Karelin, A O; Lomtev, A Yu; Mozzhukhina, N A; Yeremin, G B; Nikonov, V A
Inhalation of fine particulate matters (PM and PM ) poses a threat for the health of population. Purpose of the study the analysis of the monitoring of fine particulate matters in the atmospheric air of Saint-Petersburg and identification of the main problems of the monitoring. Research methods methods of scientific hypothetical deductive cognition, sanitary-statistical methods, general logical methods and approaches of researches: analysis, synthesis, abstracting, generalization, induction. Results. The article represents the analysis of the monitoring of fine particulate matters in the atmospheric air of Saint- Petersburg. Only 11 in automatic monitoring stations out of 22 there is carried out the control of fine particulate matters: in 7 - PM and PM, and in 4 - PM The average year concentrations were below MAC in all the stations. The maximum concentrations achieved 3 MAC, but the repeatance of cases of exceedence of concentrations more than MAC was very rare. On the average of the city concentrations of PM were decreased from 0,8 MAC in 2006 and 1,1 MAC in 2007 to 0,5 MAC in 2013-14. The executed analysis revealed main problems of the monitoring of fine particulate matters in the Russian Federation. They include the absence of the usage 1of the officially approved methods of controlling of PM and PM in the atmospheric air until March 1, 2016, lack of the modern equipment for measurement of fine particulate matters. Conclusions. Therefore, the state of the monitoring of fine particulate matters in the atmospheric air in the Russian Federation fails to be satisfactory. It is necessary to improve system of the monitoring, create modern Russian appliances, methods and means for measurement of fine particulate matters concentrations in the atmospheric air.
Apparatus for real-time airborne particulate radionuclide collection and analysis
Smart, John E.; Perkins, Richard W.
2001-01-01
An improved apparatus for collecting and analyzing an airborne particulate radionuclide having a filter mounted in a housing, the housing having an air inlet upstream of the filter and an air outlet downstream of the filter, wherein an air stream flows therethrough. The air inlet receives the air stream, the filter collects the airborne particulate radionuclide and permits a filtered air stream to pass through the air outlet. The improvement which permits real time counting is a gamma detecting germanium diode mounted downstream of the filter in the filtered air stream. The gamma detecting germanium diode is spaced apart from a downstream side of the filter a minimum distance for a substantially maximum counting detection while permitting substantially free air flow through the filter and uniform particulate radionuclide deposition on the filter.
CleAir Monitoring System for Particulate Matter: A Case in the Napoleonic Museum in Rome
Bonacquisti, Valerio; Di Michele, Marta; Frasca, Francesca; Chianese, Angelo; Siani, Anna Maria
2017-01-01
Monitoring the air particulate concentration both outdoors and indoors is becoming a more relevant issue in the past few decades. An innovative, fully automatic, monitoring system called CleAir is presented. Such a system wants to go beyond the traditional technique (gravimetric analysis), allowing for a double monitoring approach: the traditional gravimetric analysis as well as the optical spectroscopic analysis of the scattering on the same filters in steady-state conditions. The experimental data are interpreted in terms of light percolation through highly scattering matter by means of the stretched exponential evolution. CleAir has been applied to investigate the daily distribution of particulate matter within the Napoleonic Museum in Rome as a test case. PMID:28892016
HIGH VOLUME INJECTION FOR GCMS ANALYSIS OF PARTICULATE ORGANIC SPECIES IN AMBIENT AIR
Detection of organic species in ambient particulate matter typically requires large air sample volumes, frequently achieved by grouping samples into monthly composites. Decreasing the volume of air sample required would allow shorter collection times and more convenient sample c...
Choi, Juwhan; Oh, Jee Youn; Lee, Young Seok; Min, Kyung Hoon; Hur, Gyu Young; Lee, Sung Yong; Kang, Kyung Ho; Shim, Jae Jeong
2018-01-01
Particulate matter and air pollution in Korea are becoming worse. There is a lack of research regarding the impact of particulate matter on patients with COPD. Therefore, the purpose of this study was to investigate the effects of various air pollution factors, including particulate matter, on the incidence rate of severe acute exacerbations of COPD (AECOPD) events. We analyzed the relationship between air pollutants and AECOPD events that required hospitalization at Guro Hospital in Korea from January 1, 2015 to May 31, 2017. We used general linear models with Poisson distribution and log-transformation to obtain adjusted relative risk (RR). We conducted further analysis through the Comprehensive Air-quality Index (CAI) that is used in Korea. Among various other air pollutants, particulate matter was identified as a major source of air pollution in Korea. When the CAI score was over 50, the incidence rate of severe AECOPD events was statistically significantly higher [RR 1.612, 95% CI, 1.065-2.440, P =0.024]. Additionally, the particulate matter levels 3 days before hospitalization were statistically significant [RR 1.003, 95% CI, 1.001-1.005, P =0.006]. Particulate matter and air pollution increase the incidence rate of severe AECOPD events. COPD patients should be cautioned against outdoor activities when particulate matter levels are high.
Particulate sulphate and ozone in rural air: Preliminary results from three sites in central England
NASA Astrophysics Data System (ADS)
Martin, A.; Barber, F. R.
Daily particulate sulphate concentrations in air have been measured at a 'background' rural site and at two other sites near rural power stations. The samples were collected by drawing air through filter papers and were analysed by X-ray fluorescence. At the background site the concentration of particulate sulphates was strongly dependent on the O 3 and total S in air. Above a certain 'critical' level of daily O 3, 28% of the daily S in air was particulate on average, but the amounts were not related to the actual O 3 levels. At lower O 3 levels, there appeared to be a constant background of about 2 μg of particulate sulphate per cubic meter of air, together with about 5% of the total S in air as particulate. When black smoke in air was low, the particulate sulphate was also low, despite the O 3 levels. Near the power stations, there was no significantly different rate of production or loss of particulate sulphate. On average, at all three sites over the year, about 12% of the daily total S was particulate, probably corresponding to an average conversion rate of SO 2 of less than 1% per hour. Estimates of hourly particulate sulphates are available from previous measurements at the background site, using a different analysis technique. Particulate sulphate was not found every hour, but typically during 20 h a day in early summer and 8 h a day in early winter. An influence of humidity as well as O 3 was apparent in the peak hourly particulate sulphate values, which reached 60% of the total S. No correlation could be found of particulate sulphate with solar radiation, wind direction, concentrations of oxides of nitrogen in air or ammonium or sulphate in rainwater, but further measurements are planned.
Air quality monitor and acid rain networks
NASA Technical Reports Server (NTRS)
Rudolph, H.
1980-01-01
The air quality monitor program which consists of two permanent air monitor stations (PAMS's) and four mobile shuttle pollutant air monitor stations (SPAMS's) is evaluated. The PAMS measures SO sub X, NO sub X particulates, CO, O3, and nonmethane hydrocarbons. The SPAMS measures O3, SO2, HCl, and particulates. The collection and analysis of data in the rain monitor program are discussed.
NASA Astrophysics Data System (ADS)
Fang, Guor-Cheng; Wu, Yuh-Shen; Chang, Shih-Yu; Huang, Shih-Han; Rau, Jui-Yeh
2006-10-01
This work attempts to characterize metallic elements associated with atmospheric particulate matter on a dry deposition plate, a TE-PUF high-volume air sampler and a universal air sampler. Dry deposition fluxes of particulates and concentrations of total suspended particulate, fine (PM 2.5) and coarse (PM 2.5-10) particulate matters were collected at Taichung harbor sampling sites from August 2004 to January 2005. Chemical analyses of metallic elements were made using a flame atomic absorption spectrophotometer coupled with hollow cathode lamps. Concentrations of metal elements in the forms of coarse particles and fine particles as well as the coarse/fine particulate ratios were presented. Statistical methods such as correlation analysis, principal component analysis and enrichment factor analysis were performed to compare the chemical components and identify possible emission sources at the sampling sites. Metallic elements of Cu, Zn, Pb, Cr, Ni and Mg had higher EF crust ratios in winter and spring than in summer and autumn. Diurnal and nocturnal variations of metallic element concentrations in fine and coarse particles were also discussed.
DOT National Transportation Integrated Search
2008-06-01
This paper empirically examines the vehicle type regulation that was introduced under the : Automobile Nitrogen OxidesParticulate Matter Law to mitigate air pollution problems in Japanese metropolitan areas. The vehicle type regulation effectively...
Identification of particle characteristics and biological mechanism(s) responsible for the adverse pulmonary and cardiovascular responses associated with particulate air pollution exposure remains a critical research activity. We have employed an oxidative stress sensitive an...
In 2008, the United States Environmental Protection Agency (USEPA) set a new National Ambient Air Quality Standard (NAAQS) for lead (Pb) in total suspended particulate matter (Pb-TSP) which called for significant decreases in the allowable limits. The Federal Reference Method (FR...
DOT National Transportation Integrated Search
2009-05-01
This paper examines the vehicle type regulation that was introduced under the Automobile : Nitrogen OxidesParticulate Matter Law to mitigate air pollution in Japanese metropolitan : areas. The vehicle type regulation effectively sets the timing fo...
In response to the new, size-discriminate federal standards for Inhalable Particulate Matter, the Regional Lagrangian Model of Air Pollution (RELMAP) has been modified to include simple, linear parameterizations. As an initial step in the possible refinement, RELMAP has been subj...
Dimitriou, Konstantinos; Kassomenos, Pavlos
2014-07-01
This paper aims to decompose the profile of particulates in Karlsruhe and Potsdam (Germany), focusing on the localization of PM potential transboundary sources. An air mass cluster analysis was implemented, followed by a study of air mass residence time on a grid of a 0.5° × 0.5° resolution. Particulate/gaseous daily air pollution and meteorological data were used to indicate PM local sources. Four Principal Component Analysis (PCA) components were produced: traffic, photochemical, industrial/domestic and particulate. PM2.5/PM10 ratio seasonal trends, indicated production of PMCOARSE (PM10-PM2.5) from secondary sources in Potsdam during warm period (WP). The residing areas of incoming slow moving air masses are potential transboundary PM sources. For Karlsruhe those areas were mainly around the city. An air mass residence time secondary peak was observed over Stuttgart. For Potsdam, areas with increased dwelling time of the arriving air parcels were detected particularly above E/SE Germany. Copyright © 2014 Elsevier Ltd. All rights reserved.
Design and Calibration of a High Volume Cascade Impactor
ERIC Educational Resources Information Center
Gussman, R. A.; And Others
1973-01-01
This study was to develop an air sampling device capable of classifying large quantities of airborne particulate matter into discrete size fractions. Such fractionation will facilitate chemical analysis of the various particulate pollutants and thereby provide a more realistic assessment of the effects of particulate matter on human beings. (BL)
Particulate Air Pollution: The Particulars
ERIC Educational Resources Information Center
Murphy, James E.
1973-01-01
Describes some of the causes and consequences of particulate air pollution. Outlines the experimental procedures for measuring the amount of particulate materials that settles from the air and for observing the nature of particulate air pollution. (JR)
ACKGROUND: Household air pollution from solid fuel burning is a leading contributor to disease burden globally. Fine particulate matter (PM2.5) is thought to be responsible for many of these health impacts. A co-pollutant, carbon monoxide (CO) has been widely used as a surrogate ...
ACKGROUND: Household air pollution from solid fuel burning is a leading contributor to disease burden globally. Fine particulate matter (PM2.5) is thought to be responsible for many of these health impacts. A co-pollutant, carbon monoxide (CO) has been widely used as a surrogate...
Introduction
An exposure assessment study was conducted in Atlanta, GA during fall 1999 and spring 2000 to examine the short-term effects of exposure to particulate matter and gaseous air pollutants on heart rate variability (HRV). Characterization of particulate matter (PM...
Urban air-quality assessment and source apportionment studies for Bhubaneshwar, Odisha
NASA Astrophysics Data System (ADS)
Mahapatra, Parth Sarathi; Ray, Sanak; Das, Namrata; Mohanty, Ayusman; Ramulu, T. S.; Das, Trupti; Chaudhury, G. Roy; Das, S. N.
2013-04-01
Acid- and water-soluble component of suspended particulate matter was studied from January 2009 to December 2009 at Bhubaneshwar, an urban coastal location of eastern India, by high-volume sampler, environmental dust monitor using GRIMM®, and scanning electron microscope and energy dispersive X-ray spectrometer. The water-soluble components accounted for 30-45 % of the total suspended particulate matter, and the major elements were observed to be ammonium and nitrate as the cationic and anionic species, respectively. The acid-soluble component like copper, nickel, cobalt, iron, and lead accounted for 5-15 % of the total particulate matter concentration. The composition of particulate matter shows a clear seasonal variation in relation to wind speed, wind direction, and trajectories of the air mass movement. The GRIMM spectrometer analysis shows higher concentration of fine particulate matter. Source apportionment and enrichment factor analysis indicated that except sodium and chloride, all other elements have emerged from different sources such as crustal as well as anthropogenic.
Development of Advanced Modeling Tools for Hotpot Analysis of Transportation Emissions
DOT National Transportation Integrated Search
2009-07-29
Hot-spot analysis, also known as project-level analysis, assesses impacts of transportation emissions on local air pollution of carbon monoxide (CO), air toxics and particulate matter (PM). It is required for regional transportation plans (RTP), tran...
Biologically plausible particulate air pollution mortality concentration-response functions.
Roberts, Steven
2004-01-01
In this article I introduce an alternative method for estimating particulate air pollution mortality concentration-response functions. This method constrains the particulate air pollution mortality concentration-response function to be biologically plausible--that is, a non-decreasing function of the particulate air pollution concentration. Using time-series data from Cook County, Illinois, the proposed method yields more meaningful particulate air pollution mortality concentration-response function estimates with an increase in statistical accuracy. PMID:14998745
Metrics for the Evaluation the Utility of Air Quality Forecasting
NASA Astrophysics Data System (ADS)
Sumo, T. M.; Stockwell, W. R.
2013-12-01
Global warming is expected to lead to higher levels of air pollution and therefore the forecasting of both long-term and daily air quality is an important component for the assessment of the costs of climate change and its impact on human health. Some of the risks associated with poor air quality days (where the Air Pollution Index is greater than 100), include hospital visits and mortality. Accurate air quality forecasting has the potential to allow sensitive groups to take appropriate precautions. This research builds metrics for evaluating the utility of air quality forecasting in terms of its potential impacts. Our analysis of air quality models focuses on the Washington, DC/Baltimore, MD region over the summertime ozone seasons between 2010 and 2012. The metrics that are relevant to our analysis include: (1) The number of times that a high ozone or particulate matter (PM) episode is correctly forecasted, (2) the number of times that high ozone or PM episode is forecasted when it does not occur and (3) the number of times when the air quality forecast predicts a cleaner air episode when the air was observed to have high ozone or PM. Our evaluation of the performance of air quality forecasts include those forecasts of ozone and particulate matter and data available from the U.S. Environmental Protection Agency (EPA)'s AIRNOW. We also examined observational ozone and particulate matter data available from Clean Air Partners. Overall the forecast models perform well for our region and time interval.
NASA Technical Reports Server (NTRS)
Neustadter, H. E.; Sidik, S. M.; Burr, J. C., Jr.
1972-01-01
Air quality data for Cleveland, Ohio, for the period of 1967 to 1971 were collated and subjected to statistical analysis. The total suspended particulate component is lognormally distributed; while sulfur dioxide and nitrogen dioxide are reasonably approximated by lognormal distributions. Only sulfur dioxide, in some residential neighborhoods, meets Ohio air quality standards. Air quality has definitely improved in the industrial valley, while in the rest of the city, only sulfur dioxide has shown consistent improvement. A pollution index is introduced which displays directly the degree to which the environmental air conforms to mandated standards.
Mobile Air Quality Studies (MAQS)-an international project.
Groneberg, David A; Scutaru, Cristian; Lauks, Mathias; Takemura, Masaya; Fischer, Tanja C; Kölzow, Silvana; van Mark, Anke; Uibel, Stefanie; Wagner, Ulrich; Vitzthum, Karin; Beck, Fabian; Mache, Stefanie; Kreiter, Carolin; Kusma, Bianca; Friedebold, Annika; Zell, Hanna; Gerber, Alexander; Bock, Johanna; Al-Mutawakl, Khaled; Donat, Johannes; Geier, Maria Victoria; Pilzner, Carolin; Welker, Pia; Joachim, Ricarda; Bias, Harald; Götting, Michael; Sakr, Mohannad; Addicks, Johann P; Börger, Julia-Annik; Jensen, Anna-Maria; Grajewski, Sonja; Shami, Awfa; Neye, Niko; Kröger, Stefan; Hoffmann, Sarah; Kloss, Lisa; Mayer, Sebastian; Puk, Clemens; Henkel, Ulrich; Rospino, Robert; Schilling, Ute; Krieger, Evelyn; Westphal, Gesa; Meyer-Falcke, Andreas; Hupperts, Hagen; de Roux, Andrés; Tropp, Salome; Weiland, Marco; Mühlbach, Janette; Steinberg, Johannes; Szerwinski, Anne; Falahkohan, Sepiede; Sudik, Claudia; Bircks, Anna; Noga, Oliver; Dickgreber, Nicolas; Dinh, Q Thai; Golpon, Heiko; Kloft, Beatrix; Groneberg, Rafael Neill B; Witt, Christian; Wicker, Sabine; Zhang, Li; Springer, Jochen; Kütting, Birgitta; Mingomataj, Ervin C; Fischer, Axel; Schöffel, Norman; Unger, Volker; Quarcoo, David
2010-04-09
Due to an increasing awareness of the potential hazardousness of air pollutants, new laws, rules and guidelines have recently been implemented globally. In this respect, numerous studies have addressed traffic-related exposure to particulate matter using stationary technology so far. By contrast, only few studies used the advanced technology of mobile exposure analysis. The Mobile Air Quality Study (MAQS) addresses the issue of air pollutant exposure by combining advanced high-granularity spatial-temporal analysis with vehicle-mounted, person-mounted and roadside sensors. The MAQS-platform will be used by international collaborators in order 1) to assess air pollutant exposure in relation to road structure, 2) to assess air pollutant exposure in relation to traffic density, 3) to assess air pollutant exposure in relation to weather conditions, 4) to compare exposure within vehicles between front and back seat (children) positions, and 5) to evaluate "traffic zone"-exposure in relation to non-"traffic zone"-exposure.Primarily, the MAQS-platform will focus on particulate matter. With the establishment of advanced mobile analysis tools, it is planed to extend the analysis to other pollutants including NO2, SO2, nanoparticles and ozone.
Wang, Wei; Qin, Songtao; Song, Yu; Xu, Qian; Ni, Yuwen; Chen, Jiping; Zhang, Xueping; Mu, Jim; Zhu, Xiuhua
2011-06-01
In December 2009, ambient air was sampled with active high-volume air samplers at two sites: on the roof of the No. l building of Dalian Jiaotong University and on the roof of the building of Dalian Meteorological Observatory. The concentrations and the congeners between vapor phase and particulate phase of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in the air were measured. Sample analysis results showed that the concentrations of PCDD/Fs in particulate phase was higher than that in gaseous phase. The ratio of PCDD to PCDF in gaseous phase and particulate phase was lower than 0.4 in all samples. The total I-TEQ value in gaseous phase and particulate phase was 5.5 and 453.8 fg/m(3) at Dalian Jiaotong University, 16.6 and 462.1 fg/m(3) at Dalian Meteorological Observatory, respectively. The I-TEQ value of Dalian atmosphere was 5.5-462.1 fg/m(3) which was lower than international standard, the atmospheric quality in Dalian is better. Copyright © 2011 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Manimaran, P.; Narayana, A. C.
2018-07-01
In this paper, we study the multifractal characteristics and cross-correlation behaviour of Air Pollution Index (API) time series data through multifractal detrended cross-correlation analysis method. We analyse the daily API records of nine air pollutants of the university of Hyderabad campus for a period of three years (2013-2016). The cross-correlation behaviour has been measured from the Hurst scaling exponents and the singularity spectrum quantitatively. From the results, it is found that the cross-correlation analysis shows anti-correlation behaviour for all possible 36 bivariate time series. We also observe the existence of multifractal nature in all the bivariate time series in which many of them show strong multifractal behaviour. In particular, the hazardous particulate matter PM2.5 and inhalable particulate matter PM10 shows anti-correlated behaviour with all air pollutants.
Methods of separating particulate residue streams
Hoskinson, Reed L [Rigby, ID; Kenney, Kevin L [Idaho Falls, ID; Wright, Christopher T [Idaho Falls, ID; Hess, J Richard [Idaho Falls, ID
2011-04-05
A particulate residue separator and a method for separating a particulate residue stream may include an air plenum borne by a harvesting device, and have a first, intake end and a second, exhaust end; first and second particulate residue air streams that are formed by the harvesting device and that travel, at least in part, along the air plenum and in a direction of the second, exhaust end; and a baffle assembly that is located in partially occluding relation relative to the air plenum and that substantially separates the first and second particulate residue air streams.
NASA Astrophysics Data System (ADS)
Lungu, Mihai; Lungu, Antoanetta; Stefu, Nicoleta; Neculae, Adrian; Strambeanu, Nicolae
2017-01-01
Air pollution is known to have many adverse effects, among which those on human health are considered the most important. Healthy people of all ages can be adversely affected by high levels of air pollutants. Nanoparticles can be considered among the most harmful of all pollutants as they can penetrate straight into the lungs and blood stream. Their role in the aging process has also recently been revealed. In Romania, practically in all important urban areas (Bucureşti, Iaşi, Timişoara, Braşov, Baia Mare, etc.) the daily limit values for airborne particulate matter are exceeded, so more efforts in controlling air quality are required, along with more research and policies with positive impact on reducing the pollutants concentration in air. The approaches that have been developed to assess the air quality and health impacts of pollution sources are based on analytical methods such as source apportionment, factor analyses, and the measurement of source-relevant indicator compounds. The goal of the present study is to offer preliminary but relevant information on the particulate matter distribution in the city of Timisoara, Romania. Measurements of inhalable coarse and fine particles in two areas of the city, the most affected by industrial particulate emissions, were performed in days with various meteorological conditions. Meteorological parameters for the specific measurement days were recorded (wind speed and direction, humidity, temperature, pressure, etc.) and the influence of these parameters on the particulate matter dispersion was studied. The results show that the meteorological conditions cause differences between airborne particulate matter distributions in different days in the same zones. Measurements were made in northern and southern areas of the city of Timisoara because previous results have shown high levels of airborne particulate matter in these areas.
Analysis of microsize particulates
NASA Technical Reports Server (NTRS)
Blanchard, M. B.; Farlow, N. H.; Ferry, G. V.
1972-01-01
Unique methods for analyzing individual particles ranging in size from 0.01 to 1000 micrometers have been developed for investigation of nature of cosmic dust. Methods are applicable to particulate aerosols and contaminants characteristically encountered in studies of air pollution and in experiments designed to abate pollution.
Evaluation of the Community Multiscale Air Quality model version 5.1
The Community Multiscale Air Quality model is a state-of-the-science air quality model that simulates the emission, transport and fate of numerous air pollutants, including ozone and particulate matter. The Atmospheric Modeling and Analysis Division (AMAD) of the U.S. Environment...
The impact of energy, transport, and trade on air pollution in China
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poon, J.P.H.; Casas, I.; He, C.F.
2006-09-15
A team of U.S.- and China-based geographers examines the relationship between China's economic development and its environment by modeling the effects of energy, transport, and trade on local air pollution emissions (sulfur dioxide and soot particulates) using the Environmental Kuznets model. Specifically, the latter model is investigated using spatial econometrics that take into account potential regional spillover effects from high-polluting neighbors. The analysis finds an inverted-U relationship for sulfur dioxide but a U-shaped curve for soot particulates. This suggests that soot particulates such as black carbon may pose a more serious environmental problem in China than sulfur dioxide.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-19
... Promulgation of Air Quality Implementation Plans; Indiana; Particulate Matter Ambient Air Quality Standards... revise the Indiana State Implementation Plan (SIP) for particulate matter under the Clean Air Act. This submission contains the 24-hour fine particle National Ambient Air Quality Standards (NAAQS) promulgated by...
Determination of biomass burning tracers in air samples by GC/MS
NASA Astrophysics Data System (ADS)
Janoszka, Katarzyna
2018-01-01
Levoglucosan (LG) as a main cellulose burning product at 300°C is a biomass burning tracer. LG characterize by relatively high molar mass and it is sorbed by particulate matter. In the study of air pollution monitoring LG is mainly analyzed in particulate matter, PM1 and PM2,5. The tracer create relatively high O-H…O bond and weaker C-H…O bond. Due to the hydrogen bond, LG dissolves very well in water. Analytical procedure of LG determination include: extraction, derivatization and analysis by gas chromatography coupled with mass spectrometry detector. In water samples levoglucosan is determined by liquid chromatography. The paper presents a methodology for particulate matter samples determination their analysis by gas chromatography coupled with a mass spectrometry detector. Determination of LG content in particulate matter was performed according to an analytical method based on simultaneous pyridine extraction and derivatization using N,O-bis (trimethylsilyl) trifluoroacetamide and trimethylchlorosilane mixture (BSTFA: TMCS, 99: 1).
Domestic smoke exposure is associated with alveolar macrophage particulate load.
Fullerton, Duncan G; Jere, Khuzwayo; Jambo, Kondwani; Kulkarni, Neeta S; Zijlstra, Eduard E; Grigg, Jonathan; French, Neil; Molyneux, Malcolm E; Gordon, Stephen B
2009-03-01
Indoor air pollution is associated with impaired respiratory health. The pre-dominant indoor air pollutant to which two billion of the world's population is exposed is biomass fuel smoke. We tested the hypothesis that reported smoke exposure in men and women is associated with increased alveolar macrophage uptake of biomass smoke particulates. Healthy volunteers attending for research bronchoscopy in Malawi completed a questionnaire assessment of smoke exposure. Particulate matter visible in alveolar macrophages (AM) was quantified using digital image analysis. The geometric mean of the percentage area of the cytoplasm occupied by particulates in 50 cover-slip adherent AM was calculated and termed particulate load. In 57 subjects (40 men and 17 women) there was a significant difference between the particulate load in groups divided according to pre-dominant lighting form used at home (ANOVA P = 0.0009) and type of cooking fuel (P = 0.0078). Particulate load observed in macrophages is associated with the reported type of biomass fuel exposure. Macrophage function in relation to respiratory health should now be investigated in biomass smoke exposed subjects.
42 CFR 84.181 - Non-powered air-purifying particulate filter efficiency level determination.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 42 Public Health 1 2010-10-01 2010-10-01 false Non-powered air-purifying particulate filter...-purifying particulate filter efficiency level determination. (a) Twenty filters of each non-powered air-purifying particulate respirator model shall be tested for filter efficiency against: (1) A solid sodium...
42 CFR 84.181 - Non-powered air-purifying particulate filter efficiency level determination.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 42 Public Health 1 2011-10-01 2011-10-01 false Non-powered air-purifying particulate filter...-purifying particulate filter efficiency level determination. (a) Twenty filters of each non-powered air-purifying particulate respirator model shall be tested for filter efficiency against: (1) A solid sodium...
42 CFR 84.181 - Non-powered air-purifying particulate filter efficiency level determination.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 42 Public Health 1 2012-10-01 2012-10-01 false Non-powered air-purifying particulate filter...-purifying particulate filter efficiency level determination. (a) Twenty filters of each non-powered air-purifying particulate respirator model shall be tested for filter efficiency against: (1) A solid sodium...
42 CFR 84.181 - Non-powered air-purifying particulate filter efficiency level determination.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 42 Public Health 1 2014-10-01 2014-10-01 false Non-powered air-purifying particulate filter...-purifying particulate filter efficiency level determination. (a) Twenty filters of each non-powered air-purifying particulate respirator model shall be tested for filter efficiency against: (1) A solid sodium...
42 CFR 84.181 - Non-powered air-purifying particulate filter efficiency level determination.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 42 Public Health 1 2013-10-01 2013-10-01 false Non-powered air-purifying particulate filter...-purifying particulate filter efficiency level determination. (a) Twenty filters of each non-powered air-purifying particulate respirator model shall be tested for filter efficiency against: (1) A solid sodium...
Fang, Guor-Cheng; Lin, Yen-Heng; Zheng, Yu-Cheng
2016-02-01
The main purpose of this study was to monitor ambient air particles and particulate-bound mercury Hg(p) in total suspended particulate (TSP) concentrations and dry deposition at the Hung Kuang (Traffic), Taichung airport and Westing Park sampling sites during the daytime and nighttime, from 2011 to 2012. In addition, the calculated/measured dry deposition flux ratios of ambient air particles and particulate-bound mercury Hg(p) were also studied with Baklanov & Sorensen and the Williams models. For a particle size of 10 μm, the Baklanov & Sorensen model yielded better predictions of dry deposition of ambient air particulates and particulate-bound mercury Hg(p) at the Hung Kuang (Traffic), Taichung airport and Westing Park sampling site during the daytime and nighttime sampling periods. However, for particulates with sizes 20-23 μm, the results obtained in the study reveal that the Williams model provided better prediction results for ambient air particulates and particulate-bound mercury Hg(p) at all sampling sites in this study.
Particulate air pollution from bushfires: human exposure and possible health effects.
Karthikeyan, Sathrugnan; Balasubramanian, Rajasekhar; Iouri, Kostetski
2006-11-01
Toxicological studies have implicated trace metals adsorbed onto airborne particles as possible contributors to respiratory and/or cardiovascular inflammation. In particular, the water-soluble metal content is considered to be a harmful component of airborne particulate matter. In this work, the trace metal characteristics of airborne particulate matter, PM2.5, collected in Singapore from February to March 2005 were investigated with specific reference to their bioavailability. PM2.5 mass concentrations varied between 20.9 mug/m3 and 46.3 microg/m3 with an average mass of 32.8 microg/m3. During the sampling period, there were several bushfires in Singapore that contributed to sporadic increases in the particulate air pollution, accompanied by an acrid smell and asthma-related allergies. The aerosol samples were subjected to analysis of trace elements for determining their total concentrations as well as their water soluble fractions. Our results showed an increase in concentration of several water-soluble trace metals during bushfires compared to their urban background levels in Singapore. In order to measure the human exposure to particulate air pollution, the daily respiratory uptake (DRU) of several trace metals was calculated and compared between haze and nonhaze periods. The DRU values were significantly higher for several metals, including Zn, Cu, and Fe, during bushfires. Electron paramagnetic resonance (EPR) measurements showed that the particulate samples collected during bush fires generate more toxic hydroxyl radicals (OH.) than those in the background air, due to the presence of more soluble iron ions.
Air Pollution Monitoring Site Selection by Multiple Criteria Decision Analysis
Criteria air pollutants (particulate matter, sulfur dioxide, oxides of nitrogen, volatile organic compounds, and carbon monoxide) as well as toxic air pollutants are a global concern. A particular scenario that is receiving increased attention in the research is the exposure to t...
Air Quality Criteria for Particulate Matter.
ERIC Educational Resources Information Center
National Air Pollution Control Administration (DHEW), Washington, DC.
To assist states in developing air quality standards, this book offers a review of literature related to atmospheric particulates and the development of criteria for air quality. It not only summarizes the current scientific knowledge of particulate air pollution, but points up the major deficiencies in that knowledge and the need for further…
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-01
... Review of the National Ambient Air Quality Standards for Particulate Matter AGENCY: Environmental... Review of the Particulate Matter National Ambient Air Quality Standards--First External Review Draft (75... Particulate Matter National Ambient Air Quality Standards--First External Review Draft (March 2010), please...
Sources of particulate matter exposure for an elderly population in a city north of Baltimore, MD were evaluated using advanced factor analysis models. Data collected with Versatile Air Pollutant Samplers (VAPS) positioned at a community site, outside and inside of an elderly ...
Amancio, Camila Trolez; Nascimento, Luiz Fernando
2014-12-01
Little has been discussed about the increased risk of stroke after exposure to air pollutants, particularly in Brazil. The mechanisms through which air pollution can influence occurrences of vascular events such as stroke are still poorly understood. The aim of this study was to estimate the association between exposure to some air pollutants and risk of death due to stroke. Ecological time series study with data from São José dos Campos, Brazil. Data on deaths due to stroke among individuals of all ages living in São José dos Campos and on particulate matter, sulfur dioxide and ozone were used. Statistical analysis was performed using a generalized additive model of Poisson regression with the Statistica software, in unipollutant and multipollutant models. The percentage increase in the risk of increased interquartile difference was calculated. There were 1,032 deaths due to stroke, ranging from 0 to 5 per day. The statistical significance of the exposure to particulate matter was ascertained in the unipollutant model and the importance of particulate matter and sulfur dioxide, in the multipollutant model. The increases in risk were 10% and 7%, for particulate matter and sulfur dioxide, respectively. It was possible to identify exposure to air pollutants as a risk factor for death due to stroke, even in a city with low levels of air pollution.
Impact of fine particulate fluctuation and other variables on Beijing's air quality index.
Chen, Bo; Lu, Shaowei; Li, Shaoning; Wang, Bing
2015-04-01
We analyzed fluctuation in Beijing's air quality over 328 days, based on air quality grades and air quality data from 35 atmospheric monitoring stations. Our results show the air over Beijing is subject to pollution 152 days of the year, or 46.34%. Among all pollutants, fine particulates, solid or liquid, 2.5 μm or less in size (PM2.5), appeared most frequently as the primary pollutant: 249 days, or 76% of the sample year (328 days). Nitrogen dioxide (NO2) and coarse particulates (PM10) cause the least pollution, appearing only 7 and 3 days, or 2 and 1% of the sample year, respectively. In Beijing, fine particulates like PM2.5 vary seasonally: 154.54 ± 18.60 in winter > 145.22 ± 18.61 in spring > 140.16 ± 20.76 in autumn > 122.37 ± 13.42 in summer. Air quality is best in August and worst in December, while various districts in Beijing experience different air quality. To be specific, from south to north and from west to east, air quality tends to improve. Meteorological elements have a constraining effect on air pollutants, which means there is a linear correlation between the air quality index and humidity, rainfall, wind speed, and temperature. Under a typical pollution scenario, the higher the air quality index (AQI) value, the lower the wind speed and the greater the relative humidity; the lower the AQI value, the higher the wind speed and lower the relative humidity. Analysis of influencing factors reveals that the air pollution is mainly particulate matter produced by burning coal, vehicle emissions, volatile oils and gas, fast development of food services, emissions from the surrounding region, and natural dust clouds formed in arid areas to the northwest. Topography affects the distribution of meteorological conditions, in turn varying air quality over the region from one location to another. Human activities also exercise impact on urban air quality with dual functions.
Particulate sulfur in the upper troposphere and lowermost stratosphere - sources and climate forcing
NASA Astrophysics Data System (ADS)
Martinsson, Bengt G.; Friberg, Johan; Sandvik, Oscar S.; Hermann, Markus; van Velthoven, Peter F. J.; Zahn, Andreas
2017-09-01
This study is based on fine-mode aerosol samples collected in the upper troposphere (UT) and the lowermost stratosphere (LMS) of the Northern Hemisphere extratropics during monthly intercontinental flights at 8.8-12 km altitude of the IAGOS-CARIBIC platform in the time period 1999-2014. The samples were analyzed for a large number of chemical elements using the accelerator-based methods PIXE (particle-induced X-ray emission) and PESA (particle elastic scattering analysis). Here the particulate sulfur concentrations, obtained by PIXE analysis, are investigated. In addition, the satellite-borne lidar aboard CALIPSO is used to study the stratospheric aerosol load. A steep gradient in particulate sulfur concentration extends several kilometers into the LMS, as a result of increasing dilution towards the tropopause of stratospheric, particulate sulfur-rich air. The stratospheric air is diluted with tropospheric air, forming the extratropical transition layer (ExTL). Observed concentrations are related to the distance to the dynamical tropopause. A linear regression methodology handled seasonal variation and impact from volcanism. This was used to convert each data point into stand-alone estimates of a concentration profile and column concentration of particulate sulfur in a 3 km altitude band above the tropopause. We find distinct responses to volcanic eruptions, and that this layer in the LMS has a significant contribution to the stratospheric aerosol optical depth and thus to its radiative forcing. Further, the origin of UT particulate sulfur shows strong seasonal variation. We find that tropospheric sources dominate during the fall as a result of downward transport of the Asian tropopause aerosol layer (ATAL) formed in the Asian monsoon, whereas transport down from the Junge layer is the main source of UT particulate sulfur in the first half of the year. In this latter part of the year, the stratosphere is the clearly dominating source of particulate sulfur in the UT during times of volcanic influence and under background conditions.
Lin, Neng-Huei; Sheu, Guey-Rong; Wetherbee, Gregory A.; Debey, Timothy M.
2013-01-01
Cloud water was sampled on Mount Bamboo in northern Taiwan during March 22-24, 2002. Cloud-water samples were filtered using 0.45-micron filters to remove particulate material from the water samples. Filtered particulates were analyzed by instrumental neutron activation analysis (INAA) at the U.S. Geological Survey National Reactor Facility in Denver, Colorado, in February 2012. INAA elemental composition data for the particulate materials are presented. These data complement analyses of the aqueous portion of the cloud-water samples, which were performed earlier by the Department of Atmospheric Sciences, National Central University, Taiwan. The data are intended for evaluation of atmospheric transport processes and air-pollution sources in Southeast Asia.
Alshawa, Ahmad; Russell, Ashley R; Nizkorodov, Sergey A
2007-04-01
Ionization air purifiers are increasingly used to remove aerosol particles from indoor air. However, certain ionization air purifiers also emit ozone. Reactions between the emitted ozone and unsaturated volatile organic compounds (VOC) commonly found in indoor air produce additional respirable aerosol particles in the ultrafine (<0.1 microm) and fine (<2.5 microm) size domains. A simple kinetic model is used to analyze the competition between the removal and generation of particulate matter by ionization air purifiers under conditions of a typical residential building. This model predicts that certain widely used ionization air purifiers may actually increase the mass concentration of fine and ultrafine particulates in the presence of common unsaturated VOC, such as limonene contained in many household cleaning products. This prediction is supported by an explicit observation of ultrafine particle nucleation events caused by the addition of D-limonene to a ventilated office room equipped with a common ionization air purifier.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-02
... Promulgation of Air Quality Implementation Plans; Wisconsin; Particulate Matter Standards; Withdrawal of Direct... were made to the particulate matter standards by adding fine particulate standards and revoking the..., Intergovernmental relations, Particulate matter. Authority: 42 U.S.C. 7401 et seq. Dated: May 14, 2010. Walter W...
Time-integrated (typically 24-hr) filter-based methods (historical methods) form the underpinning of our understanding of the fate, impact of source emissions at receptor locations (source impacts), and potential health and welfare effects of particulate matter (PM) in air. Over...
Ships, ports and particulate air pollution - an analysis of recent studies
2011-01-01
The duration of use is usually significantly longer for marine vessels than for roadside vehicles. Therefore, these vessels are often powered by relatively old engines which may propagate air pollution. Also, the quality of fuel used for marine vessels is usually not comparable to the quality of fuels used in the automotive sector and therefore, port areas may exhibit a high degree of air pollution. In contrast to the multitude of studies that addressed outdoor air pollution due to road traffic, only little is known about ship-related air pollution. Therefore the present article aims to summarize recent studies that address air pollution, i.e. particulate matter exposure, due to marine vessels. It can be stated that the data in this area of research is still largely limited. Especially, knowledge on the different air pollutions in different sea areas is needed. PMID:22141925
NASA Astrophysics Data System (ADS)
Qian, Li
2016-04-01
Increasing of particulates in the air in city became a serious problem , but in the Beijing area students rarely research such questions. The intelligent instrument of suspended particulate matter sampler which introduce from the institute of geology and geophysics, Chinese academy of sciences can be collected for all kinds of grain size of suspended matter in the air.We put them near schools,so the PM2.5 in the air near our shool can be collected. The method for analysis is the environmental magnetism, etc. Numerous studies have demonstrated rapid and non-destructive magnetic parameters measurement for rapid estimation of particulate sources of heavy metals and provides a very effective means. Environmental magnetism is a frontier science among earth science, environmental science and magnetism,which has been applied into many fields because it is capable of providing important information for studying the regional or global environmental changes and the impact of human activity on environment. Testing magnetic parameters of the particle can extract atmospheric particulate matter source, distribution, pollution level and dynamic change information. Measured the magnetic parameters of ARM, IRM, hysteresis loop , element composition, soil particle size of the soil, leaf, the river and dustfall samples and PM2.5 of the atmospheric dustfall samples on campus and the Beijing city.By means of environmental magnetism analysis of atmospheric pollutants category, amount, etc. Magnetic properties of pollutants may indicate the source of the pollutants, the nature of the analysis of pollutants, monitoring pollutant change over time.
High diversity of fungi in air particulate matter.
Fröhlich-Nowoisky, Janine; Pickersgill, Daniel A; Després, Viviane R; Pöschl, Ulrich
2009-08-04
Fungal spores can account for large proportions of air particulate matter, and they may potentially influence the hydrological cycle and climate as nuclei for water droplets and ice crystals in clouds, fog, and precipitation. Moreover, some fungi are major pathogens and allergens. The diversity of airborne fungi is, however, not well-known. By DNA analysis we found pronounced differences in the relative abundance and seasonal cycles of various groups of fungi in coarse and fine particulate matter, with more plant pathogens in the coarse fraction and more human pathogens and allergens in the respirable fine particle fraction (<3 microm). Moreover, the ratio of Basidiomycota to Ascomycota was found to be much higher than previously assumed, which might also apply to the biosphere.
Xu, Meimei; Guo, Yuming; Zhang, Yajuan; Westerdahl, Dane; Mo, Yunzheng; Liang, Fengchao; Pan, Xiaochuan
2014-12-12
Few studies have used spatially resolved ambient particulate matter with an aerodynamic diameter of <10 μm (PM10) to examine the impact of PM10 on ischemic heart disease (IHD) mortality in China. The aim of our study is to evaluate the short-term effects of PM10 concentrations on IHD mortality by means of spatiotemporal analysis approach. We collected daily data on air pollution, weather conditions and IHD mortality in Beijing, China during 2008 and 2009. Ordinary kriging (OK) was used to interpolate daily PM10 concentrations at the centroid of 287 township-level areas based on 27 monitoring sites covering the whole city. A generalized additive mixed model was used to estimate quantitatively the impact of spatially resolved PM10 on the IHD mortality. The co-effects of the seasons, gender and age were studied in a stratified analysis. Generalized additive model was used to evaluate the effects of averaged PM10 concentration as well. The averaged spatially resolved PM10 concentration at 287 township-level areas was 120.3 ± 78.1 μg/m3. Ambient PM10 concentration was associated with IHD mortality in spatiotemporal analysis and the strongest effects were identified for the 2-day average. A 10 μg/m3 increase in PM10 was associated with an increase of 0.33% (95% confidence intervals: 0.13%, 0.52%) in daily IHD mortality. The effect estimates using spatially resolved PM10 were larger than that using averaged PM10. The seasonal stratification analysis showed that PM10 had the statistically stronger effects on IHD mortality in summer than that in the other seasons. Males and older people demonstrated the larger response to PM10 exposure. Our results suggest that short-term exposure to particulate air pollution is associated with increased IHD mortality. Spatial variation should be considered for assessing the impacts of particulate air pollution on mortality.
NASA Astrophysics Data System (ADS)
Sówka, Izabela; Chlebowska-Styś, Anna; Mathews, Barbara
2018-01-01
It is commonly known, that suspended particulate matter pose a threat to human life and health, negatively influence the flora, climate and also materials. Especially dangerous is the presence of high concentration of particulate matter in the area of cities, where density of population is high. The research aimed at determining the variability of suspended particulate matter concentration (PM1.0, PM2.5 and PM10) in two different thermal seasons, in the area of Poznań city. As a part of carried out work we analyzed the variability of concentrations and also performed a preliminary analysis of their correlation. Measured concentrations of particulate matter were contained within following ranges: PM10 - 8.7-69.6 μg/m3, PM2.5 - 2.2-88.5 μg/m3, PM1.0 - 2.5-22.9 μg/m3 in the winter season and 1.0-42.8 μg/m3 (PM10), 1.2-40.3 μg/m3 (PM2.5) and 2.7-10.4 (PM1.0) in the summer season. Preliminary correlative analysis indicated interdependence between the temperature of air, the speed of wind and concentration of particulate matter in selected measurement points. The values of correlation coefficients between the air temperature, speed of wind and concentrations of particulate matter were respectively equal to: for PM10: -0.59 and -0.55 (Jana Pawła II Street), -0.53 and -0.53 (Szymanowskiego Street), for PM2.5: -0.60 and -0.53 (Jana Pawła II Street) and for PM1.0 -0.40 and -0.59 (Jana Pawła II Street).
Open cohort ("time-series") studies of the adverse health effects of short-term exposures to ambient particulate matter and gaseous co-pollutants have been essential in the standard setting process. Last year, a number of serious issues were raised concerning the fitting of Gener...
Spatial analysis of air pollution and mortality in California.
Jerrett, Michael; Burnett, Richard T; Beckerman, Bernardo S; Turner, Michelle C; Krewski, Daniel; Thurston, George; Martin, Randall V; van Donkelaar, Aaron; Hughes, Edward; Shi, Yuanli; Gapstur, Susan M; Thun, Michael J; Pope, C Arden
2013-09-01
Although substantial scientific evidence suggests that chronic exposure to ambient air pollution contributes to premature mortality, uncertainties exist in the size and consistency of this association. Uncertainty may arise from inaccurate exposure assessment. To assess the associations of three types of air pollutants (fine particulate matter, ozone [O3], and nitrogen dioxide [NO2]) with the risk of mortality in a large cohort of California adults using individualized exposure assessments. For fine particulate matter and NO2, we used land use regression models to derive predicted individualized exposure at the home address. For O3, we estimated exposure with an inverse distance weighting interpolation. Standard and multilevel Cox survival models were used to assess the association between air pollution and mortality. Data for 73,711 subjects who resided in California were abstracted from the American Cancer Society Cancer Prevention II Study cohort, with baseline ascertainment of individual characteristics in 1982 and follow-up of vital status through to 2000. Exposure data were derived from government monitors. Exposure to fine particulate matter, O3, and NO2 was positively associated with ischemic heart disease mortality. NO2 (a marker for traffic pollution) and fine particulate matter were also associated with mortality from all causes combined. Only NO2 had significant positive association with lung cancer mortality. Using the first individualized exposure assignments in this important cohort, we found positive associations of fine particulate matter, O3, and NO2 with mortality. The positive associations of NO2 suggest that traffic pollution relates to premature death.
This paper presents an analysis of the CMAQ v4.5 model performance for particulate matter and its chemical components for the simulated year 2001. This is part two is two part series of papers that examines the model performance of CMAQ v4.5.
Organic composition of fine particulate matter (PM2.5) was investigated as a part of the Detroit Exposure and Aerosol Research Study (DEARS). A high volume (113 liters/minute) sampler was used at the Allen Park community air monitoring station to collect PM2.5 for analysis by ga...
40 CFR 52.1476 - Control strategy: Particulate matter.
Code of Federal Regulations, 2010 CFR
2010-07-01
... National Ambient Air Quality Standards for particulate matter. (1) NAQR Article 7.2.7, Particulate Matter; Table 4.2, Emissions Inventory Summary for Particulates and Table 5.2, Summary of Control Strategy... 24, 1979. (2) Nevada Air Quality Regulations, Article 4, Rule 4.34, (Visible Emission from Stationary...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-08
... Promulgation of Air Quality Implementation Plans; Wisconsin; Particulate Matter Standards AGENCY: Environmental... matter standards in October 2006 by strengthening the 24-hour fine particulate standard and revoking the... standards to match the current Federal standards for particulate matter. DATES: Comments must be received on...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-26
... Promulgation of Air Quality Implementation Plans; Ohio; Particulate Matter Standards AGENCY: Environmental... in Ohio Administrative Code (OAC) Chapter 3745-17, ``Particulate Matter Standards.'' The revisions were submitted by Ohio EPA to satisfy the State's 5-year review requirements. The particulate matter...
The particulate-related health benefits of reducing power plant emissions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schneider, C.
The report estimates the adverse human health effects due to exposure to particulate matter from power plants. Power plants are significant emitters of sulfur dioxide and nitrogen oxides. In many parts of the U.S., especially the Midwest, power plants are the largest contributors. These gases are harmful themselves, and they contribute to the formation of acid rain and particulate matter. Particulate matter reduces visibility, often producing a milky haze that blankets wide regions, and it is a serious public health problem. Over the past decade and more, numerous studies have linked particulate matter to a wide range of adverse healthmore » effects in people of all ages. Epidemiologists have consistently linked particulate matter with effects ranging from premature death, hospital admissions and asthma attacks to chronic bronchitis. This study documents the health impacts from power plant air pollution emissions. Using the best available emissions and air quality modeling programs, the stud y forecasts ambient air quality for a business-as-usual baseline scenario for 2007, assuming full implementation of the Acid Rain program and the U.S. Environmental Protection Agency's (EPA) Summer Smog rule (the 1999 NO{sub x} SIP Call). The study then estimates the attributable health impacts from all power plant emissions. Finally, the study estimates air quality for a specific policy alternative: reducing total power plant emissions of SO{sub 2} and NO{sub x} 75 percent form the levels emitted in 1997. The difference between this '75 percent reduction scenario' and the baseline provides an estimate of the health effects that would be avoided by this reduction in power plant emissions. In addition to the policy scenario, the work involved performing sensitivity analyses to examine alternative emission reductions and forecast ambient air quality using a second air quality model. EPA uses both air quality models extensively, and both suggest that power plants make a large contribution to ambient particulate matter levels in the Eastern U.S. To put the power plant results in context, air pollution from all on-road and off-road diesel engine emissions was also examined. The results suggest that both power plants and diesel engines make a large contribution to ambient particulate matter levels and the associated health effects. Chapter 2 describes the development of the emissions inventory. Chapter 3 describes the methods used to estimate changes in particulate matter concentrations. Chapter 4 describes general issues arising in estimating and valuing changes in adverse health effects associated with changes in particulate matter. Chapter 5 describes in some detail the methods used for estimating and valuing adverse health effects, and in Chapter 6, the results of the various analyses are presented. The study includes 6 appendices. Appendix A provides results of this analysis for all metropolitan areas in the U.S. and a list of the counties in each metropolitan area. Appendices B, C and D present a detailed examination of how the pollution emission estimates were derived and then translated into forecasts of ambient particulate matter levels.« less
Air pollution and gastrointestinal diseases in Utah
NASA Astrophysics Data System (ADS)
Maestas, Melissa May
The valleys of northern Utah, where most of Utah's population resides, experience episodic air pollution events well in excess of the National Ambient Air Quality Standards. Most of the events are due to an accumulation of particulate matter during persistent cold air pools in winter from both direct emissions and secondary chemical reactions in the atmosphere. High wintertime ozone concentrations are occasionally observed in the Uintah Basin, in addition to particulate matter. At other times of the year, blowing dust, wildland fires, fireworks, and summertime ozone formation contribute to local air pollution. The objective of this dissertation is to investigate one facet of the health effects of Utah's air pollution on its residents: the acute impacts of air pollution on gastrointestinal (GI) disease. To study the health effects of these episodic pollution events, some measure of air pollution exposure must be matched to the health data. Time and place are used to link the health data for a person with the pollution data. This dissertation describes the method of kriging data from the sparse pollution monitoring network to estimate personal air pollution history based on the zip code of residence. This dissertation then describes the application of these exposure estimates to a health study on GI disease. The purpose of the GI study is to retrospectively look at two groups of patients during 2000-2014: those with autoimmune disease of the GI tract (inflammatory bowel disease, IBD) and those with allergic disease of the GI tract (eosinophilic esophagitis, EoE) to determine whether disease exacerbations occur more commonly during and following periods of poor air quality compared to periods of good air quality. The primary analysis method is case crossover design. In addition to using the kriged air pollution estimates, the analysis was repeated using simpler empirical estimation methods to assess whether the odds ratios are sensitive to the air pollution estimation method. The data suggests an association between particulate matter smaller than 2.5 microns and prednisone prescriptions, gastrointestinal infections in general, clostridium difficile infections specifically, and hospitalizations among people who have at least five entries of IBD diagnosis codes in their medical records. EoE exacerbations appear to be associated with high concentrations of particulate matter as well as ozone.
