Science.gov

Sample records for air particulate pollution

  1. Particulate Air Pollution: The Particulars

    ERIC Educational Resources Information Center

    Murphy, James E.

    1973-01-01

    Describes some of the causes and consequences of particulate air pollution. Outlines the experimental procedures for measuring the amount of particulate materials that settles from the air and for observing the nature of particulate air pollution. (JR)

  2. The Particulate Air Pollution Controversy

    PubMed Central

    Phalen, Robert F.

    2004-01-01

    Scientists, regulators, legislators, and segments of industry and the lay public are attempting to understand and respond to epidemiology findings of associations between measures of modern particulate air pollutants (PM) and adverse health outcomes in urban dwellers. The associations have been interpreted to imply that tens of thousands of Americans are killed annually by small daily increments in PM. These epidemiology studies and their interpretations have been challenged, although it is accepted that high concentrations of air pollutants have claimed many lives in the past. Although reproducible and statistically significant, the relative risks associated with modern PM are very small and confounded by many factors. Neither toxicology studies nor human clinical investigations have identified the components and/or characteristics of PM that might be causing the health-effect associations. Currently, a massive worldwide research effort is under way in an attempt to identify whom might be harmed and by what substances and mechanisms. Finding the answers is important, because control measures have the potential not only to be costly but also to limit the availability of goods and services that are important to public health. PMID:19330148

  3. Control Techniques for Particulate Air Pollutants.

    ERIC Educational Resources Information Center

    National Air Pollution Control Administration (DHEW), Washington, DC.

    Included is a comprehensive review of the approaches commonly recommended for controlling the sources of particulate air pollution. Not all possible combinations of control techniques that might bring about more stringent control of each individual source are reviewed. The many agricultural, commercial, domestic, industrial, and municipal…

  4. Effects of particulate air pollution on asthmatics

    SciTech Connect

    Perry, G.B.; Chai, H.; Dickey, D.W.; Jones, R.H.; Kinsman, R.A.; Morrill, C.G.; Spector, S.L.; Weiser, P.C.

    1983-01-01

    Twenty-four asthmatic subjects in Denver were followed from January through March 1979, a three-month period in which Denver air pollution levels are generally high and variable. Dichotomous, virtual impactor samplers provided daily measurements (micrograms/m3) of inhaled particulate matter (total mass, sulfates, and nitrates) for coarse (2.5--15 micrograms in aerodynamic diameter) and fine fractions (less than 2.5 micrometers). Carbon monoxide, sulfur dioxide, ozone, temperature, and barometric pressure were also measured. Twice daily measurements of each subject's peak expiratory flow rates, use of as-needed aerosolized bronchodilators, and report of airways obstruction symptoms characteristic of asthma were tested for relationships to air pollutants using a random effects model across subjects. During the time actually observed, there were very few days in which high levels of suspended particulates were recorded. Of the environmental variables studied, only fine nitrates were associated with increased symptom reports and increased aerosolized bronchodilator usage.

  5. Particulate air pollution and impaired lung function

    PubMed Central

    Paulin, Laura; Hansel, Nadia

    2016-01-01

    Air pollution is a leading cause of morbidity and mortality throughout the world, particularly in individuals with existing lung disease. Of the most common air pollutants, particulate matter (PM) is associated with an increased risk of exacerbations and respiratory symptoms in individuals with existing lung disease, and to a lesser extent, in those without known respiratory issues. The majority of published research has focused on the effects of PM exposures on symptoms and health care utilization. Fewer studies focus on the impact of PM on objective measurements of pulmonary function. This review will focus on the effects of PM exposure on objective measurements of lung function in both healthy individuals and those with existing lung disease. PMID:26962445

  6. Particulate air pollution and impaired lung function.

    PubMed

    Paulin, Laura; Hansel, Nadia

    2016-01-01

    Air pollution is a leading cause of morbidity and mortality throughout the world, particularly in individuals with existing lung disease. Of the most common air pollutants, particulate matter (PM) is associated with an increased risk of exacerbations and respiratory symptoms in individuals with existing lung disease, and to a lesser extent, in those without known respiratory issues. The majority of published research has focused on the effects of PM exposures on symptoms and health care utilization. Fewer studies focus on the impact of PM on objective measurements of pulmonary function. This review will focus on the effects of PM exposure on objective measurements of lung function in both healthy individuals and those with existing lung disease. PMID:26962445

  7. Particulate air pollution and impaired lung function.

    PubMed

    Paulin, Laura; Hansel, Nadia

    2016-01-01

    Air pollution is a leading cause of morbidity and mortality throughout the world, particularly in individuals with existing lung disease. Of the most common air pollutants, particulate matter (PM) is associated with an increased risk of exacerbations and respiratory symptoms in individuals with existing lung disease, and to a lesser extent, in those without known respiratory issues. The majority of published research has focused on the effects of PM exposures on symptoms and health care utilization. Fewer studies focus on the impact of PM on objective measurements of pulmonary function. This review will focus on the effects of PM exposure on objective measurements of lung function in both healthy individuals and those with existing lung disease.

  8. Alveolar macrophage interaction with air pollution particulates.

    PubMed

    Goldsmith, C A; Frevert, C; Imrich, A; Sioutas, C; Kobzik, L

    1997-09-01

    We applied flow cytometric analysis to characterize the in vitro response of alveolar macrophages (AM) to air pollution particulates. Normal hamster AM were incubated with varying concentrations of residual oil fly ash (ROFA) or concentrated ambient air particulates (CAP). We found a dose-dependent increase in AM-associated right angle light scatter (RAS) after uptake of ROFA (e.g., mean channel number 149.4 +/- 6.5, 102.5 +/- 4.1, 75.8 +/- 3.5, and 61.0 +/- 4.6 at 200, 100, 50, and 25 mg/ml, respectively) or CAP. A role for scavenger-type receptors (SR) in AM uptake of components of ROFA and CAP was identified by marked inhibition of RAS increases in AM pretreated with the specific SR inhibitor polyinosinic acid. We combined measurement of particle uptake (RAS) with flow cytometric analysis of intracellular oxidation of dichlorofluorescin. Both ROFA and CAP caused a dose-related intracellular oxidant stress within AM, comparable to that seen with phorbol myristate acetate (PMA) (e.g., fold increase over control, 6.6 +/- 0.4, 3.6 +/- 0.4, 4.6 +/- 0.5, 200 mg/ml ROFA, 100 mg/ml ROFA, and 10(-7) M PMA, respectively). We conclude that flow cytometry of RAS increases provides a useful relative measurement of AM uptake of complex particulates within ROFA and CAP. Both ROFA and CAP cause substantial intracellular oxidant stress within AM, which may contribute to subsequent cell activation and production of proinflammatory mediators.

  9. Health effects of particulate air pollution: time for reassessment?

    PubMed Central

    Pope, C A; Bates, D V; Raizenne, M E

    1995-01-01

    Numerous studies have observed health effects of particulate air pollution. Compared to early studies that focused on severe air pollution episodes, recent studies are more relevant to understanding health effects of pollution at levels common to contemporary cities in the developed world. We review recent epidemiologic studies that evaluated health effects of particulate air pollution and conclude that respirable particulate air pollution is likely an important contributing factor to respiratory disease. Observed health effects include increased respiratory symptoms, decreased lung function, increased hospitalizations and other health care visits for respiratory and cardiovascular disease, increased respiratory morbidity as measured by absenteeism from work or school or other restrictions in activity, and increased cardiopulmonary disease mortality. These health effects are observed at levels common to many U.S. cities including levels below current U.S. National Ambient Air Quality Standards for particulate air pollution. Images Figure 1. PMID:7656877

  10. Health effects of particulate air pollution: time for reassessment?

    PubMed

    Pope, C A; Bates, D V; Raizenne, M E

    1995-05-01

    Numerous studies have observed health effects of particulate air pollution. Compared to early studies that focused on severe air pollution episodes, recent studies are more relevant to understanding health effects of pollution at levels common to contemporary cities in the developed world. We review recent epidemiologic studies that evaluated health effects of particulate air pollution and conclude that respirable particulate air pollution is likely an important contributing factor to respiratory disease. Observed health effects include increased respiratory symptoms, decreased lung function, increased hospitalizations and other health care visits for respiratory and cardiovascular disease, increased respiratory morbidity as measured by absenteeism from work or school or other restrictions in activity, and increased cardiopulmonary disease mortality. These health effects are observed at levels common to many U.S. cities including levels below current U.S. National Ambient Air Quality Standards for particulate air pollution.

  11. Particulate air pollution: possible relevance in asthma.

    PubMed

    Glovsky, M M; Miguel, A G; Cass, G R

    1997-01-01

    The relative importance of air pollution in the pathogenesis of bronchial asthma has been of interest for several decades. Numerous studies on the role of gaseous air pollution containing ozone, nitrogen dioxide, sulfur dioxide, and carbon monoxide have been published. Very little attention has been focused on the role of respirable particles in the causation of asthma. In this article we summarize some of our ongoing investigations into the sources and composition of airborne particles in the Los Angeles and Pasadena atmosphere, including the search for biologically active particles that may induce asthma attacks. If is found that the urban atmosphere contains not only combustion-derived particles from diesel engine exhaust and gasoline-powered motor vehicle exhaust, but also particles formed from biological starting materials including plant debris, cigarette smoke, wood smoke, and meat smoke as well as tire debris containing some natural rubber and paved road dust. Paved road dust is a very complex mixture of particles including garden soil, tire dust, plant fragments, redeposited atmospheric particles of all types, and pollen fragments presumably ground up by passing traffic. We have shown previously that latex allergen can be extracted from tire dust, from roadside dust, and from respirable air samples taken at Los Angeles and Long Beach. At present, work is underway to identify the larger range of allergens that may be contributed by the entrainment of paved road dust into the atmosphere. The possible importance of pollen fragments present in paved road dust in very small particle sizes is discussed as well as their potential relevance in asthma.

  12. Particulate air pollution and daily mortality in Steubenville, Ohio

    SciTech Connect

    Schwartz, J.; Dockery, D.W. )

    1992-01-01

    Particulate air pollution has been associated with daily mortality in London, England, both in the smog episodes of the 1950s and at the lower pollution levels of the late 1960s and early 1970s. Replicating these findings in the United States has been difficult, because particulates are usually sampled every sixth day. Replication, particularly with a gravimetric measure of particulates, is important in assessing the causality of the relation. Daily measurements of total suspended particulates by high volume gravimetric sampler are available for the Steubenville, Ohio, metropolitan area. These were matched to daily mortality counts from the detail mortality tapes of the National Center for Health Statistics. Deaths of residents which occurred outside the Steubenville Standard Metropolitan Statistical Area were excluded. Because of the much smaller population, the average total number of deaths per day in the Steubenville Standard Metropolitan Statistical Area over the 11-year period 1974-1984 was about 1% of the deaths in a typical London winter. Despite this reduced statistical power, total suspended particulate count was significantly associated with increased daily mortality in Poisson regression analyses controlling for season and temperature. An increase in particulates of 100 micrograms/m3 was associated with a 4% increase in mortality on the succeeding day. Associations with sulfur dioxide were not significant after adjustment for particulates. The relation appeared to continue at levels well below the current National Ambient Air Quality Standard.

  13. Particulate air pollution and hospitalization for asthma

    SciTech Connect

    Tseng, R.Y.; Li, C.K.; Spinks, J.A. )

    1992-05-01

    Age-specific quarterly asthmatic hospital discharge rates in Hong Kong during 1983 to 1989 were examined in relation to mean levels of six pollutants: sulfur dioxide (SO2), ozone (O3), total suspended particles (TSP), respiratory suspended particles (RSP), nitrogen dioxide (NO2), and nitrogen oxides (NOX). Discharges from the hospital of children under 14 years of age represented 56% of 33,952 discharges recorded in all age groups. Trends of adult hospitalization rates over time remained stable during the study period. In children, however, there was an increase in these rates, particularly marked in the age group of 1 to 4 years. Univariate analysis revealed a strong correlation between quarterly mean TSP and hospital discharge rate for the 1 to 4-year-old children (r = .62, P less than .001). In the 5 to 14-year-old age group, there was an inverse relationship between hospital discharge rate and sulfur dioxide level (r = -.38, P less than .05). Stepwise multiple regression analysis, controlling for confounding variables (seasonal and annual trends of asthma hospitalizations) confirmed these relationships. A highly significant linear regression equation was derived between hospitalization rate for ages 1 to 4 years and total suspended particles (P less than .001). The highly significant correlation between pollution and asthmatic hospitalization rate for the 1 to 4-year-old group suggests that young children are vulnerable to the adverse environmental effects of pollution. Auditing these relationships offers a logical basis for approaching control.

  14. Acute Effects of Fine Particulate Air Pollution on ST Segment Height: A Longitudinal Study

    EPA Science Inventory

    Background: The mechanisms for the relationship between particulate air pollution and cardiac disease are not fully understood. Air pollution-induced myocardial ischemia is one of the potentially important mechanisms. Methods: We investigate the acute effects and the time cours...

  15. Health effects of particulate air pollution and airborne desert dust

    NASA Astrophysics Data System (ADS)

    Lelieveld, J.; Pozzer, A.; Giannadaki, D.; Fnais, M.

    2013-12-01

    Air pollution by fine particulate matter (PM2.5) has increased strongly with industrialization and urbanization. In the past decades this increase has taken place at a particularly high pace in South and East Asia. We estimate the premature mortality and the years of human life lost (YLL) caused by anthropogenic PM2.5 and airborne desert dust (DU2.5) on regional and national scales (Giannadaki et al., 2013; Lelieveld et al., 2013). This is based on high-resolution global model calculations that resolve urban and industrial regions in relatively great detail. We apply an epidemiological health impact function and find that especially in large countries with extensive suburban and rural populations, air pollution-induced mortality rates have been underestimated given that previous studies largely focused on the urban environment. We calculate a global premature mortality by anthropogenic aerosols of 2.2 million/year (YLL ≈ 16 million/year) due to lung cancer and cardiopulmonary disease. High mortality rates by PM2.5 are found in China, India, Bangladesh, Pakistan and Indonesia. Desert dust DU2.5 aerosols add about 0.4 million/year (YLL ≈ 3.6 million/year). Particularly significant mortality rates by DU2.5 occur in Pakistan, China and India. The estimated global mean per capita mortality caused by airborne particulates is about 0.1%/year (about two thirds of that caused by tobacco smoking). We show that the highest premature mortality rates are found in the Southeast Asia and Western Pacific regions (about 25% and 46% of the global rate, respectively) where more than a dozen of the most highly polluted megacities are located. References: Giannadaki, D., A. Pozzer, and J. Lelieveld, Modeled global effects of airborne desert dust on air quality and premature mortality, Atmos. Chem. Phys. Discuss. (submitted), 2013. Lelieveld, J., C. Barlas, D. Giannadaki, and A. Pozzer, Model calculated global, regional and megacity premature mortality due to air pollution by ozone

  16. Air pollution particulate matter alters antimycobacterial respiratory epithelium innate immunity.

    PubMed

    Rivas-Santiago, César E; Sarkar, Srijata; Cantarella, Pasquale; Osornio-Vargas, Álvaro; Quintana-Belmares, Raúl; Meng, Qingyu; Kirn, Thomas J; Ohman Strickland, Pamela; Chow, Judith C; Watson, John G; Torres, Martha; Schwander, Stephan

    2015-06-01

    Inhalation exposure to indoor air pollutants and cigarette smoke increases the risk of developing tuberculosis (TB). Whether exposure to ambient air pollution particulate matter (PM) alters protective human host immune responses against Mycobacterium tuberculosis has been little studied. Here, we examined the effect of PM from Iztapalapa, a municipality of Mexico City, with aerodynamic diameters below 2.5 μm (PM2.5) and 10 μm (PM10) on innate antimycobacterial immune responses in human alveolar type II epithelial cells of the A549 cell line. Exposure to PM2.5 or PM10 deregulated the ability of the A549 cells to express the antimicrobial peptides human β-defensin 2 (HBD-2) and HBD-3 upon infection with M. tuberculosis and increased intracellular M. tuberculosis growth (as measured by CFU count). The observed modulation of antibacterial responsiveness by PM exposure was associated with the induction of senescence in PM-exposed A549 cells and was unrelated to PM-mediated loss of cell viability. Thus, the induction of senescence and downregulation of HBD-2 and HBD-3 expression in respiratory PM-exposed epithelial cells leading to enhanced M. tuberculosis growth represent mechanisms by which exposure to air pollution PM may increase the risk of M. tuberculosis infection and the development of TB. PMID:25847963

  17. Air Pollution Particulate Matter Alters Antimycobacterial Respiratory Epithelium Innate Immunity

    PubMed Central

    Rivas-Santiago, César E.; Sarkar, Srijata; Cantarella, Pasquale; Osornio-Vargas, Álvaro; Quintana-Belmares, Raúl; Meng, Qingyu; Kirn, Thomas J.; Ohman Strickland, Pamela; Chow, Judith C.; Watson, John G.; Torres, Martha

    2015-01-01

    Inhalation exposure to indoor air pollutants and cigarette smoke increases the risk of developing tuberculosis (TB). Whether exposure to ambient air pollution particulate matter (PM) alters protective human host immune responses against Mycobacterium tuberculosis has been little studied. Here, we examined the effect of PM from Iztapalapa, a municipality of Mexico City, with aerodynamic diameters below 2.5 μm (PM2.5) and 10 μm (PM10) on innate antimycobacterial immune responses in human alveolar type II epithelial cells of the A549 cell line. Exposure to PM2.5 or PM10 deregulated the ability of the A549 cells to express the antimicrobial peptides human β-defensin 2 (HBD-2) and HBD-3 upon infection with M. tuberculosis and increased intracellular M. tuberculosis growth (as measured by CFU count). The observed modulation of antibacterial responsiveness by PM exposure was associated with the induction of senescence in PM-exposed A549 cells and was unrelated to PM-mediated loss of cell viability. Thus, the induction of senescence and downregulation of HBD-2 and HBD-3 expression in respiratory PM-exposed epithelial cells leading to enhanced M. tuberculosis growth represent mechanisms by which exposure to air pollution PM may increase the risk of M. tuberculosis infection and the development of TB. PMID:25847963

  18. Air pollution particulate matter alters antimycobacterial respiratory epithelium innate immunity.

    PubMed

    Rivas-Santiago, César E; Sarkar, Srijata; Cantarella, Pasquale; Osornio-Vargas, Álvaro; Quintana-Belmares, Raúl; Meng, Qingyu; Kirn, Thomas J; Ohman Strickland, Pamela; Chow, Judith C; Watson, John G; Torres, Martha; Schwander, Stephan

    2015-06-01

    Inhalation exposure to indoor air pollutants and cigarette smoke increases the risk of developing tuberculosis (TB). Whether exposure to ambient air pollution particulate matter (PM) alters protective human host immune responses against Mycobacterium tuberculosis has been little studied. Here, we examined the effect of PM from Iztapalapa, a municipality of Mexico City, with aerodynamic diameters below 2.5 μm (PM2.5) and 10 μm (PM10) on innate antimycobacterial immune responses in human alveolar type II epithelial cells of the A549 cell line. Exposure to PM2.5 or PM10 deregulated the ability of the A549 cells to express the antimicrobial peptides human β-defensin 2 (HBD-2) and HBD-3 upon infection with M. tuberculosis and increased intracellular M. tuberculosis growth (as measured by CFU count). The observed modulation of antibacterial responsiveness by PM exposure was associated with the induction of senescence in PM-exposed A549 cells and was unrelated to PM-mediated loss of cell viability. Thus, the induction of senescence and downregulation of HBD-2 and HBD-3 expression in respiratory PM-exposed epithelial cells leading to enhanced M. tuberculosis growth represent mechanisms by which exposure to air pollution PM may increase the risk of M. tuberculosis infection and the development of TB.

  19. COPPER-DEPENDENT INFLAMMATION AND NUCLEAR FACTOR-KB ACTIVATION BY PARTICULATE AIR POLLUTION

    EPA Science Inventory

    Particulate air pollution causes increased cardiopulmonary morbidity and mortality, but the chemical determinants responsible for its biologic effects are not understood. We studied the effect of total suspended particulates collected in Provo, Utah, an area where an increase in ...

  20. Ambient particulate matter air pollution and cardiopulmonary diseases.

    PubMed

    Thurston, George; Lippmann, Morton

    2015-06-01

    Population exposures to ambient outdoor particulate matter (PM) air pollution have been assessed to represent a major burden on global health. Ambient PM is a diverse class of air pollution, with characteristics and health implications that can vary depending on a host of factors, including a particle's original source of emission or formation. The penetration of inhaled particles into the thorax is dependent on their deposition in the upper respiratory tract during inspiration, which varies with particle size, flow rate and tidal volume, and in vivo airway dimensions. All of these factors can be quite variable from person to person, depending on age, transient illness, cigarette smoke and other short-term toxicant exposures that cause transient bronchoconstriction, and occupational history associated with loss of lung function or cumulative injury. The adverse effects of inhaled PM can result from both short-term (acute) and long-term (chronic) exposures to PM, and can range from relatively minor, such as increased symptoms, to very severe effects, including increased risk of premature mortality and decreased life expectancy from long-term exposure. Control of the most toxic PM components can therefore provide major health benefits, and can help guide the selection of the most human health optimal air quality control and climate change mitigation policy measures. As such, a continued improvement in our understanding of the nature and types of PM that are most dangerous to health, and the mechanism(s) of their respective health effects, is an important public health goal. PMID:26024349

  1. Ambient particulate matter air pollution and cardiopulmonary diseases.

    PubMed

    Thurston, George; Lippmann, Morton

    2015-06-01

    Population exposures to ambient outdoor particulate matter (PM) air pollution have been assessed to represent a major burden on global health. Ambient PM is a diverse class of air pollution, with characteristics and health implications that can vary depending on a host of factors, including a particle's original source of emission or formation. The penetration of inhaled particles into the thorax is dependent on their deposition in the upper respiratory tract during inspiration, which varies with particle size, flow rate and tidal volume, and in vivo airway dimensions. All of these factors can be quite variable from person to person, depending on age, transient illness, cigarette smoke and other short-term toxicant exposures that cause transient bronchoconstriction, and occupational history associated with loss of lung function or cumulative injury. The adverse effects of inhaled PM can result from both short-term (acute) and long-term (chronic) exposures to PM, and can range from relatively minor, such as increased symptoms, to very severe effects, including increased risk of premature mortality and decreased life expectancy from long-term exposure. Control of the most toxic PM components can therefore provide major health benefits, and can help guide the selection of the most human health optimal air quality control and climate change mitigation policy measures. As such, a continued improvement in our understanding of the nature and types of PM that are most dangerous to health, and the mechanism(s) of their respective health effects, is an important public health goal.

  2. Particulate Air Pollution and Clinical Cardiovascular Disease Risk Factors

    PubMed Central

    Shanley, Ryan P; Hayes, Richard B; Cromar, Kevin R; Ito, Kazuhiko; Gordon, Terry; Ahn, Jiyoung

    2016-01-01

    BACKGROUND Long-term exposure to ambient particulate matter (PM) air pollution is associated with increased cardiovascular disease (CVD); however, the impact of PM on clinical risk factors for CVD in healthy subjects is unclear. We examined the relationship of PM with levels of circulating lipids and blood pressure in the Third National Health and Nutrition Examination Survey (NHANES III), a large nationally-representative US survey. METHODS This study was based on 11,623 adult participants of NHANES III (1988–1994; median age 41.0). Serum lipids and blood pressure were measured during the NHANES III examination. Average exposure for 1988–1994 to particulate matter <10µm in aerodynamic diameter (PM10) at the residences of participants was estimated based on measurements from U.S. Environmental Protection Agency monitors. Multivariate linear regression was used to estimate the associations of PM10 with lipids and blood pressure. RESULTS An interquartile range width (IQRw) increase in PM10 exposure (11.1 µg/m3) in the study population was associated with 2.42 percent greater serum triglycerides (95% confidence interval [CI]: 1.09–3.76); multivariate adjusted means of triglycerides according to increasing quartiles of PM10 were 137.6, 142.5, 142.6, and 148.9 mg/dL, respectively. An IQRw increase in PM10 was associated with 1.43 percent greater total cholesterol (95% CI: 1.21–1.66). These relationships with triglycerides and total cholesterol did not differ by age or region. Associations of PM10 with blood pressure were modest. CONCLUSIONS Findings from this large diverse study indicate that greater long-term PM10 exposure is associated with elevated serum triglycerides and total cholesterol, potentially mediating air pollution-related effects on CVD. PMID:26605815

  3. Association of particulate air pollution with daily mortality: the China Air Pollution and Health Effects Study.

    PubMed

    Chen, Renjie; Kan, Haidong; Chen, Bingheng; Huang, Wei; Bai, Zhipeng; Song, Guixiang; Pan, Guowei

    2012-06-01

    China is one of the few countries with some of the highest particulate matter levels in the world. However, only a small number of particulate matter health studies have been conducted in China. The study objective was to examine the association of particulate matter with an aerodynamic diameter of less than 10 μm (PM(10)) with daily mortality in 16 Chinese cities between 1996 and 2008. Two-stage Bayesian hierarchical models were applied to obtain city-specific and national average estimates. Poisson regression models incorporating natural spline smoothing functions were used to adjust for long-term and seasonal trends of mortality, as well as other time-varying covariates. The averaged daily concentrations of PM(10) in the 16 Chinese cities ranged from 52 μg/m(3) to 156 μg/m(3). The 16-city combined analysis showed significant associations of PM(10) with mortality: A 10-μg/m(3) increase in 2-day moving-average PM(10) was associated with a 0.35% (95% posterior interval (PI): 0.18, 0.52) increase of total mortality, 0.44% (95% PI: 0.23, 0.64) increase of cardiovascular mortality, and 0.56% (95% PI: 0.31, 0.81) increase of respiratory mortality. Females, older people, and residents with low educational attainment appeared to be more vulnerable to PM(10) exposure. Conclusively, this largest epidemiologic study of particulate air pollution in China suggests that short-term exposure to PM(10) is associated with increased mortality risk.

  4. Particulate air pollution and daily mortality on Utah's Wasatch Front.

    PubMed Central

    Pope, C A; Hill, R W; Villegas, G M

    1999-01-01

    Reviews of daily time-series mortality studies from many cities throughout the world suggest that daily mortality counts are associated with short-term changes in particulate matter (PM) air pollution. One U.S. city, however, with conspicuously weak PM-mortality associations was Salt Lake City, Utah; however, relatively robust PM-mortality associations have been observed in a neighboring metropolitan area (Provo/Orem, Utah). The present study explored this apparent discrepancy by collecting, comparing, and analyzing mortality, pollution, and weather data for all three metropolitan areas on Utah's Wasatch Front region of the Wasatch Mountain Range (Ogden, Salt Lake City, and Provo/Orem) for approximately 10 years (1985-1995). Generalized additive Poisson regression models were used to estimate PM-mortality associations while controlling for seasonality, temperature, humidity, and barometric pressure. Salt Lake City experienced substantially more episodes of high PM that were dominated by windblown dust. When the data were screened to exclude obvious windblown dust episodes and when PM data from multiple monitors were used to construct an estimate of mean exposure for the area, comparable PM-mortality effects were estimated. After screening and by using constructed mean PM [less than/equal to] 10 microm in aerodynamic diameter (PM10) data, the estimated percent change in mortality associated with a 10-mg/m3 increase in PM10 (and 95% confidence intervals) for the three Wasatch Front metropolitan areas equaled approximately 1. 6% (0.3-2.9), 0.8% (0.3-1.3), and 1.0% (0.2-1.8) for the Ogden, Salt Lake City, and Provo/Orem areas, respectively. We conclude that stagnant air pollution episodes with higher concentrations of primary and secondary combustion-source particles were more associated with elevated mortality than windblown dust episodes with relatively higher concentrations of coarse crustal-derived particles. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:10379003

  5. EDITORIAL: Global impacts of particulate matter air pollution

    NASA Astrophysics Data System (ADS)

    Bell, Michelle L.; Holloway, Tracey

    2007-10-01

    development of dose response relationships that take into account how the high degree of source and demographic variability affect PM health response. We look forward to the continued growth of research in ERL contributing to air pollution emissions, distribution, and impacts. As the integrated study of air quality connects to economics, energy, agriculture, meteorology, climate change, and public health—among other subjects—its advancement is well-suited to an interdisciplinary, open-access journal like ERL. Thanks to our authors for contributing to ERL's growth in global air pollution research with such excellent work. Focus on Global Impacts of Particulate Matter Air Pollution Contents The articles below represent the first accepted contributions and further additions will appear in the near future. Major components of China's anthropogenic primary particulate emissions Qiang Zhang, David G Streets, Kebin He and Zbigniew Klimont Impacts of roadway emissions on urban particulate matter concentrations in sub-Saharan Africa: new evidence from Nairobi, Kenya E D S van Vliet and P L Kinney Potential influence of inter-continental transport of sulfate aerosols on air quality Junfeng Liu and Denise L Mauzerall Can warming particles enter global climate discussions? Tami C Bond

  6. Impacts of Particulate Air Pollution on Asthma: Current Understanding and Future Perspectives.

    PubMed

    Takizawa, Hajime

    2015-01-01

    The impacts of air pollution on human health and disease have been attracting attention, especially in industrialized countries and areas with heavy traffic burdens. Fine particulate matters (PMs) are considered as an important air pollutant, since it was reported that there was a significant relationship between PM2.5 levels and mortality by cohort studies in 1990s. Epidemiological and toxicological studies have strongly suggested a causative relationship between fine particulate air pollution and increased incidence as well as exacerbations of asthma, and other respiratory disorders. Recent advances in research have elucidated that PMs primarily and secondarily induce oxidative stresses which result both in pro- and antiinflammatory activities. It has been demonstrated that gene polymorphisms of antioxidant enzymes might change responses to particulate air pollution exposures. To prevent health hazardous effects of particles, it is crucial to screen susceptible subpopulations and establish chemoprevention strategies in the world. Novel techniques and modalities are patented for future progress on better control of air pollution.

  7. BIOAVAILABLE AIR PARTICULATE POLLUTION CONSTITUENTS DIRECTLY ALTER CARDIOVASCULAR FUNCTION EX VIVO

    EPA Science Inventory

    Epidemiological studies have reported associations between particulate air pollution exposure and cardiovascular (CV) effects within susceptible individuals. Particle characteristics and biological mechanisms responsible for these observations are not known. We examined whether s...

  8. AIR PARTICULATE POLLUTION CARDIOVASCULAR TOXICITY: HAZARD IDENTIFICATION AND MECHANISMS OF ACTION

    EPA Science Inventory


    The overall weight of evidence from epidemiological studies has shown statistical associations between air particulate pollution exposure and mortality\\morbidity particularly within individuals with cardiovascular disease (1-4). Identification of causal particle properties ...

  9. Journey-time exposure to particulate air pollution

    NASA Astrophysics Data System (ADS)

    Gulliver, John; Briggs, David J.

    Journey-time exposures to particulate air pollution were investigated in Leicester, UK, between January and March 2005. Samples of TSP, PM 10, PM 2.5, and PM 1 were simultaneously collected using light scattering devices whilst journeys were made by walking an in-car. Over a period of two months, 33 pairs of walking and in-car measurements were collected along two circular routes. Average exposures while walking were seen to be higher than those found in-car for each of the particle fractions: average walking to in-car ratios were 1.2 (± 0.6), 1.5 (± 0.6), 1.3 (± 0.6), and 1.4 (± 0.6) μg m -3 for coarse (TSP-PM 10), intermediate (PM 10-PM 2.5), fine (PM 2.5-PM 1), and very fine particles (PM 1), respectively. Correlations between walking and in-car exposures were seen to be weak for coarse particles ( r=0.10, p=0.58), moderate for the intermediate particles ( r=0.49, p<0.01) but strong for fine ( r=0.89, p<0.01) and very fine ( r=0.90, P<0.01) particles. PM 10 exposures while walking were on average 70% higher than a nearby roadside fixed-site monitor whilst in-car exposures were 25% higher than the same fixed-site monitor. Particles with an aerodynamic diameter of less than 2.5 μm were seen to be highly correlated between walking and in-car particle exposures and a rural fixed-site monitor about 30 km south of Leicester.

  10. EDITORIAL: Global impacts of particulate matter air pollution

    NASA Astrophysics Data System (ADS)

    Bell, Michelle L.; Holloway, Tracey

    2007-10-01

    sulfate aerosol exposure (both domestically and on downwind continents), while presenting a new metric to quantify the impact of distance on health-relevant exposure: the 'influence potential'. Extending the scope of aerosol impacts from health to climate, Bond outlines the barriers to including aerosols in climate agreements, and proposes solutions to facilitate the integration of this key climate species in a policy context. Together, the articles scope out the state-of-the-science with respect to key issues in international air pollution. All four studies advance understanding the human health implications of air pollution, by drawing from worldwide data sources and considering a global perspective on key processes and impacts. To extend exposure estimates, like those of van Vliet and Kinney or Liu and Mauzerall, and to evaluate the induced physiological response of PM exposure, typically existing dose response relationships are applied. Unfortunately, the common practice of applying health response estimates from one location to another is problematic. In addition to potential differences in the chemical composition of particles, the underlying populations may differ with respect to their baseline health status, occupational exposures, age and gender distribution, and behavioral factors such as nutrition and smoking habits. Health response to a given stressor is affected by the quality of and access to health care, which varies widely, and can be almost non-existent in some regions of developing countries. Further, exposure to ambient PM is affected by the relative fraction of time spent in different settings (e.g., work, home, outside, in transit), the activities that affect ventilation rate (e.g., exercising heavily versus sitting still), and housing characteristics that alter the penetration of outdoor particles into indoor environments (e.g., housing materials, windows, air conditioning). To make the most of exposure estimates, the 'missing link' is the

  11. Daily changes in oxygen saturation and pulse rate associated with particulate air pollution and barometric pressure.

    PubMed

    Dockery, D W; Pope, C A; Kanner, R E; Martin Villegas, G; Schwartz, J

    1999-01-01

    Epidemiologic studies have linked fine particulate air pollution with increases in morbidity and mortality rates from cardiopulmonary complications. Although the underlying biologic mechanisms responsible for this increase remain largely unknown, potential pathways include transient declines in blood oxygenation and changes in pulse rate following exposures to particulate air pollution episodes. This study evaluated potential associations between daily measures of respirable particulate matter (PM) with pulse rate and oxygen saturation of the blood. Pulse rate and oxygen saturation (Spo2) using pulse oximetry were measured daily in 90 elderly subjects living near air pollution monitors during the winter of 1995-96 in Utah Valley. We also evaluated potential associations of oxygen saturation and pulse rate with barometric pressure. Small but statistically significant positive associations between day-to-day changes in Spo2 and barometric pressure were observed. Pulse rate was inversely associated with barometric pressure. Exposure to particulate pollution was not significantly associated with Spo2 except in male participants 80 years of age or older. Increased daily pulse rate, as well as the odds of having a pulse rate 5 or 10 beats per minute (bpm) above normal (normal is defined as the individual's mean pulse rate throughout the study period), were significantly associated with exposure to particulate pollution on the previous 1 to 5 days. The medical or biologic relevance of these increases in pulse rate following exposure to particulate air pollution requires further study.

  12. Daily changes in oxygen saturation and pulse rate associated with particulate air pollution and barometric pressure.

    PubMed

    Dockery, D W; Pope, C A; Kanner, R E; Martin Villegas, G; Schwartz, J

    1999-01-01

    Epidemiologic studies have linked fine particulate air pollution with increases in morbidity and mortality rates from cardiopulmonary complications. Although the underlying biologic mechanisms responsible for this increase remain largely unknown, potential pathways include transient declines in blood oxygenation and changes in pulse rate following exposures to particulate air pollution episodes. This study evaluated potential associations between daily measures of respirable particulate matter (PM) with pulse rate and oxygen saturation of the blood. Pulse rate and oxygen saturation (Spo2) using pulse oximetry were measured daily in 90 elderly subjects living near air pollution monitors during the winter of 1995-96 in Utah Valley. We also evaluated potential associations of oxygen saturation and pulse rate with barometric pressure. Small but statistically significant positive associations between day-to-day changes in Spo2 and barometric pressure were observed. Pulse rate was inversely associated with barometric pressure. Exposure to particulate pollution was not significantly associated with Spo2 except in male participants 80 years of age or older. Increased daily pulse rate, as well as the odds of having a pulse rate 5 or 10 beats per minute (bpm) above normal (normal is defined as the individual's mean pulse rate throughout the study period), were significantly associated with exposure to particulate pollution on the previous 1 to 5 days. The medical or biologic relevance of these increases in pulse rate following exposure to particulate air pollution requires further study. PMID:10192116

  13. Air Pollution.

    ERIC Educational Resources Information Center

    Fox, Donald L.

    1989-01-01

    Materials related to air pollution are reviewed for the period January 1987, to October 1988. The topics are pollution monitoring, air pollution, and environmental chemistry. The organization consists of two major analytical divisions: (1) gaseous methods; and (2) aerosol and particulate methods. (MVL)

  14. [Particulate matter (PM10) air pollution, daily mortality, and hospital admissions: recent findings].

    PubMed

    Colucci, Maria Eugenia; Veronesi, Licia; Roveda, Anna Maria; Marangio, Emilio; Sansebastiano, Giuliano

    2006-01-01

    The first studies conducted to evaluate a possible association between air pollution and mortality date back to the serious events that occurred in the Mosa Valley, Belgium (1930), in the small city of Donora ("killer fog" incident of 1948) and in London (1952). The latter episode led to the introduction of air pollution control policies. Following the introduction of air pollution control measures in economically advanced cities in the 60s and 70s, the concentration levels of pollutants reached were believed, for many years, to be risk free. However, despite improvements in air quality achieved by many industrialized countries the negative effects of air pollution remain today an important public health problem. Among all air pollutants, particulate matter is the type of air pollution that causes the most numerous and serious effects on human health, because of the broad range of diverse toxic substances it contains,. For this reason, when assessing human health risk, PM10 may be considered to be a reliable indicator of the impact of global air pollution. Various epidemiologic studies conducted in the last 10 years, such as the Air Pollution and Health-European Approach (APHEA) project, the National Morbidity, Mortality and Air Pollution (NMMAPS) Study and Italian Meta-analysis of Studies on the short-term effects of Air pollution (MISA), have shown that current ambient concentrations of PM10 may lead to increased mortality and morbidity. Various studies have reported mean increases in mortality below 1% for 10 ?g/mc increases of ambient PM10. Studies have also underscored the role of particulate matter in aggravating cardiorespiratory diseases and consequently increasing hospital admissions. Air quality standards have been recently revised by legislation. The EU has issued a directive that sets limiting values and, where appropriate, threshold values, for the different air pollutants.

  15. Estimation of unmeasured particulate air pollution data for an epidemiological study of daily respiratory morbidity.

    PubMed

    Delfino, R J; Becklake, M R; Hanley, J A; Singh, B

    1994-10-01

    The standard approach to government-mandated aerometric monitoring of airborne particulates across North America is to sample every sixth day year round. However, such data are inadequate for epidemiological studies which aim to examine daily time series relationships of particulate air pollution to respiratory health responses. The aim of the present study was to estimate missing daily particulate matter < or = 2.5 and < or = 10 microns in aerometric diameter (PM2.5 and PM10) and sulfate (SO4(2-) to a degree sufficiently accurate and reliable to allow the use of these estimates, along with the measured data, in an investigation of the relationship of air pollution to respiratory hospital admissions in Montreal during the 1980s. Prediction equations were developed for May through October periods using available daily levels of predictor variables which included: relative humidity-corrected light extinction coefficient (bext) derived from airport visual range sightings, coefficient of haze (COH), SO2, NOx, CO, O3, wind speed, wind direction, barometric pressure (BP), temperature, relative humidity, and total precipitation. Three fourths of the available gravimetric particulate data were used to develop prediction models, while the remaining fourth was used to test the reliability of the model (holdout data). All final models explained over 70% of the variability in the particulate air pollutants and were reliable when tested against the holdout data. The strongest (P < 0.001) and most consistent predictors were bext, COH, and O3 measured on the same day as the particulate, and BP lagged 1 day in the past. Other selected variables were same day NOx, BP, and minimum temperature. Although the present approach to the estimation of missing particulate air pollution may increase the level of exposure misclassification, it does allow for the use of existing network databases in epidemiological studies of daily air pollution health effects even though particulate data is

  16. Particulate Air Pollution in Mexico City: A Collaborative Research Project

    SciTech Connect

    Edgerton, Sylvia A.; Bian, Xindi; Doran, J C.; Fast, Jerome D.; Hubbe, John M.; Malone, Elizabeth L.; Shaw, William J.; Whiteman, Charles D.; Zhong, Shiyuan; Arriaga, J. L.; Ortiz, E.; Ruiz, M.; Sosa, G.; Vega, E.; Limon, T.; Guzman, F.; Archuleta, J.; Bossert, J. E.; Elliott, S.; Lee, J. T.; McNair, L. A.; Chow, J. C.; Watson, J. G.; Coulter, R. L.; Doskey, P. V.; Gaffney, J. S.; Marley, N. A.; Neff, W.; Petty, R.

    1999-10-01

    PM10, PM2.5, precursor gas, and upper-air meteorological measurements were taken in Mexico City, Mexico, from February 23 to March 22, 1997, to understand concentrations and chemical compositions of the city's particulate matter (PM). Average 24-hr PM10 concentrations over the period of study at the core sites in the city were 75 micrograms/m3. The 24-hr standard of 150 micrograms/m3 was exceeded for seven samples taken during the study period; the maximum 24-hr concentration measured was 542 micrograms/m3. Nearly half of the PM10 was composed of fugitive dust from roadways, construction, and bare land. About 50% of the PM10 consisted of PM2.5, with higher percentages during the morning hours. Organic and black carbon constituted up to half of the PM2.5. PM concentrations were highest during the early morning and after sunset, when the mixed layers were shallow. Meteorological measurements taken during the field campaign show that on most days air was transported out of the Mexico City basin during the afternoon with little day-to-day carryover.

  17. Clearing the air: a review of the effects of particulate matter air pollution on human health.

    PubMed

    Anderson, Jonathan O; Thundiyil, Josef G; Stolbach, Andrew

    2012-06-01

    The World Health Organization estimates that particulate matter (PM) air pollution contributes to approximately 800,000 premature deaths each year, ranking it the 13th leading cause of mortality worldwide. However, many studies show that the relationship is deeper and far more complicated than originally thought. PM is a portion of air pollution that is made up of extremely small particles and liquid droplets containing acids, organic chemicals, metals, and soil or dust particles. PM is categorized by size and continues to be the fraction of air pollution that is most reliably associated with human disease. PM is thought to contribute to cardiovascular and cerebrovascular disease by the mechanisms of systemic inflammation, direct and indirect coagulation activation, and direct translocation into systemic circulation. The data demonstrating PM's effect on the cardiovascular system are strong. Populations subjected to long-term exposure to PM have a significantly higher cardiovascular incident and mortality rate. Short-term acute exposures subtly increase the rate of cardiovascular events within days of a pollution spike. The data are not as strong for PM's effects on cerebrovascular disease, though some data and similar mechanisms suggest a lesser result with smaller amplitude. Respiratory diseases are also exacerbated by exposure to PM. PM causes respiratory morbidity and mortality by creating oxidative stress and inflammation that leads to pulmonary anatomic and physiologic remodeling. The literature shows PM causes worsening respiratory symptoms, more frequent medication use, decreased lung function, recurrent health care utilization, and increased mortality. PM exposure has been shown to have a small but significant adverse effect on cardiovascular, respiratory, and to a lesser extent, cerebrovascular disease. These consistent results are shown by multiple studies with varying populations, protocols, and regions. The data demonstrate a dose

  18. AIR PARTICULATE POLLUTION EXPOSURE INDUCES SYSTEMIC OXIDATIVE STRESS IN HEALTHY MICE

    EPA Science Inventory

    Air particulate pollution exposure induces systemic oxidative stress in healthy mice

    Elizabeth S Roberts1 and Kevin L Dreher2. 1 College or Veterinary Medicine, NC State University, Raleigh, NC , 2US Environmental Protection Agency, NHEERL, RTP, NC

    Epidemiological s...

  19. DAILY VARIATION OF PARTICULATE AIR POLLUTION AND POOR CARDIAC AUTONOMIC CONTROL IN THE ELDERLY

    EPA Science Inventory

    Particulate matter air pollution (PM) has been related to cardiovascular disease mortality in a number of recent studies. The pathophysiologic mechanisms for this association are under study. Low heart rate variability, a marker of poor cardiac autonomic control, is associated wi...

  20. Estimation of economic costs of particulate air pollution from road transport in China

    NASA Astrophysics Data System (ADS)

    Guo, X. R.; Cheng, S. Y.; Chen, D. S.; Zhou, Y.; Wang, H. Y.

    2010-09-01

    Valuation of health effects of air pollution is becoming a critical component of the performance of cost-benefit analysis of pollution control measures, which provides a basis for setting priorities for action. Beijing has focused on control of transport emission as vehicular emissions have recently become an important source of air pollution, particularly during Olympic games and Post-games. In this paper, we conducted an estimation of health effects and economic cost caused by road transport-related air pollution using an integrated assessment approach which utilizes air quality model, engineering, epidemiology, and economics. The results show that the total economic cost of health impacts due to air pollution contributed from transport in Beijing during 2004-2008 was 272, 297, 310, 323, 298 million US (mean value), respectively. The economic costs of road transport accounted for 0.52, 0.57, 0.60, 0.62, and 0.58% of annual Beijing GDP from 2004 to 2008. Average cost per vehicle and per ton of PM 10 emission from road transport can also be estimated as 106 US /number and 3584 US $ t -1, respectively. These findings illustrate that the impact of road transport contributed particulate air pollution on human health could be substantial in Beijing, whether in physical and economic terms. Therefore, some control measures to reduce transport emissions could lead to considerable economic benefit.

  1. Epidemiology of fine particulate air pollution and human health: biologic mechanisms and who's at risk?

    PubMed Central

    Pope, C A

    2000-01-01

    This article briefly summarizes the epidemiology of the health effects of fine particulate air pollution, provides an early, somewhat speculative, discussion of the contribution of epidemiology to evaluating biologic mechanisms, and evaluates who's at risk or is susceptible to adverse health effects. Based on preliminary epidemiologic evidence, it is speculated that a systemic response to fine particle-induced pulmonary inflammation, including cytokine release and altered cardiac autonomic function, may be part of the pathophysiologic mechanisms or pathways linking particulate pollution with cardiopulmonary disease. The elderly, infants, and persons with chronic cardiopulmonary disease, influenza, or asthma are most susceptible to mortality and serious morbidity effects from short-term acutely elevated exposures. Others are susceptible to less serious health effects such as transient increases in respiratory symptoms, decreased lung function, or other physiologic changes. Chronic exposure studies suggest relatively broad susceptibility to cumulative effects of long-term repeated exposure to fine particulate pollution, resulting in substantive estimates of population average loss of life expectancy in highly polluted environments. Additional knowledge is needed about the specific pollutants or mix of pollutants responsible for the adverse health effects and the biologic mechanisms involved. PMID:10931790

  2. Respiratory disease and particulate air pollution in Santiago Chile: contribution of erosion particles from fine sediments.

    PubMed

    Garcia-Chevesich, Pablo A; Alvarado, Sergio; Neary, Daniel G; Valdes, Rodrigo; Valdes, Juan; Aguirre, Juan José; Mena, Marcelo; Pizarro, Roberto; Jofré, Paola; Vera, Mauricio; Olivares, Claudio

    2014-04-01

    Air pollution in Santiago is a serious problem every winter, causing thousands of cases of breathing problems within the population. With more than 6 million people and almost two million vehicles, this large city receives rainfall only during winters. Depending on the frequency of storms, statistics show that every time it rains, air quality improves for a couple of days, followed by extreme levels of air pollution. Current regulations focus mostly on PM10 and PM2.5, due to its strong influence on respiratory diseases. Though more than 50% of the ambient PM10s in Santiago is represented by soil particles, most of the efforts have been focused on the remaining 50%, i.e. particulate material originating from fossil and wood fuel combustion, among others. This document emphasizes the need for the creation of erosion/sediment control regulations in Chile, to decrease respiratory diseases on Chilean polluted cities.

  3. Respiratory disease and particulate air pollution in Santiago Chile: contribution of erosion particles from fine sediments.

    PubMed

    Garcia-Chevesich, Pablo A; Alvarado, Sergio; Neary, Daniel G; Valdes, Rodrigo; Valdes, Juan; Aguirre, Juan José; Mena, Marcelo; Pizarro, Roberto; Jofré, Paola; Vera, Mauricio; Olivares, Claudio

    2014-04-01

    Air pollution in Santiago is a serious problem every winter, causing thousands of cases of breathing problems within the population. With more than 6 million people and almost two million vehicles, this large city receives rainfall only during winters. Depending on the frequency of storms, statistics show that every time it rains, air quality improves for a couple of days, followed by extreme levels of air pollution. Current regulations focus mostly on PM10 and PM2.5, due to its strong influence on respiratory diseases. Though more than 50% of the ambient PM10s in Santiago is represented by soil particles, most of the efforts have been focused on the remaining 50%, i.e. particulate material originating from fossil and wood fuel combustion, among others. This document emphasizes the need for the creation of erosion/sediment control regulations in Chile, to decrease respiratory diseases on Chilean polluted cities. PMID:24485904

  4. DETECTION AND MOLECULAR ANALYSIS OF PARTICULATE AIR POLLUTION INDUCED CARDIOPULMONARY OXIDATIVE STRESS USING A TRANSGENIC MOUSE MODEL AND EMERGING TECHNOLOGIES

    EPA Science Inventory


    Identification of particle characteristics and biological mechanism(s) responsible for the adverse pulmonary and cardiovascular responses associated with particulate air pollution exposure remains a critical research activity. We have employed an oxidative stress sensitive an...

  5. Biomass fuel use and the exposure of children to particulate air pollution in southern Nepal

    PubMed Central

    Devakumar, D.; Semple, S.; Osrin, D.; Yadav, S.K.; Kurmi, O.P.; Saville, N.M.; Shrestha, B.; Manandhar, D.S.; Costello, A.; Ayres, J.G.

    2014-01-01

    The exposure of children to air pollution in low resource settings is believed to be high because of the common use of biomass fuels for cooking. We used microenvironment sampling to estimate the respirable fraction of air pollution (particles with median diameter less than 4 μm) to which 7–9 year old children in southern Nepal were exposed. Sampling was conducted for a total 2649 h in 55 households, 8 schools and 8 outdoor locations of rural Dhanusha. We conducted gravimetric and photometric sampling in a subsample of the children in our study in the locations in which they usually resided (bedroom/living room, kitchen, veranda, in school and outdoors), repeated three times over one year. Using time activity information, a 24-hour time weighted average was modeled for all the children in the study. Approximately two-thirds of homes used biomass fuels, with the remainder mostly using gas. The exposure of children to air pollution was very high. The 24-hour time weighted average over the whole year was 168 μg/m3. The non-kitchen related samples tended to show approximately double the concentration in winter than spring/autumn, and four times that of the monsoon season. There was no difference between the exposure of boys and girls. Air pollution in rural households was much higher than the World Health Organization and the National Ambient Air Quality Standards for Nepal recommendations for particulate exposure. PMID:24533994

  6. Community air pollution and mortality: Analysis of 1980 data from US metropolitan areas. 1: Particulate air pollution

    SciTech Connect

    Lipfert, F.W.

