Science.gov

Sample records for air oxidation wao

  1. Kinetics of wet air oxidation (WAO) of alcaloide factory wastewater.

    PubMed

    Kunukcu, Y Kaçar

    2005-01-01

    Wet air oxidation (WAO) of Afyon alcaloide factory wastewater, a typical high strength industrial wastewater, was carried out. The process was performed in a specifically designed titanium bubble reactor at temperatures in the range of 140-160 degrees C. The kinetics of WAO of alcaloide factory wastewater was modeled by assuming two distinct steps. The rates of destruction were measured with respect to reduction in COD. The oxidation reaction was found to be first order with respect to COD concentration and also second order with respect to oxygen concentration in both steps. The values of activation energies were found to be in the range of 4.93 x 10(4)-7.85 x 10(4) kJ/kmol.

  2. Pretreatment of Afyon alcaloide factory's wastewater by wet air oxidation (WAO).

    PubMed

    Kaçar, Y; Alpay, E; Ceylan, V K

    2003-03-01

    In this study, pretreatment of Afyon (Turkey) alcaloide factory wastewater, a typical high strength industrial wastewater (chemical oxygen demand (COD)=26.65 kgm(-3), biological oxygen demand (BOD(5))=3.95 kgm(-3)), was carried out by wet air oxidation process. The process was performed in a 0.75 litre specially designed bubble reactor. Experiments were conducted to see the advantages of one-stage and two-stage oxidation and the effects of pressure, pH, temperature, catalyst type, catalyst loading and air or oxygen as gas source on the oxidation of the wastewater. In addition, BOD(5)/COD ratios of the effluents, which are generally regarded as an important index of biodegradability of a high-strength industrial wastewater, were determined at the end of some runs. After a 2h oxidation (T=150 degrees C, P=0.65 MPa, airflowrate=1.57 x 10(-5)m(3)s(-1), pH=7.0), the BOD(5)/COD ratio was increased from 0.15 to above 0.5 by using the salts of metals such as Co(2+),Fe(2+),Fe(2+)+Ni(2+),Cu(2+)+Mn(2+) as catalyst.

  3. Arsenic transformation and mobilization from minerals by the arsenite oxidizing strain WAO.

    PubMed

    Rhine, E Danielle; Onesios, Katheryn M; Serfes, Michael E; Reinfelder, John R; Young, L Y

    2008-03-01

    Analysis of arsenic concentrations in New Jersey well water from the Newark Basin showed up to 15% of the wells exceed 10 microg L(-1), with a maximum of 215 microg L(-1). In some geologic settings in the basin, this mobile arsenic could be from the weathering of pyrite (FeS2) found in black shale that contains up to 4% arsenic by weight. We hypothesized that under oxic conditions at circumneutral pH, the microbially mediated oxidation of sulfide in the pyrite lattice would lead to the release of pyrite-bound arsenic. Moreover, the oxidation of aqueous As(III) to As(V) by aerobic microorganisms could further enhance arsenic mobilization from the solid phase. Enrichment cultures under aerobic, As(III)-oxidizing conditions were established under circumneutral pH with weathered black shale from the Newark Basin as the inoculum source. Strain WAO, an autotrophic inorganic-sulfur and As(III)-oxidizer, was isolated and phylogenetically and physiologically characterized. Arsenic mobilization studies from arsenopyrite (FeAsS) mineral, conducted with strain WAO at circumneutral pH, showed microbially enhanced mobilization of arsenic and complete oxidation of released arsenic and sulfur to stoichiometric amounts of arsenate and sulfate. In addition, WAO preferentially colonized pyrite on the surface of arsenic-bearing, black shale thick sections. These findings support the hypothesis that microorganisms can directly mobilize and transform arsenic bound in mineral form at circumneutral pH and suggest that the microbial mobilization of arsenic into groundwater may be important in other arsenic-impacted aquifers.

  4. Arsenic transformation and mobilization from minerals by the arsenite oxidizing strain WAO

    USGS Publications Warehouse

    Rhine, E.D.; Onesios, K.M.; Serfes, M.E.; Reinfelder, J.R.; Young, L.Y.

    2008-01-01

    Analysis of arsenic concentrations in New Jersey well water from the Newark Basin showed up to 15% of the wells exceed 10 ??g L-1, with a maximum of 215 ??g L-1. In some geologic settings in the basin, this mobile arsenic could be from the weathering of pyrite (FeS2) found in black shale that contains up to 4% arsenic by weight. We hypothesized that under oxic conditions at circumneutral pH, the microbially mediated oxidation of sulfide in the pyrite lattice would lead to the release of pyrite-bound arsenic. Moreover, the oxidation of aqueous As(III) to As(V) by aerobic microorganisms could further enhance arsenic mobilization from the solid phase. Enrichment cultures under aerobic, As(III)-oxidizing conditions were established under circumneutral pH with weathered black shale from the Newark Basin as the inoculum source. Strain WAO, an autotrophic inorganic-sulfur and As(III)-oxidizer, was isolated and phylogenetically and physiologically characterized. Arsenic mobilization studies from arsenopyrite (FeAsS) mineral, conducted with strain WAO at circumneutral pH, showed microbially enhanced mobilization of arsenic and complete oxidation of released arsenic and sulfur to stoichiometric amounts of arsenate and sulfate. In addition, WAO preferentially colonized pyrite on the surface of arsenic-bearing, black shale thick sections. These findings support the hypothesis that microorganisms can directly mobilize and transform arsenic bound in mineral form at circumneutral pH and suggest that the microbial mobilization of arsenic into groundwater may be important in other arsenic-impacted aquifers. ?? 2008 American Chemical Society.

  5. Treatment of high-strength industrial wastewater by wet air oxidation--A case study

    SciTech Connect

    Lin, S.H.; Ho, S.J.

    1997-12-31

    Treatment of high concentration chemical wastewater obtained from a petrochemical company by wet air oxidation (WAO) is studied. Experiments were conducted to investigate the effects of the mixer speed, operating pressure, initial pH of wastewater and temperature on the pollutant (chemical oxygen demand or COD) removal. Both air and oxygen were tested to determine their respective effect on the COD removal. Results showed that over 50% of COD removal can be easily realized in an hour of WAO treatment. Also considered in the present study was the catalytic WAO treatment of the high concentration wastewater. Copper sulfate (CuSO{sub 4}), cobalt oxide (Co{sub 2}O{sub 3}) and zinc oxide (ZnO) were employed as the catalysts. The COD removal efficiency of the catalytic WAO process was found to vary significantly with the catalyst utilized with CuSO{sub 4} being the most effective.

  6. Catalytic and non-catalytic wet air oxidation of sodium dodecylbenzene sulfonate: kinetics and biodegradability enhancement.

    PubMed

    Suárez-Ojeda, María Eugenia; Kim, Jungkwon; Carrera, Julián; Metcalfe, Ian S; Font, Josep

    2007-06-18

    Wet air oxidation (WAO) and catalytic wet air oxidation (CWAO) were investigated as suitable precursors for the biological treatment of industrial wastewater containing sodium dodecylbenzene sulfonate (DBS). Two hours WAO semi-batch experiments were conducted at 15 bar of oxygen partial pressure (P(O2)) and at 180, 200 and 220 degrees C. It was found that the highest temperature provides appreciable total organic carbon (TOC) and chemical oxygen demand (COD) abatement of about 42 and 47%, correspondingly. Based on the main identified intermediates (acetic acid and sulfobenzoic acid) a reaction pathway for DBS and a kinetic model in WAO were proposed. In the case of CWAO experiments, seventy-two hours tests were done in a fixed bed reactor in continuous trickle flow regime, using a commercial activated carbon (AC) as catalyst. The temperature and P(O2) were 140-160 degrees C and 2-9 bar, respectively. The influence of the operating conditions on the DBS oxidation, the occurrence of oxidative coupling reactions over the AC, and the catalytic activity (in terms of substrate removal) were established. The results show that the AC without any supported active metal behaves bi-functional as adsorbent and catalyst, giving TOC conversions up to 52% at 160 degrees C and 2 bar of P(O2), which were comparable to those obtained in WAO experiments. Respirometric tests were completed before and after CWAO and to the main intermediates identified through the WAO and CWAO oxidation route. Then, the readily biodegradable COD (COD(RB)) of the CWAO and WAO effluents were found. Taking into account these results it was possible to compare whether or not the CWAO or WAO effluents were suitable for a conventional activated sludge plant inoculated with non adapted culture.

  7. Wet air oxidation induced enhanced biodegradability of distillery effluent.

    PubMed

    Malik, S N; Saratchandra, T; Tembhekar, P D; Padoley, K V; Mudliar, S L; Mudliar, S N

    2014-04-01

    The present study reports the feasibility of Wet Air Oxidation (WAO) as a pretreatment option for enhanced biodegradation of complex distillery effluent. Initially, the distillery effluent was pretreated by WAO at different process conditions (pressure, temperature and time) to facilitate enhancement in the biodegradability index (BI = BOD5: COD ratio). The biodegradability of WAO pretreated effluent was evaluated by subjecting it to aerobic biodegradation and anaerobic followed by aerobic biodegradation. Aerobic biodegradation of pretreated effluent with enhanced biodegradability index (BI = 0.4-0.8) showed enhanced COD reduction of up to 67.7%, whereas the untreated effluent (BI = 0.17) indicated poor COD reduction of only 22.5%. Anaerobic followed by aerobic biodegradation of pretreated effluent has shown up to 87.9% COD reduction, while the untreated effluent has shown only 43.1% COD reduction. Bio-kinetic parameters also confirmed the increased rate of bio-oxidation at enhanced BIs. The results indicate that the WAO pretreatment facilitates enhanced bio-oxidation/bio-degradation of complex effluents like the distillery spent wash.

  8. Study on mechanism of wet air oxidation of emulsification wastewater.

    PubMed

    Tang, Wen W; Zeng, Xin P; Xiao, Yao M; Gu, Guo W

    2009-04-01

    Wet air oxidation (WAO) can effectively be used to treat high-concentration, non-biodegradable emulsification wastewater that contains nonionic matters. Gas chromatograph analysis of emulsification wastewater after oxidation indicated that a catalyst increased production of fatty acids but could not promote its oxidation between 160 and 180 degrees C. When the temperature was greater than or equal to 220 degrees C, the catalyst not only increased production of fatty acids initially but effectively promoted its oxidation in later stages and significantly reduced the concentration of residual surfactants. Experiments proved that fatty acids (especially acetic acid) were the primary intermediate products and that oxidation of these acids was the rate-limiting step. During the process of catalytic WAO of emulsification wastewater, active oxygen molecules attacked organic matters resulting in production of fatty acids, ketone, alcohol, hydrocarbon, and oligo-polyether through radical chain reactions.

  9. The study of leachate treatment by using three advanced oxidation process based wet air oxidation.

    PubMed

    Karimi, Behroz; Ehrampoush, Mohammad Hassan; Ebrahimi, Asghar; Mokhtari, Mehdi

    2013-01-02

    Wet air oxidation is regarded as appropriate options for wastewater treatment with average organic compounds. The general purpose of this research is to determine the efficiency of three wet air oxidation methods, wet oxidation with hydrogen peroxide and absorption with activated carbon in removing organic matter and nitrogenous compounds from Isfahan's urban leachate. A leachate sample with the volume of 1.5 liters entered into a steel reactor with the volume of three liters and was put under a 10-bar pressure, at temperatures of 100, 200, and 300° as well as three retention times of 30, 60, and 90 minutes. The sample was placed at 18 stages of leachate storage ponds in Isfahan Compost Plant with the volume of 20 liters, using three WPO, WAO methods and a combination of WAO/GAC for leachate pre-treatment. Thirty percent of pure oxygen and hydrogen peroxide were applied as oxidation agents. The COD removal efficiency in WAO method is 7.8-33.3%, in BOD is 14.7-50.6%, the maximum removal percentage (efficiency) for NH4-N is 53.3% and for NO3-N is 56.4-73.9%. The removal efficiency of COD and BOD5 is 4.6%-34 and 24%-50 respectively in WPO method. Adding GAC to the reactor, the removal efficiency of all parameters was improved. The maximum removal efficiency was increased 48% for COD, 31%-43.6 for BOD5 by a combinational method, and the ratio of BOD5/COD was also increased to 90%. In this paper, WAO and WPO process was used for Leachate pre-treatment and WAO/GAC combinational process was applied for improving the organic matter removal and leachate treatment; it was also determined that the recent process is much more efficient in removing resistant organic matter.

  10. The study of leachate treatment by using three advanced oxidation process based wet air oxidation

    PubMed Central

    2013-01-01

    Wet air oxidation is regarded as appropriate options for wastewater treatment with average organic compounds. The general purpose of this research is to determine the efficiency of three wet air oxidation methods, wet oxidation with hydrogen peroxide and absorption with activated carbon in removing organic matter and nitrogenous compounds from Isfahan's urban leachate. A leachate sample with the volume of 1.5 liters entered into a steel reactor with the volume of three liters and was put under a 10-bar pressure, at temperatures of 100, 200, and 300° as well as three retention times of 30, 60, and 90 minutes. The sample was placed at 18 stages of leachate storage ponds in Isfahan Compost Plant with the volume of 20 liters, using three WPO, WAO methods and a combination of WAO/GAC for leachate pre-treatment. Thirty percent of pure oxygen and hydrogen peroxide were applied as oxidation agents. The COD removal efficiency in WAO method is 7.8-33.3%, in BOD is 14.7-50.6%, the maximum removal percentage (efficiency) for NH4-N is 53.3% and for NO3-N is 56.4-73.9%. The removal efficiency of COD and BOD5 is 4.6%-34 and 24%-50 respectively in WPO method. Adding GAC to the reactor, the removal efficiency of all parameters was improved. The maximum removal efficiency was increased 48% for COD, 31%-43.6 for BOD5 by a combinational method, and the ratio of BOD5/COD was also increased to 90%. In this paper, WAO and WPO process was used for Leachate pre-treatment and WAO/GAC combinational process was applied for improving the organic matter removal and leachate treatment; it was also determined that the recent process is much more efficient in removing resistant organic matter. PMID:23369258

  11. Wet air oxidation as a pretreatment option for selective biodegradability enhancement and biogas generation potential from complex effluent.

    PubMed

    Padoley, K V; Tembhekar, P D; Saratchandra, T; Pandit, A B; Pandey, R A; Mudliar, S N

    2012-09-01

    This study looks at the possibility of wet air oxidation (WAO) based pretreatment of complex effluent to selectively enhance the biodegradability (without substantial COD destruction) and facilitate biogas generation potential. A lab-scale wet air oxidation reactor with biomethanated distillery wastewater (B-DWW) as a model complex effluent (COD 40,000 mg L(-1)) was used to demonstrate the proof-of-concept. The studies were conducted using a designed set of experiments and reaction temperature (150-200°C), air pressure (6-12 bar) and reaction time (15-120 min) were the main process variables of concern for WAO process optimization. WAO pretreatment of B-DWW enhanced the biodegradability of the complex wastewater by the virtue of enhancing its biodegradability index (BI) from 0.2 to 0.88, which indicate favorable Biochemical Methane Potential (BMP) for biogas generation. The kinetics of COD destruction and BI enhancement has also been reported.

  12. Wet air oxidation of epoxy acrylate monomer industrial wastewater.

    PubMed

    Yang, Shaoxia; Liu, Zhengqian; Huang, Xiaohui; Zhang, Beiping

    2010-06-15

    Epoxy acrylate monomer industrial wastewater contained highly concentrated and toxic organic compounds. The wet air oxidation (WAO) and catalytic wet air oxidation (CWAO) were used to eliminate pollutants in order to examine the feasibility of the WAO/CWAO as a pre-treatment method for the industrial wastewater. The results showed that in the WAO 63% chemical oxygen demand (COD) and 41% total organic carbon (TOC) removals were achieved and biological oxygen demand (BOD(5))/COD ratio increased from 0.13 to 0.72 after 3h reaction at 250 degrees C, 3.5MPa and the initial concentration of 100g(COD)/L. Among homogenous catalysts (Cu(2+), Fe(2+), Fe(3+) and Mn(2+) salts), Cu(2+) salt exhibited better performance. CuO catalyst was used in the CWAO of the wastewater, COD and TOC conversion were 77 and 54%, and good biodegradability was achieved. The results proved that the CWAO was an effective pre-treatment method for the epoxy acrylate monomer industrial wastewater.

  13. USING WET AIR OXIDATION TECHNOLOGY TO DESTROY TETRAPHENYLBORATE

    SciTech Connect

    Adu-Wusu, K; Daniel McCabe, D; Bill Wilmarth, B

    2007-04-04

    A bench-scale feasibility study on the use of a Wet Air Oxidation (WAO) process to destroy a slurry laden with tetraphenylborate (TPB) compounds has been undertaken. WAO is an aqueous phase process in which soluble and/or insoluble waste constituents are oxidized using oxygen or oxygen in air at elevated temperatures and pressures ranging from 150 C and 1 MPa to 320 C and 22 MPa. The products of the reaction are CO{sub 2}, H{sub 2}O, and low molecular weight oxygenated organics (e.g. acetate, oxalate). Test results indicate WAO is a feasible process for destroying TPB, its primary daughter products [triphenylborane (3PB), diphenylborinic acid (2PB), and phenylboronic acid (1PB)], phenol, and most of the biphenyl byproduct. The required conditions are a temperature of 300 C, a reaction time of 3 hours, 1:1 feed slurry dilution with 2M NaOH solution, the addition of CuSO{sub 4}.5H{sub 2}O solution (500 mg/L Cu) as catalyst, and the addition of 2000 mL/L of antifoam. However, for the destruction of TPB, its daughter compounds (3PB, 2PB, and 1PB), and phenol without consideration for biphenyl destruction, less severe conditions (280 C and 1-hour reaction time with similar remaining above conditions) are adequate.

  14. Conversion of the refractory ammonia and acetic acid in catalytic wet air oxidation of animal byproducts.

    PubMed

    Fontanier, Virginie; Zalouk, Sofiane; Barbati, Stéphane

    2011-01-01

    Wet air oxidation (WAO) and catalytic wet air oxidation (CWAO) of slaughtered animal byproducts (ABPs) were investigated. Two step experiment was carried out consisting of a non-catalysed WAO run followed by a CWAO run at 170-275 degrees C, 20 MPa, and reaction time 180 min. The WAO (1st step) of sample (5 g/L total organic carbon (TOC)) yielded (82.0 +/- 4)% TOC removal and (78.4 +/- 13.2)% conversion of the initial organic-N into NH4(+)-N. Four metal catalysts (Pd, Pt, Rh, Ru) supported over alumina have been tested in catalytic WAO (2nd step) at elevated pH to enhance ammonia conversion and organic matter removal, particularly acetic acid. It was found that the catalysts Ru, Pt, and Rh had significant effects on the TOC removal (95.1%, 99.5% and 96.7%, respectively) and on the abatement of ammonia (93.4%, 96.7% and 96.3%, respectively) with high nitrogen selectivity. The catalyst Pd was found to have the less activity while Pt had the best performance. The X-Ray diffraction analysis showed that the support of catalyst was not stable under the experimental conditions since it reacted with phosphate present in solution. Nitrite and nitrate ions were monitored during the oxidation reaction and it was concluded that CWAO of ammonia in real waste treatment framework was in good agreement with the results obtained from the literature for ideal solutions of ammonia.

  15. Wet air oxidation pretreatment of biomethanated distillery effluent: mapping pretreatment efficiency in terms color, toxicity reduction and biogas generation.

    PubMed

    Sarat Chandra, T; Malik, S N; Suvidha, G; Padmere, M L; Shanmugam, P; Mudliar, S N

    2014-04-01

    The effluents from molasses-based distilleries after biomethanation are beset with problems of intensified dark brown color, high residual COD, low biodegradability index (BOD/COD ratio <0.2) and toxicity issues for possible land application as a potential fertilizer. Wet air oxidation (WAO) pretreatment of biomethanated distillery effluent resulted in substantial enhancement in the biodegradability index (BI) (up to 0.8). WAO pretreated effluent on anaerobic digestion indicated favorable biogas generation with methane content up to 64% along with concomitant COD reduction up to 54.75%. The HPLC analysis indicated that the pretreatment facilitated degradation of major color containing compounds-namely melanoidins, up to 97.8%. The pretreated effluent with enhanced biodegradability along with substantially reduced color also indicated positive effect on seed germination (up to 100%), implying toxicity reduction of the effluent post WAO pretreatment.

  16. Treatment of municipal landfill leachate by catalytic wet air oxidation: Assessment of the role of operating parameters by factorial design.

    PubMed

    Anglada, Angela; Urtiaga, Ane; Ortiz, Inmaculada; Mantzavinos, Dionissios; Diamadopoulos, Evan

    2011-08-01

    The wet air oxidation (WAO) of municipal landfill leachate catalyzed by cupric ions and promoted by hydrogen peroxide was investigated. The effect of operating conditions such as WAO treatment time (15-30min), temperature (160-200°C), Cu(2+) concentration (250-750mgL(-1)) and H(2)O(2) concentration (0-1500mgL(-1)) on chemical oxygen demand (COD) removal was investigated by factorial design considering a two-stage, sequential process comprising the heating-up of the reactor and the actual WAO. The leachate, at an initial COD of 4920mgL(-1), was acidified to pH 3 leading to 31% COD decrease presumably due to the coagulation/precipitation of colloidal and other organic matter. During the 45min long heating-up period of the WAO reactor under an inert atmosphere, COD removal values up to 35% (based on the initial COD value) were recorded as a result of the catalytic decomposition of H(2)O(2) to reactive hydroxyl radicals. WAO at 2.5MPa oxygen partial pressure advanced treatment further; for example, 22min of oxidation at 200°C, 250mgL(-1) Cu(2+) and 0-1500mgL(-1) H(2)O(2) resulted in an overall (i.e. including acidification and heating-up) COD reduction of 78%. Amongst the operating variables in question, temperature had the strongest influence on both the heating-up and WAO stages, while H(2)O(2) concentration strongly affected the former and reaction time the latter. Nonetheless, the effects of temperature and H(2)O(2) concentration were found to depend on the concentration levels of catalyst as suggested by the significance of their 3rd order interaction term.

  17. Evaluation of wet air oxidation variables for removal of organophosphorus pesticide malathion using Box-Behnken design.

    PubMed

    Isgoren, Melike; Gengec, Erhan; Veli, Sevil

    2017-02-01

    This paper deals with finding optimum reaction conditions for wet air oxidation (WAO) of malathion aqueous solution, by Response Surface Methodology. Reaction conditions, which affect the removal efficiencies most during the non-catalytic WAO system, are: temperature (60-120 °C), applied pressure (20-40 bar), the pH value (3-7), and reaction time (0-120 min). Those were chosen as independent parameters of the model. The interactions between parameters were evaluated by Box-Behnken and the quadratic model fitted very well with the experimental data (29 runs). A higher value of R(2) and adjusted R(2) (>0.91) demonstrated that the model could explain the results successfully. As a result, optimum removal efficiency (97.8%) was obtained at pH 5, 20 bars of pressure, 116 °C, and 96 min. These results showed that Box-Behnken is a suitable design to optimize operating conditions and removal efficiency for non-catalytic WAO process. The EC20 value of raw wastewater was measured as 35.40% for malathion (20 mg/L). After the treatment, no toxicity was observed at the optimum reaction conditions. The results show that the WAO is an efficient treatment system for malathion degradation and has the ability of converting malathion to the non-toxic forms.

  18. Wet air and catalytic wet air oxidation of several azodyes from wastewaters: the beneficial role of catalysis.

    PubMed

    Rodríguez, A; García, J; Ovejero, G; Mestanza, M

    2009-01-01

    Degradation of several azo dyes, Acid Orange 7 (AO7), Acid Orange 74 (AO74), Direct Blue 71 (DB71), Reactive Black 5 (RB5) and Eriochrome Blue Black B (EBBB), well-known non-biodegradable mono, di and tri azo dyes has been studied using, wet-air oxidation (WAO) and catalytic wet air oxidation (CWAO). The efficiency of substrate decolorization and mineralization in each process has been comparatively discussed by evolution concentration, chemical oxygen demand, total organic carbon content and toxicity of dyes solutions. The most efficient method on decolorization and mineralization (TOC) was observed to be CWAO process. Mineralization efficiency with wet air and catalytic wet air oxidation essays was observed in the order of mono-azo > di-azo > tri-azo dye. Final solutions of CWAO applications after 180 min treatment can be disposed safely to environment.

  19. Treatment of municipal landfill leachate by catalytic wet air oxidation: Assessment of the role of operating parameters by factorial design

    SciTech Connect

    Anglada, Angela; Urtiaga, Ane; Ortiz, Inmaculada; Diamadopoulos, Evan

    2011-08-15

    Highlights: > Landfill leachates can be treated effectively by catalytic wet oxidation. > Addition of H{sub 2}O{sub 2} in the presence of transition metals promotes degradation. > Factorial design evaluates the statistically significant operating conditions. > H{sub 2}O{sub 2}, reaction time and temperature are critical in determining performance. - Abstract: The wet air oxidation (WAO) of municipal landfill leachate catalyzed by cupric ions and promoted by hydrogen peroxide was investigated. The effect of operating conditions such as WAO treatment time (15-30 min), temperature (160-200 deg. C), Cu{sup 2+} concentration (250-750 mg L{sup -1}) and H{sub 2}O{sub 2} concentration (0-1500 mg L{sup -1}) on chemical oxygen demand (COD) removal was investigated by factorial design considering a two-stage, sequential process comprising the heating-up of the reactor and the actual WAO. The leachate, at an initial COD of 4920 mg L{sup -1}, was acidified to pH 3 leading to 31% COD decrease presumably due to the coagulation/precipitation of colloidal and other organic matter. During the 45 min long heating-up period of the WAO reactor under an inert atmosphere, COD removal values up to 35% (based on the initial COD value) were recorded as a result of the catalytic decomposition of H{sub 2}O{sub 2} to reactive hydroxyl radicals. WAO at 2.5 MPa oxygen partial pressure advanced treatment further; for example, 22 min of oxidation at 200 deg. C, 250 mg L{sup -1} Cu{sup 2+} and 0-1500 mg L{sup -1} H{sub 2}O{sub 2} resulted in an overall (i.e. including acidification and heating-up) COD reduction of 78%. Amongst the operating variables in question, temperature had the strongest influence on both the heating-up and WAO stages, while H{sub 2}O{sub 2} concentration strongly affected the former and reaction time the latter. Nonetheless, the effects of temperature and H{sub 2}O{sub 2} concentration were found to depend on the concentration levels of catalyst as suggested by the

  20. A review of wet air oxidation and Thermal Hydrolysis technologies in sludge treatment.

    PubMed

    Hii, Kevin; Baroutian, Saeid; Parthasarathy, Raj; Gapes, Daniel J; Eshtiaghi, Nicky

    2014-03-01

    With rapid world population growth and strict environmental regulations, increasingly large volumes of sludge are being produced in today's wastewater treatment plants (WWTP) with limited disposal routes. Sludge treatment has become an essential process in WWTP, representing 50% of operational costs. Sludge destruction and resource recovery technologies are therefore of great ongoing interest. Hydrothermal processing uses unique characteristics of water at elevated temperatures and pressures to deconstruct organic and inorganic components of sludge. It can be broadly categorized into wet oxidation (oxidative) and thermal hydrolysis (non-oxidative). While wet air oxidation (WAO) can be used for the final sludge destruction and also potentially producing industrially useful by-products such as acetic acid, thermal hydrolysis (TH) is mainly used as a pre-treatment method to improve the efficiency of anaerobic digestion. This paper reviews current hydrothermal technologies, roles of wet air oxidation and thermal hydrolysis in sludge treatment, and challenges faced by these technologies.

  1. DESTRUCTION OF TETRAPHENYLBORATE IN TANK 48H USING WET AIR OXIDATION BATCH BENCH SCALE AUTOCLAVE TESTING WITH ACTUAL RADIOACTIVE TANK 48H WASTE

    SciTech Connect

    Adu-Wusu, K; Paul Burket, P

    2009-03-31

    Wet Air Oxidation (WAO) is one of the two technologies being considered for the destruction of Tetraphenylborate (TPB) in Tank 48H. Batch bench-scale autoclave testing with radioactive (actual) Tank 48H waste is among the tests required in the WAO Technology Maturation Plan. The goal of the autoclave testing is to validate that the simulant being used for extensive WAO vendor testing adequately represents the Tank 48H waste. The test objective was to demonstrate comparable test results when running simulated waste and real waste under similar test conditions. Specifically: (1) Confirm the TPB destruction efficiency and rate (same reaction times) obtained from comparable simulant tests, (2) Determine the destruction efficiency of other organics including biphenyl, (3) Identify and quantify the reaction byproducts, and (4) Determine off-gas composition. Batch bench-scale stirred autoclave tests were conducted with simulated and actual Tank 48H wastes at SRNL. Experimental conditions were chosen based on continuous-flow pilot-scale simulant testing performed at Siemens Water Technologies Corporation (SWT) in Rothschild, Wisconsin. The following items were demonstrated as a result of this testing. (1) Tetraphenylborate was destroyed to below detection limits during the 1-hour reaction time at 280 C. Destruction efficiency of TPB was > 99.997%. (2) Other organics (TPB associated compounds), except biphenyl, were destroyed to below their respective detection limits. Biphenyl was partially destroyed in the process, mainly due to its propensity to reside in the vapor phase during the WAO reaction. Biphenyl is expected to be removed in the gas phase during the actual process, which is a continuous-flow system. (3) Reaction byproducts, remnants of MST, and the PUREX sludge, were characterized in this work. Radioactive species, such as Pu, Sr-90 and Cs-137 were quantified in the filtrate and slurry samples. Notably, Cs-137, boron and potassium were shown as soluble as a

  2. Wet air oxidation for the treatment of industrial wastes. Chemical aspects, reactor design and industrial applications in Europe

    SciTech Connect

    Debellefontaine, H.; Foussard, J.N.

    2000-07-01

    Aqueous wastes containing organic pollutants can be efficiently treated by wet air oxidation (WAO), i.e., oxidation (or combustion) by molecular oxygen in the liquid phase, at high temperature (200--325 C) and pressure (up to 175 bar). This method is suited to the elimination of special aqueous wastes from the chemical industry as well as to the treatment of domestic sludge. It is an enclosed process, with a limited interaction with the environment, as opposed to incineration. Usually, the operating cost is lower than 95 Euro M{sup {minus}3} and the preferred COD load ranges from 10 to 80 kg m{sup {minus}3}. Only a handful of industrial reactors are in operation world-wide, mainly because of the high capital investment they require. This paper reviews the major results obtained with the WAO process and assess its field of possible application to industrial wastes. In addition, as only a very few studies have been devoted to the scientific design of such reactors (bubble columns), what needs to be known for this scientific design is discussed. At present, a computer program aimed at determining the performance of a wet air oxidation reactor depending on the various operating parameters has been implemented at the laboratory. Some typical results are presented, pointing out the most important parameters and the specific behavior of these units.

  3. Wet air oxidation of resorcinol as a model treatment for refractory organics in wastewaters from the wood processing industry.

    PubMed

    Weber, Bernd; Chavez, Alma; Morales-Mejia, Julio; Eichenauer, Sabrina; Stadlbauer, Ernst A; Almanza, Rafael

    2015-09-15

    Wastewater treatment systems are important tools to enhance sustainability in terms of reducing environmental impact and complying with sanitary requirements. This work addresses the wet air oxidation (WAO) process for pre-treatment of phenolic wastewater effluents. The aim was to increase biodegradability prior to a subsequent anaerobic stage. In WAO laboratory experiments using a micro-autoclave, the model compound resorcinol was degraded under different oxygen availability regims within the temperature range 150 °C-270 °C. The activation energy was determined to be 51.5 kJ/mol. Analysis of the products revealed that after 3 h of reaction at 230 °C, 97.5% degradation of resorcinol was achieved. At 250 °C and the same reaction time complete removal of resorcinol was observed. In this case the total organic carbon content was reduced down to 29%, from 118.0 mg/L down to 34.4 mg/L. Under these process conditions, the pollutant was only partially mineralized and the ratio of the biological oxygen demand relative to the chemical oxygen demand, which is 0.07 for resorcinol, was increased to a value exceeding 0.5. The main by-product acetic acid, which is a preferred compound for methanogenic bacteria, was found to account for 33% of the total organic carbon.

  4. Alkaline peroxide assisted wet air oxidation pretreatment approach to enhance enzymatic convertibility of rice husk.

    PubMed

    Banerjee, Saumita; Sen, Ramkrishna; Mudliar, Sandeep; Pandey, R A; Chakrabarti, Tapan; Satpute, Dewanand

    2011-01-01

    Pretreatment of rice husk by alkaline peroxide assisted wet air oxidation (APAWAO) approach was investigated with the aim to enhance the enzymatic convertibility of cellulose in pretreated rice husk. Rice husk was presoaked overnight in 1% (w/v) H(2)O(2) solution (pH adjusted to 11.5 using NaOH) (equivalent to 16.67 g H(2)O(2) and 3.63 g NaOH per 100 g dry, untreated rice husk) at room temperature, followed by wet air oxidation (WAO). APAWAO pretreatment resulted in solubilization of 67 wt % of hemicellulose and 88 wt % of lignin initially present in raw rice husk. Some amount of oligomeric glucose (˜8.3 g/L) was also observed in the APAWAO liquid fraction. APAWAO pretreatment resulted in 13-fold increase in the amount of glucose that could be obtained from otherwise untreated rice husk. Up to 86 wt % of cellulose in the pretreated rice husk (solid fraction) could be converted into glucose within 24 hours, yielding over 21 g glucose per 100 g original rice husk. Scanning electron microscopy was performed to visualize changes in biomass structure following the APAWAO pretreatment. Enzymatic cellulose convertibility of the pretreated slurry at high dry matter loadings was also investigated.

  5. Treatment of desizing wastewater containing poly(vinyl alcohol) by wet air oxidation

    SciTech Connect

    Chen, G.; Lei, L.; Yue, P.L.; Cen, P.

    2000-05-01

    The effectiveness of wet air oxidation (WAO) is studied in a 2-L autoclave for the treatment of desizing wastewater from man-made fiber textile plants. At an oxygen pressure of less than 2 MPa, over 30-min, chemical oxygen demand (COD) removal was found to increase from 15 to 65% when the temperature was raised from 150 to 250 C. The biodegradability of the wastewater was also simultaneously increased. Up to 90% of the COD could be removed within 120 min. A simplified reaction mechanism is proposed which involves a direct mineralization step in parallel with a step in which an intermediate is formed prior to mineralization. A kinetic model for COD removal was developed based on this reaction mechanism. The model was tested with experimental COD results over the temperature range of the experiments. The dependence of the specific reaction rate constants was found to follow the Arrhenius type of equation. The direct oxidation of poly(vinyl alcohol) (PVA) to carbon dioxide and water is the dominant reaction step. The intermediates formed are not likely to be the acetic acid but may be short segments of PVA that are easily oxidized.

  6. Treatment of refractory nano-filtration reject from a tannery using Pd-catalyzed wet air oxidation.

    PubMed

    Tripathi, Pranav K; Rao, Nageswara N; Chauhan, Chetan; Pophali, Girish R; Kashyap, Sanjay M; Lokhande, Satish K; Gan, Lihua

    2013-10-15

    We attempted catalytic wet air oxidation (CWAO) of nanofiltration (NF)-reject using Pd based catalyst viz., Pd/activated charcoal (AC) and PdCl2 with the objective of degradation of refractory organic pollutants. Refractory organic pollutants in NF-reject before and after WAO and CWAO were confirmed by GC-MS analysis. Experiments were conducted to investigate the effects of temperature, catalyst dosage and air partial pressure on the rate of removal of total organic carbon (TOC). The reaction kinetics can be conveniently described by considering two-stage first order kinetics. The use of Pd/AC afforded 85% TOC removal, the corresponding rate constant (k) was 2.90 ± 0.075 × 10(-3)min(-1) (Pd/AC, 100mg/L; T, 473.15K; Pair, 0.69 MPa). On the other hand, 75% TOC was removed with k=2.31 ± 0.075 × 10(-3)min(-1) using Pd(2+) catalyst (Pd(2+), 16.66 mg/L; T, 473.15K; Pair, 0.69 MPa). The observed rate of mineralization under Pd-catalyzed conditions was significantly higher than that of the uncatalyzed oxidation (41%) under the similar experimental conditions. Catalyst stability experiments were performed and TEM, SEM, XRD, Raman and XPS characterization data collected. Despite some morphological transformation of support, Pd catalyst was stable under CWAO conditions.

  7. Wet air oxidation of pretreatment of pharmaceutical wastewater by Cu2+ and [PxWmOy]q- co-catalyst system.

    PubMed

    Wang, Guowen; Wang, Dong; Xu, Xiaochen; Liu, Lifen; Yang, Fenglin

    2012-05-30

    This study concentrates on the pretreatment of real wastewater using catalytic wet air oxidation (CWAO). WO(3-) and PO(4)(3-) contained in fosfomycin pharmaceutical wastewater (FPW) and Cu(2+) contained in berberine pharmaceutical wastewater (BPW) were studied as CWAO influent. Mixture of this two streams were reused to form Cu(2+) and [P(x)W(m)O(y)](q-), namely polyoxometalates (POMs) as co-catalyst system to treat themselves. Experiments were conducted to investigate the effects of the initial oxygen pressure and temperature on the COD (chemical oxygen demand), TOC (total organic carbon) removal and biodegradable enhancement, it was discovered that over 40% of COD and TOC removal can be easily realized in an hour of WAO oxidation at 523 K, 1.4 MPa. The BOD(5)/COD (BOD(5), biochemical oxygen demand in 5 days) of this two pharmaceutical mixture ascended from nonexistent to maximum 0.41 depends on the optimal FPW:BPW volume ratio 4:1, to compose POM co-catalyst system. Organic pollutants were incompletely oxidized to propionic acid and other intermediates. Some properties (e.g., TGA, IR, XRF) of POM catalyst separated from effluent, were obtained to provide additional information.

  8. Elimination of cutting oil wastes by promoted hydrothermal oxidation.

    PubMed

    Portela, J R; López, J; Nebot, E; Martínez de la Ossa, E

    2001-11-16

    Cutting oils are emulsionable fluids widely used in metalworking processes. Their composition is normally oil, water, and additives (fatty acids, surfactants, biocides, etc.) generating a toxic waste after a long use. Generally, it is a waste too dilute to be incinerated and it is difficult to treat biologically. Other conventional treatment methods currently used are not satisfactory from the environmental point of view. Wet air oxidation (WAO) and supercritical water oxidation (SCWO) are two forms of hydrothermal oxidation that have been proved to be effective processes to treat a wide variety of industrial wastes, but hardly tested for oily wastes. In the case of refractory wastes, WAO process is not efficient enough due to the moderate temperatures used. SCWO is a more powerful process since operating temperatures are usually around 600 degrees C, but the use of severe conditions leads to major disadvantages in the commercialization of the technology. In order to enhance WAO and SCWO efficiency at mild conditions, the use of free radical promoters has been studied in this work. Both normal and promoted hydrothermal oxidation have been tested to treat cutting oil wastes in a continuous flow system operating at 300-500 degrees C. Hydrogen peroxide has been used both as a source of oxygen and as a source of free radicals by introducing it into the reactor with or without previous thermal decomposition, respectively. Organic material is easily oxidized in both cases, obtaining more than 90% TOC reduction in less than 10s at 500 degrees C. At lower temperatures, the use of promoters clearly enhances the oxidation process. Activation energies have been estimated for normal and promoted oxidation processes.

  9. Carbon and nitrogen removal from glucose-glycine melanoidins solution as a model of distillery wastewater by catalytic wet air oxidation.

    PubMed

    Phuong Thu, Le; Michèle, Besson

    2016-06-05

    Sugarcane molasses distillery wastewater contains melanoidins, which are dark brown recalcitrant nitrogenous polymer compounds. Studies were carried out in batch mode to evaluate Pt and Ru supported catalysts in the Catalytic Wet Air Oxidation (CWAO) process of a synthetic melanoidins solution, prepared by stoichiometric reaction of glucose with glycine. The addition of a catalyst slightly improved TOC removal compared with the non-catalytic reaction, and especially promoted the conversion of ammonium produced from organically-bound nitrogen in melanoidins to molecular nitrogen and nitrate. The selectivity to N2 attained 89% in the presence of the Pt catalysts in the reaction conditions used (TOC=2200mgL(-1), TN=280mgL(-1), 0.5g catalyst loaded with 3% metal, 210°C, 70bar total air pressure). To avoid leaching of the active metal by organically-bound nitrogen, the reaction was very efficiently performed in a two-step reaction consisting in WAO to convert nitrogen into ammonium, before the introduction of a catalyst.

  10. Oxidative Stress and Air Pollution Exposure

    PubMed Central

    Lodovici, Maura; Bigagli, Elisabetta

    2011-01-01

    Air pollution is associated with increased cardiovascular and pulmonary morbidity and mortality. The mechanisms of air pollution-induced health effects involve oxidative stress and inflammation. As a matter of fact, particulate matter (PM), especially fine (PM2.5, PM < 2.5 μm) and ultrafine (PM0.1, PM < 0.1 μm) particles, ozone, nitrogen oxides, and transition metals, are potent oxidants or able to generate reactive oxygen species (ROS). Oxidative stress can trigger redox-sensitive pathways that lead to different biological processes such as inflammation and cell death. However, it does appear that the susceptibility of target organ to oxidative injury also depends upon its ability to upregulate protective scavenging systems. As vehicular traffic is known to importantly contribute to PM exposure, its intensity and quality must be strongly relevant determinants of the qualitative characteristics of PM spread in the atmosphere. Change in the composition of this PM is likely to modify its health impact. PMID:21860622

  11. Global classification and coding of hypersensitivity diseases - An EAACI - WAO survey, strategic paper and review.

    PubMed

    Demoly, P; Tanno, L K; Akdis, C A; Lau, S; Calderon, M A; Santos, A F; Sanchez-Borges, M; Rosenwasser, L J; Pawankar, R; Papadopoulos, N G

    2014-05-01

    Hypersensitivity diseases are not adequately coded in the International Coding of Diseases (ICD)-10 resulting in misclassification, leading to low visibility of these conditions and general accuracy of official statistics. To call attention to the inadequacy of the ICD-10 in relation to allergic and hypersensitivity diseases and to contribute to improvements to be made in the forthcoming revision of ICD, a web-based global survey of healthcare professionals' attitudes toward allergic disorders classification was proposed to the members of European Academy of Allergy and Clinical Immunology (EAACI) (individuals) and World Allergy Organization (WAO) (representative responding on behalf of the national society), launched via internet and circulated for 6 week. As a result, we had 612 members of 144 countries from all six World Health Organization (WHO) global regions who answered the survey. ICD-10 is the most used classification worldwide, but it was not considered appropriate in clinical practice by the majority of participants. The majority indicated the EAACI-WAO classification as being easier and more accurate in the daily practice. They saw the need for a diagnostic system useful for nonallergists and endorsed the possibility of a global, cross-culturally applicable classification system of allergic disorders. This first and most broadly international survey ever conducted of health professionals' attitudes toward allergic disorders classification supports the need to update the current classifications of allergic diseases and can be useful to the WHO in improving the clinical utility of the classification and its global acceptability for the revised ICD-11.

  12. Specific features of aluminum nanoparticle water and wet air oxidation

    SciTech Connect

    Lozhkomoev, Aleksandr S. Glazkova, Elena A. Svarovskaya, Natalia V. Bakina, Olga V. Kazantsev, Sergey O. Lerner, Marat I.

    2015-10-27

    The oxidation processes of the electrically exploded aluminum nanopowders in water and in wet air are examined in the paper. The morphology of the intermediate reaction products of aluminum oxidation has been studied using the transmission electron microscopy. It was shown that the aluminum nanopowder water oxidation causes the formation of the hollow spheres with mesoporous boehmite nanosheets coating. The wedge-like bayerite particles are formed during aluminum nanopowder wet air oxidation.

  13. Air pollution, oxidative stress, and Alzheimer's disease.

    PubMed

    Moulton, Paula Valencia; Yang, Wei

    2012-01-01

    Alzheimer's disease (AD) is the most common form of dementia affecting millions of people worldwide and will continue to affect millions more with population aging on the rise. AD causality is multifactorial. Known causal factors include genetic predisposition, age, and sex. Environmental toxins such as air pollution (AP) have also been implicated in AD causation. Exposure to AP can lead to chronic oxidative stress (OS), which is involved in the pathogenesis of AD. Whereas AP plays a role in AD pathology, the epidemiological evidence for this association is limited. Given the significant prevalence of AP exposure combined with increased population aging, epidemiological evidence for this link is important to consider. In this paper, we examine the existing evidence supporting the relationship between AP, OS, and AD and provide recommendations for future research on the population level, which will provide evidence in support of public health interventions.

  14. AIR QUALITY CRITERIA FOR OZONE AND RELATED PHOTOCHEMICAL OXIDANTS

    EPA Science Inventory

    The Clean Air Act requires periodic (5-year) update revision of criteria and National Ambient Air Quality Standards (NAAQS) for Ozone. The previous revision of the criteria contained in the Air Quality Criteria Document (AQCD) for Ozone and Related Photochemical Oxidants was co...

  15. Air pollution and circulating biomarkers of oxidative stress

    PubMed Central

    Staimer, Norbert; Vaziri, Nosratola D.

    2013-01-01

    Chemical components of air pollutant exposures that induce oxidative stress and subsequent inflammation may be partly responsible for associations of cardiovascular morbidity and mortality with airborne particulate matter and combustion-related pollutant gasses. However, epidemiologic evidence regarding this is limited. An exposure-assessment approach is to measure the oxidative potential of particle mixtures because it is likely that hundreds of correlated chemicals are involved in overall effects of air pollution on health. Oxidative potential likely depends on particle composition and size distribution, especially ultrafine particle concentration, and on transition metals and certain semivolatile and volatile organic chemicals. For health effects, measuring systemic oxidative stress in the blood is one feasible approach, but there is no universal biomarker of oxidative stress and there are many potential target molecules (lipids, proteins, DNA, nitric oxide, etc.), which may be more or less suitable for specific study goals. Concurrent with the measurement of oxidative stress, it is important to measure gene and/or protein expression of endogenous antioxidant enzymes because they can modify relations between oxidative stress biomarkers and air pollutants. Conversely, the expression and activities of these enzymes are modified by oxidative stress. This interplay will likely determine the observed effects of air pollutants on systemic inflammatory and thrombotic mediators and related clinical outcomes. Studies are needed to assess the reliability and validity of oxidative stress biomarkers, evaluate differences in associations between oxidative stress biomarkers and various pollutant measurements (mass, chemical components, and oxidative potential), and evaluate impacts of antioxidant responses on these relations. PMID:23626660

  16. Oxide modified air electrode surface for high temperature electrochemical cells

    DOEpatents

    Singh, Prabhakar; Ruka, Roswell J.

    1992-01-01

    An electrochemical cell is made having a porous cermet electrode (16) and a porous lanthanum manganite electrode (14), with solid oxide electrolyte (15) between them, where the lanthanum manganite surface next to the electrolyte contains a thin discontinuous layer of high surface area cerium oxide and/or praseodymium oxide, preferably as discrete particles (30) in contact with the air electrode and electrolyte.

  17. Analysis of modified wet-air oxidation for soil detoxification

    SciTech Connect

    Unterberg, W.; Willms, R.S.; Balinsky, A.M.; Reible, D.D.; Wetzel, D.M.

    1987-09-01

    This report presents the results of research on wet-air oxidation as a method for the destruction of hazardous wastes. For organics in the presence of large amounts of water, the water need not be vaporized during wet-air oxidation, an attractive characteristic for energy conservation. The feasibility of using wet-air oxidation was investigated in terms of the effects of temperature, pressure, and the presence or absence of soil on the oxidation rate of three model compounds. Wet-air oxidation is a semi-commercial process that has been used to treat a variety of weakly toxic chemical wastes and for the regeneration of activated carbon. In the study, wet-air oxidation research was carried out in a 1-liter batch reactor at temperatures from 130 to 275/sup 0/C and pressures from 703-1760 x 10/sup 3/ kg/sq m on three substances: m-xylene, tetrachloroethylene (TCE), and malathion, both with and without addition of soil. Any attempt to balance the effect of residence time and the cost of energy requires an accurate description of the oxidation kinetics for the compound or waste stream in question. Due to the sampling technique used during the investigation and the inherent nature of the wet-air oxidation process, a variety of potential problems with the interpretation and analysis of the raw concentration-time data were encountered during the study.

  18. Wet-air oxidation cleans up black wastewater

    SciTech Connect

    Not Available

    1993-09-01

    Sterling Organics produces the analgesic paracetamol (acetaminophen) at its Dudley, England, plant. The wastewater from the batch process contains intermediates such as para-aminophenol (PAP) and byproducts such as thiosulfates, sulfites and sulfides. To stay ahead of increasingly strict environmental legislation, Sterling Organics installed a wet-air oxidation system at the Dudley facility in August 1992. The system is made by Zimpro Environmental Inc. (Rothschild, Wis.). Zimpro's wet-air oxidation system finds a way around the limitations of purely chemical or physical processes. In the process, compressed air at elevated temperature and pressure oxidizes the process intermediates and byproducts and removes the color from the wastewater.

  19. Air Quality Criteria for Sulfur Oxides.

    ERIC Educational Resources Information Center

    National Air Pollution Control Administration (DHEW), Washington, DC.

    Included is a literature review which comprehensively discusses knowledge of the sulfur oxides commonly found in the atmosphere. The subject content is represented by the 10 chapter titles: Physical and Chemical Properties and the Atmospheric Reactions of the Oxides of Sulfur; Sources and Methods of Measurements of Sulfur Oxides in the Atmosphere;…

  20. The Oxides of Nitrogen in Air Pollution.

    ERIC Educational Resources Information Center

    California State Air Resources Board, Sacramento.

    Research on the health effects of oxides of nitrogen and on the role of oxides of nitrogen in producing photochemical smog effects is presented in this report. Prepared by the California State Department of Public Health at the request of the State Legislature, it gives a comprehensive review of available information, as well as the need for air…

  1. AIR POLLUTION, OXIDATIVE STRESS AND NEUROTOXICITY.

    EPA Science Inventory

    Increased incidents of classic and variant forms of neurodegenerative diseases suggest that environmental chemicals and susceptibility factors (e.g., genetics, diseased states, obesity, etc.) may be contributory. Particulate matter (PM) is a type of air pollution that is associat...

  2. Effect of microstructure on air oxidation resistance of nuclear graphite

    SciTech Connect

    Contescu, Cristian I; Guldan, Tyler R; Wang, Peng; Burchell, Timothy D

    2012-01-01

    Oxidation resistance in air of three grades of nuclear graphite with different structures was compared using a standard thermogravimetric method. Differences in the oxidation behavior have been identified with respect to both (i) the rate of oxidation in identical conditions and the derived apparent activation energy and pre-exponential factor and (ii) the penetration depth of the oxidant and the development of the oxidized layer. These differences were ascribed to structural differences between the three graphite grades, in particular the grain size and shape of the graphite filler, and the associated textural properties, such as total BET surface area and porosity distribution in the un-oxidized material. It was also found that the amount of strongly bonded surface oxygen complexes measured by thermodesorption significantly exceeds the amount afforded by the low BET surface area, and therefore low temperature oxygen chemisorption is not a reliable method for determining the amount of surface sites (re)active during air oxidation. The relationship between nuclear graphite microstructure and its oxidation resistance demonstrated in this work underlines the importance of performing comprehensive oxidation characterization studies of the new grades of nuclear graphite considered as candidates for very high temperature gas-cooled reactors.

  3. INTEGRATION OF PHOTOCATALYTIC OXIDATION WITH AIR STRIPPING OF CONTAMINATED AQUIFERS

    EPA Science Inventory

    Bench scale laboratory studies and pilot scale studies in a simulated field-test situation were performed to evaluate the integration of gas-solid ultaviolet (UV) photocatalytic oxidation (PCO) downstream if an air stripper unit as a technology for cost-effectively treating water...

  4. HOMOGENEOUS AIR OXIDATION OF HYDROCARBONS UTILIZING MN AND CO CATALYSTS

    EPA Science Inventory

    Homogeneous Air Oxidation of Hydrocarbons Utilizing Mn and Co Catalysts

    Thomas M. Becker and Michael A. Gonzalez*, Sustainable Technology Division, Office of Research and Development; United States Environmental Protection Agency, 26 West Martin Luther King Drive, Mail Sto...

  5. Catalytic oxidative desulfurization of liquid hydrocarbon fuels using air

    NASA Astrophysics Data System (ADS)

    Sundararaman, Ramanathan

    Conventional approaches to oxidative desulfurization of liquid hydrocarbons involve use of high-purity, expensive water soluble peroxide for oxidation of sulfur compounds followed by post-treatment for removal of oxidized sulfones by extraction. Both are associated with higher cost due to handling, storage of oxidants and yield loss with extraction and water separation, making the whole process more expensive. This thesis explores an oxidative desulfurization process using air as an oxidant followed by catalytic decomposition of sulfones thereby eliminating the aforementioned issues. Oxidation of sulfur compounds was realized by a two step process in which peroxides were first generated in-situ by catalytic air oxidation, followed by catalytic oxidation of S compounds using the peroxides generated in-situ completing the two step approach. By this technique it was feasible to oxidize over 90% of sulfur compounds present in real jet (520 ppmw S) and diesel (41 ppmw S) fuels. Screening of bulk and supported CuO based catalysts for peroxide generation using model aromatic compound representing diesel fuel showed that bulk CuO catalyst was more effective in producing peroxides with high yield and selectivity. Testing of three real diesel fuels obtained from different sources for air oxidation over bulk CuO catalyst showed different level of effectiveness for generating peroxides in-situ which was consistent with air oxidation of representative model aromatic compounds. Peroxides generated in-situ was then used as an oxidant to oxidize sulfur compounds present in the fuel over MoO3/SiO2 catalyst. 81% selectivity of peroxides for oxidation of sulfur compounds was observed on MoO3/SiO2 catalyst at 40 °C and under similar conditions MoO3/Al2O3 gave only 41% selectivity. This difference in selectivity might be related to the difference in the nature of active sites of MoO3 on SiO2 and Al2O 3 supports as suggested by H2-TPR and XRD analyses. Testing of supported and bulk Mg

  6. Oxidation of fine aluminum powders with water and air

    NASA Astrophysics Data System (ADS)

    Antipina, S. A.; Zmanovskii, S. V.; Gromov, A. A.; Konovalov, A. S.

    2017-01-01

    Fine aluminum powders (RA20-RA60 grades, SUAL-PM) with specific surface area from 0.37 to 0.73 m2/g and high aluminum contents (95-98 wt %) are studied. The powders are found to be waterwettable without additions of surfactants and characterized by high rates of gas liberation in reacting with a calcium hydroxide solution under normal conditions. All RA20-RA60 powders are shown to be highly reactive upon oxidation with air and close to aluminum nanopowders in the parameters of their activity when heated in air. Their stability in water could prevent active (metallic) aluminum losses during their storage.

  7. Surface-catalyzed air oxidation of hydrazines: Environmental chamber studies

    NASA Technical Reports Server (NTRS)

    Kilduff, Jan E.; Davis, Dennis D.; Koontz, Steven L.

    1988-01-01

    The surface-catalyzed air oxidation reactions of fuel hydrazines were studied in a 6500-liter fluorocarbon-film chamber at 80 to 100 ppm concentrations. First-order rate constants for the reactions catalyzed by aluminum, water-damaged aluminum (Al/Al2O3), stainless steel 304L, galvanized steel and titanium plates with surface areas of 2 to 24 sq m were determined. With 23.8 sq m of Al/Al2O3 the surface-catalyzed air oxidation of hydrazine had a half-life of 2 hours, diimide (N2H2) was observed as an intermediate and traces of ammonia were present in the final product mixture. The Al/Al2O3 catalyzed oxidation of monomethylhydrazine yielded methyldiazine (HN = NCH3) as an intermediate and traces of methanol. Unsymmetrical dimethylhydrazine gave no detectable products. The relative reactivities of hydrazine, MMH and UDMH were 130 : 7.3 : 1.0, respectively. The rate constants for Al/Al2O3-catalyzed oxidation of hydrazine and MMH were proportional to the square of the surface area of the plates. Mechanisms for the surface-catalyzed oxidation of hydrazine and diimide and the formation of ammonia are proposed.

  8. Biodegradation of air-oxidized Illinois No. 6 coal

    SciTech Connect

    Linehan, J.C.; Fredrickson, J.K.; Wilson, B.W.; Bean, R.M.; Stewart, D.L.; Thomas, B.L.; Campbell, J.A.; Franz, J.A.

    1988-09-01

    We have found that Illinois No. 6 coal, after an air-oxidation pretreatment, can be substantially biodegraded by Penicillium sp. to a product largely soluble in dilute base. It is the purpose of this paper to describe the chemical nature of the biotreated Illinois No. 6 coal and to compare it with the corresponding material from leonardite biosolubilization. 12 refs., 7 figs., 3 tabs.

  9. Air electrode composition for solid oxide fuel cell

    DOEpatents

    Kuo, L.; Ruka, R.J.; Singhal, S.C.

    1999-08-03

    An air electrode composition for a solid oxide fuel cell is disclosed. The air electrode material is based on lanthanum manganite having a perovskite-like crystal structure ABO{sub 3}. The A-site of the air electrode composition comprises a mixed lanthanide in combination with rare earth and alkaline earth dopants. The B-site of the composition comprises Mn in combination with dopants such as Mg, Al, Cr and Ni. The mixed lanthanide comprises La, Ce, Pr and, optionally, Nd. The rare earth A-site dopants preferably comprise La, Nd or a combination thereof, while the alkaline earth A-site dopant preferably comprises Ca. The use of a mixed lanthanide substantially reduces raw material costs in comparison with compositions made from high purity lanthanum starting materials. The amount of the A-site and B-site dopants is controlled in order to provide an air electrode composition having a coefficient of thermal expansion which closely matches that of the other components of the solid oxide fuel cell. 3 figs.

  10. Air electrode composition for solid oxide fuel cell

    DOEpatents

    Kuo, Lewis; Ruka, Roswell J.; Singhal, Subhash C.

    1999-01-01

    An air electrode composition for a solid oxide fuel cell is disclosed. The air electrode material is based on lanthanum manganite having a perovskite-like crystal structure ABO.sub.3. The A-site of the air electrode composition comprises a mixed lanthanide in combination with rare earth and alkaline earth dopants. The B-site of the composition comprises Mn in combination with dopants such as Mg, Al, Cr and Ni. The mixed lanthanide comprises La, Ce, Pr and, optionally, Nd. The rare earth A-site dopants preferably comprise La, Nd or a combination thereof, while the alkaline earth A-site dopant preferably comprises Ca. The use of a mixed lanthanide substantially reduces raw material costs in comparison with compositions made from high purity lanthanum starting materials. The amount of the A-site and B-site dopants is controlled in order to provide an air electrode composition having a coefficient of thermal expansion which closely matches that of the other components of the solid oxide fuel cell.

  11. Cyclic Oxidation of High-Temperature Alloy Wires in Air

    NASA Technical Reports Server (NTRS)

    Reigel, Marissa M.

    2004-01-01

    High-temperature alloy wires are proposed for use in seal applications for future re-useable space vehicles. These alloys offer the potential for improved wear resistance of the seals. The wires must withstand the high temperature environments the seals are subjected to as well as maintain their oxidation resistance during the heating and cooling cycles of vehicle re-entry. To model this, the wires were subjected to cyclic oxidation in stagnant air. of this layer formation is dependent on temperature. Slow growing oxides such as chromia and alumina are desirable. Once the oxide is formed it can prevent the metal from further reacting with its environment. Cyclic oxidation models the changes in temperature these wires will undergo in application. Cycling the temperature introduces thermal stresses which can cause the oxide layer to break off. Re-growth of the oxide layer consumes more metal and therefore reduces the properties and durability of the material. were used for cyclic oxidation testing. The baseline material, Haynes 188, has a Co base and is a chromia former while the other two alloys, Kanthal A1 and PM2000, both have a Fe base and are alumina formers. Haynes 188 and Kanthal A1 wires are 250 pm in diameter and PM2000 wires are 150 pm in diameter. The coiled wire has a total surface area of 3 to 5 sq cm. The wires were oxidized for 11 cycles at 1204 C, each cycle containing a 1 hour heating time and a minimum 20 minute cooling time. Weights were taken between cycles. After 11 cycles, one wire of each composition was removed for analysis. The other wire continued testing for 70 cycles. Post-test analysis includes X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS) for phase identification and morphology.

  12. 75 FR 11877 - Review of the Secondary National Ambient Air Quality Standards for Oxides of Nitrogen and Oxides...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-12

    ... of Sulfur AGENCY: Environmental Protection Agency (EPA). ACTION: Notice of availability of draft... Ambient Air Quality Standards for Oxides of Nitrogen and Oxides of Sulfur: First External Review Draft... (welfare-based) NAAQS for oxides of nitrogen (NO X ) and oxides of sulfur (SO X ). Because NO X , SO...

  13. 75 FR 57463 - Review of the Secondary National Ambient Air Quality Standards for Oxides of Nitrogen and Oxides...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-21

    ... of Sulfur AGENCY: Environmental Protection Agency (EPA). ACTION: Notice of availability of draft... Ambient Air Quality Standards for Oxides of Nitrogen and Oxides of Sulfur: Second External Review Draft... for oxides of nitrogen (NO X ) and oxides of sulfur (SO X ). Because NO X , SO X , and...

  14. Work function recovery of air exposed molybdenum oxide thin films

    NASA Astrophysics Data System (ADS)

    Irfan, Irfan; James Turinske, Alexander; Bao, Zhenan; Gao, Yongli

    2012-08-01

    We report substantial work function (WF) recovery of air exposed molybdenum oxide thin films with vacuum annealing. We observed a sharp reduction in the MoOx WF (from 6.8 eV to 5.6 eV) as well as a very thin layer of oxygen rich adsorbate on the MoOx film after an hour of air exposure. The WF of the exposed MoOx film started to gradually recover with increasing annealing temperature in vacuum, and the saturation in the WF recovery was observed at 450 °C with WF ˜6.4 eV. We further studied the interface formation between the annealed MoOx and copper phthalocyanine (CuPc). The highest occupied molecular orbital (HOMO) level of CuPc was observed to be almost pinned to the Fermi level, strongly suggesting the possibility of efficient hole injection with the vacuum annealed MoOx film.

  15. Catalytic wet air oxidation of high concentration pharmaceutical wastewater.

    PubMed

    Zhan, Wei; Wang, Xiaocong; Li, Daosheng; Ren, Yongzheng; Liu, Dongqi; Kang, Jianxiong

    2013-01-01

    In this study, we investigated the pretreatment of a high concentration pharmaceutical wastewater by catalytic wet air oxidation (CWAO) process. Different experiments were conducted to investigate the effects of the catalyst type, operating temperature, initial system pH, and oxygen partial pressure on the oxidation of the wastewater. Results show that the catalysts prepared by the co-precipitation method have better catalytic activity compared to others. Chemical oxygen demand (COD) conversion increased with the increase in temperature from 160 to 220 °C and decreased with the increase in pH. Moreover, the effect of the oxygen partial pressure on the COD conversion was significant only during the first 20 min of the reaction. Furthermore, the biodegradability of the wastewater improved greatly after CWAO, the ratio of BOD5/COD increased less than 0.1-0.75 when treated at 220 °C (BOD: biochemical oxygen demand).

  16. Exergy parametric study of carbon monoxide oxidation in moist air

    NASA Astrophysics Data System (ADS)

    Souidi, Ferhat; Benmalek, Toufik; Yesaad, Billel; Baik, Mouloud

    2015-12-01

    This study aims to analyze the oxidation of carbon monoxide in moist air from the second thermodynamic law aspect. A mathematical model of laminar premixed flame in a stagnation point flow has been achieved by numerical solution of the boundary layer equation using a self-made code. The chemical kinetic mechanism for flameless combustion of fuel, which is a mixture of carbon monoxide, oxygen, and water vapor, is modeled by 34 elementary reactions that incorporate (09) nine chemical species: CO, O, CO2, O2, H2O, H, H2, HO2, and OH. The salient point is that for all the parameters we considered, the exergy of the process is completely destroyed by irreversibilities. From the chemical viewpoint, the OH radical plays an essential role in CO oxidation. This latter point has already been mentioned by previous investigators.

  17. Oxidation and Volatilization of TZM Alloy in Air

    SciTech Connect

    Smolik, Galen Richard; Petti, David Andrew; Schuetz, Stanley Thomas

    1999-10-01

    The excellent high temperature strength and thermal conductivity of molybdenum-base alloys provide attractive features for components in advanced magnetic and inertial fusion devices. Refractory metal base alloys react readily with oxygen and other gases, and molybdenum alloys are susceptible to losses from highly volatile molybdenum trioxide (MoOsub3) species. Transport of radioactivity by the volatilization, migration, and re-deposition of MoO3 during a potential accident involving a loss of vacuum or inert environment represents a safety issue. We have experimentally measured the oxidation, volatilization and re-deposition of molybdenum from TZM in flowing air between 400 and 800°C. Calculations using chemical thermodynamic data for vapor pressures over pure MoOsub3 and a vaporization mass transfer model correlate well with experimental data between 600 and 800°C. Partial saturation of (MoOsub3) gas species account for influences of flow rate at 700°C. Some anomalies in oxidation rate below 650°C, suggesting that other phases, e.g., MoOsub2 or other non-stoichiometric oxides may influence oxidation and volatilization processes under some limited conditions.

  18. Oxidation and volatilization of TZM alloy in air

    SciTech Connect

    G.R. Smolik; D.A. Petti; S.T. Schuetz

    1999-10-10

    The excellent high temperature strength and thermal conductivity of molybdenum-base alloys provide attractive features for components in advanced magnetic and inertial fusion devices. Refractory metal base alloys react readily with oxygen and other gases, and molybdenum alloys are susceptible to losses from highly volatile molybdenum trioxide (MoO{sub 3}) species. Transport of radioactivity by the volatilization, migration, and re-deposition of MoO{sub 3} during a potential accident involving a loss of vacuum or inert environment represents a safety issue. The authors have experimentally measured the oxidation, volatilization and re-deposition of molybdenum from TZM in flowing air between 400 and 800 C. Calculations using chemical thermodynamic data for vapor pressures over pure MoO{sub 3} and a vaporization mass transfer model correlate well with experimental data between 600 and 800 C. Partial saturation of MoO{sub 3} gas species account for influences of flow rate at 700 C. Some anomalies in oxidation rate below 650 C, suggesting that other phases, e.g., MoO{sub 2} or other non-stoichiometric oxides may influence oxidation and volatilization processes under some limited conditions.

  19. Oxidation and volatilization of TZM alloy in air

    NASA Astrophysics Data System (ADS)

    Smolik, G. R.; Petti, D. A.; Schuetz, S. T.

    2000-12-01

    The excellent high temperature strength and thermal conductivity of molybdenum-base alloys provide attractive features for components in advanced magnetic and inertial fusion devices. Refractory metal-base alloys react readily with oxygen and other gases, and molybdenum alloys are susceptible to losses from highly volatile molybdenum trioxide (MoO 3) species. Transport of radioactivity by the volatilization, migration and re-deposition of MoO 3 during a potential accident involving a loss of vacuum or inert environment represents a safety issue. We have experimentally measured the oxidation, volatilization and re-deposition of molybdenum from TZM in flowing air between 400°C and 800°C. Calculations using chemical thermodynamic data for vapor pressures over pure MoO 3 and a vaporization mass transfer model correlate well with the experimental data between 600°C and 800°C. Partial saturation of (MoO 3) gas species accounts for influences of flow rate at 700°C. Some anomalies in oxidation rate below 650°C suggest that other phases, e.g., MoO 2 or other non-stoichiometric oxides may influence oxidation and volatilization processes under some limited conditions.

  20. 40 CFR 50.5 - National secondary ambient air quality standard for sulfur oxides (sulfur dioxide).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... standard for sulfur oxides (sulfur dioxide). 50.5 Section 50.5 Protection of Environment ENVIRONMENTAL....5 National secondary ambient air quality standard for sulfur oxides (sulfur dioxide). (a) The level... than 0.05 ppm shall be rounded up). (b) Sulfur oxides shall be measured in the ambient air as...

  1. 40 CFR 50.17 - National primary ambient air quality standards for sulfur oxides (sulfur dioxide).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... standards for sulfur oxides (sulfur dioxide). 50.17 Section 50.17 Protection of Environment ENVIRONMENTAL....17 National primary ambient air quality standards for sulfur oxides (sulfur dioxide). (a) The level of the national primary 1-hour annual ambient air quality standard for oxides of sulfur is 75...

  2. 40 CFR 50.5 - National secondary ambient air quality standard for sulfur oxides (sulfur dioxide).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... standard for sulfur oxides (sulfur dioxide). 50.5 Section 50.5 Protection of Environment ENVIRONMENTAL....5 National secondary ambient air quality standard for sulfur oxides (sulfur dioxide). (a) The level... than 0.05 ppm shall be rounded up). (b) Sulfur oxides shall be measured in the ambient air as...

  3. 40 CFR 50.17 - National primary ambient air quality standards for sulfur oxides (sulfur dioxide).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... standards for sulfur oxides (sulfur dioxide). 50.17 Section 50.17 Protection of Environment ENVIRONMENTAL....17 National primary ambient air quality standards for sulfur oxides (sulfur dioxide). (a) The level of the national primary 1-hour annual ambient air quality standard for oxides of sulfur is 75...

  4. 40 CFR 50.5 - National secondary ambient air quality standard for sulfur oxides (sulfur dioxide).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... standard for sulfur oxides (sulfur dioxide). 50.5 Section 50.5 Protection of Environment ENVIRONMENTAL....5 National secondary ambient air quality standard for sulfur oxides (sulfur dioxide). (a) The level... than 0.05 ppm shall be rounded up). (b) Sulfur oxides shall be measured in the ambient air as...

  5. 40 CFR 50.4 - National primary ambient air quality standards for sulfur oxides (sulfur dioxide).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... standards for sulfur oxides (sulfur dioxide). 50.4 Section 50.4 Protection of Environment ENVIRONMENTAL....4 National primary ambient air quality standards for sulfur oxides (sulfur dioxide). (a) The level...). (c) Sulfur oxides shall be measured in the ambient air as sulfur dioxide by the reference...

  6. 40 CFR 50.5 - National secondary ambient air quality standard for sulfur oxides (sulfur dioxide).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... standard for sulfur oxides (sulfur dioxide). 50.5 Section 50.5 Protection of Environment ENVIRONMENTAL....5 National secondary ambient air quality standard for sulfur oxides (sulfur dioxide). (a) The level... than 0.05 ppm shall be rounded up). (b) Sulfur oxides shall be measured in the ambient air as...

  7. 40 CFR 50.4 - National primary ambient air quality standards for sulfur oxides (sulfur dioxide).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... standards for sulfur oxides (sulfur dioxide). 50.4 Section 50.4 Protection of Environment ENVIRONMENTAL....4 National primary ambient air quality standards for sulfur oxides (sulfur dioxide). (a) The level...). (c) Sulfur oxides shall be measured in the ambient air as sulfur dioxide by the reference...

  8. 40 CFR 50.4 - National primary ambient air quality standards for sulfur oxides (sulfur dioxide).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... standards for sulfur oxides (sulfur dioxide). 50.4 Section 50.4 Protection of Environment ENVIRONMENTAL....4 National primary ambient air quality standards for sulfur oxides (sulfur dioxide). (a) The level...). (c) Sulfur oxides shall be measured in the ambient air as sulfur dioxide by the reference...

  9. 40 CFR 50.4 - National primary ambient air quality standards for sulfur oxides (sulfur dioxide).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... standards for sulfur oxides (sulfur dioxide). 50.4 Section 50.4 Protection of Environment ENVIRONMENTAL....4 National primary ambient air quality standards for sulfur oxides (sulfur dioxide). (a) The level...). (c) Sulfur oxides shall be measured in the ambient air as sulfur dioxide by the reference...

  10. 40 CFR 50.17 - National primary ambient air quality standards for sulfur oxides (sulfur dioxide).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... standards for sulfur oxides (sulfur dioxide). 50.17 Section 50.17 Protection of Environment ENVIRONMENTAL....17 National primary ambient air quality standards for sulfur oxides (sulfur dioxide). (a) The level of the national primary 1-hour annual ambient air quality standard for oxides of sulfur is 75...

  11. 40 CFR 50.17 - National primary ambient air quality standards for sulfur oxides (sulfur dioxide).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... standards for sulfur oxides (sulfur dioxide). 50.17 Section 50.17 Protection of Environment ENVIRONMENTAL....17 National primary ambient air quality standards for sulfur oxides (sulfur dioxide). (a) The level of the national primary 1-hour annual ambient air quality standard for oxides of sulfur is 75...

  12. 40 CFR 50.5 - National secondary ambient air quality standard for sulfur oxides (sulfur dioxide).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... standard for sulfur oxides (sulfur dioxide). 50.5 Section 50.5 Protection of Environment ENVIRONMENTAL....5 National secondary ambient air quality standard for sulfur oxides (sulfur dioxide). (a) The level... than 0.05 ppm shall be rounded up). (b) Sulfur oxides shall be measured in the ambient air as...

  13. 40 CFR 50.17 - National primary ambient air quality standards for sulfur oxides (sulfur dioxide).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... standards for sulfur oxides (sulfur dioxide). 50.17 Section 50.17 Protection of Environment ENVIRONMENTAL....17 National primary ambient air quality standards for sulfur oxides (sulfur dioxide). (a) The level of the national primary 1-hour annual ambient air quality standard for oxides of sulfur is 75...

  14. Alveolar macrophage cytokine response to air pollution particles: Oxidant mechanisms

    SciTech Connect

    Imrich, Amy; Ning Yaoyu; Lawrence, Joy; Coull, Brent; Gitin, Elena; Knutson, Mitchell; Kobzik, Lester . E-mail: lkobzik@hsph.harvard.edu

    2007-02-01

    Alveolar macrophages (AMs) primed with LPS and treated with concentrated ambient air particles (CAPs) showed enhanced release of tumor necrosis factor (TNF) and provide an in vitro model for the amplified effects of air pollution particles seen in people with preexisting lung disease. To investigate the mechanism(s) by which CAPs mediate TNF release in primed rat AMs, we first tested the effect of a panel of antioxidants. N-Acetyl-L-cysteine (20 mM), dimethyl thiourea (20 mM) and catalase (5 {mu}M) significantly inhibited TNF release by primed AMs incubated with CAPs. Conversely, when LPS-primed AMs were treated with CAPs in the presence of exogenous oxidants (H{sub 2}O{sub 2} generated by glucose oxidase, 10 {mu}M/h), TNF release and cell toxicity was significantly increased. The soluble fraction of CAPs suspensions caused most of the increased bioactivity in the presence of exogenous H{sub 2}O{sub 2}. The metal chelator deferoxamine (DFO) strongly inhibited the interaction of the soluble fraction with H{sub 2}O{sub 2} but had no effect on the bioactivity of the insoluble CAPs fraction. We conclude that CAPs can mediate their effects in primed AMs by acting on oxidant-sensitive cytokine release in at least two distinct ways. In the primed cell, insoluble components of PM mediate enhanced TNF production that is H{sub 2}O{sub 2}-dependent (catalase-sensitive) yet independent of iron (DFO-insensitive). In the presence of exogenous H{sub 2}O{sub 2} released by AMs, PMNs, or other lung cells within an inflamed alveolar milieu, soluble iron released from air particles can also mediate cytokine release and cell toxicity.