Particulate air pollution and mortality in 38 of China's largest cities: time series analysis.
Yin, Peng; He, Guojun; Fan, Maoyong; Chiu, Kowk Yan; Fan, Maorong; Liu, Chang; Xue, An; Liu, Tong; Pan, Yuhang; Mu, Quan; Zhou, Maigeng
2017-03-14
Objectives To estimate the short term effect of particulate air pollution (particle diameter <10 μm, or PM 10 ) on mortality and explore the heterogeneity of particulate air pollution effects in major cities in China. Design Generalised linear models with different lag structures using time series data. Setting 38 of the largest cities in 27 provinces of China (combined population >200 million). Participants 350 638 deaths (200 912 in males, 149 726 in females) recorded in 38 city districts by the Disease Surveillance Point System of the Chinese Center for Disease Control and Prevention from 1 January 2010 to 29 June 2013. Main outcome measure Daily numbers of deaths from all causes, cardiorespiratory diseases, and non-cardiorespiratory diseases and among different demographic groups were used to estimate the associations between particulate air pollution and mortality. Results A 10 µg/m 3 change in concurrent day PM 10 concentrations was associated with a 0.44% (95% confidence interval 0.30% to 0.58%) increase in daily number of deaths. Previous day and two day lagged PM 10 levels decreased in magnitude by one third and two thirds but remained statistically significantly associated with increased mortality. The estimate for the effect of PM 10 on deaths from cardiorespiratory diseases was 0.62% (0.43% to 0.81%) per 10 µg/m 3 compared with 0.26% (0.09% to 0.42%) for other cause mortality. Exposure to PM 10 had a greater impact on females than on males. Adults aged 60 and over were more vulnerable to particulate air pollution at high levels than those aged less than 60. The PM 10 effect varied across different cities and marginally decreased in cities with higher PM 10 concentrations. Conclusion Particulate air pollution has a greater impact on deaths from cardiorespiratory diseases than it does on other cause mortality. People aged 60 or more have a higher risk of death from particulate air pollution than people aged less than 60. The estimates of the effect varied across cities and covered a wide range of domain. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Triantafyllou, A G; Zoras, S; Evagelopoulos, V
2006-11-01
Lignite mining operations and lignite-fired power stations result in major particulate pollution (fly ash and fugitive dust) problems in the areas surrounding these activities. The problem is more complicated, especially, for urban areas located not far from these activities, due to additional contribution from the urban pollution sources. Knowledge of the distribution of airborne particulate matter into size fraction has become an increasing area of focus when examining the effects of particulate pollution. On the other hand, airborne particle concentration measurements are useful in order to assess the air pollution levels based on national and international air quality standards. These measurements are also necessary for developing air pollutants control strategies or for evaluating the effectiveness of these strategies, especially, for long periods. In this study an attempt is made in order to investigate the particle size distribution of fly ash and fugitive dust in a heavy industrialized (mining and power stations operations) area with complex terrain in the northwestern part of Greece. Parallel total suspended particulates (TSP) and particulate matter with an aerodynamic diameter less than 10 microm (PM10) concentrations are analyzed. These measurements gathered from thirteen monitoring stations located in the greater area of interest. Spatial, temporal variation and trend are analyzed over the last seven years. Furthermore, the geographical variation of PM10 - TSP correlation and PM10/TSP ratio are investigated and compared to those in the literature. The analysis has indicated that a complex system of sources and meteorological conditions modulate the particulate pollution of the examined area.
The high-order decoupled direct method in three dimensions for particular matter (HDDM-3D/PM) has been implemented in the Community Multiscale Air Quality (CMAQ) model to enable advanced sensitivity analysis. The major effort of this work is to develop high-order DDM sensitivity...
Momoh, Abuh; E. Mhlongo, Sphiwe; Abiodun, Olukoga; Muzerengi, Confidence; Mudanalwo, Matamela
2013-01-01
Objective: The purpose of this study was to estimate the levels of Suspended Particulate Matter (SPM) in ambient air within Mukula mine and the potential risks to mineworkers and inhabitants of the adjoining Mukula community’s health. Methods : An SPM was used to measure the levels of particulate matter (PM10) in and around the mining site. One-way Analysis of Variance (ANOVA) was used to determine significance level of PM10 in ambient air. Results: Suspended particulate matter in the air ranged from 60.25 to 1820.45 µg/m3. The lowest value of SPM was more than four times the required World Health Organisation’s allowable level in ambient air, which the mine workers and locals would be inhaling. Conclusion: Continuous inhalation of mine dusts by mine workers and locals could result in pulmonary fibrosis, silicosis and lung cancer. The findings from this study support the need to have in place the necessary control measures that will drastically reduce SPM in the air. Such measure includes wet drilling and blasting, sprinkling of water on the mine roads and planting of vegetation around the mines and neighbouring communities. PMID:24550971
Momoh, Abuh; E Mhlongo, Sphiwe; Abiodun, Olukoga; Muzerengi, Confidence; Mudanalwo, Matamela
2013-11-01
Objective : The purpose of this study was to estimate the levels of Suspended Particulate Matter (SPM) in ambient air within Mukula mine and the potential risks to mineworkers and inhabitants of the adjoining Mukula community's health. Methods : An SPM was used to measure the levels of particulate matter (PM10) in and around the mining site. One-way Analysis of Variance (ANOVA) was used to determine significance level of PM10 in ambient air. Results : Suspended particulate matter in the air ranged from 60.25 to 1820.45 µg/m(3). The lowest value of SPM was more than four times the required World Health Organisation's allowable level in ambient air, which the mine workers and locals would be inhaling. Conclusion : Continuous inhalation of mine dusts by mine workers and locals could result in pulmonary fibrosis, silicosis and lung cancer. The findings from this study support the need to have in place the necessary control measures that will drastically reduce SPM in the air. Such measure includes wet drilling and blasting, sprinkling of water on the mine roads and planting of vegetation around the mines and neighbouring communities.
NASA Astrophysics Data System (ADS)
Sadiq, M.; Mian, A. A.
Air particulates, both the total suspended (TSP) and inhalable (PM 10, smaller than 10 microns in size), were collected during and after the Kuwait oil fires (from March 1991 to July 1992) using Hi-Vol samplers. These samples were wet-digested at 120°C in an aqua regia and perchloric acids mixture for 3 h. Air particulate samples collected in 1982 at the same location were prepared similarly. Concentrations of nickel and vanadium were determined in the aliquot samples using an inductively coupled argon plasma analyser (ICAP). The monthly mean concentrations of nickel and vanadium, on volume basis, increased rapidly from March to June and decreased sharply during July-August in 1991. The minimum mean concentrations of these elements were found in the particulate samples collected in December 1991 which gradually increased through May 1992. Like 1991, nickel and vanadium concentrations in the air particulates spiked in June and decreased again in July 1992. This distribution pattern of nickel and vanadium concentrations was similar to that of the predominant wind from the north (Kuwait). In general, concentrations of these elements were higher in the air particulates collected during April-July 1991 as compared with those collected in 1992 during the same period. The TSPs contained higher concentrations of nickel and vanadium than those found in the PM 10 samples. However, this trend was reversed when concentrations of nickel and vanadium, on were expressed on particulate weight basis. The monthly mean concentrations of nickel and vanadium, on weight basis, decreased gradually through 1991 and increased slightly from March to July 1992. Concentrations of these elements were significantly higher in the air particulate samples collected in 1991 than those samples collected during 1982 at the same location. The data of this study suggest a contribution of the Kuwait oil fires in elevating nickel and vanadium concentrations in the air particulates at Dhahran during April-July 1991. Concentrations of these elements were largely below their proposed limits in the ambient air (for nickel-50 μg m -3, air; for vanadium—1 μg m -3 air). It is, therefore, anticipated that concentrations of nickel and vanadium in the air particulate samples were not a health concern during Kuwait oil fires at Dhahran, Saudi Arabia.
ADVANCEMENTS IN SOURCE-TO-DOSE ANALYSIS OF POPULATION EXPOSURES TO OZONE
The current study takes advantage of the observations from regional air quality monitoring networks, the data from the NE-OPS (North East Oxidant and Particulate Study) Project in the Philadelphia region, and regional photochemical air quality model predictions to obtain and co...
Particulate air pollution and daily mortality in Detroit.
Schwartz, J
1991-12-01
Particulate air pollution has been associated with increased mortality during episodes of high pollution concentrations. The relationship at lower concentrations has been more controversial, as has the relative role of particles and sulfur dioxide. Replication has been difficult because suspended particle concentrations are usually measured only every sixth day in the U.S. This study used concurrent measurements of total suspended particulates (TSP) and airport visibility from every sixth day sampling for 10 years to fit a predictive model for TSP. Predicted daily TSP concentrations were then correlated with daily mortality counts in Poisson regression models controlling for season, weather, time trends, overdispersion, and serial correlation. A significant correlation (P less than 0.0001) was found between predicted TSP and daily mortality. This correlation was independent of sulfur dioxide, but not vice versa. The magnitude of the effect was very similar to results recently reported from Steubenville, Ohio (using actual TSP measurements), with each 100 micrograms/m3 increase in TSP resulting in a 6% increase in mortality. Graphical analysis indicated a dose-response relationship with no evidence of a threshold down to concentrations below half of the National Ambient Air Quality Standards for particulate matter.
Impact of Land-Use and Land-Cover Change on urban air quality in representative cities of China
NASA Astrophysics Data System (ADS)
Sun, L.; Wei, J.; Duan, D. H.; Guo, Y. M.; Yang, D. X.; Jia, C.; Mi, X. T.
2016-05-01
The atmospheric particulate pollution in China is getting worse. Land-Use and Land-Cover Change (LUCC) is a key factor that affects atmospheric particulate pollution. Understanding the response of particulate pollution to LUCC is necessary for environmental protection. Eight representative cities in China, Qingdao, Jinan, Zhengzhou, Xi'an, Lanzhou, Zhangye, Jiuquan, and Urumqi were selected to analyze the relationship between particulate pollution and LUCC. The MODIS (MODerate-resolution Imaging Spectroradiometer) aerosol product (MOD04) was used to estimate atmospheric particulate pollution for nearly 10 years, from 2001 to 2010. Six land-use types, water, woodland, grassland, cultivated land, urban, and unused land, were obtained from the MODIS land cover product (MOD12), where the LUCC of each category was estimated. The response of particulate pollution to LUCC was analyzed from the above mentioned two types of data. Moreover, the impacts of time-lag and urban type changes on particulate pollution were also considered. Analysis results showed that due to natural factors, or human activities such as urban sprawl or deforestation, etc., the response of particulate pollution to LUCC shows obvious differences in different areas. The correlation between particulate pollution and LUCC is lower in coastal areas but higher in inland areas. The dominant factor affecting urban air quality in LUCC changes from ocean, to woodland, to urban land, and eventually into grassland or unused land when moving from the coast to inland China.
Seasonal and diurnal variation in concentrations of gaseous and particulate phase endosulfan
NASA Astrophysics Data System (ADS)
Li, Qingbo; Wang, Xianyu; Song, Jing; Sui, Hongqi; Huang, Lei; Li, Lu
2012-12-01
Successive 52-week air monitoring of α-endosulfan (α-E), β-endosulfan (β-E) and endosulfan sulfate (E.S) in the gaseous and particulate phases was conducted in Dalian city, northeast China by using an active high-volume sampler. Significant seasonal and diurnal variations in endosulfan concentrations were observed. It was found that the concentration of gaseous-phase α-E peaked in the summer and the concentration of particulate phase α-E peaked in the winter. For E.S, both gaseous and particulate phase concentrations peaked in the summer. α-E was distributed predominantly in the gas phase in the summer but was distributed mainly in the particulate phase in the winter. β-E was distributed mainly in the gas phase in the summer and in the particulate phase at other times of the year. E.S was distributed mainly in the particulate phase throughout the year. Elevated temperatures facilitated the volatilization of α-E from particle surfaces but exerted little effect on β-E and had almost no effect on E.S. Trajectory-based analysis indicates that the seasonal variation in atmospheric concentrations of endosulfan in Dalian city was influenced strongly by the land and sea air masses. In addition, differences in endosulfan concentrations in the particulate phase between day and night were likely due to the circulation of sea/land breezes. The 'cold-condensation' effect occurring during the night may result in the attachment of endosulfan to the particulate phase.
Ambient air pollution and years of life lost in Ningbo, China
NASA Astrophysics Data System (ADS)
He, Tianfeng; Yang, Zuyao; Liu, Tao; Shen, Yueping; Fu, Xiaohong; Qian, Xujun; Zhang, Yuelun; Wang, Yong; Xu, Zhiwei; Zhu, Shankuan; Mao, Chen; Xu, Guozhang; Tang, Jinling
2016-03-01
To evaluate the burden of air pollution on years of life lost (YLL) in addition to mortality, we conducted a time series analysis based on the data on air pollution, meteorological conditions and 163,704 non-accidental deaths of Ningbo, China, 2009-2013. The mean concentrations of particulate matter with aerodynamic diameter <10 μm, particulate matter with aerodynamic diameter <2.5 μm, sulfur dioxide and nitrogen dioxide were 84.0 μg/m3, 60.1 μg/m3, 25.1 μg/m3 and 41.7 μg/m3, respectively. An increase of 10-μg/m3 in particulate matter with aerodynamic diameter <10 μm, particulate matter with aerodynamic diameter <2.5 μm, sulfur dioxide and nitrogen dioxide was associated with 4.27 (95% confidence interval [CI] 1.17-7.38), 2.97 (95% CI -2.01-7.95), 29.98 (95% CI 19.21-40.76) and 16.58 (95% CI 8.19-24.97) YLL, respectively, and 0.53% (95% CI 0.29-0.76%), 0.57% (95% CI 0.20-0.95%), 2.89% (95% CI 2.04-3.76%), and 1.65% (95% CI 1.01-2.30%) increase of daily death counts, respectively. The impact of air pollution lasted for four days (lag 0-3), and were more significant in the elderly than in the young population for both outcomes. These findings clarify the burden of air pollution on YLL and highlight the importance and urgency of air pollution control in China.
Ambient air pollution and years of life lost in Ningbo, China.
He, Tianfeng; Yang, Zuyao; Liu, Tao; Shen, Yueping; Fu, Xiaohong; Qian, Xujun; Zhang, Yuelun; Wang, Yong; Xu, Zhiwei; Zhu, Shankuan; Mao, Chen; Xu, Guozhang; Tang, Jinling
2016-03-01
To evaluate the burden of air pollution on years of life lost (YLL) in addition to mortality, we conducted a time series analysis based on the data on air pollution, meteorological conditions and 163,704 non-accidental deaths of Ningbo, China, 2009-2013. The mean concentrations of particulate matter with aerodynamic diameter <10 μm, particulate matter with aerodynamic diameter <2.5 μm, sulfur dioxide and nitrogen dioxide were 84.0 μg/m(3), 60.1 μg/m(3), 25.1 μg/m(3) and 41.7 μg/m(3), respectively. An increase of 10-μg/m(3) in particulate matter with aerodynamic diameter <10 μm, particulate matter with aerodynamic diameter <2.5 μm, sulfur dioxide and nitrogen dioxide was associated with 4.27 (95% confidence interval [CI] 1.17-7.38), 2.97 (95% CI -2.01-7.95), 29.98 (95% CI 19.21-40.76) and 16.58 (95% CI 8.19-24.97) YLL, respectively, and 0.53% (95% CI 0.29-0.76%), 0.57% (95% CI 0.20-0.95%), 2.89% (95% CI 2.04-3.76%), and 1.65% (95% CI 1.01-2.30%) increase of daily death counts, respectively. The impact of air pollution lasted for four days (lag 0-3), and were more significant in the elderly than in the young population for both outcomes. These findings clarify the burden of air pollution on YLL and highlight the importance and urgency of air pollution control in China.
Analysis and interpretation of the 1985 Sequoia transport experiment. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Myrup, L.; Flocchini, R.
1987-10-01
An analysis and interpretation is presented of the 1985 Aerosol Transport and Characterization Program at Sequoia National Park, sponsored by the California Air Resources Board. Overall, it was found that the Program produced unique data sets and interesting new results relating particulate air quality and meteorology in the context of complex terrain. The major conclusion is that the meso-scale wind field, as modulated by synoptic-scale fluctuations, is the chief factor acting to cause variation in particulate concentrations in the Park. Areas for future work are discussed. In addition, it was recommended that in future measurement programs, greater effort be mademore » to locate sites completely unaffected by local sources of pollutants.« less
Perspective: ambient air pollution: inflammatory response and effects on the lung’s vasculature
Esmaeil, Nafiseh; Reibman, Joan
2014-01-01
Abstract Particulates from air pollution are implicated in causing or exacerbating respiratory and systemic cardiovascular diseases and are thought to be among the leading causes of morbidity and mortality. However, the contribution of ambient particulate matter to diseases affecting the pulmonary circulation, the right heart, and especially pulmonary hypertension is much less documented. Our own work and that of other groups has demonstrated that prolonged exposure to antigens via the airways can cause severe pulmonary arterial remodeling. In addition, vascular changes have been well documented in a typical disease of the airways, asthma. These experimental and clinical findings link responses in the airways with responses in the lung’s vasculature. It follows that particulate air pollution could cause, or exacerbate, diseases in the pulmonary circulation and associated pulmonary hypertension. This perspective details the literature for support of this concept. Data regarding the health effects of particulate matter from air pollution on the lung’s vasculature, with emphasis on the lung’s inflammatory responses to particulate matter deposition and pulmonary hypertension, are discussed. A deeper understanding of the health implications of exposure to ambient particulate matter will improve our knowledge of how to improve the management of lung diseases, including diseases of the pulmonary circulation. As man-made ambient particulate air pollution is typically linked to economic growth, a better understanding of the health effects of exposure to particulate air pollution is expected to integrate the global goal of achieving healthy living for all. PMID:25006418
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-19
... Promulgation of Air Quality Implementation Plans; Indiana; Particulate Matter Air Quality Standards AGENCY... submission contains the 24-hour fine particle (PM 2.5 ) National Ambient Air Quality Standards (NAAQS..., ``National primary and secondary ambient air quality standards for PM 2.5 .'' In the submission, IDEM has...
NASA Astrophysics Data System (ADS)
Alliot, Fabrice; Moreau-Guigon, Elodie; Bourges, Catherine; Desportes, Annie; Teil, Marie-Jeanne; Blanchard, Martine; Chevreuil, Marc
2014-08-01
A number of semi-volatile compounds occur in indoor air most of them being considered as potent endocrine disruptors and thus, exerting a possible impact upon health. To assess their concentration levels in indoor air, we developed and validated a method for sampling and multi-residue analysis of 58 compounds including phthalates, polycyclic aromatic hydrocarbons (PAHs), polybromodiphenylethers (PBDEs), polychlorobiphenyls (PCBs), parabens, bisphenol A (BPA) and tetrabromobisphenol A (TBBPA) in gaseous and particulate phases of air. We validated each step of procedures from extraction until analysis. Matrice spiking were performed at extraction, fractionation and purification stages. The more volatile compounds were analyzed with a gas chromatography system coupled with a mass spectrometer (GC/MS) or with a tandem mass spectrometer (GC/MS/MS). The less volatile compounds were analyzed with a liquid chromatography system coupled with a tandem mass spectrometer (LC/MS/MS). Labeled internal standard method was used ensuring high quantification accuracy. The instrumental detection limits were under 1 pg for all compounds and therefore, a limit of quantification averaging 1 pg m-3 for the gaseous and the particulate phases and a volume of 150 m3, except for phthalates, phenol compounds and BDE-209. Satisfactory recoveries were found except for phenol compounds. That method was successfully applied to several indoor air samples (office, apartment and day nursery) and most of the targeted compounds were quantified, mainly occurring in the gaseous phase. The most abundant were phthalates (up to 918 ng m-3 in total air), followed by PCBs > parabens > BPA > PAHs > PBDEs.
Outdoor air pollutants and patient health.
Laumbach, Robert J
2010-01-15
Almost 160 million persons live in areas of the United States that exceed federal health-based air pollution standards. The two air pollutants that most commonly exceed standards are ozone and particulate matter. Ozone and particulate matter can harm anyone if levels are sufficiently elevated, but health risk from air pollution is greatest among vulnerable populations. Both ozone and particulate matter can cause pulmonary inflammation, decreased lung function, and exacerbation of asthma and chronic obstructive pulmonary disease. Particulate matter is also strongly associated with increased cardiovascular morbidity and mortality. Children, older adults, and other vulnerable persons may be sensitive to lower levels of air pollution. Persons who are aware of local air pollution levels, reported daily by the U.S. Environmental Protection Agency as the Air Quality Index, can take action to reduce exposure. These actions include simple measures to limit exertion and time spent outdoors when air pollution levels are highest, and to reduce the infiltration of outdoor air pollutants into indoor spaces.
Air Quality Criteria for Particulate Matter and Sulfur Oxides (Final Report, 1982)
Particulate matter and sulfur oxides are two of six major air pollutants regulated by National Ambient Air Quality Standards (NAAQS) under the U.S. Clean Air Act. As mandated by the Clean Air Act, the U.S. Environmental Protection Agency (EPA) must periodically review the scienti...
COPPER-DEPENDENT INFLAMMATION AND NUCLEAR FACTOR-KB ACTIVATION BY PARTICULATE AIR POLLUTION
Particulate air pollution causes increased cardiopulmonary morbidity and mortality, but the chemical determinants responsible for its biologic effects are not understood. We studied the effect of total suspended particulates collected in Provo, Utah, an area where an increase in ...
STATISTICAL ISSUES IN THE STUDY OF AIR POLLUTION INVOLVING AIRBORNE PARTICULATE MATTER
Epidemiological research in the early 1990s focusing on health effects of airborne particulate matter pointed to a statistical association between increases in concentration of particulate in ambient air and increases in daily nonaccidental mortality, particularly among the eld...
The U.S. Environmental Protection Agency's Particulate Matter (PM) Supersites Program (Program) is a nationwide air quality methods, measurement, modeling, and data analysis program initiated through cooperative agreements with leading universities in the United States. The Progr...
Frontiers of Remote Sensing of the Oceans and Troposphere from Air and Space Platforms
NASA Technical Reports Server (NTRS)
1984-01-01
Several areas of remote sensing are addressed including: future satellite systems; air-sea interaction/wind; ocean waves and spectra/S.A.R.; atmospheric measurements (particulates and water vapor); synoptic and weather forecasting; topography; bathymetry; sea ice; and impact of remote sensing on synoptic analysis/forecasting.
Monitoring of PM10 and PM2.5 around primary particulate anthropogenic emission sources
NASA Astrophysics Data System (ADS)
Querol, Xavier; Alastuey, Andrés; Rodriguez, Sergio; Plana, Felicià; Mantilla, Enrique; Ruiz, Carmen R.
Investigations on the monitoring of ambient air levels of atmospheric particulates were developed around a large source of primary anthropogenic particulate emissions: the industrial ceramic area in the province of Castelló (Eastern Spain). Although these primary particulate emissions have a coarse grain-size distribution, the atmospheric transport dominated by the breeze circulation accounts for a grain-size segregation, which results in ambient air particles occurring mainly in the 2.5-10 μm range. The chemical composition of the ceramic particulate emissions is very similar to the crustal end-member but the use of high Al, Ti and Fe as tracer elements as well as a peculiar grain-size distribution in the insoluble major phases allow us to identify the ceramic input in the bulk particulate matter. PM2.5 instead of PM10 monitoring may avoid the interference of crustal particles without a major reduction in the secondary anthropogenic load, with the exception of nitrate. However, a methodology based in PM2.5 measurement alone is not adequate for monitoring the impact of primary particulate emissions (such as ceramic emissions) on air quality, since the major ambient air particles derived from these emissions are mainly in the range of 2.5-10 μm. Consequently, in areas characterised by major secondary particulate emissions, PM2.5 monitoring should detect anthropogenic particulate pollutants without crustal particulate interference, whereas PM10 measurements should be used in areas with major primary anthropogenic particulate emissions.
Comprehensive analysis of airborne contaminants from recent Spacelab missions
NASA Technical Reports Server (NTRS)
Matney, M. L.; Boyd, J. F.; Covington, P. A.; Leano, H. J.; Pierson, D. L.; Limero, T. F.; James, J. T.
1993-01-01
The Shuttle experiences unique air contamination problems because of microgravity and the closed environment. Contaminant build-up in the closed atmosphere and the lack of a gravitational settling mechanism have produced some concern in previous missions about the amount of solid and volatile airborne contaminants in the Orbiter and Spacelab. Degradation of air quality in the Orbiter/Spacelab environment, through processes such as chemical contamination, high solid-particulate levels, and high microbial levels, may affect crew performance and health. A comprehensive assessment of the Shuttle air quality was undertaken during STS-40 and STS-42 missions, in which a variety of air sampling and monitoring techniques were employed to determine the contaminant load by characterizing and quantitating airborne contaminants. Data were collected on the airborne concentrations of volatile organic compounds, microorganisms, and particulate matter collected on Orbiter/Spacelab air filters. The results showed that STS-40/42 Orbiter/Spacelab air was toxicologically safe to breathe, except during STS-40 when the Orbiter Refrigerator/Freezer unit was releasing noxious gases in the middeck. On STS-40, the levels of airborne bacteria appeared to increase as the mission progressed; however, this trend was not observed for the STS-42 mission. Particulate matter in the Orbiter/Spacelab air filters was chemically analyzed in order to determine the source of particles. Only small amounts of rat hair and food bar (STS-40) and traces of soiless medium (STS-42) were detected in the Spacelab air filters, indicating that containment for Spacelab experiments was effective.
This technical memorandum provides a description of the Adjustment to the Primary Particulate Matter Emissions Estimates and the Modeled Attainment Test Software Analysis (MATS) Procedure for the 812 Second Prospective Analysis
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-09
... and 2006 Fine Particulate Matter National Ambient Air Quality Standards AGENCY: Environmental...-hour fine particulate matter (PM 2.5 ) national ambient air quality standards (NAAQS). Section 110(a..., Incorporation by reference, Intergovernmental relations, Nitrogen dioxide, Particulate matter, Reporting and...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-01
... 2006 Fine Particulate Matter National Ambient Air Quality Standards AGENCY: Environmental Protection... 24-hour fine particulate matter (PM 2.5 ) national ambient air quality standards (NAAQS). Section 110..., Incorporation by reference, Intergovernmental relations, Nitrogen dioxide, Particulate matter, Reporting and...
Ambient air pollution and years of life lost in Ningbo, China
He, Tianfeng; Yang, Zuyao; Liu, Tao; Shen, Yueping; Fu, Xiaohong; Qian, Xujun; Zhang, Yuelun; Wang, Yong; Xu, Zhiwei; Zhu, Shankuan; Mao, Chen; Xu, Guozhang; Tang, Jinling
2016-01-01
To evaluate the burden of air pollution on years of life lost (YLL) in addition to mortality, we conducted a time series analysis based on the data on air pollution, meteorological conditions and 163,704 non-accidental deaths of Ningbo, China, 2009–2013. The mean concentrations of particulate matter with aerodynamic diameter <10 μm, particulate matter with aerodynamic diameter <2.5 μm, sulfur dioxide and nitrogen dioxide were 84.0 μg/m3, 60.1 μg/m3, 25.1 μg/m3 and 41.7 μg/m3, respectively. An increase of 10-μg/m3 in particulate matter with aerodynamic diameter <10 μm, particulate matter with aerodynamic diameter <2.5 μm, sulfur dioxide and nitrogen dioxide was associated with 4.27 (95% confidence interval [CI] 1.17–7.38), 2.97 (95% CI −2.01–7.95), 29.98 (95% CI 19.21–40.76) and 16.58 (95% CI 8.19–24.97) YLL, respectively, and 0.53% (95% CI 0.29–0.76%), 0.57% (95% CI 0.20–0.95%), 2.89% (95% CI 2.04–3.76%), and 1.65% (95% CI 1.01–2.30%) increase of daily death counts, respectively. The impact of air pollution lasted for four days (lag 0–3), and were more significant in the elderly than in the young population for both outcomes. These findings clarify the burden of air pollution on YLL and highlight the importance and urgency of air pollution control in China. PMID:26927539
DOE Office of Scientific and Technical Information (OSTI.GOV)
Esser, Bradley K.; Bibby, Richard K.; Fish, Craig
Storm water runoff from the Lawrence Livermore National Laboratory’s (LLNL’s) main site and Site 300 periodically exceeds the Discharge Permit Numeric Action Level (NAL) for Magnesium (Mg) under the Industrial General Permit (IGP) Order No. 2014-0057-DWQ. Of particular interest is the source of magnesium in storm water runoff from the site. This special study compares new metals data from air particulate and precipitation samples from the LLNL main site and Site 300 to previous metals data for storm water from the main site and Site 300 and alluvial sediment from the main site to investigate the potential source of elevatedmore » Mg in storm water runoff. Data for three metals (Mg, Iron {Fe}, and Aluminum {Al}) were available from all media; data for additional metals, such as Europium (Eu), were available from rain, air particulates, and alluvial sediment. To attribute source, this study compared metals concentration data (for Mg, Al, and Fe) in storm water and rain; metal-metal correlations (Mg with Fe, Mg with Al, Al with Fe, Mg with Eu, Eu with Fe, and Eu with Al) in storm water, rain, air particulates, and sediments; and metal-metal ratios ((Mg/Fe, Mg/Al, Al/Fe, Mg/Eu, Eu/Fe, and Eu/Al) in storm water, rain, air particulates and sediments. The results presented in this study are consistent with a simple conceptual model where the source of Mg in storm water runoff is air particulate matter that has dry-deposited on impervious surfaces and subsequently entrained in runoff during precipitation events. Such a conceptual model is consistent with 1) higher concentrations of metals in storm water runoff than in precipitation, 2) the strong correlation of Mg with Aluminum (Al) and Iron (Fe) in both storm water and air particulates, and 3) the similarity in metal mass ratios between storm water and air particulates in contrast to the dissimilarity of metal mass ratios between storm water and precipitation or alluvial sediment. The strong correlation of Mg with Fe and Al and of Fe with Al in storm water and air particulates and the strong association of Mg, Fe, and Al with Eu in air particulates strongly suggests that a dominant source of the Mg in storm water is associated with mineral phases of natural origin. These observations all point to Mg exceedances being associated with natural sources and processes and not with anthropogenic processes or pollutant sources.« less
Li, Han; Wan, Yanjian; Chen, Xiao; Cheng, Lu; Yang, Xueyu; Xia, Wei; Xu, Shunqing; Zhang, Hongling
2018-05-01
Nickel is a widespread environmental contaminant, and it is toxic to humans in certain forms at high doses. Despite this, nationwide data on nickel in outdoor air particulate matter and human exposure to nickel through inhalation in China are limited. In the present study, 662 outdoor air samples from seven representative provinces such as Shanghai, Hubei, Hunan, Hebei, Guangdong, Yunnan, and Shanxi were collected between March 2013 and February 2014 and analyzed by inductively coupled plasma mass spectrometry. The concentrations of nickel in the air were in the range of 2.1-80.9 ng/m 3 (geometric mean: 14.4 ng/m 3 ). In most areas, the concentrations of nickel were higher in winter and spring than those measured in summer and autumn. The daily intake (median) of nickel through inhalation of air particulate matter was estimated. Although the nickel concentrations in some air samples were high, inhalation of the air particulate matter accounted for a minor part of the total nickel intake; however, the adverse effects of human exposure to nickel through inhalation and its potential sources require more attention, particularly in Shanghai. This is a multiregional survey of nickel in outdoor air particulate matter in China. Copyright © 2018 Elsevier Ltd. All rights reserved.
Particulate matter in the rural settlement during winter time
NASA Astrophysics Data System (ADS)
Olszowski, Tomasz
2017-10-01
The objective of this study was to analyzed the variability of the ambient particulates mass concentration in an area occupied by rural development. The analysis applied daily and hourly PM2.5 and PM10 levels. Data were derived on the basis of measurement results with the application of stationary gravimetric samplers and optical dust meter. The obtained data were compared with the results from the urban air quality monitoring network in Opole. Principal Component Analysis was used for data analysis. Research hypotheses were checked using U Mann-Whitney. It was indicated that during the smog episodes, the ratio of the inhalable dust fraction in the rural aerosol is greater than for the case of the urban aerosol. It was established that the principal meteorological factors affecting the local air quality. Air temperature, atmospheric pressure, movement of air masses and occurrence of precipitation are the most important. It was demonstrated that the during the temperature inversion phenomenon, the values of the hourly and daily mass concentration of PM2.5 and PM10 are very improper. The decrease of the PM's concentration to a safe level is principally relative to the occurrence of wind and precipitation.
The report describes the development of a sampler for particulate-associated and low volatility organic pollutants in residential air. The performance of the sampler inlet, which is compatible with the proposed PM-10 regulations for particulate sampling, is documented under a var...
TEST METHODS TO CHARACTERIZE PARTICULATE MATTER EMISSIONS AND DEPOSITION RATES IN A RESEARCH HOUSE
The paper discusses test methods to characterize particulate matter (PM) emissions and deposition rates in a research house. In a room in the research house, specially configured for PM source testing, a high-efficiency particulate air (HEPA)-filtered air supply system, used for...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-08
... and 2006 Fine Particulate Matter National Ambient Air Quality Standards AGENCY: Environmental...) requirements for the 1997 annual and 2006 24-hour fine particulate matter (PM 2.5 ) National Ambient Air..., Incorporation by reference, Nitrogen dioxide, Particulate Matter, Reporting and recordkeeping requirements...
Community, time-series epidemiology typically uses either 24-hour integrated particulate matter (PM) concentrations averaged across several monitors in a city or data obtained at a central monitoring site to relate PM concentrations to human health effects. If 24-hour integrated...
Analysis of Emission Reduction Strategies for Power Boilers in the US Pulp and Paper Industry.
The U.S. pulp and paper industry utilizes a variety of fuels to provide energy for process needs. Energy production results in air emissions of sulfur dioxide (SO2), nitrogen oxides (NOX), particulate matter (PM), and greenhouse gases such as carbon dioxide (CO2). Air emissions f...
Gupta, A K; Nag, Subhankar; Mukhopadhyay, U K
2006-04-01
In this study, the relationship between inhalable particulate (PM(10)), fine particulate (PM(2.5)), coarse particles (PM(2.5 - 10)) and meteorological parameters such as temperature, relative humidity, solar radiation, wind speed were statistically analyzed and modelled for urban area of Kolkata during winter months of 2003-2004. Ambient air quality was monitored with a sampling frequency of twenty-four hours at three monitoring sites located near traffic intersections and in an industrial area. The monitoring sites were located 3-5 m above ground near highly trafficked and congested areas. The 24 h average PM(10) and PM(2.5) samples were collected using Thermo-Andersen high volume samplers and exposed filter papers were extracted and analysed for benzene soluble organic fraction. The ratios between PM(2.5) and PM(10) were found to be in the range of 0.6 to 0.92 and the highest ratio was found in the most polluted urban site. Statistical analysis has shown a strong positive correlation between PM(10) and PM(2.5) and inverse correlation was observed between particulate matter (PM(10) and PM(2.5)) and wind speed. Statistical analysis of air quality data shows that PM(10) and PM(2.5) are showing poor correlation with temperature, relative humidity and solar radiation. Regression equations for PM(10) and PM(2.5) and meteorological parameters were developed. The organic fraction of particulate matter soluble in benzene is an indication of poly aromatic hydrocarbon (PAH) concentration present in particulate matter. The relationship between the benzene soluble organic fraction (BSOF) of inhalable particulate (PM(10)) and fine particulate (PM(2.5)) were analysed for urban area of Kolkata. Significant positive correlation was observed between benzene soluble organic fraction of PM(10) (BSM10) and benzene soluble organic fraction of PM(2.5) (BSM2.5). Regression equations for BSM10 and BSM2.5 were developed.
Zheng, Clark Renjun; Li, Shuai; Ye, Chengsong; Li, Xinyang; Zhang, Chiqian; Yu, Xin
2016-07-05
Particulate respirators designed to filtrate fine particulate matters usually do not possess antimicrobial functions. The current study aimed to functionalize particulate respirators with silver nanoparticles (nanosilver or AgNPs), which have excellent antimicrobial activities, utilizing a straightforward and effective method. We first enhanced the nanosilver-coating ability of nonwoven fabrics from a particulate respirator through surface modification by sodium oleate. The surfactant treatment significantly improved the fabrics' water wet preference where the static water contact angles reduced from 122° to 56°. Both macroscopic agar-plate tests and microscopic scanning electron microscope (SEM) characterization revealed that nanosilver functionalized fabrics could effectively inhibit the growth of two model bacterial strains (i.e., Staphylococcus aureus and Pseudomonas aeruginosa). The coating of silver nanoparticles would not affect the main function of particulate respirators (i.e., filtration of fine air-borne particles). Nanosilver coated particulate respirators with excellent antimicrobial activities can provide real-time protection to people in regions with severe air pollution against air-borne pathogens.
Particulate residue separators for harvesting devices
Hoskinson, Reed L.; Kenney, Kevin L.; Wright, Christopher T.; Hess, John R.
2010-06-29
A particulate residue separator and a method for separating a particulate residue stream may include a plenum borne by a harvesting device, and have a first, intake end and a second, exhaust end; first and second particulate residue air streams which are formed by the harvesting device and which travel, at least in part, along the plenum and in a direction of the second, exhaust end; and a baffle assembly which is located in partially occluding relation relative to the plenum, and which substantially separates the first and second particulate residue air streams.
Particulate Matter (PM) Pollution
Particulate matter (PM) is one of the air pollutants regulated by the National Ambient Air Quality Standards (NAAQS). Reducing emissions of inhalable particles improves public health as well as visibility.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-07
...)(2).) List of Subjects in 40 CFR Part 52 Environmental protection, Air pollution control... 2011 ambient air quality data, the Philadelphia-Wilmington, PA-NJ-DE fine particulate matter (PM 2.5... 2011 ambient air quality data, the Philadelphia-Wilmington, PA-NJ-DE fine particulate matter (PM 2.5...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-08
..., Quantitative Health Risk Assessment for Particulate Matter and Particulate Matter Urban-Focused Visibility Assessment. These two documents describe the quantitative analyses that have been conducted as part of the..., Quantitative Health Risk Assessment for Particulate Matter, please contact Dr. Zachary Pekar, Office of Air...
40 CFR 86.145-82 - Calculations; particulate emissions.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., inside the dilution air filter box at EPA is very low. Pb will be assumed = 0, and background particulate.... 86.145-82 Section 86.145-82 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... further defined in § 86.144. (3) P e = mass of particulate per test on the exhaust filter(s), grams. (4...
40 CFR 86.145-82 - Calculations; particulate emissions.
Code of Federal Regulations, 2011 CFR
2011-07-01
..., inside the dilution air filter box at EPA is very low. Pb will be assumed = 0, and background particulate.... 86.145-82 Section 86.145-82 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... further defined in § 86.144. (3) P e = mass of particulate per test on the exhaust filter(s), grams. (4...
Inhalation of particulate matter in the ambient air has been shown to cause pulmonary morbidity and exacerbate asthma. Alveolar macrophage (AM) are essential for effective removal of inhaled particles and microbes in the lower airways. While some particles minimally effect AM...
Gravimetric Analysis of Particulate Matter using Air Samplers Housing Internal Filtration Capsules.
O'Connor, Sean; O'Connor, Paula Fey; Feng, H Amy; Ashley, Kevin
2014-10-01
An evaluation was carried out to investigate the suitability of polyvinyl chloride (PVC) internal capsules, housed within air sampling devices, for gravimetric analysis of airborne particles collected in workplaces. Experiments were carried out using blank PVC capsules and PVC capsules spiked with 0,1 - 4 mg of National Institute of Standards and Technology Standard Reference Material ® (NIST SRM) 1648 (Urban Particulate Matter) and Arizona Road Dust (Air Cleaner Test Dust). The capsules were housed within plastic closed-face cassette samplers (CFCs). A method detection limit (MDL) of 0,075 mg per sample was estimated. Precision S r at 0,5 - 4 mg per sample was 0,031 and the estimated bias was 0,058. Weight stability over 28 days was verified for both blanks and spiked capsules. Independent laboratory testing on blanks and field samples verified long-term weight stability as well as sampling and analysis precision and bias estimates. An overall precision estimate Ŝ rt of 0,059 was obtained. An accuracy measure of ±15,5% was found for the gravimetric method using PVC internal capsules.
Gravimetric Analysis of Particulate Matter using Air Samplers Housing Internal Filtration Capsules
O'Connor, Sean; O'Connor, Paula Fey; Feng, H. Amy
2015-01-01
Summary An evaluation was carried out to investigate the suitability of polyvinyl chloride (PVC) internal capsules, housed within air sampling devices, for gravimetric analysis of airborne particles collected in workplaces. Experiments were carried out using blank PVC capsules and PVC capsules spiked with 0,1 – 4 mg of National Institute of Standards and Technology Standard Reference Material® (NIST SRM) 1648 (Urban Particulate Matter) and Arizona Road Dust (Air Cleaner Test Dust). The capsules were housed within plastic closed-face cassette samplers (CFCs). A method detection limit (MDL) of 0,075 mg per sample was estimated. Precision Sr at 0,5 - 4 mg per sample was 0,031 and the estimated bias was 0,058. Weight stability over 28 days was verified for both blanks and spiked capsules. Independent laboratory testing on blanks and field samples verified long-term weight stability as well as sampling and analysis precision and bias estimates. An overall precision estimate Ŝrt of 0,059 was obtained. An accuracy measure of ±15,5% was found for the gravimetric method using PVC internal capsules. PMID:26435581
Satellite and Ground-Based Measurements of Urban Air Quality in Relation with Children's Asthma
NASA Astrophysics Data System (ADS)
Zoran, Maria; Dida, Mariana Rodica
2016-08-01
The adverse health effects from aerosol particulate matter PM pollution, especially with aerodynamic diameter ≤2.5 μm PM2.5 must be considered in developing policies to improve air quality. Epidemiologic studies demonstrated that exposure to ambient particulate matter PM is associated with increased morbidity and mortality, particularly associated with cardiopulmonary disease and asthma of which children are most exposed for the rapid increase of asthma disease. Very early exposure to certain components of air pollution can increase the risk of developing of different allergies by age 7. The present study attempts to retrieve the aerosol load in terms of aerosol optical depth (AOD) related to air quality in the Bucharest metropolitan area. In this study is presented a spatio-temporal analysis of the aerosol concentrations in relation with meteorological parameters in two size fractions (PM10 and PM2.5) and Air Qualiy Index and possible health effects on children's asthma.
Atmospheric particulate measurements in Norfolk, Virginia
NASA Technical Reports Server (NTRS)
Storey, R. W., Jr.; Sentell, R. J.; Woods, D. C.; Smith, J. R.; Harris, F. S., Jr.
1975-01-01
Characterization of atmospheric particulates was conducted at a site near the center of Norfolk, Virginia. Air quality was measured in terms of atmospheric mass loading, particle size distribution, and particulate elemental composition for a period of 2 weeks. The objectives of this study were (1) to establish a mean level of air quality and deviations about this mean, (2) to ascertain diurnal changes or special events in air quality, and (3) to evaluate instrumentation and sampling schedules. Simultaneous measurements were made with the following instruments: a quartz crystal microbalance particulate monitor, a light-scattering multirange particle counter, a high-volume air sampler, and polycarbonate membrane filters. To assess the impact of meteorological conditions on air quality variations, continuous data on temperature, relative humidity, wind speed, and wind direction were recorded. Particulate elemental composition was obtained from neutron activation and scanning electron microscopy analyses of polycarbonate membrane filter samples. The measured average mass loading agrees reasonably well with the mass loadings determined by the Virginia State Air Pollution Control Board. There are consistent diurnal increases in atmospheric mass loading in the early morning and a sample time resolution of 1/2 hour seems necessary to detect most of the significant events.
Source apportionment studies on particulate matter in Beijing/China
NASA Astrophysics Data System (ADS)
Suppan, P.; Shen, R.; Shao, L.; Schrader, S.; Schäfer, K.; Norra, S.; Vogel, B.; Cen, K.; Wang, Y.
2013-05-01
More than 15 million people in the greater area of Beijing are still suffering from severe air pollution levels caused by sources within the city itself but also from external impacts like severe dust storms and long range advection from the southern and central part of China. Within this context particulate matter (PM) is the major air pollutant in the greater area of Beijing (Garland et al., 2009). PM did not serve only as lead substance for air quality levels and therefore for adverse health impact effects but also for a strong influence on the climate system by changing e.g. the radiative balance. Investigations on emission reductions during the Olympic Summer Games in 2008 have caused a strong reduction on coarser particles (PM10) but not on smaller particles (PM2.5). In order to discriminate the composition of the particulate matter levels, the different behavior of coarser and smaller particles investigations on source attribution, particle characteristics and external impacts on the PM levels of the city of Beijing by measurements and modeling are performed: a) Examples of long term measurements of PM2.5 filter sampling in 2010/2011 with the objectives of detailed chemical (source attribution, carbon fraction, organic speciation and inorganic composition) and isotopic analyses as well as toxicological assessment in cooperation with several institutions (Karlsruhe Institute of Technology (IfGG/IMG), Helmholtz Zentrum München (HMGU), University Rostock (UR), Chinese University of Mining and Technology Beijing, CUMTB) will be discussed. b) The impact of dust storm events on the overall pollution level of particulate matter in the greater area of Beijing is being assessed by the online coupled comprehensive model system COSMO-ART. First results of the dust storm modeling in northern China (2011, April 30th) demonstrates very well the general behavior of the meteorological parameters temperature and humidity as well as a good agreement between modeled and measured dust storm concentration variability at Beijing in the course of time. The results show the importance of intertwine investigations of measurements and modeling, the analysis of local air pollution levels as well as the impact and analysis of advective processes in the greater region of Beijing. Comprehensive investigations on particulate matter are a prerequisite for the knowledge of the source strengths and source attribution to the overall air pollution level. Only this knowledge can help to formulate and to introduce specific reduction measures to reduce coarser as well as finer particulates.
Chang, Chang-Tang; Chang, Yu-Min; Lin, Wen-Yinn; Wu, Ming-Ching
2010-10-01
Particles emitted from gravel processing sites are one contributor to worsening air quality in Taiwan. Major pollution sources at gravel processing sites include gravel and sand piles, unpaved roads, material crushers, and bare ground. This study analyzed fugitive dust emission characteristics at each pollution source using several types of particle samplers, including total suspended particulates (TSP), suspended particulate (PM10), fine suspended particulate (PM2.5), particulate sizer, and dust-fall collectors. Furthermore, silt content and moisture in the gravel were measured to develop particulate emission factors. The results showed that TSP (< 100 microm) concentrations at the boundary of gravel sites ranged from 280 to 1290 microg/m3, which clearly exceeds the Taiwan hourly air quality standard of 500 microg/m3. Moreover, PM10 concentrations, ranging from 135 to 550 microg/m3, were also above the daily air quality standard of 125 microg/m3 and approximately 1.2 and 1.5 times the PM2.5 concentrations, ranging from 105 to 470 microg/m3. The size distribution analysis reveals that mass mean diameter and geometric standard deviation ranged from 3.2 to 5.7 microm and from 2.82 to 5.51, respectively. In this study, spraying surfactant was the most effective control strategy to abate windblown dust from unpaved roads, having a control efficiency of approximately 93%, which is significantly higher than using paved road strategies with a control efficiency of approximately 45%. For paved roads, wet suppression provided the best dust control efficiencies ranging from 50 to 83%. Re-vegetation of disturbed ground had dust control efficiencies ranging from 48 to 64%.
BIOLOGICAL EFFECTS OF OIL FLY ASH AND RELEVANCE TO AMBIENT AIR PARTICULATE MATTER
Epidemiologic studies have demonstrated increased human morbidity and mortality with elevations in the concentration of ambient air particulate matter (PM). Fugitive fly ash from the combustion of oil and residual fuel oil significantly contributes to the ambient air particle bur...
Acute Effects of Fine Particulate Air Pollution on ST Segment Height: A Longitudinal Study
Background: The mechanisms for the relationship between particulate air pollution and cardiac disease are not fully understood. Air pollution-induced myocardial ischemia is one of the potentially important mechanisms. Methods: We investigate the acute effects and the time cours...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-03
... Environmental protection, Air pollution control, Incorporation by reference, Nitrogen dioxide, Particulate... Promulgation of Air Quality Implementation Plans; Pennsylvania; Motor Vehicle Emissions Budgets for the Pennsylvania Counties in the Philadelphia-Wilmington, PA-NJ-DE 1997 Fine Particulate Matter Nonattainment Area...
Particulate Matter Levels in Ambient Air Adjacent to Industrial Area
NASA Astrophysics Data System (ADS)
Mohamed, R. M. S. R.; Nizam, N. M. S.; Al-Gheethi, A. A.; Lajis, A.; Kassim, A. H. M.
2016-07-01
Air quality in the residential areas adjacent to the industrial regions is of great concern due to the association with human health risks. In this work, the concentrations of particulate matter (PM10) in the ambient air of UTHM campus was investigated tostudy the air qualityand their compliance to the Malaysian Ambient Air Quality Guidelines (AAQG). The PM10 samples were taken over 24 hours from the most significant area at UTHM including Stadium, KolejKediamanTunDr. Ismail (KKTDI) and MakmalBahan. The meteorological parameters; temperature, relative humidity, wind speed and wind direction as well as particulate matterwere estimated by using E-Sampler Particulate Matter (PM10) Collector. The highest concentrations of PM10 (55.56 µg/m3) was recorded at MakmalBahan during the working and weekend days. However, these concentrations are less than 150 pg/m3. It can be concluded that although UTHM is surrounded by the industrial area, the air quality in the campus still within the standards limits.
Air quality assessment and the use of specific markers to apportion pollutants to source
NASA Astrophysics Data System (ADS)
Douce, David Stewart
The contributions of specific polluting sources to both indoor and outdoor atmospheric pollution are difficult to determine, as solid and gaseous products from different combustion sources are often similar. Sometimes, however, a marker compound can be identified that is unique to a pollution source (or at least not present in most other local combustion sources) and which will allow assessment of the contribution of that source to total atmospheric pollution.The aim of this study was to identify suitable marker compounds and methods for the apportionment (assessment of percentage contribution) of specific sources to atmospheric pollution. The sources selected were diesel exhaust emissions in outdoor, and environmental tobacco smoke (ETS) in indoor environments. Studies with controlled (laboratory) atmospheres would be followed by field studies using these methods and markers to produce apportionments for these sources to air pollution in selected environments. Initial analysis of such polluting sources was therefore the qualitative analysis of volatile compounds and particulate associated material, both organic and inorganic. Volatile organic compounds were adsorbed onto various resins, while particulate material was sampled onto various filter paper types. Organics were determined by GC-AED and GC-MS, and elements by ICP-MS.1-Nitropyrene was identified as a suitable marker for diesel particulate emissions (<5um). A large volume air sample from Sheffield city centre using 1-nitropyrene as a marker suggested that 63% of atmospheric particulate material (<5um) might be of diesel origin. However the concentration of 1-nitropyrene is low in atmospheric samples, and in the volumes used in routine sampling the amount of 1-nitropyrene was below the limit of detection on the instrument used. In an alternative approach the aliphatic alkane tetracosane (C24) was used as a diesel marker for urban air, with a 1-nitropyrene:tetracosane ratio derived from the average results from laboratory experiments with a diesel engine running at various speeds and loads. This approach yielded apportionment values ranging from 5-85% for the diesel contribution to particulate material (<5mum) in the urban air of Sheffield. No volatile marker compound was found for diesel apportionment.The contribution of ETS to atmospheric pollution has previously been estimated from the measurement of respirable suspended particulates (RSP), which was superseded by total UV absorbance and total fluorescence of a methanol extract. More recent work has suggested the use of solanesol or scopoletin as marker compounds. This thesis shows that the non specific methods overestimated the particulate contribution of ETS in some atmospheres, and that solanesol is a better marker compound than scopoletin. Preliminary studies from a small number of smokers homes and offices, with solanesol as a marker compound for particulate ETS, indicated that ETS contributions to total particulate material (<5mum) ranged from 6 to 49% in homes and 11 to 28% in offices.Pyrrole was used as a marker for ETS contribution to volatile organic pollution, and studies with controlled atmospheres with a smoking machine allowed calculation of the ratios of pyrrole to other volatile organic compounds (VOC's) in ETS. Samples from the field study were used to produce apportionment percentage levels of benzene, toluene, o-xylene and p+m-xylene associated with ETS.In addition the use of tree bark as a atmospheric sink for airborne particulates was investigated. Six nitrated polycyclic aromatic hydrocarbons associated with diesel emissions were quantified in bark extracts and levels of these were found to be highest during winter months.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-29
... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 52 [EPA-R05-OAR-2012-0088; FRL-9783-4] Approval and Promulgation of Air Quality Implementation Plans; Ohio; Particulate Matter Standards AGENCY: Environmental... submitted a request to approve a section of its particulate matter (PM) rules on February 23, 2012. The PM...