    1992-11-01

    1980 data from up to 149 metropolitan areas were used to define cross-sectional associations between community air pollution and excess human mortality. The regression model proposed by Oezkaynak and Thurston, which accounted for age, race, education, poverty, and population density, was evaluated and several new models were developed. The new models also accounted for population change, drinking water hardness, and smoking, and included a more detailed description of race. Cause-of-death categories analyzed include all causes, all non-external causes, major cardiovascular diseases, and chronic obstructive pulmonary diseases (COPD). Both annual mortality rates and their logarithms were analyzed. The data on particulates were averaged across all monitoring stations available for each SMSA and the TSP data were restricted to the year 1980. The associations between mortality and air pollution were found to be dependent on the socioeconomic factors included in the models, the specific locations included din the data set, and the type of statistical model used. Statistically significant associations were found between TSP and mortality due to non-external causes with log-linear models, but not with a linear model, and between TS and COPD mortality for both linear and log-linear models. When the sulfate contribution to TSP was subtracted, the relationship with COPD mortality was strengthened. Scatter plots and quintile analyses suggested a TSP threshold for COPD mortality at around 65 ug/m{sup 3} (annual average). SO{sub 4}{sup {minus}2}, Mn, PM{sup 15}, and PM{sub 2.5} were not significantly associated with mortality using the new models.

  7. Mortality Effects of a Copper Smelter Strike and Reduced Ambient Sulfate Particulate Matter Air Pollution

    PubMed Central

    Pope, C. Arden; Rodermund, Douglas L.; Gee, Matthew M.

    2007-01-01

    Background Numerous studies have reported associations between fine particulate and sulfur oxide air pollution and human mortality. Yet there continues to be concern that public policy efforts to improve air quality may not produce actual improvement in human health. Objectives This study retrospectively explored a natural experiment associated with a copper smelter strike from 15 July 1967 through the beginning of April 1968. Methods In the 1960s, copper smelters accounted for approximately 90% of all sulfate emissions in the four Southwest states of New Mexico, Arizona, Utah, and Nevada. Over the 8.5-month strike period, a regional improvement in visibility accompanied an approximately 60% decrease in concentrations of suspended sulfate particles. We collected monthly mortality counts for 1960–1975 and analyzed them using Poisson regression models. Results The strike-related estimated percent decrease in mortality was 2.5% (95% confidence interval, 1.1–4.0%), based on a Poisson regression model that controlled for time trends, mortality counts in bordering states, and nationwide mortality counts for influenza/pneumonia, cardiovascular, and other respiratory deaths. Conclusions These results contribute to the growing body of evidence that ambient sulfate particulate matter and related air pollutants are adversely associated with human health and that the reduction in this pollution can result in reduced mortality. PMID:17520052

  8. Retinal Microvascular Responses to Short-Term Changes in Particulate Air Pollution in Healthy Adults

    PubMed Central

    Louwies, Tijs; Kicinski, Michal; De Boever, Patrick; Nawrot, Tim S.

    2013-01-01

    Background: Microcirculation plays an important role in the physiology of cardiovascular health. Air pollution is an independent risk factor for the development and progression of cardiovascular diseases, but the number of studies on the relation between air pollution and the microcirculation is limited. Objectives: We examined the relationship between short-term changes in air pollution and microvascular changes. Methods: We measured retinal microvasculature using fundus image analysis in a panel of 84 healthy adults (52% female), 22–63 years of age, during January–May 2012. Blood vessels were measured as central retinal arteriolar/venular equivalent (CRAE/CRVE), with a median of 2 measurements (range, 1–3). We used monitoring data on particulate air pollution (PM10) and black carbon (BC). Mixed-effect models were used to estimate associations between CRAE/CRVE and exposure to PM10 and BC using various exposure windows. Results: CRAE and CRVE were associated with PM10 and BC concentrations, averaged over the 24 hr before the retinal examinations. Each 10-µg/m3 increase in PM10 was associated with a 0.93-µm decrease (95% CI: –1.42, –0.45; p = 0.0003) in CRAE and a 0.86-µm decrease (95% CI: –1.42, –0.30; p = 0.004) in CRVE after adjusting for individual characteristics and time varying conditions such as ambient temperature. Each 1-µg/m3 increase in BC was associated with a 1.84-µm decrease (95% CI: –3.18, –0.51; p < 0.001) in CRAE. Conclusions: Our findings suggest that the retinal microvasculature responds to short-term changes in air pollution levels. These results support a mechanistic pathway through which air pollution can act as a trigger of cardiovascular events at least in part through effects on the microvasculature. Citation: Louwies T, Int Panis L, Kicinski M, De Boever P, Nawrot TS. 2013. Retinal microvascular responses to short-term changes in particulate air pollution in healthy adults. Environ Health Perspect 121:1011–1016;

  9. Particulate air pollution and susceptibility to the development of pulmonary tuberculosis disease in North Carolina: an ecological study

    PubMed Central

    Schoenbach, Victor J.; Richardson, David B.; Gammon, Marilie D.

    2015-01-01

    Although Mycobacterium tuberculosis is the causative agent of pulmonary tuberculosis (PTB), environmental factors may influence disease progression. Ecologic studies conducted in countries outside the USA with high levels of air pollution and PTB have suggested a link between active disease and ambient air pollution. The present investigation is the first to examine the ambient air pollution/PTB association in a country, where air pollution levels are comparatively lower. We used Poisson regression models to examine the association of outdoor air pollutants, PM10 and PM2.5 with rates of PTB in North Carolina residents during 1993–2007. Results suggest a potential association between long-term exposure to particulate matter (PM) and PTB disease. In view of the high levels of air pollution and high rates of PTB worldwide, a potential association between ambient air pollution and tuberculosis warrants further study. PMID:24387197

  10. Particulate air pollution and susceptibility to the development of pulmonary tuberculosis disease in North Carolina: an ecological study.

    PubMed

    Smith, Genee S; Schoenbach, Victor J; Richardson, David B; Gammon, Marilie D

    2014-04-01

    Although Mycobacterium tuberculosis is the causative agent of pulmonary tuberculosis (PTB), environmental factors may influence disease progression. Ecologic studies conducted in countries outside the USA with high levels of air pollution and PTB have suggested a link between active disease and ambient air pollution. The present investigation is the first to examine the ambient air pollution-PTB association in a country, where air pollution levels are comparatively lower. We used Poisson regression models to examine the association of outdoor air pollutants, PM10 and PM2.5 with rates of PTB in North Carolina residents during 1993-2007. Results suggest a potential association between long-term exposure to particulate matter (PM) and PTB disease. In view of the high levels of air pollution and high rates of PTB worldwide, a potential association between ambient air pollution and tuberculosis warrants further study.

  11. Framework for using deciduous tree leaves as biomonitors for intraurban particulate air pollution in exposure assessment.

    PubMed

    Gillooly, Sara E; Shmool, Jessie L Carr; Michanowicz, Drew R; Bain, Daniel J; Cambal, Leah K; Shields, Kyra Naumoff; Clougherty, Jane E

    2016-08-01

    Fine particulate matter (PM2.5) air pollution, varying in concentration and composition, has been shown to cause or exacerbate adverse effects on both human and ecological health. The concept of biomonitoring using deciduous tree leaves as a proxy for intraurban PM air pollution in different areas has previously been explored using a variety of study designs (e.g., systematic coverage of an area, source-specific focus), deciduous tree species, sampling strategies (e.g., single day, multi-season), and analytical methods (e.g., chemical, magnetic) across multiple geographies and climates. Biomonitoring is a low-cost sampling method and may potentially fill an important gap in current air monitoring methods by providing low-cost, longer-term urban air pollution measures. As such, better understanding of the range of methods, and their corresponding strengths and limitations, is critical for employing the use of tree leaves as biomonitors for pollution to improve spatially resolved exposure assessments for epidemiological studies and urban planning strategies. PMID:27450373

  12. Disrupted Nitric Oxide Metabolism from Type II Diabetes and Acute Exposure to Particulate Air Pollution

    PubMed Central

    Pettit, Ashley P.; Kipen, Howard; Laumbach, Robert; Ohman-Strickland, Pamela; Kelly-McNeill, Kathleen; Cepeda, Clarimel; Fan, Zhi-Hua; Amorosa, Louis; Lubitz, Sara; Schneider, Stephen; Gow, Andrew

    2015-01-01

    Type II diabetes is an established cause of vascular impairment. Particulate air pollution is known to exacerbate cardiovascular and respiratory conditions, particularly in susceptible populations. This study set out to determine the impact of exposure to traffic pollution, with and without particle filtration, on vascular endothelial function in Type II diabetes. Endothelial production of nitric oxide (NO) has previously been linked to vascular health. Reactive hyperemia induces a significant increase in plasma nitrite, the proximal metabolite of NO, in healthy subjects, while diabetics have a lower and more variable level of response. Twenty type II diabetics and 20 controls (ages 46–70 years) were taken on a 1.5hr roadway traffic air pollution exposure as passengers. We analyzed plasma nitrite, as a measure of vascular function, using forearm ischemia to elicit a reactive hyperemic response before and after exposure to one ride with and one without filtration of the particle components of pollution. Control subjects displayed a significant increase in plasma nitrite levels during reactive hyperemia. This response was no longer present following exposure to traffic air pollution, but did not vary with whether or not the particle phase was filtered out. Diabetics did not display an increase in nitrite levels following reactive hyperemia. This response was not altered following pollution exposure. These data suggest that components of acute traffic pollution exposure diminish vascular reactivity in non-diabetic individuals. It also confirms that type II diabetics have a preexisting diminished ability to appropriately respond to a vascular challenge, and that traffic pollution exposure does not cause a further measureable acute change in plasma nitrite levels in Type II diabetics. PMID:26656561

  13. Disrupted Nitric Oxide Metabolism from Type II Diabetes and Acute Exposure to Particulate Air Pollution.

    PubMed

    Pettit, Ashley P; Kipen, Howard; Laumbach, Robert; Ohman-Strickland, Pamela; Kelly-McNeill, Kathleen; Cepeda, Clarimel; Fan, Zhi-Hua; Amorosa, Louis; Lubitz, Sara; Schneider, Stephen; Gow, Andrew

    2015-01-01

    Type II diabetes is an established cause of vascular impairment. Particulate air pollution is known to exacerbate cardiovascular and respiratory conditions, particularly in susceptible populations. This study set out to determine the impact of exposure to traffic pollution, with and without particle filtration, on vascular endothelial function in Type II diabetes. Endothelial production of nitric oxide (NO) has previously been linked to vascular health. Reactive hyperemia induces a significant increase in plasma nitrite, the proximal metabolite of NO, in healthy subjects, while diabetics have a lower and more variable level of response. Twenty type II diabetics and 20 controls (ages 46-70 years) were taken on a 1.5 hr roadway traffic air pollution exposure as passengers. We analyzed plasma nitrite, as a measure of vascular function, using forearm ischemia to elicit a reactive hyperemic response before and after exposure to one ride with and one without filtration of the particle components of pollution. Control subjects displayed a significant increase in plasma nitrite levels during reactive hyperemia. This response was no longer present following exposure to traffic air pollution, but did not vary with whether or not the particle phase was filtered out. Diabetics did not display an increase in nitrite levels following reactive hyperemia. This response was not altered following pollution exposure. These data suggest that components of acute traffic pollution exposure diminish vascular reactivity in non-diabetic individuals. It also confirms that type II diabetics have a preexisting diminished ability to appropriately respond to a vascular challenge, and that traffic pollution exposure does not cause a further measureable acute change in plasma nitrite levels in Type II diabetics.

  14. Occupational exposure to particulate air pollution and mortality due to ischaemic heart disease and cerebrovascular disease

    PubMed Central

    Torén, Kjell; Bergdahl, Ingvar A; Nilsson, Tohr; Järvholm, Bengt

    2007-01-01

    Objectives A growing number of epidemiological studies are showing that ambient exposure to particulate matter air pollution is a risk factor for cardiovascular disease; however, whether occupational exposure increases this risk is not clear. The aim of the present study was to examine whether occupational exposure to particulate air pollution increases the risk for ischaemic heart disease and cerebrovascular disease. Methods The study population was a cohort of 176 309 occupationally exposed Swedish male construction workers and 71 778 unexposed male construction workers. The definition of exposure to inorganic dust (asbestos, man‐made mineral fibres, dust from cement, concrete and quartz), wood dust, fumes (metal fumes, asphalt fumes and diesel exhaust) and gases and irritants (organic solvents and reactive chemicals) was based on a job‐exposure matrix with focus on exposure in the mid‐1970s. The cohort was followed from 1971 to 2002 with regard to mortality to ischaemic heart disease and cerebrovascular disease. Relative risks (RR) were obtained by the person‐years method and from Poisson regression models adjusting for baseline values of blood pressure, body mass index, age and smoking habits. Results Any occupational particulate air pollution was associated with an increased risk for ischemic heart disease (RR 1.13, 95% CI 1.07 to 1.19), but there was no increased risk for cerebrovascular disease (RR 0.97, 95% CI 0.88 to 1.07). There was an increased risk for ischaemic heart disease and exposure to inorganic dust (RR 1.07, 95% CI 1.03 to 1.12) and exposure to fumes (RR 1.05, 95% CI 1.00 to 1.10), especially diesel exhaust (RR 1.18, 95% CI 1.13 to 1.24). There was no significantly increased risk for cerebrovascular disease and exposure to inorganic dust, fumes or wood dust. Conclusions Occupational exposure to particulate air pollution, especially diesel exhaust, among construction workers increases the risk for ischaemic heart disease. PMID

  15. Regional anomalies in chronic obstructive pulmonary disease; comparison with acid air pollution particulate characteristics.

    PubMed

    Winchester, J W

    1989-01-01

    Mortality rates due to chronic obstructive pulmonary disease (COPD) for males and females in standard metropolitan statistical areas are highest in two broad regions of the U.S. One is the southeast, with age-adjusted rates high in Georgia and north Florida but decreasing toward south Florida; the other is the western plains, with rates high in Colorado and north Texas but decreasing toward south Texas. Rates are generally low in the northeast, upper midwest, and far west, as well as in the largest cities of these regions. These geographic patterns suggest that atmospheric environmental conditions may contribute to the risk of COPD. Based on measured aerosol characteristics and atmospheric chemical reasoning, it is argued that ambient air in the high COPD regions may be especially irritating to the respiratory tract because of fine particles that contain the reaction products of acid air pollutants. In the southeast, sulfuric acid aerosol concentrations are high, apparently because of a sunny warm humid climate that favors rapid oxidation of sulfur dioxide as well as the region's proximity to large primary air pollution sources further north. Particulate sulfur is also associated with soil mineral constituents. In the western plains, concentrations of alkaline dust are high because of soil erosion during windy dry conditions. Acid air pollutants can be scavenged to mineral particle surfaces and form chemical reaction products that may include solubilized mineral aluminum. These may be inhaled and deposited in the respiratory tract so as to contribute to COPD mortality risk.

  16. Medication use modifies the health effects of particulate sulfate air pollution in children with asthma.

    PubMed Central

    Peters, A; Dockery, D W; Heinrich, J; Wichmann, H E

    1997-01-01

    Previous controlled studies have indicated that asthma medication modifies the adverse effects of sulfur dioxide (SO2) on lung function and asthma symptoms. The present report analyzed the role of medication use in a panel study of children with mild asthma. Children from Sokolov (n = 82) recorded daily peak expiratory flow (PEF) measurements, symptoms, and medication use in a diary. Linear and logistic regression analyses estimated the impact of concentrations of sulfate particles with diameters less than 2.5 microns, adjusting for linear trend, mean temperature, weekend (versus weekday), and prevalence of fever in the sample. Fifty-one children took no asthma medication, and only 31 were current medication users. Most children were treated with theophylline; only nine used sprays containing beta-agonist. For the nonmedicated children, weak associations between a 5-day mean of sulfates and respiratory symptoms were observed. Medicated children, in contrast, increased their beta-agonist use in direct association with an increase in 5-day mean of sulfates, but medication use did not prevent decreases in PEF and increases in the prevalence of cough attributable to particulate air pollution. Medication use was not a confounder but attenuated the associations between particulate air pollution and health outcomes. Images Figure 1. Figure 1. Figure 2. A Figure 2. B PMID:9189709

  17. A Quasi-Experimental Analysis of Elementary School Absences and Fine Particulate Air Pollution.

    PubMed

    Hales, Nicholas M; Barton, Caleb C; Ransom, Michael R; Allen, Ryan T; Pope, C Arden

    2016-03-01

    Fine particulate air pollution (PM2.5) has been associated with many adverse health outcomes including school absences. Specifically, a previous study in the Utah Valley area, conducted during a time with relatively high air pollution exposure, found significant positive correlations between school absences and air pollution. We examined the hypothesis that ambient PM2.5 exposures are associated with elementary school absences using a quasi-natural experiment to help control for observed and unobserved structural factors that influence school absences. The Alpine, Provo, and Salt Lake City school districts are located in valleys subject to daily mean PM2.5 concentrations almost twice as high as those in the Park City School District. We used seminonparametric generalized additive Poisson regression models to evaluate associations between absences and daily PM2.5 levels in the 3 districts that were exposed to the most pollution while using Park City absences as a quasi-control. The study covered 3 school years (2011/12-2013/14). School absences were most strongly associated with observed structural factors such as seasonal trends across school years, day-of-week effects, holiday effects, weather, etc. However, after controlling for these structural factors directly and using a control district, a 10 μg/m increase in PM2.5 was associated with an approximately 1.7% increase in daily elementary school absences. Exposure to ambient air pollution can contribute to elementary school absences, although this effect is difficult to disentangle from various other factors.

  18. A Quasi-Experimental Analysis of Elementary School Absences and Fine Particulate Air Pollution.

    PubMed

    Hales, Nicholas M; Barton, Caleb C; Ransom, Michael R; Allen, Ryan T; Pope, C Arden

    2016-03-01

    Fine particulate air pollution (PM2.5) has been associated with many adverse health outcomes including school absences. Specifically, a previous study in the Utah Valley area, conducted during a time with relatively high air pollution exposure, found significant positive correlations between school absences and air pollution. We examined the hypothesis that ambient PM2.5 exposures are associated with elementary school absences using a quasi-natural experiment to help control for observed and unobserved structural factors that influence school absences. The Alpine, Provo, and Salt Lake City school districts are located in valleys subject to daily mean PM2.5 concentrations almost twice as high as those in the Park City School District. We used seminonparametric generalized additive Poisson regression models to evaluate associations between absences and daily PM2.5 levels in the 3 districts that were exposed to the most pollution while using Park City absences as a quasi-control. The study covered 3 school years (2011/12-2013/14). School absences were most strongly associated with observed structural factors such as seasonal trends across school years, day-of-week effects, holiday effects, weather, etc. However, after controlling for these structural factors directly and using a control district, a 10 μg/m increase in PM2.5 was associated with an approximately 1.7% increase in daily elementary school absences. Exposure to ambient air pollution can contribute to elementary school absences, although this effect is difficult to disentangle from various other factors. PMID:26945391

  19. A Quasi-Experimental Analysis of Elementary School Absences and Fine Particulate Air Pollution

    PubMed Central

    Hales, Nicholas M.; Barton, Caleb C.; Ransom, Michael R.; Allen, Ryan T.; Pope, C. Arden

    2016-01-01

    Abstract Fine particulate air pollution (PM2.5) has been associated with many adverse health outcomes including school absences. Specifically, a previous study in the Utah Valley area, conducted during a time with relatively high air pollution exposure, found significant positive correlations between school absences and air pollution. We examined the hypothesis that ambient PM2.5 exposures are associated with elementary school absences using a quasi-natural experiment to help control for observed and unobserved structural factors that influence school absences. The Alpine, Provo, and Salt Lake City school districts are located in valleys subject to daily mean PM2.5 concentrations almost twice as high as those in the Park City School District. We used seminonparametric generalized additive Poisson regression models to evaluate associations between absences and daily PM2.5 levels in the 3 districts that were exposed to the most pollution while using Park City absences as a quasi-control. The study covered 3 school years (2011/12-2013/14). School absences were most strongly associated with observed structural factors such as seasonal trends across school years, day-of-week effects, holiday effects, weather, etc. However, after controlling for these structural factors directly and using a control district, a 10 μg/m3 increase in PM2.5 was associated with an approximately 1.7% increase in daily elementary school absences. Exposure to ambient air pollution can contribute to elementary school absences, although this effect is difficult to disentangle from various other factors. PMID:26945391

  20. Health impacts due to particulate air pollution in Volos City, Greece.

    PubMed

    Moustris, Konstantinos P; Proias, George T; Larissi, Ioanna K; Nastos, Panagiotis T; Koukouletsos, Konstantinos V; Paliatsos, Athanasios G

    2016-01-01

    There is great consensus among the scientific community that suspended particulate matter is considered as one of the most harmful pollutants, particularly the inhalable particulate matter with aerodynamic diameter less than 10 μm (PM10) causing respiratory health problems and heart disorders. Average daily concentrations exceeding established standard values appear, among other cases, to be the main cause of such episodes, especially during Saharan dust episodes, a natural phenomenon that degrades air quality in the urban area of Volos. In this study the AirQ2.2.3 model, developed by the World Health Organization (WHO) European Center for Environment and Health, was used to evaluate adverse health effects by PM10 pollution in the city of Volos during a 5-year period (2007-2011). Volos is a coastal medium size city in the Thessaly region. The city is located on the northern side of the Gulf of Pagassitikos, on the east coast of Central Greece. Air pollution data were obtained by a fully automated monitoring station, which was established by the Municipal Water Supply and Sewage Department in the Greater Area of Volos, located in the centre of the city. The results of the current study indicate that when the mean annual PM10 concentration exceeds the corresponding European Union (EU) threshold value, the number of hospital admissions for respiratory disease (HARD) is increased by 25% on average. There is also an estimated increase of about 2.5% in HARD compared to the expected annual HARD cases for Volos. Finally, a strong correlation was found between the number of days exceeding the EU daily threshold concentration ([PM10] ≥ 50 μg m(-3)) and the annual HARD cases.

  1. Health impacts due to particulate air pollution in Volos City, Greece.

    PubMed

    Moustris, Konstantinos P; Proias, George T; Larissi, Ioanna K; Nastos, Panagiotis T; Koukouletsos, Konstantinos V; Paliatsos, Athanasios G

    2016-01-01

    There is great consensus among the scientific community that suspended particulate matter is considered as one of the most harmful pollutants, particularly the inhalable particulate matter with aerodynamic diameter less than 10 μm (PM10) causing respiratory health problems and heart disorders. Average daily concentrations exceeding established standard values appear, among other cases, to be the main cause of such episodes, especially during Saharan dust episodes, a natural phenomenon that degrades air quality in the urban area of Volos. In this study the AirQ2.2.3 model, developed by the World Health Organization (WHO) European Center for Environment and Health, was used to evaluate adverse health effects by PM10 pollution in the city of Volos during a 5-year period (2007-2011). Volos is a coastal medium size city in the Thessaly region. The city is located on the northern side of the Gulf of Pagassitikos, on the east coast of Central Greece. Air pollution data were obtained by a fully automated monitoring station, which was established by the Municipal Water Supply and Sewage Department in the Greater Area of Volos, located in the centre of the city. The results of the current study indicate that when the mean annual PM10 concentration exceeds the corresponding European Union (EU) threshold value, the number of hospital admissions for respiratory disease (HARD) is increased by 25% on average. There is also an estimated increase of about 2.5% in HARD compared to the expected annual HARD cases for Volos. Finally, a strong correlation was found between the number of days exceeding the EU daily threshold concentration ([PM10] ≥ 50 μg m(-3)) and the annual HARD cases. PMID:26421944

  2. Acute changes in pulse pressure in relation to constituents of particulate air pollution in elderly persons

    SciTech Connect

    Jacobs, Lotte; Buczynska, Anna; Walgraeve, Christophe; Delcloo, Andy; Potgieter-Vermaak, Sanja; Van Grieken, Rene; Demeestere, Kristof; Dewulf, Jo; Van Langenhove, Herman; De Backer, Hugo; Nemery, Benoit; Nawrot, Tim S.

    2012-08-15

    An increased pulse pressure (difference between systolic and diastolic blood pressure) suggests aortic stiffening. The objective of this study was to examine the acute effects of both particulate matter (PM) mass and composition on blood pressure, among elderly persons. We carried out a panel study in persons living in elderly homes in Antwerp, Belgium. We recruited 88 non-smoking persons, 70% women with a mean age of 83 years (standard deviation: 5.2). Blood pressure was measured and a blood sample was collected on two time points, which were chosen so that there was an exposure contrast in ambient PM exposure. The elemental content of the collected indoor and outdoor PM{sub 2.5} (particulate matter with an aerodynamic diameter <2.5 {mu}m) mass concentration was measured. Oxygenated polycyclic aromatic hydrocarbons (oxy-PAHs) on outdoor PM{sub 10} (particulate matter with an aerodynamic diameter <10 {mu}m) were measured. Each interquartile range increase of 20.8 {mu}g/m Superscript-Three in 24-h mean outdoor PM{sub 2.5} was associated with an increase in pulse pressure of 4.0 mmHg (95% confidence interval: 1.8-6.2), in persons taking antihypertensive medication (n=57), but not in persons not using antihypertensive medication (n=31) (p for interaction: 0.02). Vanadium, iron and nickel contents of PM{sub 2.5} were significantly associated with systolic blood pressure and pulse pressure, among persons on antihypertensive medication. Similar results were found for indoor concentrations. Of the oxy-PAHs, chrysene-5,6-dione and benzo[a]pyrene-3,6-dione were significantly associated with increases in systolic blood pressure and pulse pressure. In elderly, pulse pressure was positively associated with acute increases in outdoor and indoor air pollution, among persons taking antihypertensive medication. These results might form a mechanistic pathway linking air pollution as a trigger of cardiovascular events.

  3. Acute changes in pulse pressure in relation to constituents of particulate air pollution in elderly persons.

    PubMed

    Jacobs, Lotte; Buczynska, Anna; Walgraeve, Christophe; Delcloo, Andy; Potgieter-Vermaak, Sanja; Van Grieken, René; Demeestere, Kristof; Dewulf, Jo; Van Langenhove, Herman; De Backer, Hugo; Nemery, Benoit; Nawrot, Tim S

    2012-08-01

    An increased pulse pressure (difference between systolic and diastolic blood pressure) suggests aortic stiffening. The objective of this study was to examine the acute effects of both particulate matter (PM) mass and composition on blood pressure, among elderly persons. We carried out a panel study in persons living in elderly homes in Antwerp, Belgium. We recruited 88 non-smoking persons, 70% women with a mean age of 83 years (standard deviation: 5.2). Blood pressure was measured and a blood sample was collected on two time points, which were chosen so that there was an exposure contrast in ambient PM exposure. The elemental content of the collected indoor and outdoor PM(2.5) (particulate matter with an aerodynamic diameter <2.5 μm) mass concentration was measured. Oxygenated polycyclic aromatic hydrocarbons (oxy-PAHs) on outdoor PM(10) (particulate matter with an aerodynamic diameter <10 μm) were measured. Each interquartile range increase of 20.8 μg/m³ in 24-h mean outdoor PM(2.5) was associated with an increase in pulse pressure of 4.0 mm Hg (95% confidence interval: 1.8-6.2), in persons taking antihypertensive medication (n=57), but not in persons not using antihypertensive medication (n=31) (p for interaction: 0.02). Vanadium, iron and nickel contents of PM(2.5) were significantly associated with systolic blood pressure and pulse pressure, among persons on antihypertensive medication. Similar results were found for indoor concentrations. Of the oxy-PAHs, chrysene-5,6-dione and benzo[a]pyrene-3,6-dione were significantly associated with increases in systolic blood pressure and pulse pressure. In elderly, pulse pressure was positively associated with acute increases in outdoor and indoor air pollution, among persons taking antihypertensive medication. These results might form a mechanistic pathway linking air pollution as a trigger of cardiovascular events.

  4. Ambient particulate air pollution and cardiac arrhythmia in a panel of older adults in Steubenville, Ohio

    PubMed Central

    Sarnat, S E; Suh, H H; Coull, B A; Schwartz, J; Stone, P H; Gold, D R

    2006-01-01

    Objectives Ambient particulate air pollution has been associated with increased risk of cardiovascular morbidity and mortality. Pathways by which particles may act involve autonomic nervous system dysfunction or inflammation, which can affect cardiac rate and rhythm. The importance of these pathways may vary by particle component or source. In an eastern US location with significant regional pollution, the authors examined the association of air pollution and odds of cardiac arrhythmia in older adults. Methods Thirty two non‐smoking older adults were evaluated on a weekly basis for 24 weeks during the summer and autumn of 2000 with a standardised 30 minute protocol that included continuous electrocardiogram measurements. A central ambient monitoring station provided daily concentrations of fine particles (PM2.5, sulfate, elemental carbon) and gases. Sulfate was used as a marker of regional pollution. The authors used logistic mixed effects regression to examine the odds of having any supraventricular ectopy (SVE) or ventricular ectopy (VE) in association with increases in air pollution for moving average pollutant concentrations up to 10 days before the health assessment. Results Participant specific mean counts of arrhythmia over the protocol varied between 0.1–363 for SVE and 0–350 for VE. The authors observed odds ratios for having SVE over the length of the protocol of 1.42 (95% CI 0.99 to 2.04), 1.70 (95% CI 1.12 to 2.57), and 1.78 (95% CI 0.95 to 3.35) for 10.0 μg/m3, 4.2 μg/m3, and 14.9 ppb increases in five day moving average PM2.5, sulfate, and ozone concentrations respectively. The other pollutants, including elemental carbon, showed no effect on arrhythmia. Participants reporting cardiovascular conditions (for example, previous myocardial infarction or hypertension) were the most susceptible to pollution induced SVE. The authors found no association of pollution with VE. Conclusion Increased levels of ambient sulfate and ozone may increase

  5. Air Pollution

    MedlinePlus

    Air pollution is a mixture of solid particles and gases in the air. Car emissions, chemicals from factories, ... Ozone, a gas, is a major part of air pollution in cities. When ozone forms air pollution, it's ...

  6. Particulate air pollution and health inequalities: a Europe-wide ecological analysis

    PubMed Central

    2013-01-01

    Background Environmental disparities may underlie the unequal distribution of health across socioeconomic groups. However, this assertion has not been tested across a range of countries: an important knowledge gap for a transboundary health issue such as air pollution. We consider whether populations of low-income European regions were a) exposed to disproportionately high levels of particulate air pollution (PM10) and/or b) disproportionately susceptible to pollution-related mortality effects. Methods Europe-wide gridded PM10 and population distribution data were used to calculate population-weighted average PM10 concentrations for 268 sub-national regions (NUTS level 2 regions) for the period 2004–2008. The data were mapped, and patterning by mean household income was assessed statistically. Ordinary least squares regression was used to model the association between PM10 and cause-specific mortality, after adjusting for regional-level household income and smoking rates. Results Air quality improved for most regions between 2004 and 2008, although large differences between Eastern and Western regions persisted. Across Europe, PM10 was correlated with low household income but this association primarily reflected East–West inequalities and was not found when Eastern or Western Europe regions were considered separately. Notably, some of the most polluted regions in Western Europe were also among the richest. PM10 was more strongly associated with plausibly-related mortality outcomes in Eastern than Western Europe, presumably because of higher ambient concentrations. Populations of lower-income regions appeared more susceptible to the effects of PM10, but only for circulatory disease mortality in Eastern Europe and male respiratory mortality in Western Europe. Conclusions Income-related inequalities in exposure to ambient PM10 may contribute to Europe-wide mortality inequalities, and to those in Eastern but not Western European regions. We found some evidence that

  7. THE INFLUENCE OF PARTICULATE AIR POLLUTANTS ON ALLERGIC SENSITIZATION IN ANIMAL MODELS

    EPA Science Inventory

    Air pollution has long been associated with detrimental health risks in susceptible populations including asthmatics. Experimental evidence in rodents indicates that inhaled or instilled air pollutants such as diesel exhaust particles (DEPs), residual oil fly ash or its constitu...

  8. Ambient particulate matter air pollution in Mpererwe District, Kampala, Uganda: a pilot study.

    PubMed

    Schwander, Stephan; Okello, Clement D; Freers, Juergen; Chow, Judith C; Watson, John G; Corry, Melody; Meng, Qingyu

    2014-01-01

    Air quality in Kampala, the capital of Uganda, has deteriorated significantly in the past two decades. We made spot measurements in Mpererwe district for airborne particulate matter PM2.5 (fine particles) and coarse particles. PM was collected on Teflon-membrane filters and analyzed for mass, 51 elements, 3 anions, and 5 cations. Both fine and coarse particle concentrations were above 100 µg/m(3) in all the samples collected. Markers for crustal/soil (e.g., Si and Al) were the most abundant in the PM2.5 fraction, followed by primary combustion products from biomass burning and incinerator emissions (e.g., K and Cl). Over 90% of the measured PM2.5 mass can be explained by crustal species (41% and 59%) and carbonaceous aerosol (33%-55%). Crustal elements dominated the coarse particles collected from Kampala. The results of this pilot study are indicative of unhealthy air and suggest that exposure to ambient air in Kampala may increase the burden of environmentally induced cardiovascular, metabolic, and respiratory diseases including infections. Greater awareness and more extensive research are required to confirm our findings, to identify personal exposure and pollution sources, and to develop air quality management plans and policies to protect public health. PMID:24693293

  9. A health-based assessment of particulate air pollution in urban areas of Beijing in 2000-2004.

    PubMed

    Zhang, Minsi; Song, Yu; Cai, Xuhui

    2007-04-15

    Particulate air pollution is a serious problem in Beijing. The annual concentration of particulate matter with aerodynamic diameter less than 10 microm (PM(10)), ranging from 141 to 166 microg m(-3) in 2000-2004, could be very harmful to human health. In this paper, we presented the mortality and morbidity effects of PM(10) pollution based on statistical data and the epidemiological exposure-response function. The economic costs to health during the 5 years were estimated to lie between US$1670 and $3655 million annually, accounting for about 6.55% of Beijing's gross domestic product each year. The total costs were apportioned into two parts caused by: the local emissions and long-range transported pollution. The contribution from local emissions dominated the total costs, accounting on average for 3.60% of GDP. However, the contributions from transported pollution cannot be neglected, and the relative percentage to the total costs from the other regions could account for about 45%. An energy policy and effective measures should be proposed to reduce particulate matter, especially PM(2.5) pollution in Beijing to protect public health. The Beijing government also needs to cooperate with the other local governments to reduce high background level of particulate air pollution.

  10. A health-based assessment of particulate air pollution in urban areas of Beijing in 2000-2004.

    PubMed

    Zhang, Minsi; Song, Yu; Cai, Xuhui

    2007-04-15

    Particulate air pollution is a serious problem in Beijing. The annual concentration of particulate matter with aerodynamic diameter less than 10 microm (PM(10)), ranging from 141 to 166 microg m(-3) in 2000-2004, could be very harmful to human health. In this paper, we presented the mortality and morbidity effects of PM(10) pollution based on statistical data and the epidemiological exposure-response function. The economic costs to health during the 5 years were estimated to lie between US$1670 and $3655 million annually, accounting for about 6.55% of Beijing's gross domestic product each year. The total costs were apportioned into two parts caused by: the local emissions and long-range transported pollution. The contribution from local emissions dominated the total costs, accounting on average for 3.60% of GDP. However, the contributions from transported pollution cannot be neglected, and the relative percentage to the total costs from the other regions could account for about 45%. An energy policy and effective measures should be proposed to reduce particulate matter, especially PM(2.5) pollution in Beijing to protect public health. The Beijing government also needs to cooperate with the other local governments to reduce high background level of particulate air pollution. PMID:17316765

  11. Health and respirable particulate (PM10) air pollution: a causal or statistical association?

    PubMed Central

    Gamble, J F; Lewis, R J

    1996-01-01

    Numerous studies have reported weak but statistically significant acute health effects of particulate air pollution. The associations are observed at levels below the current U.S. standard of 150 micrograms/m3 (24 hr). Health effects include acute increased mortality from cardiopulmonary conditions and acute morbidity such as hospital admissions for related diseases. We reviewed recent epidemiology studies to evaluate whether criteria for causality are met, and we conclude that they are not. The weak associations are as likely to be due to confounding by weather, copollutants, or exposure misclassification as by ambient particulate matter (PM). The results from the same metropolitan areas are inconsistent, and PM explains such a small amount of the variability in mortality/morbidity that the association has little practical significance. Finally, experimental chamber studies of susceptible individuals exposed to PM concentrations well above 150 micrograms/m3 provide no evidence to support the morbidity/mortality findings. None of the criteria for establishing causality of the PM/mortality hypothesis are clearly met at ambient concentrations common in many U.S. cities. Images p838-a Figure 1. PMID:8875158

  12. Chemical constituents of fine particulate air pollution and pulmonary function in healthy adults: the Healthy Volunteer Natural Relocation study.

    PubMed

    Wu, Shaowei; Deng, Furong; Hao, Yu; Shima, Masayuki; Wang, Xin; Zheng, Chanjuan; Wei, Hongying; Lv, Haibo; Lu, Xiuling; Huang, Jing; Qin, Yu; Guo, Xinbiao

    2013-09-15

    The study examined the associations of 32 chemical constituents of particulate matter with an aerodynamic diameter ≤2.5 μm (PM₂.₅) with pulmonary function in a panel of 21 college students. Study subjects relocated from a suburban area to an urban area with changing ambient air pollution levels and contents in Beijing, China, and provided daily morning/evening peak expiratory flow (PEF) and forced expiratory volume in 1s (FEV₂₁) measurements over 6 months in three study periods. There were significant reductions in evening PEF and morning/evening FEV₂₁ associated with various air pollutants and PM₂.₅ constituents. Four PM₂.₅ constituents (copper, cadmium, arsenic and stannum) were found to be most consistently associated with the reductions in these pulmonary function measures. These findings provide clues for the respiratory effects of specific particulate chemical constituents in the context of urban air pollution. PMID:23747477

  13. Chemical constituents of fine particulate air pollution and pulmonary function in healthy adults: the Healthy Volunteer Natural Relocation study.

    PubMed

    Wu, Shaowei; Deng, Furong; Hao, Yu; Shima, Masayuki; Wang, Xin; Zheng, Chanjuan; Wei, Hongying; Lv, Haibo; Lu, Xiuling; Huang, Jing; Qin, Yu; Guo, Xinbiao

    2013-09-15

    The study examined the associations of 32 chemical constituents of particulate matter with an aerodynamic diameter ≤2.5 μm (PM₂.₅) with pulmonary function in a panel of 21 college students. Study subjects relocated from a suburban area to an urban area with changing ambient air pollution levels and contents in Beijing, China, and provided daily morning/evening peak expiratory flow (PEF) and forced expiratory volume in 1s (FEV₂₁) measurements over 6 months in three study periods. There were significant reductions in evening PEF and morning/evening FEV₂₁ associated with various air pollutants and PM₂.₅ constituents. Four PM₂.₅ constituents (copper, cadmium, arsenic and stannum) were found to be most consistently associated with the reductions in these pulmonary function measures. These findings provide clues for the respiratory effects of specific particulate chemical constituents in the context of urban air pollution.

  14. Ambient Fine Particulate (PM2.5) Air Pollution Attributable to Household Cooking Fuel in Asia

    NASA Astrophysics Data System (ADS)

    Chafe, Z.; Mehta, S.; Smith, K. R.

    2011-12-01

    Using the Greenhouse Gas and Air Pollution Interactions and Synergies (GAINS) model, hosted by the International Institute for Applied Systems Analysis (IIASA), we estimate the proportion of fine particulate ambient air pollution (PM2.5) attributable to household fuel use for cooking in Asia. This analysis considers primary anthropogenic PM2.5 emissions in two years: 1990 and 2005. Only emissions from household cooking fuels-not heating or lighting-are considered. Due to data availability, this analysis focuses solely on Asian countries, notably India and China which are home to about half of the households using solid fuel use worldwide. Forest and grassland fires, dust, and other "natural" particle sources were omitted from this analysis. The impact of emission sources on secondary particles from aerosol precursors was not determined. In China, the proportion of total primary anthropogenic PM2.5 attributable to household cooking decreased from 44% to 31% between 1990 and 2005. In India, the percent of primary anthropogenic PM2.5 emissions attributable to household cooking decreased from 55% to 49% between 1990 and 2005. Total mass change in primary anthropogenic PM2.5 emissions was much more variable by state in India, between 1990 and 2005, than by province in China (where there was a general downward trend in the total mass emitted). Similarly, growth in industrial emissions was much more variable at the sub-national level, between 1990 and 2005, in India than in China. Energy production played a more prominent role in the growth of primary anthropogenic PM2.5 emissions in India than it did in China. Forward-looking GAINS scenarios show that the contribution of household cooking to total primary anthropogenic PM2.5 emissions is much greater than that from on-road transport in India and China between 1990 and 2030. On-road cars, trucks, and other transport vehicles are, however, the cause of important pollutants other than PM2.5 (as are as cooking stoves that do

  15. HUMAL ALVEOLAR MACROPHAGE RESPONSES TO AIR POLLUTION PARTICULATES ARE ASSOCIATED WITH INSOLUBLE OCMPONENTS OF COARSE MATERIAL, INCLUDING PARTICULATE ENDOTOXIN

    EPA Science Inventory


    Inhalation of particulate matter in the ambient air has been shown to cause pulmonary morbidity and exacerbate asthma. Alveolar macrophage (AM) are essential for effective removal of inhaled particles and microbes in the lower airways. While some particles minimally effect AM...

  16. Air pollution and skin diseases: Adverse effects of airborne particulate matter on various skin diseases.

    PubMed

    Kim, Kyung Eun; Cho, Daeho; Park, Hyun Jeong

    2016-05-01

    Environmental air pollution encompasses various particulate matters (PMs). The increased ambient PM from industrialization and urbanization is highly associated with morbidity and mortality worldwide, presenting one of the most severe environmental pollution problems. This article focuses on the correlation between PM and skin diseases, along with related immunological mechanisms. Recent epidemiological studies on the cutaneous impacts of PM showed that PM affects the development and exacerbation of skin diseases. PM induces oxidative stress via production of reactive oxygen species and secretion of pro-inflammatory cytokines such as TNF-α, IL-1α, and IL-8. In addition, the increased production of ROS such as superoxide and hydroxyl radical by PM exposure increases MMPs including MMP-1, MMP-2, and MMP-9, resulting in the degradation of collagen. These processes lead to the increased inflammatory skin diseases and skin aging. In addition, environmental cigarette smoke, which is well known as an oxidizing agent, is closely related with androgenetic alopecia (AGA). Also, ultrafine particles (UFPs) including black carbon and polycyclic aromatic hydrocarbons (PAHs) enhance the incidence of skin cancer. Overall, increased PM levels are highly associated with the development of various skin diseases via the regulation of oxidative stress and inflammatory cytokines. Therefore, anti-oxidant and anti-inflammatory drugs may be useful for treating PM-induced skin diseases. PMID:27018067

  17. Is particulate air pollution at the front door a good proxy of residential exposure?

    PubMed

    Zauli Sajani, Stefano; Trentini, Arianna; Rovelli, Sabrina; Ricciardelli, Isabella; Marchesi, Stefano; Maccone, Claudio; Bacco, Dimitri; Ferrari, Silvia; Scotto, Fabiana; Zigola, Claudia; Cattaneo, Andrea; Cavallo, Domenico Maria; Lauriola, Paolo; Poluzzi, Vanes; Harrison, Roy M

    2016-06-01

    The most advanced epidemiological studies on health effects of air pollution assign exposure to individuals based on residential outdoor concentrations of air pollutants measured or estimated at the front-door. In order to assess to what extent this approach could cause misclassification, indoor measurements were carried out in unoccupied rooms at the front and back of a building which fronted onto a major urban road. Simultaneous measurements were also carried out at adjacent outdoor locations to the front and rear of the building. Two 15-day monitoring campaigns were conducted in the period June-December 2013 in a building located in the urban area of Bologna, Italy. Particulate matter metrics including PM2.5 mass and chemical composition, particle number concentration and size distribution were measured. Both outdoor and indoor concentrations at the front of the building substantially exceeded those at the rear. The highest front/back ratio was found for ultrafine particles with outdoor concentration at the front door 3.4 times higher than at the rear. A weak influence on front/back ratios was found for wind direction. Particle size distribution showed a substantial loss of particles within the sub-50 nm size range between the front and rear of the building and a further loss of this size range in the indoor data. The chemical speciation data showed relevant reductions for most constituents between the front and the rear, especially for traffic related elements such as Elemental Carbon, Iron, Manganese and Tin. The main conclusion of the study is that gradients in concentrations between the front and rear, both outside and inside the building, are relevant and comparable to those measured between buildings located in high and low traffic areas. These findings show high potential for misclassification in the epidemiological studies that assign exposure based on particle concentrations estimated or measured at subjects' home addresses. PMID:26925757

  18. Fine particulate air pollution, nitrogen dioxide, and systemic autoimmune rheumatic disease in Calgary, Alberta

    PubMed Central

    Bernatsky, Sasha; Smargiassi, Audrey; Johnson, Markey; Kaplan, Gilaad G.; Barnabe, Cheryl; Svenson, Larry; Brand, Allan; Bertazzon, Stefania; Hudson, Marie; Clarke, Ann E; Fortin, Paul; Edworthy, Steven; Bélisle, Patrick; Joseph, Lawrence

    2015-01-01

    Objective To estimate the association between fine particulate (PM2.5) and nitrogen dioxide (NO2) pollution and systemic autoimmune rheumatic diseases (SARDs). Methods Associations between ambient air pollution (PM2.5 and NO2) and SARDs were assessed using land-use regression models for Calgary, Alberta and administrative health data (1993-2007). SARD case definitions were based on ≥2 physician claims, or ≥1 rheumatology billing code; or ≥1 hospitalization code (for systemic lupus, Sjogren's Syndrome, scleroderma, polymyositis, dermatomyositis, or undifferentiated connective tissue disease). Bayesian hierarchical latent class regression models estimated the probability that each resident was a SARD case, based on these case definitions. The sum of individual level probabilities provided the estimated number of cases in each area. The latent class model included terms for age, sex, and an interaction term between age and sex. Bayesian logistic regression models were used to generate adjusted odds ratios (OR) for NO2 and PM2.5. pollutant models, adjusting for neighborhood income, age, sex, and an interaction between age and sex. We also examined models stratified for First-Nations (FN) and non-FN subgroups. Results Residents that were female and/or aged > 45 had a greater probability of being a SARD case, with the highest OR estimates for older females. Independently, the odds of being a SARDs case increased with PM2.5 levels, but the results were inconclusive for NO2. The results stratified by FN and Non-FN groups were not distinctly different. Conclusion In this urban Canadian sample, adjusting for demographics, exposure to PM2.5 was associated with an increased risk of SARDs. The results for NO2 were inconclusive. PMID:25988990

  19. Particulate Air Pollution Exposure and Expression of Viral and Human MicroRNAs in Blood: The Beijing Truck Driver Air Pollution Study

    PubMed Central

    Hou, Lifang; Barupal, Jitendra; Zhang, Wei; Zheng, Yinan; Liu, Lei; Zhang, Xiao; Dou, Chang; McCracken, John P.; Díaz, Anaité; Motta, Valeria; Sanchez-Guerra, Marco; Wolf, Katherine Rose; Bertazzi, Pier Alberto; Schwartz, Joel D.; Wang, Sheng; Baccarelli, Andrea A.

    2015-01-01

    Background MicroRNAs (miRNAs) are post-transcriptional gene suppressors and potential mediators of environmental effects. In addition to human miRNAs, viral miRNAs expressed from latent viral sequences are detectable in human cells. Objective In a highly exposed population in Beijing, China, we evaluated the associations of particulate air pollution exposure on blood miRNA profiles. Methods The Beijing Truck Driver Air Pollution Study (BTDAS) included 60 truck drivers and 60 office workers. We investigated associations of short-term air pollution exposure, using measures of personal PM2.5 (particulate matter ≤ 2.5 μm) and elemental carbon (EC), and ambient PM10 (≤ 10 μm), with blood NanoString nCounter miRNA profiles at two exams separated by 1–2 weeks. Results No miRNA was significantly associated with personal PM2.5 at a false discovery rate (FDR) of 20%. Short-term ambient PM10 was associated with the expression of 12 miRNAs in office workers only (FDR < 20%). Short-term EC was associated with differential expression of 46 human and 7 viral miRNAs, the latter including 3 and 4 viral miRNAs in office workers and truck drivers, respectively. EC-associated miRNAs differed between office workers and truck drivers with significant effect modification by occupational group. Functional interaction network analysis suggested enriched cellular proliferation/differentiation pathways in truck drivers and proinflammation pathways in office workers. Conclusions Short-term EC exposure was associated with the expression of human and viral miRNAs that may influence immune responses and other biological pathways. Associations between EC exposure and viral miRNA expression suggest that latent viral miRNAs are potential mediators of air pollution–associated health effects. PM2.5/PM10 exposures showed no consistent relationships with miRNA expression. Citation Hou L, Barupal J, Zhang W, Zheng Y, Liu L, Zhang X, Dou C, McCracken JP, Díaz A, Motta V, Sanchez-Guerra M, Wolf

  20. Particulate air pollution and panel studies in children: a systematic review

    PubMed Central

    Ward, D; Ayres, J

    2004-01-01

    Aims: To systematically review the results of such studies in children, estimate summary measures of effect, and investigate potential sources of heterogeneity. Methods: Studies were identified by searching electronic databases to June 2002, including those where outcomes and particulate level measurements were made at least daily for ⩾8 weeks, and analysed using an appropriate regression model. Study results were compared using forest plots, and fixed and random effects summary effect estimates obtained. Publication bias was considered using a funnel plot. Results: Twenty two studies were identified, all except two reporting PM10 (24 hour mean) >50 µg.m-3. Reported effects of PM10 on PEF were widely spread and smaller than those for PM2.5 (fixed effects summary: -0.012 v -0.063 l.min-1 per µg.m-3 rise). A similar pattern was evident for symptoms. Random effects models produced larger estimates. Overall, in between-study comparisons, panels of children with diagnosed asthma or pre-existing respiratory symptoms appeared less affected by PM10 levels than those without, and effect estimates were larger where studies were conducted in higher ozone conditions. Larger PM10 effect estimates were obtained from studies using generalised estimating equations to model autocorrelation and where results were derived by pooling subject specific regression coefficients. A funnel plot of PM10 results for PEF was markedly asymmetrical. Conclusions: The majority of identified studies indicate an adverse effect of particulate air pollution that is greater for PM2.5 than PM10. However, results show considerable heterogeneity and there is evidence consistent with publication bias, so limited confidence may be placed on summary estimates of effect. The possibility of interaction between particle and ozone effects merits further investigation, as does variability due to analytical differences that alter the interpretation of final estimates. PMID:15031404

  1. Association of Systemic Inflammation with Marked Changes in Particulate Air Pollution in Beijing in 2008

    PubMed Central

    Xu, Xiaohua; Deng, Furong; Guo, Xinbiao; Lv, Peng; Zhong, Mianhua; Liu, Cuiqing; Wang, Aixia; Tzan, Kevin; Jiang, Silis Y.; Lippmann, Morton; Rajagopalan, Sanjay; Qu, Qingshan; Chen, Lung-Chi; Sun, Qinghua

    2012-01-01

    Many studies have linked ambient fine particulate matter (aerodynamic diameters less than 2.5 μm, PM2.5) air pollution to increased morbidity and mortality of cardiovascular diseases in the general population, but the biologic mechanisms of these associations are yet to be elucidated. In this study, we aimed to evaluate the relationship between daily variations in exposure to PM2.5 and inflammatory responses in mice during and for 2 months after the Beijing Olympic Games. Male C57BL/6 mice were exposed to Beijing PM2.5 or filtered air (FA) in 2008 during the 2 months of Beijing Olympic and Paralympic Games, and for 2 months after the end of the Games. During the Games, circulating monocyte chemoattractant protein 1 and interleukin 6 were increased significantly in the PM2.5 exposure group, when compared with the FA control group, although there were no significant inter-group differences in tumor necrosis factor α or interferon γ, or in macrophages, neutrophils or lymphocytes in the spleen or thymus between these 2 groups. However, macrophages were significantly increased in the lung and visceral fat with increasing PM2.5. After the Olympic Games, there were no significant PM2.5-associated differences for macrophages, neutrophils or lymphocytes in the thymus, but macrophages were significantly elevated in the lung, spleen, subcutaneous and visceral fat with increasing PM2.5, and the numbers of macrophages were even higher after than those during the Games. Moreover, the number of neutrophils was markedly higher in the spleen for the PM2.5-exposed- than the FA-group. These data suggest that short-term increases in exposure to ambient PM2.5 leads to increased systemic inflammatory responses, primarily macrophages and neutrophils in the lung, spleen, and visceral adipose tissue. Short-term air quality improvements were significantly associated with reduced overall inflammatory responses. PMID:22617750

  2. Culture, nature and particulate matter - Hybrid reframings in air pollution scholarship

    NASA Astrophysics Data System (ADS)

    Cupples, Julie

    Air pollution is a thoroughly hybrid phenomenon. It is composed of inseparable physical, scientific, cultural, social, economic and political dimensions. It is both an object of environmental science and embedded in our everyday social and cultural worlds. Nevertheless, much air pollution scholarship focuses solely on the physical dimensions of air pollution which are expressed quantitatively and pays little or no regard to the identities, discourses, bodies and emotions which constitute and are constituted by air pollution as a physical reality. This article argues for a more reflexive and hybrid approach to air pollution research which bridges intellectually confining binaries. Drawing on the work of Bruno Latour and other actor-network theorists, it argues that if we can let go of a foundational nature, disrupt our humanism and take non-scientific knowledges seriously, we might develop a new respect for the atmospheric environment and begin the task of building a better common world.