  15. Composition of air pollution particles modifies oxidative stress in cells, tissues, and living systems

    EPA Science Inventory

    Epidemiological studies demonstrate an association between increased levels of ambient air pollution particles and human morbidity and mortality. Production of oxidants, either directly by the air pollution particles or by the host response to the particles, appears to be fundame...

  16. Air Flow and Pressure Drop Measurements Across Porous Oxides

    NASA Technical Reports Server (NTRS)

    Fox, Dennis S.; Cuy, Michael D.; Werner, Roger A.

    2008-01-01

    This report summarizes the results of air flow tests across eight porous, open cell ceramic oxide samples. During ceramic specimen processing, the porosity was formed using the sacrificial template technique, with two different sizes of polystyrene beads used for the template. The samples were initially supplied with thicknesses ranging from 0.14 to 0.20 in. (0.35 to 0.50 cm) and nonuniform backside morphology (some areas dense, some porous). Samples were therefore ground to a thickness of 0.12 to 0.14 in. (0.30 to 0.35 cm) using dry 120 grit SiC paper. Pressure drop versus air flow is reported. Comparisons of samples with thickness variations are made, as are pressure drop estimates. As the density of the ceramic material increases the maximum corrected flow decreases rapidly. Future sample sets should be supplied with samples of similar thickness and having uniform surface morphology. This would allow a more consistent determination of air flow versus processing parameters and the resulting porosity size and distribution.

  17. Catalytic wet air oxidation with Ni- and Fe-doped mixed oxides derived from hydrotalcites.

    PubMed

    Ovejero, G; Rodríguez, A; Vallet, A; Gómez, P; García, J

    2011-01-01

    Catalytic wet air oxidation of Basic Yellow 11 (BY11), a basic dye, was studied in a batch reactor. Layered double hydroxides with the hydrotalcite-like structure containing nickel or iron cations have been prepared by coprecipitation and subsequently calcined leading to Ni- and Fe-doped mixed oxides, respectively. Compared with the results in the wet air oxidation of BY11, these catalysts showed high activity for total organic carbon (TOC), toxicity and dye removal at 120 degrees C and 50 bars after 120 min. It has been demonstrated that the activity depended strongly on the presence of catalyst. The results show that catalysts containing nickel provide a higher extent of oxidation of the dye whereas the reaction carried out with the iron catalyst is faster. The Ni and Fe dispersion determined from the TPR results was higher for the catalysts with a lower Ni or Fe content and decreased for higher Ni or Fe contents. On the basis of activity and selectivity, the Ni containing catalyst with the medium (3%) Ni content was found to be the best catalyst. Finally, a relationship between metal content of the catalyst and reaction rate has been established.

  18. Graphene oxide as an effective catalyst for wet air oxidation of phenol.

    PubMed

    Yang, Shaoxia; Cui, Yuhong; Sun, Yu; Yang, Hongwei

    2014-09-15

    The graphene oxide (GO) and chemically reduced graphene oxides, used as catalysts in absence of any metals, were investigated in the catalytic wet air oxidation (CWAO) of phenol in a batch reactor. The characterization of the materials was measured with scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman, fourier transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS). The carbon materials exhibited good phenol and total organic compounds (TOC) removals in the CWAO of phenol. The GO had the highest catalytic activity, total phenol removal was achieved after 40 min, and ca. 84% TOC removal was obtained after 120 min at reaction temperature of 155°C, total pressure of 2.5 MPa and catalyst loading of 0.2 gL(-1).

  19. Air contamination with nitric oxide: effect on exhaled nitric oxide response.

    PubMed

    Therminarias, A; Flore, P; Favre-Juvin, A; Oddou, M F; Delaire, M; Grimbert, F

    1998-03-01

    This study examines the response of exhaled nitric oxide (NO) concentration (ECNO) and quantity of exhaled NO over time (EVNO) in 10 healthy subjects breathing into five polyethylene bags, one in which synthetic air was free of NO and four in which NO was diluted to concentrations of 20 +/- 0.6, 49 +/- 0.8, 98 +/- 2, and 148 +/- 2 ppb, respectively. Each subject was connected to each bag for 10 min at random. Minute ventilation and ECNO were measured continuously, and EVNO was calculated continuously. ECNO and EVNO values were significantly higher for an inhaled NO concentration of 20 ppb than for NO-free air. Above 20 ppb, ECNO and EVNO increased linearly with inhaled NO concentration. It is reasonable to assume that a share of the quantity of inspired NO over time (InspVNO) because of air contamination by pollution is rejected by the ventilatory pathway. Insofar as InspVNO does not affect endogenous production or the metabolic fate of NO in the airway, this share may be estimated as being approximately one third of InspVNO, the remainder being taken by the endogenous pathway. Thus, air contamination by the NO resulting from pollution greatly increases the NO response in exhaled air.

  20. Air trichloroethylene oxidation in a corona plasma-catalytic reactor

    NASA Astrophysics Data System (ADS)

    Masoomi-Godarzi, S.; Ranji-Burachaloo, H.; Khodadadi, A. A.; Vesali-Naseh, M.; Mortazavi, Y.

    2014-08-01

    The oxidative decomposition of trichloroethylene (TCE; 300 ppm) by non-thermal corona plasma was investigated in dry air at atmospheric pressure and room temperature, both in the absence and presence of catalysts including MnOx, CoOx. The catalysts were synthesized by a co-precipitation method. The morphology and structure of the catalysts were characterized by BET surface area measurement and Fourier Transform Infrared (FTIR) methods. Decomposition of TCE and distribution of products were evaluated by a gas chromatograph (GC) and an FTIR. In the absence of the catalyst, TCE removal is increased with increases in the applied voltage and current intensity. Higher TCE removal and CO2 selectivity is observed in presence of the corona and catalysts, as compared to those with the plasma alone. The results show that MnOx and CoOx catalysts can dissociate the in-plasma produced ozone to oxygen radicals, which enhances the TCE decomposition.

  1. Treatment of hydraulic fracturing wastewater by wet air oxidation.

    PubMed

    Wang, Wei; Yan, Xiuyi; Zhou, Jinghui; Ma, Jiuli

    2016-01-01

    Wastewater produced by hydraulic fracturing for oil and gas production is characterized by high salinity and high chemical oxygen demand (COD). We applied a combination of flocculation and wet air oxidation technology to optimize the reduction of COD in the treatment of hydraulic fracturing wastewater. The experiments used different values of flocculant, coagulant, and oxidizing agent added to the wastewater, as well as different reaction times and treatment temperatures. The use of flocculants for the pretreatment of fracturing wastewater was shown to improve treatment efficiency. The addition of 500 mg/L of polyaluminum chloride (PAC) and 20 mg/L of anionic polyacrylamide (APAM) during pretreatment resulted in a COD removal ratio of 8.2% and reduced the suspended solid concentration of fracturing wastewater to 150 mg/L. For a solution of pretreated fracturing wastewater with 12 mL of added H2O2, the COD was reduced to 104 mg/L when reacted at 300 °C for 75 min, and reduced to 127 mg/L when reacted at the same temperature for 45 min while using a 1 L autoclave. An optimal combination of these parameters produced treated wastewater that met the GB 8978-1996 'Integrated Wastewater Discharge Standard' level I emission standard.

  2. Oxidation behavior of U-Si compounds in air from 25 to 1000 C

    NASA Astrophysics Data System (ADS)

    Sooby Wood, E.; White, J. T.; Nelson, A. T.

    2017-02-01

    The air oxidation behavior of U3Si2, USi, and U3Si5 is studied from room temperature to 1000 C. The onsets of breakaway oxidation for each compound are identified during synthetic air ramps to 1000 C using thermogravimetric analysis. Isothermal air oxidation tests are performed below and above the breakaway oxidation onset to discern the oxidation kinetic behavior of these candidate accident tolerant fuel forms. Uranium metal is tested in the same manner to provide a reference for the oxidation behavior. Thermogravimetric, x-ray diffraction, and scanning electron microscopy analysis are presented here along with a discussion of the oxidation behavior of these materials and the impact of the lack of oxidation resistance to their deployment as accident tolerant nuclear fuels.

  3. Oxidation resistance of selected mechanical carbons at 650 deg C in dry flowing air

    NASA Technical Reports Server (NTRS)

    Allen, G. P.; Wisander, D. W.

    1973-01-01

    Oxidation experiments were conducted with several experimental mechanical carbons at 650 C in air flowing at 28 cu cm/sec (STP). Experiments indicate that boron carbide addition and zinc phosphate treatment definitely improved oxidation resistance. Impregnation with coal tar pitch before final graphitization had some beneficial effect on oxidation resistance and it markedly improved flexure strength and hardness. Graphitization temperature alone did not affect oxidation resistance, but with enough added boron carbide the oxidation resistance was increased although the hardness greatly decreased.

  4. Evaluation of a Combined Ultraviolet Photocatalytic Oxidation(UVPCO)/Chemisorbent Air Cleaner for Indoor Air Applications

    SciTech Connect

    Hodgson, Alfred T.; Destaillats, Hugo; Hotchi, Toshifumi; Fisk,William J.

    2007-02-01

    We previously reported that gas-phase byproducts of incomplete oxidation were generated when a prototype ultraviolet photocatalytic oxidation (UVPCO) air cleaner was operated in the laboratory with indoor-relevant mixtures of VOCs at realistic concentrations. Under these conditions, there was net production of formaldehyde and acetaldehyde, two important indoor air toxicants. Here, we further explore the issue of byproduct generation. Using the same UVPCO air cleaner, we conducted experiments to identify common VOCs that lead to the production of formaldehyde and acetaldehyde and to quantify their production rates. We sought to reduce the production of formaldehyde and acetaldehyde to acceptable levels by employing different chemisorbent scrubbers downstream of the UVPCO device. Additionally, we made preliminary measurements to estimate the capacity and expected lifetime of the chemisorbent media. For most experiments, the system was operated at 680-780 m{sup 3}/h (400-460 cfm). A set of experiments was conducted with common VOCs introduced into the UVPCO device individually and in mixture. Compound conversion efficiencies and the production of formaldehyde and acetaldehyde were determined by comparison of compound concentrations upstream and downstream of the reactor. There was general agreement between compound conversions efficiencies determined individually and in the mixture. This suggests that competition among compounds for active sites on the photocatalyst surface will not limit the performance of the UVPCO device when the total VOC concentration is low. A possible exception was the very volatile alcohols, for which there were some indications of competitive adsorption. The results also showed that formaldehyde was produced from many commonly encountered VOCs, while acetaldehyde was generated by specific VOCs, particularly ethanol. The implication is that formaldehyde concentrations are likely to increase when an effective UVPCO air cleaner is used in

  5. Degradation of paracetamol by catalytic wet air oxidation and sequential adsorption - Catalytic wet air oxidation on activated carbons.

    PubMed

    Quesada-Peñate, I; Julcour-Lebigue, C; Jáuregui-Haza, U J; Wilhelm, A M; Delmas, H

    2012-06-30

    The concern about the fate of pharmaceutical products has raised owing to the increasing contamination of rivers, lakes and groundwater. The aim of this paper is to evaluate two different processes for paracetamol removal. The catalytic wet air oxidation (CWAO) of paracetamol on activated carbon was investigated both as a water treatment technique using an autoclave reactor and as a regenerative treatment of the carbon after adsorption in a sequential fixed bed process. Three activated carbons (ACs) from different source materials were used as catalysts: two microporous basic ACs (S23 and C1) and a meso- and micro-porous acidic one (L27). During the first CWAO experiment the adsorption capacity and catalytic performance of fresh S23 and C1 were higher than those of fresh L27 despite its higher surface area. This situation changed after AC reuse, as finally L27 gave the best results after five CWAO cycles. Respirometry tests with activated sludge revealed that in the studied conditions the use of CWAO enhanced the aerobic biodegradability of the effluent. In the ADOX process L27 also showed better oxidation performances and regeneration efficiency. This different ageing was examined through AC physico-chemical properties.

  6. Electrochemical characterization of Fe-air rechargeable oxide battery in planar solid oxide cell stacks

    NASA Astrophysics Data System (ADS)

    Fang, Qingping; Berger, Cornelius M.; Menzler, Norbert H.; Bram, Martin; Blum, Ludger

    2016-12-01

    Iron-air rechargeable oxide batteries (ROB) comprising solid oxide cells (SOC) as energy converters and Fe/metal-oxide redox couples were characterized using planar SOC stacks. The charge and discharge of the battery correspond to the operations in the electrolysis and fuel cell modes, respectively, but with a stagnant atmosphere consisting of hydrogen and steam. A novel method was employed to establish the stagnant atmosphere for battery testing during normal SOC operation without complicated modification to the test bench and stack/battery concept. Manipulation of the gas compositions during battery operation was not necessary, but the influence of the leakage current from the testing system had to be considered. Batteries incorporating Fe2O3/8YSZ, Fe2O3/CaO and Fe2O3/ZrO2 storage materials were characterized at 800 °C. A maximum charge capacity of 30.4 Ah per layer (with an 80 cm2 active cell area) with ∼0.5 mol Fe was reached with a current of 12 A. The charge capacity lost 11% after ∼130 ROB cycles due to the increased agglomeration of active materials and formation of a dense oxide layer on the surface. The round trip efficiencies of the tested batteries were ≤84% due to the large internal resistance. With state-of-the-art cells, the round trip efficiency can be further improved.

  7. Air Quality Criteria for Ozone and Related Photochemical Oxidants (Final Report, 2006)

    EPA Science Inventory

    In February 2006, EPA released the final document, Air Quality Criteria for Ozone and Other Photochemical Oxidants. Tropospheric or surface-level ozone (O3) is one of six major air pollutants regulated by National Ambient Air Quality Standards (NAAQS) under the U.S...

  8. Air feed tube support system for a solid oxide fuel cell generator

    DOEpatents

    Doshi, Vinod B.; Ruka, Roswell J.; Hager, Charles A.

    2002-01-01

    A solid oxide fuel cell generator (12), containing tubular fuel cells (36) with interior air electrodes (18), where a supporting member (82) containing a plurality of holes (26) supports oxidant feed tubes (51), which pass from an oxidant plenum (52") into the center of the fuel cells, through the holes (26) in the supporting member (82), where a compliant gasket (86) around the top of the oxidant feed tubes and on top (28) of the supporting member (82) helps support the oxidant feed tubes and center them within the fuel cells, and loosen the tolerance for centering the air feed tubes.

  9. 76 FR 46083 - Secondary National Ambient Air Quality Standards for Oxides of Nitrogen and Sulfur

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-01

    ... Quality Standards for Oxides of Nitrogen and Sulfur; Proposed Rule #0;#0;Federal Register / Vol. 76 , No... RIN 2060-AO72 Secondary National Ambient Air Quality Standards for Oxides of Nitrogen and Sulfur... nitrogen and oxides of sulfur. Based on its review, EPA proposes to retain the current nitrogen dioxide...

  10. 40 CFR 50.4 - National primary ambient air quality standards for sulfur oxides (sulfur dioxide).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... standards for sulfur oxides (sulfur dioxide). 50.4 Section 50.4 Protection of Environment ENVIRONMENTAL....4 National primary ambient air quality standards for sulfur oxides (sulfur dioxide). Link to an... to or greater than 0.005 ppm shall be rounded up). (c) Sulfur oxides shall be measured in the...

  11. Catalytic wet air oxidation of chlorophenols over supported ruthenium catalysts.

    PubMed

    Li, Ning; Descorme, Claude; Besson, Michèle

    2007-07-31

    A series of noble metal (Pt, Pd, Ru) loaded zirconia catalysts were evaluated in the catalytic wet air oxidation (CWAO) of mono-chlorophenols (2-CP, 3-CP, 4-CP) under relatively mild reaction conditions. Among the investigated noble metals, Ru appeared to be the best to promote the CWAO of CPs as far as incipient-wetness impregnation was used to prepare all the catalysts. The position of the chlorine substitution on the aromatic ring was also shown to have a significant effect on the CP reactivity in the CWAO over 3wt.% Ru/ZrO(2). 2-CP was relatively easier to degradate compared to 3-CP and 4-CP. One reason could be the higher adsorption of 2-CP on the catalyst surface. Further investigations suggested that 3wt.% Ru/ZrO(2) is a very efficient catalyst in the CWAO of 2-CP as far as high 2-CP conversion and TOC abatement could still be reached at even lower temperature (393K) and lower total pressure (3MPa). Additionally, the conversion of 2-CP was demonstrated to increase with the initial pH of the 2-CP solution. The dechlorination reaction is promoted at higher pH. In all cases, the adsorption of the reactants and the reaction intermediates was shown to play a major role. All parameters that would control the molecule speciation in solution or the catalyst surface properties would have a key effect.

  12. 40 CFR Appendix S to Part 50 - Interpretation of the Primary National Ambient Air Quality Standards for Oxides of Nitrogen...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Ambient Air Quality Standards for Oxides of Nitrogen (Nitrogen Dioxide) S Appendix S to Part 50 Protection... National Ambient Air Quality Standards for Oxides of Nitrogen (Nitrogen Dioxide) 1. General (a) This... national ambient air quality standards for oxides of nitrogen as measured by nitrogen dioxide (“NO2...

  13. 40 CFR Appendix S to Part 50 - Interpretation of the Primary National Ambient Air Quality Standards for Oxides of Nitrogen...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Ambient Air Quality Standards for Oxides of Nitrogen (Nitrogen Dioxide) S Appendix S to Part 50 Protection... National Ambient Air Quality Standards for Oxides of Nitrogen (Nitrogen Dioxide) 1. General (a) This... national ambient air quality standards for oxides of nitrogen as measured by nitrogen dioxide (“NO2...

  14. 40 CFR Appendix S to Part 50 - Interpretation of the Primary National Ambient Air Quality Standards for Oxides of Nitrogen...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Ambient Air Quality Standards for Oxides of Nitrogen (Nitrogen Dioxide) S Appendix S to Part 50 Protection... National Ambient Air Quality Standards for Oxides of Nitrogen (Nitrogen Dioxide) 1. General (a) This... national ambient air quality standards for oxides of nitrogen as measured by nitrogen dioxide (“NO2...

  15. 40 CFR Appendix S to Part 50 - Interpretation of the Primary National Ambient Air Quality Standards for Oxides of Nitrogen...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Ambient Air Quality Standards for Oxides of Nitrogen (Nitrogen Dioxide) S Appendix S to Part 50 Protection... National Ambient Air Quality Standards for Oxides of Nitrogen (Nitrogen Dioxide) 1. General (a) This... national ambient air quality standards for oxides of nitrogen as measured by nitrogen dioxide (“NO2...

  16. Leaf photosynthetic and water-relations responses for 'Valencia' orange trees exposed to oxidant air pollution

    SciTech Connect

    Olszyk, D.M.; Takemoto, B.K.; Poe, M.

    1991-01-01

    Leaf responses were measured to test a hypothesis that reduced photosynthetic capacity and/or altered water relations were associated with reductions in yield for 'Valencia' orange trees (Citrus sinensis (L.), Osbeck) exposed to ambient oxidant air pollution. Exposures were continuous for 4 years to three levels of oxidants (in charcoal-filtered, half-filtered, and non-filtered air). Oxidants had no effect on net leaf photosynthetic rates or on photosynthetic pigment concentrations. A single set of measurements indicated that oxidants increased leaf starch concentrations (24%) prior to flowering, suggesting a change in photosynthate allocation. Leaves exposed to oxidants had small, but consistent, changes in water relations over the summer growing season, compared to trees growing in filtered air. Other changes included decreased stomatal conductance (12%) and transpiration (9%) rates, and increased water pressure potentials (5%). While all responses were subtle, their cumulative impact over 4 years indicated that 'Valencia' orange trees were subject to increased ambient oxidant stress.

  17. [Degradation of beta-naphthol by catalytic wet air oxidation].

    PubMed

    Liu, Jie; Yu, Chao-Ying; Zhao, Pei-Qing; Chen, Ge-Xin

    2012-11-01

    A series of MnO(x)/nano-TiO2 catalysts were prepared and their application in degradation of beta-naphthol by catalytic wet air oxidation (CWAO) was investigated. The catalysts preparation conditions, reaction conditions and its stability were tested. The catalysts had been characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and temperature-programmed reduction (TPR) measurements. The results showed that the decrease of the COD removal for the degradation of beta-naphthol at high Mn loading was due to the aggregation of the highly dispersed Mn species and the formation of the correlated crystals. The decline of the COD removal at high calcination temperature was probably attributed to the weak electron transfer between Mn2O3 and MnO2 and the formation of the inactive Mn2O3. The COD removal had been falling slightly when the catalyst was used 6 times, and this was likely related to the decrease of the diffraction peaks. The catalyst had a high activity when the Mn loading (mass fraction) was 4% and the calcination temperature was 450 degrees C. The COD removal was up to 96.4% at 110 degrees C and 0.5 MPa with this catalyst. The COD removal of 92.4% could be obtained with the MnO(x)/nano-TiO2 catalyst was recycled 6 times. The Mn leaching at 50, 80, 110 and 150 degrees C were all less than 9.3 mg x L(-1) by means of Atomic Absorption Spectroscopy (AAS). The probable degradation pathway was proposed according to some publications.

  18. Pressurized solid oxide fuel cell integral air accumular containment

    DOEpatents

    Gillett, James E.; Zafred, Paolo R.; Basel, Richard A.

    2004-02-10

    A fuel cell generator apparatus contains at least one fuel cell subassembly module in a module housing, where the housing is surrounded by a pressure vessel such that there is an air accumulator space, where the apparatus is associated with an air compressor of a turbine/generator/air compressor system, where pressurized air from the compressor passes into the space and occupies the space and then flows to the fuel cells in the subassembly module, where the air accumulation space provides an accumulator to control any unreacted fuel gas that might flow from the module.

  19. Determination of dispersion parameters for oxidizing air and the oxidation rate of calcium sulfites in a pilot desulfurization plant

    SciTech Connect

    Burenkov, D.K.; Derevich, I.V.; Rzaev, A.I.

    1995-10-01

    In the effort to remove sulfur oxides from waste gases, the widest use is gained by desulfurization plants based on wet collection of sulfur dioxide in empty absorbers in which a limestone-gypsum suspension is sprayed, with gypsum being produced as a commodity product. Dispersion of oxidizing air in a model liquid and the oxidation rate of calcium sulfites in a suspension contained in the sump of a pilot desulfurization plant absorber are studied experimentally. Flow velocities, bubble trajectories, and oxidation rates were determined and are presented.

  20. Durable rechargeable zinc-air batteries with neutral electrolyte and manganese oxide catalyst

    NASA Astrophysics Data System (ADS)

    Sumboja, Afriyanti; Ge, Xiaoming; Zheng, Guangyuan; Goh, F. W. Thomas; Hor, T. S. Andy; Zong, Yun; Liu, Zhaolin

    2016-11-01

    Neutral chloride-based electrolyte and directly grown manganese oxide on carbon paper are used as the electrolyte and air cathode respectively for rechargeable Zn-air batteries. Oxygen reduction and oxygen evolution reactions on manganese oxide show dependence of activities on the pH of the electrolyte. Zn-air batteries with chloride-based electrolyte and manganese oxide catalyst exhibit satisfactory voltage profile (discharge and charge voltage of 1 and 2 V at 1 mA cm-2) and excellent cycling stability (≈90 days of continuous cycle test), which is attributed to the reduced carbon corrosion on the air cathode and decreased carbonation in neutral electrolyte. This work describes a robust electrolyte system that improves the cycle life of rechargeable Zn-air batteries.

  1. Catalytic wet air oxidation of aniline with nanocasted Mn-Ce-oxide catalyst.

    PubMed

    Levi, R; Milman, M; Landau, M V; Brenner, A; Herskowitz, M

    2008-07-15

    The catalytic wet air oxidation of aqueous solution containing 1000 ppm aniline was conducted in a trickle-bed reactor packed with a novel nanocasted Mn-Ce-oxide catalyst (surface area of 300 m2/g) prepared using SBA-15 silica as a hard template. A range of liquid hourly space velocities (5-20 h(-1)) and temperatures (110-140 degrees C) at 10 bar of oxygen were tested. The experiments were conducted to provide the intrinsic performance of the catalysts. Complete aniline conversion, 90% TOC conversion, and 80% nitrogen mineralization were achieved at 140 degrees C and 5 h(-1). Blank experiments yielded relatively low homogeneous aniline (<35%) and negligible TOC conversions. Fast deactivation of the catalysts was experienced due to leaching caused by complexation with aniline. Acidification of the solution with HCI (molar HCI to aniline ratio of 1.2) was necessary to avoid colloidization and leaching of the nanoparticulate catalyst components. The catalyst displayed stable performance for over 200 h on stream.

  2. Statistical analysis of oxidation rates for K Basin fuel in dry air

    SciTech Connect

    Trimble, D.J.

    1998-02-06

    Test data from oxidation of K Basin fuel (SNF) samples in dry air were reviewed, and linear reaction rates were derived on a time-average basis. The derived rates were compared to literature data for unirradiated uranium in dry air using rate law of the form log(rate) = a + b (I/T). The analyses found differences between the SNF data and the literature data. Oxidation rate below 150 C was higher for K Basin fuel than for unirradiated uranium.

  3. Air Quality Criteria for Ozone and Related Photochemical Oxidants (Second External Review Draft)

    EPA Science Inventory

    This second external review draft of the Air Quality Criteria for Ozone and Related Photochemical Oxidants, Volumes I-III (Ozone Criteria Document) is being released for public comment and for review by EPA's Clean Air Scientific Advisory Committee (CASAC) r...

  4. Effect of fuel-air-ratio nonuniformity on emissions of nitrogen oxides

    NASA Technical Reports Server (NTRS)

    Lyons, V. J.

    1981-01-01

    The inlet fuel-air ratio nonuniformity is studied to deterine how nitrogen oxide (NOx) emissions are affected. An increase in NOx emissions with increased fuel-air ratio nonuniformity for average equivalence ratios less than 0.7 and a decrease in NOx emissions for average equivalence ratios near stoichiometric is predicted. The degree of uniformityy of fuel-air ratio profiles that is necessary to achieve NOx emissions goals for actual engines that use lean, premixed, prevaporized combustion systems is determined.

  5. Heterogeneous photochemical reactions of a propylene-nitrogen dioxide-metal oxide-dry air system

    NASA Astrophysics Data System (ADS)

    Takeuchi, Koji; Ibusuki, Takashi

    Photochemical reactions of a C 3H 6-NO 2-air system in the presence of metal oxide were investigated. The metal oxides showing strong photooxidation activity were found to be n-type semiconductor oxides with the energy band gap around 3 eV. Formation of cyano-compounds (HCN and CH 3CN) was also observed and the activity can be explained in terms of the adsorptivity of NO onto metal oxides. Coalfired fly ash as a model of mixed metal oxides was also examined and their photocatalytic action was discussed.

  6. Air-Driven Potassium Iodide-Mediated Oxidative Photocyclization of Stilbene Derivatives.

    PubMed

    Matsushima, Tomoya; Kobayashi, Sayaka; Watanabe, Soichiro

    2016-09-02

    A new method has been developed for the potassium iodide-mediated oxidative photocyclization of stilbene derivatives. Compared with conventional iodine-mediated oxidative photocyclization reactions, this new method requires shorter reaction times and affords cyclized products in yields of 45-97%. This reaction proceeds with a catalytic amount of potassium iodide and works in an air-driven manner without the addition of an external scavenger. The radical-mediated oxidative photocyclization of stilbene derivatives using TEMPO was also investigated.

  7. Development of a Catalytic Wet Air Oxidation Method to Produce Feedstock Gases from Waste Polymers

    NASA Technical Reports Server (NTRS)

    Kulis, Michael J.; Guerrero-Medina, Karen J.; Hepp, Aloysius F.

    2012-01-01

    Given the high cost of space launch, the repurposing of biological and plastic wastes to reduce the need for logistical support during long distance and long duration space missions has long been recognized as a high priority. Described in this paper are the preliminary efforts to develop a wet air oxidation system in order to produce fuels from waste polymers. Preliminary results of partial oxidation in near supercritical water conditions are presented. Inherent corrosion and salt precipitation are discussed as system design issues for a thorough assessment of a second generation wet air oxidation system. This work is currently being supported by the In-Situ Resource Utilization Project.

  8. CONCENTRATED AMBIENT AIR POLLUTION CREATES OXIDATIVE STRESS IN CNS MICROGLIA.

    EPA Science Inventory

    Nanometer size particles carry free radical activity on their surface and can produce oxidative stress (OS)-mediated damage upon impact to target cells. The initiating event of phage cell activation (i.e., the oxidative burst) is unknown, although many proximal events have been i...

  9. 77 FR 63827 - Request for Nominations of Experts for the Clean Air Scientific Advisory Committee (CASAC) Oxides...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-17

    ... of Nitrogen Primary National Ambient Air Quality Standards (NAAQS) Review Panel AGENCY: Environmental... the chartered CASAC on primary (human health-based) air quality standards for oxides of nitrogen (NO X... six ``criteria'' air pollutants, including oxides of nitrogen. As a Federal Advisory Committee,...

  10. 40 CFR 50.11 - National primary and secondary ambient air quality standards for oxides of nitrogen (with...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... air quality standards for oxides of nitrogen (with nitrogen dioxide as the indicator). 50.11 Section... quality standards for oxides of nitrogen (with nitrogen dioxide as the indicator). (a) The level of the national primary annual ambient air quality standard for oxides of nitrogen is 53 parts per billion...

  11. 40 CFR 50.11 - National primary and secondary ambient air quality standards for oxides of nitrogen (with...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... air quality standards for oxides of nitrogen (with nitrogen dioxide as the indicator). 50.11 Section... quality standards for oxides of nitrogen (with nitrogen dioxide as the indicator). (a) The level of the national primary annual ambient air quality standard for oxides of nitrogen is 53 parts per billion...

  12. 40 CFR 50.11 - National primary and secondary ambient air quality standards for oxides of nitrogen (with...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... air quality standards for oxides of nitrogen (with nitrogen dioxide as the indicator). 50.11 Section... quality standards for oxides of nitrogen (with nitrogen dioxide as the indicator). (a) The level of the national primary annual ambient air quality standard for oxides of nitrogen is 53 parts per billion...

  13. 40 CFR 50.11 - National primary and secondary ambient air quality standards for oxides of nitrogen (with...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... air quality standards for oxides of nitrogen (with nitrogen dioxide as the indicator). 50.11 Section... quality standards for oxides of nitrogen (with nitrogen dioxide as the indicator). (a) The level of the national primary annual ambient air quality standard for oxides of nitrogen is 53 parts per billion...

  14. 40 CFR 50.11 - National primary and secondary ambient air quality standards for oxides of nitrogen (with...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... air quality standards for oxides of nitrogen (with nitrogen dioxide as the indicator). 50.11 Section... quality standards for oxides of nitrogen (with nitrogen dioxide as the indicator). (a) The level of the national primary annual ambient air quality standard for oxides of nitrogen is 53 parts per billion...

  15. 76 FR 48073 - Public Hearing for Secondary National Ambient Air Quality Standards for Oxides of Nitrogen and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-08

    ... for Oxides of Nitrogen and Sulfur AGENCY: Environmental Protection Agency (EPA). ACTION: Announcement... titled ``Secondary National Ambient Air Quality Standards for Oxides of Nitrogen and Sulfur'' which was... ``Secondary National Ambient Air Quality Standards for Oxides of Nitrogen and Sulfur'' proposed rule should...

  16. Quantitative Analysis of Major Phytochemicals in Orthodox tea (Camellia sinensis), Oxidized under Compressed Air Environment.

    PubMed

    Panda, Brajesh Kumar; Datta, Ashis Kumar

    2016-04-01

    This study describes major changes in phytochemical composition of orthodox tea (Camellia sinensis var. Assamica) oxidized under compressed air (CA). The experiments for oxidation were conducted under air pressure (101, 202, and 303 kPa) for 150 min. Relative change in the concentrations of caffeine, catechins, theaflavins (TF), and thearubigins (TR) were analyzed. Effect of CA pressure was found to be nonsignificant in regulating caffeine concentration during oxidation. But degradation in different catechins as well as formation of different TF was significantly affected by CA pressure. At high CA pressure, TF showed highest peak value. TR was found to have slower rate of formation during initial phase of oxidation than TF. Even though the rate of TR formation was significantly influenced by CA, a portion of catechins remained unoxidized at end of oxidation. Except caffeine, the percent change in rate of formation or degradation were more prominent at 202 kPa.

  17. Oxidation Behaviors of Inconel 740H in Air and Dynamic Steam

    NASA Astrophysics Data System (ADS)

    Lu, Jintao; Yang, Zhen; Xu, Songqian; Zhao, Haiping; Gu, Y.

    2016-08-01

    Inconel 740H alloy is a candidate material for 700°C advanced ultra-supercritical (A-USC) coal-fired power plants application as superheater/reheater tube. In this work, oxidation behavior of Inconel 740H alloy was studied in static air at 750°C and 850°C, and in dynamic pure steam at 750°C, respectively. The alloy was oxidized approximately following a parabolic law in three test environment. In the static air, the oxidation rate at 850°C was about 50 times of that at the 750°C. More NiCrMn spinal and TiO2 were detected after oxidation at 850°C. Cr2O3, however, was the main oxidation product at 750°C. In the pure steam, Cr2O3 was still the main oxidation product. The oxidation rate was about 2.6 times of that in static air, but the surface roughness was much smaller and edges of oxide particles were more blurred. There was no evidence of cracks or spallation in three test environments.

  18. Nitric oxide density measurements in air and air/fuel nanosecond pulse discharges by laser induced fluorescence

    NASA Astrophysics Data System (ADS)

    Uddi, M.; Jiang, N.; Adamovich, I. V.; Lempert, W. R.

    2009-04-01

    Laser induced fluorescence is used to measure absolute nitric oxide concentrations in air, methane-air and ethylene-air non-equilibrium plasmas, as a function of time after initiation of a single pulse, 20 kV peak voltage, 25 ns pulse duration discharge. A mixture of NO and nitrogen with known composition (4.18 ppm NO) is used for calibration. Peak NO density in air at 60 Torr, after a single pulse, is ~8 × 1012 cm-3 (~4.14 ppm) occurring at ~250 µs after the pulse, with decay time of ~16.5 ms. Peak NO atom mole fraction in a methane-air mixture with equivalence ratio of phiv = 0.5 is found to be approximately equal to that in air, with approximately the same rise and decay rate. In an ethylene-air mixture (also with equivalence ratio of phiv = 0.5), the rise and decay times are comparable to air and methane-air, but the peak NO concentration is reduced by a factor of approximately 2.5. Spontaneous emission measurements show that excited electronic states N2(C 3Π) and NO(A 2Σ) in air at P = 60 Torr decay within ~20 ns and ~1 µs, respectively. Kinetic modelling calculations incorporating air plasma kinetics complemented with the GRI Mech 3.0 hydrocarbon oxidation mechanism are compared with the experimental data using three different NO production mechanisms. It is found that NO concentration rise after the discharge pulse is much faster than predicted by Zel'dovich mechanism reactions, by two orders of magnitude, but much slower compared with reactions of electronically excited nitrogen atoms and molecules, also by two orders of magnitude. It is concluded that processes involving long lifetime (~100 µs) metastable states, such as N2(X 1Σ,v) and O2(b 1Σ), formed by quenching of the metastable N2(A 3Σ) state by ground electronic state O2, may play a dominant role in NO formation. NO decay, in all cases, is found to be dominated by the reverse Zel'dovich reaction, NO + O → N + O2, as well as by conversion into NO2 in a reaction of NO with ozone.

  19. A study of mercuric oxide and zinc-air battery life in hearing aids.

    PubMed

    Sparkes, C; Lacey, N K

    1997-09-01

    The requirement to phase out mercuric oxide (mercury) batteries on environmental grounds has led to the widespread introduction of zinc-air technology. The possibility arises that high drain hearing aids may not be adequately catered for by zinc-air cells, leading to poor performance. This study investigated the hearing aid user's ability to perceive differences between zinc-air and mercury cells in normal everyday usage. The data was collected for 100 experienced hearing aid users in field trials. Users report 50 per cent greater life for zinc-air cells in high power aids and 28 per cent in low power aids. The average life of the zinc-air cells range from 15 days in high power to 34 days in low power aids. Users are able to perceive a difference in sound quality in favour of zinc-air cells for low and medium power aids. The hearing aid population is not disadvantaged by phasing out mercury cells.

  20. Air-Impregnated Nanoporous Anodic Aluminum Oxide Layers for Enhancing the Corrosion Resistance of Aluminum.

    PubMed

    Jeong, Chanyoung; Lee, Junghoon; Sheppard, Keith; Choi, Chang-Hwan

    2015-10-13

    Nanoporous anodic aluminum oxide layers were fabricated on aluminum substrates with systematically varied pore diameters (20-80 nm) and oxide thicknesses (150-500 nm) by controlling the anodizing voltage and time and subsequent pore-widening process conditions. The porous nanostructures were then coated with a thin (only a couple of nanometers thick) Teflon film to make the surface hydrophobic and trap air in the pores. The corrosion resistance of the aluminum substrate was evaluated by a potentiodynamic polarization measurement in 3.5 wt % NaCl solution (saltwater). Results showed that the hydrophobic nanoporous anodic aluminum oxide layer significantly enhanced the corrosion resistance of the aluminum substrate compared to a hydrophilic oxide layer of the same nanostructures, to bare (nonanodized) aluminum with only a natural oxide layer on top, and to the latter coated with a thin Teflon film. The hydrophobic nanoporous anodic aluminum oxide layer with the largest pore diameter and the thickest oxide layer (i.e., the maximized air fraction) resulted in the best corrosion resistance with a corrosion inhibition efficiency of up to 99% for up to 7 days. The results demonstrate that the air impregnating the hydrophobic nanopores can effectively inhibit the penetration of corrosive media into the pores, leading to a significant improvement in corrosion resistance.

  1. Creep Performance of Oxide Ceramic Fiber Materials at Elevated Temperature in Air and in Steam

    DTIC Science & Technology

    2011-03-24

    performance in harsh environments are prime candidates for such applications . Oxide ceramic materials have been used as constituents in CMCs...since 1965, when the United States Air Force led the effort to bring high performance fiber composites to practical applications [26]. Today...bulk polycrystalline alumina cubes were performed in air and steam at 1100 and 1300°C. Both the bulk alumina and YAG specimens were processed in two

  2. Changes in young's modulus and electrical conductivity of nuclear grade graphites oxidized with air

    NASA Astrophysics Data System (ADS)

    Imai, Hisashi; Fujii, Kimio; Kurosawa, Takeshi; Nomura, Shinzo

    1983-10-01

    Five kinds of nuclear grade graphites were oxidized to study thermal oxidation effects on Young's modulus and electrical conductivity. The property changes were measured on specimens which were oxidized uniformly throughout their whole volume in the temperature range 500-600°C in air. The following relations were derived as a function of the bulk density of the graphites: E/ E0 = ( ρ/ ρ0) nE and R0/ R = ( ρ/ ρ0) nR, where E, R and ρ are Young's modulus, specific electrical resistivity and bulk density, respectively, and subscript zero refers to the initial unoxidized condition. The exponents nE and nR were found to be dependent on both the kind of graphite and the oxidation temperature, and the dependences were discussed in connection with selective oxidation in the graphite texture. It was also tried to relate the property changes with oxidation rate.

  3. Effect of Gadolinium Doping on the Air Oxidation of Uranium Dioxide

    SciTech Connect

    Scheele, Randall D.; Hanson, Brady D.; Cumblidge, Stephen E.; Jenson, Evan D.; Kozelisky, Anne E.; Sell, Rachel L.; MacFarlan, Paul J.; Snow, Lanee A.

    2004-12-04

    Researchers at the Pacific Northwest National Laboratory (PNNL) investigated the effects of gadolinia concentration on the air oxidization of gadolinia-doped uranium dioxide using thermogravimetry and differential scanning calorimetry to determine if such doping could improve uranium dioxide's stability as a nuclear fuel during potential accident scenarios in a nuclear reactor or during long-term disposal. We undertook this study to determine whether the resistance of the uranium dioxide to oxidation to the orthorhombic U3O8 with its attendant crystal expansion could be prevented by addition of gadolinia. Our studies found that gadolinium has little effect on the thermal initiation of the first step of the reported two-step air oxidation of UO2; however, increasing gadolinia content does stabilize the initial tetragonal or cubic product allowing significant oxidation before the second expansive step to U3O8 begins.

  4. Air quality criteria for ozone and other photochemical oxidants. External Review Draft No. 2. Volume 5

    SciTech Connect

    Horstman, D.H.; Horvath, S.M.; Raub, J.A.

    1985-11-01

    Scientific information is presented and evaluated relative to the health and welfare effects associated with exposure to ozone and other photochemical oxidants. Although not intended as a complete and detailed literature review, the document covers pertinent literature through early 1985. Data on health and welfare effects are emphasized, but additional information is provided for understanding the nature of the oxidant pollution problem and for evaluating the reliability of effects data as well as their relevance to potential exposures to ozone and other oxidants at concentrations occurring in ambient air. Information is presented on the following exposure-related topics: nature, source, measurement, and concentrations of precursors to ozone and other photochemical oxidants; formation of ozone and other photochemical oxidants and their transport once formed; properties, chemistry, and measurement of ozone and other photochemical oxidants; and concentrations of ozone and other photochemical oxidants typically found in ambient air. Chapters on health and welfare effects address the toxicological effects of ozone and other oxidants; effects observed in controlled human exposures; effects observed in field and epidemiological studies; effects on vegetation seen in field and controlled exposures; effects on natural and agroecosystems; and effects on nonbiological materials observed in field and chamber studies.

  5. Nano-textured copper oxide nanofibers for efficient air cooling

    NASA Astrophysics Data System (ADS)

    An, Seongpil; Jo, Hong Seok; Al-Deyab, Salem S.; Yarin, Alexander L.; Yoon, Sam S.

    2016-02-01

    Ever decreasing of microelectronics devices is challenged by overheating and demands an increase in heat removal rate. Herein, we fabricated highly efficient heat-removal coatings comprised of copper oxide-plated polymer nanofiber layers (thorny devil nanofibers) with high surface-to-volume ratio, which facilitate heat removal from the underlying hot surfaces. The electroplating time and voltage were optimized to form fiber layers with maximal heat removal rate. The copper oxide nanofibers with the thorny devil morphology yielded a superior cooling rate compared to the pure copper nanofibers with the smooth surface morphology. This superior cooling performance is attributed to the enhanced surface area of the thorny devil nanofibers. These nanofibers were characterized with scanning electron microscopy, X-ray diffraction, atomic force microscopy, and a thermographic camera.

  6. Effects of ambient oxidant air pollution in the San Joaquin Valley on Thompson seedless grapes

    SciTech Connect

    Brewer, R.F.; Ashcroft, R.

    1984-01-01

    Mature Thompson seedless grape vines were enclosed in specially constructed plastic covered chambers supplied with carbon filtered and non-filtered (ambient) air from time of bud break through leaf drop. Effects on vegetative growth and fruiting were determined for three seasons. No effects on fruit production were measured the first season after covering but vegetative growth increased 12% in chambers supplied with filtered air. By the third season fruit yields were 27.5% higher in the filtered as compared with ambient chambers. The only visible symptoms associated with exposure to the oxidants was accelerated senescence which appeared 3 weeks to 1 month earlier on vines receiving ambient or nonfiltered air.

  7. Solid oxide fuel cell power plant having a fixed contact oxidation catalyzed section of a multi-section cathode air heat exchanger

    DOEpatents

    Saito, Kazuo; Lin, Yao

    2015-02-17

    The multi-section cathode air heat exchanger (102) includes at least a first heat exchanger section (104), and a fixed contact oxidation catalyzed section (126) secured adjacent each other in a stack association. Cool cathode inlet air flows through cool air channels (110) of the at least first (104) and oxidation catalyzed sections (126). Hot anode exhaust flows through hot air channels (124) of the oxidation catalyzed section (126) and is combusted therein. The combusted anode exhaust then flows through hot air channels (112) of the first section (104) of the cathode air heat exchanger (102). The cool and hot air channels (110, 112) are secured in direct heat exchange relationship with each other so that temperatures of the heat exchanger (102) do not exceed 800.degree. C. to minimize requirements for using expensive, high-temperature alloys.

  8. Unusually high soil nitrogen oxide emissions influence air quality in a high-temperature agricultural region

    PubMed Central

    Oikawa, P. Y.; Ge, C.; Wang, J.; Eberwein, J. R.; Liang, L. L.; Allsman, L. A.; Grantz, D. A.; Jenerette, G. D.

    2015-01-01

    Fertilized soils have large potential for production of soil nitrogen oxide (NOx=NO+NO2), however these emissions are difficult to predict in high-temperature environments. Understanding these emissions may improve air quality modelling as NOx contributes to formation of tropospheric ozone (O3), a powerful air pollutant. Here we identify the environmental and management factors that regulate soil NOx emissions in a high-temperature agricultural region of California. We also investigate whether soil NOx emissions are capable of influencing regional air quality. We report some of the highest soil NOx emissions ever observed. Emissions vary nonlinearly with fertilization, temperature and soil moisture. We find that a regional air chemistry model often underestimates soil NOx emissions and NOx at the surface and in the troposphere. Adjusting the model to match NOx observations leads to elevated tropospheric O3. Our results suggest management can greatly reduce soil NOx emissions, thereby improving air quality. PMID:26556236

  9. Unusually high soil nitrogen oxide emissions influence air quality in a high-temperature agricultural region.

    PubMed

    Oikawa, P Y; Ge, C; Wang, J; Eberwein, J R; Liang, L L; Allsman, L A; Grantz, D A; Jenerette, G D

    2015-11-10

    Fertilized soils have large potential for production of soil nitrogen oxide (NOx=NO+NO2), however these emissions are difficult to predict in high-temperature environments. Understanding these emissions may improve air quality modelling as NOx contributes to formation of tropospheric ozone (O3), a powerful air pollutant. Here we identify the environmental and management factors that regulate soil NOx emissions in a high-temperature agricultural region of California. We also investigate whether soil NOx emissions are capable of influencing regional air quality. We report some of the highest soil NOx emissions ever observed. Emissions vary nonlinearly with fertilization, temperature and soil moisture. We find that a regional air chemistry model often underestimates soil NOx emissions and NOx at the surface and in the troposphere. Adjusting the model to match NOx observations leads to elevated tropospheric O3. Our results suggest management can greatly reduce soil NOx emissions, thereby improving air quality.

  10. Experimental Validation of Stratified Flow Phenomena, Graphite Oxidation, and Mitigation Strategies of Air Ingress Accidents

    SciTech Connect

    Chang Ho Oh; Eung Soo Kim; Hee Cheon No; Nam Zin Cho

    2008-12-01

    The US Department of Energy is performing research and development (R&D) that focuses on key phenomena that are important during challenging scenarios that may occur in the Next Generation Nuclear Plant (NGNP) Program / GEN-IV Very High Temperature Reactor (VHTR). Phenomena identification and ranking studies (PIRT) to date have identified the air ingress event, following on the heels of a VHTR depressurization, as very important (Schultz et al., 2006). Consequently, the development of advanced air ingress-related models and verification and validation (V&V) are very high priority for the NGNP program. Following a loss of coolant and system depressurization, air will enter the core through the break. Air ingress leads to oxidation of the in-core graphite structure and fuel. The oxidation will accelerate heat-up of the bottom reflector and the reactor core and will cause the release of fission products eventually. The potential collapse of the bottom reflector because of burn-off and the release of CO lead to serious safety problems. For estimation of the proper safety margin we need experimental data and tools, including accurate multi-dimensional thermal-hydraulic and reactor physics models, a burn-off model, and a fracture model. We also need to develop effective strategies to mitigate the effects of oxidation. The results from this research will provide crucial inputs to the INL NGNP/VHTR Methods R&D project. This project is focused on (a) analytical and experimental study of air ingress caused by density-driven, stratified, countercurrent flow, (b) advanced graphite oxidation experiments, (c) experimental study of burn-off in the bottom reflector, (d) structural tests of the burnt-off bottom reflector, (e) implementation of advanced models developed during the previous tasks into the GAMMA code, (f) full air ingress and oxidation mitigation analyses, (g) development of core neutronic models, (h) coupling of the core neutronic and thermal hydraulic models, and (i

  11. Soot Surface Oxidation in Laminar Hydrocarbon/Air Diffusion Flames at Atmospheric Pressure. Appendix I

    NASA Technical Reports Server (NTRS)

    Xu, F.; El-Leathy, A. M.; Kim, C. H.; Faeth, G. M.; Yuan, Z.-G. (Technical Monitor); Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)

    2003-01-01

    Soot surface oxidation was studied experimentally in laminar hydrocarbon/air diffusion flames at atmospheric pressure. Measurements were carried out along the axes of round fuel jets burning in coflowing dry air considering acetylene-nitrogen, ethylene, propyiene-nitrogen, propane and acetylene-benzene-nitrogen in the fuel stream. Measurements were limited to the initial stages of soot oxidation (carbon consumption less than 70%) where soot oxidation occurs at the surface of primary soot particles. The following properties were measured as a function of distance above the burner exit: soot concentrations by deconvoluted laser extinction, soot temperatures by deconvoluted multiline emission, soot structure by thermophoretic sampling and analysis using Transmission Electron Microscopy (TEM), concentrations of major stable gas species (N2, H2O, H2, O2, CO, CO2, CH4, C2H2, C2H6, C3H6, C3H8, and C6H6) by sampling and gas chromatography, concentrations of some radical species (H, OH, O) by deconvoluted Li/LiOH atomic absorption and flow velocities by laser velocimetry. For present test conditions, it was found that soot surface oxidation rates were not affected by fuel type, that direct rates of soot surface oxidation by O2 estimated from Nagle and Strickland-Constable (1962) were small compared to observed soot surface oxidation rates because soot surface oxidation was completed near the flame sheet where O2 concentrations were less than 3% by volume, and that soot surface oxidation rates were described by the OH soot surface oxidation mechanism with a collision efficiency of 0.14 and an uncertainty (95% confidence) of +/- 0.04 when allowing for direct soot surface oxidation by O2, which is in reasonably good agreement with earlier observations of soot surface oxidation rates in both premixed and diffusion flames at atmospheric pressure.

  12. Air

    MedlinePlus

    ... do to protect yourself from dirty air . Indoor air pollution and outdoor air pollution Air can be polluted indoors and it can ... this chart to see what things cause indoor air pollution and what things cause outdoor air pollution! Indoor ...

  13. Isothermal and cyclic oxidation of an air plasma-sprayed thermal barrier coating system

    SciTech Connect

    Haynes, J.A.; Ferber, M.K.; Porter, W.D.; Rigney, E.D.

    1996-08-01

    Thermogravimetric methods for evaluating bond coat oxidation in plasma-sprayed thermal barrier coating (TBC) systems were assessed by high-temperature testing of TBC systems with air plasma-sprayed (APS) Ni-22Cr-10Al-1Y bond coatings and yttria-stabilized zirconia top coatings. High-mass thermogravimetric analysis (at 1150{sup degrees}C) was used to measure bond coat oxidation kinetics. Furnace cycling was used to evaluate APS TBC durability. This paper describes the experimental methods and relative oxidation kinetics of the various specimen types. Characterization of the APS TBCs and their reaction products is discussed.

  14. COST ANALYSIS OF ACTIVATED CARBON VERSUS PHOTOCATALYTIC OXIDATION FOR REMOVING ORGANIC COMPOUNDS FROM INDOOR AIR

    EPA Science Inventory

    A cost comparison has been conducted of 1 m3/s indoor air cleaners using granular activated carbon (GAC) vs. photocatalytic oxidation (PCO) for treating a steady-state inlet volatile organic compound (VOC) concentration of 0.3 mg/m3. The commercial GAC unit was costed assuming t...

  15. IN VITRO CARDIOTOXICITY OF AIR POLLUTION PARTICLES: ROLE OF BIOAVAILABLE CONSTITUENTS, OXIDATIVE STRESS AND TYROSINE PHOSPHORYLATION

    EPA Science Inventory

    IN VITRO CARDIOTOXICITY OF AIR POLLUTION PARTICLES: ROLE OF BIOAVAILABLE CONSTITUENTS, OXIDATIVE STRESS AND TYROSINE PHOSPHORYLATION.

    T. L. Knuckles1 R. Jaskot2, J. Richards2, and K.Dreher2.
    1Department of Molecular and Biomedical Sciences, College of Veterinary Medicin...

  16. 78 FR 47253 - Approval and Promulgation of Air Quality Implementation Plans; Maine; Oxides of Nitrogen...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-05

    ... Nitrogen Exemption and Ozone Transport Region Restructuring AGENCY: Environmental Protection Agency (EPA... exemption from the nitrogen oxides (NO X ) emissions control requirements of the Clean Air Act (CAA or Act... from Stephen D. Page, Director, OAQPS, dated January 14, 2005, entitled ``Guidance on Limiting...

  17. Air Quality Criteria for Ozone and Related Photochemical Oxidants (First External Review Draft)

    EPA Science Inventory

    This first external review draft of the Air Quality Criteria for Ozone and Related Photochemical Oxidants (Ozone Criteria Document) is being released in January 2005 for public comment and for review by EPA's Clean A...

  18. AIR PARTICULATE POLLUTION EXPOSURE INDUCES SYSTEMIC OXIDATIVE STRESS IN HEALTHY MICE

    EPA Science Inventory

    Air particulate pollution exposure induces systemic oxidative stress in healthy mice

    Elizabeth S Roberts1 and Kevin L Dreher2. 1 College or Veterinary Medicine, NC State University, Raleigh, NC , 2US Environmental Protection Agency, NHEERL, RTP, NC

    Epidemiological s...

  19. OXIDATION OF CYCLOHEXANE WITH AIR CATALYZED BY A STERICALLY HINDERED IRON (II) COMPLEX

    EPA Science Inventory

    Oxidation of Cyclohexane with Air Catalyzed by a Sterically Hindered Iron(II) Complex.


    Thomas M. Becker, Michael A. Gonzalez*

    United States Environmental Protection Agency; National Risk Management Research Laboratory; Sustainable Technology Division; Clean Pr...

  20. Correlation between the microstructures of graphite oxides and their catalytic behaviors in air oxidation of benzyl alcohol.

    PubMed

    Geng, Longlong; Wu, Shujie; Zou, Yongcun; Jia, Mingjun; Zhang, Wenxiang; Yan, Wenfu; Liu, Gang

    2014-05-01

    A series of graphite oxide (GO) materials were obtained by thermal treatment of oxidized natural graphite powder at different temperatures (from 100 to 200 °C). The microstructure evolution (i.e., layer structure and surface functional groups) of the graphite oxide during the heating process is studied by various characterization means, including XRD, N2 adsorption, TG-DTA, in situ DRIFT, XPS, Raman, TEM and Boehm titration. The characterization results show that the structures of GO materials change gradually from multilayer sheets to a transparent ultrathin 2D structure of the carbon sheets. The concentration of surface COH and HOCO groups decrease significantly upon treating temperature increasing. Benzyl alcohol oxidation with air as oxidant source was carried out to detect the catalytic behaviors of different GO materials. The activities of GO materials decrease with the increase of treating temperatures. It shows that the structure properties, including ultrathin sheets and high specific surface area, are not crucial factors affecting the catalytic activity. The type and amount of surface oxygen-containing functional groups of GO materials tightly correlates with the catalytic performance. Carboxylic groups on the surface of GO should act as oxidative sites for benzyl alcohol and the reduced form could be reoxidized by molecular oxygen.

  1. Synthesis and characterization of carbon black/manganese oxide air cathodes for zinc-air batteries

    NASA Astrophysics Data System (ADS)

    Li, Po-Chieh; Hu, Chi-Chang; Lee, Tai-Chou; Chang, Wen-Sheng; Wang, Tsin Hai

    2014-12-01

    Due to the poor electric conductivity but the excellent catalytic ability for the oxygen reduction reaction (ORR), manganese dioxide in the α phase (denoted as α-MnO2) anchored onto carbon black powders (XC72) has been synthesized by the reflux method. The specific surface area and electric conductivity of the composites are generally enhanced by increasing the XC72 content while the high XC72 content will induce the formation of MnOOH which shows a worse ORR catalytic ability than α-MnO2. The ORR activity of such air cathodes have been optimized at the XC72/α-MnO2 ratio equal to 1 determined by the thermogravimetric analysis. By using this optimized cathode under the air atmosphere, the quasi-steady-state full-cell discharge voltages are equal to 1.353 and 1.178 V at 2 and 20 mA cm-2, respectively. Due to the usage of ambient air rather than pure oxygen, this Zn-air battery shows a modestly high discharge peak power density (67.51 mW cm-2) meanwhile the power density is equal to 47.22 mW cm-2 and the specific capacity is more than 750 mAh g-1 when this cell is operated at 1 V.

  2. Assessment of methanol electro-oxidation for direct methanol-air fuel cells

    SciTech Connect

    Fritts, S.D.; Sen, R.K.

    1988-07-01

    The Office of Energy Storage and Distribution of the US Department of Energy (DOE) supports the development of a methanol-air fuel cell for transportation application. The approach used at Los Alamos National Laboratory converts the methanol fuel to a hydrogen-rich gas in a reformer, then operates the fuel cell on hydrogen and air. The reformer tends to be bulky (raising vehicle packaging problems), has a long startup period, and is not well suited for the transient operation required in a vehicle. Methanol, however, can be oxidized electrochemically in the fuel cell. If this process can be conducted efficiently, a direct methanol-air fuel cell can be used, which does not require a reformer. The objective of this study is to assess the potential of developing a suitable catalyst for the direct electrochemical oxidation of methanol. The primary conclusion of this study is that no acceptable catalysts exist can efficiently oxidize methanol electrochemically and have the desired cost and lifetime for vehicle applications. However, recent progress in understanding the mechanism of methanol oxidation indicates that a predictive base can be developed to search for methanol oxidation catalysts and can be used to methodically develop improved catalysts. Such an approach is strongly recommended. The study also recommends that until further progress in developing high-performance catalysts is achieved, research in cell design and testing is not warranted. 43 refs., 12 figs., 1 tab.

  3. INVESTIGATION OF A NOVEL AIR BRAZING COMPOSITION FOR HIGH-TEMPERATURE, OXIDATION-RESISTANT CERAMIC JOINING

    SciTech Connect

    Weil, K. Scott; Hardy, John S.; Darsell, Jens T.

    2004-01-30

    One of the challenges in developing a useful ceramic joining technique is in producing a joint that offers good strength under high temperature and highly oxidizing operating conditions. Unfortunately many of the commercially available active metal ceramic brazing alloys exhibit oxidation behaviors which are unacceptable for use in a high temperature application. We have developed a new approach to ceramic brazing, referred to as air brazing, that employs an oxide wetting agent dissolved in a molten noble metal solvent, in this case CuO in Ag, such that acceptable wetting behavior occurs on a number of ceramic substrates. In an effort to explore how to increase the operating temperature of this type of braze, we have investigated the effect of ternary palladium additions on the wetting characteristics of our standard Ag-CuO air braze composition

  4. Impact of Air Pollutants on Oxidative Stress in Common Autophagy-Mediated Aging Diseases

    PubMed Central

    Numan, Mohamed Saber; Brown, Jacques P.; Michou, Laëtitia

    2015-01-01

    Atmospheric pollution-induced cellular oxidative stress is probably one of the pathogenic mechanisms involved in most of the common autophagy-mediated aging diseases, including neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS), Alzheimer’s, disease, as well as Paget’s disease of bone with or without frontotemporal dementia and inclusion body myopathy. Oxidative stress has serious damaging effects on the cellular contents: DNA, RNA, cellular proteins, and cellular organelles. Autophagy has a pivotal role in recycling these damaged non-functional organelles and misfolded or unfolded proteins. In this paper, we highlight, through a narrative review of the literature, that when autophagy processes are impaired during aging, in presence of cumulative air pollution-induced cellular oxidative stress and due to a direct effect on air pollutant, autophagy-mediated aging diseases may occur. PMID:25690002

  5. The EAACI/GA(2) LEN/EDF/WAO Guideline for the definition, classification, diagnosis, and management of urticaria: the 2013 revision and update.

    PubMed

    Zuberbier, T; Aberer, W; Asero, R; Bindslev-Jensen, C; Brzoza, Z; Canonica, G W; Church, M K; Ensina, L F; Giménez-Arnau, A; Godse, K; Gonçalo, M; Grattan, C; Hebert, J; Hide, M; Kaplan, A; Kapp, A; Abdul Latiff, A H; Mathelier-Fusade, P; Metz, M; Nast, A; Saini, S S; Sánchez-Borges, M; Schmid-Grendelmeier, P; Simons, F E R; Staubach, P; Sussman, G; Toubi, E; Vena, G A; Wedi, B; Zhu, X J; Maurer, M

    2014-07-01

    This guideline is the result of a systematic literature review using the 'Grading of Recommendations Assessment, Development and Evaluation' (GRADE) methodology and a structured consensus conference held on 28 and 29 November 2012, in Berlin. It is a joint initiative of the Dermatology Section of the European Academy of Allergy and Clinical Immunology (EAACI), the EU-funded network of excellence, the Global Allergy and Asthma European Network (GA(2) LEN), the European Dermatology Forum (EDF), and the World Allergy Organization (WAO) with the participation of delegates of 21 national and international societies. Urticaria is a frequent, mast cell-driven disease, presenting with wheals, angioedema, or both. The life-time prevalence for acute urticaria is approximately 20%. Chronic spontaneous urticaria and other chronic forms of urticaria do not only cause a decrease in quality of life, but also affect performance at work and school and, as such, are members of the group of severe allergic diseases. This guideline covers the definition and classification of urticaria, taking into account the recent progress in identifying its causes, eliciting factors and pathomechanisms. In addition, it outlines evidence-based diagnostic and therapeutic approaches for the different subtypes of urticaria. This guideline was acknowledged and accepted by the European Union of Medical Specialists (UEMS).

  6. Effect of naturally occurring ozone air pollution episodes on pulmonary oxidative stress and inflammation.

    PubMed

    Pirozzi, Cheryl; Sturrock, Anne; Weng, Hsin-Yi; Greene, Tom; Scholand, Mary Beth; Kanner, Richard; Paine, Robert

    2015-05-12

    This study aimed to determine if naturally occurring episodes of ozone air pollution in the Salt Lake Valley in Utah, USA, during the summer are associated with increased pulmonary inflammation and oxidative stress, increased respiratory symptoms, and decreased lung function in individuals with chronic obstructive pulmonary disease (COPD) compared to controls. We measured biomarkers (nitrite/nitrate (NOx), 8-isoprostane) in exhaled breath condensate (EBC), spirometry, and respiratory symptoms in 11 former smokers with moderate-to-severe COPD and nine former smokers without airflow obstruction during periods of low and high ozone air pollution. High ozone levels were associated with increased NOx in EBC in both COPD (8.7 (±8.5) vs. 28.6 (±17.6) μmol/L on clean air vs. pollution days, respectively, p < 0.01) and control participants (7.6 (±16.5) vs. 28.5 (±15.6) μmol/L on clean air vs. pollution days, respectively, p = 0.02). There was no difference in pollution effect between COPD and control groups, and no difference in EBC 8-isoprostane, pulmonary function, or respiratory symptoms between clean air and pollution days in either group. Former smokers both with and without airflow obstruction developed airway oxidative stress and inflammation in association with ozone air pollution episodes.

  7. Effect of Naturally Occurring Ozone Air Pollution Episodes on Pulmonary Oxidative Stress and Inflammation

    PubMed Central

    Pirozzi, Cheryl; Sturrock, Anne; Weng, Hsin-Yi; Greene, Tom; Scholand, Mary Beth; Kanner, Richard; Paine, Robert

    2015-01-01

    This study aimed to determine if naturally occurring episodes of ozone air pollution in the Salt Lake Valley in Utah, USA, during the summer are associated with increased pulmonary inflammation and oxidative stress, increased respiratory symptoms, and decreased lung function in individuals with chronic obstructive pulmonary disease (COPD) compared to controls. We measured biomarkers (nitrite/nitrate (NOx), 8-isoprostane) in exhaled breath condensate (EBC), spirometry, and respiratory symptoms in 11 former smokers with moderate-to-severe COPD and nine former smokers without airflow obstruction during periods of low and high ozone air pollution. High ozone levels were associated with increased NOx in EBC in both COPD (8.7 (±8.5) vs. 28.6 (±17.6) μmol/L on clean air vs. pollution days, respectively, p < 0.01) and control participants (7.6 (±16.5) vs. 28.5 (±15.6) μmol/L on clean air vs. pollution days, respectively, p = 0.02). There was no difference in pollution effect between COPD and control groups, and no difference in EBC 8-isoprostane, pulmonary function, or respiratory symptoms between clean air and pollution days in either group. Former smokers both with and without airflow obstruction developed airway oxidative stress and inflammation in association with ozone air pollution episodes. PMID:25985308

  8. Interim results from UO/sub 2/ fuel oxidation tests in air

    SciTech Connect

    Campbell, T.K.; Gilbert, E.R.; Thornhill, C.K.; White, G.D.; Piepel, G.F.; Griffin, C.W.j

    1987-08-01

    An experimental program is being conducted at Pacific Northwest Laboratory (PNL) to extend the characterization of spent fuel oxidation in air. To characterize oxidation behavior of irradiated UO/sub 2/, fuel oxidation tests were performed on declad light-water reactor spent fuel and nonirradited UO/sub 2/ pellets in the temperature range of 135 to 250/sup 0/C. These tests were designed to determine the important independent variables that might affect spent fuel oxidation behavior. The data from this program, when combined with the test results from other programs, will be used to develop recommended spent fuel dry-storage temperature limits in air. This report describes interim test results. The initial PNL investigations of nonirradiated and spent fuels identified the important testing variables as temperature, fuel burnup, radiolysis of the air, fuel microstructure, and moisture in the air. Based on these initial results, a more extensive statistically designed test matrix was developed to study the effects of temperature, burnup, and moisture on the oxidation behavior of spent fuel. Oxidation tests were initiated using both boiling-water reactor and pressurized-water reactor fuels from several different reactors with burnups from 8 to 34 GWd/MTU. A 10/sup 5/ R/h gamma field was applied to the test ovens to simulate dry storage cask conditions. Nonirradiated fuel was included as a control. This report describes experimental results from the initial tests on both the spent and nonirradiated fuels and results to date on the tests in a 10/sup 5/ R/h gamma field. 33 refs., 51 figs., 6 tabs.

  9. 40 CFR Appendix S to Part 50 - Interpretation of the Primary National Ambient Air Quality Standards for Oxides of Nitrogen...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Ambient Air Quality Standards for Oxides of Nitrogen (Nitrogen Dioxide) S Appendix S to Part 50 Protection... SECONDARY AMBIENT AIR QUALITY STANDARDS Pt. 50, App. S Appendix S to Part 50—Interpretation of the Primary... be submitted to EPA's Air Quality System (AQS), or otherwise available to EPA, meeting...

  10. Can Environmental Microbes Mobilize and Oxidize Arsenic from Shale into Groundwater?

    NASA Astrophysics Data System (ADS)

    Rhine, E.; Onesios, K. M.; Serfes, M. E.; Reinfelder, J. R.; Shu, W.; Young, L. Y.

    2007-12-01

    Elevated levels of arsenic are found in New Jersey well water in the Newark Basin where 15% of the wells tested exceed 10 μg/L, to a maximum of 215 μg/L. The source may be from the weathering of pyrite (FeS2) found in the black shale, which can contain up to 4% arsenic by weight. We hypothesize that microorganisms found in the environment can oxidize sulfide in the pyrite to release the bound arsenic, and in addition, that microbes can oxidize As(III) to As(V) to further enhance the mobilization of the arsenic released from the shale. To examine this, cultures were established with weathered black shale from an outcrop of the Newark Basin's Lockatong formation. A chemoautotrophic As(III)-oxidizer, strain WAO, was isolated, physiologically and phylogenetically characterized, and based on 16S rDNA sequence analysis it is most closely related to the genus Bosea. In the presence of the mineral arsenopyrite (FeAsS) strain WAO releases arsenic and sulfur with oxidation of stoichiometric amounts to arsenate and sulfate. Strain WAO also displays preferential colonization of the pyrite surface on sections of arsenic-bearing black shale from the Lockatong formation. These observations suggest that microbial mobilization can be a mechanism for arsenic release into groundwater in the Newark Basin and elsewhere as well.

  11. Air-broadened linewidths of nitrous oxide: An improved calculation

    NASA Astrophysics Data System (ADS)

    Lacome, Nelly; Levy, Armand; Boulet, Christian

    1983-01-01

    The semiclassical theory developed by Robert and Bonamy was used to obtain the linewidths of N 2O broadened by itself, by N 2 and by O 2. The main features of the formalism are as follows: (a) The anisotropic potential is expressed by using, besides the quadrupole-quadrupole contribution, an atom-atom interaction model (without any adjustable parameter) which takes both long- and short-range forces into account. (b) The geometry of the collision is described through the so-called "equivalent" straight path, more appropriate than the usual one. (c) The matrix elements of the relaxation operator are computed by means of the linked-cluster theorem, so that the treatment remains nonperturbative and no resort to cutoff precedures is needed. In addition to being more realistic the present formalism has the advantage of making the computation tractable for complex molecular systems such as linear-linear ones. Careful comparison was made with the available experimental results. For self-broadened N 2O very satisfactory agreement is obtained both at 300 and 204 K. This is also the case for nitrogen broadening at room temperature. Regarding oxygen-broadened linewidths, very few experimental data exist. Anyway, the present results reveal substantial improvement as compared to the usual calculations based upon Anderson-Tsao-Curnutte model. From these results a predictive tabulation was obtained for the values of air-broadened N 2O linewidths at 300 and 204 K.

  12. Synthesis and characterization of carbon black/manganese oxide air cathodes for zinc-air batteries: Effects of the crystalline structure of manganese oxides

    NASA Astrophysics Data System (ADS)

    Li, Po-Chieh; Hu, Chi-Chang; Noda, Hiroyuki; Habazaki, Hiroki

    2015-12-01

    Manganese oxides (MnOx) in α-, β-, γ-, δ-MnO2 phases, Mn3O4, Mn2O3, and MnOOH are synthesized for systematically comparing their electrocatalytic activity of the oxygen reduction reaction (ORR) in the Zn-air battery application. The optimal MnOx/XC-72 mass ratio for the ORR is equal to 1 and the oxide crystalline structure effect on the ORR is compared. The order of composites with respect to decreasing the ORR activity is: α-MnO2/XC-72 > γ-MnO2/XC-72 > β-MnO2/XC-72 > δ-MnO2/XC-72 > Mn2O3/XC-72 > Mn3O4/XC-72 > MnOOH/XC-72. The textural properties of MnOx are investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), N2 adsorption/desorption isotherms with Brunauer-Emmett-Teller (BET) analysis, X-ray diffraction (XRD), and thermogravimetric analysis (TGA). Electrochemical studies include linear sweep voltammetry (LSV), rotating ring-disk electrode (RRDE) voltammetry, and the full-cell discharge test. The discharge peak power density of Zn-air batteries varies from 61.5 mW cm-2 (α-MnO2/XC-72) to 47.1 mW cm-2 (Mn3O4/XC-72). The maximum peak power density is 102 mW cm-2 for the Zn-air battery with an air cathode containing α-MnO2/XC-72 under an oxygen atmosphere when the carbon paper is 10AA. The specific capacity of all full-cell tests is higher than 750 mAh g-1 at all discharge current densities.

  13. Uranium Metal to Oxide Conversion by Air Oxidation –Process Development

    SciTech Connect

    Duncan, A

    2001-12-31

    Published technical information for the process of metal-to-oxide conversion of uranium components has been reviewed and summarized for the purpose of supporting critical decisions for new processes and facilities for the Y-12 National Security Complex. The science of uranium oxidation under low, intermediate, and high temperature conditions is reviewed. A process and system concept is outlined and process parameters identified for uranium oxide production rates. Recommendations for additional investigations to support a conceptual design of a new facility are outlined.

  14. Soot Oxidation in Hydrocarbon/Air Diffusion Flames at Atmospheric Pressure. Appendix K

    NASA Technical Reports Server (NTRS)

    Xu, F.; El-Leathy, A. M.; Faeth, G. M.; Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)

    2001-01-01

    Soot oxidation was studied experimentally in laminar hydrocarbon/air diffusion flames at atmospheric pressure. Measurements were carried out along the axes of round jets burning in coflowing air considering acetylene, ethylene, propylene and propane as fuels. Measurements were limited to the initial stages of soot oxidation (carbon consumption less than 70%) where soot oxidation mainly occurs at the surface of primary soot particles. The following properties were measured as a function of distance above the burner exit: soot concentrations by deconvoluted laser extinction, soot temperatures by deconvoluted multiline emission, soot structure by thermophoretic sampling and analysis using Transmission Electron Microscopy (TEM), concentrations of stable major gas species (N2, H2O, H2, O2, CO, CO2, CH4, C2H2,C2H4, C2H6, C3H6, and C3H8) by sampling and gas chromatography, concentrations of some radical species (H, OH, O) by the deconvoluted Li/LiOH atomic absorption technique and flow velocities by laser velocimetry. It was found that soot surface oxidation rates are not particularly affected by fuel type for laminar diffusion flames and are described reasonably well by the OH surface oxidation mechanism with a collision efficiency of 0.10, (standard deviation of 0.07) with no significant effect of fuel type in this behavior; these findings are in good agreement with the classical laminar premixed flame measurements of Neoh et al. Finally, direct rates of surface oxidation by O2 were small compared to OH oxidation for present conditions, based on estimated O2 oxidation rates due to Nagle and Strickland-Constable (1962), because soot oxidation was completed near the flame sheet where O2 concentrations were less than 1.2% by volume.

  15. Soot Oxidation in Laminar Hydrocarbon/Air Diffusion Flames at Atmospheric Pressure. Appendix D

    NASA Technical Reports Server (NTRS)

    Xu, F.; El-Leathy, A. M.; Faeth, G. M.

    2000-01-01

    Soot oxidation was studied experimentally in laminar hydrocarbon/air diffusion flames at atmospheric pressure. Measurements were carried out along the axes of round jets burning in coflowing air considering acetylene, ethylene, proplyene and propane as fuels. Measurements were limited to the initial stages of soot oxidation (carbon consumption less than 70%) where soot oxidation mainly occurs at the surface of primary soot particles. The following properties were measured as a function of distance above the burner exit: soot concentrations by deconvoluted laser extinction, soot temperatures by deconvoluted multiline emission, soot structure by thermophoretic sampling and analysis using Transmission Electron Microscopy (TEM), concentrations of stable major gas species (N2, H2O, H2, 02, CO, CO2, CH4, C2H2, C2H4, C2H6, C3H6, and C3H8) by sampling and gas chromatography, concentrations of some radical species (H, OH, O) by the deconvoluted Li/LiOH atomic absorption technique and flow velocities by laser velocimetry. It was found that soot surface oxidation rates are not particularly affected by fuel type for laminar diffusion flames and are described reasonably well by the OH surface oxidation mechanism with a collision efficiency of 0.10, (standard deviation of 0.07) with no significant effect of fuel type in this behavior; these findings are in good agreement with the classical laminar premixed flame measurements of Neoh et al. Finally, direct rates of surface oxidation by O2 were small compared to OH oxidation for present conditions, based on estimated O2 oxidation rates due to Nagle and Strickland-Constable, because soot oxidation was completed near the flame sheet where O2 concentrations were less than 1.2% by volume.

