress and oxidation mitigation analyses, (g) development of core neutronic models, (h) coupling of the core neutronic and thermal hydraulic models, and (i) verification and validation of the coupled models.

  3. NUCLEAR REACTOR

    DOEpatents

    Christy, R.F.

    1958-07-15

    A nuclear reactor of the homogeneous liquid fuel type is described wherein the fissionable isotope is suspended or dissolved in a liquid moderator such as water. The reactor core is comprised essentially of a spherical vessel for containing the reactive composition surrounded by a reflector, preferably of beryllium oxide. The reactive composition may be an ordinary water solution of a soluble salt of uranium, the quantity of fissionable isotope in solution being sufficient to provide a critical mass in the vessel. The liquid fuel is stored in a tank of non-crtttcal geometry below the reactor vessel and outside of the reflector and is passed from the tank to the vessel through a pipe connecting the two by air pressure means. Neutron absorbing control and safety rods are operated within slots in the reflector adjacent to the vessel.

  4. Fe(II) oxidation during acid mine drainage neutralization in a pilot-scale Sequencing Batch Reactor.

    PubMed

    Zvimba, J N; Mathye, M; Vadapalli, V R K; Swanepoel, H; Bologo, L

    2013-01-01

    This study investigated Fe(II) oxidation during acid mine drainage (AMD) neutralization using CaCO3 in a pilot-scale Sequencing Batch Reactor (SBR) of hydraulic retention time (HRT) of 90 min and sludge retention time (SRT) of 360 min in the presence of air. The removal kinetics of Fe(II), of initial concentration 1,033 ± 0 mg/L, from AMD through oxidation to Fe(III) was observed to depend on both pH and suspended solids, resulting in Fe(II) levels of 679 ± 32, 242 ± 64, 46 ± 16 and 28 ± 0 mg/L recorded after cycles 1, 2, 3 and 4 respectively, with complete Fe(II) oxidation only achieved after complete neutralization of AMD. Generally, it takes 30 min to completely oxidize Fe(II) during cycle 4, suggesting that further optimization of SBR operation based on both pH and suspended solids manipulation can result in significant reduction of the number of cycles required to achieve acceptable Fe(II) oxidation for removal as ferric hydroxide. Overall, complete removal of Fe(II) during AMD neutralization is attractive as it promotes recovery of better quality waste gypsum, key to downstream gypsum beneficiation for recovery of valuables, thereby enabling some treatment-cost recovery and prevention of environmental pollution from dumping of sludge into landfills.

  5. Oxidation rate of nuclear-grade graphite IG-110 in the kinetic regime for VHTR air ingress accident scenarios

    NASA Astrophysics Data System (ADS)

    Lee, Jo Jo; Ghosh, Tushar K.; Loyalka, Sudarshan K.

    2014-03-01

    The oxidation rates of nuclear-grade graphite IG-110 in the kinetically-controlled temperature regime of graphite oxidation were predicted and compared in Very High Temperature Reactor air ingress accident scenarios. The oxidative mass loss of graphite was measured thermogravimetrically from 873 to 1873 K in 100% air (21 mol%). The activation energy was found to be 222.07 kJ/mol, and the order of reaction with respect to oxygen concentration is 0.76. The surfaces of the samples were characterized by Scanning Electron Microscopy, Energy Dispersive Spectroscopy, Fourier Transform Infrared Spectroscopy and X-ray Photoelectron Spectroscopy before and after oxidation. These results are compared with those available in the literature, and our recently reported results for NBG-18 nuclear-grade graphite using the same technique.

  6. Effects of substrates on N2O emissions in an anaerobic ammonium oxidation (anammox) reactor.

    PubMed

    Jin, Yue; Wang, Dunqiu; Zhang, Wenjie

    2016-01-01

    N2O emission in the anaerobic ammonium oxidation (anammox) process is of growing concern. In this study, effects of substrate concentrations on N2O emissions were investigated in an anammox reactor. Extremely high N2O emissions of 1.67 % were led by high NH4-N concentrations. Results showed that N2O emissions have a positive correlation with NH4-N concentrations in the anammox reactor. Reducing NH4-N concentrations by recycling pump resulted in decreasing N2O emissions. In addition, further studies were performed to identify a key biological process that is contributed to N2O emissions from the anammox reactor. Based on the results obtained, Nitrosomonas, which can oxidize ammonia to nitrite, was deemed as the main sources of N2O emissions.

  7. Calculated power distribution of a thermionic, beryllium oxide reflected, fast-spectrum reactor

    NASA Technical Reports Server (NTRS)

    Mayo, W.; Lantz, E.

    1973-01-01

    A procedure is developed and used to calculate the detailed power distribution in the fuel elements next to a beryllium oxide reflector of a fast-spectrum, thermionic reactor. The results of the calculations show that, although the average power density in these outer fuel elements is not far from the core average, the power density at the very edge of the fuel closest to the beryllium oxide is about 1.8 times the core avearge.

  8. TRICHLOROETHYLENE SORPTION AND OXIDATION USING A DUAL FUNCTION SORBENT/CATALYST IN A FALLING FURNACE REACTOR

    EPA Science Inventory

    A dual function medium (Cr-ZSM-5), capable of physisorbing trichloroethylene (TCE) at ambient temperature and catalytically oxidizing it at elevated temperature (-350 degrees C) was utilized in a novel continuous falling furnace reactor system to store and periodically destroy t...

  9. REACTOR

    DOEpatents

    Roman, W.G.

    1961-06-27

    A pressurized water reactor in which automatic control is achieved by varying the average density of the liquid moderator-cooiant is patented. Density is controlled by the temperature and power level of the reactor ftself. This control can be effected by the use of either plate, pellet, or tubular fuel elements. The fuel elements are disposed between upper and lower coolant plenum chambers and are designed to permit unrestricted coolant flow. The control chamber has an inlet opening communicating with the lower coolant plenum chamber and a restricted vapor vent communicating with the upper coolant plenum chamber. Thus, a variation in temperature of the fuel elements will cause a variation in the average moderator density in the chamber which directly affects the power level of the reactor.

  10. Controlled CO preferential oxidation

    DOEpatents

    Meltser, Mark A.; Hoch, Martin M.

    1997-01-01

    Method for controlling the supply of air to a PROX reactor for the preferential oxidation in the presence of hydrogen wherein the concentration of the hydrogen entering and exiting the PROX reactor is monitored, the difference therebetween correlated to the amount of air needed to minimize such difference, and based thereon the air supply to the PROX reactor adjusted to provide such amount and minimize such difference.

  11. REACTORS

    DOEpatents

    Spitzer, L. Jr.

    1961-10-01

    Thermonuclear reactors, methods, and apparatus are described for controlling and confining high temperature plasma. Main axial confining coils in combination with helical windings provide a rotational transform that avoids the necessity of a figure-eight shaped reactor tube. The helical windings provide a multipolar helical magnetic field transverse to the axis of the main axial confining coils so as to improve the effectiveness of the confining field by counteracting the tendency of the more central lines of force in the stellarator tube to exchange positions with the magnetic lines of force nearer the walls of the tube. (AEC)

  12. Thermal Catalytic Oxidation of Airborne Contaminants by a Reactor Using Ultra-Short Channel Length, Monolithic Catalyst Substrates

    NASA Technical Reports Server (NTRS)

    Perry, J. L.; Tomes, K. M.; Tatara, J. D.

    2005-01-01

    Contaminated air, whether in a crewed spacecraft cabin or terrestrial work and living spaces, is a pervasive problem affecting human health, performance, and well being. The need for highly effective, economical air quality processes spans a wide range of terrestrial and space flight applications. Typically, air quality control processes rely on absorption-based processes. Most industrial packed-bed adsorption processes use activated carbon. Once saturated, the carbon is either dumped or regenerated. In either case, the dumped carbon and concentrated waste streams constitute a hazardous waste that must be handled safely while minimizing environmental impact. Thermal catalytic oxidation processes designed to address waste handling issues are moving to the forefront of cleaner air quality control and process gas decontamination processes. Careful consideration in designing the catalyst substrate and reactor can lead to more complete contaminant destruction and poisoning resistance. Maintenance improvements leading to reduced waste handling and process downtime can also be realized. Performance of a prototype thermal catalytic reaction based on ultra-short waste channel, monolith catalyst substrate design, under a variety of process flow and contaminant loading conditions, is discussed.

  13. Pretreatment of Afyon alcaloide factory's wastewater by wet air oxidation (WAO).

    PubMed

    Kaçar, Y; Alpay, E; Ceylan, V K

    2003-03-01

    In this study, pretreatment of Afyon (Turkey) alcaloide factory wastewater, a typical high strength industrial wastewater (chemical oxygen demand (COD)=26.65 kgm(-3), biological oxygen demand (BOD(5))=3.95 kgm(-3)), was carried out by wet air oxidation process. The process was performed in a 0.75 litre specially designed bubble reactor. Experiments were conducted to see the advantages of one-stage and two-stage oxidation and the effects of pressure, pH, temperature, catalyst type, catalyst loading and air or oxygen as gas source on the oxidation of the wastewater. In addition, BOD(5)/COD ratios of the effluents, which are generally regarded as an important index of biodegradability of a high-strength industrial wastewater, were determined at the end of some runs. After a 2h oxidation (T=150 degrees C, P=0.65 MPa, airflowrate=1.57 x 10(-5)m(3)s(-1), pH=7.0), the BOD(5)/COD ratio was increased from 0.15 to above 0.5 by using the salts of metals such as Co(2+),Fe(2+),Fe(2+)+Ni(2+),Cu(2+)+Mn(2+) as catalyst.

  14. An induction reactor for studying crude-oil oxidation relevant to in situ combustion.

    PubMed

    Bazargan, Mohammad; Lapene, Alexandre; Chen, Bo; Castanier, Louis M; Kovscek, Anthony R

    2013-07-01

    In a conventional ramped temperature oxidation kinetics cell experiment, an electrical furnace is used to ramp temperature at a prescribed rate. Thus, the heating rate of a kinetics cell experiment is limited by furnace performance to heating rates of about 0.5-3 °C/min. A new reactor has been designed to overcome this limit. It uses an induction heating method to ramp temperature. Induction heating is fast and easily controlled. The new reactor covers heating rates from 1 to 30 °C/min. This is the first time that the oxidation profiles of a crude oil are available over such a wide range of heating rate. The results from an induction reactor and a conventional kinetics cell at roughly 2 °C/min are compared to illustrate consistency between the two reactors. The results at low heating rate are the same as the conventional kinetics cell. As presented in the paper, the new reactor couples well with the isoconversional method for interpretation of reaction kinetics.

  15. Bioaugmentation of Syntrophic Acetate-Oxidizing Culture in Biogas Reactors Exposed to Increasing Levels of Ammonia

    PubMed Central

    Westerholm, Maria; Levén, Lotta

    2012-01-01

    The importance of syntrophic acetate oxidation for process stability in methanogenic systems operating at high ammonia concentrations has previously been emphasized. In this study we investigated bioaugmentation of syntrophic acetate-oxidizing (SAO) cultures as a possible method for decreasing the adaptation period of biogas reactors operating at gradually increased ammonia concentrations (1.5 to 11 g NH4+-N/liter). Whole stillage and cattle manure were codigested semicontinuously for about 460 days in four mesophilic anaerobic laboratory-scale reactors, and a fixed volume of SAO culture was added daily to two of the reactors. Reactor performance was evaluated in terms of biogas productivity, methane content, pH, alkalinity, and volatile fatty acid (VFA) content. The decomposition pathway of acetate was analyzed by isotopic tracer experiments, and population dynamics were monitored by quantitative PCR analyses. A shift in dominance from aceticlastic methanogenesis to SAO occurred simultaneously in all reactors, indicating no influence by bioaugmentation on the prevailing pathway. Higher abundances of Clostridium ultunense and Tepidanaerobacter acetatoxydans were associated with bioaugmentation, but no influence on Syntrophaceticus schinkii or the methanogenic population was distinguished. Overloading or accumulation of VFA did not cause notable dynamic effects on the population. Instead, the ammonia concentration had a substantial impact on the abundance level of the microorganisms surveyed. The addition of SAO culture did not affect process performance or stability against ammonia inhibition, and all four reactors deteriorated at high ammonia concentrations. Consequently, these findings further demonstrate the strong influence of ammonia on the methane-producing consortia and on the representative methanization pathway in mesophilic biogas reactors. PMID:22923397

  16. Bioaugmentation of syntrophic acetate-oxidizing culture in biogas reactors exposed to increasing levels of ammonia.

    PubMed

    Westerholm, Maria; Levén, Lotta; Schnürer, Anna

    2012-11-01

    The importance of syntrophic acetate oxidation for process stability in methanogenic systems operating at high ammonia concentrations has previously been emphasized. In this study we investigated bioaugmentation of syntrophic acetate-oxidizing (SAO) cultures as a possible method for decreasing the adaptation period of biogas reactors operating at gradually increased ammonia concentrations (1.5 to 11 g NH(4)(+)-N/liter). Whole stillage and cattle manure were codigested semicontinuously for about 460 days in four mesophilic anaerobic laboratory-scale reactors, and a fixed volume of SAO culture was added daily to two of the reactors. Reactor performance was evaluated in terms of biogas productivity, methane content, pH, alkalinity, and volatile fatty acid (VFA) content. The decomposition pathway of acetate was analyzed by isotopic tracer experiments, and population dynamics were monitored by quantitative PCR analyses. A shift in dominance from aceticlastic methanogenesis to SAO occurred simultaneously in all reactors, indicating no influence by bioaugmentation on the prevailing pathway. Higher abundances of Clostridium ultunense and Tepidanaerobacter acetatoxydans were associated with bioaugmentation, but no influence on Syntrophaceticus schinkii or the methanogenic population was distinguished. Overloading or accumulation of VFA did not cause notable dynamic effects on the population. Instead, the ammonia concentration had a substantial impact on the abundance level of the microorganisms surveyed. The addition of SAO culture did not affect process performance or stability against ammonia inhibition, and all four reactors deteriorated at high ammonia concentrations. Consequently, these findings further demonstrate the strong influence of ammonia on the methane-producing consortia and on the representative methanization pathway in mesophilic biogas reactors.

  17. Material unaccounted for at the Southwest Experimental Fast Oxide Reactor: The SEFOR MUF

    SciTech Connect

    Higinbotham, W.A.

    1994-11-07

    The U.S. Atomic Energy Commission contracted with the General Electric Company to design, construct, and operate the Southwest Experimental Fast Oxide Reactor (SEFOR) to measure the Doppler effect for fast neutron breeder reactors. It contracted with Nuclear Fuel Services to fabricate the fuel rods for the reactor. When the reactor went critical in May, 1969, it appeared that some of the mixed uranium-plutonium oxide (MOX) fuel rods did not contain the specified quantity of plutonium. The SEFOR operators soon found several fuel rods which appeared to be low in plutonium. The safeguards group at Brookhaven was asked to look into the problem and, if possible, determine how much plutonium was missing from the unirradiated rods and from the larger number which had been slightly irradiated in the reactor. It was decided that the plutonium content of the unirradiated and irradiated rods could be measured relative to a reference rod using a high resolution gamma-ray detector and also by neutron measurements using an auto-correlation circuit recently developed at the Naval Research Laboratory (NRL). During the next two years, Brookhaven personnel and C.V. Strain of NRL made several trips to the SEFOR reactor. About 250 of the 775 rods were measured by two or more methods, using a sodium-iodide detector, a high-resolution germanium detector, a neutron detector, or the reactor (to measure reactivity). The research team concluded that 4.6 {+-} 0.46 kg of plutonium was missing out of the 433 kg that the rods should have contained. This report describes the SEFOR experiment and the procedures used to determine the material unaccounted for, or MUF.

  18. A catalytic reactor for the trapping of free radicals from gas phase oxidation reactions

    NASA Astrophysics Data System (ADS)

    Conte, Marco; Wilson, Karen; Chechik, Victor

    2010-10-01

    A catalytic reactor for the trapping of free radicals originating from gas phase catalytic reactions is described and discussed. Radical trapping and identification were initially carried out using a known radical generator such as dicumyl peroxide. The trapping of radicals was further demonstrated by investigating genuine radical oxidation processes, e.g., benzaldehyde oxidation over manganese and cobalt salts. The efficiency of the reactor was finally proven by the partial oxidation of cyclohexane over MoO3, Cr2O3, and WO3, which allowed the identification of all the radical intermediates responsible for the formation of the products cyclohexanol and cyclohexanone. Assignment of the trapped radicals was carried out using spin trapping technique and X-band electron paramagnetic resonance spectroscopy.

  19. Planar ceramic membrane assembly and oxidation reactor system

    DOEpatents

    Carolan, Michael Francis; Dyer, legal representative, Kathryn Beverly; Wilson, Merrill Anderson; Ohm, Ted R.; Kneidel, Kurt E.; Peterson, David; Chen, Christopher M.; Rackers, Keith Gerard; Dyer, deceased, Paul Nigel

    2007-10-09

    Planar ceramic membrane assembly comprising a dense layer of mixed-conducting multi-component metal oxide material, wherein the dense layer has a first side and a second side, a porous layer of mixed-conducting multi-component metal oxide material in contact with the first side of the dense layer, and a ceramic channeled support layer in contact with the second side of the dense layer. The planar ceramic membrane assembly can be used in a ceramic wafer assembly comprising a planar ceramic channeled support layer having a first side and a second side; a first dense layer of mixed-conducting multi-component metal oxide material having an inner side and an outer side, wherein the inner side is in contact with the first side of the ceramic channeled support layer; a first outer support layer comprising porous mixed-conducting multi-component metal oxide material and having an inner side and an outer side, wherein the inner side is in contact with the outer side of the first dense layer; a second dense layer of mixed-conducting multi-component metal oxide material having an inner side and an outer side, wherein the inner side is in contact with the second side of the ceramic channeled layer; and a second outer support layer comprising porous mixed-conducting multi-component metal oxide material and having an inner side and an outer side, wherein the inner side is in contact with the outer side of the second dense layer.

  20. Planar ceramic membrane assembly and oxidation reactor system

    DOEpatents

    Carolan, Michael Francis; Dyer, legal representative, Kathryn Beverly; Wilson, Merrill Anderson; Ohrn, Ted R.; Kneidel, Kurt E.; Peterson, David; Chen, Christopher M.; Rackers, Keith Gerard; Dyer, Paul Nigel

    2009-04-07

    Planar ceramic membrane assembly comprising a dense layer of mixed-conducting multi-component metal oxide material, wherein the dense layer has a first side and a second side, a porous layer of mixed-conducting multi-component metal oxide material in contact with the first side of the dense layer, and a ceramic channeled support layer in contact with the second side of the dense layer. The planar ceramic membrane assembly can be used in a ceramic wafer assembly comprising a planar ceramic channeled support layer having a first side and a second side; a first dense layer of mixed-conducting multi-component metal oxide material having an inner side and an outer side, wherein the inner side is in contact with the first side of the ceramic channeled support layer; a first outer support layer comprising porous mixed-conducting multi-component metal oxide material and having an inner side and an outer side, wherein the inner side is in contact with the outer side of the first dense layer; a second dense layer of mixed-conducting multi-component metal oxide material having an inner side and an outer side, wherein the inner side is in contact with the second side of the ceramic channeled layer; and a second outer support layer comprising porous mixed-conducting multi-component metal oxide material and having an inner side and an outer side, wherein the inner side is in contact with the outer side of the second dense layer.

  1. Irradiation effects in oxide dispersion strengthened (ODS) Ni-base alloys for Gen. IV nuclear reactors

    NASA Astrophysics Data System (ADS)

    Oono, Naoko; Ukai, Shigeharu; Kondo, Sosuke; Hashitomi, Okinobu; Kimura, Akihiko

    2015-10-01

    Oxide particle dispersion strengthened (ODS) Ni-base alloys are irradiated by using simulation technique (Fe/He dual-ion irradiation) to investigate the reliability to Gen. IV high-temperature reactors. The fine oxide particles with less than 10 nm in average size and approximately 8.0 × 1022 m-3 in number density remained after 101 dpa irradiation. The tiny helium bubbles were inside grains, not at grain-boundaries; it is advantageous effect of oxide particles which trap the helium atoms at the particle-matrix interface. Ni-base ODS alloys demonstrated their great ability to overcome He embrittlement.

  2. Assessing the antimicrobial activity of zinc oxide thin films using disk diffusion and biofilm reactor

    NASA Astrophysics Data System (ADS)

    Gittard, Shaun D.; Perfect, John R.; Monteiro-Riviere, Nancy A.; Wei, Wei; Jin, Chunming; Narayan, Roger J.

    2009-03-01

    The electronic and chemical properties of semiconductor materials may be useful in preventing growth of microorganisms. In this article, in vitro methods for assessing microbial growth on semiconductor materials will be presented. The structural and biological properties of silicon wafers coated with zinc oxide thin films were evaluated using atomic force microscopy, X-ray photoelectron spectroscopy, and MTT viability assay. The antimicrobial properties of zinc oxide thin films were established using disk diffusion and CDC Biofilm Reactor studies. Our results suggest that zinc oxide and other semiconductor materials may play a leading role in providing antimicrobial functionality to the next-generation medical devices.

  3. Improving Corrosion Behavior in SCWR, LFR and VHTR Reactor Materials by Formation of a Stable Oxide

    SciTech Connect

    Arthur T. Motta; Robert Comstock; Ning Li; Todd Allen; Gary Was

    2009-12-21

    The objective of this study is to understand the influence of the alloy microstructure and composition on the formation of a stable, protective oxide in the environments relevant to the SCWR and LFR reactor concepts, as well as to the VHTR. It is proposed to use state-of-the art techniques to study the fine structure of these oxides to identify the structural differences between stable and unstable oxide layers. The techniques to be used are microbeam synchrotron radiation diffraction and fluorescence, and cross-sectional transmission electron microcopy on samples prepared using focused ion beam.

  4. Oxidation behavior of ammonium in a 3-dimensional biofilm-electrode reactor.

    PubMed

    Tang, Jinjing; Guo, Jinsong; Fang, Fang; Chen, Youpeng; Lei, Lijing; Yang, Lin

    2013-12-01

    Excess nitrogenous compounds are detrimental to natural water systems and to human health. To completely realize autohydrogenotrophic nitrogen removal, a novel 3-dimensional biofilm-electrode reactor was designed. Titanium was electroplated with ruthenium and used as the anode. Activated carbon fiber felt was used as the cathode. The reactor was separated into two chambers by a permeable membrane. The cathode chamber was filled with granular graphite and glass beads. The cathode and cathode chamber were inhabited with domesticated biofilm. In the absence of organic substances, a nitrogen removal efficiency of up to 91% was achieved at DO levels of 3.42 +/- 0.37 mg/L when the applied current density was only 0.02 mA/cm2. The oxidation of ammonium in biofilm-electrode reactors was also investigated. It was found that ammonium could be oxidized not only on the anode but also on particle electrodes in the cathode chamber of the biofilm-electrode reactor. Oxidation rates of ammonium and nitrogen removal efficiency were found to be affected by the electric current loading on the biofilm-electrode reactor. The kinetic model of ammonium at different electric currents was analyzed by a first-order reaction kinetics equation. The regression analysis implied that when the current density was less than 0.02 mA/cm2, ammonium removal was positively correlated to the current density. However, when the current density was more than 0.02 mA/cm2, the electric current became a limiting factor for the oxidation rate of ammonium and nitrogen removal efficiency.

  5. NEUTRONIC REACTOR

    DOEpatents

    Fermi, E.; Zinn, W.H.; Anderson, H.L.

    1958-09-16

    Means are presenied for increasing the reproduction ratio of a gaphite- moderated neutronic reactor by diminishing the neutron loss due to absorption or capture by gaseous impurities within the reactor. This means comprised of a fluid-tight casing or envelope completely enclosing the reactor and provided with a valve through which the casing, and thereby the reactor, may be evacuated of atmospheric air.

  6. Wet air oxidation as a pretreatment option for selective biodegradability enhancement and biogas generation potential from complex effluent.

    PubMed

    Padoley, K V; Tembhekar, P D; Saratchandra, T; Pandit, A B; Pandey, R A; Mudliar, S N

    2012-09-01

    This study looks at the possibility of wet air oxidation (WAO) based pretreatment of complex effluent to selectively enhance the biodegradability (without substantial COD destruction) and facilitate biogas generation potential. A lab-scale wet air oxidation reactor with biomethanated distillery wastewater (B-DWW) as a model complex effluent (COD 40,000 mg L(-1)) was used to demonstrate the proof-of-concept. The studies were conducted using a designed set of experiments and reaction temperature (150-200°C), air pressure (6-12 bar) and reaction time (15-120 min) were the main process variables of concern for WAO process optimization. WAO pretreatment of B-DWW enhanced the biodegradability of the complex wastewater by the virtue of enhancing its biodegradability index (BI) from 0.2 to 0.88, which indicate favorable Biochemical Methane Potential (BMP) for biogas generation. The kinetics of COD destruction and BI enhancement has also been reported.

  7. INTEGRATION OF PHOTOCATALYTIC OXIDATION WITH AIR STRIPPING OF CONTAMINATED AQUIFERS

    EPA Science Inventory

    Bench scale laboratory studies and pilot scale studies in a simulated field-test situation were performed to evaluate the integration of gas-solid ultaviolet (UV) photocatalytic oxidation (PCO) downstream if an air stripper unit as a technology for cost-effectively treating water...

  8. HOMOGENEOUS AIR OXIDATION OF HYDROCARBONS UTILIZING MN AND CO CATALYSTS

    EPA Science Inventory

    Homogeneous Air Oxidation of Hydrocarbons Utilizing Mn and Co Catalysts

    Thomas M. Becker and Michael A. Gonzalez*, Sustainable Technology Division, Office of Research and Development; United States Environmental Protection Agency, 26 West Martin Luther King Drive, Mail Sto...

  9. Study on mechanism of wet air oxidation of emulsification wastewater.

    PubMed

    Tang, Wen W; Zeng, Xin P; Xiao, Yao M; Gu, Guo W

    2009-04-01

    Wet air oxidation (WAO) can effectively be used to treat high-concentration, non-biodegradable emulsification wastewater that contains nonionic matters. Gas chromatograph analysis of emulsification wastewater after oxidation indicated that a catalyst increased production of fatty acids but could not promote its oxidation between 160 and 180 degrees C. When the temperature was greater than or equal to 220 degrees C, the catalyst not only increased production of fatty acids initially but effectively promoted its oxidation in later stages and significantly reduced the concentration of residual surfactants. Experiments proved that fatty acids (especially acetic acid) were the primary intermediate products and that oxidation of these acids was the rate-limiting step. During the process of catalytic WAO of emulsification wastewater, active oxygen molecules attacked organic matters resulting in production of fatty acids, ketone, alcohol, hydrocarbon, and oligo-polyether through radical chain reactions.

  10. Modeling and Experimental Studies of Mercury Oxidation and Adsorption in a Fixed-Bed and Entrained-Flow Reactor

    SciTech Connect

    Buitrago, Paula A.; Morrill, Mike; Lighty, JoAnn S.; Silcox, Geoffrey D.

    2009-06-01

    This report presents experimental and modeling mercury oxidation and adsorption data. Fixed-bed and single-particle models of mercury adsorption were developed. The experimental data were obtained with two reactors: a 300-W, methane-fired, tubular, quartz-lined reactor for studying homogeneous oxidation reactions and a fixed-bed reactor, also of quartz, for studying heterogeneous reactions. The latter was attached to the exit of the former to provide realistic combustion gases. The fixed-bed reactor contained one gram of coconut-shell carbon and remained at a temperature of 150°C. All methane, air, SO2, and halogen species were introduced through the burner to produce a radical pool representative of real combustion systems. A Tekran 2537A Analyzer coupled with a wet conditioning system provided speciated mercury concentrations. At 150°C and in the absence of HCl or HBr, the mercury uptake was about 20%. The addition of 50 ppm HCl caused complete capture of all elemental and oxidized mercury species. In the absence of halogens, SO2 increased the mercury adsorption efficiency to up to 30 percent. The extent of adsorption decreased with increasing SO2 concentration when halogens were present. Increasing the HCl concentration to 100 ppm lessened the effect of SO2. The fixed-bed model incorporates Langmuir adsorption kinetics and was developed to predict adsorption of elemental mercury and the effect of multiple flue gas components. This model neglects intraparticle diffusional resistances and is only applicable to pulverized carbon sorbents. It roughly describes experimental data from the literature. The current version includes the ability to account for competitive adsorption between mercury, SO2, and NO2. The single particle model simulates in-flight sorbent capture of elemental mercury. This model was developed to include Langmuir and Freundlich isotherms, rate equations, sorbent feed rate, and

  11. Experimental Study on Ash-Returned Reactor of CFB Atmospheric Air Gasifier

    NASA Astrophysics Data System (ADS)

    Shihong, Zhang; Luning, Tian; Xianrong, Zhou; Hanping, Chen; Haiping, Yang; Xianhua, Wang

    In an attempt to improve the gasification efficiency and decrease the carbon content in fly ash of atmospheric air CFB gasifiers, an innovatory equipment by name ash-returned reactor is put forward by SKLCC. Ash-returned reactor is an ash-returned apparatus on line of ash circulation, typically like "U" type valve in CFB boilers, with additional function of some extent combustion of residual carbon and increase the furnace inlet temperature of returning ash, and hence the coal conversion of gasifiers is enhanced. As to its configuration compared to conventional "U" type valve, ash-returned rector has two distinguished features of several times of height scale of fluidizing transportation region to meet the combustion reaction time need and appropriate heat transfer tube bundles arranged in the region to moderate the local temperature so as to avoid slagging. And hence, corresponding to the structure renovation, the material transportation and regulation performance of ash-returned reactor is primarily investigated through a series of experiments in a cold lab-scale facility in this paper. The heat transfer characteristic of the tube bundles is then researched and its influential factors are further discussed. These works lay a foundation on the following study of hot state experiments and industrial applications.

  12. Supported noble metal catalysts in the catalytic wet air oxidation of industrial wastewaters and sewage sludges.

    PubMed

    Besson, M; Descorme, C; Bernardi, M; Gallezot, P; di Gregorio, F; Grosjean, N; Minh, D Pham; Pintar, A

    2010-12-01

    This paper reviews some catalytic wet air oxidation (CWAO) investigations of industrial wastewaters over platinum and ruthenium catalysts supported on TiO2 and ZrO2 formulated to be active and resistant to leaching, with particular focus on the stability of the catalyst. Catalyst recycling experiments were performed in batch reactors and long-term stability tests were conducted in trickle-bed reactors. The catalyst did not leach upon treatment of Kraft bleaching plant and olive oil mill effluents, and could be either recycled or used for long periods of time in continuous reactors. Conversely, these catalysts were rapidly leached when used to treat effluents from the production of polymeric membranes containing N,N-dimethylformamide. The intermediate formation of amines, such as dimethylamine and methylamine with a high complexing capacity for the metal, was shown to be responsible for the metal leaching. These heterogeneous catalysts also deactivated upon CWAO of sewage sludges due to the adsorption of the solid organic matter. Pre-sonication of the sludge to disintegrate the flocs and improve solubility was inefficient.

  13. A preliminary assessment of beryllium dust oxidation during a wet bypass accident in a fusion reactor

    SciTech Connect

    Brad J. Merrill; Richard L. Moore; J. Phillip Sharp

    2008-09-01

    A beryllium dust oxidation model has been developed at the Idaho National Laboratory (INL) by the Fusion Safety Program (FSP) for the MELCOR safety computer code. The purpose of this model is to investigate hydrogen production from beryllium dust layers on hot surfaces inside a fusion reactor vacuum vessel (VV) during in-vessel loss-of-cooling accidents (LOCAs). This beryllium dust oxidation model accounts for the diffusion of steam into a beryllium dust layer, the oxidation of the dust particles inside this layer based on the beryllium-steam oxidation equations developed at the INL, and the effective thermal conductivity of this beryllium dust layer. This paper details this oxidation model and presents the results of the application of this model to a wet bypass accident scenario in the ITER device.

  14. Investigation of oxidation resistance of carbon based first-wall liner materials of fusion reactors

    NASA Astrophysics Data System (ADS)

    Moormann, R.; Hinssen, H. K.; Krüssenberg, A.-K.; Stauch, B.; Wu, C. H.

    1994-09-01

    One important aspect in selection of carbon based first-wall liner materials in fusion reactors is a sufficient oxidation resistance against steam and oxygen; this is because during accidents like loss of coolant into vacuum or loss of vacuum these oxidizing media can enter the vacuum vessel and may cause some corrosion of carbon followed by release of adsorbed tritium; in addition other consequences of oxidation like formation of burnable gases and their explosions have to be examined. Based on extensive experience on nuclear graphite oxidation in HTRs KFA has started in cooperation with NET some experimental investigations on oxidation of fusion reactor carbons. Results of first experiments on CFCs, Ti- and Si-doped carbons and graphites in steam (1273-1423 K) and oxygen (973 K) are reported. It was found that most materials have a similar reactivity as HTR nuclear graphites (which is much smaller than those of usual technical carbons); Si-doped CFCs however have a remarkably better oxidation resistance than those, which is probably due to the formation of a protecting layer of SiO 2. The measured kinetic data will be used in safety analyses for above mentioned accidents.

  15. Warm Water Oxidation Verification - Scoping and Stirred Reactor Tests

    SciTech Connect

    Braley, Jenifer C.; Sinkov, Sergey I.; Delegard, Calvin H.; Schmidt, Andrew J.

    2011-06-15

    Scoping tests to evaluate the effects of agitation and pH adjustment on simulant sludge agglomeration and uranium metal oxidation at {approx}95 C were performed under Test Instructions(a,b) and as per sections 5.1 and 5.2 of this Test Plan prepared by AREVA. (c) The thermal testing occurred during the week of October 4-9, 2010. The results are reported here. For this testing, two uranium-containing simulant sludge types were evaluated: (1) a full uranium-containing K West (KW) container sludge simulant consisting of nine predominant sludge components; (2) a 50:50 uranium-mole basis mixture of uraninite [U(IV)] and metaschoepite [U(VI)]. This scoping study was conducted in support of the Sludge Treatment Project (STP) Phase 2 technology evaluation for the treatment and packaging of K-Basin sludge. The STP is managed by CH2M Hill Plateau Remediation Company (CHPRC) for the U.S. Department of Energy. Warm water ({approx}95 C) oxidation of sludge, followed by immobilization, has been proposed by AREVA and is one of the alternative flowsheets being considered to convert uranium metal to UO{sub 2} and eliminate H{sub 2} generation during final sludge disposition. Preliminary assessments of warm water oxidation have been conducted, and several issues have been identified that can best be evaluated through laboratory testing. The scoping evaluation documented here was specifically focused on the issue of the potential formation of high strength sludge agglomerates at the proposed 95 C process operating temperature. Prior hydrothermal tests conducted at 185 C produced significant physiochemical changes to genuine sludge, including the formation of monolithic concretions/agglomerates that exhibited shear strengths in excess of 100 kPa (Delegard et al. 2007).

  16. Catalytic oxidative desulfurization of liquid hydrocarbon fuels using air

    NASA Astrophysics Data System (ADS)

    Sundararaman, Ramanathan

    Conventional approaches to oxidative desulfurization of liquid hydrocarbons involve use of high-purity, expensive water soluble peroxide for oxidation of sulfur compounds followed by post-treatment for removal of oxidized sulfones by extraction. Both are associated with higher cost due to handling, storage of oxidants and yield loss with extraction and water separation, making the whole process more expensive. This thesis explores an oxidative desulfurization process using air as an oxidant followed by catalytic decomposition of sulfones thereby eliminating the aforementioned issues. Oxidation of sulfur compounds was realized by a two step process in which peroxides were first generated in-situ by catalytic air oxidation, followed by catalytic oxidation of S compounds using the peroxides generated in-situ completing the two step approach. By this technique it was feasible to oxidize over 90% of sulfur compounds present in real jet (520 ppmw S) and diesel (41 ppmw S) fuels. Screening of bulk and supported CuO based catalysts for peroxide generation using model aromatic compound representing diesel fuel showed that bulk CuO catalyst was more effective in producing peroxides with high yield and selectivity. Testing of three real diesel fuels obtained from different sources for air oxidation over bulk CuO catalyst showed different level of effectiveness for generating peroxides in-situ which was consistent with air oxidation of representative model aromatic compounds. Peroxides generated in-situ was then used as an oxidant to oxidize sulfur compounds present in the fuel over MoO3/SiO2 catalyst. 81% selectivity of peroxides for oxidation of sulfur compounds was observed on MoO3/SiO2 catalyst at 40 °C and under similar conditions MoO3/Al2O3 gave only 41% selectivity. This difference in selectivity might be related to the difference in the nature of active sites of MoO3 on SiO2 and Al2O 3 supports as suggested by H2-TPR and XRD analyses. Testing of supported and bulk Mg

  17. Performance of metal and oxide fuel cores during accidents in large liquid-metal-cooled reactors

    SciTech Connect

    Royl, P.H.; Kussmaul, G. ); Cahalan, J.E.; Wigeland, R.A. ); Friedel, G. ); Moreau, J. ); Perks, M. )

    1992-02-01

    This paper reports on a cooperative effort among European and U.S. analysts, which is an assessment of the comparative safety performance of metal and oxide fuels during accidents in a 3500-MW (thermal), pool-type, liquid-metal-cooled reactor (LMR) is performed. The study focuses on three accident initiators with failure to scram: the unprotected loss-of-flow (ULOF), the unprotected transient overpower, and the unprotected loss-of-heat-sink (ULOHS). Core designs with a similar power output that have been previously analyzed in Europe under ULOF accident conditions are also included in this comparison. Emphasis is placed on identification of design features that provide passive, self-limiting responses to postulated accident conditions and quantification of relative safety margins. The analyses show that in ULOF and ULOHS sequences, metal-fueled LMRs with pool-type primary systems provide larger temperature margins to coolant boiling than do oxide-fueled reactors of the same design.

  18. Performance of metal and oxide fuels during accidents in a large liquid metal cooled reactor

    SciTech Connect

    Cahalan, J.; Wigeland, R. ); Friedel, G. , Bergisch Gladbach ); Kussmaul, G.; Royl, P. ); Moreau, J. ); Perks, M.

    1990-01-01

    In a cooperative effort among European and US analysts, an assessment of the comparative safety performance of metal and oxide fuels during accidents in a large (3500 MWt), pool-type, liquid-metal-cooled reactor (LMR) was performed. The study focused on three accident initiators with failure to scram: the unprotected loss-of-flow (ULOF), the unprotected transient overpower (UTOP), and the unprotected loss-of-heat-sink (ULOHS). Emphasis was placed on identification of design features that provide passive, self-limiting responses to upset conditions, and quantification of relative safety margins. The analyses show that in ULOF and ULOHS sequences, metal-fueled LMRs with pool-type primary systems provide larger temperature margins to coolant boiling than oxide-fueled reactors of the same design. 3 refs., 4 figs.

  19. Effect of inlet temperature on the performance of a catalytic reactor. [air pollution control

    NASA Technical Reports Server (NTRS)

    Anderson, D. N.

    1978-01-01

    A 12 cm diameter by 15 cm long catalytic reactor was tested with No. 2 diesel fuel in a combustion test rig at inlet temperatures of 700, 800, 900, and 1000 K. Other test conditions included pressures of 3 and 6 x 10 to the 5th power Pa, reference velocities of 10, 15, and 20 m/s, and adiabatic combustion temperatures in the range 1100 to 1400 K. The combustion efficiency was calculated from measurements of carbon monoxide and unburned hydrocarbon emissions. Nitrogen oxide emissions and reactor pressure drop were also measured. At a reference velocity of 10 m/s, the CO and unburned hydrocarbons emissions, and, therefore, the combustion efficiency, were independent of inlet temperature. At an inlet temperature of 1000 K, they were independent of reference velocity. Nitrogen oxides emissions resulted from conversion of the small amount (135 ppm) of fuel-bound nitrogen in the fuel. Up to 90 percent conversion was observed with no apparent effect of any of the test variables. For typical gas turbine operating conditions, all three pollutants were below levels which would permit the most stringent proposed automotive emissions standards to be met.

  20. Sulfidogenic biotreatment of synthetic acid mine drainage and sulfide oxidation in anaerobic baffled reactor.

    PubMed

    Bekmezci, Ozan K; Ucar, Deniz; Kaksonen, Anna H; Sahinkaya, Erkan

    2011-05-30

    The treatment of synthetic acid mine drainage (AMD) water (pH 3.0-6.5) containing sulfate (3.0-3.5 g L(-1)) and various metals (Co, Cu, Fe, Mn, Ni, and Zn) was studied in an ethanol-fed sulfate-reducing 4-compartment anaerobic baffled reactor (ABR) at 32°C. The reactor was operated for 160 days at different chemical oxygen demand (COD)/sulfate ratios, hydraulic retention times (HRT), pH, and metal concentrations to study the robustness of the process. The last compartment of the reactor was aerated at different rates to study the bio-oxidation of sulfide to elemental sulfur. The highest sulfate reduction efficiency (88%) was obtained with a feed sulfate concentration of 3.5 g L(-1), COD/sulfate mass ratio of 0.737, feed pH of 3.0 and HRT of 2 days without aeration in the 4th compartment. The corresponding COD removal efficiency was about 92%. The alkalinity produced in the sulfidogenic ethanol oxidation neutralized the acidic mine water from pH 3.0-4.5 to pH 7.0-8.0. Effluent soluble and total heavy metal concentrations were substantially reduced with removal efficiencies generally higher than 99%, except for Mn (25-77%). Limited aeration in the 4th compartment of ABR promoted incomplete oxidation of sulfide to elemental sulfur rather than complete oxidation to sulfate. Depending on the aeration rate and HRT, 32-74% of produced sulfide was oxidized to elemental sulfur. This study demonstrates that by optimizing operating conditions, sulfate reduction, metal removal, alkalinity generation, and excess sulfide oxidation can be achieved in a single ABR treating AMD.

  1. FY-09 Report: Experimental Validation of Stratified Flow Phenomena, Graphite Oxidation, and Mitigation Strategies of Air Ingress Accidents

    SciTech Connect

    Chang H. Oh; Eung S. Kim

    2009-12-01

    The Idaho National Laboratory (INL), under the auspices of the U.S. Department of Energy, is performing research and development that focuses on key phenomena important during potential scenarios that may occur in the Next Generation Nuclear Plant (NGNP)/Gen-IV very high temperature reactor (VHTR). Phenomena Identification and Ranking Studies to date have identified that an air ingress event following on the heels of a VHTR depressurization is a very important incident. Consequently, the development of advanced air ingress-related models and verification and validation data are a very high priority for the NGNP Project. Following a loss of coolant and system depressurization incident, air will enter the core through the break, leading to oxidation of the in-core graphite structure and fuel. If this accident occurs, the oxidation will accelerate heat-up of the bottom reflector and the reactor core and will eventually cause the release of fission products. The potential collapse of the core bottom structures causing the release of CO and fission products is one of the concerns. Therefore, experimental validation with the analytical model and computational fluid dynamic (CFD) model developed in this study is very important. Estimating the proper safety margin will require experimental data and tools, including accurate multidimensional thermal-hydraulic and reactor physics models, a burn-off model, and a fracture model. It will also require effective strategies to mitigate the effects of oxidation. The results from this research will provide crucial inputs to the INL NGNP/VHTR Methods Research and Development project. The second year of this three-year project (FY-08 to FY-10) was focused on (a) the analytical, CFD, and experimental study of air ingress caused by density-driven, stratified, countercurrent flow; (b) advanced graphite oxidation experiments and modeling; (c) experimental study of burn-off in the core bottom structures, (d) implementation of advanced

  2. Hydrogen sulfide oxidation in novel Horizontal-Flow Biofilm Reactors dominated by an Acidithiobacillus and a Thiobacillus species.

    PubMed

    Gerrity, S; Kennelly, C; Clifford, E; Collins, G

    2016-09-01

    Hydrogen Sulfide (H2S) is an odourous, highly toxic gas commonly encountered in various commercial and municipal sectors. Three novel, laboratory-scale, Horizontal-Flow Biofilm Reactors (HFBRs) were tested for the removal of H2S gas from air streams over a 178-day trial at 10°C. Removal rates of up to 15.1 g [H2S] m(-3) h(-1) were achieved, demonstrating the HFBRs as a feasible technology for the treatment of H2S-contaminated airstreams at low temperatures. Bio-oxidation of H2S in the reactors led to the production of H(+) and sulfate (SO(2-)4) ions, resulting in the acidification of the liquid phase. Reduced removal efficiency was observed at loading rates of 15.1 g [H2S] m(-3) h(-1). NaHCO3 addition to the liquid nutrient feed (synthetic wastewater (SWW)) resulted in improved H2S removal. Bacterial diversity, which was investigated by sequencing and fingerprinting 16S rRNA genes, was low, likely due to the harsh conditions prevailing in the systems. The HFBRs were dominated by two species from the genus Acidithiobacillus and Thiobacillus. Nonetheless, there were significant differences in microbial community structure between distinct HFBR zones due to the influence of alkalinity, pH and SO4 concentrations. Despite the low temperature, this study indicates HFBRs have an excellent potential to biologically treat H2S-contaminated airstreams.

  3. Oxidation of fine aluminum powders with water and air

    NASA Astrophysics Data System (ADS)

    Antipina, S. A.; Zmanovskii, S. V.; Gromov, A. A.; Konovalov, A. S.

    2017-01-01

    Fine aluminum powders (RA20-RA60 grades, SUAL-PM) with specific surface area from 0.37 to 0.73 m2/g and high aluminum contents (95-98 wt %) are studied. The powders are found to be waterwettable without additions of surfactants and characterized by high rates of gas liberation in reacting with a calcium hydroxide solution under normal conditions. All RA20-RA60 powders are shown to be highly reactive upon oxidation with air and close to aluminum nanopowders in the parameters of their activity when heated in air. Their stability in water could prevent active (metallic) aluminum losses during their storage.

  4. Cobalt deposition in oxide films on reactor pipework. Final report

    SciTech Connect

    Bridle, D.A.; Bird, E.J.; Mitchell, C.R.

    1986-03-01

    This report details results of a program carried out by the UKAEA on the Winfrith SGHWR, to study the incorporation of cobalt into the corrosion product films formed on PWR primary circuit materials (stainless steel 304L, Inconel-600 and Zircaloy-4). An electromagnetic filter has been operated on a once through basis directly on the primary coolant blowdown line to remove particulate impurities. This has permitted an examination of the relative importance of soluble and insoluble species in the formation of corrosion product films. The selected alloys have been exposed to coolant up and downstream from the filter unit and data are presented which provide a detailed analysis of the coolant at these situations, with respect to soluble and insoluble, chemical and radiochemical species. Characterization of the corrosion product films has been carried out using scanning electron microscopy coupled with energy dispersive analysis using x-rays. Radiochemical analyses have been carried out using ..gamma..-spectrometry. The effectiveness of decontamination using Low Oxidation state Metal Ion (LOMI) reagent has been studied and data are presented on decontamination rates. 21 tabs.

  5. Reactor

    DOEpatents

    Evans, Robert M.

    1976-10-05

    1. A neutronic reactor having a moderator, coolant tubes traversing the moderator from an inlet end to an outlet end, bodies of material fissionable by neutrons of thermal energy disposed within the coolant tubes, and means for circulating water through said coolant tubes characterized by the improved construction wherein the coolant tubes are constructed of aluminum having an outer diameter of 1.729 inches and a wall thickness of 0.059 inch, and the means for circulating a liquid coolant through the tubes includes a source of water at a pressure of approximately 350 pounds per square inch connected to the inlet end of the tubes, and said construction including a pressure reducing orifice disposed at the inlet ends of the tubes reducing the pressure of the water by approximately 150 pounds per square inch.

  6. Surface-catalyzed air oxidation of hydrazines: Environmental chamber studies

    NASA Technical Reports Server (NTRS)

    Kilduff, Jan E.; Davis, Dennis D.; Koontz, Steven L.

    1988-01-01

    The surface-catalyzed air oxidation reactions of fuel hydrazines were studied in a 6500-liter fluorocarbon-film chamber at 80 to 100 ppm concentrations. First-order rate constants for the reactions catalyzed by aluminum, water-damaged aluminum (Al/Al2O3), stainless steel 304L, galvanized steel and titanium plates with surface areas of 2 to 24 sq m were determined. With 23.8 sq m of Al/Al2O3 the surface-catalyzed air oxidation of hydrazine had a half-life of 2 hours, diimide (N2H2) was observed as an intermediate and traces of ammonia were present in the final product mixture. The Al/Al2O3 catalyzed oxidation of monomethylhydrazine yielded methyldiazine (HN = NCH3) as an intermediate and traces of methanol. Unsymmetrical dimethylhydrazine gave no detectable products. The relative reactivities of hydrazine, MMH and UDMH were 130 : 7.3 : 1.0, respectively. The rate constants for Al/Al2O3-catalyzed oxidation of hydrazine and MMH were proportional to the square of the surface area of the plates. Mechanisms for the surface-catalyzed oxidation of hydrazine and diimide and the formation of ammonia are proposed.

  7. Catalytic and non-catalytic wet air oxidation of sodium dodecylbenzene sulfonate: kinetics and biodegradability enhancement.

    PubMed

    Suárez-Ojeda, María Eugenia; Kim, Jungkwon; Carrera, Julián; Metcalfe, Ian S; Font, Josep

    2007-06-18

    Wet air oxidation (WAO) and catalytic wet air oxidation (CWAO) were investigated as suitable precursors for the biological treatment of industrial wastewater containing sodium dodecylbenzene sulfonate (DBS). Two hours WAO semi-batch experiments were conducted at 15 bar of oxygen partial pressure (P(O2)) and at 180, 200 and 220 degrees C. It was found that the highest temperature provides appreciable total organic carbon (TOC) and chemical oxygen demand (COD) abatement of about 42 and 47%, correspondingly. Based on the main identified intermediates (acetic acid and sulfobenzoic acid) a reaction pathway for DBS and a kinetic model in WAO were proposed. In the case of CWAO experiments, seventy-two hours tests were done in a fixed bed reactor in continuous trickle flow regime, using a commercial activated carbon (AC) as catalyst. The temperature and P(O2) were 140-160 degrees C and 2-9 bar, respectively. The influence of the operating conditions on the DBS oxidation, the occurrence of oxidative coupling reactions over the AC, and the catalytic activity (in terms of substrate removal) were established. The results show that the AC without any supported active metal behaves bi-functional as adsorbent and catalyst, giving TOC conversions up to 52% at 160 degrees C and 2 bar of P(O2), which were comparable to those obtained in WAO experiments. Respirometric tests were completed before and after CWAO and to the main intermediates identified through the WAO and CWAO oxidation route. Then, the readily biodegradable COD (COD(RB)) of the CWAO and WAO effluents were found. Taking into account these results it was possible to compare whether or not the CWAO or WAO effluents were suitable for a conventional activated sludge plant inoculated with non adapted culture.

  8. The behaviour of transuranic mixed oxide fuel in a Candu-900 reactor

    SciTech Connect

    Morreale, A. C.; Ball, M. R.; Novog, D. R.; Luxat, J. C.

    2012-07-01

    The production of transuranic actinide fuels for use in current thermal reactors provides a useful intermediary step in closing the nuclear fuel cycle. Extraction of actinides reduces the longevity, radiation and heat loads of spent material. The burning of transuranic fuels in current reactors for a limited amount of cycles reduces the infrastructure demand for fast reactors and provides an effective synergy that can result in a reduction of as much as 95% of spent fuel waste while reducing the fast reactor infrastructure needed by a factor of almost 13.5 [1]. This paper examines the features of actinide mixed oxide fuel, TRUMOX, in a CANDU{sup R}* nuclear reactor. The actinide concentrations used were based on extraction from 30 year cooled spent fuel and mixed with natural uranium in 3.1 wt% actinide MOX fuel. Full lattice cell modeling was performed using the WIMS-AECL code, super-cell calculations were analyzed in DRAGON and full core analysis was executed in the RFSP 2-group diffusion code. A time-average full core model was produced and analyzed for reactor coefficients, reactivity device worth and online fuelling impacts. The standard CANDU operational limits were maintained throughout operations. The TRUMOX fuel design achieved a burnup of 27.36 MWd/kg HE. A full TRUMOX fuelled CANDU was shown to operate within acceptable limits and provided a viable intermediary step for burning actinides. The recycling, reprocessing and reuse of spent fuels produces a much more sustainable and efficient nuclear fuel cycle. (authors)

  9. Biodegradation of air-oxidized Illinois No. 6 coal

    SciTech Connect

    Linehan, J.C.; Fredrickson, J.K.; Wilson, B.W.; Bean, R.M.; Stewart, D.L.; Thomas, B.L.; Campbell, J.A.; Franz, J.A.

    1988-09-01

    We have found that Illinois No. 6 coal, after an air-oxidation pretreatment, can be substantially biodegraded by Penicillium sp. to a product largely soluble in dilute base. It is the purpose of this paper to describe the chemical nature of the biotreated Illinois No. 6 coal and to compare it with the corresponding material from leonardite biosolubilization. 12 refs., 7 figs., 3 tabs.

  10. Storage of LWR spent fuel in air: Volume 1: Design and operation of a spent fuel oxidation test facility

    SciTech Connect

    Thornhill, C.K.; Campbell, T.K.; Thornhill, R.E.

    1988-12-01

    This report describes the design and operation and technical accomplishments of a spent-fuel oxidation test facility at the Pacific Northwest Laboratory. The objective of the experiments conducted in this facility was to develop a data base for determining spent-fuel dry storage temperature limits by characterizing the oxidation behavior of light-water reactor (LWR) spent fuels in air. These data are needed to support licensing of dry storage in air as an alternative to spent-fuel storage in water pools. They are to be used to develop and validate predictive models of spent-fuel behavior during dry air storage in an Independent Spent Fuel Storage Installation (ISFSI). The present licensed alternative to pool storage of spent fuel is dry storage in an inert gas environment, which is called inerted dry storage (IDS). Licensed air storage, however, would not require monitoring for maintenance of an inert-gas environment (which IDS requires) but does require the development of allowable temperature limits below which UO/sub 2/ oxidation in breached fuel rods would not become a problem. Scoping tests at PNL with nonirradiated UO/sub 2/ pellets and spent-fuel fragment specimens identified the need for a statistically designed test matrix with test temperatures bounding anticipated maximum acceptable air-storage temperatures. This facility was designed and operated to satisfy that need. 7 refs.