  3. Recent outcomes in European multicentre projects on ambient particulate air pollution

    SciTech Connect

    Sandstroem, Thomas . E-mail: thomas.sandstrom@lung.umu.se; Cassee, Flemming R.; Salonen, Raimo; Dybing, Erik

    2005-09-01

    The adverse health effects associated with ambient air pollution have triggered epidemiologists, toxicologists and chemists to combine their experience to investigate the toxicity of ambient PM (particulate matter) from European sites with differing traffic intensity, in order to increase the understanding of the role of fine and coarse PM, the role of chemical characteristics and relate that to health effects. Under the European Union 5th Framework Programme (FP5), the HEPMEAP, RAIAP and PAMCHAR projects have utilised high-volume samplers to collect PM in European locations with contrasting PM sources and performed a range of different laboratory investigations. The PM investigated generally induced significant biological responses, with both coarse (2.5-10 {mu}m) and fine (0.1-2.5 {mu}m) PM being able to induce toxic effects. The chemical composition of the PM (also reflecting the differences in the emission-source contribution) has been suggested to play an important role in these responses. Oxidative and immune effects have been demonstrated in several in vitro and animal models. Investigations have also given support for the assumption that asthmatic and elderly subjects with chronic obstructive pulmonary disease may be more susceptible to PM exposure.

  4. Effect of particulate matter air pollution on C-reactive protein: a review of epidemiologic studies

    PubMed Central

    Li, Yanli; Rittenhouse-Olson, Kate; L.Scheider, William; Mu, Lina

    2013-01-01

    Inflammatory response is implicated as a biologic mechanism that links particulate matter (PM) air pollution with health effects. C-reactive protein (CRP), an important acute-phase reactant with profound proinflammatory properties, is used clinically as an indicator of the presence and intensity of inflammation. In vitro and in vivo animal studies suggest that CRP levels increase in response to PM exposure, but there was no consistency in epidemiologic studies. Herein, a systematic review was conducted to examine the association between PM exposure and serum CRP levels in humans. Elevated CRP levels were consistently found among children, and CRP elevations were also observed among healthy adults, albeit requiring higher peak levels of PM exposure. PM-induced CRP responses were not consistently found in adults with chronic inflammatory conditions, perhaps because of the use of anti-inflammatory medications in this population. Of the eight examined randomized trials, only one trial with a longer intervention period supported the effect of PM exposure on CRP concentrations. To provide conclusive evidence, further epidemiologic studies are needed to better quantify the magnitude of CRP level changes in response to PM with well-defined study populations and better control of various confounding factors. PMID:23023922

  5. Association between Particulate Air Pollution and QT Interval Duration in an Elderly Cohort

    PubMed Central

    Mordukhovich, Irina; Kloog, Itai; Coull, Brent; Koutrakis, Petros; Vokonas, Pantel; Schwartz, Joel

    2016-01-01

    BACKGROUND Short-term fine particulate matter (PM2.5) exposure has been linked with increased QT interval duration, a marker of ventricular repolarization and a risk factor for cardiac arrhythmia and sudden death, in several studies. Only one previous study evaluated whether long-term PM exposure is related to the QT interval. We aim to evaluate whether sub-chronic and long-term exposure to PM2.5 at home is linked with QT duration in an elderly cohort. METHODS We measured heart-rate corrected QT interval duration among 404 participants from the Greater Boston area between 2003 and 2011. We modeled residential PM2.5 exposures using a hybrid satellite- and land use-based model. We evaluated associations between moving averages of short-term (1–2 day), sub-chronic (3–28 day) and long-term (1 year) pollutant exposures and corrected QT duration using linear mixed models. We also evaluated effect modification by oxidative stress genetic score using separated regression models and interaction terms. RESULTS We observed positive associations between sub-chronic and long-term PM2.5 exposure and corrected QT duration, with the strongest results for longer-term exposures. For example, a 1 standard deviation increase in 1-year PM2.5 was associated with a 6.3 ms increase in corrected QT (95% confidence interval: 1.8, 11). We observed somewhat greater effects among subjects with higher (8.5 ms) rather than lower (3.1 ms) oxidative stress allelic profiles (p-interaction=0.25). CONCLUSIONS PM2.5 was associated with increased corrected QT duration in an elderly cohort. While most previous studies focused on short-term air pollution exposures, our results suggest that longer-term exposures are associated with cardiac repolarization. PMID:26605812

  6. The UK particulate matter air pollution episode of March-April 2014: more than Saharan dust

    NASA Astrophysics Data System (ADS)

    Vieno, M.; Heal, M. R.; Twigg, M. M.; MacKenzie, I. A.; Braban, C. F.; Lingard, J. J. N.; Ritchie, S.; Beck, R. C.; Móring, A.; Ots, R.; Di Marco, C. F.; Nemitz, E.; Sutton, M. A.; Reis, S.

    2016-04-01

    A period of elevated surface concentrations of airborne particulate matter (PM) in the UK in spring 2014 was widely associated in the UK media with a Saharan dust plume. This might have led to over-emphasis on a natural phenomenon and consequently to a missed opportunity to inform the public and provide robust evidence for policy-makers about the observed characteristics and causes of this pollution event. In this work, the EMEP4UK regional atmospheric chemistry transport model (ACTM) was used in conjunction with speciated PM measurements to investigate the sources and long-range transport (including vertical) processes contributing to the chemical components of the elevated surface PM. It is shown that the elevated PM during this period was mainly driven by ammonium nitrate, much of which was derived from emissions outside the UK. In the early part of the episode, Saharan dust remained aloft above the UK; we show that a significant contribution of Saharan dust at surface level was restricted only to the latter part of the elevated PM period and to a relatively small geographic area in the southern part of the UK. The analyses presented in this paper illustrate the capability of advanced ACTMs, corroborated with chemically-speciated measurements, to identify the underlying causes of complex PM air pollution episodes. Specifically, the analyses highlight the substantial contribution of secondary inorganic ammonium nitrate PM, with agricultural ammonia emissions in continental Europe presenting a major driver. The findings suggest that more emphasis on reducing emissions in Europe would have marked benefits in reducing episodic PM2.5 concentrations in the UK.

  7. The UK particulate matter air pollution episode of March–April 2014: more than Saharan dust

    NASA Astrophysics Data System (ADS)

    Vieno, M.; Heal, M. R.; Twigg, M. M.; MacKenzie, I. A.; Braban, C. F.; Lingard, J. J. N.; Ritchie, S.; Beck, R. C.; Móring, A.; Ots, R.; Di Marco, C. F.; Nemitz, E.; Sutton, M. A.; Reis, S.

    2016-04-01

    A period of elevated surface concentrations of airborne particulate matter (PM) in the UK in spring 2014 was widely associated in the UK media with a Saharan dust plume. This might have led to over-emphasis on a natural phenomenon and consequently to a missed opportunity to inform the public and provide robust evidence for policy-makers about the observed characteristics and causes of this pollution event. In this work, the EMEP4UK regional atmospheric chemistry transport model (ACTM) was used in conjunction with speciated PM measurements to investigate the sources and long-range transport (including vertical) processes contributing to the chemical components of the elevated surface PM. It is shown that the elevated PM during this period was mainly driven by ammonium nitrate, much of which was derived from emissions outside the UK. In the early part of the episode, Saharan dust remained aloft above the UK; we show that a significant contribution of Saharan dust at surface level was restricted only to the latter part of the elevated PM period and to a relatively small geographic area in the southern part of the UK. The analyses presented in this paper illustrate the capability of advanced ACTMs, corroborated with chemically-speciated measurements, to identify the underlying causes of complex PM air pollution episodes. Specifically, the analyses highlight the substantial contribution of secondary inorganic ammonium nitrate PM, with agricultural ammonia emissions in continental Europe presenting a major driver. The findings suggest that more emphasis on reducing emissions in Europe would have marked benefits in reducing episodic PM2.5 concentrations in the UK.

  8. Chemical characterization of particulate air pollutants Case studies on indoor air quality, cultural heritage and the marine environment

    NASA Astrophysics Data System (ADS)

    Horemans, Benjamin

    When attempting to discuss the effects of airborne particulate matter (PM), it is important to address both physical and chemical aspects of this pollutant. This work reports on the results of three separate case studies, each approaching a specific problem of air pollution by evaluating the chemical composition of PM. 1. In the US and Europe, office workers often complain about work-related health symptoms. These symptoms are collectively referred as the 'sick building syndrome'. This work could be considered as one of the largest data collections on particulate pollutants in Belgian offices. It helps to understand the sources as well as the behavior and fate of PM at our workplace environments. Especially the chemical information on PM makes the results unique, since it enables a better evaluation of the health risks connected to office dust. 2. The Alhambra and Generalife bring every year more than 3 million people to Granada in Southern Spain. Recently, the increasing urbanization of Granada and the immense pressure of mass tourism form a threat for this heritage. Despite the fact that atmospheric pollutants are known to he potentially aggressive for our cultural patrimony. this case study is the first to assess the effects of environmental aerosols on the Alhambra monument. The results of this study could help decision-makers at the Alhambra and the city of Granada with the formulation of preventive conservation measures. They show how local vehicular traffic is the main source for atmospheric pollution in and around the Alhambra monument. Targeted strategies are necessary in order to maximally preserve these monuments and their UNESCO world cultural heritage label. 3. Excessive input of nitrogen-containing atmospheric nutrients via dry and wet deposition can cause entrophication of marine regions, which is also a common, seasonal phenomenon along the coasts of the North Sea. This study is the first to give a complete quantitative description of the

  9. Particulate matter air pollution causes oxidant-mediated increase in gut permeability in mice

    PubMed Central

    2011-01-01

    Background Exposure to particulate matter (PM) air pollution may be an important environmental factor leading to exacerbations of inflammatory illnesses in the GI tract. PM can gain access to the gastrointestinal (GI) tract via swallowing of air or secretions from the upper airways or mucociliary clearance of inhaled particles. Methods We measured PM-induced cell death and mitochondrial ROS generation in Caco-2 cells stably expressing oxidant sensitive GFP localized to mitochondria in the absence or presence of an antioxidant. C57BL/6 mice were exposed to a very high dose of urban PM from Washington, DC (200 μg/mouse) or saline via gastric gavage and small bowel and colonic tissue were harvested for histologic evaluation, and RNA isolation up to 48 hours. Permeability to 4kD dextran was measured at 48 hours. Results PM induced mitochondrial ROS generation and cell death in Caco-2 cells. PM also caused oxidant-dependent NF-κB activation, disruption of tight junctions and increased permeability of Caco-2 monolayers. Mice exposed to PM had increased intestinal permeability compared with PBS treated mice. In the small bowel, colocalization of the tight junction protein, ZO-1 was lower in the PM treated animals. In the small bowel and colon, PM exposed mice had higher levels of IL-6 mRNA and reduced levels of ZO-1 mRNA. Increased apoptosis was observed in the colon of PM exposed mice. Conclusions Exposure to high doses of urban PM causes oxidant dependent GI epithelial cell death, disruption of tight junction proteins, inflammation and increased permeability in the gut in vitro and in vivo. These PM-induced changes may contribute to exacerbations of inflammatory disorders of the gut. PMID:21658250

  10. Pulmonary T cell activation in response to chronic particulate air pollution

    PubMed Central

    Deiuliis, Jeffrey A.; Kampfrath, Thomas; Zhong, Jixin; Oghumu, Steve; Maiseyeu, Andrei; Chen, Lung Chi; Sun, Qinghua; Satoskar, Abhay R.

    2012-01-01

    The purpose of this study was to investigate the effects of chronically inhaled particulate matter <2.5 μm (PM2.5) on inflammatory cell populations in the lung and systemic circulation. A prominent component of air pollution exposure is a systemic inflammatory response that may exaggerate chronic diseases such as atherosclerosis and insulin resistance. T cell response was measured in wild-type C57B/L6, Foxp3-green fluorescent protein (GFP) “knockin,” and chemokine receptor 3 knockout (CXCR3−/−) mice following 24–28 wk of PM2.5 or filtered air. Chronic PM2.5 exposure resulted in increased CXCR3-expressing CD4+ and CD8+ T cells in the lungs, spleen, and blood with elevation in CD11c+ macrophages in the lung and oxidized derivatives of 1-palmitoyl-2-arachidonyl-sn-glycero-3-phosphorylcholine in wild-type mice. CXCR3 deficiency decreased T cells in the lung. GFP+ regulatory T cells increased with PM2.5 exposure in the spleen and blood of Foxp3-GFP mice but were present at very low levels in the lung irrespective of PM2.5 exposure. Mixed lymphocyte cultures using primary, PM2.5-treated macrophages demonstrated enhanced T cell proliferation. Our experiments indicate that PM2.5 potentiates a proinflammatory Th1 response involving increased homing of CXCR3+ T effector cells to the lung and modulation of systemic T cell populations. PMID:22160305

  11. [Particulate matter air pollution effects on the incidence of heart diseases among the urban population].

    PubMed

    Tabakaev, M V; Artamonova, G V

    2014-01-01

    Increasing prevalence of cardiovascular diseases induces an urgent need to identify and clear delineation of the most important risk factors for the development and progression of atherosclerosis. Unlike the second part of XXth century, today the World Health Organization considers particulate matter ambient pollution one of the most important predictors of cardiovascular events. However, results of similar studies conducted in the last decades, is highly fragmented. The authors' objective was to try to understand and organize this massive of accumulated information and analyze it to draw conclusions about the impact of particulate matter on the functioning of human cardiovascular system.

  12. The shared pathoetiological effects of particulate air pollution and the social environment on fetal-placental development.

    PubMed

    Erickson, Anders C; Arbour, Laura

    2014-01-01

    Exposure to particulate air pollution and socioeconomic risk factors are shown to be independently associated with adverse pregnancy outcomes; however, their confounding relationship is an epidemiological challenge that requires understanding of their shared etiologic pathways affecting fetal-placental development. The purpose of this paper is to explore the etiological mechanisms associated with exposure to particulate air pollution in contributing to adverse pregnancy outcomes and how these mechanisms intersect with those related to socioeconomic status. Here we review the role of oxidative stress, inflammation and endocrine modification in the pathoetiology of deficient deep placentation and detail how the physical and social environments can act alone and collectively to mediate the established pathology linked to a spectrum of adverse pregnancy outcomes. We review the experimental and epidemiological literature showing that diet/nutrition, smoking, and psychosocial stress share similar pathways with that of particulate air pollution exposure to potentially exasperate the negative effects of either insult alone. Therefore, socially patterned risk factors often treated as nuisance parameters should be explored as potential effect modifiers that may operate at multiple levels of social geography. The degree to which deleterious exposures can be ameliorated or exacerbated via community-level social and environmental characteristics needs further exploration.

  13. The Shared Pathoetiological Effects of Particulate Air Pollution and the Social Environment on Fetal-Placental Development

    PubMed Central

    2014-01-01

    Exposure to particulate air pollution and socioeconomic risk factors are shown to be independently associated with adverse pregnancy outcomes; however, their confounding relationship is an epidemiological challenge that requires understanding of their shared etiologic pathways affecting fetal-placental development. The purpose of this paper is to explore the etiological mechanisms associated with exposure to particulate air pollution in contributing to adverse pregnancy outcomes and how these mechanisms intersect with those related to socioeconomic status. Here we review the role of oxidative stress, inflammation and endocrine modification in the pathoetiology of deficient deep placentation and detail how the physical and social environments can act alone and collectively to mediate the established pathology linked to a spectrum of adverse pregnancy outcomes. We review the experimental and epidemiological literature showing that diet/nutrition, smoking, and psychosocial stress share similar pathways with that of particulate air pollution exposure to potentially exasperate the negative effects of either insult alone. Therefore, socially patterned risk factors often treated as nuisance parameters should be explored as potential effect modifiers that may operate at multiple levels of social geography. The degree to which deleterious exposures can be ameliorated or exacerbated via community-level social and environmental characteristics needs further exploration. PMID:25574176

  14. Air Pollution.

    ERIC Educational Resources Information Center

    Gilpin, Alan

    A summary of one of our most pressing environmental problems, air pollution, is offered in this book by the Director of Air Pollution Control for the Queensland (Australia) State Government. Discussion of the subject is not restricted to Queensland or Australian problems and policies, however, but includes analysis of air pollution the world over.…

  15. Exposure information in environmental health research: Current opportunities and future directions for particulate matter, ozone, and toxic air pollutants

    SciTech Connect

    McKone, Thomas E.; Ryan, P. Barry; Ozkaynak, Haluk

    2007-02-01

    Understanding and quantifying outdoor and indoor sources of human exposure are essential but often not adequately addressed in health-effects studies for air pollution. Air pollution epidemiology, risk assessment, health tracking and accountability assessments are examples of health-effects studies that require but often lack adequate exposure information. Recent advances in exposure modeling along with better information on time-activity and exposure factors data provide us with unique opportunities to improve the assignment of exposures for both future and ongoing studies linking air pollution to health impacts. In September 2006, scientists from the US Environmental Protection Agency (EPA) and the Centers for Disease Control and Prevention (CDC) along with scientists from the academic community and state health departments convened a symposium on air pollution exposure and health in order to identify, evaluate, and improve current approaches for linking air pollution exposures to disease. This manuscript presents the key issues, challenges and recommendations identified by the exposure working group, who used cases studies of particulate matter, ozone, and toxic air pollutant exposure to evaluate health-effects for air pollution. One of the over-arching lessons of this workshop is that obtaining better exposure information for these different health-effects studies requires both goal-setting for what is needed and mapping out the transition pathway from current capabilities to meeting these goals. Meeting our long-term goals requires definition of incremental steps that provide useful information for the interim and move us toward our long-term goals. Another over-arching theme among the three different pollutants and the different health study approaches is the need for integration among alternate exposure assessment approaches. For example, different groups may advocate exposure indicators, biomonitoring, mapping methods (GIS), modeling, environmental media

  16. EFFECTS OF INHALATION OF METALLIC CONSTITUENTS OF PARTICULATE MATTER AIR POLLUTION ON CARDIOPULMONARY AND THERMOREGULATORY PARAMETERS IN HEALTH AND COMPROMISED RATS

    EPA Science Inventory


    EFFECTS OF INHALATION OF METALLIC CONSTITUENTS OF PARTICULATE MATTER AIR POLLUTION ON CARDIOPULMONARY AND THERMOREGULATORY PARAMETERS IN HEALTHY AND COMPROMISED RATS. Watkinson, WP, Campen, MJ, Wichers, LB, Nolan, JP, Kodavanti, UP, Schladweiler, MCJ, Evansky, PA, Lappi, ER,...

  17. EXPOSURE TO PARTICULATE MATTER, VOLATILE ORGANIC COMPOUNDS, AND OTHER AIR POLLUTANTS INSIDE PATROL CARS

    EPA Science Inventory

    People driving in a vehicle might receive an enhanced dose of mobile source pollutants that are considered a potential risk for cardiovascular diseases. The exposure to components of air pollution in highway patrol vehicles, at an ambient, and a roadside location was determined d...

  18. Respirable particulate monitoring with remote sensors. (Public health ecology: Air pollution)

    NASA Technical Reports Server (NTRS)

    Severs, R. K.

    1974-01-01

    The feasibility of monitoring atmospheric aerosols in the respirable range from air or space platforms was studied. Secondary reflectance targets were located in the industrial area and near Galveston Bay. Multichannel remote sensor data were utilized to calculate the aerosol extinction coefficient and thus determine the aerosol size distribution. Houston Texas air sampling network high volume data were utilized to generate computer isopleth maps of suspended particulates and to establish the mass loading of the atmosphere. In addition, a five channel nephelometer and a multistage particulate air sampler were used to collect data. The extinction coefficient determined from remote sensor data proved more representative of wide areal phenomena than that calculated from on site measurements. It was also demonstrated that a significant reduction in the standard deviation of the extinction coefficient could be achieved by reducing the bandwidths used in remote sensor.

  19. Particulate Air Pollution and the Rate of Hospitalization for Congestive Heart Failure among Medicare Beneficiaries in Pittsburgh, Pennsylvania.

    PubMed Central

    Wellenius, Gregory A.; Bateson, Thomas F.; Mittleman, Murray A.; Schwartz., Joel

    2006-01-01

    We used a case-crossover approach to evaluate the association between ambient air pollution and the rate of hospitalization for congestive heart failure (CHF) among Medicare recipients (age ≥ 65) residing in Allegheny County (Pittsburgh area), PA, during 1987–1999. We also explored effect modification by age, gender, and specific secondary diagnoses. During follow-up, there were 55,019 admissions with a primary diagnosis of CHF. We found that particulate matter with aerodynamic diameter ≤ 10 μm (PM10), carbon monoxide (CO), nitrogen dioxide (NO2), and sulfur dioxide – but not ozone – were positively and significantly associated with the rate of admission on the same day in single-pollutant models. The strongest associations were observed with CO, NO2 and PM10. The associations with CO and NO2 were the most robust in two-pollutant models, remaining statistically significant even after adjusting for other pollutants. Patients with a recent myocardial infarction were at greater risk of particulate-related admission, but there was otherwise no significant effect modification by age, gender, or other secondary diagnoses. These results suggest that short-term elevations in air pollution from traffic-related sources may trigger acute cardiac decompensation of heart failure patients and that those with certain comorbid conditions may be more susceptible to these effects. PMID:15901623

  20. Synoptic weather modeling and estimates of the exposure-response relationship between daily mortality and particulate air pollution.

    PubMed Central

    Pope, C A; Kalkstein, L S

    1996-01-01

    This study estimated the association between particulate air pollution and daily mortality in Utah Valley using the synoptic climatological approach to control for potential weather effects. This approach was compared with alternative weather modeling approaches. Although seasonality explained a significant amount of variability in mortality, other weather variables explained only a very small amount of additional variability in mortality. The synoptic climatological approach performed as well or slightly better than alternative approaches to controlling for weather. However, the estimated effect of particulate pollution on mortality was mostly unchanged or slightly larger when synoptic categories were used to control for weather. Furthermore, the shape of the estimated dose-response relationship was similar when alternative approaches to controlling for weather were used. The associations between particulate pollution and daily mortality were not significantly different from a linear exposure-response relationship that extends throughout the full observed range of pollution. Images Figure 1. Figure 2. A Figure 2. B Figure 2. C Figure 2. D PMID:8732952

  1. Climate change and the meteorological drivers of PM air pollution: Understanding U.S. particulate matter concentrations in a changing climate

    EPA Science Inventory

    Particulate matter (PM) air pollution is a serious public health issue for the United States. While there is a growing body of evidence that climate change will partially counter the effectiveness of future precursor emission reductions to reduce ozone (O3) air pollution, the lin...

  2. Exposures to Walkability and Particulate Air Pollution in a Nationwide Cohort of Women

    PubMed Central

    James, Peter; Hart, Jaime E.; Laden, Francine

    2015-01-01

    Background Features of neighborhoods associated with walkability (i.e., connectivity, accessibility, and density) may also be correlated with levels of ambient air pollution, which would attenuate the health benefits of walkability. Objectives We examined the relationship between neighborhood walkability and ambient air pollution in a cross-sectional analysis of a cohort study spanning the entire United States using residence-level exposure assessment for ambient air pollution and the built environment. Methods Using data from the Nurses’ Health Study, we used linear regression to estimate the association between a neighborhood walkability index, combining neighborhood intersection count, business count, and population density (defined from Census data, infoUSA business data, and StreetMap USA data), and air pollution, defined from a GIS-based spatiotemporal PM2.5 model. Results After adjustment for Census tract median income, median home value, and percent with no high school education, the highest tertile of walkability index, intersection count, business count, and population density was associated with a with 1.58 (95% CI 1.54, 1.62), 1.20 (95% CI 1.16, 1.24), 1.31 (95% CI 1.27, 1.35), and 1.84 (95% CI 1.80, 1.88) μg/m3 higher level of PM2.5 respectively, compared to the lowest tertile. Results varied somewhat by neighborhood socioeconomic status and greatly by region. Conclusions This nationwide analysis showed a positive relationship between neighborhood walkability and modeled air pollution levels, which were consistent after adjustment for neighborhood-level socioeconomic status. Regional differences in the air pollution-walkability relationship demonstrate that there are factors that vary across region that allow for walkable neighborhoods with low levels of air pollution. PMID:26397775

  3. Evaluation of a high efficiency cabin air (HECA) filtration system for reducing particulate pollutants inside school buses.

    PubMed

    Lee, Eon S; Fung, Cha-Chen D; Zhu, Yifang

    2015-03-17

    An increasing number of studies have reported deleterious health effects of vehicle-emitted particulate matter (PM), including PM2.5 (aerodynamic diameter≤2.5 μm), black carbon (BC), and ultrafine particles (UFPs, diameter≤100 nm). When commuting inside school buses, children are exposed to high level of these pollutants due to emissions from both school bus itself and other on-road vehicles. This study developed an on-board high efficiency cabin air (HECA) filtration system for reducing children's exposure inside school buses. Six school buses were driven on two typical routes to evaluate to what extent the system reduces particulate pollutant levels inside the buses. The testing routes included freeways and major arterial roadways in Los Angeles, CA. UFP number concentrations and size distributions as well as BC and PM2.5 concentrations were monitored concurrently inside and outside of each bus. With the HECA filtration system on, in-cabin UFP and BC levels were reduced by 88±6% and 84±5% on averages across all driving conditions, respectively. The system was less effective for PM2.5 (55±22%) but successfully kept its levels below 12 μg/m3 inside all the buses. For all three types of particulate pollutants, in-cabin reductions were higher on freeways than on arterial roadways.

  4. Evaluation of a high efficiency cabin air (HECA) filtration system for reducing particulate pollutants inside school buses.

    PubMed

    Lee, Eon S; Fung, Cha-Chen D; Zhu, Yifang

    2015-03-17

    An increasing number of studies have reported deleterious health effects of vehicle-emitted particulate matter (PM), including PM2.5 (aerodynamic diameter≤2.5 μm), black carbon (BC), and ultrafine particles (UFPs, diameter≤100 nm). When commuting inside school buses, children are exposed to high level of these pollutants due to emissions from both school bus itself and other on-road vehicles. This study developed an on-board high efficiency cabin air (HECA) filtration system for reducing children's exposure inside school buses. Six school buses were driven on two typical routes to evaluate to what extent the system reduces particulate pollutant levels inside the buses. The testing routes included freeways and major arterial roadways in Los Angeles, CA. UFP number concentrations and size distributions as well as BC and PM2.5 concentrations were monitored concurrently inside and outside of each bus. With the HECA filtration system on, in-cabin UFP and BC levels were reduced by 88±6% and 84±5% on averages across all driving conditions, respectively. The system was less effective for PM2.5 (55±22%) but successfully kept its levels below 12 μg/m3 inside all the buses. For all three types of particulate pollutants, in-cabin reductions were higher on freeways than on arterial roadways. PMID:25728749

  5. Association of particulate air pollution and acute mortality: involvement of ultrafine particles?

    NASA Technical Reports Server (NTRS)

    Oberdorster, G.; Gelein, R. M.; Ferin, J.; Weiss, B.; Clarkson, T. W. (Principal Investigator)

    1995-01-01

    Recent epidemiological studies show an association between particulate air pollution and acute mortality and morbidity down to ambient particle concentrations below 100 micrograms/m3. Whether this association also implies a causality between acute health effects and particle exposure at these low levels is unclear at this time; no mechanism is known that would explain such dramatic effects of low ambient particle concentrations. Based on results of our past and most recent inhalation studies with ultrafine particles in rats, we propose that such particles, that is, particles below approximately 50 nm in diameter, may contribute to the observed increased mortality and morbidity In the past we demonstrated that inhalation of highly insoluble particles of low intrinsic toxicity, such as TiO2, results in significantly increased pulmonary inflammatory responses when their size is in the ultrafine particle range, approximately 20 nm in diameter. However, these effects were not of an acute nature and occurred only after prolonged inhalation exposure of the aggregated ultrafine particles at concentrations in the milligrams per cubic meter range. In contrast, in the course of our most recent studies with thermodegradation products of polytetrafluoroethylene (PTFE) we found that freshly generated PTFE fumes containing singlet ultrafine particles (median diameter 26 nm) were highly toxic to rats at inhaled concentrations of 0.7-1.0 x 10(6) particles/cm3, resulting in acute hemorrhagic pulmonary inflammation and death after 10-30 min of exposure. We also found that work performance of the rats in a running wheel was severely affected by PTFE fume exposure. These results confirm reports from other laboratories of the highly toxic nature of PTFE fumes, which cannot be attributed to gas-phase components of these fumes such as HF, carbonylfluoride, or perfluoroisobutylene, or to reactive radicals. The calculated mass concentration of the inhaled ultrafine PTFE particles in our

  6. The Effect of Fine and Coarse Particulate Air Pollution on Mortality: A National Analysis

    PubMed Central

    Zanobetti, Antonella; Schwartz, Joel

    2009-01-01

    Background Although many studies have examined the effects of air pollution on mortality, data limitations have resulted in fewer studies of both particulate matter with an aerodynamic diameter of ≤ 2.5 μm (PM2.5; fine particles) and of coarse particles (particles with an aerodynamic diameter > 2.5 and < 10 μm; PM coarse). We conducted a national, multicity time-series study of the acute effect of PM2.5 and PM coarse on the increased risk of death for all causes, cardiovascular disease (CVD), myocardial infarction (MI), stroke, and respiratory mortality for the years 1999–2005. Method We applied a city- and season-specific Poisson regression in 112 U.S. cities to examine the association of mean (day of death and previous day) PM2.5 and PM coarse with daily deaths. We combined the city-specific estimates using a random effects approach, in total, by season and by region. Results We found a 0.98% increase [95% confidence interval (CI), 0.75–1.22] in total mortality, a 0.85% increase (95% CI, 0.46–1.24) in CVD, a 1.18% increase (95% CI, 0.48–1.89) in MI, a 1.78% increase (95% CI, 0.96–2.62) in stroke, and a 1.68% increase (95% CI, 1.04–2.33) in respiratory deaths for a 10-μg/m3 increase in 2-day averaged PM2.5. The effects were higher in spring. For PM coarse, we found significant but smaller increases for all causes analyzed. Conclusions We conclude that our analysis showed an increased risk of mortality for all and specific causes associated with PM2.5, and the risks are higher than what was previously observed for PM10. In addition, coarse particles are also associated with more deaths. PMID:19590680

  7. Study on particulate matter air pollution in Beijing with MODIS aerosol level 2 products

    NASA Astrophysics Data System (ADS)

    Mao, Jietai; Li, Chengcai; Lau, Alexis K.

    2004-09-01

    In the run-up to the 2008 Olympic Games in Beijing, Chinese government officials at both the central and municipal levels are keenly aware that they must transform Beijing into a world-class city. According to the Beijing Municipal Environmental Protection Bureau (BJEPB) to improve its air quality some actions are adopting, including taking steps to increase the forested area surrounding the city preventing dust storms, reducing the automotive vehicles, moving polluting factories now inside the fourth ring road ringing the inner city to locations outside of the fourth ring road, and switching the fuel of public buses and taxis from diesel to natural gas, etc. Will they eliminate most serious environmental problems in Beijing? MODIS aerosol products are helping us to answer this kind of questions. A long-term validation has been finished by sun-photometer observations, and the results proved the relative error of MODIS level 2 products was slightly larger than the estimation of Chu et al. (2002) from the results in most AERONET sites. However, the comparison between the products and moisture-corrected air pollution index (API) data, which were daily released to public by EPB, showed a high correlation coefficient. An air pollution episode in 2003 was investigated by the usage of satellite products. Our conclusion for the air pollution control strategy in Beijing is that only reducing the pollution sources from inner city can't fully solve the pollution problems in Beijing and the regional transports from the nearby southern provinces are contributing a lot to the pollution situation in Beijing.

  8. Criteria air pollutants and toxic air pollutants.

    PubMed Central

    Suh, H H; Bahadori, T; Vallarino, J; Spengler, J D

    2000-01-01

    This review presents a brief overview of the health effects and exposures of two criteria pollutants--ozone and particulate matter--and two toxic air pollutants--benzene and formaldehyde. These pollutants were selected from the six criteria pollutants and from the 189 toxic air pollutants on the basis of their prevalence in the United States, their physicochemical behavior, and the magnitude of their potential health threat. The health effects data included in this review primarily include results from epidemiologic studies; however, some findings from animal studies are also discussed when no other information is available. Health effects findings for each pollutant are related in this review to corresponding information about outdoor, indoor, and personal exposures and pollutant sources. Images Figure 3 Figure 8 Figure 9 PMID:10940240

  9. Air Quality Criteria for Particulate Matter.

    ERIC Educational Resources Information Center

    National Air Pollution Control Administration (DHEW), Washington, DC.

    To assist states in developing air quality standards, this book offers a review of literature related to atmospheric particulates and the development of criteria for air quality. It not only summarizes the current scientific knowledge of particulate air pollution, but points up the major deficiencies in that knowledge and the need for further…

  10. (CZ)BIOMARKERS OF EXPOSURE TO PARTICULATE AIR POLLUTION IN THE CZECH REPUBLIC

    EPA Science Inventory

    The use of biomarkers in the Teplice Program, provided a key tool to relate health outcomes to individual personal exposures and to provide measures of confounding exposures. This research program on the health effects of air pollution studied a population living in the heavil...

  11. (PRAGUE)BIOMARKERS OF EXPOSURE TO PARTICULATE AIR POLLUTION IN THE CZECH REPUBLIC

    EPA Science Inventory

    The use of biomarkers in the Teplice Program, provided a key tool to relate health outcomes to individual personal exposures and to provide measures of confounding exposures. This research program on the health effects of air pollution studied a population living in the heavil...

  12. Assessment of personal exposure to particulate air pollution during commuting in European cities--recommendations and policy implications.

    PubMed

    Karanasiou, Angeliki; Viana, Mar; Querol, Xavier; Moreno, Teresa; de Leeuw, Frank

    2014-08-15

    Commuting is considered as one of the high-exposure periods among various daily activities, especially in high vehicle-density metropolitan areas. There is a growing awareness of the need to change our transportation habits by reducing our use of cars and shifting instead to active transport, i.e. walking or cycling. A review was undertaken using the ISI web of knowledge database with the objective to better understand personal exposure during commuting by different modes of transport, and to suggest potential strategies to minimise exposure. The air pollutants studied include particulate matter, PM black carbon, BC and particle number concentration. We focused only in European studies in order to have comparable situation in terms of vehicle fleet and policy regulations applied. Studies on personal exposure to air pollutants during car commuting are more numerous than those dealing with other types of transport, and typically conclude by emphasising that travelling by car involves exposure to relatively high particulate matter, PM exposure concentrations. Thus, compared to other transport methods, travelling by car has been shown to involve exposure both to higher PM and BC as compared with cycling. Widespread dependence on private car transport has produced a significant daily health threat to the urban commuter. However, a forward-looking, integrated transport policy, involving the phased renovation of existing public vehicles and the withdrawal of the more polluting private vehicles, combined with incentives to use public transport and the encouragement of commuter physical exercise, would reduce commuters' exposure.

  13. Assessment of personal exposure to particulate air pollution during commuting in European cities--recommendations and policy implications.

    PubMed

    Karanasiou, Angeliki; Viana, Mar; Querol, Xavier; Moreno, Teresa; de Leeuw, Frank

    2014-08-15

    Commuting is considered as one of the high-exposure periods among various daily activities, especially in high vehicle-density metropolitan areas. There is a growing awareness of the need to change our transportation habits by reducing our use of cars and shifting instead to active transport, i.e. walking or cycling. A review was undertaken using the ISI web of knowledge database with the objective to better understand personal exposure during commuting by different modes of transport, and to suggest potential strategies to minimise exposure. The air pollutants studied include particulate matter, PM black carbon, BC and particle number concentration. We focused only in European studies in order to have comparable situation in terms of vehicle fleet and policy regulations applied. Studies on personal exposure to air pollutants during car commuting are more numerous than those dealing with other types of transport, and typically conclude by emphasising that travelling by car involves exposure to relatively high particulate matter, PM exposure concentrations. Thus, compared to other transport methods, travelling by car has been shown to involve exposure both to higher PM and BC as compared with cycling. Widespread dependence on private car transport has produced a significant daily health threat to the urban commuter. However, a forward-looking, integrated transport policy, involving the phased renovation of existing public vehicles and the withdrawal of the more polluting private vehicles, combined with incentives to use public transport and the encouragement of commuter physical exercise, would reduce commuters' exposure. PMID:24907613

  14. Air Pollution.

    EPA Science Inventory

    Air quality is affected by many types of pollutants that are emitted from various sources, including stationary and mobile. These sources release both criteria and hazardous air pollutants, which cause health effects, ecological harm, and material damage. They are generally categ...

  15. Small for gestational age and exposure to particulate air pollution in the early-life environment of twins.

    PubMed

    Bijnens, Esmée M; Derom, Catherine; Gielen, Marij; Winckelmans, Ellen; Fierens, Frans; Vlietinck, Robert; Zeegers, Maurice P; Nawrot, Tim S

    2016-07-01

    Several studies in singletons have shown that maternal exposure to ambient air pollutants is associated with restricted fetal growth. About half of twins have low birth weight compared with six percent in singletons. So far, no studies have investigated maternal air pollution exposure in association with birth weight and small for gestational age in twins. We examined 4760 twins of the East Flanders Prospective Twins Survey (2002-2013), to study the association between in utero exposure to air pollution with birth weight and small for gestational age. Maternal particulate air pollution (PM10) and nitric dioxide (NO2) exposure was estimated using a spatial temporal interpolation method over various time windows during pregnancy. In the total group of twins, we observed that higher PM10 and NO2 exposure during the third trimester was significantly associated with a lower birth weight and higher risk of small for gestational age. However, the association was driven by moderate to late preterm twins (32-36 weeks of gestation). In these twins born between 32 and 36 weeks of gestation, birth weight decreased by 40.2g (95% CI: -69.0 to -11.3; p=0.006) and by 27.3g (95% CI: -52.9 to -1.7; p=0.04) in association for each 10µg/m³ increment in PM10 and NO2 concentration during the third trimester. The corresponding odds ratio for small for gestational age were 1.68 (95% CI: 1.27-2.33; p=0.0003) and 1.51 (95% CI: 1.18-1.95; p=0.001) for PM10 or NO2, respectively. No associations between air pollution and birth weight or small for gestational age were observed among term born twins. Finally, in all twins, we found that for each 10µg/m³ increase in PM10 during the last month of pregnancy the within-pair birth weight difference increased by 19.6g (95% CI: 3.7-35.4; p=0.02). Assuming causality, an achievement of a 10µg/m³ decrease of particulate air pollution may account for a reduction by 40% in small for gestational age, in twins born moderate to late preterm.

  16. Effectiveness of a federal healthy start program in reducing the impact of particulate air pollutants on feto-infant morbidity outcomes.

    PubMed

    Salihu, Hamisu M; August, Euna M; Mbah, Alfred K; Alio, Amina P; de Cuba, Raymond; Jaward, Foday M; Berry, Estrellita Lo

    2012-11-01

    We sought to assess (1) the relationship between air particulate pollutants and feto-infant morbidity outcomes and (2) the impact of a Federal Healthy Start program on this relationship. This is a retrospective cohort study using de-identified hospital discharge information linked to vital records, and air pollution data from 2000 through 2007 for the zip codes served by the Central Hillsborough Federal Healthy Start Project in Tampa, Florida. Mathematical modeling was employed to compute minimal Euclidean distances to capture exposure to ambient air particulate matter. The outcomes of interest were low birth weight (LBW), very low birth weight (VLBW), small for gestational age, preterm (PTB), and very preterm birth. We used odds ratios to approximate relative risks. A total of 12,356 live births were analyzed. Overall, women exposed to air particulate pollutants were at elevated risk for LBW (AOR = 1.24; 95% CI = 1.07-1.43), VLBW (AOR = 1.58; 95% CI = 1.09-2.29) and PTB (AOR = 1.18; 95% CI = 1.03-1.34). Analysis by race/ethnicity revealed that the adverse effects of air particulate pollutants were most profound among black infants. Infants of women who received services provided by the Central Hillsborough Federal Healthy Start Project experienced improved feto-infant morbidity outcomes despite exposure to air particulate pollutants. Environmental air pollutants represent important risk factors for adverse birth outcomes, particularly among black women. Multi-level interventional approaches implemented by the Central Hillsborough Federal Healthy Start were found to be associated with reduced likelihood for feto-infant morbidities triggered by exposure to ambient air particulate pollutants.

  17. Detection of particulate air pollution plumes from major point sources using ERTS-1 imagery

    NASA Technical Reports Server (NTRS)

    Lyons, W. A.; Pease, S. R.

    1973-01-01

    The Earth Resources Technology Satellite (ERTS-1) launched by NASA in July 1972 has been providing thousands of high resolution multispectral images of interest to geographers, cartographers, hydrologists, and agroculturists. It has been found possible to detect the long-range (over 50 km) transport of suspected particulate plumes from the Chicago-Gary steel mill complex over Lake Michigan. The observed plumes are readily related to known steel mills, a cement plant, refineries, and fossil-fuel power plants. This has important ramifications when discussing the interregional transport of atmospheric pollutants. Analysis reveals that the Multispectral Scanner Band 5 (0.6 to 0.7 micrometer) provides the best overall contrast between the smoke and the underlying water surface.

  18. Chronic exposure to high levels of particulate air pollution and small airway remodeling.

    PubMed Central

    Churg, Andrew; Brauer, Michael; del Carmen Avila-Casado, Maria; Fortoul, Teresa I; Wright, Joanne L

    2003-01-01

    Recent evidence suggests that chronic exposure to high levels of ambient particulate matter (PM) is associated with decreased pulmonary function and the development of chronic airflow obstruction. To investigate the possible role of PM-induced abnormalities in the small airways in these functional changes, we examined histologic sections from the lungs of 20 women from Mexico City, a high PM locale. All subjects were lifelong residents of Mexico City, were never-smokers, never had occupational dust exposure, and never used biomass fuel for cooking. Twenty never-smoking, non-dust-exposed subjects from Vancouver, British Columbia, Canada, a low PM region, were used as a control. By light microscopy, abnormal small airways with fibrotic walls and excess muscle, many containing visible dust, were present in the Mexico City lungs. Formal grading analysis confirmed the presence of significantly greater amounts of fibrous tissue and muscle in the walls of the airways in the Mexico City compared with the Vancouver lungs. Electron microscopic particle burden measurements on four cases from Mexico City showed that carbonaceous aggregates of ultrafine particles, aggregates likely to be combustion products, were present in the airway mucosa. We conclude that PM penetrates into and is retained in the walls of small airways, and that, even in nonsmokers, long-term exposure to high levels of ambient particulate pollutants is associated with small airway remodeling. This process may produce chronic airflow obstruction. PMID:12727599

  19. Portable air pollution control equipment for the control of toxic particulate emissions

    SciTech Connect

    Chaurushia, A.; Odabashian, S.; Busch, E.

    1997-12-31

    Chromium VI (Cr VI) has been identified by the environmental regulatory agencies as a potent carcinogen among eleven heavy metals. A threshold level of 0.0001 lb/year for Cr VI emissions has been established by the California Air Resources Board for reporting under Assembly Bill 2588. A need for an innovative control technology to reduce fugitive emissions of Cr VI was identified during the Air Toxic Emissions Reduction Program at Northrop Grumman Military Aircraft Systems Division (NGMASD). NGMASD operates an aircraft assembly facility in El Segundo, CA. Nearly all of the aircraft components are coated with a protective coating (primer) prior to assembly. The primer has Cr VI as a component for its excellent corrosion resistance property. The complex assembly process requires fasteners which also need primer coating. Therefore, NGMASD utilizes High Volume Low Pressure (HVLP) guns for the touch-up spray coating operations. During the touch-up spray coating operations, Cr VI particles are atomized and transferred to the aircraft surface. The South Coast Air Quality Management District (SCAQMD) has determined that the HVLP gun transfers 65% of the paint particles onto the substrate and the remaining 35% are emitted as an overspray if air pollution controls are not applied. NGMASD has developed the Portable Air Pollution Control Equipment (PAPCE) to capture and control the overspray in order to reduce fugitive Cr VI emissions from the touch-up spray coating operations. A source test was performed per SCAQMD guidelines and the final report has been approved by the SCAQMD.

  20. Response of SO2 and particulate air pollution to local and regional emission controls: A case study in Maryland

    NASA Astrophysics Data System (ADS)

    He, Hao; Vinnikov, Konstantin Y.; Li, Can; Krotkov, Nickolay A.; Jongeward, Andrew R.; Li, Zhanqing; Stehr, Jeffrey W.; Hains, Jennifer C.; Dickerson, Russell R.

    2016-04-01

    This paper addresses the questions of what effect local regulations can have on pollutants with different lifetimes and how surface observations and remotely sensed data can be used to determine the impacts. We investigated the decadal trends of tropospheric sulfur dioxide (SO2) and aerosol pollution over Maryland and its surrounding states, using surface, aircraft, and satellite measurements. Aircraft measurements indicated fewer isolated SO2 plumes observed in summers, a ˜40% decrease of column SO2, and a ˜20% decrease of atmospheric optical depth (AOD) over Maryland after the implementation of local regulations on sulfur emissions from power plants (˜90% reduction from 2010). Surface observations of SO2 and particulate matter (PM) concentrations in Maryland show similar trends. OMI SO2 and MODIS AOD observations were used to investigate the column contents of air pollutants over the eastern U.S.; these indicate decreasing trends in column SO2 (˜60% decrease) and AOD (˜20% decrease). The decrease of upwind SO2 emissions also reduced aerosol loadings over the downwind Atlantic Ocean near the coast by ˜20%, while indiscernible changes of the SO2 column were observed. A step change of SO2 emissions in Maryland starting in 2009-2010 had an immediate and profound benefit in terms of local surface SO2 concentrations but a modest impact on aerosol pollution, indicating that short-lived pollutants are effectively controlled locally, while long-lived pollutants require regional measures.

  1. Beneficial cardiovascular effects of reducing exposure to particulate air pollution with a simple facemask

    PubMed Central

    Langrish, Jeremy P; Mills, Nicholas L; Chan, Julian KK; Leseman, Daan LAC; Aitken, Robert J; Fokkens, Paul HB; Cassee, Flemming R; Li, Jing; Donaldson, Ken; Newby, David E; Jiang, Lixin

    2009-01-01

    Background Exposure to air pollution is an important risk factor for cardiovascular morbidity and mortality, and is associated with increased blood pressure, reduced heart rate variability, endothelial dysfunction and myocardial ischaemia. Our objectives were to assess the cardiovascular effects of reducing air pollution exposure by wearing a facemask. Methods In an open-label cross-over randomised controlled trial, 15 healthy volunteers (median age 28 years) walked on a predefined city centre route in Beijing in the presence and absence of a highly efficient facemask. Personal exposure to ambient air pollution and exercise was assessed continuously using portable real-time monitors and global positional system tracking respectively. Cardiovascular effects were assessed by continuous 12-lead electrocardiographic and ambulatory blood pressure monitoring. Results Ambient exposure (PM2.5 86 ± 61 vs 140 ± 113 μg/m3; particle number 2.4 ± 0.4 vs 2.3 ± 0.4 × 104 particles/cm3), temperature (29 ± 1 vs 28 ± 3°C) and relative humidity (63 ± 10 vs 64 ± 19%) were similar (P > 0.05 for all) on both study days. During the 2-hour city walk, systolic blood pressure was lower (114 ± 10 vs 121 ± 11 mmHg, P < 0.01) when subjects wore a facemask, although heart rate was similar (91 ± 11 vs 88 ± 11/min; P > 0.05). Over the 24-hour period heart rate variability increased (SDNN 65.6 ± 11.5 vs 61.2 ± 11.4 ms, P < 0.05; LF-power 919 ± 352 vs 816 ± 340 ms2, P < 0.05) when subjects wore the facemask. Conclusion Wearing a facemask appears to abrogate the adverse effects of air pollution on blood pressure and heart rate variability. This simple intervention has the potential to protect susceptible individuals and prevent cardiovascular events in cities with high concentrations of ambient air pollution. PMID:19284642

  2. Particulate air pollution and health effects for cardiovascular and respiratory causes in Temuco, Chile: a wood-smoke-polluted urban area.

    PubMed

    Sanhueza, Pedro A; Torreblanca, Monica A; Diaz-Robles, Luis A; Schiappacasse, L Nicolas; Silva, Maria P; Astete, Teresa D

    2009-12-01

    Temuco is one of the most highly wood-smoke-polluted cities in the world. Its population in 2004 was 340,000 inhabitants with 1587 annual deaths, of which 24% were due to cardiovascular and 11% to respiratory causes. For hospital admissions, cardiovascular diseases represented 6% and respiratory diseases 13%. Emergency room visits for acute respiratory infections represented 28%. The objective of the study presented here was to determine the relationship between air pollution from particulate matter less than or equal to 10 microm in aerodynamic diameter (PM10; mostly PM2.5, or particulate matter <2.5 microm in aerodynamic diameter) and health effects measured as the daily number of deaths, hospital admissions, and emergency room visits for cardiovascular, respiratory, and acute respiratory infection (ARI) diseases. The Air Pollution Health Effects European Approach (APHEA2) protocol was followed, and a multivariate Poisson regression model was fitted, controlling for trend, seasonality, and confounders for Temuco during 1998-2006. The results show that PM10 had a significant association with daily mortality and morbidity, with the elderly (population >65 yr of age) being the group that presented the greatest risk. The relative risk for respiratory causes, with an increase of 100 microg/m3 of PM10, was 1.163 with a 95% confidence interval (CI) of 1.057-1.279 for mortality, 1.137 (CI 1.096-1.178) for hospital admissions, and 1.162 for ARI (CI 1.144-1.181). There is evidence in Temuco of positive relationships between ambient particulate levels and mortality, hospital admissions, and ARI for cardiovascular and respiratory diseases. These results are consistent with those of comparable studies in other similar cities where wood smoke is the most important air pollution problem.