  16. Conversion and Estrogenicity of 17β-estradiol During Photolytic/Photocatalytic Oxidation and Catalytic Wet-air Oxidation.

    PubMed

    Bistan, Mirjana; Tišler, Tatjana; Pintar, Albin

    2012-06-01

    Estrogen 17β-estradiol (E2), produced by human body and excreted into municipal wastewaters, belongs to the group of endocrine disrupting compounds that are resistant to biological degradation. The aim of this study was to assess the efficiency of E2 removal from aqueous solutions by means of catalytic wet-air oxidation (CWAO) and photolytic/photocatalytic oxidation. CWAO experiments were conducted in a trickle-bed reactor at temperatures up to 230 °C and oxygen partial pressure of 10 bar over TiO2 and Ru/TiO2 solids. Photolytic/photocatalytic oxidation was carried out in a batch slurry reactor employing a TiO2 P-25 (Degussa) catalyst under visible or UV light. HPLC analysis and yeast estrogen screen assay were used to evaluate the removal of E2 and estrogenicity of treated samples. The latter was completely removed during photolytic/photocatalytic oxidation under UV (365 nm) light and photocatalytic oxidation under visible light. In CWAO experiments, complete removal of both E2 and estrogenicity from the feed solution were noticed in the presence of TiO2 and Ru/TiO2 catalysts.

  17. Improving abiotic reducing ability of hydrothermal biochar by low temperature oxidation under air.

    PubMed

    Xu, Yunfeng; Lou, Zhenjun; Yi, Peng; Chen, Junyu; Ma, Xianlong; Wang, Yang; Li, Mi; Chen, Wen; Liu, Qiang; Zhou, Jizhi; Zhang, Jia; Qian, Guangren

    2014-11-01

    Oxidized hydrothermal biochar was prepared by hydrothermal carbonization of Spartina alterniflora biomass (240°C for 4h) and subsequent oxidization (240°C for 10min) under air. Oxidized hydrochar achieved a Fe(III) reducing capacity of 2.15mmol/g at pH 2.0 with 120h, which is 1.2 times higher than un-oxidized hydrochar. Low temperature oxidization increases the contents of carboxyl and carbonyl groups on hydrochar surface. It is supposed that carboxyl groups provide bonding sites for soluble Fe species and carbonyl groups are responsible for Fe(3+) reduction. A Fenton-like process was established with Fe(2+) replaced by oxidized hydrochar and tested for methylene blue (MB) decoloration. Oxidized hydrochar achieved a MB decolorization (200mg/L, pH 7.0) rate of 99.21% within 3h and demonstrates prominent prevail over H2O2 absent control test. This study reveals low temperature oxidization is an effective way to improve and restore abiotic reducing ability of hydrochar.

  18. 76 FR 59599 - Extension of Comment Period for Secondary National Ambient Air Quality Standards for Oxides of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-27

    ... Quality Standards for Oxides of Nitrogen and Sulfur AGENCY: Environmental Protection Agency (EPA). ACTION... comment period for the Secondary National Ambient Air Quality Standards for Oxides of Nitrogen and Sulfur... Standards for Oxides of Nitrogen and Sulfur'' proposed rule should be addressed to Rich Scheffe, U.S....

  19. Surface-catalyzed air oxidation reactions of hydrazines: Tubular reactor studies

    NASA Technical Reports Server (NTRS)

    Kilduff, Jan E.; Davis, Dennis D.; Koontz, Steven L.

    1988-01-01

    The surface-catalyzed air oxidation reactions of hydrazine, monomethylhydrazine, unsymmetrical dimethylhydrazine, symmetrical dimethylhydrazine, trimethylhydrazine and tetramethylhydrazine were investigated in a metal-powder packed turbular flow reactor at 55 plus or minus 3 C. Hydrazine was completely reacted on all surfaces studied. The major products of monomethylhydrazine (MMH) oxidation were methanol, methane and methyldiazene. The di-, tri- and tetra-methyl hydrazines were essentially unreactive under these conditions. The relative catalytic reactivities toward MMH are: Fe greater than Al2O3 greater than Ti greater than Zn greater than 316 SS greater than Cr greater than Ni greater than Al greater than 304L SS. A kinetic scheme and mechanism involving adsorption, oxidative dehydrogenation and reductive elimination reactions on a metal oxide surface are proposed.

  20. Heterogeneous catalytic wet air oxidation of refractory organic pollutants in industrial wastewaters: a review.

    PubMed

    Kim, Kyoung-Hun; Ihm, Son-Ki

    2011-02-15

    Catalytic wet air oxidation (CWAO) is one of the most economical and environmental-friendly advanced oxidation process. It makes a promising technology for the treatment of refractory organic pollutants in industrial wastewaters. Various heterogeneous catalysts including noble metals and metal oxides have been extensively studied to enhance the efficiency of CWAO. The present review is concerned about the literatures published in this regard. Phenolics, carboxylic acids, and nitrogen-containing compounds were taken as model pollutants in most cases, and noble metals such as Ru, Rh, Pd, Ir, and Pt as well as oxides of Cr, Mn, Fe, Co, Ni, Cu, Zn, Mo, and Ce were applied as heterogeneous catalysts. Reports on their characterization and catalytic performances for the CWAO of aqueous pollutants are reviewed. Discussions are also made on the reaction mechanisms and kinetics proposed for heterogeneous CWAO and also on the typical catalyst deactivations in heterogeneous CWAO, i.e. carbonaceous deposits and metal leaching.

  1. Air Oxidation Behavior of Two Ti-Base Alloys Synthesized by HIP

    NASA Astrophysics Data System (ADS)

    Liu, S.; Guo, Q. Q.; Liu, L. L.; Xu, L.; Liu, Y. Y.

    2016-04-01

    The oxidation behavior of Ti-5Al-2.5Sn and Ti-6Al-4V produced by hot isostatic pressing (HIP) has been studied at 650-850°C in air for 24 h. The oxidation kinetics of both alloys followed the parabolic law with good approximation, except for Ti-5Al-2.5Sn oxidized at 850°C. Multi-layered scales formed on both alloys at 750°C and 850°C. Ternary additions of Sn and V accounted for the different morphology of the scales formed on these two alloys. In addition, the oxidation behavior of HIP alloys is compared with that of the corresponding cast alloys and the scaling mechanism is discussed.

  2. The Measurement of Fuel-air Ratio by Analysis of the Oxidized Exhaust Gas

    NASA Technical Reports Server (NTRS)

    Memm, J. Lawrence, Jr.

    1943-01-01

    An investigation was made to determine a method of measuring fuel-air ratio that could be used for test purposes in flight and for checking conventional equipment in the laboratory. Two single-cylinder test engines equipped with typical commercial engine cylinders were used. The fuel-air ratio of the mixture delivered to the engines was determined by direct measurement of the quantity of air and of fuel supplied and also by analysis of the oxidized exhaust gas and of the normal exhaust gas. Five fuels were used: gasoline that complied with Army-Navy Fuel Specification, No. AN-VV-F-781 and four mixtures of this gasoline with toluene, benzene, and xylene. The method of determining the fuel-air ratio described in this report involves the measurement of the carbon-dioxide content of the oxidized exhaust gas and the use of graphs or the presented equation. This method is considered useful in aircraft, in the field, or in the laboratory for a range of fuel-air ratios from 0.047 to 0.124

  3. The Measurement of Fuel-Air Ratio by Analysis for the Oxidized Exhaust Gas

    NASA Technical Reports Server (NTRS)

    Gerrish, Harold C.; Meem, J. Lawrence, Jr.

    1943-01-01

    An investigation was made to determine a method of measuring fuel-air ratio that could be used for test purposes in flight and for checking conventional equipment in the laboratory. Two single-cylinder test engines equipped with typical commercial engine cylinders were used. The fuel-air ratio of the mixture delivered to the engines was determined by direct measurement of the quantity of air and of fuel supplied and also by analysis of the oxidized exhaust gas and of the normal exhaust gas. Five fuels were used: gasoline that complied with Army-Navy fuel Specification No. AN-VV-F-781 and four mixtures of this gasoline with toluene, benzene, and xylene. The method of determining the fuel-air ratio described in this report involves the measurement of the carbon-dioxide content of the oxidized exhaust gas and the use of graphs for the presented equation. This method is considered useful in aircraft, in the field, or in the laboratory for a range of fuel-air ratios from 0.047 to 0.124.

  4. Methods to protect and recover work function of air exposed transition metal oxide thin films

    NASA Astrophysics Data System (ADS)

    Irfan, Irfan; Wang, Chenggong; Turinske, Alexander J.; Gao, Yongli

    2012-09-01

    Insertion of high work function (WF) transition metal oxide (TMO) layers between the anode and the hole transport layer is established to substantially enhance the performance of organic light emitting diodes (OLED). The high WF of transition metal oxide layer has been demonstrated to be the most crucial for the enhancement. The WF of a TMO layer decreases substantially with air exposure, and noticeably by the ambient even inside a low vacuum system. In the present work we discuss various methods to protect and recover the high WF after a TMO thin film has been exposed to air. We report covering a thin organic layer on top of MoOx to protect the high work function. We found that a thin layer of 1-2 nm organic layer was sufficient to protect the work function of MoOx thin film underneath. We further report methods to recover already decreased TMO WF due to air exposure. We performed oxygen plasma cleaning of air exposed MoOx film and found out that oxygen plasma could substantially recover the WF of as deposited MoOx film. We also performed annealing of air exposed MoOx film inside an ultra high vacuum system and observed a thin layer of oxygenrich adsorbate layer, which desorbed upon annealing that in turn substantially recovered the MoOx WF. We discuss the vacuum annealing and the effect of resulting surface on the interface energy level alignment.

  5. Neuropeptide Y (NPY) modulates oxidative burst and nitric oxide production in carrageenan-elicited granulocytes from rat air pouch.

    PubMed

    Dimitrijević, Mirjana; Stanojević, Stanislava; Mićić, Stana; Vujić, Vesna; Kovacević-Jovanović, Vesna; Mitić, Katarina; von Hörsten, Stephan; Kosec, Dusko

    2006-12-01

    We studied the effects of neuropeptide Y (NPY) and NPY-related receptor specific peptides on functions of carrageenan-elicited granulocytes in vitro and ability of NPY to modulate carrageenan-induced air pouch inflammation in rats in vivo. Anti-inflammatory effect of NPY comprises reduced granulocyte accumulation into the air pouch, to some extent attenuation of phagocytosis, attained via Y1 receptor, and considerable decrease in peroxide production, albeit mediated via Y2 and Y5 receptors activation. Conversely, NPY increases nitric oxide production and this potentiation is mediated via Y1 receptor. It is concluded that NPY Y1 and Y2/Y5 receptors' interaction participates in NPY-induced modulation of granulocyte functions related to inflammation.

  6. 40 CFR Appendix T to Part 50 - Interpretation of the Primary National Ambient Air Quality Standards for Oxides of Sulfur (Sulfur...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Ambient Air Quality Standards for Oxides of Sulfur (Sulfur Dioxide) T Appendix T to Part 50 Protection of... Ambient Air Quality Standards for Oxides of Sulfur (Sulfur Dioxide) 1. General (a) This appendix explains... ambient air quality standards for Oxides of Sulfur as measured by Sulfur Dioxide (“SO2 NAAQS”)...

  7. 40 CFR Appendix T to Part 50 - Interpretation of the Primary National Ambient Air Quality Standards for Oxides of Sulfur (Sulfur...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Ambient Air Quality Standards for Oxides of Sulfur (Sulfur Dioxide) T Appendix T to Part 50 Protection of... Ambient Air Quality Standards for Oxides of Sulfur (Sulfur Dioxide) 1. General (a) This appendix explains... ambient air quality standards for Oxides of Sulfur as measured by Sulfur Dioxide (“SO2 NAAQS”)...

  8. 40 CFR Appendix T to Part 50 - Interpretation of the Primary National Ambient Air Quality Standards for Oxides of Sulfur (Sulfur...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Ambient Air Quality Standards for Oxides of Sulfur (Sulfur Dioxide) T Appendix T to Part 50 Protection of... Ambient Air Quality Standards for Oxides of Sulfur (Sulfur Dioxide) 1. General (a) This appendix explains... ambient air quality standards for Oxides of Sulfur as measured by Sulfur Dioxide (“SO2 NAAQS”)...

  9. 40 CFR Appendix T to Part 50 - Interpretation of the Primary National Ambient Air Quality Standards for Oxides of Sulfur (Sulfur...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Ambient Air Quality Standards for Oxides of Sulfur (Sulfur Dioxide) T Appendix T to Part 50 Protection of... Ambient Air Quality Standards for Oxides of Sulfur (Sulfur Dioxide) 1. General (a) This appendix explains... ambient air quality standards for Oxides of Sulfur as measured by Sulfur Dioxide (“SO2 NAAQS”)...

  10. 40 CFR Appendix T to Part 50 - Interpretation of the Primary National Ambient Air Quality Standards for Oxides of Sulfur (Sulfur...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Ambient Air Quality Standards for Oxides of Sulfur (Sulfur Dioxide) T Appendix T to Part 50 Protection of... Ambient Air Quality Standards for Oxides of Sulfur (Sulfur Dioxide) 1. General (a) This appendix explains... ambient air quality standards for Oxides of Sulfur as measured by Sulfur Dioxide (“SO2 NAAQS”)...

  11. Oxidation of spent fuel in air at 175{degree} to 195{degree}C

    SciTech Connect

    Einziger, R.E.; Buchanan, H.C.; Thomas, L.E.; Stout, R.B.

    1992-04-01

    Oxidation tests in dry air were conducted on four LWR spent fuels at 175{degrees} and 195{degrees}C to determine the effect of the fuel characteristics on the oxidation state likely to exist at the time leaching occurs in a potential repository. Weight changes were measured and samples were examined by XRD, ceramography, TEM, and TGA. Despite local variations in the grain boundary susceptibility to oxidation, all four fuels progressed toward an apparent endpoint at an oxygen-to-metal (O/M) ratio of 2.4. The sole oxidation product was U{sub 4}O{sub 9+x,} a cubic phase structurally related to UO{sub 2} but with a slightly smaller lattice constant. The growth of the U{sub 4}O{sub 9+x} from the grain boundaries into the UO{sub 2} grains followed parabolic kinetics and had an activation energy of 26.6 kcal/mol. Based on the kinetics, the time required at 95{degrees}C to completely oxidize LWR spent fuel to U{sub 4}O{sub 9+x} would be at least 2000 yr. The next oxidation product to form after the U{sub 4}O{sub 9+x} phase may be U{sub 3}O{sub 8,} but no U{sub 3}O{sub 8} or other dilatational oxidation product has been detected in these accelerated tests conducted up to 25,000 h.

  12. Oxidation of spent fuel in air at 175 degree to 195 degree C

    SciTech Connect

    Einziger, R.E.; Buchanan, H.C.; Thomas, L.E. ); Stout, R.B. )

    1992-04-01

    Oxidation tests in dry air were conducted on four LWR spent fuels at 175{degrees} and 195{degrees}C to determine the effect of the fuel characteristics on the oxidation state likely to exist at the time leaching occurs in a potential repository. Weight changes were measured and samples were examined by XRD, ceramography, TEM, and TGA. Despite local variations in the grain boundary susceptibility to oxidation, all four fuels progressed toward an apparent endpoint at an oxygen-to-metal (O/M) ratio of 2.4. The sole oxidation product was U{sub 4}O{sub 9+x,} a cubic phase structurally related to UO{sub 2} but with a slightly smaller lattice constant. The growth of the U{sub 4}O{sub 9+x} from the grain boundaries into the UO{sub 2} grains followed parabolic kinetics and had an activation energy of 26.6 kcal/mol. Based on the kinetics, the time required at 95{degrees}C to completely oxidize LWR spent fuel to U{sub 4}O{sub 9+x} would be at least 2000 yr. The next oxidation product to form after the U{sub 4}O{sub 9+x} phase may be U{sub 3}O{sub 8,} but no U{sub 3}O{sub 8} or other dilatational oxidation product has been detected in these accelerated tests conducted up to 25,000 h.

  13. Using advanced oxidation treatment for biofilm inactivation by varying water vapor content in air plasma

    NASA Astrophysics Data System (ADS)

    Ryota, Suganuma; Koichi, Yasuoka

    2015-09-01

    Biofilms are caused by environmental degradation in food factories and medical facilities. The inactivation of biofilms involves making them react with chemicals including chlorine, hydrogen peroxide, and ozone, although inactivation using chemicals has a potential problem because of the hazardous properties of the residual substance and hydrogen peroxide, which have slow reaction velocity. We successfully performed an advanced oxidation process (AOP) using air plasma. Hydrogen peroxide and ozone, which were used for the formation of OH radicals in our experiment, were generated by varying the amount of water vapor supplied to the plasma. By varying the content of the water included in the air, the main product was changed from air plasma. When we increased the water content in the air, hydrogen peroxide was produced, while ozone peroxide was produced when we decreased the water content in the air. By varying the amount of water vapor, we realized a 99.9% reduction in the amount of bacteria in the biofilm when we discharged humidified air only. This work was supported by JSPS KAKENHI Grant Number 25630104.

  14. Amine-Oxide Hybrid Materials for CO2 Capture from Ambient Air.

    PubMed

    Didas, Stephanie A; Choi, Sunho; Chaikittisilp, Watcharop; Jones, Christopher W

    2015-10-20

    Oxide supports functionalized with amine moieties have been used for decades as catalysts and chromatographic media. Owing to the recognized impact of atmospheric CO2 on global climate change, the study of the use of amine-oxide hybrid materials as CO2 sorbents has exploded in the past decade. While the majority of the work has concerned separation of CO2 from dilute mixtures such as flue gas from coal-fired power plants, it has been recognized by us and others that such supported amine materials are also perhaps uniquely suited to extract CO2 from ultradilute gas mixtures, such as ambient air. As unique, low temperature chemisorbents, they can operate under ambient conditions, spontaneously extracting CO2 from ambient air, while being regenerated under mild conditions using heat or the combination of heat and vacuum. This Account describes the evolution of our activities on the design of amine-functionalized silica materials for catalysis to the design, characterization, and utilization of these materials in CO2 separations. New materials developed in our laboratory, such as hyperbranched aminosilica materials, and previously known amine-oxide hybrid compositions, have been extensively studied for CO2 extraction from simulated ambient air (400 ppm of CO2). The role of amine type and structure (molecular, polymeric), support type and structure, the stability of the various compositions under simulated operating conditions, and the nature of the adsorbed CO2 have been investigated in detail. The requirements for an effective, practical air capture process have been outlined and the ability of amine-oxide hybrid materials to meet these needs has been discussed. Ultimately, the practicality of such a "direct air capture" process is predicated not only on the physicochemical properties of the sorbent, but also how the sorbent operates in a practical process that offers a scalable gas-solid contacting strategy. In this regard, the utility of low pressure drop monolith

  15. Secondary organic aerosol formation from photo-oxidation of toluene with NOx and SO2: Chamber simulation with purified air versus urban ambient air as matrix

    NASA Astrophysics Data System (ADS)

    Deng, Wei; Liu, Tengyu; Zhang, Yanli; Situ, Shuping; Hu, Qihou; He, Quanfu; Zhang, Zhou; Lü, Sujun; Bi, Xinhui; Wang, Xuemei; Boreave, Antoinette; George, Christian; Ding, Xiang; Wang, Xinming

    2017-02-01

    Chamber studies on the formation of secondary aerosols are mostly performed with purified air as matrix, it is of wide concern in what extent they might be different from the situations in ambient air, where a variety of gaseous and particulate components preexist. Here we compared the photo-oxidation of "toluene + NOx + SO2" combinations in a smog chamber in real urban ambient air matrix with that in purified air matrix. The secondary organic aerosols (SOA) mass concentrations and yields from toluene in the ambient air matrix, after subtracted ambient air background primary and secondary organic aerosols, were 9.0-34.0 and 5.6-12.9 times, respectively, greater than those in purified air matrix. Both homogeneous and heterogeneous oxidation of SO2 were enhanced in ambient air matrix experiments with observed 2.0-7.5 times higher SO2 degradation rates and 2.6-6.8 times faster sulfate formation than that in purified air matrix, resulting in higher in-situ particle acidity and consequently promoting acid-catalyzed SOA formation. In the ambient air experiments although averaged OH radical levels were elevated probably due to heterogeneous formation of OH on particle surface and/or ozonolysis of alkenes, non-OH oxidation pathways of SO2 became even more dominating. Under the same organic aerosol mass concentration, the SOA yields of toluene in purified air matrix experiments matched very well with the two-product model curve by Ng et al. (2007), yet the yields in ambient air on average was over two times larger. The results however were much near the best fit curve by Hildebrandt et al. (2009) with the volatility basis set (VBS) approach.

  16. The degradation of Isophorone by catalytic wet air oxidation on Ru/TiZrO4.

    PubMed

    Wei, Huangzhao; Yan, Xiaomiao; Li, Xianru; He, Songbo; Sun, Chenglin

    2013-01-15

    The catalyst Ru/TiZrO(4) was applied in the degradation of Isophorone by catalytic wet air oxidation. Mathematical models for the effects of reaction conditions on the Isophorone degradation by catalytic wet air oxidation were developed using a response surface methodology. A model was obtained for each response with multiple regression analysis and then was refined. Analysis of variance revealed that the models developed were adequate. The validity of the models was also verified by experimental data. Analysis of response surface showed that total organic carbon removal and Isophorone conversion were significantly affected (P≤0.01) by reaction time, temperature and their interactions, and affected (P≤0.05) by the square of reaction time. The point of zero charge of Ru/TiZrO(4) catalyst was about 1.72. The total organic carbon removal and Isophorone conversion had a great association with the zeta potential of Ru/TiZrO(4) catalyst. Finally, the degradation pathway of Isophorone in catalytic wet air oxidation was proposed. Within 410 h, the total organic carbon removal remained above 95%, indicating that the Ru/TiZrO(4) catalyst had a good stability.

  17. Formation and growth of indoor air aerosol particles as a result of D-limonene oxidation

    NASA Astrophysics Data System (ADS)

    Vartiainen, E.; Kulmala, M.; Ruuskanen, T. M.; Taipale, R.; Rinne, J.; Vehkamäki, H.

    Oxidation of D-limonene, which is a common monoterpene, can lead to new aerosol particle formation in indoor environments. Thus, products containing D-limonene, such as citrus fruits, air refresheners, household cleaning agents, and waxes, can act as indoor air aerosol particle sources. We released D-limonene into the room air by peeling oranges and measured the concentration of aerosol particles of three different size ranges. In addition, we measured the concentration of D-limonene, the oxidant, and the concentration of ozone, the oxidizing gas. Based on the measurements we calculated the growth rate of the small aerosol particles, which were 3-10 nm in diameter, to be about 6300nmh-1, and the losses of the aerosol particles that were due to the coagulation and condensation processes. From these, we further approximated the concentration of the condensable vapour and its source rate and then calculated the formation rate of the small aerosol particles. For the final result, we calculated the nucleation rate and the maximum number of molecules in a critical cluster. The nucleation rate was in the order of 105cm-3s-1 and the number of molecules in a critical-sized cluster became 1.2. The results were in agreement with the activation theory.

  18. Oxidative stress and air pollution exposure during pregnancy: A molecular assessment.

    PubMed

    Nagiah, S; Phulukdaree, A; Naidoo, D; Ramcharan, K; Naidoo, R N; Moodley, D; Chuturgoon, A

    2015-08-01

    Chronic air pollution exposure during pregnancy can cause oxidative stress leading to adverse birth outcomes. The aim of this study was to assess and compare oxidative stress response in peripheral lymphocytes isolated from pregnant women from a highly industrialized locale (south Durban (SD); n = 50) and a control with lower air pollutant levels (north Durban (ND); n = 50). Oxidative stress response was measured by quantifying malondialdehyde (MDA) levels and a SuperArray gene panel. Mitochondrial function (adenosine triphosphate (ATP) levels and mitochondrial depolarization), DNA integrity (comet assay and mitochondrial DNA (mtDNA) viability) and DNA repair (OGG1) were assessed. Antioxidant response was assessed by quantification of glutathione (GSH) and SOD2, nuclear factor erythroid 2-related factor 2 (Nrf2) and uncoupling protein 2 (UCP2) protein and messenger RNA (mRNA) expression. Levels of MDA (p = 0.9), mitochondrial depolarization (p = 0.88), ATP (1.89-fold), SOD2 (1.23-fold) and UCP2 (1.58-fold) gene expression were elevated in the SD group with significantly higher UCP2 protein levels (p = 0.05) and longer comet tail length (p = 0.0004). The expression of Nrf2 protein (p = 0.03) and mRNA levels (-1.37-fold), GSH concentration (p < 0.0001), mtDNA amplification (-2.04-fold) and OGG1 mRNA (-2.78-fold) activity were decreased in the SD group. Of the 84 oxidative stress-related genes evaluated, 26 were differentially regulated. Pregnant women exposed to higher air pollutant levels showed increased markers for oxidative stress and compromised DNA integrity and repair.

  19. Solid oxide fuel cells, and air electrode and electrical interconnection materials therefor

    DOEpatents

    Bates, J.L.

    1992-09-01

    In one aspect of the invention, an air electrode material for a solid oxide fuel cell comprises Y[sub 1[minus]a]Q[sub a]MnO[sub 3], where Q is selected from the group consisting of Ca and Sr or mixtures thereof and a' is from 0.1 to 0.8. Preferably, a' is from 0.4 to 0.7. In another aspect of the invention, an electrical interconnection material for a solid oxide fuel cell comprises Y[sub 1[minus]b]Ca[sub b]Cr[sub 1[minus]c]Al[sub c]O[sub 3], where b' is from 0.1 to 0.6 and c' is from 0 to 9.3. Preferably, b' is from 0.3 to 0.5 and c' is from 0.05 to 0.1. A composite solid oxide electrochemical fuel cell incorporating these materials comprises: a solid oxide air electrode and an adjacent solid oxide electrical interconnection which commonly include the cation Y, the air electrode comprising Y[sub 1[minus]a]Q[sub a]MnO[sub 3], where Q is selected from the group consisting of Ca and Sr or mixtures thereof and a' is from 0.1 to 0.8, the electrical interconnection comprising Y[sub 1[minus]b]Ca[sub b]Cr[sub 1[minus]c]Al[sub c]O[sub 3], where b' is from 0.1 to 0.6 and c' is from 0.0 to 0.3; a yttrium stabilized solid electrolyte comprising (1[minus]d)ZrO[sub 2]-(d)Y[sub 2]O[sub 3] where d' is from 0.06 to 0.5; and a solid fuel electrode comprising X-ZrO[sub 2], where X' is an elemental metal. 5 figs.

  20. Solid oxide fuel cells, and air electrode and electrical interconnection materials therefor

    DOEpatents

    Bates, J. Lambert

    1992-01-01

    In one aspect of the invention, an air electrode material for a solid oxide fuel cell comprises Y.sub.1-a Q.sub.a MnO.sub.3, where "Q" is selected from the group consisting of Ca and Sr or mixtures thereof and "a" is from 0.1 to 0.8. Preferably, "a" is from 0.4 to 0.7. In another aspect of the invention, an electrical interconnection material for a solid oxide fuel cell comprises Y.sub.1-b Ca.sub.b Cr.sub.1-c Al.sub.c O.sub.3, where "b" is from 0.1 to 0.6 and "c" is from 0 to 9.3. Preferably, "b" is from 0.3 to 0.5 and "c" is from 0.05 to 0.1. A composite solid oxide electrochemical fuel cell incorporating these materials comprises: a solid oxide air electrode and an adjacent solid oxide electrical interconnection which commonly include the cation Y, the air electrode comprising Y.sub.1-a Q.sub.a MnO.sub.3, where "Q" is selected from the group consisting of Ca and Sr or mixtures thereof and "a" is from 0.1 to 0.8, the electrical interconnection comprising Y.sub.1-b Ca.sub.b Cr.sub.1-c Al.sub.c O.sub.3, where "b" is from 0.1 to 0.6 and "c" is from 0.0 to 0.3; a yttrium stabilized solid electrolyte comprising (1-d)ZrO.sub.2 -(d)Y.sub.2 O.sub.3 where "d" is from 0.06 to 0.5; and a solid fuel electrode comprising X-ZrO.sub.2, where "X" is an elemental metal.

  1. Evaluation of Ultra-Violet Photocatalytic Oxidation for Indoor AirApplications

    SciTech Connect

    Hodgson, A.T.; Sullivan, D.P.; Fisk, W.J.

    2006-02-01

    Acceptable indoor air quality in office buildings may be achieved with less energy by combining effective air cleaning systems for volatile organic compounds (VOCs) with particle filtration then by relying solely on ventilation. For such applications, ultraviolet photocatalytic oxidation (UVPCO) systems are being developed for VOC destruction. An experimental evaluation of a UVPCO system is reported. The evaluation was unique in that it employed complex mixtures of VOCs commonly found in office buildings at realistically low concentrations. VOC conversion efficiencies varied over a broad range, usually exceeded 20%, and were as high as {approx}80%. Conversion efficiency generally diminished with increased air flow rate. Significant amounts of formaldehyde and acetaldehyde were produced due to incomplete mineralization. The results indicate that formaldehyde and acetaldehyde production rates may need to be reduced before such UVPCO systems can be deployed safely in occupied buildings.

  2. Low cost stable air electrode material for high temperature solid oxide electrolyte electrochemical cells

    DOEpatents

    Kuo, Lewis J. H.; Singh, Prabhakar; Ruka, Roswell J.; Vasilow, Theodore R.; Bratton, Raymond J.

    1997-01-01

    A low cost, lanthanide-substituted, dimensionally and thermally stable, gas permeable, electrically conductive, porous ceramic air electrode composition of lanthanide-substituted doped lanthanum manganite is provided which is used as the cathode in high temperature, solid oxide electrolyte fuel cells and generators. The air electrode composition of this invention has a much lower fabrication cost as a result of using a lower cost lanthanide mixture, either a natural mixture or an unfinished lanthanide concentrate obtained from a natural mixture subjected to incomplete purification, as the raw material in place of part or all of the higher cost individual lanthanum. The mixed lanthanide primarily contains a mixture of at least La, Ce, Pr, and Nd, or at least La, Ce, Pr, Nd and Sm in its lanthanide content, but can also include minor amounts of other lanthanides and trace impurities. The use of lanthanides in place of some or all of the lanthanum also increases the dimensional stability of the air electrode. This low cost air electrode can be fabricated as a cathode for use in high temperature, solid oxide fuel cells and generators.

  3. Low cost stable air electrode material for high temperature solid oxide electrolyte electrochemical cells

    DOEpatents

    Kuo, L.J.H.; Singh, P.; Ruka, R.J.; Vasilow, T.R.; Bratton, R.J.

    1997-11-11

    A low cost, lanthanide-substituted, dimensionally and thermally stable, gas permeable, electrically conductive, porous ceramic air electrode composition of lanthanide-substituted doped lanthanum manganite is provided which is used as the cathode in high temperature, solid oxide electrolyte fuel cells and generators. The air electrode composition of this invention has a much lower fabrication cost as a result of using a lower cost lanthanide mixture, either a natural mixture or an unfinished lanthanide concentrate obtained from a natural mixture subjected to incomplete purification, as the raw material in place of part or all of the higher cost individual lanthanum. The mixed lanthanide primarily contains a mixture of at least La, Ce, Pr, and Nd, or at least La, Ce, Pr, Nd and Sm in its lanthanide content, but can also include minor amounts of other lanthanides and trace impurities. The use of lanthanides in place of some or all of the lanthanum also increases the dimensional stability of the air electrode. This low cost air electrode can be fabricated as a cathode for use in high temperature, solid oxide fuel cells and generators. 4 figs.

  4. Air oxidation method employed for the disulfide bond formation of natural and synthetic peptides.

    PubMed

    Calce, Enrica; Vitale, Rosa Maria; Scaloni, Andrea; Amodeo, Pietro; De Luca, Stefania

    2015-08-01

    Among the available protocols, chemically driven approaches to oxidize cysteine may not be required for molecules that, under the native-like conditions, naturally fold in conformations ensuring an effective pairing of the right disulfide bridge pattern. In this contest, we successfully prepared the distinctin, a natural heterodimeric peptide, and some synthetic cyclic peptides that are inhibitors of the CXCR4 receptor. In the first case, the air oxidation reaction allowed to connect two peptide chains via disulfide bridge, while in the second case allowed the cyclization of rationally designed peptides by an intramolecular disulfide bridge. Computational approaches helped to either drive de-novo design or suggest structural modifications and optimal oxidization protocols for disulfide-containing molecules. They are able to both predict and to rationalize the propensity of molecules to spontaneously fold in suitable conformations to achieve the right disulfide bridges.

  5. The oxidation behavior of several Ti-Al alloys at 900 C in air

    SciTech Connect

    Schmitz-Niederau, M.

    1999-10-01

    Ti-23Al, Ti-50Al and Ti-50Al-2Nb (at.%) were oxidized in air at 900 C for times up to 1130 hr. The resulting oxide scale structures were analyzed in great detail by metallographic and microprobe investigations and the Al{sub 2}O{sub 3} structures in the complex oxide scales were correlated with the course of the thermogravimetric curves. It appears that in order to achieve long-term protective behavior of the scale, it is necessary to stimulate the formation of a thin Al{sub 2}O{sub 3} barrier at the scale-metal interface and not at a position in the outer part of the scale. The Nb effect seems to be mostly due to this stimulation of an Al{sub 2}O{sub 3} layer at the interface.

  6. Air-stable superparamagnetic metal nanoparticles entrapped in graphene oxide matrix

    NASA Astrophysics Data System (ADS)

    Tuček, Jiří; Sofer, Zdeněk; Bouša, Daniel; Pumera, Martin; Holá, Kateřina; Malá, Aneta; Poláková, Kateřina; Havrdová, Markéta; Čépe, Klára; Tomanec, Ondřej; Zbořil, Radek

    2016-09-01

    Superparamagnetism is a phenomenon caused by quantum effects in magnetic nanomaterials. Zero-valent metals with diameters below 5 nm have been suggested as superior alternatives to superparamagnetic metal oxides, having greater superspin magnitudes and lower levels of magnetic disorder. However, synthesis of such nanometals has been hindered by their chemical instability. Here we present a method for preparing air-stable superparamagnetic iron nanoparticles trapped between thermally reduced graphene oxide nanosheets and exhibiting ring-like or core-shell morphologies depending on iron concentration. Importantly, these hybrids show superparamagnetism at room temperature and retain it even at 5 K. The corrected saturation magnetization of 185 Am2 kg-1 is among the highest values reported for iron-based superparamagnets. The synthetic concept is generalized exploiting functional groups of graphene oxide to stabilize and entrap cobalt, nickel and gold nanoparticles, potentially opening doors for targeted delivery, magnetic separation and imaging applications.

  7. Air-stable superparamagnetic metal nanoparticles entrapped in graphene oxide matrix.

    PubMed

    Tuček, Jiří; Sofer, Zdeněk; Bouša, Daniel; Pumera, Martin; Holá, Kateřina; Malá, Aneta; Poláková, Kateřina; Havrdová, Markéta; Čépe, Klára; Tomanec, Ondřej; Zbořil, Radek

    2016-09-15

    Superparamagnetism is a phenomenon caused by quantum effects in magnetic nanomaterials. Zero-valent metals with diameters below 5 nm have been suggested as superior alternatives to superparamagnetic metal oxides, having greater superspin magnitudes and lower levels of magnetic disorder. However, synthesis of such nanometals has been hindered by their chemical instability. Here we present a method for preparing air-stable superparamagnetic iron nanoparticles trapped between thermally reduced graphene oxide nanosheets and exhibiting ring-like or core-shell morphologies depending on iron concentration. Importantly, these hybrids show superparamagnetism at room temperature and retain it even at 5 K. The corrected saturation magnetization of 185 Am(2) kg(-1) is among the highest values reported for iron-based superparamagnets. The synthetic concept is generalized exploiting functional groups of graphene oxide to stabilize and entrap cobalt, nickel and gold nanoparticles, potentially opening doors for targeted delivery, magnetic separation and imaging applications.

  8. Integrated catalytic wet air oxidation and biological treatment of wastewater from Vitamin B 6 production

    NASA Astrophysics Data System (ADS)

    Kang, Jianxiong; Zhan, Wei; Li, Daosheng; Wang, Xiaocong; Song, Jing; Liu, Dongqi

    This study investigated the feasibility of coupling a catalytic wet air oxidation (CWAO), with CuO/Al 2O 3 as catalyst, and an anaerobic/aerobic biological process to treat wastewater from Vitamin B 6 production. Results showed that the CWAO enhanced the biodegradability (BOD 5/COD) from 0.10 to 0.80. The oxidized effluents with COD of 10,000 mg l -1 was subjected to subsequent continuous anaerobic/aerobic oxidation, and 99.3% of total COD removal was achieved. The quality of the effluent obtained met the discharge standards of water pollutants for pharmaceutical industry Chemical Synthesis Products Category (GB21904-2008), and thereby it implies that the integrated CWAO and anaerobic/aerobic biological treatment may offer a promising process to treat wastewater from Vitamin B 6 production.

  9. Air-stable superparamagnetic metal nanoparticles entrapped in graphene oxide matrix

    PubMed Central

    Tuček, Jiří; Sofer, Zdeněk; Bouša, Daniel; Pumera, Martin; Holá, Kateřina; Malá, Aneta; Poláková, Kateřina; Havrdová, Markéta; Čépe, Klára; Tomanec, Ondřej; Zbořil, Radek

    2016-01-01

    Superparamagnetism is a phenomenon caused by quantum effects in magnetic nanomaterials. Zero-valent metals with diameters below 5 nm have been suggested as superior alternatives to superparamagnetic metal oxides, having greater superspin magnitudes and lower levels of magnetic disorder. However, synthesis of such nanometals has been hindered by their chemical instability. Here we present a method for preparing air-stable superparamagnetic iron nanoparticles trapped between thermally reduced graphene oxide nanosheets and exhibiting ring-like or core-shell morphologies depending on iron concentration. Importantly, these hybrids show superparamagnetism at room temperature and retain it even at 5 K. The corrected saturation magnetization of 185 Am2 kg–1 is among the highest values reported for iron-based superparamagnets. The synthetic concept is generalized exploiting functional groups of graphene oxide to stabilize and entrap cobalt, nickel and gold nanoparticles, potentially opening doors for targeted delivery, magnetic separation and imaging applications. PMID:27628898

  10. Cast Stone Oxidation Front Evaluation: Preliminary Results For Samples Exposed To Moist Air

    SciTech Connect

    Langton, C. A.; Almond, P. M.

    2013-11-26

    The rate of oxidation is important to the long-term performance of reducing salt waste forms because the solubility of some contaminants, e.g., technetium, is a function of oxidation state. TcO{sub 4}{sup -} in the salt solution is reduced to Tc(IV) and has been shown to react with ingredients in the waste form to precipitate low solubility sulfide and/or oxide phases. Upon exposure to oxygen, the compounds containing Tc(IV) oxidize to the pertechnetate ion, Tc(VII)O{sub 4}{sup -}, which is very soluble. Consequently the rate of technetium oxidation front advancement into a monolith and the technetium leaching profile as a function of depth from an exposed surface are important to waste form performance and ground water concentration predictions. An approach for measuring contaminant oxidation rate (effective contaminant specific oxidation rate) based on leaching of select contaminants of concern is described in this report. In addition, the relationship between reduction capacity and contaminant oxidation is addressed. Chromate (Cr(VI) was used as a non-radioactive surrogate for pertechnetate, Tc(VII), in Cast Stone samples prepared with 5 M Simulant. Cast Stone spiked with pertechnetate was also prepared and tested. Depth discrete subsamples spiked with Cr were cut from Cast Stone exposed to Savannah River Site (SRS) outdoor ambient temperature fluctuations and moist air. Depth discrete subsamples spiked with Tc-99 were cut from Cast Stone exposed to laboratory ambient temperature fluctuations and moist air. Similar conditions are expected to be encountered in the Cast Stone curing container. The leachability of Cr and Tc-99 and the reduction capacities, measured by the Angus-Glasser method, were determined for each subsample as a function of depth from the exposed surface. The results obtained to date were focused on continued method development and are preliminary and apply to the sample composition and curing / exposure conditions described in this report. The

  11. DETECTION AND MOLECULAR ANALYSIS OF PARTICULATE AIR POLLUTION INDUCED CARDIOPULMONARY OXIDATIVE STRESS USING A TRANSGENIC MOUSE MODEL AND EMERGING TECHNOLOGIES

    EPA Science Inventory


    Identification of particle characteristics and biological mechanism(s) responsible for the adverse pulmonary and cardiovascular responses associated with particulate air pollution exposure remains a critical research activity. We have employed an oxidative stress sensitive an...

  12. Flow mechanism for the long-range transport of air pollutants by the sea breeze causing inland nighttime high oxidants

    SciTech Connect

    Ueda, H.; Mitsumoto, S.; Kurita, H.

    1988-02-01

    Flow mechanism causing nightttime smog was investigated by analyzing 1) continuous records of meteorological data and concentration of oxidants (Ox) for 15 days and 2) aircraft data along the transportation route of a polluted air mass.

  13. Planar solid oxide fuel cell with staged indirect-internal air and fuel preheating and reformation

    DOEpatents

    Geisbrecht, Rodney A; Williams, Mark C

    2003-10-21

    A solid oxide fuel cell arrangement and method of use that provides internal preheating of both fuel and air in order to maintain the optimum operating temperature for the production of energy. The internal preheat passes are created by the addition of two plates, one on either side of the bipolar plate, such that these plates create additional passes through the fuel cell. This internal preheat fuel cell configuration and method reduce the requirements for external heat exchanger units and air compressors. Air or fuel may be added to the fuel cell as required to maintain the optimum operating temperature through a cathode control valve or an anode control valve, respectively. A control loop comprises a temperature sensing means within the preheat air and fuel passes, a means to compare the measured temperature to a set point temperature and a determination based on the comparison as to whether the control valves should allow additional air or fuel into the preheat or bypass manifolds of the fuel cell.

  14. Effect of inlet-air humidity on the formation of oxides of nitrogen in a gas-turbine combustor

    NASA Technical Reports Server (NTRS)

    Marchionna, N. R.

    1973-01-01

    Tests were conducted to determine the effect of inlet-air humidity on the formation of oxides of nitrogen from a gas-turbine combustor. Combustor inlet-air temperature ranged from 450 F to 1050 F. The tests were run at a constant pressure of 6 atmospheres and reference Mach number of 0.065. The NO sub x emission index was found to decrease with increasing inlet-air humidity at a constant exponential rate of 19 percent per mass percent water vapor in the air. This decrease of NO sub x emission index with increasing humidity was found to be independent of inlet-air temperature.

  15. OXIDATION OF INCONEL 718 IN AIR AT TEMPERATURES FROM 973K TO 1620K.

    SciTech Connect

    GREENE,G.A.; FINFROCK,C.C.

    2000-10-01

    As part of the APT project, it was necessary to quantify the release of tungsten from the APT spallation target during postulated accident conditions in order to develop accident source terms for accident consequence characterization. Experiments with tungsten rods at high temperatures in a flowing steam environment characteristic of postulated accidents revealed that considerable vaporization of the tungsten occurred as a result of reactions with the steam and that the aerosols which formed were readily transported away from the tungsten surfaces, thus exposing fresh tungsten to react with more steam. The resulting tungsten release fractions and source terms were undesirable and it was decided to clad the tungsten target with Inconel 718 in order to protect it from contact with steam during an accident and mitigate the accident source term and the consequences. As part of the material selection criteria, experiments were conducted with Inconel 718 at high temperatures to evaluate the rate of oxidation of the proposed clad material over as wide a temperature range as possible, as well as to determine the high-temperature failure limit of the material. Samples of Inconel 718 were inserted into a preheated furnace at temperatures ranging from 973 K to 1620 K and oxidized in air for varying periods of time. After oxidizing in air at a constant temperature for the prescribed time and then being allowed to cool, the samples would be reweighed to determine their weight gain due to the uptake of oxygen. From these weight gain measurements, it was possible to identify three regimes of oxidation for Inconel 718: a low-temperature regime in which the samples became passivated after the initial oxidation, an intermediate-temperature regime in which the rate of oxidation was limited by diffusion and exhibited a constant parabolic rate dependence, and a high-temperature regime in which material deformation and damage accompanied an accelerated oxidation rate above the parabolic

  16. Gas chromatograph analysis on closed air and nitrogen oxide storage atmospheres of recalcitrant seeds of Quercus Alba

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Storage of recalcitrant seeds remains an unsolved problem. This study investigated the quantitative gas analysis of nitrous oxide (N2O) and air atmospheres on the recalcitrant seeds of Quercus alba by using gas chromatograph. Ten seeds were placed in each sealed atmospheric system of air and 98/2% N...

  17. Joining Mixed Conducting Oxides Using an Air-Fired Electrically Conductive Braze

    SciTech Connect

    Hardy, John S.; Kim, Jin Yong Y.; Weil, K. Scott

    2004-10-01

    Due to their mixed oxygen ion and electron conducting properties, ceramics such as lanthanum strontium cobalt ferrites (LSCF) are attractive materials for use in active electrochemical devices such as solid oxide fuel cells (SOFC) and oxygen separation membranes. However, to take full advantage of the unique properties of these materials, reliable joining techniques need to be developed. If such a joining technique yields a ceramic-to-metal junction that is also electrically conductive, the hermetic seals in the device could provide the added function of either drawing current from the mixed conducting oxide, in the case of SOFC applications, or carrying it to the oxide to initate ionic conduction, in the case of oxygen separation and electrocatalysis applications. This would greatly reduce the need for complex interconnect design, thereby simplifying one of the major challenges faced in SOFC development. A process referred to as reactive air brazing (RAB) has been developed in which firing a Ag-CuO filler material in air creates a functional ceramic-to-metal junction, in which the silver-based matrix of the braze affords both metallic ductility and conductivity in the joint. Investigating a range of Ag-CuO alloy combinations determined that compositions containing between 1.4 and 16 mol% CuO appear to offer the best combination of wettability, joint strength, and electrical conductivity.

  18. Gas diffusion-type oxygen electrode using perovskite-type oxides for metal-air batteries

    SciTech Connect

    Hyodo, Takeo; Miura, Norio; Yamazoe, Noboru

    1995-12-31

    In order to develop an air cathode of metal-air batteries, oxygen reduction behavior of gas diffusion-type carbon electrodes loaded with perovskite-type oxides, La{sub 1{minus}x}A{prime}{sub x}FeO{sub 3} (A{prime} = Ca, Sr, Ba, 0 {le} x {le} 1.0), was examined in 8 M KOH at 60 C. Among the oxide catalysts tested, La{sub 0.5}Sr{sub 0.5}FeO{sub 3} (specific surface area: 21.5 m{sup 2}{center_dot}g{sup {minus}1}) gave the highest electrode performance. On the basis of electrode reaction kinetics, H{sub 2}O{sub 2} decomposition rates, and temperature programmed desorption of oxygen, it was concluded that such a performance was attributable to the active sites of the oxide for the direct 4-electron reduction of oxygen. Moreover, the electrode using La{sub 0.5}Sr{sub 0.5}FeO{sub 3} was found to be rather stable in a short-term operation for 90 h at 300 mA{center_dot}cm{sup {minus}2}.

  19. In situ secondary organic aerosol formation from ambient pine forest air using an oxidation flow reactor

    NASA Astrophysics Data System (ADS)

    Palm, Brett B.; Campuzano-Jost, Pedro; Ortega, Amber M.; Day, Douglas A.; Kaser, Lisa; Jud, Werner; Karl, Thomas; Hansel, Armin; Hunter, James F.; Cross, Eben S.; Kroll, Jesse H.; Peng, Zhe; Brune, William H.; Jimenez, Jose L.

    2016-03-01

    An oxidation flow reactor (OFR) is a vessel inside which the concentration of a chosen oxidant can be increased for the purpose of studying SOA formation and aging by that oxidant. During the BEACHON-RoMBAS (Bio-hydro-atmosphere interactions of Energy, Aerosols, Carbon, H2O, Organics & Nitrogen-Rocky Mountain Biogenic Aerosol Study) field campaign, ambient pine forest air was oxidized by OH radicals in an OFR to measure the amount of SOA that could be formed from the real mix of ambient SOA precursor gases, and how that amount changed with time as precursors changed. High OH concentrations and short residence times allowed for semicontinuous cycling through a large range of OH exposures ranging from hours to weeks of equivalent (eq.) atmospheric aging. A simple model is derived and used to account for the relative timescales of condensation of low-volatility organic compounds (LVOCs) onto particles; condensational loss to the walls; and further reaction to produce volatile, non-condensing fragmentation products. More SOA production was observed in the OFR at nighttime (average 3 µg m-3 when LVOC fate corrected) compared to daytime (average 0.9 µg m-3 when LVOC fate corrected), with maximum formation observed at 0.4-1.5 eq. days of photochemical aging. SOA formation followed a similar diurnal pattern to monoterpenes, sesquiterpenes, and toluene+p-cymene concentrations, including a substantial increase just after sunrise at 07:00 local time. Higher photochemical aging (> 10 eq. days) led to a decrease in new SOA formation and a loss of preexisting OA due to heterogeneous oxidation followed by fragmentation and volatilization. When comparing two different commonly used methods of OH production in OFRs (OFR185 and OFR254-70), similar amounts of SOA formation were observed. We recommend the OFR185 mode for future forest studies. Concurrent gas-phase measurements of air after OH oxidation illustrate the decay of primary VOCs, production of small oxidized organic

  20. In situ secondary organic aerosol formation from ambient pine forest air using an oxidation flow reactor

    DOE PAGES

    Palm, Brett B.; Campuzano-Jost, Pedro; Ortega, Amber M.; ...

    2016-03-08

    An oxidation flow reactor (OFR) is a vessel inside which the concentration of a chosen oxidant can be increased for the purpose of studying SOA formation and aging by that oxidant. During the BEACHON-RoMBAS (Bio-hydro-atmosphere interactions of Energy, Aerosols, Carbon, H2O, Organics & Nitrogen–Rocky Mountain Biogenic Aerosol Study) field campaign, ambient pine forest air was oxidized by OH radicals in an OFR to measure the amount of SOA that could be formed from the real mix of ambient SOA precursor gases, and how that amount changed with time as precursors changed. High OH concentrations and short residence times allowed formore » semicontinuous cycling through a large range of OH exposures ranging from hours to weeks of equivalent (eq.) atmospheric aging. A simple model is derived and used to account for the relative timescales of condensation of low-volatility organic compounds (LVOCs) onto particles; condensational loss to the walls; and further reaction to produce volatile, non-condensing fragmentation products. More SOA production was observed in the OFR at nighttime (average 3 µg m−3 when LVOC fate corrected) compared to daytime (average 0.9 µg m−3 when LVOC fate corrected), with maximum formation observed at 0.4–1.5 eq. days of photochemical aging. SOA formation followed a similar diurnal pattern to monoterpenes, sesquiterpenes, and toluene+p-cymene concentrations, including a substantial increase just after sunrise at 07:00 local time. Higher photochemical aging (> 10 eq. days) led to a decrease in new SOA formation and a loss of preexisting OA due to heterogeneous oxidation followed by fragmentation and volatilization. When comparing two different commonly used methods of OH production in OFRs (OFR185 and OFR254-70), similar amounts of SOA formation were observed. We recommend the OFR185 mode for future forest studies. Concurrent gas-phase measurements of air after OH oxidation illustrate the decay of primary VOCs, production of

  1. Lanthanum manganite-based air electrode for solid oxide fuel cells

    DOEpatents

    Ruka, R.J.; Kuo, L.; Li, B.

    1999-06-29

    An air electrode material for a solid oxide fuel cell is disclosed. The electrode material is based on lanthanum manganite having a perovskite-like crystal structure ABO[sub 3]. The A-site of the air electrode material preferably comprises La, Ca, Ce and at least one lanthanide selected from Sm, Gd, Dy, Er, Y and Nd. The B-site of the electrode material comprises Mn with substantially no dopants. The ratio of A:B is preferably slightly above 1. A preferred air electrode composition is of the formula La[sub w]Ca[sub x]Ln[sub y]Ce[sub z]MnO[sub 3], wherein Ln comprises at least one lanthanide selected from Sm, Gd, Dy, Er, Y and Nd, w is from about 0.55 to about 0.56, x is from about 0.255 to about 0.265, y is from about 0.175 to about 0.185, and z is from about 0.005 to about 0.02. The air electrode material possesses advantageous chemical and electrical properties as well as favorable thermal expansion and thermal cycle shrinkage characteristics. 10 figs.

  2. Lanthanum manganite-based air electrode for solid oxide fuel cells

    DOEpatents

    Ruka, Roswell J.; Kuo, Lewis; Li, Baozhen

    1999-01-01

    An air electrode material for a solid oxide fuel cell is disclosed. The electrode material is based on lanthanum manganite having a perovskite-like crystal structure ABO.sub.3. The A-site of the air electrode material preferably comprises La, Ca, Ce and at least one lanthanide selected from Sm, Gd, Dy, Er, Y and Nd. The B-site of the electrode material comprises Mn with substantially no dopants. The ratio of A:B is preferably slightly above 1. A preferred air electrode composition is of the formula La.sub.w Ca.sub.x Ln.sub.y Ce.sub.z MnO.sub.3, wherein Ln comprises at least one lanthanide selected from Sm, Gd, Dy, Er, Y and Nd, w is from about 0.55 to about 0.56, x is from about 0.255 to about 0.265, y is from about 0.175 to about 0.185, and z is from about 0.005 to about 0.02. The air electrode material possesses advantageous chemical and electrical properties as well as favorable thermal expansion and thermal cycle shrinkage characteristics.

  3. Retrieval of the Nitrous Oxide Profiles using the AIRS Data in China

    NASA Astrophysics Data System (ADS)

    Chen, L.; Ma, P.; Tao, J.; Li, X.; Zhang, Y.; Wang, Z.; Li, S.; Xiong, X.

    2014-12-01

    As an important greenhouse gas and ozone-depleting substance, the 100-year global warming potential of Nitrous Oxide (N2O) is almost 300 times higher than that of carbon dioxide. However, there are still large uncertainties about the quantitative N2O emission and its feedback to climate change due to the coarse ground-based network. This approach attempts to retrieve the N2O profiles from the Atmospheric InfraRed Sounder (AIRS) data. First, the sensitivity of atmospheric temperature and humidity profiles and surface parameters between two spectral absorption bands were simulated by using the radiative transfer model. Second, the eigenvector regression algorithm is used to construct a priori state. Third, an optimal estimate method was developed based on the band selection of N2O. Finally, we compared our retrieved AIRS profiles with HIPPO data, and analyzed the seasonal and annual N2O distribution in China from 2004 to 2013.

  4. Microleakage on Class V glass ionomer restorations after cavity preparation with aluminum oxide air abrasion.

    PubMed

    Corona, Silmara Aparecida Milori; Borsatto, Maria Cristina; Rocha, Renata Andréa Salvitti de Sá; Palma-Dibb, Regina Guenka

    2005-01-01

    This in vitro study assessed the marginal microleakage on class V cavities prepared with aluminum oxide air abrasion and restored with different glass ionomer cements. The cavities were prepared on the buccal and lingual surfaces of 15 sound third molars with an air- abrasion device (Kreativ Mach 4.1; New Image) using a 27.5-microm aluminum oxide particle stream, and were assigned to 3 groups of 10 cavities each. The restorative materials were: group I, a conventional glass ionomer cement (Ketac-Fil); groups II and III, resin-modified glass ionomer cements (Vitremer R and Fuji II LC, respectively). After placement of the restorations, the teeth were stored in distilled water at 37 degrees C for 24 h, polished and then submitted to a thermocycling regimen of 500 cycles, isolated, immersed in 0.2% Rhodamine B solution for 24 h, included and serially sectioned. Microleakage was assessed by viewing the specimens under an optical microscope connected to a color video camera and a computer. The images obtained were digitized and analyzed for microleakage using software that allows for a standard quantitative assessment of dye penetration in millimeters. Statistical analysis was done using the Kruskall-Wallis and Wilcoxon tests. Means of dye penetration (%) were: occlusal - I: 25.76 +/- 34.35, II: 20.00 +/- 42.16, III: 28.25 +/- 41.67; cervical - I: 23.72 +/- 41.84; II: 44.22 +/- 49.69, III: 39.27 +/- 50.74. No statistically significant differences (p>0.05) were observed among either the glass ionomer cements or the margins. In conclusion, class V cavities restored with either conventional or resin-modified glass ionomer cements after preparation with aluminum oxide air abrasion did not show complete sealing at the enamel and dentin/cementum margins.

  5. Oxidative Nitration of Styrenes for the Recycling of Low-Concentrated Nitrogen Dioxide in Air.

    PubMed

    Hofmann, Dagmar; de Salas, Cristina; Heinrich, Markus R

    2015-09-21

    The oxidative nitration of styrenes in ethyl acetate represents a metal-free, environmentally friendly, and sustainable technique to recover even low concentrations of NO2 in air. Favorable features are that the product mixture comprising nitroalcohols, nitroketones, and nitro nitrates simplifies at lower concentrations of NO2 . Experiments in a miniplant-type 10 L wet scrubber demonstrated that the recycling technique is well applicable on larger scales at which initial NO2 concentrations of >10 000 ppm were reliably reduced to less than 40 ppm.

  6. Formation of calcium in the products of iron oxide-aluminum thermite combustion in air

    NASA Astrophysics Data System (ADS)

    Gromov, A. A.; Gromov, A. M.; Popenko, E. M.; Sergienko, A. V.; Sabinskaya, O. G.; Raab, B.; Teipel, U.

    2016-10-01

    The composition of condensed products resulting from the combustion of thermite mixtures (Al + Fe2O3) in air is studied by precise methods. It is shown that during combustion, calcium is formed and stabilized in amounts of maximal 0.55 wt %, while is missing from reactants of 99.7 wt % purity. To explain this, it is hypothesized that a low-energy nuclear reaction takes place alongside the reactions of aluminum oxidation and nitridation, resulting in the formation of calcium (Kervran-Bolotov reaction).

  7. Heterogeneous photocatalytic oxidation of organics for air purification by near UV irradiated titanium dioxide.

    PubMed

    Hager, S; Bauer, R

    1999-03-01

    The photocatalytic degradation of high concentrations of various organic pollutants (acetone, 2-propanol and toluene) in dry and humid air streams was carried out using a specially designed photoreactor based on the UV-TiO2 principle. The influence of several parameters which control the destruction efficiency (flow rate, initial contaminant and water vapour concentration, temperature and light intensity) has been studied. The conversion was maximal at room temperature, low flow rates and low initial contaminant concentrations. The presence of water in the inlet stream strongly affected the performance of the catalyst. The primary oxidation product of 2-propanol was acetone.

  8. SPONTANEOUS CATALYTIC WET AIR OXIDATION DURING PRE-TREATMENT OF HIGH-LEVEL RADIOACTIVE WASTE SLUDGE

    SciTech Connect

    Koopman, D.; Herman, C.; Pareizs, J.; Bannochie, C.; Best, D.; Bibler, N.; Fellinger, T.

    2009-10-01

    Savannah River Remediation, LLC (SRR) operates the Defense Waste Processing Facility for the U.S. Department of Energy at the Savannah River Site. This facility immobilizes high-level radioactive waste through vitrification following chemical pretreatment. Catalytic destruction of formate and oxalate ions to carbon dioxide has been observed during qualification testing of non-radioactive analog systems. Carbon dioxide production greatly exceeded hydrogen production, indicating the occurrence of a process other than the catalytic decomposition of formic acid. Statistical modeling was used to relate the new reaction chemistry to partial catalytic wet air oxidation of both formate and oxalate ions driven by the low concentrations of palladium, rhodium, and/or ruthenium in the waste. Variations in process conditions led to increases or decreases in the total oxidative destruction, as well as partially shifting the preferred species undergoing destruction from oxalate ion to formate ion.

  9. Creep performance of oxide ceramic fiber materials at elevated temperature in air and in steam

    NASA Astrophysics Data System (ADS)

    Armani, Clinton J.

    Structural aerospace components that operate in severe conditions, such as extreme temperatures and detrimental environments, require structural materials that have superior long-term mechanical properties and that are thermochemically stable over a broad range of service temperatures and environments. Ceramic matrix composites (CMCs) capable of excellent mechanical performance in harsh environments are prime candidates for such applications. Oxide ceramic materials have been used as constituents in CMCs. However, recent studies have shown that high-temperature mechanical performance of oxide-oxide CMCs deteriorate in a steam-rich environment. The degradation of strength at elevated temperature in steam has been attributed to the environmentally assisted subcritical crack growth in the oxide fibers. Furthermore, oxide-oxide CMCs have shown significant increases in steady-state creep rates in steam. The present research investigated the effects of steam on the high-temperature creep and monotonic tension performance of several oxide ceramic materials. Experimental facilities were designed and configured, and experimental methods were developed to explore the influence of steam on the mechanical behaviors of ceramic fiber tows and of ceramic bulk materials under temperatures in the 1100--1300°C range. The effects of steam on creep behavior of Nextel(TM)610 and Nextel(TM)720 fiber tows were examined. Creep rates at elevated temperatures in air and in steam were obtained for both types of fibers. Relationships between creep rates and applied stresses were modeled and underlying creep mechanisms were identified. For both types of fiber tows, a creep life prediction analysis was performed using linear elastic fracture mechanics and a power-law crack velocity model. These results have not been previously reported and have critical design implications for CMC components operating in steam or near the recommended design limits. Predictions were assessed and validated via

  10. Indefinitely stable iron(IV) cage complexes formed in water by air oxidation

    NASA Astrophysics Data System (ADS)

    Tomyn, Stefania; Shylin, Sergii I.; Bykov, Dmytro; Ksenofontov, Vadim; Gumienna-Kontecka, Elzbieta; Bon, Volodymyr; Fritsky, Igor O.

    2017-01-01

    In nature, iron, the fourth most abundant element of the Earth's crust, occurs in its stable forms either as the native metal or in its compounds in the +2 or +3 (low-valent) oxidation states. High-valent iron (+4, +5, +6) compounds are not formed spontaneously at ambient conditions, and the ones obtained synthetically appear to be unstable in polar organic solvents, especially aqueous solutions, and this is what limits their studies and use. Here we describe unprecedented iron(IV) hexahydrazide clathrochelate complexes that are assembled in alkaline aqueous media from iron(III) salts, oxalodihydrazide and formaldehyde in the course of a metal-templated reaction accompanied by air oxidation. The complexes can exist indefinitely at ambient conditions without any sign of decomposition in water, nonaqueous solutions and in the solid state. We anticipate that our findings may open a way to aqueous solution and polynuclear high-valent iron chemistry that remains underexplored and presents an important challenge.

  11. One-dimensional manganese-cobalt oxide nanofibres as bi-functional cathode catalysts for rechargeable metal-air batteries

    PubMed Central

    Jung, Kyu-Nam; Hwang, Soo Min; Park, Min-Sik; Kim, Ki Jae; Kim, Jae-Geun; Dou, Shi Xue; Kim, Jung Ho; Lee, Jong-Won

    2015-01-01

    Rechargeable metal-air batteries are considered a promising energy storage solution owing to their high theoretical energy density. The major obstacles to realising this technology include the slow kinetics of oxygen reduction and evolution on the cathode (air electrode) upon battery discharging and charging, respectively. Here, we report non-precious metal oxide catalysts based on spinel-type manganese-cobalt oxide nanofibres fabricated by an electrospinning technique. The spinel oxide nanofibres exhibit high catalytic activity towards both oxygen reduction and evolution in an alkaline electrolyte. When incorporated as cathode catalysts in Zn-air batteries, the fibrous spinel oxides considerably reduce the discharge-charge voltage gaps (improve the round-trip efficiency) in comparison to the catalyst-free cathode. Moreover, the nanofibre catalysts remain stable over the course of repeated discharge-charge cycling; however, carbon corrosion in the catalyst/carbon composite cathode degrades the cycling performance of the batteries. PMID:25563733

  12. One-dimensional manganese-cobalt oxide nanofibres as bi-functional cathode catalysts for rechargeable metal-air batteries

    NASA Astrophysics Data System (ADS)

    Jung, Kyu-Nam; Hwang, Soo Min; Park, Min-Sik; Kim, Ki Jae; Kim, Jae-Geun; Dou, Shi Xue; Kim, Jung Ho; Lee, Jong-Won

    2015-01-01

    Rechargeable metal-air batteries are considered a promising energy storage solution owing to their high theoretical energy density. The major obstacles to realising this technology include the slow kinetics of oxygen reduction and evolution on the cathode (air electrode) upon battery discharging and charging, respectively. Here, we report non-precious metal oxide catalysts based on spinel-type manganese-cobalt oxide nanofibres fabricated by an electrospinning technique. The spinel oxide nanofibres exhibit high catalytic activity towards both oxygen reduction and evolution in an alkaline electrolyte. When incorporated as cathode catalysts in Zn-air batteries, the fibrous spinel oxides considerably reduce the discharge-charge voltage gaps (improve the round-trip efficiency) in comparison to the catalyst-free cathode. Moreover, the nanofibre catalysts remain stable over the course of repeated discharge-charge cycling; however, carbon corrosion in the catalyst/carbon composite cathode degrades the cycling performance of the batteries.

  13. Thermal decomposition of pyrometallurgical copper slag by oxidation in synthetic air.

    PubMed

    Gyurov, Stoyko; Kostova, Yoanna; Klitcheva, Galina; Ilinkina, Anna

    2011-02-01

    The purpose of this study was to investigate the possibility of separating pyrometallurgical copper (fayalite) slag by oxidation in a synthetic air atmosphere into ferrous and silicate phases suitable for resources to be recovered from them. Isothermal oxidation kinetics and the most probable reaction models are studied in the temperature range of 773 to 1173 K using thermogravimetric analysis data and the classical Johnson-Mehl-Avrami-Yerofeev-Kolmogorov (JMAYK) equation. Depending on the model applied, the activation energies of fayalite slag oxidation in the temperature range of 773-973 K were: D1: 37.55 kJ mol(-1); D2: 43.27 kJ mol(-1); D3: 50.52 kJ mol(-1); and D4: 45.65 kJ mol(-1). Depending on the model applied, the activation energies of fayalite slag oxidation in the temperature range of 1073-1173 K were: F1: 20.48 kJ mol(-1); R2: 20.45 kJ mol(-1); R3: 20.18 kJ mol(-1); A2: 21.54 kJ mol( -1) and A3: 22.34 kJ mol(-1). The transformation of fayalite to hematite and amorphous silica was completed after 1435, 1350 and 1080 s at temperatures of 1073, 1123 and 1173 K, respectively. The following oxidation products were identified by X-ray diffraction: (1) fayalite, hematite and magnesioferrite (Fe(2)MgO(4)) in the temperature range 773 to 973 K; and (2) hematite and magnesium iron oxide (Mg(1.55)Fe( 1.6)O(4)) in the temperature range of 1073 to 1173 K.

  14. Catalytic wet air oxidation of phenol with functionalized carbon materials as catalysts: reaction mechanism and pathway.

    PubMed

    Wang, Jianbing; Fu, Wantao; He, Xuwen; Yang, Shaoxia; Zhu, Wanpeng

    2014-08-01

    The development of highly active carbon material catalysts in catalytic wet air oxidation (CWAO) has attracted a great deal of attention. In this study different carbon material catalysts (multi-walled carbon nanotubes, carbon fibers and graphite) were developed to enhance the CWAO of phenol in aqueous solution. The functionalized carbon materials exhibited excellent catalytic activity in the CWAO of phenol. After 60 min reaction, the removal of phenol was nearly 100% over the functionalized multi-walled carbon, while it was only 14% over the purified multi-walled carbon under the same reaction conditions. Carboxylic acid groups introduced on the surface of the functionalized carbon materials play an important role in the catalytic activity in CWAO. They can promote the production of free radicals, which act as strong oxidants in CWAO. Based on the analysis of the intermediates produced in the CWAO reactions, a new reaction pathway for the CWAO of phenol was proposed in this study. There are some differences between the proposed reaction pathway and that reported in the literature. First, maleic acid is transformed directly into malonic acid. Second, acetic acid is oxidized into an unknown intermediate, which is then oxidized into CO2 and H2O. Finally, formic acid and oxalic acid can mutually interconvert when conditions are favorable.

  15. Measurement of inflammation and oxidative stress following drastic changes in air pollution during the Beijing Olympics: a panel study approach.

    PubMed

    Kipen, Howard; Rich, David; Huang, Wei; Zhu, Tong; Wang, Guangfa; Hu, Min; Lu, Shou-en; Ohman-Strickland, Pamela; Zhu, Ping; Wang, Yuedan; Zhang, Jim Junfeng

    2010-08-01

    Ambient air pollution has been linked to cardiovascular and respiratory morbidity and mortality in epidemiology studies. Frequently, oxidative and nitrosative stress are hypothesized to mediate these pollution effects, however precise mechanisms remain unclear. This paper describes the methodology for a major panel study to examine air pollution effects on these and other mechanistic pathways. The study took place during the drastic air pollution changes accompanying the 2008 Olympics in Beijing, China. After a general description of air pollution health effects, we provide a discussion of panel studies and describe the unique features of this study that make it likely to provide compelling results. This study should lead to a clearer and more precise definition of the role of oxidative and nitrosative stress, as well as other mechanisms, in determining acute morbidity and mortality from air pollution exposure.

  16. Measurement of inflammation and oxidative stress following drastic changes in air pollution during the Beijing Olympics: a panel study approach

    PubMed Central

    Kipen, Howard; Rich, David; Huang, Wei; Zhu, Tong; Wang, Guangfa; Hu, Min; Lu, Shou-en; Ohman-Strickland, Pamela; Zhu, Ping; Wang, Yuedan; Zhang, Jim (Junfeng)

    2014-01-01

    Ambient air pollution has been linked to cardiovascular and respiratory morbidity and mortality in epidemiology studies. Frequently, oxidative and nitrosative stress are hypothesized to mediate these pollution effects, however precise mechanisms remain unclear. This paper describes the methodology for a major panel study to examine air pollution effects on these and other mechanistic pathways. The study took place during the drastic air pollution changes accompanying the 2008 Olympics in Beijing, China. After a general description of air pollution health effects, we provide a discussion of panel studies and describe the unique features of this study that make it likely to provide compelling results. This study should lead to a clearer and more precise definition of the role of oxidative and nitrosative stress, as well as other mechanisms, in determining acute morbidity and mortality from air pollution exposure. PMID:20716299

  17. Increasing the Upper Temperature Oxidation Limit of Alumina Forming Austenitic Stainless Steels in Air with Water Vapor

    SciTech Connect

    Brady, Michael P; Unocic, Kinga A; Lance, Michael J; Santella, Michael L; Yamamoto, Yukinori; Walker, Larry R

    2011-01-01

    A family of alumina-forming austenitic (AFA) stainless steels is under development for use in aggressive oxidizing conditions from {approx}600-900 C. These alloys exhibit promising mechanical properties but oxidation resistance in air with water vapor environments is currently limited to {approx}800 C due to a transition from external protective alumina scale formation to internal oxidation of aluminum with increasing temperature. The oxidation behavior of a series of AFA alloys was systematically studied as a function of Cr, Si, Al, C, and B additions in an effort to provide a basis to increase the upper-temperature oxidation limit. Oxidation exposures were conducted in air with 10% water vapor environments from 800-1000 C, with post oxidation characterization of the 900 C exposed samples by electron probe microanalysis (EPMA), scanning and transmission electron microscopy, and photo-stimulated luminescence spectroscopy (PSLS). Increased levels of Al, C, and B additions were found to increase the upper-temperature oxidation limit in air with water vapor to between 950 and 1000 C. These findings are discussed in terms of alloy microstructure and possible gettering of hydrogen from water vapor at second phase carbide and boride precipitates.

  18. Oxidation, volatilization, and redistribution of molybdenum from TZM alloy in air

    SciTech Connect

    Smolik, G.R.; Petti, D.A.; McCarthy, K.A.; Schuetz, S.T.

    2000-01-01

    The excellent high temperature strength and thermal conductivity of molybdenum-base alloys provide attractive features for components in advanced magnetic and inertial fusion devices. Refractory metal alloys react readily with oxygen and other gases. Oxidized molybdenum in turn is susceptible to losses from volatile molybdenum trioxide species, MoO{sub 3}(m), in air and the hydroxide, MoO{sub 2}(OH){sub 2}, formed from water vapor. Transport of radioactivity by the volatilization, migration, and re-deposition of these volatile species during a potential accident involving a loss of vacuum or inert environment represents a safety issue. In this report the authors present experimental results on the oxidation, volatilization and re-deposition of molybdenum from TZM in flowing air between 400 and 800 C. These results are compared with calculations obtained from a vaporization mass transfer model using chemical thermodynamic data for vapor pressures of MoO{sub 3}(g) over pure solid MoO{sub 3} and an expression for the vapor pressures of MoO{sub 2}(OH){sub 2} from the literature. Calculations correlate well with experimental data.

  19. Fractal titanium oxide under inverse 10-ns laser deposition in air and water

    NASA Astrophysics Data System (ADS)

    Pan, Aifei; Wang, Wenjun; Mei, Xuesong; Lin, Qijing; Cui, Jianlei; Wang, Kedian; Zhai, Zhaoyang

    2017-04-01

    This paper presents the preparation of different kinds of titanium oxide fractal structures on the surface of titanium by inverse pulsed laser deposition (IPLD) in air and water. In air, two-dimensional fractal structures are obtained with a low pulse energy. However, their branches units are aggregated and nanoscale branches disappear due to the high substrate temperature, causing the low fractal dimension of structure. When a higher laser energy is applied, the preformed deposited material forms a porous film, which reduces heat transfer from substrate. Therefore, three-dimensional and one-dimensional fractal structures with nanoscale branches on the topside of the film can be obtained. Then the desired two-dimensional fractal structures with nano-branches are obtained in water due to the water-induced rapid cooling of substrate temperature and plasma shock wave-induced particle's expansion along the surface of substrate. Meanwhile, the asymmetry of fractal structure units analyzed by diffusion limited aggregation (DLA) model is caused by the difference of the distance between the initial deposited particles. In addition, when the pulse energy goes up to 111 mJ, the branches of two-dimensional fractal structure units are also aggregated and form isolated particles. The idea about modification of substrate temperature and water can guide the preparation of the desired titanium oxide fractal structures in pulsed laser deposition (PLD), which is also applicable to other materials.

  20. Oxidation, Volatilization, and Redistribution of Molybdenum from TZM Alloy in Air

    SciTech Connect

    Smolik, Galen Richard; Petti, David Andrew; Mccarthy, Kathryn Ann; Schuetz, Stanley Thomas

    2000-01-01

    The excellent high temperature strength and thermal conductivity of molybdenum-base alloys provide attractive features for components in advanced magnetic and inertial fusion devices. Refractory metal alloys react readily with oxygen and other gases. Oxidized molybdenum in turn is susceptible to losses from volatile molybdenum trioxide species, (MoO3)m, in air and the hydroxide, MoO2(OH)2, formed from water vapor. Transport of radioactivity by the volatilization, migration, and re-deposition of these volatile species during a potential accident involving a loss of vacuum or inert environment represents a safety issue. In this report we present experimental results on the oxidation, volatilization and re-deposition of molybdenum from TZM in flowing air between 400 and 800°C. These results are compared with calculations obtained from a vaporization mass transfer model using chemical thermodynamic data for vapor pressures of MoO3(g) over pure solid MoO3 and an expression for the vapor pressures of MoO2(OH)2 from the literature. Calculations correlate well with experimental data.