  11. Nitrous Oxide Production in a Granule-based Partial Nitritation Reactor: A Model-based Evaluation.

    PubMed

    Peng, Lai; Sun, Jing; Liu, Yiwen; Dai, Xiaohu; Ni, Bing-Jie

    2017-04-03

    Sustainable wastewater treatment has been attracting increasing attentions over the past decades. However, the production of nitrous oxide (N2O), a potent GHG, from the energy-efficient granule-based autotrophic nitrogen removal is largely unknown. This study applied a previously established N2O model, which incorporated two N2O production pathways by ammonia-oxidizing bacteria (AOB) (AOB denitrification and the hydroxylamine (NH2OH) oxidation). The two-pathway model was used to describe N2O production from a granule-based partial nitritation (PN) reactor and provide insights into the N2O distribution inside granules. The model was evaluated by comparing simulation results with N2O monitoring profiles as well as isotopic measurement data from the PN reactor. The model demonstrated its good predictive ability against N2O dynamics and provided useful information about the shift of N2O production pathways inside granules for the first time. The simulation results indicated that the increase of oxygen concentration and granule size would significantly enhance N2O production. The results further revealed a linear relationship between N2O production and ammonia oxidation rate (AOR) (R(2) = 0.99) under the conditions of varying oxygen levels and granule diameters, suggesting that bulk oxygen and granule size may exert an indirect effect on N2O production by causing a change in AOR.

  12. Nitrous Oxide Production in a Granule-based Partial Nitritation Reactor: A Model-based Evaluation

    PubMed Central

    Peng, Lai; Sun, Jing; Liu, Yiwen; Dai, Xiaohu; Ni, Bing-Jie

    2017-01-01

    Sustainable wastewater treatment has been attracting increasing attentions over the past decades. However, the production of nitrous oxide (N2O), a potent GHG, from the energy-efficient granule-based autotrophic nitrogen removal is largely unknown. This study applied a previously established N2O model, which incorporated two N2O production pathways by ammonia-oxidizing bacteria (AOB) (AOB denitrification and the hydroxylamine (NH2OH) oxidation). The two-pathway model was used to describe N2O production from a granule-based partial nitritation (PN) reactor and provide insights into the N2O distribution inside granules. The model was evaluated by comparing simulation results with N2O monitoring profiles as well as isotopic measurement data from the PN reactor. The model demonstrated its good predictive ability against N2O dynamics and provided useful information about the shift of N2O production pathways inside granules for the first time. The simulation results indicated that the increase of oxygen concentration and granule size would significantly enhance N2O production. The results further revealed a linear relationship between N2O production and ammonia oxidation rate (AOR) (R2 = 0.99) under the conditions of varying oxygen levels and granule diameters, suggesting that bulk oxygen and granule size may exert an indirect effect on N2O production by causing a change in AOR. PMID:28367960

  13. Efficient H2O2/CH3COOH oxidative desulfurization/denitrification of liquid fuels in sonochemical flow-reactors.

    PubMed

    Calcio Gaudino, Emanuela; Carnaroglio, Diego; Boffa, Luisa; Cravotto, Giancarlo; Moreira, Elizabeth M; Nunes, Matheus A G; Dressler, Valderi L; Flores, Erico M M

    2014-01-01

    The oxidative desulfurization/denitrification of liquid fuels has been widely investigated as an alternative or complement to common catalytic hydrorefining. In this process, all oxidation reactions occur in the heterogeneous phase (the oil and the polar phase containing the oxidant) and therefore the optimization of mass and heat transfer is of crucial importance to enhancing the oxidation rate. This goal can be achieved by performing the reaction in suitable ultrasound (US) reactors. In fact, flow and loop US reactors stand out above classic batch US reactors thanks to their greater efficiency and flexibility as well as lower energy consumption. This paper describes an efficient sonochemical oxidation with H2O2/CH3COOH at flow rates ranging from 60 to 800 ml/min of both a model compound, dibenzotiophene (DBT), and of a mild hydro-treated diesel feedstock. Four different commercially available US loop reactors (single and multi-probe) were tested, two of which were developed in the authors' laboratory. Full DBT oxidation and efficient diesel feedstock desulfurization/denitrification were observed after the separation of the polar oxidized S/N-containing compounds (S≤5 ppmw, N≤1 ppmw). Our studies confirm that high-throughput US applications benefit greatly from flow-reactors.

  14. Air electrode composition for solid oxide fuel cell

    DOEpatents

    Kuo, L.; Ruka, R.J.; Singhal, S.C.

    1999-08-03

    An air electrode composition for a solid oxide fuel cell is disclosed. The air electrode material is based on lanthanum manganite having a perovskite-like crystal structure ABO{sub 3}. The A-site of the air electrode composition comprises a mixed lanthanide in combination with rare earth and alkaline earth dopants. The B-site of the composition comprises Mn in combination with dopants such as Mg, Al, Cr and Ni. The mixed lanthanide comprises La, Ce, Pr and, optionally, Nd. The rare earth A-site dopants preferably comprise La, Nd or a combination thereof, while the alkaline earth A-site dopant preferably comprises Ca. The use of a mixed lanthanide substantially reduces raw material costs in comparison with compositions made from high purity lanthanum starting materials. The amount of the A-site and B-site dopants is controlled in order to provide an air electrode composition having a coefficient of thermal expansion which closely matches that of the other components of the solid oxide fuel cell. 3 figs.

  15. Air electrode composition for solid oxide fuel cell

    DOEpatents

    Kuo, Lewis; Ruka, Roswell J.; Singhal, Subhash C.

    1999-01-01

    An air electrode composition for a solid oxide fuel cell is disclosed. The air electrode material is based on lanthanum manganite having a perovskite-like crystal structure ABO.sub.3. The A-site of the air electrode composition comprises a mixed lanthanide in combination with rare earth and alkaline earth dopants. The B-site of the composition comprises Mn in combination with dopants such as Mg, Al, Cr and Ni. The mixed lanthanide comprises La, Ce, Pr and, optionally, Nd. The rare earth A-site dopants preferably comprise La, Nd or a combination thereof, while the alkaline earth A-site dopant preferably comprises Ca. The use of a mixed lanthanide substantially reduces raw material costs in comparison with compositions made from high purity lanthanum starting materials. The amount of the A-site and B-site dopants is controlled in order to provide an air electrode composition having a coefficient of thermal expansion which closely matches that of the other components of the solid oxide fuel cell.

  16. Phosphorus recovery from urine with different magnesium resources in an air-agitated reactor.

    PubMed

    Liu, Xiaoning; Hu, Zhengyi; Mu, Jing; Zang, Haixing; Liu, Li

    2014-01-01

    Phosphorus (P) recovery through struvite formation from urine has gained increasing attention as an approach to alleviate the potential shortage of P. The concentration of magnesium (Mg) is lower than those of ammonium and ortho-phosphate in urine, so the cost of adding Mg is a major economic constraint for P recovery. This study aims at evaluating the potential of seawater and bittern as Mg resources to recover P from urine in an air-agitated reactor. Results indicate that effects of seawater and bittern on P recovery from urine are comparable to that of magnesium chloride, with an average crystal size of around 34 μm under an Mg/P molar ratio of 1.3. The average crystal size of the struvite crystals obtained from high P concentration urine with different Mg resources showed no significant difference, whereas larger crystal size was obtained from low P concentration urine with bittern as Mg resource. Analysis of mainly rod-like crystals produced in the reactor indicates the presence of pure struvite (>98.0% by weight) with small amounts of calcium (<1.39% by weight). Bittern is recommended as a suitable Mg resource for P recovery because of its high Mg content and the convenience it offers in terms of transportation and storage.

  17. Cyclic Oxidation of High-Temperature Alloy Wires in Air

    NASA Technical Reports Server (NTRS)

    Reigel, Marissa M.

    2004-01-01

    High-temperature alloy wires are proposed for use in seal applications for future re-useable space vehicles. These alloys offer the potential for improved wear resistance of the seals. The wires must withstand the high temperature environments the seals are subjected to as well as maintain their oxidation resistance during the heating and cooling cycles of vehicle re-entry. To model this, the wires were subjected to cyclic oxidation in stagnant air. of this layer formation is dependent on temperature. Slow growing oxides such as chromia and alumina are desirable. Once the oxide is formed it can prevent the metal from further reacting with its environment. Cyclic oxidation models the changes in temperature these wires will undergo in application. Cycling the temperature introduces thermal stresses which can cause the oxide layer to break off. Re-growth of the oxide layer consumes more metal and therefore reduces the properties and durability of the material. were used for cyclic oxidation testing. The baseline material, Haynes 188, has a Co base and is a chromia former while the other two alloys, Kanthal A1 and PM2000, both have a Fe base and are alumina formers. Haynes 188 and Kanthal A1 wires are 250 pm in diameter and PM2000 wires are 150 pm in diameter. The coiled wire has a total surface area of 3 to 5 sq cm. The wires were oxidized for 11 cycles at 1204 C, each cycle containing a 1 hour heating time and a minimum 20 minute cooling time. Weights were taken between cycles. After 11 cycles, one wire of each composition was removed for analysis. The other wire continued testing for 70 cycles. Post-test analysis includes X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS) for phase identification and morphology.

  18. Simultaneous oxidation of ammonium and cresol isomers in a sequencing batch reactor: physiological and kinetic study.

    PubMed

    Salas-Cortés, Juan Antonio; Cuervo-López, Flor de María; Texier, Anne-Claire

    2016-02-19

    The aim of this study was to evaluate the physiological and kinetic capacities of a nitrifying consortium to simultaneously oxidize ammonium (138 mg N/L day), m-cresol, o-cresol, and p-cresol (180 mg C/L day in mixture) in a sequencing batch reactor (SBR). A 1-L SBR was firstly operated without cresol addition (phase I) for stabilizing the nitrification respiratory process with ammonium consumption efficiencies close to 100 % and obtaining nitrate as the main end product. When cresols were added (phase II m-cresol (10, 20, and 30 mg C/L); phase III m-cresol (30 mg C/L) and o-cresol (10, 20, and 30 mg C/L); phase IV a mixture of three isomers (30 mg C/L each one)), inhibitory effects were evidenced by decreased values of the specific rates of nitrification compared with values from phase I. However, the inhibition diminished throughout the operation cycles, and the overall nitrifying physiological activity of the sludge was not altered in terms of efficiency and nitrate yield. The different cresols were totally consumed, being o-cresol the most recalcitrant. The use of SBR allowed a metabolic adaptation of the consortium to oxidize the cresols as the specific rates of consumption increased throughout the cycles, showing that this type of reactor can be a good alternative for treating industrial effluents in a unique reactor.

  19. Hydrodynamic effects of air sparging on hollow fiber membranes in a bubble column reactor.

    PubMed

    Xia, Lijun; Law, Adrian Wing-Keung; Fane, Anthony G

    2013-07-01

    Air sparging is now a standard approach to reduce concentration polarization and fouling of membrane modules in membrane bioreactors (MBRs). The hydrodynamic shear stresses, bubble-induced turbulence and cross flows scour the membrane surfaces and help reduce the deposit of foulants onto the membrane surface. However, the detailed quantitative knowledge on the effect of air sparging remains lacking in the literature due to the complex hydrodynamics generated by the gas-liquid flows. To date, there is no valid model that describes the relationship between the membrane fouling performance and the flow hydrodynamics. The present study aims to examine the impact of hydrodynamics induced by air sparging on the membrane fouling mitigation in a quantitative manner. A modelled hollow fiber module was placed in a cylindrical bubble column reactor at different axial heights with the trans-membrane pressure (TMP) monitored under constant flux conditions. The configuration of bubble column without the membrane module immersed was identical to that studied by Gan et al. (2011) using Phase Doppler Anemometry (PDA), to ensure a good quantitative understanding of turbulent flow conditions along the column height. The experimental results showed that the meandering flow regime which exhibits high flow instability at the 0.3 m is more beneficial to fouling alleviation compared with the steady flow circulation regime at the 0.6 m. The filtration tests also confirmed the existence of an optimal superficial air velocity beyond which a further increase is of no significant benefit on the membrane fouling reduction. In addition, the alternate aeration provided by two air stones mounted at the opposite end of the diameter of the bubble column was also studied to investigate the associated flow dynamics and its influence on the membrane filtration performance. It was found that with a proper switching interval and membrane module orientation, the membrane fouling can be effectively

  20. Catalytic wet-air oxidation of a chemical plant wastewater over platinum-based catalysts.

    PubMed

    Cybulski, Andrzej; Trawczyński, Janusz

    2006-01-01

    Catalytic wet-air oxidation (CWAO) of wastewater (chemical oxygen demand [COD] = 1800 mg O2/dm3) from a fine chemicals plant was investigated in a fixed-bed reactor at T = 393-473 K under total pressure of 5.0 or 8.0 MPa. Catalysts containing 0.3% wt. of platinum deposited on two supports, mixed silica-titania (SM1) and carbon black composites (CBC) were used. The CBC-supported catalyst appeared to be more active than the SM1-supported one. A slow decrease of activity of the platinum on SM1 (Pt-SM1) during the long-term operation is attributed to recrystallization of titania and leaching of a support component, while the Pt-CBC catalyst is deteriorated, owing to combustion of the support component. The power-law-kinetic equations were used to describe the rate of COD removal at CWAO over the catalysts. The kinetic parameters of COD reduction for the wastewater were determined and compared with the kinetic parameters describing phenol oxidation over the same catalysts. Rates of COD removal for the wastewater were found higher than those for phenol oxidation over the same catalysts and under identical operating conditions.

  1. Treatment of textile effluent by chemical (Fenton's Reagent) and biological (sequencing batch reactor) oxidation.

    PubMed

    Rodrigues, Carmen S D; Madeira, Luis M; Boaventura, Rui A R

    2009-12-30

    The removal of organic compounds and colour from a synthetic effluent simulating a cotton dyeing wastewater was evaluated by using a combined process of Fenton's Reagent oxidation and biological degradation in a sequencing batch reactor (SBR). The experimental design methodology was first applied to the chemical oxidation process in order to determine the values of temperature, ferrous ion concentration and hydrogen peroxide concentration that maximize dissolved organic carbon (DOC) and colour removals and increase the effluent's biodegradability. Additional studies on the biological oxidation (SBR) of the raw and previously submitted to Fenton's oxidation effluent had been performed during 15 cycles (i.e., up to steady-state conditions), each one with the duration of 11.5h; Fenton's oxidation was performed either in conditions that maximize the colour removal or the increase in the biodegradability. The obtained results allowed concluding that the combination of the two treatment processes provides much better removals of DOC, BOD(5) and colour than the biological or chemical treatment alone. Moreover, the removal of organic matter in the integrated process is particularly effective when Fenton's pre-oxidation is carried out under conditions that promote the maximum increase in wastewater biodegradability.

  2. 75 FR 11877 - Review of the Secondary National Ambient Air Quality Standards for Oxides of Nitrogen and Oxides...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-12

    ... of Sulfur AGENCY: Environmental Protection Agency (EPA). ACTION: Notice of availability of draft... Ambient Air Quality Standards for Oxides of Nitrogen and Oxides of Sulfur: First External Review Draft... (welfare-based) NAAQS for oxides of nitrogen (NO X ) and oxides of sulfur (SO X ). Because NO X , SO...

  3. 75 FR 57463 - Review of the Secondary National Ambient Air Quality Standards for Oxides of Nitrogen and Oxides...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-21

    ... of Sulfur AGENCY: Environmental Protection Agency (EPA). ACTION: Notice of availability of draft... Ambient Air Quality Standards for Oxides of Nitrogen and Oxides of Sulfur: Second External Review Draft... for oxides of nitrogen (NO X ) and oxides of sulfur (SO X ). Because NO X , SO X , and...

  4. High temperature CO2 capture using calcium oxide sorbent in a fixed-bed reactor.

    PubMed

    Dou, Binlin; Song, Yongchen; Liu, Yingguang; Feng, Cong

    2010-11-15

    The gas-solid reaction and breakthrough curve of CO(2) capture using calcium oxide sorbent at high temperature in a fixed-bed reactor are of great importance, and being influenced by a number of factors makes the characterization and prediction of these a difficult problem. In this study, the operating parameters on reaction between solid sorbent and CO(2) gas at high temperature were investigated. The results of the breakthrough curves showed that calcium oxide sorbent in the fixed-bed reactor was capable of reducing the CO(2) level to near zero level with the steam of 10 vol%, and the sorbent in CaO mixed with MgO of 40 wt% had extremely low capacity for CO(2) capture at 550°C. Calcium oxide sorbent after reaction can be easily regenerated at 900°C by pure N(2) flow. The experimental data were analyzed by shrinking core model, and the results showed reaction rates of both fresh and regeneration sorbents with CO(2) were controlled by a combination of the surface chemical reaction and diffusion of product layer.

  5. Ozone generation by negative direct current corona discharges in dry air fed coaxial wire-cylinder reactors

    NASA Astrophysics Data System (ADS)

    Yehia, Ashraf; Mizuno, Akira

    2013-05-01

    An analytical study was made in this paper for calculating the ozone generation by negative dc corona discharges. The corona discharges were formed in a coaxial wire-cylinder reactor. The reactor was fed by dry air flowing with constant rates at atmospheric pressure and room temperature, and stressed by a negative dc voltage. The current-voltage characteristics of the negative dc corona discharges formed inside the reactor were measured in parallel with concentration of the generated ozone under different operating conditions. An empirical equation was derived from the experimental results for calculating the ozone concentration generated inside the reactor. The results, that have been recalculated by using the derived equation, have agreed with the experimental results over the whole range of the investigated parameters, except in the saturation range for the ozone concentration. Therefore, the derived equation represents a suitable criterion for expecting the ozone concentration generated by negative dc corona discharges in dry air fed coaxial wire-cylinder reactors under any operating conditions in range of the investigated parameters.

  6. Ozone generation by negative direct current corona discharges in dry air fed coaxial wire-cylinder reactors

    SciTech Connect

    Yehia, Ashraf; Mizuno, Akira

    2013-05-14

    An analytical study was made in this paper for calculating the ozone generation by negative dc corona discharges. The corona discharges were formed in a coaxial wire-cylinder reactor. The reactor was fed by dry air flowing with constant rates at atmospheric pressure and room temperature, and stressed by a negative dc voltage. The current-voltage characteristics of the negative dc corona discharges formed inside the reactor were measured in parallel with concentration of the generated ozone under different operating conditions. An empirical equation was derived from the experimental results for calculating the ozone concentration generated inside the reactor. The results, that have been recalculated by using the derived equation, have agreed with the experimental results over the whole range of the investigated parameters, except in the saturation range for the ozone concentration. Therefore, the derived equation represents a suitable criterion for expecting the ozone concentration generated by negative dc corona discharges in dry air fed coaxial wire-cylinder reactors under any operating conditions in range of the investigated parameters.

  7. Catalytic oxidation of trace levels of methane in oxygen in a tubular reactor

    NASA Technical Reports Server (NTRS)

    Warshay, M.; Caenepeel, C. L.

    1974-01-01

    An experimental investigation of catalytic oxidation of trace levels of methane in oxygen was conducted in a tubular reactor. Two noble metal solid catalysts were explored: a 1-percent platinum on gamma alumina and a 0.5-percent rhodium on gamma alumina. For each catalyst the activity was determined as a function of temperature, pressure, space velocity, and methane concentration. The rhodium catalyst was considerably more active than the platinum catalyst. For each catalyst mass transfer had a pronounced effect upon activity at low space velocity.

  8. Modeling Geometric Arrangements of TiO2-Based Catalyst Substrates and Isotropic Light Sources to Enhance the Efficiency of a Photocatalystic Oxidation (PCO) Reactor

    NASA Technical Reports Server (NTRS)

    Richards, Jeffrey T.; Levine, Lanfang H.; Husk, Geoffrey K.

    2011-01-01

    The closed confined environments of the ISS, as well as in future spacecraft for exploration beyond LEO, provide many challenges to crew health. One such challenge is the availability of a robust, energy efficient, and re-generable air revitalization system that controls trace volatile organic contaminants (VOCs) to levels below a specified spacecraft maximum allowable concentration (SMAC). Photocatalytic oxidation (PCO), which is capable of mineralizing VOCs at room temperature and of accommodating a high volumetric flow, is being evaluated as an alternative trace contaminant control technology. In an architecture of a combined air and water management system, placing a PCO unit before a condensing heat exchanger for humidity control will greatly reduce the organic load into the humidity condensate loop ofthe water processing assembly (WPA) thereby enhancing the life cycle economics ofthe WPA. This targeted application dictates a single pass efficiency of greater than 90% for polar VOCs. Although this target was met in laboratory bench-scaled reactors, no commercial or SBIR-developed prototype PCO units examined to date have achieved this goal. Furthermore, the formation of partial oxidation products (e.g., acetaldehyde) was not eliminated. It is known that single pass efficiency and partial oxidation are strongly dependent upon the contact time and catalyst illumination, hence the requirement for an efficient reactor design. The objective of this study is to maximize the apparent contact time and illuminated catalyst surface area at a given reactor volume and volumetric flow. In this study, a Ti02-based photocatalyst is assumed to be immobilized on porous substrate panels and illumination derived from linear isotropic light sources. Mathematical modeling using computational fluid dynamics (CFD) analyses were performed to investigate the effect of: 1) the geometry and configuration of catalyst-coated substrate panels, 2) porosity of the supporting substrate, and 3

  9. A chemical reactor network for oxides of nitrogen emission prediction in gas turbine combustor

    NASA Astrophysics Data System (ADS)

    Hao, Nguyen Thanh

    2014-06-01

    This study presents the use of a new chemical reactor network (CRN) model and non-uniform injectors to predict the NOx emission pollutant in gas turbine combustor. The CRN uses information from Computational Fluid Dynamics (CFD) combustion analysis with two injectors of CH4-air mixture. The injectors of CH4-air mixture have different lean equivalence ratio, and they control fuel flow to stabilize combustion and adjust combustor's equivalence ratio. Non-uniform injector is applied to improve the burning process of the turbine combustor. The results of the new CRN for NOx prediction in the gas turbine combustor show very good agreement with the experimental data from Korea Electric Power Research Institute.

  10. CFD Modeling of Sodium-Oxide Deposition in Sodium-Cooled Fast Reactor Compact Heat Exchangers

    SciTech Connect

    Tatli, Emre; Ferroni, Paolo; Mazzoccoli, Jason

    2015-09-02

    The possible use of compact heat exchangers (HXs) in sodium-cooled fast reactors (SFR) employing a Brayton cycle is promising due to their high power density and resulting small volume in comparison with conventional shell-and-tube HXs. However, the small diameter of their channels makes them more susceptible to plugging due to Na2O deposition during accident conditions. Although cold traps are designed to reduce oxygen impurity levels in the sodium coolant, their failure, in conjunction with accidental air ingress into the sodium boundary, could result in coolant oxygen levels that are above the saturation limit in the cooler parts of the HX channels. This can result in Na2O crystallization and the formation of solid deposits on cooled channel surfaces, limiting or even blocking coolant flow. The development of analysis tools capable of modeling the formation of these deposits in the presence of sodium flow will allow designers of SFRs to properly size the HX channels so that, in the scenario mentioned above, the reactor operator has sufficient time to detect and react to the affected HX. Until now, analytical methodologies to predict the formation of these deposits have been developed, but never implemented in a high-fidelity computational tool suited to modern reactor design techniques. This paper summarizes the challenges and the current status in the development of a Computational Fluid Dynamics (CFD) methodology to predict deposit formation, with particular emphasis on sensitivity studies on some parameters affecting deposition.

  11. Work function recovery of air exposed molybdenum oxide thin films

    NASA Astrophysics Data System (ADS)

    Irfan, Irfan; James Turinske, Alexander; Bao, Zhenan; Gao, Yongli

    2012-08-01

    We report substantial work function (WF) recovery of air exposed molybdenum oxide thin films with vacuum annealing. We observed a sharp reduction in the MoOx WF (from 6.8 eV to 5.6 eV) as well as a very thin layer of oxygen rich adsorbate on the MoOx film after an hour of air exposure. The WF of the exposed MoOx film started to gradually recover with increasing annealing temperature in vacuum, and the saturation in the WF recovery was observed at 450 °C with WF ˜6.4 eV. We further studied the interface formation between the annealed MoOx and copper phthalocyanine (CuPc). The highest occupied molecular orbital (HOMO) level of CuPc was observed to be almost pinned to the Fermi level, strongly suggesting the possibility of efficient hole injection with the vacuum annealed MoOx film.

  12. Model-based evaluation of ferrous iron oxidation by acidophilic bacteria in chemostat and biofilm airlift reactors.

    PubMed

    Ebrahimi, Sirous; Faraghi, Neda; Hosseini, Maryam

    2015-10-01

    This article presents a model-based evaluation of ferrous iron oxidation in chemostat and biofilm airlift reactors inoculated with a mixed culture of Acidithiobacillus ferrooxidans and Leptospirillum ferrooxidans bacteria. The competition between the two types of bacteria in the chemostat and in the biofilm airlift reactors together with the distribution of both bacteria along the biofilm thickness at different time sections has been studied. The bacterial distribution profiles along the biofilm in the airlift reactor at different time scales show that in the beginning A. ferrooxidans bacteria are dominant, but when the reactor operates for a long time the desirable L. ferrooxidans species outcompete A. ferrooxidans as a result of the low Fe(2+) and high Fe(3+) concentrations. The results obtained from the simulation were compared with the experimental data of continuously operated internal loop airlift biofilm reactor. The model results are in good agreement with the experimental results.

  13. Baeyer-Villiger oxidation of cyclohexanone to epsilon-caprolactone in airlift sonochemical reactor.

    PubMed

    Zhang, Ping; Yang, Mei; Lu, Xiaoping; Han, Pingfang; Wang, Yanru

    2006-12-22

    Baeyer-Villiger oxidation of cyclohexanone to epsilon-caprolactone was studied in a new type reactor--the airlift loop sonochemical reactor. The reactor plays a synergistic effect of sonochemsity and higher oxygen transfer rate. The influences of ultrasound intensity, reaction temperature, the molar ratio of benzaldehyde to cyclohexanone and oxygen gas flow rate on the conversion and selectivity of cyclohexanone were investigated and discussed. Under ultrasound, the amount of benzaldehyde can be reduced from 75% to 67%. Ultrasound not only intensified the rates of reactions but also increased the yield of product. The optimized operation conditions are listed as follows: the reaction temperature is 30 degrees C, the molar ratio of cyclohexanone to benzaldehyde is 1:2, the oxygen gas flow rate is 1.15 cm s(-1), and ultrasonic irradiations 2h at 40 kHz, 2.25 W cm(-2). Under the optimum operation conditions, the average molar yield of epsilon-caprolactone comes up to 87.7%.

  14. Survey of Worldwide Light Water Reactor Experience with Mixed Uranium-Plutonium Oxide Fuel

    SciTech Connect

    Cowell, B.S.; Fisher, S.E.

    1999-02-01

    The US and the Former Soviet Union (FSU) have recently declared quantities of weapons materials, including weapons-grade (WG) plutonium, excess to strategic requirements. One of the leading candidates for the disposition of excess WG plutonium is irradiation in light water reactors (LWRs) as mixed uranium-plutonium oxide (MOX) fuel. A description of the MOX fuel fabrication techniques in worldwide use is presented. A comprehensive examination of the domestic MOX experience in US reactors obtained during the 1960s, 1970s, and early 1980s is also presented. This experience is described by manufacturer and is also categorized by the reactor facility that irradiated the MOX fuel. A limited summary of the international experience with MOX fuels is also presented. A review of MOX fuel and its performance is conducted in view of the special considerations associated with the disposition of WG plutonium. Based on the available information, it appears that adoption of foreign commercial MOX technology from one of the successful MOX fuel vendors will minimize the technical risks to the overall mission. The conclusion is made that the existing MOX fuel experience base suggests that disposition of excess weapons plutonium through irradiation in LWRs is a technically attractive option.

  15. Catalytic wet air oxidation of high concentration pharmaceutical wastewater.

    PubMed

    Zhan, Wei; Wang, Xiaocong; Li, Daosheng; Ren, Yongzheng; Liu, Dongqi; Kang, Jianxiong

    2013-01-01

    In this study, we investigated the pretreatment of a high concentration pharmaceutical wastewater by catalytic wet air oxidation (CWAO) process. Different experiments were conducted to investigate the effects of the catalyst type, operating temperature, initial system pH, and oxygen partial pressure on the oxidation of the wastewater. Results show that the catalysts prepared by the co-precipitation method have better catalytic activity compared to others. Chemical oxygen demand (COD) conversion increased with the increase in temperature from 160 to 220 °C and decreased with the increase in pH. Moreover, the effect of the oxygen partial pressure on the COD conversion was significant only during the first 20 min of the reaction. Furthermore, the biodegradability of the wastewater improved greatly after CWAO, the ratio of BOD5/COD increased less than 0.1-0.75 when treated at 220 °C (BOD: biochemical oxygen demand).

  16. Exergy parametric study of carbon monoxide oxidation in moist air

    NASA Astrophysics Data System (ADS)

    Souidi, Ferhat; Benmalek, Toufik; Yesaad, Billel; Baik, Mouloud

    2015-12-01

    This study aims to analyze the oxidation of carbon monoxide in moist air from the second thermodynamic law aspect. A mathematical model of laminar premixed flame in a stagnation point flow has been achieved by numerical solution of the boundary layer equation using a self-made code. The chemical kinetic mechanism for flameless combustion of fuel, which is a mixture of carbon monoxide, oxygen, and water vapor, is modeled by 34 elementary reactions that incorporate (09) nine chemical species: CO, O, CO2, O2, H2O, H, H2, HO2, and OH. The salient point is that for all the parameters we considered, the exergy of the process is completely destroyed by irreversibilities. From the chemical viewpoint, the OH radical plays an essential role in CO oxidation. This latter point has already been mentioned by previous investigators.

  17. Development of the Monolith Froth Reactor for Catalytic Wet Oxidation of CELSS Model Wastes

    NASA Technical Reports Server (NTRS)

    Abraham, Martin; Fisher, John W.

    1995-01-01

    The aqueous phase oxidation of acetic acid, used as a model compound for the treatment of CELSS (Controlled Ecological Life Support System) waste, was carried out in the monolith froth reactor which utilizes two-phase flow in the monolith channels. The catalytic oxidation of acetic acid was carried out over a Pt/Al2O3 catalyst, prepared at The University of Tulsa, at temperatures and pressures below the critical point of water. The effect of externally controllable parameters (temperature, liquid flow rate, distributor plate orifice size, pitch, and catalyst distance from the distributor plate) on the rate of acetic acid oxidation was investigated. Results indicate reaction rate increased with increasing temperature and exhibited a maximum with respect to liquid flow rate. The apparent activation energy calculated from reaction rate data was 99.7 kJ/mol. This value is similar to values reported for the oxidation of acetic acid in other systems and is comparable to intrinsic values calculated for oxidation reactions. The kinetic data were modeled using simple power law kinetics. The effect of "froth" feed system characteristics was also investigated. Results indicate that the reaction rate exhibits a maximum with respect to distributor plate orifice size, pitch, and catalyst distance from the distributor plate. Fundamental results obtained were used to extrapolate where the complete removal of acetic acid would be obtained and for the design and operation of a full scale CELSS treatment system.

  18. Development of the Monolith Froth Reactor for Catalytic Wet Oxidation of CELSS Model Wastes

    NASA Technical Reports Server (NTRS)

    Fisher, John W.; Abraham, Martin

    1993-01-01

    The aqueous phase oxidation of acetic acid, used as a model compound for the treatment of CELSS (Controlled Ecological Life Support System) waste, was carried out in the monolith froth reactor which utilizes two-phase flow in the monolith channels. The catalytic oxidation of acetic acid was carried out over a Pt/Al2O3 catalyst at temperatures and pressures below the critical point of water. The effect of externally controllable parameters (temperature, liquid flow rate, distributor plate orifice size, pitch, and catalyst distance from the distributor plate) on the rate of acetic acid oxidation was investigated. Results indicate reaction rate increased with increasing temperature and exhibited a maximum with respect to liquid flow rate. The apparent activation energy calculated from reaction rate data was 99.7 kJ/mol. This value is similar to values reported for the oxidation of acetic acid in other systems and is comparable to intrinsic values calculated for oxidation reactions. The kinetic data were modeled using simple power law kinetics. The effect of "froth" feed system characteristics was also investigated. Results indicate that the reaction rate exhibits a maximum with respect to distributor plate orifice size, pitch, and catalyst distance from the distributor plate. Fundamental results obtained were used to extrapolate where the complete removal of acetic acid would be obtained and for the design and operation of a full scale CELSS treatment system.

  19. Oxidation and Volatilization of TZM Alloy in Air

    SciTech Connect

    Smolik, Galen Richard; Petti, David Andrew; Schuetz, Stanley Thomas

    1999-10-01

    The excellent high temperature strength and thermal conductivity of molybdenum-base alloys provide attractive features for components in advanced magnetic and inertial fusion devices. Refractory metal base alloys react readily with oxygen and other gases, and molybdenum alloys are susceptible to losses from highly volatile molybdenum trioxide (MoOsub3) species. Transport of radioactivity by the volatilization, migration, and re-deposition of MoO3 during a potential accident involving a loss of vacuum or inert environment represents a safety issue. We have experimentally measured the oxidation, volatilization and re-deposition of molybdenum from TZM in flowing air between 400 and 800°C. Calculations using chemical thermodynamic data for vapor pressures over pure MoOsub3 and a vaporization mass transfer model correlate well with experimental data between 600 and 800°C. Partial saturation of (MoOsub3) gas species account for influences of flow rate at 700°C. Some anomalies in oxidation rate below 650°C, suggesting that other phases, e.g., MoOsub2 or other non-stoichiometric oxides may influence oxidation and volatilization processes under some limited conditions.

  20. Oxidation and volatilization of TZM alloy in air

    SciTech Connect

    G.R. Smolik; D.A. Petti; S.T. Schuetz

    1999-10-10

    The excellent high temperature strength and thermal conductivity of molybdenum-base alloys provide attractive features for components in advanced magnetic and inertial fusion devices. Refractory metal base alloys react readily with oxygen and other gases, and molybdenum alloys are susceptible to losses from highly volatile molybdenum trioxide (MoO{sub 3}) species. Transport of radioactivity by the volatilization, migration, and re-deposition of MoO{sub 3} during a potential accident involving a loss of vacuum or inert environment represents a safety issue. The authors have experimentally measured the oxidation, volatilization and re-deposition of molybdenum from TZM in flowing air between 400 and 800 C. Calculations using chemical thermodynamic data for vapor pressures over pure MoO{sub 3} and a vaporization mass transfer model correlate well with experimental data between 600 and 800 C. Partial saturation of MoO{sub 3} gas species account for influences of flow rate at 700 C. Some anomalies in oxidation rate below 650 C, suggesting that other phases, e.g., MoO{sub 2} or other non-stoichiometric oxides may influence oxidation and volatilization processes under some limited conditions.

  1. Oxidation and volatilization of TZM alloy in air

    NASA Astrophysics Data System (ADS)

    Smolik, G. R.; Petti, D. A.; Schuetz, S. T.

    2000-12-01

    The excellent high temperature strength and thermal conductivity of molybdenum-base alloys provide attractive features for components in advanced magnetic and inertial fusion devices. Refractory metal-base alloys react readily with oxygen and other gases, and molybdenum alloys are susceptible to losses from highly volatile molybdenum trioxide (MoO 3) species. Transport of radioactivity by the volatilization, migration and re-deposition of MoO 3 during a potential accident involving a loss of vacuum or inert environment represents a safety issue. We have experimentally measured the oxidation, volatilization and re-deposition of molybdenum from TZM in flowing air between 400°C and 800°C. Calculations using chemical thermodynamic data for vapor pressures over pure MoO 3 and a vaporization mass transfer model correlate well with the experimental data between 600°C and 800°C. Partial saturation of (MoO 3) gas species accounts for influences of flow rate at 700°C. Some anomalies in oxidation rate below 650°C suggest that other phases, e.g., MoO 2 or other non-stoichiometric oxides may influence oxidation and volatilization processes under some limited conditions.

  2. 40 CFR 50.5 - National secondary ambient air quality standard for sulfur oxides (sulfur dioxide).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... standard for sulfur oxides (sulfur dioxide). 50.5 Section 50.5 Protection of Environment ENVIRONMENTAL....5 National secondary ambient air quality standard for sulfur oxides (sulfur dioxide). (a) The level... than 0.05 ppm shall be rounded up). (b) Sulfur oxides shall be measured in the ambient air as...

  3. 40 CFR 50.17 - National primary ambient air quality standards for sulfur oxides (sulfur dioxide).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... standards for sulfur oxides (sulfur dioxide). 50.17 Section 50.17 Protection of Environment ENVIRONMENTAL....17 National primary ambient air quality standards for sulfur oxides (sulfur dioxide). (a) The level of the national primary 1-hour annual ambient air quality standard for oxides of sulfur is 75...

  4. 40 CFR 50.5 - National secondary ambient air quality standard for sulfur oxides (sulfur dioxide).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... standard for sulfur oxides (sulfur dioxide). 50.5 Section 50.5 Protection of Environment ENVIRONMENTAL....5 National secondary ambient air quality standard for sulfur oxides (sulfur dioxide). (a) The level... than 0.05 ppm shall be rounded up). (b) Sulfur oxides shall be measured in the ambient air as...

  5. 40 CFR 50.17 - National primary ambient air quality standards for sulfur oxides (sulfur dioxide).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... standards for sulfur oxides (sulfur dioxide). 50.17 Section 50.17 Protection of Environment ENVIRONMENTAL....17 National primary ambient air quality standards for sulfur oxides (sulfur dioxide). (a) The level of the national primary 1-hour annual ambient air quality standard for oxides of sulfur is 75...

  6. 40 CFR 50.5 - National secondary ambient air quality standard for sulfur oxides (sulfur dioxide).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... standard for sulfur oxides (sulfur dioxide). 50.5 Section 50.5 Protection of Environment ENVIRONMENTAL....5 National secondary ambient air quality standard for sulfur oxides (sulfur dioxide). (a) The level... than 0.05 ppm shall be rounded up). (b) Sulfur oxides shall be measured in the ambient air as...

  7. 40 CFR 50.4 - National primary ambient air quality standards for sulfur oxides (sulfur dioxide).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... standards for sulfur oxides (sulfur dioxide). 50.4 Section 50.4 Protection of Environment ENVIRONMENTAL....4 National primary ambient air quality standards for sulfur oxides (sulfur dioxide). (a) The level...). (c) Sulfur oxides shall be measured in the ambient air as sulfur dioxide by the reference...

  8. 40 CFR 50.5 - National secondary ambient air quality standard for sulfur oxides (sulfur dioxide).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... standard for sulfur oxides (sulfur dioxide). 50.5 Section 50.5 Protection of Environment ENVIRONMENTAL....5 National secondary ambient air quality standard for sulfur oxides (sulfur dioxide). (a) The level... than 0.05 ppm shall be rounded up). (b) Sulfur oxides shall be measured in the ambient air as...

  9. 40 CFR 50.4 - National primary ambient air quality standards for sulfur oxides (sulfur dioxide).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... standards for sulfur oxides (sulfur dioxide). 50.4 Section 50.4 Protection of Environment ENVIRONMENTAL....4 National primary ambient air quality standards for sulfur oxides (sulfur dioxide). (a) The level...). (c) Sulfur oxides shall be measured in the ambient air as sulfur dioxide by the reference...

  10. 40 CFR 50.4 - National primary ambient air quality standards for sulfur oxides (sulfur dioxide).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... standards for sulfur oxides (sulfur dioxide). 50.4 Section 50.4 Protection of Environment ENVIRONMENTAL....4 National primary ambient air quality standards for sulfur oxides (sulfur dioxide). (a) The level...). (c) Sulfur oxides shall be measured in the ambient air as sulfur dioxide by the reference...

  11. 40 CFR 50.4 - National primary ambient air quality standards for sulfur oxides (sulfur dioxide).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... standards for sulfur oxides (sulfur dioxide). 50.4 Section 50.4 Protection of Environment ENVIRONMENTAL....4 National primary ambient air quality standards for sulfur oxides (sulfur dioxide). (a) The level...). (c) Sulfur oxides shall be measured in the ambient air as sulfur dioxide by the reference...

  12. 40 CFR 50.17 - National primary ambient air quality standards for sulfur oxides (sulfur dioxide).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... standards for sulfur oxides (sulfur dioxide). 50.17 Section 50.17 Protection of Environment ENVIRONMENTAL....17 National primary ambient air quality standards for sulfur oxides (sulfur dioxide). (a) The level of the national primary 1-hour annual ambient air quality standard for oxides of sulfur is 75...

  13. 40 CFR 50.17 - National primary ambient air quality standards for sulfur oxides (sulfur dioxide).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... standards for sulfur oxides (sulfur dioxide). 50.17 Section 50.17 Protection of Environment ENVIRONMENTAL....17 National primary ambient air quality standards for sulfur oxides (sulfur dioxide). (a) The level of the national primary 1-hour annual ambient air quality standard for oxides of sulfur is 75...

  14. 40 CFR 50.5 - National secondary ambient air quality standard for sulfur oxides (sulfur dioxide).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... standard for sulfur oxides (sulfur dioxide). 50.5 Section 50.5 Protection of Environment ENVIRONMENTAL....5 National secondary ambient air quality standard for sulfur oxides (sulfur dioxide). (a) The level... than 0.05 ppm shall be rounded up). (b) Sulfur oxides shall be measured in the ambient air as...

  15. 40 CFR 50.17 - National primary ambient air quality standards for sulfur oxides (sulfur dioxide).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... standards for sulfur oxides (sulfur dioxide). 50.17 Section 50.17 Protection of Environment ENVIRONMENTAL....17 National primary ambient air quality standards for sulfur oxides (sulfur dioxide). (a) The level of the national primary 1-hour annual ambient air quality standard for oxides of sulfur is 75...

  16. Oxidation/corrosion of Nb-1 Zr and PWC-11 in lithium for space reactor applications

    SciTech Connect

    DiStefano, J.R.; Hendricks, J.W.

    1995-04-01

    The materials Nb-1 Zr and Nb-1 Zr-0.1 C (PWC-11) are candidate structural materials for compact lithium-cooled reactor systems for space applications. Because the mechanical and corrosion properties of niobium alloys can be significantly altered by oxygen, components must be protected from reactions with oxygen during ground testing. The effect of simultaneous oxidation/corrosion behavior in lithium was determined under several conditions, as well as the conditions under which a thin molybdenum coating was effective in preventing oxidation/corrosion. The effects of oxygen can be mitigated by its reaction with zirconium, and studies were also conducted to evaluate time-temperature relationships for this reaction.

  17. Application of biofilm reactors to improve ammonia oxidation in low nitrogen loaded wastewater.

    PubMed

    Seca, I; Torres, R; Val del Río, A; Mosquera-Corral, A; Campos, J L; Méndez, R

    2011-01-01

    An airlift reactor using zeolite particles as carrier material was used for the nitrification of effluents from the aquaculture industry. During the start-up the nitrogen concentration was kept around 100 mg NH4(+)-N/L to develop the nitrifying population. Later it was decreased down to around 3 mg NH4(+)-N/L and the dilution rate was increased up to 4.8 d(-1) in order to simulate the conditions in a an aquaculture waster treatment system. A nitrogen loading rate (NLR) of 535 mg NH(+)-N/m2 d was fully oxidized to nitrate. Higher values of NLRs caused nitrite accumulation. A second biofilm reactor was fed with a synthetic medium containing 50 mg NH4(+)-N/L which simulated the effluents from anaerobic units treating domestic wastewater. A nitrogen loading rate of 400 mg NH4(+)-N/L d was oxidized into nitrate with an efficiency of 60% at a dilution rate of 8 d(-1). Both biofilm systems allowed the development of a nitrifying population to treat the studied types of wastewaters.

  18. Continuous Polyol Synthesis of Metal and Metal Oxide Nanoparticles Using a Segmented Flow Tubular Reactor (SFTR).

    PubMed

    Testino, Andrea; Pilger, Frank; Lucchini, Mattia Alberto; Quinsaat, Jose Enrico Q; Stähli, Christoph; Bowen, Paul

    2015-06-08

    Over the last years a new type of tubular plug flow reactor, the segmented flow tubular reactor (SFTR), has proven its versatility and robustness through the water-based synthesis of precipitates as varied as CaCO3, BaTiO3, Mn(1-x)NixC2O4·2H2O, YBa oxalates, copper oxalate, ZnS, ZnO, iron oxides, and TiO2 produced with a high powder quality (phase composition, particle size, and shape) and high reproducibility. The SFTR has been developed to overcome the classical problems of powder production scale-up from batch processes, which are mainly linked with mass and heat transfer. Recently, the SFTR concept has been further developed and applied for the synthesis of metals, metal oxides, and salts in form of nano- or micro-particles in organic solvents. This has been done by increasing the working temperature and modifying the particle carrying solvent. In this paper we summarize the experimental results for four materials prepared according to the polyol synthesis route combined with the SFTR. CeO2, Ni, Ag, and Ca3(PO4)2 nanoparticles (NPs) can be obtained with a production rate of about 1-10 g per h. The production was carried out for several hours with constant product quality. These findings further corroborate the reliability and versatility of the SFTR for high throughput powder production.

  19. Flow reactor studies of non-equilibrium plasma-assisted oxidation of n-alkanes.

    PubMed

    Tsolas, Nicholas; Lee, Jong Guen; Yetter, Richard A

    2015-08-13

    The oxidation of n-alkanes (C1-C7) has been studied with and without the effects of a nanosecond, non-equilibrium plasma discharge at 1 atm pressure from 420 to 1250 K. Experiments have been performed under nearly isothermal conditions in a flow reactor, where reactive mixtures are diluted in Ar to minimize temperature changes from chemical reactions. Sample extraction performed at the exit of the reactor captures product and intermediate species and stores them in a multi-position valve for subsequent identification and quantification using gas chromatography. By fixing the flow rate in the reactor and varying the temperature, reactivity maps for the oxidation of fuels are achieved. Considering all the fuels studied, fuel consumption under the effects of the plasma is shown to have been enhanced significantly, particularly for the low-temperature regime (T<800 K). In fact, multiple transitions in the rates of fuel consumption are observed depending on fuel with the emergence of a negative-temperature-coefficient regime. For all fuels, the temperature for the transition into the high-temperature chemistry is lowered as a consequence of the plasma being able to increase the rate of fuel consumption. Using a phenomenological interpretation of the intermediate species formed, it can be shown that the active particles produced from the plasma enhance alkyl radical formation at all temperatures and enable low-temperature chain branching for fuels C3 and greater. The significance of this result demonstrates that the plasma provides an opportunity for low-temperature chain branching to occur at reduced pressures, which is typically observed at elevated pressures in thermal induced systems.

  20. Applicability of fluidized bed reactor in recalcitrant compound degradation through advanced oxidation processes: a review.

    PubMed

    Tisa, Farhana; Abdul Raman, Abdul Aziz; Wan Daud, Wan Mohd Ashri

    2014-12-15

    Treatment of industrial waste water (e.g. textile waste water, phenol waste water, pharmaceutical etc) faces limitation in conventional treatment procedures. Advanced oxidation processes (AOPs) do not suffer from the limits of conventional treatment processes and consequently degrade toxic pollutants more efficiently. Complexity is faced in eradicating the restrictions of AOPs such as sludge formation, toxic intermediates formation and high requirement for oxidants. Increased mass-transfer in AOPs is an alternate solution to this problem. AOPs combined with Fluidized bed reactor (FBR) can be a potential choice compared to fixed bed or moving bed reactor, as AOP catalysts life-span last for only maximum of 5-10 cycles. Hence, FBR-AOPs require lesser operational and maintenance cost by reducing material resources. The time required for AOP can be minimized using FBR and also treatable working volume can be increased. FBR-AOP can process from 1 to 10 L of volume which is 10 times more than simple batch reaction. The mass transfer is higher thus the reaction time is lesser. For having increased mass transfer sludge production can be successfully avoided. The review study suggests that, optimum particle size, catalyst to reactor volume ratio, catalyst diameter and liquid or gas velocity is required for efficient FBR-AOP systems. However, FBR-AOPs are still under lab-scale investigation and for industrial application cost study is needed. Cost of FBR-AOPs highly depends on energy density needed and the mechanism of degradation of the pollutant. The cost of waste water treatment containing azo dyes was found to be US$ 50 to US$ 500 per 1000 gallons where, the cost for treating phenol water was US$ 50 to US$ 800 per 1000 gallons. The analysis for FBR-AOP costs has been found to depend on the targeted pollutant, degradation mechanism (zero order, 1st order and 2nd order) and energy consumptions by the AOPs.

  1. Diversity Profile of Microbes Associated with Anaerobic Sulfur Oxidation in an Upflow Anaerobic Sludge Blanket Reactor Treating Municipal Sewage

    PubMed Central

    Aida, Azrina A.; Kuroda, Kyohei; Yamamoto, Masamitsu; Nakamura, Akinobu; Hatamoto, Masashi; Yamaguchi, Takashi

    2015-01-01

    We herein analyzed the diversity of microbes involved in anaerobic sulfur oxidation in an upflow anaerobic sludge blanket (UASB) reactor used for treating municipal sewage under low-temperature conditions. Anaerobic sulfur oxidation occurred in the absence of oxygen, with nitrite and nitrate as electron acceptors; however, reactor performance parameters demonstrated that anaerobic conditions were maintained. In order to gain insights into the underlying basis of anaerobic sulfur oxidation, the microbial diversity that exists in the UASB sludge was analyzed comprehensively to determine their identities and contribution to sulfur oxidation. Sludge samples were collected from the UASB reactor over a period of 2 years and used for bacterial 16S rRNA gene-based terminal restriction fragment length polymorphism (T-RFLP) and next-generation sequencing analyses. T-RFLP and sequencing results both showed that microbial community patterns changed markedly from day 537 onwards. Bacteria belonging to the genus Desulforhabdus within the phylum Proteobacteria and uncultured bacteria within the phylum Fusobacteria were the main groups observed during the period of anaerobic sulfur oxidation. Their abundance correlated with temperature, suggesting that these bacterial groups played roles in anaerobic sulfur oxidation in UASB reactors. PMID:25817585

  2. Wet air oxidation of epoxy acrylate monomer industrial wastewater.

    PubMed

    Yang, Shaoxia; Liu, Zhengqian; Huang, Xiaohui; Zhang, Beiping

    2010-06-15

    Epoxy acrylate monomer industrial wastewater contained highly concentrated and toxic organic compounds. The wet air oxidation (WAO) and catalytic wet air oxidation (CWAO) were used to eliminate pollutants in order to examine the feasibility of the WAO/CWAO as a pre-treatment method for the industrial wastewater. The results showed that in the WAO 63% chemical oxygen demand (COD) and 41% total organic carbon (TOC) removals were achieved and biological oxygen demand (BOD(5))/COD ratio increased from 0.13 to 0.72 after 3h reaction at 250 degrees C, 3.5MPa and the initial concentration of 100g(COD)/L. Among homogenous catalysts (Cu(2+), Fe(2+), Fe(3+) and Mn(2+) salts), Cu(2+) salt exhibited better performance. CuO catalyst was used in the CWAO of the wastewater, COD and TOC conversion were 77 and 54%, and good biodegradability was achieved. The results proved that the CWAO was an effective pre-treatment method for the epoxy acrylate monomer industrial wastewater.

  3. USING WET AIR OXIDATION TECHNOLOGY TO DESTROY TETRAPHENYLBORATE

    SciTech Connect

    Adu-Wusu, K; Daniel McCabe, D; Bill Wilmarth, B

    2007-04-04

    A bench-scale feasibility study on the use of a Wet Air Oxidation (WAO) process to destroy a slurry laden with tetraphenylborate (TPB) compounds has been undertaken. WAO is an aqueous phase process in which soluble and/or insoluble waste constituents are oxidized using oxygen or oxygen in air at elevated temperatures and pressures ranging from 150 C and 1 MPa to 320 C and 22 MPa. The products of the reaction are CO{sub 2}, H{sub 2}O, and low molecular weight oxygenated organics (e.g. acetate, oxalate). Test results indicate WAO is a feasible process for destroying TPB, its primary daughter products [triphenylborane (3PB), diphenylborinic acid (2PB), and phenylboronic acid (1PB)], phenol, and most of the biphenyl byproduct. The required conditions are a temperature of 300 C, a reaction time of 3 hours, 1:1 feed slurry dilution with 2M NaOH solution, the addition of CuSO{sub 4}.5H{sub 2}O solution (500 mg/L Cu) as catalyst, and the addition of 2000 mL/L of antifoam. However, for the destruction of TPB, its daughter compounds (3PB, 2PB, and 1PB), and phenol without consideration for biphenyl destruction, less severe conditions (280 C and 1-hour reaction time with similar remaining above conditions) are adequate.

  4. Evaluation of tubular reactor designs for supercritical water oxidation of U.S. Department of Energy mixed waste

    SciTech Connect

    Barnes, C.M.

    1994-12-01

    Supercritical water oxidation (SCWO) is an emerging technology for industrial waste treatment and is being developed for treatment of the US Department of Energy (DOE) mixed hazardous and radioactive wastes. In the SCWO process, wastes containing organic material are oxidized in the presence of water at conditions of temperature and pressure above the critical point of water, 374 C and 22.1 MPa. DOE mixed wastes consist of a broad spectrum of liquids, sludges, and solids containing a wide variety of organic components plus inorganic components including radionuclides. This report is a review and evaluation of tubular reactor designs for supercritical water oxidation of US Department of Energy mixed waste. Tubular reactors are evaluated against requirements for treatment of US Department of Energy mixed waste. Requirements that play major roles in the evaluation include achieving acceptable corrosion, deposition, and heat removal rates. A general evaluation is made of tubular reactors and specific reactors are discussed. Based on the evaluations, recommendations are made regarding continued development of supercritical water oxidation reactors for US Department of Energy mixed waste.