  3. Vegetation fires, particulate air pollution and asthma: a panel study in the Australian monsoon tropics.

    PubMed

    Johnston, Fay H; Webby, Rosalind J; Pilotto, Louis S; Bailie, Ross S; Parry, David L; Halpin, Stephen J

    2006-12-01

    We examined the relationship between particulate matter (PM) <10 and <2.5 microns in diameter (PM10 and PM2.5) generated by vegetation fires and daily health outcomes in 251 adults and children with asthma over a 7-month period. Data were analysed using generalized estimating equations adjusted for potential environmental confounders, autocorrelation, weekends and holidays. PM10 ranged from 2.6 - 43.3 microg m-3and was significantly associated with onset of asthma symptoms, commencing oral steroid medication, the mean daily symptom count and the mean daily dose of reliever medication. Similar results were found for PM2.5. No associations were found with the more severe outcomes of asthma attacks, increased health care attendances or missed school/work days. These results help fill a gap in the evidence about the population health impacts of lower levels of pollution characteristic of deliberate landscape burning to control fuel loads versus the better documented risks of more intense and severely polluting wildfires.

  4. Ambient particulate air pollution and circulating antioxidant enzymes: A repeated-measure study in healthy adults in Beijing, China.

    PubMed

    Wu, Shaowei; Wang, Bin; Yang, Di; Wei, Hongying; Li, Hongyu; Pan, Lu; Huang, Jing; Wang, Xin; Qin, Yu; Zheng, Chanjuan; Shima, Masayuki; Deng, Furong; Guo, Xinbiao

    2016-01-01

    The association of systemic antioxidant activity with ambient air pollution has been unclear. A panel of 40 healthy college students underwent repeated blood collection for 12 occasions under three exposure scenarios before and after relocating from a suburban area to an urban area in Beijing, China in 2010-2011. We measured various air pollutants including fine particles (PM2.5) and determined circulating levels of antioxidant enzymes extracellular superoxide dismutase (EC-SOD) and glutathione peroxidase 1 (GPX1) in the laboratory. An interquartile range increase of 63.4 μg/m(3) at 3-d PM2.5 moving average was associated with a 6.3% (95% CI: 0.6, 12.4) increase in EC-SOD and a 5.5% (95% CI: 1.3, 9.8) increase in GPX1. Several PM2.5 chemical constituents, including negative ions (nitrate and chloride) and metals (e.g., iron and strontium), were consistently associated with increases in EC-SOD and GPX1. Our results support activation of circulating antioxidant enzymes following exposure to particulate air pollution.

  5. Mortality in the Medicare Population and Chronic Exposure to Fine Particulate Air Pollution in Urban Centers (2000–2005)

    PubMed Central

    Zeger, Scott L.; Dominici, Francesca; McDermott, Aidan; Samet, Jonathan M.

    2008-01-01

    Background Prospective cohort studies constitute the major source of evidence about the mortality effects of chronic exposure to particulate air pollution. Additional studies are needed to provide evidence on the health effects of chronic exposure to particulate matter ≤ 2.5 μm in aerodynamic diameter (PM2.5) because few studies have been carried out and the cohorts have not been representative. Objectives This study was designed to estimate the relative risk of death associated with long-term exposure to PM2.5 by region and age groups in a U.S. population of elderly, for the period 2000–2005. Methods By linking PM2.5 monitoring data to the Medicare billing claims by ZIP code of residence of the enrollees, we have developed a new retrospective cohort study, the Medicare Cohort Air Pollution Study. The study population comprises 13.2 million participants living in 4,568 ZIP codes having centroids within 6 miles of a PM2.5 monitor. We estimated relative risks adjusted by socioeconomic status and smoking by fitting log-linear regression models. Results In the eastern and central regions, a 10-μg/m3 increase in 6-year average of PM2.5 is associated with 6.8% [95% confidence interval (CI), 4.9–8.7%] and 13.2% (95% CI, 9.5–16.9) increases in mortality, respectively. We found no evidence of an association in the western region or for persons ≥ 85 years of age. Conclusions We established a cohort of Medicare participants for investigating air pollution and mortality on longer-term time frames. Chronic exposure to PM2.5 was associated with mortality in the eastern and central regions, but not in the western United States. PMID:19079710

  6. Association between particulate matter and its chemical constituents of urban air pollution and daily mortality or morbidity in Beijing City.

    PubMed

    Li, Pei; Xin, Jinyuan; Wang, Yuesi; Li, Guoxing; Pan, Xiaochuan; Wang, Shigong; Cheng, Mengtian; Wen, Tianxue; Wang, Guangcheng; Liu, Zirui

    2015-01-01

    Recent time series studies have indicated that daily mortality and morbidity are associated with particulate matters. However, about the relative effects and its seasonal patterns of fine particulate matter constituents is particularly limited in developing Asian countries. In this study, we examined the role of particulate matters and its key chemical components of fine particles on both mortality and morbidity in Beijing. We applied several overdispersed Poisson generalized nonlinear models, adjusting for time, day of week, holiday, temperature, and relative humidity, to investigate the association between risk of mortality or morbidity and particulate matters and its constituents in Beijing, China, for January 2005 through December 2009. Particles and several constituents were associated with multiple mortality or morbidity categories, especially on respiratory health. For a 3-day lag, the nonaccident mortality increased by 1.52, 0.19, 1.03, 0.56, 0.42, and 0.32% for particulate matter (PM)2.5, PM10, K(+), SO4(2-), Ca(2+), and NO3(-) based on interquartile ranges of 36.00, 64.00, 0.41, 8.75, 1.43, and 2.24 μg/m(3), respectively. The estimates of short-term effects for PM2.5 and its components in the cold season were 1 ~ 6 times higher than that in the full year on these health outcomes. Most of components had stronger adverse effects on human health in the heavy PM2.5 mass concentrations, especially for K(+), NO3(-), and SO4(2-). This analysis added to the growing body of evidence linking PM2.5 with mortality or morbidity and indicated that excess risks may vary among specific PM2.5 components. Combustion-related products, traffic sources, vegetative burning, and crustal component and resuspended road dust may play a key role in the associations between air pollution and public health in Beijing.

  7. Air Pollution

    MedlinePlus

    ... tobacco smoke. How is air pollution linked to climate change? While climate change is a global process, it ... ozone levels are also a concern. Impacts of Climate Change on Human Health in the United States: A ...

  8. Source assessment of particulate air pollutants measured at the southwest european coast

    NASA Astrophysics Data System (ADS)

    Pio, Casimiro A.; Castro, Luis M.; Cerqueira, Mario A.; Santos, Isabel M.; Belchior, Filipa; Salgueiro, Maria L.

    Aerosol particles and gaseous species were measured in air masses transported to the west coast of Portugal, between November 1993 and August 1994. Samples were taken during four monitoring campaigns distributed along the various seasons of the year, integrated in the EC Project: BMCAPE. Aerosol particles were collected with separation in two size fractions and analysed in relation to total mass, water soluble ions, trace elements and black/organic carbon. Local micro-meteorological parameters and air mass backward trajectories were compared with analytical results in order to define characteristic air mass types and to evaluate the origin of pollutants. Average concentrations on the Portuguese west coast, even in maritime air masses, are higher than values observed in remote oceanic locations. This is probably a consequence of continental European air masses recirculation through the eastern Atlantic Ocean, reinforced by situations of mesoscale transport from the Iberian Peninsula. Principal Component Analysis permitted the identification of five source groups for the fine and coarse aerosol fractions, namely combustion plus road traffic, sea salt spray, secondary aerosol production, soil and possibly non-ferrous metallurgy industries. In the aerosol fine fraction road traffic and combustion contribute on average with 25% of the total fine aerosol mass, while sea spray and secondary production represent 14% and 31%, respectively of the mass loading. Sea spray is by far the major contributor to the coarse fraction with an average of 88% of the suspended coarse aerosol mass.

  9. Air Pollution.

    ERIC Educational Resources Information Center

    Scorer, Richard S.

    The purpose of this book is to describe the basic mechanisms whereby pollution is transported and diffused in the atmosphere. It is designed to give practitioners an understanding of basic mechanics and physics so they may have a correct basis on which to formulate their decisions related to practical air pollution control problems. Since many…

  10. Sulfate concentrations as an indicator of ambient particulate matter air pollution for health risk evaluations.

    PubMed

    Lippmann, M; Thurston, G D

    1996-01-01

    Retrospective population studies that have compared regression coefficients for mortality and morbidity for sulfate (SO4(2-), fine particles (PM2.5; aerodynamic diameter < 2.5 microns), thoracic particles (PM10; aerodynamic diameter < 10 microns), and total suspended particulates (TSP; undefined and variable upper cut-size) generally have found SO4(2-) concentrations to be correlated with effects as well as or better than PM2.5. In addition, both SO4(2-) and PM2.5 have yielded somewhat stronger associations with adverse health effects than PM10, and much stronger associations than TSP. Sulfate has advantages over PM2.5 for retrospective epidemiology, at least in the United States, because considerably more data on sulfate have been collected in recent decades, and there is a broader epidemiological database in the literature for comparison to other studies. While SO4(2-), per se, is an unlikely causal factor for mortality or morbidity, it often is correlated closely with variations in the strong acid component of ambient particulate matter (H+) and PM2.5 concentrations (especially in summer), which are more likely causal factors. A detailed analysis of the SO4(2-) epidemiological database is presented in this paper. In addition, drawing on our substantial archives of SO4(2-) and H+ data, we show that SO4(2-) and H+ correlate, both spatially and over time, in the eastern United States. We demonstrate the utility of SO4(2-) as a useful surrogate for ambient PM2.5 and H+ in epidemiological studies and as an index of PM exposure in ambient air quality guidelines and standards.

  11. Source-specific fine particulate air pollution and systemic inflammation in ischaemic heart disease patients

    PubMed Central

    Siponen, Taina; Yli-Tuomi, Tarja; Aurela, Minna; Dufva, Hilkka; Hillamo, Risto; Hirvonen, Maija-Riitta; Huttunen, Kati; Pekkanen, Juha; Pennanen, Arto; Salonen, Iiris; Tiittanen, Pekka; Salonen, Raimo O; Lanki, Timo

    2015-01-01

    Objective To compare short-term effects of fine particles (PM2.5; aerodynamic diameter <2.5 µm) from different sources on the blood levels of markers of systemic inflammation. Methods We followed a panel of 52 ischaemic heart disease patients from 15 November 2005 to 21 April 2006 with clinic visits in every second week in the city of Kotka, Finland, and determined nine inflammatory markers from blood samples. In addition, we monitored outdoor air pollution at a fixed site during the study period and conducted a source apportionment of PM2.5 using the Environmental Protection Agency's model EPA PMF 3.0. We then analysed associations between levels of source-specific PM2.5 and markers of systemic inflammation using linear mixed models. Results We identified five source categories: regional and long-range transport (LRT), traffic, biomass combustion, sea salt, and pulp industry. We found most evidence for the relation of air pollution and inflammation in LRT, traffic and biomass combustion; the most relevant inflammation markers were C-reactive protein, interleukin-12 and myeloperoxidase. Sea salt was not positively associated with any of the inflammatory markers. Conclusions Results suggest that PM2.5 from several sources, such as biomass combustion and traffic, are promoters of systemic inflammation, a risk factor for cardiovascular diseases. PMID:25479755

  12. Effects of Short-Term Exposure to Particulate Air Pollutants on the Inflammatory Response and Respiratory Symptoms: A Panel Study in Schoolchildren from Rural Areas of Japan

    PubMed Central

    Watanabe, Masanari; Noma, Hisashi; Kurai, Jun; Sano, Hiroyuki; Hantan, Degejirihu; Ueki, Masaru; Kitano, Hiroya; Shimizu, Eiji

    2016-01-01

    The relationship between particulate air pollutants and respiratory symptoms in children has not been consistent among studies, potentially owing to differences in the inflammatory response to different particulate air pollutants. This study aimed to investigate the effect of particulate air pollutants on respiratory symptoms and the inflammatory response in schoolchildren. Three hundred-and-sixty children were included in the study. The children recorded daily respiratory symptom scores for October 2015. In addition, the daily amount of interleukin (IL)-6, IL-8, and tumor necrosis factor (TNF)-α production was assessed in THP1 cells stimulated with suspended particulate matter (SPM), which was collected every day during the study period. Generalized estimating equation logistic regression analyses were used to estimate the associations among respiratory symptoms and the daily levels of SPM, IL-6, IL-8, and TNF-α. Daily SPM levels were not associated with respiratory symptoms or the daily IL-6, IL-8, and TNF-α levels. Conversely, there was a significant association between respiratory symptoms and the daily IL-6, IL-8, and TNF-α levels. These results suggested that the effects of particulate air pollutants on respiratory symptoms in schoolchildren might depend more on the pro-inflammatory response to them than on their mass concentration. PMID:27706066

  13. THE ASSOCIATION OF EXPOSURE TO PARTICULATE MATTER AND RELATED AIR POLLUTANTS WITH SPECIFIC HEALTH EFFECTS IN HEALTHY HIGHWAY PATROL OFFICERS

    EPA Science Inventory

    Estimated exposures to ambient respirable particulate matter (PM) and related co-pollutants have been statistically associated with mortality and morbidity in epidemiological studies conducted throughout the world. Although some subpopulations (e.g., asthmatics; elderly, pulmonar...

  14. The characteristics of coarse particulate matter air pollution associated with alterations in blood pressure and heart rate during controlled exposures

    PubMed Central

    Morishita, Masako; Bard, Robert L.; Wang, Lu; Das, Ritabrata; Dvonch, J. Timothy; Spino, Catherine; Mukherjee, Bhramar; Sun, Qinghua; Harkema, Jack R.; Rajagopalan, Sanjay; Brook, Robert D.

    2015-01-01

    Although fine particulate matter (PM) air pollution <2.5 μm in aerodynamic diameter (PM2.5) is a leading cause of global morbidity and mortality, the potential health effects of coarse PM (2.5–10 μm in aerodynamic diameter; PM10–2.5) remain less clearly understood. We aimed to elucidate the components within coarse PM most likely responsible for mediating these hemodynamic alterations. Thirty-two healthy adults (25.9 ± 6.6 years) were exposed to concentrated ambient coarse PM (CAP) (76.2 ± 51.5 μg/m3) and filtered air (FA) for 2 h in a rural location in a randomized double-blind crossover study. The particle constituents (24 individual elements, organic and elemental carbon) were analyzed from filter samples and associated with the blood pressure (BP) and heart rate (HR) changes occurring throughout CAP and FA exposures in mixed model analyses. Total coarse PM mass along with most of the measured elements were positively associated with similar degrees of elevations in both systolic BP and HR. Conversely, total PM mass was unrelated, whereas only two elements (Cu and Mo) were positively associated with and Zn was inversely related to diastolic BP changes during exposures. Inhalation of coarse PM from a rural location rapidly elevates systolic BP and HR in a concentration-responsive manner, whereas the particulate composition does not appear to be an important determinant of these responses. Conversely, exposure to certain PM elements may be necessary to trigger a concomitant increase in diastolic BP. These findings suggest that particulate mass may be an adequate metric of exposure to predict some, but not all, hemodynamic alterations induced by coarse PM mass. PMID:25227729

  15. Testing for Air Pollution.

    ERIC Educational Resources Information Center

    Dunbar, Artice

    Three experiments are presented in this Science Study Aid to provide the teacher with some fundamental air pollution activities. The first experiment involved particulates, the second deals with microorganisms, and the third looks at gases in the atmosphere. Each activity outlines introductory information, objectives, materials required, procedure…

  16. Association between Source-Specific Particulate Matter Air Pollution and hs-CRP: Local Traffic and Industrial Emissions

    PubMed Central

    Fuks, Kateryna; Moebus, Susanne; Weinmayr, Gudrun; Memmesheimer, Michael; Jakobs, Hermann; Bröcker-Preuss, Martina; Führer-Sakel, Dagmar; Möhlenkamp, Stefan; Erbel, Raimund; Jöckel, Karl-Heinz; Hoffmann, Barbara

    2014-01-01

    Background: Long-term exposures to particulate matter air pollution (PM2.5 and PM10) and high traffic load have been associated with markers of systemic inflammation. Epidemiological investigations have focused primarily on total PM, which represents a mixture of pollutants originating from different sources. Objective: We investigated associations between source-specific PM and high-sensitive C-reactive protein (hs-CRP), an independent predictor of cardiovascular disease. Methods: We used data from the first (2000–2003) and second examination (2006–2008) of the Heinz Nixdorf Recall study, a prospective population-based German cohort of initially 4,814 participants (45–75 years of age). We estimated residential long-term exposure to local traffic- and industry-specific fine particulate matter (PM2.5) at participants’ residences using a chemistry transport model. We used a linear mixed model with a random participant intercept to estimate associations of source-specific PM and natural log-transformed hs-CRP, controlling for age, sex, education, body mass index, low- and high-density lipoprotein cholesterol, smoking variables, physical activity, season, humidity, and city (8,204 total observations). Results: A 1-μg/m3 increase in total PM2.5 was associated with a 4.53% increase in hs-CRP concentration (95% CI: 2.76, 6.33%). hs-CRP was 17.89% (95% CI: 7.66, 29.09%) and 7.96% (95% CI: 3.45, 12.67%) higher in association with 1-μg/m3 increases in traffic- and industry-specific PM2.5, respectively. Results for PM10 were similar. Conclusions: Long-term exposure to local traffic-specific PM (PM2.5, PM10) was more strongly associated with systemic inflammation than total PM. Associations of local industry-specific PM were slightly stronger but not significantly different from associations with total PM. Citation: Hennig F, Fuks K, Moebus S, Weinmayr G, Memmesheimer M, Jakobs H, Bröcker-Preuss M, Führer-Sakel D, Möhlenkamp S, Erbel R, Jöckel KH, Hoffmann B

  17. Ambient particulate air pollution, heart rate variability, and blood markers of inflammation in a panel of elderly subjects.

    PubMed Central

    Pope, C Arden; Hansen, Matthew L; Long, Russell W; Nielsen, Karen R; Eatough, Norman L; Wilson, William E; Eatough, Delbert J

    2004-01-01

    Epidemiologic studies report associations between particulate air pollution and cardiopulmonary morbidity and mortality. Although the underlying pathophysiologic mechanisms remain unclear, it has been hypothesized that altered autonomic function and pulmonary/systemic inflammation may play a role. In this study we explored the effects of air pollution on autonomic function measured by changes in heart rate variability (HRV) and blood markers of inflammation in a panel of 88 elderly subjects from three communities along the Wasatch Front in Utah. Subjects participated in multiple sessions of 24-hr ambulatory electrocardiographic monitoring and blood tests. Regression analysis was used to evaluate associations between fine particulate matter [aerodynamic diameter less than or equal to 2.5 microm (PM2.5)] and HRV, C-reactive protein (CRP), blood cell counts, and whole blood viscosity. A 100- microg/m3 increase in PM2.5 was associated with approximately a 35 (SE = 8)-msec decline in standard deviation of all normal R-R intervals (SDNN, a measure of overall HRV); a 42 (SE = 11)-msec decline in square root of the mean of the squared differences between adjacent normal R-R intervals (r-MSSD, an estimate of short-term components of HRV); and a 0.81 (SE = 0.17)-mg/dL increase in CRP. The PM2.5-HRV associations were reasonably consistent and statistically robust, but the CRP association dropped to 0.19 (SE = 0.10) after excluding the most influential subject. PM2.5 was not significantly associated with white or red blood cell counts, platelets, or whole-blood viscosity. Most short-term variability in temporal deviations of HRV and CRP was not explained by PM2.5; however, the small statistically significant associations that were observed suggest that exposure to PM2.5 may be one of multiple factors that influence HRV and CRP. PMID:14998750

  18. Ambient Coarse Particulate Matter and Hospital Admissions in the Medicare Cohort Air Pollution Study, 1999–2010

    PubMed Central

    Powell, Helen; Krall, Jenna R.; Wang, Yun; Bell, Michelle L.

    2015-01-01

    Background In recent years a number of studies have examined the short-term association between coarse particulate matter (PM10–2.5) and mortality and morbidity outcomes. These studies, however, have produced inconsistent conclusions. Objectives We estimated both the national- and regional-level associations between PM10–2.5 and emergency hospitalizations for both cardiovascular and respiratory disease among Medicare enrollees ≥ 65 years of age during the 12-year period 1999 through 2010. Methods Using air pollution data obtained from the U.S. Environmental Protection Agency air quality monitoring network and daily emergency hospitalizations for 110 large urban U.S. counties assembled from the Medicare Cohort Air Pollution Study (MCAPS), we estimated the association between short-term exposure to PM10–2.5 and hospitalizations using a two-stage Bayesian hierarchical model and Poisson log-linear regression models. Results A 10-μg/m3 increase in PM10–2.5 was associated with a significant increase in same-day cardiovascular hospitalizations [0.69%; 95% posterior interval (PI): 0.45, 0.92]. After adjusting for PM2.5, this association remained significant (0.63%; 95% PI: 0.38, 0.88). A 10-μg/m3 increase in PM10–2.5 was not associated with a significant increase in respiratory-related hospitalizations. Conclusions We found statistically significant evidence that daily variation in PM10–2.5 is associated with emergency hospitalizations for cardiovascular diseases among Medicare enrollees ≥ 65 years of age. This association was robust to adjustment for concentrations of PM2.5. Citation Powell H, Krall JR, Wang Y, Bell ML, Peng RD. 2015. Ambient coarse particulate matter and hospital admissions in the Medicare Cohort Air Pollution Study, 1999–2010. Environ Health Perspect 123:1152–1158; http://dx.doi.org/10.1289/ehp.1408720 PMID:25872223

  19. Assessment of potential long-range transport of particulate air pollution using trajectory modeling and monitoring data

    NASA Astrophysics Data System (ADS)

    Pongkiatkul, Prapat; Kim Oanh, Nguyen Thi

    2007-07-01

    Quantification of the long-range transport (LRT) contribution to ambient air pollution levels at a location is a challenging task and is normally done with a high uncertainty. In the lack of accurate emission data over the large regional domain for dispersion modeling, this study attempts to use both trajectory analysis and monitoring data to assess the potential contribution of LRT to particulate air pollution (PM) in the Bangkok Metropolitan Region (BMR). The 10-day backward trajectories of air masses arriving at BMR from January 2002 to December 2004 were determined using Hybrid Single-Particle Langrangian Integrated Trajectory model version 4 (HYSPLIT4) and were categorized by k-means clustering into 6 clusters. Subsequently, PM levels in the BMR associated with each air mass cluster during this period were analyzed. Clusters 1 and 6 were observed with the highest and 2nd highest average PM 10 and PM 2.5 levels in the BMR, respectively, which commonly have a longer air mass pathway over populated South East Asia (SEA). The third highest PM levels were associated with air masses from the east (clusters 2 and 5), which enter the BMR via the Gulf of Thailand without passing the SEA regions. The other two clusters (3 and 4) are characterized with a long pathway of air masses over the Indian Ocean and the lowest PM levels. High PM days, which are defined based on the spatial coverage of high PM levels in the BMR, were identified and analyzed for the possibility of long-range transport contribution of PM. The potential source contribution function (PSCF) and air mass trajectories show that on high PM day, the air masses commonly originated and passed over populated regions before arriving at the BMR, which suggests a possible LRT contribution. Considerations are made for surface ozone, SO 42-/SO 2 and average SO 2, PM 2.5/PM 10, and weekday-weekend traffic emission within each air mass trajectory cluster to reveal the possible LRT contribution.

  20. Acute exposure to air pollution particulate matter aggravates experimental myocardial infarction in mice by potentiating cytokine secretion from lung macrophages.

    PubMed

    Marchini, Timoteo; Wolf, Dennis; Michel, Nathaly Anto; Mauler, Maximilian; Dufner, Bianca; Hoppe, Natalie; Beckert, Jessica; Jäckel, Markus; Magnani, Natalia; Duerschmied, Daniel; Tasat, Deborah; Alvarez, Silvia; Reinöhl, Jochen; von Zur Muhlen, Constantin; Idzko, Marco; Bode, Christoph; Hilgendorf, Ingo; Evelson, Pablo; Zirlik, Andreas

    2016-07-01

    Clinical, but not experimental evidence has suggested that air pollution particulate matter (PM) aggravates myocardial infarction (MI). Here, we aimed to describe mechanisms and consequences of PM exposure in an experimental model of MI. C57BL/6J mice were challenged with a PM surrogate (Residual Oil Fly Ash, ROFA) by intranasal installation before MI was induced by permanent ligation of the left anterior descending coronary artery. Histological analysis of the myocardium 7 days after MI demonstrated an increase in infarct area and enhanced inflammatory cell recruitment in ROFA-exposed mice. Mechanistically, ROFA exposure increased the levels of the circulating pro-inflammatory cytokines TNF-α, IL-6, and MCP-1, activated myeloid and endothelial cells, and enhanced leukocyte recruitment to the peritoneal cavity and the vascular endothelium. Notably, these effects on endothelial cells and circulating leukocytes could be reversed by neutralizing anti-TNF-α treatment. We identified alveolar macrophages as the primary source of elevated cytokine production after PM exposure. Accordingly, in vivo depletion of alveolar macrophages by intranasal clodronate attenuated inflammation and cell recruitment to infarcted tissue of ROFA-exposed mice. Taken together, our data demonstrate that exposure to environmental PM induces the release of inflammatory cytokines from alveolar macrophages which directly worsens the course of MI in mice. These findings uncover a novel link between air pollution PM exposure and inflammatory pathways, highlighting the importance of environmental factors in cardiovascular disease. PMID:27240856

  1. Acute exposure to air pollution particulate matter aggravates experimental myocardial infarction in mice by potentiating cytokine secretion from lung macrophages.

    PubMed

    Marchini, Timoteo; Wolf, Dennis; Michel, Nathaly Anto; Mauler, Maximilian; Dufner, Bianca; Hoppe, Natalie; Beckert, Jessica; Jäckel, Markus; Magnani, Natalia; Duerschmied, Daniel; Tasat, Deborah; Alvarez, Silvia; Reinöhl, Jochen; von Zur Muhlen, Constantin; Idzko, Marco; Bode, Christoph; Hilgendorf, Ingo; Evelson, Pablo; Zirlik, Andreas

    2016-07-01

    Clinical, but not experimental evidence has suggested that air pollution particulate matter (PM) aggravates myocardial infarction (MI). Here, we aimed to describe mechanisms and consequences of PM exposure in an experimental model of MI. C57BL/6J mice were challenged with a PM surrogate (Residual Oil Fly Ash, ROFA) by intranasal installation before MI was induced by permanent ligation of the left anterior descending coronary artery. Histological analysis of the myocardium 7 days after MI demonstrated an increase in infarct area and enhanced inflammatory cell recruitment in ROFA-exposed mice. Mechanistically, ROFA exposure increased the levels of the circulating pro-inflammatory cytokines TNF-α, IL-6, and MCP-1, activated myeloid and endothelial cells, and enhanced leukocyte recruitment to the peritoneal cavity and the vascular endothelium. Notably, these effects on endothelial cells and circulating leukocytes could be reversed by neutralizing anti-TNF-α treatment. We identified alveolar macrophages as the primary source of elevated cytokine production after PM exposure. Accordingly, in vivo depletion of alveolar macrophages by intranasal clodronate attenuated inflammation and cell recruitment to infarcted tissue of ROFA-exposed mice. Taken together, our data demonstrate that exposure to environmental PM induces the release of inflammatory cytokines from alveolar macrophages which directly worsens the course of MI in mice. These findings uncover a novel link between air pollution PM exposure and inflammatory pathways, highlighting the importance of environmental factors in cardiovascular disease.

  2. Temperature modifies the association between particulate air pollution and mortality: A multi-city study in South Korea.

    PubMed

    Kim, Satbyul Estella; Lim, Youn-Hee; Kim, Ho

    2015-08-15

    Substantial epidemiologic literature has demonstrated the effects of air pollution and temperature on mortality. However, there is inconsistent evidence regarding the temperature modification effect on acute mortality due to air pollution. Herein, we investigated the effects of temperature on the relationship between air pollution and mortality due to non-accidental, cardiovascular, and respiratory death in seven cities in South Korea. We applied stratified time-series models to the data sets in order to examine whether the effects of particulate matter <10 μm (PM10) on mortality were modified by temperature. The effect of PM10 on daily mortality was first quantified within different ranges of temperatures at each location using a time-series model, and then the estimates were pooled through a random-effects meta-analysis using the maximum likelihood method. From all the data sets, 828,787 non-accidental deaths were registered from 2000-2009. The highest overall risk between PM10 and non-accidental or cardiovascular mortality was observed on extremely hot days (daily mean temperature: >99th percentile) in individuals aged <65 years. In those aged ≥65 years, the highest overall risk between PM10 and non-accidental or cardiovascular mortality was observed on very hot days and not on extremely hot days (daily mean temperature: 95-99th percentile). There were strong harmful effects from PM10 on non-accidental mortality with the highest temperature range (>99th percentile) in men, with a very high temperature range (95-99th percentile) in women. Our findings showed that temperature can affect the relationship between the PM10 levels and cause-specific mortality. Moreover, the differences were apparent after considering the age and sex groups.

  3. Long-Term Urban Particulate Air Pollution, Traffic Noise, and Arterial Blood Pressure

    PubMed Central

    Moebus, Susanne; Hertel, Sabine; Viehmann, Anja; Nonnemacher, Michael; Dragano, Nico; Möhlenkamp, Stefan; Jakobs, Hermann; Kessler, Christoph; Erbel, Raimund; Hoffmann, Barbara

    2011-01-01

    Background: Recent studies have shown an association of short-term exposure to fine particulate matter (PM) with transient increases in blood pressure (BP), but it is unclear whether long-term exposure has an effect on arterial BP and hypertension. Objectives: We investigated the cross-sectional association of residential long-term PM exposure with arterial BP and hypertension, taking short-term variations of PM and long-term road traffic noise exposure into account. Methods: We used baseline data (2000–2003) on 4,291 participants, 45–75 years of age, from the Heinz Nixdorf Recall Study, a population-based prospective cohort in Germany. Urban background exposure to PM with aerodynamic diameter ≤ 2.5 μm (PM2.5) and ≤ 10 μm (PM10) was assessed with a dispersion and chemistry transport model. We used generalized additive models, adjusting for short-term PM, meteorology, traffic proximity, and individual risk factors. Results: An interquartile increase in PM2.5 (2.4 μg/m3) was associated with estimated increases in mean systolic and diastolic BP of 1.4 mmHg [95% confidence interval (CI): 0.5, 2.3] and 0.9 mmHg (95% CI: 0.4, 1.4), respectively. The observed relationship was independent of long-term exposure to road traffic noise and robust to the inclusion of many potential confounders. Residential proximity to high traffic and traffic noise exposure showed a tendency toward higher BP and an elevated prevalence of hypertension. Conclusions: We found an association of long-term exposure to PM with increased arterial BP in a population-based sample. This finding supports our hypothesis that long-term PM exposure may promote atherosclerosis, with air-pollution–induced increases in BP being one possible biological pathway. PMID:21827977

  4. Commuters’ Exposure to Particulate Matter Air Pollution Is Affected by Mode of Transport, Fuel Type, and Route

    PubMed Central

    Zuurbier, Moniek; Hoek, Gerard; Oldenwening, Marieke; Lenters, Virissa; Meliefste, Kees; van den Hazel, Peter; Brunekreef, Bert

    2010-01-01

    Background Commuters are exposed to high concentrations of air pollutants, but little quantitative information is currently available on differences in exposure between different modes of transport, routes, and fuel types. Objectives The aim of our study was to assess differences in commuters’ exposure to traffic-related air pollution related to transport mode, route, and fuel type. Methods We measured particle number counts (PNCs) and concentrations of PM2.5 (particulate matter ≤ 2.5 μm in aerodynamic diameter), PM10, and soot between June 2007 and June 2008 on 47 weekdays, from 0800 to 1000 hours, in diesel and electric buses, gasoline- and diesel-fueled cars, and along two bicycle routes with different traffic intensities in Arnhem, the Netherlands. In addition, each-day measurements were taken at an urban background location. Results We found that median PNC exposures were highest in diesel buses (38,500 particles/cm3) and for cyclists along the high-traffic intensity route (46,600 particles/cm3) and lowest in electric buses (29,200 particles/cm3). Median PM10 exposure was highest from diesel buses (47 μg/m3) and lowest along the high- and low-traffic bicycle routes (39 and 37 μg/m3). The median soot exposure was highest in gasoline-fueled cars (9.0 × 10−5/m), diesel cars (7.9 × 10−5/m), and diesel buses (7.4 × 10−5/m) and lowest along the low-traffic bicycle route (4.9 × 10−5/m). Because the minute ventilation (volume of air per minute) of cyclists, which we estimated from measured heart rates, was twice the minute ventilation of car and bus passengers, we calculated that the inhaled air pollution doses were highest for cyclists. With the exception of PM10, we found that inhaled air pollution doses were lowest for electric bus passengers. Conclusions Commuters’ rush hour exposures were significantly influenced by mode of transport, route, and fuel type. PMID:20185385

  5. Particulate air pollution and short-term mortality due to specific causes among the elderly in Madrid (Spain): seasonal differences.

    PubMed

    Jiménez, Eva; Linares, Cristina; Martínez, David; Díaz, Julio

    2011-10-01

    A time-series study was conducted to ascertain the short-term effects of different-sized airborne particulate matter (PM) on daily respiratory and cardiovascular cause-specific mortality in winter and summer, among subjects aged over 75 years in Madrid. Poisson regression was used to analyse the time-series, in which the dependent variable was daily mortality due to different specific respiratory and circulatory causes, and the principal independent variables were daily mean PM10, PM2.5 and PM10-2.5 concentrations; other variables: other air pollutants (chemicals, biotic and acoustic), influenza, trend, seasonality and autocorrelation of the series. The results indicated an association between coarser PM fractions (PM10 and PM10-2.5) and respiratory-specific mortality on the one hand, and between PM2.5 and cardiovascular-specific mortality on the other. While the risk of mortality due to exposure to particulate matter was greater in summer than in winter, this difference was statistically significant solely for total organic-cause mortality.

  6. Metabolic Syndrome and Inflammatory Responses to Long-Term Particulate Air Pollutants

    PubMed Central

    Chen, Jiu-Chiuan; Schwartz, Joel

    2008-01-01

    Background Human data linking inflammation with long-term particulate matter (PM) exposure are still lacking. Emerging evidence suggests that people with metabolic syndrome (MS) may be a more susceptible population. Objectives Our goal was to examine potential inflammatory responses associated with long-term PM exposure and MS-dependent susceptibility. Methods We conducted secondary analyses of white blood cell (WBC) count and MS data from The Third National Health and Nutrition Examination Survey and PM10 (PM with aerodynamic diameter < 10 μm) data from the U.S. Environmental Protection Agency Aerometric Information Retrieval System. Estimated 1-year PM10 exposures were aggregated at the centroid of each residential census-block group, using distance-weighted averages from all monitors in the residing and adjoining counties. We restricted our analyses to adults (20–89 years of age) with normal WBC (4,000–11,000 × 106/L), no existing cardiovascular disease, complete PM10 and MS data, and living in current residences > 1 year (n = 2,978; age 48.5 ± 17.8 years). Mixed-effects models were constructed to account for autocorrelation and potential confounders. Results After adjustment for demographics, socioeconomic factors, lifestyles, residential characteristics, and MS, we observed a statistically significant association between WBC count and estimated local PM10 levels (p = 0.035). Participants from the least polluted areas (1-year PM10 < 1st quartile cutoff: 27.8 μg/m3) had lower WBC counts than the others (difference = 145 × 106/L; 95% confidence interval, 10–281). We also noted a graded association between PM10 and WBC across subpopulations with increasing MS components, with 91 × 106/L difference in WBC for those with no MS versus 214, 338, and 461 × 106/L for those with 3, 4, and 5 metabolic abnormalities (trend-test p = 0.15). Conclusions Our study revealed a positive association between long-term PM exposure and hematological markers of

  7. Particulate Air Pollution, Exceptional Aging, and Rates of Centenarians: A Nationwide Analysis of the United States, 1980–2010

    PubMed Central

    Baccarelli, Andrea A.; Hales, Nick; Burnett, Richard T.; Jerrett, Michael; Mix, Carter; Dockery, Douglas W.; Pope, C. Arden

    2016-01-01

    Background: Exceptional aging, defined as reaching age 85 years, shows geographic inequalities that may depend on local environmental conditions. Links between particulate pollution—a well-recognized environmental risk factor—and exceptional aging have not been investigated. Objectives: We conducted a nationwide analysis of ~28 million adults in 3,034 United States counties to determine whether local PM2.5 levels (particulate matter < 2.5 μm in aerodynamic diameter) affected the probability of becoming 85- to 94-year-olds or centenarians (100- to 104-year-olds) in 2010 for individuals who were 55–64 or 70–74 years old, respectively, in 1980. Methods: We used population-weighted regression models including county-level PM2.5 from hybrid land-use regression and geostatistical interpolation, smoking, obesity, sociodemographic, and age-specific migration variables. Results: On average, 2,295 and 71.4 per 10,000 of the 55- to 64- and 70- to 74-year-olds in 1980, respectively, remained in the 85- to 94- and 100- to 104-year-old population in 2010. An interquartile range (4.19 μg/m3) increase in PM2.5 was associated with 93.7 fewer 85- to 94-year-olds (p < 0.001) and 3.5 fewer centenarians (p < 0.05). These associations were nearly linear, were stable to model specification, and were detectable below the annual PM2.5 national standard. Exceptional aging was strongly associated with smoking, with an interquartile range (4.77%) increase in population who smoked associated with 181.9 fewer 85- to 94-year-olds (p < 0.001) and 6.4 fewer centenarians (p < 0.001). Exceptional aging was also associated with obesity rates and median income. Conclusions: Communities with the most exceptional aging have low ambient air pollution and low rates of smoking, poverty, and obesity. Improvements in these determinants may contribute to increasing exceptional aging. Citation: Baccarelli AA, Hales N, Burnett RT, Jerrett M, Mix C, Dockery DW, Pope CA III. 2016. Particulate air

  8. Air Pollution Particulate Matter Collected from an Appalachian Mountaintop Mining Site Induces Microvascular Dysfunction

    PubMed Central

    KNUCKLES, TRAVIS L.; STAPLETON, PHOEBE A.; MINARCHICK, VALERIE C.; ESCH, LAURA; MCCAWLEY, MICHAEL; HENDRYX, MICHAEL; NURKIEWICZ, TIMOTHY R.

    2016-01-01

    Objective Air pollution PM is associated with cardiovascular morbidity and mortality. In Appalachia, PM from mining may represent a health burden to this sensitive population that leads the nation in cardiovascular disease, among others. Cardiovascular consequences following inhalation of PMMTM are unclear, but must be identified to establish causal effects. Methods PM was collected within 1 mile of an active MTM site in southern WV. The PM was extracted and was primarily <10μm in diameter (PM10), consisting largely of sulfur (38%) and silica (24%). Adult male rats were IT with 300 μg PMMTM. Twenty-four hours following exposure, rats were prepared for intravital microscopy, or isolated arteriole experiments. Results PMMTM exposure blunted endothelium-dependent dilation in mesenteric and coronary arterioles by 26%, and 25%, respectively, as well as endothelium-independent dilation. In vivo, PMMTM exposure inhibited endothelium-dependent arteriolar dilation (60% reduction). α-adrenergic receptor blockade inhibited PVNS-induced vasoconstriction in exposed animals compared with sham. Conclusions These data suggest that PMMTM exposure impairs microvascular function in disparate microvascular beds, through alterations in NO-mediated dilation and sympathetic nerve influences. Microvascular dysfunction may contribute to cardiovascular disease in regions with MTM sites. PMID:22963349

  9. Source apportionment of size resolved particulate matter at a European air pollution hot spot.

    PubMed

    Pokorná, P; Hovorka, J; Klán, M; Hopke, P K

    2015-01-01

    Positive Matrix Factorization-PMF was applied to hourly resolved elemental composition of fine (PM0.15-1.15) and coarse (PM1.15-10) aerosol particles to apportion their sources in the airshed of residential district, Ostrava-Radvanice and Bartovice in winter 2012. Multiple-site measurement by PM2.5 monitors complements the source apportionment. As there were no statistical significant differences amongst the monitors, the source apportionment derived for the central site data is expected to apply to whole residential district. The apportioned sources of the fine aerosol particles were coal combustion (58.6%), sinter production-hot phase (22.9%), traffic (15%), raw iron production (3.5%), and desulfurization slag processing (<0.5%) whilst road dust (47.3%), sinter production-cold phase (27.7%), coal combustion (16.8%), and raw iron production (8.2%) were resolved being sources of the coarse aerosol particles. The shape and elemental composition of size-segregated aerosol airborne-sampled by an airship aloft presumed air pollution sources helped to interpret the PMF solution. PMID:25260163

  10. On-bicycle exposure to particulate air pollution: Particle number, black carbon, PM2.5, and particle size

    NASA Astrophysics Data System (ADS)

    Hankey, Steve; Marshall, Julian D.

    2015-12-01

    Inhalation of air pollution during transport is an important exposure pathway, especially for certain modes of travel and types of particles. We measured concentrations of particulate air pollution (particle number [PN], black carbon [BC], fine particles [PM2.5], particle size) using a mobile, bicycle-based monitoring platform during morning and afternoon rush-hour to explore patterns of exposure while cycling (34 days between August 14 and October 16, 2012 in Minneapolis, MN). Measurements were geo-located at 1 ​s intervals along 3 prescribed monitoring routes totaling 85 h (1426 km) of monitoring. Mean morning [afternoon] on-road concentrations were 32,500 [16,600] pt cm-3, 2.5 [0.7] μg m-3 BC, 8.7 [8.3] μg m-3 PM2.5, and 42 [39] nm particle diameter. Concentrations were correlated with street functional class and declined within small distances from a major road (e.g., for PN and BC, mean concentration decreased ∼20% by moving 1 block away from major roads to adjacent local roads). We estimate the share of on-bicycle exposure attributable to near-traffic emissions (vs. regional pollution) is ∼50% for PN and BC; ∼25% for PM2.5. Regression models of instantaneous traffic volumes, derived from on-bicycle video recordings of nearby traffic, quantify the increase in particle-concentrations associated with each passing vehicle; for example, trucks were associated with acute, high concentration exposure events (average concentration-increase per truck: 31,000 pt cm-3, 1.0 μg m-3 PM2.5, 1.6 μg m-3 BC). Our findings could be used to inform design of low-exposure bicycle networks in urban areas.

  11. [Using the Mini-Mental State Examination (MMSE) for preliminary assessment of cognitive impairment in subjects exposed to air pollution with particulate matter].

    PubMed

    Pedata, Paola; Grella, Rodolfo; Lamberti, Monica; Bergamasco, Nadia

    2014-01-01

    Epidemiologic and clinical studies have linked elevated concentrations of particulate matter to adverse health effects. In particular, has been demonstrated an association between UFPs exposure and occurrence of acute respiratory infections, lung cancer, chronic chronic obstructive pulmonary diseases and cardiovascular diseases. Recently, the exposure to particulate air pollution has been linked to cognitive decline. In this work, we used the Mini-Mental State Examination (MMSE) in a preliminary assessment of cognitive function in individuals who have lived and carried out work in heavily urbanized areas, where ambient levels of particulate air pollution were frequently above the standard of the law. The results showed the presence of mild-moderate cognitive impairment in 39.4% of the subjects examined compared to the control group.

  12. Air Pollution

    PubMed Central

    Clifton, Marjorie

    1964-01-01

    Dr Marjorie Clifton describes the classification of gaseous and nongaseous constituents of air pollution and then outlines the methods of measuring these. The National Survey embraced 150 towns of all sizes throughout England and Wales and provided data on smoke and sulphur dioxide in relation to climate, topography, industrialization, population density, fuel utilization and urban development. Dr W C Turner discusses the relationship between air pollution and mortality from respiratory conditions, and particularly the incidence of chronic bronchitis. He postulates a theory that such respiratory conditions arise as an allergy to the spores of certain moulds, spore formation being encouraged by the air humidity in Greatv Britain and overcrowded and damp living conditions. He describes the results of a twenty-week study undertaken in 1962-3, showing associations between respiratory disease and levels of air pollution. Dr Stuart Carne undertook a survey in general practice to plot the patterns of respiratory illness in London during the winter of 1962-3. There were two peaks of respiratory illnesses coinciding with the fog at the beginning of December and the freeze-up from the end of December until the beginning of March. PMID:14178955

  13. Ambient Air Pollution and Increases in Blood Pressure: Role for biological constituents of particulate matter

    EPA Science Inventory

    Particulate matter (PM) is a complex mixture of extremely small particles and liquid droplets made up of a number of components including elemental carbon, organic chemicals, metals, acids (such as nitrates and sulfates), and soil and dust particles. Epidemiological studies con...

  14. Particulate Matter Air Pollution Exposure, Distance to Road, and Incident Lung Cancer in the Nurses’ Health Study Cohort

    PubMed Central

    Hart, Jaime E.; Yanosky, Jeff D.; Spiegelman, Donna; Wang, Molin; Fisher, Jared A.; Hong, Biling; Laden, Francine

    2014-01-01

    Background: A body of literature has suggested an elevated risk of lung cancer associated with particulate matter and traffic-related pollutants. Objective: We examined the relation of lung cancer incidence with long-term residential exposures to ambient particulate matter and residential distance to roadway, as a proxy for traffic-related exposures. Methods: For participants in the Nurses’ Health Study, a nationwide prospective cohort of women, we estimated 72-month average exposures to PM2.5, PM2.5–10, and PM10 and residential distance to road. Follow-up for incident cases of lung cancer occurred from 1994 through 2010. Cox proportional hazards models were adjusted for potential confounders. Effect modification by smoking status was examined. Results: During 1,510,027 person-years, 2,155 incident cases of lung cancer were observed among 103,650 participants. In fully adjusted models, a 10-μg/m3 increase in 72-month average PM10 [hazard ratio (HR) = 1.04; 95% CI: 0.95, 1.14], PM2.5 (HR = 1.06; 95% CI: 0.91, 1.25), or PM2.5–10 (HR = 1.05; 95% CI: 0.92, 1.20) was positively associated with lung cancer. When the cohort was restricted to never-smokers and to former smokers who had quit at least 10 years before, the associations appeared to increase and were strongest for PM2.5 (PM10: HR = 1.15; 95% CI: 1.00, 1.32; PM2.5: HR = 1.37; 95% CI: 1.06, 1.77; PM2.5–10: HR = 1.11; 95% CI: 0.90, 1.37). Results were most elevated when restricted to the most prevalent subtype, adenocarcinomas. Risks with roadway proximity were less consistent. Conclusions: Our findings support those from other studies indicating increased risk of incident lung cancer associated with ambient PM exposures, especially among never- and long-term former smokers. Citation: Puett RC, Hart JE, Yanosky JD, Spiegelman D, Wang M, Fisher JA, Hong B, Laden F. 2014. Particulate matter air pollution exposure, distance to road, and incident lung cancer in the Nurses’ Health Study Cohort. Environ

  15. Fine Particulate Air Pollution and the Progression of Carotid Intima-Medial Thickness: A Prospective Cohort Study from the Multi-Ethnic Study of Atherosclerosis and Air Pollution

    PubMed Central

    Adar, Sara D.; Sheppard, Lianne; Vedal, Sverre; Polak, Joseph F.; Sampson, Paul D.; Diez Roux, Ana V.; Budoff, Matthew; Jacobs, David R.; Barr, R. Graham; Watson, Karol; Kaufman, Joel D.

    2013-01-01

    Background Fine particulate matter (PM2.5) has been linked to cardiovascular disease, possibly via accelerated atherosclerosis. We examined associations between the progression of the intima-medial thickness (IMT) of the common carotid artery, as an indicator of atherosclerosis, and long-term PM2.5 concentrations in participants from the Multi-Ethnic Study of Atherosclerosis (MESA). Methods and Results MESA, a prospective cohort study, enrolled 6,814 participants at the baseline exam (2000–2002), with 5,660 (83%) of those participants completing two ultrasound examinations between 2000 and 2005 (mean follow-up: 2.5 years). PM2.5 was estimated over the year preceding baseline and between ultrasounds using a spatio-temporal model. Cross-sectional and longitudinal associations were examined using mixed models adjusted for confounders including age, sex, race/ethnicity, smoking, and socio-economic indicators. Among 5,362 participants (5% of participants had missing data) with a mean annual progression of 14 µm/y, 2.5 µg/m3 higher levels of residential PM2.5 during the follow-up period were associated with 5.0 µm/y (95% CI 2.6 to 7.4 µm/y) greater IMT progressions among persons in the same metropolitan area. Although significant associations were not found with IMT progression without adjustment for metropolitan area (0.4 µm/y [95% CI −0.4 to 1.2 µm/y] per 2.5 µg/m3), all of the six areas showed positive associations. Greater reductions in PM2.5 over follow-up for a fixed baseline PM2.5 were also associated with slowed IMT progression (−2.8 µm/y [95% CI −1.6 to −3.9 µm/y] per 1 µg/m3 reduction). Study limitations include the use of a surrogate measure of atherosclerosis, some loss to follow-up, and the lack of estimates for air pollution concentrations prior to 1999. Conclusions This early analysis from MESA suggests that higher long-term PM2.5 concentrations are associated with increased IMT progression and that greater reductions in PM2.5 are

  16. Extended follow-up and spatial analysis of the American Cancer Society study linking particulate air pollution and mortality.

    PubMed

    Krewski, Daniel; Jerrett, Michael; Burnett, Richard T; Ma, Renjun; Hughes, Edward; Shi, Yuanli; Turner, Michelle C; Pope, C Arden; Thurston, George; Calle, Eugenia E; Thun, Michael J; Beckerman, Bernie; DeLuca, Pat; Finkelstein, Norm; Ito, Kaz; Moore, D K; Newbold, K Bruce; Ramsay, Tim; Ross, Zev; Shin, Hwashin; Tempalski, Barbara

    2009-05-01

    We conducted an extended follow-up and spatial analysis of the American Cancer Society (ACS) Cancer Prevention Study II (CPS-II) cohort in order to further examine associations between long-term exposure to particulate air pollution and mortality in large U.S. cities. The current study sought to clarify outstanding scientific issues that arose from our earlier HEI-sponsored Reanalysis of the original ACS study data (the Particle Epidemiology Reanalysis Project). Specifically, we examined (1) how ecologic covariates at the community and neighborhood levels might confound and modify the air pollution-mortality association; (2) how spatial autocorrelation and multiple levels of data (e.g., individual and neighborhood) can be taken into account within the random effects Cox model; (3) how using land-use regression to refine measurements of air pollution exposure to the within-city (or intra-urban) scale might affect the size and significance of health effects in the Los Angeles and New York City regions; and (4) what exposure time windows may be most critical to the air pollution-mortality association. The 18 years of follow-up (extended from 7 years in the original study [Pope et al. 1995]) included vital status data for the CPS-II cohort (approximately 1.2 million participants) with multiple cause-of-death codes through December 31, 2000 and more recent exposure data from air pollution monitoring sites for the metropolitan areas. In the Nationwide Analysis, the influence of ecologic covariate data (such as education attainment, housing characteristics, and level of income; data obtained from the 1980 U.S. Census; see Ecologic Covariates sidebar on page 14) on the air pollution-mortality association were examined at the Zip Code area (ZCA) scale, the metropolitan statistical area (MSA) scale, and by the difference between each ZCA value and the MSA value (DIFF). In contrast to previous analyses that did not directly include ecologic covariates at the ZCA scale, risk

  17. Extended follow-up and spatial analysis of the American Cancer Society study linking particulate air pollution and mortality.