40 CFR 52.1489 - Particulate matter (PM-10) Group II SIP commitments.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Particulate matter (PM-10) Group II SIP commitments. 52.1489 Section 52.1489 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Particulate matter (PM-10) Group II SIP commitments. (a) On March 29, 1989, the Air Quality Officer for the...
40 CFR 52.1489 - Particulate matter (PM-10) Group II SIP commitments.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 4 2011-07-01 2011-07-01 false Particulate matter (PM-10) Group II SIP commitments. 52.1489 Section 52.1489 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Particulate matter (PM-10) Group II SIP commitments. (a) On March 29, 1989, the Air Quality Officer for the...
This poster presents analysis of near-realtime air quality simulations over New York State for two summer and one winter season. Simulations were performed as a pilot study between the NOAA, EPA, and NYSDEC, utilizing resources from the national operational NOAA/EPA air quality f...
40 CFR 52.228 - Regulations: Particulate matter, Southeast Desert Intrastate Region.
Code of Federal Regulations, 2012 CFR
2012-07-01
... AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS California... particulate matter in the Southeast Desert Intrastate Region. (1) Imperial County Air Pollution Control District: (i) Rule 114A. (ii) Rule 116B. (2) Los Angeles County Air Pollution Control District: (i...
40 CFR 52.228 - Regulations: Particulate matter, Southeast Desert Intrastate Region.
Code of Federal Regulations, 2014 CFR
2014-07-01
... AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS California... particulate matter in the Southeast Desert Intrastate Region. (1) Imperial County Air Pollution Control District: (i) Rule 114A. (ii) Rule 116B. (2) Los Angeles County Air Pollution Control District: (i...
40 CFR 52.228 - Regulations: Particulate matter, Southeast Desert Intrastate Region.
Code of Federal Regulations, 2013 CFR
2013-07-01
... AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS California... particulate matter in the Southeast Desert Intrastate Region. (1) Imperial County Air Pollution Control District: (i) Rule 114A. (ii) Rule 116B. (2) Los Angeles County Air Pollution Control District: (i...
Nance, Earthea; King, Denae; Wright, Beverly; Bullard, Robert D
2016-02-01
The Deepwater Horizon oil spill is considered one of the largest marine oil spills in the history of the United States. Air emissions associated with the oil spill caused concern among residents of Southeast Louisiana. The purpose of this study was to assess ambient concentrations of benzene (n=3,887) and fine particulate matter (n=102,682) during the oil spill and to evaluate potential exposure disparities in the region. Benzene and fine particulate matter (PM2.5) concentrations in the targeted parishes were generally higher following the oil spill, as expected. Benzene concentrations reached 2 to 19 times higher than background, and daily exceedances of PM2.5 were 10 to 45 times higher than background. Both benzene and PM2.5 concentrations were considered high enough to exceed public health criteria, with measurable exposure disparities in the coastal areas closer to the spill and clean-up activities. These findings raise questions about public disclosure of environmental health risks associated with the oil spill. The findings also provide a science-based rationale for establishing health-based action levels in future disasters. Benzene and particulate matter monitoring during the Deepwater Horizon oil spill revealed that ambient air quality was a likely threat to public health and that residents in coastal Louisiana experienced significantly greater exposures than urban residents. Threshold air pollution levels established for the oil spill apparently were not used as a basis for informing the public about these potential health impacts. Also, despite carrying out the most comprehensive air monitoring ever conducted in the region, none of the agencies involved provided integrated analysis of the data or conclusive statements about public health risk. Better information about real-time risk is needed in future environmental disasters.
Particulate Air Contamination in Puerto Rico: A Student Involvement Project.
ERIC Educational Resources Information Center
Eckert, Richard R.
1979-01-01
Describes a research project undertaken by physics undergraduate students to monitor particulate air contamination in Ponce, Puerto Rico, and to determine the meteorological factors which contribute to it. (GA)
NASA Astrophysics Data System (ADS)
Agustine, I.; Yulinawati, H.; Gunawan, D.; Suswantoro, E.
2018-01-01
Particulate is a main urban air pollutant affects the environment and human wellbeing. The purpose of this study is to analyze the impact of particulate matter less than 10 micron (PM10) to ambient air quality of Jakarta and Palembang. The analysis is done with calendarPlot Function of openair model, which is based on the calculation of Pollutant Standards Index (PSI) or better known as Air Quality Index (AQI). The AQI category of “moderate” dominates Jakarta’s calendar from 2015 to 2016, which indicates the impact of PM10 is the visibility reduction. There was one day with category “unhealthy” that indicates the impact of dust exposure everywhere in Jakarta during 2015. Similar to Jakarta, the AQI category “moderate” also dominates Palembang’s calendar during 2015. However, the AQI category “hazardous” happened for few days in September and October 2015 during forest fires, which indicates the more harmful impacts of PM10, such as reduced visibility, dust exposure everywhere, increased sensitivity in patients with asthma and bronchitis to respiratory illness in all exposed populations. During 2016, AQI category of Jakarta mostly “moderate”, while in Palembang was “good”. Dominant AQI category from 2015 to 2016 shows higher PM10 concentration occurred in Jakarta compared to Palembang.
Soil separator and sampler and method of sampling
O'Brien, Barry H [Idaho Falls, ID; Ritter, Paul D [Idaho Falls, ID
2010-02-16
A soil sampler includes a fluidized bed for receiving a soil sample. The fluidized bed may be in communication with a vacuum for drawing air through the fluidized bed and suspending particulate matter of the soil sample in the air. In a method of sampling, the air may be drawn across a filter, separating the particulate matter. Optionally, a baffle or a cyclone may be included within the fluidized bed for disentrainment, or dedusting, so only the finest particulate matter, including asbestos, will be trapped on the filter. The filter may be removable, and may be tested to determine the content of asbestos and other hazardous particulate matter in the soil sample.
29 CFR 1910.134 - Respiratory protection.
Code of Federal Regulations, 2012 CFR
2012-07-01
... impact and penetration. High efficiency particulate air (HEPA) filter means a filter that is at least 99... as a high efficiency particulate air (HEPA) filter, or an air-purifying respirator equipped with a... frequency of respirator use (including use for rescue and escape); (C) The expected physical work effort; (D...
29 CFR 1910.134 - Respiratory protection.
Code of Federal Regulations, 2014 CFR
2014-07-01
... impact and penetration. High efficiency particulate air (HEPA) filter means a filter that is at least 99... as a high efficiency particulate air (HEPA) filter, or an air-purifying respirator equipped with a... frequency of respirator use (including use for rescue and escape); (C) The expected physical work effort; (D...
29 CFR 1910.134 - Respiratory protection.
Code of Federal Regulations, 2013 CFR
2013-07-01
... impact and penetration. High efficiency particulate air (HEPA) filter means a filter that is at least 99... as a high efficiency particulate air (HEPA) filter, or an air-purifying respirator equipped with a... frequency of respirator use (including use for rescue and escape); (C) The expected physical work effort; (D...
The National Ambient Air Quality Standards for particulate matter (PM) and the federal regional haze regulations place some emphasis on the assessment of fine particle (PM; 5) concentrations. Current air quality models need to be improved and evaluated against observations to a...
A PRELIMINARY EVALUATION OF MODELS-3 CMAQ USING PARTICULATE MATTER DATA FROM THE IMPROVE NETWORK
The Clean Air Act and its Amendments require the United States Environmental Protection Agency (EPA) to establish National Ambient Air Quality Standards for Particulate Matter (PM) and to assess current and future air quality regulations designed to protect human health and wel...
Particulate measurement and control devices for hot mix asphalt plants.
DOT National Transportation Integrated Search
1973-01-01
The emission of particulates is the main form of air pollution from hot mix asphalt plants. The measurement of these emissions in the ambient air may be used by the state and the plant personnel to monitor the quality of air in the area of a plant. S...
Background Particulate air pollution episodes have been associated with increased daily death. However, there is little direct evidence that diminished particulate air pollution concentrations would lead to reductions in death rates. We assessed the effect of ...
Air Quality Criteria for Particulate Matter (Final Report, 2004)
EPA has completed the process of updating and revising, where appropriate, its Air Quality Criteria for Particulate Matter (PM) as issued in 1996 (usually referred to as the Criteria Document). Sections 108 and 109 of the Clean Air Act require that EPA carry out a periodic revi...
Exposure to air pollution-derived particulate matter (PM) causes adverse cardiovascular health outcomes, with increasing evidence implicating soluble components of PM; however, the enormous number of unique PM samples from different air sheds far exceeds the capacity of conventio...
Air pollution and associated respiratory morbidity in Delhi.
Jayaraman, Girija; Nidhi
2008-06-01
As a rapidly expanding centre of government, trade, commerce and industry, Delhi, the Indian capital, presents an instructive location for studying the possible association between air pollution and adverse health effects. This study tries to determine the association, if any, between the air pollutants--sulphur dioxide, nitrogen dioxide, carbon monoxide, ozone, suspended particulate matter and respiratory suspended particulate matter--and daily variations in respiratory morbidity in Delhi during the years 2004--2005. Data analysis was based on the Generalized Additive Poisson regression model including a Lowess smoothing function for the entire patient population and subgroups defined by season. The best fitting lag period for each pollutant was found by testing its concentration at varying lags. The model demonstrated associations between daily visits and some of the pollutants (O3, NO2 and RSPM) but their strongest components were observed at varying lags. A single pollutant model showed that a 10 microg m(-3) rise in pollutant level led to statistically significant relative risks (RR): 1.033 for O3, 1.004 for NO2, 1.006 for RSPM. The effect of particulate was relatively low, presumably because unlike other pollutants, particulate matter is not a single pollutant but rather a class of pollutants. This study, continued on a long term basis, can provide guidelines for anticipation/preparedness in the management of health care and hospital admissions.
Low Pressure Experimental Simulation of Electrical Discharges Above and Inside a Cloud
NASA Technical Reports Server (NTRS)
Jarzembski, Maurice A.; Srivastava, Vandana
1996-01-01
A low pressure laboratory experiment to generate sporadic electrical discharges in either a particulate dielectric or air, representing a competing path of preferred electrical breakdown, was investigated. At high pressures, discharges occurred inside the dielectric particulate; at low pressures, discharges occurred outside the dielectric particulate; at a transition pressure regime, which depends on conductivity of the dielectric particulate, discharges were simultaneously generated in both particulate dielectric and air. Unique use of a particulate dielectric was critical for sporadic discharges at lower pressures which were not identical in character to discharges without the particulate dielectric. Application of these experimental results to the field of atmospheric electricity and simulation of the above-cloud type discharges that have recently been documented, called jets and sprites, are discussed.
NASA Astrophysics Data System (ADS)
Baitimirova, M.; Osite, A.; Katkevics, J.; Viksna, A.
2012-08-01
Burning of candles generates particulate matter of fine dimensions that produces poor indoor air quality, so it may cause harmful impact on human health. In this study solid aerosol particles of burning of candles of different composition and kerosene combustion were collected in a closed laboratory system. Present work describes particulate matter collection for structure analysis and the relationship between source and size distribution of particulate matter. The formation mechanism of particulate matter and their tendency to agglomerate also are described. Particles obtained from kerosene combustion have normal size distribution. Whereas, particles generated from the burning of stearin candles have distribution shifted towards finer particle size range. If an additive of stearin to paraffin candle is used, particle size distribution is also observed in range of towards finer particles. A tendency to form agglomerates in a short time is observed in case of particles obtained from kerosene combustion, while in case of particles obtained from burning of candles of different composition such a tendency is not observed. Particles from candles and kerosene combustion are Aitken and accumulation mode particles
Oziol, Lucie; Alliot, Fabrice; Botton, Jérémie; Bimbot, Maya; Huteau, Viviane; Levi, Yves; Chevreuil, Marc
2017-01-01
The composition of endocrine-disrupting compounds (EDCs) in the ambient air of indoor environments has already been described, but little is known about the inherent endocrine-disrupting potential of indoor air contamination. We therefore aimed to study the distribution of bioactive EDCs in the gaseous and particulate phases of indoor air using a cellular bioassay approach that integrates the interaction effects between chemicals. Organic air extracts, both gaseous and particulate, were taken from three indoor locations (office, apartment, and children's day care) in France and sampled in two different seasons in order to study their interference with the signaling of estrogen, androgen, and thyroid receptors. The experiments were also conducted on aerial extracts from an outdoor site (urban center). We found that gaseous and/or particulate extracts from all locations displayed estrogenicity, anti-androgenicity, and thyroidicity. Overall, indoor air extracts had a higher endocrine-disrupting potential compared to outdoor ones, especially during winter and in the day care. The biological activities were predominant for the gaseous extracts and tended to increase for the particulate extracts in cool conditions. In conclusion, our data confirmed the presence of bioactive EDCs in a gaseous state and highlighted their indoor origin and concentration, especially in the cold season.
Seasonal variation and chemical characterization of PM2.5 in northwestern Philippines
NASA Astrophysics Data System (ADS)
Bagtasa, Gerry; Cayetano, Mylene G.; Yuan, Chung-Shin
2018-04-01
The seasonal and chemical characteristics of fine particulate matter (PM2.5) were investigated in Burgos, Ilocos Norte, located at the northwestern edge of the Philippines. Each 24 h sample of fine aerosol was collected for four seasons. Fine particulate in the region shows strong seasonal variation in both concentration and composition. Highest mass concentration was seen during the boreal spring season with a mean mass concentration of 21.6 ± 6.6 µg m-3, and lowest was in fall with a mean concentration of 8.4 ± 2.3 µg m-3. Three-day wind back trajectory analysis of air mass reveals the influence of the northwestern Pacific monsoon regimes on PM2.5 concentration. During southwest monsoon, sea salt was the dominant component of fine aerosols carried by moist air from the South China Sea. During northeast monsoon, on the other hand, both wind and receptor model analysis showed that higher particulate concentration was due to the long-range transport (LRT) of anthropogenic emissions from northern East Asia. Overall, sea salt and soil comprise 33 % of total PM2.5 concentration, while local biomass burning makes up 33 %. LRT of industrial emission, solid waste burning and secondary sulfate from East Asia have a mean contribution of 34 % to the total fine particulate for the whole sampling period.
NASA Astrophysics Data System (ADS)
Lomnicki, S. M.
2017-12-01
Environmentally Persistent Free Radicals (EPFRs) are relatively recently discovered species that are present on ambient air particulates. Their origin is typically associated with the combustion borne PM, where in the cool zone of the combustion process aromatic precursors react with the metal centers of particulates forming surface-organic complex with radical characteristics. EPFRs have been found to be sufficiently resistant to be emitted from the combustion sources and persist in the ambient air on particulates. Their inhalation has been associated with severe health effects, and potentially are one of the major agents contributing the epidemiological risks of PM exposure. Interestingly, EPFRs can be formed not only at the elevated temperatures but also in ambient conditions, where the contact of precursor molecules with transition metal (but not only) domains can result in adsorbate complexes. In fact, EPFRs have been detected in the contaminated soils, or during the oil spill incidents. It is very likely, that the interaction of some molecules released to the air can result in the formation of EPFRs on the ambient air particulates in atmospheric conditions. These species can be a natural degradation by-products that lead to the formation of oxygenated organics in ambient atmosphere.
Ground-Based Aerosol Measurements | Science Inventory ...
Atmospheric particulate matter (PM) is a complex chemical mixture of liquid and solid particles suspended in air (Seinfeld and Pandis 2016). Measurements of this complex mixture form the basis of our knowledge regarding particle formation, source-receptor relationships, data to test and verify complex air quality models, and how PM impacts human health, visibility, global warming, and ecological systems (EPA 2009). Historically, PM samples have been collected on filters or other substrates with subsequent chemical analysis in the laboratory and this is still the major approach for routine networks (Chow 2005; Solomon et al. 2014) as well as in research studies. In this approach, air, at a specified flow rate and time period, is typically drawn through an inlet, usually a size selective inlet, and then drawn through filters, 1 INTRODUCTION Atmospheric particulate matter (PM) is a complex chemical mixture of liquid and solid particles suspended in air (Seinfeld and Pandis 2016). Measurements of this complex mixture form the basis of our knowledge regarding particle formation, source-receptor relationships, data to test and verify complex air quality models, and how PM impacts human health, visibility, global warming, and ecological systems (EPA 2009). Historically, PM samples have been collected on filters or other substrates with subsequent chemical analysis in the laboratory and this is still the major approach for routine networks (Chow 2005; Solomo
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-02
... 2006 Fine Particulate Matter National Ambient Air Quality Standards AGENCY: Environmental Protection... Act) for the 1997 annual and 2006 24- hour fine particulate matter (PM 2.5 ) national ambient air... National Ambient Air Quality Standards.'' \\1\\ Two elements identified in section 110(a)(2) are not governed...
Air pollution in the form of particulate matter (PM) originates from both human activities and "natural" phenomena. Setting and achieving National Ambient Air Quality Standards (NAAQS) for PM has to take into account the latter since they are in general less controllable than th...
Because air pollution is a complex mixture of constituents, often including particulates and aldehydes, attributing health effects to air pollutants in a given ambient air shed can be difficult when pollutants are studied in isolation. The purpose of this study was to examine the...
BIOAVAILABLE AIR PARTICULATE POLLUTION CONSTITUENTS DIRECTLY ALTER CARDIOVASCULAR FUNCTION EX VIVO
Epidemiological studies have reported associations between particulate air pollution exposure and cardiovascular (CV) effects within susceptible individuals. Particle characteristics and biological mechanisms responsible for these observations are not known. We examined whether s...
AIR PARTICULATE POLLUTION CARDIOVASCULAR TOXICITY: HAZARD IDENTIFICATION AND MECHANISMS OF ACTION
The overall weight of evidence from epidemiological studies has shown statistical associations between air particulate pollution exposure and mortality\\morbidity particularly within individuals with cardiovascular disease (1-4). Identification of causal particle properties ...
Engineering evaluation of the use of the Timberline condensing economizer for particulate collection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Butcher, T.; Serry, H.
1980-12-01
The possible use of the Timberline Industries condensing economizer as a particulate collection device on commercial sector boilers which are being converted to coal-oil mixture (COM) firing has been considered. The saturation temperature of the water vapor in the flue gas has been estimated as a function of excess air and ambient relative humidity. Also, boiler stack losses have been estimated for a variety of operating conditions including stack temperatures below the dew point. The condensing economizer concept will be limited to applications which can use the low temperature heat including water heating and forced air space heating. The potentialmore » particulate collection efficiency, water disposal, and similar heat recovery devices are discussed. A cost analysis is presented which indicates that the economizer system is not competitive with a cyclone but is competitive with a baghouse. The use of the cyclone is limited by collection efficiency. The measurement of COM flyash particle size distribution is recommended.« less
Particulate polycyclic aromatic hydrocarbons (PAH) in the atmosphere of Bizerte city, Tunisia.
Ben Hassine, S; Hammami, B; Ben Ameur, W; El Megdiche, Y; Barhoumi, B; Driss, M R
2014-09-01
The particle-phase concentrations of polycyclic aromatic hydrocarbons (PAH) were determined in 13 air samples collected in an urban area of Bizerte (Tunisia) during 2009-2010. Atmospheric particulate samples were extracted by ultrasonic bath and analyzed by high-performance liquid chromatography with fluorescence detection. PAH were found in all the analyzed air samples and the most abundant compounds were pyrene, fluoranthene, benzo[g,h,i]perylene, benzo[b]fluoranthene, chrysene and benzo[a]pyrene. ∑14-PAH concentrations ranging from 9.38 to 44.81 ng m(-3) with mean value of 25.39 ng m(-3). PAH diagnostic ratio source analysis revealed gasoline and diesel vehicular emissions as major sources. The mean total benzo[a]pyrene toxicity equivalent calculated for samples was 3.66 ng m(-3) and the mean contribution of the carcinogenic potency of benzo[a]pyrene was determined to be 55.8 %. Concentrations of particulate PAH in Bizerte city atmosphere were approximately eight times greater than sampled at a nearby rural site.
Kaulfus, Aaron S; Nair, Udaysankar; Jaffe, Daniel; Christopher, Sundar A; Goodrick, Scott
2017-10-17
We utilize the NOAA Hazard Mapping System smoke product for the period of 2005 to 2016 to develop climatology of smoke occurrence over the Continental United States (CONUS) region and to study the impact of wildland fires on particulate matter air quality at the surface. Our results indicate that smoke is most frequently found over the Great Plains and western states during the summer months. Other hotspots of smoke occurrence are found over state and national parks in the southeast during winter and spring, in the Gulf of Mexico southwards of the Texas and Louisiana coastline during spring season and along the Mississippi River Delta during the fall season. A substantial portion (20%) of the 24 h federal standard for particulate pollution exceedance events in the CONUS region occur when smoke is present. If the U.S. Environmental Protection Agency regulations continue to reduce anthropogenic emissions, wildland fire emissions will become the major contributor to particulate pollution and exceedance events. In this context, we show that HMS smoke product is a valuable tool for analysis of exceptional events caused by wildland fires and our results indicate that these tools can be valuable for policy and decision makers.
Air quality during demolition and recovery activities in post-Katrina New Orleans.
Ravikrishna, Raghunathan; Lee, Han-Woong; Mbuligwe, Stephen; Valsaraj, K T; Pardue, John H
2010-07-01
Air samples were collected during demolition and cleanup operations in the Lakeview district of New Orleans, Louisiana, USA, in late 2005 during the period immediately after Hurricane Katrina. Three different high-volume air samples were collected around waste collection areas that were created to temporarily hold the debris from the cleanup of residential properties in the area. Particulate concentrations were elevated and included crystalline fibers associated with asbestos. Metal concentrations on particulate matter resembled those measured in sediments deposited by floodwaters with the exception of Ba, which was elevated at all three locations. The highest organic contaminant concentration measured on particulates was the pesticide Ziram (Zinc, bis[diethylcarbamodithioato-S,S']-, [T-4]-) at 2,200 microg/g of particulate matter during sampling period 2. Ziram is used in latex paint, adhesives, caulking, and wallboard as a preservative. Fungal isolates developed from particulate air samples included species associated with disease including Aspergillus and Penicillium species. These data represent the most comprehensive assessment of demolition activities during the period immediately after Hurricane Katrina. Copyright (c) 2010 SETAC.
NASA Technical Reports Server (NTRS)
Meyer, P.; Shire, J.; Qualters, Judy; Daley, Randolph; Fiero, Leslie Todorov; Autry, Andy; Avchen, Rachel; Stock, Allison; Correa, Adolofo; Siffel, Csaba;
2007-01-01
CDC and its partners established the Health and Environment Linked for Information Exchange, Atlanta (HELIX-Atlanta) demonstration project, to develop linking and analysis methods that could be used by the National Environmental Public Health Tracking (EPHT) Network. Initiated in October 2003, the Metropolitan Atlanta-based collaborative conducted four projects: asthma and particulate air pollution, birth defects and ozone and particulate air pollution, childhood leukemia and traffic emissions, and children's blood lead testing and neighborhood risk factors for lead poisoning. This report provides an overview of the HELIX-Atlanta projects' goals, methods and outcomes. We discuss priority attributes and common issues and challenges and offer recommendations for implementation of the nascent national environmental public health tracking network.
Setting and Reviewing Standards to Control Particulate Matter (PM) Pollution
The Clean Air Act requires EPA to set national air quality standards for particulate matter, and to periodically review the standards to ensure that they provide adequate health and environmental protection, updating those standards as necessary.
Combined PIXE and X-ray SEM studies on time-resolved deposits of welding shop aerosols
NASA Astrophysics Data System (ADS)
Barfoot, K. M.; Mitchell, I. V.; Verheyen, F.; Babeliowsky, T.
1981-03-01
Time-resolved deposits of welding shop air particulates have been obtained using a streak sampling system. PIXE analysis of these deposits, using 2 MeV protons, typically revealed the presence of a large number of elements, with many in the range Z = 11-30. Strong variations, up to three orders of magnitude, in the concentrations of several elements such as Al, Si and Fe as well as Zn, Na, K and Ca were found. The 2 h sampling resolution normally used was found to be insufficient to follow the short pollution episodes that regularly occur in a welding shop environment and so sampling with a 20 min resolution was used. The variation of elemental concentrations for different sampling times together with information on the physical nature of these air particulates, determined with a scanning electron microscope (SEM) and Si(Li) X-ray detector attachment, are presented. This type of information together with that obtained from the PIXE analysis is of importance in industrial hygiene studies. The need to make corrections for partial filter clogging, based on air-flow rate monitoring, is discussed.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-08
... 2006 Fine Particulate Matter National Ambient Air Quality Standards AGENCY: Environmental Protection... particulate matter (PM 2.5 ) national ambient air quality standards (NAAQS). Section 110(a) of the CAA...) for the 1997 8-Hour Ozone and PM 2.5 National Ambient Air Quality Standards.'' and September 25, 2009...
Source contributions to primary airborne particulate matter calculated using the source-oriented UCD/CIT air quality model and the receptor-oriented chemical mass balance (CMB) model are compared for two air quality episodes in different parts of California. The first episode ...
EPA is in the process of updating and revising, where appropriate, its Air Quality Criteria for Particulate Matter (PM) as issued in 1996 (usually referred to as the Criteria Document). Sections 108 and 109 of the Clean Air Act require that EPA carry out a periodic review and re...
42 CFR 84.170 - Non-powered air-purifying particulate respirators; description.
Code of Federal Regulations, 2013 CFR
2013-10-01
... inhalation pressure to draw the ambient air through the air-purifying filter elements (filters) to remove... classified into three series, N-, R-, and P-series. The N-series filters are restricted to use in those workplaces free of oil aerosols. The R- and P-series filters are intended for removal of any particulate that...
42 CFR 84.170 - Non-powered air-purifying particulate respirators; description.
Code of Federal Regulations, 2011 CFR
2011-10-01
... inhalation pressure to draw the ambient air through the air-purifying filter elements (filters) to remove... classified into three series, N-, R-, and P-series. The N-series filters are restricted to use in those workplaces free of oil aerosols. The R- and P-series filters are intended for removal of any particulate that...
42 CFR 84.170 - Non-powered air-purifying particulate respirators; description.
Code of Federal Regulations, 2014 CFR
2014-10-01
... inhalation pressure to draw the ambient air through the air-purifying filter elements (filters) to remove... classified into three series, N-, R-, and P-series. The N-series filters are restricted to use in those workplaces free of oil aerosols. The R- and P-series filters are intended for removal of any particulate that...
42 CFR 84.170 - Non-powered air-purifying particulate respirators; description.
Code of Federal Regulations, 2012 CFR
2012-10-01
... inhalation pressure to draw the ambient air through the air-purifying filter elements (filters) to remove... classified into three series, N-, R-, and P-series. The N-series filters are restricted to use in those workplaces free of oil aerosols. The R- and P-series filters are intended for removal of any particulate that...
42 CFR 84.170 - Non-powered air-purifying particulate respirators; description.
Code of Federal Regulations, 2010 CFR
2010-10-01
... inhalation pressure to draw the ambient air through the air-purifying filter elements (filters) to remove... classified into three series, N-, R-, and P-series. The N-series filters are restricted to use in those workplaces free of oil aerosols. The R- and P-series filters are intended for removal of any particulate that...
EPA is in the process of updating and revising, where appropriate, its Air Quality Criteria for Particulate Matter as issued in 1996 (usually referred to as the Criteria Document). Sections 108 and 109 of the Clean Air Act require that EPA carry out a periodic review and revisio...
Particulate matter (PM) air pollution is a serious public health issue for the United States. While there is a growing body of evidence that climate change will partially counter the effectiveness of future precursor emission reductions to reduce ozone (O3) air pollution, the lin...
In 1999, the United States Environmental Protection Agency (EPA) initiated a major air quality program referred to as the Particulate Matter (PM) Supersites Program. The PM Supersites Program is a multi-year, $27 million air quality program consisting of eight (8) regional air q...
In 1998, the Environmental Protection Agency (EPA) initiated a major air quality program, known as the Particulate Matter (PM) Supersites Program. The Supersites Program was a multi year, $27 million air quality monitoring program consisting of eight regional air quality projects...
The U.S. Environmental Protection Agency (EPA) is conducting a review of the air quality criteria and the secondary (welfare-based) national ambient air quality standards (NAAQS) for nitrogen oxides (NOx), sulfur oxides (SOx), and particulate matter (PM). The major phases of the ...
NASA Astrophysics Data System (ADS)
Hei Tong, Cheuk
2017-04-01
Small particulates can cause long term impairment to human health as they can penetrate deep and deposit on the wall of the respiratory system. Under the projected climate change as reported by literature, atmospheric stability, which has strong effects on vertical mixing of air pollutants and thus air quality Hong Kong, is also varying from near to far future. In addition to domestic emission, Hong Kong receives also significant concentration of cross-boundary particulates that their natures and movements are correlated with atmospheric condition. This study aims to study the relation of atmospheric conditions with air quality over Hong Kong. Past meteorological data is based on Modern Era Retrospective Analysis for Research and Applications (MERRA) reanalysis data. Radiosonde data provided from HKO are also adopted in testing and validating the data. Future meteorological data is simulated by the Weather Research and Forecasting Model (WRF), which dynamically downscaled the past and future climate under the A1B scenario simulated by ECHAM5/MPIOM. Air quality data is collected on one hand from the ground station data provided by Environment Protection Department, with selected stations revealing local emission and trans-boundary emission respectively. On the other hand, an Atmospheric Light Detection and Ranging (LiDAR), which operates using the radar principle to detect Rayleigh and Mie scattering from atmospheric gas and aerosols, has also been adopted to measure vertical aerosol profile, which has been observed tightly related to the high level meteorology. Data from scattered signals are collected, averaged or some episode selected for characteristic comparison with the atmospheric stability indices and other meteorological factors. The relation between atmospheric conditions and air quality is observed by statistical analysis, and statistical models are built based on the stability indices to project the changes in sulphur dioxide, ozone and particulate matters due to changes in stability in future years.
Barn, Prabjit K; Elliott, Catherine T; Allen, Ryan W; Kosatsky, Tom; Rideout, Karen; Henderson, Sarah B
2016-11-25
Landscape fires can produce large quantities of smoke that degrade air quality in both remote and urban communities. Smoke from these fires is a complex mixture of fine particulate matter and gases, exposure to which is associated with increased respiratory and cardiovascular morbidity and mortality. The public health response to short-lived smoke events typically advises people to remain indoors with windows and doors closed, but does not emphasize the use of portable air cleaners (PAC) to create private or public clean air shelters. High efficiency particulate air filters and electrostatic precipitators can lower indoor concentrations of fine particulate matter and improve respiratory and cardiovascular outcomes. We argue that PACs should be at the forefront of the public health response to landscape fire smoke events.
Source apportionment and air quality impact assessment studies in Beijing/China
NASA Astrophysics Data System (ADS)
Suppan, P.; Schrader, S.; Shen, R.; Ling, H.; Schäfer, K.; Norra, S.; Vogel, B.; Wang, Y.
2012-04-01
More than 15 million people in the greater area of Beijing are still suffering from severe air pollution levels caused by sources within the city itself but also from external impacts like severe dust storms and long range advection from the southern and central part of China. Within this context particulate matter (PM) is the major air pollutant in the greater area of Beijing (Garland et al., 2009). PM did not serve only as lead substance for air quality levels and therefore for adverse health impact effects but also for a strong influence on the climate system by changing e.g. the radiative balance. Investigations on emission reductions during the Olympic Summer Games in 2008 have caused a strong reduction on coarser particles (PM10) but not on smaller particles (PM2.5). In order to discriminate the composition of the particulate matter levels, the different behavior of coarser and smaller particles investigations on source attribution, particle characteristics and external impacts on the PM levels of the city of Beijing by measurements and modeling are performed: Examples of long term measurements of PM2.5 filter sampling in 2005 with the objectives of detailed chemical (source attribution, carbon fraction, organic speciation and inorganic composition) and isotopic analyses as well as toxicological assessment in cooperation with several institutions (Karlsruhe Institute of Technology (IfGG/IMG), Helmholtz Zentrum München (HMGU), University Rostock (UR), Chinese University of Mining and Technology Beijing, CUMTB) will be discussed. Further experimental studies include the operation of remote sensing systems to determine continuously the MLH (by a ceilometer) and gaseous air pollutants near the ground (by DOAS systems) as well as at the 320 m measurement tower (adhesive plates at different heights for passive particle collection) in cooperation with the Institute of Atmospheric Physics (IAP) of the Chinese Academy of Sciences (CAS). The influence of the MLH on the air pollution concentration could be demonstrated and will be discussed. The impact of dust storm events on the overall pollution level of particulate matter in the greater area of Beijing is being assessed by the online coupled comprehensive model system COSMO-ART. First results of the dust storm modeling in northern China (2006, April 3rd until 12th) demonstrates very well the general behavior of the meteorological parameters temperature and humidity as well as a good agreement between modeled and measured dust storm concentration variability at Beijing in the course of time. The results show the importance of intertwine investigations of measurements and modeling, the analysis of local air pollution levels as well as the impact and analysis of advective process in the greater region of Beijing. Comprehensive investigations on particulate matter are a prerequisite for the knowledge of the source strengths and source attribution to the overall air pollution level. Only this knowledge can help to formulate and to introduce specific reduction measures to reduce coarser as well as finer particulates.
AGE AND STRAIN INFLUENCES ON LUNG RESPONSES TO CONCENTRATED AIR PARTICULATES (CAPS) IN RODENTS
Asthma, an inflammatory airways disease, is an urgent health problem. Recent epidemiologic studies have demonstrated positive associations between ambient air particulate matter concentrations and daily respiratory morbidity ? including exacerbations of asthma. Of note, elderly i...
Does Particulate Air Pollution Contribute to Infant Death? A Systematic Review
Glinianaia, Svetlana V.; Rankin, Judith; Bell, Ruth; Pless-Mulloli, Tanja; Howel, Denise
2004-01-01
There is now substantial evidence that both short- and long-term increases in ambient air pollution are associated with increased mortality and morbidity in adults and children. Children’s health is particularly vulnerable to environmental pollution, and infant mortality is still a major contributor to childhood mortality. In this systematic review we summarize and evaluate the current level of epidemiologic evidence of an association between particulate air pollution and infant mortality. We identified relevant publications using database searches with a comprehensive list of search terms and other established search methods. We included articles in the review according to specified inclusion criteria. Fifteen studies met our inclusion criteria. Evidence of an association between particulate air pollution and infant mortality in general was inconsistent, being reported from locations with largely comparable pollution levels. There was some evidence that the strength of association with particulate matter differed by subgroups of infant mortality. It was more consistent for post-neonatal mortality due to respiratory causes and sudden infant death syndrome. Differential findings for various mortality subgroups within studies suggest a stronger association of particulate air pollution with some causes of infant death. Research is needed to confirm and clarify these links, using the most appropriate methodologies for exposure assessment and control of confounders. PMID:15471726
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ottney, T.C.
Filtration systems that are incorrectly selected, installed and maintained can cause excessive particulates in occupied spaces. This article describes how to identify and correct problems. Particulate matter can be removed from ventilation air at several sites within a building. These sites include: on heat exchanger surfaces; inside ductwork, ceiling tiles and diffusers; and in the air filter. The cost associated with removing these unwanted contaminants is unavoidable. However, this removal cost varies depending on where the particulates have been deposited. Not all particulates that are generated by work-related activities are transported to the filter bank by return air currents beforemore » being deposited on other surfaces. Accordingly, walls still have to be repainted at varying intervals and carpeting vacuumed. Ceiling tiles will discolor at a rate that is influenced by their texture, the air outlet velocity, the amount of dirt in the ventilation air and how much contaminant is being generated in the room. It is estimated that 15% of ventilation air escapes the air filtration process. This leakage results in higher utility, janitorial and redecorating costs as well as contributing to employee absenteeism. When building management does not prevent it, air-conditioning coils and ductwork become an unintended part of the building's air filtration system. In time, this is much more expensive both in energy and cleaning costs than the steps available to keep them clean. Good particulate control can lower the total cost of building operation. However, a building operator may not have to upgrade to a higher efficiency filter to achieve higher system efficiency. Simply eliminating the source of leaks and better management of the existing filters may be all that is necessary.« less
Assessing the impact of fine particulate matter (PM2.5) on ...
An enhanced research paradigm is presented to address the spatial and temporal gaps in fine particulate matter (PM2.5) measurements and generate realistic and representative concentration fields for use in epidemiological studies of human exposure to ambient air particulate concentrations. The general approach for research designed to analyze health impacts of exposure to PM2.5 is to use concentration data from the nearest ground-based air quality monitor(s), which typically have missing data on the temporal and spatial scales due to filter sampling schedules and monitor placement, respectively. To circumvent these data gaps, this research project uses a Hierarchical Bayesian Model (HBM) to generate estimates of PM2.5 in areas with and without air quality monitors by combining PM2.5 concentrations measured by monitors, PM2.5 concentration estimates derived from satellite aerosol optical depth (AOD) data, and Community-Multiscale Air Quality (CMAQ) model predictions of PM2.5 concentrations. This methodology represents a substantial step forward in the approach for developing representative PM2.5 concentration datasets to correlate with inpatient hospitalizations and emergency room visits data for asthma and inpatient hospitalizations for myocardial infarction (MI) and heart failure (HF) using case-crossover analysis. There were two key objective of this current study. First was to show that the inputs to the HBM could be expanded to include AOD data in addition t
A Systematic Review of Occupational Exposure to Particulate Matter and Cardiovascular Disease
Fang, Shona C.; Cassidy, Adrian; Christiani, David C.
2010-01-01
Exposure to ambient particulate air pollution is a recognized risk factor for cardiovascular disease; however the link between occupational particulate exposures and adverse cardiovascular events is less clear. We conducted a systematic review, including meta-analysis where appropriate, of the epidemiologic association between occupational exposure to particulate matter and cardiovascular disease. Out of 697 articles meeting our initial criteria, 37 articles published from January 1990 to April 2009 (12 mortality; 5 morbidity; and 20 intermediate cardiovascular endpoints) were included. Results suggest a possible association between occupational particulate exposures and ischemic heart disease (IHD) mortality as well as non-fatal myocardial infarction (MI), and stronger evidence of associations with heart rate variability and systemic inflammation, potential intermediates between occupational PM exposure and IHD. In meta-analysis of mortality studies, a significant increase in IHD was observed (meta-IRR = 1.16; 95% CI: 1.06–1.26), however these data were limited by lack of adequate control for smoking and other potential confounders. Further research is needed to better clarify the magnitude of the potential risk of the development and aggravation of IHD associated with short and long-term occupational particulate exposures and to clarify the clinical significance of acute and chronic changes in intermediate cardiovascular outcomes. PMID:20617059
Low pressure EGR system having full range capability
Easley, Jr., William Lanier; Milam, David Michael; Roozenboom, Stephan Donald; Bond, Michael Steven; Kapic, Amir
2009-09-22
An exhaust treatment system for an engine is disclosed and may have an air induction circuit, an exhaust circuit, and an exhaust recirculation circuit. The air induction circuit may be configured to direct air into the engine. The exhaust circuit may be configured to direct exhaust from the engine and include a turbine driven by the exhaust, a particulate filter disposed in series with and downstream of the turbine, and a catalytic device disposed in series with and downstream of the particulate filter. The exhaust recirculation circuit may be configured to selectively redirect at least some of the exhaust from between the particulate filter and the catalytic device to the air induction circuit. The catalytic device is selected to create backpressure within the exhaust circuit sufficient to ensure that, under normal engine operating conditions above low idle, exhaust can flow into the air induction circuit without throttling of the air.
40 CFR 52.228 - Regulations: Particulate matter, Southeast Desert Intrastate Region.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 3 2010-07-01 2010-07-01 false Regulations: Particulate matter... § 52.228 Regulations: Particulate matter, Southeast Desert Intrastate Region. (a) The following... particulate matter in the Southeast Desert Intrastate Region. (1) Imperial County Air Pollution Control...
40 CFR 52.228 - Regulations: Particulate matter, Southeast Desert Intrastate Region.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 3 2011-07-01 2011-07-01 false Regulations: Particulate matter... § 52.228 Regulations: Particulate matter, Southeast Desert Intrastate Region. (a) The following... particulate matter in the Southeast Desert Intrastate Region. (1) Imperial County Air Pollution Control...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 2 2014-07-01 2014-07-01 false Interpretation of the National Ambient Air Quality Standards for Particulate Matter K Appendix K to Part 50 Protection of Environment... STANDARDS Pt. 50, App. K Appendix K to Part 50—Interpretation of the National Ambient Air Quality Standards...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 2 2013-07-01 2013-07-01 false Interpretation of the National Ambient Air Quality Standards for Particulate Matter K Appendix K to Part 50 Protection of Environment... STANDARDS Pt. 50, App. K Appendix K to Part 50—Interpretation of the National Ambient Air Quality Standards...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 2 2012-07-01 2012-07-01 false Interpretation of the National Ambient Air Quality Standards for Particulate Matter K Appendix K to Part 50 Protection of Environment... STANDARDS Pt. 50, App. K Appendix K to Part 50—Interpretation of the National Ambient Air Quality Standards...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 2 2011-07-01 2011-07-01 false Interpretation of the National Ambient Air Quality Standards for Particulate Matter K Appendix K to Part 50 Protection of Environment... STANDARDS Pt. 50, App. K Appendix K to Part 50—Interpretation of the National Ambient Air Quality Standards...
EPA is in the process of updating and revising, where appropriate, its Air Quality Criteria for Particulate Matter as issued in 1996 (usually referred to as the Criteria Document). Sections 108 and 109 of the Clean Air Act require that EPA carry out a periodic review an...
This manuscript provides an overview of the formulation, process considerations, and performance for simulating tropospheric ozone and particulate matter distributions of the Multiscale Air Quality Simulation Platform (MAQSIP). MAQSIP is a comprehensive atmospheric chemistry/tran...
Context Matters: Using an Organotypic Airway Model to Assess the Response to Inhaled Toxicants
Exposure to particulate air pollution is associated with increased morbidity and mortality from pulmonary and cardiovascular diseases worldwide. Diesel exhaust particles (DEP) are a significant contributor to particulate air pollution and are known to induce pulmonary oxidative ...
O'Donovan, Gary; Chudasama, Yogini; Grocock, Samuel; Leigh, Roland; Dalton, Alice M; Gray, Laura J; Yates, Thomas; Edwardson, Charlotte; Hill, Sian; Henson, Joe; Webb, David; Khunti, Kamlesh; Davies, Melanie J; Jones, Andrew P; Bodicoat, Danielle H; Wells, Alan
2017-07-01
Observational evidence suggests there is an association between air pollution and type 2 diabetes; however, there is high risk of bias. To investigate the association between air pollution and type 2 diabetes, while reducing bias due to exposure assessment, outcome assessment, and confounder assessment. Data were collected from 10,443 participants in three diabetes screening studies in Leicestershire, UK. Exposure assessment included standard, prevailing estimates of outdoor nitrogen dioxide and particulate matter concentrations in a 1×1km area at the participant's home postcode. Three-year exposure was investigated in the primary analysis and one-year exposure in a sensitivity analysis. Outcome assessment included the oral glucose tolerance test for type 2 diabetes. Confounder assessment included demographic factors (age, sex, ethnicity, smoking, area social deprivation, urban or rural location), lifestyle factors (body mass index and physical activity), and neighbourhood green space. Nitrogen dioxide and particulate matter concentrations were associated with type 2 diabetes in unadjusted models. There was no statistically significant association between nitrogen dioxide concentration and type 2 diabetes after adjustment for demographic factors (odds: 1.08; 95% CI: 0.91, 1.29). The odds of type 2 diabetes was 1.10 (95% CI: 0.92, 1.32) after further adjustment for lifestyle factors and 0.91 (95% CI: 0.72, 1.16) after yet further adjustment for neighbourhood green space. The associations between particulate matter concentrations and type 2 diabetes were also explained away by demographic factors. There was no evidence of exposure definition bias. Demographic factors seemed to explain the association between air pollution and type 2 diabetes in this cross-sectional study. High-quality longitudinal studies are needed to improve our understanding of the association. Copyright © 2017 Elsevier Ltd. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-21
... of the San Joaquin Valley Air Basin and East Kern areas for particulate matter of ten microns or less... for particulate matter of ten microns or less (PM-10) by splitting the area into two separate...
AIR QUALITY CRITERIA FOR PARTICULATE MATTER, VOLUMES I-III
There is no abstract available for these documents. If further information is requested, please refer to the bibliographic citation and contact the Technical Information Staff at the number listed below.
Control Techniques for Particulate Air Pollutants.
ERIC Educational Resources Information Center
National Air Pollution Control Administration (DHEW), Washington, DC.
Included is a comprehensive review of the approaches commonly recommended for controlling the sources of particulate air pollution. Not all possible combinations of control techniques that might bring about more stringent control of each individual source are reviewed. The many agricultural, commercial, domestic, industrial, and municipal…
PREDICTION OF FINE PARTICULATE LEVELS AT UNMONITORED LOCATIONS
In November and December of 1999, air concentrations of ultrafine, fine, and coarse particulate matter were measured at two intensive sites in El Paso, Texas. The intensive sites included collocated measurements of NO2 and volatile organic compounds (VOCs) in the air from both...
Background: Epidemiology studies have reported associations between increased mortality and morbidity with exposure to particulate air pollution, particularly within individuals with pre-existing cardiovascular disease (CVD). Clinical and toxicological studies have provided evide...
Self-Cleaning Particulate Prefilter Media
NASA Technical Reports Server (NTRS)
Weber, Olivia; Lalwani, San-jiv; Sharma, Anjal
2012-01-01
A long-term space mission requires efficient air revitalization performance to sustain the crew. Prefilter and particulate air filter media are susceptible to rapid fouling that adversely affects their performance and can lead to catastrophic failure of the air revitalization system, which may result in mission failure. For a long-term voyage, it is impractical to carry replacement particulate prefilter and filter modules due to the usual limitations in size, volume, and weight. The only solution to this problem is to reagentlessly regenerate prefilter and filter media in place. A method was developed to modify the particulate prefilter media to allow them to regenerate reagentlessly, and in place, by the application of modest thermocycled transverse or reversed airflows. The innovation may allow NASA to close the breathing air loop more efficiently, thereby sustaining the vision for manned space exploration missions of the future. A novel, self-cleaning coatings technology was developed for air filter media surfaces that allows reagentless in-place regeneration of the surface. The technology grafts thermoresponsive and nonspecific adhesion minimizing polymer nanolayer brush coatings from the prefilter media. These polymer nanolayer brush architectures can be triggered to contract and expand to generate a "pushing-off" force by the simple application of modestly thermocycled (i.e. cycling from ambient cabin temperature to 40 C) air streams. The nonspecific adhesion-minimizing properties of the coatings do not allow the particulate foulants to adhere strongly to the filter media, and thermocycled air streams applied to the media allow easy detachment and in-place regeneration of the media with minimal impact in system downtime or astronaut involvement in overseeing the process.
Particulates and fine dust removal: processes and equipment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sittig, M.
1977-01-01
Particulates and fine dust created by man's activities contribute significantly to all major aspects of air pollution. While the generation of natural fine dusts is also very large in some parts of the earth, industrially generated, particle-loaded air emissions may push the particulate level to a point where acceptable air quality standards are exceeded continuously. How to reduce such emissions at the source, and what processes and equipment to use, is the subject of this book, which is based on reports of federally-financed air pollution studies as well as U.S. patents. Following an introduction with an overview of industrial particulatemore » emissions, emission data and emission control processes are discussed for the following specific industries: airlines; asphalt; cement; coal; electric utilities; ferrous metals; fertilizer; food; forest products; paper; chemicals; nonferrous metals; nuclear; petroleum refining; stone and clay; and textiles. Conventional and innovative particle removal devices are described. The disposal of collected particles is discussed. The economic and energy consumption aspects of particulate control are presented. (LCL)« less
Following the Part I paper that described an application of the U.S. EPA Models-3/Community Multiscale Air Quality (CMAQ) modeling system to the 1999 Southern Oxidants Study episode, this paper presents results from process analysis (PA) using the PA tool embedded in CMAQ and s...
Itouyama, Noboru; Matsui, Taiki; Yamamoto, Shigekazu; Imasaka, Tomoko; Imasaka, Totaro
2016-02-01
Particulate matter 2.5 (PM2.5), collected from ambient air in Fukuoka City, was analyzed by gas chromatography combined with multiphoton ionization mass spectrometry using an ultraviolet femtosecond laser (267 nm) as the ionization source. Numerous parent polycyclic aromatic hydrocarbons (PPAHs) were observed in a sample extracted from PM2.5, and their concentrations were determined to be in the range from 30 to 190 pg/m(3) for heavy PPAHs. Standard samples of nitrated polycyclic aromatic hydrocarbons (NPAHs) were examined, and the limits of detection were determined to be in the picogram range. The concentration of NPAH adsorbed on PM2.5 in the air was less than 900-1300 pg/m(3). Graphical Abstract ᅟ.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-29
...In this notice, EPA is notifying the public that we have made insignificance findings through the transportation conformity adequacy process, under the Clean Air Act, for directly emitted fine particulate matter (PM2.5) and oxides of nitrogen (NOX) in the Ohio portion of the Huntington/Ashland WV-KY-OH area. Ohio submitted the insignificance findings with the redesignation and maintenance plan submittal on May 4, 2011. As a result of our findings, the Ohio portion of the Huntington/Ashland area is no longer required to perform a regional emissions analysis for either directly emitted PM2.5 or NOX as part of future PM2.5 conformity determinations for the 1997 annual PM2.5 air quality standard.
Air pollution and fuel vapour induced changes in lung functions: are fuel handlers safe?
Chawla, Anuj; Lavania, A K
2008-01-01
Automobile exhaust derived air pollutants have become a major health hazard. Coupled with the inhalation of fuel vapour, as occurs in petrol station workers, this may lead to significant impairment of lung function. Spirometric lung functions were studied in 58 petrol station workers to examine this possibility. The forced vital capacity (FVC), forced expiratory volume in 1 second (FEV1), forced expiratory flow 25%-75% (FEF25-75) and peak expiratory flow (PEF) were recorded and analysed separately for smokers and non-smokers. The workers were divided into 5 groups for analysis of data based on the number of years of work in the petrol pumps. Outdoor air analysis was also carried out. The FVC, FEV1 and PEF declined significantly with increasing years of work in petrol stations in both smokers and non-smokers. Smoking as an independent variable was found to affect the FEV1 significantly but not FVC or PEF. The FEF25-75 was found to be the most affected spirometric value with a significant reduction with increasing years of work. Smoking as such did not affect it. Oxides of nitrogen (NOx), suspended particulate matter (SPM) and particulate matter less than 10 microns (PM10) in outdoor air were higher than the national ambient air quality standards. Exposure to automobile exhaust and fuel vapour impairs lung function in a time-dependent manner. Cigarette smoking appears to accelerate the decline.