  5. Microlith-Based Catalytic Reactor for Air Quality and Trace Contaminant Control Applications

    NASA Technical Reports Server (NTRS)

    Vilekar, Saurabh; Hawley, Kyle; Junaedi, Christian; Crowder, Bruce; Prada, Julian; Mastanduno, Richard; Perry, Jay L.; Kayatin, Matthew J.

    2015-01-01

    Traditionally, gaseous compounds such as methane, carbon monoxide, and trace contaminants have posed challenges for maintaining clean air in enclosed spaces such as crewed spacecraft cabins as they are hazardous to humans and are often difficult to remove by conventional adsorption technology. Catalytic oxidizers have provided a reliable and robust means of disposing of even trace levels of these compounds by converting them into carbon dioxide and water. Precision Combustion, Inc. (PCI) and NASA - Marshall (MSFC) have been developing, characterizing, and optimizing high temperature catalytic oxidizers (HTCO) based on PCI's patented Microlith® technology to meet the requirements of future extended human spaceflight explorations. Current efforts have focused on integrating the HTCO unit with a compact, simple recuperative heat exchanger to reduce the overall system size and weight while also reducing its energy requirements. Previous efforts relied on external heat exchangers to recover the waste heat and recycle it to the oxidizer to minimize the system's power requirements; however, these units contribute weight and volume burdens to the overall system. They also result in excess heat loss due to the separation of the HTCO and the heat recuperator, resulting in lower overall efficiency. Improvements in the recuperative efficiency and close coupling of HTCO and heat recuperator lead to reductions in system energy requirements and startup time. Results from testing HTCO units integrated with heat recuperators at a variety of scales for cabin air quality control and heat melt compactor applications are reported and their benefits over previous iterations of the HTCO and heat recuperator assembly are quantified in this paper.

  6. Methane oxidation in a landfill cover soil reactor: Changing of kinetic parameters and microorganism community structure.

    PubMed

    Xing, Zhi L; Zhao, Tian T; Gao, Yan H; Yang, Xu; Liu, Shuai; Peng, Xu Y

    2017-02-23

    Changing of CH4 oxidation potential and biological characteristics with CH4 concentration was studied in a landfill cover soil reactor (LCSR). The maximum rate of CH4 oxidation reached 32.40 mol d(-1) m(-2) by providing sufficient O2 in the LCSR. The kinetic parameters of methane oxidation in landfill cover soil were obtained by fitting substrate diffusion and consumption model based on the concentration profile of CH4 and O2. The values of [Formula: see text] (0.93-2.29%) and [Formula: see text] (140-524 nmol kgsoil-DW(-1)·s(-1)) increased with CH4 concentration (9.25-20.30%), while the values of [Formula: see text] (312.9-2.6%) and [Formula: see text] (1.3 × 10(-5) to 9.0 × 10(-3) nmol mL(-1) h(-1)) were just the opposite. MiSeq pyrosequencing data revealed that Methylobacter (the relative abundance was decreased with height of LCSR) and Methylococcales_unclassified (the relative abundance was increased expect in H 80) became the key players after incubation with increasing CH4 concentration. These findings provide information for assessing CH4 oxidation potential and changing of biological characteristics in landfill cover soil.

  7. Plutonium distribution and oxidation states in a reactor leaching ponds system

    SciTech Connect

    Ibrahim, S.; Culp, T. )

    1989-10-01

    Concentrations of 239,240Pu and 238Pu in water, net plankton (algal material), suspended particulates and sediment, as well as Pu oxidation states in filtered water, were determined in a test reactor leaching ponds system in southeastern Idaho. The highest Pu concentration in the ponds system was found in net plankton, and concentrations varied significantly between sampling dates. Plutonium Concentration Ratios (CR) for plankton ranged from 3 X 10(4) to 4 X 10(5). The lowest Pu concentration was found in filtered water, primarily because of the absence of complexing agents. The majority of Pu in filtered water was in true solution (60-87%) or present in colloidal particles smaller than 0.22 micron. Plutonium association with sediment was inversely related to particle size. The environmental distribution coefficients (Kd) for Pu ranged from 1.6 X 10(4) to 1.2 X 10(5) reflecting the importance of sediments as the main reservoir for Pu in the ponds system. No significant differences were noted between CR or Kd values for 239,240Pu and 238Pu. The reduced Pu oxidation states (III and IV) fractions ranged from 57% to 71% of the total dissolved Pu in water. This is in contrast with oxidation states distribution from other large aquatic systems (Great Lakes and the Irish Sea) where Pu is predominately in oxidized (V and VI) forms.

  8. Alveolar macrophage cytokine response to air pollution particles: Oxidant mechanisms

    SciTech Connect

    Imrich, Amy; Ning Yaoyu; Lawrence, Joy; Coull, Brent; Gitin, Elena; Knutson, Mitchell; Kobzik, Lester . E-mail: lkobzik@hsph.harvard.edu

    2007-02-01

    Alveolar macrophages (AMs) primed with LPS and treated with concentrated ambient air particles (CAPs) showed enhanced release of tumor necrosis factor (TNF) and provide an in vitro model for the amplified effects of air pollution particles seen in people with preexisting lung disease. To investigate the mechanism(s) by which CAPs mediate TNF release in primed rat AMs, we first tested the effect of a panel of antioxidants. N-Acetyl-L-cysteine (20 mM), dimethyl thiourea (20 mM) and catalase (5 {mu}M) significantly inhibited TNF release by primed AMs incubated with CAPs. Conversely, when LPS-primed AMs were treated with CAPs in the presence of exogenous oxidants (H{sub 2}O{sub 2} generated by glucose oxidase, 10 {mu}M/h), TNF release and cell toxicity was significantly increased. The soluble fraction of CAPs suspensions caused most of the increased bioactivity in the presence of exogenous H{sub 2}O{sub 2}. The metal chelator deferoxamine (DFO) strongly inhibited the interaction of the soluble fraction with H{sub 2}O{sub 2} but had no effect on the bioactivity of the insoluble CAPs fraction. We conclude that CAPs can mediate their effects in primed AMs by acting on oxidant-sensitive cytokine release in at least two distinct ways. In the primed cell, insoluble components of PM mediate enhanced TNF production that is H{sub 2}O{sub 2}-dependent (catalase-sensitive) yet independent of iron (DFO-insensitive). In the presence of exogenous H{sub 2}O{sub 2} released by AMs, PMNs, or other lung cells within an inflamed alveolar milieu, soluble iron released from air particles can also mediate cytokine release and cell toxicity.

  9. Composition of air pollution particles modifies oxidative stress in cells, tissues, and living systems

    EPA Science Inventory

    Epidemiological studies demonstrate an association between increased levels of ambient air pollution particles and human morbidity and mortality. Production of oxidants, either directly by the air pollution particles or by the host response to the particles, appears to be fundame...

  10. Air Flow and Pressure Drop Measurements Across Porous Oxides

    NASA Technical Reports Server (NTRS)

    Fox, Dennis S.; Cuy, Michael D.; Werner, Roger A.

    2008-01-01

    This report summarizes the results of air flow tests across eight porous, open cell ceramic oxide samples. During ceramic specimen processing, the porosity was formed using the sacrificial template technique, with two different sizes of polystyrene beads used for the template. The samples were initially supplied with thicknesses ranging from 0.14 to 0.20 in. (0.35 to 0.50 cm) and nonuniform backside morphology (some areas dense, some porous). Samples were therefore ground to a thickness of 0.12 to 0.14 in. (0.30 to 0.35 cm) using dry 120 grit SiC paper. Pressure drop versus air flow is reported. Comparisons of samples with thickness variations are made, as are pressure drop estimates. As the density of the ceramic material increases the maximum corrected flow decreases rapidly. Future sample sets should be supplied with samples of similar thickness and having uniform surface morphology. This would allow a more consistent determination of air flow versus processing parameters and the resulting porosity size and distribution.

  11. Catalytic wet air oxidation of 2-chlorophenol over sewage sludge-derived carbon-based catalysts.

    PubMed

    Tu, Yuting; Xiong, Ya; Tian, Shuanghong; Kong, Lingjun; Descorme, Claude

    2014-07-15

    A sewage sludge derived carbon-supported iron oxide catalyst (FeSC) was prepared and used in the Catalytic Wet Air Oxidation (CWAO) of 2-chlorophenol (2-CP). The catalysts were characterized in terms of elemental composition, surface area, pHPZC, XRD and SEM. The performances of the FeSC catalyst in the CWAO of 2-CP was assessed in a batch reactor operated at 120°C under 0.9MPa oxygen partial pressure. Complete decomposition of 2-CP was achieved within 5h and 90% Total Organic Carbon (TOC) was removed after 24h of reaction. Quite a straight correlation was observed between the 2-CP conversion, the amount of iron leached in solution and the pH of the reaction mixture at a given reaction time, indicating a strong predominance of the homogeneous catalysis contribution. The iron leaching could be efficiently prevented when the pH of the solution was maintained at values higher than 4.5, while the catalytic activity was only slightly reduced. Upon four successive batch CWAO experiments, using the same FeSC catalyst recovered by filtration after pH adjustment, only a very minor catalyst deactivation was observed. Finally, based on all the identified intermediates, a simplified reaction pathway was proposed for the CWAO of 2-CP over the FeSC catalyst.

  12. MOCVD-growth of thin zinc oxide films from zinc acetylacetonate and air

    NASA Astrophysics Data System (ADS)

    Pflitsch, Christian; Nebatti, Abdelkader; Brors, Georg; Atakan, Burak

    2012-06-01

    The metalorganic chemical vapour deposition (MOCVD) of thin zinc oxide films on borosilicate glass and silicon substrates in a hot-wall CVD-reactor (HWR) was studied. Zinc acetylacetonate (Zn(acac)2) and air were used as precursors. The aim of this work was to optimize the deposition parameters, such as pressure and deposition temperature, with respect to the film quality, structure, and homogeneity. Most experiments were performed at atmospheric pressure; this approach avoids the usage of an expensive vacuum system. It turned out that polycrystalline zinc oxide is grown at deposition temperatures above 613 K. Above 823 K, they additionally are c-axis orientated. At atmospheric pressure and lower temperature (<773 K) the film deposition is homogeneously over the whole tube furnace while at higher temperature inhomogeneous film growth and particle formation are observed, indicating a shift of the growth mechanism to the diffusion controlled regime. Although the homogeneity is improved by using higher flow velocities at atmospheric pressure, particle growth cannot be suppressed. Only at reduced pressure, which was 200 mbar in the present case, the deposition at 823 K is kinetically controlled and without particle formation, resulting in the homogeneous growth of well adhering ZnO films with c-axis orientation.

  13. Wet air oxidation induced enhanced biodegradability of distillery effluent.

    PubMed

    Malik, S N; Saratchandra, T; Tembhekar, P D; Padoley, K V; Mudliar, S L; Mudliar, S N

    2014-04-01

    The present study reports the feasibility of Wet Air Oxidation (WAO) as a pretreatment option for enhanced biodegradation of complex distillery effluent. Initially, the distillery effluent was pretreated by WAO at different process conditions (pressure, temperature and time) to facilitate enhancement in the biodegradability index (BI = BOD5: COD ratio). The biodegradability of WAO pretreated effluent was evaluated by subjecting it to aerobic biodegradation and anaerobic followed by aerobic biodegradation. Aerobic biodegradation of pretreated effluent with enhanced biodegradability index (BI = 0.4-0.8) showed enhanced COD reduction of up to 67.7%, whereas the untreated effluent (BI = 0.17) indicated poor COD reduction of only 22.5%. Anaerobic followed by aerobic biodegradation of pretreated effluent has shown up to 87.9% COD reduction, while the untreated effluent has shown only 43.1% COD reduction. Bio-kinetic parameters also confirmed the increased rate of bio-oxidation at enhanced BIs. The results indicate that the WAO pretreatment facilitates enhanced bio-oxidation/bio-degradation of complex effluents like the distillery spent wash.

  14. Modeling of thermo-mechanical and irradiation behavior of mixed oxide fuel for sodium fast reactors

    NASA Astrophysics Data System (ADS)

    Karahan, Aydın; Buongiorno, Jacopo

    2010-01-01

    An engineering code to model the irradiation behavior of UO2-PuO2 mixed oxide fuel pins in sodium-cooled fast reactors was developed. The code was named fuel engineering and structural analysis tool (FEAST-OXIDE). FEAST-OXIDE has several modules working in coupled form with an explicit numerical algorithm. These modules describe: (1) fission gas release and swelling, (2) fuel chemistry and restructuring, (3) temperature distribution, (4) fuel-clad chemical interaction and (5) fuel-clad mechanical analysis. Given the fuel pin geometry, composition and irradiation history, FEAST-OXIDE can analyze fuel and cladding thermo-mechanical behavior at both steady-state and design-basis transient scenarios. The code was written in FORTRAN-90 program language. The mechanical analysis module implements the LIFE algorithm. Fission gas release and swelling behavior is described by the OGRES and NEFIG models. However, the original OGRES model has been extended to include the effects of joint oxide gain (JOG) formation on fission gas release and swelling. A detailed fuel chemistry model has been included to describe the cesium radial migration and JOG formation, oxygen and plutonium radial distribution and the axial migration of cesium. The fuel restructuring model includes the effects of as-fabricated porosity migration, irradiation-induced fuel densification, grain growth, hot pressing and fuel cracking and relocation. Finally, a kinetics model is included to predict the clad wastage formation. FEAST-OXIDE predictions have been compared to the available FFTF, EBR-II and JOYO databases, as well as the LIFE-4 code predictions. The agreement was found to be satisfactory for steady-state and slow-ramp over-power accidents.

  15. Investigation on laboratory and pilot-scale airlift sulfide oxidation reactor under varying sulfide loading rate.

    PubMed

    Pokasoowan, Chanya; Kanitchaidecha, Wilawan; K C, Bal Krishna; Annachhatre, Ajit P

    2009-01-01

    Airlift bioreactor was established for recovering sulfur from synthetic sulfide wastewater under controlled dissolved oxygen condition. The maximum recovered sulfur was 14.49 g/day when sulfide loading rate, dissolved oxygen (DO) and pH values were 2.97 kgHS(-)/m(3)-day, 0.2-1.0 mg/L and 7.2-7.8, respectively. On the other hand, the increase in recovered sulfur reduced the contact surface of sulfide oxidizing bacteria which affects the recovery process. This effect caused to reduce the conversion of sulfide to sulfur. More recovered sulfur was produced at high sulfide loading rate due to the change of metabolic pathway of sulfide-oxidizing bacteria which prevented the toxicity of sulfide in the culture. The maximum activity in this system was recorded to be about 3.28 kgS/kgVSS-day. The recovered sulfur contained organic compounds which were confirmed by the results from XRD and CHN analyzer. Afterwards, by annealing the recovered sulfur at 120 degrees C for 24 hrs under ambient Argon, the percentage of carbon reduced from 4.44% to 0.30%. Furthermore, the percentage of nitrogen and hydrogen decreased from 0.79% and 0.48% to 0.00% and 0.14%, respectively. This result showed the success in increasing the purity of recovered sulfur by using the annealing technique. The pilot-scale biological sulfide oxidation process was carried out using real wastewater from Thai Rayon Industry in Thailand. The airlift reactor successfully removed sulfide more than 90% of the influent sulfide at DO concentration of less than 0.1 mg/L, whereas the elementary sulfur production was 2.37 kgS/m(3)-day at sulfide loading rate of 2.14 kgHS(-)/m(3)-day. The sulfur production was still increasing as the reactor had not yet reached its maximum sulfide loading rate.

  16. Degradation of phenylamine by catalytic wet air oxidation using metal catalysts with modified supports.

    PubMed

    Torrellas, Silvia A; Escudero, Gabriel O; Rodriguez, Araceli R; Rodriguez, Juan G

    2015-01-01

    The effect of acid treatments with HCl and HNO3 on the surface area and surface chemistry of three granular activated carbons was studied. These supports were characterized and the hydrochloric acid treatment leads to the best activated carbon support (AC2-C). The catalytic behavior of Pt, Ru and Fe (1 wt.%) supported on granular activated carbon treated with HCl was tested in the phenylamine continuous catalytic wet air oxidation in a three-phase, high-pressure catalytic reactor over a range of reaction temperatures 130-170ºC and total pressure of 1.0-3.0 MPa at LHSV = 0.4-1 h(-1), whereas the phenylamine concentration range and the catalyst loading were 5-16 mol.m(-3) and 0.5-1.5 g, respectively. Activity as well as conversion varied as a function of the metal, the catalyst preparation method and operation conditions. Higher activities were obtained with Pt incorporated on hydrochloric acid -treated activated carbon by the ion exchange method. In steady state, approximately 98% phenylamine conversion, 77% of TOC and 94% of COD removal, was recorded at 150ºC, 11 mol m(-3) of phenylamine concentration and 1.5 g of catalyst, and the selectivity to non-organic compounds was 78%. Several reaction intermediaries were detected. A Langmuir-Hinshelwood model gave an excellent fit of the kinetic data of phenylamine continuous catalytic wet air oxidation over the catalysts of this work.

  17. Air contamination with nitric oxide: effect on exhaled nitric oxide response.

    PubMed

    Therminarias, A; Flore, P; Favre-Juvin, A; Oddou, M F; Delaire, M; Grimbert, F

    1998-03-01

    This study examines the response of exhaled nitric oxide (NO) concentration (ECNO) and quantity of exhaled NO over time (EVNO) in 10 healthy subjects breathing into five polyethylene bags, one in which synthetic air was free of NO and four in which NO was diluted to concentrations of 20 +/- 0.6, 49 +/- 0.8, 98 +/- 2, and 148 +/- 2 ppb, respectively. Each subject was connected to each bag for 10 min at random. Minute ventilation and ECNO were measured continuously, and EVNO was calculated continuously. ECNO and EVNO values were significantly higher for an inhaled NO concentration of 20 ppb than for NO-free air. Above 20 ppb, ECNO and EVNO increased linearly with inhaled NO concentration. It is reasonable to assume that a share of the quantity of inspired NO over time (InspVNO) because of air contamination by pollution is rejected by the ventilatory pathway. Insofar as InspVNO does not affect endogenous production or the metabolic fate of NO in the airway, this share may be estimated as being approximately one third of InspVNO, the remainder being taken by the endogenous pathway. Thus, air contamination by the NO resulting from pollution greatly increases the NO response in exhaled air.

  18. Plasma modification in a rotating reactor of vanadium oxide for electro-chromic devices

    NASA Astrophysics Data System (ADS)

    Ongoren, Gamze; Sancak, Muhammed; Manolache, Sorin; Nohut, Neslihan; Gulec, Ali; Uygun, Aysegul; Oksuz, Lutfi

    2012-10-01

    Titanium as doping material in spraying solution has been reported to enhance properties of electrochromic devices based on vanadium oxide. In this contribution, titanium tetrachloride plasma has been used for treatment of vanadium oxide powder. The treatments have been performed in a glass rotating reactor using ferrofluidic feedthroughs operated at 100 mTorr pressure and 100 W 13.56 MHz RF power; the reaction volume is 1 L and the RF coupling is capacitive using conformal copper electrodes outside of glass cylinder. UV-visible spectroscopy has been used for plasma diagnostic. Plasma treated and untreated vanadium oxide powders have been used for deposition of 100 nm electrochromic layers on ITO conductive electrodes; the deposition has been done by pyrolysis spraying hydrogen peroxide solution of materials. The deposited layers have been characterized by cyclic voltammetry, visible spectroscopy, AFM, SEM and EDS. The devices have been investigated in visible spectral range for optical transmission and color changes with applied voltages. This Work has been supported by TUBITAK TEYDEB project no:9100036

  19. Analysis of a gas-liquid film plasma reactor for organic compound oxidation.

    PubMed

    Hsieh, Kevin; Wang, Huijuan; Locke, Bruce R

    2016-11-05

    A pulsed electrical discharge plasma formed in a tubular reactor with flowing argon carrier gas and a liquid water film was analyzed using methylene blue as a liquid phase hydroxyl radical scavenger and simultaneous measurements of hydrogen peroxide formation. The effects of liquid flow rate, liquid conductivity, concentration of dye, and the addition of ferrous ion on dye decoloration and degradation were determined. Higher liquid flow rates and concentrations of dye resulted in less decoloration percentages and hydrogen peroxide formation due to initial liquid conductivity effects and lower residence times in the reactor. The highest decoloration energy yield of dye found in these studies was 5.2g/kWh when using the higher liquid flow rate and adding the catalyst. The non-homogeneous nature of the plasma discharge favors the production of hydrogen peroxide in the plasma-liquid interface over the chemical oxidation of the organic in the bulk liquid phase and post-plasma reactions with the Fenton catalyst lead to complete utilization of the plasma-formed hydrogen peroxide.

  20. Simulation for Supporting Scale-Up of a Fluidized Bed Reactor for Advanced Water Oxidation

    PubMed Central

    Abdul Raman, Abdul Aziz; Daud, Wan Mohd Ashri Wan

    2014-01-01

    Simulation of fluidized bed reactor (FBR) was accomplished for treating wastewater using Fenton reaction, which is an advanced oxidation process (AOP). The simulation was performed to determine characteristics of FBR performance, concentration profile of the contaminants, and various prominent hydrodynamic properties (e.g., Reynolds number, velocity, and pressure) in the reactor. Simulation was implemented for 2.8 L working volume using hydrodynamic correlations, continuous equation, and simplified kinetic information for phenols degradation as a model. The simulation shows that, by using Fe3+ and Fe2+ mixtures as catalyst, TOC degradation up to 45% was achieved for contaminant range of 40–90 mg/L within 60 min. The concentration profiles and hydrodynamic characteristics were also generated. A subsequent scale-up study was also conducted using similitude method. The analysis shows that up to 10 L working volume, the models developed are applicable. The study proves that, using appropriate modeling and simulation, data can be predicted for designing and operating FBR for wastewater treatment. PMID:25309949

  1. Flow reactor studies of the paired electro-oxidation and electroreduction of glucose

    SciTech Connect

    Park, K.; Baizer, M.M.; Nobe, K.; Pintauro

    1985-08-01

    The electrochemical oxidation of glucose to gluconic acid and reduction of glucose to sorbitol hav been paired in an undivided packed-bed electrode flow reactor. A Raney Ni powder electrocatalyst significantly improved the current efficiency for sorbitol production, as compared to a high hydrogen overpotential Zn(Hg) cathode. The optimum operating conditions for the paired syntheses are activity W-2 Raney Ni powder cathode, graphite chip anode, a 1.6M glucose and 0.4M CaBr/sub 2/ initial solution composition, pH 5-7, 60/sup 0/C solution temperature, an applied current of 250-500 mA per 10g of nickel powder cathode and a solution volumetric flow rate of 100 ml-min/sup -1/. Under these conditions, the sorbitol current efficiencies are 80-100%, the gluconic acid efficiencies are 100%, and the product yields are very high.

  2. Anodized Aluminum Oxide Templated Synthesis of Metal-Organic Frameworks Used as Membrane Reactors.

    PubMed

    Yu, Yifu; Wu, Xue-Jun; Zhao, Meiting; Ma, Qinglang; Chen, Junze; Chen, Bo; Sindoro, Melinda; Yang, Jian; Han, Shikui; Lu, Qipeng; Zhang, Hua

    2017-01-09

    The incorporation of metal-organic frameworks (MOFs) into membrane-shaped architectures is of great importance for practical applications. The currently synthesized MOF-based membranes show many disadvantages, such as poor compatibility, low dispersity, and instability, which severely limit their utility. Herein, we present a general, facile, and robust approach for the synthesis of MOF-based composite membranes through the in situ growth of MOF plates in the channels of anodized aluminum oxide (AAO) membranes. After being used as catalysis reactors, they exhibit high catalytic performance and stability in the Knoevenagel condensation reaction. The high catalytic performance might be attributed to the intrinsic structure of MOF-based composite membranes, which can remove the products from the reaction zone quickly, and prevent the aggregation and loss of catalysts during reaction and recycling process.

  3. Design considerations and experimental observations for the TAMU air-cooled reactor cavity cooling system for the VHTR

    SciTech Connect

    Sulaiman, S. A. Dominguez-Ontiveros, E. E. Alhashimi, T. Budd, J. L. Matos, M. D. Hassan, Y. A.

    2015-04-29

    The Reactor Cavity Cooling System (RCCS) is a promising passive decay heat removal system for the Very High Temperature Reactor (VHTR) to ensure reliability of the transfer of the core residual and decay heat to the environment under all off-normal circumstances. A small scale experimental test facility was constructed at Texas A and M University (TAMU) to study pertinent multifaceted thermal hydraulic phenomena in the air-cooled reactor cavity cooling system (RCCS) design based on the General Atomics (GA) concept for the Modular High Temperature Gas-Cooled Reactor (MHTGR). The TAMU Air-Cooled Experimental Test Facility is ⅛ scale from the proposed GA-MHTGR design. Groundwork for experimental investigations focusing into the complex turbulence mixing flow behavior inside the upper plenum is currently underway. The following paper illustrates some of the chief design considerations used in construction of the experimental test facility, complete with an outline of the planned instrumentation and data acquisition methods. Computational Fluid Dynamics (CFD) simulations were carried out to furnish some insights on the overall behavior of the air flow in the system. CFD simulations assisted the placement of the flow measurement sensors location. Preliminary experimental observations of experiments at 120oC inlet temperature suggested the presence of flow reversal for cases involving single active riser at both 5 m/s and 2.25 m/s, respectively and four active risers at 2.25 m/s. Flow reversal may lead to thermal stratification inside the upper plenum by means of steady state temperature measurements. A Particle Image Velocimetry (PIV) experiment was carried out to furnish some insight on flow patterns and directions.

  4. STUDY OF MERCURY OXIDATION BY SCR CATALYST IN AN ENTRAINED-FLOW REACTOR UNDER SIMULATED PRB CONDITIONS

    EPA Science Inventory

    A bench-scale entrained-flow reactor system was constructed for studying elemental mercury oxidation under selective catalytic reduction (SCR) reaction conditions. Simulated flue gas was doped with fly ash collected from a subbituminous Powder River Basin (PRB) coal-fired boiler ...

  5. THE PHOTOCATALYTIC OXIDATION OF LOW CONCENTRATION MTBE ON TITANIUM DIOXIDE FROM GROUNDWATER IN A FALLING FILM REACTOR

    EPA Science Inventory

    This study focuses on three objectives: 1) to determine the feasibility of using a falling-film slurry photocatalytic reactor for the degradation of MTBE in water, 2) to assess the feasibility of MTBE photo-oxidation on TiO2 at low initial MTBE concentrations (<10 mg/L), and 3) t...

  6. Thorium-based mixed oxide fuel in a pressurized water reactor: A feasibility analysis with MCNP

    NASA Astrophysics Data System (ADS)

    Tucker, Lucas Powelson

    This dissertation investigates techniques for spent fuel monitoring, and assesses the feasibility of using a thorium-based mixed oxide fuel in a conventional pressurized water reactor for plutonium disposition. Both non-paralyzing and paralyzing dead-time calculations were performed for the Portable Spectroscopic Fast Neutron Probe (N-Probe), which can be used for spent fuel interrogation. Also, a Canberra 3He neutron detector's dead-time was estimated using a combination of subcritical assembly measurements and MCNP simulations. Next, a multitude of fission products were identified as candidates for burnup and spent fuel analysis of irradiated mixed oxide fuel. The best isotopes for these applications were identified by investigating half-life, photon energy, fission yield, branching ratios, production modes, thermal neutron absorption cross section and fuel matrix diffusivity. 132I and 97Nb were identified as good candidates for MOX fuel on-line burnup analysis. In the second, and most important, part of this work, the feasibility of utilizing ThMOX fuel in a pressurized water reactor (PWR) was first examined under steady-state, beginning of life conditions. Using a three-dimensional MCNP model of a Westinghouse-type 17x17 PWR, several fuel compositions and configurations of a one-third ThMOX core were compared to a 100% UO2 core. A blanket-type arrangement of 5.5 wt% PuO2 was determined to be the best candidate for further analysis. Next, the safety of the ThMOX configuration was evaluated through three cycles of burnup at several using the following metrics: axial and radial nuclear hot channel factors, moderator and fuel temperature coefficients, delayed neutron fraction, and shutdown margin. Additionally, the performance of the ThMOX configuration was assessed by tracking cycle length, plutonium destroyed, and fission product poison concentration.

  7. Development of a Prototype Algal Reactor for Removing CO2 from Cabin Air

    NASA Technical Reports Server (NTRS)

    Patel, Vrajen; Monje, Oscar

    2013-01-01

    Controlling carbon dioxide in spacecraft cabin air may be accomplished using algal photobioreactors (PBRs). The purpose of this project was to evaluate the use of a commercial microcontroller, the Arduino Mega 2560, for measuring key photioreactor variables: dissolved oxygen, pH, temperature, light, and carbon dioxide. The Arduino platform is an opensource physical computing platform composed of a compact microcontroller board and a C++/C computer language (Arduino 1.0.5). The functionality of the Arduino platform can be expanded by the use of numerous add-ons or 'shields'. The Arduino Mega 2560 was equipped with the following shields: datalogger, BNC shield for reading pH sensor, a Mega Moto shield for controlling CO2 addition, as well as multiple sensors. The dissolved oxygen (DO) probe was calibrated using a nitrogen bubbling technique and the pH probe was calibrated via an Omega pH simulator. The PBR was constructed using a 2 L beaker, a 66 L box for addition of CO2, a micro porous membrane, a diaphragm pump, four 25 watt light bulbs, a MasterFiex speed controller, and a fan. The algae (wild type Synechocystis PCC6803) was grown in an aerated flask until the algae was dense enough to used in the main reactor. After the algae was grown, it was transferred to the 2 L beaker where CO2 consumption and O2 production was measured using the microcontroller sensor suite. The data was recorded via the datalogger and transferred to a computer for analysis.

  8. Conducting thermomechanical fatigue test in air at light water reactor relevant temperature intervals

    NASA Astrophysics Data System (ADS)

    Ramesh, Mageshwaran; Leber, Hans J.; Diener, Markus; Spolenak, Ralph

    2011-08-01

    In Light Water Reactors (LWR), many structural components are made of austenitic stainless steels (SS). These components are subject to extreme conditions, such as large temperature gradients and pressure loads during service. Hence, the fatigue and fracture behavior of austenitic SS under these conditions has evoked consistent interest over the years. Most studies dealing with this problem in the past, investigated the isothermal fatigue (IF) condition, which is not the case in the service, and less attention has been paid to thermomechanical fatigue (TMF). Moreover, the existing codes of practice and standards for TMF testing are mainly derived from the high temperature TMF tests ( T mean > 400 °C). This work presents the development of a facility to perform TMF tests under LWR relevant temperature interval in air. The realized testing parameters and tolerances are compared with the recommendations of existing codes of practice and standards from high temperature tests. The effectiveness of the testing facility was verified with series of TMF and IF tests performed on specimens made out of a commercial austenitic SS TP347 pipe material. The results revealed that the existing tolerances in standards are quite strict for the application of lower temperature ranges TMF tests. It was found that the synchronous, in-phase (IP) TMF tested specimens possess a higher lifetime than those subjected to the asynchronous, out-of-phase (OP) TMF and IF at T max in the investigated strain range for austenitic SS. Nevertheless, the fatigue lifetime of all the test conditions was similar in the engineering scale.

  9. Treatment of hydraulic fracturing wastewater by wet air oxidation.

    PubMed

    Wang, Wei; Yan, Xiuyi; Zhou, Jinghui; Ma, Jiuli

    2016-01-01

    Wastewater produced by hydraulic fracturing for oil and gas production is characterized by high salinity and high chemical oxygen demand (COD). We applied a combination of flocculation and wet air oxidation technology to optimize the reduction of COD in the treatment of hydraulic fracturing wastewater. The experiments used different values of flocculant, coagulant, and oxidizing agent added to the wastewater, as well as different reaction times and treatment temperatures. The use of flocculants for the pretreatment of fracturing wastewater was shown to improve treatment efficiency. The addition of 500 mg/L of polyaluminum chloride (PAC) and 20 mg/L of anionic polyacrylamide (APAM) during pretreatment resulted in a COD removal ratio of 8.2% and reduced the suspended solid concentration of fracturing wastewater to 150 mg/L. For a solution of pretreated fracturing wastewater with 12 mL of added H2O2, the COD was reduced to 104 mg/L when reacted at 300 °C for 75 min, and reduced to 127 mg/L when reacted at the same temperature for 45 min while using a 1 L autoclave. An optimal combination of these parameters produced treated wastewater that met the GB 8978-1996 'Integrated Wastewater Discharge Standard' level I emission standard.

  10. High-Temperature Jet Spray Reactor for the Preparation of Rare Earth Oxides by Pyrolysis: Computer Simulation

    NASA Astrophysics Data System (ADS)

    Zhao, Qiu-yue; Lv, Chao; Zhang, Zi-mu; Dou, Zhi-he; Zhang, Ting-an; Liu, Yan; Lv, Guo-zhi

    2014-09-01

    A new type of high-temperature jet spray pyrolysis (SP) reactor is investigated in this article as part of studies on the preparation of rare earth oxides at Northeastern University (NEU), Shenyang, China. The jet spray reactor examined here is a horizontal, tubular reactor conveying the hot products of the combustion of methane and oxygen with a converging-diverging jet section in an arrangement that provides for inspiration of LaCl3 solution to pyrolyze to La2O3 with the hot gas. The present article is concerned with a computer simulation using a computational fluid dynamic model to develop the velocity, temperature, and pressure profiles in the jet reactor since direct measurement is difficult. The article includes brief comments on a room-temperature model designed to examine the flow characteristics of the jet SP reactor. It was found that the velocity decreased at first, and then it increased near the jet throat. The highest velocity occurred at the throat of jet SP reactor where the LaCl3 enters the unit. Along the reactor axis, the temperature decreases with distance from the gas inlet. The lowest temperature zone was near the wall before the throat of the reactor due to wall heat losses. The temperature was estimated to be close to 1700 K at the throat of the reactor, and it was about 1300 K toward the exit of the reactor. It was shown that a reaction would take place mainly in the throat and in the vicinity of first contact between gas and induced spray. A negative pressure was produced as gas passes through the converging-diverging throat of the jet SP reactor that causes the LaCl3 solution to enter the throat of the reactor. While the investigations of this type of reactor are at an early stage, the results look promising. NEU continues to investigate this approach for the preparation of La2O3 based on high-temperature testwork and physical modeling techniques.

  11. Review of research results for the photocatalytic oxidation of hazardous wastes in air

    SciTech Connect

    Nimlos, M R; Wolfrum, E J; Gratson, D A; Watt, A S; Jacoby, W A; Turchi, C

    1995-01-01

    Laboratory experiments of gas-phase photocatalytic oxidation (PCO) at NREL have focused on measurements that can help commercialize this technology for treating gaseous air streams. This effort proceeds earlier NREL work and studies conducted elsewhere which demonstrated the general applicability of PCO. The more recent work has concentrated on: (1) the kinetics of the PCO process; (2) the formation and destruction of intermediates; and (3) possible enhancements to improve the destruction rates. The results from these studies will be used to help design large scale PCO equipment and they will be used to evaluate the economics of the PCO process. For trichloroethylene and ethanol, extensive studies of the rates of destruction have yielded kinetic parameters for the destruction of intermediates as well as the substrate. The kinetics of intermediates is essential for sizing a large scale reactor, as complete conversion to carbon dioxide is often desired. The kinetic data from these laboratory studies has been used for analyzing IT`s pilot PCO reactor and has been used to suggest modifications to this unit. For compounds that are more difficult to destroy (such as the components of BTEX), rate enhancement experiments have been conducted. These compounds represent a very large market for this technology and improvement of the rate of the process should make it competitive. Towards this goal, the enhancement of the destruction of BTEX components have been studied. Experiments have demonstrated that there is a significant increase in the rates of destruction of BTEX with the addition of ozone. Preliminary economic assessments have shown that PCO with ozone may be cost competitive. Future laboratory experiments of PCO will focus on refinements of what has been learned. Rate measurements will also be expanded to include other compounds representing significant markets for the PCO technology.

  12. Simultaneous Bioreduction of Multiple Oxidized Contaminants Using a Membrane Biofilm Reactor.

    PubMed

    Li, Haixiang; Lin, Hua; Xu, Xiaoyin; Jiang, Minmin; Chang, Chein-Chi; Xia, Siqing

    2017-02-01

      This study tests a hydrogen-based membrane biofilm reactor (MBfR) to investigate simultaneous bioreduction of selected oxidized contaminants, including nitrate (-N), sulfate (), bromate (), chromate (Cr(VI)) and para-chloronitrobenzene (p-CNB). The experiments demonstrate that MBfR can achieve high performance for contaminants bioreduction to harmless or immobile forms in 240 days, with a maximum reduction fluxes of 0.901 g -N/m2·d, 1.573 g /m2·d, 0.009 g /m2·d, 0.022 g Cr(VI)/m2·d, and 0.043 g p-CNB/m2·d. Increasing H2 pressure and decreasing influent surface loading enhanced removal efficiency of the reactor. Flux analysis indicates that nitrate and sulfate reductions competed more strongly than , Cr(VI) and p-CNB reduction. The average H2 utilization rate, H2 flux, and H2 utilization efficiency of the reactor were 0.026 to 0.052 mg H2/cm3·d, 0.024 to 0.046 mg H2/cm2·d, and 97.5% to 99.3% (nearly 100%). Results show the hydrogen-based MBfR may be suitable for removing multiple oxidized contaminants in drinking water or groundwater.

  13. Surface Oxidation Study of Uranium Dioxide Under Wet and Dry Conditions

    DTIC Science & Technology

    2005-03-01

    air, and the initial condition of the oxides present in the reactor fuel at the time of release can be determined, then a method will exist for... fuel in practically all Boiling-water Reactors (BWR), Pressure-tube Graphite Reactors (PTGR), Pressurized- water Reactors (PWR), Pressurized-heavy...water Reactors ( PHWR ), and, when mixed with plutonium dioxide (PuO2), Liquid-metal Fast-breeder Reactors (LMFBR) in the world [Knief, 1992]. During

  14. Oxidation behavior of U-Si compounds in air from 25 to 1000 C

    NASA Astrophysics Data System (ADS)

    Sooby Wood, E.; White, J. T.; Nelson, A. T.

    2017-02-01

    The air oxidation behavior of U3Si2, USi, and U3Si5 is studied from room temperature to 1000 C. The onsets of breakaway oxidation for each compound are identified during synthetic air ramps to 1000 C using thermogravimetric analysis. Isothermal air oxidation tests are performed below and above the breakaway oxidation onset to discern the oxidation kinetic behavior of these candidate accident tolerant fuel forms. Uranium metal is tested in the same manner to provide a reference for the oxidation behavior. Thermogravimetric, x-ray diffraction, and scanning electron microscopy analysis are presented here along with a discussion of the oxidation behavior of these materials and the impact of the lack of oxidation resistance to their deployment as accident tolerant nuclear fuels.

  15. Experimental study of the oxidation of methyl oleate in a jet-stirred reactor

    PubMed Central

    Bax, Sarah; Hakka, Mohammed Hichem; Glaude, Pierre-Alexandre; Herbinet, Olivier; Battin-Leclerc, Frédérique

    2013-01-01

    The experimental study of the oxidation of a blend containing n-decane and a large unsaturated ester, methyl oleate, was performed in a jet-stirred reactor over a wide range of temperature covering both low and high temperature regions (550–1100 K), at a residence time of 1.5 s, at quasi atmospheric pressure with high dilution in helium (n-decane and methyl oleate inlet mole fractions of 1.48 × 10−3 and 5.2 × 10−4) and under stoichiometric conditions. The formation of numerous reaction products was observed. At low and intermediate temperatures, the oxidation of the blend led to the formation of species containing oxygen atoms like cyclic ethers, aldehydes and ketones deriving from n-decane and methyl oleate. At higher temperature, these species were not formed anymore and the presence of unsaturated species was observed. Because of the presence of the double bond in the middle of the alkyl chain of methyl oleate, the formation of some specific products was observed. These species are dienes and esters with two double bonds produced from the decomposition paths of methyl oleate and some species obtained from the addition of H-atoms, OH and HO2 radicals to the double bond. Experimental results were compared with former results of the oxidation of a blend of n-decane and methyl palmitate performed under similar conditions. This comparison allowed highlighting the similarities and the differences in the reactivity and in the distribution of the reaction products for the oxidation of large saturated and unsaturated esters. PMID:23710077

  16. Experimental study of the oxidation of methyl oleate in a jet-stirred reactor.

    PubMed

    Bax, Sarah; Hakka, Mohammed Hichem; Glaude, Pierre-Alexandre; Herbinet, Olivier; Battin-Leclerc, Frédérique

    2010-06-01

    The experimental study of the oxidation of a blend containing n-decane and a large unsaturated ester, methyl oleate, was performed in a jet-stirred reactor over a wide range of temperature covering both low and high temperature regions (550-1100 K), at a residence time of 1.5 s, at quasi atmospheric pressure with high dilution in helium (n-decane and methyl oleate inlet mole fractions of 1.48 × 10(-3) and 5.2 × 10(-4)) and under stoichiometric conditions. The formation of numerous reaction products was observed. At low and intermediate temperatures, the oxidation of the blend led to the formation of species containing oxygen atoms like cyclic ethers, aldehydes and ketones deriving from n-decane and methyl oleate. At higher temperature, these species were not formed anymore and the presence of unsaturated species was observed. Because of the presence of the double bond in the middle of the alkyl chain of methyl oleate, the formation of some specific products was observed. These species are dienes and esters with two double bonds produced from the decomposition paths of methyl oleate and some species obtained from the addition of H-atoms, OH and HO2 radicals to the double bond. Experimental results were compared with former results of the oxidation of a blend of n-decane and methyl palmitate performed under similar conditions. This comparison allowed highlighting the similarities and the differences in the reactivity and in the distribution of the reaction products for the oxidation of large saturated and unsaturated esters.

  17. Wet air and catalytic wet air oxidation of several azodyes from wastewaters: the beneficial role of catalysis.

    PubMed

    Rodríguez, A; García, J; Ovejero, G; Mestanza, M

    2009-01-01

    Degradation of several azo dyes, Acid Orange 7 (AO7), Acid Orange 74 (AO74), Direct Blue 71 (DB71), Reactive Black 5 (RB5) and Eriochrome Blue Black B (EBBB), well-known non-biodegradable mono, di and tri azo dyes has been studied using, wet-air oxidation (WAO) and catalytic wet air oxidation (CWAO). The efficiency of substrate decolorization and mineralization in each process has been comparatively discussed by evolution concentration, chemical oxygen demand, total organic carbon content and toxicity of dyes solutions. The most efficient method on decolorization and mineralization (TOC) was observed to be CWAO process. Mineralization efficiency with wet air and catalytic wet air oxidation essays was observed in the order of mono-azo > di-azo > tri-azo dye. Final solutions of CWAO applications after 180 min treatment can be disposed safely to environment.

  18. Oxidation resistance of selected mechanical carbons at 650 deg C in dry flowing air

    NASA Technical Reports Server (NTRS)

    Allen, G. P.; Wisander, D. W.

    1973-01-01

    Oxidation experiments were conducted with several experimental mechanical carbons at 650 C in air flowing at 28 cu cm/sec (STP). Experiments indicate that boron carbide addition and zinc phosphate treatment definitely improved oxidation resistance. Impregnation with coal tar pitch before final graphitization had some beneficial effect on oxidation resistance and it markedly improved flexure strength and hardness. Graphitization temperature alone did not affect oxidation resistance, but with enough added boron carbide the oxidation resistance was increased although the hardness greatly decreased.

  19. The impact of influent total ammonium nitrogen concentration on nitrite-oxidizing bacteria inhibition in moving bed biofilm reactor.

    PubMed

    Kouba, Vojtech; Catrysse, Michael; Stryjova, Hana; Jonatova, Ivana; Volcke, Eveline I P; Svehla, Pavel; Bartacek, Jan

    2014-01-01

    The application of nitrification-denitrification over nitrite (nitritation-denitritation) with municipal (i.e. diluted and cold (or low-temperature)) wastewater can substantially improve the energy balance of municipal wastewater treatment plants. For the accumulation of nitrite, it is crucial to inhibit nitrite-oxidizing bacteria (NOB) with simultaneous proliferation of ammonium-oxidizing bacteria (AOB). The present study describes the effect of the influent total ammonium nitrogen (TAN) concentration on AOB and NOB activity in two moving bed biofilm reactors operated as sequencing batch reactors (SBR) at 15 °C (SBR I) and 21 °C (SBR II). The reactors were fed with diluted reject water containing 600, 300, 150 and 75 mg TAN L(-1). The only factor limiting NOB activity in these reactors was the high concentrations of free ammonia and/or free nitrous acid (FNA) during the SBR cycles. Nitrite accumulation was observed with influents containing 600, 300 and 150 mg TAN L(-1) in SBR I and 600 and 300 in SBR II. Once nitrate production established in the reactors, the increase of influent TAN concentration up to the original 600 mg TAN L(-1) did not limit NOB activity. This was due to the massive development of NOB clusters throughout the biofilm that were able to cope with faster formation of FNA. The results of the fluorescence in situ hybridization analysis preliminarily showed the stratification of bacteria in the biofilm.

  20. Modeling of the simulated countercurrent moving-bed chromatographic reactor used for the oxidative coupling of methane

    SciTech Connect

    Tonkovich, A.L.Y.; Carr, R.W.

    1994-09-01

    The oxidative coupling reaction of methane (OCM) is a potential industrial reaction for the efficient production of ethylene. Replacement of current technologies requires significant product yield improvements. An experimental novel reactor design, the modified simulated countercurrent moving-bed chromatographic reactor (SCMCR), has reported improved ethane and ethylene product yields over other reported values. An understanding of the reactor operation is aided by concurrent mathematical modeling. The model mimics the exact experimental reactor configuration. Four sections are used; each section contains a reaction column and two separation columns connected in series. The feed is switched from section to section at discrete intervals. Reaction occurs in the first column and is followed by product and reactant separation in the ensuing section columns. Langmuir adsorption isotherms are used. The model does not incorporate the realistic and complex kinetics rising, from the OCM, rather a simplified reaction term is used to qualitatively gain insight into the operation of the modified SCMCR. A unimolecular reaction network is used in the model. The rate constants are set to permit a small fractional conversion, 5% per pass, at the concentrations during the first cycle. Similarly to the experimental reactor, the model adds a make-up feed (defined as percentage of the original feed, where excess methane is fed during the first cycle of the experimental reactor) to augment lost reactants.

  1. Electrochemical characterization of Fe-air rechargeable oxide battery in planar solid oxide cell stacks

    NASA Astrophysics Data System (ADS)

    Fang, Qingping; Berger, Cornelius M.; Menzler, Norbert H.; Bram, Martin; Blum, Ludger

    2016-12-01

    Iron-air rechargeable oxide batteries (ROB) comprising solid oxide cells (SOC) as energy converters and Fe/metal-oxide redox couples were characterized using planar SOC stacks. The charge and discharge of the battery correspond to the operations in the electrolysis and fuel cell modes, respectively, but with a stagnant atmosphere consisting of hydrogen and steam. A novel method was employed to establish the stagnant atmosphere for battery testing during normal SOC operation without complicated modification to the test bench and stack/battery concept. Manipulation of the gas compositions during battery operation was not necessary, but the influence of the leakage current from the testing system had to be considered. Batteries incorporating Fe2O3/8YSZ, Fe2O3/CaO and Fe2O3/ZrO2 storage materials were characterized at 800 °C. A maximum charge capacity of 30.4 Ah per layer (with an 80 cm2 active cell area) with ∼0.5 mol Fe was reached with a current of 12 A. The charge capacity lost 11% after ∼130 ROB cycles due to the increased agglomeration of active materials and formation of a dense oxide layer on the surface. The round trip efficiencies of the tested batteries were ≤84% due to the large internal resistance. With state-of-the-art cells, the round trip efficiency can be further improved.

  2. Air Quality Criteria for Ozone and Related Photochemical Oxidants (Final Report, 2006)

    EPA Science Inventory

    In February 2006, EPA released the final document, Air Quality Criteria for Ozone and Other Photochemical Oxidants. Tropospheric or surface-level ozone (O3) is one of six major air pollutants regulated by National Ambient Air Quality Standards (NAAQS) under the U.S...

  3. Method and apparatus for enhancing reactor air-cooling system performance

    DOEpatents

    Hunsbedt, Anstein

    1996-01-01

    An enhanced decay heat removal system for removing heat from the inert gas-filled gap space between the reactor vessel and the containment vessel of a liquid metal-cooled nuclear reactor. Multiple cooling ducts in flow communication with the inert gas-filled gap space are incorporated to provide multiple flow paths for the inert gas to circulate to heat exchangers which remove heat from the inert gas, thereby introducing natural convection flows in the inert gas. The inert gas in turn absorbs heat directly from the reactor vessel by natural convection heat transfer.

  4. Method and apparatus for enhancing reactor air-cooling system performance

    DOEpatents

    Hunsbedt, A.

    1996-03-12

    An enhanced decay heat removal system is disclosed for removing heat from the inert gas-filled gap space between the reactor vessel and the containment vessel of a liquid metal-cooled nuclear reactor. Multiple cooling ducts in flow communication with the inert gas-filled gap space are incorporated to provide multiple flow paths for the inert gas to circulate to heat exchangers which remove heat from the inert gas, thereby introducing natural convection flows in the inert gas. The inert gas in turn absorbs heat directly from the reactor vessel by natural convection heat transfer. 6 figs.

  5. Experimental study of the supercritical water oxidation of recalcitrant compounds under hydrothermal flames using tubular reactors.

    PubMed

    Cabeza, Pablo; Bermejo, M Dolores; Jiménez, Cristina; Cocero, M José

    2011-04-01

    The hydrothermal flame is a new method of combustion that takes place in supercritical water oxidation reactions when the temperature is higher than the autoignition temperature. In these conditions, waste can be completely mineralized in residence times of milliseconds without the formation of by-products typical of conventional combustion. The object of this work is to study the hydrothermal flame formation in aqueous streams with high concentrations of recalcitrant compounds: an industrial waste with a high concentration of acetic acid and various concentrated solutions of ammonia. A tubular reactor with a residence time of 0.7 s was used. Oxygen was used as the oxidant and isopropyl alcohol (IPA) as co-fuel to reach the operation temperature required. The increase of IPA concentrations in the feeds resulted in a better TOC removal. For mixtures containing acetic acid, 99% elimination of TOC was achieved at temperatures higher than 750 °C. In the case of mixtures containing ammonia, TOC removals reached 99% while maximum total nitrogen removals were never higher than 94%, even for reaction temperatures higher than 710 °C. Ignition was observed at concentrations as high as 6% wt NH(3) with 2% wt IPA while at IPA concentrations below 2% wt IPA, the ammonia did not ignite.

  6. Evaluation of Corona Reactors of Several Geometries for a Plasma Assisted Nitrogen Oxide Emission Reduction Device

    SciTech Connect

    Herling, Darrell R.; Smith, Monty R.; Hemingway, Mark D.; Goulette, David; Silvis, Thomas W.

    2000-08-09

    Proposed vehicle emissions regulations for the near future have prompted automotive manufactures and component suppliers to focus heavily on developing more efficient exhaust aftertreatment devices to lower emissions from spark and compression ignition engines. One of the primary pollutants from lean-burn engines, especially from diesels, are oxides of nitrogen (NOx). Current three-way catalytic converters will not have adequate performance to meet future emission reduction requirements. Therefore, there is a need for researchers and engineers to develop efficient exhaust aftertreatment devices that will reduce NOx emissions from lean-burn engines. These devices must have very high conversion of NOx gases, be unaffected by exhaust-gas impurity such as sulfur, and have minimal impact on vehicle operations and fuel economy. An effective technology for NOx control that is currently receiving a lot of attention is a non-thermal plasma system. This system is comprised of a two-stage corona generation device (plasma reactor) and reduction catalyst that reduces nitric oxide and nitrogen dioxide emissions to nitrogen.

  7. Air feed tube support system for a solid oxide fuel cell generator

    DOEpatents

    Doshi, Vinod B.; Ruka, Roswell J.; Hager, Charles A.

    2002-01-01

    A solid oxide fuel cell generator (12), containing tubular fuel cells (36) with interior air electrodes (18), where a supporting member (82) containing a plurality of holes (26) supports oxidant feed tubes (51), which pass from an oxidant plenum (52") into the center of the fuel cells, through the holes (26) in the supporting member (82), where a compliant gasket (86) around the top of the oxidant feed tubes and on top (28) of the supporting member (82) helps support the oxidant feed tubes and center them within the fuel cells, and loosen the tolerance for centering the air feed tubes.

  8. 76 FR 46083 - Secondary National Ambient Air Quality Standards for Oxides of Nitrogen and Sulfur

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-01

    ... Quality Standards for Oxides of Nitrogen and Sulfur; Proposed Rule #0;#0;Federal Register / Vol. 76 , No... RIN 2060-AO72 Secondary National Ambient Air Quality Standards for Oxides of Nitrogen and Sulfur... nitrogen and oxides of sulfur. Based on its review, EPA proposes to retain the current nitrogen dioxide...

  9. 40 CFR 50.4 - National primary ambient air quality standards for sulfur oxides (sulfur dioxide).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... standards for sulfur oxides (sulfur dioxide). 50.4 Section 50.4 Protection of Environment ENVIRONMENTAL....4 National primary ambient air quality standards for sulfur oxides (sulfur dioxide). Link to an... to or greater than 0.005 ppm shall be rounded up). (c) Sulfur oxides shall be measured in the...

  10. Mixed oxide fuels testing in the advanced test reactor to support plutonium disposition

    SciTech Connect

    Ryskamp, J.M.; Sterbentz, J.W.; Chang, G.S.