  1. Creep Behavior of Oxide/Oxide Composites with Monazite Fiber Coating at 1100 deg C in Air and in Steam Environments

    DTIC Science & Technology

    2008-09-01

    noticeably degraded in steam. The presence of steam accelerated creep rates and significantly reduced creep lifetimes. In air, creep run-out, defined as...environmentally stable ox- ide constituents [23, 26, 27, 31, 35, 36, 45, 46, 48]. Oxide/Oxide CMCs were developed to combat the environmental degradation ...thermal shock tolerance until last several decades [37]. Most metallic alloys ex- hibit significant deformation in tension prior to failure. Ceramics

  2. Exposure to Fine Particulate Air Pollution Causes Vascular Insulin Resistance by Inducing Pulmonary Oxidative Stress

    PubMed Central

    Haberzettl, Petra; O’Toole, Timothy E.; Bhatnagar, Aruni; Conklin, Daniel J.

    2016-01-01

    Background: Epidemiological evidence suggests that exposure to ambient air fine particulate matter (PM2.5) increases the risk of developing type 2 diabetes and cardiovascular disease. However, the mechanisms underlying these effects of PM2.5 remain unclear. Objectives: We tested the hypothesis that PM2.5 exposure decreases vascular insulin sensitivity by inducing pulmonary oxidative stress. Methods: Mice fed control (10–13% kcal fat) and high-fat (60% kcal fat, HFD) diets, treated with 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPOL) or mice overexpressing lung-specific extracellular superoxide dismutase (ecSOD) were exposed to HEPA-filtered air or to concentrated PM2.5 (CAP) for 9 or 30 days, and changes in systemic and organ-specific insulin sensitivity and inflammation were measured. Results: In control diet–fed mice, exposure to CAP for 30 days decreased insulin-stimulated Akt phosphorylation in lung, heart, and aorta but not in skeletal muscle, adipose tissue, and liver and did not affect adiposity or systemic glucose tolerance. In HFD-fed mice, 30-day CAP exposure suppressed insulin-stimulated endothelial nitric oxide synthase (eNOS) phosphorylation in skeletal muscle and increased adipose tissue inflammation and systemic glucose intolerance. In control diet–fed mice, a 9-day CAP exposure was sufficient to suppress insulin-stimulated Akt and eNOS phosphorylation and to decrease IκBα (inhibitor of the transcription factor NF-κB levels in the aorta. Treatment with the antioxidant TEMPOL or lung-specific overexpression of ecSOD prevented CAP-induced vascular insulin resistance and inflammation. Conclusions: Short-term exposure to PM2.5 induces vascular insulin resistance and inflammation triggered by a mechanism involving pulmonary oxidative stress. Suppression of vascular insulin signaling by PM2.5 may accelerate the progression to systemic insulin resistance, particularly in the context of diet-induced obesity. Citation: Haberzettl P, O

  3. The asymptotic structure of nonpremixed methane-air flames with oxidizer leakage of order unity

    SciTech Connect

    Seshadri, K.; Ilincic, N.

    1995-04-01

    The asymptotic structure of nonpremixed methane-air flames is analyzed using a reduced three-step mechanism. The three global steps of this reduced mechanism are similar to those used in a previous analysis. The rates of the three steps are related to the rates of the elementary reactions appearing in the C{sub 1}-mechanism for oxidation of methane. The present asymptotic analysis differs from the previous analysis in that oxygen is presumed to leak from the reaction zone to the leading order. Chemical reactions are presumed to occur in three asymptotically thin layers: the fuel-consumption layer, the nonequilibrium layer for the water-gas shift reaction and the oxidation layer. The structure of the fuel-consumption layer is presumed to be identical to that analyzed previously and in this layer the fuel reacts with the radicals to form primarily CO and H{sub 2} and some CO{sub 2} and H{sub 2}O In the oxidation layer the CO and H{sub 2} formed in the fuel-consumption layer are oxidized to CO{sub 2} and H{sub 2}O. The present analysis of the oxidation layer is simpler than the previous analysis because the variation in the values of the concentration of oxygen can be neglected to the leading order and this is a better representation of the flame structure in the vicinity of the critical conditions of extinction. The predictions of the critical conditions of extinction of the present model are compared with the predictions of previous models. It is anticipated that the present simple model can be easily extended to more complex problems such as pollutant formation in flames or chemical inhibition of flames.

  4. Oxidative potential and inflammatory impacts of source apportioned ambient air pollution in Beijing.

    PubMed

    Liu, Qingyang; Baumgartner, Jill; Zhang, Yuanxun; Liu, Yanju; Sun, Yongjun; Zhang, Meigen

    2014-11-04

    Air pollution exposure is associated with a range of adverse health impacts. Knowledge of the chemical components and sources of air pollution most responsible for these health effects could lead to an improved understanding of the mechanisms of such effects and more targeted risk reduction strategies. We measured daily ambient fine particulate matter (<2.5 μm in aerodynamic diameter; PM2.5) for 2 months in peri-urban and central Beijing, and assessed the contribution of its chemical components to the oxidative potential of ambient air pollution using the dithiothreitol (DTT) assay. The composition data were applied to a multivariate source apportionment model to determine the PM contributions of six sources or factors: a zinc factor, an aluminum factor, a lead point factor, a secondary source (e.g., SO4(2-), NO3(2-)), an iron source, and a soil dust source. Finally, we assessed the relationship between reactive oxygen species (ROS) activity-related PM sources and inflammatory responses in human bronchial epithelial cells. In peri-urban Beijing, the soil dust source accounted for the largest fraction (47%) of measured ROS variability. In central Beijing, a secondary source explained the greatest fraction (29%) of measured ROS variability. The ROS activities of PM collected in central Beijing were exponentially associated with in vivo inflammatory responses in epithelial cells (R2=0.65-0.89). We also observed a high correlation between three ROS-related PM sources (a lead point factor, a zinc factor, and a secondary source) and expression of an inflammatory marker (r=0.45-0.80). Our results suggest large differences in the contribution of different PM sources to ROS variability at the central versus peri-urban study sites in Beijing and that secondary sources may play an important role in PM2.5-related oxidative potential and inflammatory health impacts.

  5. Interaction between graphene oxide and Pluronic F127 at the air-water interface.

    PubMed

    Li, Shanghao; Guo, Jingru; Patel, Ravi A; Dadlani, Anup L; Leblanc, Roger M

    2013-05-14

    Triblock copolymer Pluronic F127 (PF127) has previously been demonstrated to disperse graphene oxide (GO) in electrolyte solution and block the hydrophobic interaction between GO and l-tryptophan and l-tyrosine. However, the nature of this interaction between PF127 and GO remains to be characterized and elucidated. In the present study, we aimed to characterize and understand the interaction between GO and PF127 using a 2-dimensional Langmuir monolayer methodology at the air-water interface by surface pressure-area isotherm measurement, stability, adsorption, and atomic force microscopy (AFM) imaging. Based on the observation of surface pressure-area isotherms, adsorption, and stability of PF127 and PF127/GO mixture at the air-water interface, GO is suggested to change the conformation of PF127 at the air-water interface and also drag PF127 from the interface to the bulk subphase. Atomic force microscopy (AFM) image supports this assumption, as GO and PF127 can be observed by spreading the subphase solution outside the compressing barriers, as shown in the TOC graphic.

  6. Interaction of Ambient Air Pollution With Asthma Medication on Exhaled Nitric Oxide Among Asthmatics

    PubMed Central

    Qian, Zhengmin; Lin, Hung-Mo; Chinchilli, Vernon M.; Lehman, Erik B.; Duan, Yinkang; Craig, Timothy J.; Wilson, William E.; Liao, Duanping; Lazarus, Stephen C.; Bascom, Rebecca

    2013-01-01

    The interaction between ambient air pollution and asthma medication remains unclear. The authors compared airway inflammation response to air pollution among asthmatics. Increases of 10 ppb of nitrogen dioxide (NO2) and of 10 μg/m3 of particulate matter < 10 micron in diameter (PM10) daily concentrations were associated with an increase in exhaled nitric oxide (eNO) of 0.13 ppb (95% confidence interval = 0.06, 0.19) and of 0.07 ppb (95% confidence interval = 0.02, 0.12), respectively, in models adjusted for important covariates. The results show that the medication could not counteract airway inflammation effects of air pollution. Specifically, the patients on triamcinolone decreased the sensitivity to PM10 but increased the sensitivity to NO2. The patients on salmeterol were more vulnerable to both NO2 and PM10. This study indicates that the current pollution levels may still enhance airway inflammation among patients with persistent asthma even when they are on asthma medications. PMID:19864219

  7. Particulate matter air pollution causes oxidant-mediated increase in gut permeability in mice

    PubMed Central

    2011-01-01

    Background Exposure to particulate matter (PM) air pollution may be an important environmental factor leading to exacerbations of inflammatory illnesses in the GI tract. PM can gain access to the gastrointestinal (GI) tract via swallowing of air or secretions from the upper airways or mucociliary clearance of inhaled particles. Methods We measured PM-induced cell death and mitochondrial ROS generation in Caco-2 cells stably expressing oxidant sensitive GFP localized to mitochondria in the absence or presence of an antioxidant. C57BL/6 mice were exposed to a very high dose of urban PM from Washington, DC (200 μg/mouse) or saline via gastric gavage and small bowel and colonic tissue were harvested for histologic evaluation, and RNA isolation up to 48 hours. Permeability to 4kD dextran was measured at 48 hours. Results PM induced mitochondrial ROS generation and cell death in Caco-2 cells. PM also caused oxidant-dependent NF-κB activation, disruption of tight junctions and increased permeability of Caco-2 monolayers. Mice exposed to PM had increased intestinal permeability compared with PBS treated mice. In the small bowel, colocalization of the tight junction protein, ZO-1 was lower in the PM treated animals. In the small bowel and colon, PM exposed mice had higher levels of IL-6 mRNA and reduced levels of ZO-1 mRNA. Increased apoptosis was observed in the colon of PM exposed mice. Conclusions Exposure to high doses of urban PM causes oxidant dependent GI epithelial cell death, disruption of tight junction proteins, inflammation and increased permeability in the gut in vitro and in vivo. These PM-induced changes may contribute to exacerbations of inflammatory disorders of the gut. PMID:21658250

  8. Catalytic wet-air oxidation of a chemical plant wastewater over platinum-based catalysts.

    PubMed

    Cybulski, Andrzej; Trawczyński, Janusz

    2006-01-01

    Catalytic wet-air oxidation (CWAO) of wastewater (chemical oxygen demand [COD] = 1800 mg O2/dm3) from a fine chemicals plant was investigated in a fixed-bed reactor at T = 393-473 K under total pressure of 5.0 or 8.0 MPa. Catalysts containing 0.3% wt. of platinum deposited on two supports, mixed silica-titania (SM1) and carbon black composites (CBC) were used. The CBC-supported catalyst appeared to be more active than the SM1-supported one. A slow decrease of activity of the platinum on SM1 (Pt-SM1) during the long-term operation is attributed to recrystallization of titania and leaching of a support component, while the Pt-CBC catalyst is deteriorated, owing to combustion of the support component. The power-law-kinetic equations were used to describe the rate of COD removal at CWAO over the catalysts. The kinetic parameters of COD reduction for the wastewater were determined and compared with the kinetic parameters describing phenol oxidation over the same catalysts. Rates of COD removal for the wastewater were found higher than those for phenol oxidation over the same catalysts and under identical operating conditions.

  9. Wet air oxidation of table olive processing wastewater: determination of key operating parameters by factorial design.

    PubMed

    Katsoni, Athanasia; Frontistis, Zaharias; Xekoukoulotakis, Nikolaos P; Diamadopoulos, Evan; Mantzavinos, Dionissios

    2008-08-01

    The wet air oxidation of an effluent from edible olive processing was investigated. Semibatch experiments were conducted with 0.3L of effluent loaded into an autoclave and pure oxygen fed continuously to maintain an oxygen partial pressure of 2.5MPa. The effect of operating conditions, such as initial organic loading (from 1240 to 5150mg/L COD), reaction time (from 30 to 120min), temperature (from 140 to 180 degrees C), initial pH (from 3 to 7) and the use of 500mg/L H(2)O(2) as an additional oxidant, on treatment efficiency was assessed implementing a factorial experimental design. All five parameters had a statistically considerable effect on COD removal, alongside second order interactions of COD with reaction temperature, contact time and effluent pH. In most cases, high levels of phenols degradation (up to 100%) and decolorization (up to 90%) were achieved followed by low to moderate mineralization (up to 70%). The oxidation of phenols was affected to a considerable level by the initial COD, reaction temperature and contact time, as well as the second order interaction between COD and temperature, while all other effects were insignificant.

  10. Treatment of biomass gasification wastewater using a combined wet air oxidation/activated sludge process

    SciTech Connect

    English, C.J.; Petty, S.E.; Sklarew, D.S.

    1983-02-01

    A lab-scale treatability study for using thermal and biological oxidation to treat a biomass gasification wastewater (BGW) having a chemical oxygen demand (COD) of 46,000 mg/l is described. Wet air oxidation (WA0) at 300/sup 0/C and 13.8 MPa (2000 psi) was used to initially treat the BGW and resulted in a COD reduction of 74%. This was followed by conventional activated sludge treatment using operating conditions typical of municipal sewage treatment plants. This resulted in an additional 95% COD removal. Overall COD reduction for the combined process was 99%. A detailed chemical analysis of the raw BGW and thermal and biological effluents was performed using gas chromatography/mass spectrometry (GC/MS). These results showed a 97% decrease in total extractable organics with WA0 and a 99.6% decrease for combined WA0 and activated sludge treatment. Components of the treated waters tended to be fewer in number and more highly oxidized. An experiment was conducted to determine the amount of COD reduction caused by volatilization during biological treatment. Unfortunately, this did not yield conclusive results. Treatment of BGW using WA0 followed by activated sludge appears to be very effective and investigations at a larger scale are recommended.

  11. Effects of operational conditions on sludge degradation and organic acids formation in low-critical wet air oxidation.

    PubMed

    Chung, Jinwook; Lee, Mikyung; Ahn, Jaehwan; Bae, Wookeun; Lee, Yong-Woo; Shim, Hojae

    2009-02-15

    Wet air oxidation processes are to treat highly concentrated organic compounds including refractory materials, sludge, and night soil, and usually operated at supercritical water conditions of high temperature and pressure. In this study, the effects of operational conditions including temperature, pressure, and oxidant dose on sludge degradation and conversion into subsequent intermediates such as organic acids were investigated at low critical wet oxidation conditions. The reaction time and temperature in the wet air oxidation process was shown an important factor affecting the liquefaction of volatile solids, with more significant effect on the thermal hydrolysis reaction rather than the oxidation reaction. The degradation efficiency of sludge and the formation of organic acids were improved with longer reaction time and higher reaction temperature. For the sludge reduction and the organic acids formation under the wet air oxidation, the optimal conditions for reaction temperature, time, pressure, and oxidant dose were shown approximately 240 degrees C, 30min, 60atm, and 2.0L/min, respectively.

  12. Detection and removal of impurities in nitric oxide generated from air by pulsed electrical discharge.

    PubMed

    Yu, Binglan; Blaesi, Aron H; Casey, Noel; Raykhtsaum, Grigory; Zazzeron, Luca; Jones, Rosemary; Morrese, Alexander; Dobrynin, Danil; Malhotra, Rajeev; Bloch, Donald B; Goldstein, Lee E; Zapol, Warren M

    2016-11-30

    Inhalation of nitric oxide (NO) produces selective pulmonary vasodilation without dilating the systemic circulation. However, the current NO/N2 cylinder delivery system is cumbersome and expensive. We developed a lightweight, portable, and economical device to generate NO from air by pulsed electrical discharge. The objective of this study was to investigate and optimize the purity and safety of NO generated by this device. By using low temperature streamer discharges in the plasma generator, we produced therapeutic levels of NO with very low levels of nitrogen dioxide (NO2) and ozone. Despite the low temperature, spark generation eroded the surface of the electrodes, contaminating the gas stream with metal particles. During prolonged NO generation there was gradual loss of the iridium high-voltage tip (-90 μg/day) and the platinum-nickel ground electrode (-55 μg/day). Metal particles released from the electrodes were trapped by a high-efficiency particulate air (HEPA) filter. Quadrupole mass spectroscopy measurements of effluent gas during plasma NO generation showed that a single HEPA filter removed all of the metal particles. Mice were exposed to breathing 50 parts per million of electrically generated NO in air for 28 days with only a scavenger and no HEPA filter; the mice did not develop pulmonary inflammation or structural changes and iridium and platinum particles were not detected in the lungs of these mice. In conclusion, an electric plasma generator produced therapeutic levels of NO from air; scavenging and filtration effectively eliminated metallic impurities from the effluent gas.

  13. Secondary Organic Aerosol Formation from Ambient Air in an Oxidation Flow Reactor at GoAmazon2014/5

    NASA Astrophysics Data System (ADS)

    Palm, Brett B.; de Sa, Suzane S.; Campuzano-Jost, Pedro; Day, Douglas A.; Hu, Weiwei; Seco, Roger; Park, Jeong-Hoo; Guenther, Alex; Kim, Saewung; Brito, Joel; Wurm, Florian; Artaxo, Paulo; Yee, Lindsay; Isaacman-VanWertz, Gabrial; Goldstein, Allen; Newburn, Matt K.; Lizabeth Alexander, M.; Martin, Scot T.; Brune, William H.; Jimenez, Jose L.

    2016-04-01

    During GoAmazon2014/5, ambient air was exposed to controlled concentrations of OH or O3 in situ using an oxidation flow reactor (OFR). Oxidation ranged from hours-several weeks of aging. Oxidized air was sampled by several instruments (e.g., HR-AMS, ACSM, PTR-TOF-MS, SMPS, CCN) at both the T3 site (IOP1: Feb 1-Mar 31, 2014, and IOP2: Aug 15-Oct 15, 2014) and T2 site (between IOPs and into 2nd IOP). The oxidation of ambient air in the OFR led to substantial and variable secondary organic aerosol (SOA) formation from any SOA-precursor gases, known and unknown, that entered the OFR. In general, more SOA was produced during the nighttime than daytime, suggesting that SOA-precursor gases were found in relatively higher concentrations at night. Similarly, more SOA was formed in the dry season (IOP2) than wet season (IOP1). The maximum amount of SOA produced during nighttime from OH oxidation ranged from less than 1 μg/m3 on some nights to greater than 10 μg/m3 on other nights. O3 oxidation of ambient air also led to SOA formation, although several times less than from OH oxidation. The amount of SOA formation sometimes, but not always, correlated with measured gas-phase biogenic and/or anthropogenic SOA precursors (e.g., SV-TAG sesquiterpenes, PTR-TOFMS aromatics, isoprene, and monoterpenes). The SOA mass formed in the OFR from OH oxidation was up to an order of magnitude larger than could be explained from aerosol yields of measured primary VOCs. This along with measurements from previous campaigns suggests that most SOA was formed from intermediate S/IVOC sources (e.g., VOC oxidation products, evaporated POA, or direct emissions). To verify the SOA yields of VOCs under OFR experimental conditions, atmospherically-relevant concentrations of several VOCs were added individually into ambient air in the OFR and oxidized by OH or O3. SOA yields in the OFR were similar to published chamber yields. Preliminary PMF factor analysis showed production of secondary factors in

  14. FINAL REPORT on Experimental Validation of Stratified Flow Phenomena, Graphite Oxidation, and Mitigation Strategies of Air Ingress Accidents

    SciTech Connect

    Chang H. Oh; Eung S. Kim; Hee C. NO; Nam Z. Cho

    2011-01-01

    The U.S. Department of Energy is performing research and development that focuses on key phenomena that are important during challenging scenarios that may occur in the Next Generation Nuclear Plant (NGNP)/Generation IV very high temperature reactor (VHTR). Phenomena Identification and Ranking studies to date have identified the air ingress event, following on the heels of a VHTR depressurization, as very important. Consequently, the development of advanced air ingress-related models and verification & validation are of very high priority for the NGNP Project. Following a loss of coolant and system depressurization incident, air ingress will occur through the break, leading to oxidation of the in-core graphite structure and fuel. This study indicates that depending on the location and the size of the pipe break, the air ingress phenomena are different. In an effort to estimate the proper safety margin, experimental data and tools, including accurate multidimensional thermal-hydraulic and reactor physics models, a burn-off model, and a fracture model are required. It will also require effective strategies to mitigate the effects of oxidation, eventually. This 3-year project (FY 2008–FY 2010) is focused on various issues related to the VHTR air-ingress accident, including (a) analytical and experimental study of air ingress caused by density-driven, stratified, countercurrent flow, (b) advanced graphite oxidation experiments, (c) experimental study of burn-off in the core bottom structures, (d) structural tests of the oxidized core bottom structures, (e) implementation of advanced models developed during the previous tasks into the GAMMA code, (f) full air ingress and oxidation mitigation analyses, (g) development of core neutronic models, (h) coupling of the core neutronic and thermal hydraulic models, and (i) verification and validation of the coupled models.

  15. GENERATION, TRANSPORT AND DEPOSITION OF TUNGSTEN-OXIDE AEROSOLS AT 1000 C IN FLOWING AIR-STEAM MIXTURES.

    SciTech Connect

    GREENE,G.A.; FINFROCK,C.C.

    2001-10-01

    Experiments were conducted to measure the rates of oxidation and vaporization of pure tungsten rods in flowing air, steam and air-steam mixtures in laminar flow. Also measured were the downstream transport of tungsten-oxide condensation aerosols and their region of deposition, including plateout in the superheated flow tube, rainout in the condenser and ambient discharge which was collected on an array of sub-micron aerosol filters. The nominal conditions of the tests, with the exception of the first two tests, were tungsten temperatures of 1000 C, gas mixture temperatures of 200 C and wall temperatures of 150 C to 200 C. It was observed that the tungsten oxidation rates were greatest in all air and least in all steam, generally decreasing non-linearly with increasing steam mole fraction. The tungsten oxidation rates in all air were more than five times greater than the tungsten oxidation rates in all steam. The tungsten vaporization rate was zero in all air and increased with increasing steam mole fraction. The vaporization rate became maximum at a steam mole fraction of 0.85 and decreased thereafter as the steam mole fraction was increased to unity. The tungsten-oxide was transported downstream as condensation aerosols, initially flowing upwards from the tungsten rod through an 18-inch long, one-inch diameter quartz tube, around a 3.5-inch radius, 90{sup o} bend and laterally through a 24-inch horizontal run. The entire length of the quartz glass flow path was heated by electrical resistance clamshell heaters whose temperatures were individually controlled and measured. The tungsten-oxide plateout in the quartz tube was collected, nearly all of which was deposited at the end of the heated zone near the entrance to the condenser which was cold. The tungsten-oxide which rained out in the condenser as the steam condensed was collected with the condensate and weighed after being dried. The aerosol smoke which escaped the condenser was collected on the sub

  16. Decomposition of nitric oxide in a hot nitrogen stream to synthesize air for hypersonic wind tunnel combustion testing

    NASA Technical Reports Server (NTRS)

    Zumdieck, J. F.; Zlatarich, S. A.

    1974-01-01

    A clean source of high enthalpy air was obtained from the exothermic decomposition of nitric oxide in the presence of strongly heated nitrogen. A nitric oxide jet was introduced into a confined coaxial nitrogen stream. Measurements were made of the extent of mixing and reaction. Experimental results are compared with one- and two-dimensional chemical kinetics computations. Both analyses predict much lower reactivity than was observed experimentally. Inlet nitrogen temperatures above 2400 K were sufficient to produce experimentally a completely reacted gas stream of synthetic air.

  17. Oxidation rate of nuclear-grade graphite IG-110 in the kinetic regime for VHTR air ingress accident scenarios

    NASA Astrophysics Data System (ADS)

    Lee, Jo Jo; Ghosh, Tushar K.; Loyalka, Sudarshan K.

    2014-03-01

    The oxidation rates of nuclear-grade graphite IG-110 in the kinetically-controlled temperature regime of graphite oxidation were predicted and compared in Very High Temperature Reactor air ingress accident scenarios. The oxidative mass loss of graphite was measured thermogravimetrically from 873 to 1873 K in 100% air (21 mol%). The activation energy was found to be 222.07 kJ/mol, and the order of reaction with respect to oxygen concentration is 0.76. The surfaces of the samples were characterized by Scanning Electron Microscopy, Energy Dispersive Spectroscopy, Fourier Transform Infrared Spectroscopy and X-ray Photoelectron Spectroscopy before and after oxidation. These results are compared with those available in the literature, and our recently reported results for NBG-18 nuclear-grade graphite using the same technique.

  18. Influence of the different oxidation treatment on the performance of multi-walled carbon nanotubes in the catalytic wet air oxidation of phenol.

    PubMed

    Yang, Shaoxia; Wang, Xingang; Yang, Hongwei; Sun, Yu; Liu, Yunxia

    2012-09-30

    Multi-walled carbon nanotubes (MWCNTs) functionalized by different oxidants (HNO(3)/H(2)SO(4), H(2)O(2), O(3) and air) have been used as catalysts for the wet air oxidation of phenol. To investigate the effect of the oxidation conditions on the structure of the functionalized MWCNTs, various characterization techniques, e.g., scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy, Fourier-transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS) have been used. The MWCNTs treated with O(3) and H(2)O(2) show higher amounts of oxygen-containing functional groups and carboxylic acid groups, and a weaker acidic nature, in comparison with those treated with other oxidizing agents. All the functionalized MWCNTs exhibit good activity in the catalytic wet air oxidation (CWAO) of phenol. However, the MWCNTs treated with O(3) show the highest activity with desirable stability in comparison with other functionalized MWCNTs, indicating that the functionalization of carbon nanotubes with O(3) is a very promising strategy in synthesizing efficient catalysts for CWAO.

  19. Antioxidant and oxidative stress parameters in brain of Heteropneustes fossilis under air exposure condition; role of mitochondrial electron transport chain.

    PubMed

    Paital, Biswaranjan

    2013-09-01

    Many fishes are exposed to air in their natural habitat or during their commercial handling. In natural habitat or during commercial handling, the cat fish Heteropneustes fossilis is exposed to air for >24h. Data on its oxidative metabolism in the above condition are not available. Oxidative stress (OS) indices (lipid and protein oxidation), toxic reactive oxygen species (ROS: H2O2) generation, antioxidative status (levels of superoxide dismutase, catalase, glutathione peroxidase and reductase, ascorbic acid and non-protein sulfhydryl) and activities of electron transport chain (ETC) enzymes (complex I-IV) were investigated in brain tissue of H. fossilis under air exposure condition (0, 3, 6, 12 and 18 h at 25°C). Decreased activities of antioxidant (except catalase) and ETC enzymes (except complex II) with increased H2O2 and OS levels were observed in the tissue under water deprivation condition. Positive correlation was observed for complex II activity and non-protein thiol groups with time period of air exposure. The critical time period to induce OS and to reduce most of the studied antioxidant level in brain was found to be 3-6h air exposure. The data can be useful to minimize the stress generated during commercial handling of the live fishes those exposed to air in general and H. fossilis in particular.

  20. 75 FR 61486 - Review of the Secondary National Ambient Air Quality Standards for Oxides of Nitrogen and Oxides...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-05

    ... of Sulfur AGENCY: Environmental Protection Agency (EPA). ACTION: Notice of availability of... Standards for Oxides of Nitrogen and Oxides of Sulfur: Second External Review Draft (75 FR 57463, September... (summary of options for elements of the nitrogen oxides (NO X ) and sulfur oxides (SO X ) standard)....

  1. 75 FR 20595 - Review of the Secondary National Ambient Air Quality Standards for Oxides of Nitrogen and Oxides...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-20

    ... of Sulfur AGENCY: Environmental Protection Agency (EPA). ACTION: Notice of extension of comment... for Oxides of Nitrogen and Oxides of Sulfur: First External Review Draft (75 FR 11877; March 12, 2010... a proposal addressing the nitrogen oxides (NO X ) and sulfur oxides (SO X ) secondary...

  2. Wear and friction of oxidation-resistant mechanical carbon graphites at 650 C in air

    NASA Technical Reports Server (NTRS)

    Allen, G. P.; Wisnader, D. W.

    1975-01-01

    Studies were conducted to determine the friction and wear properties of experimental carbon-graphites. Hemispherically tipped carbon-graphite rider specimens were tested in sliding contact with rotating Inconel X-750 disks in air. A surface speed of 1.33 m/sec, a load of 500 g, and a specimen temperature of 650 C were used. Results indicate: (1) hardness is not a major factor in determining friction and wear under the conditions of these studies. (2) Friction and wear as low as or lower than those observed for a good commercial seal material were attained with some of the experimental materials studied. (3) The inclusion of boron carbide (as an oxidation inhibitor) has a strong influence on wear rate. (4) Phosphate treatment reduces the friction coefficient when boron carbide is not present in the base material.

  3. The NASA Lightning Nitrogen Oxides Model (LNOM): Application to Air Quality Modeling

    NASA Technical Reports Server (NTRS)

    Koshak, William; Peterson, Harold; Khan, Maudood; Biazar, Arastoo; Wang, Lihua

    2011-01-01

    Recent improvements to the NASA Marshall Space Flight Center Lightning Nitrogen Oxides Model (LNOM) and its application to the Community Multiscale Air Quality (CMAQ) modeling system are discussed. The LNOM analyzes Lightning Mapping Array (LMA) and National Lightning Detection Network(TradeMark)(NLDN) data to estimate the raw (i.e., unmixed and otherwise environmentally unmodified) vertical profile of lightning NO(x) (= NO + NO2). The latest LNOM estimates of lightning channel length distributions, lightning 1-m segment altitude distributions, and the vertical profile of lightning NO(x) are presented. The primary improvement to the LNOM is the inclusion of non-return stroke lightning NOx production due to: (1) hot core stepped and dart leaders, (2) stepped leader corona sheath, K-changes, continuing currents, and M-components. The impact of including LNOM-estimates of lightning NO(x) for an August 2006 run of CMAQ is discussed.

  4. Oxidation effects on cleaved multiple quantum well surfaces in air observed by scanning probe microscopy

    NASA Astrophysics Data System (ADS)

    Howells, S.; Gallagher, M. J.; Chen, T.; Pax, P.; Sarid, D.

    1992-08-01

    The paper presents the first atomic force microscopy (AFM) images of cleaved InGaAs/InP multiple quantum wells and compares them with scanning tunneling microscopy (STM) images taken of the same heterostructure. The images were stable in air for over a day. Based on these results, it is proposed that the mechanism for contrast in the images is due to an oxide layer that grows primarily on the InGaAs wells and not on the InP barriers. Both STM and AFM clearly resolve the individual wells of the heterostructure, although STM measured a larger corrugation than an AFM. STM also exhibited superior lateral resolution of about 2 nm, while AFM had a lateral resolution of approximately 6 nm.

  5. Investigation of hydrogen-air ignition sensitized by nitric oxide and by nitrogen dioxide

    NASA Technical Reports Server (NTRS)

    Slack, M.; Grillo, A.

    1977-01-01

    The sensitization of stoichiometric hydrogen-air ignition by NO, NO2 and a mixture of NO and NO2 was investigated behind reflected shock waves in a shock tube. Induction times were measured in pressure range 0.27 to 2.0 atm, temperature range 800 to 1500 K, and for NO or NO2 mole percent between 0.0 and 4.5. Addition of both NO and NO2 reduced the measured induction times. The experimental data are interpreted in terms of H2-O2-NO(x) oxidation reaction mechanisms. The influence of NO(x) upon a supersonic combustion ramjet combustor test, conducted in an arc-heated facility, is assessed.

  6. Graphene oxide membranes with high permeability and selectivity for dehumidification of air

    SciTech Connect

    Shin, Yongsoon; Liu, Wei; Schwenzer, Birgit; Manandhar, Sandeep; Chase-Woods, Dylan; Engelhard, Mark H.; Devanathan, Ram; Fifield, Leonard S.; Bennett, Wendy D.; Ginovska, Bojana; Gotthold, David W.

    2016-09-01

    Hierarchically stacked 2D graphene oxide (GO) membranes are a fascinating and promising new class of materials with the potential for radically improved water vapor/gas separation with excellent selectivity and high permeability. This paper details dehumidification results from flowing gas mixtures through free-standing GO membrane samples prepared by a casting method. The first demonstrated use of free-standing GO membranes for water vapor separation reveals outstanding water vapor permeability and H2O/N2 selectivity. Free-standing GO membranes exhibit extremely high water vapor permeability of 1.82 x 105 Barrer and a water vapor permeance of 1.01 x 10-5 mol/m2sPa, while the nitrogen permeability was below the system’s detection limit, yielding a selectivity >104 in 80% relative humidity (RH) air at 30.8 °C. The results show great potential for a range of energy conversion and environmental applications

  7. Homogeneous catalytic wet-air oxidation for the treatment of textile wastewater

    SciTech Connect

    Lei, L. Chen, G.; Hu, X.; Yue, P.L.

    2000-04-01

    An extensive series of experiments was performed to identify suitable catalysts to increase the reaction rate of wet-air oxidation of textile wastewater t relatively mild temperatures an pressures. Wastewater types treated included natural-fiber desizing wastewater, synthetic-fiber desizing wastewater, and printing and dyeing wastewater. Experimental results indicated that all catalysts tested in this investigation significantly increased the chemical oxygen demand (COD) and total organic carbon (TOC) removal rates and total COD and TOC removals. Of all catalysts tested, copper salts were the most effective. Anions in the slat solutions played a role in the catalytic process. Nitrate ions were more effective than sulfate ions. Similarly, copper nitrates were more effective than copper sulfates. A mixture of salts containing different metals performed better than any single salt.

  8. Degradation of phenylamine by catalytic wet air oxidation using metal catalysts with modified supports.

    PubMed

    Torrellas, Silvia A; Escudero, Gabriel O; Rodriguez, Araceli R; Rodriguez, Juan G

    2015-01-01

    The effect of acid treatments with HCl and HNO3 on the surface area and surface chemistry of three granular activated carbons was studied. These supports were characterized and the hydrochloric acid treatment leads to the best activated carbon support (AC2-C). The catalytic behavior of Pt, Ru and Fe (1 wt.%) supported on granular activated carbon treated with HCl was tested in the phenylamine continuous catalytic wet air oxidation in a three-phase, high-pressure catalytic reactor over a range of reaction temperatures 130-170ºC and total pressure of 1.0-3.0 MPa at LHSV = 0.4-1 h(-1), whereas the phenylamine concentration range and the catalyst loading were 5-16 mol.m(-3) and 0.5-1.5 g, respectively. Activity as well as conversion varied as a function of the metal, the catalyst preparation method and operation conditions. Higher activities were obtained with Pt incorporated on hydrochloric acid -treated activated carbon by the ion exchange method. In steady state, approximately 98% phenylamine conversion, 77% of TOC and 94% of COD removal, was recorded at 150ºC, 11 mol m(-3) of phenylamine concentration and 1.5 g of catalyst, and the selectivity to non-organic compounds was 78%. Several reaction intermediaries were detected. A Langmuir-Hinshelwood model gave an excellent fit of the kinetic data of phenylamine continuous catalytic wet air oxidation over the catalysts of this work.

  9. Tension-Compression Fatigue of an Oxide/Oxide Ceramic Matrix Composite at Elevated Temperature in Air and Steam Environments

    DTIC Science & Technology

    2015-03-26

    method has been successfully used with several materials such as silicon carbide fiber - silicon carbide matrix ( SiC / SiC ) CMCs with carbon and boron...elements [14]. These advanced ceramics include oxides, nitrides and carbides of silicon , aluminum, titanium, and zirconium [12]. One of the most...oxides over silicon carbide and other non-oxide materials. In fact, it is the inherent stability of oxides in oxidizing environments which originally

  10. Comparative AFM nanoscratching tests in air of bulk copper and electrogenerated cuprous oxide films

    NASA Astrophysics Data System (ADS)

    Chaal, Lila; Debiemme-Chouvy, Catherine; Deslouis, Claude; Maurin, Georges; Pailleret, Alain; Saidani, Boualem

    2011-01-01

    The normal and lateral spring constants of rectangular silicon AFM cantilevers bearing pyramidal silicon tips were accurately calibrated using a procedure that takes into account their tilt compared to horizontal orientation and their trapezoidal cross section. Such systems were used to carry out nanoscratching tests in air on technical substrates presenting a moderate roughness (RMS ≈ 40 nm) and made either from bulk copper or from cuprous oxide thin films electrogenerated on copper. The various events occurring during these nanoscratching procedures were characterized in details. In particular, the features of the scars appearing on the scratched zones and SEM observations of the AFM tips used during the nanoscratching procedures are described and exploited to establish a better understanding of the effects of the nanoscratching procedures on the targeted samples. In the case of electrodeposited Cu 2O films, these effects are discussed with the help of chemical and structural characterizations using XPS and XRD studies. All this set of information is used i) to describe the history of the nanoscratching tests and ii) to compare mechanical resistance of bulk copper and electrogenerated Cu 2O thin films using these nanoscratching tests carried out in air. The wear mechanism occurring during nanoscratching tests is discussed for both kinds of samples and compared with the one observed during erosion in erosion-corrosion tests.

  11. Porosity control in nanoporous carbide-derived carbon by oxidation in air and carbon dioxide

    SciTech Connect

    Osswald, S.; Portet, C.; Gogotsi, Y.; Laudisio, G.; Singer, J.P.; Fischer, J.E.; Sokolov, V.V.; Kukushkina, J.A.; Kravchik, A.E.

    2009-07-15

    Carbide-derived carbons (CDC) allow a precise control over the pore size through the selection of the carbide precursor and varying of the synthesis conditions. However, their pore volume is limited by the carbide stoichiometry. While activation of carbons derived from various organic precursors has been widely studied, this process may similarly be able to increase the pore volume and specific surface area of CDC. Oxidation of carbide-derived carbon in air and CO{sub 2} at different temperatures and times allows for significant increase in pore volume and specific surface area as well as control over average pore size with subnanometer accuracy. The effect of activation and associated changes in the pore volume and surface area on the hydrogen uptake are also discussed. - Graphical abstract: Carbide-derived carbons (CDC) provide great potential for sorption of toxicants and gas storage applications. Activation of CDC in air and CO{sub 2} at different temperatures and times is applied in order to maximize pore volume and specific surface area, and control the average pore size with subnanometer accuracy.

  12. A new class of solid oxide metal-air redox batteries for advanced stationary energy storage

    NASA Astrophysics Data System (ADS)

    Zhao, Xuan

    Cost-effective and large-scale energy storage technologies are a key enabler of grid modernization. Among energy storage technologies currently being researched, developed and deployed, rechargeable batteries are unique and important that can offer a myriad of advantages over the conventional large scale siting- and geography- constrained pumped-hydro and compressed-air energy storage systems. However, current rechargeable batteries still need many breakthroughs in material optimization and system design to become commercially viable for stationary energy storage. This PhD research project investigates the energy storage characteristics of a new class of rechargeable solid oxide metal-air redox batteries (SOMARBs) that combines a regenerative solid oxide fuel cell (RSOFC) and hydrogen chemical-looping component. The RSOFC serves as the "electrical functioning unit", alternating between the fuel cell and electrolysis mode to realize discharge and charge cycles, respectively, while the hydrogen chemical-looping component functions as an energy storage unit (ESU), performing electrical-chemical energy conversion in situ via a H2/H2O-mediated metal/metal oxide redox reaction. One of the distinctive features of the new battery from conventional storage batteries is the ESU that is physically separated from the electrodes of RSOFC, allowing it to freely expand and contract without impacting the mechanical integrity of the entire battery structure. This feature also allows an easy switch in the chemistry of this battery. The materials selection for ESU is critical to energy capacity, round-trip efficiency and cost effectiveness of the new battery. Me-MeOx redox couples with favorable thermodynamics and kinetics are highly preferable. The preliminary theoretical analysis suggests that Fe-based redox couples can be a promising candidate for operating at both high and low temperatures. Therefore, the Fe-based redox-couple systems have been selected as the baseline for this

  13. Work function recovery of air exposed molybdenum oxide thin films with vacuum annealing

    NASA Astrophysics Data System (ADS)

    Irfan, Irfan; Turniske, Alexander; Bao, Zhenan; Gao, Yongli

    2012-02-01

    We report substantial work function (WF) recovery of air exposed molybdenum oxide thin films with vacuum annealing. The high WF (˜6.8 eV) of thermally evaporated MoOx thin film was observed to decrease sharply to ˜5.6 eV with an air exposure of one hour. The drop in the WF was accompanied with a very thin layer of oxygen rich adsorbate on the MoOx film. The WF of the exposed MoOx film started to gradually recover with increasing annealing temperature in a vacuum chamber having base pressure of 8 x 10-11 torr. The saturation in the WF recovery was observed around 460 ^oC, with WF ˜6.4 eV. The adsorb layer was found to be removed after the vacuum annealing. We further studied the interface formation between the annealed MoOx and copper pthalocynine (CuPc). The highest occupied molecular orbital (HOMO) level of CuPc was observed to be almost pinned to the Fermi level, strongly suggesting an efficient hole injection through the vacuum annealed MoOx film.

  14. The oxidation of Fe-2 and 5 at.% Y alloys at 600--800 C in air

    SciTech Connect

    Zeng, C.L. |; Rizzo, F.C.; Monteiro, M.J.; Wu, W.T.

    1999-06-01

    The oxidation of Fe-Y alloys containing 2 and 5 at.% Y and pure iron has been studied at 600--800 C in air. The oxidation of pure iron follows the parabolic rate law at all temperatures. The oxidation of Fe-Y alloys at 600 C approximately follows the parabolic rate law, but not at 700 and 800 C, where the oxidation goes through several stages with quite different rates. The oxide scales on Fe-2Y and Fe-5Y at 700 and 800 C are composed of external pure Fe oxides containing Fe{sub 2}O{sub 3}, Fe{sub 3}O{sub 4}, and FeO, with FeO being the main oxide and an inner mixture of FeO and YFeO{sub 3}. The scales on Fe-2Y and Fe-5Y at 600 C consist of Fe{sub 2}O{sub 3}, Fe{sub 3}O{sub 4}, and Y{sub 2}O{sub 3}, with a minor amount of FeO. Significant internal oxidation in both Fe-Y alloys occurred at all temperatures. The Y-containing oxides follow the distribution of the original intermetallic compound phase in the alloys. The effects of Y on the oxidation of pure Fe are discussed.

  15. Producing nitric oxide by pulsed electrical discharge in air for portable inhalation therapy.

    PubMed

    Yu, Binglan; Muenster, Stefan; Blaesi, Aron H; Bloch, Donald B; Zapol, Warren M

    2015-07-01

    Inhalation of nitric oxide (NO) produces selective pulmonary vasodilation and is an effective therapy for treating pulmonary hypertension in adults and children. In the United States, the average cost of 5 days of inhaled NO for persistent pulmonary hypertension of the newborn is about $14,000. NO therapy involves gas cylinders and distribution, a complex delivery device, gas monitoring and calibration equipment, and a trained respiratory therapy staff. The objective of this study was to develop a lightweight, portable device to serve as a simple and economical method of producing pure NO from air for bedside or portable use. Two NO generators were designed and tested: an offline NO generator and an inline NO generator placed directly within the inspiratory line. Both generators use pulsed electrical discharges to produce therapeutic range NO (5 to 80 parts per million) at gas flow rates of 0.5 to 5 liters/min. NO was produced from air, as well as gas mixtures containing up to 90% O2 and 10% N2. Potentially toxic gases produced in the plasma, including nitrogen dioxide (NO2) and ozone (O3), were removed using a calcium hydroxide scavenger. An iridium spark electrode produced the lowest ratio of NO2/NO. In lambs with acute pulmonary hypertension, breathing electrically generated NO produced pulmonary vasodilation and reduced pulmonary arterial pressure and pulmonary vascular resistance index. In conclusion, electrical plasma NO generation produces therapeutic levels of NO from air. After scavenging to remove NO2 and O3 and filtration to remove particles, electrically produced NO can provide safe and effective treatment of pulmonary hypertension.

  16. Disrupted Nitric Oxide Metabolism from Type II Diabetes and Acute Exposure to Particulate Air Pollution.

    PubMed

    Pettit, Ashley P; Kipen, Howard; Laumbach, Robert; Ohman-Strickland, Pamela; Kelly-McNeill, Kathleen; Cepeda, Clarimel; Fan, Zhi-Hua; Amorosa, Louis; Lubitz, Sara; Schneider, Stephen; Gow, Andrew

    2015-01-01

    Type II diabetes is an established cause of vascular impairment. Particulate air pollution is known to exacerbate cardiovascular and respiratory conditions, particularly in susceptible populations. This study set out to determine the impact of exposure to traffic pollution, with and without particle filtration, on vascular endothelial function in Type II diabetes. Endothelial production of nitric oxide (NO) has previously been linked to vascular health. Reactive hyperemia induces a significant increase in plasma nitrite, the proximal metabolite of NO, in healthy subjects, while diabetics have a lower and more variable level of response. Twenty type II diabetics and 20 controls (ages 46-70 years) were taken on a 1.5 hr roadway traffic air pollution exposure as passengers. We analyzed plasma nitrite, as a measure of vascular function, using forearm ischemia to elicit a reactive hyperemic response before and after exposure to one ride with and one without filtration of the particle components of pollution. Control subjects displayed a significant increase in plasma nitrite levels during reactive hyperemia. This response was no longer present following exposure to traffic air pollution, but did not vary with whether or not the particle phase was filtered out. Diabetics did not display an increase in nitrite levels following reactive hyperemia. This response was not altered following pollution exposure. These data suggest that components of acute traffic pollution exposure diminish vascular reactivity in non-diabetic individuals. It also confirms that type II diabetics have a preexisting diminished ability to appropriately respond to a vascular challenge, and that traffic pollution exposure does not cause a further measureable acute change in plasma nitrite levels in Type II diabetics.

  17. Disrupted Nitric Oxide Metabolism from Type II Diabetes and Acute Exposure to Particulate Air Pollution

    PubMed Central

    Pettit, Ashley P.; Kipen, Howard; Laumbach, Robert; Ohman-Strickland, Pamela; Kelly-McNeill, Kathleen; Cepeda, Clarimel; Fan, Zhi-Hua; Amorosa, Louis; Lubitz, Sara; Schneider, Stephen; Gow, Andrew

    2015-01-01

    Type II diabetes is an established cause of vascular impairment. Particulate air pollution is known to exacerbate cardiovascular and respiratory conditions, particularly in susceptible populations. This study set out to determine the impact of exposure to traffic pollution, with and without particle filtration, on vascular endothelial function in Type II diabetes. Endothelial production of nitric oxide (NO) has previously been linked to vascular health. Reactive hyperemia induces a significant increase in plasma nitrite, the proximal metabolite of NO, in healthy subjects, while diabetics have a lower and more variable level of response. Twenty type II diabetics and 20 controls (ages 46–70 years) were taken on a 1.5hr roadway traffic air pollution exposure as passengers. We analyzed plasma nitrite, as a measure of vascular function, using forearm ischemia to elicit a reactive hyperemic response before and after exposure to one ride with and one without filtration of the particle components of pollution. Control subjects displayed a significant increase in plasma nitrite levels during reactive hyperemia. This response was no longer present following exposure to traffic air pollution, but did not vary with whether or not the particle phase was filtered out. Diabetics did not display an increase in nitrite levels following reactive hyperemia. This response was not altered following pollution exposure. These data suggest that components of acute traffic pollution exposure diminish vascular reactivity in non-diabetic individuals. It also confirms that type II diabetics have a preexisting diminished ability to appropriately respond to a vascular challenge, and that traffic pollution exposure does not cause a further measureable acute change in plasma nitrite levels in Type II diabetics. PMID:26656561

  18. Catalytic wet air oxidation of 2-chlorophenol over sewage sludge-derived carbon-based catalysts.

    PubMed

    Tu, Yuting; Xiong, Ya; Tian, Shuanghong; Kong, Lingjun; Descorme, Claude

    2014-07-15

    A sewage sludge derived carbon-supported iron oxide catalyst (FeSC) was prepared and used in the Catalytic Wet Air Oxidation (CWAO) of 2-chlorophenol (2-CP). The catalysts were characterized in terms of elemental composition, surface area, pHPZC, XRD and SEM. The performances of the FeSC catalyst in the CWAO of 2-CP was assessed in a batch reactor operated at 120°C under 0.9MPa oxygen partial pressure. Complete decomposition of 2-CP was achieved within 5h and 90% Total Organic Carbon (TOC) was removed after 24h of reaction. Quite a straight correlation was observed between the 2-CP conversion, the amount of iron leached in solution and the pH of the reaction mixture at a given reaction time, indicating a strong predominance of the homogeneous catalysis contribution. The iron leaching could be efficiently prevented when the pH of the solution was maintained at values higher than 4.5, while the catalytic activity was only slightly reduced. Upon four successive batch CWAO experiments, using the same FeSC catalyst recovered by filtration after pH adjustment, only a very minor catalyst deactivation was observed. Finally, based on all the identified intermediates, a simplified reaction pathway was proposed for the CWAO of 2-CP over the FeSC catalyst.

  19. MOCVD-growth of thin zinc oxide films from zinc acetylacetonate and air

    NASA Astrophysics Data System (ADS)

    Pflitsch, Christian; Nebatti, Abdelkader; Brors, Georg; Atakan, Burak

    2012-06-01

    The metalorganic chemical vapour deposition (MOCVD) of thin zinc oxide films on borosilicate glass and silicon substrates in a hot-wall CVD-reactor (HWR) was studied. Zinc acetylacetonate (Zn(acac)2) and air were used as precursors. The aim of this work was to optimize the deposition parameters, such as pressure and deposition temperature, with respect to the film quality, structure, and homogeneity. Most experiments were performed at atmospheric pressure; this approach avoids the usage of an expensive vacuum system. It turned out that polycrystalline zinc oxide is grown at deposition temperatures above 613 K. Above 823 K, they additionally are c-axis orientated. At atmospheric pressure and lower temperature (<773 K) the film deposition is homogeneously over the whole tube furnace while at higher temperature inhomogeneous film growth and particle formation are observed, indicating a shift of the growth mechanism to the diffusion controlled regime. Although the homogeneity is improved by using higher flow velocities at atmospheric pressure, particle growth cannot be suppressed. Only at reduced pressure, which was 200 mbar in the present case, the deposition at 823 K is kinetically controlled and without particle formation, resulting in the homogeneous growth of well adhering ZnO films with c-axis orientation.

  20. Indefinitely stable iron(IV) cage complexes formed in water by air oxidation

    PubMed Central

    Tomyn, Stefania; Shylin, Sergii I.; Bykov, Dmytro; Ksenofontov, Vadim; Gumienna-Kontecka, Elzbieta; Bon, Volodymyr; Fritsky, Igor O.

    2017-01-01

    In nature, iron, the fourth most abundant element of the Earth's crust, occurs in its stable forms either as the native metal or in its compounds in the +2 or +3 (low-valent) oxidation states. High-valent iron (+4, +5, +6) compounds are not formed spontaneously at ambient conditions, and the ones obtained synthetically appear to be unstable in polar organic solvents, especially aqueous solutions, and this is what limits their studies and use. Here we describe unprecedented iron(IV) hexahydrazide clathrochelate complexes that are assembled in alkaline aqueous media from iron(III) salts, oxalodihydrazide and formaldehyde in the course of a metal-templated reaction accompanied by air oxidation. The complexes can exist indefinitely at ambient conditions without any sign of decomposition in water, nonaqueous solutions and in the solid state. We anticipate that our findings may open a way to aqueous solution and polynuclear high-valent iron chemistry that remains underexplored and presents an important challenge. PMID:28102364

  1. Oxidation of 1,1-dimethylhydrazine (UDMH) in aqueous solution with air and hydrogen peroxide.

    PubMed

    Lunn, G; Sansone, E B

    1994-10-01

    The degradation of 1,1-dimethylhydrazine (UDMH), a component of some rocket fuels, was investigated using atmospheric oxygen and hydrogen peroxide. The reactions were carried out in the presence and absence of copper catalysis and at varying pH. Reactions were also carried out in the presence of hydrazine, a constituent, along with UDMH, of the rocket fuel Aerozine-50. In the presence of copper, UDMH was degraded by air passed through the solution; the efficiency of degradation increased as the pH increased but the carcinogen N-nitrosodimethylamine (NDMA) was formed at neutral and alkaline pH. Oxidation was not seen in the absence of copper. Production of NDMA occurred even at copper concentrations of < 1 ppm. Oxidation of UDMH with hydrogen peroxide also gave rise to NDMA. When copper was absent degradation of UDMH did not occur at acid pH but when copper was present some degradation occurred at all pH levels investigated. The production of NDMA occurred mostly at neutral and alkaline pH. In general, higher concentrations of hydrogen peroxide and copper favored the production of NDMA. Dimethylamine, methanol, formaldehyde dimethylhydrazone, formaldehyde hydrazone, and tetramethyltetrazene were also produced. The last three compounds were tested and found to be mutagenic.

  2. The oxidation behavior of a model molybdenum/tungsten-containing alloy in air alone and in air with trace levels of NaCl(g)

    NASA Technical Reports Server (NTRS)

    Smeggil, J. G.; Bornstein, N. S.

    1983-01-01

    Thermogravimetric, metallographic, and X-ray studies of a model alloy, Ni-(17 a/o)Al-(10 a/o)Mo+W, oxidized in dry air at 600-1200 C and in air with 10 ppm NaCl gas at 900 C, are reported. The alloy was melted under Ar and pretreated in flowing H2 for 24 h at 1300 C. Polished 1.3 x 1.3 x 0.2-cm specimens were washed and degreased prior to oxidation in a quartz tube within a furnace for up to 120 hr. The oxidation activation energy of the alloy is determined to be about 30 kcal/mole. The specimens oxidized at 900 C and hotter exhibited oxidized and nitrided phases covered by complex NiMoO4, NiWO4, and NiAl2O4 scales and a porous, nonprotective outer layer of NiO. The oxidation behavior is found to be determined by the formation and growth of the scale, especially the (Mo,W)O2 component. Al2O3 scale layers were not formed, and further runs with pure O2 or Ar-(20 percent)O2 ruled out an explanation of this phenomenon based on aluminum nitride formation. The oxidation was accelerated by the addition of NaCl gas, a finding attributed to the reaction of NaCl with external locally protective Al2O3 scales and with the internal(Mo, W)O2 layers.

  3. The influence of zinc chloride and zinc oxide nanoparticles on air-time survival in freshwater mussels.

    PubMed

    Gagné, François; Auclair, Joëlle; Peyrot, Caroline; Wilkinson, Kevin J

    2015-01-01

    The purpose of this study was to determine the cumulative effects of exposure to either dissolved zinc or nanozinc oxide (nanoZnO) and air-time survival in freshwater mussels. Mussels were exposed to each forms of zinc for 96h then placed in air to determine survival time. A sub-group of mussels before and after 7days of exposure to air were kept aside for the determination of the following biomarkers: arachidonate-dependent cyclooxygenase (COX) and peroxidase (inflammation and oxidative stress), lipid metabolism (total lipids, esterases activity, HO-glycerol, acetyl CoA and phospholipase A2) and lipid damage (lipid peroxidation [LPO]). The results showed that air-time survival was decreased from a mean value of 18.5days to a mean value of 12days in mussels exposed to 2.5mg/L of nanoZnO although it was not lethal based on shell opening at concentrations below 50mg/L after 96h. In mussels exposed to zinc only, the median lethal concentration was estimated at 16mg/L (10-25 95% CI). The air-time survival did not significantly change in mussels exposed to the same concentration of dissolved Zn. Significant weight losses were observed at 0.5mg/L of nanoZnO and at 2.5mg/L for dissolved zinc chloride, and were also significantly correlated with air-time survival (r=0.53; p<0.01). Air exposure significantly increased COX activity in control mussels and in mussels exposed to 0.5mg/L of nanoZnO and zinc chloride. The data also suggested fatty acid breakdown and β-oxidation. Mussels exposed to contaminants are more susceptible to prolonged exposure to air during low water levels.

  4. What Is Happening when the Blue Bottle Bleaches: An Investigation of the Methylene Blue-Catalyzed Air Oxidation of Glucose

    ERIC Educational Resources Information Center

    Anderson, Laurens; Wittkopp, Stacy M.; Painter, Christopher J.; Liegel, Jessica J.; Schreiner, Rodney; Bell, Jerry A.; Shakhashiri, Bassam Z.

    2012-01-01

    An investigation of the Blue Bottle Experiment, a well-known lecture demonstration reaction involving the dye-catalyzed air oxidation of a reducing sugar in alkaline solution, has delineated the sequence of reactions leading to the bleaching of the dye, the regeneration of color, and so forth. Enolization of the sugar is proposed as a key step in…

  5. 40 CFR 52.675 - Control strategy: Sulfur oxides-Eastern Idaho Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... of Sulfur Oxide Emissions from Sulfuric Acid Plants) of the “Rules and Regulations for the Control of... have previously been established for certain existing acid plants in this Air Quality Control Region... apply to existing acid plants with approved or promulgated emission limits that are more stringent...

  6. 40 CFR 52.675 - Control strategy: Sulfur oxides-Eastern Idaho Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... of Sulfur Oxide Emissions from Sulfuric Acid Plants) of the “Rules and Regulations for the Control of... have previously been established for certain existing acid plants in this Air Quality Control Region... apply to existing acid plants with approved or promulgated emission limits that are more stringent...

  7. Experimental coupling and modelling of wet air oxidation and packed-bed biofilm reactor as an enhanced phenol removal technology.

    PubMed

    Minière, Marine; Boutin, Olivier; Soric, Audrey

    2017-01-25

    Experimental coupling of wet air oxidation process and aerobic packed-bed biofilm reactor is presented. It has been tested on phenol as a model refractory compound. At 30 MPa and 250 °C, wet air oxidation batch experiments led to a phenol degradation of 97% and a total organic carbon removal of 84%. This total organic carbon was mainly due to acetic acid. To study the interest of coupling processes, wet air oxidation effluent was treated in a biological treatment process. This step was made up of two packed-bed biofilm reactors in series: the first one acclimated to phenol and the second one to acetic acid. After biological treatment, phenol and total organic carbon removal was 99 and 97% respectively. Thanks to parameters from literature, previous studies (kinetic and thermodynamic) and experimental data from this work (hydrodynamic parameters and biomass characteristics), both treatment steps were modelled. This modelling allows the simulation of the coupling process. Experimental results were finally well reproduced by the continuous coupled process model: relative error on phenol removal efficiency was 1 and 5.5% for wet air oxidation process and packed-bed biofilm reactor respectively.

  8. Workshop in Support of the Secondary National Ambient Air Quality Standards for Nitrogen (NOx) and Sulfur Oxides (SOx)

    EPA Science Inventory

    EPA is announcing a workshop to discuss policy-relevant science to Inform EPA’s "Review of the Secondary National Ambient Air Quality Standards (NAAQS) for Oxides of Nitrogen and Sulfur" report. The workshop is being organized by EPA’s Office of Research and Development’s, Nation...

  9. 40 CFR 52.675 - Control strategy: Sulfur oxides-Eastern Idaho Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 3 2011-07-01 2011-07-01 false Control strategy: Sulfur oxides-Eastern... PLANS Idaho § 52.675 Control strategy: Sulfur oxides—Eastern Idaho Intrastate Air Quality Control Region... part of the sulfur dioxide (SO2) control strategy, is disapproved since it is inconsistent with...

  10. 40 CFR 52.675 - Control strategy: Sulfur oxides-Eastern Idaho Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 3 2012-07-01 2012-07-01 false Control strategy: Sulfur oxides-Eastern... PLANS Idaho § 52.675 Control strategy: Sulfur oxides—Eastern Idaho Intrastate Air Quality Control Region... part of the sulfur dioxide (SO2) control strategy, is disapproved since it is inconsistent with...

  11. Storage of LWR spent fuel in air: Volume 1: Design and operation of a spent fuel oxidation test facility

    SciTech Connect

    Thornhill, C.K.; Campbell, T.K.; Thornhill, R.E.

    1988-12-01

    This report describes the design and operation and technical accomplishments of a spent-fuel oxidation test facility at the Pacific Northwest Laboratory. The objective of the experiments conducted in this facility was to develop a data base for determining spent-fuel dry storage temperature limits by characterizing the oxidation behavior of light-water reactor (LWR) spent fuels in air. These data are needed to support licensing of dry storage in air as an alternative to spent-fuel storage in water pools. They are to be used to develop and validate predictive models of spent-fuel behavior during dry air storage in an Independent Spent Fuel Storage Installation (ISFSI). The present licensed alternative to pool storage of spent fuel is dry storage in an inert gas environment, which is called inerted dry storage (IDS). Licensed air storage, however, would not require monitoring for maintenance of an inert-gas environment (which IDS requires) but does require the development of allowable temperature limits below which UO/sub 2/ oxidation in breached fuel rods would not become a problem. Scoping tests at PNL with nonirradiated UO/sub 2/ pellets and spent-fuel fragment specimens identified the need for a statistically designed test matrix with test temperatures bounding anticipated maximum acceptable air-storage temperatures. This facility was designed and operated to satisfy that need. 7 refs.

  12. Atomic structure and thermophysical properties of molten silver-copper oxide air braze alloys

    NASA Astrophysics Data System (ADS)

    Hardy, John Steven

    The Ag-CuOx materials system is the basis for a family of filler alloys used in a recently developed ceramic-metal joining technique referred to as air brazing, which is a brazing process that can be carried out in ambient air rather than under the vacuum or inert to reducing gas conditions required for conventional brazing methods. This research was conducted to elucidate the atomic coordination and selected thermophysical properties of these materials as a function of temperature when they are in the salient liquid state in air, since this is when the critical steps of wetting and spreading occur in the joining process. A series of alloys was selected spanning the entire length of the phase diagram including the pure end members, Ag and CuOx; alloys that form the two constituent single phase liquids; and alloys for which the two liquid phases coexist in the miscibility gap of the phase diagram. The oxygen content of the liquid alloys in air was measured using thermogravimetry. The oxidative weight gain of 99.999% pure metallic precursors was measured while simultaneously accounting for the concurrent silver volatility using a method that was developed in the course of the study. The surface tension and mass density were measured using the maximum bubble pressure method. The number density was calculated based on the information gained from the oxygen content and mass density measurements. For compositions that were amenable to laser heating, containerless high energy x-ray scattering measurements of the liquid atomic coordination were performed using a synchrotron beamline, an aerodynamic levitator, and laser heating. For the remaining compositions x-ray scattering measurements were performed in a beamline-compatible furnace. The two liquid phases that form in this materials system have distinct atomic coordinations characterized by an average of nearly two-fold coordinated ionic metal-oxygen pairs in the CuOx-rich liquid and nearly eight-fold coordinated atomic

  13. Preparation, certification and interlaboratory analysis of workplace air filters spiked with high-fired beryllium oxide.

    PubMed

    Oatts, Thomas J; Hicks, Cheryl E; Adams, Amy R; Brisson, Michael J; Youmans-McDonald, Linda D; Hoover, Mark D; Ashley, Kevin

    2012-02-01

    Occupational sampling and analysis for multiple elements is generally approached using various approved methods from authoritative government sources such as the National Institute for Occupational Safety and Health (NIOSH), the Occupational Safety and Health Administration (OSHA) and the Environmental Protection Agency (EPA), as well as consensus standards bodies such as ASTM International. The constituents of a sample can exist as unidentified compounds requiring sample preparation to be chosen appropriately, as in the case of beryllium in the form of beryllium oxide (BeO). An interlaboratory study was performed to collect analytical data from volunteer laboratories to examine the effectiveness of methods currently in use for preparation and analysis of samples containing calcined BeO powder. NIST SRM(®) 1877 high-fired BeO powder (1100 to 1200 °C calcining temperature; count median primary particle diameter 0.12 μm) was used to spike air filter media as a representative form of beryllium particulate matter present in workplace sampling that is known to be resistant to dissolution. The BeO powder standard reference material was gravimetrically prepared in a suspension and deposited onto 37 mm mixed cellulose ester air filters at five different levels between 0.5 μg and 25 μg of Be (as BeO). Sample sets consisting of five BeO-spiked filters (in duplicate) and two blank filters, for a total of twelve unique air filter samples per set, were submitted as blind samples to each of 27 participating laboratories. Participants were instructed to follow their current process for sample preparation and utilize their normal analytical methods for processing samples containing substances of this nature. Laboratories using more than one sample preparation and analysis method were provided with more than one sample set. Results from 34 data sets ultimately received from the 27 volunteer laboratories were subjected to applicable statistical analyses. The observed

  14. Thermodynamic and kinetic study of phenol degradation by a non-catalytic wet air oxidation process.

    PubMed

    Lefèvre, Sébastien; Boutin, Olivier; Ferrasse, Jean-Henry; Malleret, Laure; Faucherand, Rémy; Viand, Alain

    2011-08-01

    This work is dedicated to an accurate evaluation of thermodynamic and kinetics aspects of phenol degradation using wet air oxidation process. Phenol is a well known polluting molecule and therefore it is important having data of its behaviour during this process. A view cell is used for the experimental study, with an internal volume of 150 mL, able to reach pressures up to 30 MPa and temperatures up to 350°C. Concerning the thermodynamic phase equilibria, experimental and modelling results are obtained for different binary systems (water/nitrogen, water/air) and ternary system (water/nitrogen/phenol). The best model is the Predictive Soave Redlich Kwong one. This information is necessary to predict the composition of the gas phase during the process. It is also important for an implementation in a process simulation. The second part is dedicated to kinetics evaluation of the degradation of phenol. Different compounds have been detected using GC coupled with a MS. A kinetic scheme is deduced, taking into account the evolution of phenol, hydroquinones, catechol, resorcinol and acetic acid. The kinetic parameters are calculated for this scheme. These data are important to evaluate the evolution of the concentration of the different polluting molecules during the process. A simplified kinetic scheme, which can be easily implemented in a process simulation, is also determined for the direct degradation of phenol into H(2)O and CO(2). The Arrhenius law data obtained for the phenol disappearance are the following: k=1.8×10(6)±3.9×10(5)M(-1)s(-1) (pre-exponential factor) and E(a)=77±8 kJ mol(-1) (activation energy).

  15. Diagnostic significance of nitric oxide concentrations in exhaled air from the airways in allergic rhinitis patients

    PubMed Central

    Krzych-Fałta, Edyta; Samoliński, Bolesław K; Zalewska, Marta

    2016-01-01

    Introduction The effect of nitric oxide (NO) on the human body is very important due its physiological regulation of the following functions of airways: modulation of ciliary movement and maintenance of sterility in sinuses. Aim To evaluate the diagnostic significance of NO concentrations in exhaled air from the upper and lower airways in patients diagnosed with allergic rhinitis (AR). Material and methods The subjects included in the study were a group of 30 people diagnosed with sensitivity to environmental allergens and a control group consisting of 30 healthy subjects. The measurement of NO in the air exhaled from the lower and upper airways was performed using an on-line method by means of Restricted Exhaled Breath (REB), as well as using the measurement procedure (chemiluminescence) set out in the guidelines prepared in 2005 by the American Thoracic Society and the European Respiratory Society. Results In the late phase of the allergic reaction, higher values of the level of exhaled NO concentration from the lower airways were observed in the groups of subjects up to the threshold values of 25.17 ppb in the group of subjects with year-round allergic rhinitis and 21.78 ppb in the group with diagnosed seasonal allergic rhinitis. The difference in the concentration of NO exhaled from the lungs between the test group and the control group in the 4th h of the test was statistically significant (p = 0.045). Conclusions Exhaled NO should be considered as a marker of airway inflammation. It plays an important role in the differential diagnosis of allergy. PMID:27279816

  16. Catechol oxidation by ozone and hydroxyl radicals at the air-water interface.

    PubMed

    Pillar, Elizabeth A; Camm, Robert C; Guzman, Marcelo I

    2014-12-16

    Anthropogenic emissions of aromatic hydrocarbons promptly react with hydroxyl radicals undergoing oxidation to form phenols and polyphenols (e.g., catechol) typically identified in the complex mixture of humic-like substances (HULIS). Because further processing of polyphenols in secondary organic aerosols (SOA) can continue mediated by a mechanism of ozonolysis at interfaces, a better understanding about how these reactions proceed at the air-water interface is needed. This work shows how catechol, a molecular probe of the oxygenated aromatic hydrocarbons present in SOA, can contribute interfacial reactive species that enhance the production of HULIS under atmospheric conditions. Reactive semiquinone radicals are quickly produced upon the encounter of 40 ppbv-6.0 ppmv O3(g) with microdroplets containing [catechol] = 1-150 μM. While the previous pathway results in the instantaneous formation of mono- and polyhydroxylated aromatic rings (PHA) and chromophoric mono- and polyhydroxylated quinones (PHQ), a different channel produces oxo- and dicarboxylic acids of low molecular weight (LMW). The cleavage of catechol occurs at the 1,2 carbon-carbon bond at the air-water interface through the formation of (1) an ozonide intermediate, (2) a hydroperoxide, and (3) cis,cis-muconic acid. However, variable [catechol] and [O3(g)] can affect the ratio of the primary products (cis,cis-muconic acid and trihydroxybenzenes) and higher order products observed (PHA, PHQ, and LMW oxo- and dicarboxylic acids). Secondary processing is confirmed by mass spectrometry, showing the production of crotonic, maleinaldehydic, maleic, glyoxylic, and oxalic acids. The proposed pathway can contribute precursors to aqueous SOA (AqSOA) formation, converting aromatic hydrocarbons into polyfunctional species widely found in tropospheric aerosols with light-absorbing brown carbon.

  17. Temperature-modulated graphene oxide resistive humidity sensor for indoor air quality monitoring

    NASA Astrophysics Data System (ADS)

    de Luca, A.; Santra, S.; Ghosh, R.; Ali, S. Z.; Gardner, J. W.; Guha, P. K.; Udrea, F.

    2016-02-01

    In this paper we present a temperature-modulated graphene oxide (GO) resistive humidity sensor that employs complementary-metal-oxide-semiconductor (CMOS) micro-electro-mechanical-system (MEMS) micro-hotplate technology for the monitoring and control of indoor air quality (IAQ). GO powder is obtained by chemical exfoliation, dispersed in water and deposited via ink-jet printing onto a low power micro-hotplate. Atomic force microscopy (AFM) and transmission electron microscopy (TEM) show the typical layered and wrinkled morphology of the GO. Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and Fourier transform infra-red (FTIR) spectroscopy indicate that the GO flakes possess a significant number of oxygen containing functional groups (epoxy, carbonyl, hydroxyl) extremely attractive for humidity detection. Electro-thermal characterisation of the micro-hotplates shows a thermal efficiency of 0.11 mW per °C, resulting in a sensor DC power consumption of only 2.75 mW at 50 °C. When operated in an isothermal mode, the sensor response is detrimentally affected by significant drift, hysteretic behaviour, slow response/recovery times and hence poor RH level discrimination. Conversely, a temperature modulation technique coupled with a differential readout methodology results in a significant reduction of the sensor drift, improved linear response with a sensitivity of 0.14 mV per %, resolution below 5%, and a maximum hysteresis of +/-5% response and recovery times equal to 189 +/- 49 s and 89 +/- 5 s, respectively. These performance parameters satisfy current IAQ monitoring requirements. We have thus demonstrated the effectiveness of integrating GO on a micro-hotplate CMOS-compatible platform enabling temperature modulation schemes to be easily applied in order to achieve compact, low power, low cost humidity IAQ monitoring.In this paper we present a temperature-modulated graphene oxide (GO) resistive humidity sensor that employs complementary-metal-oxide

  18. Nitric Oxide and Oxygen Air-Contamination Effects on Extinction Limits of Non-Premixed Hydrocarbon-Air Flames for a HIFiRE Scramjet

    NASA Technical Reports Server (NTRS)

    Pellett, Gerald L.; Dawson, Lucy C.; Vaden, Sarah N.; Wilson, Lloyd G.

    2009-01-01

    Unique nitric oxide (NO) and oxygen air-contamination effects on the extinction Flame Strength (FS) of non-premixed hydrocarbon (HC) vs. air flames are characterized for 7 gaseous HCs, using a new idealized 9.3 mm straight-tube Opposed Jet Burner (OJB) at 1 atm. FS represents a laminar strain-induced extinction limit based on cross-section-average air jet velocity, Uair, that sustains combustion of a counter jet of gaseous fuel just before extinction. Besides ethane, propane, butane, and propylene, the HCs include ethylene, methane, and a 64 mole-% ethylene / 36 % methane mixture, the writer s previously recommended gaseous surrogate fuel for HIFiRE scramjet tests. The HC vs. clean air part of the work is an extension of a May 2008 JANNAF paper that characterized surrogates for the HIFiRE project that should mimic the flameholding of reformed (thermally- or catalytically-cracked) endothermic JP-like fuels. The new FS data for 7 HCs vs. clean air are thus consolidated with the previously validated data, normalized to absolute (local) axial-input strain rates, and co-plotted on a dual kinetically dominated reactivity scale. Excellent agreement with the prior data is obtained for all 7 fuels. Detailed comparisons are also made with recently published (Univ. Va) numerical results for ethylene extinction. A 2009-revised ethylene kinetic model (Univ. Southern Cal) led to predicted limits within approx. 5 % (compared to 45 %, earlier) of this writer s 2008 (and present) ethylene FSs, and also with recent independent data (Univ. Va) obtained on a new OJB system. These +/- 5 % agreements, and a hoped-for "near-identically-performing" reduced kinetics model, would greatly enhance the capability for accurate numerical simulations of surrogate HC flameholding in scramjets. The measured air-contamination effects on normalized FS extinction limits are projected to assess ongoing Arc-Heater-induced "facility test effects" of NO production (e.g., 3 mole-%) and resultant oxygen

  19. Temperature-modulated graphene oxide resistive humidity sensor for indoor air quality monitoring.

    PubMed

    De Luca, A; Santra, S; Ghosh, R; Ali, S Z; Gardner, J W; Guha, P K; Udrea, F

    2016-02-28

    In this paper we present a temperature-modulated graphene oxide (GO) resistive humidity sensor that employs complementary-metal-oxide-semiconductor (CMOS) micro-electro-mechanical-system (MEMS) micro-hotplate technology for the monitoring and control of indoor air quality (IAQ). GO powder is obtained by chemical exfoliation, dispersed in water and deposited via ink-jet printing onto a low power micro-hotplate. Atomic force microscopy (AFM) and transmission electron microscopy (TEM) show the typical layered and wrinkled morphology of the GO. Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and Fourier transform infra-red (FTIR) spectroscopy indicate that the GO flakes possess a significant number of oxygen containing functional groups (epoxy, carbonyl, hydroxyl) extremely attractive for humidity detection. Electro-thermal characterisation of the micro-hotplates shows a thermal efficiency of 0.11 mW per °C, resulting in a sensor DC power consumption of only 2.75 mW at 50 °C. When operated in an isothermal mode, the sensor response is detrimentally affected by significant drift, hysteretic behaviour, slow response/recovery times and hence poor RH level discrimination. Conversely, a temperature modulation technique coupled with a differential readout methodology results in a significant reduction of the sensor drift, improved linear response with a sensitivity of 0.14 mV per %, resolution below 5%, and a maximum hysteresis of ±5%; response and recovery times equal to 189 ± 49 s and 89 ± 5 s, respectively. These performance parameters satisfy current IAQ monitoring requirements. We have thus demonstrated the effectiveness of integrating GO on a micro-hotplate CMOS-compatible platform enabling temperature modulation schemes to be easily applied in order to achieve compact, low power, low cost humidity IAQ monitoring.