    PubMed

    Krewski, Daniel; Jerrett, Michael; Burnett, Richard T; Ma, Renjun; Hughes, Edward; Shi, Yuanli; Turner, Michelle C; Pope, C Arden; Thurston, George; Calle, Eugenia E; Thun, Michael J; Beckerman, Bernie; DeLuca, Pat; Finkelstein, Norm; Ito, Kaz; Moore, D K; Newbold, K Bruce; Ramsay, Tim; Ross, Zev; Shin, Hwashin; Tempalski, Barbara

    2009-05-01

    We conducted an extended follow-up and spatial analysis of the American Cancer Society (ACS) Cancer Prevention Study II (CPS-II) cohort in order to further examine associations between long-term exposure to particulate air pollution and mortality in large U.S. cities. The current study sought to clarify outstanding scientific issues that arose from our earlier HEI-sponsored Reanalysis of the original ACS study data (the Particle Epidemiology Reanalysis Project). Specifically, we examined (1) how ecologic covariates at the community and neighborhood levels might confound and modify the air pollution-mortality association; (2) how spatial autocorrelation and multiple levels of data (e.g., individual and neighborhood) can be taken into account within the random effects Cox model; (3) how using land-use regression to refine measurements of air pollution exposure to the within-city (or intra-urban) scale might affect the size and significance of health effects in the Los Angeles and New York City regions; and (4) what exposure time windows may be most critical to the air pollution-mortality association. The 18 years of follow-up (extended from 7 years in the original study [Pope et al. 1995]) included vital status data for the CPS-II cohort (approximately 1.2 million participants) with multiple cause-of-death codes through December 31, 2000 and more recent exposure data from air pollution monitoring sites for the metropolitan areas. In the Nationwide Analysis, the influence of ecologic covariate data (such as education attainment, housing characteristics, and level of income; data obtained from the 1980 U.S. Census; see Ecologic Covariates sidebar on page 14) on the air pollution-mortality association were examined at the Zip Code area (ZCA) scale, the metropolitan statistical area (MSA) scale, and by the difference between each ZCA value and the MSA value (DIFF). In contrast to previous analyses that did not directly include ecologic covariates at the ZCA scale, risk

  18. Airborne particulate matter from livestock production systems: a review of an air pollution problem.

    PubMed

    Cambra-López, María; Aarnink, André J A; Zhao, Yang; Calvet, Salvador; Torres, Antonio G

    2010-01-01

    Livestock housing is an important source of emissions of particulate matter (PM). High concentrations of PM can threaten the environment, as well as the health and welfare of humans and animals. Particulate matter in livestock houses is mainly coarse, primary in origin, and organic; it can adsorb and contain gases, odorous compounds, and micro-organisms, which can enhance its biological effect. Levels of PM in livestock houses are high, influenced by kind of housing and feeding, animal type, and environmental factors. Improved knowledge on particle morphology, primarily size, composition, levels, and the factors influencing these can be useful to identify and quantify sources of PM more accurately, to evaluate their effects, and to propose adequate abatement strategies in livestock houses. This paper reviews the state-of-the-art of PM in and from livestock production systems. Future research to characterize and control PM in livestock houses is discussed.

  19. Particulate matter air pollution and cardiovascular disease: An update to the scientific statement from the American Heart Association.

    PubMed

    Brook, Robert D; Rajagopalan, Sanjay; Pope, C Arden; Brook, Jeffrey R; Bhatnagar, Aruni; Diez-Roux, Ana V; Holguin, Fernando; Hong, Yuling; Luepker, Russell V; Mittleman, Murray A; Peters, Annette; Siscovick, David; Smith, Sidney C; Whitsel, Laurie; Kaufman, Joel D

    2010-06-01

    In 2004, the first American Heart Association scientific statement on "Air Pollution and Cardiovascular Disease" concluded that exposure to particulate matter (PM) air pollution contributes to cardiovascular morbidity and mortality. In the interim, numerous studies have expanded our understanding of this association and further elucidated the physiological and molecular mechanisms involved. The main objective of this updated American Heart Association scientific statement is to provide a comprehensive review of the new evidence linking PM exposure with cardiovascular disease, with a specific focus on highlighting the clinical implications for researchers and healthcare providers. The writing group also sought to provide expert consensus opinions on many aspects of the current state of science and updated suggestions for areas of future research. On the basis of the findings of this review, several new conclusions were reached, including the following: Exposure to PM <2.5 microm in diameter (PM(2.5)) over a few hours to weeks can trigger cardiovascular disease-related mortality and nonfatal events; longer-term exposure (eg, a few years) increases the risk for cardiovascular mortality to an even greater extent than exposures over a few days and reduces life expectancy within more highly exposed segments of the population by several months to a few years; reductions in PM levels are associated with decreases in cardiovascular mortality within a time frame as short as a few years; and many credible pathological mechanisms have been elucidated that lend biological plausibility to these findings. It is the opinion of the writing group that the overall evidence is consistent with a causal relationship between PM(2.5) exposure and cardiovascular morbidity and mortality. This body of evidence has grown and been strengthened substantially since the first American Heart Association scientific statement was published. Finally, PM(2.5) exposure is deemed a modifiable factor

  20. Ambient Particulate Matter Air Pollution Exposure and Mortality in the NIH-AARP Diet and Health Cohort

    PubMed Central

    Thurston, George D.; Ahn, Jiyoung; Cromar, Kevin R.; Shao, Yongzhao; Reynolds, Harmony R.; Jerrett, Michael; Lim, Chris C.; Shanley, Ryan; Park, Yikyung; Hayes, Richard B.

    2015-01-01

    Background: Outdoor fine particulate matter (≤ 2.5 μm; PM2.5) has been identified as a global health threat, but the number of large U.S. prospective cohort studies with individual participant data remains limited, especially at lower recent exposures. Objectives: We aimed to test the relationship between long-term exposure PM2.5 and death risk from all nonaccidental causes, cardiovascular (CVD), and respiratory diseases in 517,041 men and women enrolled in the National Institutes of Health-AARP cohort. Methods: Individual participant data were linked with residence PM2.5 exposure estimates across the continental United States for a 2000–2009 follow-up period when matching census tract–level PM2.5 exposure data were available. Participants enrolled ranged from 50 to 71 years of age, residing in six U.S. states and two cities. Cox proportional hazard models yielded hazard ratio (HR) estimates per 10 μg/m3 of PM2.5 exposure. Results: PM2.5 exposure was significantly associated with total mortality (HR = 1.03; 95% CI: 1.00, 1.05) and CVD mortality (HR = 1.10; 95% CI: 1.05, 1.15), but the association with respiratory mortality was not statistically significant (HR = 1.05; 95% CI: 0.98, 1.13). A significant association was found with respiratory mortality only among never smokers (HR = 1.27; 95% CI: 1.03, 1.56). Associations with 10-μg/m3 PM2.5 exposures in yearly participant residential annual mean, or in metropolitan area-wide mean, were consistent with baseline exposure model results. Associations with PM2.5 were similar when adjusted for ozone exposures. Analyses of California residents alone also yielded statistically significant PM2.5 mortality HRs for total and CVD mortality. Conclusions: Long-term exposure to PM2.5 air pollution was associated with an increased risk of total and CVD mortality, providing an independent test of the PM2.5–mortality relationship in a new large U.S. prospective cohort experiencing lower post-2000 PM2.5 exposure levels

  1. Air Pollution and Stillbirth Risk: Exposure to Airborne Particulate Matter during Pregnancy Is Associated with Fetal Death

    PubMed Central

    DeFranco, Emily; Hall, Eric; Hossain, Monir; Chen, Aimin; Haynes, Erin N.; Jones, David; Ren, Sheng; Lu, Long; Muglia, Louis

    2015-01-01

    Objective To test the hypothesis that exposure to fine particulate air pollution (PM2.5) is associated with stillbirth. Study Design Geo-spatial population-based cohort study using Ohio birth records (2006-2010) and local measures of PM2.5, recorded by the EPA (2005-2010) via 57 monitoring stations across Ohio. Geographic coordinates of the mother’s residence for each birth were linked to the nearest PM2.5 monitoring station and monthly exposure averages calculated. The association between stillbirth and increased PM2.5 levels was estimated, with adjustment for maternal age, race, education level, quantity of prenatal care, smoking, and season of conception. Results There were 349,188 live births and 1,848 stillbirths of non-anomalous singletons (20-42 weeks) with residence ≤10 km of a monitor station in Ohio during the study period. The mean PM2.5 level in Ohio was 13.3 μg/m3 [±1.8 SD, IQR(Q1: 12.1, Q3: 14.4, IQR: 2.3)], higher than the current EPA standard of 12 μg/m3. High average PM2.5 exposure through pregnancy was not associated with a significant increase in stillbirth risk, adjOR 1.21(95% CI 0.96,1.53), nor was it increased with high exposure in the 1st or 2nd trimester. However, exposure to high levels of PM2.5 in the third trimester of pregnancy was associated with 42% increased stillbirth risk, adjOR 1.42(1.06,1.91). Conclusions Exposure to high levels of fine particulate air pollution in the third trimester of pregnancy is associated with increased stillbirth risk. Although the risk increase associated with high PM2.5 levels is modest, the potential impact on overall stillbirth rates could be robust as all pregnant women are potentially at risk. PMID:25794052

  2. Fine Particulate Air Pollution and Hospital Emergency Room Visits for Respiratory Disease in Urban Areas in Beijing, China, in 2013

    PubMed Central

    Wang, Shuo; Wang, Chao; Huang, Fangfang; Gao, Qi; Wu, Lijuan; Tao, Lixin; Guo, Jin; Wang, Wei; Guo, Xiuhua

    2016-01-01

    Background Heavy fine particulate matter (PM2.5) air pollution occurs frequently in China. However, epidemiological research on the association between short-term exposure to PM2.5 pollution and respiratory disease morbidity is still limited. This study aimed to explore the association between PM2.5 pollution and hospital emergency room visits (ERV) for total and cause-specific respiratory diseases in urban areas in Beijing. Methods Daily counts of respiratory ERV from Jan 1 to Dec 31, 2013, were obtained from ten general hospitals located in urban areas in Beijing. Concurrently, data on PM2.5 were collected from the Beijing Environmental Protection Bureau, including 17 ambient air quality monitoring stations. A generalized-additive model was used to explore the respiratory effects of PM2.5, after controlling for confounding variables. Subgroup analyses were also conducted by age and gender. Results A total of 92,464 respiratory emergency visits were recorded during the study period. The mean daily PM2.5 concentration was 102.1±73.6 μg/m3. Every 10 μg/m3 increase in PM2.5 concentration at lag0 was associated with an increase in ERV, as follows: 0.23% for total respiratory disease (95% confidence interval [CI]: 0.11%-0.34%), 0.19% for upper respiratory tract infection (URTI) (95%CI: 0.04%-0.35%), 0.34% for lower respiratory tract infection (LRTI) (95%CI: 0.14%-0.53%) and 1.46% for acute exacerbation of chronic obstructive pulmonary disease (AECOPD) (95%CI: 0.13%-2.79%). The strongest association was identified between AECOPD and PM2.5 concentration at lag0-3 (3.15%, 95%CI: 1.39%-4.91%). The estimated effects were robust after adjusting for SO2, O3, CO and NO2. Females and people 60 years of age and older demonstrated a higher risk of respiratory disease after PM2.5 exposure. Conclusion PM2.5 was significantly associated with respiratory ERV, particularly for URTI, LRTI and AECOPD in Beijing. The susceptibility to PM2.5 pollution varied by gender and age. PMID

  3. Increasing fine particulate air pollution in China and the potential use of exposure and biomarker data in disease prevention.

    PubMed

    Wendt, Chris H; Ramachandran, Gurumurthy; Lo, Charles; Hertz, Marshall; Mandel, Jeffrey H

    2015-03-16

    Increased industrialization and urbanization have led to marked increases in air pollutants in China over the last decade. Pollutant levels in the north and eastern regions are often four times higher than current daily levels in the United States. Recent reports indicate a higher incidence of lung cancer and mortality in men and urban dwellers, but the contribution of air pollution to these findings remains unknown. Future studies that define individual exposures, combined with biomarkers linked to disease, will be essential to the understanding of risk posed by air pollution in China.

  4. Pb Isotopes as an Indicator of the Asian Contribution to Particulate Air Pollution in Urban California

    SciTech Connect

    Ewing, Stephanie A.; Christensen, John N.; Brown, Shaun T.; Vancuren, Richard A.; Cliff, Steven S.; DePaolo, Donald J.

    2010-10-25

    During the last two decades, expanding industrial activity in east Asia has led to increased production of airborne pollutants that can be transported to North America. Previous efforts to detect this trans-Pacific pollution have relied upon remote sensing and remote sample locations. We tested whether Pb isotope ratios in airborne particles can be used to directly evaluate the Asian contribution to airborne particles of anthropogenic origin in western North America, using a time series of samples from a pair of sites upwind and downwind of the San Francisco Bay Area. Our results for airborne Pb at these sites indicate a median value of 29 Asian origin, based on mixing relations between distinct regional sample groups. This trans-Pacific Pb is present in small quantities but serves as a tracer for airborne particles within the growing Asian industrial plume. We then applied this analysis to archived samples from urban sites in central California. Taken together, our results suggest that the analysis of Pb isotopes can reveal the distribution of airborne particles affected by Asian industrial pollution at urban sites in northern California. Under suitable circumstances, this analysis can improve understanding of the global transport of pollution, independent of transport models.

  5. Pb isotopes as an indicator of the Asian contribution to particulate air pollution in urban California.

    PubMed

    Ewing, Stephanie A; Christensen, John N; Brown, Shaun T; Vancuren, Richard A; Cliff, Steven S; Depaolo, Donald J

    2010-12-01

    During the last two decades, expanding industrial activity in east Asia has led to increased production of airborne pollutants that can be transported to North America. Previous efforts to detect this trans-Pacific pollution have relied upon remote sensing and remote sample locations. We tested whether Pb isotope ratios in airborne particles can be used to directly evaluate the Asian contribution to airborne particles of anthropogenic origin in western North America, using a time series of samples from a pair of sites upwind and downwind of the San Francisco Bay Area. Our results for airborne Pb at these sites indicate a median value of 29% Asian origin, based on mixing relations between distinct regional sample groups. This trans-Pacific Pb is present in small quantities but serves as a tracer for airborne particles within the growing Asian industrial plume. We then applied this analysis to archived samples from urban sites in central California. Taken together, our results suggest that the analysis of Pb isotopes can reveal the distribution of airborne particles affected by Asian industrial pollution at urban sites in northern California. Under suitable circumstances, this analysis can improve understanding of the global transport of pollution, independent of transport models.

  6. Particulate Matter (PM) Pollution

    MedlinePlus

    ... menu Learn the Issues Air Chemicals and Toxics Climate Change Emergencies Greener Living Health and Safety Land and Cleanup Pesticides Waste Water Science & Technology Air Climate Change Ecosystems Health Land, Waste and Cleanup Pesticides Substances ...

  7. Annual and diurnal variations of gaseous and particulate pollutants in 31 provincial capital cities based on in situ air quality monitoring data from China National Environmental Monitoring Center.

    PubMed

    Zhao, Suping; Yu, Ye; Yin, Daiying; He, Jianjun; Liu, Na; Qu, Jianjun; Xiao, Jianhua

    2016-01-01

    Long-term air quality data with high temporal and spatial resolutions are needed to understand some important processes affecting the air quality and corresponding environmental and health effects. The annual and diurnal variations of each criteria pollutant including PM2.5 and PM10 (particulate matter with aerodynamic diameter less than 2.5 μm and 10 μm, respectively), CO (carbon monoxide), NO2 (nitrogen dioxide), SO2 (sulfur dioxide) and O3 (ozone) in 31 provincial capital cities between April 2014 and March 2015 were investigated by cluster analysis to evaluate current air pollution situations in China, and the cities were classified as severely, moderately, and slightly polluted cities according to the variations. The concentrations of air pollutants in winter months were significantly higher than those in other months with the exception of O3, and the cities with the highest CO and SO2 concentrations were located in northern China. The annual variation of PM2.5 concentrations in northern cities was bimodal with comparable peaks in October 2014 and January 2015, while that in southern China was unobvious with slightly high PM2.5 concentrations in winter months. The concentrations of particulate matter and trace gases from primary emissions (SO2 and CO) and NO2 were low in the afternoon (~16:00), while diurnal variation of O3 concentrations was opposite to that of other pollutants with the highest values in the afternoon. The most polluted cities were mainly located in North China Plain, while slightly polluted cities mostly focus on southern China and the cities with high altitude such as Lasa. This study provides a basis for the formulation of future urban air pollution control measures in China.

  8. Annual and diurnal variations of gaseous and particulate pollutants in 31 provincial capital cities based on in situ air quality monitoring data from China National Environmental Monitoring Center.

    PubMed

    Zhao, Suping; Yu, Ye; Yin, Daiying; He, Jianjun; Liu, Na; Qu, Jianjun; Xiao, Jianhua

    2016-01-01

    Long-term air quality data with high temporal and spatial resolutions are needed to understand some important processes affecting the air quality and corresponding environmental and health effects. The annual and diurnal variations of each criteria pollutant including PM2.5 and PM10 (particulate matter with aerodynamic diameter less than 2.5 μm and 10 μm, respectively), CO (carbon monoxide), NO2 (nitrogen dioxide), SO2 (sulfur dioxide) and O3 (ozone) in 31 provincial capital cities between April 2014 and March 2015 were investigated by cluster analysis to evaluate current air pollution situations in China, and the cities were classified as severely, moderately, and slightly polluted cities according to the variations. The concentrations of air pollutants in winter months were significantly higher than those in other months with the exception of O3, and the cities with the highest CO and SO2 concentrations were located in northern China. The annual variation of PM2.5 concentrations in northern cities was bimodal with comparable peaks in October 2014 and January 2015, while that in southern China was unobvious with slightly high PM2.5 concentrations in winter months. The concentrations of particulate matter and trace gases from primary emissions (SO2 and CO) and NO2 were low in the afternoon (~16:00), while diurnal variation of O3 concentrations was opposite to that of other pollutants with the highest values in the afternoon. The most polluted cities were mainly located in North China Plain, while slightly polluted cities mostly focus on southern China and the cities with high altitude such as Lasa. This study provides a basis for the formulation of future urban air pollution control measures in China. PMID:26562560

  9. Exposures to fine particulate air pollution and respiratory outcomes in adults using two national datasets: a cross-sectional study

    PubMed Central

    2012-01-01

    Background Relationships between chronic exposures to air pollution and respiratory health outcomes have yet to be clearly articulated for adults. Recent data from nationally representative surveys suggest increasing disparity by race/ethnicity regarding asthma-related morbidity and mortality. The objectives of this study are to evaluate the relationship between annual average ambient fine particulate matter (PM2.5) concentrations and respiratory outcomes for adults using modeled air pollution and health outcome data and to examine PM2.5 sensitivity across race/ethnicity. Methods Respondents from the 2002-2005 National Health Interview Survey (NHIS) were linked to annual kriged PM2.5 data from the USEPA AirData system. Logistic regression was employed to investigate increases in ambient PM2.5 concentrations and self-reported prevalence of respiratory outcomes including asthma, sinusitis and chronic bronchitis. Models included health, behavioral, demographic and resource-related covariates. Stratified analyses were conducted by race/ethnicity. Results Of nearly 110,000 adult respondents, approximately 8,000 and 4,000 reported current asthma and recent attacks, respectively. Overall, odds ratios (OR) for current asthma (0.97 (95% Confidence Interval: 0.87-1.07)) and recent attacks (0.90 (0.78-1.03)) did not suggest an association with a 10 μg/m3 increase in PM2.5. Stratified analyses revealed significant associations for non-Hispanic blacks [OR = 1.73 (1.17-2.56) for current asthma and OR = 1.76 (1.07-2.91) for recent attacks] but not for Hispanics and non-Hispanic whites. Significant associations were observed overall (1.18 (1.08-1.30)) and in non-Hispanic whites (1.31 (1.18-1.46)) for sinusitis, but not for chronic bronchitis. Conclusions Non-Hispanic blacks may be at increased sensitivity of asthma outcomes from PM2.5 exposure. Increased chronic PM2.5 exposures in adults may contribute to population sinusitis burdens. PMID:22490087

  10. Particulate air pollution and increased mortality: Biological plausibility for causal relationship

    SciTech Connect

    Henderson, R.F.

    1995-02-01

    Recently, a number of epidemiological studies have concluded that ambient particulate exposure is associated with increased mortality and morbidity at PM concentrations well below those previously thought to affect human health. These studies have been conducted in several different geographical locations and have involved a range of populations. While the consistency of the findings and the presence of an apparent concentration response relationship provide a strong argument for causality, epidemiological studies can only conclude this based upon inference from statistical associations. The biological plausibility of a causal relationship between low concentrations of PM and daily mortality and morbidity rates is neither intuitively obvious nor expected based on past experimental studies on the toxicity of inhaled particles. Chronic toxicity from inhaled, poorly soluble particles has been observed based on the slow accumulation of large lung burdens of particles, not on small daily fluctuations in PM levels. Acute toxicity from inhaled particles is associated mainly with acidic particles and is observed at much higher concentrations than those observed in the epidemiology studies reporting an association between PM concentrations and morbidity/mortality. To approach the difficult problem of determining if the association between PM concentrations and daily morbidity and mortality is biologically plausible and causal, one must consider (1) the chemical and physical characteristics of the particles in the inhaled atmospheres, (2) the characteristics of the morbidity/mortality observed and the people who are affected, and (3) potential mechanisms that might link the two.

  11. A Source Apportionment of U.S. Fine Particulate Matter Air Pollution

    PubMed Central

    Thurston, George D.; Ito, Kazuhiko; Lall, Ramona

    2011-01-01

    Using daily fine particulate matter (PM2.5) composition data from the 2000–2005 U.S. EPA Chemical Speciation Network (CSN) for over 200 sites, we applied multivariate methods to identify and quantify the major fine particulate matter (PM2.5) source components in the U.S. Novel aspects of this work were: (1) the application of factor analysis (FA) to multi-city daily data, drawing upon both spatial and temporal variations of chemical species; and, (2) the exclusion of secondary components (sulfates, nitrates and organic carbon) from the source identification FA to more clearly discern and apportion the PM2.5 mass to primary emission source categories. For the quantification of source-related mass, we considered two approaches based upon the FA results: 1) using single key tracers for sources identified by FA in a mass regression; and, 2) applying Absolute Principal Component Analysis (APCA). In each case, we followed a two-stage mass regression approach, in which secondary components were first apportioned among the identified sources, and then mass was apportioned to the sources and to other secondary mass not explained by the individual sources. The major U.S. PM2.5 source categories identified via FA (and their key elements) were: Metals Industry (Pb, Zn); Crustal/Soil Particles (Ca, Si); Motor Vehicle Traffic (EC, NO2); Steel Industry (Fe, Mn); Coal Combustion (As, Se); Oil Combustion (V, Ni); Salt Particles (Na, Cl) and Biomass Burning (K). Nationwide spatial plots of the source-related PM2.5 impacts were confirmatory of the factor interpretations: ubiquitous sources, such as Traffic and Soil, were found to be spread across the nation, more unique sources (such as Steel and Metals Processing) being highest in select industrialized cities, Biomass Burning was highest in the U.S. Northwest, while Residual Oil combustion was highest in cities in the Northeastern U.S. and in cities with major seaports. The sum of these source contributions and the secondary PM2

  12. Daily variation of particulate air pollution and poor cardiac autonomic control in the elderly.

    PubMed Central

    Liao, D; Creason, J; Shy, C; Williams, R; Watts, R; Zweidinger, R

    1999-01-01

    examined the cardiac autonomic response to daily variations in PM in 26 elderly (mean age 81) individuals for 3 consecutive weeks. Several standardized methods were used to measure 24-hr average PM concentrations prior to the clinical test inside (indoor PM2.5) and immediately outside (outdoor PM2.5 and PM2.5-10) of participants' residences. Resting, supine, 6-min R wave to R wave (R-R) interval data were collected to estimate high frequency (0.15-0.40 Hz) and low frequency (0.04-0.15 Hz) powers and standard deviation of normal R-R intervals (SDNN) as cardiac autonomic control indices. Participant-specific lower heart rate variability days were defined as days for which the high-frequency indices fell below the first tertile of the individual's high-frequency distribution over the study period. Indoor PM2.5 > 15 microg/m3 was used to define high pollution days. Results show that the odds ratio (95% confidence interval) of low heart rate variability high frequency for high (vs. not high) pollution days was 3.08 (1.43, 6.59). The ss-coefficients (standard error) from mixed models to assess the quantitative relationship between variations in indoor PM2.5 and the log-transformed high frequency, low frequency, and SDNN were: -0.029 (0.010), -0.027 (0.009), and -0.004 (0.003), respectively. This first study of cardiac autonomic control response to daily variations of PM2.5 indicates that increased levels of PM2.5 are associated with lower cardiac autonomic control, suggesting a possible mechanistic link between PM and cardiovascular disease mortality. Images Figure 1 PMID:10378998

  13. Particulate air pollution induces arrhythmia via oxidative stress and calcium calmodulin kinase II activation

    SciTech Connect

    Kim, Jin-Bae; Kim, Changsoo; Choi, Eunmi; Park, Sanghoon; Park, Hyelim; Pak, Hui-Nam; Lee, Moon-Hyoung; Shin, Dong Chun; Hwang, Ki-Chul; Joung, Boyoung

    2012-02-15

    Ambient particulate matter (PM) can increase the incidence of arrhythmia. However, the arrhythmogenic mechanism of PM is poorly understood. This study investigated the arrhythmogenic mechanism of PM. In Sprague–Dawley rats, QT interval was increased from 115.0 ± 14.0 to 142.1 ± 18.4 ms (p = 0.02) after endotracheal exposure of DEP (200 μg/ml for 30 min, n = 5). Ventricular premature contractions were more frequently observed after DEP exposure (100%) than baseline (20%, p = 0.04). These effects were prevented by pretreatment of N-acetylcysteine (NAC, 5 mmol/L, n = 3). In 12 Langendorff-perfused rat hearts, DEP infusion of 12.5 μg/ml for 20 min prolonged action potential duration (APD) at only left ventricular base increasing apicobasal repolarization gradients. Spontaneous early afterdepolarization (EAD) and ventricular tachycardia (VT) were observed in 8 (67%) and 6 (50%) hearts, respectively, versus no spontaneous triggered activity or VT in any hearts before DEP infusion. DEP-induced APD prolongation, EAD and VT were successfully prevented with NAC (5 mmol/L, n = 5), nifedipine (10 μmol/L, n = 5), and active Ca{sup 2+}/calmodulin-dependent protein kinase II (CaMKII) blockade, KN 93 (1 μmol/L, n = 5), but not by thapsigargin (200 nmol/L) plus ryanodine (10 μmol/L, n = 5) and inactive CaMKII blockade, KN 92 (1 μmol/L, n = 5). In neonatal rat cardiomyocytes, DEP provoked ROS generation in dose dependant manner. DEP (12.5 μg/ml) induced apoptosis, and this effect was prevented by NAC and KN 93. Thus, this study shows that in vivo and vitro exposure of PM induced APD prolongation, EAD and ventricular arrhythmia. These effects might be caused by oxidative stress and CaMKII activation. -- Highlights: ► The ambient PM consistently prolonged repolarization. ► The ambient PM induced triggered activity and ventricular arrhythmia. ► These effects were prevented by antioxidants, I{sub CaL} blockade and CaMKII blockade. ► The ambient PM can induce

  14. The EMECAM project: a multicentre study on air pollution and mortality in Spain: combined results for particulates and for sulfur dioxide

    PubMed Central

    Ballester, F; Saez, M; Perez-Hoyos, S; Iniguez, C; Gandarillas, A; Tobias, A; Bellido, J; Taracido, M; Arribas, F; Daponte, A; Alonso, E; Canada, A; Guillen-Grima, F; Cirera, L; Perez-Boillos, M; Saurina, C; Gomez, F; Tenias, J

    2002-01-01

    Objective: The EMECAM study is a collaborative effort to evaluate the impact of air pollution on mortality in Spain. In this paper the combined results are presented for the short term effects of particulates and sulfur dioxide on both daily mortality for all and for specific causes. Methods: The relation between daily mortality for all causes, cardiovascular diseases, and respiratory diseases, and air pollution for particulates (daily concentrations) and SO2 (24 and 1 hour concentrations) was assessed in 13 Spanish cities for the period 1990–6. With a standardised method, magnitude of association in each city was estimated by Poisson regression in a generalised additive model. Local estimates were obtained from both single and two pollutant analyses. Lastly, combined estimates for each cause and pollutant were obtained. Results: For combined results, in single pollutant models a 10 µg/m3 increase in the concentration of the mean of the concurrent and one day lag for black smoke was associated with a 0.8% (95% confidence interval (95% CI) 0.4 to 1.1%) increase in total mortality. The estimates for total suspended particles (TSPs) and particulate matter of aerodynamic diameter <10 µm (PM10) and total mortality were slightly lower. The same increase in concentrations of SO2 was associated with a 0.5% increase in daily deaths. For groups of specific causes, higher estimations were found, specially for respiratory conditions. Peak concentrations of SO2 showed significant associations with the three groups of mortality. When two pollutant analyses were performed, estimates for particulates, specially for black smoke, did not substantially change. The estimates for daily concentrations of SO2 were greatly reduced, but, on the contrary, the association with peak concentrations of SO2 did not show any change. Conclusions: There is an association between mortality and pollution through particulates among city populations in Spain. Peak rather than daily concentrations

  15. [Adsorption Capacity of the Air Particulate Matter in Urban Landscape Plants in Different Polluted Regions of Beijing].

    PubMed

    Zhang, Wei-kang; Wang, Bing; Niu, Xiang

    2015-07-01

    Urban landscape plants, as one of the important factors of the urban ecosystem, play an important role in stagnating airborne particulates and purifying urban atmospheric environment. In this article, six kinds of common garden plants were studied, and aerosol generator (QRJZFSQ-I) was used to measure the ability of their leaves to stagnate atmospheric particulates (TSP and PM2.5) in different polluted regions. Meanwhile, environmental scanning electron microscope was used to observe changes in the leaf structure of the tested tree species. The results showed: (1)Among the tested tree species, the ability of coniferous species to stagnate atmospheric particulates was higher than that of broad-leaved species per unit leaf area. Pinus tabuliformis stagnated the highest volume of (3. 89± 0. 026) µg . m-2, followed by Pinus bungeana of (2. 82 ± 0. 392) µg . cm-2, and Populus tomentosa stagnated the minimum of (2. 00 ± 0. 118) µg . cm-2; (2) Through observing the leaf microstructure morphology, coniferous species were found to have tightly packed stomas, stoma density and surface roughness higher than those of broad-leaved species, and they could also secrete oil; (3) In different polluted regions, the leaves of the same tree species showed significant difference in stagnating TSP. Per unit leaf area, the tree species leaves situated around the 5th Ring Road had higher ability to absorb TSP than the tree species leaves at Botanical Garden, while their abilities to absorb PM2.5 showed no significant difference; (4) In different polluted regions, significantly adaptive changes were found in leaf structure. Comparing to the region with light pollution, the outer epidermal cells of the plant leaves in region with heavy pollution shrank, and the roughness of the leaf skin textures as well as the stomatal frequency and villous length increased. In spite of the significant changes in plant leaves exposed to the heavy pollution, these plants could still maintain normal

  16. A case-crossover analysis of fine particulate matter air pollution and out-of-hospital sudden cardiac arrest.

    PubMed

    Checkoway, H; Levy, D; Sheppard, L; Kaufman, J; Koenig, J; Siscovick, D

    2000-12-01

    Numerous recent epidemiologic studies report increases in the daily incidence of cardiovascular disease mortality and morbidity related to increases in daily levels of fine particulate matter (PM)* air pollution. This study sought to evaluate the possible association between the occurrence of out-of-hospital sudden cardiac arrest (SCA) and daily PM levels in the Seattle metropolitan area. The underlying hypothesis was that PM exposure may act as a cardiovascular trigger for SCA. A case-crossover study was conducted among 362 SCA cases identified by paramedics from October 1988 through June 1994. Cases were King County WA residents who were married, aged 25 to 74 years at the time of their SCA, with no prior history of clinically recognized heart disease or other life-threatening comorbid conditions. Daily averages of regional PM monitoring data for nephelometry measures of PM (reported in units of bsp, referred to as coefficient of light scattering) and PM10 (particulate matter 10 microm or smaller in aerodynamic diameter) from three monitoring sites were used as indicators of exposure. In the case-crossover analysis, PM levels during index times of cases within the five days preceding an SCA were compared with PM levels at referent days, defined as the same days of the week during the month of SCA occurrence. Lag periods for index days of 0 to 5 days were investigated. The estimated relative risk (RR) at a lag of 1 day for an interquartile range (IQR) change in nephelometry (0.51 bsp) was 0.893 (95% confidence interval [CI] 0.779-1.024). Varying the lag period had only minimal change on the observed association. The estimated relative risk at a lag of 1 day for an IQR change of PM10 (19.3 microg/m3) was 0.868 (95% CI 0.744-1.012). There was no evidence of confounding by ambient daily exposures to carbon monoxide or sulfur dioxide. Analysis of effect modification by individual-level variables, including age, cigarette smoke exposure, physical activity, and other

  17. Associations between size-fractionated particulate air pollution and blood pressure in a panel of type II diabetes mellitus patients.

    PubMed

    Zhao, Ang; Chen, Renjie; Wang, Cuicui; Zhao, Zhuohui; Yang, Changyuan; Lu, Jianxiong; Chen, Xuan; Kan, Haidong

    2015-07-01

    Little is known regarding how the size distribution of particulate matter (PM) air pollution influences its effect on blood pressure (BP), especially among patients with diabetes. The objective of this study was to explore the short-term associations between size-fractionated PM and BP among diabetes patients. We scheduled 6 repeated BP examinations every 2 weeks from 13 April 2013 to 30 June 2013 in a panel of 35 type 2 diabetes mellitus patients recruited from an urban community in Shanghai, China. We measured real-time PM concentrations in the size range of 0.25 to 10 μm. We used linear mixed-effect models to examine the short-term association of size-fractionated PM and BP after controlling for individual characteristics, mean temperature, relative humidity, day of the week, years with diabetes and use of antihypertensive medication. The association with systolic BP and pulse pressure strengthened with decreasing diameter. The size fractions with the strongest associations were 0.25 to 0.40 μm for number concentrations and ≤ 2.5 μm for mass concentrations. Furthermore, these effects occurred immediately even after 0-2h and lasted for up to 48 h following exposure. An interquartile range increase in 24-h average number concentrations of PM0.25-0.40 was associated with increases of 3.61 mmHg in systolic BP and 2.96 mmHg in pulse pressure. Females, patients younger than 65 years of age and patients without antihypertensive treatment were more susceptible to these effects. Our results revealed important size and temporal patterns of PM in elevating BP among diabetes patients in China.

  18. Outdoor air pollution and asthma

    PubMed Central

    Guarnieri, Michael; Balmes, John R.

    2015-01-01

    Traffic and power generation are the main sources of urban air pollution. The idea that outdoor air pollution can cause exacerbations of pre-existing asthma is supported by an evidence base that has been accumulating for several decades, with several studies suggesting a contribution to new-onset asthma as well. In this Series paper, we discuss the effects of particulate matter (PM), gaseous pollutants (ozone, nitrogen dioxide, and sulphur dioxide), and mixed traffic-related air pollution. We focus on clinical studies, both epidemiological and experimental, published in the previous 5 years. From a mechanistic perspective, air pollutants probably cause oxidative injury to the airways, leading to inflammation, remodelling, and increased risk of sensitisation. Although several pollutants have been linked to new-onset asthma, the strength of the evidence is variable. We also discuss clinical implications, policy issues, and research gaps relevant to air pollution and asthma. PMID:24792855

  19. Association of ozone and particulate air pollution with out-of-hospital cardiac arrest in Helsinki, Finland: evidence for two different etiologies.

    PubMed

    Rosenthal, Frank S; Kuisma, Markku; Lanki, Timo; Hussein, Tareq; Boyd, James; Halonen, Jaana I; Pekkanen, Juha

    2013-01-01

    Out-of-hospital cardiac arrest (OHCA) has been previously associated with exposure to particulate air pollution. However, there is uncertainty about the agents and mechanisms that are involved. We aimed to determine the association of gases and particulates with OHCA, and differences in pollutant effects on OHCAs due to acute myocardial infarction (AMI) vs those due to other causes. Helsinki Emergency Medical Services provided data on OHCAs of cardiac origin (OHCA_Cardiac). Hospital and autopsy reports determined whether OHCAs were due to AMI (OHCA_MI) or other cardiac causes (OHCA_Other). Pollutant data was obtained from central ambient monitors. A case-crossover analysis determined odds ratios (ORs) for hourly lagged exposures (Lag 0-3) and daily lagged exposures (Lag 0d-3d), expressed per interquartile range of pollutant level. For OHCA_Cardiac, elevated ORs were found for PM(2.5) (Lag 0, 1.07; 95% confidence interval (CI): 1.01-1.13) and ozone (O(3)) (Lag 2d, 1.18; CI: 1.03-1.35). For OHCA_MI, elevated ORs were found for PM(2.5) (Lag 0, 1.14; CI: 1.03-1.27; Lag 0d, 1.17; CI: 1.03-1.33), accumulation mode particulate (Acc) (Lag 0d, 1.19; CI: 1.04-1.35), NO (Lag 0d, 1.07; CI: 1.01-1.13), and ultrafine particulate (Lag 0d, 1.27; CI: 1.05-1.54). For OHCA_Other, elevated ORs were found only for O(3) (Lag 1d, 1.26; CI: 1.07-1.48; Lag 2d, 1.30; CI: 1.11-1.53). Results from two-pollutant models, with one of the pollutants either PM(2.5) or O(3), suggested that associations were primarily due to effects of PM(2.5) and O(3), rather than other pollutants. The results suggest that air pollution triggers OHCA via two distinct modes: one associated with particulates leading to AMI and one associated with O(3) involving etiologies other than AMI, for example, arrhythmias or respiratory insufficiency.

  20. Air Pollution.

    ERIC Educational Resources Information Center

    Barker, K.; And Others

    Pollution of the general environment, which exposes an entire population group for an indeterminate period of time, certainly constitutes a problem in public health. Serious aid pollution episodes have resulted in increased mortality and a possible relationship between chronic exposure to a polluted atmosphere and certain diseases has been…

  1. Long-term health effects of particulate and other ambient air pollution: research can progress faster if we want it to.

    PubMed Central

    Künzli, N; Tager, I B

    2000-01-01

    There is need for the assessment of long-term effects of outdoor air pollution. In fact, a considerable part of the large amount of U.S. research money that has been dedicated to investigate effects of ambient particulate pollution should be invested to address long-term effects. Studies that follow the health status of large numbers of subjects across long periods of time (i.e., cohort studies) should be considered the key research approach to address these questions. However, these studies are time consuming and expensive. We propose efficient strategies to address these questions in less time. Apart from long-term continuation of the few ongoing air pollution cohort studies in the United States, data from large cohorts that were established decades ago may be efficiently used to assess cardiorespiratory effects and to target research on detection of the most susceptible subgroups in the population, which may be related to genetic, molecular, behavioral, societal, and/or environmental factors. This approach will be efficient only if the available air pollution monitoring data will be used to spatially model long-term outdoor pollution concentrations across a given country for each year with available pollution data. Such concentration maps will allow researchers to impute outdoor air pollution levels at any residential location, independent of the location of monitors. Exposure imputation may be based on residential location(s) of participants in long-standing cardiorespiratory cohort studies, which can be matched to pollutant levels using geographic information systems. As shown in European impact assessment studies, such maps may be derived relatively quickly. PMID:11049809

  2. Ambient Particulate Matter Air Pollution and Venous Thromboembolism in the Women’s Health Initiative Hormone Therapy Trials

    PubMed Central

    Shih, Regina A.; Griffin, Beth Ann; Salkowski, Nicholas; Jewell, Adria; Eibner, Christine; Bird, Chloe E.; Liao, Duanping; Cushman, Mary; Margolis, Helene G.; Eaton, Charles B.; Whitsel, Eric A.

    2011-01-01

    Background The putative effects of postmenopausal hormone therapy on the association between particulate matter (PM) air pollution and venous thromboembolism (VTE) have not been assessed in a randomized trial of hormone therapy, despite its widespread use among postmenopausal women. Objective In this study, we examined whether hormone therapy modifies the association of PM with VTE risk. Methods Postmenopausal women 50–79 years of age (n = 26,450) who did not have a history of VTE and who were not taking anticoagulants were enrolled in the Women’s Health Initiative Hormone Therapy trials at 40 geographically diverse U.S. clinical centers. The women were randomized to treatment with estrogen versus placebo (E trial) or to estrogen plus progestin versus placebo (E + P trial). We used age-stratified Cox proportional hazard models to examine the association between time to incident, centrally adjudicated VTE, and daily mean PM concentrations spatially interpolated at geocoded addresses of the participants and averaged over 1, 7, 30, and 365 days. Results During the follow-up period (mean, 7.7 years), 508 participants (2.0%) had VTEs at a rate of 2.6 events per 1,000 person-years. Unadjusted and covariate-adjusted VTE risk was not associated with concentrations of PM < 2.5 μm (PM2.5) or < 10 μm (PM10)] in aerodynamic diameter and PM × active treatment interactions were not statistically significant (p > 0.05) regardless of PM averaging period, either before or after combining data from both trials [e.g., combined trial-adjusted hazard ratios (95% confidence intervals) per 10 μg/m3 increase in annual mean PM2.5 and PM10, were 0.93 (0.54–1.60) and 1.05 (0.72–1.53), respectively]. Findings were insensitive to alternative exposure metrics, outcome definitions, time scales, analytic methods, and censoring dates. Conclusions In contrast to prior research, our findings provide little evidence of an association between short-term or long-term PM exposure and VTE, or

  3. Recent changes in particulate air pollution over China observed from space and the ground: effectiveness of emission control.

    PubMed

    Lin, Jintai; Nielsen, Chris P; Zhao, Yu; Lei, Yu; Liu, Yang; McElroy, Michael B

    2010-10-15

    The Chinese government has moved aggressively since 2005 to reduce emissions of a number of pollutants including primary particulate matter (PM) and sulfur dioxide (SO(2)), efforts inadvertently aided since late 2008 by economic recession. Satellite observations of aerosol optical depth (AOD) and column nitrogen dioxide (NO(2)) provide independent indicators of emission trends, clearly reflecting the sharp onset of the recession in the fall of 2008 and rebound of the economy in the latter half of 2009. Comparison of AOD with ground-based observations of PM over a longer period indicate that emission-control policies have not been successful in reducing concentrations of aerosol pollutants at smaller size range over industrialized regions of China. The lack of success is attributed to the increasing importance of anthropogenic secondary aerosols formed from precursor species including nitrogen oxides (NO(x)), non-methane volatile organic compounds (NMVOC), and ammonia (NH(3)).

  4. Study of air pollutant detectors

    NASA Technical Reports Server (NTRS)

    Gutshall, P. L.; Bowles, C. Q.

    1974-01-01

    The application of field ionization mass spectrometry (FIMS) to the detection of air pollutants was investigated. Current methods are reviewed for measuring contaminants of fixed gases, sulfur compounds, nitrogen oxides, hydrocarbons, and particulates. Two enriching devices: the dimethyl silicone rubber membrane separator, and the selective adsorber of polyethylene foam were studied along with FIMS. It is concluded that the membrane enricher system is not a suitable method for removing air pollutants. However, the FIMS shows promise as a useable system for air pollution detection.

  5. Chemical compositions responsible for inflammation and tissue damage in the mouse lung by coarse and fine particulate samples from contrasting air pollution in Europe.

    PubMed

    Happo, Mikko S; Hirvonen, Maija-Riitta; Halinen, Arja I; Jalava, Pasi I; Pennanen, Arto S; Sillanpaa, Markus; Hillamo, Risto; Salonen, Raimo O

    2008-11-01

    Inflammation is regarded as an important mechanism in mortality and morbidity associated with exposures of cardiorespiratory patients to urban air particulate matter. We investigated the association of the chemical composition and sources of urban air fine (PM(2.5-0.2)) and coarse (PM(10-2.5)) particulate samples with the inflammatory activity in the mouse lung. The particulate samples were collected during selected seasons in six European cities using a high-volume cascade impactor. Healthy C57BL/6J mice were intratracheally instilled with a single dose (10 mg/kg) of the particulate samples. At 4, 12, and 24 h after the exposure, the lungs were lavaged and the bronchoalveolar lavage fluid (BALF) was assayed for indicators of inflammation and tissue damage: cell number, total protein, and cytokines (tumor necrosis factor [TNF]-alpha, interleukin [IL]-6, and KC). Dicarboxylic acids and transition metals, especially Ni and V, in PM(2.5-0.2) correlated positively and some secondary inorganic ions (NO3(-), NH4(+)) negatively with the inflammatory activity. Total organic matter and SO4(2-) had no consistent correlations. In addition, the soil-derived constituents (Ca2+, Al, Fe, Si) showed positive correlations with the PM(2.5-0.2)-induced inflammatory activity, but their role in PM(10-2.5) remained obscure, possibly due to largely undefined biogenic material. Markers of poor biomass and coal combustion, i.e., monosaccharide anhydrides and As, were associated with elevated PAH contents in PM(2.5-0.2) and a consistent immunosuppressive effect. Overall, our results support epidemiological findings that the local sources of incomplete combustion and resuspended road dust are important in urban air particulate pollution-related health effects.

  6. Global emissions of trace gases, particulate matter, and hazardous air pollutants from open burning of domestic waste

    EPA Science Inventory

    The open burning of waste, whether at individual residences, businesses, or dump sites, is a large source of air pollutants. These emissions, however, are not included in many current emission inventories used in chemistry and climate modeling applications. This paper presents th...

  7. Exposure Information in Environmental Health Research: Current Opportunities and Future Directions for Particulate Matter, Ozone, and Toxic Air Pollutants

    EPA Science Inventory

    In September 2006, scientists from the US Environmental Protection Agency (EPA) and the Centers for Disease Control and Prevention (CDC) along with scientists from the academic community and state health departments convened a symposium on air pollution exposure and health in ord...

  8. Short-term relationships between emergency hospital admissions for respiratory and cardiovascular diseases and fine particulate air pollution in Beirut, Lebanon.

    PubMed

    Nakhlé, Myriam Mrad; Farah, Wehbeh; Ziadé, Nelly; Abboud, Maher; Salameh, Dominique; Annesi-Maesano, Isabella

    2015-04-01

    High levels of major outdoor air pollutants have been documented in Lebanon, but their health effects remain unknown. The Beirut Air Pollution and Health Effects study aimed to determine the relationship between short-term variations in ambient concentrations of particulate matter (PM10 and PM2.5) and emergency hospital admissions in the city of Beirut, and whether susceptible groups are more greatly affected. An autoregressive Poisson model was used to evaluate the association between daily concentrations of particulate matter and respiratory and cardiovascular emergency hospital admissions after controlling for confounders. All variables were measured during 1 year from January 2012 to December 2012. Relative risks of admissions for respiratory and cardiovascular diseases were calculated for an increase in 10 μg.m(-3) of pollutant concentrations. Total respiratory admissions were significantly associated with the levels of PM10 (1.012 [95% CI 1.004-1.02]) per 10 μg.m(-3) rise in daily mean pollutant concentration for PM10 and 1.016 [95% CI 1.000-1.032] for PM2.5 on the same day. With regard to susceptible groups, total respiratory admissions were associated with PM2.5 and PM10 within the same day in children (relative risk (RR), 1.013 and 1.014; 95% confidence interval, 0.985-1.042 and 1.000-1.029 for PM2.5 and PM10, respectively). Moreover, a nearly significant association was found between particles and total circulatory admissions for adults and elderly groups in the same day. These results are similar to other international studies. Therefore, air pollution control is expected to reduce the number of admissions of these diseases in Lebanon.

  9. In-vehicle exposures to particulate air pollution in Canadian metropolitan areas: the urban transportation exposure study.

    PubMed

    Weichenthal, Scott; Van Ryswyk, Keith; Kulka, Ryan; Sun, Liu; Wallace, Lance; Joseph, Lawrence

    2015-01-01

    Commuters may be exposed to increased levels of traffic-related air pollution owing to close proximity to traffic-emissions. We collected in-vehicle and roof-top air pollution measurements over 238 commutes in Montreal, Toronto, and Vancouver, Canada between 2010 and 2013. Voice recordings were used to collect real-time information on traffic density and the presence of diesel vehicles and multivariable linear regression models were used to estimate the impact of these factors on in-vehicle pollutant concentrations (and indoor/outdoor ratios) along with parameters for road type, land use, and meteorology. In-vehicle PM2.5 and NO2 concentrations consistently exceeded regional outdoor levels and each unit increase in the rate of encountering diesel vehicles (count/min) was associated with substantial increases (>100%) in in-vehicle concentrations of ultrafine particles (UFPs), black carbon, and PM2.5 as well as strong increases (>15%) in indoor/outdoor ratios. A model based on meteorology and the length of highway roads within a 500 m buffer explained 53% of the variation in in-vehicle UFPs; however, models for PM2.5 (R(2) = 0.24) and black carbon (R(2) = 0.30) did not perform as well. Our findings suggest that vehicle commuters experience increased exposure to air pollutants and that traffic characteristics, land use, road types, and meteorology are important determinants of these exposures.

  10. Indoor Air Pollution

    MedlinePlus

    We usually think of air pollution as being outdoors, but the air in your house or office could also be polluted. Sources of indoor pollution include Mold and pollen Tobacco smoke Household products ...

  11. Flexible modeling of exposure-response relationship between long-term average levels of particulate air pollution and mortality in the American Cancer Society study.

    PubMed

    Abrahamowicz, Michal; Schopflocher, Tom; Leffondré, Karen; du Berger, Roxane; Krewski, Daniel

    Accurate estimation of the exposure-response relationship between environmental particulate air pollution and mortality is important from both an etiologic and regulatory perspective. However, little is known about the actual shapes of these exposure-response curves. The objective of this study was to estimate the exposure-response relationships between mortality and long-term average city-specific levels of sulfates and fine particulate matter (PM(2.5)). We reanalyzed the data derived from the American Cancer Society (ACS) Cancer Prevention Study II, a large prospective study conducted in the United States between 1982 and 1989. Exposure to particulate air pollution was assessed prior to entry into the cohort. Mean sulfate concentrations for 1980 were available in 151 cities, and median PM(2.5) levels between 1979 and 1983 were available in 50 cities. Two sampling strategies were employed to reduce the computational burden. The modified case-cohort approach combined a random subcohort of 1200 individuals with an additional 1300 cases (i.e., deaths). The second strategy involved pooling the results of separate analyses of 10 disjoint random subsets, each with about 2200 participants. To assess the independent effect of the particulate levels on all-causes mortality, we relied on flexible, nonparametric survival analytical methods. To eliminate potentially restrictive assumptions underlying the conventional models, we employed a flexible regression spline generalization of the Cox proportional-hazards (PH) model. The regression spline method allowed us to model simultaneously the time-dependent changes in the effect of particulate matter on the hazard and a possibly nonlinear exposure-response relationship. The PH and linearity hypotheses were tested using likelihood ratio tests. In all analyses, we stratified by age and 5-yr age groups and adjusted for the subject's age, lifetime smoking exposure, obesity, and education. For both fine particles (PM(2.5)) and

  12. Environmental Chemistry: Air and Water Pollution.

    ERIC Educational Resources Information Center

    Stoker, H. Stephen; Seager, Spencer L.