    1995-09-01

    An intense worldwide effort is now under way to find means of reducing the stockpile of weapons-grade plutonium. One of the most attractive solutions would be to use WGPu as fuel in existing light water reactors (LWRs) in the form of mixed oxide (MOX) fuel - i.e., plutonia (PUO{sub 2}) mixed with urania (UO{sub 2}). Before U.S. reactors could be used for this purpose, their operating licenses would have to be amended. Numerous technical issues must be resolved before LWR operating licenses can be amended to allow the use of MOX fuel. These issues include the following: (1) MOX fuel fabrication process verification, (2) Whether and how to use burnable poisons to depress MOX fuel initial reactivity, which is higher than that of urania, (3) The effects of WGPu isotopic composition, (4) The feasibility of loading MOX fuel with plutonia content up to 7% by weight, (5) The effects of americium and gallium in WGPu, (6) Fission gas release from MOX fuel pellets made from WGPu, (7) Fuel/cladding gap closure, (8) The effects of power cycling and off-normal events on fuel integrity, (9) Development of radial distributions of burnup and fission products, (10) Power spiking near the interfaces of MOX and urania fuel assemblies, and (11) Fuel performance code validation. We have performed calculations to show that the use of hafnium shrouds can produce spectrum adjustments that will bring the flux spectrum in ATR test loops into a good approximation to the spectrum anticipated in a commercial LWR containing MOX fuel while allowing operation of the test fuel assemblies near their optimum values of linear heat generation rate. The ATR would be a nearly ideal test bed for developing data needed to support applications to license LWRs for operation with MOX fuel made from weapons-grade plutonium. The requirements for planning and implementing a test program in the ATR have been identified.

  11. Catalytic wet air oxidation of chlorophenols over supported ruthenium catalysts.

    PubMed

    Li, Ning; Descorme, Claude; Besson, Michèle

    2007-07-31

    A series of noble metal (Pt, Pd, Ru) loaded zirconia catalysts were evaluated in the catalytic wet air oxidation (CWAO) of mono-chlorophenols (2-CP, 3-CP, 4-CP) under relatively mild reaction conditions. Among the investigated noble metals, Ru appeared to be the best to promote the CWAO of CPs as far as incipient-wetness impregnation was used to prepare all the catalysts. The position of the chlorine substitution on the aromatic ring was also shown to have a significant effect on the CP reactivity in the CWAO over 3wt.% Ru/ZrO(2). 2-CP was relatively easier to degradate compared to 3-CP and 4-CP. One reason could be the higher adsorption of 2-CP on the catalyst surface. Further investigations suggested that 3wt.% Ru/ZrO(2) is a very efficient catalyst in the CWAO of 2-CP as far as high 2-CP conversion and TOC abatement could still be reached at even lower temperature (393K) and lower total pressure (3MPa). Additionally, the conversion of 2-CP was demonstrated to increase with the initial pH of the 2-CP solution. The dechlorination reaction is promoted at higher pH. In all cases, the adsorption of the reactants and the reaction intermediates was shown to play a major role. All parameters that would control the molecule speciation in solution or the catalyst surface properties would have a key effect.

  12. Oxidation rate of graphitic matrix material in the kinetic regime for VHTR air ingress accident scenarios

    NASA Astrophysics Data System (ADS)

    Lee, Jo Jo; Ghosh, Tushar K.; Loyalka, Sudarshan K.

    2014-08-01

    Data on oxidation rates of matrix-grade graphite in the kinetically-controlled temperature regime of graphite oxidation are needed for safety analysis of High Temperature Gas Cooled Reactors and Very High Temperature Reactors. In this work, the oxidation rate of graphitic matrix material GKrS was measured thermogravimetrically for various oxygen concentrations and with temperatures from 873 to 1873 K. A semi-empirical Arrhenius rate equation was also developed for this temperature range. The activation energy of the graphitic material is found to be about 111.5 kJ/mol. The order of reaction was found to be about 0.89. The surface of oxidized GKrS was characterized by Scanning Electron Microscopy, Electron Dispersive Spectroscopy, Fourier Transform Infrared Spectroscopy and X-ray Photoelectron Spectroscopy.

  13. Composite polymer/oxide hollow fiber contactors: versatile and scalable flow reactors for heterogeneous catalytic reactions in organic synthesis.

    PubMed

    Moschetta, Eric G; Negretti, Solymar; Chepiga, Kathryn M; Brunelli, Nicholas A; Labreche, Ying; Feng, Yan; Rezaei, Fateme; Lively, Ryan P; Koros, William J; Davies, Huw M L; Jones, Christopher W

    2015-05-26

    Flexible composite polymer/oxide hollow fibers are used as flow reactors for heterogeneously catalyzed reactions in organic synthesis. The fiber synthesis allows for a variety of supported catalysts to be embedded in the walls of the fibers, thus leading to a diverse set of reactions that can be catalyzed in flow. Additionally, the fiber synthesis is scalable (e.g. several reactor beds containing many fibers in a module may be used) and thus they could potentially be used for the large-scale production of organic compounds. Incorporating heterogeneous catalysts in the walls of the fibers presents an alternative to a traditional packed-bed reactor and avoids large pressure drops, which is a crucial challenge when employing microreactors.

  14. Nitrous oxide production pathways in a partial nitritation-anammox reactor: Isotopic evidence for nitrous oxide production associated anaerobic ammonium oxidation?

    NASA Astrophysics Data System (ADS)

    Wunderlin, P.; Harris, E. J.; Joss, A.; Emmenegger, L.; Kipf, M.; Mohn, J.; Siegrist, H.

    2014-12-01

    Nitrous oxide (N2O) is a strong greenhouse gas and a major sink for stratospheric ozone. In biological wastewater treatment N2O can be produced via several pathways. This study investigates the dynamics of N2O emissions from a nitritation-anammox reactor, and links its interpretation to the nitrogen and oxygen isotopic signature of the emitted N2O. A 400-litre single-stage nitritation-anammox reactor was operated and continuously fed with digester liquid. The isotopic composition of N2O emissions was monitored online with quantum cascade laser absorption spectroscopy (QCLAS; Aerodyne Research, Inc.; Waechter et al., 2008). Dissolved ammonium and nitrate were monitored online (ISEmax, Endress + Hauser), while nitrite was measured with test strips (Nitrite-test 0-24mgN/l, Merck). Table 1. Summary of experiments conducted to understand N2O emissions Experimental conditions O2[mgO2/L] NO2-[mgN/L] NH4+[mgN/L] N2O/NH4+[%] Normal operation <0.1 <0.5 10 0.6 Normal operation, high NH4+ <0.1 <0.5 100 6.1 High aeration 0.5 to 1.5 up to 50 10 and 50 4.9 NO2- addition (oxic) <0.1 <0.5 to 4 10 5.8 NO2- addition (anoxic) 0 <0.5 to 4 10 3.2 NH2OH addition <0.1 <0.5 10 2.5 Results showed that under normal operating conditions, the N2O isotopic site preference (SP = d15Nα - d15Nβ) was much higher than expected - up to 41‰ - strongly suggesting an unknown N2O production pathway, which is hypothesized to be mediated by anammox activity (Figure 1). A less likely explanation is that the SP of N2O was increased by partial N2O reduction by heterotrophic denitrification. Various experiments were conducted to further investigate N2O formation pathways in the reactor. Our data reveal that N2O emissions increased when reactor operation was not ideal, for example when dissolved oxygen was too high (Table 1). SP measurements confirmed that these N2O peaks were due to enhanced nitrifier denitrification, generally related to nitrite build-up in the reactor (Figure 1; Table 1). Overall

  15. 40 CFR Appendix S to Part 50 - Interpretation of the Primary National Ambient Air Quality Standards for Oxides of Nitrogen...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Ambient Air Quality Standards for Oxides of Nitrogen (Nitrogen Dioxide) S Appendix S to Part 50 Protection... National Ambient Air Quality Standards for Oxides of Nitrogen (Nitrogen Dioxide) 1. General (a) This... national ambient air quality standards for oxides of nitrogen as measured by nitrogen dioxide (“NO2...

  16. 40 CFR Appendix S to Part 50 - Interpretation of the Primary National Ambient Air Quality Standards for Oxides of Nitrogen...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Ambient Air Quality Standards for Oxides of Nitrogen (Nitrogen Dioxide) S Appendix S to Part 50 Protection... National Ambient Air Quality Standards for Oxides of Nitrogen (Nitrogen Dioxide) 1. General (a) This... national ambient air quality standards for oxides of nitrogen as measured by nitrogen dioxide (“NO2...

  17. 40 CFR Appendix S to Part 50 - Interpretation of the Primary National Ambient Air Quality Standards for Oxides of Nitrogen...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Ambient Air Quality Standards for Oxides of Nitrogen (Nitrogen Dioxide) S Appendix S to Part 50 Protection... National Ambient Air Quality Standards for Oxides of Nitrogen (Nitrogen Dioxide) 1. General (a) This... national ambient air quality standards for oxides of nitrogen as measured by nitrogen dioxide (“NO2...

  18. 40 CFR Appendix S to Part 50 - Interpretation of the Primary National Ambient Air Quality Standards for Oxides of Nitrogen...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Ambient Air Quality Standards for Oxides of Nitrogen (Nitrogen Dioxide) S Appendix S to Part 50 Protection... National Ambient Air Quality Standards for Oxides of Nitrogen (Nitrogen Dioxide) 1. General (a) This... national ambient air quality standards for oxides of nitrogen as measured by nitrogen dioxide (“NO2...

  19. Leaf photosynthetic and water-relations responses for 'Valencia' orange trees exposed to oxidant air pollution

    SciTech Connect

    Olszyk, D.M.; Takemoto, B.K.; Poe, M.

    1991-01-01

    Leaf responses were measured to test a hypothesis that reduced photosynthetic capacity and/or altered water relations were associated with reductions in yield for 'Valencia' orange trees (Citrus sinensis (L.), Osbeck) exposed to ambient oxidant air pollution. Exposures were continuous for 4 years to three levels of oxidants (in charcoal-filtered, half-filtered, and non-filtered air). Oxidants had no effect on net leaf photosynthetic rates or on photosynthetic pigment concentrations. A single set of measurements indicated that oxidants increased leaf starch concentrations (24%) prior to flowering, suggesting a change in photosynthate allocation. Leaves exposed to oxidants had small, but consistent, changes in water relations over the summer growing season, compared to trees growing in filtered air. Other changes included decreased stomatal conductance (12%) and transpiration (9%) rates, and increased water pressure potentials (5%). While all responses were subtle, their cumulative impact over 4 years indicated that 'Valencia' orange trees were subject to increased ambient oxidant stress.

  20. TiO2-photocatalyzed As(III) oxidation in a fixed-bed, flow-through reactor.

    PubMed

    Ferguson, Megan A; Hering, Janet G

    2006-07-01

    Compliance with the U.S. drinking water standard for arsenic (As) of 10 microg L(-1) is required in January 2006. This will necessitate implementation of treatment technologies for As removal by thousands of water suppliers. Although a variety of such technologies is available, most require preoxidation of As(III) to As(V) for efficient performance. Previous batch studies with illuminated TiO2 slurries have demonstrated that TiO2-photocatalyzed AS(III) oxidation occurs rapidly. This study examined reaction efficiency in a flow-through, fixed-bed reactor that provides a better model for treatment in practice. Glass beads were coated with mixed P25/sol gel TiO2 and employed in an upflow reactor irradiated from above. The reactor residence time, influent As(III) concentration, number of TiO2 coatings on the beads, solution matrix, and light source were varied to characterize this reaction and determine its feasibility for water treatment. Repeated usage of the same beads in multiple experiments or extended use was found to affect effluent As(V) concentrations but not the steady-state effluent As(III) concentration, which suggests that As(III) oxidation at the TiO2 surface undergoes dynamic sorption equilibration. Catalyst poisoning was not observed either from As(V) or from competitively adsorbing anions, although the higher steady-state effluent As(III) concentrations in synthetic groundwater compared to 5 mM NaNO3 indicated that competitive sorbates in the matrix partially hinder the reaction. A reactive transport model with rate constants proportional to incident light at each bead layer fit the experimental data well despite simplifying assumptions. TiO2-photocatalyzed oxidation of As(III) was also effective under natural sunlight. Limitations to the efficiency of As(III) oxidation in the fixed-bed reactor were attributable to constraints of the reactor geometry, which could be overcome by improved design. The fixed-bed TiO2 reactor offers an environmentally

  1. Distributions and activities of ammonia oxidizing bacteria and polyphosphate accumulating organisms in a pumped-flow biofilm reactor.

    PubMed

    Wu, Guangxue; Nielsen, Michael; Sorensen, Ketil; Zhan, Xinmin; Rodgers, Michael

    2009-10-01

    The spatial distributions and activities of ammonia oxidizing bacteria (AOB) and polyphosphate accumulating organisms (PAOs) were investigated for a novel laboratory-scale sequencing batch pumped-flow biofilm reactor (PFBR) system that was operated for carbon, nitrogen and phosphorus removal. The PFBR comprised of two 16.5l tanks (Reactors 1 and 2), each with a biofilm module of 2m(2) surface area. To facilitate the growth of AOB and PAOs in the reactor biofilms, the influent wastewater was held in Reactor 1 under stagnant un-aerated conditions for 6 h after feeding, and was then pumped over and back between Reactors 1 and 2 for 12 h, creating aerobic conditions in the two reactors during this period; as a consequence, the biofilm in Reactor 2 was in an aerobic environment for almost all the 18.2 h operating cycle. A combination of micro-sensor measurements, molecular techniques, batch experiments and reactor studies were carried out to analyse the performance of the PFBR system. After 100 days operation at a filtered chemical oxygen demand (COD(f)) loading rate of 3.46 g/m(2) per day, the removal efficiencies were 95% COD(f), 87% TN(f) and 74% TP(f). While the PFBR microbial community structure and function were found to be highly diversified with substantial AOB and PAO populations, about 70% of the phosphorus release potential and almost 100% of the nitrification potential were located in Reactors 1 and 2, respectively. Co-enrichment of AOB and PAOs was realized in the Reactor 2 biofilm, where molecular analyses revealed unexpected microbial distributions at micro-scale, with population peaks of AOB in a 100-250 microm deep sub-surface zone and of PAOs in the 0-150 microm surface zone. The micro-distribution of AOB coincided with the position of the nitrification peak identified during micro-sensor analyses. The study demonstrates that enrichment of PAOs can be realized in a constant or near constant aerobic biofilm environment. Furthermore, the findings suggest

  2. Evaluation of Fe(II) oxidation at an acid mine drainage site using laboratory-scale reactors

    NASA Astrophysics Data System (ADS)

    Brown, Juliana; Burgos, William

    2010-05-01

    Acid mine drainage (AMD) is a severe environmental threat to the Appalachian region of the Eastern United States. The Susquehanna and Potomac River basins of Pennsylvania drain to the Chesapeake Bay, which is heavily polluted by acidity and metals from AMD. This study attempted to unravel the complex relationships between AMD geochemistry, microbial communities, hydrodynamic conditions, and the mineral precipitates for low-pH Fe mounds formed downstream of deep mine discharges, such as Lower Red Eyes in Somerset County, PA, USA. This site is contaminated with high concentrations of Fe (550 mg/L), Mn (115 mg/L), and other trace metals. At the site 95% of dissolved Fe(II) and 56% of total dissolved Fe is removed without treatment, across the mound, but there is no change in the concentration of trace metals. Fe(III) oxides were collected across the Red Eyes Fe mound and precipitates were analyzed by X-ray diffraction, electron microscopy and elemental analysis. Schwertmannite was the dominant mineral phase with traces of goethite. The precipitates also contained minor amounts of Al2O3, MgO,and P2O5. Laboratory flow-through reactors were constructed to quantify Fe(II) oxidation and Fe removal over time at terrace and pool depositional facies. Conditions such as residence time, number of reactors in sequence and water column height were varied to determine optimal conditions for Fe removal. Reactors with sediments collected from an upstream terrace oxidized more than 50% of dissolved Fe(II) at a ten hour residence time, while upstream pool sediments only oxidized 40% of dissolved Fe(II). Downstream terrace and pool sediments were only capable of oxidizing 25% and 20% of Fe(II), respectively. Fe(II) oxidation rates measured in the reactors were determined to be between 3.99 x 10-8and 1.94 x 10-7mol L-1s-1. The sediments were not as efficient for total dissolved Fe removal and only 25% was removed under optimal conditions. The removal efficiency for all sediments

  3. Fast start-up reactor for partial oxidation of methane with electrically-heated metallic monolith catalyst

    NASA Astrophysics Data System (ADS)

    Jung, Heon; Yoon, Wang Lai; Lee, Hotae; Park, Jong Soo; Shin, Jang Sik; La, Howon; Lee, Jong Dae

    A palladium-washcoated metallic monolith catalyst is applied to the partial oxidation of methane to syngas. This catalyst is highly active at a gas hourly space velocity (GHSV) of 100,000 h -1. The compact partial oxidation (POX) reactor equipped with both 96 cc of the metallic monolith catalyst and an electrically-heated catalyst (EHC) has a start-up time of less than 1.5 min and a syngas generation capacity of 9.5 Nm 3 h -1. The POX reaction is sustained without the need for an external heater. With the stand-alone POX reactor, the methane conversion can be increased either by preheating the reactant mixture heat-exchanged with the product gas, or by supplying a larger amount of oxygen than is necessary for the reaction stoichiometry.

  4. Enhancement of the inherent self-protection of the fast sodium reactor cores with oxide fuel

    SciTech Connect

    Eliseev, V.A.; Malisheva, I.V.; Matveev, V.I.; Egorov, A.V.; Maslov, P.A.

    2013-07-01

    With the development and research into the generation IV fast sodium reactors, great attention is paid to the enhancement of the core inherent self-protection characteristics. One of the problems dealt here is connected with the reduction of the reactivity margin so that the control rods running should not result in the core overheating and melting. In this paper we consider the possibilities of improving the core of BN-1200 with oxide fuel by a known method of introducing an axial fertile layer into the core. But unlike earlier studies this paper looks at the possibility of using such a layer not only for improving breeding, but also for reducing sodium void reactivity effect (SVRE). This proposed improvement of the BN-1200 core does not solve the problem of strong interference in control and protection system (CPS) rods of BN-1200, but they reduce significantly the reactivity margin for burn-up compensation. This helps compensate all the reactivity balances in the improved core configurations without violating constraints on SVRE value.

  5. Hot gas cleanup for molten carbonate fuel cells. A zinc oxide reactor model, Final report

    SciTech Connect

    Steinfeld, G.

    1980-09-16

    Utilization of coal gasifiers to power MCFC requires a cleanup system to remove sulfur and particulates. Of the two near term options available for desulfurization of gasifier effluent, namely low temperature cleanup utilizing absorber/stripper technology, and hot gas cleanup utilizing metal oxides, there is a clear advantage to using hot gas cleanup. Since the MCFC will operate at 1200/sup 0/F, and the gasifier effluent could be between 1200 to 1900/sup 0/F, a hot gas cleanup system will require little or no change in process gas temperature, thereby contributing to a high overall system efficiency. A hot gas cleanup system will consist of FeO for bulk H/sub 2/S removal and ZnO for reduction of H/sub 2/S to sub ppM levels. Hot gas cleanup systems at present are not available commercially, and therefore it is the objective of this project to model the components of the system in order to help bring this technology closer to commercialization, by providing simulated operating characteristics to aid in system design, and system simulations of gasifier/MCFC systems. The modeling of the ZnO reactor is presented.

  6. GoAmazon2014/15. Oxidation Flow Reactor Final Campaign Report

    SciTech Connect

    Jimenez, J. L.; Day, D. A.; Hu, W.; Palm, B. B.; Campuzano-Jost, P.

    2016-03-01

    The primary goal of the Green Ocean Amazon (GoAmazon2014/5) field campaign was to measure and mechanistically understand the formation of particle number and mass in a region affected by large tropical rainforest biogenic emissions and sometimes anthropogenic influence from a large urban center. As part of the two intensive operational periods (IOPs) and in collaboration with Pacific Northwest National Laboratory (PNNL) and Harvard, the Jimenez Group proposed to deploy a High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS), Thermal Denuder (TD), Scanning Mobility Particle Size (SMPS), two oxidation flow reactors (OFR; including supporting O3, CO/CO2/CH4, RH analyzers), and a high volume filter sampler (MCV) for the measurement of gas and aerosol chemical, physicochemical, and volatility properties. The two IOPs were conducted during the wet season (February to March, 2014) and dry season (August to October, 2014). This proposal was part of a collaborative proposal involving other university and government laboratories.

  7. Influence of the biogas reburning for reducing nitric oxide emissions in an alundum-tube reactor

    NASA Astrophysics Data System (ADS)

    Zhao, Jie; Wang, Qingcheng; Yu, Lihui; Wu, Liyan

    2016-05-01

    The experimental study on reburning reduction reaction between biogas and NO is very important in de-NOx technology. The reburning experiments by the simulated biogas with different operation variables have been performed in an alundum-tube reactor. Results showed that the uppermost constituent in NO-reduction was CH4, H2 second, and NO-reduction by CO in biogas reburning was negligible at the same conditions. In the condition of oxygen-poor, H2 could promote CH4 oxidation and enhance the concentration of CH3 radicals, thereby increasing the reduction efficiency of NO accordingly. At the same temperature, with the increase of stoichiometric ratio, it would increase O radicals and decrease NO reduction efficiency. With the increase of reaction temperature, the reduction efficiency behaved a trend of first increased then decreased at the same stoichiometric ratio, and obtained the maximum value 51.38% at the condition of 1200 °C and λ = 0.6. Additionally, increasing the NO input concentration also could improve the reduction efficiency under the condition of fuel-rich.

  8. Modeling of Nitrous Oxide Production from Nitritation Reactors Treating Real Anaerobic Digestion Liquor

    NASA Astrophysics Data System (ADS)

    Wang, Qilin; Ni, Bing-Jie; Lemaire, Romain; Hao, Xiaodi; Yuan, Zhiguo

    2016-04-01

    In this work, a mathematical model including both ammonium oxidizing bacteria (AOB) and heterotrophic bacteria (HB) is constructed to predict N2O production from the nitritation systems receiving the real anaerobic digestion liquor. This is for the first time that N2O production from such systems was modeled considering both AOB and HB. The model was calibrated and validated using experimental data from both lab- and pilot-scale nitritation reactors. The model predictions matched the dynamic N2O, ammonium, nitrite and chemical oxygen demand data well, supporting the capability of the model. Modeling results indicated that HB are the dominant contributor to N2O production in the above systems with the dissolved oxygen (DO) concentration of 0.5–1.0 mg O2/L, accounting for approximately 75% of N2O production. The modeling results also suggested that the contribution of HB to N2O production decreased with the increasing DO concentrations, from 75% at DO = 0.5 mg O2/L to 25% at DO = 7.0 mg O2/L, with a corresponding increase of the AOB contribution (from 25% to 75%). Similar to HB, the total N2O production rate also decreased dramatically from 0.65 to 0.25 mg N/L/h when DO concentration increased from 0.5 to 7.0 mg O2/L.

  9. Evaluation of Residence Time on Nitrogen Oxides Removal in Non-Thermal Plasma Reactor.

    PubMed

    Talebizadeh, Pouyan; Rahimzadeh, Hassan; Babaie, Meisam; Javadi Anaghizi, Saeed; Ghomi, Hamidreza; Ahmadi, Goodarz; Brown, Richard

    2015-01-01

    Non-thermal plasma (NTP) has been introduced over the last few years as a promising after- treatment system for nitrogen oxides and particulate matter removal from diesel exhaust. NTP technology has not been commercialised as yet, due to its high rate of energy consumption. Therefore, it is important to seek out new methods to improve NTP performance. Residence time is a crucial parameter in engine exhaust emissions treatment. In this paper, different electrode shapes are analysed and the corresponding residence time and NOx removal efficiency are studied. An axisymmetric laminar model is used for obtaining residence time distribution numerically using FLUENT software. If the mean residence time in a NTP plasma reactor increases, there will be a corresponding increase in the reaction time and consequently the pollutant removal efficiency increases. Three different screw thread electrodes and a rod electrode are examined. The results show the advantage of screw thread electrodes in comparison with the rod electrode. Furthermore, between the screw thread electrodes, the electrode with the thread width of 1 mm has the highest NOx removal due to higher residence time and a greater number of micro-discharges. The results show that the residence time of the screw thread electrode with a thread width of 1 mm is 21% more than for the rod electrode.

  10. Modeling of Nitrous Oxide Production from Nitritation Reactors Treating Real Anaerobic Digestion Liquor

    PubMed Central

    Wang, Qilin; Ni, Bing-Jie; Lemaire, Romain; Hao, Xiaodi; Yuan, Zhiguo

    2016-01-01

    In this work, a mathematical model including both ammonium oxidizing bacteria (AOB) and heterotrophic bacteria (HB) is constructed to predict N2O production from the nitritation systems receiving the real anaerobic digestion liquor. This is for the first time that N2O production from such systems was modeled considering both AOB and HB. The model was calibrated and validated using experimental data from both lab- and pilot-scale nitritation reactors. The model predictions matched the dynamic N2O, ammonium, nitrite and chemical oxygen demand data well, supporting the capability of the model. Modeling results indicated that HB are the dominant contributor to N2O production in the above systems with the dissolved oxygen (DO) concentration of 0.5–1.0 mg O2/L, accounting for approximately 75% of N2O production. The modeling results also suggested that the contribution of HB to N2O production decreased with the increasing DO concentrations, from 75% at DO = 0.5 mg O2/L to 25% at DO = 7.0 mg O2/L, with a corresponding increase of the AOB contribution (from 25% to 75%). Similar to HB, the total N2O production rate also decreased dramatically from 0.65 to 0.25 mg N/L/h when DO concentration increased from 0.5 to 7.0 mg O2/L. PMID:27125491

  11. Evaluation of Residence Time on Nitrogen Oxides Removal in Non-Thermal Plasma Reactor

    PubMed Central

    Talebizadeh, Pouyan; Rahimzadeh, Hassan; Babaie, Meisam; Javadi Anaghizi, Saeed; Ghomi, Hamidreza; Ahmadi, Goodarz; Brown, Richard

    2015-01-01

    Non-thermal plasma (NTP) has been introduced over the last few years as a promising after- treatment system for nitrogen oxides and particulate matter removal from diesel exhaust. NTP technology has not been commercialised as yet, due to its high rate of energy consumption. Therefore, it is important to seek out new methods to improve NTP performance. Residence time is a crucial parameter in engine exhaust emissions treatment. In this paper, different electrode shapes are analysed and the corresponding residence time and NOx removal efficiency are studied. An axisymmetric laminar model is used for obtaining residence time distribution numerically using FLUENT software. If the mean residence time in a NTP plasma reactor increases, there will be a corresponding increase in the reaction time and consequently the pollutant removal efficiency increases. Three different screw thread electrodes and a rod electrode are examined. The results show the advantage of screw thread electrodes in comparison with the rod electrode. Furthermore, between the screw thread electrodes, the electrode with the thread width of 1 mm has the highest NOx removal due to higher residence time and a greater number of micro-discharges. The results show that the residence time of the screw thread electrode with a thread width of 1 mm is 21% more than for the rod electrode. PMID:26496630

  12. [Degradation of beta-naphthol by catalytic wet air oxidation].

    PubMed

    Liu, Jie; Yu, Chao-Ying; Zhao, Pei-Qing; Chen, Ge-Xin

    2012-11-01

    A series of MnO(x)/nano-TiO2 catalysts were prepared and their application in degradation of beta-naphthol by catalytic wet air oxidation (CWAO) was investigated. The catalysts preparation conditions, reaction conditions and its stability were tested. The catalysts had been characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and temperature-programmed reduction (TPR) measurements. The results showed that the decrease of the COD removal for the degradation of beta-naphthol at high Mn loading was due to the aggregation of the highly dispersed Mn species and the formation of the correlated crystals. The decline of the COD removal at high calcination temperature was probably attributed to the weak electron transfer between Mn2O3 and MnO2 and the formation of the inactive Mn2O3. The COD removal had been falling slightly when the catalyst was used 6 times, and this was likely related to the decrease of the diffraction peaks. The catalyst had a high activity when the Mn loading (mass fraction) was 4% and the calcination temperature was 450 degrees C. The COD removal was up to 96.4% at 110 degrees C and 0.5 MPa with this catalyst. The COD removal of 92.4% could be obtained with the MnO(x)/nano-TiO2 catalyst was recycled 6 times. The Mn leaching at 50, 80, 110 and 150 degrees C were all less than 9.3 mg x L(-1) by means of Atomic Absorption Spectroscopy (AAS). The probable degradation pathway was proposed according to some publications.

  13. Thermal-Hydraulic Analysis of an Experimental Reactor Cavity Cooling System with Air. Part I: Experiments; Part II: Separate Effects Tests and Modeling

    SciTech Connect

    Corradin, Michael; Anderson, M.; Muci, M.; Hassan, Yassin; Dominguez, A.; Tokuhiro, Akira; Hamman, K.

    2014-10-15

    This experimental study investigates the thermal hydraulic behavior and the heat removal performance for a scaled Reactor Cavity Cooling System (RCCS) with air. A quarter-scale RCCS facility was designed and built based on a full-scale General Atomics (GA) RCCS design concept for the Modular High Temperature Gas Reactor (MHTGR). The GA RCCS is a passive cooling system that draws in air to use as the cooling fluid to remove heat radiated from the reactor pressure vessel to the air-cooled riser tubes and discharged the heated air into the atmosphere. Scaling laws were used to preserve key aspects and to maintain similarity. The scaled air RCCS facility at UW-Madison is a quarter-scale reduced length experiment housing six riser ducts that represent a 9.5° sector slice of the full-scale GA air RCCS concept. Radiant heaters were used to simulate the heat radiation from the reactor pressure vessel. The maximum power that can be achieved with the radiant heaters is 40 kW with a peak heat flux of 25 kW per meter squared. The quarter-scale RCCS was run under different heat loading cases and operated successfully. Instabilities were observed in some experiments in which one of the two exhaust ducts experienced a flow reversal for a period of time. The data and analysis presented show that the RCCS has promising potential to be a decay heat removal system during an accident scenario.

  14. Pressurized solid oxide fuel cell integral air accumular containment

    DOEpatents

    Gillett, James E.; Zafred, Paolo R.; Basel, Richard A.

    2004-02-10

    A fuel cell generator apparatus contains at least one fuel cell subassembly module in a module housing, where the housing is surrounded by a pressure vessel such that there is an air accumulator space, where the apparatus is associated with an air compressor of a turbine/generator/air compressor system, where pressurized air from the compressor passes into the space and occupies the space and then flows to the fuel cells in the subassembly module, where the air accumulation space provides an accumulator to control any unreacted fuel gas that might flow from the module.

  15. Characterization and kinetics of sulfide-oxidizing autotrophic denitrification in batch reactors containing suspended and immobilized cells.

    PubMed

    Moraes, B S; Souza, T S O; Foresti, E

    2011-01-01

    Sulfide-oxidizing autotrophic denitrification is an advantageous alternative over heterotrophic denitrification, and may have potential for nitrogen removal of low-strength wastewaters, such as anaerobically pre-treated domestic sewage. This study evaluated the fundamentals and kinetics of this process in batch reactors containing suspended and immobilized cells. Batch tests were performed for different NOx-/S2- ratios and using nitrate and nitrite as electron acceptors. Autotrophic denitrification was observed for both electron acceptors, and NOx-/S2- ratios defined whether sulfide oxidation was complete or not. Kinetic parameter values obtained for nitrate were higher than for nitrite as electron acceptor. Zero-order models were better adjusted to profiles obtained for suspended cell reactors, whereas first-order models were more adequate for immobilized cell reactors. However, in the latter, mass transfer physical phenomena had a significant effect on kinetics based on biochemical reactions. Results showed that sulfide-oxidizing autotrophic denitrification can be successfully established for low-strength wastewaters and have potential for nitrogen removal from anaerobically pre-treated domestic sewage.

  16. Catalytic Chan–Lam coupling using a ‘tube-in-tube’ reactor to deliver molecular oxygen as an oxidant

    PubMed Central

    Mallia, Carl J; Burton, Paul M; Smith, Alexander M R; Walter, Gary C

    2016-01-01

    Summary A flow system to perform Chan–Lam coupling reactions of various amines and arylboronic acids has been realised employing molecular oxygen as an oxidant for the re-oxidation of the copper catalyst enabling a catalytic process. A tube-in-tube gas reactor has been used to simplify the delivery of the oxygen accelerating the optimisation phase and allowing easy access to elevated pressures. A small exemplification library of heteroaromatic products has been prepared and the process has been shown to be robust over extended reaction times. PMID:27559412

  17. Determination of dispersion parameters for oxidizing air and the oxidation rate of calcium sulfites in a pilot desulfurization plant

    SciTech Connect

    Burenkov, D.K.; Derevich, I.V.; Rzaev, A.I.

    1995-10-01

    In the effort to remove sulfur oxides from waste gases, the widest use is gained by desulfurization plants based on wet collection of sulfur dioxide in empty absorbers in which a limestone-gypsum suspension is sprayed, with gypsum being produced as a commodity product. Dispersion of oxidizing air in a model liquid and the oxidation rate of calcium sulfites in a suspension contained in the sump of a pilot desulfurization plant absorber are studied experimentally. Flow velocities, bubble trajectories, and oxidation rates were determined and are presented.

  18. Characterization study and five-cycle tests in a fixed-bed reactor of titania-supported nickel oxide as oxygen carriers for the chemical-looping combustion of methane.

    PubMed

    Corbella, Beatriz M; de Diego, Luis F; García-Labiano, Francisco; Adánez, Juan; Palaciost, José M

    2005-08-01

    Recent investigations have shown that in the combustion of carbonaceous compounds CO2 and NOx emissions to the atmosphere can be substantially reduced by using a two stage chemical-looping process. In this process, the reduction stage is undertaken in a first reactor in which the framework oxygen of a reducible inorganic oxide is used, instead of the usual atmospheric oxygen, for the combustion of a carbonaceous compound, for instance, methane. The outlet gas from this reactor is mostly composed of CO2 and steam as reaction products and further separation of these two components can be carried out easily by simple condensation of steam. Then, the oxygen carrier found in a reduced state is transported to a second reactor in which carrier regeneration with air takes place at relatively low temperatures, consequently preventing the formation of thermal NOx. Afterward, the regenerated carrier is carried to the first reactor to reinitiate a new cycle and so on for a number of repetitive cycles, while the carrier is able to withstand the severe chemical and thermal stresses involved in every cycle. In this paper, the performance of titania-supported nickel oxides has been investigated in a fixed-bed reactor as oxygen carriers for chemical-looping combustion of methane. Samples with different nickel oxide contents were prepared by successive incipient wet impregnations, and their performance as oxygen carriers was investigated at 900 degrees C and atmospheric pressure in five-cycle fixed-bed reactor tests using pure methane and pure air for the respective reduction and regeneration stages. The evolution of the outlet gas composition in each stage was followed by gas chromatography, and the involved chemical, structural, and textural changes of the carrier in the reactor bed were studied by using different characterization techniques. From the study, it is deduced that the reactivity of these nickel-based oxygen carriers is in the two involved stages and almost independent

  19. Effect of surface oxidation on the onset of nucleate boiling in a materials test reactor coolant channel

    DOE PAGES

    Forrest, Eric C.; Don, Sarah M.; Hu, Lin -Wen; ...

    2016-02-29

    The onset of nucleate boiling (ONB) serves as the thermal-hydraulic operating limit for many research and test reactors. However, boiling incipience under forced convection has not been well-characterized in narrow channel geometries or for oxidized surface conditions. This study presents experimental data for the ONB in vertical upflow of deionized (DI) water in a simulated materials test reactor (MTR) coolant channel. The channel gap thickness and aspect ratio were 1.96 mm and 29:1, respectively. Boiling surface conditions were carefully controlled and characterized, with both heavily oxidized and native oxide surfaces tested. Measurements were performed for mass fluxes ranging from 750more » to 3000 kg/m2s and for subcoolings ranging from 10 to 45°C. ONB was identified using a combination of high-speed visual observation, surface temperature measurements, and channel pressure drop measurements. Surface temperature measurements were found to be most reliable in identifying the ONB. For the nominal (native oxide) surface, results indicate that the correlation of Bergles and Rohsenow, when paired with the appropriate single-phase heat transfer correlation, adequately predicts the ONB heat flux. Furthermore, incipience on the oxidized surface occurred at a higher heat flux and superheat than on the plain surface.« less

  20. Effect of surface oxidation on the onset of nucleate boiling in a materials test reactor coolant channel

    SciTech Connect

    Forrest, Eric C.; Don, Sarah M.; Hu, Lin -Wen; Buongiorno, Jacopo; McKrell, Thomas J.

    2016-02-29

    The onset of nucleate boiling (ONB) serves as the thermal-hydraulic operating limit for many research and test reactors. However, boiling incipience under forced convection has not been well-characterized in narrow channel geometries or for oxidized surface conditions. This study presents experimental data for the ONB in vertical upflow of deionized (DI) water in a simulated materials test reactor (MTR) coolant channel. The channel gap thickness and aspect ratio were 1.96 mm and 29:1, respectively. Boiling surface conditions were carefully controlled and characterized, with both heavily oxidized and native oxide surfaces tested. Measurements were performed for mass fluxes ranging from 750 to 3000 kg/m2s and for subcoolings ranging from 10 to 45°C. ONB was identified using a combination of high-speed visual observation, surface temperature measurements, and channel pressure drop measurements. Surface temperature measurements were found to be most reliable in identifying the ONB. For the nominal (native oxide) surface, results indicate that the correlation of Bergles and Rohsenow, when paired with the appropriate single-phase heat transfer correlation, adequately predicts the ONB heat flux. Furthermore, incipience on the oxidized surface occurred at a higher heat flux and superheat than on the plain surface.

  1. Oxidation mechanisms of CF2Br2 and CH2Br2 induced by air nonthermal plasma.

    PubMed

    Schiorlin, Milko; Marotta, Ester; Dal Molin, Marta; Paradisi, Cristina

    2013-01-02

    Oxidation mechanisms in air nonthermal plasma (NTP) at room temperature and atmospheric pressure were investigated in a corona reactor energized by +dc, -dc, or +pulsed high voltage.. The two bromomethanes CF(2)Br(2) and CH(2)Br(2) were chosen as model organic pollutants because of their very different reactivities with OH radicals. Thus, they served as useful mechanistic probes: they respond differently to the presence of humidity in the air and give different products. By FT-IR analysis of the postdischarge gas the following products were detected and quantified: CO(2) and CO in the case of CH(2)Br(2), CO(2) and F(2)C ═ O in the case of CF(2)Br(2). F(2)C ═ O is a long-lived oxidation intermediate due to its low reactivity with atmospheric radicals. It is however removed from the NTP processed gas by passage through a water scrubber resulting in hydrolysis to CO(2) and HF. Other noncarbon containing products of the discharge were also monitored by FT-IR analysis, including HNO(3) and N(2)O. Ozone, an important product of air NTP, was never detected in experiments with CF(2)Br(2) and CH(2)Br(2) because of the highly efficient ozone depleting cycles catalyzed by BrOx species formed from the bromomethanes. It is concluded that, regardless of the type of corona applied, CF(2)Br(2) reacts in air NTP via a common intermediate, the CF(2)Br radical. The possible reactions leading to this radical are discussed, including, for -dc activation, charge exchange with O(2)(-), a species detected by APCI mass spectrometry.

  2. Validations of CFD Code for Density-Gradient Driven Air Ingress Stratified Flow

    SciTech Connect

    Chang H. Oh; Eung S. Kim; Richard Schultz; David Petti

    2010-05-01

    Air ingress into a very high temperature gas-cooled reactor (VHTR) is an important phenomena to consider because the air oxidizes the reactor core and lower plenum where the graphite structure supports the core region in the gas turbine modular helium reactor (GTMHR) design, thus jeopardizing the reactor’s safety. Validating the computational fluid dynamics (CFD) code used to analyze the air ingress phenomena is therefore an essential part of the safety analysis and the ultimate computation required for licensing

  3. Durable rechargeable zinc-air batteries with neutral electrolyte and manganese oxide catalyst

    NASA Astrophysics Data System (ADS)

    Sumboja, Afriyanti; Ge, Xiaoming; Zheng, Guangyuan; Goh, F. W. Thomas; Hor, T. S. Andy; Zong, Yun; Liu, Zhaolin

    2016-11-01

    Neutral chloride-based electrolyte and directly grown manganese oxide on carbon paper are used as the electrolyte and air cathode respectively for rechargeable Zn-air batteries. Oxygen reduction and oxygen evolution reactions on manganese oxide show dependence of activities on the pH of the electrolyte. Zn-air batteries with chloride-based electrolyte and manganese oxide catalyst exhibit satisfactory voltage profile (discharge and charge voltage of 1 and 2 V at 1 mA cm-2) and excellent cycling stability (≈90 days of continuous cycle test), which is attributed to the reduced carbon corrosion on the air cathode and decreased carbonation in neutral electrolyte. This work describes a robust electrolyte system that improves the cycle life of rechargeable Zn-air batteries.

  4. Construction and economics of a pilot/full-scale biological trickling filter reactor for the removal of volatile organic compounds from polluted air.

    PubMed

    Deshusses, M A; Webster, T S

    2000-11-01

    The design and the construction of an actual 8.7-m3 pilot/full-scale biotrickling filter for waste air treatment is described and compared with a previous conceptual scale-up of a laboratory reactor. The reactor construction costs are detailed and show that about one-half of the total reactor costs ($97,000 out of $178,000) was for personnel and engineering time, whereas approximately 20% was for monitoring and control equipment. A detailed treatment cost analysis demonstrated that, for an empty bed contact time of 90 sec, the overall treatment costs (including capital charges) were as low as $8.7/1000 m3air in the case where a nonchlorinated volatile organic compound (VOC) was treated, and $14/1000 m3air for chlorinated compounds such as CH2Cl2. Comparison of these costs with conventional air pollution control techniques demonstrates excellent perspectives for more field applications of biotrickling filters. As the specific costs of building and operating biotrickling filter reactors decrease with increasing size of the reactor, the cost benefit of biotrickling filtration is expected to increase for full technical-scale bioreactors.

  5. Fabrication technological development of the oxide dispersion strengthened alloy MA957 for fast reactor applications

    SciTech Connect

    ML Hamilton; DS Gelles; RJ Lobsinger; GD Johnson; WF Brown; MM Paxton; RJ Puigh; CR Eiholzer; C Martinez; MA Blotter

    2000-03-27

    A significant amount of effort has been devoted to determining the properties and understanding the behavior of the alloy MA957 to define its potential usefulness as a cladding material, in the fast breeder reactor program. The numerous characterization and fabrication studies that were conducted are documented in this report. The alloy is a ferritic stainless steel developed by International Nickel Company specifically for structural reactor applications. It is strengthened by a very fine, uniformly distributed yttria dispersoid. Its fabrication involves a mechanical alloying process and subsequent extrusion, which ultimately results in a highly elongated grain structure. While the presence of the dispersoid produces a material with excellent strength, the body centered cubic structure inherent to the material coupled with the high aspect ratio that results from processing operations produces some difficulties with ductility. The alloy is very sensitive to variations in a number of processing parameters, and if the high strength is once lost during fabrication, it cannot be recovered. The microstructural evolution of the alloy under irradiation falls into two regimes. Below about 550 C, dislocation development, {alpha}{prime} precipitation and void evolution in the matrix are observed, while above about 550 C damage appears to be restricted to cavity formation within oxide particles. The thermal expansion of the alloy is very similar to that of HT9 up to the temperature where HT9 undergoes a phase transition to austenitic. Pulse magnetic welding of end caps onto MA957 tubing can be accomplished in a manner similar to that in which it is performed on HT9, although the welding parameters appear to be very sensitive to variations in the tubing that result from small changes in fabrication conditions. The tensile and stress rupture behavior of the alloy are acceptable in the unirradiated condition, being comparable to HT9 below about 700 C and exceeding those of HT9

  6. Statistical analysis of oxidation rates for K Basin fuel in dry air

    SciTech Connect

    Trimble, D.J.

    1998-02-06

    Test data from oxidation of K Basin fuel (SNF) samples in dry air were reviewed, and linear reaction rates were derived on a time-average basis. The derived rates were compared to literature data for unirradiated uranium in dry air using rate law of the form log(rate) = a + b (I/T). The analyses found differences between the SNF data and the literature data. Oxidation rate below 150 C was higher for K Basin fuel than for unirradiated uranium.

  7. Final report on the oxidation of energetic materials in supercritical water. Final Air Force report

    SciTech Connect

    Buelow, S.J.; Allen, D.; Anderson, G.K.

    1995-04-03

    The objective of this project was to determine the suitability of oxidation in supercritical fluids (SCO), particularly water (SCWO), for disposal of propellants, explosives, and pyrotechnics (PEPs). The SCO studies of PEPs addressed the following issues: The efficiency of destruction of the substrate. The products of destruction contained in the effluents. Whether the process can be conducted safely on a large scale. Whether energy recovery from the process is economically practicable. The information essential for process development and equipment design was also investigated, including issues such as practical throughput of explosives through a SCWO reactor, reactor materials and corrosion, and models for process design and optimization.

  8. Comparing targeted and non-targeted high-resolution mass spectrometric approaches for assessing advanced oxidation reactor performance.

    PubMed

    Parry, Emily; Young, Thomas M

    2016-11-01

    High resolution mass spectrometry (HR-MS) offers the opportunity to track large numbers of non-target analytes through water treatment processes, providing a more comprehensive view of reactor performance than targeted evaluation. Both approaches were used to evaluate the performance of a pilot scale advanced oxidation process (AOP) employing ultraviolet light and hydrogen peroxide (UV/H2O2) to treat municipal wastewater effluent. Twelve pharmaceuticals and personal care products were selected as target compounds and added to reactor influent. Target compound removal over a range of flow rates and hydrogen peroxide addition levels was assessed using a liquid chromatograph combined with a quadrupole time-of-flight mass spectrometer (LC-qTOF-MS). Target compound removals were used to determine hydroxyl radical concentrations and UV fluence under pilot scale conditions. The experiments were also analyzed using a nontarget approach, which identified "molecular features" in either reactor influent or effluent. Strong correlation (r = 0.94) was observed between target compound removals calculated using the targeted and non-targeted approaches across the range of reactor conditions tested. The two approaches also produced consistent rankings of the performance of the various reactor operating conditions, although the distribution of compound removal efficiencies was usually less favorable with the broader, nontarget approach. For example, in the UV only treatment 8.3% of target compounds and 2.2% of non-target compounds exhibited removals above 50%, while 100% of target compounds and 74% of non-target compounds exhibited removals above 50% in the best condition tested. These results suggest that HR-MS methods can provide more holistic evaluation of reactor performance, and may reduce biases caused by selection of a limited number of target compounds. HR-MS methods also offer insights into the composition of poorly removed compounds and the formation of transformation

  9. Transport of breeder reactor-fire-generated sodium oxide aerosols for building-wake-dominated meteorology

    SciTech Connect

    Fields, D.E.; Cooper, A.C.; Miller, C.W.

    1987-02-01

    This report describes the methodology used and results obtained in efforts to estimate the sodium aerosol concentrations at air intake ports of a liquid-metal cooled, fast-breeder nuclear reactor. An earlier version of this methodology has been previously discussed (Fields and Miller, 1985). A range of wind speeds from 2 to 10 m/s is assumed, and an effort is made to include building wake effects which, in many cases, dominate the dispersal of aerosols near buildings. For relatively small release rates, on the order of 1 to 10 kg/s, the plume rise is small and estimates of aerosol concentrations are derived using the methodology of Wilson and Britter (1982), which describes releases from surface vents. For release rates on the order of 100 kg/s much higher release velocities are expected, and plume rise is considered. An effective increase in release height is computed using the Split-H methodology with a parameterization suggested by Ramsdell (1983), and the release source strength is transformed to rooftop level. Evaluation of the acute release aerosol concentration is then based on the methodology for releases from a surface release of this transformed source strength. For a horizontal release, a methodology is developed to chart the plume path as a function of release and site meteorology parameters. Results described herein must be regarded as maximum aerosol concentrations, based on models derived from generic wind tunnel studies. More accurate and site-specific results may be obtained through wind tunnel simulations and through simulating emissions from release points other than those assumed here.

  10. Air Quality Criteria for Ozone and Related Photochemical Oxidants (Second External Review Draft)

    EPA Science Inventory

    This second external review draft of the Air Quality Criteria for Ozone and Related Photochemical Oxidants, Volumes I-III (Ozone Criteria Document) is being released for public comment and for review by EPA's Clean Air Scientific Advisory Committee (CASAC) r...

  11. The Low Temperature Oxidation of 2,7-Dimethyloctane in a Pressurized Flow Reactor

    NASA Astrophysics Data System (ADS)

    Farid, Farinaz

    The complexity of real fuels has fostered the use of simple mixtures of hydrocarbons whose combustion behavior approximates that of real fuels in both experimental and computational studies to develop models of the combustion of the real fuel. These simple mixtures have been called surrogates. Lightly branched paraffins are an important class of constituents in gasoline, diesel and aviation turbine fuels and therefore are primary candidates for use as a component in a surrogate. Unfortunately, fundamental studies on combustion characteristics of high molecular weight mono- and di-methylated iso-paraffins are scarce. Therefore, this study was designed to investigate the low-temperature oxidation of 2,7-dimethyloctane (2,7-DMO) (C10H22), a lightly branched isomer of decane. Replicate 2,7-DMO oxidation experiments were conducted in a pressurized flow reactor (PFR) over the temperature range of 550 -- 850 K, at a pressure of 8 atm and an equivalence ratio of 0.3 in 4.21% oxygen / nitrogen. The reactivity was mapped by continuous monitoring of CO, CO 2, and O2 using a non-dispersive infrared (NDIR) carbon monoxide / carbon dioxide analyzer and an electrochemical oxygen sensor. For examining the underlying reaction chemistry, detailed speciation of samples was performed at selected temperatures using a gas chromatograph with a flame ionization detector coupled to a mass spectrometer. Comparable oxidation experiments for n-decane were carried out to examine the unique effects of branching on fuel reactivity and distribution of major stable intermediates. For both isomers, the onset of negative temperature coefficient (NTC) region was observed near 700 K, with the reactivity decreasing with increasing the temperature. The flow reactor study of n-decane oxidation confirmed that the isomerization reduces the amount of CO produced at peak reactivity. In addition to reaction inhibition, branching affected the distribution of C2-C 4 olefin intermediates. While the oxidation of

  12. Effect of fuel-air-ratio nonuniformity on emissions of nitrogen oxides

    NASA Technical Reports Server (NTRS)

    Lyons, V. J.

    1981-01-01

    The inlet fuel-air ratio nonuniformity is studied to deterine how nitrogen oxide (NOx) emissions are affected. An increase in NOx emissions with increased fuel-air ratio nonuniformity for average equivalence ratios less than 0.7 and a decrease in NOx emissions for average equivalence ratios near stoichiometric is predicted. The degree of uniformityy of fuel-air ratio profiles that is necessary to achieve NOx emissions goals for actual engines that use lean, premixed, prevaporized combustion systems is determined.

  13. A Comparison of Measured and Calculated Air-Transported Radiation from a Fast. Unshielded Nuclear Reactor.

    DTIC Science & Technology

    1980-12-01

    gamma-ray spectra ...... 40 APPENDIX III DREO calculated neutron and gamma-ray spectra ...41 APPENDIX IV Measured 252- Californium spectra... Californium neutron spectrum ............ 43 27 : DREO measured 252- Californium gamma-ray spectrum .......... 44 TABLES I : Reactor, detector and weather...previously found it necessary to modify their response matrices below 2 MeV in order to reproduce 252- californium fission-neutron spectra according to

  14. Hydrophilic immobilized trypsin reactor with magnetic graphene oxide as support for high efficient proteome digestion.

    PubMed

    Jiang, Bo; Yang, Kaiguang; Zhao, Qun; Wu, Qi; Liang, Zhen; Zhang, Lihua; Peng, Xiaojun; Zhang, Yukui

    2012-09-07

    In this paper, magnetic Fe₃O₄ nanoparticles modified graphene oxide nanocomposites (GO-CO-NH-Fe₃O₄) were prepared by covalent bonding, via the reaction between the amino groups of fuctionalized Fe₃O₄ and the carboxylic groups of GO, confirmed by Fourier-transform infrared spectra, Raman spectroscopy, and transmission electron microscopy. With GO-CO-NH-Fe₃O₄ as a novel substrate, trypsin was immobilized via π-π stacking and hydrogen bonding interaction, and the binding capacity of trypsin reached as high as 0.275 mg/mg. Since GO-CO-NH-Fe₃O₄ worked as not only support for enzyme immobilization, but also as an excellent microwave irradiation absorber, the digestion efficiency could be further improved with microwave assistance. By such an immobilized enzymatic reactor (IMER), standard proteins could be efficiently digested within 15 s, with sequence coverages comparable or better than those obtained by conventional in-solution digestion (12 h). Since trypsin was immobilized under mild conditions, the enzymatic activity of IMER preserved at least for a month. In addition, due to the good hydrophilicity of GO, no peptide residue was observed in the sequent digestion of bovine serum albumin and myoglobin. To further confirm the efficiency of such an IMER for proteome analysis, it was applied to digest proteins extracted from rat liver, followed by nanoRPLC-ESI-MS/MS analysis. With only 5 min microwave-assisted digestion, in 3 parallel runs, totally 456 protein groups were identified, comparable to that obtained by 12 h in-solution digestion, indicating the great potential of IMERs with GO-CO-NH-Fe₃O₄ as the support for high throughput proteome study.

  15. Heterogeneous photochemical reactions of a propylene-nitrogen dioxide-metal oxide-dry air system

    NASA Astrophysics Data System (ADS)

    Takeuchi, Koji; Ibusuki, Takashi

    Photochemical reactions of a C 3H 6-NO 2-air system in the presence of metal oxide were investigated. The metal oxides showing strong photooxidation activity were found to be n-type semiconductor oxides with the energy band gap around 3 eV. Formation of cyano-compounds (HCN and CH 3CN) was also observed and the activity can be explained in terms of the adsorptivity of NO onto metal oxides. Coalfired fly ash as a model of mixed metal oxides was also examined and their photocatalytic action was discussed.

  16. Air-Driven Potassium Iodide-Mediated Oxidative Photocyclization of Stilbene Derivatives.

    PubMed

    Matsushima, Tomoya; Kobayashi, Sayaka; Watanabe, Soichiro

    2016-09-02

    A new method has been developed for the potassium iodide-mediated oxidative photocyclization of stilbene derivatives. Compared with conventional iodine-mediated oxidative photocyclization reactions, this new method requires shorter reaction times and affords cyclized products in yields of 45-97%. This reaction proceeds with a catalytic amount of potassium iodide and works in an air-driven manner without the addition of an external scavenger. The radical-mediated oxidative photocyclization of stilbene derivatives using TEMPO was also investigated.