  20. Air Quality Criteria for Ozone and Related Photochemical Oxidants (2006 Final)

    EPA Science Inventory

    Tropospheric or surface-level ozone (O3) is one of six major air pollutants regulated by National Ambient Air Quality Standards (NAAQS) under the U.S. Clean Air Act. As mandated by the Clean Air Act, the U.S. Environmental Protection Agency (EPA) must periodically review t...

  1. Short-term respiratory effects of polluted ambient air: a laboratory study of volunteers in a high-oxidant community

    SciTech Connect

    Linn, W.S.; Jones, M.P.; Bachmayer, E.A.; Spier, C.E.; Mazur, S.F.; Avol, E.L.; Hackney, J.D.

    1980-02-01

    To investigate short-term health effects of community air pollution directly, researchers developed a mobile laboratory allowing blind exposures of volunteers to polluted ambient air and to purified air at similar temperature and humidity. Subjects from the surrounding area were studied at Duarte, California, a Los Angeles suburb subject to frequent photochemical oxidant pollution. Each was exposed to a close approximation of outdoor ambient air for 2 h with intermittent light exercise. Lung function and symptoms were evaluated pre- and post-exposure. A control study took place several weeks later. Mean ambient air exposure concentrations were near 0.22 ppM for ozone and 200 micrograms/m3 for total suspended particulate. Ambient air exposures were associated with small significant losses in forced expiratory performance and total lung capacity. The responses of asthmatic and normal subjects were generally not significantly different, possibly because many normal subjects had a history of allergy and appeared atypically reactive to respiratory insults. In the normal subjects, a small significant increase in reported symptoms was seen with ambient air exposures compared with the control. In the asthmatics, the increase was not significant. Over-all, only slight effects attributable to exposure were found, even though a severely polluted area and a presumed high-risk population were chosen for study.

  2. FY-09 Report: Experimental Validation of Stratified Flow Phenomena, Graphite Oxidation, and Mitigation Strategies of Air Ingress Accidents

    SciTech Connect

    Chang H. Oh; Eung S. Kim

    2009-12-01

    The Idaho National Laboratory (INL), under the auspices of the U.S. Department of Energy, is performing research and development that focuses on key phenomena important during potential scenarios that may occur in the Next Generation Nuclear Plant (NGNP)/Gen-IV very high temperature reactor (VHTR). Phenomena Identification and Ranking Studies to date have identified that an air ingress event following on the heels of a VHTR depressurization is a very important incident. Consequently, the development of advanced air ingress-related models and verification and validation data are a very high priority for the NGNP Project. Following a loss of coolant and system depressurization incident, air will enter the core through the break, leading to oxidation of the in-core graphite structure and fuel. If this accident occurs, the oxidation will accelerate heat-up of the bottom reflector and the reactor core and will eventually cause the release of fission products. The potential collapse of the core bottom structures causing the release of CO and fission products is one of the concerns. Therefore, experimental validation with the analytical model and computational fluid dynamic (CFD) model developed in this study is very important. Estimating the proper safety margin will require experimental data and tools, including accurate multidimensional thermal-hydraulic and reactor physics models, a burn-off model, and a fracture model. It will also require effective strategies to mitigate the effects of oxidation. The results from this research will provide crucial inputs to the INL NGNP/VHTR Methods Research and Development project. The second year of this three-year project (FY-08 to FY-10) was focused on (a) the analytical, CFD, and experimental study of air ingress caused by density-driven, stratified, countercurrent flow; (b) advanced graphite oxidation experiments and modeling; (c) experimental study of burn-off in the core bottom structures, (d) implementation of advanced

  3. Catalytic evaluation on liquid phase oxidation of vanillyl alcohol using air and H2O2 over mesoporous Cu-Ti composite oxide

    NASA Astrophysics Data System (ADS)

    Saha, Subrata; Hamid, Sharifah Bee Abd; Ali, Tammar Hussein

    2017-02-01

    A mesoporous, highly crystalline Cu-Ti composite oxide catalyst was prepared via facile, simple and modified solution method varying Cu and Ti ratio for selective liquid phase oxidation of vanillyl alcohol. Various spectroscopic procedures were employed to systematically characterize the catalyst structural and physicochemical properties. The defect chemistry of the catalyst was confirmed from the presence of surface defects revealed through HRTEM imagery between the TiO2 (101) and Cu3TiO4 (012) planes, complemented by the XRD profiling. Further, presence of oxygen vacancy evidenced by O 1s XPS spectra were observed on the catalyst surface. Moreover, the stoichiometry of Cu and Ti in the catalyst synthesis protocol was notably found to be the vital determinant to alter the redox properties of Cu-Ti composite oxide catalyst supported by H2-TPR. O2-TPD analysis. Moreover, a rational investigation was done using different oxidants such as air and H2O2 with variables reaction conditions. The catalyst was active for liquid phase oxidation of vanillyl alcohol to vanillin with performance of 66% conversion and 71% selectivity using H2O2 in base free condition. And also, catalytic activity was significantly improved by 94% conversion with 86% selectivity to vanillin in liquid phase aerobic oxidation at the optimum reaction conditions. To expand the superiority of the catalyst, three times reusability study was also examined with appreciable catalytic activity.

  4. Supported noble metal catalysts in the catalytic wet air oxidation of industrial wastewaters and sewage sludges.

    PubMed

    Besson, M; Descorme, C; Bernardi, M; Gallezot, P; di Gregorio, F; Grosjean, N; Minh, D Pham; Pintar, A

    2010-12-01

    This paper reviews some catalytic wet air oxidation (CWAO) investigations of industrial wastewaters over platinum and ruthenium catalysts supported on TiO2 and ZrO2 formulated to be active and resistant to leaching, with particular focus on the stability of the catalyst. Catalyst recycling experiments were performed in batch reactors and long-term stability tests were conducted in trickle-bed reactors. The catalyst did not leach upon treatment of Kraft bleaching plant and olive oil mill effluents, and could be either recycled or used for long periods of time in continuous reactors. Conversely, these catalysts were rapidly leached when used to treat effluents from the production of polymeric membranes containing N,N-dimethylformamide. The intermediate formation of amines, such as dimethylamine and methylamine with a high complexing capacity for the metal, was shown to be responsible for the metal leaching. These heterogeneous catalysts also deactivated upon CWAO of sewage sludges due to the adsorption of the solid organic matter. Pre-sonication of the sludge to disintegrate the flocs and improve solubility was inefficient.

  5. Air oxidation and seawater corrosion of Hastelloy S and Hastelloy C-4

    SciTech Connect

    Fullam, H.T.

    1980-03-01

    A program is currently under way at the Pacific Northwest Laboratory (PNL) to develop the data and technology needed to permit the licensing of /sup 90/SrF/sub 2/ as a radioisotope heat source fuel for terrestrial applications. The WESF /sup 90/SrF/sub 2/ storage capsule consists of a Hastelloy C-276 inner capsule (2 in. I.D. x 19 in. long) and a 316L stainless steel outer capsule (2-3/8 in. I.D. x 20 in. long). Preliminary experimental tests and theoretical calculations show that the WESF storage capsule is incapable of meeting current licensing requirements for heat sources that are to be used for terrestrial applications. Therefore, the DOE decision was to develop a new heat source design that would retain the existing WESF Hastelloy C-276 inner capsule and replace the current WESF outer capsule with a new outer capsule capable of meeting current licensing requirements. Based on a number of factors, Hastelloy S was selected as the outer capsule material. Hastelloy C-4 was selected as a backup material in case the Hastelloy S had to be rejected for any reason. This report summarizes the results of studies carried out to determine the effects of both air oxidation at heat source operating temperatures and seawater corrosion on the tensile properties of the outer capsule materials.

  6. Nitric Oxide PLIF Visualization of Simulated Fuel-Air Mixing in a Dual-Mode Scramjet

    NASA Technical Reports Server (NTRS)

    Cantu, Luca M. L.; Gallo, Emanuela C. A.; Cutler, Andrew D.; Bathel, Brett F.; Danehy, Paul M.; Rockwell, Robert D.; Goyne, Christopher P.; McDaniel, James C.

    2015-01-01

    Nitric oxide (NO) planar induced laser fluorescence (PLIF) measurements have been performed in a small scale scramjet combustor at the University of Virginia Aerospace Research Laboratory at nominal simulated Mach 5 flight. A mixture of NO and N2 was injected at the upstream end of the inlet isolator as a surrogate for ethylene fuel, and the mixing of this fuel simulant was studied with and without a shock train. The shock train was produced by an air throttle, which simulated the blockage effects of combustion downstream of the cavity flame holder. NO PLIF signal was imaged in a plane orthogonal to the freestream at the leading edge of the cavity. Instantaneous planar images were recorded and analyzed to identify the most uniform cases, which were achieved by varying the location of the fuel injection and shock train. This method was used to screen different possible fueling configurations to provide optimized test conditions for follow-on combustion measurements using ethylene fuel. A theoretical study of the selected NO rotational transitions was performed to obtain a LIF signal that is linear with NO mole fraction and approximately independent of pressure and temperature.

  7. Kaolinite-catalyzed air oxidation of hydrazine: Consideration of several compositional, structural and energetic factors in surface activation

    NASA Technical Reports Server (NTRS)

    Coyne, L. M.; Mariner, R.; Rice, A.

    1991-01-01

    Clay minerals have been shown to have numerous, curious, energetic properties by virtue of ultra-violet light release which can be triggered by gentle environmental changes such as wetting and dewetting by a variety of liquids, unique among them water and hydrazine. Since both water and hydrazine play multiple key roles in the air-oxidation of hydrazine on kaolinite surfaces, this reaction would seem to have prime potential for studying interrelationships of energy storage, release and chemical reactivity of clay surfaces, capacities basic to either the Bernal or Cairns-Smith roles of minerals in the origin of life. Establishment of the capacity for stored electronic energy to significantly alter surface chemistry is important, regardless of the reaction chosen to demonstrate it. Hydrazine air oxidation is overawingly complex, given the possibilities for step-wise control and monitoring of parameters. In the light of recently extended characterization of the kaolinite and model sheet catalysts we used to study hydrazine oxidation and gamma-irradiated silica, previous studies of hydrazine air-oxidation on aluminosilicate surfaces have been reevaluated. Our former conclusion remains intact that, whereas trace structural and surface contaminants do play some role in the catalysis of oxidation, they are not the only, nor even the dominant, catalytic centers. Initial intermediates in the oxidation can now be proposed which are consistent with production via O(-)-centers as well as ferric iron centers. The greater than square dependence of the initial reaction rate on the weight of the clay is discussed in the light of these various mechanistic possibilities.

  8. Liquid products from oxidative thermal treatment of oil sludge with different oxygen concentrations of air.

    PubMed

    Shie, J L; Chang, C Y; Lin, J P; Le, D J; Wu, C H

    2001-01-01

    Oxidative thermal treatment of oil sludge with different oxygen concentrations of air by using a dynamic thermogravimetric (TG) reaction system is investigated. The experimental conditions employed are: gas flow rate of 50 cm3/min (value at 298 K) for 300 mg dry waste, a constant heating rate of 5.2 K/min, the oxygen concentrations in air of 1.09, 8.62 and 20.95 vol. % O2, and the temperature (T) range of 378-873 K. From the experimental results, the residual mass fractions (M) are about 78.95, 28.49, 8.77 and 4.13 wt. % at the oxidative T of 563, 713, 763 and 873 K for the case with 20.95 vol. % O2, respectively. The values of M with 8.62 and 1.09 vol. % O2 at T of 873 K are 4.87 and 9.44 wt. %, respectively. The distillation characteristics of the oil portion of liquid products (condensates of gas at 298 K) from the oxidative thermal treatment of oil sludge with 20.95 vol. % O2 at T of 378-873 K is close to those of commercial gasoline. Nevertheless, the liquid product contains a large amount of water. The distillation characteristics of the oil portions of liquid products with 8.62 and 1.09 vol. % O2 at T of 378-873 K are close to those of diesel and fuel oils, respectively. The oil quality with 8.62 vol. % O2 is better than that with 1.09 vol. % O2. However, the liquid product with 8.62 vol. % O2 still contains a large amount of water; nonetheless, that with 1.09 vol. % O2 is with negligible water. Compared with the oil product of nitrogen pyrolysis, the oil quality with 1.09 vol. % O2 is better. Certainly, low oxygen conditions (i.e. 1.09 vol. % O2) not only accelerate the thermal reaction of oil sludge, but also at the same time avoid or reduce the production of water. Further, from the analysis of benzene (B), ethylbenzene (E), toluene (T) and iso-xylene (X) concentrations of the oil portion of liquid products, the BETX concentrations of oil with 20.95 vol. % O2 are higher than those with 8.62 and 1.09 vol. % O2. The yields of liquid products with 20.95, 8

  9. 75 FR 70258 - Review of the Secondary National Ambient Air Quality Standards for Oxides of Nitrogen and Oxides...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-17

    ... of Sulfur AGENCY: Environmental Protection Agency (EPA). ACTION: Extension of comment period. SUMMARY... Nitrogen and Oxides of Sulfur: Second External Review Draft (75 FR 57463, September 21, 2010). The EPA... additional table for Chapter 9 (summary of options for elements of the nitrogen oxides (NO X ) and...

  10. Oxidation of metals by a plasma formed as a result of low-threshold breakdown of air

    NASA Astrophysics Data System (ADS)

    Goncharov, I. N.; Goncharov, Yu N.; Konov, Vitalii I.; Minaev, I. M.; Skvortsov, Yu A.; Chapliev, N. I.

    1981-12-01

    The characteristics of the oxidation of copper, aluminum, and titanium were determined in the case when breakdown of air was initiated by CO2 laser pulses incident on targets made of these metals. A study was made of the influence of surface oxide films on the threshold radiation intensity necessary to produce a plasma. The dependence of the efficiency of the thermal interaction of an optical-breakdown plasma on the magnitude and sign of the charge carried by the surface of a metal target was investigated for the first time in the specific case of titanium.

  11. Effects of Wet Air and Synthetic Combustion Gas Atmospheres on the Oxidation Behavior of Mo-Si-B Alloys

    SciTech Connect

    Kramer, M.J.; Thom, A.J.; Mandal, P.; Behrani, V.; Akinc, M.

    2003-04-24

    Continuing our work on understanding the oxidation behavior of multiphase composite alloys based on the Mo-Si-B system, we investigated three alloys in the Mo-Si-B system, designated as A1, A2, and A3. The nominal phase assemblages of these alloys are: A1 = Mo{sub 5}Si{sub 3}B{sub x} (T1)-MoSi{sub 2}-MoB, A2 = T1-Mo{sub 5}SiB{sub 2} (T2)-Mo{sub 3}Si, and A3 = Mo-T2-Mo{sub 3}Si. Our previous work showed that for exposures to 1100 C, all alloys formed a protective oxide scale in dry air. Exposures to wet air containing about 150 Torr water promoted the formation of a multiphase layer near the scale/alloy interface composed of Mo and MoO{sub 2}. Interrupted mass loss measurements indicated a near zero mass change. In the present study, isothermal mass measurements were conducted in order to quantitatively determine the oxidation rate constants at 1000 C in both dry and wet air. These measurements are critical for understanding the nature of scale development during the initial exposure, as well as the nature of scale stability during the long-term exposure. Isothermal measurements were also conducted at 1600 C in dry air to make an initial determination of alloy stability with respect to Vision 21 goals. We also conducted alloy oxidation testing in a synthetic oxidizing combustion atmosphere. Alloys were exposed up to 300 hours at 1100 C to a gas mixture having an approximate gas composition of N{sub 2} - 13 CO{sub 2} - 10 H{sub 2}O - 4 O{sub 2}. This gas composition simulates oxidizing flue gas, but does not contain a sulfidizing agent that would also be present in flue gas. The oxidized samples were carefully analyzed by SEM/EDS. This analysis will be discussed to provide an understanding of the role of water vapor and the synthetic combustion atmosphere on the oxidative stability of Mo-Si-B alloys.

  12. Oxidation Behavior of a Pd43Cu27Ni10P20 Bulk Metallic Glass and Foam in Dry Air

    NASA Astrophysics Data System (ADS)

    Kai, W.; Ren, I. F.; Barnard, B.; Liaw, P. K.; Demetriou, M. D.; Johnson, W. L.

    2010-07-01

    The oxidation behavior of both Pd43Cu27Ni10P20 bulk metallic glass (Pd4-BMG) and its amorphous foam containing 45 pct porosity (Pd4-AF) was investigated over the temperature range of 343 K (70 °C) to 623 K (350 °C) in dry air. The results showed that virtually no oxidation occurred in the Pd4-BMG at T < 523 K (250 °C), revealing the alloy’s favorable oxidation resistance in this temperature range. In addition, the oxidation kinetics at T ≥ 523 K (250 °C) followed a parabolic-rate law, and the parabolic-rate constants ( k p values) generally increased with temperature. It was found that the oxidation k p values of the Pd4-AF are slightly lower than those of the Pd4-BMG, indicating that the porous structure contributes to improving the overall oxidation resistance. The scale formed on the alloys was composed exclusively of CuO at T ≥ 548 K (275 °C), whose thickness gradually increased with increasing temperature. In addition, the amorphous structure remained unchanged at T ≤ 548 K (275 °C), while a triplex-phase structure developed after the oxidation at higher temperatures, consisting of Pd2Ni2P, Cu3P, and Pd3P.

  13. Layered perovskite oxide: a reversible air electrode for oxygen evolution/reduction in rechargeable metal-air batteries.

    PubMed

    Takeguchi, Tatsuya; Yamanaka, Toshiro; Takahashi, Hiroki; Watanabe, Hiroshi; Kuroki, Tomohiro; Nakanishi, Haruyuki; Orikasa, Yuki; Uchimoto, Yoshiharu; Takano, Hiroshi; Ohguri, Nobuaki; Matsuda, Motofumi; Murota, Tadatoshi; Uosaki, Kohei; Ueda, Wataru

    2013-07-31

    For the development of a rechargeable metal-air battery, which is expected to become one of the most widely used batteries in the future, slow kinetics of discharging and charging reactions at the air electrode, i.e., oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), respectively, are the most critical problems. Here we report that Ruddlesden-Popper-type layered perovskite, RP-LaSr3Fe3O10 (n = 3), functions as a reversible air electrode catalyst for both ORR and OER at an equilibrium potential of 1.23 V with almost no overpotentials. The function of RP-LaSr3Fe3O10 as an ORR catalyst was confirmed by using an alkaline fuel cell composed of Pd/LaSr3Fe3O10-2x(OH)2x·H2O/RP-LaSr3Fe3O10 as an open circuit voltage (OCV) of 1.23 V was obtained. RP-LaSr3Fe3O10 also catalyzed OER at an equilibrium potential of 1.23 V with almost no overpotentials. Reversible ORR and OER are achieved because of the easily removable oxygen present in RP-LaSr3Fe3O10. Thus, RP-LaSr3Fe3O10 minimizes efficiency losses caused by reactions during charging and discharging at the air electrode and can be considered to be the ORR/OER electrocatalyst for rechargeable metal-air batteries.

  14. Ambient air particles: effects on cellular oxidant radical generation in relation to particulate elemental chemistry.

    PubMed

    Prahalad, A K; Soukup, J M; Inmon, J; Willis, R; Ghio, A J; Becker, S; Gallagher, J E

    1999-07-15

    Epidemiologic studies have reported causal relationships between exposures to high concentrations of ambient air particles (AAP) and increased morbidity in individuals with underlying respiratory problems. Polymorphonuclear leukocytes (PMN) are frequently present in the airways of individuals exposed to particles. Upon particulate stimulation the PMN may release reactive oxygen species (ROS), which can result in tissue damage and injury. In this study a wide range of AAP samples from divergent sources (1, natural dust; 2, oil fly ash; 2, coal fly ash; 5, ambient air; and 1, carbon black) were analyzed for elemental content and solubility in relation to their ability to generate ROS. Elemental analyses were carried out in AAP and dH(2)O-washed AAP using energy dispersive x-ray fluorescence (XRF). Percent of sample mass accounted for by XRF-detectable elements was 1.2% (carbon black); 22-29% (natural dust and ambient air particles); 13-22% (oil fly ash particles); 28-49% (coal fly ash particles). The major proportion of elements in most of these particles were aluminosilicates and insoluble iron, except oil-derived fly ash particles in which soluble vanadium and nickel were in highest concentrations, consistent with particle acidity as measured in the supernatants. Human blood-derived monocytes and PMN were exposed to AAP and dH(2)O-washed particles, and generation of ROS was determined using luminol-enhanced chemiluminescence (LCL) assay. All the particles induced chemiluminescence response in the cells, except carbon black. The oxidant response of monocytes induced by AAP (with the exception of oil fly ash particles) was less than the response elicited by PMN. The LCL response of PMN in general increased with all washed particles, with oil fly ash (OFA) and one urban air particle showing statistically significant (p < 0. 05) differences between dH(2)O-washed and unwashed particles. The LCL activity in PMN induced by both particles and dH(2)O-washed particles was

  15. Induction of CCR2-Dependent Macrophage Accumulation by Oxidized Phospholipids in the Air-Pouch Model of Inflammation

    PubMed Central

    Kadl, Alexandra; Galkina, Elena; Leitinger, Norbert

    2009-01-01

    Objective Macrophages are key players in the pathogenesis of rheumatoid synovitis as well as in atherosclerosis. To determine whether atherogenic oxidized phospholipids potentially contribute to synovial inflammation and subsequent monocyte/macrophage recruitment, we examined the effects of oxidized 1-palmitoyl-2-arachidonoyl-sn-3-glycero-phosphorylcholine (OxPAPC) on chemokine expression and leukocyte recruitment in a facsimile synovium in vivo using the murine air-pouch model. Methods Air pouches were raised by 2 injections of sterile air, and inflammation was induced by injecting either lipopolysaccharide (LPS) or OxPAPC into the pouch lumen. Inflammation was assessed by analysis of inflammatory gene expression using reverse transcription–polymerase chain reaction or immunohistochemical analysis, and leukocytes were quantified in the lavage fluid and in the pouch wall after staining with Giemsa or after enzymatic digestion followed by fluorescence-activated cell sorter analysis. Results Application of OxPAPC resulted in selective recruitment of monocyte/macrophages into the air-pouch wall, but not in the lumen. In contrast, LPS induced both monocyte and neutrophil accumulation in the pouch lumen as well as in the wall. LPS, but not OxPAPC, induced the expression of adhesion molecules E-selectin, P-selectin, intercellular adhesion molecule 1, and vascular cell adhesion molecule 1. OxPAPC increased the expression of the CCR2 ligands monocyte chemotactic protein 1 (MCP-1), MCP-3, and MCP-5, as well as RANTES and growth-related oncogene α (GROα), while it down-regulated the expression of CCR2 on macrophages. Moreover, oxidized phospholipid–induced macrophage accumulation was abrogated in CCR2−/− mice. Conclusion These data demonstrate that oxidized phospholipids trigger a type of inflammatory response that leads to selective macrophage accumulation in vivo, a process relevant for the pathogenesis of chronic inflammatory rheumatic diseases. PMID:19404946

  16. Carvedilol alleviates adjuvant-induced arthritis and subcutaneous air pouch edema: Modulation of oxidative stress and inflammatory mediators

    SciTech Connect

    Arab, Hany H.; El-Sawalhi, Maha M.

    2013-04-15

    Rheumatoid arthritis (RA) is a systemic inflammatory disease with cardiovascular complications as the leading cause of morbidity. Carvedilol is an adrenergic antagonist which has been safely used in treatment of several cardiovascular disorders. Given that carvedilol has powerful antioxidant/anti-inflammatory properties, we aimed to investigate its protective potential against arthritis that may add further benefits for its clinical usefulness especially in RA patients with concomitant cardiovascular disorders. Two models were studied in the same rat; adjuvant arthritis and subcutaneous air pouch edema. Carvedilol (10 mg/kg/day p.o. for 21 days) effectively suppressed inflammation in both models with comparable efficacy to the standard anti-inflammatory diclofenac (5 mg/kg/day p.o.). Notably, carvedilol inhibited paw edema and abrogated the leukocyte invasion to air pouch exudates. The latter observation was confirmed by the histopathological assessment of the pouch lining that revealed mitigation of immuno-inflammatory cell influx. Carvedilol reduced/normalized oxidative stress markers (lipid peroxides, nitric oxide and protein thiols) and lowered the release of inflammatory cytokines (TNF-α and IL-6), and eicosanoids (PGE{sub 2} and LTB{sub 4}) in sera and exudates of arthritic rats. Interestingly, carvedilol, per se, didn't present any effect on assessed biochemical parameters in normal rats. Together, the current study highlights evidences for the promising anti-arthritic effects of carvedilol that could be mediated through attenuation of leukocyte migration, alleviation of oxidative stress and suppression of proinflammatory cytokines and eicosanoids. - Highlights: ► Carvedilol possesses promising anti-arthritic properties. ► It markedly suppressed inflammation in adjuvant arthritis and air pouch edema. ► It abrogated the leukocyte invasion to air pouch exudates and linings. ► It reduced/normalized oxidative stress markers in sera and exudates of

  17. Analysis of effect of flameholder characteristics on lean, premixed, partially vaporized fuel-air mixtures quality and nitrogen oxides emissions

    NASA Technical Reports Server (NTRS)

    Cooper, L. P.

    1981-01-01

    An analysis was conducted of the effect of flameholding devices on the precombustion fuel-air characteristics and on oxides of nitrogen (NOx) emissions for combustion of premixed partially vaporized mixtures. The analysis includes the interrelationships of flameholder droplet collection efficiency, reatomization efficiency and blockage, and the initial droplet size distribution and accounts for the contribution of droplet combustion in partially vaporized mixtures to NOx emissions. Application of the analytical procedures is illustrated and parametric predictions of NOx emissions are presented.

  18. ESR investigation of the oxidative damage in lungs caused by asbestos and air pollution particles

    NASA Astrophysics Data System (ADS)

    Kadiiska, M. B.; Ghio, A. J.; Mason, R. P.

    2004-05-01

    Exposure to asbestos and air pollution particles can be associated with increased human morbidity and mortality. However, the molecular mechanism of lung injuries remains unknown. It has been postulated that the in vivo toxicity results from the catalysis of free radical generation. Using electron spin resonance (ESR) in conjunction with the spin trap α-(4-pyridyl-1-oxide)- N- tert-butylnitrone (4-POBN) we previously investigated in vivo free radical production by rats treated with intratracheal instillation of asbestos (crocidolite fibers) and an emission source air pollution particle (oil fly ash). In this report we compare the effect of two different exposures on the type of free radicals they induce in in vivo animal model. Twenty-four hours after the exposure, ESR spectroscopy of the chloroform extract from lungs of animals exposed to either asbestos or oil fly ash gave a spectrum consistent with a carbon-centered radical adduct ( aN=15.01 G and aH=2.46 G). To test whether free radical formation occurred in vivo and not in vitro, a number of control experiments were performed. Combinations (both individually and together) of asbestos or oil fly ash and 4-POBN were added to lung homogenate of unexposed rats prior to chloroform extraction. No detectable ESR signal resulted. To exclude the possibility of ex vivo free radical generation, asbestos or oil fly ash was added to lung homogenate of an animal treated with 4-POBN. Also, 4-POBN was added to lung homogenate from rats instilled with asbestos or oil fly ash. Neither system produced radical adducts, indicating that the ESR signal detected in the lung extracts of the treated animals must be produced in vivo and not ex vivo or in vitro. In conclusion, ESR analysis of lung tissue demonstrated that both exposures produce lipid-derived radical metabolites despite their different composition and structure. Analogously, both exposures provide evidence of in vivo enhanced lipid peroxidation. Furthermore, it is

  19. Air plasma-material interactions at the oxidized surface of the PM1000 nickel-chromium superalloy

    NASA Astrophysics Data System (ADS)

    Panerai, Francesco; Marschall, Jochen; Thömel, Jan; Vandendael, Isabelle; Hubin, Annick; Chazot, Olivier

    2014-10-01

    Nickel-based superalloys are promising options for the thermal protection systems of hypersonic re-entry vehicles operating under moderate aerothermal heating conditions. We present an experimental study on the interactions between PM1000, an oxide dispersion strengthened nickel-chromium superalloy, and air plasma at surface temperatures between 1000 and 1600 K and pressures of 1500, 7500 and 10,000 Pa. Pre-oxidized PM1000 specimens are tested in high-enthalpy reactive air plasma flows generated by the Plasmatron wind tunnel at the von Karman Institute for Fluid Dynamics. Microscopic analysis of plasma-exposed specimens shows enhanced damage to the chromia scale at the lowest plasma pressure. Elemental surface analysis reveals the loss of Cr and the enhancement of Ni at the scale surface. A thermodynamic analysis supports the accelerated volatilization of Cr2O3 and the relative stability of NiO in the presence of atomic oxygen. Changes in the reflectance and emissivity of the oxidized surfaces due to plasma-exposure are presented. The catalytic efficiencies for dissociated air species recombination are determined as a function of surface temperature and pressure through a numerical rebuilding procedure and are compared with values presented in the literature for the same material.

  20. Multi-generational oxidation model to simulate secondary organic aerosol in a 3-D air quality model

    NASA Astrophysics Data System (ADS)

    Jathar, S. H.; Cappa, C. D.; Wexler, A. S.; Seinfeld, J. H.; Kleeman, M. J.

    2015-02-01

    Multi-generational gas-phase oxidation of organic vapors can influence the abundance, composition and properties of secondary organic aerosol (SOA). Only recently have SOA models been developed that explicitly represent multi-generational SOA formation. In this work, we integrated the statistical oxidation model (SOM) into SAPRC-11 to simulate the multi-generational oxidation and gas/particle partitioning of SOA in the regional UCD/CIT air quality model. In SOM, evolution of organic vapors by reaction with the hydroxyl radical is defined by (1) the number of oxygen atoms added per reaction, (2) the decrease in volatility upon addition of an oxygen atom and (3) the probability that a given reaction leads to fragmentation of the organic molecule. These SOM parameter values were fit to laboratory "smog chamber" data for each precursor/compound class. The UCD/CIT model was used to simulate air quality over two-week periods in the South Coast Air Basin of California and the eastern United States. For the regions and episodes tested, the traditional two-product SOA model and SOM produce similar SOA concentrations but a modestly different SOA chemical composition. Predictions of the oxygen-to-carbon ratio qualitatively agree with those measured globally using aerosol mass spectrometers. Overall, the implementation of the SOM in a 3-D model provides a comprehensive framework to simulate the atmospheric evolution of OA.

  1. Multi-generational oxidation model to simulate secondary organic aerosol in a 3-D air quality model

    NASA Astrophysics Data System (ADS)

    Jathar, S. H.; Cappa, C. D.; Wexler, A. S.; Seinfeld, J. H.; Kleeman, M. J.

    2015-08-01

    Multi-generational gas-phase oxidation of organic vapors can influence the abundance, composition and properties of secondary organic aerosol (SOA). Only recently have SOA models been developed that explicitly represent multi-generational SOA formation. In this work, we integrated the statistical oxidation model (SOM) into SAPRC-11 to simulate the multi-generational oxidation and gas/particle partitioning of SOA in the regional UCD/CIT (University of California, Davis/California Institute of Technology) air quality model. In the SOM, evolution of organic vapors by reaction with the hydroxyl radical is defined by (1) the number of oxygen atoms added per reaction, (2) the decrease in volatility upon addition of an oxygen atom and (3) the probability that a given reaction leads to fragmentation of the organic molecule. These SOM parameter values were fit to laboratory smog chamber data for each precursor/compound class. SOM was installed in the UCD/CIT model, which simulated air quality over 2-week periods in the South Coast Air Basin of California and the eastern United States. For the regions and episodes tested, the two-product SOA model and SOM produce similar SOA concentrations but a modestly different SOA chemical composition. Predictions of the oxygen-to-carbon ratio qualitatively agree with those measured globally using aerosol mass spectrometers. Overall, the implementation of the SOM in a 3-D model provides a comprehensive framework to simulate the atmospheric evolution of organic aerosol.

  2. Surface activation of air oxidation of hydrazine on kaolinite. 2. Consideration of oxidizing/reducing entities in relationship to other compositional, structural, and energetic factors

    NASA Technical Reports Server (NTRS)

    Coyne, L. M.; Summers, D. P.

    1991-01-01

    The rates (previously reported) for the air oxidation of hydrazine on kaolinite and substituent oxides of kaolinite showed a complex dependence on the relative amounts of several structural oxidizing/reducing entities within the reaction-promoting solids. The rates indicated an important role of the clay but no dominant role of any one of the oxidizing/reducing entities. In this paper we review (a) the reaction-promoting activity of these centers as studied in other systems, (b) various spectroscopic results showing interaction between these entities in clays, and (c) reported spectroscopic studies of the complexation between hydrazine and aluminosilicate surfaces as a whole, in an effort to propose a mechanism for the reaction. Whereas some uncertainties remain, the present synthesis concludes that a mechanism operating through single electron/hole transfers and hydrogen atom transfers by discrete centers is adequate to explain the observed rate behaviors including the observed second order dependence of the oxidation rate on catalyst amount. The effects of these operations on the catalyst can result in no alteration of, or complete or partial electronic relaxation of its contingent of trapped separated charge pairs. The degree to which surface complexation as a whole, intercalation, or luminescent processes may also be associated with the reaction cannot be adequately assessed with the information in hand.

  3. Review of research results for the photocatalytic oxidation of hazardous wastes in air

    SciTech Connect

    Nimlos, M R; Wolfrum, E J; Gratson, D A; Watt, A S; Jacoby, W A; Turchi, C

    1995-01-01

    Laboratory experiments of gas-phase photocatalytic oxidation (PCO) at NREL have focused on measurements that can help commercialize this technology for treating gaseous air streams. This effort proceeds earlier NREL work and studies conducted elsewhere which demonstrated the general applicability of PCO. The more recent work has concentrated on: (1) the kinetics of the PCO process; (2) the formation and destruction of intermediates; and (3) possible enhancements to improve the destruction rates. The results from these studies will be used to help design large scale PCO equipment and they will be used to evaluate the economics of the PCO process. For trichloroethylene and ethanol, extensive studies of the rates of destruction have yielded kinetic parameters for the destruction of intermediates as well as the substrate. The kinetics of intermediates is essential for sizing a large scale reactor, as complete conversion to carbon dioxide is often desired. The kinetic data from these laboratory studies has been used for analyzing IT`s pilot PCO reactor and has been used to suggest modifications to this unit. For compounds that are more difficult to destroy (such as the components of BTEX), rate enhancement experiments have been conducted. These compounds represent a very large market for this technology and improvement of the rate of the process should make it competitive. Towards this goal, the enhancement of the destruction of BTEX components have been studied. Experiments have demonstrated that there is a significant increase in the rates of destruction of BTEX with the addition of ozone. Preliminary economic assessments have shown that PCO with ozone may be cost competitive. Future laboratory experiments of PCO will focus on refinements of what has been learned. Rate measurements will also be expanded to include other compounds representing significant markets for the PCO technology.

  4. On the Ratio of Sulfur Dioxide to Nitrogen Oxides as an Indicator of Air Pollution Sources.

    NASA Astrophysics Data System (ADS)

    Nirel, Ronit; Dayan, Uri

    2001-07-01

    The ratio of sulfur dioxide to nitrogen oxides (RSN = SO2/NOx) is one indicator of air pollution sources. The role of this ratio in source attribution is illustrated here for the Ashdod area, located in the southern coastal plain of Israel. The main sources of pollution in the area are the tall stacks of the Eshkol power plant, the stacks of oil refineries, and areal sources (stationary and mobile). The factors that affect RSN are studied using four regression models: a binary regression tree in original scale, a tree in logarithmic scale, a data partition produced by a combination of the two trees, and a linear regression model. All models have similar relative prediction error, with the combined partition best highlighting the sources of variability in RSN: (a) very low values (interquartile range of [0.12, 0.48]) are associated with traffic, (b) low values ([0.43, 1.00]) are attributed to the power plant and to daytime emissions of local industry, (c) medium values ([0.74, 1.90]) are associated with local industry emissions during cooler hours of the day and refinery emissions mainly on slow wind episodes, and (d) high values ([1.07, 4.30]) are attributed to refinery emissions during moderate to fast wind episodes. Analysis of the number of episodes of increased concentrations indicates that, during 1996 and 1997, about 42% of SO2 episodes are attributable to the power plant and 33% to the refineries. Increased-NOx episodes are mainly contributed by traffic (91%) and power plant (4.5%) emissions.

  5. [Catalytic wet air oxidation of phenol with Ru/ZrO2-CeO2 catalyst].

    PubMed

    Wang, Jian-bing; Zhu, Wan-peng; Wang, Wei; Yang, Shao-xia

    2007-07-01

    Wet air oxidation of phenol with Ru/ZrO2-CeO2 was systematically investigated and results showed that Ru/ZrO2-CeO2 could significantly increase the removal of COD and phenol. At the reaction temperature of 170 degrees C and pressure of 3MPa, about 99% COD and 100% phenol was removed respectively after 120 min. The optimal conditions were: reaction temperature, 170 degrees C; reaction pressure, 3 MPa; catalyst dosage, 5 g/L; agitator speed, 500 r/min. By analyzing intermediates, a simplified scheme of phenol oxidation was brought out. It includes two main steps. The first step is the production of organic acids, which is fast. The second step is the oxidation of organic acid, in which the oxidation of acetic acid is slow. Complete oxidation of acetic acid needs high temperature at which the radicals assault the C-H bond of a carbon and acetic acid is oxidized into carbon dioxide and water through formic acid.

  6. Study of Nanodispersed Iron Oxides Produced in Steel Drilling by Contracted Electric-Arc Air Plasma Torch

    NASA Astrophysics Data System (ADS)

    Stefanov, P.; Galanov, D.; Vissokov, G.; Paneva, D.; Kunev, B.; Mitov, I.

    2008-06-01

    The optimal conditions on the plasma-forming gas flowrate, discharge current and voltage, distance between the plasma-torch nozzle and the metal plate surface for the process of penetration in and vaporization of steel plates by the contracted electric-arc air plasma torch accompanied by water quenching, were determined. The X-ray structural and phase studies as well as Mössbauer and electron microscope studies on the samples treated were performed. It was demonstrated that the vaporized elemental iron was oxidized by the oxygen present in the air plasma jet to form iron oxides (wüstite, magnetite, hematite), which, depending on their mass ratios, determined the color of the iron oxide pigments, namely, beginning from light yellow, through deep yellow, light brown, deep brown, violet, red-violet, to black. A high degree of dispersity of the iron oxides is thus produced, with an averaged diameter of the particles below 500 nm, and their defective crystal structure form the basis of their potential application as components of iron-containing catalysts and pigments.

  7. Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal-air batteries

    NASA Astrophysics Data System (ADS)

    Suntivich, Jin; Gasteiger, Hubert A.; Yabuuchi, Naoaki; Nakanishi, Haruyuki; Goodenough, John B.; Shao-Horn, Yang

    2011-07-01

    The prohibitive cost and scarcity of the noble-metal catalysts needed for catalysing the oxygen reduction reaction (ORR) in fuel cells and metal-air batteries limit the commercialization of these clean-energy technologies. Identifying a catalyst design principle that links material properties to the catalytic activity can accelerate the search for highly active and abundant transition-metal-oxide catalysts to replace platinum. Here, we demonstrate that the ORR activity for oxide catalysts primarily correlates to σ*-orbital (eg) occupation and the extent of B-site transition-metal-oxygen covalency, which serves as a secondary activity descriptor. Our findings reflect the critical influences of the σ* orbital and metal-oxygen covalency on the competition between O22-/OH- displacement and OH- regeneration on surface transition-metal ions as the rate-limiting steps of the ORR, and thus highlight the importance of electronic structure in controlling oxide catalytic activity.

  8. Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal-air batteries.

    PubMed

    Suntivich, Jin; Gasteiger, Hubert A; Yabuuchi, Naoaki; Nakanishi, Haruyuki; Goodenough, John B; Shao-Horn, Yang

    2011-06-12

    The prohibitive cost and scarcity of the noble-metal catalysts needed for catalysing the oxygen reduction reaction (ORR) in fuel cells and metal-air batteries limit the commercialization of these clean-energy technologies. Identifying a catalyst design principle that links material properties to the catalytic activity can accelerate the search for highly active and abundant transition-metal-oxide catalysts to replace platinum. Here, we demonstrate that the ORR activity for oxide catalysts primarily correlates to σ-orbital (e(g)) occupation and the extent of B-site transition-metal-oxygen covalency, which serves as a secondary activity descriptor. Our findings reflect the critical influences of the σ orbital and metal-oxygen covalency on the competition between O(2)(2-)/OH(-) displacement and OH(-) regeneration on surface transition-metal ions as the rate-limiting steps of the ORR, and thus highlight the importance of electronic structure in controlling oxide catalytic activity.

  9. Investigation of low temperature solid oxide fuel cells for air-independent UUV applications

    NASA Astrophysics Data System (ADS)

    Moton, Jennie Mariko

    Unmanned underwater vehicles (UUVs) will benefit greatly from high energy density (> 500 Wh/L) power systems utilizing high-energy-density fuels and air-independent oxidizers. Current battery-based systems have limited energy densities (< 400 Wh/L), which motivate development of alternative power systems such as solid oxide fuel cells (SOFCs). SOFC-based power systems have the potential to achieve the required UUV energy densities, and the current study explores how SOFCs based on gadolinia-doped ceria (GDC) electrolytes with operating temperatures of 650°C and lower may operate in the unique environments of a promising UUV power plant. The plant would contain a H 2O2 decomposition reactor to supply humidified O2 to the SOFC cathode and exothermic aluminum/H2O combustor to provide heated humidified H2 fuel to the anode. To characterize low-temperature SOFC performance with these unique O2 and H2 source, SOFC button cells based on nickel/GDC (Gd0.1Ce0.9O 1.95) anodes, GDC electrolytes, and lanthanum strontium cobalt ferrite (La0.6Sr0.4Co0.2Fe0.8O3-δ or LSCF)/GDC cathodes were fabricated and tested for performance and stability with humidity on both the anode and the cathode. Cells were also tested with various reactant concentrations of H2 and O2 to simulate gas depletion down the channel of an SOFC stack. Results showed that anode performance depended primarily on fuel concentration and less on the concentration of the associated increase in product H2O. O 2 depletion with humidified cathode flows also caused significant loss in cell current density at a given voltage. With the humidified flows in either the anode or cathode, stability tests of the button cells at 650 °C showed stable voltage is maintained at low operating current (0.17 A/cm2) at up to 50 % by mole H2O, but at higher current densities (0.34 A/cm2), irreversible voltage degradation occurred at rates of 0.8-3.7 mV/hour depending on exposure time. From these button cell results, estimated average

  10. Oxidation characteristics of Beta-21S in air in the temperature range 600 to 800 C

    NASA Technical Reports Server (NTRS)

    Wallace, Terryl A.; Clark, Ronald K.; Wiedemann, Karl E.

    1992-01-01

    The metastable beta-Ti alloy Beta-21S, Ti-15Mo-2.7Nb-3Al-0.2Si (weight percent), has been proposed as a candidate for use in metal matrix composites in future hypersonic vehicles. The present study investigated the oxidation behavior of Beta-21S over the temperature range 600 C to 800 C. Oxidation weight gain was evaluated using thermogravimetric analysis. Oxidized specimens were evaluated using x ray diffraction techniques, scanning electron microscopy, energy dispersive x ray analysis, and electron microprobe analysis to identify oxidation products and evaluate oxidation damage to the alloy.

  11. Stabilized three-stage oxidation of DME/air mixture in a micro flow reactor with a controlled temperature profile

    SciTech Connect

    Oshibe, Hiroshi; Nakamura, Hisashi; Tezuka, Takuya; Hasegawa, Susumu; Maruta, Kaoru

    2010-08-15

    Ignition and combustion characteristics of a stoichiometric dimethyl ether (DME)/air mixture in a micro flow reactor with a controlled temperature profile which was smoothly ramped from room temperature to ignition temperature were investigated. Special attention was paid to the multi-stage oxidation in low temperature condition. Normal stable flames in a mixture flow in the high velocity region, and non-stationary pulsating flames and/or repetitive extinction and ignition (FREI) in the medium velocity region were experimentally confirmed as expected from our previous study on a methane/air mixture. In addition, stable double weak flames were observed in the low velocity region for the present DME/air mixture case. It is the first observation of stable double flames by the present methodology. Gas sampling was conducted to obtain major species distributions in the flow reactor. The results indicated that existence of low-temperature oxidation was conjectured by the production of CH{sub 2}O occured in the upstream side of the experimental first luminous flame, while no chemiluminescence from it was seen. One-dimensional computation with detailed chemistry and transport was conducted. At low mixture velocities, three-stage oxidation was confirmed from profiles of the heat release rate and major chemical species, which was broadly in agreement with the experimental results. Since the present micro flow reactor with a controlled temperature profile successfully presented the multi-stage oxidations as spatially separated flames, it is shown that this flow reactor can be utilized as a methodology to separate sets of reactions, even for other practical fuels, at different temperature. (author)

  12. Mechanism of the Initial Oxidation of Hydrogen andHalogen Terminated Ge(111) Surfaces in Air

    SciTech Connect

    Sun, Shiyu; Sun, Yun; Liu, Zhi; Lee, Dong-Ick; Pianetta, Piero; /SLAC, SSRL

    2006-08-23

    The initial stage of the oxidation of Ge(111) surfaces etched by HF, HCl and HBr solutions is systematically studied using synchrotron radiation photoelectron spectroscopy (SR-PES). We perform controlled experiments to differentiate the effects of different oxidation factors. SR-PES results show that both moisture and oxygen contribute to the oxidation of the surfaces; however, they play different roles in the oxidation process. Moisture effectively replaces the hydrogen and halogen termination layers with hydroxyl (OH), but hardly oxidizes the surfaces further. On the other hand, dry oxygen does not replace the termination layers, but breaks the Ge-Ge back bonds and oxidizes the substrates with the aid of moisture. In addition, room light enhances the oxidation rate significantly.

  13. A perovskite oxide with high conductivities in both air and reducing atmosphere for use as electrode for solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Lan, Rong; Cowin, Peter I.; Sengodan, Sivaprakash; Tao, Shanwen

    2016-08-01

    Electrode materials which exhibit high conductivities in both oxidising and reducing atmospheres are in high demand for solid oxide fuel cells (SOFCs) and solid oxide electrolytic cells (SOECs). In this paper, we investigated Cu-doped SrFe0.9Nb0.1O3‑δ finding that the primitive perovskite oxide SrFe0.8Cu0.1Nb0.1O3‑δ (SFCN) exhibits a conductivity of 63 Scm‑1and 60 Scm‑1 at 415 °C in air and 5%H2/Ar respectively. It is believed that the high conductivity in 5%H2/Ar is related to the exsolved Fe (or FeCu alloy) on exposure to a reducing atmosphere. To the best of our knowledge, the conductivity of SrFe0.8Cu0.1Nb0.1O3‑δ in a reducing atmosphere is the highest of all reported oxides which also exhibit a high conductivity in air. Fuel cell performance using SrFe0.8Cu0.1Nb0.1O3‑δ as the anode, (Y2O3)0.08(ZrO2)0.92 as the electrolyte and La0.8Sr0.2FeO3‑δ as the cathode achieved a power density of 423 mWcm‑2 at 700 °C indicating that SFCN is a promising anode for SOFCs.

  14. A perovskite oxide with high conductivities in both air and reducing atmosphere for use as electrode for solid oxide fuel cells

    PubMed Central

    Lan, Rong; Cowin, Peter I.; Sengodan, Sivaprakash; Tao, Shanwen

    2016-01-01

    Electrode materials which exhibit high conductivities in both oxidising and reducing atmospheres are in high demand for solid oxide fuel cells (SOFCs) and solid oxide electrolytic cells (SOECs). In this paper, we investigated Cu-doped SrFe0.9Nb0.1O3−δ finding that the primitive perovskite oxide SrFe0.8Cu0.1Nb0.1O3−δ (SFCN) exhibits a conductivity of 63 Scm−1and 60 Scm−1 at 415 °C in air and 5%H2/Ar respectively. It is believed that the high conductivity in 5%H2/Ar is related to the exsolved Fe (or FeCu alloy) on exposure to a reducing atmosphere. To the best of our knowledge, the conductivity of SrFe0.8Cu0.1Nb0.1O3−δ in a reducing atmosphere is the highest of all reported oxides which also exhibit a high conductivity in air. Fuel cell performance using SrFe0.8Cu0.1Nb0.1O3−δ as the anode, (Y2O3)0.08(ZrO2)0.92 as the electrolyte and La0.8Sr0.2FeO3−δ as the cathode achieved a power density of 423 mWcm−2 at 700 °C indicating that SFCN is a promising anode for SOFCs. PMID:27545200

  15. Oxidation rate of nuclear-grade graphite NBG-18 in the kinetic regime for VHTR air ingress accident scenarios

    NASA Astrophysics Data System (ADS)

    Lee, Jo Jo; Ghosh, Tushar K.; Loyalka, Sudarshan K.

    2013-07-01

    One of the most severe accident scenarios anticipated for VHTRs is an air ingress accident caused by a pipe break. Graphite oxidation could be severe under these conditions. In this work, the oxidation rate of NBG-18 nuclear-grade graphite was studied thermogravimetrically for different oxygen concentrations and with temperatures from 873 to 1873 K. A semi-empirical Arrhenius rate equation was developed for the temperature range of 873-1023 K. The activation energy of NBG-18 was 187 kJ/mol and the order of reaction was 1.25. The penetration depth of oxidant was about 3-4 mm for NBG-18 oxidized at 973 K. Increased porosity and changes in external geometry became more prominent at higher temperatures from about 1173 to 1873 K. The surface of oxidized NBG-18 was characterized by SEM, EDS, FTIR and XPS. Diffusion of oxygen to the graphite surface and walls of open volume pores. Adsorption of oxygen atoms on the graphite surface free active sites and complexes inducing the simultaneous forming of Csbnd O and Csbnd H bonds and breaking of Csbnd C bonds (dissociative chemisorption). Chemical reactions occur at the surface. Desorption of gaseous products, CO and CO2, from the graphite surface and transport to the bulk gas mixture.

  16. Sliding durability of two carbide-oxide candidate high temperature fiber seal materials in air to 900 C

    NASA Technical Reports Server (NTRS)

    Dellacorte, Christopher; Steinetz, Bruce M.

    1992-01-01

    A test program to determine the friction and wear properties of two complex carbide oxide ceramic fibers for high temperature sliding seal applications is described. The fibers are based on Si, C, O, and Ti or Si, C, N, and O ceramic systems. Pin on disk tests using ceramic fiber covered pins and Inconel 718 disks, were conducted in air from 25 to 900 C to evaluate potential seal materials. This testing procedure was used in a previous study of oxide ceramic fibers which were found to exhibit wear behavior based predominantly on their mechanical properties. Like the oxide fibers tested previously, these carbide oxide ceramic fibers, show an increase in friction and wear with increased test temperature. At room temperature, the wear behavior seems to be based upon mechanical properties, namely tensile strength. At 500 and especially 900 C, the fibers wear by both mechanical fracture and by oxidative type wear. Based upon post test microscopic and x ray analyses, interaction between the fiber constituents and elements transferred from the counterface, namely Ni and Cr, may have occurred enhancing the tribochemical wear process. These results are interpreted.

  17. Oxidation of nano-multilayered AlTiSiN thin films between 600 and 1000 degrees C in air.

    PubMed

    Lee, Jae Chun; Kim, Sun Kyu; Nguyen, Thuan Dinh; Lee, Dong Bok

    2011-07-01

    Multilayered AlTiSiN films with a composition of 32.0Al-12.4Ti-4.9Si-50.7N (at.%) were deposited on a steel substrate in a nitrogen atmosphere by cathodic arc plasma deposition. The films consisted of crystalline approximately 8 nm-thick AISiN nanolayers that originated from the Al-Si target and approximately 3 nm-thick TiN nanolayers that originated from the Ti target. Their oxidation characteristics were studied between 600 and 1000 degrees C for up to 20 h in air. They displayed good oxidation resistance due to the formation of a thin, dense Al2O3 surface scale below which an (Al2O3, TiO2, SiO2)-intermixed inner scale existed. They oxidized slower than TiN films because protective Al2O3-rich scales formed on the surface. However, they oxidized faster than CrN films because impure Al2O3 scale formed on the AlTiSiN film. Their oxidation progressed primarily by the outward diffusion of nitrogen and substrate elements, combined with the inward transport of oxygen that gradually reacted with Al, Ti, and Si in the film.

  18. Effect of air-pressure on room temperature hydrogen sensing characteristics of nanocrystalline doped tin oxide MEMS-based sensor.

    PubMed

    Shukla, Satyajit; Ludwig, Lawrence; Cho, Hyoung J; Duarte, Julian; Seal, Sudipta

    2005-11-01

    Nanocrystalline indium oxide (In2O3)-doped tin oxide (SnO2) thin film sensor has been sol-gel dip-coated on a microelectrochemical system (MEMS) device using a sol-gel dip-coating technique. Hydrogen (H2) at ppm-level has been successfully detected at room temperature using the present MEMS-based sensor. The room temperature H2 sensing characteristics (sensitivity, response and recovery time, and recovery rate) of the present MEMS-based sensor has been investigated as a function of air-pressure (50-600 Torr) with and without the ultraviolet (UV) radiation exposure. It has been demonstrated that, the concentration of the surface-adsorbed oxygen-ions (which is related to the sensor-resistance in air), the ppm-level H2, and the oxygen (O2) partial pressure are the three major factors, which determine the variation in the room temperature H2 sensing characteristics of the present MEMS-based sensor as a function of air-pressure.

  19. Trends of nitrogen oxides in ambient air in nine European cities between 1999 and 2010

    NASA Astrophysics Data System (ADS)

    Henschel, Susann; Le Tertre, Alain; Atkinson, Richard W.; Querol, Xavier; Pandolfi, Marco; Zeka, Ariana; Haluza, Daniela; Analitis, Antonis; Katsouyanni, Klea; Bouland, Catherine; Pascal, Mathilde; Medina, Sylvia; Goodman, Patrick G.

    2015-09-01

    Legislation controlling vehicle emissions has been credited with a general downward trend in NOx (NO2+NO) concentrations in Europe since the 1990's. However, recent studies suggest that traffic (roadside) (TR) NO2 concentrations have not decreased as expected, and in some cases increased, most likely due to the use of oxidation catalysts and particle filters in diesel vehicles (EURO III, IV, V, VI). In this study we describe the time trends in NOx, NO2 and NO concentrations in 9 European cities comparing TR and urban background (UB) monitoring locations. In each city, we collected hourly city-specific NOx, NO, and NO2 data from one TR and one UB monitoring site for each year. We describe hourly, weekly, seasonal and inter-annual patterns for periods corresponding to the implementation dates of various EURO vehicle emission standards regulating NOx emissions. The diurnal patterns in all 9 cities strongly reflected morning and evening traffic. In addition, lower weekend concentrations were observed. The NOx concentrations from the TR sites remain unchanged in the majority of the cities over the study period. When stratified by 3 time periods according to the implementation of the EURO standards, an increasing NO2/NOx ratio in 7/9 cities with time was noted. However, over the same time period the NO/NO2 ratio decreased in 8/9 cities. A permanent inversion of the NO/NO2 ratio was observed to occur in 2003 in 5/9 cities. Our analyses of temporal and diurnal patterns of NOx in European cities show reductions in concentrations consistent with reductions in primary emissions likely arising from the implementation of successive EURO standards. The generally constant or increasing NO2 concentrations in the majority of the cities assessed over the study period underline the need of further regulative measures to meet the air quality standards and consequently to minimise adverse effects on human health. The ongoing collection and analysis of pollution concentrations across

  20. Experimental and theoretical study of the oxidation of ventilation air methane over Fe2O3 and CuO.

    PubMed

    Jin, Yonggang; Sun, Chenghua; Su, Shi

    2015-07-07

    Coal mine ventilation air methane (VAM) is an important contributor to methane emissions from the energy sector. Although various technologies are under development, treatment of the VAM with an efficient and cost-effective approach has been an ongoing challenge due to massive flow rates of the ventilation air and low and variable methane concentrations. Recently a new concept based on the principle of chemical looping combustion (CLC) has been proposed for VAM abatement (Appl. Energy, 2014, 113, 1916), in which oxidation of low-concentration CH4 balanced by N2 with Fe2O3 or CuO as the oxygen carrier was studied. Here, we thoroughly examined the feasibility of CLC of VAM based on experimental study and theoretical calculations. Reduction of Fe2O3 and CuO and evolution of gas products during CH4 oxidation were investigated using TGA-MS under two reaction atmospheres: 1 vol% CH4 balanced by N2 and the simulated VAM containing 1 vol% CH4, 20 vol% O2, 0.4 vol% CO2 and balance N2. It was found that the CLC of VAM is fundamentally infeasible because the reduced phase of Fe2O3 and CuO cannot be formed for chemical looping when reacting with the simulated VAM containing abundant oxygen. Theoretical calculations revealed that Fe2O3 and CuO remain stable without the transition to the reduced phase as the generated oxygen vacancy on the surface of metal oxides during CH4 oxidation can recover quickly with O2 adsorption and dissociation. Calculations confirmed that both Fe2O3 and CuO play a role of surface catalyst in VAM oxidation. More importantly, it was found that the low-coordinated metal atoms and oxygen vacancies can stabilize CHx radicals to promote the dissociation of CH4, which is generally the rate-determining step for CH4 oxidation. Such findings are useful for new development and understanding of high-performance and low-cost metal oxide catalysts for CH4 oxidation.

  1. Biofluid metabotyping of occupationally exposed subjects to air pollution demonstrates high oxidative stress and deregulated amino acid metabolism

    PubMed Central

    Pradhan, Surya Narayan; Das, Aleena; Meena, Ramovatar; Nanda, Ranjan Kumar; Rajamani, Paulraj

    2016-01-01

    Occupational exposure to air pollution induces oxidative stress and prolonged exposure increases susceptibility to cardiovascular and respiratory diseases in several working groups. Biofluid of these subjects may reflect perturbed metabolic phenotypes. In this study we carried out a comparative molecular profiling study using parallel biofluids collected from subjects (n = 85) belonging to auto rickshaw drivers (ARD), traffic cops (TC) and office workers (OW). Higher levels of oxidative stress and inflammation markers in serum of ARD subjects were observed as compared to OW and TC. Uni and multivariate analyses of metabolites identified in urine by 1H NMR revealed 11 deregulated molecules in ARD subjects and involved in phenylalanine, histidine, arginine and proline metabolism. Despite contribution of confounding factors like exposure period, dietary factors including smoking and alcohol status, our results demonstrate existence of exposure specific metabotypes in biofluids of ARD, OW and TC groups. Monitoring serum oxidative stress and inflammation markers and urine metabolites by NMR may be useful to characterize perturbed metabolic phenotypes in populations exposed to urban traffic air pollution. PMID:27767182

  2. Effect of SO2 Addition on Air Oxidation Behavior of CM247 and CMSX-4 at 1050°C

    NASA Astrophysics Data System (ADS)

    Jalowicka, A.; Nowak, W. J.; Naumenko, D.; Quadakkers, W. J.

    2016-11-01

    In the present work, the oxidation behavior of two commercial Ni-base superalloys, CMSX-4 and CM247, in synthetic air with and without 2 vol.% SO2 at 1050°C has been studied. The corrosion reactions in the presence of SO2 could not be explained simply in terms of the contents of the main scale-forming alloying elements, Cr and Al. The far better resistance of CMSX-4 is related to the formation of a rather pure and dense alumina scale after a very short period of transient oxidation. Rapid development of an alumina scale prevents access of molecular SO2 to the metal surface thus effectively suppressing internal sulfidation. In contrast, CM247 with a similar Al-content formed an Al-rich oxide scale with local intrusions and/or inhomogeneities caused by the underlying alloy microstructure, which deteriorated its resistance to internal sulfidation and resulted in rapid failure in synthetic air + 2% SO2.

  3. Biofluid metabotyping of occupationally exposed subjects to air pollution demonstrates high oxidative stress and deregulated amino acid metabolism

    NASA Astrophysics Data System (ADS)

    Pradhan, Surya Narayan; Das, Aleena; Meena, Ramovatar; Nanda, Ranjan Kumar; Rajamani, Paulraj

    2016-10-01

    Occupational exposure to air pollution induces oxidative stress and prolonged exposure increases susceptibility to cardiovascular and respiratory diseases in several working groups. Biofluid of these subjects may reflect perturbed metabolic phenotypes. In this study we carried out a comparative molecular profiling study using parallel biofluids collected from subjects (n = 85) belonging to auto rickshaw drivers (ARD), traffic cops (TC) and office workers (OW). Higher levels of oxidative stress and inflammation markers in serum of ARD subjects were observed as compared to OW and TC. Uni and multivariate analyses of metabolites identified in urine by 1H NMR revealed 11 deregulated molecules in ARD subjects and involved in phenylalanine, histidine, arginine and proline metabolism. Despite contribution of confounding factors like exposure period, dietary factors including smoking and alcohol status, our results demonstrate existence of exposure specific metabotypes in biofluids of ARD, OW and TC groups. Monitoring serum oxidative stress and inflammation markers and urine metabolites by NMR may be useful to characterize perturbed metabolic phenotypes in populations exposed to urban traffic air pollution.

  4. Biofluid metabotyping of occupationally exposed subjects to air pollution demonstrates high oxidative stress and deregulated amino acid metabolism.

    PubMed

    Pradhan, Surya Narayan; Das, Aleena; Meena, Ramovatar; Nanda, Ranjan Kumar; Rajamani, Paulraj

    2016-10-21

    Occupational exposure to air pollution induces oxidative stress and prolonged exposure increases susceptibility to cardiovascular and respiratory diseases in several working groups. Biofluid of these subjects may reflect perturbed metabolic phenotypes. In this study we carried out a comparative molecular profiling study using parallel biofluids collected from subjects (n = 85) belonging to auto rickshaw drivers (ARD), traffic cops (TC) and office workers (OW). Higher levels of oxidative stress and inflammation markers in serum of ARD subjects were observed as compared to OW and TC. Uni and multivariate analyses of metabolites identified in urine by (1)H NMR revealed 11 deregulated molecules in ARD subjects and involved in phenylalanine, histidine, arginine and proline metabolism. Despite contribution of confounding factors like exposure period, dietary factors including smoking and alcohol status, our results demonstrate existence of exposure specific metabotypes in biofluids of ARD, OW and TC groups. Monitoring serum oxidative stress and inflammation markers and urine metabolites by NMR may be useful to characterize perturbed metabolic phenotypes in populations exposed to urban traffic air pollution.

  5. Fast oxidation processes from emission to ambient air introduction of aerosol emitted by residential log wood stoves

    NASA Astrophysics Data System (ADS)

    Nalin, Federica; Golly, Benjamin; Besombes, Jean-Luc; Pelletier, Charles; Aujay-Plouzeau, Robin; Verlhac, Stéphane; Dermigny, Adrien; Fievet, Amandine; Karoski, Nicolas; Dubois, Pascal; Collet, Serge; Favez, Olivier; Albinet, Alexandre

    2016-10-01

    Little is known about the impact of post-combustion processes, condensation and dilution, on the aerosol concentration and chemical composition from residential wood combustion. The evolution of aerosol emitted by two different residential log wood stoves (old and modern technologies) from emission until it is introduced into ambient air was studied under controlled "real" conditions. The first objective of this research was to evaluate the emission factors (EF) of polycyclic aromatic hydrocarbons (PAH) and their nitrated and oxygenated derivatives from wood combustion. These toxic substances are poorly documented in the literature. A second objective was to evaluate the oxidation state of the wood combustion effluent by studying these primary/secondary compounds. EFs of Σ37PAHs and Σ27Oxy-PAHs were in the same range and similar to those reported in literature (4-240 mg kg-1). Σ31Nitro-PAH EFs were 2-4 orders of magnitude lower (3.10-2-8.10-2 mg kg-1) due to the low temperature and low emission of NO2 from wood combustion processes. An increase of equivalent EF of PAH derivatives was observed suggesting that the oxidation state of the wood combustion effluent from the emission point until its introduction in ambient air changed in a few seconds. These results were confirmed by the study of both, typical compounds of SOA formation from PAH oxidation and, PAH ratio-ratio plots commonly used for source evaluation.

  6. 78 FR 54813 - Approval and Promulgation of Air Quality Implementation Plans; Maine; Oxides of Nitrogen...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-06

    ... Nitrogen Exemption and Ozone Transport Region Restructuring AGENCY: Environmental Protection Agency (EPA...; Oxides of Nitrogen Exemption and Ozone Transport Region Restructuring (August 5, 2013). The EPA...

  7. Kinetics of Passive Oxidation of Hi-Nicalon-S SiC Fibers in Wet Air: Relationships between Si02 Scale Thickness, Crystallization, and Fiber Strength (Preprint)

    DTIC Science & Technology

    2012-07-01

    Temperature Oxidation of Multilayered SiC Processed by Tape Casting and Sintering . J. Eur. Ceram . Soc. 2002;22:2017-79. 6 Approved for public release...earths, that increase oxidation rates, reduce scale viscosity, and lower temperatures for scale crystallization.2-3 Moisture has similar effects .4-9... temperature (24°C). Water saturation at this temperature yields a water/air molar ratio of 0.03. Fibers were oxidized in an alumina muffle tube

  8. A Metal-Organic Framework Derived Porous Cobalt Manganese Oxide Bifunctional Electrocatalyst for Hybrid Na-Air/Seawater Batteries.

    PubMed

    Abirami, Mari; Hwang, Soo Min; Yang, Juchan; Senthilkumar, Sirugaloor Thangavel; Kim, Junsoo; Go, Woo-Seok; Senthilkumar, Baskar; Song, Hyun-Kon; Kim, Youngsik

    2016-12-07

    Spinel-structured transition metal oxides are promising non-precious-metal electrocatalysts for oxygen electrocatalysis in rechargeable metal-air batteries. We applied porous cobalt manganese oxide (CMO) nanocubes as the cathode electrocatalyst in rechargeable seawater batteries, which are a hybrid-type Na-air battery with an open-structured cathode and a seawater catholyte. The porous CMO nanocubes were synthesized by the pyrolysis of a Prussian blue analogue, Mn3[Co(CN)6]2·nH2O, during air-annealing, which generated numerous pores between the final spinel-type CMO nanoparticles. The porous CMO electrocatalyst improved the redox reactions, such as the oxygen evolution/reduction reactions, at the cathode in the seawater batteries. The battery that used CMO displayed a voltage gap of ∼0.53 V, relatively small compared to that of the batteries employing commercial Pt/C (∼0.64 V) and Ir/C (∼0.73 V) nanoparticles and without any catalyst (∼1.05 V) at the initial cycle. This improved performance was due to the large surface area (catalytically active sites) and the high oxidation states of the randomly distributed Co and Mn cations in the CMO. Using a hard carbon anode, the Na-metal-free seawater battery exhibited a good cycle performance with an average discharge voltage of ∼2.7 V and a discharge capacity of ∼190 mAh g(-1)hard carbon during 100 cycles (energy efficiencies of 74-79%).

  9. 76 FR 11082 - Approval and Promulgation of Air Quality Implementation Plans; Ohio; Oxides of Nitrogen Budget...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-01

    ... Nitrogen Budget Trading Program; Technical Amendment AGENCY: Environmental Protection Agency (EPA). ACTION..., 2009. This relates to Ohio rule revisions concerning 240 allowances under the Nitrogen Oxides Budget... oxides of nitrogen (NO X ) allowances from the State's 2005 new source allowance set aside under the NO...

  10. Expression of inducible nitric oxide synthase and nitric oxide production in the mud-dwelled air-breathing singhi catfish, Heteropneustes fossilis under condition of water shortage.

    PubMed

    Choudhury, Mahua G; Saha, Nirmalendu

    2012-12-01

    Nitric oxide (NO) is known to be an important regulator molecule for regulating the multiple signaling pathways and also to play diverse physiological functions in mammals including that of adaptation to various stresses. The present study reports on the production of nitric oxide (NO) and the expression of inducible nitric oxide synthase (iNOS) enzyme that produces NO from l-arginine in the freshwater air-breathing catfish (Heteropneustes fossilis) while dwelling inside the mud peat under semidry conditions. Desiccation stress, due to mud-dwelling for 2 weeks, led to significant increase of NO concentration in different tissues and in plasma of singhi catfish, and also the increase of NO efflux from the perfused liver with an accompanying increase of toxic ammonia level in different tissues. Mud-dwelling also resulted to induction of iNOS activity, expression of iNOS protein in different tissues after 7 days with further increase after 14 days, which otherwise was not detectable in control fish. Further, mud-dwelling also resulted to a significant expression of iNOS mRNA after 7 days with a more increase of mRNA level after 14 days, suggesting that the desiccation stress caused transcriptional regulation of iNOS gene. Immunocytochemical analysis indicated the zonal specific expression of iNOS protein in different tissues. Desiccation stress also led to activation and nuclear translocation of nuclear factor кB (NFкB) in hepatic cells. These results suggest that the activation of iNOS gene under desiccation-induced stresses such as high ammonia load was probably mediated through the activation of one of the major transcription factors, the NFкB. This is the first report of desiccation-induced induction of iNOS gene, iNOS protein expression leading to more generation of NO while living inside the mud peat under condition of water shortage in any air-breathing teleosts.

  11. Oxidation mechanisms of CF2Br2 and CH2Br2 induced by air nonthermal plasma.

    PubMed

    Schiorlin, Milko; Marotta, Ester; Dal Molin, Marta; Paradisi, Cristina

    2013-01-02

    Oxidation mechanisms in air nonthermal plasma (NTP) at room temperature and atmospheric pressure were investigated in a corona reactor energized by +dc, -dc, or +pulsed high voltage.. The two bromomethanes CF(2)Br(2) and CH(2)Br(2) were chosen as model organic pollutants because of their very different reactivities with OH radicals. Thus, they served as useful mechanistic probes: they respond differently to the presence of humidity in the air and give different products. By FT-IR analysis of the postdischarge gas the following products were detected and quantified: CO(2) and CO in the case of CH(2)Br(2), CO(2) and F(2)C ═ O in the case of CF(2)Br(2). F(2)C ═ O is a long-lived oxidation intermediate due to its low reactivity with atmospheric radicals. It is however removed from the NTP processed gas by passage through a water scrubber resulting in hydrolysis to CO(2) and HF. Other noncarbon containing products of the discharge were also monitored by FT-IR analysis, including HNO(3) and N(2)O. Ozone, an important product of air NTP, was never detected in experiments with CF(2)Br(2) and CH(2)Br(2) because of the highly efficient ozone depleting cycles catalyzed by BrOx species formed from the bromomethanes. It is concluded that, regardless of the type of corona applied, CF(2)Br(2) reacts in air NTP via a common intermediate, the CF(2)Br radical. The possible reactions leading to this radical are discussed, including, for -dc activation, charge exchange with O(2)(-), a species detected by APCI mass spectrometry.

  12. Prediction of hydrodynamics and chemistry of confined turbulent methane-air flames with attention to formation of oxides of nitrogen

    NASA Technical Reports Server (NTRS)

    Elghobashi, S.; Spalding, D. B.; Srivatsa, S. K.

    1977-01-01

    A formulation of the governing partial differential equations for fluid flow and reacting chemical species in a tubular combustor is presented. A numerical procedure for the solution of the governing differential equations is described, and models for chemical equilibrium and chemical kinetics calculations are presented. The chemical equilibrium model is used to characterize the hydrocarbon reactions. The chemical kinetics model is used to predict the concentrations of the oxides of nitrogen. The combustor consists of a cylindrical duct of varying cross sections with concentric streams of gaseous fuel and air entering the duct at one end. Four sample cases with specified inlet and boundary conditions are considered, and the results are discussed

  13. Removal of salicylic acid on perovskite-type oxide LaFeO3 catalyst in catalytic wet air oxidation process.

    PubMed

    Yang, Min; Xu, Aihua; Du, Hongzhang; Sun, Chenglin; Li, Can

    2007-01-02

    It has been found that salicylic acid can be removal effectively at the lower temperature of 140 degrees C on perovskite-type oxide LaFeO3 catalyst in the catalytic wet air oxidation (CWAO) process. Under the same condition, the activities for the CWAO of phenol, benzoic acid and sulfonic salicylic acid have been also investigated. The results indicated that, with compared to the very poor activities for phenol and benzoic acid, the activities for salicylic acid and sulfonic salicylic acid were very high, which are attributed to their same intramolecular H-bonding structures. With the role of hard acidity of intramolecular H-bonding, salicylic acid and sulfonic salicylic acid can be adsorbed effectively on the basic center of LaFeO3 catalyst and are easy to take place the total oxidation reaction. However, at temperatures higher than 140 degrees C, the intramolecular H-bonding structure of salicylic acid was destroyed and the activities at 160 and 180 degrees C decreased greatly, which confirms further the key role of intramolecular H-bonding in the CWAO. Moreover, the LaFeO3 catalyst also indicated a superior stability of activity and structure in CWAO of salicylic acid.

  14. Determination of the Clean Air Delivery Rate (CADR) of Photocatalytic Oxidation (PCO) Purifiers for Indoor Air Pollutants Using a Closed-Loop Reactor. Part I: Theoretical Considerations.

    PubMed

    Dumont, Éric; Héquet, Valérie

    2017-03-06

    This study demonstrated that a laboratory-scale recirculation closed-loop reactor can be an efficient technique for the determination of the Clean Air Delivery Rate (CADR) of PhotoCatalytic Oxidation (PCO) air purification devices. The recirculation closed-loop reactor was modeled by associating equations related to two ideal reactors: one is a perfectly mixed reservoir and the other is a plug flow system corresponding to the PCO device itself. Based on the assumption that the ratio between the residence time in the PCO device and the residence time in the reservoir τP/τR tends to 0, the model highlights that a lab closed-loop reactor can be a suitable technique for the determination of the efficiency of PCO devices. Moreover, if the single-pass removal efficiency is lower than 5% of the treated flow rate, the decrease in the pollutant concentration over time can be characterized by a first-order decay model in which the time constant is proportional to the CADR. The limits of the model are examined and reported in terms of operating conditions (experiment duration, ratio of residence times, and flow rate ranges).

  15. Assessment of methane emission and oxidation at Air Hitam Landfill site cover soil in wet tropical climate.

    PubMed

    Abushammala, Mohammed F M; Basri, Noor Ezlin Ahmad; Elfithri, Rahmah

    2013-12-01

    Methane (CH₄) emissions and oxidation were measured at the Air Hitam sanitary landfill in Malaysia and were modeled using the Intergovernmental Panel on Climate Change waste model to estimate the CH₄ generation rate constant, k. The emissions were measured at several locations using a fabricated static flux chamber. A combination of gas concentrations in soil profiles and surface CH₄ and carbon dioxide (CO₂) emissions at four monitoring locations were used to estimate the CH₄ oxidation capacity. The temporal variations in CH₄ and CO₂ emissions were also investigated in this study. Geospatial means using point kriging and inverse distance weight (IDW), as well as arithmetic and geometric means, were used to estimate total CH₄ emissions. The point kriging, IDW, and arithmetic means were almost identical and were two times higher than the geometric mean. The CH₄ emission geospatial means estimated using the kriging and IDW methods were 30.81 and 30.49 gm(−2) day(−1), respectively. The total CH₄ emissions from the studied area were 53.8 kg day(−1). The mean of the CH₄ oxidation capacity was 27.5 %. The estimated value of k is 0.138 year(−1). Special consideration must be given to the CH₄ oxidation in the wet tropical climate for enhancing CH₄ emission reduction.