A new `bio-comfort' perspective for Melbourne based on heat stress, air pollution and pollen
NASA Astrophysics Data System (ADS)
Jacobs, Stephanie J.; Pezza, Alexandre B.; Barras, Vaughan; Bye, John
2014-03-01
Humans are at risk from exposure to extremes in their environment, yet there is no consistent way to fully quantify and understand the risk when considering more than just meteorological variables. An outdoor `bio-comfort' threshold is defined for Melbourne, Australia using a combination of heat stress, air particulate concentration and grass pollen count, where comfortable conditions imply an ideal range of temperature, humidity and wind speed, acceptable levels of air particulates and a low pollen count. This is a new approach to defining the comfort of human populations. While other works have looked into the separate impacts of different variables, this is the first time that a unified bio-comfort threshold is suggested. Composite maps of surface pressure are used to illustrate the genesis and evolution of the atmospheric structures conducive to an uncomfortable day. When there is an uncomfortable day due to heat stress conditions in Melbourne, there is a high pressure anomaly to the east bringing warm air from the northern interior of Australia. This anomaly is part of a slow moving blocking high originating over the Indian Ocean. Uncomfortable days due to high particulate levels have an approaching cold front. However, for air particulate cases during the cold season there are stable atmospheric conditions enhanced by a blocking high emanating from Australia and linking with the Antarctic continent. Finally, when grass pollen levels are high, there are northerly winds carrying the pollen from rural grass lands to Melbourne, due to a stationary trough of low pressure inland. Analysis into days with multiple types of stress revealed that the atmospheric signals associated with each type of discomfort are present regardless of whether the day is uncomfortable due to one or multiple variables. Therefore, these bio-comfort results are significant because they offer a degree of predictability for future uncomfortable days in Melbourne.
A new 'bio-comfort' perspective for Melbourne based on heat stress, air pollution and pollen.
Jacobs, Stephanie J; Pezza, Alexandre B; Barras, Vaughan; Bye, John
2014-03-01
Humans are at risk from exposure to extremes in their environment, yet there is no consistent way to fully quantify and understand the risk when considering more than just meteorological variables. An outdoor 'bio-comfort' threshold is defined for Melbourne, Australia using a combination of heat stress, air particulate concentration and grass pollen count, where comfortable conditions imply an ideal range of temperature, humidity and wind speed, acceptable levels of air particulates and a low pollen count. This is a new approach to defining the comfort of human populations. While other works have looked into the separate impacts of different variables, this is the first time that a unified bio-comfort threshold is suggested. Composite maps of surface pressure are used to illustrate the genesis and evolution of the atmospheric structures conducive to an uncomfortable day. When there is an uncomfortable day due to heat stress conditions in Melbourne, there is a high pressure anomaly to the east bringing warm air from the northern interior of Australia. This anomaly is part of a slow moving blocking high originating over the Indian Ocean. Uncomfortable days due to high particulate levels have an approaching cold front. However, for air particulate cases during the cold season there are stable atmospheric conditions enhanced by a blocking high emanating from Australia and linking with the Antarctic continent. Finally, when grass pollen levels are high, there are northerly winds carrying the pollen from rural grass lands to Melbourne, due to a stationary trough of low pressure inland. Analysis into days with multiple types of stress revealed that the atmospheric signals associated with each type of discomfort are present regardless of whether the day is uncomfortable due to one or multiple variables. Therefore, these bio-comfort results are significant because they offer a degree of predictability for future uncomfortable days in Melbourne.
40 CFR 49.126 - Rule for limiting fugitive particulate matter emissions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Rule for limiting fugitive particulate matter emissions. (a) What is the purpose of this section? This section limits the amount of fugitive particulate matter that may be emitted from certain air pollution... source of fugitive particulate matter emissions. (c) What is exempted from this section? This section...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-09
...The Environmental Protection Agency (EPA) Science Advisory Board (SAB) Staff Office announces a public meeting on July 26-27, 2010 of the Clean Air Scientific Advisory Particulate Matter Review Panel (Panel) to review EPA's forthcoming Policy Assessment for the Review of Particulate Matter National Ambient Air Quality Standards-- Second External Review Draft (June 2010).
EXPOSURE ANALYSIS FROM PERSONAL AND AMBIENT AIR SAMPLING: RESULTS OF THE 1998 BALTIMORE STUDY
An integrated epidemiological-exposure panel study was conducted during July-August 1998 which focused upon establishing relationships between potential human exposures to particulate matter (PM) and related co-pollutants with detectable health effects. The study design incorpo...
TRENDS IN RURAL SULFUR CONCENTRATIONS
This paper presents an analysis of regional trends in atmospheric concentrations in sulfur dioxide (502) and particulate sulfate (50~- ) at rural monitoring sites in the Clean Air Act Status and Trends Monitoring Network (CAsTNet) from 1990 to 1999. A two-stage approach is used t...
Use of Whatman-41 filters in air quality sampling networks (with applications to elemental analysis)
NASA Technical Reports Server (NTRS)
Neustadter, H. E.; Sidik, S. M.; King, R. B.; Fordyce, J. S.; Burr, J. C.
1974-01-01
The operation of a 16-site parallel high volume air sampling network with glass fiber filters on one unit and Whatman-41 filters on the other is reported. The network data and data from several other experiments indicate that (1) Sampler-to-sampler and filter-to-filter variabilities are small; (2) hygroscopic affinity of Whatman-41 filters need not introduce errors; and (3) suspended particulate samples from glass fiber filters averaged slightly, but not statistically significantly, higher than from Whatman-41-filters. The results obtained demonstrate the practicability of Whatman-41 filters for air quality monitoring and elemental analysis.
Definition of air quality measurements for monitoring space shuttle launches
NASA Technical Reports Server (NTRS)
Thorpe, R. D.
1978-01-01
A description of a recommended air quality monitoring network to characterize the impact on ambient air quality in the Kennedy Space Center (KSC) (area) of space shuttle launch operations is given. Analysis of ground cloud processes and prevalent meteorological conditions indicates that transient HCl depositions can be a cause for concern. The system designed to monitor HCl employs an extensive network of inexpensive detectors combined with a central analysis device. An acid rain network is also recommended. A quantitative measure of projected minimal long-term impact involves the limited monitoring of NOx and particulates. All recommended monitoring is confined ti KSC property.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kevin Crist
2005-10-02
Ohio University, in collaboration with CONSOL Energy, Advanced Technology Systems, Inc (ATS) and Atmospheric and Environmental Research, Inc. (AER) as subcontractors, is evaluating the impact of emissions from coal-fired power plants in the Ohio River Valley region as they relate to the transport and deposition of mercury, arsenic, and associated fine particulate matter. This evaluation will involve two interrelated areas of effort: ambient air monitoring and regional-scale modeling analysis. The scope of work for the ambient air monitoring will include the deployment of a surface air monitoring (SAM) station in southeastern Ohio. The SAM station will contain sampling equipment tomore » collect and measure mercury (including speciated forms of mercury and wet and dry deposited mercury), arsenic, particulate matter (PM) mass, PM composition, and gaseous criteria pollutants (CO, NOx, SO{sub 2}, O{sub 3}, etc.). Laboratory analysis of time-integrated samples will be used to obtain chemical speciation of ambient PM composition and mercury in precipitation. Near-real-time measurements will be used to measure the ambient concentrations of PM mass and all gaseous species including Hg{sup 0} and RGM. Approximately of 18 months of field data will be collected at the SAM site to validate the proposed regional model simulations for episodic and seasonal model runs. The ambient air quality data will also provide mercury, arsenic, and fine particulate matter data that can be used by Ohio Valley industries to assess performance on multi-pollutant control systems. The scope of work for the modeling analysis will include (1) development of updated inventories of mercury and arsenic emissions from coal plants and other important sources in the modeled domain; (2) adapting an existing 3-D atmospheric chemical transport model to incorporate recent advancements in the understanding of mercury transformations in the atmosphere; (3) analyses of the flux of Hg0, RGM, arsenic, and fine particulate matter in the different sectors of the study region to identify key transport mechanisms; (4) comparison of cross correlations between species from the model results to observations in order to evaluate characteristics of specific air masses associated with long-range transport from a specified source region; and (5) evaluation of the sensitivity of these correlations to emissions from regions along the transport path. This will be accomplished by multiple model runs with emissions simulations switched on and off from the various source regions. To the greatest extent possible, model results will also be compared to field data collected at other air monitoring sites in the Ohio Valley region, operated independently of this project. These sites may include (1) the DOE National Energy Technologies Laboratory's monitoring site at its suburban Pittsburgh, PA facility; (2) sites in Pittsburgh (Lawrenceville) PA and Holbrook, PA operated by ATS; (3) sites in Steubenville, OH and Pittsburgh, PA operated by U.S. EPA and/or its contractors; and (4) sites operated by State or local air regulatory agencies. Field verification of model results and predictions will provide critical information for the development of cost effective air pollution control strategies by the coal-fired power plants in the Ohio River Valley region.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kevin Crist
2006-04-02
As stated in the proposal: Ohio University, in collaboration with CONSOL Energy, Advanced Technology Systems, Inc (ATS) and Atmospheric and Environmental Research, Inc. (AER) as subcontractors, is evaluating the impact of emissions from coal-fired power plants in the Ohio River Valley region as they relate to the transport and deposition of mercury, arsenic, and associated fine particulate matter. This evaluation will involve two interrelated areas of effort: ambient air monitoring and regional-scale modeling analysis. The scope of work for the ambient air monitoring will include the deployment of a surface air monitoring (SAM) station in southeastern Ohio. The SAM stationmore » will contain sampling equipment to collect and measure mercury (including speciated forms of mercury and wet and dry deposited mercury), arsenic, particulate matter (PM) mass, PM composition, and gaseous criteria pollutants (CO, NO{sub x}, SO{sub 2}, O{sub 3}, etc.). Laboratory analysis of time-integrated samples will be used to obtain chemical speciation of ambient PM composition and mercury in precipitation. Near-real-time measurements will be used to measure the ambient concentrations of PM mass and all gaseous species including Hg0 and RGM. Approximately 18 months of field data will be collected at the SAM site to validate the proposed regional model simulations for episodic and seasonal model runs. The ambient air quality data will also provide mercury, arsenic, and fine particulate matter data that can be used by Ohio Valley industries to assess performance on multi-pollutant control systems. The scope of work for the modeling analysis will include (1) development of updated inventories of mercury and arsenic emissions from coal plants and other important sources in the modeled domain; (2) adapting an existing 3-D atmospheric chemical transport model to incorporate recent advancements in the understanding of mercury transformations in the atmosphere; (3) analyses of the flux of Hg{sup 0}, RGM, arsenic, and fine particulate matter in the different sectors of the study region to identify key transport mechanisms; (4) comparison of cross correlations between species from the model results to observations in order to evaluate characteristics of specific air masses associated with long-range transport from a specified source region; and (5) evaluation of the sensitivity of these correlations to emissions from regions along the transport path. This will be accomplished by multiple model runs with emissions simulations switched on and off from the various source regions. To the greatest extent possible, model results will also be compared to field data collected at other air monitoring sites in the Ohio Valley region, operated independently of this project. These sites may include (1) the DOE National Energy Technologies Laboratory's monitoring site at its suburban Pittsburgh, PA facility; (2) sites in Pittsburgh (Lawrenceville) PA and Holbrook, PA operated by ATS; (3) sites in Steubenville, OH and Pittsburgh, PA operated by the USEPA and/or its contractors; and (4) sites operated by State or local air regulatory agencies. Field verification of model results and predictions will provide critical information for the development of cost effective air pollution control strategies by the coal-fired power plants in the Ohio River Valley region.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kevin Crist
2005-04-02
Ohio University, in collaboration with CONSOL Energy, Advanced Technology Systems, Inc (ATS) and Atmospheric and Environmental Research, Inc. (AER) as subcontractors, is evaluating the impact of emissions from coal-fired power plants in the Ohio River Valley region as they relate to the transport and deposition of mercury, arsenic, and associated fine particulate matter. This evaluation will involve two interrelated areas of effort: ambient air monitoring and regional-scale modeling analysis. The scope of work for the ambient air monitoring will include the deployment of a surface air monitoring (SAM) station in southeastern Ohio. The SAM station will contain sampling equipment tomore » collect and measure mercury (including speciated forms of mercury and wet and dry deposited mercury), arsenic, particulate matter (PM) mass, PM composition, and gaseous criteria pollutants (CO, NO{sub x}, SO{sub 2}, O{sub 3}, etc.). Laboratory analysis of time-integrated samples will be used to obtain chemical speciation of ambient PM composition and mercury in precipitation. Near-real-time measurements will be used to measure the ambient concentrations of PM mass and all gaseous species including Hg{sup 0} and RGM. Approximately of 18 months of field data will be collected at the SAM site to validate the proposed regional model simulations for episodic and seasonal model runs. The ambient air quality data will also provide mercury, arsenic, and fine particulate matter data that can be used by Ohio Valley industries to assess performance on multi-pollutant control systems. The scope of work for the modeling analysis will include (1) development of updated inventories of mercury and arsenic emissions from coal plants and other important sources in the modeled domain; (2) adapting an existing 3-D atmospheric chemical transport model to incorporate recent advancements in the understanding of mercury transformations in the atmosphere; (3) analyses of the flux of Hg{sup 0}, RGM, arsenic, and fine particulate matter in the different sectors of the study region to identify key transport mechanisms; (4) comparison of cross correlations between species from the model results to observations in order to evaluate characteristics of specific air masses associated with long-range transport from a specified source region; and (5) evaluation of the sensitivity of these correlations to emissions from regions along the transport path. This will be accomplished by multiple model runs with emissions simulations switched on and off from the various source regions. To the greatest extent possible, model results will also be compared to field data collected at other air monitoring sites in the Ohio Valley region, operated independently of this project. These sites may include (1) the DOE National Energy Technologies Laboratory's monitoring site at its suburban Pittsburgh, PA facility; (2) sites in Pittsburgh (Lawrenceville) PA and Holbrook, PA operated by ATS; (3) sites in Steubenville, OH and Pittsburgh, PA operated by U.S. EPA and/or its contractors; and (4) sites operated by State or local air regulatory agencies. Field verification of model results and predictions will provide critical information for the development of cost effective air pollution control strategies by the coal-fired power plants in the Ohio River Valley region.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kevin Crist
2004-10-02
Ohio University, in collaboration with CONSOL Energy, Advanced Technology Systems, Inc (ATS) and Atmospheric and Environmental Research, Inc. (AER) as subcontractors, is evaluating the impact of emissions from coal-fired power plants in the Ohio River Valley region as they relate to the transport and deposition of mercury, arsenic, and associated fine particulate matter. This evaluation will involve two interrelated areas of effort: ambient air monitoring and regional-scale modeling analysis. The scope of work for the ambient air monitoring will include the deployment of a surface air monitoring (SAM) station in southeastern Ohio. The SAM station will contain sampling equipment tomore » collect and measure mercury (including speciated forms of mercury and wet and dry deposited mercury), arsenic, particulate matter (PM) mass, PM composition, and gaseous criteria pollutants (CO, NOx, SO{sub 2}, O{sub 3}, etc.). Laboratory analysis of time-integrated samples will be used to obtain chemical speciation of ambient PM composition and mercury in precipitation. Near-real-time measurements will be used to measure the ambient concentrations of PM mass and all gaseous species including Hg{sup 0} and RGM. Approximately of 18 months of field data will be collected at the SAM site to validate the proposed regional model simulations for episodic and seasonal model runs. The ambient air quality data will also provide mercury, arsenic, and fine particulate matter data that can be used by Ohio Valley industries to assess performance on multi-pollutant control systems. The scope of work for the modeling analysis will include (1) development of updated inventories of mercury and arsenic emissions from coal plants and other important sources in the modeled domain; (2) adapting an existing 3-D atmospheric chemical transport model to incorporate recent advancements in the understanding of mercury transformations in the atmosphere; (3) analyses of the flux of Hg{sup 0}, RGM, arsenic, and fine particulate matter in the different sectors of the study region to identify key transport mechanisms; (4) comparison of cross correlations between species from the model results to observations in order to evaluate characteristics of specific air masses associated with long-range transport from a specified source region; and (5) evaluation of the sensitivity of these correlations to emissions from regions along the transport path. This will be accomplished by multiple model runs with emissions simulations switched on and off from the various source regions. To the greatest extent possible, model results will also be compared to field data collected at other air monitoring sites in the Ohio Valley region, operated independently of this project. These sites may include (1) the DOE National Energy Technologies Laboratory's monitoring site at its suburban Pittsburgh, PA facility; (2) sites in Pittsburgh (Lawrenceville) PA and Holbrook, PA operated by ATS; (3) sites in Steubenville, OH and Pittsburgh, PA operated by U.S. EPA and/or its contractors; and (4) sites operated by State or local air regulatory agencies. Field verification of model results and predictions will provide critical information for the development of cost effective air pollution control strategies by the coal-fired power plants in the Ohio River Valley region.« less
AIR PARTICULATE POLLUTION EXPOSURE INDUCES SYSTEMIC OXIDATIVE STRESS IN HEALTHY MICE
Air particulate pollution exposure induces systemic oxidative stress in healthy mice
Elizabeth S Roberts1 and Kevin L Dreher2. 1 College or Veterinary Medicine, NC State University, Raleigh, NC , 2US Environmental Protection Agency, NHEERL, RTP, NC
Epidemiological s...
DAILY VARIATION OF PARTICULATE AIR POLLUTION AND POOR CARDIAC AUTONOMIC CONTROL IN THE ELDERLY
Particulate matter air pollution (PM) has been related to cardiovascular disease mortality in a number of recent studies. The pathophysiologic mechanisms for this association are under study. Low heart rate variability, a marker of poor cardiac autonomic control, is associated wi...
Guidance document on how to develop emission inventories to meet State Implementation Plan requirements for complying with the 8-hour ozone national ambient air quality standards (NAAQS), the revised particulate matter (PM) NAAQS, and the regional haze reg
MODELS-3 COMMUNITY MULTISCALE AIR QUALITY (CMAQ) MODEL AEROSOL COMPONENT 2. MODEL EVALUATION
Ambient air concentrations of particulate matter (atmospheric suspensions of solid of liquid materials, i.e., aerosols) continue to be a major concern for the U.S. Environmental Protection Agency (EPA). High particulate matter (PM) concentrations are associated not only with adv...
The overall weight of evidence from panel, clinical, and toxicological studies has demonstrated the ability of ambient air particulate matter (PM) exposure to induce a variety of extra-pulmonary effects ranging from alterations in hematological parameters to cardiac function. Alt...
Effects of Source-Apportioned Coarse Particulate Matter (PM) on Allergic Responses in Mice
The Cleveland Multiple Air Pollutant Study (CMAPS) is one of the first comprehensive studies conducted to evaluate particulate matter (PM) over local and regional scales. Cleveland and the nearby Ohio River Valley impart significant regional sources of air pollution including coa...
STATUS OF RESEARCH ON AIR QUALITY: MERCURY, TRACE ELEMENTS, AND PARTICULATE MATTER. (R827649)
The Air Quality Conference reviewed the state of science and policy on the pollutants mercury, trace elements, and particulate matter (PM) in the environment. Critical issues dealing with impacts on health and ecosystems, emission prevention and control, measurement methods, a...
National Emissions Inventory (NEI), County-Level, US, 2008, 2011, 2014, EPA OAR, OAPQS
This US EPA Office of Air and Radiation, Office of Air Quality Planning and Standards, Air Quality Assessment Division, Air Quality Analysis Group (OAR, OAQPS, AQAD, AQAG) web service contains the following layers created from the 2008, 2011 and 2014 National Emissions Inventory (NEI): Carbon Monoxide (CO), Lead, Ammonia (NH3), Nitrogen Oxides (NOx), Particulate Matter 10 (PM10), Particulate Matter 2.5 (PM2.5), Sulfur Dioxide (SO2), Volatile Organic Compounds (VOC). Each of these layers conatin county level emissions for 2008, 2011, and 2014. Layers are drawn at all scales. The National Emission Inventory (NEI) is a comprehensive and detailed estimate of air emissions of criteria pollutants, criteria precursors, and hazardous air pollutants from air emissions sources. The NEI is released every three years based primarily upon data provided by State, Local, and Tribal air agencies for sources in their jurisdictions and supplemented by data developed by the US EPA. The NEI is built using the Emissions Inventory System (EIS) first to collect the data from State, Local, and Tribal air agencies and then to blend that data with other data sources.NEI point sources include emissions estimates for larger sources that are located at a fixed, stationary location. Point sources in the NEI include large industrial facilities and electric power plants, airports, and smaller industrial, non-industrial and commercial facilities. A small number of portable sources such as s
Particulate matter in animal rooms housing mice in microisolation caging.
Langham, Gregory L; Hoyt, Robert F; Johnson, Thomas E
2006-11-01
Reactions to allergens created by laboratory animals are among the most frequently encountered occupational illnesses associated with research animals. Personnel are exposed to these allergens through airborne particulate matter. Although the use of microisolation caging systems can reduce particulate matter concentrations in rooms housing mice, the operating parameters of ventilated caging systems vary extensively. We compared room air in mouse rooms containing 5 different types of caging: 1) individually ventilated caging under positive pressure with filtered intake air and exhaust air returned to the room (VCR+), 2) individually ventilated caging under negative pressure with exhaust air returned to the room (VCR-), 3) individually ventilated caging under positive pressure with exhaust air returned to the heating, ventilation, and air-conditioning (HVAC) system, 4) individually ventilated caging under negative pressure with exhaust air returned to the HVAC system, and 5) static microisolation cages. We found that rooms under VCR conditions had fewer large particles than did those under other conditions, but the numbers of 0.3 microm particles did not differ significantly among systems. Static, positive or negative pressure applied to caging units as well as route of air exhaust were found to have little influence on the total number of particles in the atmosphere. Therefore, considering the heat load, odor, and overall particulate concentration in the room, placing individually ventilated caging under negative pressure with exhaust air returned to the HVAC system appears to be the optimal overall choice when using microisolation housing for rodents.
Dueñas, C; Fernández, M C; Carretero, J; Liger, E; Cañete, S
2001-04-01
Measurements of gross-alpha and gross-beta activities were made every week during the years 1992-1997 for airborne particulate samples collected using air filters at a clear site. The data are sufficiently numerous to allow the examination of variations in time and by these measurements to establish several features that should be important in understanding any trends of atmospheric radioactivity. Two models were used to predict the gross-alpha and gross-beta activities. A good agreement between the results of these models and the measurements was highlighted.
Generation of hydroxyl radicals by urban suspended particulate air matter. The role of iron ions
NASA Astrophysics Data System (ADS)
Valavanidis, Athanasios; Salika, Anastasia; Theodoropoulou, Anna
Recent epidemiologic studies showed statistical associations between particulate air pollution in urban areas and increased morbidity and mortality, even at levels well within current national air quality standards. Inhalable particulate matter (PM 10) can penetrate into the lower airways where they can cause acute and chronic lung injury by generating toxic oxygen free radicals. We tested inhalable total suspended particulates (TSP) from the Athens area, diesel and gasoline exhaust particles (DEP and GED), and urban street dusts, by Electron Paramagnetic Resonance (EPR). All particulates can generate hydroxyl radicals (HO ṡ), in aqueous buffered solutions, in the presence of hydrogen peroxide. Results showed that oxidant generating activity is related with soluble iron ions. Leaching studies showed that urban particulate matter can release large amounts of Fe 3+ and lesser amounts of Fe 2+, as it was shown from other studies. Direct evidence of HO ṡ was confirmed by spin trapping with DMPO and measurement of DMPO-OH adduct by EPR. Evidence was supported with the use of chelator (EDTA), which increases the EPR signal, and the inhibition of the radical generating activity by desferrioxamine or/and antioxidants ( D-mannitol, sodium benzoate).
In-cylinder air-flow characteristics of different intake port geometries using tomographic PIV
NASA Astrophysics Data System (ADS)
Agarwal, Avinash Kumar; Gadekar, Suresh; Singh, Akhilendra Pratap
2017-09-01
For improving the in-cylinder flow characteristics of intake air/charge and for strengthening the turbulence intensity, specific intake port geometries have shown significant potential in compression ignition engines. In this experimental study, effects of intake port geometries on air-flow characteristics were investigated using tomographic particle imaging velocimetry (TPIV). Experiments were performed using three experimental conditions, namely, swirl port open (SPO), tangential port open (TPO), and both port open (BPO) configurations in a single cylinder optical research engine. Flow investigations were carried out in a volumetric section located in the middle of the intake and exhaust valves. Particle imaging velocimetry (PIV) images were captured using two high speed cameras at a crank angle resolution of 2° in the intake and compression strokes. The captured PIV images were then pre-processed and post-processed to obtain the final air-flow-field. Effects of these two intake ports on flow-field are presented for air velocity, vorticity, average absolute velocity, and turbulent kinetic energy. Analysis of these flow-fields suggests the dominating nature of the swirl port over the tangential port for the BPO configuration and higher rate of flow energy dissipation for the TPO configuration compared to the SPO and BPO configurations. These findings of TPIV investigations were experimentally verified by combustion and particulate characteristics of the test engine in thermal cylinder head configuration. Combustion results showed that the SPO configuration resulted in superior combustion amongst all three port configurations. Particulate characteristics showed that the TPO configuration resulted in higher particulate compared to other port configurations.
The Economic Value of Air Quality Forecasting
NASA Astrophysics Data System (ADS)
Anderson-Sumo, Tasha
Both long-term and daily air quality forecasts provide an essential component to human health and impact costs. According the American Lung Association, the estimated current annual cost of air pollution related illness in the United States, adjusted for inflation (3% per year), is approximately $152 billion. Many of the risks such as hospital visits and morality are associated with poor air quality days (where the Air Quality Index is greater than 100). Groups such as sensitive groups become more susceptible to the resulting conditions and more accurate forecasts would help to take more appropriate precautions. This research focuses on evaluating the utility of air quality forecasting in terms of its potential impacts by building on air quality forecasting and economical metrics. Our analysis includes data collected during the summertime ozone seasons between 2010 and 2012 from air quality models for the Washington, DC/Baltimore, MD region. The metrics that are relevant to our analysis include: (1) The number of times that a high ozone or particulate matter (PM) episode is correctly forecasted, (2) the number of times that high ozone or PM episode is forecasted when it does not occur and (3) the number of times when the air quality forecast predicts a cleaner air episode when the air was observed to have high ozone or PM. Our collection of data included available air quality model forecasts of ozone and particulate matter data from the U.S. Environmental Protection Agency (EPA)'s AIRNOW as well as observational data of ozone and particulate matter from Clean Air Partners. We evaluated the performance of the air quality forecasts with that of the observational data and found that the forecast models perform well for the Baltimore/Washington region and the time interval observed. We estimate the potential amount for the Baltimore/Washington region accrues to a savings of up to 5,905 lives and 5.9 billion dollars per year. This total assumes perfect compliance with bad air quality warning and forecast air quality forecasts. There is a difficulty presented with evaluating the economic utility of the forecasts. All may not comply and even with a low compliance rate of 5% and 72% as the average probability of detection of poor air quality days by the air quality models, we estimate that the forecasting program saves 412 lives or 412 million dollars per year for the region. The totals we found are great or greater than other typical yearly meteorological hazard programs such as tornado or hurricane forecasting and it is clear that the economic value of air quality forecasting in the Baltimore/Washington region is vital.
Thermal-optical analysis (TOA) is the principal method of the U.S. EPA's National Air Monitoring System for determining refractory carbon from combustion, or elemental carbon (EC), in particulate matter <2.5 µm (PM2.5). To isolate and quantify EC from organic carbon (...
Exposure to fine particulate matter (PM) air pollution causes adverse cardiopulmonary outcomes. Yet the limited capacity to readily identify contributing PM sources and associated PM constituents in any given ambient air shed impedes risk assessment efforts. The health effects of...
Epidemiology studies associate increased pulmonary morbidity with episodes of high particulate air pollution (size range 0.1-10 microm diameter, PM10). Pneumonia, often viral in origin, is increased following episodes of high PM10 pollution. Therefore, this study was undertaken t...
Traffic-laden roadways are major contributors to poor air quality in developed areas, elevating pollutants such as particulate matter (PM) and ozone. Among the numerous air pollutants emitted by vehicles, ultrafine particles (UFPs, diameter <100 nm) are of interest as a potentia...
A LOW COST CATALYTIC FILTER FOR SIMULTANEOUS VOC AND PARTICULATE REMOVAL - PHASE II
Emissions of VOC's are subject to control by the EPA both because VOC's are regarded as ozone precursors and because many specific VOC's are hazardous air pollutants (HAP's) under the Clean Air Act Amendments. A number of industries generate offgases with both fine particul...
Characterization of biological particulate loads in metropolitan air
J. A. Snow; R. D. Schein; W. J. Moroz
1977-01-01
The atmospheric particulate load includes a wide range of naturally occurring particles of biological origin that serve as a reservoir of allergenic agents in respiratory disease. Improved knowledge of potential aeroallergens is needed by medical clinicians. Aims are to better characterize air spora, qualitatively and quantitatively, and determine daily (by hour)...
EFFECTS OF INHALATION OF METALLIC CONSTITUENTS OF PARTICULATE MATTER AIR POLLUTION ON CARDIOPULMONARY AND THERMOREGULATORY PARAMETERS IN HEALTHY AND COMPROMISED RATS. Watkinson, WP, Campen, MJ, Wichers, LB, Nolan, JP, Kodavanti, UP, Schladweiler, MCJ, Evansky, PA, Lappi, ER,...
AIR QUALITY CRITERIA FOR PARTICULATE MATTER, VOLUMES I-III, (EXTERNAL REVIEW DRAFT, 1995)
There is no abstract available for these documents.
If further information is requested, please refer to the bibliographic citation and contact the Technical Information Staff at the number listed above.
We present the design and fabrication of a micro electro mechanical systems (MEMS) air-microfluidic particulate matter (PM) sensor, and show experimental results obtained from exposing the sensor to concentrations of tobacco smoke and diesel exhaust, two commonly occurring P...
USDA-ARS?s Scientific Manuscript database
Poultry-emitted air pollutants, including particulate matter (PM) and ammonia, have raised concerns due to negative effects on human health and the environment. However, developing and optimizing remediation technologies requires a better understanding of air pollutant concentrations, the emission p...
NASA Astrophysics Data System (ADS)
Wahid, Sharifah Norhuda Syed; Ujang, Suriyati
2015-02-01
Daily concentration of particulate matter with aerodynamic diameter less than 10 μm (PM10) could be very harmful to human health such as respiratory and cardiovascular diseases. The purpose of this paper is to describe on the experiences of air pollutants in the state of Pahang, Malaysia during the first quarter of year 2014. Data were gathered from available automatic air quality monitoring stations at Balok Baru, Pahang through the assistance from the Department of Environment. Cumulative sum technique shows that a change occurred at March, 8th with 88 μg/ m3, moderate air quality level. This change point indicated that the PM10 level started to have a potential in moderate or worse level. In addition, time series regression analysis shows that the trend of daily concentrations of Balok Baru station was an upward trend and for additional day, the PM10 level was increased by 0.1117 μg/ m3. It is hoped that this study will give a significant contribution for future researcher in the area of the study on the risk of PM10 or other types of air pollutant to air quality and also human health.
Meng, Xia; Zhang, Yuhao; Zhao, Zhuohui; Duan, Xiaoli; Xu, Xiaohui; Kan, Haidong
2012-10-01
Both temperature and particulate air pollution are associated with increased death risk. However, whether the effect of particulate air pollution on mortality is modified by temperature remains unsettled. A stratified time-series analysis was conducted to examine whether the effects of particulate matter less than 10 μm in aerodynamic diameter (PM(10)) on mortality was modified by temperature in eight Chinese cities. Poisson regression models incorporating natural spline smoothing functions were used to adjust for long-term and seasonal trends of mortality, as well as other time-varying covariates. The bivariate response surface model was applied to visually examine the potential interacting effect. The associations between PM(10) and mortality were stratified by temperature to examine effect modification. The averaged daily concentrations of PM(10) in the eight Chinese cities ranged from 65 μg/m(3) to 124 μg/m(3), which were much higher than in Western countries. We found evidence that the effects of PM(10) on mortality may depend on temperature. The eight-city combined analysis showed that on "normal" (5th-95th percentile) temperature days, a 10-μg/m(3) increment in PM(10) corresponded to a 0.54% (95% CI, 0.39 to 0.69) increase of total mortality, 0.56% (95% CI, 0.36 to 0.76) increase of cardiovascular mortality, and 0.80% (95% CI, 0.64 to 0.96) increase of respiratory mortality. On high temperature (>95th percentile) days, the estimates increased to 1.35% (95% CI, 0.80 to 1.91) for total mortality, 1.57% (95% CI, 0.69 to 2.46) for cardiovascular mortality, and 1.79% (95% CI, 0.75 to 2.83) for respiratory mortality. We did not observe significant effect modification by extreme low temperature. Extreme high temperature increased the associations of PM(10) with daily mortality. These findings may have implication for the health impact associated with both air pollution and global climate change. Copyright © 2012 Elsevier B.V. All rights reserved.
Ambient Air Pollution and Preeclampsia: A Spatiotemporal Analysis
Figueras, Francesc; Basagaña, Xavier; Beelen, Rob; Martinez, David; Cirach, Marta; Schembari, Anna; Hoek, Gerard; Brunekreef, Bert; Nieuwenhuijsen, Mark J
2013-01-01
Background: Available evidence concerning the association between air pollution and preeclampsia is limited, and specific associations with early- and late-onset preeclampsia have not been assessed. Objectives: We investigated the association, if any, between preeclampsia (all, early-, and late-onset) and exposure to nitrogen dioxide, nitrogen oxides, particulate matter with aerodynamic diameter ≤ 2.5 μm (PM2.5; fine particles), ≤ 10 μm, and 2.5–10 μm, and PM2.5 light absorption (a proxy for elemental carbon) during the entire pregnancy and during the first, second, and third trimesters. Methods: This study was based on 8,398 pregnancies (including 103 cases of preeclampsia) among women residing in Barcelona, Spain (2000–2005). We applied a spatiotemporal exposure assessment framework using land use regression models to predict ambient pollutant levels during each week of pregnancy at the geocoded residence address of each woman at the time of birth. Logistic and conditional logistic regression models were used to estimate unadjusted and adjusted associations. Results: We found positive associations for most of our evaluated outcome–exposure pairs, with the strongest associations observed for preeclampsia and late-onset preeclampsia in relation to the third-trimester exposure to fine particulate pollutants, and for early-onset preeclampsia in relation to the first-trimester exposure to fine particulate pollutants. Among our investigated associations, those of first- and third-trimester exposures to PM2.5 and third-trimester exposure to PM2.5 absorbance and all preeclampsia, and third-trimester PM2.5 exposure and late-onset preeclampsia attained statistical significance. Conclusion: We observed increased risk of preeclampsia associated with exposure to fine particulate air pollution. Our findings, in combination with previous evidence suggesting distinct pathogenic mechanisms for early- and late-onset preeclampsia, support additional research on this topic. Citation: Dadvand P, Figueras F, Basagaña X, Beelen R, Martinez D, Cirach M, Schembari A, Hoek G, Brunekreef B, Nieuwenhuijsen MJ. 2013. Ambient air pollution and preeclampsia: a spatiotemporal analysis. Environ Health Perspect 121:1365–1371; http://dx.doi.org/10.1289/ehp.1206430 PMID:24021707
Urban particulate matter pollution: a tale of five cities.
Pandis, Spyros N; Skyllakou, Ksakousti; Florou, Kalliopi; Kostenidou, Evangelia; Kaltsonoudis, Christos; Hasa, Erion; Presto, Albert A
2016-07-18
Five case studies (Athens and Paris in Europe, Pittsburgh and Los Angeles in the United States, and Mexico City in Central America) are used to gain insights into the changing levels, sources, and role of atmospheric chemical processes in air quality in large urban areas as they develop technologically. Fine particulate matter is the focus of our analysis. In all cases reductions of emissions by industrial and transportation sources have resulted in significant improvements in air quality during the last few decades. However, these changes have resulted in the increasing importance of secondary particulate matter (PM) which dominates over primary in most cases. At the same time, long range transport of secondary PM from sources located hundreds of kilometres from the cities is becoming a bigger contributor to the urban PM levels in all seasons. "Non-traditional" sources including cooking, and residential and agricultural biomass burning contribute an increasing fraction of the now reduced fine PM levels. Atmospheric chemistry is found to change the chemical signatures of a number of these sources relatively fast both during the day and night, complicating the corresponding source apportionment.
Fang, Guor-Cheng; Wu, Yuh-Shen; Chen, Jyh-Cherng; Rau, Jui-Yeh; Huang, Shih-Han; Lin, Chi-Kwong
2006-05-20
The concentrations of total suspended particulate (TSP), fine particles PM(2.5) (with aerodynamic diameter <2.5 microm), coarse particles PM(2.5-10) (with aerodynamic diameter 2.5-10 microm,), and water-soluble inorganic ions were studied at two offshore sampling sites, Taichung Harbor (TH) and Wuci Traffic (WT), near Taiwan Strait in central Taiwan during March 2004 to January 2005. Statistical analyses were also carried out to estimate the possible sources of particulate pollution. Experimental results showed that the average mass concentrations of TSP, PM(2.5) and PM(2.5-10) at TH and WT sampling sites were 154.54 +/- 31.45 and 113.59 +/- 31.94 microg m(-3), 54.03 +/- 16.92 and 42.76 +/- 12.52 microg m(-3), and 30.31+/- 9.79 and 24.16 +/- 7.27 microg m(-3), respectively. The dominant inorganic ions at two sampling sites were SO(4)(2-), NO(3)(-), and NH(4)(+) for TSP and PM(2.5), but that were Ca(2+), Cl(-), and Na(+) for PM(2.5-10). The concentrations of most particulates and inorganic ions were higher in winter at both two sampling sites, and were higher at TH than WT sampling site in each season. From statistical analysis, air-slake of crust surface, sea-salt aerosols, agriculture activities, coal combustion, and mobile vehicles were the possible emission sources of particulate pollution at TH and WT sampling sites.
Urban tree effects on fine particulate matter and human health
David J. Nowak
2014-01-01
Overall, city trees reduce particulate matter and provide substantial health benefits; but under certain conditions, they can locally increase particulate matter concentrations. Urban foresters need to understand how trees affect particulate matter so they can select proper species and create appropriate designs to improve air quality. This article details trees'...
The Community Multiscale Air Quality (CMAQ) modeling system has recently been adapted to simulate the emission, transport, transformation and deposition of atmospheric mercury in three distinct forms; elemental mercury gas, reactive gaseous mercury, and particulate mercury. Emis...
The Supersites Program is a methods development and evaluation, measurements, modeling, and data analysis program designed to provide key stakeholders in the science, regulatory, and policy communities with information to support primarily implementation of National Ambient Air Q...
REGIONAL TRENDS IN RURAL SULFUR CONCENTRATIONS
This paper presents an analysis of trends in atmospheric concentrations of sulfur dioxide (SO,) and particulate sulfate (SO42-) at rural monitoring sites in the Clean Air Act Status and Trends Monitoring Network (CASTNet) from 1990 to 1999. A two-stage approach is used to estimat...
Fibrous Filter to Protect Building Environments from Polluting Agents: A Review
NASA Astrophysics Data System (ADS)
Chavhan, Md. Vaseem; Mukhopadhyay, Arunangshu
2016-04-01
This paper discusses the use of fibrous filter to protect the building environments from air born polluting agents and especially of concern chemical, biological and radiological agents. Air-filtration includes removal of particulate from air and toxic gases from air. In air filtration, particulate which are mostly biological and radioactive types of agents can be removed by using mechanical and electrostatic filters. Some biological agents, which cannot be removed by air filtration alone, special techniques like antimicrobial finish, UV germicides, coated filters etc. are required. Biocide agent can be added into the fibre itself by grafting reaction to impart antimicrobial activity. Chemical agents like toxic gases can be removed by integrating adsorbents and sorbents in filters or by fibre modifications. It is also possible to impart catalytic conversion properties into the fibre to remove volatile gasous. Radioactive agents can be removed by particulate filter if present in the form of aerosol or by gas cleaning by the use of specific fibre impregnate.
Comparison of Mutagenic Activities of Various Ultra-Fine Particles.
Park, Chang Gyun; Cho, Hyun Ki; Shin, Han Jae; Park, Ki Hong; Lim, Heung Bin
2018-04-01
Air pollution is increasing, along with consumption of fossil fuels such as coal and diesel gas. Air pollutants are known to be a major cause of respiratory-related illness and death, however, there are few reports on the genotoxic characterization of diverse air pollutants in Korea. In this study, we investigated the mutagenic activity of various particles such as diesel exhaust particles (DEP), combustion of rice straw (RSC), pine stem (PSC), and coal (CC), tunnel dust (TD), and road side dust (RD). Ultra-fine particles (UFPs) were collected by the glass fiber filter pad. Then, we performed a chemical analysis to see each of the component features of each particulate matter. The mutagenicity of various UFPs was determined by the Ames test with four Salmonella typhimurium strains with or without metabolic activation. The optimal concentrations of UFPs were selected based on result of a concentration decision test. Moreover, in order to compare relative mutagenicity among UFPs, we selected and tested DEP as mutation reference. DEP, RSC, and PSC induced concentration-dependent increases in revertant colony numbers with TA98, TA100, and TA1537 strains in the absence and presence of metabolic activation. DEP showed the highest specific activity among the particulate matters. In this study, we conclude that DEP, RSC, PSC, and TD displayed varying degrees of mutagenicity, and these results suggest that the mutagenicity of these air pollutants is associated with the presence of polycyclic aromatic hydrocarbons (PAHs) in these particulate matters.
75 FR 42132 - Notice of Lodging of Consent Decree Pursuant to the Clean Air Act
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-20
... particulate filters. The hydraulic launch assist refuse collection vehicle is designed to be more efficient by... economy. The diesel particulate filters are aimed to reduce particulate matter emissions as well as carbon...
75 FR 42131 - Notice of Lodging of Consent Decree Pursuant to the Clean Air Act
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-20
... particulate filters. The hydraulic launch assist refuse collection vehicle is designed to be more efficient by... economy. The diesel particulate filters are aimed to reduce particulate matter emissions as well as carbon...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kevin Crist
2008-12-31
As stated in the proposal: Ohio University, in collaboration with CONSOL Energy, Advanced Technology Systems, Inc (ATS) and Atmospheric and Environmental Research, Inc. (AER) as subcontractors, evaluated the impact of emissions from coal-fired power plants in the Ohio River Valley region as they relate to the transport and deposition of mercury and associated fine particulate matter. This evaluation involved two interrelated areas of effort: ambient air monitoring and regional-scale modeling analysis. The scope of work for the ambient air monitoring included the deployment of a surface air monitoring (SAM) station in southeastern Ohio. The SAM station contains sampling equipment tomore » collect and measure mercury (including speciated forms of mercury and wet and dry deposited mercury), particulate matter (PM) mass, PM composition, and gaseous criteria pollutants (CO, NOx, SO2, O3, etc.). Laboratory analyses of time-integrated samples were used to obtain chemical speciation of ambient PM composition and mercury in precipitation. Nearreal- time measurements were used to measure the ambient concentrations of PM mass and all gaseous species including Hg0 and RGM. Approximately 30 months of field data were collected at the SAM site to validate the proposed regional model simulations for episodic and seasonal model runs. The ambient air quality data provides mercury, and fine particulate matter data that can be used by Ohio Valley industries to assess performance on multi-pollutant control systems. The scope of work for the modeling analysis includes (1) development of updated inventories of mercury emissions from coal plants and other important sources in the modeled domain; (2) adapting an existing 3-D atmospheric chemical transport model to incorporate recent advancements in the understanding of mercury transformations in the atmosphere; (3) analyses of the flux of Hg0, RGM, and fine particulate matter in the different sectors of the study region to identify key transport mechanisms; (4) comparison of cross correlations between species from the model results to observations in order to evaluate characteristics of specific air masses associated with long-range transport from a specified source region; and (5) evaluation of the sensitivity of these correlations to emissions from regions along the transport path. This is accomplished by multiple model runs with emissions simulations switched on and off from the various source regions. To the greatest extent possible, model results were compared to field data collected at other air monitoring sites in the Ohio Valley region, operated independently of this project. These sites may include (1) the DOE National Energy Technologies Laboratory’s monitoring site at its suburban Pittsburgh, PA facility; (2) sites in Pittsburgh (Lawrenceville) PA and Holbrook, PA operated by ATS; (3) sites in Steubenville, OH and Pittsburgh, PA operated by the USEPA and/or its contractors; and (4) sites operated by State or local air regulatory agencies. Field verification of model results and predictions provides critical information for the development of cost effective air pollution control strategies by the coal-fired power plants in the Ohio River Valley region.« less
Assessing human metal accumulations in an urban superfund site.
Hailer, M Katie; Peck, Christopher P; Calhoun, Michael W; West, Robert F; James, Kyle J; Siciliano, Steven D
2017-09-01
Butte, Montana is part of the largest superfund site in the continental United States. Open-pit mining continues in close proximity to Butte's urban population. This study seeks to establish baseline metal concentrations in the hair and blood of individuals living in Butte, MT and possible routes of exposure. Volunteers from Butte (n=116) and Bozeman (n=86) were recruited to submit hair and blood samples and asked to complete a lifestyle survey. Elemental analysis of hair and blood samples was performed by ICP-MS. Three air monitors were stationed in Butte to collect particulate and filters were analyzed by ICP-MS. Soil samples from the yards of Butte volunteers were quantified by ICP-MS. Hair analysis revealed concentrations of Al, As, Cd, Cu, Mn, Mo, and U to be statistically elevated in Butte's population. Blood analysis revealed that the concentration of As was also statistically elevated in the Butte population. Multiple regression analysis was performed for the elements As, Cu, and Mn for hair and blood samples. Soil samples revealed detectable levels of As, Pb, Cu, Mn, and Cd, with As and Cu levels being higher than expected in some of the samples. Air sampling revealed consistently elevated As and Mn levels in the larger particulate sampled as compared to average U.S. ambient air data. Copyright © 2017 Elsevier B.V. All rights reserved.
Regional impacts of oil and gas development on ozone formation in the western United States.
Rodriguez, Marco A; Barna, Michael G; Moore, Tom
2009-09-01
The Intermountain West is currently experiencing increased growth in oil and gas production, which has the potential to affect the visibility and air quality of various Class I areas in the region. The following work presents an analysis of these impacts using the Comprehensive Air Quality Model with extensions (CAMx). CAMx is a state-of-the-science, "one-atmosphere" Eulerian photochemical dispersion model that has been widely used in the assessment of gaseous and particulate air pollution (ozone, fine [PM2.5], and coarse [PM10] particulate matter). Meteorology and emissions inventories developed by the Western Regional Air Partnership Regional Modeling Center for regional haze analysis and planning are used to establish an ozone baseline simulation for the year 2002. The predicted range of values for ozone in the national parks and other Class I areas in the western United States is then evaluated with available observations from the Clean Air Status and Trends Network (CASTNET). This evaluation demonstrates the model's suitability for subsequent planning, sensitivity, and emissions control strategy modeling. Once the ozone baseline simulation has been established, an analysis of the model results is performed to investigate the regional impacts of oil and gas development on the ozone concentrations that affect the air quality of Class I areas. Results indicate that the maximum 8-hr ozone enhancement from oil and gas (9.6 parts per billion [ppb]) could affect southwestern Colorado and northwestern New Mexico. Class I areas in this region that are likely to be impacted by increased ozone include Mesa Verde National Park and Weminuche Wilderness Area in Colorado and San Pedro Parks Wilderness Area, Bandelier Wilderness Area, Pecos Wilderness Area, and Wheeler Peak Wilderness Area in New Mexico.
NASA Technical Reports Server (NTRS)
Leibecki, H. F.; King, R. B.; Fordyce, J. S.
1974-01-01
The City of Cleveland Division of Air Pollution Control and NASA jointly investigated the chemical and physical characteristics of the suspended particulate matter in Cleveland, and as part of the program, measurements of the particle size distribution of ambient air samples at five urban locations during August and September 1972 were made using high-volume cascade impactions. The distributions were evaluated for lognormality, and the mass median diameters were compared between locations and as a function of resultant wind direction. Junge-type distributions were consistent with dirty continental aerosols. About two-thirds of the suspended particulate matter observed in Cleveland is less than 7 microns in diameter.
Yan, Dong; Zhang, Tao; Su, Jing; Zhao, Li-Li; Wang, Hao; Fang, Xiao-Mei; Zhang, Yu-Qin; Liu, Hong-Yu; Yu, Li-Yan
2016-01-01
To assess the diversity and composition of airborne fungi associated with particulate matters (PMs) in Beijing, China, a total of 81 PM samples were collected, which were derived from PM2.5, PM10 fractions, and total suspended particles during haze and non-haze days. The airborne fungal community in these samples was analyzed using the Illumina Miseq platform with fungi-specific primers targeting the internal transcribed spacer 1 region of the large subunit rRNA gene. A total of 797,040 reads belonging to 1633 operational taxonomic units were observed. Of these, 1102 belonged to Ascomycota, 502 to Basidiomycota, 24 to Zygomycota, and 5 to Chytridiomycota. The dominant orders were Pleosporales (29.39%), Capnodiales (27.96%), Eurotiales (10.64%), and Hypocreales (9.01%). The dominant genera were Cladosporium, Alternaria, Fusarium, Penicillium, Sporisorium, and Aspergilus. Analysis of similarities revealed that both particulate matter sizes (R = 0.175, p = 0.001) and air quality levels (R = 0.076, p = 0.006) significantly affected the airborne fungal community composition. The relative abundance of many fungal genera was found to significantly differ among various PM types and air quality levels. Alternaria and Epicoccum were more abundant in total suspended particles samples, Aspergillus in heavy-haze days and PM2.5 samples, and Malassezia in PM2.5 samples and heavy-haze days. Canonical correspondence analysis and permutation tests showed that temperature (p < 0.01), NO2 (p < 0.01), PM10 (p < 0.01), SO2(p < 0.01), CO (p < 0.01), and relative humidity (p < 0.05) were significant factors that determine airborne fungal community composition. The results suggest that diverse airborne fungal communities are associated with particulate matters and may provide reliable data for studying the responses of human body to the increasing level of air pollution in Beijing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zaveri, R.A.; Kleinman, L.; Berkowitz, C. M.