  17. Oxidation of ammonium sulfite by a multi-needle-to-plate gas phase pulsed corona discharge reactor

    NASA Astrophysics Data System (ADS)

    Ren, Hua; Lu, Na; Shang, Kefeng; Li, Jie; Wu, Yan

    2013-03-01

    The oxidation of ammonium sulfite in the ammonia-based flue gas desulfurization (FGD) process was investigated in a multi-needle-to-plate gas phase pulsed corona discharge reactor in this paper. The effect of several parameters, including capacitance and peak pulse voltage of discharge system, electrode gap and bubbling gas flow rate on the oxidation rate of ammonium sulfite was reviewed. The oxidation rate of ammonium sulfite could reach 47.2% at the capacitance, the peak pulse voltage, electrode gap and bubbling gas flow rate equal to 2 nF, -24.6 k V, 35 mm and 4 L min-1 within treatment time of 40 min The experimental results indicate that the gas phase pulsed discharge system with a multi-needle-to-plate electrode can oxide the ammonium sulfite. The oxidation rate increased with the applied capacitance and peak pulse voltage and decreased with the electrode gap. As the bubbling gas flow rate increased, the oxidation rate increased first and then tended to reach a stationary value. These results would be important for the process optimization of the (NH4)2SO3 to (NH4)2SO4 oxidation.

  18. Development of a Catalytic Wet Air Oxidation Method to Produce Feedstock Gases from Waste Polymers

    NASA Technical Reports Server (NTRS)

    Kulis, Michael J.; Guerrero-Medina, Karen J.; Hepp, Aloysius F.

    2012-01-01

    Given the high cost of space launch, the repurposing of biological and plastic wastes to reduce the need for logistical support during long distance and long duration space missions has long been recognized as a high priority. Described in this paper are the preliminary efforts to develop a wet air oxidation system in order to produce fuels from waste polymers. Preliminary results of partial oxidation in near supercritical water conditions are presented. Inherent corrosion and salt precipitation are discussed as system design issues for a thorough assessment of a second generation wet air oxidation system. This work is currently being supported by the In-Situ Resource Utilization Project.

  19. A pilot study on lignocelluloses to ethanol and fish feed using NMMO pretreatment and cultivation with zygomycetes in an air-lift reactor.

    PubMed

    Lennartsson, Patrik R; Niklasson, Claes; Taherzadeh, Mohammad J

    2011-03-01

    A complete process for the production of bioethanol and fungal biomass from spruce and birch was investigated. The process included milling, pretreatment with N-methylmorpholine-N-oxide (NMMO), washing of the pretreated wood, enzymatic hydrolysis, and cultivation of the zygomycetes fungi Mucor indicus. Investigated factors included wood chip size (0.5-16 mm), pretreatment time (1-5h), and scale of the process from bench-scale to 2m high air-lift reactor. Best hydrolysis yields were achieved from wood chips below 2mm after 5h of pretreatment. Ethanol yields (mg/g wood) of 195 and 128 for spruce, and 175 and 136 for birch were achieved from bench-scale and airlift, respectively. Fungal biomass yields (mg/g wood) of 103 and 70 for spruce, and 86 and 66 for birch from bench scale and airlift respectively were simultaneously achieved. NMMO pretreatment and cultivation with M. indicus appear to be a good alternative for ethanol production from birch and spruce.

  20. Effect of lithium hydroxide on stability of fuel cladding oxide film in simulated pressurized water reactor primary water environments

    SciTech Connect

    Saario, T.; Taehtinen, S.; Piippo, J.

    1997-09-01

    The trend in pressurized water reactors (PWR) toward higher burnups, increasing lithium concentrations, and higher coolant temperatures imposes a demand for better fuel cladding corrosion and hydriding properties. There is a lack of reliable and fast in-situ techniques to investigate zirconium alloys in high-temperature water environments. The contact electric resistance (CER) technique was used to measure the electric resistance of the oxide growing on a zirconium-based fuel cladding material. Lithium hydroxide (LiOH) decreased electric resistance of the oxide when LiOH was in excess of {approximately} 70 ppm in PWR water at 300 C. Electric resistance of the oxide was dependent upon LiOH concentration and was shown to correlate inversely with the effect of LiOH on weight gain. Kinetics of the decrease of electric resistance indicated the mechanism of degradation was a phase transformation rather than a diffusion-limited process.

  1. CONCENTRATED AMBIENT AIR POLLUTION CREATES OXIDATIVE STRESS IN CNS MICROGLIA.

    EPA Science Inventory

    Nanometer size particles carry free radical activity on their surface and can produce oxidative stress (OS)-mediated damage upon impact to target cells. The initiating event of phage cell activation (i.e., the oxidative burst) is unknown, although many proximal events have been i...

  2. An efficient approach for phosphorus recovery from wastewater using series-coupled air-agitated crystallization reactors.

    PubMed

    Dai, Hongliang; Lu, Xiwu; Peng, Yonghong; Zou, Haiming; Shi, Jing

    2016-12-01

    Homogeneous nucleation of hydroxyapatite (HAP) crystallization in high levels of supersaturation solution has a negative effect on phosphorus recovery efficiency because of the poor settleability of the generated HAP microcrystalline. In this study, a new high-performance approach for phosphorus recovery from anaerobic supernatant using three series-coupled air-agitated crystallization reactors was developed and characterized. During 30-day operation, the proposed process showed a high recovery efficiency (∼95.82%) and low microcrystalline ratio (∼3.11%). Particle size analysis showed that the microcrystalline size was successively increased (from 5.81 to 26.32 μm) with the sequence of series-coupled reactors, confirming the conjectural mechanism that a multistage-induced crystallization system provided an appropriate condition for the growth, aggregation, and precipitation of crystallized products. Furthermore, the new process showed a broad spectrum of handling ability for different concentrations of phosphorus-containing solution in the range of 5-350 mg L(-1), and the obtained results of phosphorus conversion ratio and recovery efficiency were more than 92% and 80%, respectively. Overall, these results showed that the new process exhibited an excellent ability of efficient phosphorus recovery as well as wide application scope, and might be used as an effective approach for phosphorus removal and recovery from wastewater.

  3. 77 FR 63827 - Request for Nominations of Experts for the Clean Air Scientific Advisory Committee (CASAC) Oxides...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-17

    ... of Nitrogen Primary National Ambient Air Quality Standards (NAAQS) Review Panel AGENCY: Environmental... the chartered CASAC on primary (human health-based) air quality standards for oxides of nitrogen (NO X... six ``criteria'' air pollutants, including oxides of nitrogen. As a Federal Advisory Committee,...

  4. Effect of ethanol addition on soot precursors emissions during benzene oxidation in a jet-stirred reactor.

    PubMed

    Rezgui, Yacine; Guemini, Miloud

    2014-05-01

    A constant volume reactor model (PSR) was used to investigate the effect of ethanol addition on the formation of some pollutants during benzene oxidation in a jet-stirred reactor. The blended fuels were formed by incrementally adding 4% wt of oxygen (ethanol) to the neat benzene fuel and by keeping the inert mole fraction (nitrogen) and the equivalence ratio constants. The main objective of this work was to obtain fundamental understanding of the mechanisms through which the oxygenate compound affects soot precursor amounts. The modeling results showed that C2H2, C5H5, and C3H3 mole fractions decreased upon increasing the ethanol percentage in the fuel mixture.

  5. Oxidation of Zircaloy Fuel Cladding in Water-Cooled Nuclear Reactors

    SciTech Connect

    Macdonald, Digby; Urquidi-Macdonald, Mirna; Chen, Yingzi; Ai, Jiahe; Park, Pilyeon; Kim, Han-Sang

    2006-12-12

    Our work involved the continued development of the theory of passivity and passivity breakdown, in the form of the Point Defect Model, with emphasis on zirconium and zirconium alloys in reactor coolant environments, the measurement of critically-important parameters, and the development of a code that can be used by reactor operators to actively manage the accumulation of corrosion damage to the fuel cladding and other components in the heat transport circuits in both BWRs and PWRs. In addition, the modified boiling crevice model has been further developed to describe the accumulation of solutes in porous deposits (CRUD) on fuel under boiling (BWRs) and nucleate boiling (PWRs) conditions, in order to accurately describe the environment that is contact with the Zircaloy cladding. In the current report, we have derived expressions for the total steady-state current density and the partial anodic and cathodic current densities to establish a deterministic basis for describing Zircaloy oxidation. The models are “deterministic” because the relevant natural laws are satisfied explicitly, most importantly the conversation of mass and charge and the equivalence of mass and charge (Faraday’s law). Cathodic reactions (oxygen reduction and hydrogen evolution) are also included in the models, because there is evidence that they control the rate of the overall passive film formation process. Under open circuit conditions, the cathodic reactions, which must occur at the same rate as the zirconium oxidation reaction, are instrumental in determining the corrosion potential and hence the thickness of the barrier and outer layers of the passive film. Controlled hydrodynamic methods have been used to measure important parameters in the modified Point Defect Model (PDM), which is now being used to describe the growth and breakdown of the passive film on zirconium and on Zircaloy fuel sheathing in BWRs and PWRs coolant environments. The modified PDMs recognize the existence of a

  6. Development and numerical/experimental characterization of a lab-scale flat flame reactor allowing the analysis of pulverized solid fuel devolatilization and oxidation at high heating rates

    SciTech Connect

    Lemaire, R. Menanteau, S.

    2016-01-15

    This paper deals with the thorough characterization of a new experimental test bench designed to study the devolatilization and oxidation of pulverized fuel particles in a wide range of operating conditions. This lab-scale facility is composed of a fuel feeding system, the functioning of which has been optimized by computational fluid dynamics. It allows delivering a constant and time-independent mass flow rate of fuel particles which are pneumatically transported to the central injector of a hybrid McKenna burner using a carrier gas stream that can be inert or oxidant depending on the targeted application. A premixed propane/air laminar flat flame stabilized on the porous part of the burner is used to generate the hot gases insuring the heating of the central coal/carrier-gas jet with a thermal gradient similar to those found in industrial combustors (>10{sup 5} K/s). In the present work, results issued from numerical simulations performed a priori to characterize the velocity and temperature fields in the reaction chamber have been analyzed and confronted with experimental measurements carried out by coupling particle image velocimetry, thermocouple and two-color pyrometry measurements so as to validate the order of magnitude of the heating rate delivered by such a new test bench. Finally, the main features of the flat flame reactor we developed have been discussed with respect to those of another laboratory-scale system designed to study coal devolatilization at a high heating rate.

  7. Development and numerical/experimental characterization of a lab-scale flat flame reactor allowing the analysis of pulverized solid fuel devolatilization and oxidation at high heating rates

    NASA Astrophysics Data System (ADS)

    Lemaire, R.; Menanteau, S.

    2016-01-01

    This paper deals with the thorough characterization of a new experimental test bench designed to study the devolatilization and oxidation of pulverized fuel particles in a wide range of operating conditions. This lab-scale facility is composed of a fuel feeding system, the functioning of which has been optimized by computational fluid dynamics. It allows delivering a constant and time-independent mass flow rate of fuel particles which are pneumatically transported to the central injector of a hybrid McKenna burner using a carrier gas stream that can be inert or oxidant depending on the targeted application. A premixed propane/air laminar flat flame stabilized on the porous part of the burner is used to generate the hot gases insuring the heating of the central coal/carrier-gas jet with a thermal gradient similar to those found in industrial combustors (>105 K/s). In the present work, results issued from numerical simulations performed a priori to characterize the velocity and temperature fields in the reaction chamber have been analyzed and confronted with experimental measurements carried out by coupling particle image velocimetry, thermocouple and two-color pyrometry measurements so as to validate the order of magnitude of the heating rate delivered by such a new test bench. Finally, the main features of the flat flame reactor we developed have been discussed with respect to those of another laboratory-scale system designed to study coal devolatilization at a high heating rate.

  8. Development and numerical/experimental characterization of a lab-scale flat flame reactor allowing the analysis of pulverized solid fuel devolatilization and oxidation at high heating rates.

    PubMed

    Lemaire, R; Menanteau, S

    2016-01-01

    This paper deals with the thorough characterization of a new experimental test bench designed to study the devolatilization and oxidation of pulverized fuel particles in a wide range of operating conditions. This lab-scale facility is composed of a fuel feeding system, the functioning of which has been optimized by computational fluid dynamics. It allows delivering a constant and time-independent mass flow rate of fuel particles which are pneumatically transported to the central injector of a hybrid McKenna burner using a carrier gas stream that can be inert or oxidant depending on the targeted application. A premixed propane/air laminar flat flame stabilized on the porous part of the burner is used to generate the hot gases insuring the heating of the central coal/carrier-gas jet with a thermal gradient similar to those found in industrial combustors (>10(5) K/s). In the present work, results issued from numerical simulations performed a priori to characterize the velocity and temperature fields in the reaction chamber have been analyzed and confronted with experimental measurements carried out by coupling particle image velocimetry, thermocouple and two-color pyrometry measurements so as to validate the order of magnitude of the heating rate delivered by such a new test bench. Finally, the main features of the flat flame reactor we developed have been discussed with respect to those of another laboratory-scale system designed to study coal devolatilization at a high heating rate.

  9. Preparation, characterization, and photocatalytic studies on anatase nano-TiO{sub 2} at internal air lift circulating photocatalytic reactor

    SciTech Connect

    Xu, Hang Li, Mei; Jun, Zhang

    2013-09-01

    Graphical abstract: The micro morphological structure of the nano-TiO{sub 2} particles was also observed with TEM, as shown in figure. The TEM images clearly exhibited the homogeneous microstructure of particles with a size of around 10–15 nm. - Highlights: • Nano-TiO{sub 2} was prepared by complex techniques of sol–gel, micro-emulsion and solvent thermal. • The size of TiO{sub 2} was nano level and uniformity. • Nano-TiO{sub 2} exhibited high photo-catalytic activity at internal air lift circulating reactor. • The best nano-TiO{sub 2} dosage was obtained. - Abstract: Anatase nano-titania (TiO{sub 2}) powder was prepared by using a sol–gel process mediated in reverse microemulsion combined with a solvent thermal technique. The structures of the obtained TiO{sub 2} were characterized by TG-DSC, XRD, TEM. The photocatalytic decomposition of methylene blue (MB) on nano-TiO{sub 2} was studied by using an internal air lift circulating photocatalytic reactor. The results show that the anatase structure appears in the calcination temperature range of 400–510 °C, while the transformation of anatase into rutile takes place above 510 °C. The homogeneous microstructure of nano-TiO{sub 2} particles was obtained with a size of around 10–15 nm. In the photocatalytic performance, degradation process follows pseudo first order kinetics with different dosages of photocatalyst and initial MB concentrations and optimal TiO{sub 2} dosage is 0.1 g/L with neutral medium.

  10. 40 CFR 50.11 - National primary and secondary ambient air quality standards for oxides of nitrogen (with...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... air quality standards for oxides of nitrogen (with nitrogen dioxide as the indicator). 50.11 Section... quality standards for oxides of nitrogen (with nitrogen dioxide as the indicator). (a) The level of the national primary annual ambient air quality standard for oxides of nitrogen is 53 parts per billion...

  11. 40 CFR 50.11 - National primary and secondary ambient air quality standards for oxides of nitrogen (with...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... air quality standards for oxides of nitrogen (with nitrogen dioxide as the indicator). 50.11 Section... quality standards for oxides of nitrogen (with nitrogen dioxide as the indicator). (a) The level of the national primary annual ambient air quality standard for oxides of nitrogen is 53 parts per billion...

  12. 40 CFR 50.11 - National primary and secondary ambient air quality standards for oxides of nitrogen (with...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... air quality standards for oxides of nitrogen (with nitrogen dioxide as the indicator). 50.11 Section... quality standards for oxides of nitrogen (with nitrogen dioxide as the indicator). (a) The level of the national primary annual ambient air quality standard for oxides of nitrogen is 53 parts per billion...

  13. 40 CFR 50.11 - National primary and secondary ambient air quality standards for oxides of nitrogen (with...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... air quality standards for oxides of nitrogen (with nitrogen dioxide as the indicator). 50.11 Section... quality standards for oxides of nitrogen (with nitrogen dioxide as the indicator). (a) The level of the national primary annual ambient air quality standard for oxides of nitrogen is 53 parts per billion...

  14. 40 CFR 50.11 - National primary and secondary ambient air quality standards for oxides of nitrogen (with...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... air quality standards for oxides of nitrogen (with nitrogen dioxide as the indicator). 50.11 Section... quality standards for oxides of nitrogen (with nitrogen dioxide as the indicator). (a) The level of the national primary annual ambient air quality standard for oxides of nitrogen is 53 parts per billion...

  15. 76 FR 48073 - Public Hearing for Secondary National Ambient Air Quality Standards for Oxides of Nitrogen and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-08

    ... for Oxides of Nitrogen and Sulfur AGENCY: Environmental Protection Agency (EPA). ACTION: Announcement... titled ``Secondary National Ambient Air Quality Standards for Oxides of Nitrogen and Sulfur'' which was... ``Secondary National Ambient Air Quality Standards for Oxides of Nitrogen and Sulfur'' proposed rule should...

  16. Sequential treatment of diluted olive pomace leachate by digestion in a pilot scale UASB reactor and BDD electrochemical oxidation.

    PubMed

    Katsoni, Alphathanasia; Mantzavinos, Dionissios; Diamadopoulos, Evan

    2014-06-15

    The efficiency of the anaerobic treatment of olive pomace leachate (OPL) at mesophilic conditions was investigated. Daily and cumulative biogas production was measured during the operational period. The maximum biogas flowrate was 65 L/d, of which 50% was methane. In addition, the applicability of electrochemical oxidation as an advanced post-treatment method for the complete removal of chemical oxygen demand (COD) from the anaerobically treated OPL was evaluated. The diluted OPL, having a pH of 6.5 and a total COD of 5 g/L, was first treated in a 600 L, pilot-scale up-flow anaerobic sludge blanket (UASB) reactor. The UASB reactor was operated for 71 days at mesophilic conditions (32 ± 2 °C) in a temperature-controlled environment at a hydraulic retention time of 3 days, and organic loading rates (OLR) between 0.33 and 1.67 g COD/(L.d). The UASB process led to a COD removal efficiency between 35 and 70%, while the particulate matter of the wastewater was effectively removed by entrapment in the sludge blanket of the reactor. When the anaerobic reactor effluent was post-treated over a boron-doped diamond (BDD) anode at 18 A and in the presence of 0.17% NaCl as the supporting electrolyte, complete removal of COD was attained after 7 h of treatment predominantly through total oxidation reactions. During electrochemical experiments, three groups of organo-chlorinated compounds, namely trihalomethanes (THMs), haloacetonitriles (HANs) and haloketons (HKs), as well as 1,2-dichloroethane (DCA) and chloropicrin were identified as by-products of the process; these, along with the residual chlorine are thought to increase the matrix ecotoxicity to Artemia salina.

  17. Catalytic activity of Ni-YSZ anodes in a single-chamber solid oxide fuel cell reactor

    NASA Astrophysics Data System (ADS)

    Savoie, Sylvio; Napporn, Teko W.; Morel, Bertrand; Meunier, Michel; Roberge, Réal

    The importance of heterogeneous catalysis in single-chamber solid oxide fuel cells (SC-SOFC) is universally recognized, but little studied. This work presents a thorough investigation of the catalytic activity of three Ni-YSZ half-cells in a well-described single-chamber reactor. One in-house electrolyte-supported and two commercially available anode-supported half-cells composed of anodes with thicknesses ranging from 50 μm to 1.52 mm are investigated. They are exposed to methane and oxygen gas mixtures within CH 4:O 2 flow rate ratios (R in) of 0.8-2.0 and furnace temperatures of 600-800 °C. The conversion of methane always results in the formation of syngas species (H 2 and CO). However, their yields vary considerably based on the individual anode, the operating temperature, and R in. The SC-reactor design and the presence of hot-spots at the reactor entrance bring the methane and oxygen conversion rates well above the limit expected from experiments carried out with anode half-cells only. Major variations in the H 2/CO ratio are observed. In lowering the temperature from 800 °C to 600 °C, it spreads from well below to well above the stoichiometric value of 2.0 expected for the partial oxidation reaction. To optimize the SC-SOFC any further, the findings stress the need to undertake even more catalytic studies of its electrode materials under actual structure and morphology as well as final reactor configuration.

  18. PROCESS INTENSIFICATION: OXIDATION OF BENZYL ALCOHOL USING A CONTINUOUS ISOTHERMAL REACTOR UNDER MICROWAVE IRRADIATION

    EPA Science Inventory

    In the past two decades, several investigations have been carried out using microwave radiation for performing chemical transformations. These transformations have been largely performed in conventional batch reactors with limited mixing and heat transfer capabilities. The reacti...

  19. Treatment of municipal landfill leachate by catalytic wet air oxidation: Assessment of the role of operating parameters by factorial design.

    PubMed

    Anglada, Angela; Urtiaga, Ane; Ortiz, Inmaculada; Mantzavinos, Dionissios; Diamadopoulos, Evan

    2011-08-01

    The wet air oxidation (WAO) of municipal landfill leachate catalyzed by cupric ions and promoted by hydrogen peroxide was investigated. The effect of operating conditions such as WAO treatment time (15-30min), temperature (160-200°C), Cu(2+) concentration (250-750mgL(-1)) and H(2)O(2) concentration (0-1500mgL(-1)) on chemical oxygen demand (COD) removal was investigated by factorial design considering a two-stage, sequential process comprising the heating-up of the reactor and the actual WAO. The leachate, at an initial COD of 4920mgL(-1), was acidified to pH 3 leading to 31% COD decrease presumably due to the coagulation/precipitation of colloidal and other organic matter. During the 45min long heating-up period of the WAO reactor under an inert atmosphere, COD removal values up to 35% (based on the initial COD value) were recorded as a result of the catalytic decomposition of H(2)O(2) to reactive hydroxyl radicals. WAO at 2.5MPa oxygen partial pressure advanced treatment further; for example, 22min of oxidation at 200°C, 250mgL(-1) Cu(2+) and 0-1500mgL(-1) H(2)O(2) resulted in an overall (i.e. including acidification and heating-up) COD reduction of 78%. Amongst the operating variables in question, temperature had the strongest influence on both the heating-up and WAO stages, while H(2)O(2) concentration strongly affected the former and reaction time the latter. Nonetheless, the effects of temperature and H(2)O(2) concentration were found to depend on the concentration levels of catalyst as suggested by the significance of their 3rd order interaction term.

  20. Quantitative analysis of ammonia-oxidizing bacteria in a combined system of MBR and worm reactors treating synthetic wastewater.

    PubMed

    Liu, Jia; Tian, Yu; Wang, Dezhen; Lu, Yaobin; Zhang, Jun; Zuo, Wei

    2014-12-01

    The Static Sequencing Batch Worm Reactor (SSBWR) followed by the MBR (S-MBR) is one of the advanced excess sludge treatments. In this paper, the control MBR (C-MBR) and the SSBWR-MBR were operated in parallel to study the changes of NH3-N removal and ammonia oxidizing bacteria (AOB). The results showed that the capacity of NH3-N removal of the S-MBR was improved by the worm reactors along with the operation. The S-MBR was favorable because it selected for the higher activity of the ammonia oxidization and better cells appearance of the sludge. The five species (Nitrosomonas, Betaproteobacteria, Clostridium, Dechloromonas and Bacteria) were found to be significantly correlate with the ammonia oxidization functions and performance of NH3-N removal in the C-MBR and S-MBR. The Nitrosomonas, Betaproteobacteria and Dechloromonas remained and eventually enriched in the S-MBR played a primary role in the NH3-N removal of the S-MBR.

  1. Quantitative Analysis of Major Phytochemicals in Orthodox tea (Camellia sinensis), Oxidized under Compressed Air Environment.

    PubMed

    Panda, Brajesh Kumar; Datta, Ashis Kumar

    2016-04-01

    This study describes major changes in phytochemical composition of orthodox tea (Camellia sinensis var. Assamica) oxidized under compressed air (CA). The experiments for oxidation were conducted under air pressure (101, 202, and 303 kPa) for 150 min. Relative change in the concentrations of caffeine, catechins, theaflavins (TF), and thearubigins (TR) were analyzed. Effect of CA pressure was found to be nonsignificant in regulating caffeine concentration during oxidation. But degradation in different catechins as well as formation of different TF was significantly affected by CA pressure. At high CA pressure, TF showed highest peak value. TR was found to have slower rate of formation during initial phase of oxidation than TF. Even though the rate of TR formation was significantly influenced by CA, a portion of catechins remained unoxidized at end of oxidation. Except caffeine, the percent change in rate of formation or degradation were more prominent at 202 kPa.

  2. A review of wet air oxidation and Thermal Hydrolysis technologies in sludge treatment.

    PubMed

    Hii, Kevin; Baroutian, Saeid; Parthasarathy, Raj; Gapes, Daniel J; Eshtiaghi, Nicky

    2014-03-01

    With rapid world population growth and strict environmental regulations, increasingly large volumes of sludge are being produced in today's wastewater treatment plants (WWTP) with limited disposal routes. Sludge treatment has become an essential process in WWTP, representing 50% of operational costs. Sludge destruction and resource recovery technologies are therefore of great ongoing interest. Hydrothermal processing uses unique characteristics of water at elevated temperatures and pressures to deconstruct organic and inorganic components of sludge. It can be broadly categorized into wet oxidation (oxidative) and thermal hydrolysis (non-oxidative). While wet air oxidation (WAO) can be used for the final sludge destruction and also potentially producing industrially useful by-products such as acetic acid, thermal hydrolysis (TH) is mainly used as a pre-treatment method to improve the efficiency of anaerobic digestion. This paper reviews current hydrothermal technologies, roles of wet air oxidation and thermal hydrolysis in sludge treatment, and challenges faced by these technologies.

  3. AIR SHIPMENT OF SPENT NUCLEAR FUEL FROM THE BUDAPEST RESEARCH REACTOR

    SciTech Connect

    Dewes, J.

    2014-02-24

    The shipment of spent nuclear fuel is usually done by a combination of rail, road or sea, as the high activity of the SNF needs heavy shielding. Air shipment has advantages, e.g. it is much faster than any other shipment and therefore minimizes the transit time as well as attention of the public. Up to now only very few and very special SNF shipments were done by air, as the available container (TUK6) had a very limited capacity. Recently Sosny developed a Type C overpack, the TUK-145/C, compliant with IAEA Standard TS-R-1 for the VPVR/M type Skoda container. The TUK-145/C was first used in Vietnam in July 2013 for a single cask. In October and November 2013 a total of six casks were successfully shipped from Hungary in three air shipments using the TUK-145/C. The present paper describes the details of these shipments and formulates the lessons learned.

  4. Oxidation Behaviors of Inconel 740H in Air and Dynamic Steam

    NASA Astrophysics Data System (ADS)

    Lu, Jintao; Yang, Zhen; Xu, Songqian; Zhao, Haiping; Gu, Y.

    2016-08-01

    Inconel 740H alloy is a candidate material for 700°C advanced ultra-supercritical (A-USC) coal-fired power plants application as superheater/reheater tube. In this work, oxidation behavior of Inconel 740H alloy was studied in static air at 750°C and 850°C, and in dynamic pure steam at 750°C, respectively. The alloy was oxidized approximately following a parabolic law in three test environment. In the static air, the oxidation rate at 850°C was about 50 times of that at the 750°C. More NiCrMn spinal and TiO2 were detected after oxidation at 850°C. Cr2O3, however, was the main oxidation product at 750°C. In the pure steam, Cr2O3 was still the main oxidation product. The oxidation rate was about 2.6 times of that in static air, but the surface roughness was much smaller and edges of oxide particles were more blurred. There was no evidence of cracks or spallation in three test environments.

  5. Nitric oxide density measurements in air and air/fuel nanosecond pulse discharges by laser induced fluorescence

    NASA Astrophysics Data System (ADS)

    Uddi, M.; Jiang, N.; Adamovich, I. V.; Lempert, W. R.

    2009-04-01

    Laser induced fluorescence is used to measure absolute nitric oxide concentrations in air, methane-air and ethylene-air non-equilibrium plasmas, as a function of time after initiation of a single pulse, 20 kV peak voltage, 25 ns pulse duration discharge. A mixture of NO and nitrogen with known composition (4.18 ppm NO) is used for calibration. Peak NO density in air at 60 Torr, after a single pulse, is ~8 × 1012 cm-3 (~4.14 ppm) occurring at ~250 µs after the pulse, with decay time of ~16.5 ms. Peak NO atom mole fraction in a methane-air mixture with equivalence ratio of phiv = 0.5 is found to be approximately equal to that in air, with approximately the same rise and decay rate. In an ethylene-air mixture (also with equivalence ratio of phiv = 0.5), the rise and decay times are comparable to air and methane-air, but the peak NO concentration is reduced by a factor of approximately 2.5. Spontaneous emission measurements show that excited electronic states N2(C 3Π) and NO(A 2Σ) in air at P = 60 Torr decay within ~20 ns and ~1 µs, respectively. Kinetic modelling calculations incorporating air plasma kinetics complemented with the GRI Mech 3.0 hydrocarbon oxidation mechanism are compared with the experimental data using three different NO production mechanisms. It is found that NO concentration rise after the discharge pulse is much faster than predicted by Zel'dovich mechanism reactions, by two orders of magnitude, but much slower compared with reactions of electronically excited nitrogen atoms and molecules, also by two orders of magnitude. It is concluded that processes involving long lifetime (~100 µs) metastable states, such as N2(X 1Σ,v) and O2(b 1Σ), formed by quenching of the metastable N2(A 3Σ) state by ground electronic state O2, may play a dominant role in NO formation. NO decay, in all cases, is found to be dominated by the reverse Zel'dovich reaction, NO + O → N + O2, as well as by conversion into NO2 in a reaction of NO with ozone.

  6. Los Alamos Air Monitoring Data Related to the Fukushima Daiichi Reactor

    SciTech Connect

    McNaughton, Michael

    2011-01-01

    In response to the disasters in Japan on March 11, 2011, Los Alamos National Laboratory (LANL) is collecting air data and analyzing the data for fission products. At present, we report preliminary data from three high-volume air samplers and one stack sampler. Iodine-131 (I-131) is not optimally measured by our standard polypropylene filters. In addition to the filter data, we have one measurement obtained from a charcoal cartridge. These data, together with measurements of other radionuclides are adequate for a preliminary assessment and assure us that radionuclides from Fukushima Daiichi do not present a threat to human health at or near Los Alamos.

  7. Steam reforming of methanol over oxide decorated nanoporous gold catalysts: a combined in situ FTIR and flow reactor study.

    PubMed

    Shi, J; Mahr, C; Murshed, M M; Gesing, T M; Rosenauer, A; Bäumer, M; Wittstock, A

    2017-03-29

    Methanol as a green and renewable resource can be used to generate hydrogen by reforming, i.e., its catalytic oxidation with water. In combination with a fuel cell this hydrogen can be converted into electrical energy, a favorable concept, in particular for mobile applications. Its realization requires the development of novel types of structured catalysts, applicable in small scale reactor designs. Here, three different types of such catalysts were investigated for the steam reforming of methanol (SRM). Oxides such as TiO2 and CeO2 and mixtures thereof (Ce1Ti2Ox) were deposited inside a bulk nanoporous gold (npAu) material using wet chemical impregnation procedures. Transmission electron and scanning electron microscopy reveal oxide nanoparticles (1-2 nm in size) abundantly covering the strongly curved surface of the nanoporous gold host (ligaments and pores on the order of 40 nm in size). These catalysts were investigated in a laboratory scaled flow reactor. First conversion of methanol was detected at 200 °C. The measured turn over frequency at 300 °C of the CeOx/npAu catalyst was 0.06 s(-1). Parallel investigation by in situ infrared spectroscopy (DRIFTS) reveals that the activation of water and the formation of OHads are the key to the activity/selectivity of the catalysts. While all catalysts generate sufficient OHads to prevent complete dehydrogenation of methanol to CO, only the most active catalysts (e.g., CeOx/npAu) show direct reaction with formic acid and its decomposition to CO2 and H2. The combination of flow reactor studies and in operando DRIFTS, thus, opens the door to further development of this type of catalyst.

  8. A study of mercuric oxide and zinc-air battery life in hearing aids.

    PubMed

    Sparkes, C; Lacey, N K

    1997-09-01

    The requirement to phase out mercuric oxide (mercury) batteries on environmental grounds has led to the widespread introduction of zinc-air technology. The possibility arises that high drain hearing aids may not be adequately catered for by zinc-air cells, leading to poor performance. This study investigated the hearing aid user's ability to perceive differences between zinc-air and mercury cells in normal everyday usage. The data was collected for 100 experienced hearing aid users in field trials. Users report 50 per cent greater life for zinc-air cells in high power aids and 28 per cent in low power aids. The average life of the zinc-air cells range from 15 days in high power to 34 days in low power aids. Users are able to perceive a difference in sound quality in favour of zinc-air cells for low and medium power aids. The hearing aid population is not disadvantaged by phasing out mercury cells.

  9. Composition of extracellular polymeric substances in a partial nitrification reactor treating high ammonia wastewater and nitrous oxide emission.

    PubMed

    Wei, Dong; Du, Bin; Zhang, Jian; Hu, Zhen; Liang, Shuang; Li, Yiran

    2015-08-01

    The objective of this study was to characterize the composition of extracellular polymeric substances (EPS) during the achievement of partial nitrification and subsequent nitrous oxide (N2O) emission treating high ammonia wastewater. After operation of 120days, the reactor achieved high ammonia removal efficiency and stable nitrite accumulation. The average size of sludge flocs in the reactor increased from 102.6 to 258.5μm. The main compositions of EPS, including protein (PN) and polysaccharide (PS), increased to 65.46±3.27 and 21.63±1.08mg/g VSS, respectively. Results of three-dimensional excitation-emission matrix spectroscopy implied that EPS transferred to tryptophan PN-like and humic acid-like substrates. N2O emission accounts for 11.67% of removed nitrogen during the steady state of partial nitrification reactor. The obtained results could contribute a better understanding the achievement of partial nitrification through the composition changes of EPS, and provide more information to determine nitrogen removal by considering N2O emission.

  10. The effect of oxygen and water vapor on nitric oxide conversion with a dielectric barrier discharge reactor

    SciTech Connect

    Yin, S.E.; Sun, B.M.; Gao, X.D.; Xiao, H.P.

    2009-12-15

    The effect of O{sub 2} and H{sub 2}O vapor on the Nitric oxide (NO) removal rate, the NO{sub 2} generation rate and the discharge characteristics were investigated using the dielectric barrier discharge (DBD) reactor at 1 atm pressure and at room temperature (20{sup o}). The results showed that the O{sub 2} present in the flue gas always hampered the removal of NO and the generation of N{sub 2}O, but that the O{sub 2} could enhance the generation of NO{sub 2} in the NO/N{sub 2}/O{sub 2} mixtures. Furthermore, with the increase of oxygen, the average discharge current gradually decreases in the reactor. The H{sub 2}O present in N-2/NO hindered the removal of NO and the generation of NO{sub 2} but had no impact on the average discharge current in the reactor in the NO/N{sub 2}/H{sub 2}O mixtures in which the HNO{sub 2} and HNO{sub 3} was detected. The energy efficiency of the DBD used to remove the NO from the flue gas was also estimated.

  11. Role of calcium oxide in sludge granulation and methanogenesis for the treatment of palm oil mill effluent using UASB reactor.

    PubMed

    Ahmad, Anwar; Ghufran, Rumana; Abd Wahid, Zularisam

    2011-12-30

    The granulation process in palm oil mill effluent using calcium oxide-cement kiln dust (CaO-CKD) provides an attractive and cost effective treatment option. In this study the efficiency of CaO-CKD at doses of 1.5-20 g/l was tested in batch experiments and found that 10 g of CaO/l caused the greatest degradation of VFA, butyrate and acetate. An upflow anaerobic sludge blanket (UASB) reactor was operated continuously at 35°C for 150 days to investigate the effect of CaO-CKD on sludge granulation and methanogenesis during start-up. The treatment of POME emphasized the influence of varying organic loading rates (OLR). Up to 94.9% of COD was removed when the reactor was fed with the 15.5-65.5 g-CODg/l at an OLR of 4.5-12.5 kg-COD/m(3)d, suggesting the feasibility of using CaO in an UASB process to treat POME. The ratio of volatile solids/total solids (VS/TS) and volatile fatty acids in the anaerobic sludge in the UASB reactor decreased significantly after long-term operation due to the precipitation of calcium carbonate in the granules. Granulation and methanogenesis decreased with an increase in the influent CaO-CKD concentration.

  12. Comparison of oxide- and metal-core behavior during CRBRP (Clinch River Breeder Reactor Plant) station blackout

    SciTech Connect

    Polkinghorne, S T; Atkinson, S A

    1986-01-01

    A resurrected concept that could significantly improve the inherently safe response of Liquid-Metal cooled Reactors (LMRs) during severe undercooling transients is the use of metallic fuel. Analytical studies have been reported on for the transient behavior of metal-fuel cores in innovative, inherently safe LMR designs. This paper reports on an analysis done, instead, for the Clinch River Breeder Reactor Plant (CRBRP) design with the only innovative change being the incorporation of a metal-fuel core. The SSC-L code was used to simulate a protected station blackout accident in the CRBRP with a 943 MWt Integral Fast Reactor (IFR) metal-fuel core. The results, compared with those for the oxide-fueled CRBRP, show that the margin to boiling is greater for the IFR core. However, the cooldown transient is more severe due to the faster thermal response time of metallic fuel. Some additional calculations to assess possible LMR design improvements (reduced primary system pressure losses, extended flow coastdown) are also discussed. 8 refs., 13 figs., 2 tabs.

  13. Microscale packed bed reactor for controlled hydrogen peroxide decomposition as a fuel cell oxidant aboard unmanned undersea vehicles

    NASA Astrophysics Data System (ADS)

    Lennon, E.; Burke, A. A.; Ocampo, M.; Besser, R. S.

    The multiphase catalytic decomposition of hydrogen peroxide into water and oxygen is notoriously susceptible to thermal runaway (heat of reaction: -98 kJ mol -1). The high surface area to volume ratio (S/ V) in a microscale packed bed (MPB) reactor (radius 0.5 mm) was investigated for reducing the risk of thermal runaway during hydrogen peroxide decomposition to oxygen intended as a fuel cell oxidant aboard an unmanned undersea vehicle (UUV). A microscale reactor channel with a S/ V of ∼2 × 10 3 m 2 m -3 simulated under convective cooling generated a significant heat rise (T rise ∼ 100 K), whereas a microreactor with a higher S/ V (∼200 × 10 3 m 2 m -3) achieved thermal control (T rise < 10 K) over the simulated reaction zone. Although thermal management was successfully accomplished using the higher S/ V, experimental conversions of hydrogen peroxide to oxygen (5-18%) measured from the outlet were lower than simulated conversions (38-63%). Simulation assumptions, such as homogeneously dispersed flow and perfect catalyst interaction among other factors, contributed to the discrepancies between the simulated and experimental degrees of peroxide conversion to oxygen. Even though thermal control of the MPB was achieved, this work indicates that mass transfer limitations are a factor in the MPB reactor during a multiphase reaction, like decomposition of hydrogen peroxide to oxygen and water, and suggests means to overcome them even on the microscale level.

  14. Air-Impregnated Nanoporous Anodic Aluminum Oxide Layers for Enhancing the Corrosion Resistance of Aluminum.

    PubMed

    Jeong, Chanyoung; Lee, Junghoon; Sheppard, Keith; Choi, Chang-Hwan

    2015-10-13

    Nanoporous anodic aluminum oxide layers were fabricated on aluminum substrates with systematically varied pore diameters (20-80 nm) and oxide thicknesses (150-500 nm) by controlling the anodizing voltage and time and subsequent pore-widening process conditions. The porous nanostructures were then coated with a thin (only a couple of nanometers thick) Teflon film to make the surface hydrophobic and trap air in the pores. The corrosion resistance of the aluminum substrate was evaluated by a potentiodynamic polarization measurement in 3.5 wt % NaCl solution (saltwater). Results showed that the hydrophobic nanoporous anodic aluminum oxide layer significantly enhanced the corrosion resistance of the aluminum substrate compared to a hydrophilic oxide layer of the same nanostructures, to bare (nonanodized) aluminum with only a natural oxide layer on top, and to the latter coated with a thin Teflon film. The hydrophobic nanoporous anodic aluminum oxide layer with the largest pore diameter and the thickest oxide layer (i.e., the maximized air fraction) resulted in the best corrosion resistance with a corrosion inhibition efficiency of up to 99% for up to 7 days. The results demonstrate that the air impregnating the hydrophobic nanopores can effectively inhibit the penetration of corrosive media into the pores, leading to a significant improvement in corrosion resistance.

  15. Treatment of aniline by catalytic wet air oxidation: comparative study over CuO/CeO2 and NiO/Al2O3.

    PubMed

    Ersöz, Gülin; Atalay, Süheyda

    2012-12-30

    The treatment of aniline by catalytic wet air oxidation (CWAO) was studied in a bubble reactor. The experiments were performed to investigate the effects of catalyst loading, temperature, reaction time, air flow rate, and pressure on aniline removal. The catalytic effects of the prepared nanostructured catalysts, CuO/CeO(2) (10% wt) and NiO/Al(2)O(3) (10% wt), on the CWAO treatment efficiency were also examined and compared. The prepared catalysts seem to be active having an aniline removal of 45.7% with CuO/CeO(2) and 41.9% with NiO/Al(2)O(3). The amount of N(2) formed was approximately the same for both of the catalysts.

  16. Air radioactivity levels following the Fukushima reactor accident measured at the Laboratoire Souterrain de Modane, France.

    PubMed

    Loaiza, P; Brudanin, V; Piquemal, F; Reyss, J-L; Stekl, I; Warot, G; Zampaolo, M

    2012-12-01

    The radioactivity levels in the air of the radionuclides released by the Fukushima accident were measured at the Laboratoire Souterrain de Modane, in the South-East of France, during the period 25 March-18 April 2011. Air-filters from the ventilation system exposed for one or two days were measured using low-background gamma-ray spectrometry. In this paper we present the activity concentrations obtained for the radionuclides (131)I, (132)Te, (134)Cs, (137)Cs, (95)Nb, (95)Zr, (106)Ru, (140)Ba/La and (103)Ru. The activity concentration of (131)I was of the order of 100 μBq/m(3), more than 100 times higher than the activities of other fission products. The highest activities of (131)I were measured as a first peak on 30 March and a second peak on 3-4 April. The activity concentrations of (134)Cs and (137)Cs varied from 5 to 30 μBq/m(3). The highest activity concentration recorded for Cs corresponded to the same period as for (131)I, with a peak on 2-3 April. The results of the radioactivity concentration levels in grass and mushrooms exposed to the air in the Modane region were also measured. Activity concentrations of (131)I of about 100 mBq/m(2) were found in grass.

  17. Secondary organic aerosol formation and primary organic aerosol oxidation from biomass burning smoke in a flow reactor during FLAME-3

    NASA Astrophysics Data System (ADS)

    Ortega, A. M.; Day, D. A.; Cubison, M. J.; Brune, W. H.; Bon, D.; de Gouw, J. A.; Jimenez, J. L.

    2013-05-01

    We report the physical and chemical effects of photochemically aging dilute biomass-burning smoke. A potential aerosol mass "PAM" flow reactor was used with analysis by a high-resolution aerosol mass spectrometer and a proton-transfer reaction ion-trap mass spectrometer during the FLAME-3 campaign. Hydroxyl (OH) radical concentrations in the reactor reached up to ~ 1000 times average tropospheric levels, producing effective OH exposures equivalent to up to 5 days aging in the atmosphere. VOC observations show aromatics and terpenes decrease with aging, while formic acid and other unidentified oxidation products increase. Unidentified gas-phase oxidation products, previously observed in atmospheric and laboratory measurements, were observed here, including evidence of multiple generations of photochemistry. Substantial new organic aerosol (OA) mass ("net SOA"; secondary OA) was observed from aging biomass-burning smoke, resulting in an total OA average of 1.42 ± 0.36 times the initial primary OA (POA) after oxidation. This study confirms that the net SOA to POA ratio of biomass burning smoke is far lower on average than that observed for urban emissions. Although most fuels were very reproducible, significant differences were observed among the biomasses, with some fuels resulting in a doubling of the OA mass, while for others a very small increase or even a decrease was observed. Net SOA formation in the photochemical reactor increased with OH exposure (OHexp), typically peaking around three days of equivalent atmospheric photochemical age (OHexp ~ 3.9 × 1011 molecules cm-3 s-1), then leveling off at higher exposures. The amount of additional OA mass added from aging is positively correlated with initial POA concentration, but not with the total VOC concentration or the concentration of known SOA precursors. The mass of SOA formed often exceeds the mass of the known VOC precursors, indicating the likely importance of primary semivolatile/intermediate volatility

  18. Preliminary Corrosion Studies of Candidate Materials for Supercritical Water Oxidation Reactor Systems

    DTIC Science & Technology

    1994-05-01

    2 Effluent Samples of Various Waste Streams in 36 SCWO Reactors. 2-3 Effluent Samples of Ammonium Perchlorate and 37 Nitromethane Feedstock in...testing. Feedstock Flow Rate Tern "C Cr (ppm) Mo (ppm) Ni (ppm) 0.1 M Ammonium Perchlorate 2 ml/min 500 59 10 26 0.1 M Ammonium Perchlorate 4 ml/min 500...3 Effluent Samples of Ammonium Perchlorate and Nitromethane Feedstock in Hastelloy C-276 Reactor. From Buelow et. al.27 2.5 Exposure Studies Exposure

  19. The chemical constitution of the fuel-clad gap in oxide fuel pins for nuclear reactors

    NASA Astrophysics Data System (ADS)

    Ball, R. G. J.; Burns, W. G.; Henshaw, J.; Mignanelli, M. A.; Potter, P. E.

    1989-09-01

    An assessment of the chemical equilibria which can occur in the fuel-clad gap of irradiated pins for water-cooled thermal reactors and liquid-sodium-cooled fast breeder reactors is presented. An understanding of such reactions is essential to the elucidation of mechanisms of cladding failure due to fission product elements. Particular attention is given to the variation of the chemical constitution of phases containing the fission product elements caesium, iodine and tellurium. The perturbation by irradiation of the thermal equilibrium concentrations of the gaseous species of these fission product elements has also been assessed in this paper.

  20. Creep Performance of Oxide Ceramic Fiber Materials at Elevated Temperature in Air and in Steam

    DTIC Science & Technology

    2011-03-24

    performance in harsh environments are prime candidates for such applications . Oxide ceramic materials have been used as constituents in CMCs...since 1965, when the United States Air Force led the effort to bring high performance fiber composites to practical applications [26]. Today...bulk polycrystalline alumina cubes were performed in air and steam at 1100 and 1300°C. Both the bulk alumina and YAG specimens were processed in two

  1. Changes in young's modulus and electrical conductivity of nuclear grade graphites oxidized with air

    NASA Astrophysics Data System (ADS)

    Imai, Hisashi; Fujii, Kimio; Kurosawa, Takeshi; Nomura, Shinzo

    1983-10-01

    Five kinds of nuclear grade graphites were oxidized to study thermal oxidation effects on Young's modulus and electrical conductivity. The property changes were measured on specimens which were oxidized uniformly throughout their whole volume in the temperature range 500-600°C in air. The following relations were derived as a function of the bulk density of the graphites: E/ E0 = ( ρ/ ρ0) nE and R0/ R = ( ρ/ ρ0) nR, where E, R and ρ are Young's modulus, specific electrical resistivity and bulk density, respectively, and subscript zero refers to the initial unoxidized condition. The exponents nE and nR were found to be dependent on both the kind of graphite and the oxidation temperature, and the dependences were discussed in connection with selective oxidation in the graphite texture. It was also tried to relate the property changes with oxidation rate.

  2. Air quality criteria for ozone and other photochemical oxidants. External Review Draft No. 2. Volume 5

    SciTech Connect

    Horstman, D.H.; Horvath, S.M.; Raub, J.A.

    1985-11-01

    Scientific information is presented and evaluated relative to the health and welfare effects associated with exposure to ozone and other photochemical oxidants. Although not intended as a complete and detailed literature review, the document covers pertinent literature through early 1985. Data on health and welfare effects are emphasized, but additional information is provided for understanding the nature of the oxidant pollution problem and for evaluating the reliability of effects data as well as their relevance to potential exposures to ozone and other oxidants at concentrations occurring in ambient air. Information is presented on the following exposure-related topics: nature, source, measurement, and concentrations of precursors to ozone and other photochemical oxidants; formation of ozone and other photochemical oxidants and their transport once formed; properties, chemistry, and measurement of ozone and other photochemical oxidants; and concentrations of ozone and other photochemical oxidants typically found in ambient air. Chapters on health and welfare effects address the toxicological effects of ozone and other oxidants; effects observed in controlled human exposures; effects observed in field and epidemiological studies; effects on vegetation seen in field and controlled exposures; effects on natural and agroecosystems; and effects on nonbiological materials observed in field and chamber studies.

  3. Comparison of nitrogen removal rates and nitrous oxide production from enriched anaerobic ammonium oxidizing bacteria in suspended and attached growth reactors.

    PubMed

    Panwivia, Supaporn; Sirvithayapakorn, Sanya; Wantawin, Chalermraj; Noophan, Pongsak Lek; Munakata-Marr, Junko

    2014-01-01

    Attached growth-systems for the anaerobic ammonium oxidation (anammox) process have been postulated for implementation in the field. However, information about the anammox process in attached growth-systems is limited. This study compared nitrogen removal rates and nitrous oxide (N2O) production of enriched anammox cultures in both suspended and attached growth sequencing batch reactors (SBRs). Suspended growth reactors (SBR-S) and attached growth reactors using polystyrene sponge as a medium (SBR-A) were used in these experiments. After inoculation with an enriched anammox culture, significant nitrogen removals of ammonium (NH4 (+)) and nitrite (NO2 (-)) were observed under NH4 (+):NO2 (-) ratios ranging from 1:1 to 1:2 in both types of SBRs. The specific rates of total nitrogen removal in SBR-S and SBR-A were 0.52 mg N/mg VSS-d and 0.44 mg N/mg VSS-d, respectively, at an NH4 (+):NO2 (-) ratio of 1:2. N2O production by the enriched anammox culture in both SBR-S and SBR-A was significantly higher at NH4 (+):NO2 (-) ratio of 1:2 than at NH4 (+):NO2 (-) ratios of 1:1 and 1:1.32. In addition, N2O production was higher at a pH of 6.8 than at pH 7.3, 7.8, and 8.3 in both SBR-S and SBR-A. The results of this investigation demonstrate that the anammox process may avoid N2O emission by maintaining an NH4 (+):NO2 (-) ratio of less than 1:2 and pH higher than 6.8.

  4. Nano-textured copper oxide nanofibers for efficient air cooling

    NASA Astrophysics Data System (ADS)

    An, Seongpil; Jo, Hong Seok; Al-Deyab, Salem S.; Yarin, Alexander L.; Yoon, Sam S.

    2016-02-01

    Ever decreasing of microelectronics devices is challenged by overheating and demands an increase in heat removal rate. Herein, we fabricated highly efficient heat-removal coatings comprised of copper oxide-plated polymer nanofiber layers (thorny devil nanofibers) with high surface-to-volume ratio, which facilitate heat removal from the underlying hot surfaces. The electroplating time and voltage were optimized to form fiber layers with maximal heat removal rate. The copper oxide nanofibers with the thorny devil morphology yielded a superior cooling rate compared to the pure copper nanofibers with the smooth surface morphology. This superior cooling performance is attributed to the enhanced surface area of the thorny devil nanofibers. These nanofibers were characterized with scanning electron microscopy, X-ray diffraction, atomic force microscopy, and a thermographic camera.

  5. Fabrication Technological Development of the Oxide Dispersion Strengthened Alloy MA957 for Fast Reactor Applications

    SciTech Connect

    Hamilton, Margaret L.; Gelles, David S.; Lobsinger, Ralph J.; Johnson, Gerald D.; Brown, W. F.; Paxton, Michael M.; Puigh, Raymond J.; Eiholzer, Cheryl R.; Martinez, C.; Blotter, M. A.

    2000-02-28

    A significant amount of effort has been devoted to determining the properties and understanding the behavior of the alloy MA957 to define its potential usefulness as a cladding material in the fast breeder reactor program. The numerous characterization and fabrication studies that were conducted are documented in this report.

  6. On the possibility of using uranium-beryllium oxide fuel in a VVER reactor

    SciTech Connect

    Kovalishin, A. A.; Prosyolkov, V. N.; Sidorenko, V. D.; Stogov, Yu. V.

    2014-12-15

    The possibility of using UO{sub 2}-BeO fuel in a VVER reactor is considered with allowance for the thermophysical properties of this fuel. Neutron characteristics of VVER fuel assemblies with UO{sub 2}-BeO fuel pellets are estimated.