  16. One-dimensional analytical model for oxide thin film growth on Ti metal layers during laser heating in air

    NASA Astrophysics Data System (ADS)

    Jiménez Pérez, J. L.; Sakanaka, P. H.; Algatti, M. A.; Mendoza-Alvarez, J. G.; Cruz Orea, A.

    2001-05-01

    This paper presents the theoretical and experimental results for oxide thin film growth on titanium films previously deposited over glass substrate. Ti films of thickness 0.1 μm were heated by Nd:YAG laser pulses in air. The oxide tracks were created by moving the samples with a constant speed of 2 mm/s, under the laser action. The micro-topographic analysis of the tracks was performed by a microprofiler. The results taken along a straight line perpendicular to the track axis revealed a Gaussian profile that closely matches the laser's spatial mode profile, indicating the effectiveness of the surface temperature gradient on the film's growth process. The sample's micro-Raman spectra showed two strong bands at 447 and 612 cm -1 associated with the TiO 2 structure. This is a strong indication that thermo-oxidation reactions took place at the Ti film surface that reached an estimated temperature of 1160 K just due to the action of the first pulse. The results obtained from the numerical integration of the analytical equation which describes the oxidation rate (Wagner equation) are in agreement with the experimental data for film thickness in the high laser intensity region. This shows the partial accuracy of the one-dimensional model adopted for describing the film growth rate.

  17. Wet air oxidation of formic acid using nanoparticle-modified polysulfone hollow fibers as gas-liquid contactors.

    PubMed

    Hogg, Seth R; Muthu, Satish; O'Callaghan, Michael; Lahitte, Jean-Francois; Bruening, Merlin L

    2012-03-01

    Catalytic wet air oxidation (CWAO) using membrane contactors is attractive for remediation of aqueous pollutants, but previous studies of even simple reactions such as formic acid oxidation required multiple passes through tubular ceramic membrane contactors to achieve high conversion. This work aims to increase single-pass CWAO conversions by using polysulfone (PS) hollow fibers as contactors to reduce diffusion distances in the fiber lumen. Alternating adsorption of polycations and citrate-stabilized platinum colloids in fiber walls provides catalytically active PS hollow fibers. Using a single PS fiber, 50% oxidation of a 50 mM formic acid feed solution results from a single pass through the fiber lumen (15 cm length) with a solution residence time of 40 s. Increasing the number of PS fibers to five while maintaining the same volumetric flow rate leads to over 90% oxidation, suggesting that further scale up in the number of fibers will facilitate high single pass conversions at increased flow rates. The high conversion compared to prior studies with ceramic fibers stems from shorter diffusion distances in the fiber lumen. However, the activity of the Pt catalyst is 20-fold lower than in previous ceramic fibers. Focusing the Pt deposition near the fiber lumen and limiting pore wetting to this region might increase the activity of the catalyst.

  18. OXIDATIVE STRESS MEDIATES AIR POLLUTION PARTICLE-INDUCED ACUTE LUNG INJURY AND MOLECULAR PATHOLOGY

    EPA Science Inventory

    Abstract
    Insight into the mechanism(s) by which ambient air particulate matter (PM) mediates adverse health effects is needed to provide biological plausibility to epidemiological studies demonstrating associations between PM exposure and increased morbidity and mortality. Alt...

  19. Ethylene Oxide Commerical Sterilization and Fumigation Operations National Emission Standards for Hazardous Air Pollutants (NESHAP)

    EPA Pesticide Factsheets

    The purpose of this document is to provide implementation materials to assist in conducting complete and efficient inspections at ethylene oxide commercial sterilization and fumigation operations to determine compliance with the NESHAP

  20. CATALYTIC OXIDATION OF AIR POLLUTANTS FROM PULP AND PAPER INDUSTRY USING OZONE

    EPA Science Inventory

    Major pollutants from pulp and paper mills include volatile organic compounds (VOCs) such as methanol and total reduced sulfur compounds (TRS) such as dimethyl sulfide. The conventional treatment technologies including incineration or catalytic thermal oxidation are energy intens...

  1. Oxidation rate of graphitic matrix material in the kinetic regime for VHTR air ingress accident scenarios

    NASA Astrophysics Data System (ADS)

    Lee, Jo Jo; Ghosh, Tushar K.; Loyalka, Sudarshan K.

    2014-08-01

    Data on oxidation rates of matrix-grade graphite in the kinetically-controlled temperature regime of graphite oxidation are needed for safety analysis of High Temperature Gas Cooled Reactors and Very High Temperature Reactors. In this work, the oxidation rate of graphitic matrix material GKrS was measured thermogravimetrically for various oxygen concentrations and with temperatures from 873 to 1873 K. A semi-empirical Arrhenius rate equation was also developed for this temperature range. The activation energy of the graphitic material is found to be about 111.5 kJ/mol. The order of reaction was found to be about 0.89. The surface of oxidized GKrS was characterized by Scanning Electron Microscopy, Electron Dispersive Spectroscopy, Fourier Transform Infrared Spectroscopy and X-ray Photoelectron Spectroscopy.

  2. Selective air oxidation of cyclohexane in supercritical CO{sub 2}

    SciTech Connect

    Luan, Li; Buelow, S.J.; Tumas, W.

    1996-12-31

    We have explored the use of molecular oxygen as the oxidant for the selective oxidation of cyclohexane using cobalt catalysts in supercritical CO{sub 2}. We have chosen to use supercritial CO{sub 2} as a co-solvent for reasons: (1) oxygen, cyclohexane and acetic acid are miscible in supercritical CO{sub 2} and therefore oxidation can occur in a homogeneous phase; (2) C02 is inert for oxidation and can be easily separated from the reaction mixture; (3) CO{sub 2} is environmentally benign. Adipic acid was formed at 80 % selectivity with 5% conversion. Reaction rates and product selectivity will be reported as a function of temperature and pressure.

  3. Fact Sheets: Final Air Toxics Rules for Ethylene Oxide Emissions from Commercial Sterilization and Fumigation Operations

    EPA Pesticide Factsheets

    This page contains November 1994 and November 1999 fact sheets with information regarding the Final Ethylene Oxide Emissions Standards for Sterilization Facilities. These documents contain answers to common questions for this NESHAP

  4. Air oxidation of hydrazine. 1. Reaction kinetics on natural kaolinites, halloysites, and model substituent layers with varying iron and titanium oxide and O- center contents

    NASA Technical Reports Server (NTRS)

    Coyne, L.; Mariner, R.; Rice, A.

    1991-01-01

    Air oxidation of hydrazine was studied by using a group of kaolinites, halloysites, and substituent oxides as models for the tetrahedral and octahedral sheets. The rate was found to be linear with oxygen. The stoichiometry showed that oxygen was the primary oxidant and that dinitrogen was the only important nitrogen-containing product. The rates on kaolinites were strongly inhibited by water. Those on three-dimensional silica and gibbsite appeared not to be. That on a supposedly layered silica formed from a natural kaolinite by acid leaching showed transitional behavior--slowed relative to that expected from a second-order reaction relative to that on the gibbsite and silica but faster than those on the kaolinites. The most striking result of the reaction was the marked increase in the rate of reaction of a constant amount of hydrazine as the amount of clay was increased. The increase was apparent (in spite of the water inhibition at high conversions) over a 2 order of magnitude variation of the clay weight. The weight dependence was taken to indicate that the role of the clay is very important, that the number of reactive centers is very small, or that they may be deactivated over the course of the reaction. In contrast to the strong dependence on overall amount of clay, the variation of amounts of putative oxidizing centers, such as structural Fe(III), admixed TiO2 or Fe2O3, or O- centers, did not result in alteration of the rate commensurate with the degree of variation of the entity in question. Surface iron does play some role, however, as samples that were pretreated with a reducing agent were less active as catalysts than the parent material. These results were taken to indicate either that the various centers interact to such a degree that they cannot be considered independently or that the reaction might proceed by way of surface complexation, rather than single electron transfers.

  5. Association of air pollution sources and aldehydes with biomarkers of blood coagulation, pulmonary inflammation, and systemic oxidative stress.

    PubMed

    Altemose, Brent; Robson, Mark G; Kipen, Howard M; Ohman Strickland, Pamela; Meng, Qingyu; Gong, Jicheng; Huang, Wei; Wang, Guangfa; Rich, David Q; Zhu, Tong; Zhang, Junfeng

    2016-07-20

    Using data collected before, during, and after the 2008 Summer Olympic Games in Beijing, this study examines associations between biomarkers of blood coagulation (vWF, sCD62P and sCD40L), pulmonary inflammation (EBC pH, EBC nitrite, and eNO), and systemic oxidative stress (urinary 8-OHdG) with sources of air pollution identified utilizing principal component analysis and with concentrations of three aldehydes of health concern. Associations between the biomarkers and the air pollution source types and aldehydes were examined using a linear mixed effects model, regressing through seven lag days and controlling for ambient temperature, relative humidity, gender, and day of week for the biomarker measurements. The biomarkers for pulmonary inflammation, particularly EBC pH and eNO, were most consistently associated with vehicle and industrial combustion, oil combustion, and vegetative burning. The biomarkers for blood coagulation, particularly vWF and sCD62p, were most consistently associated with oil combustion. Systemic oxidative stress biomarker (8-OHdG) was most consistently associated with vehicle and industrial combustion. The associations of the biomarkers were generally not significant or consistent with secondary formation of pollutants and with the aldehydes. The findings support policies to control anthropogenic pollution sources rather than natural soil or road dust from a cardio-respiratory health standpoint.Journal of Exposure Science and Environmental Epidemiology advance online publication, 20 July 2016; doi:10.1038/jes.2016.38.

  6. Catalytic wet air oxidation of coke-plant wastewater on ruthenium-based eggshell catalysts in a bubbling bed reactor.

    PubMed

    Yang, M; Sun, Y; Xu, A H; Lu, X Y; Du, H Z; Sun, C L; Li, C

    2007-07-01

    Catalytic wet air of coke-plant wastewater was studied in a bubbling bed reactor. Two types of supported Ru-based catalysts, eggshell and uniform catalysts, were employed. Compared with the results in the wet air oxidation of coke-plant wastewater, supported Ru uniform catalysts showed high activity for chemical oxygen demand (COD) and ammonia/ammonium compounds (NH3-N) removal at temperature of 250 degrees C and pressure of 4.8 MPa, and it has been demonstrated that the catalytic activity of uniform catalyst depended strongly on the distribution of active sites of Ru on catalyst. Compared to the corresponding uniform catalysts with the same Ru loading (0.25 wt.% and 0.1 wt.%, respectively), the eggshell catalysts showed higher activities for CODcr removal and much higher activities for NH3-N degradation. The high activity of eggshell catalyst for treatment of coke-plant wastewater can be attributed to the higher density of active Ru sites in the shell layer than that of the corresponding uniform catalyst with the same Ru loading. It has been also evidenced that the active Ru sites in the internal core of uniform catalyst have very little or no contribution to CODcr and NH3-N removal in the total oxidation of coke-plant wastewater.

  7. High performance air electrode for solid oxide regenerative fuel cells fabricated by infiltration of nano-catalysts

    NASA Astrophysics Data System (ADS)

    Lee, Sung-il; Kim, Jeonghee; Son, Ji-Won; Lee, Jong-Ho; Kim, Byung-Kook; Je, Hae-June; Lee, Hae-Weon; Song, Huesup; Yoon, Kyung Joong

    2014-03-01

    A high performance air electrode fabricated by infiltration of highly active nano-catalysts into a porous scaffold is demonstrated for high-temperature solid oxide regenerative fuel cells (SORFCs). The nitrate precursor solution for Sm0.5Sr0.5CoO3 (SSC) catalyst is impregnated into a porous La0.6Sr0.4Co0.2Fe0.8O3 (LSCF)-gadolinia-doped ceria (GDC) composite backbone, and extremely fine SSC nano-particles are uniformly synthesized by in-situ crystallization at the initial stage of SORFC operation via homogeneous nucleation induced by urea decomposition. The SSC nano-catalysts are in the size range of 40-80 nm and stable against coarsening upon the SORFC operation at 750 °C. The electrochemical performance is significantly improved by incorporation of SSC nano-catalysts in both power generation and hydrogen production modes. Systematic analysis on the impedance spectra reveals that the surface modification of the air electrode with nano-catalysts remarkably accelerates the chemical surface exchange reactions for both O2 reduction and O2- oxidation, which are the major limiting processes for SORFC performance.

  8. Simulation of solid oxide iron-air battery: Effects of heat and mass transfer on charge/discharge characteristics

    NASA Astrophysics Data System (ADS)

    Ohmori, Hiroko; Iwai, Hiroshi

    2015-07-01

    A time-dependent 2-D numerical simulation was performed on a solid oxide iron-air battery (SOIAB) to reveal the fundamental characteristics of this new system. The SOIAB is a rechargeable battery consisting of a solid oxide electrochemical cell (SOEC) and iron as a redox metal. A simple battery configuration was employed assuming a system with a small capacity. A simulation model for a unit element was developed considering heat and mass transfer in the system, taking both electrochemical and redox reactions into account. The numerical results showed the spatial and temporal changes in the temperature field in the charge and discharge operations, which were due to the combined effects of heat generation/absorption by the electrochemical and redox reactions and heat exchange with the air supplied through convective heat transfer. As the reaction rates are functions of the local temperature, the predicted results show the importance of considering the heat transfer phenomena in this system. It was also found that the active reaction region in the redox metal evolves with time. The nonuniform distribution of iron utilization is affected by the effective gas diffusion coefficients in the porous redox metal, and consequently the change in the current density distribution in the SOEC.

  9. Degradation of the insecticide propoxur by electrochemical advanced oxidation processes using a boron-doped diamond/air-diffusion cell.

    PubMed

    Guelfi, Diego Roberto Vieira; Gozzi, Fábio; Sirés, Ignasi; Brillas, Enric; Machulek, Amílcar; de Oliveira, Silvio César

    2016-03-17

    A solution with 0.38 mM of the pesticide propoxur (PX) at pH 3.0 has been comparatively treated by electrochemical oxidation with electrogenerated H2O2 (EO-H2O2), electro-Fenton (EF), and photoelectro-Fenton (PEF). The trials were carried out with a 100-mL boron-doped diamond (BDD)/air-diffusion cell. The EO-H2O2 process had the lowest oxidation ability due to the slow reaction of intermediates with (•)OH produced from water discharge at the BDD anode. The EF treatment yielded quicker mineralization due to the additional (•)OH formed between added Fe(2+) and electrogenerated H2O2. The PEF process was the most powerful since it led to total mineralization by the combined oxidative action of hydroxyl radicals and UVA irradiation. The PX decay agreed with a pseudo-first-order kinetics in EO-H2O2, whereas in EF and PEF, it obeyed a much faster pseudo-first-order kinetics followed by a much slower one, which are related to the oxidation of its Fe(II) and Fe(III) complexes, respectively. EO-H2O2 showed similar oxidation ability within the pH range 3.0-9.0. The effect of current density and Fe(2+) and substrate contents on the performance of the EF process was examined. Two primary aromatic products were identified by LC-MS during PX degradation.

  10. A dose-controlled system for air-liquid interface cell exposure and application to zinc oxide nanoparticles

    PubMed Central

    2009-01-01

    Background Engineered nanoparticles are becoming increasingly ubiquitous and their toxicological effects on human health, as well as on the ecosystem, have become a concern. Since initial contact with nanoparticles occurs at the epithelium in the lungs (or skin, or eyes), in vitro cell studies with nanoparticles require dose-controlled systems for delivery of nanoparticles to epithelial cells cultured at the air-liquid interface. Results A novel air-liquid interface cell exposure system (ALICE) for nanoparticles in liquids is presented and validated. The ALICE generates a dense cloud of droplets with a vibrating membrane nebulizer and utilizes combined cloud settling and single particle sedimentation for fast (~10 min; entire exposure), repeatable (<12%), low-stress and efficient delivery of nanoparticles, or dissolved substances, to cells cultured at the air-liquid interface. Validation with various types of nanoparticles (Au, ZnO and carbon black nanoparticles) and solutes (such as NaCl) showed that the ALICE provided spatially uniform deposition (<1.6% variability) and had no adverse effect on the viability of a widely used alveolar human epithelial-like cell line (A549). The cell deposited dose can be controlled with a quartz crystal microbalance (QCM) over a dynamic range of at least 0.02-200 μg/cm2. The cell-specific deposition efficiency is currently limited to 0.072 (7.2% for two commercially available 6-er transwell plates), but a deposition efficiency of up to 0.57 (57%) is possible for better cell coverage of the exposure chamber. Dose-response measurements with ZnO nanoparticles (0.3-8.5 μg/cm2) showed significant differences in mRNA expression of pro-inflammatory (IL-8) and oxidative stress (HO-1) markers when comparing submerged and air-liquid interface exposures. Both exposure methods showed no cellular response below 1 μg/cm2 ZnO, which indicates that ZnO nanoparticles are not toxic at occupationally allowed exposure levels. Conclusion The ALICE

  11. Oxidation and decomposition mechanisms of air sensitive aluminum clusters at high heating rates

    NASA Astrophysics Data System (ADS)

    DeLisio, Jeffery B.; Mayo, Dennis H.; Guerieri, Philip M.; DeCarlo, Samantha; Ives, Ross; Bowen, Kit; Eichhorn, Bryan W.; Zachariah, Michael R.

    2016-09-01

    Molecular near zero oxidation state clusters of metals are of interest as fuel additives. In this work high heating rate decomposition of the Al(I) tetrameric cluster, [AlBr(NEt3)]4 (Et = C2H5), was studied at heating rates of up to 5 × 105 K/s using temperature-jump time-of-flight mass spectrometry (T-jump TOFMS). Gas phase Al and AlHx species were rapidly released during decomposition of the cluster, at ∼220 °C. The activation energy for decomposition was determined to be ∼43 kJ/mol. Addition of an oxidizer, KIO4, increased Al, AlO, and HBr signal intensities, showing direct oxidation of the cluster with gas phase oxygen.

  12. Parametric Evaluation of an Innovative Ultra-Violet PhotocatalyticOxidation (UVPCO) Air Cleaning Technology for Indoor Applications

    SciTech Connect

    Hodgson, Alfred T.; Sullivan, Douglas P.; Fisk, William J.

    2005-10-31

    An innovative Ultra-Violet Photocatalytic Oxidation (UVPCO) air cleaning technology employing a semitransparent catalyst coated on a semitransparent polymer substrate was evaluated to determine its effectiveness for treating mixtures of volatile organic compounds (VOCs) representative of indoor environments at low, indoor-relevant concentration levels. The experimental UVPCO contained four 30 by 30-cm honeycomb monoliths irradiated with nine UVA lamps arranged in three banks. A parametric evaluation of the effects of monolith thickness, air flow rate through the device, UV power, and reactant concentrations in inlet air was conducted for the purpose of suggesting design improvements. The UVPCO was challenged with three mixtures of VOCs. A synthetic office mixture contained 27 VOCs commonly measured in office buildings. A building product mixture was created by combining sources including painted wallboard, composite wood products, carpet systems, and vinyl flooring. The third mixture contained formaldehyde and acetaldehyde. Steady state concentrations were produced in a classroom laboratory or a 20-m{sup 3} chamber. Air was drawn through the UVPCO, and single-pass conversion efficiencies were measured from replicate samples collected upstream and downstream of the reactor. Thirteen experiments were conducted in total. In this UVPCO employing a semitransparent monolith design, an increase in monolith thickness is expected to result in general increases in both reaction efficiencies and absolute reaction rates for VOCs oxidized by photocatalysis. The thickness of individual monolith panels was varied between 1.2 and 5 cm (5 to 20 cm total thickness) in experiments with the office mixture. VOC reaction efficiencies and rates increased with monolith thickness. However, the analysis of the relationship was confounded by high reaction efficiencies in all configurations for a number of compounds. These reaction efficiencies approached or exceeded 90% for alcohols, glycol

  13. Speciation and Fate of Trace Metals in Estuarine Sediments Under Reduced and Oxidized Conditions, Seaplane Lagoon, Alameda Naval Air Station

    SciTech Connect

    Carroll, S A; Day, P A; Esser, B; Randall, S

    2002-10-18

    We have identified important chemical reactions that control the fate of metal-contaminated estuarine sediments if they are left undisturbed (in situ) or if they are dredged. We combined information on the molecular bonding of metals in solids from X-ray absorption spectroscopy (XAS) with thermodynamic and kinetic driving forces obtained from dissolved metal concentrations to deduce the dominant reactions under reduced and oxidized conditions. We evaluated the in situ geochemistry of metals (cadmium, chromium, iron, lead, manganese and zinc) as a function of sediment depth (to 100 cm) from a 60-year record of contamination at the Alameda Naval Air Station, California. Results from XAS and thermodynamic modeling of porewaters show that cadmium and most of the zinc form stable sulfide phases, and that lead and chromium are associated with stable carbonate, phosphate, phyllosilicate, or oxide minerals. Therefore, there is minimal risk associated with the release of these trace metals from the deeper sediments contaminated prior to the Clean Water Act (1975) as long as reducing conditions are maintained. Increased concentrations of dissolved metals with depth were indicative of the formation of metal HS- complexes. The sediments also contain zinc, chromium, and manganese associated with detrital iron-rich phyllosilicates and/or oxides. These phases are recalcitrant at near-neutral pH and do not undergo reductive dissolution within the 60-year depositional history of sediments at this site. The fate of these metals during dredging was evaluated by comparing in situ geochemistry with that of sediments oxidized by seawater in laboratory experiments. Cadmium and zinc pose the greatest hazard from dredging because their sulfides were highly reactive in seawater. However, their dissolved concentrations under oxic conditions were limited eventually by sorption to or co-precipitation with an iron (oxy)hydroxide. About 50% of the reacted CdS and 80% of the reacted ZnS were

  14. Oxidation Resistance of Materials Based on Ti3AlC2 Nanolaminate at 600 °C in Air.

    PubMed

    Ivasyshyn, Andrij; Ostash, Orest; Prikhna, Tatiana; Podhurska, Viktoriya; Basyuk, Tatiana

    2016-12-01

    The oxidation behavior of Ti3AlC2-based materials had been investigated at 600 °C in static air for 1000 h. It was shown that the intense increase of weight gain per unit surface area for sintered material with porosity of 22 % attributed to oxidation of the outer surface of the specimen and surfaces of pores in the bulk material. The oxidation kinetics of the hot-pressed Ti3AlC2-based material with 1 % porosity remarkably increased for the first 15 h and then slowly decreased. The weight gain per unit surface area for this material was 1.0 mg/cm(2) after exposition for 1000 h. The intense initial oxidation of Ti3AlC2-based materials can be eliminated by pre-oxidation treatment at 1200 °C in air for 2 h. As a result, the weight gain per unit surface area for the pre-oxidized material did not exceed 0.11 mg/cm(2) after 1000 h of exposition at 600 °C in air. It was demonstrated that the oxidation resistance of Ti3AlC2-based materials can be significantly improved by niobium addition.

  15. Determination of the Clean Air Delivery Rate (CADR) of Photocatalytic Oxidation (PCO) Purifiers for Indoor Air Pollutants Using a Closed-Loop Reactor. Part II: Experimental Results.

    PubMed

    Héquet, Valérie; Batault, Frédéric; Raillard, Cécile; Thévenet, Frédéric; Le Coq, Laurence; Dumont, Éric

    2017-03-06

    The performances of a laboratory PhotoCatalytic Oxidation (PCO) device were determined using a recirculation closed-loop pilot reactor. The closed-loop system was modeled by associating equations related to two ideal reactors: a perfectly mixed reservoir with a volume of VR = 0.42 m³ and a plug flow system corresponding to the PCO device with a volume of VP = 5.6 × 10(-3) m³. The PCO device was composed of a pleated photocatalytic filter (1100 cm²) and two 18-W UVA fluorescent tubes. The Clean Air Delivery Rate (CADR) of the apparatus was measured under different operating conditions. The influence of three operating parameters was investigated: (i) light irradiance I from 0.10 to 2.0 mW·cm(-2); (ii) air velocity v from 0.2 to 1.9 m·s(-1); and (iii) initial toluene concentration C₀ (200, 600, 1000 and 4700 ppbv). The results showed that the conditions needed to apply a first-order decay model to the experimental data (described in Part I) were fulfilled. The CADR values, ranging from 0.35 to 3.95 m³·h(-1), were mainly dependent on the light irradiance intensity. A square root influence of the light irradiance was observed. Although the CADR of the PCO device inserted in the closed-loop reactor did not theoretically depend on the flow rate (see Part I), the experimental results did not enable the confirmation of this prediction. The initial concentration was also a parameter influencing the CADR, as well as the toluene degradation rate. The maximum degradation rate rmax ranged from 342 to 4894 ppbv/h. Finally, this study evidenced that a recirculation closed-loop pilot could be used to develop a reliable standard test method to assess the effectiveness of PCO devices.

  16. Synergistic bifunctional catalyst design based on perovskite oxide nanoparticles and intertwined carbon nanotubes for rechargeable zinc-air battery applications.

    PubMed

    Lee, Dong Un; Park, Hey Woong; Park, Moon Gyu; Ismayilov, Vugar; Chen, Zhongwei

    2015-01-14

    Advanced morphology of intertwined core-corona structured bifunctional catalyst (IT-CCBC) is introduced where perovskite lanthanum nickel oxide nanoparticles (LaNiO3 NP) are encapsulated by high surface area network of nitrogen-doped carbon nanotubes (NCNT) to produce highly active and durable bifunctional catalyst for rechargeable metal-air battery applications. The unique composite morphology of IT-CCBC not only enhances the charge transport property by providing rapid electron-conduction pathway but also facilitates in diffusion of hydroxyl and oxygen reactants through the highly porous framework. Confirmed by electrochemical half-cell testing, IT-CCBC in fact exhibits very strong synergy between LaNiO3 NP and NCNT demonstrating bifunctionality with significantly improved catalytic activities of oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). Furthermore, when compared to the state-of-art catalysts, IT-CCBC outperforms Pt/C and Ir/C in terms of ORR and OER, respectively, and shows improved electrochemical stability compared to them after cycle degradation testing. The practicality of the catalyst is corroborated by testing in a realistic rechargeable zinc-air battery utilizing atmospheric air in ambient conditions, where IT-CCBC demonstrates superior charge and discharge voltages and long-term cycle stability with virtually no battery voltage fading. These improved electrochemical properties of the catalyst are attributed to the nanosized dimensions of LaNiO3 NP controlled by simple hydrothermal technique, which enables prolific growth of and encapsulation by highly porous NCNT network. The excellent electrochemical results presented in this study highlight IT-CCBC as highly efficient and commercially viable bifunctional catalyst for rechargeable metal-air battery applications.

  17. Identification of oxidation products of solanesol produced during air sampling for tobacco smoke by electrospray mass spectrometry and HPLC.

    PubMed

    Tucker, Samuel P; Pretty, Jack R

    2005-10-01

    Solanesol, a 45-carbon, trisesquiterpenoid alcohol found in tobacco leaves and tobacco smoke, has been used as a quantitative marker for tobacco smoke for years. However, solanesol appears to be unreliable as a quantitative marker for tobacco smoke during environmental air sampling because it can be degraded substantially when present as a component of tobacco smoke and by as much as 100% when present as pure solanesol on fortified filters during air sampling. Since there is strong evidence that ozone is the agent responsible for the degradation, solanesol appears to be unreliable as a quantitative marker during indoor air sampling when indoor levels of ozone are greater than about 15 ppb. The degree of loss of pure solanesol is directly proportional to the concentration of ozone and the length of the sampling period and depends on the type of 37 mm membrane filter used for air sampling (PTFE or quartz fiber). While the degree of loss of solanesol is inversely proportional to the relative humidity of the air at a sampling rate of 1.7 L min(-1), the degree of loss is virtually independent of relative humidity at a lower sampling rate; i.e., 0.25 L min(-1). A curve of loss of solanesol on a filter versus concentration of ozone from an ozone generator is virtually identical to a curve segment based on atmospheric ozone under the same conditions of air sampling. Oxidation of solanesol by ozone to approximately 25 to 60% completion produces at least three series of products for a total of at least 26 compounds: (1) isoprenoid acetones, (2)omega-hydroxyisoprenoid acetaldehydes, and (3) isoprenoid oxoaldehydes. All products in each series were tentatively identified as their derivatives with 2-(p-aminophenyl)ethanol (APE) by electrospray mass spectrometry (ES-MS). Ten ozonation products were detected as their 2,4-dinitrophenylhydrazine derivatives by HPLC at 360 nm: 4-oxopentanal and nine isoprenoid acetones (acetone, 6-methyl-5-hepten-2-one, geranylacetone

  18. OXIDATION OF CYCLOHEXANE WITH AIR CATALYZED BY A STERICALLY HINDERED IRON(II) COMPLEX

    EPA Science Inventory

    At the USEPA, the pursuit for "Green" processes is ongoing in order to develop new, cost-effective, environmentally benign systems to produce desired products and eliminate or reduce unwanted by-products and wastes. One area of interest is the design of new catalysts for the oxid...

  19. Neutrophilic inflammatory response and oxidative stress in premenopausal women chronically exposed to indoor air pollution from biomass burning.

    PubMed

    Banerjee, Anirban; Mondal, Nandan Kumar; Das, Debangshu; Ray, Manas Ranjan

    2012-04-01

    The possibility of inflammation and neutrophil activation in response to indoor air pollution (IAP) from biomass fuel use has been investigated. For this, 142 premenopausal, never-smoking women (median age, 34 years) who cook exclusively with biomass (wood, dung, crop wastes) and 126 age-matched control women who cook with cleaner fuel liquefied petroleum gas (LPG) were enrolled. The neutrophil count in blood and sputum was significantly higher (p < 0.05) in biomass users than the control group. Flow cytometric analysis revealed marked increase in the surface expression of CD35 (complement receptor-1), CD16 (F(C)γ receptor III), and β(2) Mac-1 integrin (CD11b/CD18) on circulating neutrophils of biomass users. Besides, enzyme-linked immunosorbent assay showed that they had 72%, 67%, and 54% higher plasma levels of the proinflammatory cytokines tumor necrosis factor-alpha, interleukin-6, and interleukin-12, respectively, and doubled neutrophil chemoattractant interleukin-8. Immunocytochemical study revealed significantly higher percentage of airway neutrophils expressing inducible nitric oxide synthase, while the serum level of nitric oxide was doubled in women who cooked with biomass. Spectrophotometric analysis documented higher myeloperoxidase activity in circulating neutrophils of biomass users, suggesting neutrophil activation. Flow cytometry showed excess generation of reactive oxygen species (ROS) by leukocytes of biomass-using women, whereas their erythrocytes contained a depleted level of antioxidant enzyme superoxide dismutase (SOD). Indoor air of biomass-using households had two to four times more particulate matter with diameters of <10 μm (PM(10)) and <2.5 μm (PM(2.5)) as measured by real-time laser photometer. After controlling potential confounders, rise in proinflammatory mediators among biomass users were positively associated with PM(10) and PM(2.5) in indoor air, suggesting a close relationship between IAP and neutrophil activation. Besides

  20. Markers of lipid oxidative damage among office workers exposed intermittently to air pollutants including nanoTiO2 particles.

    PubMed

    Pelclova, Daniela; Zdimal, Vladimir; Kacer, Petr; Komarc, Martin; Fenclova, Zdenka; Vlckova, Stepanka; Zikova, Nadezda; Schwarz, Jaroslav; Makes, Otakar; Navratil, Tomas; Zakharov, Sergey; Bello, Dhimiter

    2017-03-01

    Nanoscale titanium dioxide (nanoTiO2) is a commercially important nanomaterial used in numerous applications. Experimental studies with nanotitania have documented lung injury and inflammation, oxidative stress, and genotoxicity. Production workers in TiO2 manufacturing with a high proportion of nanoparticles and a mixture of other air pollutants, such as gases and organic aerosols, had increased markers of oxidative stress, including DNA and protein damage, as well as lipid peroxidation in their exhaled breath condensate (EBC) compared to unexposed controls. Office workers were observed to get intermittent exposures to nanoTiO2 during their process monitoring. The aim of this study was to investigate the impact of such short-term exposures on the markers of health effects in office workers relative to production workers from the same factory. Twenty-two office employees were examined. They were occupationally exposed to (nano)TiO2 aerosol during their daily visits of the production area for an average of 14±9 min/day. Median particle number concentration in office workers while in the production area was 2.32×104/cm3. About 80% of the particles were <100 nm in diameter. A panel of biomarkers of lipid oxidation, specifically malondialdehyde (MDA), 4-hydroxy-trans-hexenal (HHE), 4-hydroxy-trans-nonenal (HNE), 8-isoprostaglandin F2α (8-isoprostane), and aldehydes C6-C12, were studied in the EBC and urine of office workers and 14 unexposed controls. Nine markers of lipid oxidation were elevated in the EBC of office employees relative to controls (p<0.05); only 8-isoprostane and C11 were not increased. Significant association was found in the multivariate analysis between their employment in the TiO2 production plant and EBC markers of lipid oxidation. No association was seen with age, lifestyle factors, or environmental air contamination. The EBC markers in office employees reached about 50% of the levels measured in production workers, and the difference between

  1. Very Long Term Oxidation of Ti-48Al-2Cr-2Nb at 704 C In Air

    NASA Technical Reports Server (NTRS)

    Locci, I. E.; Brady, M. P.; MacKay, R. A.; Smith, J. W.

    1997-01-01

    Introduction Titanium aluminides are of great interest for intermediate-temperature (600 C - 850 C) aerospace and power generation applications because of their high specific properties. Replacement of conventional superalloys by titanium aluminides offers the potential of significant weight savings. Extensive development efforts over the past IO years have led to the identification of y (TiAl) + alpha(sub 2) (Ti3Al) alloys, such as the G.E. alloy Ti48Al-2Cr-2Nb (all composition in at. %), which offer a balance of room temperature mechanical properties and high-temperature strength retention. The two phase gamma + alpha(sub 2) class of titanium aluminides also offers superior oxidation and embrittlement resistance compared to the alpha(sub 2) and orthorhombic classes of titanium aluminides. However, environmental durability is still a major concern. Significant progress has recently been made in understanding the fundamental aspects of the oxidation behavior of binary gamma + alpha(sub 2) Ti-Al alloys. However, most of this work has concentrated on short term (less than 1000 hours), high temperature (900 C - 1000 C) exposures. Also little data are available in the literature regarding the oxidation behavior of the quaternary and higher order gamma + alpha(sub 2) engineering alloys. This is especially true for the very long-term, low temperature conditions likely to be experienced during engineering applications. The present work addresses this regime to fill this gap by characterizing the oxidation behavior of Ti48Al-2Cr-2Nb for periods up to 9000 h at 704 C in air.

  2. Plasma-surface modification vs air oxidation on carbon obtained from peach stone: Textural and chemical changes and the efficiency as adsorbents

    NASA Astrophysics Data System (ADS)

    De Velasco Maldonado, Paola S.; Hernández-Montoya, Virginia; Montes-Morán, Miguel A.

    2016-10-01

    Carbons were prepared from peach stones (Prunus persica) using different carbonization temperatures (600, 800 and 1000 °C). A selected sample was modified by oxidation using conventional oxidation techniques (thermal treatment in air atmosphere) and with cold oxygen plasma oxidation, under different conditions. Samples were characterized using elemental analysis, FT-IR spectroscopy, nitrogen adsorption isotherms at -196 °C, SEM/EDX analysis, potentiometric titration and XPS analysis. Carbons with and without oxidation were employed in the adsorption of Pb2+ in aqueous solution. Results obtained indicated that the materials with high contents of acidic oxygen groups were more efficient in the removal of Pb2+, values as high as approx. 40 mg g-1 being obtained for the best performing carbon. Textural properties of the original, un-oxidized carbon were significantly altered only after oxidation under air atmosphere at 450 °C. On the other hand, the samples oxidized with plasma show little changes in the textural parameters and a slight increase in the specific surface was observed for the sample treated at high RF power (100 W). Additionally, a significant increment of the oxygen content was observed for the plasma oxidized samples, as measured by XPS.

  3. Agreement of land use regression models with personal exposure measurements of particulate matter and nitrogen oxides air pollution.

    PubMed

    Montagne, Denise; Hoek, Gerard; Nieuwenhuijsen, Mark; Lanki, Timo; Pennanen, Arto; Portella, Meritxell; Meliefste, Kees; Eeftens, Marloes; Yli-Tuomi, Tarja; Cirach, Marta; Brunekreef, Bert

    2013-08-06

    Land use regression (LUR) models are often used to predict long-term average concentrations of air pollutants. Little is known how well LUR models predict personal exposure. In this study, the agreement of LUR models with measured personal exposure was assessed. The measured components were particulate matter with a diameter smaller than 2.5 μm (PM2.5), soot (reflectance of PM2.5), nitrogen oxides (NOx), and nitrogen dioxide (NO2). In Helsinki, Utrecht, and Barcelona, 15 volunteers (from semiurban, urban background, and traffic sites) followed prescribed time activity patterns. Per participant, six 96 h outdoor, indoor, and personal measurements spread over three seasons were conducted. Soot LUR models were significantly correlated with measured average outdoor and personal soot concentrations. Soot LUR models explained 39%, 44%, and 20% of personal exposure variability (R(2)) in Helsinki, Utrecht, and Barcelona. NO2 LUR models significantly predicted outdoor concentrations and personal exposure in Utrecht and Helsinki, whereas NOx and PM2.5 LUR models did not predict personal exposure. PM2.5, NO2, and NOx models were correlated with personal soot, the component least affected by indoor sources. LUR modeled and measured outdoor, indoor, and personal concentrations were highly correlated for all pollutants when data from the three cities were combined. This study supports the use of intraurban LUR models for especially soot in air pollution epidemiology.

  4. Influences of flame-vortex interactions on formation of oxides of nitrogen in curved methane-air diffusion flamelets

    SciTech Connect

    Card, J.M.; Ryden, R.; Williams, F.A.

    1996-05-01

    Previous work has identified a parabolic flamelet in a uniform flow as a useful model for studying flame-vortex interactions and has presented an asymptotic analysis of this flamelet structure for two-step reduced chemistry of the methane-air system. The present paper addresses production rates of oxides of nitrogen in this flamelet by one-step reduced-chemistry descriptions of both thermal and prompt mechanisms, for both two-step and three-step methane-air reduced chemistry, and also reports some results of calculations of production rates with a full-chemistry description of planar counterflow flames, for purposes of comparison. The comparisons suggest that the asymptotic approximations significantly overestimate production rates and fail as extinction is approached but give qualitatively correct trends away from extinction. These trends show that increasing the tip curvature of the flamelet increases the prompt contribution while decreasing the thermal contribution. It is concluded that more research is needed on both elementary rates and asymptotic descriptions, especially for the prompt mechanism.

  5. Preliminary study on zinc-air battery using zinc regeneration electrolysis with propanol oxidation as a counter electrode reaction

    NASA Astrophysics Data System (ADS)

    Wen, Yue-Hua; Cheng, Jie; Ning, Shang-Qi; Yang, Yu-Sheng

    A zinc-air battery using zinc regeneration electrolysis with propanol oxidation as a counter electrode reaction is reported in this paper. It possesses functions of both zincate reduction and electrochemical preparation, showing the potential for increasing the electronic energy utilization. Charge/discharge tests and scanning electron microscopy (SEM) micrographs reveal that when a nickel sheet plated with the high-H 2-overpotential metal, cadmium, was used as the negative substrate electrode, the dendritic formation and hydrogen evolution are suppressed effectively, and granular zinc deposits become larger but relatively dense with the increase of charge time. The performance of batteries is favorable even if the charge time is as long as 5 h at the current density of 20 mA cm -2. Better discharge performance is achieved using a 'cavity-opening' configuration for the discharge cell rather than a 'gas-introducing' configuration. The highest energy efficiency is up to 59.2%. That is, the energy consumed by organic electro-synthesis can be recovered by 59.2%. Cyclic voltammograms show that the sintered nickel electrode exhibits a good electro-catalysis activity for the propanol oxidation. The increase of propanol concentration conduces to an enhancement in the organic electro-synthesis efficiency. The organic electro-synthesis current efficiency of 82% can be obtained.

  6. The effect of fission products on the rate of U3O8 formation in SIMFUEL oxidized in air at 250°C

    NASA Astrophysics Data System (ADS)

    Choi, Jong-Won; McEachern, Rod J.; Taylor, Peter; Wood, Donald D.

    1996-06-01

    The effect of fission products on the rate of U3O8 formation was investigated by oxidizing UO2-based SIMFUEL (simulated high burnup nuclear fuel) and unirradiated UO2 fuel specimens in air at 250°C for different times (1-317 days). The progress of oxidation was monitored by X-ray diffraction, revealing that the rate of U3O8 formation declines with increasing burnup. An expression was derived to describe quantitatively the time for U3O8 powder formation as a function of simulated burnup. These findings were supported by additional isochronal oxidation experiments conducted between 200 and 300°C.

  7. Silver-Copper Oxide Based Reactive Air Braze (RAB) for Joining Yttria-Stabilized Zirconia

    SciTech Connect

    Kim, Jin Yong Y.; Hardy, John S.; Weil, K. Scott

    2005-03-01

    We are investigating a new method of ceramic-to-metal joining, referred to as reactive air brazing (RAB), as a potential method of sealing ceramic components in high-temperature electrochemical devices. Sessile drop wetting experiments and joint strength testing were conducted using yttria stabilized zirconia (YSZ) substrates and CuO-Ag based air brazes. Results from our studies indicate that the wettability of the braze improves substantially with increasing CuO content, over a compositional range of 1 - 8 mol% CuO, which is accompanied by an increase in the bend strength of the corresponding brazed YSZ joint. The addition of a small amount of TiO2 (0.5 mol%) to the CuO-Ag braze further improves wettability due to the formation of a titanium zirconate reaction product along the braze/substrate interface. However, with one notable exception, the bend strength of these ternary braze joints remained nearly identical to those measured in comparable binary braze joints. SEM analysis conducted on the corresponding fracture surfaces indicated that in the binary braze joints the failure occurs primarily at the braze/YSZ interface. Similarly in the case of the the ternary, TiO2-doped brazes joint failure occurs predominantly along the interface between the braze filler metal and the underlying titanium zirconate reaction layer.

  8. Gas-phase photocatalytic oxidation: Cost comparison with other air pollution control technologies

    SciTech Connect

    Turchi, C S; Wolfrum, E J; Miller, R A

    1994-11-01

    Gas-phase photocatalytic oxidation (PCO) appears to be particularly well suited for waste streams with low pollutant concentrations (1000 ppm or less) and low to moderate flow rates (< 20,000 cubic feet per minute, cfm). The PCO technology is modular in nature and thus is well suited to treat dispersed or low flow rate streams. This same attribute minimizes the advantages of scale for PCO and makes the technology comparatively less attractive for high volume waste streams. Key advantages for PCO lie in its low operating cost and ability to completely destroy pollutants at ambient temperature and pressure.

  9. Final report on the oxidation of energetic materials in supercritical water. Final Air Force report

    SciTech Connect

    Buelow, S.J.; Allen, D.; Anderson, G.K.

    1995-04-03

    The objective of this project was to determine the suitability of oxidation in supercritical fluids (SCO), particularly water (SCWO), for disposal of propellants, explosives, and pyrotechnics (PEPs). The SCO studies of PEPs addressed the following issues: The efficiency of destruction of the substrate. The products of destruction contained in the effluents. Whether the process can be conducted safely on a large scale. Whether energy recovery from the process is economically practicable. The information essential for process development and equipment design was also investigated, including issues such as practical throughput of explosives through a SCWO reactor, reactor materials and corrosion, and models for process design and optimization.

  10. Chemical and toxicological evaluation of an emerging pollutant (enrofloxacin) by catalytic wet air oxidation and ozonation in aqueous solution.

    PubMed

    Li, Yan; Zhang, Feifang; Liang, Xinmiao; Yediler, Ayfer

    2013-01-01

    This study evaluates the degradation efficiency of enrofloxacin (ENR) by catalytic wet air oxidation (CWAO) and ozonation. Results obtained by CWAO experiments show that 99.5% degradation, 37.0% chemical oxidation demand (COD) removal and 51.0% total organic carbon (TOC) conversion were obtained when 100 mol% FeCl(3) and 25 mol% NaNO(2) at 150 °C under 0.5 MPa oxygen pressure after 120 min are used. The degradation products are identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS), gas chromatography-mass spectrometry (GC-MS) and ion chromatography (IC). The oxidation end products, F(-), NO(3)(-) and NH(4)(+) were determined by IC. The BOD(5)/COD ratio as a measure of the biodegradability of the parent compound increased from 0.01 to 0.12 after 120 min of reaction time, indicating an improved biodegradability of the parent compound. The inhibition of bioluminescence of the marine bacteria V. fischeri decreased from 43% to 12% demonstrating a loss in toxicity of ENR during CWAO. Ozonation of 0.2 mM ENR was carried out with an ozone concentration of 7.3 g m(-3) at pH 7. ENR decomposition with a degradation rate of 87% was obtained corresponding to the reaction time. Moderate changes in COD (18%) and TOC (17%) removal has been observed. The bioluminescence inhibition increased from 8% to 50%, due to the generation of toxic degradation products during ozonation. In comparison to the widely use of well developed method of ozonation CWAO exhibits better performance in terms of COD, TOC removals and generates less toxic products.

  11. Removal of pharmaceutical residue in municipal wastewater by DAF (dissolved air flotation)-MBR (membrane bioreactor) and ozone oxidation.

    PubMed

    Choi, Miyoung; Choi, Dong Whan; Lee, Jung Yeol; Kim, Young Suk; Kim, Bun Su; Lee, Byoung Ho

    2012-01-01

    Growing attention is given to pharmaceutical residue in the water environment. It is known that pharmaceuticals are able to survive from a series of wastewater treatment processes. Concerns regarding pharmaceutical residues are attributed to the fact that they are being detected in water and sediment environment ubiquitously. Pharmaceutical treatment using a series of wastewater treatment processes of the DAF (dissolved air flotation)-MBR (membrane bioreactor)-ozone oxidation was conducted in the study. DAF, without addition of coagulant, could remove COD(cr) (chemical oxygen demand by Cr) up to over 70%, BOD 73%, SS 83%, T-N 55%, NH₄(+) 23%, and T-P 65% in influent of municipal wastewater. Average removal rates of water quality parameters by the DAF-MBR system were very high, e.g. COD(cr) 95.88%, BOD₅ 99.66%, COD(mn) (chemical oxygen demand by Mn) 93.63%, T-N 69.75%, NH₄-N 98.46%, T-P 78.23%, and SS 99.51%, which satisfy effluent water quality standards. Despite the high removal rate of the wastewater treatment system, pharmaceuticals were eliminated to be about 50-99% by the MBR system, depending on specific pharmaceuticals. Ibuprofen was well removed by MBR system up to over 95%, while removal rate of bezafibrate ranged between 50 and 90%. With over 5 mg/l of ozone oxidation, most pharmaceuticals which survived the DAF-MBR process were removed completely or resulted in very low survival rate within the range of few micrograms per litre. However, some pharmaceuticals such as bezafibrate and naproxen tended to be resistant to ozone oxidation.

  12. Influences of flame-vortex interactions on formation of oxides of nitrogen in curved methane-air diffusion flamelets

    SciTech Connect

    Card, J.M.; Ryden, R.; Williams, F.A.

    1994-01-01

    To improve knowledge of production rates of nitrogen oxides in turbulent diffusion flames in reaction-sheet regimes, an analytical investigation is made of the structure of a parabolic flamelet. The mixture-fraction field, scalar dissipation rate and gas velocity relative to the flamelet in the vortex are related to flame curvature at the parabolic tip. Flame structure for major species and temperature is described by rate-ratio asymptotics based on two-step and three-step reduced chemical-kinetic mechanisms. Production rates by prompt, thermal and nitrous-oxide mechanisms are obtained from one-step reduced-chemistry approximations that employ steady states for all reaction intermediaries. For sufficiently large streamwise separation distances between isoscalar surfaces, it is found that equilibrium conditions are closely approached near the flame tip, and the thermal mechanism dominates there, but the prompt mechanism always dominates in the wings, away from the tip, where the highest rates of scalar dissipation occur. Increasing the tip curvature increases the Peclet number and the prompt contribution while decreasing the thermal contribution. At 1 atm and ambient temperatures of 300 K, the prompt mechanism always dominates the total production rate in the parabolic flamelet, and, perhaps surprisingly, the rate of the nitrous-oxide mechanism is faster than that of the thermal mechanism and varies with the tip curvature and with scalar dissipation in the same manner as that of the prompt mechanism, different from that of the thermal mechanism. Conclusion reached is that Zel`dovich NO is relatively insignificant in hydrocarbon-air mixtures in reaction-sheet regimes.

  13. OXIDATIVE STRESS PARTICIPATES IN ACUTE LUNG INJURY AND ACTIVATION OF MITOGEN ACTIVATED PROTEIN KINASES (MAPK) FOLLOWING AIR POLLUTION PARTICLE EXPOSURE (PM)

    EPA Science Inventory

    OXIDATIVE STRESS PARTICIPATES IN ACUTE LUNG INJURY AND ACTIVATION OF MITOGEN ACTIVATED PROTEIN KINASES (MAPK) FOLLOWING AIR POLLUTION PARTICLE EXPOSURE (PM). E S Roberts1, R Jaskot2, J Richards2, and K L Dreher2. 1College of Veterinary Medicine, NC State University, Raleigh, NC a...

  14. Steam Methane Reformation Testing for Air-Independent Solid Oxide Fuel Cell Systems

    NASA Technical Reports Server (NTRS)

    Mwara, Kamwana N.

    2015-01-01

    Recently, NASA has been looking into utilizing landers that can be propelled by LOX-CH (sub 4), to be used for long duration missions. Using landers that utilize such propellants, also provides the opportunity to use solid oxide fuel cells as a power option, especially since they are able to process methane into a reactant through fuel reformation. One type of reformation, called steam methane reformation, is a process to reform methane into a hydrogen-rich product by reacting methane and steam (fuel cell exhaust) over a catalyst. A steam methane reformation system could potentially use the fuel cell's own exhaust to create a reactant stream that is hydrogen-rich, and requires less internal reforming of the incoming methane. Also, steam reformation may hold some advantages over other types of reforming, such as partial oxidation (PROX) reformation. Steam reformation does not require oxygen, while up to 25 percent can be lost in PROX reformation due to unusable CO (sub 2) reformation. NASA's Johnson Space Center has conducted various phases of steam methane reformation testing, as a viable solution for in-space reformation. This has included using two different types of catalysts, developing a custom reformer, and optimizing the test system to find the optimal performance parameters and operating conditions.

  15. Research on oxidation by air and tempering of Raney nickel electrocatalysts for the H2 anodes of alkali combustion materials cells. Thesis - Braunschweig Technische Univ., 1982

    NASA Technical Reports Server (NTRS)

    Selbach, H. J.

    1984-01-01

    The controlled oxidation in air of Raney nickel electrocatalysts was studied, with special attention paid to the quantitative analysis of nickel hydroxide. The content of the latter was determined through X-ray studies, thermogravimetric measurements, and spectral photometric examinations. The dependence of the content on the drying of activated catalyst is determined. The influence of nickel hydroxide on the electrochemical parameters of the catalyst, such as diffusion polarization, is studied, including a measurement of the exchange current density using the potential drop method. Conservation by oxidation in air with ancillary stabilization of the oxide in an H2 flow at 300 C is explored, including reduction by H2, the influence of tempering time, and structural studies on conserved and stabilized catalyst, long term research on the catalyst, including the influence of aging on the reduced catalyst, and the results of impedance measurements are presented.

  16. Mild and selective vanadium-catalyzed oxidation of benzylic, allylic, and propargylic alcohols using air

    DOEpatents

    Hanson, Susan Kloek; Silks, Louis A; Wu, Ruilian

    2013-08-27

    The invention concerns processes for oxidizing an alcohol to produce a carbonyl compound. The processes comprise contacting the alcohol with (i) a gaseous mixture comprising oxygen; and (ii) an amine compound in the presence of a catalyst, having the formula: ##STR00001## where each of R.sup.1-R.sup.12 are independently H, alkyl, aryl, CF.sub.3, halogen, OR.sup.13, SO.sub.3R.sup.14, C(O)R.sup.15, CONR.sup.16R.sup.17 or CO.sub.2R.sup.18; each of R.sup.13-R.sup.18 is independently alkyl or aryl; and Z is alkl or aryl.

  17. Mesoporous tin oxide nanospheres for a NO x in air sensor

    NASA Astrophysics Data System (ADS)

    Zhang, Haonan; Zhuo, Ming; Luo, Yazi; Chen, Yuejiao

    2017-02-01

    Mesoporous tin oxide (SnO2) with a high surface area of 147.5 m2/g has been successfully synthesized via self-assembly process, combining the driven forces of water-evaporation and molecular interactions. Scanning electron microscope, X-ray diffraction, transmission electron micrograph, Fourier transform infrared and Brunauer-Emmett-Teller were employed to analyze the morphology and crystal structure of the as-synthesized mesoporous materials. As a gas sensor, mesoporous SnO2 shows impressive performances towards NO x gas with high selectivity and stability as well as ultra high sensitivity about 94.3 to 10 ppm NO x gas at 300 °C. The best response time of the sample S-500 is about 3.4 s to 10 ppm NO x at 450°C. Project supported by the Hunan Provincial Innovation Foundation for Postgraduates (No. CX2014B133).

  18. Surface diffusion control of the photocatalytic oxidation in air/TiO2 heterogeneous reactors

    NASA Astrophysics Data System (ADS)

    Tsekov, R.; Evstatieva, E.; Smirniotis, P. G.

    2002-10-01

    The diffusion of superoxide radical anions on the surface of TiO 2 catalysts is theoretically considered as an important step in the kinetics of photocatalytic oxidation of toxic pollutants. A detailed analysis is performed to discriminate the effects of rotation and adsorption bond vibrations on the diffusion coefficient. A resonant dependence of the diffusivity on the lattice parameters of the TiO 2 surface is discovered showing that the most rapid diffusion takes place when the lattice parameters are twice as large as the the bond length of the superoxide radical anions. Whereas the rotation and vibrations normal to the catalyst surface are important, the anion bond vibrations do not affect the diffusivity due to their low amplitudes as compared to the lattice parameters.

  19. Effects of exercise exposure on toxic interactions between inhaled oxidant and aldehyde air pollutants

    SciTech Connect

    Mautz, W.J.; Kleinman, M.T.; Phalen, R.F.; Crocker, T.T.

    1988-01-01

    Respiratory tract injury resulting from inhalation of mixtures of ozone (O3) and nitrogen dioxide (NO2) and of O3 and formaldehyde (HCHO) was studied in Sprague-Dawley rats under exposure conditions of rest and exercise. Focal inflammatory injury induced in lung parenchyma by O3 exposure was measured morphometrically and HCHO injury to the nasal respiratory epithelium was measured by cell turnover using tritium-labeled thymidine. Mixtures of O3 (0.35 or 0.6 ppm) with NO2 (respectively 0.6 or 2.5 ppm) doubled the level of lung injury produced by O3 alone in resting exposures to the higher concentrations and in exercising exposures to the lower concentrations. Formaldehyde (10 ppm) mixed with O3 (0.6 ppm) resulted in reduced lung injury compared to O3 alone in resting exposures, but exercise exposure to the mixture did not show an antagonistic interaction. Nasal epithelial injury from HCHO exposure was enhanced when O3 was present in a mixture. Mixtures of O3 and NO2 at high and low concentrations formed respectively 0.73 and 0.02 ppm nitric acid (HNO3) vapor. Chemical interactions among the oxidants, HNO3, and other reaction products (N2O5 and nitrate radical) and lung tissue may be the basis for the O3-NO2 synergism. Increased dose and dose rate associated with exercise exposure may explain the presence of synergistic interaction at lower concentrations than observed in resting exposure. No oxidation products were detected in O3-HCHO mixtures, and the antagonistic interaction observed in lung tissue during resting exposure may result from irritant breathing pattern interactions.

  20. Induction of Inducible Nitric Oxide Synthase by Lipopolysaccharide and the Influences of Cell Volume Changes, Stress Hormones and Oxidative Stress on Nitric Oxide Efflux from the Perfused Liver of Air-Breathing Catfish, Heteropneustes fossilis

    PubMed Central

    Choudhury, Mahua G.; Saha, Nirmalendu

    2016-01-01

    The air-breathing singhi catfish (Heteropneustes fossilis) is frequently being challenged by bacterial contaminants, and different environmental insults like osmotic, hyper-ammonia, dehydration and oxidative stresses in its natural habitats throughout the year. The main objectives of the present investigation were to determine (a) the possible induction of inducible nitric oxide synthase (iNOS) gene with enhanced production of nitric oxide (NO) by intra-peritoneal injection of lipopolysaccharide (LPS) (a bacterial endotoxin), and (b) to determine the effects of hepatic cell volume changes due to anisotonicity or by infusion of certain metabolites, stress hormones and by induction of oxidative stress on production of NO from the iNOS-induced perfused liver of singhi catfish. Intra-peritoneal injection of LPS led to induction of iNOS gene and localized tissue specific expression of iNOS enzyme with more production and accumulation of NO in different tissues of singhi catfish. Further, changes of hydration status/cell volume, caused either by anisotonicity or by infusion of certain metabolites such as glutamine plus glycine and adenosine, affected the NO production from the perfused liver of iNOS-induced singhi catfish. In general, increase of hydration status/cell swelling due to hypotonicity caused decrease, and decrease of hydration status/cell shrinkage due to hypertonicity caused increase of NO efflux from the perfused liver, thus suggesting that changes in hydration status/cell volume of hepatic cells serve as a potent modulator for regulating the NO production. Significant increase of NO efflux from the perfused liver was also observed while infusing the liver with stress hormones like epinephrine and norepinephrine, accompanied with decrease of hydration status/cell volume of hepatic cells. Further, oxidative stress, caused due to infusion of t-butyl hydroperoxide and hydrogen peroxide separately, in the perfused liver of singhi catfish, resulted in

  1. Induction of Inducible Nitric Oxide Synthase by Lipopolysaccharide and the Influences of Cell Volume Changes, Stress Hormones and Oxidative Stress on Nitric Oxide Efflux from the Perfused Liver of Air-Breathing Catfish, Heteropneustes fossilis.

    PubMed

    Choudhury, Mahua G; Saha, Nirmalendu

    2016-01-01

    The air-breathing singhi catfish (Heteropneustes fossilis) is frequently being challenged by bacterial contaminants, and different environmental insults like osmotic, hyper-ammonia, dehydration and oxidative stresses in its natural habitats throughout the year. The main objectives of the present investigation were to determine (a) the possible induction of inducible nitric oxide synthase (iNOS) gene with enhanced production of nitric oxide (NO) by intra-peritoneal injection of lipopolysaccharide (LPS) (a bacterial endotoxin), and (b) to determine the effects of hepatic cell volume changes due to anisotonicity or by infusion of certain metabolites, stress hormones and by induction of oxidative stress on production of NO from the iNOS-induced perfused liver of singhi catfish. Intra-peritoneal injection of LPS led to induction of iNOS gene and localized tissue specific expression of iNOS enzyme with more production and accumulation of NO in different tissues of singhi catfish. Further, changes of hydration status/cell volume, caused either by anisotonicity or by infusion of certain metabolites such as glutamine plus glycine and adenosine, affected the NO production from the perfused liver of iNOS-induced singhi catfish. In general, increase of hydration status/cell swelling due to hypotonicity caused decrease, and decrease of hydration status/cell shrinkage due to hypertonicity caused increase of NO efflux from the perfused liver, thus suggesting that changes in hydration status/cell volume of hepatic cells serve as a potent modulator for regulating the NO production. Significant increase of NO efflux from the perfused liver was also observed while infusing the liver with stress hormones like epinephrine and norepinephrine, accompanied with decrease of hydration status/cell volume of hepatic cells. Further, oxidative stress, caused due to infusion of t-butyl hydroperoxide and hydrogen peroxide separately, in the perfused liver of singhi catfish, resulted in

  2. Dairy Biomass-Wyoming Coal Blends Fixed Gasification Using Air-Steam for Partial Oxidation

    DOE PAGES

    Gordillo, Gerardo; Annamalai, Kalyan

    2012-01-01

    Concenmore » trated animal feeding operations such as dairies produce a large amount of manure, termed as dairy biomass (DB), which could serve as renewable feedstock for thermal gasification. DB is a low-quality fuel compared to fossil fuels, and hence the product gases have lower heat content; however, the quality of gases can be improved by blending with coals. This paper deals with air-steam fixed-bed counterflow gasification of dairy biomass-Wyoming coal blend (DBWC). The effects of equivalence ratio ( 1.6 < Φ < 6.4 ) and steam-to-fuel ratio ( 0.4 < S : F < 0.8 ) on peak temperatures, gas composition, gross heating value of the products, and energy recovery are presented. According to experimental results, increasing Φ and ( S : F ) ratios decreases the peak temperature and increases the H 2 and CO 2 production, while CO production decreases. On the other hand, the concentrations of CH 4 and C 2 H 6 were lower compared to those of other gases and almost not affected by Φ.« less

  3. Particulate air pollution induces arrhythmia via oxidative stress and calcium calmodulin kinase II activation

    SciTech Connect

    Kim, Jin-Bae; Kim, Changsoo; Choi, Eunmi; Park, Sanghoon; Park, Hyelim; Pak, Hui-Nam; Lee, Moon-Hyoung; Shin, Dong Chun; Hwang, Ki-Chul; Joung, Boyoung

    2012-02-15

    Ambient particulate matter (PM) can increase the incidence of arrhythmia. However, the arrhythmogenic mechanism of PM is poorly understood. This study investigated the arrhythmogenic mechanism of PM. In Sprague–Dawley rats, QT interval was increased from 115.0 ± 14.0 to 142.1 ± 18.4 ms (p = 0.02) after endotracheal exposure of DEP (200 μg/ml for 30 min, n = 5). Ventricular premature contractions were more frequently observed after DEP exposure (100%) than baseline (20%, p = 0.04). These effects were prevented by pretreatment of N-acetylcysteine (NAC, 5 mmol/L, n = 3). In 12 Langendorff-perfused rat hearts, DEP infusion of 12.5 μg/ml for 20 min prolonged action potential duration (APD) at only left ventricular base increasing apicobasal repolarization gradients. Spontaneous early afterdepolarization (EAD) and ventricular tachycardia (VT) were observed in 8 (67%) and 6 (50%) hearts, respectively, versus no spontaneous triggered activity or VT in any hearts before DEP infusion. DEP-induced APD prolongation, EAD and VT were successfully prevented with NAC (5 mmol/L, n = 5), nifedipine (10 μmol/L, n = 5), and active Ca{sup 2+}/calmodulin-dependent protein kinase II (CaMKII) blockade, KN 93 (1 μmol/L, n = 5), but not by thapsigargin (200 nmol/L) plus ryanodine (10 μmol/L, n = 5) and inactive CaMKII blockade, KN 92 (1 μmol/L, n = 5). In neonatal rat cardiomyocytes, DEP provoked ROS generation in dose dependant manner. DEP (12.5 μg/ml) induced apoptosis, and this effect was prevented by NAC and KN 93. Thus, this study shows that in vivo and vitro exposure of PM induced APD prolongation, EAD and ventricular arrhythmia. These effects might be caused by oxidative stress and CaMKII activation. -- Highlights: ► The ambient PM consistently prolonged repolarization. ► The ambient PM induced triggered activity and ventricular arrhythmia. ► These effects were prevented by antioxidants, I{sub CaL} blockade and CaMKII blockade. ► The ambient PM can induce

  4. Effect of inlet-air humidity, temperature, pressure, and reference Mach number on the formation of oxides of nitrogen in a gas turbine combustor

    NASA Technical Reports Server (NTRS)

    Marchionna, N. R.; Diehl, L. A.; Trout, A. M.

    1973-01-01

    Tests were conducted to determine the effect of inlet air humidity on the formation of oxides of nitrogen (NOx) from a gas turbine combustor. Combustor inlet air temperature ranged from 506 K (450 F) to 838 K (1050 F). The tests were primarily run at a constant pressure of 6 atmospheres and reference Mach number of 0.065. The NOx emission index was found to decrease with increasing inlet air humidity at a constant exponential rate: NOx = NOx0e-19H (where H is the humidity and the subscript 0 denotes the value at zero humidity). the emission index increased exponentially with increasing normalized inlet air temperature to the 1.14 power. Additional tests made to determine the effect of pressure and reference Mach number on NOx showed that the NOx emission index varies directly with pressure to the 0.5 power and inversely with reference Mach number.

  5. Air-Independent Solid Oxide Fuel Cells for NASA's LOX-CH4 Landers

    NASA Technical Reports Server (NTRS)

    Ryan, Abigail C.; Araghi, Koorosh R.; Farmer, Serene C.

    2013-01-01

    Gemini, Apollo, and Space Shuttle used fuel cells as main power source for vehicle and water source for life support and thermal PEM (Gemini) and Alkaline (Apollo, Shuttle) fuel cells were used Ideal for short (less than 3 weeks) missions when the required O2 and H2 can be launched with the vehicle. New missions that might require long-duration stays in orbit or at a habitat, cannot rely on the availability of pure reactants but should also aim to be sun-independent - a problem for which Solid Oxide Fuel Cells might be the answer. Recently, NASA has investigated & developed LOX/CH4-propelled landers (Altair, MORPHEUS). In order to preserve mission flexibility, fuel cells are being studied as a potential power source. Much of NASA's fuel cell development has been focused on creating a dead-headed, non-flow through PEM fuel cells which would weigh less and be more reliable than the existing Alkaline and PEM technology; however, LOX/CH4 as a propellant introduces SOFCs as a power option due to their ability to accept those reactants without much reforming.

  6. Investigation into the optoelectrical properties of tungsten oxide thin films annealed in an oxygen air

    SciTech Connect

    Arfaoui, A.; Ouni, B. Touihri, S.; Mannoubi, T.

    2014-12-15

    Tungsten oxide (WO{sub x}) thin film have been deposited onto glass substrates using the thermal vacuum evaporation technique, monitored by an annealing process in a variable oxygen atmosphere. Analysis by X-ray diffraction and Raman spectroscopy showed the structural changes from orthorhombic to monoclinic which depend on the annealing temperature and the oxygen content. AFM study shows that the increase of oxygen content leads to a decrease of the root-mean-square from 94.64 nm to 2 nm. Ellipsometric measurements have been used to evaluate the optical constants. Further, it is found that when the oxygen content increases, the band gap of the annealed layer varies from 3.01 eV to 3.52 eV by against, the Urbach energy decreases. The AC conductivity plot showed a universal power law according to the Jonscher model. Moreover, at high frequency semiconductor-to-metallic behavior has been observed. Finally, the effect of annealing in oxygen atmosphere on their structural modifications, morphological, optical properties and electrical conductivity are reported.

  7. Wafer scale integration of reduced graphene oxide by novel laser processing at room temperature in air

    NASA Astrophysics Data System (ADS)

    Bhaumik, Anagh; Narayan, Jagdish

    2016-09-01

    Physical properties of reduced graphene oxide (rGO) strongly depend on the ratio of sp2 to sp3 hybridized carbon atoms, the presence of different functional groups, and the characteristics of the substrates. This research for the very first time illustrates successful wafer scale integration of 2D rGO with Cu/TiN/Si, employing pulsed laser deposition followed by laser annealing of carbon-doped copper layers using nanosecond excimer lasers. The XRD, SEM, and Raman spectroscopy measurements indicate the presence of large area rGO onto Si having Raman active vibrational modes: D, G, and 2D. A high resolution SEM depicts the morphology and formation of rGO from zone-refined carbon formed after nanosecond laser annealing. Temperature-dependent resistance data of rGO thin films follow the Efros-Shklovskii variable range hopping (VRH) model in the low-temperature region and Arrhenius conduction in the high-temperature regime. The photoluminescence spectra also reveal a less intense and broader blue fluorescence spectra, indicating the presence of miniature sized sp2 domains in the near vicinity of π* electronic states which favor the VRH transport phenomena. This wafer scale integration of rGO with Si employing a laser annealing technique will be useful for multifunctional integrated electronic devices and will open a new frontier for further extensive research in these functionalized 2D materials.

  8. Health Effects of a Mixture of Indoor Air Volatile Organics, Their Ozone Oxidation Products, and Stress

    PubMed Central

    Fiedler, Nancy; Laumbach, Robert; Kelly-McNeil, Kathie; Lioy, Paul; Fan, Zhi-Hua; Zhang, Junfeng; Ottenweller, John; Ohman-Strickland, Pamela; Kipen, Howard

    2005-01-01

    In our present study we tested the health effects among women of controlled exposures to volatile organic compounds (VOCs), with and without ozone (O3), and psychological stress. Each subject was exposed to the following three conditions at 1-week intervals (within-subject factor): VOCs (26 mg/m3), VOCs + O3 (26 mg/m3 + 40 ppb), and ambient air with a 1-min spike of VOCs (2.5 mg/m3). As a between-subjects factor, half the subjects were randomly assigned to perform a stressor. Subjects were 130 healthy women (mean age, 27.2 years; mean education, 15.2 years). Health effects measured before, during, and after each 140-min exposure included symptoms, neurobehavioral performance, salivary cortisol, and lung function. Mixing VOCs with O3 was shown to produce irritating compounds including aldehydes, hydrogen peroxide, organic acids, secondary organic aerosols, and ultrafine particles (particulate matter with aerodynamic diameter < 0.1 μm). Exposure to VOCs with and without O3 did not result in significant subjective or objective health effects. Psychological stress significantly increased salivary cortisol and symptoms of anxiety regardless of exposure condition. Neither lung function nor neurobehavioral performance was compromised by exposure to VOCs or VOCs + O3. Although numerous epidemiologic studies suggest that symptoms are significantly increased among workers in buildings with poor ventilation and mixtures of VOCs, our acute exposure study was not consistent with these epidemiologic findings. Stress appears to be a more significant factor than chemical exposures in affecting some of the health end points measured in our present study. PMID:16263509

  9. Seasonal cycle and temperature dependence of pinene oxidation products, dicarboxylic acids and nitrophenols in fine and coarse air particulate matter

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Müller, L.; Winterhalter, R.; Moortgat, G. K.; Hoffmann, T.; Pöschl, U.

    2010-05-01

    Filter samples of fine and coarse air particulate matter (PM) collected over a period of one year in central Europe (Mainz, Germany) were analyzed for water-soluble organic compounds (WSOCs), including the α- and β-pinene oxidation products pinic acid, pinonic acid and 3-methyl-1,2,3-butanetricarboxylic acid (3-MBTCA), as well as a variety of dicarboxylic acids and nitrophenols. Seasonal variations and other characteristic features in fine, coarse, and total PM (TSP) are discussed with regard to aerosol sources and sinks in comparison to data from other studies and regions. The ratios of adipic acid and phthalic acid to azelaic acid indicate that the investigated samples were mainly influenced by biogenic sources. A strong Arrhenius-type correlation was found between the 3-MBTCA concentration and inverse temperature (R2=0.79, n=52, Ea=126±10 kJ mol-1, temperature range 275-300 K). Model calculations suggest that the temperature dependence observed for 3-MBTCA can be explained by enhanced photochemical production due to an increase of hydroxyl radical (OH) concentration with increasing temperature, whereas the influence of gas-particle partitioning appears to play a minor role. The results indicate that the OH-initiated oxidation of pinonic acid is the rate-limiting step in the formation of 3-MBTCA, and that 3-MBTCA may be a suitable tracer for the chemical aging of biogenic secondary organic aerosol (SOA) by OH radicals. An Arrhenius-type temperature dependence was also observed for the concentration of pinic acid (R2=0.60, n=56, Ea=84±9 kJ mol-1); it can be tentatively explained by the temperature dependence of biogenic pinene emission as the rate-limiting step of pinic acid formation.

  10. Seasonal cycle and temperature dependence of pinene oxidation products, dicarboxylic acids and nitrophenols in fine and coarse air particulate matter

    NASA Astrophysics Data System (ADS)

    Zhang, Y. Y.; Müller, L.; Winterhalter, R.; Moortgat, G. K.; Hoffmann, T.; Pöschl, U.

    2010-08-01

    Filter samples of fine and coarse air particulate matter (PM) collected over a period of one year in central Europe (Mainz, Germany) were analyzed for water-soluble organic compounds (WSOCs), including the α- and β-pinene oxidation products pinic acid, pinonic acid and 3-methyl-1,2,3-butanetricarboxylic acid (3-MBTCA), as well as a variety of dicarboxylic acids and nitrophenols. Seasonal variations and other characteristic features in fine, coarse, and total PM (TSP) are discussed with regard to aerosol sources and sinks in comparison to data from other studies and regions. The ratios of adipic acid and phthalic acid to azelaic acid indicate that the investigated aerosol samples were mainly influenced by biogenic sources. A strong Arrhenius-type correlation was found between the 3-MBTCA concentration and inverse temperature (R2 = 0.79, n = 52, Ea = 126 ± 10 kJ mol-1, temperature range 275-300 K). Model calculations suggest that the temperature dependence observed for 3-MBTCA can be explained by enhanced photochemical production due to an increase of hydroxyl radical (OH) concentration with increasing temperature, whereas the influence of gas-particle partitioning appears to play a minor role. The results indicate that the OH-initiated oxidation of pinonic acid is the rate-limiting step in the formation of 3-MBTCA, and that 3-MBTCA may be a suitable tracer for the chemical aging of biogenic secondary organic aerosol (SOA) by OH radicals. An Arrhenius-type temperature dependence was also observed for the concentration of pinic acid (R2 = 0.60, n = 56, Ea = 84 ± 9 kJ mol-1); it can be tentatively explained by the temperature dependence of biogenic pinene emission as the rate-limiting step of pinic acid formation.

  11. Graphene Oxide Involved Air-Controlled Electrospray for Uniform, Fast, Instantly Dry, and Binder-Free Electrode Fabrication.

    PubMed

    Fei, Ling; Yoo, Sang Ha; Villamayor, Rachel Ann R; Williams, Brian P; Gong, Seon Young; Park, Sunchan; Shin, Kyusoon; Joo, Yong Lak

    2017-03-22

    We report a facile air-controlled electrospray method to directly deposit binder-free active materials/graphene oxide (GO) onto current collectors. This method is inspired from an electrospinning process, and possesses all the advantages that electrospinning has such as low cost, easy scaling up, and simultaneous solvent evaporation during the spraying process. Moreover, the spray slurry is only a simple mixture of active materials and GO suspension in water, no binder polymer, organic solvent, and conductive carbon required. In our research, high-capacity Si nanoparticles (Si NP, 70-100 nm) and SiO microparticles (SiO MP, 3-10 μm) were selected to demonstrate the capability of this method to accommodate particles with different sizes. Their mixture with GO was sprayed onto a collector and then thermally annealed in an inert gas to obtain Si NP or SiO MP/reduced graphene oxide (RGO) binder-free electrodes. We are also able to directly deposit fairly large electrode sheets (e.g., 12 × 21 in.) upon the application requirement. To the best of our knowledge, this is the simplest approach to produce Si-related materials/RGO layered structures directly on current collector with controllable area and loading. Si and SiO MP/RGO are evaluated in both half and full lithium cells, showing good electrochemical performance. Prelithiation is also studied and gives a high first cycle Coulombic efficiency. In addition to Si-related materials, other materials with different shapes and sizes (e.g., MoO3 nanobelts, Sn/carbon nanofibers, and commercial sulfur particles) can also be sprayed. Beyond the preparation of battery electrodes, this approach can also be applied for other types of electrode preparation such as that of a supercapacitor, fuel cell, and solar cell.