2010-06-01
Nighttime chemical evolution of aerosol and trace gases in a coal-fired power plant plume was monitored with the Department of Energy Grumman Gulfstream-1 aircraft during the 2002 New England Air Quality Study field campaign. Quasi-Lagrangian sampling in the plume at increasing downwind distances and processing times was guided by a constant-volume balloon that was released near the power plant at sunset. While no evidence of fly ash particles was found, concentrations of particulate organics, sulfate, and nitrate were higher in the plume than in the background air. The enhanced sulfate concentrations were attributed to direct emissions of gaseous H{sub 2}SO{submore » 4}, some of which had formed new particles as evidenced by enhanced concentrations of nucleation-mode particles in the plume. The aerosol species were internally mixed and the particles were acidic, suggesting that particulate nitrate was in the form of organic nitrate. The enhanced particulate organic and nitrate masses in the plume were inferred as secondary organic aerosol, which was possibly formed from NO{sub 3} radical-initiated oxidation of isoprene and other trace organic gases in the presence of acidic sulfate particles. Microspectroscopic analysis of particle samples suggested that some sulfate was in the form of organosulfates. Microspectroscopy also revealed the presence of sp{sup 2} hybridized C = C bonds, which decreased with increasing processing time in the plume, possibly because of heterogeneous chemistry on particulate organics. Constrained plume modeling analysis of the aircraft and tetroon observations showed that heterogeneous hydrolysis of N{sub 2}O{sub 5} was negligibly slow. These results have significant implications for several issues related to the impacts of power plant emissions on air quality and climate.« less
Yan, Dong; Zhang, Tao; Su, Jing; Zhao, Li-Li; Wang, Hao; Fang, Xiao-Mei; Zhang, Yu-Qin; Liu, Hong-Yu; Yu, Li-Yan
2016-01-01
To assess the diversity and composition of airborne fungi associated with particulate matters (PMs) in Beijing, China, a total of 81 PM samples were collected, which were derived from PM2.5, PM10 fractions, and total suspended particles during haze and non-haze days. The airborne fungal community in these samples was analyzed using the Illumina Miseq platform with fungi-specific primers targeting the internal transcribed spacer 1 region of the large subunit rRNA gene. A total of 797,040 reads belonging to 1633 operational taxonomic units were observed. Of these, 1102 belonged to Ascomycota, 502 to Basidiomycota, 24 to Zygomycota, and 5 to Chytridiomycota. The dominant orders were Pleosporales (29.39%), Capnodiales (27.96%), Eurotiales (10.64%), and Hypocreales (9.01%). The dominant genera were Cladosporium, Alternaria, Fusarium, Penicillium, Sporisorium, and Aspergilus. Analysis of similarities revealed that both particulate matter sizes (R = 0.175, p = 0.001) and air quality levels (R = 0.076, p = 0.006) significantly affected the airborne fungal community composition. The relative abundance of many fungal genera was found to significantly differ among various PM types and air quality levels. Alternaria and Epicoccum were more abundant in total suspended particles samples, Aspergillus in heavy-haze days and PM2.5 samples, and Malassezia in PM2.5 samples and heavy-haze days. Canonical correspondence analysis and permutation tests showed that temperature (p < 0.01), NO2 (p < 0.01), PM10 (p < 0.01), SO2(p < 0.01), CO (p < 0.01), and relative humidity (p < 0.05) were significant factors that determine airborne fungal community composition. The results suggest that diverse airborne fungal communities are associated with particulate matters and may provide reliable data for studying the responses of human body to the increasing level of air pollution in Beijing. PMID:27148180
Regulatory effects on particulate pollution in the early hours of Chinese New Year, 2015.
Lai, Yonghang; Brimblecombe, Peter
2017-08-23
Human activities are a key driver of air pollution, so it is hardly surprising that celebrations affect air quality. The use of fireworks contributes to high particulate concentrations in many parts of the world, with the Chinese Lunar New Year (spring festival) particularly noticeable, as firecrackers are traditionally used to drive off evil spirits. Fireworks lead to short-term peaks in the concentration of PM10, PM2.5 and SO 2 . Regulatory actions that restrict the use of fireworks have been evident in China since the 1990s. This paper investigates the particulate concentrations in nine Chinese cities (Beijing, Chengdu, Chongqing, Tianjin, Xi'an, Nanjing, Shanghai, Guangzhou and Shenzhen, along with Hong Kong (a Special Administrative Region) and Taipei and Kaohsiung (Taiwan) with a particular focus on the celebrations of 2015. Extremely high concentrations of particulate matter were observed, with some sites revealing peak PM10 concentrations in excess of 1000 μg m -3 in the early hours of the New Year. In Beijing, Tianjin and Chongqing, the activities caused high particulate matter concentrations at most sites throughout the city. These peaks in particulate load in the early hours of Chinese New Year do not appear to be closely related to meteorological parameters. However, in cities where fireworks appear to be better regulated, there are fewer sharp pollution peaks just after midnight, although lowered air quality can still be found in the outer parts of some cities, remote from regulatory pressures. A few cities seem to have been effective at reducing the impact of the celebrations on air quality, with Nanjing a recent example. An increasing focus on light displays and electric lanterns also seems to offer a sense of celebration with much reduced impacts on air quality.
Spatial assessment of air quality patterns in Malaysia using multivariate analysis
NASA Astrophysics Data System (ADS)
Dominick, Doreena; Juahir, Hafizan; Latif, Mohd Talib; Zain, Sharifuddin M.; Aris, Ahmad Zaharin
2012-12-01
This study aims to investigate possible sources of air pollutants and the spatial patterns within the eight selected Malaysian air monitoring stations based on a two-year database (2008-2009). The multivariate analysis was applied on the dataset. It incorporated Hierarchical Agglomerative Cluster Analysis (HACA) to access the spatial patterns, Principal Component Analysis (PCA) to determine the major sources of the air pollution and Multiple Linear Regression (MLR) to assess the percentage contribution of each air pollutant. The HACA results grouped the eight monitoring stations into three different clusters, based on the characteristics of the air pollutants and meteorological parameters. The PCA analysis showed that the major sources of air pollution were emissions from motor vehicles, aircraft, industries and areas of high population density. The MLR analysis demonstrated that the main pollutant contributing to variability in the Air Pollutant Index (API) at all stations was particulate matter with a diameter of less than 10 μm (PM10). Further MLR analysis showed that the main air pollutant influencing the high concentration of PM10 was carbon monoxide (CO). This was due to combustion processes, particularly originating from motor vehicles. Meteorological factors such as ambient temperature, wind speed and humidity were also noted to influence the concentration of PM10.
In vitro effects of particulate matter on airway epithelial cells isolated from concentrated air particles-exposed spontaneous hypertensive rats
Ines Pagan, Urmila Kodavanti, Paul Evansky, Daniel L Costa and Janice A Dye. U.S. Environmental Protection Agency, ORD, National...
Code of Federal Regulations, 2014 CFR
2014-07-01
... IMPLEMENTATION PLANS California § 52.227 Control strategy and regulations: Particulate matter, Metropolitan Los... Los Angeles Intrastate Region. (1) Los Angeles County Air Pollution Control District: (i) Regulation IV, Rule 68.1. (2) Riverside County Air Pollution Control District: (i) Regulation IV, Rule 54 for...
Code of Federal Regulations, 2013 CFR
2013-07-01
... IMPLEMENTATION PLANS California § 52.227 Control strategy and regulations: Particulate matter, Metropolitan Los... Los Angeles Intrastate Region. (1) Los Angeles County Air Pollution Control District: (i) Regulation IV, Rule 68.1. (2) Riverside County Air Pollution Control District: (i) Regulation IV, Rule 54 for...
Code of Federal Regulations, 2012 CFR
2012-07-01
... IMPLEMENTATION PLANS California § 52.227 Control strategy and regulations: Particulate matter, Metropolitan Los... Los Angeles Intrastate Region. (1) Los Angeles County Air Pollution Control District: (i) Regulation IV, Rule 68.1. (2) Riverside County Air Pollution Control District: (i) Regulation IV, Rule 54 for...
40 CFR 52.126 - Control strategy and regulations: Particulate matter.
Code of Federal Regulations, 2013 CFR
2013-07-01
.... Therefore, Regulation 7-1-3.6 (process industries) of the Arizona Rules and Regulations for Air Pollution... regulation for Regulation 7-1-3.6 of the Arizona Rules and Regulations for Air Pollution Control (Gila... regulation 7-3-1.7 (Particulate Emissions—Fuel Burning Equipment) of the Rules and Regulations for Pinal-Gila...
40 CFR 52.126 - Control strategy and regulations: Particulate matter.
Code of Federal Regulations, 2012 CFR
2012-07-01
.... Therefore, Regulation 7-1-3.6 (process industries) of the Arizona Rules and Regulations for Air Pollution... regulation for Regulation 7-1-3.6 of the Arizona Rules and Regulations for Air Pollution Control (Gila... regulation 7-3-1.7 (Particulate Emissions—Fuel Burning Equipment) of the Rules and Regulations for Pinal-Gila...
40 CFR 52.126 - Control strategy and regulations: Particulate matter.
Code of Federal Regulations, 2014 CFR
2014-07-01
.... Therefore, Regulation 7-1-3.6 (process industries) of the Arizona Rules and Regulations for Air Pollution... regulation for Regulation 7-1-3.6 of the Arizona Rules and Regulations for Air Pollution Control (Gila... regulation 7-3-1.7 (Particulate Emissions—Fuel Burning Equipment) of the Rules and Regulations for Pinal-Gila...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-01
... Hydrogen Peroxide Filter Extraction'' In this method, total suspended particulate matter (TSP) is collected on glass fiber filters according to 40 CFR Appendix G to part 50, EPA Reference Method for the Determination of Lead in Suspended Particulate Matter Collected From Ambient Air. The filter samples are...
This page contains a variety of fact sheets and other documents that are supplementary to the 2010 final revisions to lead (Pb) ambient air monitoring requirements and the 2013 final method for determination of Pb in total suspended particulate matter.
BackgroundStudies have shown a relationship between air pollution and increased risk of cardiovascular morbidity and mortality. Due to the complexity of ambient air pollution composition, recent studies have examined the effects of co-exposure, particularly particulate matter (PM...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-16
... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 81 [EPA-R09-OAR-2013-0104; FRL-9802-5] Designation of Areas for Air Quality Planning Purposes; State of Nevada; Total Suspended Particulate AGENCY: Environmental Protection Agency (EPA). ACTION: Proposed rule. SUMMARY: EPA is proposing to delete certain area...
Fugitive particulate air emissions from off-road vehicle maneuvers at military training lands
USDA-ARS?s Scientific Manuscript database
Military training lands used for off-road vehicle maneuvers may be subject to severe soil loss and air quality degradation as a result of severe wind erosion. The objective of this study was to measure suspended particulate matter resulting from various different vehicle training scenarios. Soil s...
This article is the preface or editors note to the dedicated issue of the Journal of the Air & Waste Management Association for a selection of scientific papers from the specialty conference entitled, "Particulate Matter Supersites Program and Related Studies," that was...
Cost Effectiveness Of Selected Roadway Dust Control Methods For Eagle River, Alaska
DOT National Transportation Integrated Search
1988-01-01
The U.S. Environmental Protection Agency has set air quality standards for airborne particulates with diameters equal to or less than ten microns (PM10 particulates). These particulates have been correlated with respiratory illnesses. The primary sta...
NASA Astrophysics Data System (ADS)
Chalbot, Marie-Cecile; Vei, Ino-Christina; Lianou, Maria; Kotronarou, Anastasia; Karakatsani, Anna; Katsouyanni, Klea; Hoek, Gerard; Kavouras, Ilias G.
2012-12-01
Fine particulate matter samples were collected in an urban ambient fixed site and, outside and inside residencies in Athens greater area, Greece. n-Alkanes, iso/anteiso-alkanes and polycyclic aromatic hydrocarbons (PAHs) were identified by gas chromatography and mass spectrometry. The values of concentration diagnostic ratios indicated a mixture of vehicular emissions, fuel evaporation, oil residues and environmental tobacco smoke (ETS) in outdoor and indoor samples. Particulate iso/anteiso-alkanes, specific tracers of ETS, were detected in both non-smoking and smoking households. The indoor-to-outdoor ratios of particulate iso/anteiso-alkanes and unresolved complex mixture (a tracer of outdoor air pollution) in non-smoking households were comparable to the measured air exchange rate. This suggested that penetration of outdoor air was solely responsible for the detection of tobacco smoke particulate tracers in indoor non-smoking environments. Overall, residential outdoor concentrations accounted for a large fraction (from 25 up to 79%) of indoor aliphatic and polyaromatic hydrocarbons. Open windows/doors and the operation of an air condition unit yielded also in higher indoor concentrations than those measured outdoors.
2003-08-29
KENNEDY SPACE CENTER, FLA. - A KSC employee uses a clean-air shower before entering a clean room. Streams of pressurized air directed at the occupant from nozzles in the chamber's ceiling and walls are designed to dislodge particulate matter from hair, clothing and shoes. The adhesive mat on the floor captures soil from shoe soles, as well as particles that fall on its surface. Particulate matter has the potential to contaminate the space flight hardware being stored or processed in the clean room. The shower is part of KSC's Foreign Object Debris (FOD) control program, an important safety initiative.
DOT National Transportation Integrated Search
2005-02-01
Annual average PM10 concentrations at the Greenwood monitoring station in western Phoenix have : exceeded EPAs annual average air quality standard and are higher on average than values observed at the : West Phoenix monitor, which is located just ...
High-throughput liquid-absorption air-sampling apparatus and methods
Zaromb, Solomon
2000-01-01
A portable high-throughput liquid-absorption air sampler [PHTLAAS] has an asymmetric air inlet through which air is drawn upward by a small and light-weight centrifugal fan driven by a direct current motor that can be powered by a battery. The air inlet is so configured as to impart both rotational and downward components of motion to the sampled air near said inlet. The PHTLAAS comprises a glass tube of relatively small size through which air passes at a high rate in a swirling, highly turbulent motion, which facilitates rapid transfer of vapors and particulates to a liquid film covering the inner walls of the tube. The pressure drop through the glass tube is <10 cm of water, usually <5 cm of water. The sampler's collection efficiency is usually >20% for vapors or airborne particulates in the 2-3.mu. range and >50% for particles larger than 4.mu.. In conjunction with various analyzers, the PHTLAAS can serve to monitor a variety of hazardous or illicit airborne substances, such as lead-containing particulates, tritiated water vapor, biological aerosols, or traces of concealed drugs or explosives.
Lam, K S; Chan, F S; Fung, W Y; Lui, B S S; Lau, L W L
2006-04-01
A study was carried out to investigate the feasibility of achieving ultra low respirable suspended particulates (RSP) in commercial offices without major modification of existing ventilation systems by enhancing the particulates removal efficiency of existing central ventilation systems. Four types of filters which include pre-filters, cartridge filters, bag filters and high efficiency particulates air (HEPA) filters were tested in a commercial building in Causeway Bay. The results show that an RSP objective of <20 microg/m3 could be met by removing RSP from both the return air and outdoor air supply simultaneously. This level of performance is classed as 'excellent' by the Hong Kong Government, Environmental Protection Department. Filters with efficiency that exceed 80% placed both in the return air and outdoor air were sufficient to meet the objective. It is not necessary to install HEPA filters to achieve the 'excellent' class. The outdoor air filter has great influence on the steady state indoor RSP concentration while the effective cleaning rate is governed by the return air filter. Higher efficiency filters increased the static drop but the volume flow of the air fan was not affected significantly. The additional cost incurred was <5% of the existing operation cost. This paper reports a field study of RSP control for an indoor office environment. The results are directly applicable to building service engineering in the design of ventilation systems using air-handling units. Field observations indicated that indoor RSP in an office environment could be suppressed below 20 microg/m3 within 1 h by the simultaneous filtration of outdoor air and return air. Outdoor air filtration has a great influence on the steady state indoor concentration and return air filtration governs the cleaning rate. It is believed that the results of this study could be extended to the cleaning of other indoor pollutants such as volatile organic compounds.
Landsberger, S; Wu, D
1995-12-01
The method of instrumental neutron activation analysis (NAA) has been improved for air filter samples in the determination of low level heavy metals in indoor air. By using the techniques of epithermal neutron irradiation in conjunction with Compton suppression, the detection limits of cadmium, arsenic and antimony measurements have been dramatically reduced to 2 ng for Cd, 0.2 ng for As, and 0.03 ng for Sb. The determination of these heavy metals in particulate material generated from cigarette smoking in indoor environments has been conducted. Other elements, Br, Cl, Na, K, Zn were also found at elevated levels.
40 CFR 52.2429 - Control strategy: Particulate matter.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 4 2011-07-01 2011-07-01 false Control strategy: Particulate matter. 52.2429 Section 52.2429 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Control strategy: Particulate matter. Determination of Attainment. EPA has determined, as of January 12...
40 CFR 52.477 - Control strategy: Particulate matter.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 3 2014-07-01 2014-07-01 false Control strategy: Particulate matter. 52.477 Section 52.477 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Control strategy: Particulate matter. Determination of Attainment. EPA has determined, as of January 12...
40 CFR 52.477 - Control strategy: Particulate matter.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 3 2013-07-01 2013-07-01 false Control strategy: Particulate matter. 52.477 Section 52.477 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Control strategy: Particulate matter. Determination of Attainment. EPA has determined, as of January 12...
40 CFR 52.1081 - Control strategy: Particulate matter.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 4 2013-07-01 2013-07-01 false Control strategy: Particulate matter. 52.1081 Section 52.1081 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Control strategy: Particulate matter. (a) Determination of Attainment. EPA has determined, as of January...
40 CFR 52.2429 - Control strategy: Particulate matter.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 5 2013-07-01 2013-07-01 false Control strategy: Particulate matter. 52.2429 Section 52.2429 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Control strategy: Particulate matter. Determination of Attainment. EPA has determined, as of January 12...
40 CFR 52.1131 - Control strategy: Particulate matter.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 4 2011-07-01 2011-07-01 false Control strategy: Particulate matter. 52.1131 Section 52.1131 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Control strategy: Particulate matter. (a) Revisions to the following regulations submitted on March 30...
40 CFR 52.1131 - Control strategy: Particulate matter.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Control strategy: Particulate matter. 52.1131 Section 52.1131 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Control strategy: Particulate matter. (a) Revisions to the following regulations submitted on March 30...
40 CFR 52.477 - Control strategy: Particulate matter.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 3 2012-07-01 2012-07-01 false Control strategy: Particulate matter. 52.477 Section 52.477 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Control strategy: Particulate matter. Determination of Attainment. EPA has determined, as of January 12...
40 CFR 52.1081 - Control strategy: Particulate matter.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 4 2012-07-01 2012-07-01 false Control strategy: Particulate matter. 52.1081 Section 52.1081 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Control strategy: Particulate matter. (a) Determination of Attainment. EPA has determined, as of January...
40 CFR 52.2429 - Control strategy: Particulate matter.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 5 2012-07-01 2012-07-01 false Control strategy: Particulate matter. 52.2429 Section 52.2429 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Control strategy: Particulate matter. Determination of Attainment. EPA has determined, as of January 12...
40 CFR 52.1131 - Control strategy: Particulate matter.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 4 2012-07-01 2012-07-01 false Control strategy: Particulate matter. 52.1131 Section 52.1131 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Control strategy: Particulate matter. (a) Revisions to the following regulations submitted on March 30...
40 CFR 52.477 - Control strategy: Particulate matter.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 3 2011-07-01 2011-07-01 false Control strategy: Particulate matter. 52.477 Section 52.477 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Control strategy: Particulate matter. Determination of Attainment. EPA has determined, as of January 12...
40 CFR 52.1081 - Control strategy: Particulate matter.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 4 2011-07-01 2011-07-01 false Control strategy: Particulate matter. 52.1081 Section 52.1081 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Control strategy: Particulate matter. (a) Determination of Attainment. EPA has determined, as of January...
40 CFR 52.1081 - Control strategy: Particulate matter.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 4 2014-07-01 2014-07-01 false Control strategy: Particulate matter. 52.1081 Section 52.1081 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Control strategy: Particulate matter. (a) Determination of Attainment. EPA has determined, as of January...
40 CFR 52.2429 - Control strategy: Particulate matter.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 5 2014-07-01 2014-07-01 false Control strategy: Particulate matter. 52.2429 Section 52.2429 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Control strategy: Particulate matter. Determination of Attainment. EPA has determined, as of January 12...
40 CFR 52.1081 - Control strategy: Particulate matter.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Control strategy: Particulate matter. 52.1081 Section 52.1081 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Control strategy: Particulate matter. (a) Determination of Attainment. EPA has determined, as of January...
40 CFR 52.2429 - Control strategy: Particulate matter.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Control strategy: Particulate matter. 52.2429 Section 52.2429 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Control strategy: Particulate matter. Determination of Attainment. EPA has determined, as of January 12...
40 CFR 52.477 - Control strategy: Particulate matter.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 3 2010-07-01 2010-07-01 false Control strategy: Particulate matter. 52.477 Section 52.477 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Control strategy: Particulate matter. Determination of Attainment. EPA has determined, as of January 12...
First assessment of the PM10 and PM2.5 particulate level in the ambient air of Belgrade city.
Rajsić, Slavica F; Tasić, Mirjana D; Novaković, Velibor T; Tomasević, Milica N
2004-01-01
As the strong negative health effect of exposure to the inhalable particulate matter PM10 in the urban environment has been confirmed, the study of the mass concentrations, physico-chemical characteristics, sources, as well as spatial and temporal variation of atmospheric aerosol particles becomes very important. This work is a pilot study to assess the concentration level of ambient suspended particulate matter, with an aerodynamic diameter of less than 10 microm, in the Belgrade central urban area. Average daily concentrations of PM10 and PM2.5 have been measured at three representative points in the city between June 2002 and December 2002. The influence of meteorological parameters on PM10 and PM2.5 concentrations was analyzed, and possible pollution sources were identified. Suspended particles were collected on Pure Teflon filters by using a Mini-Vol low-volume air sampler (Airmetrics Co., Inc.; 5 l min(-1) flow rate). Particle mass was determined gravimetrically after 48 h of conditioning in a desiccator, in a Class 100 clean room at the temperature T = 20 degrees C and at about 50% constant relative humidity (RH). Analysis of the PM10 data indicated a marked difference between season without heating--(summer; mean value 56 microg m(-3)) and heating season--(winter; mean value 96 microg m3); 62% of samples exceeded the level of 50 microg m(-3). The impact of meteorological factors on PM concentrations was not immediately apparent, but there was a significant negative correlation with the wind speed. The PM10 and PM2.5 mass concentrations in the Belgrade urban area had high average values (77 microg m(-3) and 61 microg m(-3)) in comparison with other European cities. The main sources of particulate matter were traffic emission, road dust resuspension, and individual heating emissions. When the air masses are coming from the SW direction, the contribution from the Obrenovac power plants is evident. During days of exceptionally severe pollution, in both summer and winter periods, high production of secondary aerosols occurred, as can be seen from an increase in PM2.5 in respect to PM10 mass concentration. The results obtained gave us the first impression of the concentration level of particulate matter, with an aerodynamic diameter of less than 10 microm, in the Belgrade ambient air. Due to measured high PM mass concentrations, it is obvious that it would be very difficult to meet the EU standards (EEC 1999) by 2010. It is necessary to continue with PM10 and PM2.5 sampling; and after comprehensive analysis which includes the results of chemical and physical characterization of particles, we will be able to recommend effective control measures in order to improve air quality in Belgrade.
NASA Astrophysics Data System (ADS)
Squizzato, Stefania; Masiol, Mauro
2015-10-01
The air quality is influenced by the potential effects of meteorology at meso- and synoptic scales. While local weather and mixing layer dynamics mainly drive the dispersion of sources at small scales, long-range transports affect the movements of air masses over regional, transboundary and even continental scales. Long-range transport may advect polluted air masses from hot-spots by increasing the levels of pollution at nearby or remote locations or may further raise air pollution levels where external air masses originate from other hot-spots. Therefore, the knowledge of ground-wind circulation and potential long-range transports is fundamental not only to evaluate how local or external sources may affect the air quality at a receptor site but also to quantify it. This review is focussed on establishing the relationships among PM2.5 sources, meteorological condition and air mass origin in the Po Valley, which is one of the most polluted areas in Europe. We have chosen the results from a recent study carried out in Venice (Eastern Po Valley) and have analysed them using different statistical approaches to understand the influence of external and local contribution of PM2.5 sources. External contributions were evaluated by applying Trajectory Statistical Methods (TSMs) based on back-trajectory analysis including (i) back-trajectories cluster analysis, (ii) potential source contribution function (PSCF) and (iii) concentration weighted trajectory (CWT). Furthermore, the relationships between the source contributions and ground-wind circulation patterns were investigated by using (iv) cluster analysis on wind data and (v) conditional probability function (CPF). Finally, local source contribution have been estimated by applying the Lenschow' approach. In summary, the integrated approach of different techniques has successfully identified both local and external sources of particulate matter pollution in a European hot-spot affected by the worst air quality.
Compositional Analysis of Fine Particulate Matter in Fairbanks, Alaska
NASA Astrophysics Data System (ADS)
Nattinger, K.; Simpson, W. R.; Huff, D.
2015-12-01
Fairbanks, AK experiences extreme pollution episodes that result in winter violations of the fine particulate matter (PM2.5) National Ambient Air Quality Standards. This poses a significant health risk for the inhabitants of the area. These high levels result from trapping of pollution in a very shallow boundary layer due to local meteorology, but the role of primary (direct emission) of particulate matter versus secondary production (in the atmosphere) of particulate matter is not understood. Analysis of the PM2.5 composition is being conducted to provide insight into sources, trends, and chemistry. Methods are developed to convert carbon data from IMPROVE (post-2009 analysis method) to NIOSH (pre-2009 method) utilizing blank subtraction, sampler bias adjustment, and inter-method correlations from co-located samples. By converting all carbon measurements to a consistent basis, long-term trends can be analyzed. The approach shows excellent mass closure between PM2.5 mass reconstructed from constituents and gravimetric-analyzed mass. This approach could be utilized in other US locations where the carbon analysis methods also changed. Results include organic and inorganic fractional mass percentages, analyzed over an eight-year period for two testing sites in Fairbanks and two in the nearby city of North Pole. We focus on the wintertime (Nov—Feb) period when most air quality violations occur and find that the particles consist primarily of organic carbon, with smaller percentages of sulfate, elemental carbon, ammonium, and nitrate. The Fairbanks area PM2.5 organic carbon / elemental carbon partitioning matches the source profile of wood smoke. North Pole and Fairbanks PM2.5 have significant compositional differences, with North Pole having a larger percentage of organic matter. Mass loadings in SO42-, NO3-, and total PM2.5 mass correlate with temperature. Multi-year temporal trends show little if any change with a strong effect from temperature. Insights from this study regarding primary versus possible secondary PM2.5 production processes can help in identifying effective PM2.5 control strategies.
Estimation of economic costs of particulate air pollution from road transport in China
NASA Astrophysics Data System (ADS)
Guo, X. R.; Cheng, S. Y.; Chen, D. S.; Zhou, Y.; Wang, H. Y.
2010-09-01
Valuation of health effects of air pollution is becoming a critical component of the performance of cost-benefit analysis of pollution control measures, which provides a basis for setting priorities for action. Beijing has focused on control of transport emission as vehicular emissions have recently become an important source of air pollution, particularly during Olympic games and Post-games. In this paper, we conducted an estimation of health effects and economic cost caused by road transport-related air pollution using an integrated assessment approach which utilizes air quality model, engineering, epidemiology, and economics. The results show that the total economic cost of health impacts due to air pollution contributed from transport in Beijing during 2004-2008 was 272, 297, 310, 323, 298 million US (mean value), respectively. The economic costs of road transport accounted for 0.52, 0.57, 0.60, 0.62, and 0.58% of annual Beijing GDP from 2004 to 2008. Average cost per vehicle and per ton of PM 10 emission from road transport can also be estimated as 106 US /number and 3584 US $ t -1, respectively. These findings illustrate that the impact of road transport contributed particulate air pollution on human health could be substantial in Beijing, whether in physical and economic terms. Therefore, some control measures to reduce transport emissions could lead to considerable economic benefit.
Community Multiscale Air Quality Modeling System (CMAQ)
CMAQ is a computational tool used for air quality management. It models air pollutants including ozone, particulate matter and other air toxics to help determine optimum air quality management scenarios.
Allergic susceptibility associated with diesel exhaust particle exposure: clear as mud.
Polosa, Riccardo; Salvi, Sundeep; Di Maria, Giuseppe U
2002-01-01
Exposure to elevated levels of particulate air pollution from motor vehicles is frequently associated with increased morbidity and mortality from cardiovascular conditions, lung cancer, and nonmalignant respiratory illnesses (e.g., asthma, bronchitis, respiratory tract infections). It appears, however, that less attention has been paid to the potential role of road traffic fumes in the induction of allergic conditions. Laboratory studies in humans and animals have shown that particulate toxic pollutants-particularly diesel exhaust particulates-can enhance allergic inflammation and can induce allergic immune responses. Most of these immune responses are mediated by the carbon core of diesel exhaust particulates. Polyaromatic hydrocarbons (e.g., anthracene, fluoranthene, pyrene, phenanthrene) are major chemical components of diesel exhaust particulates, and they have enhanced the production of immunoglobulin E. Although several large epidemiological studies have demonstrated a strong association between exposure to motor vehicle traffic emissions and allergic symptoms and reduced lung function, the evidence for the development of allergic sensitization from diesel exhaust particulates is less abundant than for the aforementioned associations. Recent comparisons of the prevalence of hay fever, as well as positive skin-prick tests, between citizens of former West and East Germany and between Hong Kong and China civilians, have demonstrated marked differences. Crucial variations in the level of particulate air pollution from motor vehicles in these countries may account for the observed increased prevalence of atopy. Although road-traffic pollution from automobile exhausts may be a risk factor for atopic sensitization, the evidence in support of this view remains conflictive. Some investigators have reported a clear association between the prevalence of allergy and road-traffic-related air pollution, whereas such a difference was not observed in other studies. Most discrepancies have been related to important variations in study design and methodology. In addition, inasmuch as exposure to ambient particles differs substantially in worldwide urban environments, perhaps qualitative-rather than quantitative-variations in particulate air pollution at different locations account for differences in the prevalence and/or severity of respiratory allergies.
Chen, Renjie; Zhang, Yuhao; Yang, Chunxue; Zhao, Zhuohui; Xu, Xiaohui; Kan, Haidong
2013-04-01
There have been no multicity studies on the acute effects of air pollution on stroke mortality in China. This study was undertaken to examine the associations between daily stroke mortality and outdoor air pollution (particulate matter <10 μm in aerodynamic diameter, sulfur dioxide, and nitrogen dioxide) in 8 Chinese cities. We used Poisson regression models with natural spline-smoothing functions to adjust for long-term and seasonal trends, as well as other time-varying covariates. We applied 2-stage Bayesian hierarchical statistical models to estimate city-specific and national average associations of air pollution with daily stroke mortality. Air pollution was associated with daily stroke mortality in 8 Chinese cities. In the combined analysis, an increase of 10 μg/m(3) of 2-day moving average concentrations of particulate matter <10 μm in aerodynamic diameter, sulfur dioxide, and nitrogen dioxide corresponded to 0.54% (95% posterior intervals, 0.28-0.81), 0.88% (95% posterior intervals, 0.54-1.22), and 1.47% (95% posterior intervals, 0.88-2.06) increase of stroke mortality, respectively. The concentration-response curves indicated linear nonthreshold associations between air pollution and risk of stroke mortality. To our knowledge, this is the first multicity study in China, or even in other developing countries, to report the acute effect of air pollution on stroke mortality. Our results contribute to very limited data on the effect of air pollution on stroke for high-exposure settings typical in developing countries.
GASOLINE/DIESEL PM SPLIT STUDY: LIGHT-DUTY VEHICLE TESTING, DATA, AND ANALYSIS
During June 2001, the EPA participated in DOE's Gasoline/Diesel PM Split Study in Riverside, California. The purpose of the study was to determine the contribution of diesel versus gasoline-powered exhaust to the particulate matter (PM) inventory in the South Coast Air Basin. T...
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
Baysal, Asli; Saygin, Hasan; Ustabasi, Gul Sirin
2017-12-21
A significant knowledge gap in nanotechnology is the absence of standardized protocols for examining and comparison the effect of metal oxide nanoparticles on different environment media. Despite the large number of studies on ecotoxicity of nanoparticles, most of them disregard the particles physicochemical transformation under real exposure conditions and interaction with different environmental components like air, soil, water, etc. While one of the main exposure ways is inhalation and/or atmosphere for human and environment, there is no investigation between airborne particulates and nanoparticles. In this study, some metal oxide nanoparticle (ZnO and TiO 2 ) transformation and behavior in PM2.5 air particulate media were examined and evaluated by the influence on nanoparticle physicochemical properties (size, surface charge, surface functionalization) and on bacterium (Gram-positive Bacillus subtilis, Staphylococcus aureus/Gram-negative Escherichia coli, Pseudomonas aeruginosa bacteria) by testing in various concentrations of PM2.5 airborne particulate media to contribute to their environmental hazard and risk assessment in atmosphere. PM2.5 airborne particulate media affected their toxicity and physicochemical properties when compared the results obtained in controlled conditions. ZnO and TiO 2 surfaces were functionalized mainly with sulfoxide groups in PM2.5 air particulates. In addition, tested particles were not observed to be toxic in controlled conditions. However, these were observed inhibition in PM2.5 airborne particulates media by the exposure concentration. These observations and dependence of the bacteria viability ratio explain the importance of particulate matter-nanoparticle interaction.
NASA Astrophysics Data System (ADS)
Zeri, Marcelo; Oliveira-Júnior, José Francisco; Lyra, Gustavo Bastos
2011-09-01
Time series of pollutants and weather variables measured at four sites in the city of Rio de Janeiro, Brazil, between 2002 and 2004, were used to characterize temporal and spatial relationships of air pollution. Concentrations of particulate matter (PM10), sulfur dioxide (SO2) and carbon monoxide (CO) were compared to national and international standards. The annual median concentration of PM10 was higher than the standard set by the World Health Organization (WHO) on all sites and the 24 h means exceeded the standards on several occasions on two sites. SO2 and CO did not exceed the limits, but the daily maximum of CO in one of the stations was 27% higher on weekends compared to weekdays, due to increased activity in a nearby Convention Center. Air temperature and vapor pressure deficit have both presented the highest correlations with pollutant's concentrations. The concentrations of SO2 and CO were not correlated between sites, suggesting that local sources are more important to those pollutants compared to PM10. The time series of pollutants and air temperature were decomposed in time and frequency by wavelet analysis. The results revealed that the common variability of air temperature and PM10 is dominated by temporal scales of 1-8 days, time scales that are associated with the passage of weather events, such as cold fronts.
A 14-week investigation during a warm and cold seasons was conducted to improve understanding of air pollution sources that might be impacting air quality in Ostrava, the Czech Republic. Fine particulate matter (PM2.5) samples were collected in consecutive 12-h day and night incr...
Airborne particulate matter (PM) is routinely collected at over a thousand air monitoring stations across the nation using Teflon filters. After they are weighed to measure the amount of PM in the air, the filters are stored in refrigerators and, after a year, are thrown away. ...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-05
... Ozone and Fine Particulate Matter AGENCY: Environmental Protection Agency (EPA). ACTION: Final rule...- hour ozone national ambient air quality standards (NAAQS) and the 1997 and 2006 NAAQS for fine..., 1997, EPA issued a revised NAAQS for ozone \\1\\ and a new NAAQS for fine particulate matter (PM 2.5 ).\\2...
This research investigated different strategies for source apportionment of airborne fine particulate matter (PM2.5) collected as part of the Pittsburgh Air Quality Study. Two source receptor models were used, the EPA Chemical Mass Balance 8.2 (CMB) and EPA Positive Matrix Facto...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-22
... range (or deciview), which is the greatest distance, in kilometers or miles, at which a dark object can... Comprehensive Air Quality Model with Extensions (CAMx) and Particulate Matter Source Apportionment Technology... air for NO X , wet flue gas desulfurization for SO 2 and the existing baghouse for particulate matter...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-13
... Ozone National Ambient Air Quality Standard (NAAQS) and the 1997 and 2006 fine particulate matter (PM 2... particle precursors react in the atmosphere to form fine particulate matter, which impairs visibility by... distance, in kilometers or miles, at which a dark object can be viewed against the sky. B. Background...
FEDERAL REFERENCE AND EQUIVALENT METHODS FOR MEASURING FINE PARTICULATE MATTER
In the national ambient air quality standards specified by the U.S. Environmental Protection Agency in the Code of Federal Regulations, new standards were established for particulate matter on July 18, 1997. The new particulate matter standards specify mass concentration as the...
Exposure to particulate matter air pollution has been causally linked to cardiovascular disease in humans. Several broad and overlapping hypotheses describing the biological mechanisms by which particulate matter exposure leads to cardiovascular disease and cardiac dysfunction ha...
40 CFR 52.2526 - Control strategy: Particulate matter.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 4 2011-07-01 2011-07-01 false Control strategy: Particulate matter. 52.2526 Section 52.2526 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Control strategy: Particulate matter. (a) EPA approves West Virginia's November 15, 1991 SIP submittal for...
40 CFR 52.1374 - Control strategy: Particulate matter.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 4 2011-07-01 2011-07-01 false Control strategy: Particulate matter. 52.1374 Section 52.1374 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Control strategy: Particulate matter. (a) On July 8, 1997, the Governor of Montana submitted minor...
40 CFR 52.1025 - Control strategy: Particulate matter.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 4 2011-07-01 2011-07-01 false Control strategy: Particulate matter. 52.1025 Section 52.1025 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... strategy: Particulate matter. (a) The revisions to the control strategy resulting from the modification to...
40 CFR 52.1374 - Control strategy: Particulate matter.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 4 2014-07-01 2014-07-01 false Control strategy: Particulate matter. 52.1374 Section 52.1374 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Control strategy: Particulate matter. (a) On July 8, 1997, the Governor of Montana submitted minor...
40 CFR 52.1374 - Control strategy: Particulate matter.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 4 2013-07-01 2013-07-01 false Control strategy: Particulate matter. 52.1374 Section 52.1374 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Control strategy: Particulate matter. (a) On July 8, 1997, the Governor of Montana submitted minor...
40 CFR 52.1341 - Control strategy: particulate matter.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 4 2011-07-01 2011-07-01 false Control strategy: particulate matter. 52.1341 Section 52.1341 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Control strategy: particulate matter. Determination of Attainment. EPA has determined, as of May 23, 2011...
40 CFR 52.2526 - Control strategy: Particulate matter.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 5 2012-07-01 2012-07-01 false Control strategy: Particulate matter. 52.2526 Section 52.2526 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Control strategy: Particulate matter. (a) EPA approves West Virginia's November 15, 1991 SIP submittal for...
40 CFR 52.1025 - Control strategy: Particulate matter.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 4 2012-07-01 2012-07-01 false Control strategy: Particulate matter. 52.1025 Section 52.1025 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... strategy: Particulate matter. (a) The revisions to the control strategy resulting from the modification to...
40 CFR 52.2526 - Control strategy: Particulate matter.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 5 2013-07-01 2013-07-01 false Control strategy: Particulate matter. 52.2526 Section 52.2526 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Control strategy: Particulate matter. (a) EPA approves West Virginia's November 15, 1991 SIP submittal for...
40 CFR 52.2526 - Control strategy: Particulate matter.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 5 2014-07-01 2014-07-01 false Control strategy: Particulate matter. 52.2526 Section 52.2526 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Control strategy: Particulate matter. (a) EPA approves West Virginia's November 15, 1991 SIP submittal for...
40 CFR 52.1374 - Control strategy: Particulate matter.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 4 2012-07-01 2012-07-01 false Control strategy: Particulate matter. 52.1374 Section 52.1374 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Control strategy: Particulate matter. (a) On July 8, 1997, the Governor of Montana submitted minor...
40 CFR 52.1374 - Control strategy: Particulate matter.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Control strategy: Particulate matter. 52.1374 Section 52.1374 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Control strategy: Particulate matter. (a) On July 8, 1997, the Governor of Montana submitted minor...
40 CFR 52.1025 - Control strategy: Particulate matter.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 4 2013-07-01 2013-07-01 false Control strategy: Particulate matter. 52.1025 Section 52.1025 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... strategy: Particulate matter. (a) The revisions to the control strategy resulting from the modification to...
40 CFR 52.1341 - Control strategy: particulate matter.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 4 2012-07-01 2012-07-01 false Control strategy: particulate matter. 52.1341 Section 52.1341 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Control strategy: particulate matter. Determination of Attainment. EPA has determined, as of May 23, 2011...
40 CFR 52.1025 - Control strategy: Particulate matter.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 4 2014-07-01 2014-07-01 false Control strategy: Particulate matter. 52.1025 Section 52.1025 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... strategy: Particulate matter. (a) The revisions to the control strategy resulting from the modification to...
40 CFR 52.2526 - Control strategy: Particulate matter.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Control strategy: Particulate matter. 52.2526 Section 52.2526 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Control strategy: Particulate matter. (a) EPA approves West Virginia's November 15, 1991 SIP submittal for...
Epidemiologic evidence suggests that increased morbidity and mortality are associated with the concentrations of ambient air particulate matter (PM). Many sources contribute to the particulate fraction of ambient pollution, including diesel exhaust particulates (DEP). Diesel ex...
The impact of total suspended particulate concentration on workers’ health at ceramic industry
NASA Astrophysics Data System (ADS)
Sintorini, M. M.
2018-01-01
Ceramic production process pollutes the air with particulate matter at high concentration and has negative impact on the workers. The objective of this research was to determine the particulate concentration in the air and to analyse its impact on the workers. This research used cross sectional method to correlate the particulate concentration, temperature, humidity, smoke level and level of workers’ compliance with safety regulations. Sampling was conducted from April to May 2012 in three locations, i.e. exposure area (Mass Preparation I, II) and non-exposure area (Forming area). In the exposure area (Mass Preparation I and II) where the particulate concentrations were 22.3673 mg/m3 and 14.8277 mg/m3, and 58.33%, the workers had bad health status. In the non-exposure area, where the particulate concentration was 3.2185 mg/m3 and 25% the workers had bad health status. The Odds Ratio among the workers in exposure area was 4.2 times higher than the workers in the non-exposure area.
Analysis of the dust particles distribution and ventilation as a way to improve indoor air quality
NASA Astrophysics Data System (ADS)
Kozlovtseva, E. Yu; Azarov, V. N.; Stefanenko, I. V.
2017-10-01
The indoor air pollution is analyzed in the article. The subject of the research is the presence and composition of the dust particles taken into “traps” in the working space of the public building (Volgograd State Technical University, Volgograd, the Russian Federation). The research has established the range of sizes of the particulate matter (fractional composition) for the dust in the air of the working space in the form of integral curves for the mass distribution of particles with to their diameters, it also provides the scheme of the air flows movement in the ventilation system of the room.
Jhun, Iny; Gaffin, Jonathan M; Coull, Brent A; Huffaker, Michelle F; Petty, Carter R; Sheehan, William J; Baxi, Sachin N; Lai, Peggy S; Kang, Choong-Min; Wolfson, Jack M; Gold, Diane R; Koutrakis, Petros; Phipatanakul, Wanda
Home-based interventions to improve indoor air quality have demonstrated benefits for asthma morbidity, yet little is known about the effect of environmental interventions in the school setting. We piloted the feasibility and effectiveness of a classroom-based air cleaner intervention to reduce particulate pollutants in classrooms of children with asthma. In this pilot randomized controlled trial, we assessed the effect of air cleaners on indoor air particulate pollutant concentrations in 18 classrooms (9 control, 9 intervention) in 3 urban elementary schools. We enrolled 25 children with asthma (13 control, 12 intervention) aged 6 to 10 years. Classroom air pollutant measurements and spirometry were completed once before and twice after randomization. Asthma symptoms were surveyed every 3 months. Baseline classroom levels of fine particulate matter (particulate matter with diameter of <2.5 μm [PM 2.5 ]) and black carbon (BC) were 6.3 and 0.41 μg/m 3 , respectively. When comparing the intervention to the control group, classroom PM 2.5 levels were reduced by 49% and 42% and BC levels were reduced by 58% and 55% in the first and second follow-up periods, respectively (P < .05 for all comparisons). When comparing the children randomized to intervention and control classrooms, there was a modest improvement in peak flow, but no significant changes in forced expiratory volume in 1 second (FEV 1 ) and asthma symptoms. In this pilot study, a classroom-based air cleaner intervention led to significant reductions in PM 2.5 and BC. Future large-scale studies should comprehensively evaluate the effect of school-based environmental interventions on pediatric asthma morbidity. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.
Zanoletti, A; Bilo, F; Depero, L E; Zappa, D; Bontempi, E
2018-07-15
This work presents a new porous material (SUNSPACE) designed for air particulate matter (PM) capture. It was developed in answer to the European Commission request of an innovative, affordable, and sustainable solution, based on design-driven material, to reduce the concentration of air particulate matter in urban areas. SUNSPACE material was developed from by-products and low-cost materials, such as silica fume and sodium alginate. Its capability to catch ultrafine PM was evaluated by different ad-hoc tests, considering diesel exhaust fumes and incense smoke PM. Despite the fact that procedures and materials can be designed for remediation, the high impact on the environment, for example in terms of natural resources consumption and emissions, are not usually considered. Instead, we believe that the technologies must be always evaluated in terms of material embodied energy (EE) and carbon footprint (CF). We define our approach to solve environment problems by a sustainable methodology "Azure Chemistry". For the SUNSPACE synthesis, the multi-criteria decision analysis was performed to select the best sustainable solution. The emissions and the energies involved in the synthesis of SUNSPACE material were evaluated with the Azure Chemistry approach, showing that this could be the best available technology to face the problem of capturing the PM in urban area. Copyright © 2018 Elsevier Ltd. All rights reserved.
Jung, Heejung S; Grady, Michael L; Victoroff, Tristan; Miller, Arthur L
2017-07-01
Prior studies demonstrate that air recirculation can reduce exposure to nanoparticles in vehicle cabins. However when people occupy confined spaces, air recirculation can lead to carbon dioxide (CO 2 ) accumulation which can potentially lead to deleterious effects on cognitive function. This study proposes a fractional air recirculation system for reducing nanoparticle concentration while simultaneously suppressing CO 2 levels in the cabin. Several recirculation scenarios were tested using a custom-programmed HVAC (heat, ventilation, air conditioning) unit that varied the recirculation door angle in the test vehicle. Operating the recirculation system with a standard cabin filter reduced particle concentrations to 1000 particles/cm 3 , although CO 2 levels rose to 3000 ppm. When as little as 25% fresh air was introduced (75% recirculation), CO 2 levels dropped to 1000 ppm, while particle concentrations remained below 5000 particles/cm 3 . We found that nanoparticles were removed selectively during recirculation and demonstrated the trade-off between cabin CO 2 concentration and cabin particle concentration using fractional air recirculation. Data showed significant increases in CO 2 levels during 100% recirculation. For various fan speeds, recirculation fractions of 50-75% maintained lower CO 2 levels in the cabin, while still reducing particulate levels. We recommend fractional recirculation as a simple method to reduce occupants' exposures to particulate matter and CO 2 in vehicles. A design with several fractional recirculation settings could allow air exchange adequate for reducing both particulate and CO 2 exposures. Developing this technology could lead to reductions in airborne nanoparticle exposure, while also mitigating safety risks from CO 2 accumulation.
Jung, Heejung S.; Grady, Michael L.; Victoroff, Tristan; Miller, Arthur L.
2017-01-01
Prior studies demonstrate that air recirculation can reduce exposure to nanoparticles in vehicle cabins. However when people occupy confined spaces, air recirculation can lead to carbon dioxide (CO2) accumulation which can potentially lead to deleterious effects on cognitive function. This study proposes a fractional air recirculation system for reducing nanoparticle concentration while simultaneously suppressing CO2 levels in the cabin. Several recirculation scenarios were tested using a custom-programmed HVAC (heat, ventilation, air conditioning) unit that varied the recirculation door angle in the test vehicle. Operating the recirculation system with a standard cabin filter reduced particle concentrations to 1000 particles/cm3, although CO2 levels rose to 3000 ppm. When as little as 25% fresh air was introduced (75% recirculation), CO2 levels dropped to 1000 ppm, while particle concentrations remained below 5000 particles/cm3. We found that nanoparticles were removed selectively during recirculation and demonstrated the trade-off between cabin CO2 concentration and cabin particle concentration using fractional air recirculation. Data showed significant increases in CO2 levels during 100% recirculation. For various fan speeds, recirculation fractions of 50–75% maintained lower CO2 levels in the cabin, while still reducing particulate levels. We recommend fractional recirculation as a simple method to reduce occupants’ exposures to particulate matter and CO2 in vehicles. A design with several fractional recirculation settings could allow air exchange adequate for reducing both particulate and CO2 exposures. Developing this technology could lead to reductions in airborne nanoparticle exposure, while also mitigating safety risks from CO2 accumulation. PMID:28781568
NASA Astrophysics Data System (ADS)
Jung, Heejung S.; Grady, Michael L.; Victoroff, Tristan; Miller, Arthur L.
2017-07-01
Prior studies demonstrate that air recirculation can reduce exposure to nanoparticles in vehicle cabins. However when people occupy confined spaces, air recirculation can lead to carbon dioxide (CO2) accumulation which can potentially lead to deleterious effects on cognitive function. This study proposes a fractional air recirculation system for reducing nanoparticle concentration while simultaneously suppressing CO2 levels in the cabin. Several recirculation scenarios were tested using a custom-programmed HVAC (heat, ventilation, air conditioning) unit that varied the recirculation door angle in the test vehicle. Operating the recirculation system with a standard cabin filter reduced particle concentrations to 1000 particles/cm3, although CO2 levels rose to 3000 ppm. When as little as 25% fresh air was introduced (75% recirculation), CO2 levels dropped to 1000 ppm, while particle concentrations remained below 5000 particles/cm3. We found that nanoparticles were removed selectively during recirculation and demonstrated the trade-off between cabin CO2 concentration and cabin particle concentration using fractional air recirculation. Data showed significant increases in CO2 levels during 100% recirculation. For various fan speeds, recirculation fractions of 50-75% maintained lower CO2 levels in the cabin, while still reducing particulate levels. We recommend fractional recirculation as a simple method to reduce occupants' exposures to particulate matter and CO2 in vehicles. A design with several fractional recirculation settings could allow air exchange adequate for reducing both particulate and CO2 exposures. Developing this technology could lead to reductions in airborne nanoparticle exposure, while also mitigating safety risks from CO2 accumulation.
PM levels in urban area of Bejaia
NASA Astrophysics Data System (ADS)
Benaissa, Fatima; Maesano, Cara Nichole; Alkama, Rezak; Annesi-Maesano, Isabella
2017-04-01
Air pollution is not routinely measured in Bejaia City, Algeria, an urban area of around 200,000 inhabitants. We present first time measurements of particulate matter (PM) mass concentrations for this city (PM10, PM7, PM4, PM2.5 and PM1) over the course of one week, from July 8 to July 14, 2015. This study covered eight urban sampling sites and 169 measurements were obtained to determine mass concentration levels. Air pollution is not routinely measured in Bejaia City, Algeria, an urban area of around 200,000 inhabitants. We present first time measurements of particulate matter (PM) mass concentrations for this city (PM10, PM7, PM4, PM2.5 and PM1) over the course of one week, from July 8 to July 14, 2015. This study covered eight urban sampling sites and 169 measurements were obtained to determine mass concentration levels. The average city-wide PM10 and PM2.5 concentrations measured during this sampling were 87.8 ± 33.9 and 28.7 ± 10.6 µg/m3 respectively. These results show that particulate matter levels are high and exceed Algerian ambient air quality standards (maximum 80 µg/m3, without specifying the particle size). Further, PM10 and PM2.5 averages were well above the prescribed 24-hour average World Health Organization Air Quality Guidelines (WHO AQG) (50 µg/m3 for PM10 and 25 µg/m3 for PM2.5). The PM1, PM2,5, PM4 and PM7 fractions accounted for 15%, 32 %, 56% and 78% respectively of the PM10 measurements. Our analysis reveals that PM concentration variations in the study region were influenced primarily by traffic. In fact, lower PM10 concentrations (21.7 and 33.1 µg/m3) were recorded in residential sites while higher values (53.1, and 45.2 µg/m3) were registered in city centers. Keywords: Particulate matter, Urban area, vehicle fleet, Bejaia.