  7. Characterization of chemical looping combustion of coal in a 1 kW{sub th} reactor with a nickel-based oxygen carrier

    SciTech Connect

    Shen, Laihong; Wu, Jiahua; Gao, Zhengping; Xiao, Jun

    2010-05-15

    Chemical looping combustion is a novel technology that can be used to meet the demand on energy production without CO{sub 2} emission. To improve CO{sub 2} capture efficiency in the process of chemical looping combustion of coal, a prototype configuration for chemical looping combustion of coal is made in this study. It comprises a fast fluidized bed as an air reactor, a cyclone, a spout-fluid bed as a fuel reactor and a loop-seal. The loop-seal connects the spout-fluid bed with the fast fluidized bed and is fluidized by steam to prevent the contamination of the flue gas between the two reactors. The performance of chemical looping combustion of coal is experimentally investigated with a NiO/Al{sub 2}O{sub 3} oxygen carrier in a 1 kW{sub th} prototype. The experimental results show that the configuration can minimize the amount of residual char entering into the air reactor from the fuel reactor with the external circulation of oxygen carrier particles giving up to 95% of CO{sub 2} capture efficiency at a fuel reactor temperature of 985 C. The effect of the fuel reactor temperature on the release of gaseous products of sulfur species in the air and fuel reactors is carried out. The fraction of gaseous sulfur product released in the fuel reactor increases with the fuel reactor temperature, whereas the one in the air reactor decreases correspondingly. The high fuel reactor temperature results in more SO{sub 2} formation, and H{sub 2}S abatement in the fuel reactor. The increase of SO{sub 2} in the fuel reactor accelerates the reaction of SO{sub 2} with CO to form COS, and COS concentration in the fuel reactor exit gas increases with the fuel reactor temperature. The SO{sub 2} in the air reactor exit gas is composed of the product of sulfur in residual char burnt with air and that of nickel sulfide oxidization with air in the air reactor. Due to the evident decrease of residual char in the fuel reactor with increasing fuel reactor temperature, it results in the

  8. Kinetic investigation of the oxidation of naval excess hazardous materials in supercritical water for the design of a transpiration-wall reactor

    SciTech Connect

    Rice, S.F.; Hanush, R.G.; Hunter, T.B.

    1997-01-01

    Experiments were conducted in Sandia`s supercritical fluids reactor (SFR) to generate data for the design of a transpiration-wall supercritical water oxidation (SCWO) reactor. The reactor is intended for the disposal of hazardous material generated on naval vessels. The design parameters for the system require an accurate knowledge of destruction efficiency vs. time and temperature. Three candidate materials were selected for testing. The experiments consisted of oxidizing these materials in the SFR at isothermal conditions over the temperature range of 400-550C at 24.1 MPa. A small extrapolation of the results shows that these materials can be adequately destroyed (to 99.9% destruction removal efficiency, DRE, based on total organic carbon (TOC) in the effluent) in approximately 5 seconds at 600C. The results vary smoothly and predictably with temperature such that extrapolation to higher temperatures beyond the experimental capabilities of the SFR can be made with reasonable confidence. The preliminary design of the transpiration-wall reactor has a rapid heat-up section within the reactor vessel that requires the addition of a fuel capable of quickly reacting with oxygen at temperatures below 500C. Candidate alcohols and JP-5 jet fuel were evaluated in this context. Oxidation rates for the alcohols were examined using in situ Raman spectroscopy. In addition, the potential utility of supplying the oxidizer line with hydrogen peroxide as an additive to enhance rapid initiation of the feed at unusually low temperatures was investigated. Experiments were conducted in the Supercritical Constant Volume Reactor (SCVR) using hydrogen peroxide as the initial oxidizing species. The results show that this concept as a method of enhancing low temperature reactivity appears to fail because thermal decomposition of the hydrogen peroxide is more rapid than the fuel oxidation rate at low temperatures. 8 refs., 16 figs., 5 tabs.

  9. Effects of ambient oxidant air pollution in the San Joaquin Valley on Thompson seedless grapes

    SciTech Connect

    Brewer, R.F.; Ashcroft, R.

    1984-01-01

    Mature Thompson seedless grape vines were enclosed in specially constructed plastic covered chambers supplied with carbon filtered and non-filtered (ambient) air from time of bud break through leaf drop. Effects on vegetative growth and fruiting were determined for three seasons. No effects on fruit production were measured the first season after covering but vegetative growth increased 12% in chambers supplied with filtered air. By the third season fruit yields were 27.5% higher in the filtered as compared with ambient chambers. The only visible symptoms associated with exposure to the oxidants was accelerated senescence which appeared 3 weeks to 1 month earlier on vines receiving ambient or nonfiltered air.

  10. A summary and assessment of oxidation driven volatility experiments at the INEL and their application to fusion reactor safety assessments

    SciTech Connect

    McCarthy, K.A.; Smolik, G.R.; Harms, S.L.

    1994-09-01

    This report contains a summary and assessment of oxidation-driven volatility tests through March 1994 at the Idaho National Engineering Laboratory. Materials tested include a Cu alloy in air and steam, PCA stainless steel (similar to 316SS) in air and steam, AMCR-033 steel in air, HT-9 steel in air and steam, a Nb alloy in air and steam, a W alloy in air and steam, and two V alloys in air with a limited number of tests in steam. We give a brief description of the tests, including alloy compositions and test temperatures. For many materials, our results indicate that both volatility and oxide spalling are responsible for mobilizing mass, thus we refer to our measurements as mass flux or mobility flux. We plot mobility data for each element and present curve fits to the data. We include a section on how the mobility information is used in safety assessments. We calculate the early dose inventory of a first wall made of each material tested (the early dose to the maximum exposed individual that would result if all the material were mobilized and transported to the site boundary), and the early dose that would result when mobility fractions are considered in the calculation. We use this information to assess the data by determining which elements are the most important and concentrating on providing the mobility data for those elements. We discuss where more data are needed, and our plans for obtaining that data. Additionally, we discuss what must be done to produce a database that will withstand regulatory scrutiny.

  11. METHOD OF PREPARING A FUEL ELEMENT FOR A NUCLEAR REACTOR

    DOEpatents

    Handwerk, J.H.; BAch, R.A.

    1959-08-18

    A method is described for preparing a reactor fuel element by forming a mixture of thorium dioxide and an oxide of uranium, the uranium being present. In an oxidation state at least as high as it is in U/sub 3/O/sub 8/, into a desired shape and firing in air at a temperature siifficiently high to reduce the higher uranium oxide to uranium dioxide.

  12. Solid oxide fuel cell power plant having a fixed contact oxidation catalyzed section of a multi-section cathode air heat exchanger

    DOEpatents

    Saito, Kazuo; Lin, Yao

    2015-02-17

    The multi-section cathode air heat exchanger (102) includes at least a first heat exchanger section (104), and a fixed contact oxidation catalyzed section (126) secured adjacent each other in a stack association. Cool cathode inlet air flows through cool air channels (110) of the at least first (104) and oxidation catalyzed sections (126). Hot anode exhaust flows through hot air channels (124) of the oxidation catalyzed section (126) and is combusted therein. The combusted anode exhaust then flows through hot air channels (112) of the first section (104) of the cathode air heat exchanger (102). The cool and hot air channels (110, 112) are secured in direct heat exchange relationship with each other so that temperatures of the heat exchanger (102) do not exceed 800.degree. C. to minimize requirements for using expensive, high-temperature alloys.

  13. Air gasification of rice husk in bubbling fluidized bed reactor with bed heating by conventional charcoal.

    PubMed

    Makwana, J P; Joshi, Asim Kumar; Athawale, Gaurav; Singh, Dharminder; Mohanty, Pravakar

    2015-02-01

    An experimental study of air gasification of rice husk was conducted in a bench-scale fluidized bed gasifier (FBG) having 210 mm diameter and 1600 mm height. Heating of sand bed material was performed using conventional charcoal fuel. Different operating conditions like bed temperature, feeding rate and equivalence ratio (ER) varied in the range of 750-850 °C, 25-31.3 kg/h, and 0.3-0.38, respectively. Flow rate of air was kept constant (37 m(3)/h) during FBG experiments. The carbon conversion efficiencies (CCE), cold gas efficiency, and thermal efficiency were evaluated, where maximum CCE was found as 91%. By increasing ER, the carbon conversion efficiency was decreased. Drastic reduction in electric consumption for initial heating of gasifier bed with charcoal compared to ceramic heater was ∼45%. Hence rice husk is found as a potential candidate to use directly (without any processing) in FBG as an alternative renewable energy source from agricultural field.

  14. Unusually high soil nitrogen oxide emissions influence air quality in a high-temperature agricultural region

    PubMed Central

    Oikawa, P. Y.; Ge, C.; Wang, J.; Eberwein, J. R.; Liang, L. L.; Allsman, L. A.; Grantz, D. A.; Jenerette, G. D.

    2015-01-01

    Fertilized soils have large potential for production of soil nitrogen oxide (NOx=NO+NO2), however these emissions are difficult to predict in high-temperature environments. Understanding these emissions may improve air quality modelling as NOx contributes to formation of tropospheric ozone (O3), a powerful air pollutant. Here we identify the environmental and management factors that regulate soil NOx emissions in a high-temperature agricultural region of California. We also investigate whether soil NOx emissions are capable of influencing regional air quality. We report some of the highest soil NOx emissions ever observed. Emissions vary nonlinearly with fertilization, temperature and soil moisture. We find that a regional air chemistry model often underestimates soil NOx emissions and NOx at the surface and in the troposphere. Adjusting the model to match NOx observations leads to elevated tropospheric O3. Our results suggest management can greatly reduce soil NOx emissions, thereby improving air quality. PMID:26556236

  15. Unusually high soil nitrogen oxide emissions influence air quality in a high-temperature agricultural region.

    PubMed

    Oikawa, P Y; Ge, C; Wang, J; Eberwein, J R; Liang, L L; Allsman, L A; Grantz, D A; Jenerette, G D

    2015-11-10

    Fertilized soils have large potential for production of soil nitrogen oxide (NOx=NO+NO2), however these emissions are difficult to predict in high-temperature environments. Understanding these emissions may improve air quality modelling as NOx contributes to formation of tropospheric ozone (O3), a powerful air pollutant. Here we identify the environmental and management factors that regulate soil NOx emissions in a high-temperature agricultural region of California. We also investigate whether soil NOx emissions are capable of influencing regional air quality. We report some of the highest soil NOx emissions ever observed. Emissions vary nonlinearly with fertilization, temperature and soil moisture. We find that a regional air chemistry model often underestimates soil NOx emissions and NOx at the surface and in the troposphere. Adjusting the model to match NOx observations leads to elevated tropospheric O3. Our results suggest management can greatly reduce soil NOx emissions, thereby improving air quality.

  16. Biological and oxidative treatment of cotton textile dye-bath effluents by fixed and fluidized bed reactors.

    PubMed

    Baban, A; Yediler, A; Avaz, G; Hostede, S S

    2010-02-01

    A treatability study for highly polluted and recalcitrant azo reactive dye-baths from cotton textile dyeing processes was conducted by using fixed and up-flow fluidized bed type reactors packed with brown coal. Ozone oxidation was carried out to assess the combination of biological and chemical oxidation. COD removal efficiencies ranged from 70% to 93%, and up to 99% color removal was attained. At a COD loading rate of 25.5 x 10(-6) gCOD/m(2)-d, COD removal was 85%. Breakthrough of the brown coal used occurred at total organic loading of 0.090 gCOD/g coal. Biodegradable and inert COD fractions of the remazol dye-bath were assessed by BOD(28) and oxygen uptake rate (OUR) measurements. 50% of total COD was initially inert. The inert fraction was reduced by adsorption and ozone oxidation by 65% and 40%, respectively. Brown coal is an inexpensive material and the system has economical and operational advantages as compared to treatment options such as advanced oxidation processes (AOPs) using UV, O(3), H(2)O(2) or electrocoagulation.

  17. Heterogenous and homogenous catalytic oxidation by supported gamma-FeOOH in a fluidized-bed reactor: kinetic approach.

    PubMed

    Chou, S; Huang, C; Huang, Y H

    2001-03-15

    Oxidation of benzoic acid (BA) by H2O2 was performed with a novel supported gamma-FeOOH catalyst in a circulating fluidized-bed reactor (CFBR). This study focused mainly on determining the proportions of homogeneous catalysis and heterogeneous catalysis in this CFBR. Also studied herein was how pH, H2O2 concentration, and BA concentration affect the oxidation of BA. Experimental results indicate that the decomposition rate of H2O2 was proportional to its concentration and that the oxidation rate of BA depended on both H2O2 and BA concentrations. The change in the rate constant of heterogeneous catalysis by pH was described in terms of ionization fractions of surface hydroxyl group. From the mathematical deduction, we can infer thatthe reaction rate associated with ...Fe(III)OH2+ is markedly higher than that with ...Fe(III)OH. Conclusively, although heterogeneous catalysis contributes primarily to the oxidation of BA at pH 4.4-7.0, the homogeneous catalysis is of increasing importance below pH 4.4 because of the reductive dissolution of gamma-FeOOH.

  18. Investigation of low temperature solid oxide fuel cells for air-independent UUV applications

    NASA Astrophysics Data System (ADS)

    Moton, Jennie Mariko

    Unmanned underwater vehicles (UUVs) will benefit greatly from high energy density (> 500 Wh/L) power systems utilizing high-energy-density fuels and air-independent oxidizers. Current battery-based systems have limited energy densities (< 400 Wh/L), which motivate development of alternative power systems such as solid oxide fuel cells (SOFCs). SOFC-based power systems have the potential to achieve the required UUV energy densities, and the current study explores how SOFCs based on gadolinia-doped ceria (GDC) electrolytes with operating temperatures of 650°C and lower may operate in the unique environments of a promising UUV power plant. The plant would contain a H 2O2 decomposition reactor to supply humidified O2 to the SOFC cathode and exothermic aluminum/H2O combustor to provide heated humidified H2 fuel to the anode. To characterize low-temperature SOFC performance with these unique O2 and H2 source, SOFC button cells based on nickel/GDC (Gd0.1Ce0.9O 1.95) anodes, GDC electrolytes, and lanthanum strontium cobalt ferrite (La0.6Sr0.4Co0.2Fe0.8O3-δ or LSCF)/GDC cathodes were fabricated and tested for performance and stability with humidity on both the anode and the cathode. Cells were also tested with various reactant concentrations of H2 and O2 to simulate gas depletion down the channel of an SOFC stack. Results showed that anode performance depended primarily on fuel concentration and less on the concentration of the associated increase in product H2O. O 2 depletion with humidified cathode flows also caused significant loss in cell current density at a given voltage. With the humidified flows in either the anode or cathode, stability tests of the button cells at 650 °C showed stable voltage is maintained at low operating current (0.17 A/cm2) at up to 50 % by mole H2O, but at higher current densities (0.34 A/cm2), irreversible voltage degradation occurred at rates of 0.8-3.7 mV/hour depending on exposure time. From these button cell results, estimated average

  19. Soot Surface Oxidation in Laminar Hydrocarbon/Air Diffusion Flames at Atmospheric Pressure. Appendix I

    NASA Technical Reports Server (NTRS)

    Xu, F.; El-Leathy, A. M.; Kim, C. H.; Faeth, G. M.; Yuan, Z.-G. (Technical Monitor); Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)

    2003-01-01

    Soot surface oxidation was studied experimentally in laminar hydrocarbon/air diffusion flames at atmospheric pressure. Measurements were carried out along the axes of round fuel jets burning in coflowing dry air considering acetylene-nitrogen, ethylene, propyiene-nitrogen, propane and acetylene-benzene-nitrogen in the fuel stream. Measurements were limited to the initial stages of soot oxidation (carbon consumption less than 70%) where soot oxidation occurs at the surface of primary soot particles. The following properties were measured as a function of distance above the burner exit: soot concentrations by deconvoluted laser extinction, soot temperatures by deconvoluted multiline emission, soot structure by thermophoretic sampling and analysis using Transmission Electron Microscopy (TEM), concentrations of major stable gas species (N2, H2O, H2, O2, CO, CO2, CH4, C2H2, C2H6, C3H6, C3H8, and C6H6) by sampling and gas chromatography, concentrations of some radical species (H, OH, O) by deconvoluted Li/LiOH atomic absorption and flow velocities by laser velocimetry. For present test conditions, it was found that soot surface oxidation rates were not affected by fuel type, that direct rates of soot surface oxidation by O2 estimated from Nagle and Strickland-Constable (1962) were small compared to observed soot surface oxidation rates because soot surface oxidation was completed near the flame sheet where O2 concentrations were less than 3% by volume, and that soot surface oxidation rates were described by the OH soot surface oxidation mechanism with a collision efficiency of 0.14 and an uncertainty (95% confidence) of +/- 0.04 when allowing for direct soot surface oxidation by O2, which is in reasonably good agreement with earlier observations of soot surface oxidation rates in both premixed and diffusion flames at atmospheric pressure.

  20. Air

    MedlinePlus

    ... do to protect yourself from dirty air . Indoor air pollution and outdoor air pollution Air can be polluted indoors and it can ... this chart to see what things cause indoor air pollution and what things cause outdoor air pollution! Indoor ...

  1. Isothermal and cyclic oxidation of an air plasma-sprayed thermal barrier coating system

    SciTech Connect

    Haynes, J.A.; Ferber, M.K.; Porter, W.D.; Rigney, E.D.

    1996-08-01

    Thermogravimetric methods for evaluating bond coat oxidation in plasma-sprayed thermal barrier coating (TBC) systems were assessed by high-temperature testing of TBC systems with air plasma-sprayed (APS) Ni-22Cr-10Al-1Y bond coatings and yttria-stabilized zirconia top coatings. High-mass thermogravimetric analysis (at 1150{sup degrees}C) was used to measure bond coat oxidation kinetics. Furnace cycling was used to evaluate APS TBC durability. This paper describes the experimental methods and relative oxidation kinetics of the various specimen types. Characterization of the APS TBCs and their reaction products is discussed.

  2. Development of durable mixed-metal oxide sorbents for high-temperature desulfurization of coal gases in moving-bed reactors

    SciTech Connect

    Ayala, R.E.; Jain, S.C.

    1993-06-01

    Mixed-metal oxide sorbents, particularly zinc ferrite and zinc titanate, are being developed for use in hot gas cleanup of coal gas in the integrated gasification combined-cycle (IGCC). For the case of moving-bed systems, the pelletized sorbent moves between the absorber and regenerator as it absorbs H{sub 2}S from coal gas and is regenerated under diluted air. Therefore a mechanically strong and chemically active sorbent is necessary for proper long-term operation of the system. These desired properties depend on the active components in the sorbent, the type and concentration of the binder material, and the sorbent preparation procedure. In the current program, several zinc titanate sorbent formulations have been prepared using a new rounding fabrication procedure, and varying the types of additives/binders (e.g., bentonite and molybdenum) and calcination temperature (1450-1800 {degree}F, 788-982 {degree}C). Comparison with baseline cylindrical formulations was made by measuring attrition resistance, crush strength, thermogravimetric reactivity and bench-scale reactor performance.

  3. Spatial Distribution of Total, Ammonia-Oxidizing, and Denitrifying Bacteria in Biological Wastewater Treatment Reactors for Bioregenerative Life Support

    PubMed Central

    Sakano, Yuko; Pickering, Karen D.; Strom, Peter F.; Kerkhof, Lee J.

    2002-01-01

    Bioregenerative life support systems may be necessary for long-term space missions due to the high cost of lifting supplies and equipment into orbit. In this study, we investigated two biological wastewater treatment reactors designed to recover potable water for a spacefaring crew being tested at Johnson Space Center. The experiment (Lunar-Mars Life Support Test Project—Phase III) consisted of four crew members confined in a test chamber for 91 days. In order to recycle all water during the experiment, an immobilized cell bioreactor (ICB) was employed for organic carbon removal and a trickling filter bioreactor (TFB) was utilized for ammonia removal, followed by physical-chemical treatment. In this study, the spatial distribution of various microorganisms within each bioreactor was analyzed by using biofilm samples taken from four locations in the ICB and three locations in the TFB. Three target genes were used for characterization of bacteria: the 16S rRNA gene for the total bacterial community, the ammonia monooxygenase (amoA) gene for ammonia-oxidizing bacteria, and the nitrous oxide reductase (nosZ) gene for denitrifying bacteria. A combination of terminal restriction fragment length polymorphism (T-RFLP), sequence, and phylogenetic analyses indicated that the microbial community composition in the ICB and the TFB consisted mainly of Proteobacteria, low-G+C gram-positive bacteria, and a Cytophaga-Flexibacter-Bacteroides group. Fifty-seven novel 16S rRNA genes, 8 novel amoA genes, and 12 new nosZ genes were identified in this study. Temporal shifts in the species composition of total bacteria in both the ICB and the TFB and ammonia-oxidizing and denitrifying bacteria in the TFB were also detected when the biofilms were compared with the inocula after 91 days. This result suggests that specific microbial populations were either brought in by the crew or enriched in the reactors during the course of operation. PMID:11976099

  4. Spatial distribution of total, ammonia-oxidizing, and denitrifying bacteria in biological wastewater treatment reactors for bioregenerative life support

    NASA Technical Reports Server (NTRS)

    Sakano, Yuko; Pickering, Karen D.; Strom, Peter F.; Kerkhof, Lee J.; Janes, H. W. (Principal Investigator)

    2002-01-01

    Bioregenerative life support systems may be necessary for long-term space missions due to the high cost of lifting supplies and equipment into orbit. In this study, we investigated two biological wastewater treatment reactors designed to recover potable water for a spacefaring crew being tested at Johnson Space Center. The experiment (Lunar-Mars Life Support Test Project-Phase III) consisted of four crew members confined in a test chamber for 91 days. In order to recycle all water during the experiment, an immobilized cell bioreactor (ICB) was employed for organic carbon removal and a trickling filter bioreactor (TFB) was utilized for ammonia removal, followed by physical-chemical treatment. In this study, the spatial distribution of various microorganisms within each bioreactor was analyzed by using biofilm samples taken from four locations in the ICB and three locations in the TFB. Three target genes were used for characterization of bacteria: the 16S rRNA gene for the total bacterial community, the ammonia monooxygenase (amoA) gene for ammonia-oxidizing bacteria, and the nitrous oxide reductase (nosZ) gene for denitrifying bacteria. A combination of terminal restriction fragment length polymorphism (T-RFLP), sequence, and phylogenetic analyses indicated that the microbial community composition in the ICB and the TFB consisted mainly of Proteobacteria, low-G+C gram-positive bacteria, and a Cytophaga-Flexibacter-Bacteroides group. Fifty-seven novel 16S rRNA genes, 8 novel amoA genes, and 12 new nosZ genes were identified in this study. Temporal shifts in the species composition of total bacteria in both the ICB and the TFB and ammonia-oxidizing and denitrifying bacteria in the TFB were also detected when the biofilms were compared with the inocula after 91 days. This result suggests that specific microbial populations were either brought in by the crew or enriched in the reactors during the course of operation.

  5. Photocatalytic oxidation of 2,4,6-trichlorophenol in water using a cocurrent downflow contactor reactor (CDCR).

    PubMed

    Ochuma, Idoko J; Fishwick, Robert P; Wood, Joseph; Winterbottom, J Mike

    2007-06-18

    The heterogeneous photocatalytic oxidation of aqueous solutions of 2,4,6-trichlorophenol (2,4,6-TCP) as a model pollutant in industrial wastewater has been carried out in a pilot scale cocurrent downflow contactor reactor (CDCR). The reactions were carried out in the presence of Ultra-Violet radiation, O(2) and TiO(2) photocatalyst (VP Aeroperl P25/20). The TiO(2) was characterized by Dynamic Vapour Sorption (DVS) technique giving specific surface area and surface energy of 46.06 m(2)g(-1) and 80.12 mJ m(-2), respectively. The CDC reactor was fitted with an internally and vertically mounted 1.0 kW or 2.0 kW UV lamp. The reactions were carried out at 50 degrees C and 1 bar, with the reactor being operated in closed loop recycle mode and suspended photocatalyst being re-circulated. The CDC reactor, a device of very high mass transfer efficiency giving unusually large gas hold-up of approximately 50%, was operated with oxygen mass transfer and dissolution in the zone above the UV lamp (high mass transfer zone) and along and around the UV lamp housing (reaction zone). Under optimized reaction conditions, 100% conversion of 2,4,6-TCP was achieved in 180 min using 15 dm(3) solutions with initial concentration of 120 mg dm(-3). A combination of TiO(2) photocatalyst, UV irradiation and oxidant was observed to give the most rapid photodegradation and photomineralization of the 2,4,6-TCP in comparison with irradiation only. Using the 1 kW or 2 kW UV lamps, conversion of 100 mg dm(-3) of 2,4,6-TCP after 30 min was 62.51% and 90.71%, respectively, with initial reaction rates of 1.33 x 10(-5) and 4.22 x 10(-5) mol min(-1), respectively, and rate constants 0.0046 and 0.29 min(-1), respectively.

  6. NUCLEAR REACTOR

    DOEpatents

    Miller, H.I.; Smith, R.C.

    1958-01-21

    This patent relates to nuclear reactors of the type which use a liquid fuel, such as a solution of uranyl sulfate in ordinary water which acts as the moderator. The reactor is comprised of a spherical vessel having a diameter of about 12 inches substantially surrounded by a reflector of beryllium oxide. Conventionnl control rods and safety rods are operated in slots in the reflector outside the vessel to control the operation of the reactor. An additional means for increasing the safety factor of the reactor by raising the ratio of delayed neutrons to prompt neutrons, is provided and consists of a soluble sulfate salt of beryllium dissolved in the liquid fuel in the proper proportion to obtain the result desired.

  7. COST ANALYSIS OF ACTIVATED CARBON VERSUS PHOTOCATALYTIC OXIDATION FOR REMOVING ORGANIC COMPOUNDS FROM INDOOR AIR

    EPA Science Inventory

    A cost comparison has been conducted of 1 m3/s indoor air cleaners using granular activated carbon (GAC) vs. photocatalytic oxidation (PCO) for treating a steady-state inlet volatile organic compound (VOC) concentration of 0.3 mg/m3. The commercial GAC unit was costed assuming t...

  8. IN VITRO CARDIOTOXICITY OF AIR POLLUTION PARTICLES: ROLE OF BIOAVAILABLE CONSTITUENTS, OXIDATIVE STRESS AND TYROSINE PHOSPHORYLATION

    EPA Science Inventory

    IN VITRO CARDIOTOXICITY OF AIR POLLUTION PARTICLES: ROLE OF BIOAVAILABLE CONSTITUENTS, OXIDATIVE STRESS AND TYROSINE PHOSPHORYLATION.

    T. L. Knuckles1 R. Jaskot2, J. Richards2, and K.Dreher2.
    1Department of Molecular and Biomedical Sciences, College of Veterinary Medicin...

  9. 78 FR 47253 - Approval and Promulgation of Air Quality Implementation Plans; Maine; Oxides of Nitrogen...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-05

    ... Nitrogen Exemption and Ozone Transport Region Restructuring AGENCY: Environmental Protection Agency (EPA... exemption from the nitrogen oxides (NO X ) emissions control requirements of the Clean Air Act (CAA or Act... from Stephen D. Page, Director, OAQPS, dated January 14, 2005, entitled ``Guidance on Limiting...

  10. Air Quality Criteria for Ozone and Related Photochemical Oxidants (First External Review Draft)

    EPA Science Inventory

    This first external review draft of the Air Quality Criteria for Ozone and Related Photochemical Oxidants (Ozone Criteria Document) is being released in January 2005 for public comment and for review by EPA's Clean A...

  11. AIR PARTICULATE POLLUTION EXPOSURE INDUCES SYSTEMIC OXIDATIVE STRESS IN HEALTHY MICE

    EPA Science Inventory

    Air particulate pollution exposure induces systemic oxidative stress in healthy mice

    Elizabeth S Roberts1 and Kevin L Dreher2. 1 College or Veterinary Medicine, NC State University, Raleigh, NC , 2US Environmental Protection Agency, NHEERL, RTP, NC

    Epidemiological s...

  12. OXIDATION OF CYCLOHEXANE WITH AIR CATALYZED BY A STERICALLY HINDERED IRON (II) COMPLEX

    EPA Science Inventory

    Oxidation of Cyclohexane with Air Catalyzed by a Sterically Hindered Iron(II) Complex.


    Thomas M. Becker, Michael A. Gonzalez*

    United States Environmental Protection Agency; National Risk Management Research Laboratory; Sustainable Technology Division; Clean Pr...

  13. Treatment of municipal landfill leachate by catalytic wet air oxidation: Assessment of the role of operating parameters by factorial design

    SciTech Connect

    Anglada, Angela; Urtiaga, Ane; Ortiz, Inmaculada; Diamadopoulos, Evan

    2011-08-15

    Highlights: > Landfill leachates can be treated effectively by catalytic wet oxidation. > Addition of H{sub 2}O{sub 2} in the presence of transition metals promotes degradation. > Factorial design evaluates the statistically significant operating conditions. > H{sub 2}O{sub 2}, reaction time and temperature are critical in determining performance. - Abstract: The wet air oxidation (WAO) of municipal landfill leachate catalyzed by cupric ions and promoted by hydrogen peroxide was investigated. The effect of operating conditions such as WAO treatment time (15-30 min), temperature (160-200 deg. C), Cu{sup 2+} concentration (250-750 mg L{sup -1}) and H{sub 2}O{sub 2} concentration (0-1500 mg L{sup -1}) on chemical oxygen demand (COD) removal was investigated by factorial design considering a two-stage, sequential process comprising the heating-up of the reactor and the actual WAO. The leachate, at an initial COD of 4920 mg L{sup -1}, was acidified to pH 3 leading to 31% COD decrease presumably due to the coagulation/precipitation of colloidal and other organic matter. During the 45 min long heating-up period of the WAO reactor under an inert atmosphere, COD removal values up to 35% (based on the initial COD value) were recorded as a result of the catalytic decomposition of H{sub 2}O{sub 2} to reactive hydroxyl radicals. WAO at 2.5 MPa oxygen partial pressure advanced treatment further; for example, 22 min of oxidation at 200 deg. C, 250 mg L{sup -1} Cu{sup 2+} and 0-1500 mg L{sup -1} H{sub 2}O{sub 2} resulted in an overall (i.e. including acidification and heating-up) COD reduction of 78%. Amongst the operating variables in question, temperature had the strongest influence on both the heating-up and WAO stages, while H{sub 2}O{sub 2} concentration strongly affected the former and reaction time the latter. Nonetheless, the effects of temperature and H{sub 2}O{sub 2} concentration were found to depend on the concentration levels of catalyst as suggested by the

  14. Epicoccum nigrum and Cladosporium sp. for the treatment of oily effluent in an air-lift reactor

    PubMed Central

    Queissada, Daniel Delgado; da Silva, Flávio Teixeira; Penido, Juliana Sundfeld; Siqueira, Carolina Dell’Aquila; de Paiva, Tereza Cristina Brazil

    2013-01-01

    The metalworking industry is responsible for one of the most complex and difficult to handle oily effluents. These effluents consist of cutting fluids, which provide refrigeration and purification of metallic pieces in the machining system. When these effluents are biologically treated, is important to do this with autochthonous microorganisms; the use of these microorganisms (bioaugmentation) tends to be more efficient because they are already adapted to the existing pollutants. For this purpose, this study aimed to use two indigenous microorganisms, Epicoccum nigrum and Cladosporium sp. for metalworking effluent treatment using an air-lift reactor; the fungus Aspergillus niger (laboratory strain) was used as a reference microorganism. The original effluent characterization presented considerable pollutant potential. The color of the effluent was 1495 mg Pt/L, and it contained 59 mg/L H2O2, 53 mg/L total phenols, 2.5 mgO2/L dissolved oxygen (DO), and 887 mg/L oil and grease. The COD was 9147 mgO2/L and the chronic toxicity factor was 1667. Following biotreatment, the fungus Epicoccum nigrum was found to be the most efficient in reducing (effective reduction) the majority of the parameters (26% COD, 12% H2O2, 59% total phenols, and 40% oil and grease), while Cladosporium sp. was more efficient in color reduction (77%). PMID:24294260

  15. Correlation between the microstructures of graphite oxides and their catalytic behaviors in air oxidation of benzyl alcohol.

    PubMed

    Geng, Longlong; Wu, Shujie; Zou, Yongcun; Jia, Mingjun; Zhang, Wenxiang; Yan, Wenfu; Liu, Gang

    2014-05-01

    A series of graphite oxide (GO) materials were obtained by thermal treatment of oxidized natural graphite powder at different temperatures (from 100 to 200 °C). The microstructure evolution (i.e., layer structure and surface functional groups) of the graphite oxide during the heating process is studied by various characterization means, including XRD, N2 adsorption, TG-DTA, in situ DRIFT, XPS, Raman, TEM and Boehm titration. The characterization results show that the structures of GO materials change gradually from multilayer sheets to a transparent ultrathin 2D structure of the carbon sheets. The concentration of surface COH and HOCO groups decrease significantly upon treating temperature increasing. Benzyl alcohol oxidation with air as oxidant source was carried out to detect the catalytic behaviors of different GO materials. The activities of GO materials decrease with the increase of treating temperatures. It shows that the structure properties, including ultrathin sheets and high specific surface area, are not crucial factors affecting the catalytic activity. The type and amount of surface oxygen-containing functional groups of GO materials tightly correlates with the catalytic performance. Carboxylic groups on the surface of GO should act as oxidative sites for benzyl alcohol and the reduced form could be reoxidized by molecular oxygen.

  16. Synthesis and characterization of carbon black/manganese oxide air cathodes for zinc-air batteries

    NASA Astrophysics Data System (ADS)

    Li, Po-Chieh; Hu, Chi-Chang; Lee, Tai-Chou; Chang, Wen-Sheng; Wang, Tsin Hai

    2014-12-01

    Due to the poor electric conductivity but the excellent catalytic ability for the oxygen reduction reaction (ORR), manganese dioxide in the α phase (denoted as α-MnO2) anchored onto carbon black powders (XC72) has been synthesized by the reflux method. The specific surface area and electric conductivity of the composites are generally enhanced by increasing the XC72 content while the high XC72 content will induce the formation of MnOOH which shows a worse ORR catalytic ability than α-MnO2. The ORR activity of such air cathodes have been optimized at the XC72/α-MnO2 ratio equal to 1 determined by the thermogravimetric analysis. By using this optimized cathode under the air atmosphere, the quasi-steady-state full-cell discharge voltages are equal to 1.353 and 1.178 V at 2 and 20 mA cm-2, respectively. Due to the usage of ambient air rather than pure oxygen, this Zn-air battery shows a modestly high discharge peak power density (67.51 mW cm-2) meanwhile the power density is equal to 47.22 mW cm-2 and the specific capacity is more than 750 mAh g-1 when this cell is operated at 1 V.

  17. AsIII oxidation by Thiomonas arsenivorans in up-flow fixed-bed reactors coupled to As sequestration onto zero-valent iron-coated sand.

    PubMed

    Wan, Junfeng; Klein, Jonathan; Simon, Stephane; Joulian, Catherine; Dictor, Marie-Christine; Deluchat, Véronique; Dagot, Christophe

    2010-09-01

    The combined processes of biological As(III) oxidation and removal of As(III) and As(V) by zero-valent iron were investigated with synthetic water containing high As(III) concentration (10 mg L(-1)). Two up-flow fixed-bed reactors (R1 and R2) were filled with 2 L of sieved sand (d = 3 ± 1 mm) while zero-valent iron powder (d = 76 μm; 1% (w/w) of sand) was mixed evenly with sand in R2. Thiomonas arsenivorans was inoculated in the two reactors. The pilot unit was studied for 33 days, with HRT of 4 and 1 h. The maximal As(III) oxidation rate was 8.36 mg h(-1) L(-1) in R1 and about 45% of total As was removed in R2 for an HRT of 1 h. A first order model fitted well with the As(III) concentration evolution at the different levels in R1. At the end of the pilot monitoring, batch tests were conducted with support collected at different levels in R1. They showed that bacterial As(III) oxidation rate was correlated with the axial length of reactor, which could be explained by biomass distribution in reactor or by bacterial activity. In opposition, As(III) oxidation rate was not stable in R2 due to the simultaneous bacterial As(III) oxidation and chemical removal by zero-valent iron and its oxidant products. However, a durable removal of total As was realized and zero-valent iron was not saturated by As over 33 days in R2. Furthermore, the influence of zero-valent iron and its oxidant corrosion products on the evolution of As(III)-oxidizing bacteria diversity was highlighted by the molecular fingerprinting method of PCR-DGGE using aoxB gene as a functional marker of aerobic As(III) oxidizers.

  18. WATER-GAS SHIFT KINETICS OVER IRON OXIDE CATALYSTS AT MEMBRANE REACTOR CONDITIONS

    SciTech Connect

    Carl R.F. Lund

    2002-08-02

    The kinetics of water-gas shift were studied over ferrochrome catalysts under conditions with high carbon dioxide partial pressures, such as would be expected in a membrane reactor. The catalyst activity is inhibited by increasing carbon dioxide partial pressure. A microkinetic model of the reaction kinetics was developed. The model indicated that catalyst performance could be improved by decreasing the strength of surface oxygen bonds. Literature data indicated that adding either ceria or copper to the catalyst as a promoter might impart this desired effect. Ceria-promoted ferrochrome catalysts did not perform any better than unpromoted catalyst at the conditions tested, but copper-promoted ferrochrome catalysts did offer an improvement over the base ferrochrome material. A different class of water-gas shift catalyst, sulfided CoMo/Al{sub 2}O{sub 3} is not affected by carbon dioxide and may be a good alternative to the ferrochrome system, provided other constraints, notably the requisite sulfur level and maximum temperature, are not too limiting. A model was developed for an adiabatic, high-temperature water-gas shift membrane reactor. Simulation results indicate that an excess of steam in the feed (three moles of water per mole of CO) is beneficial even in a membrane reactor as it reduces the rate of adiabatic temperature rise. The simulations also indicate that much greater improvement can be attained by improving the catalyst as opposed to improving the membrane. Further, eliminating the inhibition by carbon dioxide will have a greater impact than will increasing the catalyst activity (assuming inhibition is still operative). Follow-up research into the use of sulfide catalysts with continued kinetic and reactor modeling is suggested.

  19. Assessment of methanol electro-oxidation for direct methanol-air fuel cells

    SciTech Connect

    Fritts, S.D.; Sen, R.K.

    1988-07-01

    The Office of Energy Storage and Distribution of the US Department of Energy (DOE) supports the development of a methanol-air fuel cell for transportation application. The approach used at Los Alamos National Laboratory converts the methanol fuel to a hydrogen-rich gas in a reformer, then operates the fuel cell on hydrogen and air. The reformer tends to be bulky (raising vehicle packaging problems), has a long startup period, and is not well suited for the transient operation required in a vehicle. Methanol, however, can be oxidized electrochemically in the fuel cell. If this process can be conducted efficiently, a direct methanol-air fuel cell can be used, which does not require a reformer. The objective of this study is to assess the potential of developing a suitable catalyst for the direct electrochemical oxidation of methanol. The primary conclusion of this study is that no acceptable catalysts exist can efficiently oxidize methanol electrochemically and have the desired cost and lifetime for vehicle applications. However, recent progress in understanding the mechanism of methanol oxidation indicates that a predictive base can be developed to search for methanol oxidation catalysts and can be used to methodically develop improved catalysts. Such an approach is strongly recommended. The study also recommends that until further progress in developing high-performance catalysts is achieved, research in cell design and testing is not warranted. 43 refs., 12 figs., 1 tab.

  20. Performance of a sequencing batch biofilm reactor for the treatment of pre-oxidized sulfamethoxazole solutions.

    PubMed

    González, Oscar; Esplugas, Marc; Sans, Carme; Torres, Alicia; Esplugas, Santiago

    2009-05-01

    A combined strategy of a photo-Fenton pretreatment followed by a Sequencing Batch Biofilm Reactor (SBBR) was evaluated for total C and N removal from a synthetic wastewater containing exclusively 200 mg L(-1) of the antibiotic Sulfamethoxazole (SMX). Photo-Fenton reaction was optimized at the minimum reagent doses in order to improve the biocompatibility of effluents with the subsequent biological reactor. Consequently, the pretreatment was performed with two different initial H(2)O(2) concentrations (300 and 400 mg L(-1)) and 10 mg L(-1) of Fe(2+). The pre-treated effluents with the antibiotic intermediates as sole carbon source were used as feed for the biological reactor. The SBBR was operated under aerobic conditions to mineralize the organic carbon, and the Hydraulic Retention Time (HRT) was optimized down to 8h reaching a removal of 75.7% of the initial Total Organic Carbon (TOC). The total denitrification of the NO(3)(-) generated along the chemical-biological treatment was achieved by means of the inclusion of a 24-h anoxic stage in the SBBR strategy. In addition, the Activated Sludge Model No. 1 (ASM1) was successfully used to complete the N balance determining the N fate in the SBBR. The characterization and the good performance of the SBBR allow presenting the assessed combination as an efficient way for the treatment of wastewaters contaminated with biorecalcitrant pharmaceuticals as the SMX.

  1. Sulfide-oxidizing activity and bacterial community structure in a fluidized bed reactor from a zero-discharge mariculture system.

    PubMed

    Cytryn, Eddie; Minz, Dror; Gelfand, Ilya; Neori, Amir; Gieseke, Armin; De Beer, Dirk; Van Rijn, Jaap

    2005-03-15

    In the present work we describe a comprehensive analysis of sulfide oxidation in a fluidized bed reactor (FBR) from an environmentally sustainable, zero-discharge mariculture system. The FBR received oxygen-depleted effluent from a digestion basin (DB) that is responsible for gasification of organic matter and nitrogen. The FBR is a crucial component in this recirculating system because it safeguards the fish from the toxic sulfide produced in the DB. Microscale sulfide oxidation potential and bacterial community composition within FBR biofilms were correlated to biofilter performance by integrating bulk chemical, microsensor (O2, pH, and H2S), and molecular microbial community analyses. The FBR consistently oxidized sulfide during two years of continuous operation, with an estimated average sulfide removal rate of 1.3 g of sulfide-S L(FBR)(-1) d(-1). Maximum sulfide oxidation rates within the FBR biofilms were 0.36 and 0.21 mg of sulfide-S cm(-3) h(-1) in the oxic and anoxic layers, respectively, indicating that both oxygen and nitrate serve as electron acceptors for sulfide oxidation. The estimated anoxic sulfide removal rate, as extrapolated from bench scale, autotrophic, nitrate-amended experiments, was 0.7 g of sulfide-S L(FBR)(-1) d(-1), which is approximately 50% of the total estimated sulfide removal in the FBR. Community composition analyses using denaturing gradient gel electrophoresis (DGGE) of bacterial 16S rRNA gene fragments from FBR samples taken at six-month intervals revealed several sequences that were closely affiliated with sulfide-oxidizing bacteria. These included the denitrifying, sulfide-oxidizing bacteria Thiomicrospira denitrificans, members of the filamentous Thiothrix genus, and sulfide-oxidizing symbionts from the Gammaproteobacteria. In addition, marine Alphaproteobacteria and Bacteroidetes species were present in all of the DGGE profiles examined. DGGE analyses showed significant shifts in the bacterial community composition between

  2. INVESTIGATION OF A NOVEL AIR BRAZING COMPOSITION FOR HIGH-TEMPERATURE, OXIDATION-RESISTANT CERAMIC JOINING

    SciTech Connect

    Weil, K. Scott; Hardy, John S.; Darsell, Jens T.

    2004-01-30

    One of the challenges in developing a useful ceramic joining technique is in producing a joint that offers good strength under high temperature and highly oxidizing operating conditions. Unfortunately many of the commercially available active metal ceramic brazing alloys exhibit oxidation behaviors which are unacceptable for use in a high temperature application. We have developed a new approach to ceramic brazing, referred to as air brazing, that employs an oxide wetting agent dissolved in a molten noble metal solvent, in this case CuO in Ag, such that acceptable wetting behavior occurs on a number of ceramic substrates. In an effort to explore how to increase the operating temperature of this type of braze, we have investigated the effect of ternary palladium additions on the wetting characteristics of our standard Ag-CuO air braze composition

  3. Treatment of high-strength industrial wastewater by wet air oxidation--A case study

    SciTech Connect

    Lin, S.H.; Ho, S.J.

    1997-12-31

    Treatment of high concentration chemical wastewater obtained from a petrochemical company by wet air oxidation (WAO) is studied. Experiments were conducted to investigate the effects of the mixer speed, operating pressure, initial pH of wastewater and temperature on the pollutant (chemical oxygen demand or COD) removal. Both air and oxygen were tested to determine their respective effect on the COD removal. Results showed that over 50% of COD removal can be easily realized in an hour of WAO treatment. Also considered in the present study was the catalytic WAO treatment of the high concentration wastewater. Copper sulfate (CuSO{sub 4}), cobalt oxide (Co{sub 2}O{sub 3}) and zinc oxide (ZnO) were employed as the catalysts. The COD removal efficiency of the catalytic WAO process was found to vary significantly with the catalyst utilized with CuSO{sub 4} being the most effective.

  4. Impact of Air Pollutants on Oxidative Stress in Common Autophagy-Mediated Aging Diseases

    PubMed Central

    Numan, Mohamed Saber; Brown, Jacques P.; Michou, Laëtitia

    2015-01-01

    Atmospheric pollution-induced cellular oxidative stress is probably one of the pathogenic mechanisms involved in most of the common autophagy-mediated aging diseases, including neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS), Alzheimer’s, disease, as well as Paget’s disease of bone with or without frontotemporal dementia and inclusion body myopathy. Oxidative stress has serious damaging effects on the cellular contents: DNA, RNA, cellular proteins, and cellular organelles. Autophagy has a pivotal role in recycling these damaged non-functional organelles and misfolded or unfolded proteins. In this paper, we highlight, through a narrative review of the literature, that when autophagy processes are impaired during aging, in presence of cumulative air pollution-induced cellular oxidative stress and due to a direct effect on air pollutant, autophagy-mediated aging diseases may occur. PMID:25690002

  5. Parametric Evaluation of an Innovative Ultra-Violet PhotocatalyticOxidation (UVPCO) Air Cleaning Technology for Indoor Applications

    SciTech Connect

    Hodgson, Alfred T.; Sullivan, Douglas P.; Fisk, William J.

    2005-10-31

    An innovative Ultra-Violet Photocatalytic Oxidation (UVPCO) air cleaning technology employing a semitransparent catalyst coated on a semitransparent polymer substrate was evaluated to determine its effectiveness for treating mixtures of volatile organic compounds (VOCs) representative of indoor environments at low, indoor-relevant concentration levels. The experimental UVPCO contained four 30 by 30-cm honeycomb monoliths irradiated with nine UVA lamps arranged in three banks. A parametric evaluation of the effects of monolith thickness, air flow rate through the device, UV power, and reactant concentrations in inlet air was conducted for the purpose of suggesting design improvements. The UVPCO was challenged with three mixtures of VOCs. A synthetic office mixture contained 27 VOCs commonly measured in office buildings. A building product mixture was created by combining sources including painted wallboard, composite wood products, carpet systems, and vinyl flooring. The third mixture contained formaldehyde and acetaldehyde. Steady state concentrations were produced in a classroom laboratory or a 20-m{sup 3} chamber. Air was drawn through the UVPCO, and single-pass conversion efficiencies were measured from replicate samples collected upstream and downstream of the reactor. Thirteen experiments were conducted in total. In this UVPCO employing a semitransparent monolith design, an increase in monolith thickness is expected to result in general increases in both reaction efficiencies and absolute reaction rates for VOCs oxidized by photocatalysis. The thickness of individual monolith panels was varied between 1.2 and 5 cm (5 to 20 cm total thickness) in experiments with the office mixture. VOC reaction efficiencies and rates increased with monolith thickness. However, the analysis of the relationship was confounded by high reaction efficiencies in all configurations for a number of compounds. These reaction efficiencies approached or exceeded 90% for alcohols, glycol

  6. The O₂-enriched air gasification of coal, plastics and wood in a fluidized bed reactor.

    PubMed

    Mastellone, Maria Laura; Zaccariello, Lucio; Santoro, Donato; Arena, Umberto

    2012-04-01

    The effect of oxygen-enriched air during fluidized bed co-gasification of a mixture of coal, plastics and wood has been investigated. The main components of the obtained syngas were measured by means of on-line analyzers and a gas chromatograph while those of the condensate phase were off-line analysed by means of a gas chromatography-mass spectrometer (GC-MS). The characterization of condensate phase as well as that of the water used as scrubbing medium completed the performed diagnostics. The experimental results were further elaborated in order to provide material and substances flow analyses inside the plant boundaries. These analyses allowed to obtain the main substance distribution between solid, gaseous and condensate phases and to estimate the conversion efficiency of carbon and hydrogen but also to easily visualise the waste streams produced by the process. The process performance was then evaluated on the basis of parameters related to the conversion efficiency of fuels into valuable products (i.e. by considering tar and particulate as process losses) as well as those related to the energy recovery.

  7. Magnetic susceptibility as a direct measure of oxidation state in LiFePO4 batteries and cyclic water gas shift reactors.

    PubMed

    Kadyk, Thomas; Eikerling, Michael

    2015-08-14

    The possibility of correlating the magnetic susceptibility to the oxidation state of the porous active mass in a chemical or electrochemical reactor was analyzed. The magnetic permeability was calculated using a hierarchical model of the reactor. This model was applied to two practical examples: LiFePO4 batteries, in which the oxidation state corresponds with the state-of-charge, and cyclic water gas shift reactors, in which the oxidation state corresponds to the depletion of the catalyst. In LiFePO4 batteries phase separation of the lithiated and delithiated phases in the LiFePO4 particles in the positive electrode gives rise to a hysteresis effect, i.e. the magnetic permeability depends on the history of the electrode. During fast charge or discharge, non-uniform lithium distributionin the electrode decreases the hysteresis effect. However, the overall sensitivity of the magnetic response to the state-of-charge lies in the range of 0.03%, which makes practical measurement challenging. In cyclic water gas shift reactors, the sensitivity is 4 orders of magnitude higher and without phase separation, no hysteresis occurs. This shows that the method is suitable for such reactors, in which large changes of the magnetic permeability of the active material occurs.

  8. Effect of naturally occurring ozone air pollution episodes on pulmonary oxidative stress and inflammation.

    PubMed

    Pirozzi, Cheryl; Sturrock, Anne; Weng, Hsin-Yi; Greene, Tom; Scholand, Mary Beth; Kanner, Richard; Paine, Robert

    2015-05-12

    This study aimed to determine if naturally occurring episodes of ozone air pollution in the Salt Lake Valley in Utah, USA, during the summer are associated with increased pulmonary inflammation and oxidative stress, increased respiratory symptoms, and decreased lung function in individuals with chronic obstructive pulmonary disease (COPD) compared to controls. We measured biomarkers (nitrite/nitrate (NOx), 8-isoprostane) in exhaled breath condensate (EBC), spirometry, and respiratory symptoms in 11 former smokers with moderate-to-severe COPD and nine former smokers without airflow obstruction during periods of low and high ozone air pollution. High ozone levels were associated with increased NOx in EBC in both COPD (8.7 (±8.5) vs. 28.6 (±17.6) μmol/L on clean air vs. pollution days, respectively, p < 0.01) and control participants (7.6 (±16.5) vs. 28.5 (±15.6) μmol/L on clean air vs. pollution days, respectively, p = 0.02). There was no difference in pollution effect between COPD and control groups, and no difference in EBC 8-isoprostane, pulmonary function, or respiratory symptoms between clean air and pollution days in either group. Former smokers both with and without airflow obstruction developed airway oxidative stress and inflammation in association with ozone air pollution episodes.

  9. Effect of Naturally Occurring Ozone Air Pollution Episodes on Pulmonary Oxidative Stress and Inflammation

    PubMed Central

    Pirozzi, Cheryl; Sturrock, Anne; Weng, Hsin-Yi; Greene, Tom; Scholand, Mary Beth; Kanner, Richard; Paine, Robert

    2015-01-01

    This study aimed to determine if naturally occurring episodes of ozone air pollution in the Salt Lake Valley in Utah, USA, during the summer are associated with increased pulmonary inflammation and oxidative stress, increased respiratory symptoms, and decreased lung function in individuals with chronic obstructive pulmonary disease (COPD) compared to controls. We measured biomarkers (nitrite/nitrate (NOx), 8-isoprostane) in exhaled breath condensate (EBC), spirometry, and respiratory symptoms in 11 former smokers with moderate-to-severe COPD and nine former smokers without airflow obstruction during periods of low and high ozone air pollution. High ozone levels were associated with increased NOx in EBC in both COPD (8.7 (±8.5) vs. 28.6 (±17.6) μmol/L on clean air vs. pollution days, respectively, p < 0.01) and control participants (7.6 (±16.5) vs. 28.5 (±15.6) μmol/L on clean air vs. pollution days, respectively, p = 0.02). There was no difference in pollution effect between COPD and control groups, and no difference in EBC 8-isoprostane, pulmonary function, or respiratory symptoms between clean air and pollution days in either group. Former smokers both with and without airflow obstruction developed airway oxidative stress and inflammation in association with ozone air pollution episodes. PMID:25985308

  10. Transesterification of rapeseed oil for biodiesel production in trickle-bed reactors packed with heterogeneous Ca/Al composite oxide-based alkaline catalyst.

    PubMed

    Meng, Yong-Lu; Tian, Song-Jiang; Li, Shu-Fen; Wang, Bo-Yang; Zhang, Min-Hua

    2013-05-01

    A conventional trickle bed reactor and its modified type both packed with Ca/Al composite oxide-based alkaline catalysts were studied for biodiesel production by transesterification of rapeseed oil and methanol. The effects of the methanol usage and oil flow rate on the FAME yield were investigated under the normal pressure and methanol boiling state. The oil flow rate had a significant effect on the FAME yield for the both reactors. The modified trickle bed reactor kept over 94.5% FAME yield under 0.6 mL/min oil flow rate and 91 mL catalyst bed volume, showing a much higher conversion and operational stability than the conventional type. With the modified trickle bed reactor, both transesterification and methanol separation could be performed simultaneously, and glycerin and methyl esters were separated additionally by gravity separation.

  11. Design of single-winding energy-storage reactors for dc-to-dc converters using air-gapped magnetic-core structures

    NASA Technical Reports Server (NTRS)

    Ohri, A. K.; Wilson, T. G.; Owen, H. A., Jr.

    1977-01-01

    A procedure is presented for designing air-gapped energy-storage reactors for nine different dc-to-dc converters resulting from combinations of three single-winding power stages for voltage stepup, current stepup and voltage stepup/current stepup and three controllers with control laws that impose constant-frequency, constant transistor on-time and constant transistor off-time operation. The analysis, based on the energy-transfer requirement of the reactor, leads to a simple relationship for the required minimum volume of the air gap. Determination of this minimum air gap volume then permits the selection of either an air gap or a cross-sectional core area. Having picked one parameter, the minimum value of the other immediately leads to selection of the physical magnetic structure. Other analytically derived equations are used to obtain values for the required turns, the inductance, and the maximum rms winding current. The design procedure is applicable to a wide range of magnetic material characteristics and physical configurations for the air-gapped magnetic structure.