  12. Toxicity to Daphnia magna and Vibrio fischeri of Kraft bleach plant effluents treated by catalytic wet-air oxidation.

    PubMed

    Pintar, Albin; Besson, Michèle; Gallezot, Pierre; Gibert, Janine; Martin, Dominique

    2004-01-01

    Two Kraft-pulp bleaching effluents from a sequence of treatments which include chlorine dioxide and caustic soda were treated by catalytic wet-air oxidation (CWAO) at T=463 K in trickle-bed and batch-recycle reactors packed with either TiO2 extrudates or Ru(3 wt%)/TiO2 catalyst. Chemical analyses (TOC removal, color, HPLC) and bioassays (48-h and 30-min acute toxicity tests using Daphnia magna and Vibrio fischeri, respectively) were used to get information about the toxicity impact of the starting effluents and of the treated solutions. Under the operating conditions, complex organic compounds are mostly oxidized into carbon dioxide and water, along with short-chain carboxylic acids. Bioassays were found as a complement to chemical analyses for ensuring the toxicological impact on the ecosystem. In spite of a large decrease of TOC, the solutions of end products were all more toxic to Daphnia magna than the starting effluents by factors ranging from 2 to 33. This observation is attributed to the synergistic effects of acetic acid and salts present in the solutions. On the other hand, toxicity reduction with respect to Vibrio fischeri was achieved: detoxification factors greater than unity were measured for end-product solutions treated in the presence of the Ru(3 wt%)/TiO2 catalyst, suggesting the absence of cumulative effect for this bacteria, or a lower sensitivity to the organic acids and salts. Bleach plant effluents treated by the CWAO process over the Ru/TiO2 catalyst were completely biodegradable.

  13. Effects of high temperature and exposure to air on mussel (Mytilus galloprovincialis, Lmk 1819) hemocyte phagocytosis: modulation of spreading and oxidative response.

    PubMed

    Mosca, Francesco; Narcisi, Valeria; Calzetta, Angela; Gioia, Luisa; Finoia, Maria G; Latini, Mario; Tiscar, Pietro G

    2013-06-01

    Hemocytes are a critical component of the mussel defense system and the present study aims at investigating their spreading and oxidative properties during phagocytosis under in vivo experimental stress conditions. The spreading ability was measured by an automated cell analyzer on the basis of the circularity, a parameter corresponding to the hemocyte roundness. The oxidative activity was investigated by micromethod assay, measuring the respiratory burst as expression of the fluorescence generated by the oxidation of specific probe. Following the application of high temperature and exposure to air, there was evidence of negative modulation of spreading and oxidative response, as revealed by a cell roundness increase and fluorescence generation decrease. Therefore, the fall of respiratory burst appeared as matched with the inhibition of hemocyte morphological activation, suggesting a potential depression of the phagocytosis process and confirming the application of the circularity parameter as potential stress marker, both in experimental and field studies.

  14. Low-pressure catalytic wet-air oxidation of a high-strength industrial wastewater using Fenton's reagent.

    PubMed

    Biçaksiz, Zeliha; Aytimur, Gülin; Atalay, Süheyda

    2008-06-01

    Wastewater from the Afyon Alkaloids Factory (Afyon, Turkey) was subjected to low-pressure catalytic wet-air oxidation (CWAO) using Fenton's reagent, and the optimal reaction conditions were investigated. The CWAO using Fenton's reagent was applied to the factory effluent, diluted factory effluent, and aerobically pretreated wastewater. To find the optimum quantities of reagents, ferrous iron (Fe(+2))-to-substrate ratios of 1:10, 1:25, and 1:50 and hydrogen peroxide (H2O2)-to-Fe(+2) ratios of 1, 5, and 10 were investigated, and the treatment was carried out at different temperatures. High chemical oxygen demand (COD) removals were obtained at 50 degrees C, with the Fe(+2)-to-substrate ratio range between 1:10 and 1:25. The change in H2O2-to-Fe(+2) ratios did not cause any considerable effect. Also, the percentages of COD removals were nearly the same, so the ratio H2O2:Fe(+2):1 is recommended. Aerobic pretreatment seems to be effective. On the other hand, no enhancement was observed in the case of the diluted wastewater.

  15. Active carbon-ceramic sphere as support of ruthenium catalysts for catalytic wet air oxidation (CWAO) of resin effluent.

    PubMed

    Liu, Wei-Min; Hu, Yi-Qiang; Tu, Shan-Tung

    2010-07-15

    Active carbon-ceramic sphere as support of ruthenium catalysts were evaluated through the catalytic wet air oxidation (CWAO) of resin effluent in a packed-bed reactor. Active carbon-ceramic sphere and ruthenium catalysts were characterized by N(2) adsorption and chemisorption measurements. BET surface area and total pore volume of active carbon (AC) in the active carbon-ceramic sphere increase with increasing KOH-to-carbon ratio, and AC in the sample KC-120 possesses values as high as 1100 m(2) g(-1) and 0.69 cm(3) g(-1) (carbon percentage: 4.73 wt.%), especially. Active carbon-ceramic sphere supported ruthenium catalysts were prepared using the RuCl(3) solution impregnation onto these supports, the ruthenium loading was fixed at 1-5 wt.% of AC in the support. The catalytic activity varies according to the following order: Ru/KC-120>Ru/KC-80>Ru/KC-60>KC-120>without catalysts. It is found that the 3 wt.% Ru/KC-120 catalyst displays highest stability in the CWAO of resin effluent during 30 days. Chemical oxygen demand (COD) and phenol removal were about 92% and 96%, respectively at the reaction temperature of 200 degrees C, oxygen pressure of 1.5 MPa, the water flow rate of 0.75 L h(-1) and the oxygen flow rate of 13.5 L h(-1).

  16. Al 2O 3 supported Ru catalysts prepared by thermolysis of Ru 3(CO) 12 for catalytic wet air oxidation

    NASA Astrophysics Data System (ADS)

    Yu, Chaoying; Zhao, Peiqing; Chen, Gexin; Hu, Bin

    2011-06-01

    Low loading catalysts Ru/γ-Al 2O 3 and Ru-Ce/γ-Al 2O 3 were prepared by thermolysis of Ru 3(CO) 12 on γ-Al 2O 3. The catalysts were characterized by XPS, XRD and SEM. Two new Ru species (Ru A and Ru B) were detected during the Ru 3(CO) 12 decomposition process due to chemical interaction with the active OH groups on the surface of Al 2O 3 support, and the reduction of them can lead to more dispersed metallic phases. The sample was completely decomposed at 673 K in H 2, and RuO 2 was formed with minor amounts of Ru 0. When the temperature was increased to 773 K to heat the sample, the ratio of Ru 0 to RuO 2 increased. However, after the addition of CeO 2, only RuO 2 was detected on surface. The catalysts exhibited high activities in Catalytic Wet Air Oxidation (CWAO) of different organic compounds at high concentration such as isopropyl alcohol, phenol, acetic acids and N,N-dimethylformamide, which is attributed to the better dispersion of Ru particles and the addition of CeO 2 further enhanced number of effectively active sites on the cluster-derived catalyst surface.

  17. Flexible high power-per-weight perovskite solar cells with chromium oxide-metal contacts for improved stability in air

    NASA Astrophysics Data System (ADS)

    Kaltenbrunner, Martin; Adam, Getachew; Głowacki, Eric Daniel; Drack, Michael; Schwödiauer, Reinhard; Leonat, Lucia; Apaydin, Dogukan Hazar; Groiss, Heiko; Scharber, Markus Clark; White, Matthew Schuette; Sariciftci, Niyazi Serdar; Bauer, Siegfried

    2015-10-01

    Photovoltaic technology requires light-absorbing materials that are highly efficient, lightweight, low cost and stable during operation. Organolead halide perovskites constitute a highly promising class of materials, but suffer limited stability under ambient conditions without heavy and costly encapsulation. Here, we report ultrathin (3 μm), highly flexible perovskite solar cells with stabilized 12% efficiency and a power-per-weight as high as 23 W g-1. To facilitate air-stable operation, we introduce a chromium oxide-chromium interlayer that effectively protects the metal top contacts from reactions with the perovskite. The use of a transparent polymer electrode treated with dimethylsulphoxide as the bottom layer allows the deposition--from solution at low temperature--of pinhole-free perovskite films at high yield on arbitrary substrates, including thin plastic foils. These ultra-lightweight solar cells are successfully used to power aviation models. Potential future applications include unmanned aerial vehicles--from airplanes to quadcopters and weather balloons--for environmental and industrial monitoring, rescue and emergency response, and tactical security applications.

  18. Flexible high power-per-weight perovskite solar cells with chromium oxide-metal contacts for improved stability in air.

    PubMed

    Kaltenbrunner, Martin; Adam, Getachew; Głowacki, Eric Daniel; Drack, Michael; Schwödiauer, Reinhard; Leonat, Lucia; Apaydin, Dogukan Hazar; Groiss, Heiko; Scharber, Markus Clark; White, Matthew Schuette; Sariciftci, Niyazi Serdar; Bauer, Siegfried

    2015-10-01

    Photovoltaic technology requires light-absorbing materials that are highly efficient, lightweight, low cost and stable during operation. Organolead halide perovskites constitute a highly promising class of materials, but suffer limited stability under ambient conditions without heavy and costly encapsulation. Here, we report ultrathin (3 μm), highly flexible perovskite solar cells with stabilized 12% efficiency and a power-per-weight as high as 23 W g(-1). To facilitate air-stable operation, we introduce a chromium oxide-chromium interlayer that effectively protects the metal top contacts from reactions with the perovskite. The use of a transparent polymer electrode treated with dimethylsulphoxide as the bottom layer allows the deposition-from solution at low temperature-of pinhole-free perovskite films at high yield on arbitrary substrates, including thin plastic foils. These ultra-lightweight solar cells are successfully used to power aviation models. Potential future applications include unmanned aerial vehicles-from airplanes to quadcopters and weather balloons-for environmental and industrial monitoring, rescue and emergency response, and tactical security applications.

  19. An experimental and numerical study of nitrogen oxide formation mechanisms in ammonia-hydrogen-air flames

    NASA Astrophysics Data System (ADS)

    Kumar, Praveen

    quantitatively. The NOx predictions by all the three chemical mechanisms are observed to be in fairly good agreement with the measured NOx, qualitatively, however predictions are found to be 3 to 4 times higher than the measurements for both lean and rich H 2/NH3 premixed flames. For laminar H2/NH3 diffusion flames, detailed 2-D comparisons of in-situ NO measurements with the 2-D simulated NO using the Tian, GRI-Mech3.0 and modified GRI-Mech chemical mechanisms are performed and found to differ from the measured NO by approximately an order of magnitude. For NH3 seeded H2/air diffusion flames, GRI-Mech3.0 seemed to overpredict NO by more than an order of magnitude and failed to capture the fundamental flame characteristics, such as the flame length variation with increasing NH3 in the fuel mixture. On the other hand, the predicted NO profiles by the Tian mechanism were not only found to be in better agreement with the measured NO, but they also captured the in-flame NO distribution as well, both qualitatively and quantitatively. Overall, the Tian mechanism is found to be the superior chemical mechanism to capture the NOx formation chemistry in NH3 seeded flames.

  20. Initial Oxidation Behavior in Air of TiAl-2Nb and TiAl-8Nb Alloys Produced by Electron Beam Melting

    NASA Astrophysics Data System (ADS)

    Terner, M.; Biamino, S.; Baudana, G.; Penna, A.; Fino, P.; Pavese, M.; Ugues, D.; Badini, C.

    2015-10-01

    Titanium aluminide alloys are good candidates for structural applications thanks to their low density and good balance of properties up to relatively high temperatures. However, their application is still limited by significant oxidation. Four γ-TiAl alloys with different content of aluminum and niobium were produced by electron beam melting: Ti-45Al-2Cr-2Nb, Ti-48Al-2Cr-2Nb, Ti-45Al-2Cr-8Nb, and Ti-46Al-2Cr-8Nb. The behavior of these alloys in response to oxidation in air during constant heating up to 1000 °C and isothermal oxidation for 10 h at 850 and 950 °C were studied by thermogravimetric analysis. The mass gain due to oxidation of the low Nb-containing alloys was always at least twice that of the high Nb-containing alloys. Both low and high Nb-containing alloys exhibited on their surface oxidation products of the same nature: oxides TiO2 and Al2O3, and nitrides TiN and Ti2AlN. Niobium addition up to 8 at.% did not suppress the growth of rutile and promote the formation of a protective alumina layer. However, it efficiently reduced the formation of rutile, mainly responsible for the mass gain due to oxidation of γ-TiAl alloys and with tendency to spallation.

  1. Air exposure behavior of the semiterrestrial crab Neohelice granulata allows tolerance to severe hypoxia but not prevent oxidative damage due to hypoxia-reoxygenation cycle.

    PubMed

    de Lima, Tábata Martins; Geihs, Márcio Alberto; Nery, Luiz Eduardo Maia; Maciel, Fábio Everton

    2015-11-01

    The air exposure behavior of the semi-terrestrial crab Neohelice granulata during severe hypoxia was studied. This study also verified whether this behavior mitigates possible oxidative damage, namely lipoperoxidation, caused by hypoxia and reoxygenation cycles. The lethal time for 50% of the crabs subjected to severe hypoxia (0.5 mgO2 · L(-1)) with free access to air was compared to that of crabs subjected to severe hypoxia without access to air. Crabs were placed in aquaria divided into three zones: water (when the animal was fully submersed), land (when the animal was completely emerged) and intermediate (when the animal was in contact with both environments) zones. Then the crabs were held in this condition for 270 min, and the time spent in each zone was recorded. Lipid peroxidation (LPO) damage to the walking leg muscles was determined for the following four experimental conditions: a--normoxic water with free access to air; b--hypoxic water without access to air; c--hypoxic water followed by normoxic water without air access; and d--hypoxic water with free access to air. When exposed to hypoxic water, N. granulata spent significantly more time on land, 135.3 ± 17.7 min, whereas control animals (exposed to normoxic water) spent more time submerged, 187.4 ± 20.2 min. By this behavior, N. granulata was able to maintain a 100% survival rate when exposed to severe hypoxia. However, N. granulata must still return to water after periods of air exposure (~ 14 min), causing a sequence of hypoxia/reoxygenation events. Despite increasing the survival rate, hypoxia with air access does not decrease the lipid peroxidation damage caused by the hypoxia and reoxygenation cycle experienced by these crabs.

  2. Combined hydrolysis acidification and bio-contact oxidation system with air-lift tubes and activated carbon bioreactor for oilfield wastewater treatment.

    PubMed

    Guo, Chunmei; Chen, Yi; Chen, Jinfu; Wang, Xiaojun; Zhang, Guangqing; Wang, Jingxiu; Cui, Wenfeng; Zhang, Zhongzhi

    2014-10-01

    This paper investigated the enhancement of the COD reduction of an oilfield wastewater treatment process by installing air-lift tubes and adding an activated carbon bioreactor (ACB) to form a combined hydrolysis acidification and bio-contact oxidation system with air-lift tubes (HA/air-lift BCO) and an ACB. Three heat-resistant bacterial strains were cultivated and subsequently applied in above pilot plant test. Installing air-lift tubes in aerobic tanks reduced the necessary air to water ratio from 20 to 5. Continuous operation of the HA/air-lift BCO system for 2 months with a hydraulic retention time of 36 h, a volumetric load of 0.14 kg COD/(m(3)d) (hydrolysis-acidification or anaerobic tank), and 0.06 kg COD/(m(3)d) (aerobic tanks) achieved an average reduction of COD by 60%, oil and grease by 62%, total suspended solids by 75%, and sulfides by 77%. With a COD load of 0.56 kg/(m(3)d), the average COD in the ACB effluent was 58 mg/L.

  3. Dimethyl sulfoxide participant iron-mediated cascade oxidation/α-formylation reaction of substituted 2,3-dihydropyrroles under air and protonic acid free condition.

    PubMed

    Zhang, Zhiguo; Tian, Qing; Qian, Jingjing; Liu, Qingfeng; Liu, Tongxin; Shi, Lei; Zhang, Guisheng

    2014-09-05

    An efficient and Brønsted acid free one-pot protocol to directly generate structurally sophisticated α-formylpyrrole derivatives in moderate to good yields has been demonstrated, involving an iron-mediated domino oxidation/formylation reaction of readily available 2,3-dihydro-1H-pyrroles in dimethyl sulfoxide and air atmosphere, in which dimethyl sulfoxide acts as the formyl donor. A possible mechanism is presented.

  4. Air Pollution Upregulates Endothelial Cell Procoagulant Activity Via Ultrafine Particle-Induced Oxidant Signaling and Tissue Factor Expression

    EPA Science Inventory

    Air pollution exposure is associated with cardiovascular events triggered by clot formation. Endothelial activation and initiation of coagulation are pathophysiological mechanisms that could link inhaled air pollutants to vascular events. Here we investigated the underlying mecha...

  5. Toxicity of copper oxide nanoparticles in lung epithelial cells exposed at the air-liquid interface compared with in vivo assessment

    PubMed Central

    Jing, Xuefang; Park, Jae Hong; Peters, Thomas M.; Thorne, Peter S.

    2015-01-01

    The toxicity of spark-generated copper oxide nanoparticles (CuONPs) was evaluated in human bronchial epithelial cells (HBEC) and lung adenocarcinoma cells (A549 cells) using an in vitro air-liquid interface (ALI) exposure system. Dose-response results were compared to in vivo inhalation and instillation studies of CuONP. Cells were exposed to particle-free clean air (controls) or spark-generated CuONPs. The number median diameter, geometric standard deviation and total number concentration of CuONPs were 9.2 nm, 1.48 and 2.27×107 particles/cm3, respectively. Outcome measures included cell viability, cytotoxicity, oxidative stress and proinflammatory chemokine production. Exposure to clean air (2 or 4 hr) did not induce toxicity in HBEC or A549 cells. Compared with controls, CuONP exposures significantly reduced cell viability, increased lactate dehydrogenase (LDH) release and elevated levels of reactive oxygen species (ROS) and IL-8 in a dose-dependent manner. A549 cells were significantly more susceptible to CuONP effects than HBEC. Antioxidant treatment reduced CuONP-induced cytotoxicity. When dose was expressed per area of exposed epithelium there was good agreement of toxicity measures with murine in vivo studies. This demonstrates that in vitro ALI studies can provide meaningful data on nanotoxicity of metal oxides. PMID:25575782

  6. Alpha B-crystallin prevents the arrhythmogenic effects of particulate matter isolated from ambient air by attenuating oxidative stress

    SciTech Connect

    Park, Hyelim; Park, Sanghoon; Jeon, Hyunju; Song, Byeong-Wook; Kim, Jin-Bae; Kim, Chang-Soo; Pak, Hui-Nam; Hwang, Ki-Chul; Lee, Moon-Hyoung; Chung, Ji Hyung; Joung, Boyoung

    2013-01-15

    Ca{sup 2+}/calmodulin-dependent protein kinase II (CaMKII) is activated by particulate matter (PM) isolated from ambient air and linked to prolonged repolarization and cardiac arrhythmia. We evaluated whether alpha B-crystallin (CryAB), a heat shock protein, could prevent the arrhythmogenic effects of PM by preventing CaMKII activation. CryAB was delivered into cardiac cells using a TAT-protein transduction domain (TAT-CryAB). ECGs were measured before and after tracheal exposure of diesel exhaust particles (DEP) and each intervention in adult Sprague–Dawley rats. After endotracheal exposure of DEP (200 μg/mL for 30 minutes, n = 11), QT intervals were prolonged from 115 ± 14 ms to 144 ± 20 ms (p = 0.03), and premature ventricular contractions were observed more frequently (0% vs. 44%) than control (n = 5) and TAT-Cry (n = 5). However, DEP-induced arrhythmia was not observed in TAT-CryAB (1 mg/kg) pretreated rats (n = 5). In optical mapping of Langendorff-perfused rat heats, compared with baseline, DEP infusion of 12.5 μg/mL (n = 12) increased apicobasal action potential duration (APD) differences from 2 ± 6 ms to 36 ± 15 ms (p < 0.001), APD restitution slope from 0.26 ± 0.07 to 1.19 ± 0.11 (p < 0.001) and ventricular tachycardia (VT) from 0% to 75% (p < 0.001). DEP infusion easily induced spatially discordant alternans. However, the effects of DEP were prevented by TAT-CryAB (1 mg/kg, n = 9). In rat myocytes, while DEP increased reactive oxygen species (ROS) generation and phosphated CaMKII, TAT-CryAB prevented these effects. In conclusion, CryAB, a small heat shock protein, might prevent the arrhythmogenic effects of PM by attenuating ROS generation and CaMKII activation. -- Highlights: ► Particulate matter (PM) increases arrhythmia. ► PM induced arrhythmias are related with oxidative stress and CaMKII activation. ► Alpha B-crystallin (CryAB) could attenuate the arrhythmogenic effect of PM. ► CryAB decreases oxidative stress and CaMKII activation

  7. Graphene oxide electrocatalyst on MnO2 air cathode as an efficient electron pump for enhanced oxygen reduction in alkaline solution

    PubMed Central

    Basirun, Wan Jeffrey; Sookhakian, Mehran; Baradaran, Saeid; Endut, Zulkarnain; Mahmoudian, Mohammad Reza; Ebadi, Mehdi; Yousefi, Ramin; Ghadimi, Hanieh; Ahmed, Sohail

    2015-01-01

    Graphene oxide (GO) was deposited on the surface of a MnO2 air cathode by thermal evaporation at 50°C from a GO colloidal suspension. Fourier transformed infrared spectroscopy and field emission scanning electron microscopy confirmed the presence of GO on the MnO2 air cathode (GO-MnO2). Voltammetry and chrono-amperometry showed increased currents for the oxygen reduction reaction (ORR) in 6 M KOH solution for GO-MnO2 compared to the MnO2 cathode. The GO-MnO2 was used as an air cathode in an alkaline tin-air cell and produced a maximum power density of 13 mW cm−2, in contrast to MnO2, which produced a maximum power density of 9.2 mW cm−2. The electrochemical impedance spectroscopy results suggest that the chemical step for the ORR is the rate determining step, as proposed earlier by different researchers. It is suggested that the presence of GO and electrochemically reduced graphene oxide (ERGO) on the MnO2 surface are responsible for the increased rate of this step, whereby GO and ERGO accelerate the process of electron donation to the MnO2 and to adsorbed oxygen atoms. PMID:25765731

  8. Graphene oxide electrocatalyst on MnO2 air cathode as an efficient electron pump for enhanced oxygen reduction in alkaline solution

    NASA Astrophysics Data System (ADS)

    Basirun, Wan Jeffrey; Sookhakian, Mehran; Baradaran, Saeid; Endut, Zulkarnain; Mahmoudian, Mohammad Reza; Ebadi, Mehdi; Yousefi, Ramin; Ghadimi, Hanieh; Ahmed, Sohail

    2015-03-01

    Graphene oxide (GO) was deposited on the surface of a MnO2 air cathode by thermal evaporation at 50°C from a GO colloidal suspension. Fourier transformed infrared spectroscopy and field emission scanning electron microscopy confirmed the presence of GO on the MnO2 air cathode (GO-MnO2). Voltammetry and chrono-amperometry showed increased currents for the oxygen reduction reaction (ORR) in 6 M KOH solution for GO-MnO2 compared to the MnO2 cathode. The GO-MnO2 was used as an air cathode in an alkaline tin-air cell and produced a maximum power density of 13 mW cm-2, in contrast to MnO2, which produced a maximum power density of 9.2 mW cm-2. The electrochemical impedance spectroscopy results suggest that the chemical step for the ORR is the rate determining step, as proposed earlier by different researchers. It is suggested that the presence of GO and electrochemically reduced graphene oxide (ERGO) on the MnO2 surface are responsible for the increased rate of this step, whereby GO and ERGO accelerate the process of electron donation to the MnO2 and to adsorbed oxygen atoms.

  9. Graphene oxide electrocatalyst on MnO₂ air cathode as an efficient electron pump for enhanced oxygen reduction in alkaline solution.

    PubMed

    Basirun, Wan Jeffrey; Sookhakian, Mehran; Baradaran, Saeid; Endut, Zulkarnain; Mahmoudian, Mohammad Reza; Ebadi, Mehdi; Yousefi, Ramin; Ghadimi, Hanieh; Ahmed, Sohail

    2015-03-13

    Graphene oxide (GO) was deposited on the surface of a MnO2 air cathode by thermal evaporation at 50°C from a GO colloidal suspension. Fourier transformed infrared spectroscopy and field emission scanning electron microscopy confirmed the presence of GO on the MnO2 air cathode (GO-MnO2). Voltammetry and chrono-amperometry showed increased currents for the oxygen reduction reaction (ORR) in 6 M KOH solution for GO-MnO2 compared to the MnO2 cathode. The GO-MnO2 was used as an air cathode in an alkaline tin-air cell and produced a maximum power density of 13 mW cm(-2), in contrast to MnO2, which produced a maximum power density of 9.2 mW cm(-2). The electrochemical impedance spectroscopy results suggest that the chemical step for the ORR is the rate determining step, as proposed earlier by different researchers. It is suggested that the presence of GO and electrochemically reduced graphene oxide (ERGO) on the MnO2 surface are responsible for the increased rate of this step, whereby GO and ERGO accelerate the process of electron donation to the MnO2 and to adsorbed oxygen atoms.

  10. Long-term oxidation of candidate cast iron and stainless steel exhaust system alloys from 650 to 800 °C in air with water vapor

    SciTech Connect

    Brady, Michael P.; Muralidharan, Govindarajan; Leonard, Donovan .; Haynes, James A.; Weldon, R. G.; England, R. D.

    2014-08-29

    Here, the oxidation behavior of SiMo cast iron, Ni-resist D5S cast iron, cast chromia-forming austenitic stainless steels of varying Cr/Ni content based on CF8C plus, HK, and HP, and a developmental cast alumina-forming austenitic (AFA) stainless steel of interest for diesel exhaust system components were studied for up to 5000 h at 650-800 °C in air with 10% H2O. At 650 °C, the Ni-resist D5S exhibited moderately better oxidation resistance than did the SiMo cast iron. However, the D5S suffered from oxide scale spallation issues at 700 °C and higher, whereas the oxide scales formed on SiMo cast iron remained adherent from 700-800 °C despite oxide scales hundreds of microns thick. The oxidation of the SiMo cast iron exhibited unusual temperature dependence, with periods of slower oxidation kinetics at 750-800 °C compared to 650-700 °C due to continuous silica-rich scale formation at the higher temperatures. The oxidation of the cast chromia-forming austenitics trended with the level of Cr and Ni additions, with small mass losses consistent with Cr oxy-hydroxide volatilization processes for the higher 25Cr/25-35Ni HK and HP type alloys, and transition to rapid Fe-base oxide formation and scale spallation in the lower 19Cr/12Ni CF8C plus type alloy. In contrast, small positive mass changes consistent with protective alumina scale formation were observed for the cast AFA alloy under all conditions studied. Implications of these findings for diesel exhaust system components are discussed.

  11. Long-term oxidation of candidate cast iron and stainless steel exhaust system alloys from 650 to 800 °C in air with water vapor

    DOE PAGES

    Brady, Michael P.; Muralidharan, Govindarajan; Leonard, Donovan .; ...

    2014-08-29

    Here, the oxidation behavior of SiMo cast iron, Ni-resist D5S cast iron, cast chromia-forming austenitic stainless steels of varying Cr/Ni content based on CF8C plus, HK, and HP, and a developmental cast alumina-forming austenitic (AFA) stainless steel of interest for diesel exhaust system components were studied for up to 5000 h at 650-800 °C in air with 10% H2O. At 650 °C, the Ni-resist D5S exhibited moderately better oxidation resistance than did the SiMo cast iron. However, the D5S suffered from oxide scale spallation issues at 700 °C and higher, whereas the oxide scales formed on SiMo cast iron remainedmore » adherent from 700-800 °C despite oxide scales hundreds of microns thick. The oxidation of the SiMo cast iron exhibited unusual temperature dependence, with periods of slower oxidation kinetics at 750-800 °C compared to 650-700 °C due to continuous silica-rich scale formation at the higher temperatures. The oxidation of the cast chromia-forming austenitics trended with the level of Cr and Ni additions, with small mass losses consistent with Cr oxy-hydroxide volatilization processes for the higher 25Cr/25-35Ni HK and HP type alloys, and transition to rapid Fe-base oxide formation and scale spallation in the lower 19Cr/12Ni CF8C plus type alloy. In contrast, small positive mass changes consistent with protective alumina scale formation were observed for the cast AFA alloy under all conditions studied. Implications of these findings for diesel exhaust system components are discussed.« less

  12. Application of sludge-based carbonaceous materials in a hybrid water treatment process based on adsorption and catalytic wet air oxidation.

    PubMed

    Julcour Lebigue, Carine; Andriantsiferana, Caroline; N'Guessan Krou; Ayral, Catherine; Mohamed, Elham; Wilhelm, Anne-Marie; Delmas, Henri; Le Coq, Laurence; Gerente, Claire; Smith, Karl M; Pullket, Suangusa; Fowler, Geoffrey D; Graham, Nigel J D

    2010-12-01

    This paper describes a preliminary evaluation of the performance of carbonaceous materials prepared from sewage sludges (SBCMs) in a hybrid water treatment process based on adsorption and catalytic wet air oxidation; phenol was used as the model pollutant. Three different sewage sludges were treated by either carbonisation or steam activation, and the physico-chemical properties of the resultant carbonaceous materials (e.g. hardness, BET surface area, ash and elemental content, surface chemistry) were evaluated and compared with a commercial reference activated carbon (PICA F22). The adsorption capacity for phenol of the SBCMs was greater than suggested by their BET surface area, but less than F22; a steam activated, dewatered raw sludge (SA_DRAW) had the greatest adsorption capacity of the SBCMs in the investigated range of concentrations (<0.05 mol L(-1)). In batch oxidation tests, the SBCMs demonstrated catalytic behaviour arising from their substrate adsorptivity and metal content. Recycling of SA_DRAW in successive oxidations led to significant structural attrition and a hardened SA_DRAW was evaluated, but found to be unsatisfactory during the oxidation step. In a combined adsorption-oxidation sequence, both the PICA carbon and a selected SBCM showed deterioration in phenol adsorption after oxidative regeneration, but a steady state performance was reached after 2 or 3 cycles.

  13. Effects of oxidation on the impact energy of Hastelloy S and Hastelloy C-4 Charpy V-notch specimens heated in air at 600 to 800

    SciTech Connect

    Fullam, H.T.

    1981-01-01

    The /sup 90/SrF/sub 2/ heat source being developed at PNL utilizes a Hastelloy S or Hastelloy C-4 outer capsule having a 0.5-in.-thick wall to contain the Hastelloy C-276 inner capsule. The primary objective of the study was to demonstrate that the air oxidation of the outer capsule that could occur during heat-source service would not degrade the ductility and Charpy impact strength of the capsule below the licensing requirements given in Section 1.1. The /sup 90/SrF/sub 2/ heat source under development is intended for general-purpose use. Compatibility considerations limit the interface temperature between the /sup 90/SrF/sub 2/ and Hastelloy C-276 inner capsule to a maximum of 800/sup 0/C. The outer capsule surface temperature will be somewhat less than 800/sup 0/C, and depending on the service, may be substantially lower. The oxidation tests were therefore carried out at 600/sup 0/ to 800/sup 0/C for exposures up to 10,000h to cover the range of temperature the outer capsule might expect to encounter in service. The results showed that the oxidation of Hastelloy S and Hastelloy C-4 in air at 600/sup 0/ to 800/sup 0/C is very slow, and both alloys form adherent oxide layers that serve to protect the underlying metal. Subsurface attack of Hastelloy S and Hastelloy C-4 due to oxidation was greater than expected, considering the slow oxidation rates of the two alloys at 600/sup 0/ to 800/sup 0/C. Estimates of subsurface attack, determined from micrographs of the oxidized specimens, showed erratic results and it was impossible to assign any type of rate equation to the subsurface attack. A conservative estimate of long-term effects can be made using a linear extrapolation of the test results. There were no significant differences between the room-temperature Charpy impact energy of Hastelloy S and Hastelloy C-4 specimens oxidized in air at 600/sup 0/ to 800/sup 0/C and control specimens heated in vacuum.

  14. Colour, lipid and protein stability of Rhea americana meat during air- and vacuum-packaged storage: influence of muscle on oxidative processes.

    PubMed

    Filgueras, R S; Gatellier, P; Aubry, L; Thomas, A; Bauchart, D; Durand, D; Zambiazi, R C; Santé-Lhoutellier, V

    2010-11-01

    Physicochemical characteristics and oxidative stability during storage were determined in Gastrocnemius pars interna (GN) and Iliofiburalis (IF) muscles of Rhea americana. Glycolytic potential (GP) and pH decline of muscles were measured within the first 24 h post mortem. Colour, lipid and protein stability were determined during storage of meat, i.e. 5 days under air-packaging at 4°C, or 28 days under vacuum-packaging at 4°C. In parallel, anti-oxidant status of muscles was estimated by measuring α-tocopherol content and anti-oxidant enzyme activities (superoxide dismutase and catalase), while pro-oxidant status was evaluated by determining haeminic iron and long chain fatty acids (especially polyunsaturated fatty acids). The ultimate pH was similar in both muscles, but the GP value was significantly higher in IF than in GN muscle. Haeminic iron and alpha-tocopherol content differed between muscles, with 30% more haeminic iron (p<0.05) and 134% more alpha-tocopherol (p<0.001) in IF than GN muscle. The IF muscle presented higher lipid content and lower PUFA/SFA ratio (polyunsaturated fatty acids/saturated fatty acids) than GN muscle. With storage under air-packaging, lipid and protein oxidation of rhea muscles increased up to 275% and 30%, respectively. This increase was more rapidly and marked in IF muscle. The IF also showed high level of metmyoglobin accumulation after 3 days of storage (47%) and was rejected by 1 consumer out of 2 in sensorial analysis. Under vacuum-packaging, both muscles showed a high stability of colour and no oxidation of lipids and proteins.

  15. Assessing the air quality impact of nitrogen oxides and benzene from road traffic and domestic heating and the associated cancer risk in an urban area of Verona (Italy)

    NASA Astrophysics Data System (ADS)

    Schiavon, Marco; Redivo, Martina; Antonacci, Gianluca; Rada, Elena Cristina; Ragazzi, Marco; Zardi, Dino; Giovannini, Lorenzo

    2015-11-01

    Simulations of emission and dispersion of nitrogen oxides (NOx) are performed in an urban area of Verona (Italy), characterized by street canyons and typical sources of urban pollutants. Two dominant source categories are considered: road traffic and, as an element of novelty, domestic heaters. Also, to assess the impact of urban air pollution on human health and, in particular, the cancer risk, simulations of emission and dispersion of benzene are carried out. Emissions from road traffic are estimated by the COPERT 4 algorithm, whilst NOx emission factors from domestic heaters are retrieved by means of criteria provided in the technical literature. Then maps of the annual mean concentrations of NOx and benzene are calculated using the AUSTAL2000 dispersion model, considering both scenarios representing the current situation, and scenarios simulating the introduction of environmental strategies for air pollution mitigation. The simulations highlight potentially critical situations of human exposure that may not be detected by the conventional network of air quality monitoring stations. The proposed methodology provides a support for air quality policies, such as planning targeted measurement campaigns, re-locating monitoring stations and adopting measures in favour of better air quality in urban planning. In particular, the estimation of the induced cancer risk is an important starting point to conduct zoning analyses and to detect the areas where population is more directly exposed to potential risks for health.

  16. Removal of strontium and transuranics from Hanford waste via hydrothermal processing -- FY 1994/95 test results

    SciTech Connect

    Orth, R.J.; Schmidt, A.J.; Elmore, M.R.; Hart, T.R.; Neuenschwander, G.G.; Gano, S.R.; Lehmann, R.W.; Momont, J.A.

    1995-09-01

    Under the Tank Waste Remediation System (TWRS) Pretreatment Technology Development Project, Pacific Northwest Laboratory (PNL) is evaluating and developing organic destruction technologies that may be incorporated into the Initial Pretreatment Module (IPM) to treat Hanford tank waste. Organic (and ferrocyanide) destruction removes the compounds responsible for waste safety issues, and conditions the supernatant for low-level waste disposal by removing compounds that may be responsible for promoting strontium and transuranic (TRU) components solubility. Destruction or defunctionalization of complexing organics in tank wastes eliminates organic species that can reduce the efficiency of radionuclide (E.g., {sup 90}Sr) separation processes, such as ion exchange, solvent extraction, and precipitation. The technologies being evaluated and tested for organic destruction are low-temperature hydrothermal processing (HTP) and wet air oxidation (WAO). Four activities are described: Batch HTP/WAO testing with Actual Tank Waste (Section 3.0), Batch HTP Testing with Simulant (Section 4.0), Batch WAO testing with Simulant (Section 5.0), and Continuous Bench-scale WAO Testing with Simulant (Section 6.0). For each of these activities, the objectives, test approach, results, status, and direction of future investigations are discussed. The background and history of the HTP/WAO technology is summarized below. Conclusions and Recommendations are provided in Section 2.0. A continuous HTP off-gas safety evaluation conducted in FY 1994 is included as Appendix A.

  17. Oxidative stress and DNA damage caused by the urban air pollutant 3-NBA and its isomer 2-NBA in human lung cells analyzed with three independent methods.

    PubMed

    Nagy, Eszter; Johansson, Clara; Zeisig, Magnus; Möller, Lennart

    2005-11-15

    The air pollutant 3-nitrobenzanthrone (3-NBA), emitted in diesel exhaust, is a potent mutagen and genotoxin. 3-NBA can isomerise to 2-nitrobenzanthrone (2-NBA), which can become more than 70-fold higher in concentration in ambient air. In this study, three independent methods have been employed to evaluate the oxidative stress and genotoxicity of 2-NBA compared to 3-NBA in the human A549 lung cell line. HPLC-EC/UV was applied for measurements of oxidative damage in the form of 8-oxo-2'-deoxyguanosine (8-oxodG), (32)P-HPLC for measurements of lipophilic DNA-adducts, and the Comet assay to measure a variety of DNA lesions, including oxidative stress. No significant oxidative damage from either isomer was found regarding formation of 8-oxodG analysed using HPLC-EC/UV. However, the Comet assay (with FPG-treatment), which is more sensitive and detects more types of damages compared to HPLC-EC/UV, showed a significant effect from both 3-NBA and 2-NBA. (32)P-HPLC revealed a strong DNA-adduct formation from both 3-NBA and 2-NBA, and also a significant difference between both isomers compared to negative control. These results clearly show that 2-NBA has a genotoxic potential. Even if the DNA-adduct forming capacity and the amount of DNA lesions measured with the (32)P-HPLC and Comet assay is about one third of 3-NBA, the high abundance of 2-NBA in ambient air calls for further investigation and evaluation of its health hazard.

  18. Improvement of performance in low temperature solid oxide fuel cells operated on ethanol and air mixtures using Cu-ZnO-Al2O3 catalyst layer

    NASA Astrophysics Data System (ADS)

    Morales, M.; Espiell, F.; Segarra, M.

    2015-10-01

    Anode-supported single-chamber solid oxide fuel cells with and without Cu-ZnO-Al2O3 catalyst layers deposited on the anode support have been operated on ethanol and air mixtures. The cells consist of gadolinia-doped ceria electrolyte, Ni-doped ceria anode, and La0.6Sr0.4CoO3-δ-doped ceria cathode. Catalyst layers with different Cu-ZnO-Al2O3 ratios are deposited and sintered at several temperatures. Since the performance of single-chamber fuel cells strongly depends on catalytic properties of electrodes for partial oxidation of ethanol, the cells are electrochemically characterized as a function of the temperature, ethanol-air molar ratio and gas flow rate. In addition, catalytic activities of supported anode, catalytic layer-supported anode and cathode for partial oxidation of ethanol are analysed. Afterwards, the effect of composition and sintering temperature of catalyst layer on the cell performance are determined. The results indicate that the cell performance can be significantly enhanced using catalyst layers of 30:35:35 and 40:30:30 wt.% Cu-ZnO-Al2O3 sintered at 1100 °C, achieving power densities above 50 mW cm-2 under 0.45 ethanol-air ratio at temperatures as low as 450 °C. After testing for 15 h, all cells present a gradual loss of power density, without carbon deposition, which is mainly attributed to the partial re-oxidation of Ni at the anode.

  19. Degradation process analysis of the azo dyes by catalytic wet air oxidation with catalyst CuO/γ-Al2O3.

    PubMed

    Hua, Li; Ma, Hongrui; Zhang, Lei

    2013-01-01

    Three azo dyes (Methyl Orange, Direct Brown and Direct Green) were treated by catalytic wet air oxidation (CWAO) with the catalysts CuO/γ-Al(2)O(3) prepared by consecutive impregnation. The relationship of decolorization extent, chemical oxygen demand (COD) removal extent and total organic carbon (TOC) in dye solution were investigated. The results indicated that the CuO/γ-Al(2)O(3) catalyst had excellent catalytic activity in treating azo dyes. Almost 99% of color and 70% of TOC were removed in 2h. The high removal extent of color and TOC indicated that the CWAO obtained perfect decomposition for pollutants. The degradation pathway of azo dyes was analyzed by UV-Vis, FTIR and MS. According to the examined results, the hydroxyl ((·)OH) radicals induced strong oxidizing effects in the target solution and destroyed the chromophoric groups of azo-benzene conjugated of the molecular structure. Considering characteristics of the dye structure, the azo bond (-N=N-) would first be attacked by the hydroxyl radical and other free radicals. With the continuous oxidization and the long reaction time at high temperature, these intermediates could be oxidized to the final oxidation products, such as water and carbon dioxide.

  20. Application of high energy chemistry methods for purification of water and air (on the basis of the materials of the I International Conference on Advanced Oxidation Technologies for Water and Air Remediation)

    SciTech Connect

    Pikaev, A.K.

    1995-01-01

    The I International Conference on Advanced Oxidation Technologies for Water and Air Remediation was held from June 25-30, 1994, in London (province of Ontario, Canada). Dr. H. Al-Ekabi (Canada) was the chairman of Organizing Committee. Over 350 specialists from Russia, USA, Canada, Japan, Germany, France, Italy, Great Britain, Poland, Switzerland, Holland, People`s Republic of China, Austria, Finland, South Korea, Spain, Hong Kong, Denmark, Taiwan, Belgium, and Iraq took part. During the conference there was also an exhibition, at which several companies demonstrated products which were related to the themes of the conference. About 200 invited and contributed reports and poster communications were presented, evaluated and discussed. There were also three panel discussions about governmental ecological programs, the transfer of oxidation technologies, etc.

  1. Assessment of the impact of oxidation processes on indoor air pollution using the new time-resolved INCA-Indoor model

    NASA Astrophysics Data System (ADS)

    Mendez, Maxence; Blond, Nadège; Blondeau, Patrice; Schoemaecker, Coralie; Hauglustaine, Didier A.

    2015-12-01

    INCA-Indoor, a new indoor air quality (IAQ) model, has been developed to simulate the concentrations of volatile organic compounds (VOC) and oxidants considering indoor air specific processes such as: emission, ventilation, surface interactions (sorption, deposition, uptake). Based on the detailed version of SAPRC-07 chemical mechanism, INCA-Indoor is able to analyze the contribution of the production and loss pathways of key chemical species (VOCs, oxidants, radical species). The potential of this model has been tested through three complementary analyses: a comparison with the most detailed IAQ model found in the literature, focusing on oxidant species; realistic scenarios covering a large range of conditions, involving variable OH sources like HONO; and the investigation of alkenes ozonolysis under a large range of indoor conditions that can increase OH and HO2 concentrations. Simulations have been run changing nitrous acid (HONO) concentrations, NOx levels, photolysis rates and ventilation rates, showing that HONO can be the main source of indoor OH. Cleaning events using products containing D-limonene have been simulated at different periods of the day. These scenarios show that HOX concentrations can significantly increase in specific conditions. An assessment of the impact of indoor chemistry on the potential formation of secondary species such as formaldehyde (HCHO) and acetaldehyde (CH3CHO) has been carried out under various room configuration scenarios and a study of the HOx budget for different realistic scenarios has been performed. It has been shown that, under the simulation conditions, formaldehyde can be affected by oxidant concentrations via chemical production which can account for more than 10% of the total production, representing 6.5 ppb/h. On the other hand, acetaldehyde production is affected more by oxidation processes. When the photolysis rates are high, chemical processes are responsible for about 50% of the total production of

  2. Impact of air exposure and annealing on the chemical and electronic properties of the surface of SnO2 nanolayers deposited by rheotaxial growth and vacuum oxidation

    PubMed Central

    Krzywiecki, Maciej

    2017-01-01

    In this paper the SnO2 nanolayers were deposited by rheotaxial growth and vacuum oxidation (RGVO) and analyzed for the susceptibility to ambient-air exposure and the subsequent recovery under vacuum conditions. Particularly the surface chemistry of the layers, stoichiometry and level of carbon contamination, was scrutinized by X-ray photoelectron spectroscopy (XPS). The layers were tested i) pristine, ii) after air exposure and iii) after UHV annealing to validate perspective recovery procedures of the sensing layers. XPS results showed that the pristine RGVO SnO2 nanolayers are of high purity with a ratio [O]/[Sn] = 1.62 and almost no carbon contamination. After air exposure the relative [O]/[Sn] concentration increased to 1.80 while maintaining a relatively low level of carbon contaminants. Subsequent UHV annealing led to a relative [O]/[Sn] concentration comparable to the pristine samples. The oxidation resulted in a variation of the distance between the valence band edge and the Fermi level energy. This was attributed to oxygen diffusion through the porous SnO2 surface as measured by atomic force microscopy. PMID:28382240

  3. The influence of the nitrate radical on the dimethylsulfide oxidation derived from field measurements during NEAQS (New England Air Quality Study)

    NASA Astrophysics Data System (ADS)

    Stark, H.; Goldan, P. D.; Brown, S. S.; Aldener, M.; Kuster, W. C.; Williams, E. J.; Lerner, B. M.; Degouw, J. A.; Warneke, C.; Fehsenfeld, F. C.; Ravishankara, A. R.

    2003-12-01

    We present simultaneous measurements of nitrate radical (NO3) and dimethylsulfide (DMS) from NEAQS (New England Air Quality Study). DMS is emitted from the ocean surface as a result of phytoplankton activity, whereas NO3 is produced by reaction of ozone (O3) and nitrogen dioxide (NO2) in polluted air. Photolysis by visible light and rapid reaction with NO during daytime prevent NO3 from building to significant concentration, except at night. The rapid reaction between NO3 and DMS constitutes an important sink for the latter in the polluted marine boundary layer. We will show nocturnal profiles of both compounds as well as the anticorrelations between them. These data indicate that nighttime DMS oxidation by NO3 under polluted conditions with high NO3 concentrations in the north-east coastal region of the US and daytime oxidation by OH are comparable. We will discuss the influence of transport and mixing of fresh emissions into marine air on the observed anticorrelations based on trajectory calculations and tracer measurements to distinguish between transport effects and reactions.

  4. Cobaltite oxide nanosheets anchored graphene nanocomposite as an efficient oxygen reduction reaction (ORR) catalyst for the application of lithium-air batteries

    NASA Astrophysics Data System (ADS)

    Gnana kumar, G.; Christy, Maria; Jang, Hosaeng; Nahm, Kee Suk

    2015-08-01

    The graphene/cubic cobaltite oxide nanosheets (rGO/Co3O4) with a face centered cubic crystalline structure are synthesized and are exploited as effective cathode catalysts in high performance Lithium-air batteries. The morphological images enunciate that 220 nm average diameter of Co3O4 nanosheets are effectively anchored over the graphene sheets and the diameter of individual nanoparticles that construct the cubic nanosheets is 5 nm. The growth and composite formation mechanisms of prepared nanostructures are identified from Raman and FT-IR spectroscopic techniques. rGO/Co3O4 composite exhibits a lower voltage, high discharge capacity of 4150 mAh g-1 and displays superior cyclability without any capacity losses, signifying the excellent rechargeability of the fabricated electrodes. The post mortem analysis of electrodes specify the existence of lithium peroxide (Li2O2), lithium oxide (Li2O) and lithium carbonate (Li2CO3) discharge products, revealing the involved electrochemical reaction of Lithium-air batteries. The excellent electrochemical properties of rGO/Co3O4 composite is due to the combination of rapid electrokinetics of electron transport and high electrocatalytic activity toward oxygen reduction reaction given via the synergetic effects of rGO and cubic Co3O4 nanosheets. These findings provide fundamental knowledge on understanding the influence of morphological and structural properties of graphene based nanostructures toward Lithium-air battery performances.

  5. Nitric oxide production in the exhaled air of patients with pulmonary tuberculosis in relation to HIV co-infection

    PubMed Central

    Idh, Jonna; Westman, Anna; Elias, Daniel; Moges, Feleke; Getachew, Assefa; Gelaw, Aschalew; Sundqvist, Tommy; Forslund, Tony; Alemu, Addis; Ayele, Belete; Diro, Ermias; Melese, Endalkachew; Wondmikun, Yared; Britton, Sven; Stendahl, Olle; Schön, Thomas

    2008-01-01

    Background Nitric oxide (NO) is essential for host defense in rodents, but the role of NO during tuberculosis (TB) in man remains controversial. However, earlier observations that arginine supplementation facilitates anti-TB treatment, supports the hypothesis that NO is important in the host defense against TB. Local production of NO measured in fractional exhaled air (FeNO) in TB patients with and without HIV co-infection has not been reported previously. Thus, our aim was to investigate levels of FeNO in relation to clinical symptoms and urinary NO metabolites (uNO). Methods In a cross sectional study, FeNO and uNO were measured and clinical symptoms, chest x-ray, together with serum levels of arginine, tumor necrosis factor alpha (TNF-alpha) and interleukin 12 (IL-12) were evaluated in sputum smear positive TB patients (HIV+/TB, n = 36, HIV-/TB, n = 59), their household contacts (n = 17) and blood donors (n = 46) from Gondar University Hospital, Ethiopia. Results The proportion of HIV-/TB patients with an increased FeNO level (> 25 ppb) was significantly higher as compared to HIV+/TB patients, but HIV+/TB patients had significantly higher uNO than HIV-/TB patients. HIV+ and HIV-/TB patients both had lower levels of FeNO compared to blood donors and household contacts. The highest levels of both uNO and FeNO were found in household contacts. Less advanced findings on chest x-ray, as well as higher sedimentation rate were observed in HIV+/TB patients as compared to HIV-/TB patients. However, no significant correlation was found between FeNO and uNO, chest x-ray grading, clinical symptoms, TNF-alpha, IL-12, arginine levels or sedimentation rate. Conclusion In both HIV negative and HIV co infected TB patients, low levels of exhaled NO compared to blood donors and household were observed. Future studies are needed to confirm whether low levels of exhaled NO could be a risk factor in acquiring TB and the relative importance of NO in human TB. PMID:18950489

  6. Electrocatalytic performances of LaNi1-xMgxO3 perovskite oxides as bi-functional catalysts for lithium air batteries

    NASA Astrophysics Data System (ADS)

    Du, Zhenzhen; Yang, Peng; Wang, Long; Lu, Yuhao; Goodenough, J. B.; Zhang, Jian; Zhang, Dawei

    2014-11-01

    Mg-doped perovskite oxides LaNi1-xMgxO3 (x = 0, 0.08, 0.15) electrocatalysts are synthesized by a sol-gel method using citric acid as complex agent and ethylene glycol as thickening agent. The intrinsic oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) activity of as-prepared perovskite oxides in aqueous electrolyte are examined on a rotating disk electrode (RDE) set up. Li-air primary batteries on the basis of Mg-doped perovskite oxides LaNi1-xMgxO3 (x = 0, 0.08, 0.15) and nonaqueous electrolyte are also fabricated and tested. In terms of the ORR current densities and OER current densities, the performance is enhanced in the order of LaNiO3, LaNi0.92Mg0.08O3 and LaNi0.85Mg0.15O3. Most notably, partially substituting nickel with magnesium suppresses formation of Ni2+ and ensures high concentration of both OER and ORR reaction energy favorable Ni3+ (eg = 1) on the surface of perovskite catalysts. Nonaqueous Li-air primary battery using LaNi0.92Mg0.08O3 and LaNi0.85Mg0.15O3 as the cathode catalysts exhibit improved performances compared with LaNiO3 catalyst, which are consistent with the ORR current densities.

  7. Volatile organic compound conversion by ozone, hydroxyl radicals, and nitrate radicals in residential indoor air: Magnitudes and impacts of oxidant sources.

    PubMed

    Waring, Michael S; Wells, J Raymond

    2015-04-01

    Indoor chemistry may be initiated by reactions of ozone (O3), the hydroxyl radical (OH), or the nitrate radical (NO3) with volatile organic compounds (VOC). The principal indoor source of O3 is air exchange, while OH and NO3 formation are considered as primarily from O3 reactions with alkenes and nitrogen dioxide (NO2), respectively. Herein, we used time-averaged models for residences to predict O3, OH, and NO3 concentrations and their impacts on conversion of typical residential VOC profiles, within a Monte Carlo framework that varied inputs probabilistically. We accounted for established oxidant sources, as well as explored the importance of two newly realized indoor sources: (i) the photolysis of nitrous acid (HONO) indoors to generate OH and (ii) the reaction of stabilized Criegee intermediates (SCI) with NO2 to generate NO3. We found total VOC conversion to be dominated by reactions both with O3, which almost solely reacted with d-limonene, and also with OH, which reacted with d-limonene, other terpenes, alcohols, aldehydes, and aromatics. VOC oxidation rates increased with air exchange, outdoor O3, NO2 and d-limonene sources, and indoor photolysis rates; and they decreased with O3 deposition and nitric oxide (NO) sources. Photolysis was a strong OH formation mechanism for high NO, NO2, and HONO settings, but SCI/NO2 reactions weakly generated NO3 except for only a few cases.

  8. Synthesis of free-standing carbon nanohybrid by directly growing carbon nanotubes on air-sprayed graphene oxide paper and its application in supercapacitor

    SciTech Connect

    Wei, Li; Jiang, Wenchao; Yuan, Yang; Goh, Kunli; Yu, Dingshan; Wang, Liang; Chen, Yuan

    2015-04-15

    We report the synthesis of a free-standing two dimensional carbon nanotube (CNT)-reduced graphene oxide (rGO) hybrid by directly growing CNTs on air-sprayed GO paper. As a result of the good integration between CNTs and thermally reduced GO film during chemical vapor deposition, excellent electrical conductivity (2.6×10{sup 4} S/m), mechanical flexibility (electrical resistance only increases 1.1% after bent to 90° for 500 times) and a relatively large surface area (335.3 m{sup 2}/g) are achieved. Two-electrode supercapacitor assembled using the CNT–rGO hybrids in ionic liquid electrolyte (1-ethyl-3-methylimidazolium tetrafluoroborate) shows excellent stability upon 500 bending cycles with the gravimetric energy density measuring 23.7 Wh/kg and a power density of 2.0 kW/kg. Furthermore, it shows an impedance phase angle of −64.4° at a frequency of 120 Hz, suggesting good potentials for 120 Hz alternating current line filtering applications. - Graphical abstract: Flexible and highly conductive carbon nanotube-reduced graphene oxide nanohybrid. - Highlights: • Direct growth of carbon nanotubes by chemical vapor deposition on air-sprayed graphene oxide paper. • Two-dimensional carbon nanohybrid with excellent conductivity and mechanical flexibility. • Supercapacitor with excellent performance stability upon mechanical deformation for flexible electronics applications. • Supercapacitor with high impedance phase angle for 120 Hz alternating current line filtering applications.

  9. Volatile organic compound conversion by ozone, hydroxyl radicals, and nitrate radicals in residential indoor air: Magnitudes and impacts of oxidant sources

    PubMed Central

    Waring, Michael S.; Wells, J. Raymond

    2016-01-01

    Indoor chemistry may be initiated by reactions of ozone (O3), the hydroxyl radical (OH), or the nitrate radical (NO3) with volatile organic compounds (VOC). The principal indoor source of O3 is air exchange, while OH and NO3 formation are considered as primarily from O3 reactions with alkenes and nitrogen dioxide (NO2), respectively. Herein, we used time-averaged models for residences to predict O3, OH, and NO3 concentrations and their impacts on conversion of typical residential VOC profiles, within a Monte Carlo framework that varied inputs probabilistically. We accounted for established oxidant sources, as well as explored the importance of two newly realized indoor sources: (i) the photolysis of nitrous acid (HONO) indoors to generate OH and (ii) the reaction of stabilized Criegee intermediates (SCI) with NO2 to generate NO3. We found total VOC conversion to be dominated by reactions both with O3, which almost solely reacted with d-limonene, and also with OH, which reacted with d-limonene, other terpenes, alcohols, aldehydes, and aromatics. VOC oxidation rates increased with air exchange, outdoor O3, NO2 and d-limonene sources, and indoor photolysis rates; and they decreased with O3 deposition and nitric oxide (NO) sources. Photolysis was a strong OH formation mechanism for high NO, NO2, and HONO settings, but SCI/NO2 reactions weakly generated NO3 except for only a few cases. PMID:26855604

  10. Volatile organic compound conversion by ozone, hydroxyl radicals, and nitrate radicals in residential indoor air: Magnitudes and impacts of oxidant sources

    NASA Astrophysics Data System (ADS)

    Waring, Michael S.; Wells, J. Raymond

    2015-04-01

    Indoor chemistry may be initiated by reactions of ozone (O3), the hydroxyl radical (OH), or the nitrate radical (NO3) with volatile organic compounds (VOC). The principal indoor source of O3 is air exchange, while OH and NO3 formation are considered as primarily from O3 reactions with alkenes and nitrogen dioxide (NO2), respectively. Herein, we used time-averaged models for residences to predict O3, OH, and NO3 concentrations and their impacts on conversion of typical residential VOC profiles, within a Monte Carlo framework that varied inputs probabilistically. We accounted for established oxidant sources, as well as explored the importance of two newly realized indoor sources: (i) the photolysis of nitrous acid (HONO) indoors to generate OH and (ii) the reaction of stabilized Criegee intermediates (SCI) with NO2 to generate NO3. We found total VOC conversion to be dominated by reactions both with O3, which almost solely reacted with D-limonene, and also with OH, which reacted with D-limonene, other terpenes, alcohols, aldehydes, and aromatics. VOC oxidation rates increased with air exchange, outdoor O3, NO2 and D-limonene sources, and indoor photolysis rates; and they decreased with O3 deposition and nitric oxide (NO) sources. Photolysis was a strong OH formation mechanism for high NO, NO2, and HONO settings, but SCI/NO2 reactions weakly generated NO3 except for only a few cases.

  11. TEM study on the initial oxidation of Zircaloy-4 thin foil specimens heated in a low vacuum air condition at 280-300 °C

    NASA Astrophysics Data System (ADS)

    Wang, Zhen; Zhou, Bang-xin; Zhu, Wei; Wen, Bang; Yao, Mei-yi; Li, Qiang; Wu, Lu; Zhang, Jin-long; Fang, Zhong-qiang

    2017-04-01

    As one of the important structural materials in nuclear industry, the corrosion resistance of zirconium alloy limits their in-pile application. Therefore, it is necessary to investigate the corrosion mechanism of zirconium alloys. The zirconium-oxygen reaction at the O/M interface is one of the factors that affect the oxidation process. There are few reports in this regard. Ideally, the reaction process at the O/M interface has certain relevance with the initiation oxidation of zirconium, which provided a new way to investigate the reaction process by observing the initiation oxidation behaviours. To investigate the oxidation behaviours of zirconium alloy at the initial stage, in this paper, zircaloy-4 TEM thin foil specimens in 3 mm diameter were studied by TEM observation after heating in air condition with a vacuum of 3 Pa at 280 °C, 290 °C and 300 °C for 30 min exposures. The results show that, ZrO2 begin to nucleate at a size of 3-5 nm at a high Zr/O ratio of 10.4 and oxide layer formed while Zr/O was 4.6. As a result of stress caused by the P.B ratio of Zr, slip bands formed and a bcc structure sub-oxide b-ZrOx (a = 0.51 nm) grew up along with the slip bands was observed. At both sides of b-ZrOx, two hcp structure sub-oxides having the same a-axis lattice parameter and different c-axis lattice parameter were detected.

  12. Evaluation of the first phase of sulfur dioxide and nitrogen oxides provisions of the 1990 Clean Air Act: a plant-based approach.

    PubMed

    Freedman, Martin; Jaggi, Bikki

    2002-03-01

    Electric power generating plants that use coal were among the key targets of Title IV of the 1990 Clean Air Act. Under the first phase of the act, 110 coal-fired electric power plants were required to reduce their sulfur dioxide emissions by 1995 and nitrogen oxide emissions by 1996. Phase 2 of the act requires even greater reduction of sulfur dioxide emissions by 2000 and nitrogen oxide emissions by 2008. This study examines whether the 107 targeted plants (three plants went off-line) have achieved the desired sulfur dioxide and nitrogen oxide emission levels. The analysis of sulfur dioxide is based on data from 1990, 1995, and 1999. The findings show that although sulfur oxide increased by 3% from 1995 to 1999, it decreased by 45% over the 1990-1999 period at the firm level for the targeted firms. The findings also indicate that the overall reduction in sulfur dioxide was achieved by utilizing low sulfur coal and by purchasing emission allowances. So far as nitrogen oxides are concerned, there has been a reduction of 14% over the 1990-1999 period, of which 7% was achieved during the 1995-1999 period. An evaluation of emissions at the plant level indicates that several plants do not meet the emissions level for sulfur dioxide or nitrogen oxides. These results provide a mixed scorecard for reduction in emissions both for sulfur dioxide and nitrogen oxides. Even though there is reduction in the emissions on an overall basis at the firm level, several plants that have not been able to reduce emissions deserve special attention to meet the goals of the act in reducing emissions.

  13. AIR POLLUTION CONTROL TECHNOLOGIES

    EPA Science Inventory

    This is a chapter for John Wiley & Son's Mechanical Engineers' Handbook, and covers issues involving air pollution control. Various technologies for controlling sulfur oxides is considered including fuel desulfurization. It also considers control of nitrogen oxides including post...

  14. Benefits and technological challenges in the implementation of TiO2-based ultraviolet photocatalytic oxidation (UVPCO) air cleaners

    SciTech Connect

    Hodgson, Al; Destaillats, Hugo; Hotchi, Toshifumi; Fisk, William J.

    2008-10-01

    Heating, ventilating, and cooling classrooms in California consume substantial electrical energy. Indoor air quality (IAQ) in classrooms affects student health and performance. In addition to airborne pollutants that are emitted directly by indoor sources and those generated outdoors, secondary pollutants can be formed indoors by chemical reaction of ozone with other chemicals and materials. Filters are used in nearly all classroom heating, ventilation and air-conditioning (HVAC) systems to maintain energy-efficient HVAC performance and improve indoor air quality; however, recent evidence indicates that ozone reactions with filters may, in fact, be a source of secondary pollutants. This project quantitatively evaluated ozone deposition in HVAC filters and byproduct formation, and provided a preliminary assessment of the extent to which filter systems are degrading indoor air quality. The preliminary information obtained will contribute to the design of subsequent research efforts and the identification of energy efficient solutions that improve indoor air quality in classrooms and the health and performance of students.

  15. Thermal and sonochemical synthesis of porous (Ce,Zr)O2 mixed oxides from metal β-diketonate precursors and their catalytic activity in wet air oxidation process of formic acid.

    PubMed

    Cau, Camille; Guari, Yannick; Chave, Tony; Larionova, Joulia; Nikitenko, Sergey I

    2014-07-01

    Porous (Ce0.5Zr0.5)O2 solid solutions were prepared by thermolysis (T=285 °C) or sonolysis (20 kHz, I=32 W cm(-2), Pac=0.46 W mL(-1), T=200 °C) of Ce(III) and Zr(IV) acetylacetonates in oleylamine or hexadecylamine under argon followed by heat treatment of the precipitates obtained in air at 450 °C. Transmission Electron Microscopy images of the samples show nanoparticles of ca. 4-6 nm for the two synthetic approaches. The powder X-ray diffraction, scanning electron microscopy, energy dispersive X-ray and μ-Raman spectroscopy of solids obtained after heat treatment indicate the formation of (Ce0.5Zr0.5)O2 solid solutions with a metastable tetragonal crystal structure for the two synthetic routes. The specific surface area of the samples varies between 78 and 149 m(2) g(-1) depending on synthesis conditions. The use of Barrett-Joyner-Halenda and t-plot methods reveal the formation of mixed oxides with a hybrid morphology that combines mesoporosity and microporosity regardless of the method of preparation. Platinum nanoparticles were deposited on the surface of the mixed oxides by sonochemical reduction of Pt(IV). It was found that the materials prepared by sonochemistry exhibit better resistance to dissolution during the deposition process of platinum. X-ray photoelectron spectroscopy analysis shows the presence of Pt(0) and Pt(II) on the surface of mixed oxides. Porous (Ce0.5Zr0.5)O2 mixed oxides loaded with 1.5%wt. platinum exhibit high activity in catalytic wet air oxidation of formic acid at 40 °C.

  16. Metal-free catalyzed oxidative trimerization of indoles by using TEMPO in air: a biomimetic approach to 2-(1H-indol-3-yl)-2,3'-biindolin-3-ones.

    PubMed

    Qin, Wen-Bing; Chang, Qiong; Bao, Yun-Hong; Wang, Ning; Chen, Zheng-Wang; Liu, Liang-Xian

    2012-11-28

    A simple, convenient and efficient metal-free catalyzed oxidative trimeric reaction of indoles toward a variety of 2-(1H-indol-3-yl)-2,3'-biindolin-3-one derivatives in moderate to excellent yields has been developed. This transformation proceeds via a tandem oxidative homocoupling reaction by using TEMPO in air as an environmentally benign oxidant. This methodology provides an alternative approach for the direct generation of all-carbon quaternary centers at the C3 position of indoles.

  17. In vitro comparative bond strength of contemporary self-adhesive resin cements to zirconium oxide ceramic with and without air-particle abrasion.

    PubMed

    Blatz, Markus B; Phark, Jin-Ho; Ozer, Fusun; Mante, Francis K; Saleh, Najeed; Bergler, Michael; Sadan, Avishai

    2010-04-01

    This study compared shear bond strengths of six self-adhesive resin cements to zirconium oxide ceramic with and without air-particle abrasion. One hundred twenty zirconia samples were air-abraded (group SB; n = 60) or left untreated (group NO). Composite cylinders were bonded to the zirconia samples with either BisCem (BC), Maxcem (MC), G-Cem (GC), RelyX Unicem Clicker (RUC), RelyX Unicem Applicator (RUA), or Clearfil SA Cement (CSA). Shear bond strength was tested after thermocycling, and data were analyzed with analysis of variance and Holm-Sidak pairwise comparisons. Without abrasion, RUA (8.0 MPa), GC (7.9 MPa), and CSA (7.6 MPa) revealed significantly higher bond strengths than the other cements. Air-particle abrasion increased bond strengths for all test cements (p < 0.001). GC (22.4 MPa) and CSA (18.4 MPa) revealed the highest bond strengths in group SB. Bond strengths of self-adhesive resin cements to zirconia were increased by air-particle abrasion. Cements containing adhesive monomers (MDP/4-META) were superior to other compositions.

  18. Solving widespread low-concentration VOC air pollution problems: Gas-phase photocatalytic oxidation answers the needs of many small businesses

    SciTech Connect

    Lyons, C; Turchi, C; Gratson, D

    1995-04-01

    Many small businesses are facing new regulations under the 1990 Amendments to the Clean Air Act. Regulators, as well as the businesses themselves, face new challenges to control small point-source air pollution emissions. An individual business-such as a dry cleaner, auto repair shop, bakery, coffee roaster, photo print shop, or chemical company-may be an insignificant source of air pollution, but collectively, the industry becomes a noticeable source. Often the businesses are not equipped to respond to new regulatory requirements because of limited resources, experience, and expertise. Also, existing control strategies may be inappropriate for these businesses, having been developed for major industries with high volumes, high pollutant concentrations, and substantial corporate resources. Gas-phase photocatalytic oxidation (PCO) is an option for eliminating low-concentration, low-flow-rate emissions of volatile organic compounds (VOCs) from small business point sources. The advantages PCO has over other treatment techniques are presented in this paper. This paper also describes how PCO can be applied to specific air pollution problems. We present our methodology for identifying pollution problems for which PCO is applicable and for reaching the technology`s potential end users. PCO is compared to other gas-phase VOC control technologies.

  19. Treatment of aniline by catalytic wet air oxidation: comparative study over CuO/CeO2 and NiO/Al2O3.

    PubMed

    Ersöz, Gülin; Atalay, Süheyda

    2012-12-30

    The treatment of aniline by catalytic wet air oxidation (CWAO) was studied in a bubble reactor. The experiments were performed to investigate the effects of catalyst loading, temperature, reaction time, air flow rate, and pressure on aniline removal. The catalytic effects of the prepared nanostructured catalysts, CuO/CeO(2) (10% wt) and NiO/Al(2)O(3) (10% wt), on the CWAO treatment efficiency were also examined and compared. The prepared catalysts seem to be active having an aniline removal of 45.7% with CuO/CeO(2) and 41.9% with NiO/Al(2)O(3). The amount of N(2) formed was approximately the same for both of the catalysts.

  20. Evaluation of Ultra-Violet Photocatalytic Oxidation (UVPCO) forIndoor Air Applications: Conversion of Volatile Organic Compounds at LowPart-per-Billion Concentrations

    SciTech Connect

    Hodgson, Alfred T.; Sullivan, Douglas P.; Fisk, William J.

    2005-09-30

    Efficient removal of indoor generated airborne particles and volatile organic compounds (VOCs) in office buildings and other large buildings may allow for a reduction in outdoor air supply rates with concomitant energy savings while still maintaining acceptable indoor air quality in these buildings. Ultra-Violet Photocatalytic Oxidation (UVPCO) air cleaners have the potential to achieve the necessary reductions in indoor VOC concentrations at relatively low cost. In this study, laboratory experiments were conducted with a scaled, prototype UVPCO device designed for use in a duct system. The experimental UVPCO contained two 30 by 30-cm honeycomb monoliths coated with titanium dioxide and 3% by weight tungsten oxide. The monoliths were irradiated with 12 UVC lamps arranged in four banks. The UVPCO was challenged with four mixtures of VOCs typical of mixtures encountered in indoor air. A synthetic office mixture contained 27 VOCs commonly measured in office buildings. A cleaning product mixture contained three cleaning products with high market shares. A building product mixture was created by combining sources including painted wallboard, composite wood products, carpet systems, and vinyl flooring. A fourth mixture contained formaldehyde and acetaldehyde. Steady-state concentrations were produced in a classroom laboratory or a 20-m{sup 3} environmental chamber. Air was drawn through the UVPCO, and single pass conversion efficiencies were measured from replicate air samples collected upstream and downstream of the reactor section. Concentrations of the mixtures were manipulated, with concentrations of individual VOCs mostly maintained below 10 ppb. Device flow rates were varied between 165 and 580 m{sup 3}/h. Production of formaldehyde, acetaldehyde, acetone, formic acid, and acetic acid as reaction products was investigated. Conversion efficiency data were generated for 48 individual VOCs or groups of closely related compounds. Alcohols and glycol ethers were the

  1. The double perovskite oxide Sr2CrMoO(6-δ) as an efficient electrocatalyst for rechargeable lithium air batteries.

    PubMed

    Ma, Zhong; Yuan, Xianxia; Li, Lin; Ma, Zi-Feng

    2014-12-07

    A double perovskite oxide Sr2CrMoO6-δ (SCM), synthesized using the sol-gel and annealing method with the assistance of citric acid and ethylene diamine tetraacetic acid, was investigated for the first time as an efficient catalyst for rechargeable lithium air batteries. The SCM cathode enables higher specific capacity, lower overpotential and a much better cyclability compared to the pure Super P electrode owing to its excellent electrocatalytic activity towards the formation/decomposition of Li2O2.

  2. Notch Sensitivity of Fatigue Behavior of a Hi-Nicalon/SiC Ceramic Composite with an Oxidation Inhibited Matrix at 1200 degree C in Air and in Steam

    DTIC Science & Technology

    2011-03-24

    Silicon Carbide / Silicon Carbide (SiC/SiC) ceramic matrix composite (CMC) was investigated at 1200 deg C in laboratory air and in steam environment. The composite consisted of an oxidation inhibited HyprSiC matrix reinforced with laminated Hi-Nicalon fibers woven in an eight-harness-satin weave (8HSW). Fiber preforms were coated with pyrolytic carbon (PyC) fiber coating with boron carbide overlay and were then densified with HyprSiC matrix via chemical vapor infiltration (CVI). Effects if center hole on tensile stress-strain behavior and tensile

  3. Simulating secondary organic aerosol in a regional air quality model using the statistical oxidation model - Part 1: Assessing the influence of constrained multi-generational ageing

    NASA Astrophysics Data System (ADS)

    Jathar, S. H.; Cappa, C. D.; Wexler, A. S.; Seinfeld, J. H.; Kleeman, M. J.

    2015-09-01

    Multi-generational oxidation of volatile organic compound (VOC) oxidation products can significantly alter the mass, chemical composition and properties of secondary organic aerosol (SOA) compared to calculations that consider only the first few generations of oxidation reactions. However, the most commonly used state-of-the-science schemes in 3-D regional or global models that account for multi-generational oxidation (1) consider only functionalization reactions but do not consider fragmentation reactions, (2) have not been constrained to experimental data; and (3) are added on top of existing parameterizations. The incomplete description of multi-generational oxidation in these models has the potential to bias source apportionment and control calculations for SOA. In this work, we used the Statistical Oxidation Model (SOM) of Cappa and Wilson (2012), constrained by experimental laboratory chamber data, to evaluate the regional implications of multi-generational oxidation considering both functionalization and fragmentation reactions. SOM was implemented into the regional UCD/CIT air quality model and applied to air quality episodes in California and the eastern US. The mass, composition and properties of SOA predicted using SOM are compared to SOA predictions generated by a traditional "two-product" model to fully investigate the impact of explicit and self-consistent accounting of multi-generational oxidation. Results show that SOA mass concentrations predicted by the UCD/CIT-SOM model are very similar to those predicted by a two-product model when both models use parameters that are derived from the same chamber data. Since the two-product model does not explicitly resolve multi-generational oxidation reactions, this finding suggests that the chamber data used to parameterize the models captures the majority of the SOA mass formation from multi-generational oxidation under the conditions tested. Consequently, the use of low and high NOx yields perturbs SOA

  4. Simulating secondary organic aerosol in a regional air quality model using the statistical oxidation model - Part 1: Assessing the influence of constrained multi-generational ageing

    NASA Astrophysics Data System (ADS)

    Jathar, S. H.; Cappa, C. D.; Wexler, A. S.; Seinfeld, J. H.; Kleeman, M. J.