Evaluation of ground-based particulate matter in association with measurements from space
NASA Astrophysics Data System (ADS)
Nakata, Makiko; Yoshida, Akihito; Sano, Itaru; Mukai, Sonoyo
2017-10-01
Air pollution is problem of deep concern to human health. In Japan, the air pollution levels experienced during the recent period of rapid economic growth have been reduced. However, fine particulate matter (PM2.5) has not yet reached the environmental standards at many monitoring stations. The Japanese environmental quality standard for PM2.5 that was ratified in 2009 lags about four decades behind other air pollutants, including sulfur dioxide, nitrogen dioxide, carbon monoxide, photochemical oxidants, and suspended particulate matter. Recently, trans-national air pollutants have been observed to cause high concentrations of PM2.5 in Japan. To obtain wide distribution of PM2.5, the satellite based PM2.5 products are extremely useful. We investigate PM2.5 concentrations measured using ground samplers in Japan and the satellite based PM2.5 products, taking into consideration various geographical and weather conditions.
Respirable particulate monitoring with remote sensors. (Public health ecology: Air pollution)
NASA Technical Reports Server (NTRS)
Severs, R. K.
1974-01-01
The feasibility of monitoring atmospheric aerosols in the respirable range from air or space platforms was studied. Secondary reflectance targets were located in the industrial area and near Galveston Bay. Multichannel remote sensor data were utilized to calculate the aerosol extinction coefficient and thus determine the aerosol size distribution. Houston Texas air sampling network high volume data were utilized to generate computer isopleth maps of suspended particulates and to establish the mass loading of the atmosphere. In addition, a five channel nephelometer and a multistage particulate air sampler were used to collect data. The extinction coefficient determined from remote sensor data proved more representative of wide areal phenomena than that calculated from on site measurements. It was also demonstrated that a significant reduction in the standard deviation of the extinction coefficient could be achieved by reducing the bandwidths used in remote sensor.
Jeong, Seongmin; Cho, Hyunmin; Han, Seonggeun; Won, Phillip; Lee, Habeom; Hong, Sukjoon; Yeo, Junyeob; Kwon, Jinhyeong; Ko, Seung Hwan
2017-07-12
Air quality has become a major public health issue in Asia including China, Korea, and India. Particulate matters are the major concern in air quality. We present the first environmental application demonstration of Ag nanowire percolation network for a novel, electrical type transparent, reusable, and active PM2.5 air filter although the Ag nanowire percolation network has been studied as a very promising transparent conductor in optoelectronics. Compared with previous particulate matter air filter study using relatively weaker short-range intermolecular force in polar polymeric nanofiber, Ag nanowire percolation network filters use stronger long-range electrostatic force to capture PM2.5, and they are highly efficient (>99.99%), transparent, working on an active mode, low power consumption, antibacterial, and reusable after simple washing. The proposed new particulate matter filter can be applied for a highly efficient, reusable, active and energy efficient filter for wearable electronics application.
NASA Astrophysics Data System (ADS)
Matsumoto, Kiyoshi; Minami, Hideki; Hayano, Teruaki; Uyama, Yukiko; Tanimoto, Hiroshi; Uematsu, Mitsuo
2007-12-01
A year-round observation of atmospheric aerosols and their associated species was conducted from March 2001 to May 2002 on Rishiri Island in the northern area of the east Asian Pacific rim region. Asian outflows brought continental air masses to this area during the period from the autumn to the spring although marine air masses from the high-latitudinal ocean often broke into this area during the midwinter. In contrast, marine air masses were predominant over this area in the summer. Particulate elemental carbon (EC) would be mainly transported with biomass smoke particles, and seasonal variation in its concentrations was well correlated with the air mass alternation, showing higher concentrations during the period from the autumn to the spring with some decreases in the midwinter. The concentrations of particulate organic carbon (OC) showed a similar seasonal trend with those of the particulate EC, but relatively high concentrations were found in the summer due to photochemical secondary productions. The particulate OC that is vaporized by heating at higher temperatures (OCHT) would be mainly carried with the biomass smoke, and the particulate OC that is vaporized at lower temperatures (OCLT) would be mainly caused by secondary production processes. Summer enhancements of the secondary species, such as OC and nss-SO42-, caused decreases in the ratio of EC/PM2.5, which would contribute to the high single scattering albedo of fine aerosols in the summer. Aerosols in the Asian outflows in this area are relatively "black" in the winter, although the aerosol mass loading increases in the spring.
Vora, Rathin; Zareba, Wojciech; Utell, Mark J; Pietropaoli, Anthony P; Chalupa, David; Little, Erika L; Oakes, David; Bausch, Jan; Wiltshire, Jelani; Frampton, Mark W
2014-07-16
Diabetes may confer an increased risk for the cardiovascular health effects of particulate air pollution, but few human clinical studies of air pollution have included people with diabetes. Ultrafine particles (UFP, ≤100 nm in diameter) have been hypothesized to be an important component of particulate air pollution with regard to cardiovascular health effects. 17 never-smoker subjects 30-60 years of age, with stable type 2 diabetes but otherwise healthy, inhaled either filtered air (0-10 particles/cm3) or elemental carbon UFP (~107 particles/cm3, ~50 ug/m3, count median diameter 32 nm) by mouthpiece, for 2 hours at rest, in a double-blind, randomized, crossover study design. A digital 12-lead electrocardiogram (ECG) was recorded continuously for 48 hours, beginning 1 hour prior to exposure. Analysis of 5-minute segments of the ECG during quiet rest showed reduced high-frequency heart rate variability with UFP relative to air exposure (p = 0.014), paralleled by non-significant reductions in time-domain heart rate variability parameters. In the analysis of longer durations of the ECG, we found that UFP exposure increased the heart rate relative to air exposure. During the 21- to 45-hour interval after exposure, the average heart rate increased approximately 8 beats per minute with UFP, compared to 5 beats per minute with air (p = 0.045). There were no UFP effects on cardiac rhythm or repolarization. Inhalation of elemental carbon ultrafine particles alters heart rate and heart rate variability in people with type 2 diabetes. Our findings suggest that effects may occur and persist hours after a single 2-hour exposure.
Sekine, K; Shima, M; Nitta, Y; Adachi, M
2004-01-01
Aims: To investigate the chronic effects of air pollution caused mainly by automobiles in healthy adult females. Methods: Respiratory symptoms were investigated in 5682 adult females who had lived in the Tokyo metropolitan area for three years or more in 1987; 733 of them were subjected to pulmonary function tests over eight years from 1987 to 1994. The subjects were divided into three groups by the level of air pollution they were exposed to during the study period. The concentrations of nitrogen dioxide and suspended particulate matter were the highest in group 1, and the lowest in group 3. Results: The prevalence rates of respiratory symptoms in group 1 were higher than those in groups 2 and 3, except for wheezing. Multiple logistic regression analysis showed significant differences in persistent phlegm and breathlessness. The subjects selected for the analysis of pulmonary function were 94, 210, and 102 females in groups 1, 2, and 3, respectively. The annual mean change of FEV1 in group 1 was the largest (-0.020 l/y), followed by that in group 2 (-0.015 l/y), and that in group 3 (-0.009 l/y). Testing for trends showed a significant larger decrease of FEV1 with the increase in the level of air pollution. Conclusions: The subjects living in areas with high levels of air pollution showed higher prevalence rates of respiratory symptoms and a larger decrease of FEV1 compared with those living in areas with low levels of air pollution. Since the traffic density is larger in areas with high air pollution, the differences among the groups may reflect the effect of air pollution attributable to particulate matter found in automobile exhaust. PMID:15031394
Atmospheric pollutants and hospital admissions due to pneumonia in children
Negrisoli, Juliana; Nascimento, Luiz Fernando C.
2013-01-01
OBJECTIVE: To analyze the relationship between exposure to air pollutants and hospitalizations due to pneumonia in children of Sorocaba, São Paulo, Brazil. METHODS: Time series ecological study, from 2007 to 2008. Daily data were obtained from the State Environmental Agency for Pollution Control for particulate matter, nitric oxide, nitrogen dioxide, ozone, besides air temperature and relative humidity. The data concerning pneumonia admissions were collected in the public health system of Sorocaba. Correlations between the variables of interest using Pearson cofficient were calculated. Models with lags from zero to five days after exposure to pollutants were performed to analyze the association between the exposure to environmental pollutants and hospital admissions. The analysis used the generalized linear model of Poisson regression, being significant p<0.05. RESULTS: There were 1,825 admissions for pneumonia, with a daily mean of 2.5±2.1. There was a strong correlation between pollutants and hospital admissions, except for ozone. Regarding the Poisson regression analysis with the multi-pollutant model, only nitrogen dioxide was statistically significant in the same day (relative risk - RR=1.016), as well as particulate matter with a lag of four days (RR=1.009) after exposure to pollutants. CONCLUSIONS: There was an acute effect of exposure to nitrogen dioxide and a later effect of exposure to particulate matter on children hospitalizations for pneumonia in Sorocaba. PMID:24473956
Airborne particulate matter in spacecraft
NASA Technical Reports Server (NTRS)
1988-01-01
Acceptability limits and sampling and monitoring strategies for airborne particles in spacecraft were considered. Based on instances of eye and respiratory tract irritation reported by Shuttle flight crews, the following acceptability limits for airborne particles were recommended: for flights of 1 week or less duration (1 mg/cu m for particles less than 10 microns in aerodynamic diameter (AD) plus 1 mg/cu m for particles 10 to 100 microns in AD); and for flights greater than 1 week and up to 6 months in duration (0.2 mg/cu m for particles less than 10 microns in AD plus 0.2 mg/cu m for particles 10 to 100 microns in AD. These numerical limits were recommended to aid in spacecraft atmosphere design which should aim at particulate levels that are a low as reasonably achievable. Sampling of spacecraft atmospheres for particles should include size-fractionated samples of 0 to 10, 10 to 100, and greater than 100 micron particles for mass concentration measurement and elementary chemical analysis by nondestructive analysis techniques. Morphological and chemical analyses of single particles should also be made to aid in identifying airborne particulate sources. Air cleaning systems based on inertial collection principles and fine particle collection devices based on electrostatic precipitation and filtration should be considered for incorporation into spacecraft air circulation systems. It was also recommended that research be carried out in space in the areas of health effects and particle characterization.
Cooler and particulate separator for an off-gas stack
Wright, George T.
1992-01-01
An off-gas stack for a melter comprising an air conduit leading to two sets of holes, one set injecting air into the off-gas stack near the melter plenum and the second set injecting air downstream of the first set. The first set injects air at a compound angle, having both downward and tangential components, to create a reverse vortex flow, counter to the direction of flow of gas through the stack and also along the periphery of the stack interior surface. Air from the first set of holes pervents recirculation zones from forming and the attendant accumulation of particulate deposits on the wall of the stack and will also return to the plenum any particulate swept up in the gas entering the stack. The second set of holes injects air in the same direction as the gas in the stack to compensate for the pressure drop and to prevent the concentration of condensate in the stack. A set of sprayers, receiving water from a second conduit, is located downstream of the second set of holes and sprays water into the gas to further cool it.
40 CFR 52.427 - Control strategy: Particulate matter.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 3 2012-07-01 2012-07-01 false Control strategy: Particulate matter. 52.427 Section 52.427 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR...: Particulate matter. Determination of attainment. EPA has determined, as of May 16, 2012, that based on 2007 to...
40 CFR 52.332 - Control strategy: Particulate matter.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 3 2011-07-01 2011-07-01 false Control strategy: Particulate matter. 52.332 Section 52.332 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR...: Particulate matter. (a) On April 9, 1992, the Governor of Colorado submitted the moderate PM-10 nonattainment...
40 CFR 52.332 - Control strategy: Particulate matter.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 3 2014-07-01 2014-07-01 false Control strategy: Particulate matter. 52.332 Section 52.332 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR...: Particulate matter. (a) On April 9, 1992, the Governor of Colorado submitted the moderate PM-10 nonattainment...
40 CFR 52.332 - Control strategy: Particulate matter.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 3 2013-07-01 2013-07-01 false Control strategy: Particulate matter. 52.332 Section 52.332 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR...: Particulate matter. (a) On April 9, 1992, the Governor of Colorado submitted the moderate PM-10 nonattainment...
40 CFR 52.332 - Control strategy: Particulate matter.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 3 2012-07-01 2012-07-01 false Control strategy: Particulate matter. 52.332 Section 52.332 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR...: Particulate matter. (a) On April 9, 1992, the Governor of Colorado submitted the moderate PM-10 nonattainment...
40 CFR 52.332 - Control strategy: Particulate matter.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 3 2010-07-01 2010-07-01 false Control strategy: Particulate matter. 52.332 Section 52.332 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR...: Particulate matter. (a) On April 9, 1992, the Governor of Colorado submitted the moderate PM-10 nonattainment...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zaveri, Rahul A.; Berkowitz, Carl M.; Brechtel, Fred J.
Chemical evolution of aerosols and trace gases in the Salem Harbor power plant plume was monitored with the DOE G-1 aircraft on the night of July 30-31, 2002. Quasi-Lagrangian sampling in the plume at increasing downwind distances/processing times was guided by a constant-volume tetroon that was released near the power plant at sunset. While no evidence of fly ash particles was found, concentrations of particulate organics, sulfate, and nitrate were higher in the plume than in the nearby background air. These species were internally mixed and the particles were acidic, suggesting that particulate nitrate was in the form of organicmore » nitrate. The enhanced particulate organic and nitrate masses in the plume were inferred to be as secondary organic aerosol, possibly formed from the NO3 radical-initiated oxidation of isoprene and other trace organic gases in the presence of acidic sulfate particles. The enhanced particulate sulfate concentrations observed in the plume were attributed to direct emissions of gaseous SO3/H2SO4 from the power plant. Furthermore, concentration of nucleation mode particles was significantly higher in the plume than in background air, suggesting that some of the emitted H2SO4 had nucleated to form new particles. Spectromicroscopic analyses of particle samples suggested that some sulfate was likely in the form of organosulfates. Constrained Lagrangian model analysis of the aircraft and tetroon observations showed that heterogeneous hydrolysis of N2O5 was negligibly slow. These results have significant implications for several scientific and regulatory issues related to the impacts of power plant emissions on atmospheric chemistry, air quality, visibility, and climate.« less
Analysis of airborne particulate matter (PM2.5) over Hong Kong using remote sensing and GIS.
Shi, Wenzhong; Wong, Man Sing; Wang, Jingzhi; Zhao, Yuanling
2012-01-01
Airborne fine particulates (PM(2.5); particulate matter with diameter less than 2.5 μm) are receiving increasing attention for their potential toxicities and roles in visibility and health. In this study, we interpreted the behavior of PM(2.5) and its correlation with meteorological parameters in Hong Kong, during 2007-2008. Significant diurnal variations of PM(2.5) concentrations were observed and showed a distinctive bimodal pattern with two marked peaks during the morning and evening rush hour times, due to dense traffic. The study observed higher PM(2.5) concentrations in winter when the northerly and northeasterly winds bring pollutants from the Chinese mainland, whereas southerly monsoon winds from the sea bring fresh air to the city in summer. In addition, higher concentrations of PM(2.5) were observed in rush hours on weekdays compared to weekends, suggesting the influence of anthropogenic activities on fine particulate levels, e.g., traffic-related local PM(2.5) emissions. To understand the spatial pattern of PM(2.5) concentrations in the context of the built-up environment of Hong Kong, we utilized MODerate Resolution Imaging Spectroradiometer (MODIS) Aerosol Optical Thickness (AOT) 500 m data and visibility data to derive aerosol extinction profile, then converted to aerosol and PM(2.5) vertical profiles. A Geographic Information Systems (GIS) prototype was developed to integrate atmospheric PM(2.5) vertical profiles with 3D GIS data. An example of the query function in GIS prototype is given. The resulting 3D database of PM(2.5) concentrations provides crucial information to air quality regulators and decision makers to comply with air quality standards and in devising control strategies.
Analysis of Airborne Particulate Matter (PM2.5) over Hong Kong Using Remote Sensing and GIS
Shi, Wenzhong; Wong, Man Sing; Wang, Jingzhi; Zhao, Yuanling
2012-01-01
Airborne fine particulates (PM2.5; particulate matter with diameter less than 2.5 μm) are receiving increasing attention for their potential toxicities and roles in visibility and health. In this study, we interpreted the behavior of PM2.5 and its correlation with meteorological parameters in Hong Kong, during 2007–2008. Significant diurnal variations of PM2.5 concentrations were observed and showed a distinctive bimodal pattern with two marked peaks during the morning and evening rush hour times, due to dense traffic. The study observed higher PM2.5 concentrations in winter when the northerly and northeasterly winds bring pollutants from the Chinese mainland, whereas southerly monsoon winds from the sea bring fresh air to the city in summer. In addition, higher concentrations of PM2.5 were observed in rush hours on weekdays compared to weekends, suggesting the influence of anthropogenic activities on fine particulate levels, e.g., traffic-related local PM2.5 emissions. To understand the spatial pattern of PM2.5 concentrations in the context of the built-up environment of Hong Kong, we utilized MODerate Resolution Imaging Spectroradiometer (MODIS) Aerosol Optical Thickness (AOT) 500 m data and visibility data to derive aerosol extinction profile, then converted to aerosol and PM2.5 vertical profiles. A Geographic Information Systems (GIS) prototype was developed to integrate atmospheric PM2.5 vertical profiles with 3D GIS data. An example of the query function in GIS prototype is given. The resulting 3D database of PM2.5 concentrations provides crucial information to air quality regulators and decision makers to comply with air quality standards and in devising control strategies. PMID:22969323
Source apportionment of ambient PM10 and PM2.5 in Haikou, China
NASA Astrophysics Data System (ADS)
Fang, Xiaozhen; Bi, Xiaohui; Xu, Hong; Wu, Jianhui; Zhang, Yufen; Feng, Yinchang
2017-07-01
In order to identify the sources of PM10 and PM2.5 in Haikou, 60 ambient air samples were collected in winter and spring, respectively. Fifteen elements (Na, Mg, Al, Si, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn and Pb), water-soluble ions (SO42 - and NO3-), and organic carbon (OC) and elemental carbon (EC) were analyzed. It was clear that the concentration of particulate matter was higher in winter than in spring. The value of PM2.5/PM10 was > 0.6. Moreover, the proportions of TC, ions, Na, Al, Si and Ca were more high in PM10 and PM2.5. The SOC concentration was estimated by the minimum OC/EC ratio method, and deducted from particulate matter compositions when running CMB model. According to the results of CMB model, the resuspended dust (17.5-35.0%), vehicle exhaust (14.9-23.6%) and secondary particulates (20.4-28.8%) were the major source categories of ambient particulate matter. Additionally, sea salt also had partial contribution (3-8%). And back trajectory analysis results showed that particulate matter was greatly affected by regional sources in winter, while less affected in spring. So particulate matter was not only affected by local sources, but also affected by sea salt and regional sources in coastal cities. Further research could focuses on establishing the actual secondary particles profiles and identifying the local and regional sources of PM at once by one model or analysis method.
Combustor for fine particulate coal
Carlson, L.W.
1988-01-26
A particulate coal combustor with two combustion chambers is provided. The first combustion chamber is toroidal; air and fuel are injected, mixed, circulated and partially combusted. The air to fuel ratio is controlled to avoid production of soot or nitrogen oxides. The mixture is then moved to a second combustion chamber by injection of additional air where combustion is completed and ash removed. Temperature in the second chamber is controlled by cooling and gas mixing. The clean stream of hot gas is then delivered to a prime mover. 4 figs.
Combustor for fine particulate coal
Carlson, Larry W.
1988-01-01
A particulate coal combustor with two combustion chambers is provided. The first combustion chamber is toroidal; air and fuel are injected, mixed, circulated and partially combusted. The air to fuel ratio is controlled to avoid production of soot or nitrogen oxides. The mixture is then moved to a second combustion chamber by injection of additional air where combustion is completed and ash removed. Temperature in the second chamber is controlled by cooling and gas mixing. The clean stream of hot gas is then delivered to a prime mover.
Combustor for fine particulate coal
Carlson, L.W.
1988-11-08
A particulate coal combustor with two combustion chambers is provided. The first combustion chamber is toroidal; air and fuel are injected, mixed, circulated and partially combusted. The air to fuel ratio is controlled to avoid production of soot or nitrogen oxides. The mixture is then moved to a second combustion chamber by injection of additional air where combustion is completed and ash removed. Temperature in the second chamber is controlled by cooling and gas mixing. The clean stream of hot gas is then delivered to a prime mover. 4 figs.
Evaluation of near surface ozone and particulate matter in air ...
In this study, techniques typically used for future air quality projections are applied to a historical 11-year period to assess the performance of the modeling system when the driving meteorological conditions are obtained using dynamical downscaling of coarse-scale fields without correcting toward higher-resolution observations. The Weather Research and Forecasting model and the Community Multiscale Air Quality model are used to simulate regional climate and air quality over the contiguous United States for 2000–2010. The air quality simulations for that historical period are then compared to observations from four national networks. Comparisons are drawn between defined performance metrics and other published modeling results for predicted ozone, fine particulate matter, and speciated fine particulate matter. The results indicate that the historical air quality simulations driven by dynamically downscaled meteorology are typically within defined modeling performance benchmarks and are consistent with results from other published modeling studies using finer-resolution meteorology. This indicates that the regional climate and air quality modeling framework utilized here does not introduce substantial bias, which provides confidence in the method’s use for future air quality projections. This paper shows that if emissions inputs and coarse-scale meteorological inputs are reasonably accurate, then air quality can be simulated with acceptable accuracy even wi
Timonen, K; Hoek, G; Heinrich, J; Bernard, A; Brunekreef, B; de Hartog, J; Hameri, K; Ibald-Mulli, A; Mirme, A; Peters, A; Tiittanen, P; Kreyling, W; Pekkanen, J
2004-01-01
Background: Daily variations in ambient particulate air pollution have been associated with respiratory mortality and morbidity. Aims: To assess the associations between urinary concentration of lung Clara cell protein CC16, a marker for lung damage, and daily variation in fine and ultrafine particulate air pollution. Methods: Spot urinary samples (n = 1249) were collected biweekly for six months in subjects with coronary heart disease in Amsterdam, Netherlands (n = 37), Erfurt, Germany (n = 47), and Helsinki, Finland (n = 47). Ambient particulate air pollution was monitored at a central site in each city. Results: The mean 24 hour number concentration of ultrafine particles was 17.3x103 cm–3 in Amsterdam, 21.1x103 cm–3 in Erfurt, and 17.0x103 cm–3 in Helsinki. The mean 24 hour PM2.5 concentrations were 20, 23, and 13 µg/m3, respectively. Daily variation in ultrafine particle levels was not associated with CC16. In contrast, CC16 concentration seemed to increase with increasing levels of PM2.5 in Helsinki, especially among subjects with lung disorders. No clear associations were observed in Amsterdam and Erfurt. In Helsinki, the CC16 concentration increased by 20.2% (95% CI 6.9 to 33.5) per 10 µg/m3 increase in PM2.5 concentration (lag 2). The respective pooled effect estimate was 2.1% (95% CI –1.3 to 5.6). Conclusion: The results suggest that exposure to particulate air pollution may lead to increased epithelial barrier permeability in lungs. PMID:15477284
On-line analysis of ambient air aerosols using laser-induced breakdown spectroscopy
NASA Astrophysics Data System (ADS)
Carranza, J. E.; Fisher, B. T.; Yoder, G. D.; Hahn, D. W.
2001-06-01
Laser-induced breakdown spectroscopy is developed for the detection of aerosols in ambient air, including quantitative mass concentration measurements and size/composition measurements of individual aerosol particles. Data are reported for ambient air aerosols containing aluminum, calcium, magnesium and sodium for a 6-week sampling period spanning the Fourth of July holiday period. Measured mass concentrations for these four elements ranged from 1.7 parts per trillion (by mass) to 1.7 parts per billion. Ambient air concentrations of magnesium and aluminum revealed significant increases during the holiday period, which are concluded to arise from the discharge of fireworks in the lower atmosphere. Real-time conditional data analysis yielded increases in analyte spectral intensity approaching 3 orders of magnitude. Analysis of single particles yielded composition-based aerosol size distributions, with measured aerosol diameters ranging from 100 nm to 2 μm. The absolute mass detection limits for single particle analysis exceeded sub-femtogram values for calcium-containing particles, and was on the order of 2-3 femtograms for magnesium and sodium-based particles. Overall, LIBS-based analysis of ambient air aerosols is a promising technique for the challenging issues associated with the real-time collection and analysis of ambient air particulate matter data.
This dedicated issue of the Journal of the Air & Waste Management Association contains 17 peer-reviewed scientific papers that were presented at the specialty conference, “Particulate Matter: Atmospheric Sciences, Exposure and the Fourth Colloquium on PM and Human Health,” that w...
Mukherjee, Arideep; Agrawal, Madhoolika
2018-05-15
Responses of urban vegetation to air pollution stress in relation to their tolerance and sensitivity have been extensively studied, however, studies related to air pollution responses based on different leaf functional traits and tree characteristics are limited. In this paper, we have tried to assess combined and individual effects of major air pollutants PM 10 (particulate matter ≤ 10 µm), TSP (total suspended particulate matter), SO 2 (sulphur dioxide), NO 2 (nitrogen dioxide) and O 3 (ozone) on thirteen tropical tree species in relation to fifteen leaf functional traits and different tree characteristics. Stepwise linear regression a general linear modelling approach was used to quantify the pollution response of trees against air pollutants. The study was performed for six successive seasons for two years in three distinct urban areas (traffic, industrial and residential) of Varanasi city in India. At all the study sites, concentrations of air pollutants, specifically PM (particulate matter) and NO 2 were above the specified standards. Distinct variations were recorded in all the fifteen leaf functional traits with pollution load. Caesalpinia sappan was identified as most tolerant species followed by Psidium guajava, Dalbergia sissoo and Albizia lebbeck. Stepwise regression analysis identified maximum response of Eucalyptus citriodora and P. guajava to air pollutants explaining overall 59% and 58% variability's in leaf functional traits, respectively. Among leaf functional traits, maximum effect of air pollutants was observed on non-enzymatic antioxidants followed by photosynthetic pigments and leaf water status. Among the pollutants, PM was identified as the major stress factor followed by O 3 explaining 47% and 33% variability's in leaf functional traits. Tolerance and pollution response were regulated by different tree characteristics such as height, canopy size, leaf from, texture and nature of tree. Outcomes of this study will help in urban forest development by selection of specific pollutant tolerant tree species and leaf traits, which is suitable as air pollution mitigation measure. Copyright © 2018 Elsevier Inc. All rights reserved.
Johnson, Jean E; Bael, David L; Sample, Jeannette M; Lindgren, Paula G; Kvale, Dorian L
The Minnesota Department of Health and the Minnesota Pollution Control Agency used local air pollution and public health data to estimate the impacts of particulate matter and ozone on population health, to identify disparities, and to inform decisions that will improve health. While air quality in Minnesota currently meets federal standards, urban communities are concerned about the impact of air pollution on their health. The Twin Cities (Minneapolis-St Paul) metropolitan area includes 7 counties where fine particulate levels and rates of asthma exacerbations are elevated in some communities. We used the Environmental Protection Agency's BenMAP (Environmental Benefits Mapping and Analysis Program) software, along with local PM2.5 (fine particulate) and ozone ambient concentrations, census and population health data, to calculate impacts for 2008 at the zip code level. The impacts were summed across all zip codes for area-wide estimates. American Community Survey data were used to stratify zip codes by poverty and race for assessment of disparities. Attributable fraction, attributable rate and counts for all-cause mortality, asthma and chronic obstructive pulmonary disease hospitalizations, asthma emergency department (ED) visits, and cardiovascular disease hospitalizations. In the Twin Cities (2008), air pollution was a contributing cause for an estimated 2% to 5% of respiratory and cardiovascular hospitalizations and ED visits and between 6% and 13% of premature deaths. The elderly (aged 65+ years) experienced the highest air pollution-attributable rates of death and respiratory hospitalizations; children experienced the highest asthma ED visit rates. Geographical and demographic differences in air pollution-attributable health impacts across the region reflected the differences in the underlying morbidity and mortality rates. Method was effective in demonstrating that changes in air quality can have quantifiable health impacts across the Twin Cities. Key messages and implications from this work were shared with the media, community groups, legislators and the public. The results are being used to inform initiatives aimed at reducing sources of air pollution and to address health disparities in urban communities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coffey, D. E.
2002-02-28
High Efficiency Particulate Air filtration is an essential component of the containment and ventilation systems supporting the research and development activities at the Oak Ridge National Laboratory. High Efficiency Particulate Air filters range in size from 7.6cm (3 inch) by 10.2 cm (4 inch) cylindrical shape filters to filter array assemblies up to 2.1 m (7 feet) high by 1.5 m (5 feet) wide. Spent filters are grouped by contaminates trapped in the filter media and become one of the components in the respective waste stream. Waste minimization and pollution prevention efforts are applied for both radiological and non-radiological applications.more » Radiological applications include laboratory hoods, glove boxes, and hot cells. High Efficiency Particulate Air filters also are generated from intake or pre-filtering applications, decontamination activities, and asbestos abatement applications. The disposal avenues include sanitary/industrial waste, Resource Conservation and Recovery Act and Toxic Substance Control Act, regulated waste, solid low-level waste, contact handled transuranic, and remote handled transuranic waste. This paper discusses characterization and operational experiences associated with the disposal of the spent filters across multiple applications.« less
Di Filippo, Patrizia; Riccardi, Carmela; Pomata, Donatella; Marsiglia, Riccardo; Console, Carla; Puri, Daniele
2018-01-01
Fosetyl-aluminum is a synthetic fungicide administered to plants especially to prevent diseases caused by the members of the Peronosporales and several Phytophthora species. Herein, we present a selective liquid chromatography-tandem mass spectrometry (LC-MS/MS) method to analyze residues of fosetyl-A1 in air particulate matter. This study was performed in perspective of an exposure assessment of this substance of health concern in environments where high levels of fosetly-Al, relatively to airborne particulate matter, can be found after spraying it. The cleanup procedure of the analyte, from sampled filters of atmospheric particulate matter, was optimized using a Strata X solid-phase extraction cartridge, after accelerated extraction by using water. The chromatographic separation was achieved using a polymeric column based on hydrophilic interaction in step elution with water/acetonitrile, whereas the mass spectrometric detection was performed in negative electrospray ionization. The proposed method resulted to be a simple, fast, and suitable method for confirmation purposes. PMID:29686933
40 CFR 52.275 - Particulate matter control.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 3 2012-07-01 2012-07-01 false Particulate matter control. 52.275 Section 52.275 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS California § 52.275 Particulate matter control. (a) The following rules or portions of rules...
40 CFR 52.275 - Particulate matter control.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 3 2013-07-01 2013-07-01 false Particulate matter control. 52.275 Section 52.275 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS California § 52.275 Particulate matter control. (a) The following rules or portions of rules...
40 CFR 52.275 - Particulate matter control.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 3 2011-07-01 2011-07-01 false Particulate matter control. 52.275 Section 52.275 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS California § 52.275 Particulate matter control. (a) The following rules or portions of rules...
40 CFR 52.275 - Particulate matter control.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 3 2014-07-01 2014-07-01 false Particulate matter control. 52.275 Section 52.275 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS California § 52.275 Particulate matter control. (a) The following rules or portions of rules...
USDA-ARS?s Scientific Manuscript database
Particulate Matter (PM) emissions from animal operations have been identified as a major air pollutant source with health and environmental impacts. Nearly 600 million broilers are produced annually on the Delmarva Peninsula, making it a hot spot for particulate matter emissions from poultry houses....
40 CFR 60.43b - Standard for particulate matter (PM).
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standard for particulate matter (PM). 60.43b Section 60.43b Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Industrial-Commercial-Institutional Steam Generating Units § 60.43b Standard for particulate matter (PM). (a...
40 CFR 52.634 - Particulate matter (PM-10) Group III SIP.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 3 2011-07-01 2011-07-01 false Particulate matter (PM-10) Group III SIP. 52.634 Section 52.634 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Hawaii § 52.634 Particulate matter...
40 CFR 52.146 - Particulate matter (PM-10) Group II SIP commitments.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 3 2011-07-01 2011-07-01 false Particulate matter (PM-10) Group II SIP commitments. 52.146 Section 52.146 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Arizona § 52.146 Particulate matter...
40 CFR 60.43c - Standard for particulate matter (PM).
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standard for particulate matter (PM). 60.43c Section 60.43c Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Industrial-Commercial-Institutional Steam Generating Units § 60.43c Standard for particulate matter (PM). (a...
GENETIC INFLUENCES ON IN VITRO PARTICULATE MATTER-INDUCED AIRWAY EPITHELIAL INJURY AND INFLAMMATORY MEDIATOR RELEASE.
JA Dye, JH Richards, DA Andrews, UP Kodavanti. US EPA, RTP, NC, USA.
Particulate matter (PM) air pollution is capable of damaging the airway epitheli...
Molecular Marker Study of Particulate Organic Matter in Southern Ontario Air
Stupak, Jacek; Gong, Xueping; Chan, Tak-Wai; Cox, Michelle; McLaren, Robert; Rudolph, Jochen
2017-01-01
To study the origins of airborne particulate organic matter in southern Ontario, molecular marker concentrations were studied at Hamilton, Simcoe, and York Gateway Tunnel, representing industrial, rural, and heavy traffic sites, respectively. Airborne particulate matter smaller than 10 μm in aerodynamic diameter was collected on quartz filters, and the collected samples were analyzed for total carbons, 5-6 ring PAHs, hopanes, n-alkanes (C20 to C34), and oxygenated aromatic compounds. Results showed that PAH concentrations at all three sites were highly correlated, indicating vehicular emissions as the major source. Meanwhile, in the scatter plots of α,β-hopane and trisnorhopane, concentrations displayed different trends for Hamilton and Simcoe. The slopes of the linear regressions for Hamilton and the tunnel were statistically the same, while the slope for Simcoe was significantly different from those. Comparison with literature values revealed that the trend observed at Simcoe was explained by the influence from coal combustion. We also found that the majority of oxygenated aromatic compounds at both sites were in the similar level, possibly implying secondary products contained in the southern Ontario air. Regardless of some discrepancies, absolute principal component analysis applied to the datasets could reproduce those findings. PMID:29075550
Aerosol Sampling Experiment on the International Space Station
NASA Technical Reports Server (NTRS)
Meyer, Marit E.
2017-01-01
The International Space Station (ISS) is a unique indoor environment which serves as both home and workplace to the astronaut crew. There is currently no particulate monitoring, although particulate matter requirements exist. An experiment to collect particles in the ISS cabin was conducted recently. Two different aerosol samplers were used for redundancy and to collect particles in two size ranges spanning from 10 nm to hundreds of micrometers. The Active Sampler is a battery operated thermophoretic sampler with an internal pump which draws in air and collects particles directly on a transmission electron microscope grid. This commercial-off-the-shelf device was modified for operation in low gravity. The Passive Sampler has five sampling surfaces which were exposed to air for different durations in order to collect at least one sample with an optimal quantity of particles for microscopy. These samples were returned to Earth for analysis with a variety of techniques to obtain long-term average concentrations and identify particle emission sources. Results are compared with the inventory of ISS aerosols which was created based on sparse data and the literature. The goal of the experiment is to obtain data on indoor aerosols on ISS for future particulate monitor design and development.
Particulate matter sensor with a heater
Hall, Matthew [Austin, TX
2011-08-16
An apparatus to detect particulate matter. The apparatus includes a sensor electrode, a shroud, and a heater. The electrode measures a chemical composition within an exhaust stream. The shroud surrounds at least a portion of the sensor electrode, exclusive of a distal end of the sensor electrode exposed to the exhaust stream. The shroud defines an air gap between the sensor electrode and the shroud and an opening toward the distal end of the sensor electrode. The heater is mounted relative to the sensor electrode. The heater burns off particulate matter in the air gap between the sensor electrode and the shroud.
Ecologic regression analysis and the study of the influence of air quality on mortality.
Selvin, S; Merrill, D; Wong, L; Sacks, S T
1984-01-01
This presentation focuses entirely on the use and evaluation of regression analysis applied to ecologic data as a method to study the effects of ambient air pollution on mortality rates. Using extensive national data on mortality, air quality and socio-economic status regression analyses are used to study the influence of air quality on mortality. The analytic methods and data are selected in such a way that direct comparisons can be made with other ecologic regression studies of mortality and air quality. Analyses are performed by use of two types of geographic areas, age-specific mortality of both males and females and three pollutants (total suspended particulates, sulfur dioxide and nitrogen dioxide). The overall results indicate no persuasive evidence exists of a link between air quality and general mortality levels. Additionally, a lack of consistency between the present results and previous published work is noted. Overall, it is concluded that linear regression analysis applied to nationally collected ecologic data cannot be used to usefully infer a causal relationship between air quality and mortality which is in direct contradiction to other major published studies. PMID:6734568
Advanced Hybrid Particulate Collector Project Management Plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, S.J.
As the consumption of energy increases, its impact on ambient air quality has become a significant concern. Recent studies indicate that fine particles from coal combustion cause health problems as well as atmospheric visibility impairment. These problems are further compounded by the concentration of hazardous trace elements such as mercury, cadmium, selenium, and arsenic in fine particles. Therefore, a current need exists to develop superior, but economical, methods to control emissions of fine particles. Since most of the toxic metals present in coal will be in particulate form, a high level of fine- particle collection appears to be the bestmore » method of overall air toxics control. However, over 50% of mercury and a portion of selenium emissions are in vapor form and cannot be collected in particulate control devices. Therefore, this project will focus on developing technology not only to provide ultrahigh collection efficiency of particulate air toxic emissions, but also to capture vapor- phase trace metals such as mercury and selenium. Currently, the primary state-of-the-art technologies for particulate control are fabric filters (baghouses) and electrostatic precipitators (ESPs). However, they both have limitations that prevent them from achieving ultrahigh collection of fine particulate matter and vapor-phase trace metals. The objective of this project is to develop a highly reliable advanced hybrid particulate collector (AHPC) that can provide > 99.99 % particulate collection efficiency for all particle sizes between 0.01 and 50 14m, is applicable for use with all U.S. coals, and is cost-0443competitive with existing technologies. Phase I of the project is organized into three tasks: Task I - Project Management, Reporting, and Subcontract Consulting Task 2 - Modeling, Design, and Construction of 200-acfm AHPC Model Task 3 - Experimental Testing and Subcontract Consulting« less
Duan, Lian; Cheng, Na; Xiu, Guangli; Wang, Fujiang; Chen, Ying
2017-05-01
Total Suspended Particulate (TSP) samples were collected at Huaniao Island in northern East China Sea (ECS) from March 2012 to January 2013. Chemical analysis were conducted to measure the concentration of total particulate mercury (TPM) and speciated particulate mercury including HCl-soluble particulate mercury (HPM), elemental particulate mercury (EPM) and residual particulate mercury (RPM). The bromine (Br) and iodine (I) on particles were also detected. The mean concentration of TPM during the study period was 0.23 ± 0.15 ng m -3 , while the obviously seasonal variation was found that the concentrations of TPM in spring, summer, fall and winter were 0.34 ± 0.20 ng m -3 , 0.15 ± 0.03 ng m -3 , 0.15 ± 0.05 ng m -3 and 0.27 ± 0.26 ng m -3 , respectively. The statistically strong correlation of bromine and iodine to HPM was only found in spring with r = 0.81 and 0.77 (p < 0.01), respectively. While the strongest correlations between EPM and bromine and iodine were found in winter with r = 0.92 (Br) and 0.96 (I) (p < 0.01), respectively. The clustered 72-h backward trajectories of different seasons and the whole sampling period were categorized into 4 groups. In spring, the clusters passed a long distance across the East China Sea and brought about low concentration of mercury due to the deposition of mercury over the sea. The cluster of air mass across the sea had low concentration of HPM in winter, which suggested that the oxidation of mercury in winter might be related to other oxidants. During the whole sampling period, the air mass from the north of China contributed to the higher concentration of TPM in Huaniao Island. Copyright © 2016 Elsevier Ltd. All rights reserved.
77 FR 44560 - Revisions to the Nevada State Implementation Plan, Washoe County Air Quality District
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-30
... emissions of criteria pollutants such as volatile organic compounds (VOC), oxides of nitrogen (NO X ), and... to, mass balance types of analysis, be made by the operator. Section 030.970A, Part 70 Permit... relations, Nitrogen dioxide, Ozone, Particulate matter, Reporting and recordkeeping requirements, Volatile...
Although ambient concentrations of particulate matter ≤ 10μm (PM10) are often used as proxies for total personal exposure, correlation (r) between ambient and personal PM10 concentrations varies. Factors underlying this variation and its effect on he...
Observations and analysis of organic aerosol evolution in some prescribed fire smoke plumes
A. A. May; T. Lee; G. R. McMeeking; S. Akagi; A. P. Sullivan; S. Urbanski; R. J. Yokelson; S. M. Kreidenweis
2015-01-01
Open biomass burning is a significant source of primary air pollutants such as particulate matter (PM) and non-methane organic gases (NMOG). However, the physical and chemical atmospheric processing of these emissions during transport is poorly understood. Atmospheric transformations of biomass burning emissions have been investigated in environmental chambers, but...
78 FR 3085 - National Ambient Air Quality Standards for Particulate Matter
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-15
...., 24-hour and annual PM 2.5 standards and a 24-hour PM 10 standard). Non-visibility welfare effects are.... Related Technical Analysis 2. Other (Non-Visibility) PM-related Welfare Effects a. Evidence of Other... Proposed Decision Regarding Non-Visibility Welfare Effects D. Conclusions on Secondary PM Standards 1...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-26
... ), nitrogen oxides (NO X ), volatile organic compounds (VOC), and ammonia. An analysis of the baseline year... Idaho Transportation Department agreed to use straight salt and liquid salt brine throughout Franklin.... List of Subjects in 40 CFR Part 52 Environmental protection, Air pollution control, Nitrogen dioxide...
Fang, Guor-Cheng; Lin, Yen-Heng; Chang, Chia-Ying; Zheng, Yu-Cheng
2014-08-01
In this investigation, the concentrations of particles in ambient air, gaseous elemental mercury (GEM), and particulate-bound mercury (Hg(p)) in total suspended particulates (TSP) as well as dry deposition at a (Traffic) sampling site at Hung-kuang were studied during the day and night in 2012. The results reveal that the mean concentrations of TSP in ambient air, GEM, and Hg(p) were 69.72 μg/m(3), 3.17, and 0.024 ng/m(3), respectively, at the Hung-kuang (Traffic) sampling site during daytime sampling periods. The results also reveal that the mean rates of dry deposition of particles from ambient air and Hg(p) were 145.20 μg/m(2) min and 0.022 ng/m(2) min, respectively, at the Hung-kuang (Traffic) sampling site during the daytime sampling period. The mean concentrations of TSP in ambient air, GEM, and Hg(p) were 60.56 μg/m(3), 2.74, and 0.018 ng/m(3), respectively, at the Hung-kuang (Traffic) sampling site during the nighttime sampling period. The mean rates of dry deposition of particles and Hg(p) from ambient air were 132.58 μg/m(2) min and 0.016 ng/m(2) min, respectively, at the Hung-kuang (Traffic) sampling site during the nighttime sampling period.
Štrbová, Kristína; Raclavská, Helena; Bílek, Jiří
2017-12-01
The aim of the study was to characterize vertical distribution of particulate matter, in an area well known by highest air pollution levels in Europe. A balloon filled with helium with measuring instrumentation was used for vertical observation of air pollution over the fugitive sources in Moravian-Silesian metropolitan area during spring and summer. Synchronously, selected meteorological parameters were recorded together with particulate matter for exploration its relationship with particulate matter. Concentrations of particulate matter in the vertical profile were significantly higher in the spring than in the summer. Significant effect of fugitive sources was observed up to the altitude ∼255 m (∼45 m above ground) in both seasons. The presence of inversion layer was observed at the altitude ∼350 m (120-135 m above ground) at locations with major source traffic load. Both particulate matter concentrations and number of particles for the selected particle sizes decreased with increasing height. Strong correlation of particulate matter with meteorological parameters was not observed. The study represents the first attempt to assess the vertical profile over the fugitive emission sources - old environmental burdens in industrial region. Copyright © 2017 Elsevier Ltd. All rights reserved.
Zhao, Suping; Yu, Ye; Yin, Daiying; He, Jianjun; Liu, Na; Qu, Jianjun; Xiao, Jianhua
2016-01-01
Long-term air quality data with high temporal and spatial resolutions are needed to understand some important processes affecting the air quality and corresponding environmental and health effects. The annual and diurnal variations of each criteria pollutant including PM2.5 and PM10 (particulate matter with aerodynamic diameter less than 2.5 μm and 10 μm, respectively), CO (carbon monoxide), NO2 (nitrogen dioxide), SO2 (sulfur dioxide) and O3 (ozone) in 31 provincial capital cities between April 2014 and March 2015 were investigated by cluster analysis to evaluate current air pollution situations in China, and the cities were classified as severely, moderately, and slightly polluted cities according to the variations. The concentrations of air pollutants in winter months were significantly higher than those in other months with the exception of O3, and the cities with the highest CO and SO2 concentrations were located in northern China. The annual variation of PM2.5 concentrations in northern cities was bimodal with comparable peaks in October 2014 and January 2015, while that in southern China was unobvious with slightly high PM2.5 concentrations in winter months. The concentrations of particulate matter and trace gases from primary emissions (SO2 and CO) and NO2 were low in the afternoon (~16:00), while diurnal variation of O3 concentrations was opposite to that of other pollutants with the highest values in the afternoon. The most polluted cities were mainly located in North China Plain, while slightly polluted cities mostly focus on southern China and the cities with high altitude such as Lasa. This study provides a basis for the formulation of future urban air pollution control measures in China. Copyright © 2015 Elsevier Ltd. All rights reserved.
Environmental Quality and the U.S. Power Sector: Air Quality, Land Use and Environmental Justice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Massetti, Emanuele; Brown, Marilyn Ann; Lapsa, Melissa Voss
This baseline report summarizes key environmental quality issues associated with electricity generation, transmission, distribution, and end use in the United States. Its scope includes non-greenhouse gas air pollution (i.e., sulfur dioxide, nitrogen oxides, particulate matter and hazardous air pollutants), land use, water pollution, ecological impacts, human health, and environmental justice. The discussion characterizes both current impacts and recent trends, as well as assessments of key drivers of change. For example, the air emissions section includes a quantitative decomposition analysis of the drivers of change in sulfur dioxide emissions reductions from coal-fired power plants. The report is divided into four topicalmore » sections: air emissions, land use and ecology, water quality, and environmental justice.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-09
... requirement for inclusion of condensable emissions of particulate matter (condensables) within the definition of ``regulated new source review (NSR) pollutant'' for fine particulate matter (PM 2.5 ) and particulate matter emissions less than or equal to ten micrometers in diameter (PM 10 ). In addition, because...
Airborne particulate discriminator
Creek, Kathryn Louise [San Diego, CA; Castro, Alonso [Santa Fe, NM; Gray, Perry Clayton [Los Alamos, NM
2009-08-11
A method and apparatus for rapid and accurate detection and discrimination of biological, radiological, and chemical particles in air. A suspect aerosol of the target particulates is treated with a taggant aerosol of ultrafine particulates. Coagulation of the taggant and target particles causes a change in fluorescent properties of the cloud, providing an indication of the presence of the target.
Under Project No. WP-1538 of the Strategic Environmental Research and Development Program, the U. S. Air Force's Arnold Engineering Development Center (AEDC) is developing an interim test method for non-volatile particulate matter (PM) specifically for the Joint Strike Fighter (J...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-02
... Matter AGENCY: Environmental Protection Agency (EPA). ACTION: Announcement of public hearings. SUMMARY... Standards for Particulate Matter,'' that is scheduled to be published in the Federal Register on June 29... standards (NAAQS) for particulate matter (PM) to provide requisite protection of public health and welfare...
40 CFR 60.42Da - Standard for particulate matter (PM).
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for particulate matter (PM). 60.42Da Section 60.42Da Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR....42Da Standard for particulate matter (PM). (a) On and after the date on which the initial performance...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-02
... Deterioration and Nonattainment New Source Review; Fine Particulate Matter (PM2.5) AGENCY: Environmental... preconstruction permitting requirements for fine particulate matter (PM 2.5 ) into the Delaware SIP. In addition... fine particulate matter (PM 2.5 ) into the Delaware SIP. In addition, EPA proposed approval of SIP...
40 CFR 52.2306 - Particulate Matter (PM10) Group II SIP commitments.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Particulate Matter (PM10) Group II SIP commitments. 52.2306 Section 52.2306 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Particulate Matter (PM10) Group II SIP commitments. On July 18, 1988, the Governor of Texas submitted a...
40 CFR 52.2306 - Particulate Matter (PM10) Group II SIP commitments.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 4 2011-07-01 2011-07-01 false Particulate Matter (PM10) Group II SIP commitments. 52.2306 Section 52.2306 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Particulate Matter (PM10) Group II SIP commitments. On July 18, 1988, the Governor of Texas submitted a...
40 CFR 60.42Da - Standard for particulate matter (PM).
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standard for particulate matter (PM). 60.42Da Section 60.42Da Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR....42Da Standard for particulate matter (PM). (a) On and after the date on which the initial performance...
40 CFR 52.1637 - Particulate Matter (PM10) Group II SIP commitments.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Particulate Matter (PM10) Group II SIP commitments. 52.1637 Section 52.1637 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Particulate Matter (PM10) Group II SIP commitments. (a) On August 19, 1988, the Governor of New Mexico...
77 FR 63234 - Approval and Promulgation of Implementation Plans; North Carolina 110(a)(1) and (2...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-16
... and 2006 Fine Particulate Matter National Ambient Air Quality Standards AGENCY: Environmental... SIP addresses emissions of particulate matter generally, and does not distinguish between PM 10 and PM 2.5. The Commenter also references the particulate matter maximum emission rates for two coal-fired...
40 CFR 52.1637 - Particulate Matter (PM10) Group II SIP commitments.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 4 2011-07-01 2011-07-01 false Particulate Matter (PM10) Group II SIP commitments. 52.1637 Section 52.1637 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Particulate Matter (PM10) Group II SIP commitments. (a) On August 19, 1988, the Governor of New Mexico...
Stevens, Gretchen; Wilson, Andrew; Hammitt, James K
2005-08-01
In the Mexico City metropolitan area, poor air quality is a public health concern. Diesel vehicles contribute significantly to the emissions that are most harmful to health. Harmful diesel emissions can be reduced by retrofitting vehicles with one of several technologies, including diesel particulate filters. We quantified the social costs and benefits, including health benefits, of retrofitting diesel vehicles in Mexico City with catalyzed diesel particulate filters, actively regenerating diesel particulate filters, or diesel oxidation catalysts, either immediately or in 2010, when capital costs are expected to be lower. Retrofit with either type of diesel particulate filter or an oxidation catalyst is expected to provide net benefits to society beginning immediately and in 2010. At current prices, retrofit with an oxidation catalyst provides greatest net benefits. However, as capital costs decrease, retrofit with diesel particulate filters is expected to provide greater net benefits. In both scenarios, retrofit of older, dirtier vehicles that circulate only within the city provides greatest benefits, and retrofit with oxidation catalysts provides greater health benefits per dollar spent than retrofit with particulate filters. Uncertainty about the magnitude of net benefits of a retrofit program is significant. Results are most sensitive to values used to calculate benefits, such as the concentration-response coefficient, intake fraction (a measure of exposure), and the monetary value of health benefits.