  12. 40 CFR Appendix S to Part 50 - Interpretation of the Primary National Ambient Air Quality Standards for Oxides of Nitrogen...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Ambient Air Quality Standards for Oxides of Nitrogen (Nitrogen Dioxide) S Appendix S to Part 50 Protection... SECONDARY AMBIENT AIR QUALITY STANDARDS Pt. 50, App. S Appendix S to Part 50—Interpretation of the Primary... be submitted to EPA's Air Quality System (AQS), or otherwise available to EPA, meeting...

  13. REACTOR BASE, SOUTHEAST CORNER. INTERIOR WILL CONTAIN REACTOR TANK, COOLING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    REACTOR BASE, SOUTHEAST CORNER. INTERIOR WILL CONTAIN REACTOR TANK, COOLING WATER PIPES, COOLING AIR DUCTS, AND SHIELDING. INL NEGATIVE NO. 776. Unknown Photographer, 10/1950 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  14. Air-based coal gasification in a two-chamber gas reactor with circulating fluidized bed

    NASA Astrophysics Data System (ADS)

    Dubinin, A. M.; Tuponogov, V. G.; Kagramanov, Y. A.

    2017-01-01

    During the bed gasification of solid fuels, the process temperature in the reaction zone is not high enough for reaching the maximum rate of the chemical efficiency factor of the gasification process. In order to increase the chemical efficiency factor, it is necessary to supply extra heat to the reaction zone to increase the reaction temperature. In this article, coal gasification in a chamber with forced fluidized bed is considered and it is proposed to supply extra heat with a circulating flow of an inert particulate heat transfer agent. Circulating inert particulate material is successively heated by coal combustion in a cone chamber with bubbling fluidized bed and in a combustion chamber with a spherical nozzle that inhibits the forced fluidized bed. After that, the heat transfer agent heated to 930-950°C enters first in a gasification chamber with bubbling bed and then in a chamber with forced fluidized bed, where it transfers the physical heat to the air fuel mixture. The experiments conducted with crushed Borodinsky coal and inert particulate heat transfer agent (electrocorundum) showed the temperature rise in a gasification chamber with from 760 to 870°C and the increase in the combustible component (CO) concentration in the gasification products by 5.5%. Based on the kinetic equations of the fuel combustion reactions and the CO2 reduction to CO and on the thermal balance equations of combustion and gasification chambers, the simulation model for the gas composition and the temperature rate calculated by the height of reaction chambers was developed. The experimental temperature rates and product gas compositions are in good agreement with the simulation results based on the proposed kinetic gasification model.

  15. Air-broadened linewidths of nitrous oxide: An improved calculation

    NASA Astrophysics Data System (ADS)

    Lacome, Nelly; Levy, Armand; Boulet, Christian

    1983-01-01

    The semiclassical theory developed by Robert and Bonamy was used to obtain the linewidths of N 2O broadened by itself, by N 2 and by O 2. The main features of the formalism are as follows: (a) The anisotropic potential is expressed by using, besides the quadrupole-quadrupole contribution, an atom-atom interaction model (without any adjustable parameter) which takes both long- and short-range forces into account. (b) The geometry of the collision is described through the so-called "equivalent" straight path, more appropriate than the usual one. (c) The matrix elements of the relaxation operator are computed by means of the linked-cluster theorem, so that the treatment remains nonperturbative and no resort to cutoff precedures is needed. In addition to being more realistic the present formalism has the advantage of making the computation tractable for complex molecular systems such as linear-linear ones. Careful comparison was made with the available experimental results. For self-broadened N 2O very satisfactory agreement is obtained both at 300 and 204 K. This is also the case for nitrogen broadening at room temperature. Regarding oxygen-broadened linewidths, very few experimental data exist. Anyway, the present results reveal substantial improvement as compared to the usual calculations based upon Anderson-Tsao-Curnutte model. From these results a predictive tabulation was obtained for the values of air-broadened N 2O linewidths at 300 and 204 K.

  16. Evaluating the effect of dissolved oxygen on simultaneous nitrification and denitrification in polyurethane foam contact oxidation reactors.

    PubMed

    Tan, Chong; Ma, Fang; Li, Ang; Qiu, Shan; Li, Jianzheng

    2013-03-01

    The effects of dissolved oxygen on simultaneous nitrification and denitrification were evaluated in polyurethane foam contact oxidation reactors in a municipal wastewater treatment process. It was observed that nitrate could be removed at low dissolved oxygen levels, but the removal rate was gradually reduced as the dissolved oxygen concentration increased to a higher level of 6.0 mg/L. Nitrogen removal remained optimal within the dissolved oxygen range of 0.5 to 1.0 mg/L. Denaturing gradient gel electrophoresis (DGGE) analysis revealed that the diversity of the microbial community changed accompanying dissolved oxygen values of 0.5 to 1.0 mg/L, 2.5 to 3.5 mg/L, 6.0 to 6.5 mg/L, and 10.0 to 12.0 mg/L, in turn, which was supported by the Shannon-Wiener index of 1.56, 1.71, 1.43, and 1.56, accordingly. Both DGGE profiling and phylogenetic analysis confirmed that the nitrifiers in reactors that are responsible for nitrification during the experiment include Nitrosospira sp., Nitrosomonas sp., and Nitrospira sp.

  17. Population dynamics of ammonia-oxidizing bacteria in an aerated submerged biofilm reactor for micropolluted raw water pretreatment.

    PubMed

    Qin, Ying-Ying; Zhang, Xiao-Wen; Ren, Hong-Qiang; Li, Dao-Tang; Yang, Hong

    2008-05-01

    Population dynamics of ammonia-oxidizing bacteria (AOB) in a full-scale aerated submerged biofilm reactor for micropolluted raw water pretreatment was investigated using molecular techniques for a period of 1 year. The ammonia monooxygenase (amoA) gene fragments were amplified from DNA and RNA extracts of biofilm samples. Denaturing gradient gel electrophoresis (DGGE) profile based on the amoA messenger RNA approach exhibited a more variable pattern of temporal dynamics of AOB communities than the DNA-derived approach during the study. Phylogenetic analysis of excised DGGE bands revealed three AOB groups affiliated with the Nitrosomonas oligotropha lineage, Nitrosomonas communis lineage, and an unknown Nitrosomonas group. The population size of betaproteobacterial AOB, quantified with 16S ribosomal RNA gene real-time polymerase chain reaction assay, ranged from 6.63 x 10(5) to 2.67 x 10(9) cells per gram of dry biofilm and corresponded to 0.23-1.8% of the total bacterial fraction. Quantitative results of amoA gene of the three specific AOB groups revealed changes in competitive dominance between AOB of the N. oligotropha lineage and N. communis lineage. Water temperature is shown to have major influence on AOB population size in the reactor by the statistic analysis, and a positive correlation between AOB cell numbers and ammonia removal efficiency is suggested (r = 0.628, P < 0.05).

  18. NEUTRONIC REACTOR STRUCTURE

    DOEpatents

    Daniels, F.

    1961-10-24

    A reactor core, comprised of vertical stacks of hexagonal blocks of beryllium oxide having axial cylindrical apertures extending therethrough and cylindrical rods of a sintered mixture of uranium dioxide and beryllium oxide, is described. (AEC)

  19. Synthesis and characterization of carbon black/manganese oxide air cathodes for zinc-air batteries: Effects of the crystalline structure of manganese oxides

    NASA Astrophysics Data System (ADS)

    Li, Po-Chieh; Hu, Chi-Chang; Noda, Hiroyuki; Habazaki, Hiroki

    2015-12-01

    Manganese oxides (MnOx) in α-, β-, γ-, δ-MnO2 phases, Mn3O4, Mn2O3, and MnOOH are synthesized for systematically comparing their electrocatalytic activity of the oxygen reduction reaction (ORR) in the Zn-air battery application. The optimal MnOx/XC-72 mass ratio for the ORR is equal to 1 and the oxide crystalline structure effect on the ORR is compared. The order of composites with respect to decreasing the ORR activity is: α-MnO2/XC-72 > γ-MnO2/XC-72 > β-MnO2/XC-72 > δ-MnO2/XC-72 > Mn2O3/XC-72 > Mn3O4/XC-72 > MnOOH/XC-72. The textural properties of MnOx are investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), N2 adsorption/desorption isotherms with Brunauer-Emmett-Teller (BET) analysis, X-ray diffraction (XRD), and thermogravimetric analysis (TGA). Electrochemical studies include linear sweep voltammetry (LSV), rotating ring-disk electrode (RRDE) voltammetry, and the full-cell discharge test. The discharge peak power density of Zn-air batteries varies from 61.5 mW cm-2 (α-MnO2/XC-72) to 47.1 mW cm-2 (Mn3O4/XC-72). The maximum peak power density is 102 mW cm-2 for the Zn-air battery with an air cathode containing α-MnO2/XC-72 under an oxygen atmosphere when the carbon paper is 10AA. The specific capacity of all full-cell tests is higher than 750 mAh g-1 at all discharge current densities.

  20. Uranium Metal to Oxide Conversion by Air Oxidation –Process Development

    SciTech Connect

    Duncan, A

    2001-12-31

    Published technical information for the process of metal-to-oxide conversion of uranium components has been reviewed and summarized for the purpose of supporting critical decisions for new processes and facilities for the Y-12 National Security Complex. The science of uranium oxidation under low, intermediate, and high temperature conditions is reviewed. A process and system concept is outlined and process parameters identified for uranium oxide production rates. Recommendations for additional investigations to support a conceptual design of a new facility are outlined.

  1. Soot Oxidation in Hydrocarbon/Air Diffusion Flames at Atmospheric Pressure. Appendix K

    NASA Technical Reports Server (NTRS)

    Xu, F.; El-Leathy, A. M.; Faeth, G. M.; Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)

    2001-01-01

    Soot oxidation was studied experimentally in laminar hydrocarbon/air diffusion flames at atmospheric pressure. Measurements were carried out along the axes of round jets burning in coflowing air considering acetylene, ethylene, propylene and propane as fuels. Measurements were limited to the initial stages of soot oxidation (carbon consumption less than 70%) where soot oxidation mainly occurs at the surface of primary soot particles. The following properties were measured as a function of distance above the burner exit: soot concentrations by deconvoluted laser extinction, soot temperatures by deconvoluted multiline emission, soot structure by thermophoretic sampling and analysis using Transmission Electron Microscopy (TEM), concentrations of stable major gas species (N2, H2O, H2, O2, CO, CO2, CH4, C2H2,C2H4, C2H6, C3H6, and C3H8) by sampling and gas chromatography, concentrations of some radical species (H, OH, O) by the deconvoluted Li/LiOH atomic absorption technique and flow velocities by laser velocimetry. It was found that soot surface oxidation rates are not particularly affected by fuel type for laminar diffusion flames and are described reasonably well by the OH surface oxidation mechanism with a collision efficiency of 0.10, (standard deviation of 0.07) with no significant effect of fuel type in this behavior; these findings are in good agreement with the classical laminar premixed flame measurements of Neoh et al. Finally, direct rates of surface oxidation by O2 were small compared to OH oxidation for present conditions, based on estimated O2 oxidation rates due to Nagle and Strickland-Constable (1962), because soot oxidation was completed near the flame sheet where O2 concentrations were less than 1.2% by volume.

  2. Soot Oxidation in Laminar Hydrocarbon/Air Diffusion Flames at Atmospheric Pressure. Appendix D

    NASA Technical Reports Server (NTRS)

    Xu, F.; El-Leathy, A. M.; Faeth, G. M.

    2000-01-01

    Soot oxidation was studied experimentally in laminar hydrocarbon/air diffusion flames at atmospheric pressure. Measurements were carried out along the axes of round jets burning in coflowing air considering acetylene, ethylene, proplyene and propane as fuels. Measurements were limited to the initial stages of soot oxidation (carbon consumption less than 70%) where soot oxidation mainly occurs at the surface of primary soot particles. The following properties were measured as a function of distance above the burner exit: soot concentrations by deconvoluted laser extinction, soot temperatures by deconvoluted multiline emission, soot structure by thermophoretic sampling and analysis using Transmission Electron Microscopy (TEM), concentrations of stable major gas species (N2, H2O, H2, 02, CO, CO2, CH4, C2H2, C2H4, C2H6, C3H6, and C3H8) by sampling and gas chromatography, concentrations of some radical species (H, OH, O) by the deconvoluted Li/LiOH atomic absorption technique and flow velocities by laser velocimetry. It was found that soot surface oxidation rates are not particularly affected by fuel type for laminar diffusion flames and are described reasonably well by the OH surface oxidation mechanism with a collision efficiency of 0.10, (standard deviation of 0.07) with no significant effect of fuel type in this behavior; these findings are in good agreement with the classical laminar premixed flame measurements of Neoh et al. Finally, direct rates of surface oxidation by O2 were small compared to OH oxidation for present conditions, based on estimated O2 oxidation rates due to Nagle and Strickland-Constable, because soot oxidation was completed near the flame sheet where O2 concentrations were less than 1.2% by volume.

  3. Active carbon-ceramic sphere as support of ruthenium catalysts for catalytic wet air oxidation (CWAO) of resin effluent.

    PubMed

    Liu, Wei-Min; Hu, Yi-Qiang; Tu, Shan-Tung

    2010-07-15

    Active carbon-ceramic sphere as support of ruthenium catalysts were evaluated through the catalytic wet air oxidation (CWAO) of resin effluent in a packed-bed reactor. Active carbon-ceramic sphere and ruthenium catalysts were characterized by N(2) adsorption and chemisorption measurements. BET surface area and total pore volume of active carbon (AC) in the active carbon-ceramic sphere increase with increasing KOH-to-carbon ratio, and AC in the sample KC-120 possesses values as high as 1100 m(2) g(-1) and 0.69 cm(3) g(-1) (carbon percentage: 4.73 wt.%), especially. Active carbon-ceramic sphere supported ruthenium catalysts were prepared using the RuCl(3) solution impregnation onto these supports, the ruthenium loading was fixed at 1-5 wt.% of AC in the support. The catalytic activity varies according to the following order: Ru/KC-120>Ru/KC-80>Ru/KC-60>KC-120>without catalysts. It is found that the 3 wt.% Ru/KC-120 catalyst displays highest stability in the CWAO of resin effluent during 30 days. Chemical oxygen demand (COD) and phenol removal were about 92% and 96%, respectively at the reaction temperature of 200 degrees C, oxygen pressure of 1.5 MPa, the water flow rate of 0.75 L h(-1) and the oxygen flow rate of 13.5 L h(-1).

  4. Bioaugmentation of biological contact oxidation reactor (BCOR) with phenol-degrading bacteria for coal gasification wastewater (CGW) treatment.

    PubMed

    Fang, Fang; Han, Hongjun; Zhao, Qian; Xu, Chunyan; Zhang, Linghan

    2013-12-01

    This study was conducted to evaluate the performance of the biological contact oxidation reactor (BCOR) treating coal gasification wastewater (CGW) after augmented with phenol degrading bacteria (PDB). The PDB were isolated with phenol, 4-methyl phenol, 3,5-dimethyl phenol and resorcinol as carbon resources. Much of the refractory phenolic compounds were converted into easily-biodegradable compounds in spite of low TOC removal. The bioaugmentation with PDB significantly enhanced the removal of COD, total phenols (TP) and NH3-N, with efficiencies from 58% to 78%, 66% to 80%, and 5% to 25%, respectively. In addition, the augmented BCOR exhibited strong recovery capability in TP and COD removal while recovery of NH3-N removal needed longer time. Microbial community analysis revealed that the PDB presented as dominant populations in the bacteria consortia, which in turn determined the overall performance of the system.

  5. Leaching behaviour of unirradiated high temperature reactor (HTR) UO 2-ThO 2 mixed oxides fuel particles

    NASA Astrophysics Data System (ADS)

    Alliot, Cyrille; Grambow, Bernd; Landesman, Catherine

    2005-11-01

    The dissolution of different mixed oxide (U, Th)O 2 particles under reducing conditions has been studied using a continuous flow-through reactor. The U/Th ratio seems to have no or little influence on the normalised leaching rate of thorium or uranium, The release rate of uranium from the outer surface of a Th rich matrix seems to follow the behaviour of pure UO 2 even though U is a minor component in these phases and the dissolution rate of Th is much lower. After long time U concentrations will become depleted at the solids surface and it will be expected that U release rates will become controlled by the release rates of thorium (rates at neutral pH < 10 -6 g m -2 d -1). Under reducing conditions, the matrix of HTR fuel particles presents significant intrinsic radionuclide confinement properties.

  6. Development Status for a Combined Solid Oxide Co-Electrolyzer and Carbon Formation Reactor System for Oxygen Regeneration

    NASA Technical Reports Server (NTRS)

    Green, Robert D.; Matter, Paul H.; Holt, Chris; Beachy, Michael; Gaydos, James; Farmer, Serene C.; Setlock, John

    2016-01-01

    A critical component in spacecraft life support loop closure is the removal of carbon dioxide (CO2, produced by the crew) from the cabin atmosphere and chemical reduction of this CO2 to recover the oxygen. In 2015, we initiated development of an oxygen recovery system for life support applications consisting of a solid oxide co-electrolyzer (SOCE) and a carbon formation reactor (CFR). The SOCE electrolyzes a combined stream of carbon dioxide (CO2) and water (H2O) gas mixtures to produce synthesis gas (e.g., CO and H2 gas) and pure dry oxygen as separate products. This SOCE is being developed from a NASA GRC solid oxide fuel cell and stack design originally developed for aeronautics long-duration power applications. The CFR, being developed by pHMatter LLC, takes the CO and H2 output from the SOCE, and converts it primarily to solid carbon (C(s)) and H2O and CO2. Although the solid carbon accumulates in the CFR, the innovative design allows easy removal of the carbon product, requiring minimal crew member (CM) time and low resupply mass (1.0 kg/year/CM) for replacement of the solid carbon catalyst, a significant improvement over previous Bosch reactor approaches. In this work, we will provide a status of our Phase I efforts in the development and testing of both the SOCE and CFR prototype units, along with an initial assessment of the combined SOCE-CFR system, including a mass and power projections, along with an estimate of the oxygen recovery rate.

  7. Improving abiotic reducing ability of hydrothermal biochar by low temperature oxidation under air.

    PubMed

    Xu, Yunfeng; Lou, Zhenjun; Yi, Peng; Chen, Junyu; Ma, Xianlong; Wang, Yang; Li, Mi; Chen, Wen; Liu, Qiang; Zhou, Jizhi; Zhang, Jia; Qian, Guangren

    2014-11-01

    Oxidized hydrothermal biochar was prepared by hydrothermal carbonization of Spartina alterniflora biomass (240°C for 4h) and subsequent oxidization (240°C for 10min) under air. Oxidized hydrochar achieved a Fe(III) reducing capacity of 2.15mmol/g at pH 2.0 with 120h, which is 1.2 times higher than un-oxidized hydrochar. Low temperature oxidization increases the contents of carboxyl and carbonyl groups on hydrochar surface. It is supposed that carboxyl groups provide bonding sites for soluble Fe species and carbonyl groups are responsible for Fe(3+) reduction. A Fenton-like process was established with Fe(2+) replaced by oxidized hydrochar and tested for methylene blue (MB) decoloration. Oxidized hydrochar achieved a MB decolorization (200mg/L, pH 7.0) rate of 99.21% within 3h and demonstrates prominent prevail over H2O2 absent control test. This study reveals low temperature oxidization is an effective way to improve and restore abiotic reducing ability of hydrochar.

  8. 76 FR 59599 - Extension of Comment Period for Secondary National Ambient Air Quality Standards for Oxides of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-27

    ... Quality Standards for Oxides of Nitrogen and Sulfur AGENCY: Environmental Protection Agency (EPA). ACTION... comment period for the Secondary National Ambient Air Quality Standards for Oxides of Nitrogen and Sulfur... Standards for Oxides of Nitrogen and Sulfur'' proposed rule should be addressed to Rich Scheffe, U.S....

  9. Heterogeneous catalytic wet air oxidation of refractory organic pollutants in industrial wastewaters: a review.

    PubMed

    Kim, Kyoung-Hun; Ihm, Son-Ki

    2011-02-15

    Catalytic wet air oxidation (CWAO) is one of the most economical and environmental-friendly advanced oxidation process. It makes a promising technology for the treatment of refractory organic pollutants in industrial wastewaters. Various heterogeneous catalysts including noble metals and metal oxides have been extensively studied to enhance the efficiency of CWAO. The present review is concerned about the literatures published in this regard. Phenolics, carboxylic acids, and nitrogen-containing compounds were taken as model pollutants in most cases, and noble metals such as Ru, Rh, Pd, Ir, and Pt as well as oxides of Cr, Mn, Fe, Co, Ni, Cu, Zn, Mo, and Ce were applied as heterogeneous catalysts. Reports on their characterization and catalytic performances for the CWAO of aqueous pollutants are reviewed. Discussions are also made on the reaction mechanisms and kinetics proposed for heterogeneous CWAO and also on the typical catalyst deactivations in heterogeneous CWAO, i.e. carbonaceous deposits and metal leaching.

  10. Air Oxidation Behavior of Two Ti-Base Alloys Synthesized by HIP

    NASA Astrophysics Data System (ADS)

    Liu, S.; Guo, Q. Q.; Liu, L. L.; Xu, L.; Liu, Y. Y.

    2016-04-01

    The oxidation behavior of Ti-5Al-2.5Sn and Ti-6Al-4V produced by hot isostatic pressing (HIP) has been studied at 650-850°C in air for 24 h. The oxidation kinetics of both alloys followed the parabolic law with good approximation, except for Ti-5Al-2.5Sn oxidized at 850°C. Multi-layered scales formed on both alloys at 750°C and 850°C. Ternary additions of Sn and V accounted for the different morphology of the scales formed on these two alloys. In addition, the oxidation behavior of HIP alloys is compared with that of the corresponding cast alloys and the scaling mechanism is discussed.

  11. Characterization of bacterial and archaeal communities in air-cathode microbial fuel cells, open circuit and sealed-off reactors.

    PubMed

    Shehab, Noura; Li, Dong; Amy, Gary L; Logan, Bruce E; Saikaly, Pascal E

    2013-11-01

    A large percentage of organic fuel consumed in a microbial fuel cell (MFC) is lost as a result of oxygen transfer through the cathode. In order to understand how this oxygen transfer affects the microbial community structure, reactors were operated in duplicate using three configurations: closed circuit (CC; with current generation), open circuit (OC; no current generation), and sealed off cathodes (SO; no current, with a solid plate placed across the cathode). Most (98 %) of the chemical oxygen demand (COD) was removed during power production in the CC reactor (maximum of 640 ± 10 mW/m(2)), with a low percent of substrate converted to current (coulombic efficiency of 26.5 ± 2.1 %). Sealing the cathode reduced COD removal to 7 %, but with an open cathode, there was nearly as much COD removal by the OC reactor (94.5 %) as the CC reactor. Oxygen transfer into the reactor substantially affected the composition of the microbial communities. Based on analysis of the biofilms using 16S rRNA gene pyrosequencing, microbes most similar to Geobacter were predominant on the anodes in the CC MFC (72 % of sequences), but the most abundant bacteria were Azoarcus (42 to 47 %) in the OC reactor, and Dechloromonas (17 %) in the SO reactor. Hydrogenotrophic methanogens were most predominant, with sequences most similar to Methanobacterium in the CC and SO reactor, and Methanocorpusculum in the OC reactors. These results show that oxygen leakage through the cathode substantially alters the bacterial anode communities, and that hydrogenotrophic methanogens predominate despite high concentrations of acetate. The predominant methanogens in the CC reactor most closely resembled those in the SO reactor, demonstrating that oxygen leakage alters methanogenic as well as general bacterial communities.

  12. The Measurement of Fuel-air Ratio by Analysis of the Oxidized Exhaust Gas

    NASA Technical Reports Server (NTRS)

    Memm, J. Lawrence, Jr.

    1943-01-01

    An investigation was made to determine a method of measuring fuel-air ratio that could be used for test purposes in flight and for checking conventional equipment in the laboratory. Two single-cylinder test engines equipped with typical commercial engine cylinders were used. The fuel-air ratio of the mixture delivered to the engines was determined by direct measurement of the quantity of air and of fuel supplied and also by analysis of the oxidized exhaust gas and of the normal exhaust gas. Five fuels were used: gasoline that complied with Army-Navy Fuel Specification, No. AN-VV-F-781 and four mixtures of this gasoline with toluene, benzene, and xylene. The method of determining the fuel-air ratio described in this report involves the measurement of the carbon-dioxide content of the oxidized exhaust gas and the use of graphs or the presented equation. This method is considered useful in aircraft, in the field, or in the laboratory for a range of fuel-air ratios from 0.047 to 0.124

  13. The Measurement of Fuel-Air Ratio by Analysis for the Oxidized Exhaust Gas

    NASA Technical Reports Server (NTRS)

    Gerrish, Harold C.; Meem, J. Lawrence, Jr.

    1943-01-01

    An investigation was made to determine a method of measuring fuel-air ratio that could be used for test purposes in flight and for checking conventional equipment in the laboratory. Two single-cylinder test engines equipped with typical commercial engine cylinders were used. The fuel-air ratio of the mixture delivered to the engines was determined by direct measurement of the quantity of air and of fuel supplied and also by analysis of the oxidized exhaust gas and of the normal exhaust gas. Five fuels were used: gasoline that complied with Army-Navy fuel Specification No. AN-VV-F-781 and four mixtures of this gasoline with toluene, benzene, and xylene. The method of determining the fuel-air ratio described in this report involves the measurement of the carbon-dioxide content of the oxidized exhaust gas and the use of graphs for the presented equation. This method is considered useful in aircraft, in the field, or in the laboratory for a range of fuel-air ratios from 0.047 to 0.124.

  14. Methods to protect and recover work function of air exposed transition metal oxide thin films

    NASA Astrophysics Data System (ADS)

    Irfan, Irfan; Wang, Chenggong; Turinske, Alexander J.; Gao, Yongli

    2012-09-01

    Insertion of high work function (WF) transition metal oxide (TMO) layers between the anode and the hole transport layer is established to substantially enhance the performance of organic light emitting diodes (OLED). The high WF of transition metal oxide layer has been demonstrated to be the most crucial for the enhancement. The WF of a TMO layer decreases substantially with air exposure, and noticeably by the ambient even inside a low vacuum system. In the present work we discuss various methods to protect and recover the high WF after a TMO thin film has been exposed to air. We report covering a thin organic layer on top of MoOx to protect the high work function. We found that a thin layer of 1-2 nm organic layer was sufficient to protect the work function of MoOx thin film underneath. We further report methods to recover already decreased TMO WF due to air exposure. We performed oxygen plasma cleaning of air exposed MoOx film and found out that oxygen plasma could substantially recover the WF of as deposited MoOx film. We also performed annealing of air exposed MoOx film inside an ultra high vacuum system and observed a thin layer of oxygenrich adsorbate layer, which desorbed upon annealing that in turn substantially recovered the MoOx WF. We discuss the vacuum annealing and the effect of resulting surface on the interface energy level alignment.

  15. Spent caustic oxidation using electro-generated Fenton's reagent in a batch reactor.

    PubMed

    Rodriguez, Nicolas; Hansen, Henrik K; Nunez, Patricio; Guzman, Jaime

    2008-07-01

    This work shows the results of four Electro-Fenton laboratory tests to reduce the chemical oxygen demand (COD) in spent caustic solutions. The treatment consisted of (i) a pH reduction followed by (ii) an Electro-Fenton process, which was analyzed in this work. The Fenton's reagent was produced in a specially designed reactor, where the waste stream flowed through a labyrinth made by ferrous plates. These plates acted as sacrificial anodes-releasing Fe(2 +) cations to the solution, where H(2)O(2) was also added. The Electro-Fenton process was analyzed varying the ferrous ion concentration ([Fe(+ 2)]), the spent caustic's initial temperature and the initial pH. Close to 95% removal of COD (from 8800 mg L(- 1)) was achieved at a pH of 4, a temperature of 40 degrees C and 100 mg L(- 1) of Fe(+ 2) (applying 1 A). Two models were considered to simulate the behavior of the reactor considering (i) axial dispersion and (ii) kinetic rate, respectively. The model that was based on kinetics, proved to be the slightly closest fit to the experimental values.

  16. Toxicity to Daphnia magna and Vibrio fischeri of Kraft bleach plant effluents treated by catalytic wet-air oxidation.

    PubMed

    Pintar, Albin; Besson, Michèle; Gallezot, Pierre; Gibert, Janine; Martin, Dominique

    2004-01-01

    Two Kraft-pulp bleaching effluents from a sequence of treatments which include chlorine dioxide and caustic soda were treated by catalytic wet-air oxidation (CWAO) at T=463 K in trickle-bed and batch-recycle reactors packed with either TiO2 extrudates or Ru(3 wt%)/TiO2 catalyst. Chemical analyses (TOC removal, color, HPLC) and bioassays (48-h and 30-min acute toxicity tests using Daphnia magna and Vibrio fischeri, respectively) were used to get information about the toxicity impact of the starting effluents and of the treated solutions. Under the operating conditions, complex organic compounds are mostly oxidized into carbon dioxide and water, along with short-chain carboxylic acids. Bioassays were found as a complement to chemical analyses for ensuring the toxicological impact on the ecosystem. In spite of a large decrease of TOC, the solutions of end products were all more toxic to Daphnia magna than the starting effluents by factors ranging from 2 to 33. This observation is attributed to the synergistic effects of acetic acid and salts present in the solutions. On the other hand, toxicity reduction with respect to Vibrio fischeri was achieved: detoxification factors greater than unity were measured for end-product solutions treated in the presence of the Ru(3 wt%)/TiO2 catalyst, suggesting the absence of cumulative effect for this bacteria, or a lower sensitivity to the organic acids and salts. Bleach plant effluents treated by the CWAO process over the Ru/TiO2 catalyst were completely biodegradable.

  17. Death rate in a small air-lift loop reactor of vero cells grown on solid microcarriers and in macroporous microcarriers.

    PubMed

    Martens, D E; Nollen, E A; Hardeveld, M; van der Velden-de Groot, C A; de Gooijer, C D; Beuvery, E C; Tramper, J

    1996-01-01

    The death rate of Vero cells grown on Cytodex-3 microcarriers was studied as a function of the gas flow rate in a small air-lift loop reactor. The death rate may be described by first-order death-rate kinetics. The first-order death-rate constant as calculated from the decrease in viable cells, the increase in dead cells and the increase in LDH activity is linear proportional to the gas flow rate, with a specific hypothetical killing volume in which all cells are killed of about 2·10(-3) m(3) liquid per m(3) of air bubbles. In addition, an experiment was conducted in the same air-lift reactor with Vero cells grown inside porous Asahi microcarriers. The specific hypothetical killing volume calculated from this experiment has a value of 3·10(-4) m(3) liquid per m(3) of air bubbles, which shows that the porous microcarriers were at least in part able to protect the cells against the detrimental hydrodynamic forces generated by the bubbles.

  18. Neuropeptide Y (NPY) modulates oxidative burst and nitric oxide production in carrageenan-elicited granulocytes from rat air pouch.

    PubMed

    Dimitrijević, Mirjana; Stanojević, Stanislava; Mićić, Stana; Vujić, Vesna; Kovacević-Jovanović, Vesna; Mitić, Katarina; von Hörsten, Stephan; Kosec, Dusko

    2006-12-01

    We studied the effects of neuropeptide Y (NPY) and NPY-related receptor specific peptides on functions of carrageenan-elicited granulocytes in vitro and ability of NPY to modulate carrageenan-induced air pouch inflammation in rats in vivo. Anti-inflammatory effect of NPY comprises reduced granulocyte accumulation into the air pouch, to some extent attenuation of phagocytosis, attained via Y1 receptor, and considerable decrease in peroxide production, albeit mediated via Y2 and Y5 receptors activation. Conversely, NPY increases nitric oxide production and this potentiation is mediated via Y1 receptor. It is concluded that NPY Y1 and Y2/Y5 receptors' interaction participates in NPY-induced modulation of granulocyte functions related to inflammation.

  19. 40 CFR Appendix T to Part 50 - Interpretation of the Primary National Ambient Air Quality Standards for Oxides of Sulfur (Sulfur...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Ambient Air Quality Standards for Oxides of Sulfur (Sulfur Dioxide) T Appendix T to Part 50 Protection of... Ambient Air Quality Standards for Oxides of Sulfur (Sulfur Dioxide) 1. General (a) This appendix explains... ambient air quality standards for Oxides of Sulfur as measured by Sulfur Dioxide (“SO2 NAAQS”)...

  20. 40 CFR Appendix T to Part 50 - Interpretation of the Primary National Ambient Air Quality Standards for Oxides of Sulfur (Sulfur...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Ambient Air Quality Standards for Oxides of Sulfur (Sulfur Dioxide) T Appendix T to Part 50 Protection of... Ambient Air Quality Standards for Oxides of Sulfur (Sulfur Dioxide) 1. General (a) This appendix explains... ambient air quality standards for Oxides of Sulfur as measured by Sulfur Dioxide (“SO2 NAAQS”)...

  1. 40 CFR Appendix T to Part 50 - Interpretation of the Primary National Ambient Air Quality Standards for Oxides of Sulfur (Sulfur...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Ambient Air Quality Standards for Oxides of Sulfur (Sulfur Dioxide) T Appendix T to Part 50 Protection of... Ambient Air Quality Standards for Oxides of Sulfur (Sulfur Dioxide) 1. General (a) This appendix explains... ambient air quality standards for Oxides of Sulfur as measured by Sulfur Dioxide (“SO2 NAAQS”)...

  2. 40 CFR Appendix T to Part 50 - Interpretation of the Primary National Ambient Air Quality Standards for Oxides of Sulfur (Sulfur...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Ambient Air Quality Standards for Oxides of Sulfur (Sulfur Dioxide) T Appendix T to Part 50 Protection of... Ambient Air Quality Standards for Oxides of Sulfur (Sulfur Dioxide) 1. General (a) This appendix explains... ambient air quality standards for Oxides of Sulfur as measured by Sulfur Dioxide (“SO2 NAAQS”)...

  3. 40 CFR Appendix T to Part 50 - Interpretation of the Primary National Ambient Air Quality Standards for Oxides of Sulfur (Sulfur...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Ambient Air Quality Standards for Oxides of Sulfur (Sulfur Dioxide) T Appendix T to Part 50 Protection of... Ambient Air Quality Standards for Oxides of Sulfur (Sulfur Dioxide) 1. General (a) This appendix explains... ambient air quality standards for Oxides of Sulfur as measured by Sulfur Dioxide (“SO2 NAAQS”)...

  4. Oxidation of spent fuel in air at 175{degree} to 195{degree}C

    SciTech Connect

    Einziger, R.E.; Buchanan, H.C.; Thomas, L.E.; Stout, R.B.

    1992-04-01

    Oxidation tests in dry air were conducted on four LWR spent fuels at 175{degrees} and 195{degrees}C to determine the effect of the fuel characteristics on the oxidation state likely to exist at the time leaching occurs in a potential repository. Weight changes were measured and samples were examined by XRD, ceramography, TEM, and TGA. Despite local variations in the grain boundary susceptibility to oxidation, all four fuels progressed toward an apparent endpoint at an oxygen-to-metal (O/M) ratio of 2.4. The sole oxidation product was U{sub 4}O{sub 9+x,} a cubic phase structurally related to UO{sub 2} but with a slightly smaller lattice constant. The growth of the U{sub 4}O{sub 9+x} from the grain boundaries into the UO{sub 2} grains followed parabolic kinetics and had an activation energy of 26.6 kcal/mol. Based on the kinetics, the time required at 95{degrees}C to completely oxidize LWR spent fuel to U{sub 4}O{sub 9+x} would be at least 2000 yr. The next oxidation product to form after the U{sub 4}O{sub 9+x} phase may be U{sub 3}O{sub 8,} but no U{sub 3}O{sub 8} or other dilatational oxidation product has been detected in these accelerated tests conducted up to 25,000 h.

  5. Oxidation of spent fuel in air at 175 degree to 195 degree C

    SciTech Connect

    Einziger, R.E.; Buchanan, H.C.; Thomas, L.E. ); Stout, R.B. )

    1992-04-01

    Oxidation tests in dry air were conducted on four LWR spent fuels at 175{degrees} and 195{degrees}C to determine the effect of the fuel characteristics on the oxidation state likely to exist at the time leaching occurs in a potential repository. Weight changes were measured and samples were examined by XRD, ceramography, TEM, and TGA. Despite local variations in the grain boundary susceptibility to oxidation, all four fuels progressed toward an apparent endpoint at an oxygen-to-metal (O/M) ratio of 2.4. The sole oxidation product was U{sub 4}O{sub 9+x,} a cubic phase structurally related to UO{sub 2} but with a slightly smaller lattice constant. The growth of the U{sub 4}O{sub 9+x} from the grain boundaries into the UO{sub 2} grains followed parabolic kinetics and had an activation energy of 26.6 kcal/mol. Based on the kinetics, the time required at 95{degrees}C to completely oxidize LWR spent fuel to U{sub 4}O{sub 9+x} would be at least 2000 yr. The next oxidation product to form after the U{sub 4}O{sub 9+x} phase may be U{sub 3}O{sub 8,} but no U{sub 3}O{sub 8} or other dilatational oxidation product has been detected in these accelerated tests conducted up to 25,000 h.

  6. ENERGY EFFICIENT VAPOR PHASE OXIDATION OF METHANOL USING OZONE AND CATALYTIC REACTOR

    EPA Science Inventory

    The pulp and paper industry releases more than 144 million tons of Volatile Organic Compounds (VOCs) per year. A big portion of this effluent, 66+% is released to air making it the fourth highest contributor of VOC emissions to the atmosphere by industry sector [1]. The current...

  7. Purge gas recovery of ammonia synthesis plant by integrated configuration of catalytic hydrogen-permselective membrane reactor and solid oxide fuel cell as a novel technology

    NASA Astrophysics Data System (ADS)

    Siavashi, Fakhteh; Saidi, Majid; Rahimpour, Mohammad Reza

    2014-12-01

    The purge gas emission of ammonia synthesis plant which contains hazardous components is one of the major sources of environmental pollution. Using integrated configuration of catalytic hydrogen-permselective membrane reactor and solid oxide fuel cell (SOFC) system is a new approach which has a great impact to reduce the pollutant emission. By application of this method, not only emission of ammonia and methane in the atmosphere is prevented, hydrogen is produced through the methane steam reforming and ammonia decomposition reactions that take place simultaneously in a catalytic membrane reactor. The pure generated hydrogen by recovery of the purge gas in the Pd-Ag membrane reactor is used as a feed of SOFC. Since water is the only byproduct of the electrochemical reaction in the SOFC, it is recycled to the reactor for providing the required water of the reforming reaction. Performance investigation of the reactor represents that the rate of hydrogen permeation increases with enhancing the reactor temperature and pressure. Also modeling results indicate that the SOFC performance improves with increasing the temperature and fuel utilization ratio. The generated power by recovery of the purging gas stream of ammonia synthesis plant in the Razi petrochemical complex is about 8 MW.

  8. Effect of Key Parameters on the Photocatalytic Oxidation of Toluene at Low Concentrations in Air under 254 + 185 nm UV Irradiation

    SciTech Connect

    Quici, Natalia; Vera, Maria L.; Choi, Hyeok; Puma, Gianluca Li; Dionysiou, Dionysios D.; Litter, Marta I.; Destaillats, Hugo

    2009-07-01

    The effect of key experimental parameters on the removal of toluene under 254 + 185 nm irradiation was investigated using a benchtop photocatalytic flow reactor. Toluenewas introduced at low concentrations between 10 and 500 ppbv, typical of indoorenvironments, and reacted on TiO2-coated Raschig rings. Two different TiO2-coated rings were prepared: in one case, by dip-coating using a P25 aqueous suspension and, on the other, using an organic/inorganic sol-gel method that produced thin films of mesoporous anatase. Flow rates in the photoreactor varied between 4 L min-1 and 125 mL min-1, leading to residence times in the range 100 ms< tau< 2 s. For these conditions, toluene removal efficiencies were between 30 and 90percent, indicating that the system did not achieve total conversion in any case. For each air flow rate, the conversion oftoluene was significantly higher when the reactor length was 10 cm, as compared with 5 cm; however, only marginal increases in conversions were achieved in the two reactor lengths at equal residence time and different concentration of toluene, suggesting that that the reactor is effectively behaving as an ideal reactor and that the reaction is first-order in the concentration of toluene. Experiments were carried out between 0 and 66percent relative humidity (RH), the fastest reaction rate being observed at moderately low humidity conditions (10percent RH), with respect to both dry air and higher humidity levels. Formaldehyde was formed as a partial oxidation byproduct at low and at high residence times (240 and 960 ms), although higher formaldehyde molar yields (up to 20percent) were observed at low tau (240 ms) and moderate humidity conditions (10 and 33percent), suggesting that both tau and RH can be optimized toreduce the formation of harmful intermediates. Toluene removal efficiency increased with the TiO2 thickness (i.e., mass) until a maximum value of 500 nm, beyond which the removal efficiency decreased. This should be

  9. Kinetics of devolatilization and oxidation of a pulverized biomass in an entrained flow reactor under realistic combustion conditions

    SciTech Connect

    Jimenez, Santiago; Remacha, Pilar; Ballester, Javier; Ballesteros, Juan C.; Gimenez, Antonio

    2008-03-15

    In this paper the results of a complete set of devolatilization and combustion experiments performed with pulverized ({proportional_to}500 {mu}m) biomass in an entrained flow reactor under realistic combustion conditions are presented. The data obtained are used to derive the kinetic parameters that best fit the observed behaviors, according to a simple model of particle combustion (one-step devolatilization, apparent oxidation kinetics, thermally thin particles). The model is found to adequately reproduce the experimental trends regarding both volatile release and char oxidation rates for the range of particle sizes and combustion conditions explored. The experimental and numerical procedures, similar to those recently proposed for the combustion of pulverized coal [J. Ballester, S. Jimenez, Combust. Flame 142 (2005) 210-222], have been designed to derive the parameters required for the analysis of biomass combustion in practical pulverized fuel configurations and allow a reliable characterization of any finely pulverized biomass. Additionally, the results of a limited study on the release rate of nitrogen from the biomass particle along combustion are shown. (author)

  10. Arsenite oxidation by immobilized cells of Alcaligenes faecalis strain O1201 in a fluidized-bed reactor.

    PubMed

    Wang, Yi-Tin; Suttigarn, Arthon; Dastidar, Aniruddha

    2009-02-01

    Arsenic(III) oxidation was evaluated in a continuous-flow fluidized-bed reactor (FBR) with Alcaligenes faecalis strain 01201 immobilized in gel beads. The FBR was operated under 300 mg/L citrate and a range of influent As(III) concentrations (75 to 3000 mg/L) at short hydraulic retention times (1.06 to 3.17 hours). The pH and temperature in the FBR were maintained at optimal growth conditions for strain O1201 (pH 7 and 30 degrees C) throughout the study. A total of 10 quasi-steady-state operating conditions were obtained after 54 days of operation under an As(III) concentration of 441 mg/L (10 000 mg/L/d loading rate), with As (III) removal efficiency ranging from 76% to near complete. Material balance analysis over the FBR revealed that the difference between the cumulative influent As (III) and the sum of cumulative effluent As(III) and As(V) was insignificant. The major mechanism of As(III) removal from the FBR is biological oxidation to As(V).

  11. Simultaneous enrichment of denitrifying anaerobic methane-oxidizing microorganisms and anammox bacteria in a hollow-fiber membrane biofilm reactor.

    PubMed

    Ding, Zhao-Wei; Lu, Yong-Ze; Fu, Liang; Ding, Jing; Zeng, Raymond J

    2017-01-01

    In this study, the coculture system of denitrifying anaerobic methane oxidation (DAMO) microbes and anaerobic ammonium oxidation (anammox) bacteria was successfully enriched in a hollow-fiber membrane biofilm reactor (HfMBR) using freshwater sediment as the inoculum. The maximal removal rates of nitrate and ammonium were 78 mg N/L/day (131 mg N/m(2)/day) and 26 mg N/L/day (43 mg N/m(2)/day), respectively. Due to the high rate of methane mass transfer in HfMBR, the activity of DAMO archaea continued to increase during the enrichment period, indicating that HfMBR could be a powerful tool to enrich DAMO microorganisms. Effects of partial methane pressure, temperature, and pH on the cocultures were obvious. However, the microbial activity in HfMBR could be recovered quickly after the shock change of environmental factors. Furthermore, the result also found that DAMO bacteria likely had a stronger competitive advantage than anammox bacteria under the operating conditions in this study. High-throughput sequencing 16S rRNA genes illustrated that the dominant microbes were NC10, Euryarchaeota, Proteobacteria, Planctomycetes, and Chlorobi with relative abundance of 38.8, 26.2, 13.78, 6.2, and 3.6 %, respectively.

  12. Oxidation pathways for ozonation of azo dyes in a semi-batch reactor: a kinetic parameters approach.

    PubMed

    Lopez, A; Benbelkacem, H; Pic, J S; Debellefontaine, H

    2004-03-01

    In this study ozone and the H2O2/O3 oxidation system are used to decolorize aqueous solutions of Orange II (Or-II) and Acid Red 27 (AR-27). Investigations are carried out in a semi-batch bubble column reactor. A system of series-parallel reactions is proposed to describe the mechanism of dye oxidation. The stoichiometric ratio for the first reaction is found to be 1 mol dye per mol O3, while the overall ozone demand for both reactions one and two is found to be 5 and 6 moles for Or-II and AR-27 respectively. Molecular and radical kinetics are compared: a radical scavenger, t-butanol, can be added to ensure only the molecular reaction of ozone, or hydrogen peroxide can be supplied through a peristaltic pump, to initiate radical reactivity. Results reveal that colour removal is ensured by direct ozone attack. For both dyes, TOC removal efficiencies of 50 - 60 % are obtained by the action of the hydroxyl free radical. However, this is not improved by addition of H2O2, thus demonstrating that organic species alone ensure HO degrees radical production during ozonation. Both the mass transfer and the ozone reactivity with the dyes are considered to evaluate the kinetic parameters for the molecular pathway.

  13. Oxidative decomposition of atrazine in water in the presence of hydrogen peroxide using an innovative microwave photochemical reactor.

    PubMed

    Chen, Huilun; Bramanti, Emilia; Longo, Iginio; Onor, Massimo; Ferrari, Carlo

    2011-02-28

    The simultaneous application of microwave (MW) power and UV light leads to improved results in photochemical processes. This study investigates the oxidative decomposition of atrazine in water using an innovative MW and UV photochemical reactor, which activates a chemical reaction with MW and UV radiation using an immersed source without the need for a MW oven. We investigated the influence of reaction parameters such as initial H(2)O(2) concentrations, reaction temperatures and applied MW power and identified the optimal conditions for the oxidative decomposition of atrazine. Atrazine was completely degraded by MW/UV/H(2)O(2) in a very short time (i.e. t(1/2) = 1.1 min for 20.8 mg/L in optimal conditions). From the kinetic study, the disappearance rate of atrazine can be expressed as dX/dt = k(PH)[M](0)(b-X)(1-X), where b ≡ [H(2)O(2)](0)/[M](0)+k(OH)[·OH]/k(PH)[M](0), and X is the atrazine conversion, which correlates well with the experimental data. The kinetic analysis also showed that an indirect reaction of atrazine with an OH radical is dominant at low concentrations of H(2)O(2) and a direct reaction of atrazine with H(2)O(2) is dominant when the concentration of H(2)O(2) is more than 200 mg/L.

  14. Nitrate removal by nitrate-dependent Fe(II) oxidation in an upflow denitrifying biofilm reactor.

    PubMed

    Zhou, Jun; Wang, Hongyu; Yang, Kai; Sun, Yuchong; Tian, Jun

    2015-01-01

    A continuous upflow biofilm reactor packed with ceramsite was constructed for nitrate removal under an anaerobic atmosphere without an organic carbon source. Denitrifying bacteria, Pseudomonas sp. W1, Pseudomonas sp. W2 and Microbacterium sp. W5, were added to the bioreactor as inocula. Nitrate concentration, nitrite accumulation and nitrogen removal efficiency in the effluent were investigated under various conditions set by several parameters including pH, hydraulic retention time (HRT), ratios of carbon to nitrogen (C/N) and temperature. The results illustrated that the maximum removal efficiency of nitrogen was 85.39%, under optimum reaction parameters, approximately pH 6.5-7, HRT = 48 hours and C/N = 13.1:1 at temperature of 30 °C, which were determined by experiment.

  15. Sewage-sludge-derived carbonaceous materials for catalytic wet hydrogen peroxide oxidation of m-cresol in batch and continuous reactors.

    PubMed

    Yu, Yang; Wei, Huangzhao; Yu, Li; Wang, Wei; Zhao, Ying; Gu, Bin; Sun, Chenglin

    2016-01-01

    In this study, four sewage-sludge-derived carbonaceous materials (SWs) were evaluated for their catalytic wet hydrogen peroxide oxidation (CWPO) performance of m-cresol in batch reactor and continuous reactor, respectively. The SWs were produced by carbonization (SW); carbonization with the addition of CaO (CaO-SW); HNO3 pretreatment (HNO3-SW) and steam activation (Activated-SW). The properties of SW catalysts were assessed by thermogravimetric analysis, Brunauer-Emmett-Teller, Fourier Transform Infrared Spectroscopy, X-ray Fluorescence, Scanning electron microscopy, energy dispersive X-ray analysis and zeta potential. The results showed that SW treated by HNO3 (HNO3-SW) had a high conversion of m-cresol in batch reactor and continuous reactor, respectively. Under the conditions of batch reaction (Cm-cresol = 100 mg L(-1), CH2O2 = 15.7 mmol L(-1), initial pH=7.0, 0.5 g L(-1) catalyst, 80°C, 180 min adsorption and 210 min oxidation), the conversion of m-cresol reached 100% and total organic carbon removal was 67.1%. It had a high catalytic activity and stability on the treatment of m-cresol in CWPO for more than 1100 h. Furthermore, a possible reaction mechanism for the oxidation of m-cresol to 2-methyl-p-benzoquinone by CWPO was proposed.

  16. Using advanced oxidation treatment for biofilm inactivation by varying water vapor content in air plasma

    NASA Astrophysics Data System (ADS)

    Ryota, Suganuma; Koichi, Yasuoka

    2015-09-01

    Biofilms are caused by environmental degradation in food factories and medical facilities. The inactivation of biofilms involves making them react with chemicals including chlorine, hydrogen peroxide, and ozone, although inactivation using chemicals has a potential problem because of the hazardous properties of the residual substance and hydrogen peroxide, which have slow reaction velocity. We successfully performed an advanced oxidation process (AOP) using air plasma. Hydrogen peroxide and ozone, which were used for the formation of OH radicals in our experiment, were generated by varying the amount of water vapor supplied to the plasma. By varying the content of the water included in the air, the main product was changed from air plasma. When we increased the water content in the air, hydrogen peroxide was produced, while ozone peroxide was produced when we decreased the water content in the air. By varying the amount of water vapor, we realized a 99.9% reduction in the amount of bacteria in the biofilm when we discharged humidified air only. This work was supported by JSPS KAKENHI Grant Number 25630104.

  17. Amine-Oxide Hybrid Materials for CO2 Capture from Ambient Air.

    PubMed

    Didas, Stephanie A; Choi, Sunho; Chaikittisilp, Watcharop; Jones, Christopher W

    2015-10-20

    Oxide supports functionalized with amine moieties have been used for decades as catalysts and chromatographic media. Owing to the recognized impact of atmospheric CO2 on global climate change, the study of the use of amine-oxide hybrid materials as CO2 sorbents has exploded in the past decade. While the majority of the work has concerned separation of CO2 from dilute mixtures such as flue gas from coal-fired power plants, it has been recognized by us and others that such supported amine materials are also perhaps uniquely suited to extract CO2 from ultradilute gas mixtures, such as ambient air. As unique, low temperature chemisorbents, they can operate under ambient conditions, spontaneously extracting CO2 from ambient air, while being regenerated under mild conditions using heat or the combination of heat and vacuum. This Account describes the evolution of our activities on the design of amine-functionalized silica materials for catalysis to the design, characterization, and utilization of these materials in CO2 separations. New materials developed in our laboratory, such as hyperbranched aminosilica materials, and previously known amine-oxide hybrid compositions, have been extensively studied for CO2 extraction from simulated ambient air (400 ppm of CO2). The role of amine type and structure (molecular, polymeric), support type and structure, the stability of the various compositions under simulated operating conditions, and the nature of the adsorbed CO2 have been investigated in detail. The requirements for an effective, practical air capture process have been outlined and the ability of amine-oxide hybrid materials to meet these needs has been discussed. Ultimately, the practicality of such a "direct air capture" process is predicated not only on the physicochemical properties of the sorbent, but also how the sorbent operates in a practical process that offers a scalable gas-solid contacting strategy. In this regard, the utility of low pressure drop monolith

  18. Detection of some stable species during the oxidation of methane by coupling a jet-stirred reactor (JSR) to cw-CRDS

    PubMed Central

    Bahrini, Chiheb; Herbinet, Olivier; Glaude, Pierre-Alexandre; Schoemaecker, Coralie; Fittschen, Christa; Battin-Leclerc, Frédérique

    2013-01-01

    We present the coupling of a jet-stirred reactor to detection by cw-CRDS in the near infrared and first results obtained during the oxidation of methane. The mixture is rapidly expanded from the jet-stirred reactor into a 80 cm-long cw-CRDS cell maintained at a the pressure around 1.33 kPa, thus freezing the reaction and decreasing pressure broadening of the absorption lines. Some stable species (CH4, H2O and CH2O) have been quantified through their well structured spectra around 1506 nm, while H2O2 and HO2 radicals could not be detected. PMID:23710075

  19. Secondary organic aerosol formation from photo-oxidation of toluene with NOx and SO2: Chamber simulation with purified air versus urban ambient air as matrix

    NASA Astrophysics Data System (ADS)

    Deng, Wei; Liu, Tengyu; Zhang, Yanli; Situ, Shuping; Hu, Qihou; He, Quanfu; Zhang, Zhou; Lü, Sujun; Bi, Xinhui; Wang, Xuemei; Boreave, Antoinette; George, Christian; Ding, Xiang; Wang, Xinming

    2017-02-01

    Chamber studies on the formation of secondary aerosols are mostly performed with purified air as matrix, it is of wide concern in what extent they might be different from the situations in ambient air, where a variety of gaseous and particulate components preexist. Here we compared the photo-oxidation of "toluene + NOx + SO2" combinations in a smog chamber in real urban ambient air matrix with that in purified air matrix. The secondary organic aerosols (SOA) mass concentrations and yields from toluene in the ambient air matrix, after subtracted ambient air background primary and secondary organic aerosols, were 9.0-34.0 and 5.6-12.9 times, respectively, greater than those in purified air matrix. Both homogeneous and heterogeneous oxidation of SO2 were enhanced in ambient air matrix experiments with observed 2.0-7.5 times higher SO2 degradation rates and 2.6-6.8 times faster sulfate formation than that in purified air matrix, resulting in higher in-situ particle acidity and consequently promoting acid-catalyzed SOA formation. In the ambient air experiments although averaged OH radical levels were elevated probably due to heterogeneous formation of OH on particle surface and/or ozonolysis of alkenes, non-OH oxidation pathways of SO2 became even more dominating. Under the same organic aerosol mass concentration, the SOA yields of toluene in purified air matrix experiments matched very well with the two-product model curve by Ng et al. (2007), yet the yields in ambient air on average was over two times larger. The results however were much near the best fit curve by Hildebrandt et al. (2009) with the volatility basis set (VBS) approach.