    This is a book about air and water pollution whose chapters cover the topics of air pollution--general considerations, carbon monoxide, oxides of nitrogen, hydrocarbons and photochemical oxidants, sulfur oxides, particulates, temperature inversions and the greenhouse effect; and water pollution--general considerations, mercury, lead, detergents,…

  13. Air pollution source identification

    NASA Technical Reports Server (NTRS)

    Fordyce, J. S.

    1975-01-01

    Techniques for air pollution source identification are reviewed, and some results obtained with them are evaluated. Described techniques include remote sensing from satellites and aircraft, on-site monitoring, and the use of injected tracers and pollutants themselves as tracers. The use of a large number of trace elements in ambient airborne particulate matter as a practical means of identifying sources is discussed in detail. Sampling and analysis techniques are described, and it is shown that elemental constituents can be related to specific source types such as those found in the earth's crust and those associated with specific industries. Source identification sytems are noted which utilize charged particle X-ray fluorescence analysis of original field data.

  14. Air pollution and allergic disease.

    PubMed

    Kim, Haejin; Bernstein, Jonathan A

    2009-03-01

    Over the past several decades, there has been increased awareness of the health effects of air pollution and much debate regarding the role of global warming. The prevalence of asthma and allergic disease has risen in industrialized countries, and most epidemiologic studies focus on possible causalities between air pollution and these conditions. This review examines salient articles and summarizes findings important to the interaction between allergies and air pollution, specifically volatile organic compounds, global warming, particulate pollutants, atopic risk, indoor air pollution, and prenatal exposure. Further work is necessary to determine whether patients predisposed to developing allergic disease may be more susceptible to the health effects of air pollutants due to the direct interaction between IgE-mediated disease and air pollutants. Until we have more definitive answers, patient education about the importance of good indoor air quality in the home and workplace is essential. Health care providers and the general community should also support public policy designed to improve outdoor air quality by developing programs that provide incentives for industry to comply with controlling pollution emissions.

  15. Overview of the reanalysis of the Harvard Six Cities Study and American Cancer Society Study of Particulate Air Pollution and Mortality.

    PubMed

    Krewski, Daniel; Burnett, Richard T; Goldberg, Mark S; Hoover, B Kristin; Siemiatycki, Jack; Jerrett, Michael; Abrahamowicz, Michal; White, Warren H

    This article provides an overview of the Reanalysis Study of the Harvard Six Cities and the American Cancer Society (ACS) studies of particulate air pollution and mortality. The previous findings of the studies have been subject to debate. In response, a reanalysis team, comprised of Canadian and American researchers, was invited to participate in an independent reanalysis project to address the concerns. Phase I of the reanalysis involved the design of data audits to determine whether each study conformed to the consistency and accuracy of their data. Phase II of the reanalysis involved conducting a series of comprehensive analyses using alternative statistical methods. Alternative models were also used to identify covariates that may confound or modify the association of particulate air pollution as well as identify sensitive population subgroups. The audit demonstrated that the data in the original analyses were of high quality, as were the risk estimates reported by the original investigators. The sensitivity analysis illustrated that the mortality risk estimates reported in both studies were found to be robust against alternative Cox models. Detailed investigation of the covariate effects found a significant modifying effect of education and a relative risk of mortality associated with fine particles and declining education levels. The study team applied spatial analytic methods to the ACS data, resulting in various levels of spatial autocorrelations supporting the reported association for fine particles mortality of the original investigators as well as demonstrating a significant association between sulfur dioxide and mortality. Collectively, our reanalysis suggest that mortality may be attributable to more than one component of the complex mixture of ambient air pollutants for U.S. urban areas.

  16. Evaluating sources of indoor air pollution

    SciTech Connect

    Tichenor, B.A.; Sparks, L.E.; White, J.B.; Jackson, M.D. )

    1988-01-01

    Scientists and engineers in the Indoor Air Brand of EPS'a Air and Energy Engineering Research Laboratory are conducting research to increase the state of knowledge concerning indoor air pollution factors. A three phase program is being implemented. The purpose of this paper is to show how their approach can be used to evaluate specific sources of indoor air pollution. Pollutants from two sources are examined: para-dichlorobenzene emissions from moth crystal cakes; and particulate emissions from unvented kerosene heaters.

  17. Have the short-term mortality effects of particulate matter air pollution changed in Australia over the period 1993-2007?

    PubMed

    Roberts, Steven

    2013-11-01

    The author investigates whether the mortality effect of particulate matter air pollution (PM10) has changed in Australia over the period 1993-2007. This period corresponds to an era of increasing Government intervention aimed at improving air quality and, as a result, a potential decrease in the toxicity of PM10. Evidence is found that the mortality effect of PM10 has declined in both Brisbane and Sydney. For Sydney we estimate that the effects of PM10 on total and cardiovascular mortality are, respectively, decreasing at the rate of 10% and 13% annually. We speculate that one possible reason for this decline could be a reduction in the toxicity of PM10. A difference between this study and a similar United States study is that PM10 concentrations have not been declining in Australia. This means that the observed decline in the mortality effect of PM10 is not an artefact of a declining PM10 concentration.

  18. Short-term effects of fine particulate air pollution on ischemic stroke occurrence: a case-crossover study.

    PubMed

    Chiu, Hui-Fen; Yang, Chun-Yuh

    2013-01-01

    This study was undertaken to determine whether there was a correlation between fine particles (PM2.5) levels and hospital admissions for ischemic stroke (IS) in Taipei, Taiwan. Hospital admissions for IS and ambient air pollution data for Taipei were obtained for the period from 2006-2010. The relative risk of hospital admissions was estimated using a case-crossover approach, controlling for weather variables, day of the week, seasonality, and long-term time trends. For the single-pollutant model (without adjustment for other pollutants), increased admissions for IS were significantly associated with higher levels of PM2.5 on both warm days (>23°C) and cool days (<23°C), with an interquartile range rise associated with a 11% (95% CI = 8-14%) and 4% (95% CI = 2-7%) elevation in admissions for IS, respectively. In the two-pollutant models, PM2.5 remained significantly increased after inclusion of sulfur dioxide (SO2) or ozone (O3) on both warm and cool days. This study provides evidence that higher levels of PM2.5 enhance the risk of hospital admissions for IS.

  19. Effect of particulate matter air pollution on hospital admissions and medical visits for lung and heart disease in two southeast Idaho cities.

    PubMed

    Ulirsch, Gregory V; Ball, Louise M; Kaye, Wendy; Shy, Carl M; Lee, Carolyn V; Crawford-Brown, Douglas; Symons, Michael; Holloway, Tracey

    2007-08-01

    Few, if any, published time series studies have evaluated the effects of particulate matter air exposures by combining hospital admissions with medical visit data for smaller populations. We investigated the relationship between daily particulate matter (<10 microm in aerometric diameter or PM10) exposures with admissions and medical visits (emergency room, urgent care, and family practice) for respiratory and cardiovascular disease in Pocatello and Chubbuck, Idaho (population about 60,000), from November 1994 through March 2000. Within generalized linear models, time, weather, influenza, and day-of-week effects were controlled. In single-pollutant models, respiratory disease admissions and visits increased (7.1-15.4% per 50 microg/m3 PM10) for each age group analyzed, with the highest increases in two groups, children and especially the elderly. Statistical analyses suggest that the results probably did not occur by chance. Sensitivity analyses did not provide strong evidence that the respiratory disease effect estimates were sensitive to reasonable changes in the final degrees of freedom choice for time and weather effects. No strong evidence of confounding by NO2 and SO2 was found from results of multi-pollutant models. Ozone and carbon monoxide data were not available to include multi-pollutant models, but evidence suggests that they were not a problem. Unexpectedly, evidence of an association between PM10 with cardiovascular disease was not found, possibly due to the lifestyles of the mostly Mormon study population. Successful time series analyses can be performed on smaller populations if diverse, centralized databases are available. Hospitals that offer urgent or other primary care services may be a rich source of data for researchers. Using data that potentially represented a wide-range of disease severity, the findings provide evidence that evaluating only hospital admissions or emergency room visit effects may underestimate the overall morbidity due to

  20. A case-crossover analysis of particulate air pollution and cardiac arrhythmia in patients with implantable cardioverter defibrillators.

    PubMed

    Rich, Kira E; Petkau, John; Vedal, Sverre; Brauer, Michael

    2004-06-01

    We investigated the relationship between air pollution and incidence of cardiac arrhythmia in a study of patients with implantable cardioverter defibrillators (ICDs). Thirty-four patients (ages 15-85 yr, 80% male) with ICDs residing in the Vancouver, Canada, area were included in the analyses, representing all patients attending the 2 ICD clinics in the study region who had recorded at least 1 ICD discharge during the 14 February to 31 December 2000 study period. Air pollutant (PM(2.5), PM(10), SO(4)(2-), elemental carbon [EC], organic carbon [OC], O(3), SO(2), NO(2), and CO) concentrations on days for which ICD discharges were observed ("case days") were compared to concentrations on control days in case-crossover analyses. Control days were selected symmetrically, 7 days before and after each case day. ICD discharges occurring within 72 h of 1 another were grouped and considered as 1 discharge event. Temperature, relative humidity, barometric pressure, rainfall, and wind speed were included simultaneously as covariates. Sensitivity analyses examined the effect of grouping ICD discharges, of including meteorological variables, and of excluding discharges that were considered inappropriate by a cardiologist. As in previous studies, mean concentrations and interquartile ranges of air pollutants in Vancouver were low (e.g., PM(2.5) mean = 8.2 microg/m(3)). Although in general there were no statistically significant results, there were trends that might indicate associations between pollutants and ICD discharges. Odds ratios (OR) were consistently higher in summer than in winter (e.g., lag 0 per interquartile range increase in EC: 1.09 [0.86-1.37] vs. 0.61 [0.31-1.18]) and, in general, the highest ORs were observed for same-day effects. The one major exception was the observation of high ORs for ozone in winter (e.g., lag 1: 2.27 [0.67-7.66]). While an OR of 1.55 (0.51-4.70) was observed in summer at lag 0 for PM(10), no indications of positive associations were

  1. Impact of short-term preconceptional exposure to particulate air pollution on treatment outcome in couples undergoing in vitro fertilization and embryo transfer (IVF/ET)

    PubMed Central

    Maluf, Mariangela; Czeresnia, Carlos Eduardo; Januário, Daniela Aparecida Nicolosi Foltran; Saldiva, Paulo Hilário Nascimento

    2010-01-01

    Purpose To assess the potential effects of short-term exposure to particulate air pollution during follicular phase on clinical, laboratory, and pregnancy outcomes of women undergoing IVF/ET. Methods Retrospective cohort study of 400 first IVF/ET cycles of women exposed to ambient particulate matter during follicular phase. Particulate matter (PM) was categorized into quartiles (Q1: ≤30.48 µg/m3, Q2: 30.49–42.00 µg/m3, Q3: 42.01–56.72 µg/m3, and Q4: >56.72 µg/m3). Results Clinical, laboratory, or treatment variables were not affected by follicular phase PM exposure periods. Women exposed to Q4 period during the follicular phase of conception cycles had a higher risk of miscarriage (odds ratio, 5.05; 95% confidence interval: 1.04–25.51) when compared to women exposed to Q1–3 periods. Conclusion Our results show an association between brief exposure to high levels of ambient PM during the preconceptional period and early pregnancy loss, although no effect of this exposure on clinical, laboratory, and treatment outcomes was observed. PMID:20405197

  2. AIR POLLUTION, OXIDATIVE STRESS AND NEUROTOXICITY.

    EPA Science Inventory

    Increased incidents of classic and variant forms of neurodegenerative diseases suggest that environmental chemicals and susceptibility factors (e.g., genetics, diseased states, obesity, etc.) may be contributory. Particulate matter (PM) is a type of air pollution that is associat...

  3. Indoor air pollution

    SciTech Connect

    Not Available

    1985-05-01

    This factsheet reviews what is currently known about pollutant sources, abatement and control equipment and techniques for poorly ventilated houses. Radon, formaldehyde, tobacco smokes, carbon dioxide, carbon monoxide, particulates, bacteria, fungi and viruses are addressed. (PSB)

  4. Particulate Air Pollution as a Risk Factor for ST-segment Depression in Patients with Coronary Artery Disease

    PubMed Central

    Chuang, Kai Jen; Coull, Brent A.; Zanobetti, Antonella; Suh, Helen; Schwartz, Joel; Stone, Peter H.; Litonjua, Augusto; Speizer, Frank E.; Gold, Diane R.

    2009-01-01

    Background The association of particulate matter (PM) with cardiovascular morbidity and mortality is well documented. PM-induced ischemia is considered a potential mechanism linking PM to adverse cardiovascular outcomes. Methods and Results In a repeated-measures study including 5,979 observations on 48 patients aged 43–75 years, we investigated associations of ambient pollution with ST-segment level changes averaged over half-hour periods, measured in the modified V5 position by 24-hr Holter electrocardiogram monitoring. Each patient was observed up to 4 times within one year after a percutaneous intervention for myocardial infarction, acute coronary syndrome without infarction, or stable coronary artery disease without acute coronary syndrome. Elevation in fine particles (PM2.5) and black carbon (BC) levels predicted depression of half-hour averaged ST-segment levels. An interquartile increase in the previous 24-h mean BC level was associated with a 1.50-fold increased in risk of ST-segment depression ≥0.1 mm (95% CI: 1.19, 1.89) and a −0.031 mm (95% CI: −0.042, −0.019) decrease in half-hour averaged ST-segment level (continuous outcome). Effects were greatest within the first month after hospitalization, and for patients with myocardial infarction during hospitalization or with diabetes. Conclusions ST-segment depression is associated with increased exposure to PM2.5 and BC in cardiac patients. The risk of pollution-associated ST-segment depression may be greatest in those with myocardial injury in the first month after the cardiac event. PMID:18779445

  5. Cardiovascular Outcomes and the Physical and Chemical Properties of Metal Ions Found in Particulate Matter Air Pollution: A QICAR Study

    PubMed Central

    Meng, Qingyu; Lu, Shou-En; Buckley, Barbara; Welsh, William J.; Whitsel, Eric A.; Hanna, Adel; Yeatts, Karin B.; Warren, Joshua; Herring, Amy H.; Xiu, Aijun

    2013-01-01

    Background: This paper presents an application of quantitative ion character–activity relationships (QICAR) to estimate associations of human cardiovascular (CV) diseases (CVDs) with a set of metal ion properties commonly observed in ambient air pollutants. QICAR has previously been used to predict ecotoxicity of inorganic metal ions based on ion properties. Objectives: The objective of this work was to examine potential associations of biological end points with a set of physical and chemical properties describing inorganic metal ions present in exposures using QICAR. Methods: Chemical and physical properties of 17 metal ions were obtained from peer-reviewed publications. Associations of cardiac arrhythmia, myocardial ischemia, myocardial infarction, stroke, and thrombosis with exposures to metal ions (measured as inference scores) were obtained from the Comparative Toxicogenomics Database (CTD). Robust regressions were applied to estimate the associations of CVDs with ion properties. Results: CVD was statistically significantly associated (Bonferroni-adjusted significance level of 0.003) with many ion properties reflecting ion size, solubility, oxidation potential, and abilities to form covalent and ionic bonds. The properties are relevant for reactive oxygen species (ROS) generation, which has been identified as a possible mechanism leading to CVDs. Conclusion: QICAR has the potential to complement existing epidemiologic methods for estimating associations between CVDs and air pollutant exposures by providing clues about the underlying mechanisms that may explain these associations. PMID:23462649

  6. Coarse Particulate Air Pollution Associated with Increased Risk of Hospital Admissions for Respiratory Diseases in a Tropical City, Kaohsiung, Taiwan

    PubMed Central

    Cheng, Meng-Hsuan; Chiu, Hui-Fen; Yang, Chun-Yuh

    2015-01-01

    This study was undertaken to determine whether there was an association between coarse particles (PM2.5–10) levels and frequency of hospital admissions for respiratory diseases (RD) in Kaohsiung, Taiwan. Hospital admissions for RD including chronic obstructive pulmonary disease (COPD), asthma, and pneumonia, and ambient air pollution data levels for Kaohsiung were obtained for the period from 2006 to 2010. The relative risk of hospital admissions for RD was estimated using a case-crossover approach, controlling for weather variables, day of the week, seasonality, and long-term time trends. For the single pollutant model (without adjustment for other pollutants), increased rate of admissions for RD were significantly associated with higher coarse PM levels only on cool days (<25 °C), with a 10 µg/m3 elevation in PM2.5–10 concentrations associated with a 3% (95% CI = 1%–5%) rise in COPD admissions, 4% (95% CI = 1%–7%) increase in asthma admissions, and 3% (95% CI = 2%–4%) rise in pneumonia admissions. No significant associations were found between coarse particle levels and the number of hospital admissions for RD on warm days. In the two-pollutant models, PM2.5–10 levels remained significantly correlated with higher rate of RD admissions even controlling for sulfur dioxide, nitrogen dioxide, carbon monoxide, or ozone on cool days. This study provides evidence that higher levels of PM2.5–10 enhance the risk of hospital admissions for RD on cool days. PMID:26501308

  7. Air Pollution Training Programs.

    ERIC Educational Resources Information Center

    Public Health Service (DHEW), Rockville, MD.

    This catalog lists the universities, both supported and not supported by the Division of Air Pollution, which offer graduate programs in the field of air pollution. The catalog briefly describes the programs and their entrance requirements, the requirements, qualifications and terms of special fellowships offered by the Division of Air Pollution.…

  8. Ambient particulate air pollution induces oxidative stress and alterations of mitochondria and gene expression in brown and white adipose tissues

    PubMed Central

    2011-01-01

    Background Prior studies have demonstrated a link between air pollution and metabolic diseases such as type II diabetes. Changes in adipose tissue and its mitochondrial content/function are closely associated with the development of insulin resistance and attendant metabolic complications. We investigated changes in adipose tissue structure and function in brown and white adipose depots in response to chronic ambient air pollutant exposure in a rodent model. Methods Male ApoE knockout (ApoE-/-) mice inhaled concentrated fine ambient PM (PM < 2.5 μm in aerodynamic diameter; PM2.5) or filtered air (FA) for 6 hours/day, 5 days/week, for 2 months. We examined superoxide production by dihydroethidium staining; inflammatory responses by immunohistochemistry; and changes in white and brown adipocyte-specific gene profiles by real-time PCR and mitochondria by transmission electron microscopy in response to PM2.5 exposure in different adipose depots of ApoE-/- mice to understand responses to chronic inhalational stimuli. Results Exposure to PM2.5 induced an increase in the production of reactive oxygen species (ROS) in brown adipose depots. Additionally, exposure to PM2.5 decreased expression of uncoupling protein 1 in brown adipose tissue as measured by immunohistochemistry and Western blot. Mitochondrial number was significantly reduced in white (WAT) and brown adipose tissues (BAT), while mitochondrial size was also reduced in BAT. In BAT, PM2.5 exposure down-regulated brown adipocyte-specific genes, while white adipocyte-specific genes were differentially up-regulated. Conclusions PM2.5 exposure triggers oxidative stress in BAT, and results in key alterations in mitochondrial gene expression and mitochondrial alterations that are pronounced in BAT. We postulate that exposure to PM2.5 may induce imbalance between white and brown adipose tissue functionality and thereby predispose to metabolic dysfunction. PMID:21745393

  9. Association of chemical constituents and pollution sources of ambient fine particulate air pollution and biomarkers of oxidative stress associated with atherosclerosis: A panel study among young adults in Beijing, China.

    PubMed

    Wu, Shaowei; Yang, Di; Wei, Hongying; Wang, Bin; Huang, Jing; Li, Hongyu; Shima, Masayuki; Deng, Furong; Guo, Xinbiao

    2015-09-01

    Ambient particulate air pollution has been associated with increased oxidative stress and atherosclerosis, but the chemical constituents and pollution sources behind the association are unclear. We investigated the associations of various chemical constituents and pollution sources of ambient fine particles (PM2.5) with biomarkers of oxidative stress in a panel of 40 healthy university students. Study participants underwent repeated blood collections for 12 times before and after relocating from a suburban campus to an urban campus with high air pollution levels in Beijing, China. Air pollution data were obtained from central air-monitoring stations, and plasma levels of oxidized low-density lipoprotein (Ox-LDL) and soluble CD36 (sCD36) were determined in the laboratory (n=464). Linear mixed-effects models were used to estimate the changes in biomarkers in association with exposure variables. PM2.5 iron and nickel were positively associated with Ox-LDL (p<0.05). For each interquartile range increase in iron (1-day, 0.51 μg/m(3)) and nickel (2-day, 2.5 ng/m(3)), there were a 1.9% [95% confidence interval (CI): 0.2%, 3.7%] increase and a 1.8% (95% CI: 0.2%, 3.4%) increase in Ox-LDL, respectively. We also found that each interquartile range increase in calcium (1-day, 0.7 μg/m(3)) was associated with a 4.8% (95% CI: 0.7%, 9.1%) increase in sCD36. Among the pollution sources, PM2.5 from traffic emissions and coal combustion were suggestively and positively associated with Ox-LDL. Our findings suggest that a subset of metals in airborne particles may be the major air pollution components that contribute to the increased oxidative stress associated with atherosclerosis.

  10. Omega-3 Fatty Acid Supplementation Appears to Attenuate Particulate Air Pollution-induced Cardiac Effects and Lipid Changes in Healthy Middle-aged Adults.

    EPA Science Inventory

    Context: Air pollution exposure has been associated with adverse cardiovascular effects. A recent epidemiologic study reported that omega-3 fatty acid (fish oil) supplementation blunted the cardiac responses to air pollution exposure. Objective: To evaluate in a randomized contro...

  11. Divergent effects of urban particulate air pollution on allergic airway responses in experimental asthma: a comparison of field exposure studies

    PubMed Central

    2012-01-01

    Background Increases in ambient particulate matter of aerodynamic diameter of 2.5 μm (PM2.5) are associated with asthma morbidity and mortality. The overall objective of this study was to test the hypothesis that PM2.5 derived from two distinct urban U.S. communities would induce variable responses to aggravate airway symptoms during experimental asthma. Methods We used a mobile laboratory to conduct community-based inhalation exposures to laboratory rats with ovalbumin-induced allergic airways disease. In Grand Rapids exposures were conducted within 60 m of a major roadway, whereas the Detroit was located in an industrial area more than 400 m from roadways. Immediately after nasal allergen challenge, Brown Norway rats were exposed by whole body inhalation to either concentrated air particles (CAPs) or filtered air for 8 h (7:00 AM - 3:00 PM). Both ambient and concentrated PM2.5 was assessed for mass, size fractionation, and major component analyses, and trace element content. Sixteen hours after exposures, bronchoalveolar lavage fluid (BALF) and lung lobes were collected and evaluated for airway inflammatory and mucus responses. Results Similar CAPs mass concentrations were generated in Detroit (542 μg/m3) and Grand Rapids (519 μg/m3). Exposure to CAPs at either site had no effects in lungs of non-allergic rats. In contrast, asthmatic rats had 200% increases in airway mucus and had more BALF neutrophils (250% increase), eosinophils (90%), and total protein (300%) compared to controls. Exposure to Detroit CAPs enhanced all allergic inflammatory endpoints by 30-100%, whereas inhalation of Grand Rapids CAPs suppressed all allergic responses by 50%. Detroit CAPs were characterized by high sulfate, smaller sized particles and were derived from local combustion sources. Conversely Grand Rapids CAPs were derived primarily from motor vehicle sources. Conclusions Despite inhalation exposure to the same mass concentration of urban PM2.5, disparate health

  12. Identifying and quantifying transported vs. local sources of New York City PM 2.5 fine particulate matter air pollution

    NASA Astrophysics Data System (ADS)

    Lall, Ramona; Thurston, George D.

    New York City (NYC) is presently in violation of the nation's PM 2.5 annual mass standard, and will have to take actions to control the sources contributing to these violations. This paper seeks to differentiate the impact of long-range transported aerosols on the air quality of downtown NYC, so that the roles of local sources can more clearly be evaluated. Past source apportionment studies have considered single sites individually in their source apportionment analyses to identify and determine sources affecting that site, often finding secondary sulfates to be an important contributor, but not being able to quantify the portion that is transported vs. local. In this study, a rural site located in Sterling Forest, NY, which is near to the NYC area, but unaffected by local NYC sources, is instead used as a reference to separate the portion of the aerosol that is transported to our Manhattan, NYC site before conducting the source apportionment analysis. Sterling Forest is confirmed as a background site via elemental comparisons with NYC during regional transport episodes of Asian and Sahara sandstorm dusts, as well as by comparisons with a second background site in Chester, NJ. Two different approaches that incorporate Sterling Forest background data into the NYC source apportionment analysis are then applied to quantify local vs. transported aerosols. Six source categories are identified for NYC: regional transported sulfate, trans-continental desert dust, traffic, residual oil, "local" dust and World Trade Center fires pollution. Of these, the transported sulfates and trans-continental desert dust accounted for nearly half of the total PM 2.5 mass in Manhattan during 2001, with more than half coming from these transported sources during the summer months. More than 90% of the Manhattan elemental carbon was found to be of local origins. Conversely, roughly 90% of the NYC sulfate mass was identified as transported into the city. Our results indicate that transported

  13. Air pollution and children's health.

    PubMed

    Schwartz, Joel

    2004-04-01

    Children's exposure to air pollution is a special concern because their immune system and lungs are not fully developed when exposure begins, raising the possibility of different responses than seen in adults. In addition, children spend more time outside, where the concentrations of pollution from traffic, powerplants, and other combustion sources are generally higher. Although air pollution has long been thought to exacerbate minor acute illnesses, recent studies have suggested that air pollution, particularly traffic-related pollution, is associated with infant mortality and the development of asthma and atopy. Other studies have associated particulate air pollution with acute bronchitis in children and demonstrated that rates of bronchitis and chronic cough declined in areas where particle concentrations have fallen. More mixed results have been reported for lung function. Overall, evidence for effects of air pollution on children have been growing, and effects are seen at concentrations that are common today. Although many of these associations seem likely to be causal, others require and warrant additional investigation.

  14. Mapping the Vertical Distribution of Population and Particulate Air Pollution in a Near–Highway Urban Neighborhood: Implications for Exposure Assessment

    PubMed Central

    Wu, Chih-Da; MacNaughton, Piers; Melly, Steve; Lane, Kevin; Adamkiewicz, Gary; Durant, John L.; Brugge, Doug; Spengler, John D.

    2015-01-01

    Due to data collection challenges, the vertical variation in population in cities and particulate air pollution are typically not accounted for in exposure assessments, which may lead to misclassification of exposures based on elevation of residency. To better assess this misclassification, the vertical distribution of the potentially highly exposed population (PHEP), defined as all residents within the 100-m buffer zone of above-ground highways or the 200-m buffer zone of a highway-tunnel exit, was estimated for four floor categories in Boston’s Chinatown (MA, USA) using the three-dimensional digital geography (3DIG) methodology. Vertical profiles of particle number concentration (7–1000 nm; PNC) and PM2.5 mass concentration were measured by hoisting instruments up the vertical face of an 11-story (35-m) building near the study area throughout the day on multiple days. The concentrations from all the profiles (n=23) were averaged together for each floor category. As measurement elevation increased from 0 to 35 m PNC decreased by 7.7%, compared to 3.6% for PM2.5. PHEP was multiplied by the average PNC for each floor category to assess exposures for near-highway populations. The results show that adding temporally-averaged vertical air pollution data had a small effect on residential ambient exposures for our study population; however, greater effects were observed when individual days were considered (e.g., winds were off the highways). PMID:24084758

  15. Discriminatory Air Pollution

    ERIC Educational Resources Information Center

    McCaull, Julian

    1976-01-01

    Described are the patterns of air pollution in certain large urban areas. Persons in poverty, in occupations below the management or professional level, in low-rent districts, and in black population are most heavily exposed to air pollution. Pollution paradoxically is largely produced by high energy consuming middle-and upper-class households.…

  16. Air Pollution, Teachers' Edition.

    ERIC Educational Resources Information Center

    Lavaroni, Charles W.; O'Donnell, Patrick A.

    One of three in a series about pollution, this teacher's guide for a unit on air pollution is designed for use in junior high school grades. It offers suggestions for extending the information and activities contained in the textual material for students. Chapter 1 discusses the problem of air pollution and involves students in processes of…

  17. Development of Land Use Regression models for particulate matter and associated components in a low air pollutant concentration airshed

    NASA Astrophysics Data System (ADS)

    Dirgawati, Mila; Heyworth, Jane S.; Wheeler, Amanda J.; McCaul, Kieran A.; Blake, David; Boeyen, Jonathon; Cope, Martin; Yeap, Bu Beng; Nieuwenhuijsen, Mark; Brunekreef, Bert; Hinwood, Andrea

    2016-11-01

    Perth, Western Australia represents an area where pollutant concentrations are considered low compared with international locations. Land Use Regression (LUR) models for PM10, PM2.5 and PM2.5 Absorbance (PM2.5Abs) along with their elemental components: Fe, K, Mn, V, S, Zn and Si were developed for the Perth Metropolitan area in order to estimate air pollutant concentrations across Perth. The most important predictor for PM10 was green spaces. Heavy vehicle traffic load was found to be the strongest predictor for PM2.5Abs. Traffic variables were observed to be the important contributors for PM10 and PM2.5 elements in Perth, except for PM2.5 V which had distance to coast as the predominant predictor. Open green spaces explained more of the variability in the PM10 elements than for PM2.5 elements, and population density was more important for PM2.5 elements than for PM10 elements. The PM2.5 and PM2.5Abs LUR models explained 67% and 82% of the variance, respectively, but the PM10 model only explained 35% of the variance. The PM2.5 models for Mn, V, and Zn explained between 70% and 90% of the variability in concentrations. PM10 V, Si, K, S and Fe models explained between 53% and 71% of the variability in respective concentrations. Testing the models using leave one-out cross validation, hold out validation and cross-hold out validation supported the validity of LUR models for PM10, PM2.5 and PM2.5Abs and their corresponding elements in Metropolitan Perth despite the relatively low concentrations.

  18. A Simplified and Rapid Screening Assay using Zebrafish to Assess Cardiac Effects of Air Pollution-derived Particulate Matter

    EPA Science Inventory

    Comparative toxicity assessment of particulate matter (PM) from different sources will potentially inform the understanding of regional differences in PM-induced cardiac health effects by identifying PM sources linked to highest potency components. Conventional low-throughput in...

  19. Long-Term Exposure to Constituents of Fine Particulate Air Pollution and Mortality: Results from the California Teachers Study

    PubMed Central

    Ostro, Bart; Lipsett, Michael; Reynolds, Peggy; Goldberg, Debbie; Hertz, Andrew; Garcia, Cynthia; Henderson, Katherine D.; Bernstein, Leslie

    2010-01-01

    Background Several studies have reported associations between long-term exposure to ambient fine particulate matter (PM) and cardiovascular mortality. However, the health impacts of long-term exposure to specific constituents of PM2.5 (PM with aerodynamic diameter ≤ 2.5 μm) have not been explored. Methods We used data from the California Teachers Study, a prospective cohort of active and former female public school professionals. We developed estimates of long-term exposures to PM2.5 and several of its constituents, including elemental carbon, organic carbon (OC), sulfates, nitrates, iron, potassium, silicon, and zinc. Monthly averages of exposure were created using pollution data from June 2002 through July 2007. We included participants whose residential addresses were within 8 and 30 km of a monitor collecting PM2.5 constituent data. Hazard ratios (HRs) were estimated for long-term exposure for mortality from all nontraumatic causes, cardiopulmonary disease, ischemic heart disease (IHD), and pulmonary disease. Results Approximately 45,000 women with 2,600 deaths lived within 30 km of a monitor. We observed associations of all-cause, cardiopulmonary, and IHD mortality with PM2.5 mass and each of its measured constituents, and between pulmonary mortality and several constituents. For example, for cardiopulmonary mortality, HRs for interquartile ranges of PM2.5, OC, and sulfates were 1.55 [95% confidence interval (CI), 1.43–1.69], 1.80 (95% CI, 1.68–1.93), and 1.79 (95% CI, 1.58–2.03), respectively. Subsequent analyses indicated that, of the constituents analyzed, OC and sulfates had the strongest associations with all four outcomes. Conclusions Long-term exposures to PM2.5 and several of its constituents were associated with increased risks of all-cause and cardiopulmonary mortality in this cohort. Constituents derived from combustion of fossil fuel (including diesel), as well as those of crustal origin, were associated with some of the greatest risks

  20. Air pollution and cardiovascular disease.

    PubMed

    Franklin, Barry A; Brook, Robert; Arden Pope, C

    2015-05-01

    An escalating body of epidemiologic and clinical research provides compelling evidence that exposure to fine particulate matter air pollution contributes to the development of cardiovascular disease and the triggering of acute cardiac events. There are 3 potential mediating pathways that have been implicated, including "systemic spillover," autonomic imbalance, and circulating particulate matter constituents. Further support that the increased morbidity and mortality attributed to air pollution comes from studies demonstrating the adverse cardiovascular effects of even brief periods of exposure to secondhand smoke. Accordingly, persons with known or suspected cardiovascular disease, the elderly, diabetic patients, pregnant women, and those with pulmonary disease should be counseled to limit leisure-time outdoor activities when air pollution is high. Recognizing the insidious and pervasive nature of air pollution, and the associated odds ratios and population attributable fractions for this widely underappreciated chemical trigger of acute cardiovascular events, may serve to maximize the potential for cardiovascular risk reduction by addressing at least a portion of the 10%-25% incidence of coronary disease that is unexplained by traditional risk factors.

  1. [Pollution of room air].

    PubMed

    Schlatter, J

    1986-01-01

    In the last decade the significance of indoor air pollution to human health has increased because of improved thermal insulation of buildings to save energy: air turnover is reduced and air quality is impaired. The most frequent air pollutants are tobacco smoke, radioactive radon gas emanating from the soil, formaldehyde from furniture and insulation material, nitrogen oxides from gas stoves, as well as solvents from cleaning agents. The most important pollutants leading to health hazards are tobacco smoke and air pollutants which are emitted continuously from building materials and furniture. Such pollutants have to be eliminated by reducing the emission rate. A fresh air supply is necessary to reduce the pollutants resulting from the inhabitants and their activities, the amount depending on the number of inhabitants and the usage of the room. The carbon dioxide level should not exceed 1500 ppm.

  2. STROBE-Long-Term Exposure to Ambient Fine Particulate Air Pollution and Hospitalization Due to Peptic Ulcers

    PubMed Central

    Wong, Chit-Ming; Tsang, Hilda; Lai, Hak-Kan; Thach, Thuan-Quoc; Thomas, G. Neil; Chan, King-Pan; Lee, Siu-Yin; Ayres, Jon G.; Lam, Tai-Hing; Leung, Wai K.

    2016-01-01

    Abstract Little is known about the effect of air pollution on the gastrointestinal (GI) system. We investigated the association between long-term exposures to outdoor fine particles (PM2.5) and hospitalization for peptic ulcer diseases (PUDs) in a large cohort of Hong Kong Chinese elderly. A total of 66,820 subjects aged ≥65 years who were enrolled in all 18 Government Elderly Health Service centers of Hong Kong participated in the study voluntarily between 1998 and 2001. They were prospectively followed up for more than 10 years. Annual mean exposures to PM2.5 at residence of individuals were estimated by satellite data through linkage with address details including floor level. All hospital admission records of the subjects up to December 31, 2010 were retrieved from the central database of Hospital Authority. We used Cox regression to estimate the hazard ratio (HR) for PUD hospitalization associated with PM2.5 exposure after adjustment for individual and ecological covariates. A total of 60,273 subjects had completed baseline information including medical, socio-demographic, lifestyle, and anthropometric data at recruitment. During the follow-up period, 1991 (3.3%) subjects had been hospitalized for PUD. The adjusted HR for PUD hospitalization per 10 μg/m3 of PM2.5 was 1.18 (95% confidence interval: 1.02–1.36, P = 0.02). Further analysis showed that the associations with PM2.5 were significant for gastric ulcers (HR 1.29; 1.09–1.53, P = 0.003) but not for duodenal ulcers (HR 0.98; 0.78 to 1.22, P = 0.81). Long-term exposures to PM2.5 were associated with PUD hospitalization in elder population. The mechanism underlying the PM2.5 in the development of gastric ulcers warrants further research. PMID:27149464

  3. Exposure assessment of air pollutants: a review on spatial heterogeneity and indoor/outdoor/personal exposure to suspended particulate matter, nitrogen dioxide and ozone

    NASA Astrophysics Data System (ADS)

    Monn, Christian

    This review describes databases of small-scale spatial variations and indoor, outdoor and personal measurements of air pollutants with the main focus on suspended particulate matter, and to a lesser extent, nitrogen dioxide and photochemical pollutants. The basic definitions and concepts of an exposure measurement are introduced as well as some study design considerations and implications of imprecise exposure measurements. Suspended particulate matter is complex with respect to particle size distributions, the chemical composition and its sources. With respect to small-scale spatial variations in urban areas, largest variations occur in the ultrafine (<0.1 μm) and the coarse mode (PM 10-2.5, resuspended dust). Secondary aerosols which contribute to the accumulation mode (0.1-2 μm) show quite homogenous spatial distribution. In general, small-scale spatial variations of PM 2.5 were described to be smaller than the spatial variations of PM 10. Recent studies in outdoor air show that ultrafine particle number counts have large spatial variations and that they are not well correlated to mass data. Sources of indoor particles are from outdoors and some specific indoor sources such as smoking and cooking for fine particles or moving of people (resuspension of dust) for coarse particles. The relationships between indoor, outdoor and personal levels are complex. The finer the particle size, the better becomes the correlation between indoor, outdoor and personal levels. Furthermore, correlations between these parameters are better in longitudinal analyses than in cross-sectional analyses. For NO 2 and O 3, the air chemistry is important. Both have considerable small-scale spatial variations within urban areas. In the absence of indoor sources such as gas appliances, NO 2 indoor/outdoor relationships are strong. For ozone, indoor levels are quite small. The study hypothesis largely determines the choice of a specific concept in exposure assessment, i.e. whether personal

  4. Controlling Indoor Air Pollution.

    ERIC Educational Resources Information Center

    Nero, Anthony V, Jr.

    1988-01-01

    Discusses the health risks posed by indoor air pollutants, such as airborne combustion products, toxic chemicals, and radioactivity. Questions as to how indoor air might be regulated. Calls for new approaches to environmental protection. (TW)

  5. Health Effects of Air Pollution

    MedlinePlus

    ... Health effects of air pollution Health effects of air pollution Breathing air that is not clean can hurt ... important to know about the health effects that air pollution can have on you and others. Once you ...

  6. 76 FR 37044 - Revisions to the California State Implementation Plan, San Joaquin Valley Unified Air Pollution...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-24

    ... Air Pollution Control District AGENCY: Environmental Protection Agency (EPA). ACTION: Proposed rule. SUMMARY: EPA is proposing to approve revisions to the San Joaquin Valley Unified Air Pollution Control..., Air pollution control, Intergovernmental relations, Nitrogen dioxide, Ozone, Particulate...

  7. Air pollution and lung cancer.

    PubMed

    Böhm, G M

    1982-01-01

    Epidemiological evidence proves conclusively that lung cancer correlates with air pollution. However, data on lung cancer death rates and smoking show that mankind accepts the risk of long-term and low-level exposure to carcinogens. As a rule, immediate benefits are sought and remote hazards ignored. Fear of atmospheric contamination by radioactive fallout seems to be the main factor for awareness of air pollution. Experimental works help us to understand physics of particle deposition in the lungs (inertial impactation, sedimentation, Brownian movement), shed light on carcinogenesis (eg, bay region theory in case of polycyclic aromatic hydrocarbons and surface charge changes regarding asbestos), show that atmospheric particulates accepted as harmless may act as co-carcinogens (eg, iron and benzo(a)pyrene) and stress the importance of in vitro researches (bacterial mutation tests, organ cultures, sister chromatid exchange system) to screen pollutants for their malignant potential and study their pathogenesis.

  8. Air pollution and lung cancer

    SciTech Connect

    Boehm, G.M.

    1982-01-01

    Epidemiological evidence proves conclusively that lung cancer correlates with air pollution. However, data on lung cancer death rates and smoking show that mankind accepts the risk of long-term and low-level exposure to carcinogens. As a rule, immediate benefits are sought and remote hazards ignored. Fear of atmospheric contamination by radioactive fallout seems to be the main factor for awareness of air pollution. Experimental works help us to understand physics of particle deposition in the lungs (inertial impactation, sedimentation, Brownian movement), shed light on carcinogenesis (eg, bay region theory in case of polycyclic aromatic hydrocarbons and surface charge changes regarding asbestos), show that atmospheric particulates accepted as harmless may act as co-carcinogens (eg, iron and benzo(a)pyrene) and stress the importance of in vitro research (bacterial mutation tests, organ cultures, sister chromatid exchange system) to screen pollutants for their malignant potential and study their pathogenesis.

  9. Effects of particulate matter exposure on blood 5-hydroxymethylation: results from the Beijing truck driver air pollution study.

    PubMed

    Sanchez-Guerra, Marco; Zheng, Yinan; Osorio-Yanez, Citlalli; Zhong, Jia; Chervona, Yana; Wang, Sheng; Chang, Dou; McCracken, John P; Díaz, Anaite; Bertazzi, Pier Alberto; Koutrakis, Petros; Kang, Choong-Min; Zhang, Xiao; Zhang, Wei; Byun, Hyang-Min; Schwartz, Joel; Hou, Lifang; Baccarelli, Andrea A

    2015-01-01

    Previous studies have reported epigenetic changes induced by environmental exposures. However, previous investigations did not distinguish 5-methylcytosine (5mC) from a similar oxidative form with opposite functions, 5-hydroxymethylcytosine (5hmC). Here, we measured blood DNA global 5mC and 5hmC by ELISA and used adjusted mixed-effects regression models to evaluate the effects of ambient PM10 and personal PM2.5 and its elemental components-black carbon (BC), aluminum (Al), calcium (Ca), potassium (K), iron (Fe), sulfur (S), silicon (Si), titanium (Ti), and zinc (Zn)-on blood global 5mC and 5hmC levels. The study was conducted in 60 truck drivers and 60 office workers in Beijing, China from The Beijing Truck Driver Air Pollution Study at 2 exams separated by one to 2 weeks. Blood 5hmC level (0.08%) was ∼83-fold lower than 5mC (6.61%). An inter-quartile range (IQR) increase in same-day PM10 was associated with increases in 5hmC of 26.1% in office workers (P = 0.004), 20.2% in truck drivers (P = 0.014), and 21.9% in all participants combined (P < 0.001). PM10 effects on 5hmC were increasingly stronger when averaged over 4, 7, and 14 d preceding assessment (up to 132.6% for the 14-d average in all participants, P < 0.001). PM10 effects were also significant after controlling for multiple testing (family-wise error rate; FWER < 0.05). 5hmC was not correlated with personal measures of PM2.5 and elemental components (FWER > 0.05). 5mC showed no correlations with PM10, PM2.5, and elemental components measures (FWER > 0.05). Our study suggests that exposure to ambient PM10 affects 5hmC over time, but not 5mC. This finding demonstrates the need to differentiate 5hmC and 5mC in environmental studies of DNA methylation.

  10. Effects of particulate matter exposure on blood 5-hydroxymethylation: results from the Beijing truck driver air pollution study.

    PubMed

    Sanchez-Guerra, Marco; Zheng, Yinan; Osorio-Yanez, Citlalli; Zhong, Jia; Chervona, Yana; Wang, Sheng; Chang, Dou; McCracken, John P; Díaz, Anaite; Bertazzi, Pier Alberto; Koutrakis, Petros; Kang, Choong-Min; Zhang, Xiao; Zhang, Wei; Byun, Hyang-Min; Schwartz, Joel; Hou, Lifang; Baccarelli, Andrea A

    2015-01-01

    Previous studies have reported epigenetic changes induced by environmental exposures. However, previous investigations did not distinguish 5-methylcytosine (5mC) from a similar oxidative form with opposite functions, 5-hydroxymethylcytosine (5hmC). Here, we measured blood DNA global 5mC and 5hmC by ELISA and used adjusted mixed-effects regression models to evaluate the effects of ambient PM10 and personal PM2.5 and its elemental components-black carbon (BC), aluminum (Al), calcium (Ca), potassium (K), iron (Fe), sulfur (S), silicon (Si), titanium (Ti), and zinc (Zn)-on blood global 5mC and 5hmC levels. The study was conducted in 60 truck drivers and 60 office workers in Beijing, China from The Beijing Truck Driver Air Pollution Study at 2 exams separated by one to 2 weeks. Blood 5hmC level (0.08%) was ∼83-fold lower than 5mC (6.61%). An inter-quartile range (IQR) increase in same-day PM10 was associated with increases in 5hmC of 26.1% in office workers (P = 0.004), 20.2% in truck drivers (P = 0.014), and 21.9% in all participants combined (P < 0.001). PM10 effects on 5hmC were increasingly stronger when averaged over 4, 7, and 14 d preceding assessment (up to 132.6% for the 14-d average in all participants, P < 0.001). PM10 effects were also significant after controlling for multiple testing (family-wise error rate; FWER < 0.05). 5hmC was not correlated with personal measures of PM2.5 and elemental components (FWER > 0.05). 5mC showed no correlations with PM10, PM2.5, and elemental components measures (FWER > 0.05). Our study suggests that exposure to ambient PM10 affects 5hmC over time, but not 5mC. This finding demonstrates the need to differentiate 5hmC and 5mC in environmental studies of DNA methylation. PMID:25970091

  11. Recent versus chronic exposure to particulate matter air pollution in association with neurobehavioral performance in a panel study of primary schoolchildren.

    PubMed

    Saenen, Nelly D; Provost, Eline B; Viaene, Mineke K; Vanpoucke, Charlotte; Lefebvre, Wouter; Vrijens, Karen; Roels, Harry A; Nawrot, Tim S

    2016-10-01

    Children's neuropsychological abilities are in a developmental stage. Recent air pollution exposure and neurobehavioral performance are scarcely studied. In a panel study, we repeatedly administered to each child the following neurobehavioral tests: Stroop Test (selective attention) and Continuous Performance Test (sustained attention), Digit Span Forward and Backward Tests (short-term memory), and Digit-Symbol and Pattern Comparison Tests (visual information processing speed). At school, recent inside classroom particulate matter ≤2.5 or 10μm exposure (PM2.5, PM10) was monitored on each examination day. At the child's residence, recent (same day up to 2days before) and chronic (365days before examination) exposures to PM2.5, PM10 and black carbon (BC) were modeled. Repeated neurobehavioral test performances (n=894) of the children (n=310) reflected slower Stroop Test (p=0.05) and Digit-Symbol Test (p=0.01) performances with increasing recent inside classroom PM2.5 exposure. An interquartile range (IQR) increment in recent residential outdoor PM2.5 exposure was associated with an increase in average latency of 0.087s (SE: ±0.034; p=0.01) in the Pattern Comparison Test. Regarding chronic exposure at residence, an IQR increment of PM2.5 exposure was associated with slower performances in the Continuous Performance (9.45±3.47msec; p=0.007) and Stroop Tests (59.9±26.5msec; p=0.02). Similar results were obtained for PM10 exposure. In essence, we showed differential neurobehavioral changes robustly and adversely associated with recent or chronic ambient exposure to PM air pollution at residence, i.e., with recent exposure for visual information processing speed (Pattern Comparison Test) and with chronic exposure for sustained and selective attention.

  12. Increases in ambient particulate matter air pollution, acute changes in platelet function, and effect modification by aspirin and omega-3 fatty acids: A panel study.

    PubMed

    Becerra, Adan Z; Georas, Steve; Brenna, J Thomas; Hopke, Philip K; Kane, Cathleen; Chalupa, David; Frampton, Mark W; Block, Robert; Rich, David Q

    2016-01-01

    Increased particulate matter (PM) air pollutant concentrations have been associated with platelet activation. It was postulated that elevated air pollutant concentrations would be associated with increases in measures of platelet function and that responses would be blunted when taking aspirin and/or fish oil. Data from a sequential therapy trial (30 subjects with type 2 diabetes mellitus), with 4 clinic visits (first: no supplements, second: aspirin, third: omega-3 fatty acid supplements, fourth: aspirin and omega-3 fatty acids) per subject, were utilized. Using linear mixed models, adjusted for relative humidity, temperature, visit number, and season, changes in three platelet function measures including (1) aggregation induced by adenosine diphosphate (ADP), (2) aggregation induced by collagen, and (3) thromboxane B2 production were associated with interquartile range (IQR) increases in mean concentrations of ambient PM2.5, black carbon, ultrafine particles (UFP; 10-100 nm), and accumulation mode particles (AMP; 100-500 nm) in the previous 1-96 h. IQR increases in mean UFP and AMP concentrations were associated with significant decreases in platelet response, with the largest being a -0.43 log(pg/ml) decrease in log(thromboxane B2) (95% CI = -0.8, -0.1) associated with each 582-particles/cm(3) increase in AMP, and a -1.7 ohm reduction in collagen-induced aggregation (95% CI = -3.1, -0.3) associated with each 2097-particles/cm(3) increase in UFP in the previous 72 h. This UFP effect on thromboxane B2 was significantly muted in diabetic subjects taking aspirin (-0.01 log[pg/ml]; 95% CI = -0.4, 0.3). The reason for this finding remains unknown, and needs to be investigated in future studies. PMID:27029326

  13. Increases in ambient particulate matter air pollution, acute changes in platelet function, and effect modification by aspirin and omega-3 fatty acids: A panel study.

    PubMed

    Becerra, Adan Z; Georas, Steve; Brenna, J Thomas; Hopke, Philip K; Kane, Cathleen; Chalupa, David; Frampton, Mark W; Block, Robert; Rich, David Q

    2016-01-01

    Increased particulate matter (PM) air pollutant concentrations have been associated with platelet activation. It was postulated that elevated air pollutant concentrations would be associated with increases in measures of platelet function and that responses would be blunted when taking aspirin and/or fish oil. Data from a sequential therapy trial (30 subjects with type 2 diabetes mellitus), with 4 clinic visits (first: no supplements, second: aspirin, third: omega-3 fatty acid supplements, fourth: aspirin and omega-3 fatty acids) per subject, were utilized. Using linear mixed models, adjusted for relative humidity, temperature, visit number, and season, changes in three platelet function measures including (1) aggregation induced by adenosine diphosphate (ADP), (2) aggregation induced by collagen, and (3) thromboxane B2 production were associated with interquartile range (IQR) increases in mean concentrations of ambient PM2.5, black carbon, ultrafine particles (UFP; 10-100 nm), and accumulation mode particles (AMP; 100-500 nm) in the previous 1-96 h. IQR increases in mean UFP and AMP concentrations were associated with significant decreases in platelet response, with the largest being a -0.43 log(pg/ml) decrease in log(thromboxane B2) (95% CI = -0.8, -0.1) associated with each 582-particles/cm(3) increase in AMP, and a -1.7 ohm reduction in collagen-induced aggregation (95% CI = -3.1, -0.3) associated with each 2097-particles/cm(3) increase in UFP in the previous 72 h. This UFP effect on thromboxane B2 was significantly muted in diabetic subjects taking aspirin (-0.01 log[pg/ml]; 95% CI = -0.4, 0.3). The reason for this finding remains unknown, and needs to be investigated in future studies.

  14. Efficiency of mitigation measures to reduce particulate air pollution--a case study during the Olympic Summer Games 2008 in Beijing, China.