    2016-02-01

    Multi-generational oxidation of volatile organic compound (VOC) oxidation products can significantly alter the mass, chemical composition and properties of secondary organic aerosol (SOA) compared to calculations that consider only the first few generations of oxidation reactions. However, the most commonly used state-of-the-science schemes in 3-D regional or global models that account for multi-generational oxidation (1) consider only functionalization reactions but do not consider fragmentation reactions, (2) have not been constrained to experimental data and (3) are added on top of existing parameterizations. The incomplete description of multi-generational oxidation in these models has the potential to bias source apportionment and control calculations for SOA. In this work, we used the statistical oxidation model (SOM) of Cappa and Wilson (2012), constrained by experimental laboratory chamber data, to evaluate the regional implications of multi-generational oxidation considering both functionalization and fragmentation reactions. SOM was implemented into the regional University of California at Davis / California Institute of Technology (UCD/CIT) air quality model and applied to air quality episodes in California and the eastern USA. The mass, composition and properties of SOA predicted using SOM were compared to SOA predictions generated by a traditional two-product model to fully investigate the impact of explicit and self-consistent accounting of multi-generational oxidation.Results show that SOA mass concentrations predicted by the UCD/CIT-SOM model are very similar to those predicted by a two-product model when both models use parameters that are derived from the same chamber data. Since the two-product model does not explicitly resolve multi-generational oxidation reactions, this finding suggests that the chamber data used to parameterize the models captures the majority of the SOA mass formation from multi-generational oxidation under the conditions

  5. Catalytic wet air oxidation of bisphenol A solution in a batch-recycle trickle-bed reactor over titanate nanotube-based catalysts.

    PubMed

    Kaplan, Renata; Erjavec, Boštjan; Senila, Marin; Pintar, Albin

    2014-10-01

    Catalytic wet air oxidation (CWAO) is classified as an advanced oxidation process, which proved to be highly efficient for the removal of emerging organic pollutant bisphenol A (BPA) from water. In this study, BPA was successfully removed in a batch-recycle trickle-bed reactor over bare titanate nanotube-based catalysts at very short space time of 0.6 min gCAT g(-1). The as-prepared titanate nanotubes, which underwent heat treatment at 600 °C, showed high activity for the removal of aqueous BPA. Liquid-phase recycling (5- or 10-fold recycle) enabled complete BPA conversion already at 200 °C, together with high conversion of total organic carbon (TOC), i.e., 73 and 98 %, respectively. The catalyst was chemically stable in the given range of operating conditions for 189 h on stream.

  6. No oxidative stress or DNA damage in peripheral blood mononuclear cells after exposure to particles from urban street air in overweight elderly

    PubMed Central

    Hemmingsen, Jette Gjerke; Jantzen, Kim; Møller, Peter; Loft, Steffen

    2015-01-01

    Exposure to traffic-related particulate matter (PM) has been associated with increased risk of lung disease, cancer and cardiovascular disease especially in elderly and overweight subjects. The proposed mechanisms involve intracellular production of reactive oxygen species (ROS), inflammation and oxidation-induced DNA damage studied mainly in young normal-weight subjects. We performed a controlled cross-over, randomised, single-blinded, repeated-measure study where 60 healthy subjects (25 males and 35 females) with age 55–83 years and body mass index above 25kg/m2 were exposed for 5h to either particle-filtered or sham-filtered air from a busy street with number of concentrations and PM2.5 levels of 1800/cm3 versus 23 000/cm3 and 3 µg/m3 versus 24 µg/m3, respectively. Peripheral blood mononuclear cells (PBMCs) were collected and assayed for production of ROS with and without ex vivo exposure to nanosized carbon black as well as expression of genes related to inflammation (chemokine (C-C motif) ligand 2, interleukin-8 and tumour necrosis factor), oxidative stress response (heme oxygenase (decycling)-1) and DNA repair (oxoguanine DNA glycosylase). DNA strand breaks and oxidised purines were assayed by the alkaline comet assay. No statistically significant differences were found for any biomarker immediately after exposure to PM from urban street air although strand breaks and oxidised purines combined were significantly associated with the particle number concentration during exposure. In conclusion, 5h of controlled exposure to PM from urban traffic did not change the gene expression related to inflammation, oxidative stress or DNA repair, ROS production or oxidatively damaged DNA in PBMCs from elderly overweight human subjects. PMID:25904586

  7. Effect of nitric oxide on photochemical ozone formation in mixtures of air with molecular chlorine and with trichlorofluoromethane

    NASA Technical Reports Server (NTRS)

    Bittker, D. A.; Wong, E. L.

    1978-01-01

    Ozone formation in a reaction chamber at room temperature and atmospheric pressure were studied for the photolysis of mixtures of NO with either Cl2 or CFCl3 in air. Both Cl2 + NO and CFCl3 + NO in air strongly inhibited O3 formation during the entire 3 to 4 hour reaction. A chemical mechanism that explains the results was presented. An important part of this mechanism was the formation and destruction of chlorine nitrate. Computations were performed with this same mechanism for CFCl3-NO-air mixtures at stratospheric temperatures, pressures, and concentrations. Results showed large reductions in steady-state O3 concentrations in these mixtures as compared with pure air.

  8. Kinetics of the formation of ozone and nitrogen oxides due to a pulsed microwave discharge in air

    NASA Astrophysics Data System (ADS)

    Larin, V. F.; Rumiantsev, S. A.

    1989-03-01

    The paper presents results of a numerical simulation of the kinetics of plasma-chemical processes induced by a single microwave pulse in the stratosphere. It is shown that the gas temperature is one of the main factors influencing the concentration ratio of ozone and nitrogen oxides formed under the effect of a microwave pulse. Long pulses, producing considerable gas heating, favor the formation of nitrogen oxides.

  9. Numerical prediction of system round-trip efficiency and feasible operating conditions of small-scale solid oxide iron-air battery

    NASA Astrophysics Data System (ADS)

    Ohmori, Hiroko; Iwai, Hiroshi; Itakura, Kotaro; Saito, Motohiro; Yoshida, Hideo

    2016-03-01

    A simulation model of a small-scale solid oxide iron-air battery system was developed to clarify its fundamental characteristics and feasibility from the view point of energy efficiency. The energy flow in one cycle of charge/discharge operations was evaluated under a quasi-state assumption with 0-dimensional models of the system components, i.e., a solid oxide electrochemical cell, an iron (Fe) box and heat exchangers. Special care was taken when considering thermal aspects; not only a simple system but also a more complicated system with thermal recirculation by three heat exchangers was investigated. It was found that the system round-trip efficiency reaches 61% under the base conditions in this study. The results also show that several limitations exist for the operation parameters and conditions in view of practical applications. In particular, higher and lower limits exist for the fuel and air utilization factors under which the system operates effectively because of constraints such as the maximum allowable fuel-blower temperature and no heat input during the discharge operation.

  10. Ni/MgAlO regeneration for catalytic wet air oxidation of an azo-dye in trickle-bed reaction.

    PubMed

    Vallet, Ana; Ovejero, Gabriel; Rodríguez, Araceli; Peres, José A; García, Juan

    2013-01-15

    Active nickel catalysts (7 wt%) supported over Mg-Al mixed oxides have been recently developed and it has also been demonstrated that they are also highly selective in Catalytic Wet air Oxidation (CWAO) of dyes. CWAO of Chromotrope 2R (C2R) has been studied using a trickle bed reactor employing temperatures from 100 to 180 °C, liquid flow rates from 0.1 to 0.7 mL min(-1) and initial dye concentration from 10 to 50 ppm. Total pressure and air flow were 25 bar and 300 mL min(-1), respectively. The catalyst showed a very stable activity up to 24 h on stream with an average TOC conversion of 82% at 150 °C and T(r)=0.098 g(Ni) min mL(-1). After the reaction, a 1.1 wt% C of carbonaceous deposit is formed onto the catalyst and a diminution of 30% of the surface area with respect of the fresh catalyst was observed. An increase in the space time gave higher TOC conversions up to T(r)=0.098 g(Ni) min mL(-1), attaining values of 80% at 180 °C. The performance of TOC and dye removal does not decrease after two regeneration cycles. In total, a 57 h effective reaction has been carried out with no loss of catalytic activity.

  11. Catalytic wet air oxidation of phenol over CeO2-TiO2 catalyst in the batch reactor and the packed-bed reactor.

    PubMed

    Yang, Shaoxia; Zhu, Wanpeng; Wang, Jianbing; Chen, Zhengxiong

    2008-05-30

    CeO2-TiO2 catalysts are prepared by coprecipitation method, and the activity and stability in the catalytic wet air oxidation (CWAO) of phenol are investigated in a batch reactor and packed-bed reactor. CeO2-TiO2 mixed oxides show the higher activity than pure CeO2 and TiO2, and CeO2-TiO2 1/1 catalyst displays the highest activity in the CWAO of phenol. In a batch reactor, COD and TOC removals are about 100% and 77% after 120 min in the CWAO of phenol over CeO2-TiO2 1/1 catalyst at reaction temperature of 150 degrees C, the total pressure of 3 MPa, phenol concentration of 1000 mg/L, and catalyst dosage of 4 g/L. In a packed-bed reactor using CeO2-TiO2 1/1 particle catalyst, over 91% COD and 80% TOC removals are obtained at the reaction temperature of 140 degrees C, the air total pressure of 3.5 MPa, the phenol concentration of 1000 mg/L for 100 h continue reaction. Leaching of metal ions of CeO2-TiO2 1/1 particle catalyst is very low during the continuous reaction. CeO2-TiO2 1/1 catalyst exhibits the excellent activity and stability in the CWAO of phenol.

  12. Microwave assisted catalytic wet air oxidation of H-acid in aqueous solution under the atmospheric pressure using activated carbon as catalyst.

    PubMed

    Zhang, Yaobin; Quan, Xie; Chen, Shuo; Zhao, Yazhi; Yang, Fenglin

    2006-09-01

    Catalytic wet air oxidation (CWAO) is a promising method for the treatment of heavily contaminated wastewater. However, its application is restricted due to severe operation conditions (high pressure and high temperature). A microwave (MW) assisted oxidation method was investigated aiming to treat heavily contaminated wastewater under milder conditions. H-acid (1-amino-8-naphthol-3, 6-disulfonic acid) was selected as target compound to evaluate the performance of this novel process. The removal of H-acid and TOC (total organic carbon) for H-acid solution of 3000 mg/L reached as high as 92.6% in 20 min and 84.2% in 60 min, respectively under optimal conditions. The existence of activated carbon and oxygen proved to be critical for effective treatment. The activated carbon acted not only as a catalyst for H-acid decomposition, but also as a special material for the absorption of MW energy. Air was supplied to the reactor as an oxygen source at constant flows. The amino group in H-acid was converted ultimately into nitrate, and sulfonic group into sulfate. This observation gave an evidence of H-acid mineralization although other organic intermediates were unable to be determined. The value of BOD(5)/COD (ratio of 5d biochemical oxygen demand to chemical oxygen demand) increased from 0.008 to 0.467 indicating a significant improvement of biodegradability for the solution, which is beneficial for the further biological treatment of the wastewater.

  13. Protein resistance of (ethylene oxide)n monolayers at the air/water interface: effects of packing density and chain length.

    PubMed

    Liu, Guangming; Chen, Yijian; Zhang, Guangzhao; Yang, Shihe

    2007-12-14

    Protein adsorption on poly(ethylene oxide) (PEO) and oligo(ethylene oxide) (OEO) monolayers is studied at different packing densities using the Langmuir technique. In the case of a PEO monolayer, a protein adsorption minimum is revealed at sigma(-1) = 10 nm(2) for both lysozyme and fibrinogen. Manifested are two packing density regimes of steric repulsion and compressive attraction between PEO and a protein on top of the overall attraction of the protein to the air/water interface. The observed protein adsorption minimum coincides with the maximum of the surface segment density at sigma(-1) = 10 nm(2). However, OEO monolayer presents a different scenario, namely that the amount of protein adsorbed decreases monotonically with increasing packing density, indicating that the OEO chains merely act as a steric barrier to protein adsorption onto the air/water interface. Besides, in the adsorption of fibrinogen, three distinct kinetic regimes controlled by diffusion, penetration and rearrangement are recognized, whereas only the latter two were made out in the adsorption of lysozyme.

  14. Highly air- and moisture-stable hole-doped carbon nanotube films achieved using boron-based oxidant

    NASA Astrophysics Data System (ADS)

    Funahashi, Kazuma; Tanaka, Naoki; Shoji, Yoshiaki; Imazu, Naoki; Nakayama, Ko; Kanahashi, Kaito; Shirae, Hiroyuki; Noda, Suguru; Ohta, Hiromichi; Fukushima, Takanori; Takenobu, Taishi

    2017-03-01

    Hole doping into carbon nanotubes can be achieved. However, the doped nanotubes usually suffer from the lack of air and moisture stability, thus, they eventually lose their improved electrical properties. Here, we report that a salt of the two-coordinate boron cation Mes2B+ (Mes: 2,4,6-trimethylphenyl group) can serve as an efficient hole-doping reagent to produce nanotubes with markedly high stability in the presence of air and moisture. Upon doping, the resistances of the nanotubes decreased, and these states were maintained for one month in air. The hole-doped nanotube films showed a minimal increase in resistance even upon humidification with a relative humidity of 90%.

  15. Effect excess air as an oxidizer in the flame assisted spray dryer using computational fluid dynamics approach

    NASA Astrophysics Data System (ADS)

    Septiani, Eka Lutfi; Widiyastuti, W.; Nurtono, Tantular; Winardi, Sugeng

    2016-02-01

    The size distribution of silica particles as a model material from colloidal silica solution precursor in the flame assisted spray dryer method were studied numerically using Computational Fluid Dynamics (CFD). CFD has ability to solve the momentum, energy and mass transfer equation well. k-ɛ model was used to describe the turbulence model and non-premixed combustion model was used to combustion model. Collision and break-up model were also considered to predict the final particles size distribution. For validation, LPG with flow rate of 0.5 L/minute LPG and 200% excess air were used as energy sources. At this condition, numerical solution agreed well to the experimental work resulting in polydisperse size distribution. Therefore, others excess air, 100% and 150% were also observed using CFD and evaluated their contribution to their particles size distribution. Monodisperse particles size distribution were obtained when the combustion used 150% excess air.

  16. Simultaneous stripping recovery of ammonia-nitrogen and precipitation of manganese from electrolytic manganese residue by air under calcium oxide assist.

    PubMed

    Chen, Hongliang; Liu, Renlong; Shu, Jiancheng; Li, Wensheng

    2015-01-01

    Leaching tests of electrolytic manganese residue (EMR) indicated that high contents of soluble manganese and ammonia-nitrogen posed a high environmental risk. This work reports the results of simultaneous stripping recovery of ammonia-nitrogen and precipitation of manganese by air under calcium oxide assist. The ammonia-nitrogen stripping rate increased with the dosage of CaO, the air flow rate and the temperature of EMR slurry. Stripped ammonia-nitrogen was absorbed by a solution of sulfuric acid and formed soluble (NH4)2SO4 and (NH4)3H(SO4)3. The major parameters that effected soluble manganese precipitation were the dosage of added CaO and the slurry temperature. Considering these two aspects, the efficient operation conditions should be conducted with 8 wt.% added CaO, 60°C, 800 mL min(-1) air flow rate and 60-min reaction time. Under these conditions 99.99% of the soluble manganese was precipitated as Mn3O4, which was confirmed by XRD and SEM-EDS analyses. In addition, the stripping rate of ammonia-nitrogen was 99.73%. Leaching tests showed the leached toxic substances concentrations of the treated EMR met the integrated wastewater discharge standard of China (GB8978-1996).

  17. Role of Additives in Composite PEI/Oxide CO₂ Adsorbents: Enhancement in the Amine Efficiency of Supported PEI by PEG in CO₂ Capture from Simulated Ambient Air.

    PubMed

    Sakwa-Novak, Miles A; Tan, Shuai; Jones, Christopher W

    2015-11-11

    Supported amines are promising candidate adsorbents for the removal of CO2 from flue gases and directly from ambient air. The incorporation of additives into polymeric amines such as poly(ethylenimine) (PEI) supported on mesoporous oxides is an effective strategy to improve the performance of the materials. Here, several practical aspects of this strategy are addressed with regards to direct air capture. The influence of three additives (CTAB, PEG200, PEG1000) was systematically explored under dry simulated air capture conditions (400 ppm of CO2, 30 °C). With SBA-15 as a model support for poly(ethylenimine) (PEI), the nature of the additive induced heterogeneities in the deposition of organic on the interior and exterior of the particles, an important consideration for future scale up to practical systems. The PEG200 additive increased the observed thermodynamic performance (∼60% increase in amine efficiency) of the adsorbents regardless of the PEI content, while the other molecules had less positive effects. A threshold PEG200/PEI value was identified at which the diffusional limitations of CO2 within the materials were nearly eliminated. The threshold PEG/PEI ratio may have physical origin in the interactions between PEI and PEG, as the optimal ratio corresponded to nearly equimolar OH/reactive (1°, 2°) amine ratios. The strategy is shown to be robust to the characteristics of the host support, as PEG200 improved the amine efficiency of PEI when supported on two varieties of mesoporous γ-alumina with PEI.

  18. Study on the Catalytic Activity of Noble Metal Nanoparticles on Reduced Graphene Oxide for Oxygen Evolution Reactions in Lithium-Air Batteries.

    PubMed

    Jeong, Yo Sub; Park, Jin-Bum; Jung, Hun-Gi; Kim, Jooho; Luo, Xiangyi; Lu, Jun; Curtiss, Larry; Amine, Khalil; Sun, Yang-Kook; Scrosati, Bruno; Lee, Yun Jung

    2015-07-08

    Among many challenges present in Li-air batteries, one of the main reasons of low efficiency is the high charge overpotential due to the slow oxygen evolution reaction (OER). Here, we present systematic evaluation of Pt, Pd, and Ru nanoparticles supported on rGO as OER electrocatalysts in Li-air cell cathodes with LiCF3SO3-tetra(ethylene glycol) dimethyl ether (TEGDME) salt-electrolyte system. All of the noble metals explored could lower the charge overpotentials, and among them, Ru-rGO hybrids exhibited the most stable cycling performance and the lowest charge overpotentials. Role of Ru nanoparticles in boosting oxidation kinetics of the discharge products were investigated. Apparent behavior of Ru nanoparticles was different from the conventional electrocatalysts that lower activation barrier through electron transfer, because the major contribution of Ru nanoparticles in lowering charge overpotential is to control the nature of the discharge products. Ru nanoparticles facilitated thin film-like or nanoparticulate Li2O2 formation during oxygen reduction reaction (ORR), which decomposes at lower potentials during charge, although the conventional role as electrocatalysts during OER cannot be ruled out. Pt-and Pd-rGO hybrids showed fluctuating potential profiles during the cycling. Although Pt- and Pd-rGO decomposed the electrolyte after electrochemical cycling, no electrolyte instability was observed with Ru-rGO hybrids. This study provides the possibility of screening selective electrocatalysts for Li-air cells while maintaining electrolyte stability.

  19. Oxidation of UO 2 fuel pellets in air at 503 and 543 K studied using X-ray photoelectron spectroscopy and X-ray diffraction

    NASA Astrophysics Data System (ADS)

    Tempest, P. A.; Tucker, P. M.; Tyler, J. W.

    1988-02-01

    An understanding of the low temperature oxidation behaviour of UO 2 pellets in air is important in the unlikely event of gas ingress to a fuel can during handling or storage. The main parameter of concern is the production time of U 3O 8 particulate as a function of temperature. Factors which affect the UO2 → U3O8 transformation have been investigated by sequentially oxidising UO 2 fuel pellets in air at 503 and 543 K and monitoring the growth of U 3O and U 3O 7 using X-ray photoelectron spectroscopy, X-ray diffraction and scanning electron microscopy. Initially oxidation proceeded at a linear rate by the inward diffusion of oxygen to form a complete layer of substoichiometric U 3O 7. This phase was tetragonal with a {c}/{a} ratio of 1.015, significantly less than the value of 1.03 measured on UO 2 powder when oxidised under identical conditions. This difference and the preferred orientation exhibited by surface grains were caused by growth stresses induced in the pellet surface. Both intergranular and transgranular cracking occurred and became nucleation sites for the growth of U 3O 8. The linear oxidation period associated with U 3O 7 growth was much shorter at 543 than at 503 K and U 3O 8 nucleated earlier. Spallation and the production of particulate were only observed during the formation of U 3O 8 when a 30% increase in volume arose from the U3O7 → U3O8 phase change.

  20. Characterization of TiC and α-Ti coating on graphite prepared by Powder Immersion Reaction Assisted Coating (PIRAC) Oxidized at 1000°C in Air

    NASA Astrophysics Data System (ADS)

    Wati, F. A. R.; Agustinawati, D.; Muhaimin, N.; Suasmoro, S.

    2016-08-01

    Study of the formation of TiC and α-Ti coating on graphite has been successfully carried out by means PIRAC method. Graphite blocks were immersed into a mixed of titanium powder containing 4 wt% iodine and then proceed at 1000°C for 10 hours in argon atmosphere. Two different treatment of graphite blocks were carried out; with and without dispersion ZrO2 in the graphite surface before heat treatment. Characterizations of coated surface were include X-ray diffraction for phase and crystalline analysis, SEM and EDX analysis to determine the topography and distribution of elements in coated film. For sample without ZrO2, as a result of interaction between titanium and graphite, carbon diffusion occurred and TiC coated film were formed. Whereas sample with the dispersant of ZrO2 on the graphite surface caused diffusion of carbon into the titanium did not occur, as a result α-Ti were formed. Oxidation test at 1000°C in air showed that TiC and α-Ti coated film underwent oxidation. In both cases TiO2 was observed as a results of oxidation.

  1. Formation of gas-phase carbonyls from heterogeneous oxidation of polyunsaturated fatty acids at the air-water interface and of the sea surface microlayer

    NASA Astrophysics Data System (ADS)

    Zhou, S.; Gonzalez, L.; Leithead, A.; Finewax, Z.; Thalman, R.; Vlasenko, A.; Vagle, S.; Miller, L. A.; Li, S.-M.; Bureekul, S.; Furutani, H.; Uematsu, M.; Volkamer, R.; Abbatt, J.

    2014-02-01

    Motivated by the potential for reactive heterogeneous chemistry occurring at the ocean surface, gas-phase products were observed when a reactive sea surface microlayer (SML) component, i.e. the polyunsaturated fatty acids (PUFA) linoleic acid (LA), was exposed to gas-phase ozone at the air-seawater interface. Similar oxidation experiments were conducted with SML samples collected from two different oceanic locations, in the eastern equatorial Pacific Ocean and from the west coast of Canada. Online proton-transfer-reaction mass spectrometry (PTR-MS) University of Colorado light-emitting diode cavity-enhanced differential optical absorption spectroscopy (LED-CE-DOAS) were used to detect oxygenated gas-phase products from the ozonolysis reactions. The LA studies indicate that oxidation of a PUFA monolayer on seawater gives rise to prompt and efficient formation of gas-phase aldehydes. The products are formed via the decomposition of primary ozonides which form upon the initial reaction of ozone with the carbon-carbon double bonds in the PUFA molecules. In addition, two highly reactive dicarbonyls, malondialdehyde (MDA) and glyoxal, were also generated, likely as secondary products. Specific yields relative to reactant loss were 78%, 29%, 4% and < 1% for n-hexanal, 3-nonenal, MDA and glyoxal, respectively, where the yields for MDA and glyoxal are likely lower limits. Heterogeneous oxidation of SML samples confirm for the first time that similar carbonyl products are formed via ozonolysis of environmental samples.

  2. Speciation and fate of trace metals in estuarine sediments under reduced and oxidized conditions, Seaplane Lagoon, Alameda Naval Air Station (USA)

    PubMed Central

    Carroll, Susan; O'Day, Peggy A; Esser, Brad; Randall, Simon

    2002-01-01

    We have identified important chemical reactions that control the fate of metal-contaminated estuarine sediments if they are left undisturbed (in situ) or if they are dredged. We combined information on the molecular bonding of metals in solids from X-ray absorption spectroscopy (XAS) with thermodynamic and kinetic driving forces obtained from dissolved metal concentrations to deduce the dominant reactions under reduced and oxidized conditions. We evaluated the in situ geochemistry of metals (cadmium, chromium, iron, lead, manganese and zinc) as a function of sediment depth (to 100 cm) from a 60 year record of contamination at the Alameda Naval Air Station, California. Results from XAS and thermodynamic modeling of porewaters show that cadmium and most of the zinc form stable sulfide phases, and that lead and chromium are associated with stable carbonate, phosphate, phyllosilicate, or oxide minerals. Therefore, there is minimal risk associated with the release of these trace metals from the deeper sediments contaminated prior to the Clean Water Act (1975) as long as reducing conditions are maintained. Increased concentrations of dissolved metals with depth were indicative of the formation of metal HS- complexes. The sediments also contain zinc, chromium, and manganese associated with detrital iron-rich phyllosilicates and/or oxides. These phases are recalcitrant at near-neutral pH and do not undergo reductive dissolution within the 60 year depositional history of sediments at this site. The fate of these metals during dredging was evaluated by comparing in situ geochemistry with that of sediments oxidized by seawater in laboratory experiments. Cadmium and zinc pose the greatest hazard from dredging because their sulfides were highly reactive in seawater. However, their dissolved concentrations under oxic conditions were limited eventually by sorption to or co-precipitation with an iron (oxy)hydroxide. About 50% of the reacted CdS and 80% of the reacted ZnS were

  3. Air quality at Santiago, Chile: a box modeling approach—I. Carbon monoxide, nitrogen oxides and sulfur dioxide

    NASA Astrophysics Data System (ADS)

    Jorquera, Héctor

    Ambient monitored data at Santiago, Chile, are analyzed using box models with the goal of assessing contributions of different economic activities to air pollution levels. The period analyzed is 1990-2000, characterized by the introduction of air pollution emissions standards, shift to unleaded gasoline and compressed natural gas, and steady growth of the private and public fleet and the associated fuel consumption growth. The box models explicitly include the seasonal behavior of meteorological variables; the results show that dispersion conditions in fall and winter seasons are 20-30% of the summertime values. This result explains the poor air quality in those seasons and shows that significant emissions reductions are required in order to improve air quality in wintertime. Emissions of CO, NO x and SO 2 are estimated from data on fuel consumption in the city; the estimated parameters are thus fleet-average or industry-average emission factors. In terms of contributions to ambient concentrations, older cars and diesel vehicles are the major contributors to CO and NO x impacts, with more than 60% and 50%, respectively. Ambient concentrations of SO 2 are largely dominated by stationary sources, although long range contributions are not negligible. By contrast, CO and NO x pollution is dominated by local sources within the city boundaries. The box models can be used for forecasting purposes, and they can predict annual average concentrations within 20% of the observed values. The methodology requires data on ambient air quality measurements and fuel consumption statistics, and produces quantitative results, which can be combined with economic models to analyze environmental regulation and public policies.

  4. Stability of passivated 316L stainless steel oxide films for cardiovascular stents.

    PubMed

    Shih, Chun-Che; Shih, Chun-Ming; Chou, Kuang-Yi; Lin, Shing-Jong; Su, Yea-Yang

    2007-03-15

    Passivated 316L stainless steel is used extensively in cardiovascular stents. The degree of chloride ion attack might increase as the oxide film on the implant degrades from exposure to physiological fluid. Stability of 316L stainless steel stent is a function of the concentration of hydrated and hydrolyated oxide concentration inside the passivated film. A high concentration of hydrated and hydrolyated oxide inside the passivated oxide film is required to maintain the integrity of the passivated oxide film, reduce the chance of chloride ion attack, and prevent any possible leaching of positively charged ions into the surrounding tissue that accelerate the inflammatory process. Leaching of metallic ions from corroded implant surface into surrounding tissue was confirmed by the X-ray mapping technique. The degree of thrombi weight percentage [W(ao): (2.1 +/- 0.9)%; W(ep): (12.5 +/- 4.9)%, p < 0.01] between the amorphous oxide (AO) and the electropolishing (EP) treatment groups was statistically significant in ex-vivo extracorporeal thrombosis experiment of mongrel dog. The thickness of neointima (T(ao): 100 +/- 20 microm; T(ep): 500 +/- 150 microm, p < 0.01) and the area ratio of intimal response at 4 weeks (AR(ao): 0.62 +/- 0.22; AR(ep): 1.15 +/- 0.42, p < 0.001) on the implanted iliac stents of New Zealand rabbit could be a function of the oxide properties.

  5. Effects of thermal cycling and thermal aging on the hermeticity and strength of silver-copper oxide air-brazed seals

    NASA Astrophysics Data System (ADS)

    Scott Weil, K.; Coyle, Christopher A.; Darsell, Jens T.; Xia, Gordon G.; Hardy, John S.

    Thermal cycle and exposure tests were conducted on ceramic-to-metal joints prepared by a new sealing technique. Known as reactive air brazing, this joining method is currently being considered for use in sealing various high-temperature solid-state electrochemical devices, including planar solid oxide fuel cells (pSOFC). In order to simulate a typical pSOFC application, test specimens were prepared by joining ceramic anode/electrolyte bilayers to metal washers, of the same composition as the common frame materials employed in pSOFC stacks, using a filler metal composed of 4 mol% CuO in silver. The brazed samples were exposure tested at 750 °C for 200, 400, and 800 h in both simulated fuel and air environments and thermally cycled at rapid rate (75 °C min -1) between room temperature and 750 °C for as many as 50 cycles. Subsequent joint strength testing and microstructural analysis indicated that the samples exposure tested in air displayed little degradation with respect to strength, hermeticity, or microstructure out to 800 h of exposure. Those tested in fuel showed no change in rupture strength or loss in hermeticity after 800 h of high-temperature exposure, but did undergo microstructural change due to the dissolution of hydrogen into the silver-based braze material. Air-brazed specimens subjected to rapid thermal cycling exhibited no loss in joint strength or hermeticity, but displayed initial signs of seal delamination along the braze-electrolyte interface after 50 cycles.

  6. Real-time measurements of secondary organic aerosol formation and aging from ambient air in an oxidation flow reactor in the Los Angeles area

    SciTech Connect

    Ortega, Amber M.; Hayes, Patrick L.; Peng, Zhe; Palm, Brett B.; Hu, Weiwei; Day, Douglas A.; Li, Rui; Cubison, Michael J.; Brune, William H.; Graus, Martin; Warneke, Carsten; Gilman, Jessica B.; Kuster, William C.; de Gouw, Joost; Gutierrez-Montes, Candido; Jimenez, Jose L.

    2016-06-15

    Field studies in polluted areas over the last decade have observed large formation of secondary organic aerosol (SOA) that is often poorly captured by models. The study of SOA formation using ambient data is often confounded by the effects of advection, vertical mixing, emissions, and variable degrees of photochemical aging. An oxidation flow reactor (OFR) was deployed to study SOA formation in real-time during the California Research at the Nexus of Air Quality and Climate Change (CalNex) campaign in Pasadena, CA, in 2010. A high-resolution aerosol mass spectrometer (AMS) and a scanning mobility particle sizer (SMPS) alternated sampling ambient and reactor-aged air. The reactor produced OH concentrations up to 4 orders of magnitude higher than in ambient air. OH radical concentration was continuously stepped, achieving equivalent atmospheric aging of 0.8 days–6.4 weeks in 3 min of processing every 2 h. Enhancement of organic aerosol (OA) from aging showed a maximum net SOA production between 0.8–6 days of aging with net OA mass loss beyond 2 weeks. Reactor SOA mass peaked at night, in the absence of ambient photochemistry and correlated with trimethylbenzene concentrations. Reactor SOA formation was inversely correlated with ambient SOA and Ox, which along with the short-lived volatile organic compound correlation, indicates the importance of very reactive (τOH ~ 0.3 day) SOA precursors (most likely semivolatile and intermediate volatility species, S/IVOCs) in the Greater Los Angeles Area. Evolution of the elemental composition in the reactor was similar to trends observed in the atmosphere (O : C vs. H : C slope ~ –0.65). Oxidation state of carbon (OSc) in reactor SOA increased steeply with age and remained elevated (OSC ~ 2) at the highest photochemical ages probed. The ratio of OA in the reactor output to excess CO (ΔCO, ambient CO above regional background) vs. photochemical age is similar to

  7. Real-time measurements of secondary organic aerosol formation and aging from ambient air in an oxidation flow reactor in the Los Angeles area

    DOE PAGES

    Ortega, Amber M.; Hayes, Patrick L.; Peng, Zhe; ...

    2016-06-15

    Field studies in polluted areas over the last decade have observed large formation of secondary organic aerosol (SOA) that is often poorly captured by models. The study of SOA formation using ambient data is often confounded by the effects of advection, vertical mixing, emissions, and variable degrees of photochemical aging. An oxidation flow reactor (OFR) was deployed to study SOA formation in real-time during the California Research at the Nexus of Air Quality and Climate Change (CalNex) campaign in Pasadena, CA, in 2010. A high-resolution aerosol mass spectrometer (AMS) and a scanning mobility particle sizer (SMPS) alternated sampling ambient andmore » reactor-aged air. The reactor produced OH concentrations up to 4 orders of magnitude higher than in ambient air. OH radical concentration was continuously stepped, achieving equivalent atmospheric aging of 0.8 days–6.4 weeks in 3 min of processing every 2 h. Enhancement of organic aerosol (OA) from aging showed a maximum net SOA production between 0.8–6 days of aging with net OA mass loss beyond 2 weeks. Reactor SOA mass peaked at night, in the absence of ambient photochemistry and correlated with trimethylbenzene concentrations. Reactor SOA formation was inversely correlated with ambient SOA and Ox, which along with the short-lived volatile organic compound correlation, indicates the importance of very reactive (τOH ~ 0.3 day) SOA precursors (most likely semivolatile and intermediate volatility species, S/IVOCs) in the Greater Los Angeles Area. Evolution of the elemental composition in the reactor was similar to trends observed in the atmosphere (O : C vs. H : C slope ~ –0.65). Oxidation state of carbon (OSc) in reactor SOA increased steeply with age and remained elevated (OSC ~ 2) at the highest photochemical ages probed. The ratio of OA in the reactor output to excess CO (ΔCO, ambient CO above regional background) vs. photochemical age is similar to previous studies at low to moderate ages and

  8. Real-time measurements of secondary organic aerosol formation and aging from ambient air in an oxidation flow reactor in the Los Angeles area

    NASA Astrophysics Data System (ADS)

    Ortega, Amber M.; Hayes, Patrick L.; Peng, Zhe; Palm, Brett B.; Hu, Weiwei; Day, Douglas A.; Li, Rui; Cubison, Michael J.; Brune, William H.; Graus, Martin; Warneke, Carsten; Gilman, Jessica B.; Kuster, William C.; de Gouw, Joost; Gutiérrez-Montes, Cándido; Jimenez, Jose L.

    2016-06-01

    Field studies in polluted areas over the last decade have observed large formation of secondary organic aerosol (SOA) that is often poorly captured by models. The study of SOA formation using ambient data is often confounded by the effects of advection, vertical mixing, emissions, and variable degrees of photochemical aging. An oxidation flow reactor (OFR) was deployed to study SOA formation in real-time during the California Research at the Nexus of Air Quality and Climate Change (CalNex) campaign in Pasadena, CA, in 2010. A high-resolution aerosol mass spectrometer (AMS) and a scanning mobility particle sizer (SMPS) alternated sampling ambient and reactor-aged air. The reactor produced OH concentrations up to 4 orders of magnitude higher than in ambient air. OH radical concentration was continuously stepped, achieving equivalent atmospheric aging of 0.8 days-6.4 weeks in 3 min of processing every 2 h. Enhancement of organic aerosol (OA) from aging showed a maximum net SOA production between 0.8-6 days of aging with net OA mass loss beyond 2 weeks. Reactor SOA mass peaked at night, in the absence of ambient photochemistry and correlated with trimethylbenzene concentrations. Reactor SOA formation was inversely correlated with ambient SOA and Ox, which along with the short-lived volatile organic compound correlation, indicates the importance of very reactive (τOH ˜ 0.3 day) SOA precursors (most likely semivolatile and intermediate volatility species, S/IVOCs) in the Greater Los Angeles Area. Evolution of the elemental composition in the reactor was similar to trends observed in the atmosphere (O : C vs. H : C slope ˜ -0.65). Oxidation state of carbon (OSc) in reactor SOA increased steeply with age and remained elevated (OSC ˜ 2) at the highest photochemical ages probed. The ratio of OA in the reactor output to excess CO (ΔCO, ambient CO above regional background) vs. photochemical age is similar to previous studies at low to moderate ages and also extends to

  9. /Air Atmospheres

    NASA Astrophysics Data System (ADS)

    Emami, Samar; Sohn, Hong Yong; Kim, Hang Goo

    2014-08-01

    Molten magnesium oxidizes rapidly when exposed to air causing melt loss and handling difficulties. The use of certain additive gases such as SF6, SO2, and CO2 to form a protective MgO layer over a magnesium melt has been proposed. The oxidation behavior of molten magnesium in air containing various concentrations of SF6 was investigated. Measurements of the kinetics of the oxide layer growth at various SF6 concentrations in air and temperatures were made. Experiments were performed using a thermogravimetric analysis unit in the temperature range of 943 K to 1043 K (670 °C to 770 °C). Results showed that a thin, coherent, and protective MgF2 layer was formed under SF6/Air mixtures, with a thickness ranging from 300 nm to 3 μm depending on SF6 concentration, temperature, and exposure time. Rate parameters were calculated and a model for the process was developed. The morphology and composition of the surface films were studied using scanning electron microscope and energy-dispersive spectroscope.

  10. Highlights from Faraday Discussion 182: Solid Oxide Electrolysis: Fuels and Feedstocks from Water and Air, York, UK, July 2015.

    PubMed

    Stefan, Elena; Norby, Truls

    2016-01-31

    The rising importance of converting high peak electricity from renewables to fuels has urged field specialists to organize this Faraday Discussion on Solid Oxide Electrolysis. The topic is of essential interest in order to achieve a greater utilization of renewable energy and storage at higher densities.

  11. Regional Air Quality Model Application of the Aqueous-Phase Photo Reduction of Atmospheric Oxidized Mercury by Dicarboxylic Acids

    EPA Science Inventory

    In most ecosystems, atmospheric deposition is the primary input of mercury. The total wet deposition of mercury in atmospheric chemistry models is sensitive to parameterization of the aqueous-phase reduction of divalent oxidized mercury (Hg2+). However, most atmospheric chemistry...

  12. Smoking and Cerebral Oxidative Stress and Air Pollution: A Dreadful Equation with Particulate Matter Involved and One More Powerful Reason Not to Smoke Anything!

    PubMed

    Calderón-Garcidueñas, Lilian

    2016-07-22

    Smoking has serious health effects. Cigarettes, including tobacco, marijuana, and electronic nicotine delivery systems are very effective ways to inhale harmful amounts of fine and ultrafine particulate matter. Does size matter? Yes, indeed! The smaller the particle you inhale, the higher the ability to produce reactive oxygen species and to readily access the brain. In this issue of the Journal of Alzheimer's Disease, Durazzo provides evidence of an association between active cigarette tobacco smoking in cognitively-normal elders and increased cerebral oxidative stress, while in actively smoking Alzheimer's disease (AD) patients, the association was also seen with smaller left and total hippocampal volumes. This paper has highly relevant results of interest across the US and the world because millions of people are active smokers and they have other genetic and environmental risk factors that could play a key role in the development/worsening of brain oxidative stress and neurodegeneration. Smoking basically anything producing aerosols with particulate matter in the fine and ultrafine size range is detrimental to your brain. Marijuana and e-cigarette use has grown steadily among adolescents and young adults. Smoking-related cerebral oxidative stress is a potential mechanism promoting AD pathology and increased risk for AD. Current knowledge also relates fine and ultrafine particles exposures influencing neurodevelopmental processes in utero. The results from Durazzo et al. should be put in a broader context, a context that includes evaluating the oxidative stress of nano-aerosols associated with cigarette emissions and their synergistic effects with air pollution exposures. AD is expected to increase in the US threefold by the year 2050, and some of these future AD patients are smoking and vaping right now. Understanding the impact of everyday exposures to long-term harmful consequences for brain health is imperative.

  13. Nitric oxide formation in a lean, premixed-prevaporized jet A/air flame tube: An experimental and analytical study

    NASA Technical Reports Server (NTRS)

    Lee, Chi-Ming; Bianco, Jean; Deur, John M.; Ghorashi, Bahman

    1992-01-01

    An experimental and analytical study was performed on a lean, premixed-prevaporized Jet A/air flame tube. The NO(x) emissions were measured in a flame tube apparatus at inlet temperatures ranging from 755 to 866 K (900 to 1100 F), pressures from 10 to 15 atm, and equivalence ratios from 0.37 to 0.62. The data were then used in regressing an equation to predict the NO(x) production levels in combustors of similar design. Through an evaluation of parameters it was found that NO(x) is dependent on adiabatic flame temperature and combustion residence time, yet independent of pressure and inlet air temperature for the range of conditions studied. This equation was then applied to experimental data that were obtained from the literature, and a good correlation was achieved.

  14. Air Pollution, Causes and Cures.

    ERIC Educational Resources Information Center

    Manufacturing Chemists Association, Washington, DC.

    This commentary on sources of air pollution and air purification treatments is accompanied by graphic illustrations. Sources of carbon monoxide, sulfur oxides, nitrogen oxides, and hydrocarbons found in the air are discussed. Methods of removing these pollutants at their source are presented with cut-away diagrams of the facilities and technical…

  15. The effects of selected air pollutants on clearance of titanic oxide particles from the lungs of rats.

    PubMed

    Ferin, J; Leach, L J

    1975-09-01

    A procedure utilizing the lung clearance kinetics of titanic oxide (TiO2) particles was used to determine the effects of inhaled sulphur dioxide (SO2) and nitrogen oxides (NO x) on particle clearance. The procedure is reproducible and mainly tests clearance mechanisms involving alveolar macrophages and the mucociliary transport system at the alveolobronchial clearance pathway. At low SO2 or NOx exposures enhanced particle clearance was observed. Lung clearance was depressed at 15 and 24 ppm of NO2 after 22 exposures as well as at 20 ppm of SO2 after 11 exposures, and also at 1 ppm of SO2 after 25 exposures. Dose-response curves for the SO2 and NOx exposures showed differences explainable by the routes by which these gases reach the alveolar macrophages.

  16. [Catalytic stability in wet air oxidation of carboxylic acids over ZnFe0.25Al1.75 O4 catalyst].

    PubMed

    Xu, Ai-hua; Yang, Min; Du, Hong-zhang; Peng, Fu-yong; Sun, Cheng-lin

    2007-07-01

    Oxalic, formic and acetic acid are main intermediate products in catalytic wet air oxidation process (CWAO). The catalytic activity and stability in CWAO of the three short-chain organic acids over ZnFe0.25Al1.75O4 catalyst were studied. Oxalic acid is the only oxidizable intermediate and the largest amount of Fe leaching is 9.5 mg L(-1) at 160 degrees C during CWAO process. Formic and acetic acid have little influence on Fe leaching. Due to the strong reducible ability of oxalic acid, the amount of Fe leaching is larger in nitrogen atmosphere than that in oxygen atmosphere. Salicylic acid can be also degraded by ZnFe0.25Al1.75O4 catalyst with a high catalytic activity and stability.

  17. A high-fidelity multiphysics model for the new solid oxide iron-air redox battery. part I: Bridging mass transport and charge transfer with redox cycle kinetics

    NASA Astrophysics Data System (ADS)

    Jin, Xinfang; Zhao, Xuan; Huang, Kevin

    2015-04-01

    A high-fidelity two-dimensional axial symmetrical multi-physics model is described in this paper as an effort to simulate the cycle performance of a recently discovered solid oxide metal-air redox battery (SOMARB). The model collectively considers mass transport, charge transfer and chemical redox cycle kinetics occurring across the components of the battery, and is validated by experimental data obtained from independent research. In particular, the redox kinetics at the energy storage unit is well represented by Johnson-Mehl-Avrami-Kolmogorov (JMAK) and Shrinking Core models. The results explicitly show that the reduction of Fe3O4 during the charging cycle limits the overall performance. Distributions of electrode potential, overpotential, Nernst potential, and H2/H2O-concentration across various components of the battery are also systematically investigated.

  18. A high-fidelity multiphysics model for the new solid oxide iron-air redox battery part I: Bridging mass transport and charge transfer with redox cycle kinetics

    SciTech Connect

    Jin, XF; Zhao, X; Huang, K

    2015-04-15

    A high-fidelity two-dimensional axial symmetrical multi-physics model is described in this paper as an effort to simulate the cycle performance of a recently discovered solid oxide metal-air redox battery (SOMARB). The model collectively considers mass transport, charge transfer and chemical redox cycle kinetics occurring across the components of the battery, and is validated by experimental data obtained from independent research. In particular, the redox kinetics at the energy storage unit is well represented by Johnson-Mehl-Avrami-Kolmogorov (JIVIAK) and Shrinking Core models. The results explicitly show that the reduction of Fe3O4 during the charging cycle limits the overall performance. Distributions of electrode potential, overpotential, Nernst potential, and H-2/H2O-concentration across various components of the battery are also systematically investigated. (C) 2015 Elsevier B.V. All rights reserved.

  19. 129Xe nuclear magnetic resonance study of pitch-based activated carbon modified by air oxidation/pyrolysis cycles: a new approach to probe the micropore size.

    PubMed

    Romanenko, Konstantin V; Py, Xavier; d'Espinose de Lacaillerie, Jean-Baptiste; Lapina, Olga B; Fraissard, Jacques

    2006-02-23

    (129)Xe NMR has been used to study a series of homologous activated carbons obtained from a KOH-activated pitch-based carbon molecular sieve modified by air oxidation/pyrolysis cycles. A clear correlation between the pore size of microporous carbons and the (129)Xe NMR of adsorbed xenon is proposed for the first time. The virial coefficient delta(Xe)(-)(Xe) arising from binary xenon collisions varied linearly with the micropore size and appeared to be a better probe of the microporosity than the chemical shift extrapolated to zero pressure. This correlation was explained by the fact that the xenon collision frequency increases with increasing micropore size. The chemical shift has been shown to vary very little with temperature (less than 9 ppm) for xenon trapped inside narrow and wide micropores. This is indicative of a smooth xenon-surface interaction potential.

  20. Emissions of Nitrogen Oxides from the Testing of F404-GE-400 Engines at Naval Air Station, Lemoore, California

    DTIC Science & Technology

    1985-07-01

    Tables IV and V, NAPC-LR-81-10 F404-GE-400 Run Sheets, 8 March to 26 April 1985 APPENDIX B The Use of a Small Programmable Calculator for Estimation of...small programmable calculator to establish emission indexes and to estimate the amounts of nitrogen oxides produced during engine testing. 2. EMISSION...preparing this report, we used an HP-41CV programmable calculator . Appendix B explains how to use this calculator and gives the programs used to make

  1. Characterization of Rio Blanco retort 1 water following treatment by lime-soda softening and reverse osmosis; Residual brine treated by wet-air oxidation

    SciTech Connect

    Kocornik, D.; Renk, R.

    1986-09-01

    Laboratory research has been conducted to evaluate the chemical, physical, and toxicological characteristics of treated and untreated water pumped from the flooded modified in situ retort at lease tract C-a. This wastewater had a total dissolved solids (TDS) content of about 5450 mg/L and a total organic carbon content of about 16 mg/L. Wet chemical analyses, metals analyses, particle-size analyses, and MICROTOX assays were performed on the wastewater before and after treatment by lime-soda softening and reverse osmosis. The reverse osmosis membrane used in this research was a Filmtec model SW30-2521 spiral-wound polyamide unit. In a short duration test at a TDS of 21,800 mg/L, the reverse osmosis system successfully removed dissolved solids and organics from the wastewater. The water was also much less toxic to the MICROTOX organism after treatment by reverse osmosis. Membrane fouling was observed when water with a TDS of 54,500 mg/L was treated. Treatment of the reverse osmosis residual brine was attempted by subcritical wet-air oxidation. The brine remaining after the 170-hour test on the water with a TDS of 5450 mg/L was subjected to temperatures ranging from 204/sup 0/C (400/sup 0/F) to 315/sup 0/C (600/sup 0/F) and pressures from 500 to 1600 psig for approximately 30 minutes. The waste treated by the higher temperatures and pressures showed good removals of organics, nitrogen compounds, and some metals. The sample treated at 302/sup 0/C (575/sup 0/F) and 1300 psi was assayed for MICROTOX response and no toxicity was measured. The reverse osmosis brine was significantly toxic to the MICROTOX organism before treatment by subcritical wet-air oxidation. 14 refs., 8 figs., 14 tabs.

  2. Comparing universal kriging and land-use regression for predicting concentrations of gaseous oxides of nitrogen (NOx) for the Multi-Ethnic Study of Atherosclerosis and Air Pollution (MESA Air).

    PubMed

    Mercer, Laina D; Szpiro, Adam A; Sheppard, Lianne; Lindström, Johan; Adar, Sara D; Allen, Ryan W; Avol, Edward L; Oron, Assaf P; Larson, Timothy; Liu, L-J Sally; Kaufman, Joel D

    2011-08-01

    BACKGROUND: Epidemiological studies that assess the health effects of long-term exposure to ambient air pollution are used to inform public policy. These studies rely on exposure models that use data collected from pollution monitoring sites to predict exposures at subject locations. Land use regression (LUR) and universal kriging (UK) have been suggested as potential prediction methods. We evaluate these approaches on a dataset including measurements from three seasons in Los Angeles, CA. METHODS: The measurements of gaseous oxides of nitrogen (NOx) used in this study are from a "snapshot" sampling campaign that is part of the Multi-Ethnic Study of Atherosclerosis and Air Pollution (MESA Air). The measurements in Los Angeles were collected during three two-week periods in the summer, autumn, and winter, each with about 150 sites. The design included clusters of monitors on either side of busy roads to capture near-field gradients of traffic-related pollution. LUR and UK prediction models were created using geographic information system (GIS)-based covariates. Selection of covariates was based on 10-fold cross-validated (CV) R(2) and root mean square error (RMSE). Since UK requires specialized software, a computationally simpler two-step procedure was also employed to approximate fitting the UK model using readily available regression and GIS software. RESULTS: UK models consistently performed as well as or better than the analogous LUR models. The best CV R(2) values for season-specific UK models predicting log(NOx) were 0.75, 0.72, and 0.74 (CV RMSE 0.20, 0.17, and 0.15) for summer, autumn, and winter, respectively. The best CV R(2) values for season-specific LUR models predicting log(NOx) were 0.74, 0.60, and 0.67 (CV RMSE 0.20, 0.20, and 0.17). The two-stage approximation to UK also performed better than LUR and nearly as well as the full UK model with CV R(2) values 0.75, 0.70, and 0.70 (CV RMSE 0.20, 0.17, and 0.17) for summer, autumn, and winter

  3. Comparing universal kriging and land-use regression for predicting concentrations of gaseous oxides of nitrogen (NOx) for the Multi-Ethnic Study of Atherosclerosis and Air Pollution (MESA Air)

    PubMed Central

    Mercer, Laina D; Szpiro, Adam A; Sheppard, Lianne; Lindström, Johan; Adar, Sara D; Allen, Ryan W; Avol, Edward L; Oron, Assaf P; Larson, Timothy; Liu, L-J Sally; Kaufman, Joel D

    2011-01-01

    Background Epidemiological studies that assess the health effects of long-term exposure to ambient air pollution are used to inform public policy. These studies rely on exposure models that use data collected from pollution monitoring sites to predict exposures at subject locations. Land use regression (LUR) and universal kriging (UK) have been suggested as potential prediction methods. We evaluate these approaches on a dataset including measurements from three seasons in Los Angeles, CA. Methods The measurements of gaseous oxides of nitrogen (NOx) used in this study are from a “snapshot” sampling campaign that is part of the Multi-Ethnic Study of Atherosclerosis and Air Pollution (MESA Air). The measurements in Los Angeles were collected during three two-week periods in the summer, autumn, and winter, each with about 150 sites. The design included clusters of monitors on either side of busy roads to capture near-field gradients of traffic-related pollution. LUR and UK prediction models were created using geographic information system (GIS)-based covariates. Selection of covariates was based on 10-fold cross-validated (CV) R2 and root mean square error (RMSE). Since UK requires specialized software, a computationally simpler two-step procedure was also employed to approximate fitting the UK model using readily available regression and GIS software. Results UK models consistently performed as well as or better than the analogous LUR models. The best CV R2 values for season-specific UK models predicting log(NOx) were 0.75, 0.72, and 0.74 (CV RMSE 0.20, 0.17, and 0.15) for summer, autumn, and winter, respectively. The best CV R2 values for season-specific LUR models predicting log(NOx) were 0.74, 0.60, and 0.67 (CV RMSE 0.20, 0.20, and 0.17). The two-stage approximation to UK also performed better than LUR and nearly as well as the full UK model with CV R2 values 0.75, 0.70, and 0.70 (CV RMSE 0.20, 0.17, and 0.17) for summer, autumn, and winter, respectively

  4. Nickel cobalt oxide/carbon nanotubes hybrid as a high-performance electrocatalyst for metal/air battery

    NASA Astrophysics Data System (ADS)

    Zhang, Hui; Qiao, Hang; Wang, Haiyan; Zhou, Nan; Chen, Jiajie; Tang, Yougen; Li, Jingsha; Huang, Chenghuan

    2014-08-01

    High-performance, low cost catalyst for oxygen reduction reaction (ORR) remains a big challenge. Herein, nanostructured NiCo2O4/CNTs hybrid was proposed as a high-performance catalyst for metal/air battery for the first time. The well-formed NiCo2O4/CNTs hybrid was studied by steady-state linear polarization curves and galvanostatic discharge curves in comparison with CNTs-free NiCo2O4 and commercial carbon-supported Pt. Because of the synergistic effect, NiCo2O4/CNTs hybrid exhibited significant improvement of catalytic performance in comparison with NiCo2O4 or CNTs alone, even outperforming Pt/C hybrid in ORR process. In addition, the benefits of Ni incorporation were demonstrated by the improved catalytic performance of NiCo2O4/CNTs compared to Co3O4/CNTs, which should be attributed to improved electrical conductivity and new, highly efficient, active sites created by Ni cation incorporation into the spinel structure. NiCo2O4/CNTs hybrid could be used as a promising catalyst for high power metal/air battery.High-performance, low cost catalyst for oxygen reduction reaction (ORR) remains a big challenge. Herein, nanostructured NiCo2O4/CNTs hybrid was proposed as a high-performance catalyst for metal/air battery for the first time. The well-formed NiCo2O4/CNTs hybrid was studied by steady-state linear polarization curves and galvanostatic discharge curves in comparison with CNTs-free NiCo2O4 and commercial carbon-supported Pt. Because of the synergistic effect, NiCo2O4/CNTs hybrid exhibited significant improvement of catalytic performance in comparison with NiCo2O4 or CNTs alone, even outperforming Pt/C hybrid in ORR process. In addition, the benefits of Ni incorporation were demonstrated by the improved catalytic performance of NiCo2O4/CNTs compared to Co3O4/CNTs, which should be attributed to improved electrical conductivity and new, highly efficient, active sites created by Ni cation incorporation into the spinel structure. NiCo2O4/CNTs hybrid could be used as a

  5. Health effects from the inhalation of oxidant air pollutants as related to the immune system. Final report. Research report

    SciTech Connect

    Osebold, J.W.; Zee, Y.C.

    1985-07-01

    The investigations dealt with links between ozone inhalation and lung diseases. Mice exposed to ozone both continuously and intermittently in four-day cycles showed allergic sensitization to the test antigen (ovalbumin) when compaired to mice maintained in ambeint air. An adjuvant (inactivated Bordetella pertussis cells) administered to mice augmented the immunological response to the test antigen with periodic exposure to ozone. Guinea pigs were tested for allergic sensitization from ozone exposure similar to human asthma, but this trial was not definitive. Ozone inhalation reduced the severity of pneumonia in mice from influenza virus infection, even when ozone and virus exposures were timed to produce maximal edema in the lung.

  6. Simplified Two-Time Step Method for Calculating Combustion Rates and Nitrogen Oxide Emissions for Hydrogen/Air and Hydorgen/Oxygen

    NASA Technical Reports Server (NTRS)

    Molnar, Melissa; Marek, C. John

    2005-01-01

    A simplified single rate expression for hydrogen combustion and nitrogen oxide production was developed. Detailed kinetics are predicted for the chemical kinetic times using the complete chemical mechanism over the entire operating space. These times are then correlated to the reactor conditions using an exponential fit. Simple first order reaction expressions are then used to find the conversion in the reactor. The method uses a two-time step kinetic scheme. The first time averaged step is used at the initial times with smaller water concentrations. This gives the average chemical kinetic time as a function of initial overall fuel air ratio, temperature, and pressure. The second instantaneous step is used at higher water concentrations (> 1 x 10(exp -20) moles/cc) in the mixture which gives the chemical kinetic time as a function of the instantaneous fuel and water mole concentrations, pressure and temperature (T4). The simple correlations are then compared to the turbulent mixing times to determine the limiting properties of the reaction. The NASA Glenn GLSENS kinetics code calculates the reaction rates and rate constants for each species in a kinetic scheme for finite kinetic rates. These reaction rates are used to calculate the necessary chemical kinetic times. This time is regressed over the complete initial conditions using the Excel regression routine. Chemical kinetic time equations for H2 and NOx are obtained for H2/air fuel and for the H2/O2. A similar correlation is also developed using data from NASA s Chemical Equilibrium Applications (CEA) code to determine the equilibrium temperature (T4) as a function of overall fuel/air ratio, pressure and initial temperature (T3). High values of the regression coefficient R2 are obtained.

  7. Summary of Simplified Two Time Step Method for Calculating Combustion Rates and Nitrogen Oxide Emissions for Hydrogen/Air and Hydrogen/Oxygen

    NASA Technical Reports Server (NTRS)

    Marek, C. John; Molnar, Melissa

    2005-01-01

    A simplified single rate expression for hydrogen combustion and nitrogen oxide production was developed. Detailed kinetics are predicted for the chemical kinetic times using the complete chemical mechanism over the entire operating space. These times are then correlated to the reactor conditions using an exponential fit. Simple first order reaction expressions are then used to find the conversion in the reactor. The method uses a two time step kinetic scheme. The first time averaged step is used at the initial times with smaller water concentrations. This gives the average chemical kinetic time as a function of initial overall fuel air ratio, temperature, and pressure. The second instantaneous step is used at higher water concentrations (greater than l x 10(exp -20)) moles per cc) in the mixture which gives the chemical kinetic time as a function of the instantaneous fuel and water mole concentrations, pressure and temperature (T(sub 4)). The simple correlations are then compared to the turbulent mixing times to determine the limiting properties of the reaction. The NASA Glenn GLSENS kinetics code calculates the reaction rates and rate constants for each species in a kinetic scheme for finite kinetic rates. These reaction rates are used to calculate the necessary chemical kinetic times. This time is regressed over the complete initial conditions using the Excel regression routine. Chemical kinetic time equations for H2 and NOx are obtained for H2/Air fuel and for H2/O2. A similar correlation is also developed using data from NASA's Chemical Equilibrium Applications (CEA) code to determine the equilibrium temperature (T(sub 4)) as a function of overall fuel/air ratio, pressure and initial temperature (T(sub 3)). High values of the regression coefficient R squared are obtained.

  8. Life cycle inventory analysis of regenerative thermal oxidation of air emissions from oriented strand board facilities in Minnesota - a perspective of global climate change

    SciTech Connect

    Nicholson, W.J.

    1997-12-31

    Life cycle inventory analysis has been applied to the prospective operation of regenerative thermal oxidation (RTO) technology at oriented strand board plants at Bemidji (Line 1) and Cook, Minnesota. The net system destruction of VOC`s and carbon monoxide, and at Cook a small quantity of particulate, has a very high environmental price in terms of energy and water use, global warming potential, sulfur and nitrogen oxide emissions, solids discharged to water, and solid waste deposited in landfills. The benefit of VOC destruction is identified as minor in terms of ground level ozone at best and possibly slightly detrimental. Recognition of environmental tradeoffs associated with proposed system changes is critical to sound decision-making. There are more conventional ways to address carbon monoxide emissions than combustion in RTO`s. In an environment in which global warming is a concern, fuel supplemental combustion for environmental control does not appear warranted. Consideration of non-combustion approaches to address air emission issues at the two operations is recommended. 1 ref., 5 tabs.

  9. Photocatalytic oxidation of methyl ethyl ketone over sol-gel and commercial TiO2 for the improvement of indoor air.

    PubMed

    Raillard, C; Héquet, V; Le Cloirec, P; Legrand, J

    2006-01-01

    This work focuses on the photocatalytic oxidation of gaseous methyl ethyl ketone chosen as a typical indoor air pollutant. Two types of TiO coatings were prepared and deposited on glass plates: one using the commercial Degussa P25 TiO2 and the other one by sol-gel method. The first objective of this study was to compare different ways of preparing thin films of sol-gel TiO2 coated on glass plates, taking into account their general aspect and their photocatalytic efficiency. Several parameters were tested, such as the stabilising agent, the glass type of the support, the number of coatings and the calcination temperature. One of the synthesised materials was then kept to carry out the following study. The study aimed to assess the influence of TiO2 coating types on the effect of water vapour. This was achieved by performing MEK photocatalytic degradation kinetics under two levels of humidity at a fixed temperature. Experimental results were then modelled by the Langmuir-Hinshelwood equation. The obtained parameters gave specific trends in function of the considered catalyst. The second part of this work was to identify MEK degradation byproducts during its photocatalytic oxidation. The main detected intermediate was acetaldehyde, followed by methyl formate. A MEK degradation pathway was then proposed.

  10. Degradation of cationic red GTL by catalytic wet air oxidation over Mo-Zn-Al-O catalyst under room temperature and atmospheric pressure.

    PubMed

    Xu, Yin; Li, Xiaoyi; Cheng, Xiang; Sun, Dezhi; Wang, Xueye

    2012-03-06

    To overcome the drawback of catalytic wet air oxidation (CWAO) with high temperature and high pressure, the catalytic activity of Mo-Zn-Al-O catalyst for degradation of cationic red GTL under room temperature and atmospheric pressure was investigated. Mo-Zn-Al-O catalyst was prepared by coprecipitation and impregnation. XRD, TG-DTG, and XPS were used to characterize the resulting sample. Central composition design using response surface methodology was employed to optimize correlation of factors on the decolorization of cationic red GTL. The results show that the optimal conditions of pH value, initial concentration of dye and catalyst dosage were found to be 4.0, 85 mg/L and 2.72 g/L, respectively, for maximum decolorization of 80.1% and TOC removal of 50.9%. Furthermore, the reaction on the Mo-Zn-Al-O catalyst and degradation mechanism of cationic red GTL was studied by Electron spin resonance (ESR) and GC-MS technique. The possible reaction mechanism was that the Mo-Zn-Al-O catalyst can efficiently react with adsorbed oxygen/H(2)O to produce ·OH and (1)O(2) and finally induce the degradation of cationic red GTL. GC-MS analysis of the degradation products indicates that cationic red GTL was initiated by the cleavage of -N ═ N- and the intermediates were further oxidized by ·OH or (1)O(2).

  11. Synthesis and characterization of poly(divinylbenzene)-coated magnetic iron oxide nanoparticles as precursor for the formation of air-stable carbon-coated iron crystalline nanoparticles.

    PubMed

    Boguslavsky, Yonit; Margel, Shlomo

    2008-01-01

    Maghemite (gamma-Fe2O3) nanoparticles of 15 +/- 3 nm diameter were prepared by nucleation of gelatin/iron oxide followed by growth of gamma-Fe2O3 films onto these nuclei. The gamma-Fe2O3 nanoparticles were coated with polydivinylbenzene (PDVB) by emulsion polymerization of divinylbenzene (DVB) in an aqueous continuous phase containing the gamma-Fe2O3 nanoparticles. The PDVB-coated gamma-Fe2O3 nanoparticles, dispersed in water, were separated from homo-PDVB nanoparticles using the high gradient magnetic field (HGMF) technique. The influence of DVB concentration on the amount of PDVB coating, on the size and size distribution of the coated gamma-Fe2O3 nanoparticles and on their magnetic properties, has been investigated. Air-stable carbon-coated iron (alpha-Fe/C) crystalline nanoparticles of 41 +/- 12 nm diameter have been prepared by annealing the PDVB-coated gamma-Fe2O3 nanoparticles at 1050 degrees C in an inert atmosphere. These nanoparticles exhibit high saturation magnetization value (83 emu g(-1)) and excellent resistance to oxidation. Characterization of the PDVB-coated gamma-Fe2O3 and of the alpha-Fe/C nanoparticles has been accomplished by TEM, HRTEM, DLS, FTIR, XRD, thermal analysis, zeta-potential, and magnetic measurements.

  12. Nickel cobalt oxide/carbon nanotubes hybrid as a high-performance electrocatalyst for metal/air battery.

    PubMed

    Zhang, Hui; Qiao, Hang; Wang, Haiyan; Zhou, Nan; Chen, Jiajie; Tang, Yougen; Li, Jingsha; Huang, Chenghuan

    2014-09-07

    High-performance, low cost catalyst for oxygen reduction reaction (ORR) remains a big challenge. Herein, nanostructured NiCo2O4/CNTs hybrid was proposed as a high-performance catalyst for metal/air battery for the first time. The well-formed NiCo2O4/CNTs hybrid was studied by steady-state linear polarization curves and galvanostatic discharge curves in comparison with CNTs-free NiCo2O4 and commercial carbon-supported Pt. Because of the synergistic effect, NiCo2O4/CNTs hybrid exhibited significant improvement of catalytic performance in comparison with NiCo2O4 or CNTs alone, even outperforming Pt/C hybrid in ORR process. In addition, the benefits of Ni incorporation were demonstrated by the improved catalytic performance of NiCo2O4/CNTs compared to Co3O4/CNTs, which should be attributed to improved electrical conductivity and new, highly efficient, active sites created by Ni cation incorporation into the spinel structure. NiCo2O4/CNTs hybrid could be used as a promising catalyst for high power metal/air battery.

  13. Modeling the oxidative capacity of the atmosphere of the south coast air basin of California. 2. HOx radical production.

    PubMed

    Griffin, Robert J

    2004-02-01

    The production of HOx radicals in the South Coast Air Basin of California is investigated during the smog episode of September 9, 1993 using the California Institute of Technology (CIT) air-quality model. Sources of HOx(hydroxyl, hydroperoxy, and organic peroxy radicals) incorporated into the associated gas-phase chemical mechanism include the combination of excited-state singlet oxygen (formed from ozone (O3) photolysis (hv)) with water, the photolysis of nitrous acid, hydrogen peroxide (H2O2), and carbonyl compounds (formaldehyde (HCHO) or higher aldehydes and ketones), the consumption of aldehydes and alkenes (ALK) by the nitrate radical, and the consumption of alkenes by O3 and the oxygen atom (O). At a given time or location for surface cells and vertical averages, each route of HOx formation may be the greatest contributor to overall formation except HCHO-hv, H2O2-hv, and ALK-O, the latter two of which are insignificant pathways in general. The contribution of the ALK-O3 pathway is dependent on the stoichiometric yield of OH, but this pathway, at least for the studied smog episode, may not be as generally significant as previous research suggests. Future emissions scenarios yield lower total HOx production rates and a shift in the relative importance of individual pathways.

  14. The impact of the congestion charging scheme on air quality in London. Part 2. Analysis of the oxidative potential of particulate matter.

    PubMed

    Kelly, Frank; Anderson, H Ross; Armstrong, Ben; Atkinson, Richard; Barratt, Ben; Beevers, Sean; Derwent, Dick; Green, David; Mudway, Ian; Wilkinson, Paul

    2011-04-01

    There is growing scientific consensus that the ability of inhaled particulate matter (PM*) to elicit oxidative stress both at the air-lung interface and systemically might underpin many of the acute and chronic respiratory and cardiovascular responses observed in exposed populations. In the current study (which is part two of a two-part HEI study of a congestion charging scheme [CCS] introduced in London, United Kingdom, in 2003), we tested the hypothesis that the reduction in vehicle numbers and changes in traffic composition resulting from the introduction of the CCS would result in decreased concentrations of traffic-specific emissions, both from vehicle exhaust and other sources (brake wear and tire wear), and an associated reduction in the oxidative potential of PM with an aerodynamic diameter < or = 10 microm (PM10). To test this hypothesis, we obtained, extracted, and analyzed tapered element oscillating microbalance (TEOM) PM10 filters from six monitoring sites within, bordering, or outside the area of the congestion charging zone (CCZ) for the 3 years before and after the introduction of the scheme. In addition, from January 2005, TEOM PM10 filters were obtained from an additional 10 sites outside the zone in order to perform the first-ever assessment of within-city spatial variability in the oxidative potential of PM10. Although London's PM10 was found to have remarkably high oxidative potential, it varied markedly between the studied sites, with evidence of increased potential at roadside locations compared with urban background locations. This difference appeared to reflect increased concentrations of copper (Cu), barium (Ba), and bioavailable iron (Fe) in PM10 collected at the roadside sites. PM10's oxidative potential after the introduction of the CCS did not change at the one urban background site within the zone. Yet compositional changes in PM10 were noted at the same site, including significant decreases in Cu and zinc (Zn) content, probably

  15. The mechanism of oxide whisker growth and hot corrosion of hot-dipped Al-Si coated 430 stainless steels in air-NaCl (g) atmosphere

    NASA Astrophysics Data System (ADS)

    Liu, Hsiao-Hung; Cheng, Wei-Jen; Wang, Chaur-Jeng

    2011-10-01

    The mechanisms of oxide whisker growth and hot corrosion of 430 stainless steel (430SS) and aluminide 430 stainless steel hot-dipped in a Al-10 wt.%Si molten bath (430HDAS) were studied at 750 and 850 °C in air mixed with 500 and 990 vppm NaCl (g). The results showed that the loose Cr 2O 3 scale which formed on the 430SS could not prevent the corrosion of 430SS in a 500 vppm NaCl (g) atmosphere, resulting in the formation of Fe 2O 3 scale. Fe 2O 3 whiskers grew at the grain boundary of the Fe 2O 3 scale. However, no Fe 2O 3 whiskers formed on the Fe 2O 3 scale while 430SS was exposed in a 900 vppm NaCl (g) atmosphere. During the initial high-temperature corrosion of 430HDAS in a 500 vppm NaCl (g) atmosphere, a dense Al 2O 3 scale formed on the surface of the specimens. Also, Al 2O 3 whiskers grew on the Al 2O 3 scale. As exposure time increased, cyclic chlorination/oxidation degraded the protective aluminide layer and caused the formation of Fe 2O 3 scale and Fe 2O 3 whiskers. The morphology of Fe 2O 3 whiskers formed at 750 °C is more slender than those formed at 850 °C. The formation and growth of both Fe 2O 3 and Al 2O 3 whiskers may be attributed to the chloridation of both the steel substrate and aluminide layer, accelerating the diffusion rate of metallic ions in the oxide scales.

  16. Formation of gas-phase carbonyls from heterogeneous oxidation of polyunsaturated fatty acids at the air-water interface and of the sea surface microlayer

    NASA Astrophysics Data System (ADS)

    Zhou, S.; Gonzalez, L.; Leithead, A.; Finewax, Z.; Thalman, R.; Vlasenko, A.; Vagle, S.; Miller, L.; Li, S.-M.; Bureekul, S.; Furutani, H.; Uematsu, M.; Volkamer, R.; Abbatt, J.

    2013-07-01

    Motivated by the potential for reactive heterogeneous chemistry occurring at the ocean surface, gas-phase products were observed when a reactive sea surface microlayer (SML) component, i.e. the polyunsaturated fatty acid (PUFA) linoleic acid (LA), was exposed to gas-phase ozone at the air-seawater interface. Similar oxidation experiments were conducted with SML samples collected from two different oceanic locations, in the eastern equatorial Pacific Ocean and from the west coast of Canada. Online proton-transfer-reaction mass spectrometry (PTR-MS) and light-emitting diode cavity enhanced differential optical absorption spectroscopy (LED-CE-DOAS) were used to detect oxygenated gas-phase products from the ozonolysis reactions. The LA studies indicate that oxidation of a PUFA monolayer on seawater gives rise to prompt and efficient formation of gas phase aldehydes. The products are formed via the decomposition of primary ozonides which form upon the initial reaction of ozone with the carbon-carbon double bonds in the PUFA molecules. In addition, two highly reactive di-carbonyls, malondialdehyde (MDA) and glyoxal, were also generated, likely as secondary products. Specific yields relative to reactant loss were 78%, 29%, 4% and <1% for n-hexanal, 3-nonenal, MDA and glyoxal, respectively, where the yields for MDA and glyoxal are likely lower limits. Heterogeneous oxidation of SML samples confirm for the first time that similar carbonyl products are formed via ozonolysis of environmental samples. The potential impact of such chemistry on the atmosphere of the marine boundary layer is discussed.

  17. Supplement to the Second Addendum (1986) to Air Quality Criteria for Particulate Matter and Sulfur Oxides (1982): Assessment of New Findings on Sulfur Dioxide and Acute Exposure Health Effects in Asthmatic Individuals (1994)

    EPA Science Inventory

    The present Supplement to the Second Addendum (1986) to the document Air Quality Criteria for Particulate Matter and Sulfur Oxides (1982) focuses on evaluation of newly available controlled human exposure studies of acute (a\\1h) sulfur dioxide (SO2) exposure effects on pulmonary ...

  18. Air pollution particles mediated oxidative DNA base damage in a cell free system and in human airway epithelial cells in relation to particulate metal content and bioreactivity.

    PubMed

    Prahalad, A K; Inmon, J; Dailey, L A; Madden, M C; Ghio, A J; Gallagher, J E

    2001-07-01

    Epidemiological studies demonstrate an association between increased human morbidity and mortality with exposure to air pollution particulate matter. We hypothesized that such effects may be associated with the ability of the particles to mediate generation of reactive oxygen species (ROS), either directly, via interaction with ambient oxygen or indirectly through initiation of an oxidative burst in phagocytes. To test this hypothesis, we determined 8-oxo-dG formation as a measure of direct generation of ROS, in response to particulate exposures to 2'-deoxyguanosine (dG), free and in calf thymus DNA in aerated solutions as the target molecule and cell culture, to assess the relationship between induction of oxidative damage, particulate metal content and metal bioreactivity. The HPLC-ECD technique was employed for separation and quantification of 8-oxo-dG, the most widely recognized marker of DNA oxidation. Particles used in this study include: Arizona desert dust (AZDD), coal fly ash (CFA and ECFA), oil fly ash (OFA and ROFA), and ambient air [SRM 1649 and Dusseldorf (DUSS), Germany]. The major difference between these particles is the concentration of water-soluble metals. The fly ash particulates OFA and ROFA showed a significant dose-dependent increase in dG hydroxylation to 8-oxo-dG formation over the control dG (p < 0.05), with yields 0.03 and 1.25% at the highest particulate concentration (1 mg/mL). Metal ion chelators and DMSO, a hydroxyl radical scavenger, inhibited this hydroxylation. In contrast, desert dust, coal fly ash and urban air particles induced 8-oxo-dG with yields ranging from 0.003 to 0.006%, respectively, with levels unaffected by pretreatment of the particles with metal ion chelators or addition of DMSO to the incubation mixture. When calf thymus DNA was used as a substrate, all the particles induced 8-oxo-dG in a pattern similar to that observed for dG hydroxylation, but with relatively less yield. Treatment of the particles with metal ion

  19. Perspective: Maintaining surface-phase purity is key to efficient open air fabricated cuprous oxide solar cells

    SciTech Connect

    Hoye, Robert L. Z. E-mail: jld35@cam.ac.uk; Ievskaya, Yulia; MacManus-Driscoll, Judith L. E-mail: jld35@cam.ac.uk; Brandt, Riley E.; Buonassisi, Tonio; Heffernan, Shane; Musselman, Kevin P.

    2015-02-01

    Electrochemically deposited Cu{sub 2}O solar cells are receiving growing attention owing to a recent doubling in efficiency. This was enabled by the controlled chemical environment used in depositing doped ZnO layers by atomic layer deposition, which is not well suited to large-scale industrial production. While open air