NASA Astrophysics Data System (ADS)
Lee, Hsiang-He; Iraqui, Oussama; Gu, Yefu; Hung-Lam Yim, Steve; Chulakadabba, Apisada; Yiu-Ming Tonks, Adam; Yang, Zhengyu; Wang, Chien
2018-05-01
Severe haze events in Southeast Asia caused by particulate pollution have become more intense and frequent in recent years. Widespread biomass burning occurrences and particulate pollutants from human activities other than biomass burning play important roles in degrading air quality in Southeast Asia. In this study, numerical simulations have been conducted using the Weather Research and Forecasting (WRF) model coupled with a chemistry component (WRF-Chem) to quantitatively examine the contributions of aerosols emitted from fire (i.e., biomass burning) versus non-fire (including fossil fuel combustion, and road dust, etc.) sources to the degradation of air quality and visibility over Southeast Asia. These simulations cover a time period from 2002 to 2008 and are driven by emissions from (a) fossil fuel burning only, (b) biomass burning only, and (c) both fossil fuel and biomass burning. The model results reveal that 39 % of observed low-visibility days (LVDs) can be explained by either fossil fuel burning or biomass burning emissions alone, a further 20 % by fossil fuel burning alone, a further 8 % by biomass burning alone, and a further 5 % by a combination of fossil fuel burning and biomass burning. Analysis of an 24 h PM2.5 air quality index (AQI) indicates that the case with coexisting fire and non-fire PM2.5 can substantially increase the chance of AQI being in the moderate or unhealthy pollution level from 23 to 34 %. The premature mortality in major Southeast Asian cities due to degradation of air quality by particulate pollutants is estimated to increase from ˜ 4110 per year in 2002 to ˜ 6540 per year in 2008. In addition, we demonstrate the importance of certain missing non-fire anthropogenic aerosol sources including anthropogenic fugitive and industrial dusts in causing urban air quality degradation. An experiment of using machine learning algorithms to forecast the occurrence of haze events in Singapore is also explored in this study. All of these results suggest that besides minimizing biomass burning activities, an effective air pollution mitigation policy for Southeast Asia needs to consider controlling emissions from non-fire anthropogenic sources.
NASA Astrophysics Data System (ADS)
Arshad, Nursyairah; Hamzah, Zaini; Wood, Ab. Khalik; Saat, Ahmad; Alias, Masitah
2015-04-01
Airborne particulates trace metals are considered as public health concern as it can enter human lungs through respiratory system. Generally, any substance that has been introduced to the atmosphere that can cause severe effects to living things and the environment is considered air pollution. Manjung, Perak is one of the development districts that is active with industrial activities. There are many industrial activities surrounding Manjung District area such as coal fired power plant, quarries and iron smelting which may contribute to the air pollution into the environment. This study was done to measure the concentrations of Hg, U, Th, K, Cu, Fe, Cr, Zn, As, Se, Pb and Cd in the Airborne Particulate Matter (APM) collected at nine locations in Manjung District area within 15 km radius towards three directions (North, North-East and South-East) in 5 km intervals. The samples were collected using mini volume air sampler with cellulose filter through total suspended particulate (TSP). The sampler was set up for eight hours with the flow rate of 5 L/min. The filter was weighed before and after sample collection using microbalance, to get the amount of APM and kept in desiccator before analyzing. The measurement was done using calibrated Energy Dispersive X-Ray Fluorescence (EDXRF) Spectrometer. The air particulate concentrations were found below the Malaysia Air Quality Guidelines for TSP (260 µg/m3). All of the metals concentrations were also lower than the guidelines set by World Health Organization (WHO), Ontario Ministry of the Environment and Argonne National Laboratory, USA NCRP (1975). From the concentrations, the enrichment factor were calculated.
Air Quality Index (AQI) -- A Guide to Air Quality and Your Health
... Guide for Ozone Air Quality Guide for Particle Pollution Other AirNow Publications Other AirNow Publications En Español ... the Clean Air Act: ground-level ozone, particle pollution (also known as particulate matter), carbon monoxide, sulfur ...
Correlation Analysis of PM10 and the Incidence of Lung Cancer in Nanchang, China.
Zhou, Yi; Li, Lianshui; Hu, Lei
2017-10-19
Air pollution and lung cancer are closely related. In 2013, the World Health Organization listed outdoor air pollution as carcinogenic and regarded it as the most widespread carcinogen that humans are currently exposed to. Here, grey correlation and data envelopment analysis methods are used to determine the pollution factors causing lung cancer among residents in Nanchang, China, and identify population segments which are more susceptible to air pollution. This study shows that particulate matter with particle sizes below 10 micron (PM 10 ) is most closely related to the incidence of lung cancer among air pollution factors including annual mean concentrations of SO₂, NO₂, PM 10 , annual haze days, and annual mean Air Pollution Index/Air Quality Index (API/AQI). Air pollution has a greater impact on urban inhabitants as compared to rural inhabitants. When gender differences are considered, women are more likely to develop lung cancer due to air pollution. Smokers are more likely to suffer from lung cancer. These results provide a reference for the government to formulate policies to reduce air pollutant emissions and strengthen anti-smoking measures.
Correlation Analysis of PM10 and the Incidence of Lung Cancer in Nanchang, China
Zhou, Yi; Li, Lianshui; Hu, Lei
2017-01-01
Air pollution and lung cancer are closely related. In 2013, the World Health Organization listed outdoor air pollution as carcinogenic and regarded it as the most widespread carcinogen that humans are currently exposed to. Here, grey correlation and data envelopment analysis methods are used to determine the pollution factors causing lung cancer among residents in Nanchang, China, and identify population segments which are more susceptible to air pollution. This study shows that particulate matter with particle sizes below 10 micron (PM10) is most closely related to the incidence of lung cancer among air pollution factors including annual mean concentrations of SO2, NO2, PM10, annual haze days, and annual mean Air Pollution Index/Air Quality Index (API/AQI). Air pollution has a greater impact on urban inhabitants as compared to rural inhabitants. When gender differences are considered, women are more likely to develop lung cancer due to air pollution. Smokers are more likely to suffer from lung cancer. These results provide a reference for the government to formulate policies to reduce air pollutant emissions and strengthen anti-smoking measures. PMID:29048397
Associations between respiratory illness and PM{sub 10} air pollution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choudhury, A.H.; Gordian, M.E.; Morris, S.S.
In this study, the association between daily morbidity and respirable particulate pollution (i.e., particles with a mass median aerodynamic diameter of {le} 10 microns [PM{sub 10}]) was evaluated in the general population of Anchorage, Alaska. Using insurance claims data for state employees and their dependents who lived in Anchorage, Alaska, the authors determined the number of medical visits for asthma, bronchitis, and upper respiratory infections. The number of visits were related to the level of particulate pollution in ambient air measured at air-monitoring sites. 17 refs., 2 figs., 4 tabs.
Cooler and particulate separator for an off-gas stack
Wright, G.T.
1991-04-08
This report describes an off-gas stack for a melter, furnace or reaction vessel comprising an air conduit leading to two sets of holes, one set injecting air into the off-gas stack near the melter plenum and the second set injecting air downstream of the first set. The first set injects air at a compound angle, having both downward and tangential components, to create a reverse vortex flow, counter to the direction of flow of gas through the stack and also along the periphery of the stack interior surface. Air from the first set of holes prevents recirculation zones from forming and the attendant accumulation of particulate deposits on the wall of the stack and will also return to the plenum any particulate swept up in the gas entering the stack. The second set of holes injects air in the same direction as the gas in the stack to compensate for the pressure drop and to prevent the concentration of condensate in the stack. A set of sprayers, receiving water from a second conduit, is located downstream of the second set of holes and sprays water into the gas to further cool it.
NASA Astrophysics Data System (ADS)
Martins Pereira, Guilherme; Teinilä, Kimmo; Custódio, Danilo; Gomes Santos, Aldenor; Xian, Huang; Hillamo, Risto; Alves, Célia A.; Bittencourt de Andrade, Jailson; Olímpio da Rocha, Gisele; Kumar, Prashant; Balasubramanian, Rajasekhar; de Fátima Andrade, Maria; de Castro Vasconcellos, Pérola
2017-10-01
São Paulo in Brazil has relatively relaxed regulations for ambient air pollution standards and often experiences high air pollution levels due to emissions of particulate pollutants from local sources and long-range transport of air masses impacted by biomass burning. In order to evaluate the sources of particulate air pollution and related health risks, a year-round sampling was done at the University of São Paulo campus (20 m a.g.l.), a green area near an important expressway. The sampling was performed for PM2. 5 ( ≤ 2. 5 µm) and PM10 ( ≤ 10 µm) in 2014 through intensive (everyday sampling in wintertime) and extensive campaigns (once a week for the whole year) with 24 h of sampling. This year was characterized by having lower average precipitation compared to meteorological data, and high-pollution episodes were observed all year round, with a significant increase in pollution level in the intensive campaign, which was performed during wintertime. Different chemical constituents, such as carbonaceous species, polycyclic aromatic hydrocarbons (PAHs) and derivatives, water-soluble ions, and biomass burning tracers were identified in order to evaluate health risks and to apportion sources. The species such as PAHs, inorganic and organic ions, and monosaccharides were determined using chromatographic techniques and carbonaceous species using thermal-optical analysis. Trace elements were determined using inductively coupled plasma mass spectrometry. The risks associated with particulate matter exposure based on PAH concentrations were also assessed, along with indexes such as the benzo[a]pyrene equivalent (BaPE) and lung cancer risk (LCR). High BaPE and LCR were observed in most of the samples, rising to critical values in the wintertime. Also, biomass burning tracers and PAHs were higher in this season, while secondarily formed ions presented low variation throughout the year. Meanwhile, vehicular tracer species were also higher in the intensive campaign, suggesting the influence of lower dispersion conditions in that period. Source apportionment was performed using positive matrix factorization (PMF), which indicated five different factors: road dust, industrial emissions, vehicular exhaust, biomass burning and secondary processes. The results highlighted the contribution of vehicular emissions and the significant input from biomass combustion in wintertime, suggesting that most of the particulate matter is due to local sources, in addition to the influence of pre-harvest sugarcane burning.
Xiong, Qiulin; Zhao, Wenji; Gong, Zhaoning; Zhao, Wenhui; Tang, Tao
2015-09-22
Fine particulate matter has become the premier air pollutant of Beijing in recent years, enormously impacting the environmental quality of the city and the health of the residents. Fine particles with aerodynamic diameters of 0~0.3 μm, 0.3~0.5 μm, and 0.5~1.0 μm, from the yeasr 2007 to 2012, were monitored, and the hospital data about respiratory diseases during the same period was gathered and calculated. Then the correlation between respiratory health and fine particles was studied by spatial analysis and grey correlation analysis. The results showed that the aerial fine particulate matter pollution was mainly distributed in the Zizhuyuan sub-district office. There was a certain association between respiratory health and fine particles. Outpatients with respiratory system disease in this study area were mostly located in the southeastern regions (Balizhuang sub-district office, Ganjiakou sub-district office, Wanshoulu sub-district office, and Yongdinglu sub-district office) and east-central regions (Zizhuyuan sub-district office and Shuangyushu sub-district office) of the study area. Correspondingly, PM₁ (particulate matter with aerodynamic diameter smaller than 1.0 um) concentrations in these regions were higher than those in any other regions. Grey correlation analysis results showed that the correlation degree of the fine particle concentration with the number of outpatients is high, and the smaller fine particles had more obvious effects on respiratory system disease than larger particles.
NASA Astrophysics Data System (ADS)
Li, Yun-Chun; Yu, Jian Zhen; Ho, Steven Sai Hang; Schauer, James J.; Yuan, Zibing; Lau, Alexis K. H.; Louie, Peter K. K.
2013-02-01
PM2.5 samples were collected at six general stations and one roadside station in Hong Kong in two periods of high particulate matter (PM) in 2003 (27 October-4 November and 30 November-13 December). The highest PM2.5 reached 216 μg m- 3 during the first high PM period and 113 μg m- 3 during the second high PM period. Analysis of synoptic weather conditions identified individual sampling days under dominant influence of one of three types of air masses, that is, local, regional and long-range transported (LRT) air masses. Roadside samples were discussed separately due to heavy influences from vehicular emissions. This research examines source apportionment of fine organic carbon (OC) and contribution of secondary organic aerosol on high PM days under different synoptic conditions. Six primary OC (POC) sources (vehicle exhaust, biomass burning, cooking, cigarette smoke, vegetative detritus, and coal combustion) were identified on the basis of characteristic organic tracers. Individual POC source contributions were estimated using chemical mass balance model. In the roadside and the local samples, OC was dominated by the primary sources, accounting for more than 74% of OC. In the samples influenced by regional and LRT air masses, secondary OC (SOC), which was approximated to be the difference between the total measured OC and the apportioned POC, contributed more than 54% of fine OC. SOC was highly correlated with water-soluble organic carbon and sulfate, consistent with its secondary nature.
A health-based assessment of particulate air pollution in urban areas of Beijing in 2000-2004.
Zhang, Minsi; Song, Yu; Cai, Xuhui
2007-04-15
Particulate air pollution is a serious problem in Beijing. The annual concentration of particulate matter with aerodynamic diameter less than 10 microm (PM(10)), ranging from 141 to 166 microg m(-3) in 2000-2004, could be very harmful to human health. In this paper, we presented the mortality and morbidity effects of PM(10) pollution based on statistical data and the epidemiological exposure-response function. The economic costs to health during the 5 years were estimated to lie between US$1670 and $3655 million annually, accounting for about 6.55% of Beijing's gross domestic product each year. The total costs were apportioned into two parts caused by: the local emissions and long-range transported pollution. The contribution from local emissions dominated the total costs, accounting on average for 3.60% of GDP. However, the contributions from transported pollution cannot be neglected, and the relative percentage to the total costs from the other regions could account for about 45%. An energy policy and effective measures should be proposed to reduce particulate matter, especially PM(2.5) pollution in Beijing to protect public health. The Beijing government also needs to cooperate with the other local governments to reduce high background level of particulate air pollution.
Residential environmental risks for reproductive age women in developing countries.
Dyjack, David; Soret, Samuel; Chen, Lie; Hwang, Rhonda; Nazari, Nahid; Gaede, Donn
2005-01-01
Published research suggests there is an association between maternal inhalation of common ambient air pollutants and adverse birth outcomes, including an increased risk for preterm delivery, intrauterine growth retardation, small head circumference, low birth weight, and increased rate of malformations. The air pollutants produced by indoor combustion of biomass fuels, used by 50% of households worldwide, have been linked to acute lower respiratory infections, the single most important cause of mortality in children under the age of 5. This report describes a hypothesis-generating study in West Wollega, Ethiopia, conducted to assess airborne particulate matter concentrations in homes that combust biomass fuels (biomass homes). Respirable suspended particulate matter was measured in biomass homes and nonbiomass homes using NIOSH method 0600. Measured airborne particulate concentrations in biomass homes were up to 130 times higher than air quality standards. These findings, in part, confirm that exposure to indoor air pollutants are a major source of concern for mother/child health. Midwives are encouraged to raise awareness, contribute to research efforts, and assist in interventions.
Wu, Shaowei; Deng, Furong; Hao, Yu; Shima, Masayuki; Wang, Xin; Zheng, Chanjuan; Wei, Hongying; Lv, Haibo; Lu, Xiuling; Huang, Jing; Qin, Yu; Guo, Xinbiao
2013-09-15
The study examined the associations of 32 chemical constituents of particulate matter with an aerodynamic diameter ≤2.5 μm (PM₂.₅) with pulmonary function in a panel of 21 college students. Study subjects relocated from a suburban area to an urban area with changing ambient air pollution levels and contents in Beijing, China, and provided daily morning/evening peak expiratory flow (PEF) and forced expiratory volume in 1s (FEV₂₁) measurements over 6 months in three study periods. There were significant reductions in evening PEF and morning/evening FEV₂₁ associated with various air pollutants and PM₂.₅ constituents. Four PM₂.₅ constituents (copper, cadmium, arsenic and stannum) were found to be most consistently associated with the reductions in these pulmonary function measures. These findings provide clues for the respiratory effects of specific particulate chemical constituents in the context of urban air pollution. Copyright © 2013 Elsevier B.V. All rights reserved.
Air pollution source identification
NASA Technical Reports Server (NTRS)
Fordyce, J. S.
1975-01-01
Techniques for air pollution source identification are reviewed, and some results obtained with them are evaluated. Described techniques include remote sensing from satellites and aircraft, on-site monitoring, and the use of injected tracers and pollutants themselves as tracers. The use of a large number of trace elements in ambient airborne particulate matter as a practical means of identifying sources is discussed in detail. Sampling and analysis techniques are described, and it is shown that elemental constituents can be related to specific source types such as those found in the earth's crust and those associated with specific industries. Source identification sytems are noted which utilize charged particle X-ray fluorescence analysis of original field data.
Particulate air pollution and mortality in a cohort of Chinese men.
Zhou, Maigeng; Liu, Yunning; Wang, Lijun; Kuang, Xingya; Xu, Xiaohui; Kan, Haidong
2014-03-01
Few prior cohort studies exist in developing countries examining the association of ambient particulate matter (PM) with mortality. We examined the association of particulate air pollution with mortality in a prospective cohort study of 71,431 middle-aged Chinese men. Baseline data were obtained during 1990-1991. The follow-up evaluation was completed in January, 2006. Annual average PM exposure between 1990 and 2005, including TSP and PM10, were estimated by linking fixed-site monitoring data with residential communities. We found significant associations between PM10 and mortality from cardiopulmonary diseases; each 10 μg/m(3) PM10 was associated with a 1.6% (95%CI: 0.7%, 2.6%), 1.8% (95%CI: 0.8%, 2.9%) and 1.7% (95%CI: 0.3%, 3.2%) increased risk of total, cardiovascular and respiratory mortality, respectively. For TSP, we observed significant associations only for cardiovascular morality. These data contribute to the scientific literature on long-term effects of particulate air pollution for high exposure settings typical in developing countries. Copyright © 2013 Elsevier Ltd. All rights reserved.
Avagyan, Rozanna; Sadiktsis, Ioannis; Bergvall, Christoffer; Westerholm, Roger
2014-10-01
Urban particulate matter (PM), asphalt, and tire samples were investigated for their content of benzothiazole and benzothiazole derivates. The purpose of this study was to examine whether wear particles, i.e., tire tread wear or road surface wear, could contribute to atmospheric concentrations of benzothiazole derivatives. Airborne particulate matter (PM10) sampled at a busy street in Stockholm, Sweden, contained on average 17 pg/m(3) benzothiazole and 64 pg/m(3) 2-mercaptobenzothiazole, and the total suspended particulate-associated benzothiazole and 2-mercaptobenzothiazole concentrations were 199 and 591 pg/m(3), respectively. This indicates that tire tread wear may be a major source of these benzothiazoles to urban air PM in Stockholm. Furthermore, 2-mercaptobenzothiazole was determined in urban air particulates for the first time in this study, and its presence in inhalable PM10 implies that the human exposure to this biocide is underestimated. This calls for a revision of the risk assessments of 2-mercaptobenzothiazole exposure to humans which currently is limited to occupational exposure.
[A Meta analysis on the associations between air pollution and respiratory mortality in China].
Liu, Changjing; Huang, Fei; Yang, Zhizhou; Sun, Zhaorui; Huang, Changbao; Liu, Hongmei; Shao, Danbing; Zhang, Wei; Ren, Yi; Tang, Wenjie; Han, Xiaoqin; Nie, Shinan
2015-08-01
To analyze the associations between air pollution and adverse health outcomes on respiratory diseases and to estimate the short-term effects of air pollutions [Particulate matter with particle size below 10 microns (PM(10)), PM(10) particulate matter with particle size below 2.5 microns (PM(2.5)), nitrogen dioxide (NO₂), sulphur dioxide (SO₂) and ozone (O₃)] on respiratory mortality in China. Data related to the epidemiological studies on the associations between air pollution and adverse health outcomes of respiratory diseases that published from 1989 through 2014 in China, were collected by systematically searching databases of PubMed, SpringerLink, Embase, Medline, CNKI, CBM and VIP in different provinces of China. Short-term effects between (PM(10), PM(2.5), NO₂, SO₂, O₃) and respiratory mortality were analyzed by Meta-analysis method, and estimations were pooled by random or fixed effect models, using the Stata 12.0 software. A total of 157 papers related to the associations between air pollution and adverse health outcomes of respiratory diseases in China were published, which covered 79.4% of all the provinces in China. Results from the Meta-analysis showed that a 10 µg/m³ increase in PM10, PM(2.5), NO₂, SO₂, and O₃was associated with mortality rates as 0.50% (95% CI: 0-0.90%), 0.50% (95% CI: 0.30%-0.70%), 1.39% (95% CI: 0.90%-1.78%), 1.00% (95% CI: 0.40%-1.59%) and 0.10% (95% CI: -1.21%-1.39%) in respiratory tracts, respectively. No publication bias was found among these studies. There seemed positive associations existed between PM(10)/PM(2.5)/NO₂/SO₂and respiratory mortality in China that the relationship called for further attention on air pollution and adverse health outcomes of the respiratory diseases.
The present Supplement to the Second Addendum (1986) to the document Air Quality Criteria for Particulate Matter and Sulfur Oxides (1982) focuses on evaluation of newly available controlled human exposure studies of acute (a\\1h) sulfur dioxide (SO2) exposure effects on pulmonary ...
Calderón-Garcidueñas, Lilian; Franco-Lira, Maricela; Torres-Jardón, Ricardo; Henriquez-Roldán, Carlos; Barragán-Mejía, Gerardo; Valencia-Salazar, Gildardo; González-Maciel, Angelica; Reynoso-Robles, Rafael; Villarreal-Calderón, Rafael; Reed, William
2007-01-01
Exposures to particulate matter and gaseous air pollutants have been associated with respiratory tract inflammation, disruption of the nasal respiratory and olfactory barriers, systemic inflammation, production of mediators of inflammation capable of reaching the brain and systemic circulation of particulate matter. Mexico City (MC) residents are exposed to significant amounts of ozone, particulate matter and associated lipopolysaccharides. MC dogs exhibit brain inflammation and an acceleration of Alzheimer's-like pathology, suggesting that the brain is adversely affected by air pollutants. MC children, adolescents and adults have a significant upregulation of cyclooxygenase-2 (COX2) and interleukin-1beta (IL-1beta) in olfactory bulb and frontal cortex, as well as neuronal and astrocytic accumulation of the 42 amino acid form of beta -amyloid peptide (Abeta 42), including diffuse amyloid plaques in frontal cortex. The pathogenesis of Alzheimer's disease (AD) is characterized by brain inflammation and the accumulation of Abeta 42, which precede the appearance of neuritic plaques and neurofibrillary tangles, the pathological hallmarks of AD. Our findings of nasal barrier disruption, systemic inflammation, and the upregulation of COX2 and IL-1beta expression and Abeta 42 accumulation in brain suggests that sustained exposures to significant concentrations of air pollutants such as particulate matter could be a risk factor for AD and other neurodegenerative diseases.
2014-01-01
Exposure to particulate air pollution and socioeconomic risk factors are shown to be independently associated with adverse pregnancy outcomes; however, their confounding relationship is an epidemiological challenge that requires understanding of their shared etiologic pathways affecting fetal-placental development. The purpose of this paper is to explore the etiological mechanisms associated with exposure to particulate air pollution in contributing to adverse pregnancy outcomes and how these mechanisms intersect with those related to socioeconomic status. Here we review the role of oxidative stress, inflammation and endocrine modification in the pathoetiology of deficient deep placentation and detail how the physical and social environments can act alone and collectively to mediate the established pathology linked to a spectrum of adverse pregnancy outcomes. We review the experimental and epidemiological literature showing that diet/nutrition, smoking, and psychosocial stress share similar pathways with that of particulate air pollution exposure to potentially exasperate the negative effects of either insult alone. Therefore, socially patterned risk factors often treated as nuisance parameters should be explored as potential effect modifiers that may operate at multiple levels of social geography. The degree to which deleterious exposures can be ameliorated or exacerbated via community-level social and environmental characteristics needs further exploration. PMID:25574176
An automated atmospheric sampling system operating on 747 airliners
NASA Technical Reports Server (NTRS)
Perkins, P.; Gustafsson, U. R. C.
1975-01-01
An air sampling system that automatically measures the temporal and spatial distribution of selected particulate and gaseous constituents of the atmosphere has been installed on a number of commercial airliners and is collecting data on commercial air routes covering the world. Measurements of constituents related to aircraft engine emissions and other pollutants are made in the upper troposphere and lower stratosphere (6 to 12 km) in support of the Global Air Sampling Program (GASP). Aircraft operated by different airlines sample air at latitudes from the Arctic to Australia. This system includes specialized instrumentation for measuring carbon monoxide, ozone, water vapor, and particulates, a special air inlet probe for sampling outside air, a computerized automatic control, and a data acquisition system. Air constituents and related flight data are tape recorded in flight for later computer processing on the ground.
Particle-bound benzene from diesel engine exhaust.
Muzyka, V; Veimer, S; Shmidt, N
1998-12-01
The large surface area of the carbon core of diesel exhaust particles may contribute to the adsorption or condensation of such volatile carcinogenic organic compounds as benzene. The attention of this study focused on determining the distribution of benzene between the gas and particulate phases in the breathing zone of bus garage workers. Benzene and suspended particulate matter were evaluated jointly in the air of a municipal bus garage. Personal passive monitors were used for benzene sampling in the breathing zone of the workers. Active samplers were used for sampling diesel exhaust particles and the benzene associated with them. The benzene levels were measured by gas chromatography. Diesel engine exhaust from buses was the main source of air pollution caused by benzene and particles in this study. The concentration of benzene in the gas and particulate phases showed a wide range of variation, depending on the distance of the workplace from the operating diesel engine. Benzene present in the breathing zone of the workers was distributed between the gas and particulate phases. The amounts of benzene associated with particles were significantly lower in summer than in winter. The particulate matter of diesel exhaust contains benzene in amounts comparable to the concentrations of carcinogenic polycyclic aromatic hydrocarbons (PAH) and the usually found nitro-PAH. The concentration of benzene in the gas phase and in the suspended particulate matter of air can serve as an additional indicator of exposure to diesel exhaust and its carcinogenicity.
Jimenez, Jorge; Farias, Oscar; Quiroz, Roberto; Yañez, Jorge
2017-07-01
In south-central Chile, wood stoves have been identified as an important source of air pollution in populated areas. Eucalyptus (Eucalyptus globulus), Chilean oak (Nothofagus oblique), and mimosa (Acacia dealbata) were burned in a single-chamber slow-combustion wood stove at a controlled testing facility located at the University of Concepción, Chile. In each experiment, 2.7-3.1 kg of firewood were combusted while continuously monitoring temperature, exhaust gases, burn rate, and collecting particulate matter samples in Teflon filters under isokinetic conditions for polycyclic aromatic hydrocarbon and levoglucosan analyses. Mean particulate matter emission factors were 2.03, 4.06, and 3.84 g/kg dry wood for eucalyptus, oak, and mimosa, respectively. The emission factors were inversely correlated with combustion efficiency. The mean emission factors of the sums of 12 polycyclic aromatic hydrocarbons in particle phases were 1472.5, 2134.0, and 747.5 μg/kg for eucalyptus, oak, and mimosa, respectively. Fluoranthene, pyrene, benzo[a]anthracene, and chrysene were present in the particle phase in higher proportions compared with other polycyclic aromatic hydrocarbons that were analyzed. Mean levoglucosan emission factors were 854.9, 202.3, and 328.0 mg/kg for eucalyptus, oak, and mimosa, respectively. Since the emissions of particulate matter and other pollutants were inversely correlated with combustion efficiency, implementing more efficient technologies would help to reduce air pollutant emissions from wood combustion. Residential wood burning has been identified as a significant source of air pollution in populated areas. Local wood species are combusted for home cooking and heating, which releases several toxic air pollutants, including particulate matter, carbon monoxide, and polycyclic aromatic hydrocarbons. Air pollutant emissions depend on the type of wood and the technology and operational conditions of the wood stove. A better understanding of emissions from local wood species and wood stove performance would help to identify better biomass fuels and wood stove technologies in order to reduce air pollution from residential wood burning.
Environmental Issues in Managing Asthma
Diette, Gregory B; McCormack, Meredith C; Hansel, Nadia N; Breysse, Patrick N; Matsui, Elizabeth C
2008-01-01
Management of asthma requires attention to environmental exposures both indoors and outdoors. Americans spend most of their time indoors, where they have a greater ability to modify their environment. The indoor environment contains both pollutants (eg, particulate matter, nitrogen dioxide, secondhand smoke, and ozone) and allergens from furred pets, dust mites, cockroaches, rodents, and molds. Indoor particulate matter consists of particles generated from indoor sources such as cooking and cleaning activities, and particles that penetrate from the outdoors. Nitrogen dioxide sources include gas stoves, furnaces, and fireplaces. Indoor particulate matter and nitrogen dioxide are linked to asthma morbidity. The indoor ozone concentration is mainly influenced by the outdoor ozone concentration. The health effects of indoor ozone exposure have not been well studied. In contrast, there is substantial evidence of detrimental health effects from secondhand smoke. Guideline recommendations are not specific for optimizing indoor air quality. The 2007 National Asthma Education and Prevention Program asthma guidelines recommend eliminating indoor smoking and improving the ventilation. Though the guidelines state that there is insufficient evidence to recommend air cleaners, air cleaners and reducing activities that generate indoor pollutants may be sound practical approaches for improving the health of individuals with asthma. The guidelines are more specific about allergen avoidance; they recommend identifying allergens to which the individual is immunoglobin E sensitized and employing a multifaceted, comprehensive strategy to reduce exposure. Outdoor air pollutants that impact asthma include particulate matter, ozone, nitrogen dioxide, and sulfur dioxide, and guidelines recommend that individuals with asthma avoid exertion outdoors when these pollutants are elevated. Outdoor allergens include tree, grass, and weed pollens, which vary in concentration by season. Recommendations to reduce exposure include staying indoors, keeping windows and doors closed, using air conditioning and perhaps high-efficiency particulate arrestor (HEPA) air filters, and thorough daily washing to remove allergens from one’s person. PMID:18426614
Impact of climatic extremity upon human health
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miah, M.A.; Samad, M.A.
The extreme climate generated in the wake of the shortage of the supply of natural water in the lower Ganges basin has triggered a number of environmental diseases in the lower Ganges basin. In the wake of improper sanitation conditions for the scarcity of water, water-borne diseases like cholera, diarrhea, hepatitis, etc., break out and take out the lives of victims. Further, the development of the dry climate has favored an increased amount of suspended particulate matter in the air. The result is the prevalent problem of asthma which is even worse than the water-borne diseases. Almost one in everymore » four families living in this city has an asthma patient. The worst is that more than 10% of the families have three asthma patients. And, most of the elderly asthma patients suffer from diabetes and high blood pressure at the same time. The wide spread of asthma is thought to be related to the triggering allergic action suffered by patients due to the presence of excess particulate matter in the air. More than 50% of the population suffer from nasal allergy, sinusitis, and chronic bronchitis. The suspended particles are mostly fine grains of sands and carbon. The cleanest air (usually, after a heavy rainfall) contains at least one gm of particulate matter in every 2,039 cubic meter of air. An average man will inhale about 1.11 million gallons of air per year which amounts to about 2 gm of particulate matter per year. Additionally, during the dry months, major duststorms appear a couple of times with an uplift of half a million kg of dust in air over about 810 square km each time. The paper will focus on water scarcity, the climatic extremity, suspended particulate matter, the outbreaks of water-borne and the prevalent respiratory diseases, and suggestions to mitigate human sufferings.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ezzati, M.; Mbinda, B.M.; Kammen, D.M.
Suspended particulate matter and carbon emissions from the combustion of biomass, in addition to their environmental consequences, have been causally associated with the incidence of respiratory and eye infections. Improved stoves offer the potential for emissions reduction. The authors compare the emissions of suspended particulate matter and carbon monoxide from traditional and improved biofuel stoves in Kenya under the actual conditions of household use. Data for analysis is from 137 14-h days of continuous real-time emission concentration monitoring in a total of 38 households. Their analysis shows that improved (ceramic) wood-burning stoves reduce daily average suspended particulate matter concentration bymore » 48% during the active burning period and by 77% during the smoldering phase. Ceramic stoves also reduce the median and the 75th and 95th percentiles of daily emission concentration during the burning period and the 95th percentile during the smoldering phase, and therefore shift the overall emission profile downward. Improved charcoal-burning stoves also offer reductions in indoor air pollution compared to the traditional metal stove, but these are not statistically significant. The greatest reduction in emission concentration is achieved as a result of transition from wood to charcoal where mean emission concentrations drop by 87% during the burning period and by 92% when smoldering as well as large reductions in the median and 75th and 95th percentiles. These results indicate that transition to charcoal, followed by the use of improved wood stoves, are viable options for reduction of human exposure to indoor air pollution in many developing nations.« less
Krewski, Daniel; Burnett, Richard T; Goldberg, Mark S; Hoover, B Kristin; Siemiatycki, Jack; Jerrett, Michael; Abrahamowicz, Michal; White, Warren H
This article provides an overview of the Reanalysis Study of the Harvard Six Cities and the American Cancer Society (ACS) studies of particulate air pollution and mortality. The previous findings of the studies have been subject to debate. In response, a reanalysis team, comprised of Canadian and American researchers, was invited to participate in an independent reanalysis project to address the concerns. Phase I of the reanalysis involved the design of data audits to determine whether each study conformed to the consistency and accuracy of their data. Phase II of the reanalysis involved conducting a series of comprehensive analyses using alternative statistical methods. Alternative models were also used to identify covariates that may confound or modify the association of particulate air pollution as well as identify sensitive population subgroups. The audit demonstrated that the data in the original analyses were of high quality, as were the risk estimates reported by the original investigators. The sensitivity analysis illustrated that the mortality risk estimates reported in both studies were found to be robust against alternative Cox models. Detailed investigation of the covariate effects found a significant modifying effect of education and a relative risk of mortality associated with fine particles and declining education levels. The study team applied spatial analytic methods to the ACS data, resulting in various levels of spatial autocorrelations supporting the reported association for fine particles mortality of the original investigators as well as demonstrating a significant association between sulfur dioxide and mortality. Collectively, our reanalysis suggest that mortality may be attributable to more than one component of the complex mixture of ambient air pollutants for U.S. urban areas.
Toro A, Richard; Campos, Claudia; Molina, Carolina; Morales S, Raul G E; Leiva-Guzmán, Manuel A
2015-09-01
A critical analysis of Chile's National Air Quality Information System (NAQIS) is presented, focusing on particulate matter (PM) measurement. This paper examines the complexity, availability and reliability of monitoring station information, the implementation of control systems, the quality assurance protocols of the monitoring station data and the reliability of the measurement systems in areas highly polluted by particulate matter. From information available on the NAQIS website, it is possible to confirm that the PM2.5 (PM10) data available on the site correspond to 30.8% (69.2%) of the total information available from the monitoring stations. There is a lack of information regarding the measurement systems used to quantify air pollutants, most of the available data registers contain gaps, almost all of the information is categorized as "preliminary information" and neither standard operating procedures (operational and validation) nor assurance audits or quality control of the measurements are reported. In contrast, events that cause saturation of the monitoring detectors located in northern and southern Chile have been observed using beta attenuation monitoring. In these cases, it can only be concluded that the PM content is equal to or greater than the saturation concentration registered by the monitors and that the air quality indexes obtained from these measurements are underestimated. This occurrence has been observed in 12 (20) public and private stations where PM2.5 (PM10) is measured. The shortcomings of the NAQIS data have important repercussions for the conclusions obtained from the data and for how the data are used. However, these issues represent opportunities for improving the system to widen its use, incorporate comparison protocols between equipment, install new stations and standardize the control system and quality assurance. Copyright © 2015 Elsevier Ltd. All rights reserved.
40 CFR 60.282a - Standard for filterable particulate matter.
Code of Federal Regulations, 2014 CFR
2014-07-01
... matter. 60.282a Section 60.282a Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... 23, 2013 § 60.282a Standard for filterable particulate matter. (a) On and after the date on which the... furnace any gases which: (i) Contain filterable particulate matter in excess of 0.10 gram per dry standard...
The final 2008 lead (Pb) national ambient air quality standards (NAAQS) revision maintains Pb in total suspended particulate matter as the indicator. However, the final rule permits the use of low-volume PM10 (particulate matter sampled with a 50% cut-point of 10 μm) F...
The purpose of this SOP is to describe the in-field use of the particulate sampling system (pumping, control unit, and size selective inlet impactors) for collecting samples of particulate matter from the air during a predetermined time period during the Arizona NHEXAS project an...
Air pollution and ED visits for asthma in Australian children: a case-crossover analysis.
Jalaludin, Bin; Khalaj, Behnoosh; Sheppeard, Vicky; Morgan, Geoff
2008-08-01
We aimed to determine the effects of ambient air pollutants on emergency department (ED) visits for asthma in children. We obtained routinely collected ED visit data for asthma (ICD9 493) and air pollution (PM(10), PM(2.5), O(3), NO(2), CO and SO(2)) and meteorological data for metropolitan Sydney for 1997-2001. We used the time stratified case-crossover design and conditional logistic regression to model the association between air pollutants and ED visits for four age-groups (1-4, 5-9, 10-14 and 1-14 years). Estimated relative risks for asthma ED visits were calculated for an exposure corresponding to the inter-quartile range in pollutant level. We included same day average temperature, same day relative humidity, daily temperature range, school holidays and public holidays in all models. Associations between ambient air pollutants and ED visits for asthma in children were most consistent for all six air pollutants in the 1-4 years age-group, for particulates and CO in the 5-9 years age-group and for CO in the 10-14 years age-group. The greatest effects were most consistently observed for lag 0 and effects were greater in the warm months for particulates, O(3) and NO(2). In two pollutant models, effect sizes were generally smaller compared to those derived from single pollutant models. We observed the effects of ambient air pollutants on ED attendances for asthma in a city where the ambient concentrations of air pollutants are relatively low.
Evaluation of Magnetic Biomonitoring as a Robust Proxy for Traffic-Derived Pollution.
NASA Astrophysics Data System (ADS)
Mitchell, R.; Maher, B.
2008-12-01
Inhalation of particulate pollutants below 10 micrometers in size (PM10) is associated with adverse health effects. Here we examine the utility of magnetic remanence measurements of roadside tree leaves as a quantitative proxy for vehicle-derived PM, by comparing leaf magnetic remanences with the magnetic properties, particulate mass and particulate concentration of co-located pumped air samples (around Lancaster, UK). Leaf samples were collected in early autumn 2007 from sites in close proximity to a major ring road, with a few additionally from background and suburban areas. Leaves were collected from lime trees (Tilia platyphyllos) only, to avoid possible species-dependent differences in PM collection. Magnetic susceptibility values were small and negative, reflecting the diamagnetic nature of the leaves. Low- temperature remanence curves show significant falls in remanence between 114 and 127 K in all of the leaf samples. ÷ARM/SIRM ratios indicate that the dominant size of the leaf magnetic particles is between c. 0.1-2 micrometers. Analysis of leaf particles by SEM confirms that their dominant grain size is < 2 micrometers, with a significant number of iron-rich spherules < 1 micrometer in diameter. Particle loading is concentrated around ridges in the leaf surface; significant numbers of the finer particles (< 500 nm) are frequently agglomerated, most likely due to magnetic interactions between particles. Larger particles exhibit an irregular morphology, with high silica and aluminum content. Particle composition is consistent with exhaust outputs collected on a filter. Critically, leaf saturation remanence (SIRM) values exhibit strong correlation with the particulate mass and SIRM of co-located, pumped air samples, indicating they are an effective proxy for ambient particulate concentrations. Biomagnetic monitoring using tree leaves can thus potentially provide high spatial resolution data sets for assessment of particulate pollution loadings at pedestrian-relevant heights. Not only do leaf SIRM values increase with proximity to roads with higher traffic volumes, leaf SIRM values are c. 100 % higher at 0.3 m than at c. 1.5 to 2 m height.
Li, Pei; Xin, Jinyuan; Wang, Yuesi; Li, Guoxing; Pan, Xiaochuan; Wang, Shigong; Cheng, Mengtian; Wen, Tianxue; Wang, Guangcheng; Liu, Zirui
2015-01-01
Recent time series studies have indicated that daily mortality and morbidity are associated with particulate matters. However, about the relative effects and its seasonal patterns of fine particulate matter constituents is particularly limited in developing Asian countries. In this study, we examined the role of particulate matters and its key chemical components of fine particles on both mortality and morbidity in Beijing. We applied several overdispersed Poisson generalized nonlinear models, adjusting for time, day of week, holiday, temperature, and relative humidity, to investigate the association between risk of mortality or morbidity and particulate matters and its constituents in Beijing, China, for January 2005 through December 2009. Particles and several constituents were associated with multiple mortality or morbidity categories, especially on respiratory health. For a 3-day lag, the nonaccident mortality increased by 1.52, 0.19, 1.03, 0.56, 0.42, and 0.32% for particulate matter (PM)2.5, PM10, K(+), SO4(2-), Ca(2+), and NO3(-) based on interquartile ranges of 36.00, 64.00, 0.41, 8.75, 1.43, and 2.24 μg/m(3), respectively. The estimates of short-term effects for PM2.5 and its components in the cold season were 1 ~ 6 times higher than that in the full year on these health outcomes. Most of components had stronger adverse effects on human health in the heavy PM2.5 mass concentrations, especially for K(+), NO3(-), and SO4(2-). This analysis added to the growing body of evidence linking PM2.5 with mortality or morbidity and indicated that excess risks may vary among specific PM2.5 components. Combustion-related products, traffic sources, vegetative burning, and crustal component and resuspended road dust may play a key role in the associations between air pollution and public health in Beijing.
Measurement and analysis of ambient atmospheric particulate matter in urban and remote environments
NASA Astrophysics Data System (ADS)
Hagler, Gayle S. W.
Atmospheric particulate matter pollution is a challenging environmental concern in both urban and remote locations worldwide. It is intrinsically difficult to control, given numerous anthropogenic and natural sources (e.g. fossil fuel combustion, biomass burning, dust, and seaspray) and atmospheric transport up to thousands of kilometers after production. In urban regions, fine particulate matter (particles with diameters under 2.5 mum) is of special concern for its ability to penetrate the human respiratory system and threaten cardiopulmonary health. A second major impact area is climate, with particulate matter altering Earth's radiative balance through scattering and absorbing solar radiation, modifying cloud properties, and reducing surface reflectivity after deposition in snow-covered regions. While atmospheric particulate matter has been generally well-characterized in populated areas of developed countries, particulate pollution in developing nations and remote regions is relatively unexplored. This thesis characterizes atmospheric particulate matter in locations that represent the extreme ends of the spectrum in terms of air pollution-the rapidly-developing and heavily populated Pearl River Delta Region of China, the pristine and climate-sensitive Greenland Ice Sheet, and a remote site in the Colorado Rocky Mountains. In China, fine particles were studied through a year-long field campaign at seven sites surrounding the Pearl River Delta. Fine particulate matter was analyzed for chemical composition, regional variation, and meteorological impacts. On the Greenland Ice Sheet and in the Colorado Rocky Mountains, the carbonaceous fraction (organic and elemental carbon) of particulate matter was studied in the atmosphere and snow pack. Analyses included quantifying particulate chemical and optical properties, assessing atmospheric transport, and evaluating post-depositional processing of carbonaceous species in snow.
Challenges and Opportunities of Air Quality Management in Mexico City
NASA Astrophysics Data System (ADS)
Paramo, V.
2013-05-01
The Mexico City Metropolitan Area (MCMA) is located in the central plateau of Mexico and is the capital of the country. Its natural characteristics present favorable conditions for air pollution formation and accumulation: mountains surrounding the city, frequent thermal inversions, high isolation all around the year and weak winds. To these natural conditions, a population of more than 20 million inhabitants, a fleet of 4.5 million vehicles and more than 4 thousands industries, make air quality management a real challenge for governments of the region. Intensive air quality improvement actions and programs began at the end of the 1980's and continued nowadays. Since then criteria air pollutants concentrations have decreased in such a way that currently most of pollutants meet the Mexican air quality standards, except for ozone and particulate matter. Applied measures comprised of fuel quality improvements, fuel replacements, regulations for combustion processes, closing of high polluting refineries and industries, regulations of emissions for new and on road vehicles, mandatory I/M programs for vehicles, circulation restrictions for vehicles (Day without car program), alert program for elevated air pollution episodes, improvement of public transportation, among others. Recent researches (MILAGRO 2006 campaign) found that currently it is necessary to implement emissions reduction actions for Volatile Organic Compounds, particulate matter with a diameter of less than 2.5 micrometers PM2.5 and Nitrogen Oxides, in order to reduce concentrations of ozone and fine particulate matter. Among the new measures to be implemented are: regulations for VOCs emissions in the industry and commercial sectors; regulation of the diesel fleet that includes fleets renewal, filters and particulate traps for in use vehicles and regulation of the cargo fleet; new schemes for reducing the number of vehicles circulating in the city; implementation of non-motorized mobility programs; among others.
Feasibility of CO/sub 2/ monitoring to assess air quality in mines using diesel equipment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daniel, J.H. Jr.
1987-01-01
The methodology includes: (1) establishing pollutant to CO/sub 2/ ratios for in-service equipment, (2) estimating pollutant concentrations from the ratios and in-mine CO/sub 2/ measurements, and (3) using an air quality index to combine the pollutants into a single number, which indicates the health hazard associated with the pollutants. For the methodology to be valid, the pollutant to CO/sub 2/ ratios must remain constant if engine operating conditions do not significantly change. However, due to the complex dynamics of the fuel injection system, the fuel-air combustion process, and the engine speed-load governing system, the pollutant to CO/sub 2/ ratios maymore » vary during repetitive, but transient engine speed-and-load operation. These transient effects were investigated. In addition, the influence of changing engine conditions due to engine maladjustment, and a practical means to evaluate engine condition were investigated to advance the methodology. The laboratory investigation determined that CO/sub 2/ is an effective indicator of engine exhaust pollutants. It was shown that the exhaust concentrations of carbon monoxide, carbon dioxide, oxides of nitrogen, hydrocarbons, and particulate matter do not significantly vary among repetitive, but transient engine speed-and-load duty cycles typical of in-service equipment. Based on an air quality index and threshold limit values, particulate matter exhibited the greatest adverse effect on air quality. Particulate mass was separated into volatile (organic soluble fraction) and nonvolatile (insoluble carbon fraction) components. Due to particulate concentrations, the engine operating conditions of overfueling and advanced injector timing had greater adverse effects on air quality than the conditions of retarded injector timing, intake air restriction, and Federal certification specifications.« less
Measurement of the mass and composition of particulate matter (PM) as a function of size is important for research studies for chemical mass balance, factor analysis, air quality model evaluation, epidemiology, and risk assessment. Such measurements are also important in underst...
Atmospheric mercury distribution in Northern Europe and in the Mediterranean region
NASA Astrophysics Data System (ADS)
Wängberg, I.; Munthe, J.; Pirrone, N.; Iverfeldt, Å.; Bahlman, E.; Costa, P.; Ebinghaus, R.; Feng, X.; Ferrara, R.; Gårdfeldt, K.; Kock, H.; Lanzillotta, E.; Mamane, Y.; Mas, F.; Melamed, E.; Osnat, Y.; Prestbo, E.; Sommar, J.; Schmolke, S.; Spain, G.; Sprovieri, F.; Tuncel, G.
Mercury species in air have been measured at five sites in Northwest Europe and at five coastal sites in the Mediterranean region during measurements at four seasons. Observed concentrations of total gaseous mercury (TGM), total particulate mercury (TPM) and reactive gaseous mercury (RGM) were generally slightly higher in the Mediterranean region than in Northwest Europe. Incoming clean Atlantic air seems to be enriched in TGM in comparison to air in Scandinavia. Trajectory analysis of events where high concentrations of TPM simultaneously were observed at sites in North Europe indicate source areas in Central Europe and provide evidence of transport of mercury on particles on a regional scale.
Canning, David
2017-01-01
Pregnant mothers in Bangladesh are exposed to very high and worsening levels of ambient air pollution. Maternal exposure to fine particulate matter has been associated with low birth weight at much lower levels of exposure, leading us to suspect the potentially large effects of air pollution on stunting in children in Bangladesh. We estimate the relationship between exposure to air pollution in utero and child stunting by pooling outcome data from four waves of the nationally representative Bangladesh Demographic and Health Survey conducted between 2004 and 2014, and calculating children’s exposure to ambient fine particulate matter in utero using high resolution satellite data. We find significant increases in the relative risk of child stunting, wasting, and underweight with higher levels of in utero exposure to air pollution, after controlling for other factors that have been found to contribute to child anthropometric failure. We estimate the relative risk of stunting in the second, third, and fourth quartiles of exposure as 1.074 (95% confidence interval: 1.014–1.138), 1.150 (95% confidence interval: 1.069–1.237, and 1.132 (95% confidence interval: 1.031–1.243), respectively. Over half of all children in Bangladesh in our sample were exposed to an annual ambient fine particulate matter level in excess of 46 µg/m3; these children had a relative risk of stunting over 1.13 times that of children in the lowest quartile of exposure. Reducing air pollution in Bangladesh could significantly contribute to the Sustainable Development Goal of reducing child stunting. PMID:29295507
Cleary, Erika; Asher, Mary; Olawoyin, Richard; Zhang, Kuangyuan
2017-11-01
Ambient air pollution is a public health issue which could potentially exacerbate pre-existing respiratory conditions and contribute to increases in asthma incidence. This study aims to address gaps in understanding how IAQ is impacted by outdoor air quality, which was done by sampling for indoor gaseous and particulate pollutants in residence and facilities near the sources of pollution. The study areas were selected due to non-attainment status with air quality standards, as well as demographic and socioeconomic status of those residing in these areas. Samples are obtained from five locations around the study areas. The sampling procedure involves active sampling methodologies for particulate matter (PM) and gases. Average volatile organic compounds (VOC) levels of 2.71 ppm were measured at a location, while the average particulate matter (PM) concentrations in three study locations were; 15,979 pt/cc, 9533 pt/cc, 5267 pt/cc respectively, which exceeded clean background environment level of 500-2000 pt/cc. All locations had average CO concentrations above 0.3 ppm, which is potentially associated with elevated asthma symptoms. Results demonstrated that facilities in the study area have increased levels of indoor air pollutants that potentially increase asthma and respiratory issues. The study concludes that particulate and gaseous pollutant levels in the study areas are a concerning human health issue. The study outcomes have significant implications for air quality exposure modeling and potential exposure mitigation strategies, which are expected to facilitate the implementation of public policies for improved human health conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.
Goyal, Nihit; Canning, David
2017-12-23
Pregnant mothers in Bangladesh are exposed to very high and worsening levels of ambient air pollution. Maternal exposure to fine particulate matter has been associated with low birth weight at much lower levels of exposure, leading us to suspect the potentially large effects of air pollution on stunting in children in Bangladesh. We estimate the relationship between exposure to air pollution in utero and child stunting by pooling outcome data from four waves of the nationally representative Bangladesh Demographic and Health Survey conducted between 2004 and 2014, and calculating children's exposure to ambient fine particulate matter in utero using high resolution satellite data. We find significant increases in the relative risk of child stunting, wasting, and underweight with higher levels of in utero exposure to air pollution, after controlling for other factors that have been found to contribute to child anthropometric failure. We estimate the relative risk of stunting in the second, third, and fourth quartiles of exposure as 1.074 (95% confidence interval: 1.014-1.138), 1.150 (95% confidence interval: 1.069-1.237, and 1.132 (95% confidence interval: 1.031-1.243), respectively. Over half of all children in Bangladesh in our sample were exposed to an annual ambient fine particulate matter level in excess of 46 µg/m³; these children had a relative risk of stunting over 1.13 times that of children in the lowest quartile of exposure. Reducing air pollution in Bangladesh could significantly contribute to the Sustainable Development Goal of reducing child stunting.