    PubMed

    Schleicher, Nina; Norra, Stefan; Chen, Yizhen; Chai, Fahe; Wang, Shulan

    2012-06-15

    Atmospheric particles were studied before, during, and after the period of the Olympic Summer Games in Beijing, China, in August 2008 in order to investigate the efficiency of the mitigation measures implemented by the Chinese Government. Total suspended particles (TSP) and fine particles (PM(2.5) and PM(1)) were collected continuously from October 2007 to February 2009 and were analyzed in detail with regard to mass and element concentrations, water-soluble ions, and black carbon (BC). Mass as well as element concentrations during the Olympic air quality control period were lower than the respective concentrations during the time directly before and after the Olympic Games. The results showed that the applied aerosol source control measures, such as shutting down industries and reducing traffic, had a huge impact on the reduction of aerosol pollution in Beijing. However, the meteorological conditions, especially rainfall, certainly also contributed to the successful reduction of particulate air pollution. Coarse particles were reduced more efficiently than finer particles, which indicates that long-range transport of atmospheric particles is difficult to control and that presumably the established mitigation area was not large enough. The study further showed that elements from predominantly anthropogenic sources, such as S, Cu, As, Cd, and Pb, as well as BC, were reduced more efficiently during the Olympic Games than elements for which geogenic sources are more significant, such as Al, Fe, Rb or Sr. Furthermore, the mentioned anthropogenic element concentrations were reduced more in the finer PM(2.5) samples whereas geogenic ones were reduced stronger in TSP samples including the coarser fraction. Consequently, it can be assumed that the mitigation measures, as intended, were successful in reducing more toxic and health-relevant particles from anthropogenic sources. Firework displays, especially at the Opening Ceremony, could be identified as a special short

  15. Recent versus chronic exposure to particulate matter air pollution in association with neurobehavioral performance in a panel study of primary schoolchildren.

    PubMed

    Saenen, Nelly D; Provost, Eline B; Viaene, Mineke K; Vanpoucke, Charlotte; Lefebvre, Wouter; Vrijens, Karen; Roels, Harry A; Nawrot, Tim S

    2016-10-01

    Children's neuropsychological abilities are in a developmental stage. Recent air pollution exposure and neurobehavioral performance are scarcely studied. In a panel study, we repeatedly administered to each child the following neurobehavioral tests: Stroop Test (selective attention) and Continuous Performance Test (sustained attention), Digit Span Forward and Backward Tests (short-term memory), and Digit-Symbol and Pattern Comparison Tests (visual information processing speed). At school, recent inside classroom particulate matter ≤2.5 or 10μm exposure (PM2.5, PM10) was monitored on each examination day. At the child's residence, recent (same day up to 2days before) and chronic (365days before examination) exposures to PM2.5, PM10 and black carbon (BC) were modeled. Repeated neurobehavioral test performances (n=894) of the children (n=310) reflected slower Stroop Test (p=0.05) and Digit-Symbol Test (p=0.01) performances with increasing recent inside classroom PM2.5 exposure. An interquartile range (IQR) increment in recent residential outdoor PM2.5 exposure was associated with an increase in average latency of 0.087s (SE: ±0.034; p=0.01) in the Pattern Comparison Test. Regarding chronic exposure at residence, an IQR increment of PM2.5 exposure was associated with slower performances in the Continuous Performance (9.45±3.47msec; p=0.007) and Stroop Tests (59.9±26.5msec; p=0.02). Similar results were obtained for PM10 exposure. In essence, we showed differential neurobehavioral changes robustly and adversely associated with recent or chronic ambient exposure to PM air pollution at residence, i.e., with recent exposure for visual information processing speed (Pattern Comparison Test) and with chronic exposure for sustained and selective attention. PMID:27575366

  16. Air Pollution and Industry.

    ERIC Educational Resources Information Center

    Ross, R. D., Ed.

    This book is an authoritative reference and practical guide designed to help the plant engineer identify and solve industrial air pollution problems in order to be able to meet current air pollution regulations. Prepared under the editorial supervision of an experienced chemical engineer, with each chapter contributed by an expert in his field,…

  17. [Air pollution and the lung: epidemiological approach].

    PubMed

    Annesi-Maesano, Isabella; Dab, William

    2006-01-01

    Epidemiological evidence has concurred with clinical and experimental evidence to correlate current levels of ambient air pollution, both indoors and outdoors, with respiratory effects. In this respect, the use of specific epidemiological methods has been crucial. Common outdoor pollutants are particulate matter, nitrogen dioxide, carbon monoxide, volatile organic compounds and ozone. Short-term effects of outdoor air pollution include changes in lung function, respiratory symptoms and mortality due to respiratory causes. Increase in the use of health care resources has also been associated with short-term effects of air pollution. Long-term effects of cumulated exposure to urban air pollution include lung growth impairment, chronic obstructive pulmonary disease (COPD), lung cancer, and probably the development of asthma and allergies. Lung cancer and COPD have been related to a shorter life expectancy. Common indoor pollutants are environmental tobacco smoke, particulate matter, nitrogen dioxide, carbon monoxide, volatile organic compounds and biological allergens. Concentrations of these pollutants can be many times higher indoors than outdoors. Indoor air pollution may increase the risk of irritation phenomena, allergic sensitisation, acute and chronic respiratory disorders and lung function impairment. Recent conservative estimates have shown that 1.5-2 million deaths per year worldwide could be attributed to indoor air pollution. Further epidemiological research is necessary to better evaluate the respiratory health effects of air pollution and to implement protective programmes for public health.

  18. Genome-Wide Analysis of DNA Methylation and Fine Particulate Matter Air Pollution in Three Study Populations: KORA F3, KORA F4, and the Normative Aging Study

    PubMed Central

    Panni, Tommaso; Mehta, Amar J.; Schwartz, Joel D.; Baccarelli, Andrea A.; Just, Allan C.; Wolf, Kathrin; Wahl, Simone; Cyrys, Josef; Kunze, Sonja; Strauch, Konstantin; Waldenberger, Melanie; Peters, Annette

    2016-01-01

    Background: Epidemiological studies have reported associations between particulate matter (PM) concentrations and cancer and respiratory and cardiovascular diseases. DNA methylation has been identified as a possible link but so far it has only been analyzed in candidate sites. Objectives: We studied the association between DNA methylation and short- and mid-term air pollution exposure using genome-wide data and identified potential biological pathways for additional investigation. Methods: We collected whole blood samples from three independent studies—KORA F3 (2004–2005) and F4 (2006–2008) in Germany, and the Normative Aging Study (1999–2007) in the United States—and measured genome-wide DNA methylation proportions with the Illumina 450k BeadChip. PM concentration was measured daily at fixed monitoring stations and three different trailing averages were considered and regressed against DNA methylation: 2-day, 7-day and 28-day. Meta-analysis was performed to pool the study-specific results. Results: Random-effect meta-analysis revealed 12 CpG (cytosine-guanine dinucleotide) sites as associated with PM concentration (1 for 2-day average, 1 for 7-day, and 10 for 28-day) at a genome-wide Bonferroni significance level (p ≤ 7.5E-8); 9 out of these 12 sites expressed increased methylation. Through estimation of I2 for homogeneity assessment across the studies, 4 of these sites (annotated in NSMAF, C1orf212, MSGN1, NXN) showed p > 0.05 and I2 < 0.5: the site from the 7-day average results and 3 for the 28-day average. Applying false discovery rate, p-value < 0.05 was observed in 8 and 1,819 additional CpGs at 7- and 28-day average PM2.5 exposure respectively. Conclusion: The PM-related CpG sites found in our study suggest novel plausible systemic pathways linking ambient PM exposure to adverse health effect through variations in DNA methylation. Citation: Panni T, Mehta AJ, Schwartz JD, Baccarelli AA, Just AC, Wolf K, Wahl S, Cyrys J, Kunze S, Strauch K

  19. Particulate matter air pollution and respiratory symptoms in individuals having either asthma or chronic obstructive pulmonary disease: a European multicentre panel study

    PubMed Central

    2012-01-01

    Background Particulate matter air pollution has been associated with adverse health effects. The fraction of ambient particles that are mainly responsible for the observed health effects is still a matter of controversy. Better characterization of the health relevant particle fraction will have major implications for air quality policy since it will determine which sources should be controlled. The RUPIOH study, an EU-funded multicentre study, was designed to examine the distribution of various ambient particle metrics in four European cities (Amsterdam, Athens, Birmingham, Helsinki) and assess their health effects in participants with asthma or COPD, based on a detailed exposure assessment. In this paper the association of central site measurements with respiratory symptoms and restriction of activities is examined. Methods At each centre a panel of participants with either asthma or COPD recorded respiratory symptoms and restriction of activities in a diary for six months. Exposure assessment included simultaneous measurements of coarse, fine and ultrafine particles at a central site. Data on gaseous pollutants were also collected. The associations of the 24-hour average concentrations of air pollution indices with the health outcomes were assessed in a hierarchical modelling approach. A city specific analysis controlling for potential confounders was followed by a meta-analysis to provide overall effect estimates. Results A 10 μg/m3 increase in previous day coarse particles concentrations was positively associated with most symptoms (an increase of 0.6 to 0.7% in average) and limitation in walking (OR= 1.076, 95% CI: 1.026-1.128). Same day, previous day and previous two days ozone concentrations were positively associated with cough (OR= 1.061, 95% CI: 1.013-1.111; OR= 1.049, 95% CI: 1.016-1.083 and OR= 1.059, 95% CI: 1.027-1.091, respectively). No consistent associations were observed between fine particle concentrations, nitrogen dioxide and respiratory

  20. Smoking and Cerebral Oxidative Stress and Air Pollution: A Dreadful Equation with Particulate Matter Involved and One More Powerful Reason Not to Smoke Anything!

    PubMed

    Calderón-Garcidueñas, Lilian

    2016-07-22

    Smoking has serious health effects. Cigarettes, including tobacco, marijuana, and electronic nicotine delivery systems are very effective ways to inhale harmful amounts of fine and ultrafine particulate matter. Does size matter? Yes, indeed! The smaller the particle you inhale, the higher the ability to produce reactive oxygen species and to readily access the brain. In this issue of the Journal of Alzheimer's Disease, Durazzo provides evidence of an association between active cigarette tobacco smoking in cognitively-normal elders and increased cerebral oxidative stress, while in actively smoking Alzheimer's disease (AD) patients, the association was also seen with smaller left and total hippocampal volumes. This paper has highly relevant results of interest across the US and the world because millions of people are active smokers and they have other genetic and environmental risk factors that could play a key role in the development/worsening of brain oxidative stress and neurodegeneration. Smoking basically anything producing aerosols with particulate matter in the fine and ultrafine size range is detrimental to your brain. Marijuana and e-cigarette use has grown steadily among adolescents and young adults. Smoking-related cerebral oxidative stress is a potential mechanism promoting AD pathology and increased risk for AD. Current knowledge also relates fine and ultrafine particles exposures influencing neurodevelopmental processes in utero. The results from Durazzo et al. should be put in a broader context, a context that includes evaluating the oxidative stress of nano-aerosols associated with cigarette emissions and their synergistic effects with air pollution exposures. AD is expected to increase in the US threefold by the year 2050, and some of these future AD patients are smoking and vaping right now. Understanding the impact of everyday exposures to long-term harmful consequences for brain health is imperative.

  1. Smoking and Cerebral Oxidative Stress and Air Pollution: A Dreadful Equation with Particulate Matter Involved and One More Powerful Reason Not to Smoke Anything!

    PubMed

    Calderón-Garcidueñas, Lilian

    2016-07-22

    Smoking has serious health effects. Cigarettes, including tobacco, marijuana, and electronic nicotine delivery systems are very effective ways to inhale harmful amounts of fine and ultrafine particulate matter. Does size matter? Yes, indeed! The smaller the particle you inhale, the higher the ability to produce reactive oxygen species and to readily access the brain. In this issue of the Journal of Alzheimer's Disease, Durazzo provides evidence of an association between active cigarette tobacco smoking in cognitively-normal elders and increased cerebral oxidative stress, while in actively smoking Alzheimer's disease (AD) patients, the association was also seen with smaller left and total hippocampal volumes. This paper has highly relevant results of interest across the US and the world because millions of people are active smokers and they have other genetic and environmental risk factors that could play a key role in the development/worsening of brain oxidative stress and neurodegeneration. Smoking basically anything producing aerosols with particulate matter in the fine and ultrafine size range is detrimental to your brain. Marijuana and e-cigarette use has grown steadily among adolescents and young adults. Smoking-related cerebral oxidative stress is a potential mechanism promoting AD pathology and increased risk for AD. Current knowledge also relates fine and ultrafine particles exposures influencing neurodevelopmental processes in utero. The results from Durazzo et al. should be put in a broader context, a context that includes evaluating the oxidative stress of nano-aerosols associated with cigarette emissions and their synergistic effects with air pollution exposures. AD is expected to increase in the US threefold by the year 2050, and some of these future AD patients are smoking and vaping right now. Understanding the impact of everyday exposures to long-term harmful consequences for brain health is imperative. PMID:27447427

  2. Large scale air monitoring: lichen vs. air particulate matter analysis.

    PubMed

    Rossbach, M; Jayasekera, R; Kniewald, G; Thang, N H

    1999-07-15

    Biological indicator organisms have been widely used for monitoring and banking purposes for many years. Although the complexity of the interactions between organisms and their environment is generally not easily comprehensible, environmental quality assessment using the bioindicator approach offers some convincing advantages compared to direct analysis of soil, water, or air. Measurement of air particulates is restricted to experienced laboratories with access to expensive sampling equipment. Additionally, the amount of material collected generally is just enough for one determination per sampling and no multidimensional characterization might be possible. Further, fluctuations in air masses have a pronounced effect on the results from air filter sampling. Combining the integrating property of bioindicators with the world wide availability and particular matrix characteristics of air particulate matter as a prerequisite for global monitoring of air pollution is discussed. A new approach for sampling urban dust using large volume filtering devices installed in air conditioners of large hotel buildings is assessed. A first experiment was initiated to collect air particulates (300-500 g each) from a number of hotels during a period of 3-4 months by successive vacuum cleaning of used inlet filters from high volume air conditioning installations reflecting average concentrations per 3 months in different large cities. This approach is expected to be upgraded and applied for global monitoring. Highly positive correlated elements were found in lichens such as K/S, Zn/P, the rare earth elements (REE) and a significant negative correlation between Hg and Cu was observed in these samples. The ratio of concentrations of elements in dust and Usnea spp. is highest for Cz, Zn and Fe (400-200) and lowest for elements such as Ca, Rb, and Sr (20-10).

  3. Seasonal variation of the size distribution of urban particulate matter and associated organic pollutants in the ambient air

    NASA Astrophysics Data System (ADS)

    Chrysikou, Loukia P.; Samara, Constantini A.

    Size-segregated samples of urban particulate matter (<0.95, 0.95-1.5, 1.5-3.0, 3.0-7.5, >7.5 μm) were collected in Thessaloniki, northern Greece, during winter and summer of 2007-2008, in order to study the size distribution of organic compounds such as polycyclic aromatic hydrocarbons (PAHs), aliphatic hydrocarbons (AHs) including n-alkanes and the isoprenoids pristane and phytane, organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs). All organic compounds were accumulated in the particle size fraction <0.95 μm particularly in the cold season. Particulate matter displayed a bimodal normalized distribution in both seasons with a stable coarse mode located at 3.0-7.5 μm and a fine mode shifting from 0.95-1.5 μm in winter to <0.95 μm in summer. Unimodal normalized distributions, predominant at 0.95-1.5 μm size range, were found for most organic compounds in both seasons, suggesting gas-to-particle transformation after emission. A second minor mode at larger particles (3.0-7.5 μm) was observed for C 19 and certain OCPs suggesting redistribution due to volatilization and condensation.

  4. Urban Air Pollution: State of the Science.

    ERIC Educational Resources Information Center

    Seinfeld, John H.

    1989-01-01

    Describes the highly complex mixture of gaseous and particulate matter found in urban air. Explains progress made in the understanding of the physics and chemistry of air pollution, the effects of precursors on ozone, the role of biogenic hydrocarbons, and the principal benefit of methanol-fueled vehicles. (RT)

  5. Metals in Particulate Pollutants Affect Peak Expiratory Flow of Schoolchildren

    PubMed Central

    Hong, Yun-Chul; Hwang, Seung-Sik; Kim, Jin Hee; Lee, Kyoung-Ho; Lee, Hyun-Jung; Lee, Kwan-Hee; Yu, Seung-Do; Kim, Dae-Seon

    2007-01-01

    Background The contribution of the metal components of particulate pollutants to acute respiratory effects has not been adequately evaluated. Moreover, little is known about the effects of genetic polymorphisms of xenobiotic metabolism on pulmonary function. Objectives This study was conducted to assess lung function decrement associated with metal components in particulate pollutants and genetic polymorphisms of glutathione S-transferase M1 and T1. Methods We studied 43 schoolchildren who were in the 3rd to 6th grades. Each student measured peak expiratory flow rate three times a day for 42 days. Particulate air concentrations were monitored every day, and the concentrations of iron, manganese, lead, zinc, and aluminum in the particles were measured. Glutathione S-transferase M1 and T1 genetic polymorphisms were determined using DNA extracted from participant buccal washings. We used a mixed linear regression model to estimate the association between peak expiratory flow rate and particulate air pollutants. Results We found significant reduction in the peak expiratory flow rate after the children’s exposure to particulate pollutants. The effect was shown most significantly 1 day after exposure to the ambient particles. Manganese and lead in the particles also reduced the peak expiratory flow rate. Genetic polymorphisms of glutathione S-transferase M1 and T1 did not significantly affect peak expiratory flow rate. Conclusions This study demonstrated that particulate pollutants and metals such as manganese and lead in the particles are associated with a decrement of peak expiratory flow rate. These effects were robust even with consideration of genetic polymorphisms of glutathione S-transferase. PMID:17431494

  6. Health risk assessment for air pollutants: alterations in lung and cardiac gene expression in mice exposed to Milano winter fine particulate matter (PM2.5).

    PubMed

    Sancini, Giulio; Farina, Francesca; Battaglia, Cristina; Cifola, Ingrid; Mangano, Eleonora; Mantecca, Paride; Camatini, Marina; Palestini, Paola

    2014-01-01

    Oxidative stress, pulmonary and systemic inflammation, endothelial cell dysfunction, atherosclerosis and cardiac autonomic dysfunction have been linked to urban particulate matter exposure. The chemical composition of airborne pollutants in Milano is similar to those of other European cities though with a higher PM2.5 fraction. Milano winter fine particles (PM2.5win) are characterized by the presence of nitrate, organic carbon fraction, with high amount of polycyclic aromatic hydrocarbons and elements such as Pb, Al, Zn, V, Fe, Cr and others, with a negligible endotoxin presence. In BALB/c mice, we examined, at biochemical and transcriptomic levels, the adverse effects of repeated Milano PM2.5win exposure in lung and heart. We found that ET-1, Hsp70, Cyp1A1, Cyp1B1 and Hsp-70, HO-1, MPO respectively increased within lung and heart of PM2.5win-treated mice. The PM2.5win exposure had a strong impact on global gene expression of heart tissue (181 up-regulated and 178 down-regulated genes) but a lesser impact on lung tissue (14 up-regulated genes and 43 down-regulated genes). Focusing on modulated genes, in lung we found two- to three-fold changes of those genes related to polycyclic aromatic hydrocarbons exposure and calcium signalling. Within heart the most striking aspect is the twofold to threefold increase in collagen and laminin related genes as well as in genes involved in calcium signaling. The current study extends our previous findings, showing that repeated instillations of PM2.5win trigger systemic adverse effects. PM2.5win thus likely poses an acute threat primarily to susceptible people, such as the elderly and those with unrecognized coronary artery or structural heart disease. The study of genomic responses will improve understanding of disease mechanisms and enable future clinical testing of interventions against the toxic effects of air pollutant. PMID:25296036

  7. Health Risk Assessment for Air Pollutants: Alterations in Lung and Cardiac Gene Expression in Mice Exposed to Milano Winter Fine Particulate Matter (PM2.5)

    PubMed Central

    Battaglia, Cristina; Cifola, Ingrid; Mangano, Eleonora; Mantecca, Paride; Camatini, Marina; Palestini, Paola

    2014-01-01

    Oxidative stress, pulmonary and systemic inflammation, endothelial cell dysfunction, atherosclerosis and cardiac autonomic dysfunction have been linked to urban particulate matter exposure. The chemical composition of airborne pollutants in Milano is similar to those of other European cities though with a higher PM2.5 fraction. Milano winter fine particles (PM2.5win) are characterized by the presence of nitrate, organic carbon fraction, with high amount of polycyclic aromatic hydrocarbons and elements such as Pb, Al, Zn, V, Fe, Cr and others, with a negligible endotoxin presence. In BALB/c mice, we examined, at biochemical and transcriptomic levels, the adverse effects of repeated Milano PM2.5win exposure in lung and heart. We found that ET-1, Hsp70, Cyp1A1, Cyp1B1 and Hsp-70, HO-1, MPO respectively increased within lung and heart of PM2.5win-treated mice. The PM2.5win exposure had a strong impact on global gene expression of heart tissue (181 up-regulated and 178 down-regulated genes) but a lesser impact on lung tissue (14 up-regulated genes and 43 down-regulated genes). Focusing on modulated genes, in lung we found two- to three-fold changes of those genes related to polycyclic aromatic hydrocarbons exposure and calcium signalling. Within heart the most striking aspect is the twofold to threefold increase in collagen and laminin related genes as well as in genes involved in calcium signaling. The current study extends our previous findings, showing that repeated instillations of PM2.5win trigger systemic adverse effects. PM2.5win thus likely poses an acute threat primarily to susceptible people, such as the elderly and those with unrecognized coronary artery or structural heart disease. The study of genomic responses will improve understanding of disease mechanisms and enable future clinical testing of interventions against the toxic effects of air pollutant. PMID:25296036

  8. Air Pollution Exposure

    PubMed Central

    Balmes, John R.; Collard, Harold R.

    2015-01-01

    Air pollution exposure is a well-established risk factor for several adverse respiratory outcomes, including airways diseases and lung cancer. Few studies have investigated the relationship between air pollution and interstitial lung disease (ILD) despite many forms of ILD arising from environmental exposures. There are potential mechanisms by which air pollution could cause, exacerbate, or accelerate the progression of certain forms of ILD via pulmonary and systemic inflammation as well as oxidative stress. This article will review the current epidemiologic and translational data supporting the plausibility of this relationship and propose a new conceptual framework for characterizing novel environmental risk factors for these forms of lung disease. PMID:25846532

  9. Investigating Air Pollution

    ERIC Educational Resources Information Center

    Carter, Edward J.

    1977-01-01

    Describes an experiment using live plants and cigarette smoke to demonstrate the effects of air pollution on a living organism. Procedures include growth of the test plants in glass bottles, and construction and operation of smoking machine. (CS)

  10. AIR POLLUTION CONTROL TECHNOLOGIES

    EPA Science Inventory

    This is a chapter for John Wiley & Son's Mechanical Engineers' Handbook, and covers issues involving air pollution control. Various technologies for controlling sulfur oxides is considered including fuel desulfurization. It also considers control of nitrogen oxides including post...

  11. Associations of autophagy with lung diffusion capacity and oxygen saturation in severe COPD: effects of particulate air pollution

    PubMed Central

    Lee, Kang-Yun; Chiang, Ling-Ling; Ho, Shu-Chuan; Liu, Wen-Te; Chen, Tzu-Tao; Feng, Po-Hao; Su, Chien-Ling; Chuang, Kai-Jen; Chang, Chih-Cheng; Chuang, Hsiao-Chi

    2016-01-01

    Although traffic exposure has been associated with the development of COPD, the role of particulate matter <10 μm in aerodynamic diameter (PM10) in the pathogenesis of COPD is not yet fully understood. We assessed the 1-year effect of exposure to PM10 on the pathogenesis of COPD in a retrospective cohort study. We recruited 53 subjects with COPD stages III and IV and 15 healthy controls in a hospital in Taiwan. We estimated the 1-year annual mean levels of PM10 at all residential addresses of the cohort participants. Changes in PM10 for the 1-year averages in quintiles were related to diffusion capacity of the lung for carbon monoxide levels (r=−0.914, P=0.029), changes in the pulse oxygen saturation (ΔSaO2; r=−0.973, P=0.005), receptor for advanced glycation end-products (r=−0.881, P=0.048), interleukin-6 (r=0.986, P=0.002), ubiquitin (r=0.940, P=0.017), and beclin 1 (r=0.923, P=0.025) in COPD. Next, we observed that ubiquitin was correlated with ΔSaO2 (r=−0.374, P=0.019). Beclin 1 was associated with diffusion capacity of the lung for carbon monoxide (r=−0.362, P=0.028), ΔSaO2 (r=−0.354, P=0.032), and receptor for advanced glycation end-products (r=−0.471, P=0.004). Autophagy may be an important regulator of the PM10-related pathogenesis of COPD, which could cause deterioration in the lung diffusion capacity and oxygen saturation. PMID:27468231

  12. Relation between sources of particulate air pollution and biological effect parameters in samples from four European cities: An exploratory study

    SciTech Connect

    Steerenberg, P.A.; van Amelsvoort, L.; Lovik, M.; Hetland, R.B.; Alberg, T.; Halatek, T.; Bloemen, H.J.T.; Rydzynski, K.; Swaen, G.; Schwarze, P.; Dybing, E.; Cassee, F.R.

    2006-05-15

    Given that there are widely different prevalence rates of respiratory allergies and asthma between the countries of Europe and that exposure to ambient particulate matter (PM) is substantial in urban environments throughout Europe, an EU project entitled 'Respiratory Allergy and Inflammation Due to Ambient Particles' (RAIAP) was set up. The project focused on the role of physical and chemical composition of PM on release of cytokines of cells in vitro, on respiratory inflammation in vivo, and on adjuvant potency in allergy animal models. Coarse (2.5 - 10 {mu}m) and fine (0.15 - 2.5 {mu}m) particles were collected during the spring, summer and winter in Rome ( I), Oslo (N), Lodz (PL), and Amsterdam (NL). Markers within the same model were often well correlated. Markers of inflammation in the in vitro and in vivo models also showed a high degree of correlation. In contrast, correlation between parameters in the different allergy models and between allergy and inflammation markers was generally poor. This suggests that various bioassays are needed to assess the potential hazard of PM. The present study also showed that by clustering chemical constituents of PM based on the overall response pattern in the bioassays, five distinct groups could be identified. The clusters of traffic, industrial combustion and/or incinerators, and combustion of black and brown coal/wood smoke were associated primarily with adjuvant activity for respiratory allergy, whereas clusters of crustal of material and sea spray are predominantly associated with measures for inflammation and acute toxicity. The present study has shown that biological effect of PM can be linked to one or more PM emission sources and that this linkage requires a wide range of bioassays.

  13. Air pollution from aircraft

    NASA Technical Reports Server (NTRS)

    Heywood, J. B.; Fay, J. A.; Chigier, N. A.

    1979-01-01

    A series of fundamental problems related to jet engine air pollution and combustion were examined. These include soot formation and oxidation, nitric oxide and carbon monoxide emissions mechanisms, pollutant dispension, flow and combustion characteristics of the NASA swirl can combustor, fuel atomization and fuel-air mixing processes, fuel spray drop velocity and size measurement, ignition and blowout. A summary of this work, and a bibliography of 41 theses and publications which describe this work, with abstracts, is included.

  14. Air Pollution Surveillance Systems

    ERIC Educational Resources Information Center

    Morgan, George B.; And Others

    1970-01-01

    Describes atmospheric data monitoring as part of total airpollution control effort. Summarizes types of gaseous, liquid and solid pollutants and their sources; contrast between urban and rural environmental air quality; instrumentation to identify pollutants; and anticipated new non-wet chemical physical and physiochemical techniques tor cetection…

  15. [Carbon in particulate matter in the air].

    PubMed

    Godec, Ranka

    2008-12-01

    Carbon in Particulate Matter in the AirCarbon (Latin carbo) in elemental form appears as diamond, graphite, fullerene, and black amorphous carbon. Black amorphous carbon can be found in atmospheric aerosols and its main forms are elemental (EC), organic (OC), and carbonate (CC) carbon. Atmospheric carbon particles are transmitted through more than 70 sources of air pollutants. Elemental carbon is the primary pollutant, which results from incomplete combustion of fossil and biomass fuels. It also appears as soot, in sediment, soil, and ice core. Many quantitative determinations of elemental carbon are based on its chemical inertness, thermal stability, and visual features. Organic carbon includes organic compounds such as polycyclic aromatic hydrocarbons (PAH), polychlorinated biphenyls (PCB), polychlorinated dibenzo-p-dioxins and furans, polybrominated diphenylethers, and other organic pollutants are the products of combustion and formation of secondary organic aerosols.The aim of this paper was to describe different forms of carbon in the atmosphere, how they affect people, climate, and the atmosphere, and to give an overview of different methods for their determination. PMID:19064370

  16. Proinflammatory and cytotoxic effects of Mexico City air pollution particulate matter in vitro are dependent on particle size and composition.

    PubMed Central

    Osornio-Vargas, Alvaro R; Bonner, James C; Alfaro-Moreno, Ernesto; Martínez, Leticia; García-Cuellar, Claudia; Ponce-de-León Rosales, Sergio; Miranda, Javier; Rosas, Irma

    2003-01-01

    Exposure to urban airborne particulate matter (PM) is associated with adverse health effects. We previously reported that the cytotoxic and proinflammatory effects of Mexico City PM10 (less than or equal to 10 micro m mean aerodynamic diameter) are determined by transition metals and endotoxins associated with these particles. However, PM2.5 (less than or equal to 2.5 micro m mean aerodynamic diameter) could be more important as a human health risk because this smaller PM has the potential to reach the distal lung after inhalation. In this study, we compared the cytotoxic and proinflammatory effects of Mexico City PM10 with those of PM2.5 using the murine monocytic J774A.1 cell line in vitro. PMs were collected from the northern zone or the southeastern zone of Mexico City. Elemental composition and bacterial endotoxin on PMs were measured. Tumor necrosis factor-alpha (TNF-alpha) and interleukin-6 (IL-6) production by J774A.1 cells was measured in the presence or absence of recombinant endotoxin-neutralizing protein (rENP). Both northern and southeastern PMs contained endotoxin and a variety of transition metals. Southeastern PM10 contained the highest endotoxin levels, 2-fold higher than that in northern PM10. Northern and southeastern PM2.5 contained the lowest endotoxin levels. Accordingly, southeastern PM10 was the most potent in causing secretion of the proinflammatory cytokines TNF-alpha and IL-6. All PM2.5 and PM10 samples caused cytotoxicity, but northern PMs were the most toxic. Cytokine secretion induced by southeastern PM10 was reduced 50-75% by rENP. These results indicate major differences in PM10 and PM2.5. PM2.5 induces cytotoxicity in vitro through an endotoxin-independent mechanism that is likely mediated by transition metals. In contrast, PM10 with relatively high levels of endotoxin induces proinflammatory cytokine release via an endotoxin-dependent mechanism. PMID:12896848

  17. Cough and environmental air pollution in China.

    PubMed

    Zhang, Qingling; Qiu, Minzhi; Lai, Kefang; Zhong, Nanshan

    2015-12-01

    With fast-paced urbanization and increased energy consumption in rapidly industrialized modern China, the level of outdoor and indoor air pollution resulting from industrial and motor vehicle emissions has been increasing at an accelerated rate. Thus, there is a significant increase in the prevalence of respiratory symptoms such as coughing, wheezing, and decreased pulmonary function. Experimental exposure research and epidemiological studies have indicated that exposure to particulate matter, ozone, nitrogen dioxide, and environmental tobacco smoke have a harmful influence on development of respiratory diseases and are significantly associated with cough and wheeze. This review mainly discusses the effect of air pollutants on respiratory health, particularly with respect to cough, the links between air pollutants and microorganisms, and air pollutant sources. Particular attention is paid to studies in urban areas of China where the levels of ambient and indoor air pollution are significantly higher than World Health Organization recommendations.

  18. Simultaneous Exposure to Multiple Air Pollutants Influences Alveolar Epithelial Cell Ion Transport

    EPA Science Inventory

    Purpose. Air pollution sources generally release multiple pollutants simultaneously and yet, research has historically focused on the source-to-health linkages of individual air pollutants. We recently showed that exposure of alveolar epithelial cells to a combination of particul...

  19. Air Pollution Primer.

    ERIC Educational Resources Information Center

    National Tuberculosis and Respiratory Disease Association, New York, NY.

    As the dangers of polluted air to the health and welfare of all individuals became increasingly evident and as the complexity of the causes made responsibility for solutions even more difficult to fix, the National Tuberculosis and Respiratory Disease Association felt obligated to give greater emphasis to its clean air program. To this end they…

  20. A single exposure to particulate or gaseous air pollution increases the risk of aconitine-induced cardiac arrythmia in hypertensive rats

    EPA Science Inventory

    Epidemiological studies demonstrate a significant association between arrhythmias and air pollution exposure. Sensitivity to aconitine-induced arrhythmia has been used repeatedly to examine the factors that increase the risk of such cardiac electrical dysfunction. In this study, ...

  1. Biomolecular Markers within the Core Axis of Aging and Particulate Air Pollution Exposure in the Elderly: A Cross-Sectional Study

    PubMed Central

    Pieters, Nicky; Janssen, Bram G.; Dewitte, Harrie; Cox, Bianca; Cuypers, Ann; Lefebvre, Wouter; Smeets, Karen; Vanpoucke, Charlotte; Plusquin, Michelle; Nawrot, Tim S.

    2015-01-01

    .5. Citation: Pieters N, Janssen BG, Dewitte H, Cox B, Cuypers A, Lefebvre W, Smeets K, Vanpoucke C, Plusquin M, Nawrot TS. 2016. Biomolecular markers within the core axis of aging and particulate air pollution exposure in the elderly: a cross-sectional study. Environ Health Perspect 124:943–950; http://dx.doi.org/10.1289/ehp.1509728 PMID:26672058

  2. Impact of wood combustion for secondary heating and recreational purposes on particulate air pollution in a suburb in Finland.

    PubMed

    Yli-Tuomi, Tarja; Siponen, Taina; Taimisto, R Pauliina; Aurela, Minna; Teinilä, Kimmo; Hillamo, Risto; Pekkanen, Juha; Salonen, Raimo O; Lanki, Timo

    2015-04-01

    Little information is available on the concentrations of ambient fine particles (PM2.5) in residential areas where wood combustion is common for recreational purposes and secondary heating. Further, the validity of central site measurements of PM2.5 as a measure of exposure is unclear. Therefore, outdoor PM2.5 samples were repeatedly collected at a central site and home outdoor locations from a panel of 29 residents in a suburb in Kuopio, Finland. Source apportionment results from the central site were used to estimate the contributions from local sources, including wood combustion, to PM2.5 and absorption coefficient (ABS) at home outdoor locations. Correlations between the central and home outdoor concentrations of PM2.5, ABS, and their local components were analyzed for each home. At the central site, the average PM2.5 was 6.0 μg m(-)(3) during the heating season, and the contribution from wood combustion (16%) was higher than the contribution from exhaust emissions (12%). Central site measurements predicted poorly daily variation in PM2.5 from local sources. In conclusion, wood combustion significantly affects air quality also in areas where it is not the primary heating source. In epidemiological panel studies, central site measurements may not sufficiently capture daily variation in exposure to PM2.5 from local wood combustion.

  3. Impact of wood combustion for secondary heating and recreational purposes on particulate air pollution in a suburb in Finland.

    PubMed

    Yli-Tuomi, Tarja; Siponen, Taina; Taimisto, R Pauliina; Aurela, Minna; Teinilä, Kimmo; Hillamo, Risto; Pekkanen, Juha; Salonen, Raimo O; Lanki, Timo

    2015-04-01

    Little information is available on the concentrations of ambient fine particles (PM2.5) in residential areas where wood combustion is common for recreational purposes and secondary heating. Further, the validity of central site measurements of PM2.5 as a measure of exposure is unclear. Therefore, outdoor PM2.5 samples were repeatedly collected at a central site and home outdoor locations from a panel of 29 residents in a suburb in Kuopio, Finland. Source apportionment results from the central site were used to estimate the contributions from local sources, including wood combustion, to PM2.5 and absorption coefficient (ABS) at home outdoor locations. Correlations between the central and home outdoor concentrations of PM2.5, ABS, and their local components were analyzed for each home. At the central site, the average PM2.5 was 6.0 μg m(-)(3) during the heating season, and the contribution from wood combustion (16%) was higher than the contribution from exhaust emissions (12%). Central site measurements predicted poorly daily variation in PM2.5 from local sources. In conclusion, wood combustion significantly affects air quality also in areas where it is not the primary heating source. In epidemiological panel studies, central site measurements may not sufficiently capture daily variation in exposure to PM2.5 from local wood combustion. PMID:25734752

  4. Outdoor air pollution: a global perspective.

    PubMed

    Huang, Yuh-Chin T

    2014-10-01

    Although the air quality in Western countries has continued to improve over the past decades, rapid economic growth in developing countries has left air quality in many cities notoriously poor. The World Health Organization estimates that urban outdoor air pollution is estimated to cause 1.3 million deaths worldwide per year. The primary health concerns of outdoor air pollution come from particulate matter less than 2.5 μm (PM2.5) and ozone (O3). Short-term exposure to PM2.5 increases cardiopulmonary morbidity and mortality. Long-term exposure to PM2.5 has been linked to adverse perinatal outcomes and lung cancer. Excessive O3 exposure is known to increase respiratory morbidity. Patients with chronic cardiopulmonary diseases are more susceptible to the adverse effects of air pollution. Counseling these patients about air pollution and the associated risks should be part of the regular management plans in clinical practice.

  5. Long-term exposure to fine particulate matter air pollution and the risk of lung cancer among participants of the Canadian National Breast Screening Study.

    PubMed

    Tomczak, Anna; Miller, Anthony B; Weichenthal, Scott A; To, Teresa; Wall, Claus; van Donkelaar, Aaron; Martin, Randall V; Crouse, Dan Lawson; Villeneuve, Paul J

    2016-11-01

    Recently, air pollution has been classified as a carcinogen largely on the evidence of epidemiological studies of lung cancer. However, there have been few prospective studies that have evaluated associations between fine particulate matter (PM2.5 ) and cancer at lower concentrations. We conducted a prospective analysis of 89,234 women enrolled in the Canadian National Breast Screening Study between 1980 and 1985, and for whom residential measures of PM2.5 could be assigned. The cohort was linked to the Canadian Cancer Registry to identify incident lung cancers through 2004. Surface PM2.5 concentrations were estimated using satellite data. Cox proportional hazards models were used to characterize associations between PM2.5 and lung cancer. Hazard ratios (HRs) and 95% confidence intervals (CIs) computed from these models were adjusted for several individual-level characteristics, including smoking. The cohort was composed predominantly of Canadian-born (82%), married (80%) women with a median PM2.5 exposure of 9.1 µg/m(3) . In total, 932 participants developed lung cancer. In fully adjusted models, a 10 µg/m(3) increase in PM2.5 was associated with an elevated risk of lung cancer (HR: 1.34; 95% CI = 1.10, 1.65). The strongest associations were observed with small cell carcinoma (HR: 1.53; 95% CI = 0.93, 2.53) and adenocarcinoma (HR: 1.44; 95% CI = 1.06, 1.97). Stratified analyses suggested increased PM2.5 risks were limited to those who smoked cigarettes. Our findings are consistent with previous epidemiological investigations of long-term exposure to PM2.5 and lung cancer. Importantly, they suggest associations persist at lower concentrations such as those currently found in Canadian cities.

  6. Long-term exposure to fine particulate matter air pollution and the risk of lung cancer among participants of the Canadian National Breast Screening Study.

    PubMed

    Tomczak, Anna; Miller, Anthony B; Weichenthal, Scott A; To, Teresa; Wall, Claus; van Donkelaar, Aaron; Martin, Randall V; Crouse, Dan Lawson; Villeneuve, Paul J

    2016-11-01

    Recently, air pollution has been classified as a carcinogen largely on the evidence of epidemiological studies of lung cancer. However, there have been few prospective studies that have evaluated associations between fine particulate matter (PM2.5 ) and cancer at lower concentrations. We conducted a prospective analysis of 89,234 women enrolled in the Canadian National Breast Screening Study between 1980 and 1985, and for whom residential measures of PM2.5 could be assigned. The cohort was linked to the Canadian Cancer Registry to identify incident lung cancers through 2004. Surface PM2.5 concentrations were estimated using satellite data. Cox proportional hazards models were used to characterize associations between PM2.5 and lung cancer. Hazard ratios (HRs) and 95% confidence intervals (CIs) computed from these models were adjusted for several individual-level characteristics, including smoking. The cohort was composed predominantly of Canadian-born (82%), married (80%) women with a median PM2.5 exposure of 9.1 µg/m(3) . In total, 932 participants developed lung cancer. In fully adjusted models, a 10 µg/m(3) increase in PM2.5 was associated with an elevated risk of lung cancer (HR: 1.34; 95% CI = 1.10, 1.65). The strongest associations were observed with small cell carcinoma (HR: 1.53; 95% CI = 0.93, 2.53) and adenocarcinoma (HR: 1.44; 95% CI = 1.06, 1.97). Stratified analyses suggested increased PM2.5 risks were limited to those who smoked cigarettes. Our findings are consistent with previous epidemiological investigations of long-term exposure to PM2.5 and lung cancer. Importantly, they suggest associations persist at lower concentrations such as those currently found in Canadian cities. PMID:27380650

  7. Ambient particulate air pollution and ectopy--the environmental epidemiology of arrhythmogenesis in Women's Health Initiative Study, 1999-2004.

    PubMed

    Liao, Duanping; Whitsel, Eric A; Duan, Yinkang; Lin, Hung-Mo; Quibrera, P Miguel; Smith, Richard; Peuquet, Donna J; Prineas, Ronald J; Zhang, Zhu-Ming; Anderson, Garnet

    2009-01-01

    The relationships between ambient PM(2.5) and PM(10) and arrhythmia and the effect modification by cigarette smoking were investigated. Data from U.S. Environmental Protection Agency (EPA) air quality monitors and an established national-scale, log-normal kriging method were used to spatially estimate daily mean concentrations of PM at addresses of 57,422 individuals from 59 examination sites in 24 U.S. states in 1999-2004. The acute and subacute exposures were estimated as mean, geocoded address-specific PM concentrations on the day of, 0-2 d before, and averaged over 30 d before the electrocardiogram (ECG) (Lag(0); Lag(1); Lag(2); Lag(1-30)). At the time of standard 12-lead resting ECG, the mean age (SD) of participants was 67.5 (6.9) yr (84% non-Hispanic White; 6% current smoker; 15% with coronary heart disease; 5% with ectopy). After the identification of significant effect modifiers, two-stage random-effects models were used to calculate center-pooled odds ratios and 95% confidence intervals (OR, 95% CI) of arrhythmia per 10 mug/m(3) increase in PM concentrations. Among current smokers, Lag(0) and Lag(1) PM concentrations were significantly associated ventricular ectopy (VE)-the OR (95% CI) for VE among current smokers was 2 (1.32-3.3) and 1.32 (1.07-1.65) at Lag(1) PM(2.5) and PM(10), respectively. The interactions between current smoking and acute exposures (Lag(0); Lag(1); Lag(2)) were significant in relationship to VE. Acute exposures were not significantly associated with supraventricular ectopy (SVE), or with VE among nonsmokers. Subacute (Lag(1-30)) exposures were not significantly associated with arrhythmia. Acute PM(2.5) and PM(10) exposure is directly associated with the odds of VE among smokers, suggesting that they are more vulnerable to the arrhythmogenic effects of PM.

  8. Two essays in environmental economics: An optimal control approach to cross-media variation in the behavior and effects of pollution, and Exploring the determinants of air quality improvements: An empirical study of trends in particulates

    SciTech Connect

    Eiswerth, M.E.

    1988-01-01

    The first essay addresses the problem that society confronts in determining optimal methods of disposing of pollutants. The choice of disposal strategy for any given pollutant often determines the environmental medium into which the pollutant is released. In turn, choice of medium may influence both the persistence of the pollutant and the effects that it has on human health. Because the choice of technology has intertemporal implications, an optimal-control model of the problem of allocating a pollutant between two different disposal methods is formulated and characterized. The second essay presents an empirical test of several hypotheses concerning the determinants of changes in US air quality since the late 1960s. These hypotheses are: (1) incentives established by federal clean air legislation have provided a significant impetus to improvements in air quality; (2) trends in the levels of industrial activities, not caused by federal legislation, have led to declines in pollution; and (3) differences across jurisdictions in socio-economic characteristics and unionization have influenced variations in local trends. Cross-section regression analysis was performed on trends in particulate levels at specific air monitoring sites for two time periods: 1967-77 and 1977-82.

  9. Air pollution measurements from satellites

    NASA Technical Reports Server (NTRS)

    Ludwig, C. B.; Griggs, M.; Malkmus, W.; Bartle, E. R.

    1973-01-01

    A study is presented on the remote sensing of gaseous and particulate air pollutants which is an extension of a previous report. Pollutants can be observed by either active or passive remote sensing systems. Calculations discussed herein indicate that tropospheric CO, CO2, SO2, NO2, NH3, HCHO, and CH4 can be measured by means of nadir looking passive systems. Additional species such as NO, HNO3, O3, and H2O may be measured in the stratosphere through a horizon experiment. A brief theoretical overview of resonance Raman scattering and resonance fluorescence is given. It is found that radiance measurements are most promising for general global applications, and that stratospheric aerosols may be measured using a sun occultation technique. The instrumentation requirements for both active and passive systems are examined and various instruments now under development are described.

  10. EFFECT OF AIR-POLLUTION CONTROL ON DEATH RATES IN DUBLIN, IRELAND: AN INTERVENTION STUDY. (R827353C006)

    EPA Science Inventory

    Background Particulate air pollution episodes have been associated with increased daily death. However, there is little direct evidence that diminished particulate air pollution concentrations would lead to reductions in death rates. We assessed the effect of ...

  11. Adverse health effects of outdoor air pollutants.

    PubMed

    Curtis, Luke; Rea, William; Smith-Willis, Patricia; Fenyves, Ervin; Pan, Yaqin

    2006-08-01

    Much research on the health effects of outdoor air pollution has been published in the last decade. The goal of this review is to concisely summarize a wide range of the recent research on health effects of many types of outdoor air pollution. A review of the health effects of major outdoor air pollutants including particulates, carbon monoxide, sulfur and nitrogen oxides, acid gases, metals, volatile organics, solvents, pesticides, radiation and bioaerosols is presented. Numerous studies have linked atmospheric pollutants to many types of health problems of many body systems including the respiratory, cardiovascular, immunological, hematological, neurological and reproductive/ developmental systems. Some studies have found increases in respiratory and cardiovascular problems at outdoor pollutant levels well below standards set by such agencies as the US EPA and WHO. Air pollution is associated with large increases in medical expenses, morbidity and is estimated to cause about 800,000 annual premature deaths worldwide [Cohen, A.J., Ross Alexander, H., Ostro, B., Pandey, K.D., Kryzanowski, M., Kunzail, N., et al., 2005. The global burden of disease due to outdoor air pollution. J Toxicol Environ Health A. 68: 1-7.]. Further research on the health effects of air pollution and air pollutant abatement methods should be very helpful to physicians, public health officials, industrialists, politicians and the general public. PMID:16730796

  12. Effects on health of air pollution: a narrative review.

    PubMed

    Mannucci, Pier Mannuccio; Harari, Sergio; Martinelli, Ida; Franchini, Massimo

    2015-09-01

    Air pollution is a complex and ubiquitous mixture of pollutants including particulate matter, chemical substances and biological materials. There is growing awareness of the adverse effects on health of air pollution following both acute and chronic exposure, with a rapidly expanding body of evidence linking air pollution with an increased risk of respiratory (e.g., asthma, chronic obstructive pulmonary disease, lung cancer) and cardiovascular disease (e.g., myocardial infarction, heart failure, cerebrovascular accidents). Elderly subjects, pregnant women, infants and people with prior diseases appear especially susceptible to the deleterious effects of ambient air pollution. The main diseases associated with exposure to air pollutants will be summarized in this narrative review.

  13. Air pollution source identification

    NASA Technical Reports Server (NTRS)

    Fordyce, J. S.

    1975-01-01

    The techniques available for source identification are reviewed: remote sensing, injected tracers, and pollutants themselves as tracers. The use of the large number of trace elements in the ambient airborne particulate matter as a practical means of identifying sources is discussed. Trace constituents are determined by sensitive, inexpensive, nondestructive, multielement analytical methods such as instrumental neutron activation and charged particle X-ray fluorescence. The application to a large data set of pairwise correlation, the more advanced pattern recognition-cluster analysis approach with and without training sets, enrichment factors, and pollutant concentration rose displays for each element is described. It is shown that elemental constituents are related to specific source types: earth crustal, automotive, metallurgical, and more specific industries. A field-ready source identification system based on time and wind direction resolved sampling is described.

  14. Pupils' Understanding of Air Pollution

    ERIC Educational Resources Information Center

    Dimitriou, Anastasia; Christidou, Vasilia

    2007-01-01

    This paper reports on a study of pupils' knowledge and understanding of atmospheric pollution. Specifically, the study is aimed at identifying: 1) the extent to which pupils conceptualise the term "air pollution" in a scientifically appropriate way; 2) pupils' knowledge of air pollution sources and air pollutants; and 3) pupils' knowledge of air…

  15. Conceptual Model for Assessing Criteria Air Pollutants in a Multipollutant Context: A Modified Adverse Outcome Pathway Approach

    EPA Science Inventory

    Background: Air pollution consists of a complex mixture of particulate and gaseous components. Individual criteria and other hazardous air pollutants have been linked to adverse respiratory and cardiovascular health outcomes. However, assessing risk of air pollutant mixtures is d...

  16. Identifying subgroups of the general population that may be susceptible to short-term increases in particulate air pollution: a time-series study in Montreal, Quebec.

    PubMed

    Goldberg, M S; Bailar, J C; Burnett, R T; Brook, J R; Tamblyn, R; Bonvalot, Y; Ernst, P; Flegel, K M; Singh, R K; Valois, M F

    2000-10-01

    This study was undertaken in order to shed light on which groups of the general population may be susceptible to the effects of ambient particles. The objectives of the study were (1) to determine whether concentrations of particles in the ambient air of Montreal, Quebec, were associated with daily all-cause and cause-specific mortality in the period 1984 to 1993, and (2) to determine whether groups of the population had higher than average risks of death from exposure to particles. From the network of fixed-site air pollution monitors in Montreal we obtained daily mean levels of various measures of particles, gaseous pollutants, and weather variables measured at Dorval International Airport. We also used measurements of sulfate from an acid rain monitoring station 150 km southeast of the city (Sutton, Quebec). We estimated associations for particulate matter (PM) with an aerodynamic diameter of 10 microns or smaller (PM10), or 2.5 microns or smaller (PM2.5), total suspended particles (TSP), coefficient of haze (COH), an extinction coefficient, and sulfate. Because substantial data for fine particles were missing, we developed a regression model to predict PM2.5 and to predict sulfate from PM2.5. In the main body of the report, we present results for COH, predicted PM2.5, and sulfate. Detailed results for all pollutants are included in Appendices H through O, which are available on request from Health Effects Institute and from the HEI web site at www.healtheffects.org. To address the first objective, we made use of the underlying causes of death among all 140,939 residents of Montreal who died between 1984 and 1993. We regressed the logarithm of daily counts of cause-specific mortality on the daily mean levels for a variety of measures of particles, accounting for seasonal and subseasonal fluctuations in the mortality time series, overdispersion, and weather factors. To address the second objective, we developed algorithms to define conditions that subjects had

  17. AIR POLLUTION AND HUMMINGBIRDS

    EPA Science Inventory

    A multidisciplinary team of EPA-RTP ORD pulmonary toxicologists, engineers, ecologists, and statisticians have designed a study of how ground-level ozone and other air pollutants may influence feeding activity of the ruby-throated hummingbird (Archilochus colubris). Be...