  20. The degradation of Isophorone by catalytic wet air oxidation on Ru/TiZrO4.

    PubMed

    Wei, Huangzhao; Yan, Xiaomiao; Li, Xianru; He, Songbo; Sun, Chenglin

    2013-01-15

    The catalyst Ru/TiZrO(4) was applied in the degradation of Isophorone by catalytic wet air oxidation. Mathematical models for the effects of reaction conditions on the Isophorone degradation by catalytic wet air oxidation were developed using a response surface methodology. A model was obtained for each response with multiple regression analysis and then was refined. Analysis of variance revealed that the models developed were adequate. The validity of the models was also verified by experimental data. Analysis of response surface showed that total organic carbon removal and Isophorone conversion were significantly affected (P≤0.01) by reaction time, temperature and their interactions, and affected (P≤0.05) by the square of reaction time. The point of zero charge of Ru/TiZrO(4) catalyst was about 1.72. The total organic carbon removal and Isophorone conversion had a great association with the zeta potential of Ru/TiZrO(4) catalyst. Finally, the degradation pathway of Isophorone in catalytic wet air oxidation was proposed. Within 410 h, the total organic carbon removal remained above 95%, indicating that the Ru/TiZrO(4) catalyst had a good stability.

  1. Formation and growth of indoor air aerosol particles as a result of D-limonene oxidation

    NASA Astrophysics Data System (ADS)

    Vartiainen, E.; Kulmala, M.; Ruuskanen, T. M.; Taipale, R.; Rinne, J.; Vehkamäki, H.

    Oxidation of D-limonene, which is a common monoterpene, can lead to new aerosol particle formation in indoor environments. Thus, products containing D-limonene, such as citrus fruits, air refresheners, household cleaning agents, and waxes, can act as indoor air aerosol particle sources. We released D-limonene into the room air by peeling oranges and measured the concentration of aerosol particles of three different size ranges. In addition, we measured the concentration of D-limonene, the oxidant, and the concentration of ozone, the oxidizing gas. Based on the measurements we calculated the growth rate of the small aerosol particles, which were 3-10 nm in diameter, to be about 6300nmh-1, and the losses of the aerosol particles that were due to the coagulation and condensation processes. From these, we further approximated the concentration of the condensable vapour and its source rate and then calculated the formation rate of the small aerosol particles. For the final result, we calculated the nucleation rate and the maximum number of molecules in a critical cluster. The nucleation rate was in the order of 105cm-3s-1 and the number of molecules in a critical-sized cluster became 1.2. The results were in agreement with the activation theory.

  2. Oxidative stress and air pollution exposure during pregnancy: A molecular assessment.

    PubMed

    Nagiah, S; Phulukdaree, A; Naidoo, D; Ramcharan, K; Naidoo, R N; Moodley, D; Chuturgoon, A

    2015-08-01

    Chronic air pollution exposure during pregnancy can cause oxidative stress leading to adverse birth outcomes. The aim of this study was to assess and compare oxidative stress response in peripheral lymphocytes isolated from pregnant women from a highly industrialized locale (south Durban (SD); n = 50) and a control with lower air pollutant levels (north Durban (ND); n = 50). Oxidative stress response was measured by quantifying malondialdehyde (MDA) levels and a SuperArray gene panel. Mitochondrial function (adenosine triphosphate (ATP) levels and mitochondrial depolarization), DNA integrity (comet assay and mitochondrial DNA (mtDNA) viability) and DNA repair (OGG1) were assessed. Antioxidant response was assessed by quantification of glutathione (GSH) and SOD2, nuclear factor erythroid 2-related factor 2 (Nrf2) and uncoupling protein 2 (UCP2) protein and messenger RNA (mRNA) expression. Levels of MDA (p = 0.9), mitochondrial depolarization (p = 0.88), ATP (1.89-fold), SOD2 (1.23-fold) and UCP2 (1.58-fold) gene expression were elevated in the SD group with significantly higher UCP2 protein levels (p = 0.05) and longer comet tail length (p = 0.0004). The expression of Nrf2 protein (p = 0.03) and mRNA levels (-1.37-fold), GSH concentration (p < 0.0001), mtDNA amplification (-2.04-fold) and OGG1 mRNA (-2.78-fold) activity were decreased in the SD group. Of the 84 oxidative stress-related genes evaluated, 26 were differentially regulated. Pregnant women exposed to higher air pollutant levels showed increased markers for oxidative stress and compromised DNA integrity and repair.

  3. Solid oxide fuel cells, and air electrode and electrical interconnection materials therefor

    DOEpatents

    Bates, J.L.

    1992-09-01

    In one aspect of the invention, an air electrode material for a solid oxide fuel cell comprises Y[sub 1[minus]a]Q[sub a]MnO[sub 3], where Q is selected from the group consisting of Ca and Sr or mixtures thereof and a' is from 0.1 to 0.8. Preferably, a' is from 0.4 to 0.7. In another aspect of the invention, an electrical interconnection material for a solid oxide fuel cell comprises Y[sub 1[minus]b]Ca[sub b]Cr[sub 1[minus]c]Al[sub c]O[sub 3], where b' is from 0.1 to 0.6 and c' is from 0 to 9.3. Preferably, b' is from 0.3 to 0.5 and c' is from 0.05 to 0.1. A composite solid oxide electrochemical fuel cell incorporating these materials comprises: a solid oxide air electrode and an adjacent solid oxide electrical interconnection which commonly include the cation Y, the air electrode comprising Y[sub 1[minus]a]Q[sub a]MnO[sub 3], where Q is selected from the group consisting of Ca and Sr or mixtures thereof and a' is from 0.1 to 0.8, the electrical interconnection comprising Y[sub 1[minus]b]Ca[sub b]Cr[sub 1[minus]c]Al[sub c]O[sub 3], where b' is from 0.1 to 0.6 and c' is from 0.0 to 0.3; a yttrium stabilized solid electrolyte comprising (1[minus]d)ZrO[sub 2]-(d)Y[sub 2]O[sub 3] where d' is from 0.06 to 0.5; and a solid fuel electrode comprising X-ZrO[sub 2], where X' is an elemental metal. 5 figs.

  4. Solid oxide fuel cells, and air electrode and electrical interconnection materials therefor

    DOEpatents

    Bates, J. Lambert

    1992-01-01

    In one aspect of the invention, an air electrode material for a solid oxide fuel cell comprises Y.sub.1-a Q.sub.a MnO.sub.3, where "Q" is selected from the group consisting of Ca and Sr or mixtures thereof and "a" is from 0.1 to 0.8. Preferably, "a" is from 0.4 to 0.7. In another aspect of the invention, an electrical interconnection material for a solid oxide fuel cell comprises Y.sub.1-b Ca.sub.b Cr.sub.1-c Al.sub.c O.sub.3, where "b" is from 0.1 to 0.6 and "c" is from 0 to 9.3. Preferably, "b" is from 0.3 to 0.5 and "c" is from 0.05 to 0.1. A composite solid oxide electrochemical fuel cell incorporating these materials comprises: a solid oxide air electrode and an adjacent solid oxide electrical interconnection which commonly include the cation Y, the air electrode comprising Y.sub.1-a Q.sub.a MnO.sub.3, where "Q" is selected from the group consisting of Ca and Sr or mixtures thereof and "a" is from 0.1 to 0.8, the electrical interconnection comprising Y.sub.1-b Ca.sub.b Cr.sub.1-c Al.sub.c O.sub.3, where "b" is from 0.1 to 0.6 and "c" is from 0.0 to 0.3; a yttrium stabilized solid electrolyte comprising (1-d)ZrO.sub.2 -(d)Y.sub.2 O.sub.3 where "d" is from 0.06 to 0.5; and a solid fuel electrode comprising X-ZrO.sub.2, where "X" is an elemental metal.

  5. Evaluation of Ultra-Violet Photocatalytic Oxidation for Indoor AirApplications

    SciTech Connect

    Hodgson, A.T.; Sullivan, D.P.; Fisk, W.J.

    2006-02-01

    Acceptable indoor air quality in office buildings may be achieved with less energy by combining effective air cleaning systems for volatile organic compounds (VOCs) with particle filtration then by relying solely on ventilation. For such applications, ultraviolet photocatalytic oxidation (UVPCO) systems are being developed for VOC destruction. An experimental evaluation of a UVPCO system is reported. The evaluation was unique in that it employed complex mixtures of VOCs commonly found in office buildings at realistically low concentrations. VOC conversion efficiencies varied over a broad range, usually exceeded 20%, and were as high as {approx}80%. Conversion efficiency generally diminished with increased air flow rate. Significant amounts of formaldehyde and acetaldehyde were produced due to incomplete mineralization. The results indicate that formaldehyde and acetaldehyde production rates may need to be reduced before such UVPCO systems can be deployed safely in occupied buildings.

  6. Low cost stable air electrode material for high temperature solid oxide electrolyte electrochemical cells

    DOEpatents

    Kuo, Lewis J. H.; Singh, Prabhakar; Ruka, Roswell J.; Vasilow, Theodore R.; Bratton, Raymond J.

    1997-01-01

    A low cost, lanthanide-substituted, dimensionally and thermally stable, gas permeable, electrically conductive, porous ceramic air electrode composition of lanthanide-substituted doped lanthanum manganite is provided which is used as the cathode in high temperature, solid oxide electrolyte fuel cells and generators. The air electrode composition of this invention has a much lower fabrication cost as a result of using a lower cost lanthanide mixture, either a natural mixture or an unfinished lanthanide concentrate obtained from a natural mixture subjected to incomplete purification, as the raw material in place of part or all of the higher cost individual lanthanum. The mixed lanthanide primarily contains a mixture of at least La, Ce, Pr, and Nd, or at least La, Ce, Pr, Nd and Sm in its lanthanide content, but can also include minor amounts of other lanthanides and trace impurities. The use of lanthanides in place of some or all of the lanthanum also increases the dimensional stability of the air electrode. This low cost air electrode can be fabricated as a cathode for use in high temperature, solid oxide fuel cells and generators.

  7. Low cost stable air electrode material for high temperature solid oxide electrolyte electrochemical cells

    DOEpatents

    Kuo, L.J.H.; Singh, P.; Ruka, R.J.; Vasilow, T.R.; Bratton, R.J.

    1997-11-11

    A low cost, lanthanide-substituted, dimensionally and thermally stable, gas permeable, electrically conductive, porous ceramic air electrode composition of lanthanide-substituted doped lanthanum manganite is provided which is used as the cathode in high temperature, solid oxide electrolyte fuel cells and generators. The air electrode composition of this invention has a much lower fabrication cost as a result of using a lower cost lanthanide mixture, either a natural mixture or an unfinished lanthanide concentrate obtained from a natural mixture subjected to incomplete purification, as the raw material in place of part or all of the higher cost individual lanthanum. The mixed lanthanide primarily contains a mixture of at least La, Ce, Pr, and Nd, or at least La, Ce, Pr, Nd and Sm in its lanthanide content, but can also include minor amounts of other lanthanides and trace impurities. The use of lanthanides in place of some or all of the lanthanum also increases the dimensional stability of the air electrode. This low cost air electrode can be fabricated as a cathode for use in high temperature, solid oxide fuel cells and generators. 4 figs.

  8. Ni/MgAlO regeneration for catalytic wet air oxidation of an azo-dye in trickle-bed reaction.

    PubMed

    Vallet, Ana; Ovejero, Gabriel; Rodríguez, Araceli; Peres, José A; García, Juan

    2013-01-15

    Active nickel catalysts (7 wt%) supported over Mg-Al mixed oxides have been recently developed and it has also been demonstrated that they are also highly selective in Catalytic Wet air Oxidation (CWAO) of dyes. CWAO of Chromotrope 2R (C2R) has been studied using a trickle bed reactor employing temperatures from 100 to 180 °C, liquid flow rates from 0.1 to 0.7 mL min(-1) and initial dye concentration from 10 to 50 ppm. Total pressure and air flow were 25 bar and 300 mL min(-1), respectively. The catalyst showed a very stable activity up to 24 h on stream with an average TOC conversion of 82% at 150 °C and T(r)=0.098 g(Ni) min mL(-1). After the reaction, a 1.1 wt% C of carbonaceous deposit is formed onto the catalyst and a diminution of 30% of the surface area with respect of the fresh catalyst was observed. An increase in the space time gave higher TOC conversions up to T(r)=0.098 g(Ni) min mL(-1), attaining values of 80% at 180 °C. The performance of TOC and dye removal does not decrease after two regeneration cycles. In total, a 57 h effective reaction has been carried out with no loss of catalytic activity.

  9. Microwave assisted catalytic wet air oxidation of H-acid in aqueous solution under the atmospheric pressure using activated carbon as catalyst.

    PubMed

    Zhang, Yaobin; Quan, Xie; Chen, Shuo; Zhao, Yazhi; Yang, Fenglin

    2006-09-01

    Catalytic wet air oxidation (CWAO) is a promising method for the treatment of heavily contaminated wastewater. However, its application is restricted due to severe operation conditions (high pressure and high temperature). A microwave (MW) assisted oxidation method was investigated aiming to treat heavily contaminated wastewater under milder conditions. H-acid (1-amino-8-naphthol-3, 6-disulfonic acid) was selected as target compound to evaluate the performance of this novel process. The removal of H-acid and TOC (total organic carbon) for H-acid solution of 3000 mg/L reached as high as 92.6% in 20 min and 84.2% in 60 min, respectively under optimal conditions. The existence of activated carbon and oxygen proved to be critical for effective treatment. The activated carbon acted not only as a catalyst for H-acid decomposition, but also as a special material for the absorption of MW energy. Air was supplied to the reactor as an oxygen source at constant flows. The amino group in H-acid was converted ultimately into nitrate, and sulfonic group into sulfate. This observation gave an evidence of H-acid mineralization although other organic intermediates were unable to be determined. The value of BOD(5)/COD (ratio of 5d biochemical oxygen demand to chemical oxygen demand) increased from 0.008 to 0.467 indicating a significant improvement of biodegradability for the solution, which is beneficial for the further biological treatment of the wastewater.

  10. Impacts of halogen additions on mercury oxidation, in a slipstream selective catalyst reduction (SCR), reactor when burning sub-bituminous coal.

    PubMed

    Cao, Yan; Gao, Zhengyang; Zhu, Jiashun; Wang, Quanhai; Huang, Yaji; Chiu, Chengchung; Parker, Bruce; Chu, Paul; Pant, Wei-Ping

    2008-01-01

    This paper presents a comparison of impacts of halogen species on the elemental mercury (Hg(0)) oxidation in a real coal-derived flue gas atmosphere. It is reported there is a higher percentage of Hg(0) in the flue gas when burning sub-bituminous coal (herein Powder River Basin (PRB) coal) and lignite, even with the use of selective catalytic reduction (SCR). The higher Hg(0)concentration in the flue gas makes it difficult to use the wet-FGD process for the mercury emission control in coal-fired utility boilers. Investigation of enhanced Hg(0) oxidation by addition of hydrogen halogens (HF, HCl, HBr, and HI) was conducted in a slipstream reactor with and without SCR catalysts when burning PRB coal. Two commercial SCR catalysts were evaluated. SCR catalyst no. 1 showed higher efficiencies of both NO reduction and Hg(0) oxidation than those of SCR catalyst no. 2. NH3 addition seemed to inhibit the Hg(0) oxidation, which indicated competitive processes between NH3 reduction and Hg(0) oxidation on the surface of SCR catalysts. The hydrogen halogens, in the order of impact on Hg(0) oxidation, were HBr, HI, and HCl or HF. Addition of HBr at approximately 3 ppm could achieve 80% Hg(0) oxidation. Addition of HI at approximately 5 ppm could achieve 40% Hg(0) oxidation. In comparison to the empty reactor, 40% Hg(0) oxidation could be achieved when HCl addition was up to 300 ppm. The enhanced Hg(0) oxidation by addition of HBr and HI seemed not to be correlated to the catalytic effects by both evaluated SCR catalysts. The effectiveness of conversion of hydrogen halogens to halogen molecules or interhalogens seemed to be attributed to their impacts on Hg(0) oxidation.

  11. Impacts of halogen additions on mercury oxidation, in a slipstream selective catalyst reduction (SCR), reactor when burning sub-bituminous coal

    SciTech Connect

    Yan Cao; Zhengyang Gao; Jiashun Zhu; Quanhai Wang; Yaji Huang; Chengchung Chiu; Bruce Parker; Paul Chu; Wei-ping Pan

    2008-01-01

    This paper presents a comparison of impacts of halogen species on the elemental mercury (Hg(0)) oxidation in a real coal-derived flue gas atmosphere. It is reported there is a higher percentage of Hg(0) in the flue gas when burning sub-bituminous coal (herein Powder River Basin (PRB) coal) and lignite, even with the use of selective catalytic reduction (SCR). The higher Hg(0) concentration in the flue gas makes it difficult to use the wet-FGD process for the mercury emission control in coal-fired utility boilers. Investigation of enhanced Hg(0) oxidation by addition of hydrogen halogens (HF, HCl, HBr, and HI) was conducted in a slipstream reactor with and without SCR catalysts when burning PRB coal. Two commercial SCR catalysts were evaluated. SCR catalyst no. 1 showed higher efficiencies of both NO reduction and Hg(0) oxidation than those of SCR catalyst no. 2. NH{sub 3} addition seemed to inhibit the Hg(0) oxidation, which indicated competitive processes between NH{sub 3} reduction and Hg(0) oxidation on the surface of SCR catalysts. The hydrogen halogens, in the order of impact on Hg(0) oxidation, were HBr, HI, and HCl or HF. Addition of HBr at approximately 3 ppm could achieve 80% Hg(0) oxidation. Addition of HI at approximately 5 ppm could achieve 40% Hg(0) oxidation. In comparison to the empty reactor, 40% Hg(0) oxidation could be achieved when HCl addition was up to 300 ppm. The enhanced Hg(0) oxidation by addition of HBr and HI seemed not to be correlated to the catalytic effects by both evaluated SCR catalysts. The effectiveness of conversion of hydrogen halogens to halogen molecules or interhalogens seemed to be attributed to their impacts on Hg(0) oxidation. 30 refs., 4 figs.

  12. Air oxidation method employed for the disulfide bond formation of natural and synthetic peptides.

    PubMed

    Calce, Enrica; Vitale, Rosa Maria; Scaloni, Andrea; Amodeo, Pietro; De Luca, Stefania

    2015-08-01

    Among the available protocols, chemically driven approaches to oxidize cysteine may not be required for molecules that, under the native-like conditions, naturally fold in conformations ensuring an effective pairing of the right disulfide bridge pattern. In this contest, we successfully prepared the distinctin, a natural heterodimeric peptide, and some synthetic cyclic peptides that are inhibitors of the CXCR4 receptor. In the first case, the air oxidation reaction allowed to connect two peptide chains via disulfide bridge, while in the second case allowed the cyclization of rationally designed peptides by an intramolecular disulfide bridge. Computational approaches helped to either drive de-novo design or suggest structural modifications and optimal oxidization protocols for disulfide-containing molecules. They are able to both predict and to rationalize the propensity of molecules to spontaneously fold in suitable conformations to achieve the right disulfide bridges.

  13. The oxidation behavior of several Ti-Al alloys at 900 C in air

    SciTech Connect

    Schmitz-Niederau, M.

    1999-10-01

    Ti-23Al, Ti-50Al and Ti-50Al-2Nb (at.%) were oxidized in air at 900 C for times up to 1130 hr. The resulting oxide scale structures were analyzed in great detail by metallographic and microprobe investigations and the Al{sub 2}O{sub 3} structures in the complex oxide scales were correlated with the course of the thermogravimetric curves. It appears that in order to achieve long-term protective behavior of the scale, it is necessary to stimulate the formation of a thin Al{sub 2}O{sub 3} barrier at the scale-metal interface and not at a position in the outer part of the scale. The Nb effect seems to be mostly due to this stimulation of an Al{sub 2}O{sub 3} layer at the interface.

  14. Air-stable superparamagnetic metal nanoparticles entrapped in graphene oxide matrix

    NASA Astrophysics Data System (ADS)

    Tuček, Jiří; Sofer, Zdeněk; Bouša, Daniel; Pumera, Martin; Holá, Kateřina; Malá, Aneta; Poláková, Kateřina; Havrdová, Markéta; Čépe, Klára; Tomanec, Ondřej; Zbořil, Radek

    2016-09-01

    Superparamagnetism is a phenomenon caused by quantum effects in magnetic nanomaterials. Zero-valent metals with diameters below 5 nm have been suggested as superior alternatives to superparamagnetic metal oxides, having greater superspin magnitudes and lower levels of magnetic disorder. However, synthesis of such nanometals has been hindered by their chemical instability. Here we present a method for preparing air-stable superparamagnetic iron nanoparticles trapped between thermally reduced graphene oxide nanosheets and exhibiting ring-like or core-shell morphologies depending on iron concentration. Importantly, these hybrids show superparamagnetism at room temperature and retain it even at 5 K. The corrected saturation magnetization of 185 Am2 kg-1 is among the highest values reported for iron-based superparamagnets. The synthetic concept is generalized exploiting functional groups of graphene oxide to stabilize and entrap cobalt, nickel and gold nanoparticles, potentially opening doors for targeted delivery, magnetic separation and imaging applications.

  15. Air-stable superparamagnetic metal nanoparticles entrapped in graphene oxide matrix.

    PubMed

    Tuček, Jiří; Sofer, Zdeněk; Bouša, Daniel; Pumera, Martin; Holá, Kateřina; Malá, Aneta; Poláková, Kateřina; Havrdová, Markéta; Čépe, Klára; Tomanec, Ondřej; Zbořil, Radek

    2016-09-15

    Superparamagnetism is a phenomenon caused by quantum effects in magnetic nanomaterials. Zero-valent metals with diameters below 5 nm have been suggested as superior alternatives to superparamagnetic metal oxides, having greater superspin magnitudes and lower levels of magnetic disorder. However, synthesis of such nanometals has been hindered by their chemical instability. Here we present a method for preparing air-stable superparamagnetic iron nanoparticles trapped between thermally reduced graphene oxide nanosheets and exhibiting ring-like or core-shell morphologies depending on iron concentration. Importantly, these hybrids show superparamagnetism at room temperature and retain it even at 5 K. The corrected saturation magnetization of 185 Am(2) kg(-1) is among the highest values reported for iron-based superparamagnets. The synthetic concept is generalized exploiting functional groups of graphene oxide to stabilize and entrap cobalt, nickel and gold nanoparticles, potentially opening doors for targeted delivery, magnetic separation and imaging applications.

  16. Integrated catalytic wet air oxidation and biological treatment of wastewater from Vitamin B 6 production

    NASA Astrophysics Data System (ADS)

    Kang, Jianxiong; Zhan, Wei; Li, Daosheng; Wang, Xiaocong; Song, Jing; Liu, Dongqi

    This study investigated the feasibility of coupling a catalytic wet air oxidation (CWAO), with CuO/Al 2O 3 as catalyst, and an anaerobic/aerobic biological process to treat wastewater from Vitamin B 6 production. Results showed that the CWAO enhanced the biodegradability (BOD 5/COD) from 0.10 to 0.80. The oxidized effluents with COD of 10,000 mg l -1 was subjected to subsequent continuous anaerobic/aerobic oxidation, and 99.3% of total COD removal was achieved. The quality of the effluent obtained met the discharge standards of water pollutants for pharmaceutical industry Chemical Synthesis Products Category (GB21904-2008), and thereby it implies that the integrated CWAO and anaerobic/aerobic biological treatment may offer a promising process to treat wastewater from Vitamin B 6 production.

  17. Air-stable superparamagnetic metal nanoparticles entrapped in graphene oxide matrix

    PubMed Central

    Tuček, Jiří; Sofer, Zdeněk; Bouša, Daniel; Pumera, Martin; Holá, Kateřina; Malá, Aneta; Poláková, Kateřina; Havrdová, Markéta; Čépe, Klára; Tomanec, Ondřej; Zbořil, Radek

    2016-01-01

    Superparamagnetism is a phenomenon caused by quantum effects in magnetic nanomaterials. Zero-valent metals with diameters below 5 nm have been suggested as superior alternatives to superparamagnetic metal oxides, having greater superspin magnitudes and lower levels of magnetic disorder. However, synthesis of such nanometals has been hindered by their chemical instability. Here we present a method for preparing air-stable superparamagnetic iron nanoparticles trapped between thermally reduced graphene oxide nanosheets and exhibiting ring-like or core-shell morphologies depending on iron concentration. Importantly, these hybrids show superparamagnetism at room temperature and retain it even at 5 K. The corrected saturation magnetization of 185 Am2 kg–1 is among the highest values reported for iron-based superparamagnets. The synthetic concept is generalized exploiting functional groups of graphene oxide to stabilize and entrap cobalt, nickel and gold nanoparticles, potentially opening doors for targeted delivery, magnetic separation and imaging applications. PMID:27628898

  18. Identification of the hydroperoxide formed by isomerization reactions during the oxidation of n-hexane in a reactor and CFR engine

    SciTech Connect

    Sahetchian, K.A.; Rigny, R. ); Circan, S. )

    1991-06-01

    This paper reports on the hydroperoxide formed during the oxidation of n-heptane in a motored CFR engine and in a flow system identified as a heptyl- ketohydroperoxide. This compound, probably the branching agent in the oxidation chain reaction, is responsible for autoignition in a CFR engine supplied with air n-heptane mixture.

  19. Enhanced mercury removal from fix-bed reactor by lamella manganese oxide sorbents

    NASA Astrophysics Data System (ADS)

    Cheng, H. W.; Yu, C. T.

    2015-12-01

    Mercury (Hg) is an extremely hazardous metal and attracted more concern because of its high toxicity and bioaccumulation. Several manganese-oxide-containing sorbents prepared by co-precipitation method could exhibit the mercury removal activities toward Hg0. The mercury removal test at the temperature of 300°C has the highest removal efficiency. Under this temperature, the maximum absorption equivalent of Mg-Al-Mn and Mn-Al were up to 90.9 and 247 μg/g, then gradually decreased at 400°C. The mercury removal efficiency declined in the following sequence: Mn-Al > Mg-Al-Mn > Mg-Al-Mn/ACA = Mn/AC(p)> Mn/AC(g), due to the manganese-oxide content formed on the sorbents.

  20. Performance of Thorium-Based Mixed Oxide Fuels for the Consumption of Plutonium in Current and Advanced Reactors

    SciTech Connect

    Weaver, Kevan Dean; Herring, James Stephen

    2003-07-01

    A renewed interest in thorium-based fuels has arisen lately based on the need for proliferation resistance, longer fuel cycles, higher burnup, and improved waste form characteristics. Recent studies have been directed toward homogeneously mixed, heterogeneously mixed, and seed-and-blanket thorium-uranium oxide fuel cycles that rely on "in situ" use of the bred-in 233U. However, due to the higher initial enrichment required to achieve acceptable burnups, these fuels are encountering economic constraints. Thorium can nevertheless play a large role in the nuclear fuel cycle, particularly in the reduction of plutonium inventories. While uranium-based mixed-oxide (MOX) fuel will decrease the amount of plutonium in discharged fuel, the reduction is limited due to the breeding of more plutonium (and higher actinides) from the 238U. Here, we present calculational results and a comparison of the potential burnup of a thorium-based and uranium-based mixed-oxide fuel in a light water reactor. Although the uranium-based fuels outperformed the thorium-based fuels in achievable burnup, a depletion comparison of the initially charged plutonium (both reactor and weapons grade) showed that the thorium-based fuels outperformed the uranium-based fuels by more that a factor of 2, where >70% of the total plutonium in the thorium-based fuel is consumed during the cycle. This is significant considering that the achievable burnups of the thorium-based fuels were 1.4 to 4.6 times less than the uranium-based fuels for similar plutonium enrichments. For equal specific burnups of ~60 MWd/kg (i.e., using variable plutonium weight percentages to give the desired burnup), the thorium-based fuels still outperform the uranium-based fuels by more than a factor of 2, where the total plutonium consumption in a three-batch, 18-month cycle was 60 to 70%. This is fairly significant considering that 10 to 15% (by weight) more plutonium is needed in the thorium-based fuels as compared to the uranium

  1. Cast Stone Oxidation Front Evaluation: Preliminary Results For Samples Exposed To Moist Air

    SciTech Connect

    Langton, C. A.; Almond, P. M.

    2013-11-26

    The rate of oxidation is important to the long-term performance of reducing salt waste forms because the solubility of some contaminants, e.g., technetium, is a function of oxidation state. TcO{sub 4}{sup -} in the salt solution is reduced to Tc(IV) and has been shown to react with ingredients in the waste form to precipitate low solubility sulfide and/or oxide phases. Upon exposure to oxygen, the compounds containing Tc(IV) oxidize to the pertechnetate ion, Tc(VII)O{sub 4}{sup -}, which is very soluble. Consequently the rate of technetium oxidation front advancement into a monolith and the technetium leaching profile as a function of depth from an exposed surface are important to waste form performance and ground water concentration predictions. An approach for measuring contaminant oxidation rate (effective contaminant specific oxidation rate) based on leaching of select contaminants of concern is described in this report. In addition, the relationship between reduction capacity and contaminant oxidation is addressed. Chromate (Cr(VI) was used as a non-radioactive surrogate for pertechnetate, Tc(VII), in Cast Stone samples prepared with 5 M Simulant. Cast Stone spiked with pertechnetate was also prepared and tested. Depth discrete subsamples spiked with Cr were cut from Cast Stone exposed to Savannah River Site (SRS) outdoor ambient temperature fluctuations and moist air. Depth discrete subsamples spiked with Tc-99 were cut from Cast Stone exposed to laboratory ambient temperature fluctuations and moist air. Similar conditions are expected to be encountered in the Cast Stone curing container. The leachability of Cr and Tc-99 and the reduction capacities, measured by the Angus-Glasser method, were determined for each subsample as a function of depth from the exposed surface. The results obtained to date were focused on continued method development and are preliminary and apply to the sample composition and curing / exposure conditions described in this report. The

  2. Simplified Two-Time Step Method for Calculating Combustion Rates and Nitrogen Oxide Emissions for Hydrogen/Air and Hydorgen/Oxygen

    NASA Technical Reports Server (NTRS)

    Molnar, Melissa; Marek, C. John

    2005-01-01

    A simplified single rate expression for hydrogen combustion and nitrogen oxide production was developed. Detailed kinetics are predicted for the chemical kinetic times using the complete chemical mechanism over the entire operating space. These times are then correlated to the reactor conditions using an exponential fit. Simple first order reaction expressions are then used to find the conversion in the reactor. The method uses a two-time step kinetic scheme. The first time averaged step is used at the initial times with smaller water concentrations. This gives the average chemical kinetic time as a function of initial overall fuel air ratio, temperature, and pressure. The second instantaneous step is used at higher water concentrations (> 1 x 10(exp -20) moles/cc) in the mixture which gives the chemical kinetic time as a function of the instantaneous fuel and water mole concentrations, pressure and temperature (T4). The simple correlations are then compared to the turbulent mixing times to determine the limiting properties of the reaction. The NASA Glenn GLSENS kinetics code calculates the reaction rates and rate constants for each species in a kinetic scheme for finite kinetic rates. These reaction rates are used to calculate the necessary chemical kinetic times. This time is regressed over the complete initial conditions using the Excel regression routine. Chemical kinetic time equations for H2 and NOx are obtained for H2/air fuel and for the H2/O2. A similar correlation is also developed using data from NASA s Chemical Equilibrium Applications (CEA) code to determine the equilibrium temperature (T4) as a function of overall fuel/air ratio, pressure and initial temperature (T3). High values of the regression coefficient R2 are obtained.

  3. Summary of Simplified Two Time Step Method for Calculating Combustion Rates and Nitrogen Oxide Emissions for Hydrogen/Air and Hydrogen/Oxygen

    NASA Technical Reports Server (NTRS)

    Marek, C. John; Molnar, Melissa

    2005-01-01

    A simplified single rate expression for hydrogen combustion and nitrogen oxide production was developed. Detailed kinetics are predicted for the chemical kinetic times using the complete chemical mechanism over the entire operating space. These times are then correlated to the reactor conditions using an exponential fit. Simple first order reaction expressions are then used to find the conversion in the reactor. The method uses a two time step kinetic scheme. The first time averaged step is used at the initial times with smaller water concentrations. This gives the average chemical kinetic time as a function of initial overall fuel air ratio, temperature, and pressure. The second instantaneous step is used at higher water concentrations (greater than l x 10(exp -20)) moles per cc) in the mixture which gives the chemical kinetic time as a function of the instantaneous fuel and water mole concentrations, pressure and temperature (T(sub 4)). The simple correlations are then compared to the turbulent mixing times to determine the limiting properties of the reaction. The NASA Glenn GLSENS kinetics code calculates the reaction rates and rate constants for each species in a kinetic scheme for finite kinetic rates. These reaction rates are used to calculate the necessary chemical kinetic times. This time is regressed over the complete initial conditions using the Excel regression routine. Chemical kinetic time equations for H2 and NOx are obtained for H2/Air fuel and for H2/O2. A similar correlation is also developed using data from NASA's Chemical Equilibrium Applications (CEA) code to determine the equilibrium temperature (T(sub 4)) as a function of overall fuel/air ratio, pressure and initial temperature (T(sub 3)). High values of the regression coefficient R squared are obtained.

  4. Microstructural Characterization of High Burn-up Mixed Oxide Fast Reactor Fuel

    SciTech Connect

    Melissa C. Teague; Brian P. Gorman; Steven L. Hayes; Douglas L. Porter; Jeffrey King

    2013-10-01

    High burn-up mixed oxide fuel with local burn-ups of 3.4–23.7% FIMA (fissions per initial metal atom) were destructively examined as part of a research project to understand the performance of oxide fuel at extreme burn-ups. Optical metallography of fuel cross-sections measured the fuel-to-cladding gap, clad thickness, and central void evolution in the samples. The fuel-to-cladding gap closed significantly in samples with burn-ups below 7–9% FIMA. Samples with burn-ups in excess of 7–9% FIMA had a reopening of the fuel-to-cladding gap and evidence of joint oxide-gain (JOG) formation. Signs of axial fuel migration to the top of the fuel column were observed in the fuel pin with a peak burn-up of 23.7% FIMA. Additionally, high burn-up structure (HBS) was observed in the two highest burn-up samples (23.7% and 21.3% FIMA). The HBS layers were found to be 3–5 times thicker than the layers found in typical LWR fuel. The results of the study indicate that formation of JOG and or HBS prevents any significant fuel-cladding mechanical interaction from occurring, thereby extending the potential life of the fuel elements.

  5. DETECTION AND MOLECULAR ANALYSIS OF PARTICULATE AIR POLLUTION INDUCED CARDIOPULMONARY OXIDATIVE STRESS USING A TRANSGENIC MOUSE MODEL AND EMERGING TECHNOLOGIES

    EPA Science Inventory


    Identification of particle characteristics and biological mechanism(s) responsible for the adverse pulmonary and cardiovascular responses associated with particulate air pollution exposure remains a critical research activity. We have employed an oxidative stress sensitive an...

  6. Flow mechanism for the long-range transport of air pollutants by the sea breeze causing inland nighttime high oxidants

    SciTech Connect

    Ueda, H.; Mitsumoto, S.; Kurita, H.

    1988-02-01

    Flow mechanism causing nightttime smog was investigated by analyzing 1) continuous records of meteorological data and concentration of oxidants (Ox) for 15 days and 2) aircraft data along the transportation route of a polluted air mass.

  7. Simultaneous domestic wastewater and nitrate sewage treatment by DEnitrifying AMmonium OXidation (DEAMOX) in sequencing batch reactor.

    PubMed

    Du, Rui; Cao, Shenbin; Li, Baikun; Wang, Shuying; Peng, Yongzhen

    2017-05-01

    A novel DEAMOX system was developed for nitrogen removal from domestic wastewater and nitrate (NO3(-)-N) sewage in sequencing batch reactor (SBR). High nitrite (NO2(-)-N) was produced from NO3(-)-N reduction in partial-denitrification process, which served as electron acceptor for anammox and was removed with ammonia (NH4(+)-N) in domestic wastewater simultaneously. A 500-days operation demonstrated that the efficient and stable nitrogen removal performance could be achieved by DEAMOX. The total nitrogen (TN) removal efficiency was as high as 95.8% with influent NH4(+)-N of 63.58 mg L(-1) and NO3(-)-N of 69.24 mg L(-1). The maximum NH4(+)-N removal efficiency reached up to 94.7%, corresponding to the NO3(-)-N removal efficiency of 97.8%. The biomass of partial-denitrification and anammox bacteria was observed to be wall-growth. The deteriorated nitrogen removal performance occurred due to excess denitrifying microbial growth in the outer layer of sludge consortium, which prevented the substrate transfer for anammox inside. However, an excellent nitrogen removal could be guaranteed by scrapping the superficial denitrifying biomass at regular intervals. Furthermore, the high-throughput sequencing analysis revealed that the Thauera genera (26.33%) was possibly responsible for the high NO2(-)-N accumulation in partial-denitrification and Candidatus Brocadia (1.7%) was the major anammox species.

  8. Temperature evolution on Rh/Al{sub 2}O{sub 3} catalyst during partial oxidation of methane in a reverse flow reactor

    SciTech Connect

    Simeone, M.; Menna, L.; Salemme, L.; Allouis, C.

    2010-04-15

    Catalytic partial oxidation of methane was investigated in a reverse flow reactor with commercial Rh/Al{sub 2}O{sub 3} catalyst in pellets. The process is carried out in a catalytic fixed bed reactor and switching of feed flow direction is obtained through four electrovalves synchronized in pairs. Temperature profile along the catalyst bed was measured by fast IR thermography and product composition was measured with a continuous gas analyzer. Feed direction switching time, water to methane ratio and inert section length were investigated as process parameters. Data of catalyst bed temperature evolution during the flow cycle are presented, discussed and related to reactor performance as a function of reverse flow switching period. The effect of water addition to the reacting mixture on the dynamics of catalyst bed temperature evolution is also presented. (author)

  9. Planar solid oxide fuel cell with staged indirect-internal air and fuel preheating and reformation

    DOEpatents

    Geisbrecht, Rodney A; Williams, Mark C

    2003-10-21

    A solid oxide fuel cell arrangement and method of use that provides internal preheating of both fuel and air in order to maintain the optimum operating temperature for the production of energy. The internal preheat passes are created by the addition of two plates, one on either side of the bipolar plate, such that these plates create additional passes through the fuel cell. This internal preheat fuel cell configuration and method reduce the requirements for external heat exchanger units and air compressors. Air or fuel may be added to the fuel cell as required to maintain the optimum operating temperature through a cathode control valve or an anode control valve, respectively. A control loop comprises a temperature sensing means within the preheat air and fuel passes, a means to compare the measured temperature to a set point temperature and a determination based on the comparison as to whether the control valves should allow additional air or fuel into the preheat or bypass manifolds of the fuel cell.

  10. Effect of inlet-air humidity on the formation of oxides of nitrogen in a gas-turbine combustor

    NASA Technical Reports Server (NTRS)

    Marchionna, N. R.

    1973-01-01

    Tests were conducted to determine the effect of inlet-air humidity on the formation of oxides of nitrogen from a gas-turbine combustor. Combustor inlet-air temperature ranged from 450 F to 1050 F. The tests were run at a constant pressure of 6 atmospheres and reference Mach number of 0.065. The NO sub x emission index was found to decrease with increasing inlet-air humidity at a constant exponential rate of 19 percent per mass percent water vapor in the air. This decrease of NO sub x emission index with increasing humidity was found to be independent of inlet-air temperature.

  11. Localized corrosion studies on materials proposed for a safety-grade sodium-to-air decay-heat removal system for fast breeder reactors

    SciTech Connect

    Mudali, U.K.; Khatak, H.S.; Dayal, R.K.; Gnanamoorthy, J.B. )

    1993-02-01

    The present investigation was carried out to assess the localized corrosion resistance of materials proposed for the construction of the safety-grade sodium-to-air decay-heat removal system for fast breeder reactors. The materials, such as Alloy 800, 9Cr-1 Mo steel, and type 316LN stainless steel, in different microstructural conditions were assessed for pitting and stress-corrosion cracking resistances in a chloride medium. The results indicated that 9Cr-1Mo steel in the normalized and tempered condition can be considered for the above application from the standpoint of corrosion resistance.

  12. Localized corrosion studies on materials proposed for a safety-grade sodium-to- air decay-heat removal system for fast breeder reactors

    NASA Astrophysics Data System (ADS)

    Kamachi Mudali, U.; Khatak, H. S.; Dayal, R. K.; Gnanamoorthy, J. B.

    1993-02-01

    The present investigation was carried out to assess the localized corrosion resistance of materials proposed for the construction of the safety-grade sodium-to-air decay-heat removal system for fast breeder reactors. The materials, such as Alloy 800,9Cr-lMo steel, and type 316LN stainless steel, in different microstructural conditions were assessed for pitting and stress-corrosion cracking resistances in a chloride medium. The results indicated that 9Cr-lMo steel in the normalized and tempered condition can be considered for the above application from the standpoint of corrosion resistance.

  13. OXIDATION OF INCONEL 718 IN AIR AT TEMPERATURES FROM 973K TO 1620K.

    SciTech Connect

    GREENE,G.A.; FINFROCK,C.C.

    2000-10-01

    As part of the APT project, it was necessary to quantify the release of tungsten from the APT spallation target during postulated accident conditions in order to develop accident source terms for accident consequence characterization. Experiments with tungsten rods at high temperatures in a flowing steam environment characteristic of postulated accidents revealed that considerable vaporization of the tungsten occurred as a result of reactions with the steam and that the aerosols which formed were readily transported away from the tungsten surfaces, thus exposing fresh tungsten to react with more steam. The resulting tungsten release fractions and source terms were undesirable and it was decided to clad the tungsten target with Inconel 718 in order to protect it from contact with steam during an accident and mitigate the accident source term and the consequences. As part of the material selection criteria, experiments were conducted with Inconel 718 at high temperatures to evaluate the rate of oxidation of the proposed clad material over as wide a temperature range as possible, as well as to determine the high-temperature failure limit of the material. Samples of Inconel 718 were inserted into a preheated furnace at temperatures ranging from 973 K to 1620 K and oxidized in air for varying periods of time. After oxidizing in air at a constant temperature for the prescribed time and then being allowed to cool, the samples would be reweighed to determine their weight gain due to the uptake of oxygen. From these weight gain measurements, it was possible to identify three regimes of oxidation for Inconel 718: a low-temperature regime in which the samples became passivated after the initial oxidation, an intermediate-temperature regime in which the rate of oxidation was limited by diffusion and exhibited a constant parabolic rate dependence, and a high-temperature regime in which material deformation and damage accompanied an accelerated oxidation rate above the parabolic

  14. An experimental study of external reactor vessel cooling strategy on the critical heat flux using the graphene oxide nano-fluid

    SciTech Connect

    Park, S. D.; Lee, S. W.; Kang, S.; Kim, S. M.; Seo, H.; Bang, I. C.

    2012-07-01

    External reactor vessel cooling (ERVC) for in-vessel retention (IVR) of corium as a key severe accident management strategy can be achieved by flooding the reactor cavity during a severe accident. In this accident mitigation strategy, the decay heat removal capability depends on whether the imposed heat flux exceeds critical heat flux (CHF). To provide sufficient cooling for high-power reactors such as APR1400, there have been some R and D efforts to use the reactor vessel with micro-porous coating and nano-fluids boiling-induced coating. The dispersion stability of graphene-oxide nano-fluid in the chemical conditions of flooding water that includes boric acid, lithium hydroxide (LiOH) and tri-sodium phosphate (TSP) was checked in terms of surface charge or zeta potential before the CHF experiments. Results showed that graphene-oxide nano-fluids were very stable under ERVC environment. The critical heat flux (CHF) on the reactor vessel external wall was measured using the small scale two-dimensional slide test section. The radius of the curvature is 0.1 m. The dimension of each part in the facility simulated the APR-1400. The heater was designed to produce the different heat flux. The magnitude of heat flux follows the one of the APR-1400 when the severe accident occurred. All tests were conducted under inlet subcooling 10 K. Graphene-oxide nano-fluids (concentration: 10 -4 V%) enhanced CHF limits up to about 20% at mass flux 50 kg/m{sup 2}s and 100 kg/m{sup 2}s in comparison with the results of the distilled water at same test condition. (authors)

  15. Development of a selective oxidation CO removal reactor for methanol reformate gas

    SciTech Connect

    Okada, Shunji; Takatani, Yoshiaki; Terada, Seijo; Ohtani, Shinichi

    1996-12-31

    This report forms part of a joint study on a PEFC propulsion system for surface ships, summarized in a presentation to this Seminar, entitled {open_quotes}Study on a Polymer Electrolyte Fuel Cell (PEFC) Propulsion System for Surface Ships{close_quotes}, and which envisages application to a 1,500 DWT cargo vessel. The aspect treated here concerns laboratory-scale tests aimed at reducing by selective oxidation to a level below 10 ppm the carbon monoxide (CO) contained to a concentration of around 1% in reformate gas.

  16. Opportunities for mixed oxide fuel testing in the advanced test reactor to support plutonium disposition

    SciTech Connect

    Terry, W.K.; Ryskamp, J.M.; Sterbentz, J.W.

    1995-08-01

    Numerous technical issues must be resolved before LWR operating licenses can be amended to allow the use of MOX fuel. These issues include the following: (1) MOX fuel fabrication process verification; (2) Whether and how to use burnable poisons to depress MOX fuel initial reactivity, which is higher than that of urania; (3) The effects of WGPu isotopic composition; (4) The feasibility of loading MOX fuel with plutonia content up to 7% by weight; (5) The effects of americium and gallium in WGPu; (6) Fission gas release from MOX fuel pellets made from WGPu; (7) Fuel/cladding gap closure; (8) The effects of power cycling and off-normal events on fuel integrity; (9) Development of radial distributions of burnup and fission products; (10) Power spiking near the interfaces of MOX and urania fuel assemblies; and (11) Fuel performance code validation. The Advanced Test Reactor (ATR) at the Idaho National Engineering Laboratory possesses many advantages for performing tests to resolve most of the issues identified above. We have performed calculations to show that the use of hafnium shrouds can produce spectrum adjustments that will bring the flux spectrum in ATR test loops into a good approximation to the spectrum anticipated in a commercial LWR containing MOX fuel while allowing operation of the test fuel assemblies near their optimum values of linear heat generation rate. The ATR would be a nearly ideal test bed for developing data needed to support applications to license LWRs for operation with MOX fuel made from weapons-grade plutonium. The requirements for planning and implementing a test program in the ATR have been identified. The facilities at Argonne National Laboratory-West can meet all potential needs for pre- and post-irradiation examination that might arise in a MOX fuel qualification program.

  17. Elucidating reactivity regimes in cyclopentane oxidation: Jet stirred reactor experiments, computational chemistry, and kinetic modeling

    DOE PAGES

    Al Rashidi, Mariam J.; Thion, Sebastien; Togbe, Casimir; ...

    2016-05-01

    This study is concerned with the identification and quantification of species generated during the combustion of cyclopentane in a jet stirred reactor (JSR). Experiments were carried out for temperatures between 740 and 1250 K, equivalence ratios from 0.5 to 3.0, and at an operating pressure of 10 atm. The fuel concentration was kept at 0.1% and the residence time of the fuel/O2/N2 mixture was maintained at 0.7 s. The reactant, product, and intermediate species concentration profiles were measured using gas chromatography and Fourier transform infrared spectroscopy. The concentration profiles of cyclopentane indicate inhibition of reactivity between 850-1000 K for φ=2.0more » and φ=3.0. This behavior is interesting, as it has not been observed previously for other fuel molecules, cyclic or non-cyclic. A kinetic model including both low- and high-temperature reaction pathways was developed and used to simulate the JSR experiments. The pressure-dependent rate coefficients of all relevant reactions lying on the PES of cyclopentyl + O2, as well as the C-C and C-H scission reactions of the cyclopentyl radical were calculated at the UCCSD(T)-F12b/cc-pVTZ-F12//M06-2X/6-311++G(d,p) level of theory. The simulations reproduced the unique reactivity trend of cyclopentane and the measured concentration profiles of intermediate and product species. Furthermore, sensitivity and reaction path analyses indicate that this reactivity trend may be attributed to differences in the reactivity of allyl radical at different conditions, and it is highly sensitive to the C-C/C-H scission branching ratio of the cyclopentyl radical decomposition.« less

  18. Elucidating reactivity regimes in cyclopentane oxidation: Jet stirred reactor experiments, computational chemistry, and kinetic modeling

    SciTech Connect

    Al Rashidi, Mariam J.; Thion, Sebastien; Togbe, Casimir; Dayma, Guillaume; Mehl, Marco; Dagaut, Philippe; Pitz, William J.; Zador, Judit; Sarathy, S. Mani

    2016-05-01

    This study is concerned with the identification and quantification of species generated during the combustion of cyclopentane in a jet stirred reactor (JSR). Experiments were carried out for temperatures between 740 and 1250 K, equivalence ratios from 0.5 to 3.0, and at an operating pressure of 10 atm. The fuel concentration was kept at 0.1% and the residence time of the fuel/O2/N2 mixture was maintained at 0.7 s. The reactant, product, and intermediate species concentration profiles were measured using gas chromatography and Fourier transform infrared spectroscopy. The concentration profiles of cyclopentane indicate inhibition of reactivity between 850-1000 K for φ=2.0 and φ=3.0. This behavior is interesting, as it has not been observed previously for other fuel molecules, cyclic or non-cyclic. A kinetic model including both low- and high-temperature reaction pathways was developed and used to simulate the JSR experiments. The pressure-dependent rate coefficients of all relevant reactions lying on the PES of cyclopentyl + O2, as well as the C-C and C-H scission reactions of the cyclopentyl radical were calculated at the UCCSD(T)-F12b/cc-pVTZ-F12//M06-2X/6-311++G(d,p) level of theory. The simulations reproduced the unique reactivity trend of cyclopentane and the measured concentration profiles of intermediate and product species. Furthermore, sensitivity and reaction path analyses indicate that this reactivity trend may be attributed to differences in the reactivity of allyl radical at different conditions, and it is highly sensitive to the C-C/C-H scission branching ratio of the cyclopentyl radical decomposition.

  19. Gas chromatograph analysis on closed air and nitrogen oxide storage atmospheres of recalcitrant seeds of Quercus Alba

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Storage of recalcitrant seeds remains an unsolved problem. This study investigated the quantitative gas analysis of nitrous oxide (N2O) and air atmospheres on the recalcitrant seeds of Quercus alba by using gas chromatograph. Ten seeds were placed in each sealed atmospheric system of air and 98/2% N...

  20. Non-OH chemistry in oxidation flow reactors for the study of atmospheric chemistry systematically examined by modeling

    NASA Astrophysics Data System (ADS)

    Peng, Zhe; Day, Douglas A.; Ortega, Amber M.; Palm, Brett B.; Hu, Weiwei; Stark, Harald; Li, Rui; Tsigaridis, Kostas; Brune, William H.; Jimenez, Jose L.

    2016-04-01

    Oxidation flow reactors (OFRs) using low-pressure Hg lamp emission at 185 and 254 nm produce OH radicals efficiently and are widely used in atmospheric chemistry and other fields. However, knowledge of detailed OFR chemistry is limited, allowing speculation in the literature about whether some non-OH reactants, including several not relevant for tropospheric chemistry, may play an important role in these OFRs. These non-OH reactants are UV radiation, O(1D), O(3P), and O3. In this study, we investigate the relative importance of other reactants to OH for the fate of reactant species in OFR under a wide range of conditions via box modeling. The relative importance of non-OH species is less sensitive to UV light intensity than to water vapor mixing ratio (H2O) and external OH reactivity (OHRext), as both non-OH reactants and OH scale roughly proportionally to UV intensity. We show that for field studies in forested regions and also the urban area of Los Angeles, reactants of atmospheric interest are predominantly consumed by OH. We find that O(1D), O(3P), and O3 have relative contributions to volatile organic compound (VOC) consumption that are similar or lower than in the troposphere. The impact of O atoms can be neglected under most conditions in both OFR and troposphere. We define "riskier OFR conditions" as those with either low H2O (< 0.1 %) or high OHRext ( ≥ 100 s-1 in OFR185 and > 200 s-1 in OFR254). We strongly suggest avoiding such conditions as the importance of non-OH reactants can be substantial for the most sensitive species, although OH may still dominate under some riskier conditions, depending on the species present. Photolysis at non-tropospheric wavelengths (185 and 254 nm) may play a significant (> 20 %) role in the degradation of some aromatics, as well as some oxidation intermediates, under riskier reactor conditions, if the quantum yields are high. Under riskier conditions, some biogenics can have substantial destructions by O3, similarly to