Intra and inter-continental aerosol transport and local and regional impacts
NASA Astrophysics Data System (ADS)
Charles, Leona Ann Marie
Under the Clean Air Act, the Environmental Protection Agency (EPA) is required to establish a nationally uniform air quality index for the reporting of air quality. In 1976, the EPA established this index, then called the Pollutant Standards Index, for use by state and local communities across the country. The Index provides information on pollutant concentrations for ground-level ozone, particulate matter, carbon monoxide, sulfur dioxide, and nitrogen dioxide. On July 18, 1997, the EPA revised the ozone and particulate matter standards, in light of a comprehensive review of new scientific evidence including refined fine particulate matter standards.* Any program which is designed to improve air quality must devise tools in which emissions, meteorology, air chemistry and transport are understood. Clearly, the complexity of this task requires measurements at both regional and mesoscale ranges, as well as on a continental scale to investigate long range transport. Unfortunately, determination of fine particulate matter (PM) concentrations is particularly difficult since an accurate measurement of PM2.5 relies on costly equipment which cannot provide the complete transport story and the mixing and dispersion of particulate matter is much more complex than that for trace gases. Besides the need for accurate measurements as a way of documenting air quality standards, the EPA is required in the near future to implement a 24 hour Air Quality Forecast. Current forecast tools are usually based on emission inventories and meteorological forecasts, but significant work is being done in trying to assimilate both ground measurements as well as satellite measurements into these schemes. Clearly, the 'Holy Grail' would be the capability of assimilating full 3D (+ time) measurements. However, since satellite measurements are primarily passive, only total air column properties such as aerosol optical depth can be retrieved. In particular, it is not possible to determine the vertical layering of aerosols in the troposphere from passive remote sensing measurements. Therefore, the connection with air pollution is very poor. Furthermore, the vertical structure of the aerosol is very important in assessing transport events and how they mix with the Planetary Boundary Layer (PBL). The need to fill this data gap and supply vertical information on plume detection has led to the launch of the Cloud Aerosol Lidar and Infrared Pathfinder Satellite (CALIPSO) space borne lidar system, which can in principle provide vertical profiles of aerosol backscatter that can be used in the assimilation schemes. One particular problem which needs to be addressed, is the fact that the relationship between the optical scattering coefficients (or AOD) and the PM2.5 mass is not simple. Finally, regarding non-attainment of National Ambient Air Quality Standards (NAAQS), it has also been shown that a significant portion of the PM2.5 aerosol mass can be due to non-local sources. This fact is critical in assessing the appropriate strategy in emission controls, as part of the state implementation plan (SIP) to come into compliance. However, these studies are usually based on statistical analysis tools such as Positive Factor Analysis (PFA), and are not applicable to any single measurement. In addition, little is known about the impact of episodic long range transport as a possible mechanism for affecting local pollution. Such a mechanism cannot be investigated by statistical means or by any existing air transport models which do not consider high altitude plumes (aerosol layers), and must be studied solely with an appropriate suite of measurements including the simultaneous use of sky radiometers, lidars and satellites. Furthermore, since fine particulate matter is so crucial to identify, multi-wavelength determination of aerosol properties such as angstrom coefficient are necessary. It is our purpose to investigate the possibility that such long range transport events can indeed affect local air-quality. This may first seem improbable due to the high plume altitudes, but we will show by case studies that significant mixing into the PBL can occur and affect local air quality. In particular, in chapters 5 and 6 we investigate dust and smoke transport events respectively, showing the usefulness of multi-wavelength lidar measurements to study the interaction of aerosols in the PBL with long range advected aerosol plumes. Our measurements are used to determine the plume angstrom exponent, which allows us to differentiate smoke events from dust events, as well as partitioning the total aerosol optical depth obtained from a CIMEL sky radiometer between the PBL and the high altitude plumes.* (Abstract shortened by UMI.) *Please refer to dissertation for diagrams.
Spatial mapping and analysis of aerosols during a forest fire using computational mobile microscopy
NASA Astrophysics Data System (ADS)
Wu, Yichen; Shiledar, Ashutosh; Luo, Yi; Wong, Jeffrey; Chen, Cheng; Bai, Bijie; Zhang, Yibo; Tamamitsu, Miu; Ozcan, Aydogan
2018-02-01
Forest fires are a major source of particulate matter (PM) air pollution on a global scale. The composition and impact of PM are typically studied using only laboratory instruments and extrapolated to real fire events owing to a lack of analytical techniques suitable for field-settings. To address this and similar field test challenges, we developed a mobilemicroscopy- and machine-learning-based air quality monitoring platform called c-Air, which can perform air sampling and microscopic analysis of aerosols in an integrated portable device. We tested its performance for PM sizing and morphological analysis during a recent forest fire event in La Tuna Canyon Park by spatially mapping the PM. The result shows that with decreasing distance to the fire site, the PM concentration increases dramatically, especially for particles smaller than 2 µm. Image analysis from the c-Air portable device also shows that the increased PM is comparatively strongly absorbing and asymmetric, with an aspect ratio of 0.5-0.7. These PM features indicate that a major portion of the PM may be open-flame-combustion-generated element carbon soot-type particles. This initial small-scale experiment shows that c-Air has some potential for forest fire monitoring.
Associations between air pollution and mortality in Phoenix, 1995-1997.
Mar, T F; Norris, G A; Koenig, J Q; Larson, T V
2000-01-01
We evaluated the association between mortality outcomes in elderly individuals and particulate matter (PM) of varying aerodynamic diameters (in micrometers) [PM(10), PM(2.5), and PM(CF )(PM(10) minus PM(2.5))], and selected particulate and gaseous phase pollutants in Phoenix, Arizona, using 3 years of daily data (1995-1997). Although source apportionment and epidemiologic methods have been previously combined to investigate the effects of air pollution on mortality, this is the first study to use detailed PM composition data in a time-series analysis of mortality. Phoenix is in the arid Southwest and has approximately 1 million residents (9. 7% of the residents are > 65 years of age). PM data were obtained from the U.S. Environmental Protection Agency (EPA) National Exposure Research Laboratory Platform in central Phoenix. We obtained gaseous pollutant data, specifically carbon monoxide, nitrogen dioxide, ozone, and sulfur dioxide data, from the EPA Aerometric Information Retrieval System Database. We used Poisson regression analysis to evaluate the associations between air pollution and nonaccidental mortality and cardiovascular mortality. Total mortality was significantly associated with CO and NO(2) (p < 0.05) and weakly associated with SO(2), PM(10), and PM(CF) (p < 0. 10). Cardiovascular mortality was significantly associated with CO, NO(2), SO(2), PM(2.5), PM(10), PM(CF) (p < 0.05), and elemental carbon. Factor analysis revealed that both combustion-related pollutants and secondary aerosols (sulfates) were associated with cardiovascular mortality. PMID:10753094
Zigler, Corwin M; Choirat, Christine; Dominici, Francesca
2018-03-01
Despite dramatic air quality improvement in the United States over the past decades, recent years have brought renewed scrutiny and uncertainty surrounding the effectiveness of specific regulatory programs for continuing to improve air quality and public health outcomes. We employ causal inference methods and a spatial hierarchical regression model to characterize the extent to which a designation of "nonattainment" with the 1997 National Ambient Air Quality Standard for ambient fine particulate matter (PM2.5) in 2005 causally affected ambient PM2.5 and health outcomes among over 10 million Medicare beneficiaries in the Eastern United States in 2009-2012. We found that, on average across all retained study locations, reductions in ambient PM2.5 and Medicare health outcomes could not be conclusively attributed to the nonattainment designations against the backdrop of other regional strategies that impacted the entire Eastern United States. A more targeted principal stratification analysis indicates substantial health impacts of the nonattainment designations among the subset of areas where the designations are estimated to have actually reduced ambient PM2.5 beyond levels achieved by regional measures, with noteworthy reductions in all-cause mortality, chronic obstructive pulmonary disorder, heart failure, ischemic heart disease, and respiratory tract infections. These findings provide targeted evidence of the effectiveness of local control measures after nonattainment designations for the 1997 PM2.5 air quality standard.
Linking Air Quality and Human Health Effects Models: An Application to the Los Angeles Air Basin
Stewart, Devoun R; Saunders, Emily; Perea, Roberto A; Fitzgerald, Rosa; Campbell, David E; Stockwell, William R
2017-01-01
Proposed emission control strategies for reducing ozone and particulate matter are evaluated better when air quality and health effects models are used together. The Community Multiscale Air Quality (CMAQ) model is the US Environmental Protection Agency’s model for determining public policy and forecasting air quality. CMAQ was used to forecast air quality changes due to several emission control strategies that could be implemented between 2008 and 2030 for the South Coast Air Basin that includes Los Angeles. The Environmental Benefits Mapping and Analysis Program—Community Edition (BenMAP-CE) was used to estimate health and economic impacts of the different emission control strategies based on CMAQ simulations. BenMAP-CE is a computer program based on epidemiologic studies that link human health and air quality. This modeling approach is better for determining optimum public policy than approaches that only examine concentration changes. PMID:29162976
Linking Air Quality and Human Health Effects Models: An Application to the Los Angeles Air Basin.
Stewart, Devoun R; Saunders, Emily; Perea, Roberto A; Fitzgerald, Rosa; Campbell, David E; Stockwell, William R
2017-01-01
Proposed emission control strategies for reducing ozone and particulate matter are evaluated better when air quality and health effects models are used together. The Community Multiscale Air Quality (CMAQ) model is the US Environmental Protection Agency's model for determining public policy and forecasting air quality. CMAQ was used to forecast air quality changes due to several emission control strategies that could be implemented between 2008 and 2030 for the South Coast Air Basin that includes Los Angeles. The Environmental Benefits Mapping and Analysis Program-Community Edition (BenMAP-CE) was used to estimate health and economic impacts of the different emission control strategies based on CMAQ simulations. BenMAP-CE is a computer program based on epidemiologic studies that link human health and air quality. This modeling approach is better for determining optimum public policy than approaches that only examine concentration changes.
30 CFR 57.5006 - Air Quality-Surface Only [Reserved
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Air Quality-Surface Only [Reserved] 57.5006... Quality, Radiation, Physical Agents, and Diesel Particulate Matter Air Quality-Surface and Underground...-Nitrosodimethylamine. Air Quality—Surface Only [Reserved] Air Quality—Underground Only ...
30 CFR 57.5006 - Air Quality-Surface Only [Reserved
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Air Quality-Surface Only [Reserved] 57.5006... Quality, Radiation, Physical Agents, and Diesel Particulate Matter Air Quality-Surface and Underground...-Nitrosodimethylamine. Air Quality—Surface Only [Reserved] Air Quality—Underground Only ...
30 CFR 57.5006 - Air Quality-Surface Only [Reserved
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Air Quality-Surface Only [Reserved] 57.5006... Quality, Radiation, Physical Agents, and Diesel Particulate Matter Air Quality-Surface and Underground...-Nitrosodimethylamine. Air Quality—Surface Only [Reserved] Air Quality—Underground Only ...
Fractal Analysis of Air Pollutant Concentrations
NASA Astrophysics Data System (ADS)
Cortina-Januchs, M. G.; Barrón-Adame, J. M.; Vega-Corona, A.; Andina, D.
2010-05-01
Air pollution poses significant threats to human health and the environment throughout the developed and developing countries. This work focuses on fractal analysis of pollutant concentration in Salamanca, Mexico. The city of Salamanca has been catalogued as one of the most polluted cities in Mexico. The main causes of pollution in this city are fixed emission sources, such as chemical industry and electricity generation. Sulphur Dioxide (SO2) and Particulate Matter less than 10 micrometer in diameter (PM10) are the most important pollutants in this region. Air pollutant concentrations were investigated by applying the box counting method in time series obtained of the Automatic Environmental Monitoring Network (AEMN). One year of time series of hourly average concentrations were analyzed in order to characterize the temporal structures of SO2 and PM10.
... small-particle or high-efficiency particulate air (HEPA) filter. Shampoo the carpet frequently. Curtains and blinds. Use ... dander they shed. Air filtration. Choose an air filter that has a small-particle or HEPA filter. ...
Summary of Ambient Air Monitoring in Southeast Chicago - Oct. 28, 2013
The monitoring station at George Washington High School reports pollutants including fine particulate matter, inhalable particulate matter, lead, and toxic metals. Data suggests sources including Beemsterboer and KCBX petcoke (petroleum coke) facilities.
NASA Astrophysics Data System (ADS)
Morales Rincon, L. A.; Jimenez-Pizarro, R.; Porras-Diaz, H.
2012-12-01
Luis Morales-Rincon (1), Hernan Porras-Diaz (1), Rodrigo Jiménez (2,*) (1) Geomatic Research Group, Department of Civil Engineering, Universidad Industrial de Santander, Bucaramanga, Santander 680002, Colombia; (2) Air Quality Research Group, Department of Chemical and Environmental Engineering, Universidad Nacional de Colombia, Bogota, DC 111321, Colombia *Corresponding author: phone +57-1-316-5000 ext. 14099, fax +57-1-316-5334, e-mail rjimenezp@unal.edu.co The semi-desertic area of Central Cesar, Colombia, produced approximately 44 million tons of coal in 2011. This mining activity has been intensively developed since 2005. There are currently 7 large-scale mining projects in that area. The coal industry has strongly impacted not only the ecosystems, but also the neighboring communities around the coal mines. The main goal of the research work was to characterize spatial and temporal variations of particulate matter (total suspended particulates - TSP - and particulate matter below 10 μm - PM10) as measured at various air quality monitoring stations in Cesar's coal industry region as well as to study the relationship between these variability and meteorological factors. The analysis of the meteorological time series of revealed a complex atmospheric circulation in the region. No clear repetitive diurnal circulation patterns were observed, i.e. statistical mean patterns do not physically represent the actual atmospheric circulation. We attribute this complexity to the interdependence between local and synoptic phenomena over a low altitude, relatively flat area. On the other hand, a comparison of air quality in the mining area with a perimeter station indicates that coal industry in central Cesar has a mayor effect on the levels of particulate matter in the region. Particulate matter concentration is highly variable throughout the year. The strong correlation between TSP and PM10 indicates that secondary aerosols are of minor importance. Furthermore, particle concentrations are the highest in January and February, being the correlation between the TSP and PM10 measurements not as strong during this time period. This could be associated with the spatial and temporal variability of wet deposition as well as a larger mechanical and eolic resuspension of particles. We found that precipitation drastically reduces the levels of particulate matter. In order to describe the effect of wet deposition, a mathematical model was developed based on a first order relaxation proportional to the precipitation rate. Daily average concentrations and daily accumulated precipitation were used in this model, which showed high concentration reductions even for low precipitation levels essentially for all stations. Monthly precipitation values showed a better correlation with TSP concentrations. Finally, we found evidence of a significant decrease in global radiation due to particulate matter, particularly during the dry season, which could potentially affect farming and agricultural activities in the region.
Models for predicting the ratio of particulate pollutant concentrations inside vehicles to roadways
Hudda, N.; Fruin, S. A.
2013-01-01
Under closed-window driving conditions, the in-vehicle-to-outside (I/O) concentration ratio for traffic-related particulate pollutants ranges from nearly zero to one, and varies up to five-fold across a fleet of vehicles, thus strongly affecting occupant exposures. Concentrations of five particulate pollutants (particle-bound polycyclic aromatic hydrocarbons, black carbon, ultrafine particle number, and fine and coarse particulate mass) were measured simultaneously while systematically varying key influential parameters (i.e., vehicle type, ventilation, and speed). The I/O ratios for these pollutants were primarily determined by vehicle air exchange rate (AER), AER being mostly a function of ventilation setting (recirculation or outside air), vehicle characteristics (e.g., age, interior volume) and driving speed. Small (±0.15) but measurable differences in I/O ratios between pollutants were observed although ratios were highly correlated. This allowed us to build on previous studies of ultrafine particle number I/O ratios to develop predictive models for other particulate pollutants. These models explained over 60% of measured variation, using ventilation setting, driving speed, and easily-obtained vehicle characteristics as predictors. Our results suggest that I/O ratios for different particulate pollutants need not necessarily be measured individually and that exposure to all particulate pollutants may be reduced significantly by simple ventilation choices. PMID:23957386
Regression and multivariate models for predicting particulate matter concentration level.
Nazif, Amina; Mohammed, Nurul Izma; Malakahmad, Amirhossein; Abualqumboz, Motasem S
2018-01-01
The devastating health effects of particulate matter (PM 10 ) exposure by susceptible populace has made it necessary to evaluate PM 10 pollution. Meteorological parameters and seasonal variation increases PM 10 concentration levels, especially in areas that have multiple anthropogenic activities. Hence, stepwise regression (SR), multiple linear regression (MLR) and principal component regression (PCR) analyses were used to analyse daily average PM 10 concentration levels. The analyses were carried out using daily average PM 10 concentration, temperature, humidity, wind speed and wind direction data from 2006 to 2010. The data was from an industrial air quality monitoring station in Malaysia. The SR analysis established that meteorological parameters had less influence on PM 10 concentration levels having coefficient of determination (R 2 ) result from 23 to 29% based on seasoned and unseasoned analysis. While, the result of the prediction analysis showed that PCR models had a better R 2 result than MLR methods. The results for the analyses based on both seasoned and unseasoned data established that MLR models had R 2 result from 0.50 to 0.60. While, PCR models had R 2 result from 0.66 to 0.89. In addition, the validation analysis using 2016 data also recognised that the PCR model outperformed the MLR model, with the PCR model for the seasoned analysis having the best result. These analyses will aid in achieving sustainable air quality management strategies.
NASA Astrophysics Data System (ADS)
Chantara, Somporn; Sillapapiromsuk, Sopittaporn; Wiriya, Wan
2012-12-01
Monitoring and analysis of the chemical composition of air pollutants were conducted over a five-year period (2005-2009) in the sub-urban area of Chiang Mai, Thailand. This study aims to determine the seasonal variation of atmospheric ion species and gases, examine their correlations, identify possible sources and assess major air-flow patterns to the receptor. The dominant gas and particulate pollutants were NH3 (43-58%) and SO42- (39-48%), respectively. The annual mean concentrations of NH3 (μg m-3) in descending order were 4.08 (2009) > 3.32 (2007) > 2.68 (2008) > 2.47 (2006) and 1.87 (2005), while those of SO42- (μg m-3) were 2.60 (2007) > 2.20 (2006) > 1.95 (2009) > 1.75 (2008) and 1.26 (2005). Concentrations of particulate ions were analyzed by principle component analysis to find out the possible sources of air pollutants in this area. The first component of each year had a high loading of SO42- and NH4+, which probably came from fuel combustion and agricultural activity, respectively. K+, a tracer of biomass burning, also contributed to the first or the second components of each year. Concentrations of NH4+ and SO42- were well correlated (r > 0.777, p < 0.01), which lead to the conclusion that (NH4)2SO4 was a major compound present in this area. The 3-day backward trajectories of air mass arriving at Chiang Mai from 2005 to 2009 were analyzed using the hybrid single particle langrangian integrated trajectory (HYSPLIT) model and grouped by cluster analysis. The air mass data was analyzed for the dry season (n = 18; 100%). The trajectory of air mass in 2005 mainly originated locally (67%). In 2006, the recorded data showed that 56% of air mass was emitted from the western continental region of Thailand. In 2007, the percent ratios from the western and eastern continental areas were equal (39%). In 2008, 67% originated from the western continental area. In 2009, the recorded air mass mainly came from the western continental area (72%). In conclusion, the major trajectories of air mass from 2006 to 2009 originated from the southwest direction of the receptor, but in 2005, the air mass appeared to be locally originated.
Air quality and human health improvements from reduced deforestation in Brazil
NASA Astrophysics Data System (ADS)
Reddington, C.; Butt, E. W.; Ridley, D. A.; Artaxo, P.; Morgan, W.; Coe, H.; Spracklen, D. V.
2015-12-01
Significant areas of the Brazilian Amazon have been deforested over the past few decades, with fire being the dominant method through which forests and vegetation are cleared. Fires emit large quantities of particulate matter into the atmosphere, degrading air quality and negatively impacting human health. Since 2004, Brazil has achieved substantial reductions in deforestation rates and associated deforestation fires. Here we assess the impact of this reduction on air quality and human health. We show that dry season (August - October) aerosol optical depth (AOD) retrieved by satellite over southwest Brazil and Bolivia is positively related to Brazil's annual deforestation rate (r=0.96, P<0.001). Observed dry season AOD is more than a factor two greater in years with high deforestation rates compared to years with low deforestation rates, suggesting regional air quality is degraded substantially by fire emissions associated with deforestation. This link is further demonstrated by the positive relationship between observed AOD and satellite-derived particulate emissions from deforestation fires (r=0.89, P<0.01). Using a global aerosol model with satellite-derived fire emissions, we show that reductions in fires associated with reduced deforestation have reduced regional dry season mean surface particulate matter concentrations by ~30%. Using concentration response functions we estimate that this reduction in particulate matter may be preventing 1060 (388-1721) premature adult mortalities annually across South America. Future increases in Brazil's deforestation rates and associated fires may threaten the improved air quality reported here.
Macintyre, Helen L; Heaviside, Clare; Neal, Lucy S; Agnew, Paul; Thornes, John; Vardoulakis, Sotiris
2016-12-01
Exposure to particulate air pollution is known to have negative impacts on human health. Long-term exposure to anthropogenic particulate matter is associated with the equivalent of around 29,000 deaths a year in the UK. However, short-lived air pollution episodes on the order of a few days are also associated with increased daily mortality and emergency hospital admissions for respiratory and cardiovascular conditions. The UK experienced widespread high levels of particulate air pollution in March-April 2014; observations of hourly mean PM 2.5 concentrations reached up to 83μgm -3 at urban background sites. We performed an exposure and health impact assessment of the spring air pollution, focusing on two episodes with the highest concentrations of PM 2.5 (12-14 March and 28 March-3 April 2014). Across these two episodes of elevated air pollution, totalling 10days, around 600 deaths were brought forward from short-term exposure to PM 2.5 , representing 3.9% of total all-cause (excluding external) mortality during these days. Using observed levels of PM 2.5 from other years, we estimate that this is 2.0 to 2.7 times the mortality burden associated with typical urban background levels of PM 2.5 at this time of year. Our results highlight the potential public health impacts and may aid planning for health care resources when such an episode is forecast. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.
Diurnal variability of chlorinated polycyclic aromatic hydrocarbons in urban air, Japan
NASA Astrophysics Data System (ADS)
Ohura, Takeshi; Horii, Yuichi; Kojima, Mitsuhiro; Kamiya, Yuta
2013-12-01
Concentrations of 3- to 5-ring chlorinated polycyclic aromatic hydrocarbons (ClPAHs) and corresponding PAHs were quantified in 3-h integrated air samples, taken serially over 3-day periods in December 2009 (winter) and August 2010 (summer) in the urban area of Shizuoka, Japan. Twenty species of targeted ClPAHs were detected in both gas and particle phases throughout each campaign. Mean concentrations of total ClPAHs in the winter and summer campaigns were 133 ± 53 pg m-3 and 32 ± 27 pg m-3, respectively. Throughout the campaigns, diurnal variations of total ClPAHs concentrations did not have periodic fluctuation such as decreasing in daytime and increasing in nighttime, observed in PAHs. However, the mean concentrations of particulate ClPAHs trended to be slightly higher in nighttime than in daytime, but not for gaseous ClPAHs. Significant correlations were observed between the concentrations of total ClPAHs and total PAHs in particulate phase, but not in gaseous phase. In addition, for particulate phase, there were significant correlations between the concentrations of individual ClPAHs and corresponding parent PAHs, nitrate, and chlorine in summer, but not in winter. Considering these behaviors of ClPAHs in the air, the emission sources could have features of as follows: (i) specific emission sources emitted both ClPAHs and PAHs in particulate phase could be present in the area; (ii) particulate ClPAHs could be more strongly influenced by local sources and photochemical reactions rather than by transboundary air pollution; (iii) the possible sources could be combustion processes included biomass and fossil fuels.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Voynikova, D. S., E-mail: desi-sl2000@yahoo.com; Gocheva-Ilieva, S. G., E-mail: snegocheva@yahoo.com; Ivanov, A. V., E-mail: aivanov-99@yahoo.com
Numerous time series methods are used in environmental sciences allowing the detailed investigation of air pollution processes. The goal of this study is to present the empirical analysis of various aspects of stochastic modeling and in particular the ARIMA/SARIMA methods. The subject of investigation is air pollution in the town of Kardzhali, Bulgaria with 2 problematic pollutants – sulfur dioxide (SO2) and particulate matter (PM10). Various SARIMA Transfer Function models are built taking into account meteorological factors, data transformations and the use of different horizons selected to predict future levels of concentrations of the pollutants.
Twardella, D; Fromme, H; Dietrich, S; Dietrich, W C
2009-02-01
The aims of the research project were (I) to describe the exposure to particulate matter in Bavarian schools and identify predictors of increased exposure and (II) to evaluate whether exposure can be reduced by improving the ventilation and/or cleaning routine. Air quality was measured in 46 schools, two classrooms each, in the City of Munich and Dachau county. Each classroom was measured on one school day in both winter 2004/2005 and summer 2005. The continuously generated data on particulate matter during the teaching hours were summarised to daily medians and the possible association of the median concentration with classroom characteristics was tested using non-parametric methods. In winter, the median PM (2.5) concentration was 18.8 microg/m (3), in summer 12.7 microg/m (3). The median PM (10) concentration was 91.5 microg/m (3) in winter and 64.9 microg/m (3) in summer. Determinants of a high particulate matter concentration were the winter period, an increased number of pupils or decreased room size, a high CO(2) concentration, and a low class level. Following this survey, a pilot study on the effects of improved cleaning and ventilation routines was conducted in autumn 2005. Three conditions were tested in two classrooms of one school: (a) standard, (b) improved airing (3 min during short and 20 min during long breaks), and (c) improved airing and improved cleaning (thorough cleaning once and vacuuming before wet wiping). Each condition was implemented for 2 weeks and particulate matter concentrations measured concurrently. In both rooms a reduction of both PM (2.5) and PM (10) concentration was found following improved airing and a further reduction occurred when improved cleaning was introduced in addition. However, in a linear regression accounting for other factors (room, physical activity of the pupils, outdoor concentration of particulate matter) the effect of improved airing was no longer significant, while the effect of improved cleaning remained at a reduction of 6 microg/m (3) for PM (2.5) and of 30 microg/m (3) for PM (10). The research projects show, that exposure to particulate matter in schools is high and indicate that, in particular, improved cleaning may be an effective measure to reduce the indoor particulate matter concentration. More and larger studies are needed to prove the efficacy of this measure.
Colman Lerner, Jorge Esteban; Elordi, Maria Lucila; Orte, Marcos Agustin; Giuliani, Daniela; de Los Angeles Gutierrez, Maria; Sanchez, EricaYanina; Sambeth, Jorge Enrique; Porta, Atilio Andres
2018-03-01
In order to estimate air quality at work environments from small and medium-sized enterprises (SMEs), we determined both the concentration of particulate matter (PM 10 and PM 2.5 ) and the presence of polycyclic aromatic hydrocarbons (PAHs), as the heavy metals in the composition of the particulate matter. Three SMEs located in the city of La Plata, Argentina, were selected: an electromechanical repair and car painting center (ERCP), a sewing work room (SWR), and a chemical analysis laboratory (CAL). The results evidenced high levels of PM exceeding the limits allowed by the USEPA and the presence of benzo(k)fluoranthene in all the analyzed sites and benzo(a)pyrene in the most contaminated site (ERCP). Regarding metals, the presence of Cd, Ni, Cu, Pb, and Mn, mainly in the fraction of PM 2.5 , in the same workplace was found. As far as risk assessment at all the workplaces surveyed is concerned, risk values for contracting cancer throughout life for exposed workers (LCR) did not comply with the parameters either of USEPA or of WHO (World Health Organization).
Evaluation And Application Of Biomagnetic Monitoring Of Traffic-Derived Particulate Pollution.
NASA Astrophysics Data System (ADS)
Maher, B.; Mitchell, R.
2009-05-01
Inhalation of particulate pollutants below 10 micrometres in size (PM10) is associated with adverse health effects. Here we examine the utility of magnetic remanence measurements of roadside tree leaves as a quantitative proxy for vehicle-derived PM, by comparing leaf magnetic remanences with the magnetic properties, particulate mass and particulate concentration of co-located pumped air samples (around Lancaster, UK). Leaf samples were collected in early autumn 2007 from sites in close proximity to a major ring road, with a few additionally from background and suburban areas. Leaves were collected from lime trees (Tilia platyphyllos) only, to avoid possible species-dependent differences in PM collection. Magnetic susceptibility values were small and negative, reflecting the diamagnetic nature of the leaves. Low- temperature remanence curves show significant falls in remanence between 114 and 127 K in all of the leaf samples. ×ARM/SIRM ratios indicate that the dominant size of the leaf magnetic particles is between c.0.1-1 micrometre. Analysis of leaf particles by SEM confirms that their dominant grain size is less than 1 micrometre, with a significant number of iron-rich spherules less than 0.1 micrometre in diameter. Particle loading is concentrated around ridges in the leaf surface; significant numbers of the finer particles (less than 500 nm) are frequently agglomerated, most likely due to magnetic interactions between particles. Larger particles exhibit an irregular morphology, with high silica and aluminum content. Particle composition is consistent with exhaust outputs collected on a filter. Critically, leaf SIRM values exhibit strong correlation with the particulate mass and SIRM of co-located, pumped air samples, indicating that leaf SIRMs are an effective proxy for ambient particulate concentrations. Biomagnetic monitoring using tree leaves can thus potentially provide high spatial resolution data sets for assessment of particulate pollution loadings at pedestrian-relevant heights. Not only do leaf SIRM values increase with proximity to roads with higher traffic volumes, leaf SIRM values are c. 100 % higher at 0.3 m than at c. 1.5 to 2 m height.
NASA Astrophysics Data System (ADS)
Mitchell, R.; Maher, B. A.
2009-04-01
Inhalation of particulate pollutants below 10 μm in size (PM10) is associated with adverse health effects. Here we examine the utility of magnetic remanence measurements of roadside tree leaves as a quantitative proxy for vehicle-derived PM, by comparing leaf magnetic remanences with the magnetic properties, particulate mass and particulate concentration of co-located pumped air samples (around Lancaster, UK). Leaf samples were collected in early autumn 2007 from sites in close proximity to a major ring road (Figure 1 c), with a few additionally from background and suburban areas. Leaves were collected from lime trees (Tilia platyphyllos) only, to avoid possible species-dependent differences in PM collection. Magnetic susceptibility values were small and negative, reflecting the diamagnetic nature of the leaves. Low-temperature remanence curves show significant falls in remanence between 114 and 127 K in all of the leaf samples. XARM/SIRM ratios indicate that the dominant size of the leaf magnetic particles is between c. 0.1-2 μm. Analysis of leaf particles by SEM confirms that their dominant grain size is < 2 μm, with a significant number of iron-rich spherules below 1 μm in diameter. Particle loading is concentrated around ridges in the leaf surface; significant numbers of the finer particles (< 500 nm) are frequently agglomerated, most likely due to magnetic interactions between particles. Larger particles exhibit an irregular morphology, with high silica and aluminum content. Particle composition is consistent with exhaust outputs collected on a filter. Critically, leaf saturation remanence (SIRM) values exhibit strong correlation with the particulate mass and SIRM of co-located, pumped air samples, indicating they are an effective proxy for ambient particulate concentrations. Biomagnetic monitoring using tree leaves can thus potentially provide high spatial resolution data sets for assessment of particulate pollution loadings at pedestrian-relevant heights. Not only do leaf SIRM values increase with proximity to roads with higher traffic volumes, leaf SIRM values are c. 100 % higher at 0.3 m than at c. 1.5 - 2 m height.
Modeling of Particulate Emissions
2011-12-01
Concern Local Air Quality - A Continuing Concern Ground Level Troposphere Ozone Layer Depletion • H2O Ozone Depletion (ice formation) 5 Modeling... Ozone & Smog Formation Health Effects Local Air Quality 33,000-58,000 ft• NOx •Traffic Growth • CO2* • NOx O3* • NOx Reduces CH4 • H2O Vapor...Particulates • SOx Cloud Formation Global Warming * - Greenhouse Gases Ozone Layer Depletion - Not an Immediate Concern Global Warming - An Emerging
Significant Atmospheric Aerosol Pollution Caused by World Food Cultivation
NASA Technical Reports Server (NTRS)
Bauer, Susanne E.; Tsigaridis, Kostas; Miller, Ron
2016-01-01
Particulate matter is a major concern for public health, causing cancer and cardiopulmonary mortality. Therefore, governments in most industrialized countries monitor and set limits for particulate matter. To assist policy makers, it is important to connect the chemical composition and severity of particulate pollution to its sources. Here we show how agricultural practices, livestock production, and the use of nitrogen fertilizers impact near-surface air quality. In many densely populated areas, aerosols formed from gases that are released by fertilizer application and animal husbandry dominate over the combined contributions from all other anthropogenic pollution. Here we test reduction scenarios of combustion-based and agricultural emissions that could lower air pollution. For a future scenario, we find opposite trends, decreasing nitrate aerosol formation near the surface while total tropospheric loads increase. This suggests that food production could be increased to match the growing global population without sacrificing air quality if combustion emission is decreased.
Significant atmospheric aerosol pollution caused by world food cultivation
NASA Astrophysics Data System (ADS)
Bauer, Susanne E.; Tsigaridis, Kostas; Miller, Ron
2016-05-01
Particulate matter is a major concern for public health, causing cancer and cardiopulmonary mortality. Therefore, governments in most industrialized countries monitor and set limits for particulate matter. To assist policy makers, it is important to connect the chemical composition and severity of particulate pollution to its sources. Here we show how agricultural practices, livestock production, and the use of nitrogen fertilizers impact near-surface air quality. In many densely populated areas, aerosols formed from gases that are released by fertilizer application and animal husbandry dominate over the combined contributions from all other anthropogenic pollution. Here we test reduction scenarios of combustion-based and agricultural emissions that could lower air pollution. For a future scenario, we find opposite trends, decreasing nitrate aerosol formation near the surface while total tropospheric loads increase. This suggests that food production could be increased to match the growing global population without sacrificing air quality if combustion emission is decreased.
Significant atmospheric aerosol pollution caused by world food cultivation
NASA Astrophysics Data System (ADS)
Bauer, Susanne E.; Tsigaridis, Kostas; Miller, Ron
2017-04-01
Particulate matter is a major concern for public health, causing cancer and cardiopulmonary mortality. Therefore, governments in most industrialized countries monitor and set limits for particulate matter. To assist policy makers, it is important to connect the chemical composition and severity of particulate pollution to it s sources. Here we show how agricultural practices, livestock production, and the use of nitrogen fertilizers impact near-surface air quality. In many densely populated areas, aerosols formed from gases that are released by fertilizer application and animal husbandry dominate over the combined contributions from all other anthropogenic pollution. Here we test reduction scenarios of combustion-based and agricultural emissions that could lower air pollution. For a future scenario, we find opposite trends, decreasing nitrate aerosol formation near the surface while total tropospheric loads increase. This suggests that food production could be increased to match the growing global population without sacrificing air quality if combustion emission is decreased.
Delamater, Paul L; Finley, Andrew O; Banerjee, Sudipto
2012-05-15
There is now a large body of literature supporting a linkage between exposure to air pollutants and asthma morbidity. However, the extent and significance of this relationship varies considerably between pollutants, location, scale of analysis, and analysis methods. Our primary goal is to evaluate the relationship between asthma hospitalizations, levels of ambient air pollution, and weather conditions in Los Angeles (LA) County, California, an area with a historical record of heavy air pollution. County-wide measures of carbon monoxide (CO), nitrogen dioxide (NO(2)), ozone (O(3)), particulate matter<10 μm (PM(10)), particulate matter<2.5 μm (PM(2.5)), maximum temperature, and relative humidity were collected for all months from 2001 to 2008. We then related these variables to monthly asthma hospitalization rates using Bayesian regression models with temporal random effects. We evaluated model performance using a goodness of fit criterion and predictive ability. Asthma hospitalization rates in LA County decreased between 2001 and 2008. Traffic-related pollutants, CO and NO(2), were significant and positively correlated with asthma hospitalizations. PM(2.5) also had a positive, significant association with asthma hospitalizations. PM(10), relative humidity, and maximum temperature produced mixed results, whereas O(3) was non-significant in all models. Inclusion of temporal random effects satisfies statistical model assumptions, improves model fit, and yields increased predictive accuracy and precision compared to their non-temporal counterparts. Generally, pollution levels and asthma hospitalizations decreased during the 9 year study period. Our findings also indicate that after accounting for seasonality in the data, asthma hospitalization rate has a significant positive relationship with ambient levels of CO, NO(2), and PM(2.5). Copyright © 2012 Elsevier B.V. All rights reserved.
Best, Elizabeth A.; Juarez-Colunga, Elizabeth; James, Katherine; LeBlanc, William G.; Serdar, Berrin
2016-01-01
Recent studies report a link between common environmental exposures, such as particulate matter air pollution and tobacco smoke, and decline in cognitive function. The purpose of this study was to assess the association between exposure to polycyclic aromatic hydrocarbons (PAHs), a selected group of chemicals present in particulate matter and tobacco smoke, and measures of cognitive performance among elderly in the general population. This cross-sectional analysis involved data from 454 individuals aged 60 years and older from the 2001–2002 National Health and Nutrition Examination Survey. The association between PAH exposures (as measured by urinary biomarkers) and cognitive function (digit symbol substitution test (DSST)) was assessed using multiple linear regression analyses. After adjusting for age, socio-economic status and diabetes we observed a negative association between urinary 1-hydroxypyrene, the gold standard of PAH exposure biomarkers, and DSST score. A one percent increase in urinary 1-hydroxypyrene resulted in approximately a 1.8 percent poorer performance on the digit symbol substitution test. Our findings are consistent with previous publications and further suggest that PAHs, at least in part may be responsible for the adverse cognitive effects linked to tobacco smoke and particulate matter air pollution. PMID:26849365
de la Gala Morales, María; Holgado, Fernando Rueda; Marín, Ma Rosario Palomo; Blázquez, Lorenzo Calvo; Gil, Eduardo Pinilla
2015-04-01
A new methodology involving a simple and fast pretreatment of the samples by microwave-assisted extraction and concentration by N2 stream, followed by HPLC with fluorescence detection, was used for determining the concentration of benzo(a)pyrene (BaP) in atmospheric particulate matter (PM10 fraction). Obtained LOD, 1.0 × 10(-3) ng/m(3), was adequate for the analysis of benzo(a)pyrene in the samples, and BaP recovery from PAH in Fine Dust (PM10-like) certified reference material was nearly quantitative (86%). The validated procedure was applied for analyzing 115 PM10 samples collected at different sampling locations in the low-polluted area of Extremadura (Southwest Spain) during a monitoring campaign carried out in 2011-2012. BaP spatial variations and seasonal variability were investigated as well as the influence of meteorological conditions and different air pollutants concentrations. A normalized protocol for health risk assessment was applied to estimate lifetime cancer risk due to BaP inhalation in the sampling areas, finding that around eight inhabitants per million people may develop lung cancer due to the exposition to BaP in atmospheric particulates emitted by the investigated sources.
New Approaches for Estimating Motor Vehicle Emissions in Megacities
NASA Astrophysics Data System (ADS)
Marr, L. C.; Thornhill, D. A.; Herndon, S. C.; Onasch, T. B.; Wood, E. C.; Kolb, C. E.; Knighton, W. B.; Mazzoleni, C.; Zavala, M. A.; Molina, L. T.
2007-12-01
The rapid proliferation of megacities and their air quality problems is producing unprecedented air pollution health risks and management challenges. Quantifying motor vehicle emissions in the developing world's megacities, where vehicle ownership is skyrocketing, is critical for evaluating the cities' impacts on the atmosphere at urban, regional, and global scales. The main goal of this research is to quantify gasoline- and diesel-powered motor vehicle emissions within the Mexico City Metropolitan Area (MCMA). We apply positive matrix factorization to fast measurements of gaseous and particulate pollutants made by the Aerodyne Mobile Laboratory as it drove throughout the MCMA in 2006. We consider carbon dioxide; carbon monoxide; volatile organic compounds including benzene and formaldehyde; nitrogen oxides; ammonia; fine particulate matter; particulate polycyclic aromatic hydrocarbons; and black carbon. Analysis of the video record confirms the apportionment of emissions to different engine types. From the derived source profiles, we calculate fuel-based fleet-average emission factors and then estimate the total motor vehicle emission inventory. The advantages of this method are that it can capture a representative sample of vehicles in a variety of on-road driving conditions and can separate emissions from gasoline versus diesel engines. The results of this research can be used to help assess the accuracy of emission inventories and to guide the development of strategies for reducing vehicle emissions.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-22
... Promulgation of Air Quality Implementation Plans; West Virginia; Amendments to West Virginia's Ambient Air... ambient air quality standards (45CSR8- Ambient Air Quality Standards). These amendments incorporate by reference the National Ambient Air Quality Standards (NAAQS) for sulfur dioxide, particulate matter, carbon...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-25
...] Approval and Promulgation of Air Quality Implementation Plans; Virginia; Revised Ambient Air Quality... of Virginia adding ambient air quality standards and associated reference conditions for Fine Particulate Matter (PM 2.5 ) that are consistent with the 2013 National Ambient Air Quality Standards (NAAQS...
Regulation of suspended particulate matter (SPM) in Indian coal-based thermal power plants
NASA Astrophysics Data System (ADS)
Sengupta, Ishita
Air borne particulate matter, in major Indian cities is at least three times the standard prescribed by the WHO. Coal-based thermal power plants are the major emitters of particulate matter in India. The lack of severe penalty for non-compliance with the standards has worsened the situation and thus calls for an immediate need for investment in technologies to regulate particulate emissions. My dissertation studies the optimal investment decisions in a dynamic framework, for a random sample of forty Indian coal-based power plants to abate particulate emissions. I used Linear Programming to solve the double cost minimization problem for the optimal choices of coal, boiler and pollution-control equipment. A policy analysis is done to choose over various tax policies, which would induce the firms to adopt the energy efficient as well as cost efficient technology. The aim here is to reach the WHO standards. Using the optimal switching point model I show that in a dynamic set up, switching the boiler immediately is always the cost effective option for all the power plants even if there is no policy restriction. The switch to a baghouse depends upon the policy in place. Theoretically, even though an emission tax is considered the most efficient tax, an ash tax or a coal tax can also be considered to be a good substitute especially in countries like India where monitoring costs are very high. As SPM is a local pollutant the analysis here is mainly firm specific.
Characterization of process air emissions in automotive production plants.
D'Arcy, J B; Dasch, J M; Gundrum, A B; Rivera, J L; Johnson, J H; Carlson, D H; Sutherland, J W
2016-01-01
During manufacturing, particles produced from industrial processes become airborne. These airborne emissions represent a challenge from an industrial hygiene and environmental standpoint. A study was undertaken to characterize the particles associated with a variety of manufacturing processes found in the auto industry. Air particulates were collected in five automotive plants covering ten manufacturing processes in the areas of casting, machining, heat treatment and assembly. Collection procedures provided information on air concentration, size distribution, and chemical composition of the airborne particulate matter for each process and insight into the physical and chemical processes that created those particles.
Leem, Jong Han; Kim, Soon Tae; Kim, Hwan Cheol
2015-01-01
Air pollution contributes to mortality and morbidity. We estimated the impact of outdoor air pollution on public health in Seoul metropolitan area, Korea. Attributable cases of morbidity and mortality were estimated. Epidemiology-based exposure-response functions for a 10 μg/m3 increase in particulate matter (PM2.5 and PM10) were used to quantify the effects of air pollution. Cases attributable to air pollution were estimated for mortality (adults ≥ 30 years), respiratory and cardiovascular hospital admissions (all ages), chronic bronchitis (all ages), and acute bronchitis episodes (≤18 years). Environmental exposure (PM2.5 and PM10) was modeled for each 3 km × 3 km. In 2010, air pollution caused 15.9% of total mortality or approximately 15,346 attributable cases per year. Particulate air pollution also accounted for: 12,511 hospitalized cases of respiratory disease; 20,490 new cases of chronic bronchitis (adults); 278,346 episodes of acute bronchitis (children). After performing the 2(nd) Seoul metropolitan air pollution management plan, the reducible death number associated with air pollution is 14,915 cases per year in 2024. We can reduce 57.9% of death associated with air pollution. This assessment estimates the public-health impacts of current patterns of air pollution. Although individual health risks of air pollution are relatively small, the public-health consequences are remarkable. Particulate air pollution remains a key target for public-health action in the Seoul metropolitan area. Our results, which have also been used for economic valuation, should guide decisions on the assessment of environmental health-policy options.
An enhanced research paradigm is presented to address the spatial and temporal gaps in fine particulate matter (PM2.5) measurements and generate realistic and representative concentration fields for use in epidemiological studies of human exposure to ambient air particulate conce...
NASA Astrophysics Data System (ADS)
Fong, A. L.; Khandoker, N. A. N.; Debnath, S.
2018-04-01
This paper presents an experimental study on the mechanical performance of sugarcane bagasse fiber reinforced epoxy composite. Tensile and flexural properties of the composites were investigated in this research. Different weightage of short fiber and fiber particulates were utilized to study their effects on the mechanical performance of the composites in terms of tensile and flexural properties. 1% of nano-silica was reinforced to investigate its effect on the mechanical performance of the composites. Hand lay-up composite molding process was used to fabricate the composite samples. During fabrication, ultrasonic mixing was carried out to study the effects on mechanical performance of the fiber particulate reinforced composites. In overall, ultrasonic mixing and addition of nano-silica particles has improved the mechanical performance of the fiber particulate composites. Morphology analysis on surface of composites has shown the removal of air bubbles and deagglomeration. 1wt% of short fiber reinforced composite exhibits the highest tensile and flexural properties among all the samples. Sugarcane bagasse particulates reinforced composites were shown to have better performance compared to short fiber reinforced composites when the wt% of the fiber increase.
NASA Technical Reports Server (NTRS)
Schuster, Burton G.; Lazrus, Allan L.; Fernald, Frederick G.; Sedlacek, William; Guthals, Paul
1973-01-01
Collections of particulates on both Los Alamos Scientific Laboratory (LASL) and National Center for Atmospheric Research (NCAR) filter systems were made from an RB 57F aircraft flown at one tropospheric and six stratospheric altitudes over the Boulder, Colorado, area. This daytime flight was spanned by lidar returns on evenings before and after the flight. Scanning electron microscope examination of the LASL filters showed no evidence of solid particulates greater than 2 micrometers (the instrumental resolving power). Quantitative analysis of the NCAR filters yielded chemical composition and mass. The mass values were normalized to the total air flow through the filters to yield mass mixing ratios at the various altitudes. The lidar returns, normalized to molecular densities obtained from sonde data, were put in the form of particulate scattering divided by molecular scattering, i. e., an optical mixing ratio. A plot of the optical mixing ratio versus mass mixing ratio, in the stratosphere, yielded linear relationship, for five of the six data points, going through the origin.
Apparatus and method for removing particulate deposits from high temperature filters
Nakaishi, Curtis V.; Holcombe, Norman T.; Micheli, Paul L.
1992-01-01
A combustion of a fuel-air mixture is used to provide a high-temperature and high-pressure pulse of gaseous combustion products for the back-flush cleaning of ceramic filter elements contained in a barrier filter system and utilized to separate particulates from particulate-laden process gases at high temperature and high pressure. The volume of gaseous combustion products provided by the combustion of the fuel-air mixture is preferably divided into a plurality of streams each passing through a sonic orifice and conveyed to the open end of each filter element as a high pressure pulse which passes through the filter elements and dislodges dust cake supported on a surface of the filter element.
Wu, Shaowei; Deng, Furong; Niu, Jie; Huang, Qinsheng; Liu, Youcheng; Guo, Xinbiao
2011-04-01
Epidemiological studies have linked particulate matter (PM) and carbon monoxide (CO) exposures with alterations in cardiac autonomic function as measured by heart rate variability (HRV) in populations. Recently, we reported association of several HRV indices with marked changes in particulate air pollution around the Beijing 2008 Olympic Games in a panel of healthy adults. We further investigated the cardiac effects of traffic-related air pollutants over wide exposure ranges with expanded data set in this panel of healthy adults. We obtained real-time data on nine taxi drivers' in-car exposures to PM ≤ 2.5 µm in aerodynamic diameter (PM₂.₅) and CO and on multiple HRV indices during a separate daily work shift in four study periods with dramatically changing air pollution levels around the Beijing 2008 Olympic Games. Mixed effect models and a less smoother method were used to investigate the associations of exposures with HRV indices. Results showed overall negative associations of traffic-related air pollutants with HRV indices across periods, as well as differences in period-specific and individual associations. After stratifying the individuals into two different response groups (positive/negative), cardiac effects of air pollutants became stronger within each group. Exposure-response modeling identified changed curvilinear relationships between air pollution exposures and HRV indices with threshold effects. Our results support the association of exposure to traffic-related air pollution with altered cardiac autonomic function in young healthy adults free of cardiovascular compromises. These results suggest a complicated mechanism that traffic-related air pollutants influence the cardiovascular system of healthy adults.
Electron Spectroscopy for Chemical Analysis (ESCA) study of atmospheric particles
NASA Technical Reports Server (NTRS)
Dillard, J. G.; Seals, R. D.; Wightman, J. P.
1979-01-01
The results of analyses by ESCA (Electron Spectroscopy for Chemical Analysis) on several Nuclepore filters which were exposed during air pollution studies are presented along with correlative measurements by Neutron Activation Analysis and Scanning Electron Microscopy. Samples were exposed during air pollution studies at Norfolk, Virginia and the NASA Kennedy Space Center (KSC). It was demonstrated that with the ESCA technique it was possible to identify the chemical (bonding) state of elements contained in the atmospheric particulate matter collected on Nuclepore filters. Sulfur, nitrogen, mercury, chlorine, alkali, and alkaline earth metal species were identified in the Norfolk samples. ESCA binding energy data for aluminum indicated that three chemically different types of aluminum are present in the launch and background samples from NASA-KSC.
Gokhale, Sharad; Raokhande, Namita
2008-05-01
There are several models that can be used to evaluate roadside air quality. The comparison of the operational performance of different models pertinent to local conditions is desirable so that the model that performs best can be identified. Three air quality models, namely the 'modified General Finite Line Source Model' (M-GFLSM) of particulates, the 'California Line Source' (CALINE3) model, and the 'California Line Source for Queuing & Hot Spot Calculations' (CAL3QHC) model have been identified for evaluating the air quality at one of the busiest traffic intersections in the city of Guwahati. These models have been evaluated statistically with the vehicle-derived airborne particulate mass emissions in two sizes, i.e. PM10 and PM2.5, the prevailing meteorology and the temporal distribution of the measured daily average PM10 and PM2.5 concentrations in wintertime. The study has shown that the CAL3QHC model would make better predictions compared to other models for varied meteorology and traffic conditions. The detailed study reveals that the agreements between the measured and the modeled PM10 and PM2.5 concentrations have been reasonably good for CALINE3 and CAL3QHC models. Further detailed analysis shows that the CAL3QHC model performed well compared to the CALINE3. The monthly performance measures have also led to the similar results. These two models have also outperformed for a class of wind speed velocities except for low winds (<1 m s(-1)), for which, the M-GFLSM model has shown the tendency of better performance for PM10. Nevertheless, the CAL3QHC model has outperformed for both the particulate sizes and for all the wind classes, which therefore can be optional for air quality assessment at urban traffic intersections.
EPA Activities for Cleaner Air
Activities in San Joaquin Valley to reduce air pollution, meet federal health standards for ozone and particulates, fund clean tech and health research, and enforce compliance with facility-specific operating permits for industrial air pollution sources.
Transportation conformity particulate matter hot-spot air quality modeling.
DOT National Transportation Integrated Search
2013-07-01
In light of the new development in particulate matter (PM) hot-spot regulations and Illinois Department : of Transportation (IDOT)s National Environmental Policy Act (NEPA) documentation requirements, : this project is intended to (1) perform and ...