  18. Air pollution and stroke - an overview of the evidence base.

    PubMed

    Maheswaran, Ravi

    2016-08-01

    Air pollution is being increasingly recognized as a significant risk factor for stroke. There are numerous sources of air pollution including industry, road transport and domestic use of biomass and solid fuels. Early reports of the association between air pollution and stroke come from studies investigating health effects of severe pollution episodes. Several daily time series and case-crossover studies have reported associations with stroke. There is also evidence linking chronic air pollution exposure with stroke and with reduced survival after stroke. A conceptual framework linking air pollution exposure and stroke is proposed. It links acute and chronic exposure to air pollution with pathways to acute and chronic effects on stroke risk. Current evidence regarding potential mechanisms mainly relate to particulate air pollution. Whilst further evidence would be useful, there is already sufficient evidence to support consideration of reduction in air pollution as a preventative measure to reduce the stroke burden globally.

  19. Air pollution and stroke - an overview of the evidence base.

    PubMed

    Maheswaran, Ravi

    2016-08-01

    Air pollution is being increasingly recognized as a significant risk factor for stroke. There are numerous sources of air pollution including industry, road transport and domestic use of biomass and solid fuels. Early reports of the association between air pollution and stroke come from studies investigating health effects of severe pollution episodes. Several daily time series and case-crossover studies have reported associations with stroke. There is also evidence linking chronic air pollution exposure with stroke and with reduced survival after stroke. A conceptual framework linking air pollution exposure and stroke is proposed. It links acute and chronic exposure to air pollution with pathways to acute and chronic effects on stroke risk. Current evidence regarding potential mechanisms mainly relate to particulate air pollution. Whilst further evidence would be useful, there is already sufficient evidence to support consideration of reduction in air pollution as a preventative measure to reduce the stroke burden globally. PMID:27494962

  20. Controlling Indoor Air Pollution from Moxibustion

    PubMed Central

    Lu, Chung-Yen; Kang, Sy-Yuan; Liu, Shu-Hui; Mai, Cheng-Wei; Tseng, Chao-Heng

    2016-01-01

    Indoor air quality (IAQ) control of hospitals plays a critical role in protecting both hospital staffs and patients, particularly those who are highly susceptible to the adverse effects of indoor noxious hazards. However, moxibustion in outpatient departments (OPDs) of traditional Chinese medicine (TCM) may be a source of indoor air pollution in hospitals. Some studies have investigated indoor air pollution during moxibustion in Chinese medicine clinics (CMCs) and moxibustion rooms, demonstrating elevated air pollutants that pose a threat to the health of medical staff and patients. Our study investigated the indoor air pollutants of indoor carbon dioxide (CO2), carbon monoxide (CO), formaldehyde (HCHO), total volatile organic compounds (TVOCs), airborne particulate matter with a diameter of ≤10 µm (PM10) and ≤2.5 µm (PM2.5) during moxibustion in an acupuncture and moxibustion room of the OPD in a hospital in Taipei. To evaluate the different control strategies for indoor air pollution from moxibution, a comparison of air pollutants during moxibution among the methods of using alternative old moxa wools, local exhaust ventilation and an air cleaner was conducted. In this study, burning alternative old moxa wools for moxibustion obviously reduced all gaseous pollutants except for aerosols comparing burning fresh moxa wools. Using local exhaust ventilation reduced most of the aerosols after burning moxa. We also found that using an air cleaner was inefficient for controlling indoor air pollutants, particularly gaseous pollutants. Therefore, combining replacing alternative old moxa wools and local exhaust ventilation could be a suitable design for controlling indoor air pollution during moxibustion therapy. PMID:27331817

  1. Particulate Air Pollution and Fasting Blood Glucose in Nondiabetic Individuals: Associations and Epigenetic Mediation in the Normative Aging Study, 2000–2011

    PubMed Central

    Peng, Cheng; Bind, Marie-Abele C.; Colicino, Elena; Kloog, Itai; Byun, Hyang-Min; Cantone, Laura; Trevisi, Letizia; Zhong, Jia; Brennan, Kasey; Dereix, Alexandra E.; Vokonas, Pantel S.; Coull, Brent A.; Schwartz, Joel D.; Baccarelli, Andrea A.

    2016-01-01

    . Citation: Peng C, Bind MA, Colicino E, Kloog I, Byun HM, Cantone L, Trevisi L, Zhong J, Brennan K, Dereix AE, Vokonas PS, Coull BA, Schwartz JD, Baccarelli AA. 2016. Particulate air pollution and fasting blood glucose in nondiabetic individuals: associations and epigenetic mediation in the Normative Aging Study, 2000–2011. Environ Health Perspect 124:1715–1721; http://dx.doi.org/10.1289/EHP183 PMID:27219535

  2. Air pollution and the respiratory system.

    PubMed

    Arbex, Marcos Abdo; Santos, Ubiratan de Paula; Martins, Lourdes Conceição; Saldiva, Paulo Hilário Nascimento; Pereira, Luiz Alberto Amador; Braga, Alfésio Luis Ferreira

    2012-01-01

    Over the past 250 years-since the Industrial Revolution accelerated the process of pollutant emission, which, until then, had been limited to the domestic use of fuels (mineral and vegetal) and intermittent volcanic emissions-air pollution has been present in various scenarios. Today, approximately 50% of the people in the world live in cities and urban areas and are exposed to progressively higher levels of air pollutants. This is a non-systematic review on the different types and sources of air pollutants, as well as on the respiratory effects attributed to exposure to such contaminants. Aggravation of the symptoms of disease, together with increases in the demand for emergency treatment, the number of hospitalizations, and the number of deaths, can be attributed to particulate and gaseous pollutants, emitted by various sources. Chronic exposure to air pollutants not only causes decompensation of pre-existing diseases but also increases the number of new cases of asthma, COPD, and lung cancer, even in rural areas. Air pollutants now rival tobacco smoke as the leading risk factor for these diseases. We hope that we can impress upon pulmonologists and clinicians the relevance of investigating exposure to air pollutants and of recognizing this as a risk factor that should be taken into account in the adoption of best practices for the control of the acute decompensation of respiratory diseases and for maintenance treatment between exacerbations.

  3. 40 CFR 52.274 - California air pollution emergency plan.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... actions for interdistrict coordination; has no provisions for nitrogen dioxide, particulate matter, and... the following schedule: (i) For sources with emissions of hydrocarbons (HC) or nitrogen oxides (NOX... by the Administrator. (d) Regulation for prevention of air pollution emergency...

  4. 40 CFR 52.274 - California air pollution emergency plan.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... actions for interdistrict coordination; has no provisions for nitrogen dioxide, particulate matter, and... the following schedule: (i) For sources with emissions of hydrocarbons (HC) or nitrogen oxides (NOX... by the Administrator. (d) Regulation for prevention of air pollution emergency...

  5. OFFICE EQUIPMENT: DESIGN, INDOOR AIR EMISSIONS, AND POLLUTION PREVENTION OPPORTUNITIES

    EPA Science Inventory

    The report summarizes available information on office equipment design; indoor air emissions of organics, ozone, and particulates from office equipment; and pollution prevention approaches for reducing these emissions. Since much of the existing emissions data from office equipme...

  6. GOSAT Air Pollution Watch - Rapid Response System for Local Air Pollution

    NASA Astrophysics Data System (ADS)

    Matsunaga, T.; Sawada, Y.; Kamei, A.; Uchiyama, A.

    2015-12-01

    GOSAT (Greenhouse Gases Observing Satellite) launched in 2009 and its successor, GOSAT-2, to be launched in FY 2017, have push-broom imaging systems with more than one UV band with higher spatial resolution than OMI, MODIS, and VIIRS. Such imaging systems are useful for mapping the spatial extent of the optically thick air mass with particulate matters. GOSAT Air Pollution Watch, a rapid response system mainly using GOSAT CAI (Cloud and Aerosol Imager) data for local air pollution issues is being developed in NIES (National Institute for Environmental Studies) GOSAT-2 Project. The current design of GOSAT Air Pollution Watch has three data processing steps as follows: Step 1) Making a cloud mask Step 2) Estimating AOT (Aerosol Optical Thickness) in the UV region (380 nm for CAI) Step 3) Converting AOT to atmospheric pollution parameters such as PM2.5 concentration Data processing algorithms in GOSAT Air Pollution Watch are based on GOSAT/GOSAT-2 algorithms for aerosol product generation with some modification for faster and timely data processing. Data from GOSAT Air Pollution Watch will be used to inform the general public the current distribution of the polluted air. In addition, they will contribute to short term prediction of the spatial extent of the polluted air using atmospheric transport models. In this presentation, the background, the current status, and the future prospect of GOSAT Air Pollution Watch will be reported together with the development status of GOSAT-2.

  7. [Polluting agents and sources of urban air pollution].

    PubMed

    Cocheo, V

    2000-01-01

    This paper is an up-to-date review of the scientific evidence on mechanisms of pollutant generation and health effects for a number of urban air pollutants. The review focuses on main sources and health effect of ozone and photochemical smog, benzene, polycyclic aromatic hydrocarbons, and particulate matter. These agents are "priority pollutants", generated by vehicle traffic, and their regulation is currently being examined by the European Council and the European Commission. The aim is to reach, by the year 2010, values lower than 180 micrograms/m3 for ozone as maximum hourly concentration, 2.5 micrograms/m3 for benzene as an annual average, 93 micrograms/m3 for nitrogen dioxide as 98 degrees percentile of hourly concentrations, 50 micrograms/m3 for particulate as a daily average. The goal can be achieved only by means of immediate interventions on emissions. PMID:11293295

  8. Vegetation fires and air pollution in Vietnam.

    PubMed

    Le, Thanh Ha; Thanh Nguyen, Thi Nhat; Lasko, Kristofer; Ilavajhala, Shriram; Vadrevu, Krishna Prasad; Justice, Chris

    2014-12-01

    Forest fires are a significant source of air pollution in Asia. In this study, we integrate satellite remote sensing data and ground-based measurements to infer fire-air pollution relationships in selected regions of Vietnam. We first characterized the active fires and burnt areas at a regional scale from MODIS satellite data. We then used satellite-derived active fire data to correlate the resulting atmospheric pollution. Further, we analyzed the relationship between satellite atmospheric variables and ground-based air pollutant parameters. Our results show peak fire activity during March in Vietnam, with hotspots in the Northwest and Central Highlands. Active fires were significantly correlated with UV Aerosol Index (UVAI), aerosol extinction absorption optical depth (AAOD), and Carbon Monoxide. The use of satellite aerosol optical thickness improved the prediction of Particulate Matter (PM) concentration significantly.

  9. Air Pollution Monitoring Site Selection by Multiple Criteria Decision Analysis

    EPA Science Inventory

    Criteria air pollutants (particulate matter, sulfur dioxide, oxides of nitrogen, volatile organic compounds, and carbon monoxide) as well as toxic air pollutants are a global concern. A particular scenario that is receiving increased attention in the research is the exposure to t...

  10. Methodological issues in studies of air pollution and reproductive health

    EPA Science Inventory

    In the past decade there have been an increasing number of scientific studies describing possible effects of air pollution on perinatal health. These papers have mostly focused on commonly monitored air pollutants, primarily ozone (O3), particulate matter (PM), sulfur dioxide (S...

  11. The Sources of Air Pollution and Their Control.

    ERIC Educational Resources Information Center

    National Air Pollution Control Administration (DHEW), Arlington, VA.

    The problems of air pollution and its control are discussed. Major consideration is given the sources of pollution - motor vehicles, industry, power plants, space heating, and refuse disposal. Annual emission levels of five principle pollutants - carbon monoxide, sulfur dioxide, nitrogen oxides, hydrocarbons, and particulate matter - are listed…

  12. Developmental exposure to concentrated ambient ultrafine particulate matter air pollution in mice results in persistent and sex-dependent behavioral neurotoxicity and glial activation.

    PubMed

    Allen, Joshua L; Liu, Xiufang; Weston, Douglas; Prince, Lisa; Oberdörster, Günter; Finkelstein, Jacob N; Johnston, Carl J; Cory-Slechta, Deborah A

    2014-07-01

    The brain appears to be a target of air pollution. This study aimed to further ascertain behavioral and neurobiological mechanisms of our previously observed preference for immediate reward (Allen, J. L., Conrad, K., Oberdorster, G., Johnston, C. J., Sleezer, B., and Cory-Slechta, D. A. (2013). Developmental exposure to concentrated ambient particles and preference for immediate reward in mice. Environ. Health Perspect. 121, 32-38), a phenotype consistent with impulsivity, in mice developmentally exposed to inhaled ultrafine particles. It examined the impact of postnatal and/or adult concentrated ambient ultrafine particles (CAPS) or filtered air on another behavior thought to reflect impulsivity, Fixed interval (FI) schedule-controlled performance, and extended the assessment to learning/memory (novel object recognition (NOR)), and locomotor activity to assist in understanding behavioral mechanisms of action. In addition, levels of brain monoamines and amino acids, and markers of glial presence and activation (GFAP, IBA-1) were assessed in mesocorticolimbic brain regions mediating these cognitive functions. This design produced four treatment groups/sex of postnatal/adult exposure: Air/Air, Air/CAPS, CAPS/Air, and CAPS/CAPS. FI performance was adversely influenced by CAPS/Air in males, but by Air/CAPS in females, effects that appeared to reflect corresponding changes in brain mesocorticolimbic dopamine/glutamate systems that mediate FI performance. Both sexes showed impaired short-term memory on the NOR. Mechanistically, cortical and hippocampal changes in amino acids raised the potential for excitotoxicity, and persistent glial activation was seen in frontal cortex and corpus callosum of both sexes. Collectively, neurodevelopment and/or adulthood CAPS can produce enduring and sex-dependent neurotoxicity. Although mechanisms of these effects remain to be fully elucidated, findings suggest that neurodevelopment and/or adulthood air pollution exposure may represent

  13. Developmental Exposure to Concentrated Ambient Ultrafine Particulate Matter Air Pollution in Mice Results in Persistent and Sex-Dependent Behavioral Neurotoxicity and Glial Activation

    PubMed Central

    Allen, Joshua L.; Liu, Xiufang; Weston, Douglas; Prince, Lisa; Oberdörster, Günter; Finkelstein, Jacob N.; Johnston, Carl J.; Cory-Slechta, Deborah A.

    2014-01-01

    The brain appears to be a target of air pollution. This study aimed to further ascertain behavioral and neurobiological mechanisms of our previously observed preference for immediate reward (Allen, J. L., Conrad, K., Oberdorster, G., Johnston, C. J., Sleezer, B., and Cory-Slechta, D. A. (2013). Developmental exposure to concentrated ambient particles and preference for immediate reward in mice. Environ. Health Perspect. 121, 32–38), a phenotype consistent with impulsivity, in mice developmentally exposed to inhaled ultrafine particles. It examined the impact of postnatal and/or adult concentrated ambient ultrafine particles (CAPS) or filtered air on another behavior thought to reflect impulsivity, Fixed interval (FI) schedule-controlled performance, and extended the assessment to learning/memory (novel object recognition (NOR)), and locomotor activity to assist in understanding behavioral mechanisms of action. In addition, levels of brain monoamines and amino acids, and markers of glial presence and activation (GFAP, IBA-1) were assessed in mesocorticolimbic brain regions mediating these cognitive functions. This design produced four treatment groups/sex of postnatal/adult exposure: Air/Air, Air/CAPS, CAPS/Air, and CAPS/CAPS. FI performance was adversely influenced by CAPS/Air in males, but by Air/CAPS in females, effects that appeared to reflect corresponding changes in brain mesocorticolimbic dopamine/glutamate systems that mediate FI performance. Both sexes showed impaired short-term memory on the NOR. Mechanistically, cortical and hippocampal changes in amino acids raised the potential for excitotoxicity, and persistent glial activation was seen in frontal cortex and corpus callosum of both sexes. Collectively, neurodevelopment and/or adulthood CAPS can produce enduring and sex-dependent neurotoxicity. Although mechanisms of these effects remain to be fully elucidated, findings suggest that neurodevelopment and/or adulthood air pollution exposure may

  14. Simulating gas and particulate pollution over the Middle East and the state of Qatar using a 3-D regional air quality modeling system

    NASA Astrophysics Data System (ADS)

    Fountoukis, Christos; Gladich, Ivan; Ayoub, Mohammed; Kais, Sabre; Ackermann, Luis; Skillern, Adam

    2016-04-01

    The rapid urbanization, industrialization and economic expansion in the Middle East have led to increased levels of atmospheric pollution with important implications for human health and climate. We applied the online-coupled meteorological and chemical transport Weather Research and Forecasting/Chemistry (WRF-Chem) model over the Middle Eastern domain, to simulate the concentration of gas and aerosols with a special focus over the state of Qatar. WRF-Chem was set to simulate pollutant concentrations along with the meteorology-chemistry interactions through the related direct, indirect and semi-direct feedback mechanisms. A triple-nested domain configuration was used with a high grid resolution (1x1 km2) over the region of Qatar. Model predictions are evaluated against intensive measurements of meteorological parameters (temperature, relative humidity and wind speed) as well as ozone and particulate matter taken from various measurement stations throughout Doha, Qatar during summer 2015. The ability of the model to capture the temporal and spatial variability of the observations is assessed and possible reasons for the model bias are explored through sensitivity tests. Emissions of both fine and coarse mode particles from construction activities in large urban Middle Eastern environments comprise a major pollution source that is unaccounted for in emission inventories used so far in large scale models for this part of the world.

  15. Investigation of respirable particulate matter pollutants on air-breathing zone workers in the Beam Rolling Mills Factory (Iran National Steel Industrial Group), Ahvaz, Iran.

    PubMed

    Rafiei, Masoud; Gadgil, Alaka S; Ghole, Vikram S; Jaafarzadeh, Neemat; Gore, Sharad D; Aberomand, Mohammad; Shabab, Mitra

    2008-08-01

    Workers of iron and steel factories are exposed to a wide range of pollutants depending on the particular process, the materials involved, the effectiveness of monitoring and the control measures. Adverse effects are determined by the physical state and propensities of the pollutant involved, the intensity and duration of the exposure, the extent of pollutant accumulation in the body and the sensitivity of the individual to its effects. The main aim of this study is to assess the levels of the indoor respirable particulate matter (RPM) and to compare the health condition of exposed workers, with nonexposed employees group. Line 630 has only one furnace of 40 tons and line 650 has two furnaces of 20 and 40 tons capacity due to which the mean of the RPM concentrations in the breathing zone was significantly different (P < 0.05) in line 650 but not in line 630 as compared with National Institute for Occupational Safety and Hygiene's (3 mg/m(3)). The average of the RPM concentrations in production line 650 is higher than that of production line 630, with the 95% confidence interval in saw cabin station number 1 of production line 650.

  16. Dependence of urban air pollutants on meteorology.

    PubMed

    Elminir, Hamdy K

    2005-11-01

    Dependence of air pollutants on meteorology is presented with the aim of understanding the governing processes pollutants phase interaction. Intensive measurements of particulate matter (PM10) and gaseous materials (e.g., CO, NO2, SO2, and O3) are carried out regularly in 2002 at 14 measurement sites distributed over the whole territory of Great Cairo by the Egyptian Environmental Affairs Agency to assess the characteristics of air pollutants. The discussions in this work are based upon measurements performed at Abbassiya site as a case study. The nature of the contributing sources has been investigated and some attempts have been made to indicate the role played by neighboring regions in determining the air quality at the site mentioned. The results hint that, wind direction was found to have an influence not only on pollutant concentrations but also on the correlation between pollutants. As expected, the pollutants associated with traffic were at highest ambient concentration levels when wind speed was low. At higher wind speeds, dust and sand from the surrounding desert was entrained by the wind, thus contributing to ambient particulate matter levels. We also found that, the highest average concentration for NO2 and O3 occurred at humidity

  17. AIR QUALITY: MERCURY, TRACE ELEMENTS, AND PARTICULATE MATTER CONFERENCE

    SciTech Connect

    John H. Pavlish; Steven A. Benson

    1999-07-01

    This final report summarizes the planning/preparation, facilitation, and outcome of the conference entitled ''Air Quality: Mercury, Trace Elements, and Particulate Matter'' that was held December 1-4, 1998, in McLean, Virginia (on the outskirts of Washington, DC). The goal of the conference was to bring together industry, government, and the research community to discuss the critical issue of how air quality can impact human health and the ecosystem, specifically hazardous air pollutants and fine airborne particles; available and developing control technologies; strategies and research needs; and an update on federal and state policy and regulations, related implementation issues, and the framework of the future.

  18. Does weather confound or modify the association of particulate air pollution with mortality? An analysis of the Philadelphia data, 1973--1980

    SciTech Connect

    Samet, J.; Zeger, S.; Kelsall, J.; Xu, J.; Kalkstein, L.

    1998-04-01

    This report considers the consequences of using alternative approaches to controlling for weather and explores modification of air pollution effects by weather, as weather patterns could plausibly alter air pollution`s effect on health. The authors analyzed 1973--1980 total mortality data for Philadelphia using four weather models and compared estimates of the effects of TSP and SO{sub 2} on mortality using a Poisson regression model. Two synoptic categories developed by Kalkstein were selected--The Temporal Synoptic Index (TSI) and the Spatial Synoptic Classification (SSC)--and compared with (1) descriptive models developed by Schwartz and Dockery (S-D); and (2) LOESS, a nonparametric function of the previous day`s temperature and dew point. The authors considered model fit using Akaike`s Information Criterion (AIC) and changes in the estimated effects of TSP and SO{sub 2}. In the full-year analysis, S-D is better than LOESS at predicting mortality, and S-D and LOESS are better than TSI, as measured by AIC. When TSP or SO{sub 2} was fit alone, the results were qualitatively similar, regardless of how weather was controlled; when TSP and SO{sub 2} were fit simultaneously, the S-D and LOESS models give qualitatively different results than TSI, which attributes more of the pollution effect to SO{sub 2} than to TSP. Model fit is substantially poorer with TSI.

  19. Hybrid regional air pollution models

    SciTech Connect

    Drake, R.L.

    1980-03-01

    This discussion deals with a family of air quality models for predicting and analyzing the fine particulate loading in the atmosphere, for assessing the extent and degree of visibility impairment, and for determining the potential of pollutants for increasing the acidity of soils and water. The major horizontal scales of interest are from 400km to 2000km; and the time scales may vary from several hours, to days, weeks, and a few months or years, depending on the EPA regulations being addressed. First the role air quality models play in the general family of atmospheric simulation models is described. Then, the characteristics of a well-designed, comprehensive air quality model are discussed. Following this, the specific objectives of this workshop are outlined, and their modeling implications are summarized. There are significant modeling differences produced by the choice of the coordinate system, whether it be the fixed Eulerian system, the moving Lagrangian system, or some hybrid of the two. These three systems are briefly discussed, and a list of hybrid models that are currently in use are given. Finally, the PNL regional transport model is outlined and a number of research needs are listed.

  20. Indoor air pollution and airway disease.

    PubMed

    Viegi, G; Simoni, M; Scognamiglio, A; Baldacci, S; Pistelli, F; Carrozzi, L; Annesi-Maesano, I

    2004-12-01

    Scientific interest in indoor pollution has been increasing since the second half of the 1980s. Growing scientific evidence has shown that because people generally spend the majority of their time indoors, indoor pollution plays a significant role in affecting health and is thus an important health issue. Indoor environments include dwellings, workplaces, schools and day care centres, bars, discotheques and vehicles. Common indoor pollutants are environmental tobacco smoke, particulate matter, nitrogen dioxide, carbon monoxide, volatile organic compounds and biological allergens. In developing countries, relevant sources of indoor pollution include biomass and coal burning for cooking and heating. Concentrations of these pollutants can be many times higher indoors than outdoors. Indoor air pollution may increase the risk of irritation phenomena, allergic sensitisation, acute and chronic respiratory disorders and lung function impairment. Recent conservative estimates have shown that 1.5-2 million deaths per year worldwide could be attributed to indoor air pollution. Approximately 1 million of these deaths occur in children aged under 5 years due to acute respiratory infections, and significant proportions of deaths occur due to chronic obstructive pulmonary disease and lung cancer in women. Today, indoor air pollution ranks tenth among preventable risk factors contributing to the global burden of disease. Further research is necessary to better evaluate the respiratory health effects of indoor pollution and to implement protective programmes for public health.

  1. Total Particulate Matter Air Sampling Data (TEOM) from Los Alamos National Laboratory

    DOE Data Explorer

    LANL measures the total particulate mass concentration in the air on a routine basis as well as during incidents that may affect ambient air. The collected data is added to the Air Quality Index (AQI). AQI is an index for reporting daily air quality. It tells you how clean or polluted your air is, and what associated health effects might be a concern for you. The AQI focuses on health effects you may experience within a few hours or days after breathing polluted air. EPA calculates the AQI for five major air pollutants regulated by the Clean Air Act.

  2. Indoor air pollution

    SciTech Connect

    Gold, D.R. )

    1992-06-01

    This article summarizes the health effects of indoor air pollutants and the modalities available to control them. The pollutants discussed include active and passive exposure to tobacco smoke; combustion products of carbon monoxide; nitrogen dioxide; products of biofuels, including wood and coal; biologic agents leading to immune responses, such as house dust mites, cockroaches, fungi, animal dander, and urine; biologic agents associated with infection such as Legionella and tuberculosis; formaldehyde; and volatile organic compounds. An approach to assessing building-related illness and tight building' syndrome is presented. Finally, the article reviews recent data on hospital-related asthma and exposures to potential respiratory hazards such as antineoplastic agents, anesthetic gases, and ethylene oxide.88 references.

  3. Remote air pollution measurement

    NASA Technical Reports Server (NTRS)

    Byer, R. L.

    1975-01-01

    This paper presents a discussion and comparison of the Raman method, the resonance and fluorescence backscatter method, long path absorption methods and the differential absorption method for remote air pollution measurement. A comparison of the above remote detection methods shows that the absorption methods offer the most sensitivity at the least required transmitted energy. Topographical absorption provides the advantage of a single ended measurement, and differential absorption offers the additional advantage of a fully depth resolved absorption measurement. Recent experimental results confirming the range and sensitivity of the methods are presented.

  4. Ambient Air Quality Assessment with Particular Reference to Particulates in Jharia Coalfield, Eastern India.

    PubMed

    Singh, Gurdeep; Roy, Debananda; Sinha, Sweta

    2014-01-01

    Jharia Coalfield is the critically polluted area with the intense mining and associated industrial activities. There has been widespread concern of particulate pollution with the alarming levels of Suspended Particulate Matter (SPM) and Respirable Particulate Matter (PM10 & PM2.5). Coke oven plants, coal washing, thermal power stations and associated activities coupled with the transportation activities, give rise to critical air pollution levels in the region. This study envisages the assessment of air pollution of the region with particular reference to SPM, PM10 and PM2.5. Eighteen monitoring stations were selected considering various sources of pollution such as mining, industrial, commercial and residential areas apart from siting criteria as per IS: 5182 Part XIV. Air quality monitoring was carried out following standard methodologies and protocols as per Central Pollution Control Board (CPCB)/ National Ambient Air Quality Standard (NAAQS) norms using Respirable Dust Samplers (RDS) and Fine Particulate Samplers (PM2.5 Samplers). This study reveals considerable load of particulates (SPM, PM10, PM 2.5) which exceed not only the NAAQS but also the coal mining areas standards of Jharia coalfield, thus falling under the category of critically polluted area. Air Quality Indexing has also been developed which provides a clear map of the deterioration of air quality and also presenting comparative ranking of all the monitoring locations with respect to air quality status in the study area.

  5. Air Pollution Control, Part I.

    ERIC Educational Resources Information Center

    Strauss, Werner, Ed.

    Authoritative reviews in seven areas of current importance in air pollution control are supplied in this volume, the first of a two-part set. Titles contained in this book are: "Dispersion of Pollutants Emitted into the Atmosphere,""The Formation and Control of Oxides of Nitrogen in Air Pollution,""The Control of Sulfur Emissions from Combustion…

  6. The Federal Air Pollution Program.

    ERIC Educational Resources Information Center

    National Air Pollution Control Administration (DHEW), Washington, DC.

    Described is the Federal air pollution program as it was in 1967. The booklet is divided into these major topics: History of the Federal Program; Research; Assistance to State and Local Governments; Abatement and Prevention of Air Pollution; Control of Motor Vehicle Pollution; Information and Education; and Conclusion. Federal legislation has…

  7. In Search of Air Pollution

    ERIC Educational Resources Information Center

    Beckendorf, Kirk

    2006-01-01

    Air pollution is no longer just a local issue; it is a global problem. The atmosphere is a very dynamic system. Pollution not only changes in chemical composition after it is emitted, but also is transported on local and global air systems hundreds and even thousands of miles away. Some of the pollutants that are major health concerns are not even…

  8. The effects of particulate ambient air pollution on the murine umbilical cord and its vessels: a quantitative morphological and immunohistochemical study.

    PubMed

    Veras, Mariana Matera; Guimarães-Silva, Rosane Maria; Caldini, Elia Garcia; Saldiva, Paulo H N; Dolhnikoff, Marisa; Mayhew, Terry M

    2012-12-01

    Previous studies have shown that particulate matter (PM) compromise birth weight and placental morphology. We hypothesized that exposing mice to ambient PM would affect umbilical cord (UC) morphology. To test this, mice were kept in paired open-top exposure chambers at the same location and ambient conditions but, in one chamber, the air was filtered (F) and, in the other, it was not (NF). UCs were analysed stereologically and by immunohistochemistry to localize isoprostane and endothelin receptors. The cords of mice from NF chambers were smaller in volume due to loss of mucoid connective tissue and decrease in volume of collagen. These structural changes and in umbilical vessels were associated with greater volumes of regions immunostained for isoprostane, ET(A)R and ET(B)R. Findings indicate that the adverse effects of PM on birth weight may be mediated in part by alterations in UC structure or imbalances in the endogenous regulators of vascular tone and oxidative stress.

  9. Air pollution from aircraft

    NASA Technical Reports Server (NTRS)

    Heywood, J. B.; Fay, J. A.; Chigier, N. A.

    1979-01-01

    Forty-one annotated abstracts of reports generated at MIT and the University of Sheffield are presented along with summaries of the technical projects undertaken. Work completed includes: (1) an analysis of the soot formation and oxidation rates in gas turbine combustors, (2) modelling the nitric oxide formation process in gas turbine combustors, (3) a study of the mechanisms causing high carbon monoxide emissions from gas turbines at low power, (4) an analysis of the dispersion of pollutants from aircraft both around large airports and from the wakes of subsonic and supersonic aircraft, (5) a study of the combustion and flow characteristics of the swirl can modular combustor and the development and verification of NO sub x and CO emissions models, (6) an analysis of the influence of fuel atomizer characteristics on the fuel-air mixing process in liquid fuel spray flames, and (7) the development of models which predict the stability limits of fully and partially premixed fuel-air mixtures.

  10. Fundamentals of air pollution. Third edition

    SciTech Connect

    Boubel, R.W.; Fox, D.L.; Turner, D.B.; Stern, A.C.

    1994-12-31

    This book presents an overview of air pollution. In Part I, the history of air pollution and the basic concepts involved with air pollution such as sources, scales, definitions are covered. Part II describes how airborne pollutants damage materials, vegetation, animals, and humans. Six fundamental aspects of air pollution are included in the text: The Elements of Air Pollution; The Effects of Air Pollution; Measurement and Monitoring of Air Pollution; Meterology of Air Pollution; regulatory Control of Air Pollution; and Engineering Control of Air Pollution.

  11. Hazardous air pollutants and asthma.

    PubMed Central

    Leikauf, George D

    2002-01-01

    Asthma has a high prevalence in the United States, and persons with asthma may be at added risk from the adverse effects of hazardous air pollutants (HAPs). Complex mixtures (fine particulate matter and tobacco smoke) have been associated with respiratory symptoms and hospital admissions for asthma. The toxic ingredients of these mixtures are HAPs, but whether ambient HAP exposures can induce asthma remains unclear. Certain HAPs are occupational asthmagens, whereas others may act as adjuncts during sensitization. HAPs may exacerbate asthma because, once sensitized, individuals can respond to remarkably low concentrations, and irritants lower the bronchoconstrictive threshold to respiratory antigens. Adverse responses after ambient exposures to complex mixtures often occur at concentrations below those producing effects in controlled human exposures to a single compound. In addition, certain HAPs that have been associated with asthma in occupational settings may interact with criteria pollutants in ambient air to exacerbate asthma. Based on these observations and past experience with 188 HAPs, a list of 19 compounds that could have the highest impact on the induction or exacerbation of asthma was developed. Nine additional compounds were identified that might exacerbate asthma based on their irritancy, respirability, or ability to react with biological macromolecules. Although the ambient levels of these 28 compounds are largely unknown, estimated exposures from emissions inventories and limited air monitoring suggest that aldehydes (especially acrolein and formaldehyde) and metals (especially nickel and chromium compounds) may have possible health risk indices sufficient for additional attention. Recommendations for research are presented regarding exposure monitoring and evaluation of biologic mechanisms controlling how these substances induce and exacerbate asthma. PMID:12194881

  12. Ambient particulate air pollution and acute lower respiratory infections: a systematic review and implications for estimating the global burden of disease.

    PubMed

    Mehta, Sumi; Shin, Hwashin; Burnett, Rick; North, Tiffany; Cohen, Aaron J

    2013-03-01

    Acute lower respiratory infections (ALRI) account for nearly one fifth of mortality in young children worldwide and have been associated with exposures to indoor and outdoor sources of combustion-derived air pollution. A systematic review was conducted to identify relevant articles on air pollution and ALRI in children. Using a Bayesian approach to meta-analysis, a summary estimate of 1.12 (1.03, 1.30) increased risk in ALRI occurrence per 10 μg/m(3) increase in annual average PM2.5 concentration was derived from the longer-term (subchronic and chronic) effects studies. This analysis strengthens the evidence for a causal relationship between exposure to PM2.5 and the occurrence of ALRI and provides a basis for estimating the global attributable burden of mortality due to ALRI that is not influenced by the wide variation in regional case fatality rates. Most studies, however, have been conducted in settings with relatively low levels of PM2.5. Extrapolating their results to other, more polluted, regions will require a model that is informed by evidence from studies of the effects on ALRI of exposure to PM2.5 from other combustion sources, such as secondhand smoke and household solid fuel use.

  13. Short-term effects of fine particulate air pollution on emergency room visits for cardiac arrhythmias: a case-crossover study in Taipei.

    PubMed

    Chiu, Hui-Fen; Tsai, Shang-Shyue; Weng, Hsu-Huei; Yang, Chun-Yuh

    2013-01-01

    This study was undertaken to determine whether there was an association between fine particles (PM₂.₅) levels and number of emergency room (ER) visits for cardiac arrhythmias in Taipei, Taiwan. ER visits for cardiac arrhythmias and ambient air pollution data for Taipei were obtained for the period 2006-2010. The relative risk (RR) of ER visits was estimated using a case-crossover approach, controlling for weather variables, day of the week, seasonality, and long-term time trends. For the single-pollutant model (without adjustment for other pollutants), increased numbers of ER cardiac arrhythmia visits were significantly associated with PM₂.₅ on both warm days (>23°C) and cool days (< 23°C), with an interquartile range rise associated with a 10% (95% CI = -15%) and 4% (95% CI = 0-8%) elevation in number of ER visits for cardiac arrhythmias, respectively. In the two-pollutant models, PM₂.₅ levels remained significant after inclusion of sulfur dioxide (SO₂) or ozone (O₃) on both warm and cool days. This study provides evidence that higher levels of PM₂.₅ increase the risk of number of ER visits for cardiac arrhythmias.

  14. Review of air pollution and health impacts in Malaysia.

    PubMed

    Afroz, Rafia; Hassan, Mohd Nasir; Ibrahim, Noor Akma

    2003-06-01

    In the early days of abundant resources and minimal development pressures, little attention was paid to growing environmental concerns in Malaysia. The haze episodes in Southeast Asia in 1983, 1984, 1991, 1994, and 1997 imposed threats to the environmental management of Malaysia and increased awareness of the environment. As a consequence, the government established Malaysian Air Quality Guidelines, the Air Pollution Index, and the Haze Action Plan to improve air quality. Air quality monitoring is part of the initial strategy in the pollution prevention program in Malaysia. Review of air pollution in Malaysia is based on the reports of the air quality monitoring in several large cities in Malaysia, which cover air pollutants such as Carbon monoxide (CO), Sulphur Dioxide (SO2), Nitrogen Dioxide (NO2), Ozone (O3), and Suspended Particulate Matter (SPM). The results of the monitoring indicate that Suspended Particulate Matter (SPM) and Nitrogen Dioxide (NO2) are the predominant pollutants. Other pollutants such as CO, O(x), SO2, and Pb are also observed in several big cities in Malaysia. The air pollution comes mainly from land transportation, industrial emissions, and open burning sources. Among them, land transportation contributes the most to air pollution. This paper reviews the results of the ambient air quality monitoring and studies related to air pollution and health impacts.

  15. Land Use Regression Models of On-Road Particulate Air Pollution (Particle Number, Black Carbon, PM2.5, Particle Size) Using Mobile Monitoring.

    PubMed

    Hankey, Steve; Marshall, Julian D

    2015-08-01

    Land Use Regression (LUR) models typically use fixed-site monitoring; here, we employ mobile monitoring as a cost-effective alternative for LUR development. We use bicycle-based, mobile measurements (∼85 h) during rush-hour in Minneapolis, MN to build LUR models for particulate concentrations (particle number [PN], black carbon [BC], fine particulate matter [PM2.5], particle size). We developed and examined 1224 separate LUR models by varying pollutant, time-of-day, and method of spatial and temporal smoothing of the time-series data. Our base-case LUR models had modest goodness-of-fit (adjusted R(2): ∼0.5 [PN], ∼0.4 [PM2.5], 0.35 [BC], ∼0.25 [particle size]), low bias (<4%) and absolute bias (2-18%), and included predictor variables that captured proximity to and density of emission sources. The spatial density of our measurements resulted in a large model-building data set (n = 1101 concentration estimates); ∼25% of buffer variables were selected at spatial scales of <100m, suggesting that on-road particle concentrations change on small spatial scales. LUR model-R(2) improved as sampling runs were completed, with diminishing benefits after ∼40 h of data collection. Spatial autocorrelation of model residuals indicated that models performed poorly where spatiotemporal resolution of emission sources (i.e., traffic congestion) was poor. Our findings suggest that LUR modeling from mobile measurements is possible, but that more work could usefully inform best practices.

  16. Land Use Regression Models of On-Road Particulate Air Pollution (Particle Number, Black Carbon, PM2.5, Particle Size) Using Mobile Monitoring.

    PubMed

    Hankey, Steve; Marshall, Julian D

    2015-08-01

    Land Use Regression (LUR) models typically use fixed-site monitoring; here, we employ mobile monitoring as a cost-effective alternative for LUR development. We use bicycle-based, mobile measurements (∼85 h) during rush-hour in Minneapolis, MN to build LUR models for particulate concentrations (particle number [PN], black carbon [BC], fine particulate matter [PM2.5], particle size). We developed and examined 1224 separate LUR models by varying pollutant, time-of-day, and method of spatial and temporal smoothing of the time-series data. Our base-case LUR models had modest goodness-of-fit (adjusted R(2): ∼0.5 [PN], ∼0.4 [PM2.5], 0.35 [BC], ∼0.25 [particle size]), low bias (<4%) and absolute bias (2-18%), and included predictor variables that captured proximity to and density of emission sources. The spatial density of our measurements resulted in a large model-building data set (n = 1101 concentration estimates); ∼25% of buffer variables were selected at spatial scales of <100m, suggesting that on-road particle concentrations change on small spatial scales. LUR model-R(2) improved as sampling runs were completed, with diminishing benefits after ∼40 h of data collection. Spatial autocorrelation of model residuals indicated that models performed poorly where spatiotemporal resolution of emission sources (i.e., traffic congestion) was poor. Our findings suggest that LUR modeling from mobile measurements is possible, but that more work could usefully inform best practices. PMID:26134458

  17. Air Pollution, Causes and Cures.

    ERIC Educational Resources Information Center

    Manufacturing Chemists Association, Washington, DC.

    This commentary on sources of air pollution and air purification treatments is accompanied by graphic illustrations. Sources of carbon monoxide, sulfur oxides, nitrogen oxides, and hydrocarbons found in the air are discussed. Methods of removing these pollutants at their source are presented with cut-away diagrams of the facilities and technical…

  18. System interactions of air pollutants

    SciTech Connect

    Pierson, W.E. )

    1992-06-01

    The impact of system interactions and simultaneous or sequential exposure to various air pollutants, both man-made and natural ones, requires greater concern in the interpretation of the total adverse impact of various air pollutants. It is clear that there are highly significant system interactions with exposure to various air pollutants, and these must be considered very carefully in the evaluation of their adverse health effects.

  19. Ambient air levels and health risk assessment of benzo(a)pyrene in atmospheric particulate matter samples from low-polluted areas: application of an optimized microwave extraction and HPLC-FL methodology.

    PubMed

    de la Gala Morales, María; Holgado, Fernando Rueda; Marín, Ma Rosario Palomo; Blázquez, Lorenzo Calvo; Gil, Eduardo Pinilla

    2015-04-01

    A new methodology involving a simple and fast pretreatment of the samples by microwave-assisted extraction and concentration by N2 stream, followed by HPLC with fluorescence detection, was used for determining the concentration of benzo(a)pyrene (BaP) in atmospheric particulate matter (PM10 fraction). Obtained LOD, 1.0 × 10(-3) ng/m(3), was adequate for the analysis of benzo(a)pyrene in the samples, and BaP recovery from PAH in Fine Dust (PM10-like) certified reference material was nearly quantitative (86%). The validated procedure was applied for analyzing 115 PM10 samples collected at different sampling locations in the low-polluted area of Extremadura (Southwest Spain) during a monitoring campaign carried out in 2011-2012. BaP spatial variations and seasonal variability were investigated as well as the influence of meteorological conditions and different air pollutants concentrations. A normalized protocol for health risk assessment was applied to estimate lifetime cancer risk due to BaP inhalation in the sampling areas, finding that around eight inhabitants per million people may develop lung cancer due to the exposition to BaP in atmospheric particulates emitted by the investigated sources.

  20. Air pollution assessment on city of Tirana

    NASA Astrophysics Data System (ADS)

    Mandija, F.; Zoga, P.

    2012-04-01

    Air pollution is one of the hot topics on nowadays studies. This problem is often encountered on urban centers, especially on metropolitan areas. These areas are usually characterized by densely population, heavy traffic rates and the presence of many industrial plants on their suburbs. Problems regarding to air pollution on these areas are more evident over metropolitan areas in developing countries. Air pollution is mostly related to health effects, especially in outdoor environments. These effects regards primarily on respiratory and cardiovascular diseases. Air pollution assessment on a specific area requires not only the estimation of pollutant concentrations in that area, but also determination of their principal sources as well as prediction of eventual scenarios on the area under investigation. This study is focused on air pollution assessment on the city of Tirana, which is the major urban centre and the capital city of Albania. This city has about one million inhabitants. During the last 20 years, its population has grown about four fold, and it is still growing. Because of Albania is a developing country, its capital city is involved on serious environmental problems. Considering these facts, we have conducted continuous monitoring campaigns on several sites of Tirana. These monitoring campaigns consist on measurement of several pollutant gases (SO2, CO, CO2, NOx, etc.) and particulate matter over a period of 20 months. In this paper there are obtained diurnal and annual variations of pollutant concentrations, there is modeled their spatial distributions over the area of the city, and there are estimated the potential contributions of principal sources like traffic and industrial plants. During the entire monitoring campaign there are recorded also meteorological parameters, like temperature, relative humidity, atmospheric pressure, wind speed, wind direction, precipitations, etc. In this way we have tried to obtain the correlations between pollutant

  1. Exposure measurement for air-pollution epidemiology

    SciTech Connect

    Ferris, B.G.; Ware, J.H.; Spengler, J.D.

    1988-08-01

    The chapter describes the evolution of air-pollution epidemiology over a period when changes in pollution technologies have both lowered total exposures and dispersed them over vastly greater areas. Since personal exposure and microenvironmental measurements are expensive, studies oriented toward measurements of total exposure will be smaller and more intensive. The shift in emphasis to total human exposure also will affect health risk assessment and raise difficult issues in the regulatory domain. Considering that outdoor exposures (for which EPA has a regulatory mandate) occur in the context of exposures from other sources, the potential effect of regulatory action would probably be small. The regulatory issues are even more difficult for particulate air pollution since cigarette smoking is the strongest determinant of indoor levels but the EPA lacks regulatory responsibility for cigarette smoke.

  2. STRATEGIES TO IDENTIFY BIOACTIVE SUBSTANCES IN COMPLEX AIR POLLUTANT MIXTURES

    EPA Science Inventory

    Both indoor and outdoor air contains a very complex mixture of gas and particulate matter (PM) pollutants. The assessment of the role of each pollutant in the complex atmosphere in the induction of an associated health effect or a response can be difficult due to many factors, i...

  3. Evaluating sources of indoor air pollution

    SciTech Connect

    Tichenor, B.A.; Sparks, L.E.; White, J.B.; Jackson, M.D.

    1988-05-01

    This paper discusses a three-phase approach, employing environmental chambers, indoor air quality (IAQ) models, and test-house experiments, that is effective in linking sources of indoor pollutants to measured concentrations. Emission factors developed in test chambers can be used to evaluate full-scale indoor environments. A PC-based IAQ model has been developed that can accurately predict indoor concentrations of specific pollutants under controlled conditions in a test house. The model is also useful in examining the effect of pollutant sinks and variations in ventilation parameters. Pollutants were examined from: (1) para-dichloro-benzene emissions from moth crystal cakes; and, (2) particulate emissions from unvented kerosene heaters. However, the approach has not been validated for other source types, including solvent based materials and aerosol products.

  4. Air Pollution and Human Health

    ERIC Educational Resources Information Center

    Lave, Lester B.; Seskin, Eugene P.

    1970-01-01

    Reviews studies statistically relating air pollution to mortality and morbidity rates for respiratory, and cardiovascular diseases, cancer and infant mortality. Some data recalculated. Estimates 50 percent air pollution reduction will save 4.5 percent (2080 million dollars per year) of all economic loss (hospitalization, income loss) associated…

  5. Children, Pediatricians, and Polluted Air.

    ERIC Educational Resources Information Center

    Kane, Dorothy Noyes

    Explored are children's vulnerability and the pediatrician's role in relation to the problems posed by air pollution. Research is noted to have included a search of biomedical literature over the past 10 years; attendance at medical meetings; conferences with air pollution researchers, environmental protection administrators, and specialists in…

  6. Associations between criteria air pollutants and asthma

    SciTech Connect

    Koren, H.S.

    1995-09-01

    The evidence that asthma is increasing in prevalence is becoming increasingly compelling. This trend has been demonstrated in the United States, the United Kingdom, New Zealand, Australia, and several other Western countries. In the US, the increase is largest in the group under 18 years of age. There is mounting evidence that certain environmental air pollutants are involved in exacerbating asthma. This is based primarily on epidemiologic studies and more recent clinical studies. The U.S. Clean Air Act of 1970 provides special consideration to the class of outdoor air pollutants referred to as criteria pollutants, including O{sub 3}, sulfur dioxide (SO{sub 2}), particulate matter (PM), NO{sub x}, CO, and Pb. Standards for these pollutants are set by the US EPA with particular concern for populations at risk. Current evidence suggests that asthmatics are more sensitive to the effects of O{sub 3}, SO{sub 2} PM, and NO{sub 2}, and are therefore at risk. High SO{sub 2} and particulate concentrations have been associated with short-term increases in morbidity and mortality in the general population during dramatic air pollution episodes in the past. Controlled exposure studies have clearly shown that asthmatics are sensitive to low levels of SO{sub 2}. Exercising asthmatics exposed to SO{sub 2} develop bronchoconstriction within minutes, even at levels of 0.25 ppm. Responses are modified by air temperature, humidity, and exercise level. Recent epidemiologic studies have suggested that exposure to Pm is strongly associated with morbidity and mortality in the general population and that hospital admissions for bronchitis and asthma were associated with PM{sub 10} levels. In controlled clinical studies, asthmatics appear to be no more reactive to aerosols than healthy subjects. Consequently, it is difficult to attribute the increased mortality observed in epidemiologic studies to specific effects demonstrated in controlled human studies. 106 refs., 1 fig., 1 tab.

  7. Intercontinental Transport of Air Pollution

    NASA Technical Reports Server (NTRS)

    Rogers, David; Whung, Pai-Yei; Einaudi, Franco (Technical Monitor)

    2001-01-01

    The development of the global economy goes beyond raising our standards of living. We are in an ear of increasing environmental as well as economic interdependence. Long-range transport of anthropogenic atmospheric pollutants such as ozone, ozone precursors, airborne particles, heavy metals (such as mercury) and persistent organic pollutants are the four major types of pollution that are transported over intercontinental distances and have global environmental effects. The talk includes: 1) an overview of the international agreements related to intercontinental transport of air pollutants, 2) information needed for decision making, 3) overview of the past research on intercontinental transport of air pollutants - a North American's perspective, and 4) future research needs.

  8. Comparing toxic air pollutant programs

    SciTech Connect

    Hawkins, S.C.

    1997-05-01

    This article compares state and federal toxic air pollutant programs. The Clean Air Act Ammendments created a program for the control of Hazardous Air Pollutants based on the establishment of control technology standards. State toxic programs can be classified into two categories: control technology-based and ambient concentration-based. Many states have opened to implement the MACT standards while enforcing their own state air toxics programs. Specific topics discussed include the following: the Federal air toxics program; existing state regulations; New Jersey Air Toxic Program; New York Toxics program.

  9. Air pollution: impact and prevention.

    PubMed

    Sierra-Vargas, Martha Patricia; Teran, Luis M

    2012-10-01

    Air pollution is becoming a major health problem that affects millions of people worldwide. In support of this observation, the World Health Organization estimates that every year, 2.4 million people die because of the effects of air pollution on health. Mitigation strategies such as changes in diesel engine technology could result in fewer premature mortalities, as suggested by the US Environmental Protection Agency. This review: (i) discusses the impact of air pollution on respiratory disease; (ii) provides evidence that reducing air pollution may have a positive impact on the prevention of disease; and (iii) demonstrates the impact concerted polices may have on population health when governments take actions to reduce air pollution.

  10. Air pollution: Impact and prevention

    PubMed Central

    SIERRA-VARGAS, MARTHA PATRICIA; TERAN, LUIS M

    2012-01-01

    ABSTRACT Air pollution is becoming a major health problem that affects millions of people worldwide. In support of this observation, the World Health Organization estimates that every year, 2.4 million people die because of the effects of air pollution on health. Mitigation strategies such as changes in diesel engine technology could result in fewer premature mortalities, as suggested by the US Environmental Protection Agency. This review: (i) discusses the impact of air pollution on respiratory disease; (ii) provides evidence that reducing air pollution may have a positive impact on the prevention of disease; and (iii) demonstrates the impact concerted polices may have on population health when governments take actions to reduce air pollution. PMID:22726103

  11. A NEW NON-DESTRUCTIVE METHOD FOR CHEMICAL ANALYSIS OF PARTICULATE MATTER FILTERS: THE CASE OF MANGANESE AIR POLLUTION IN VALLECAMONICA (ITALY)

    PubMed Central

    Borgese, Laura; Zacco, Annalisa; Pal, Sudipto; Bontempi, Elza; Lucchini, Roberto; Zimmerman, Neil; Depero, Laura E.

    2011-01-01

    Total Reflection X-ray Fluorescence (TXRF) is a well-established technique for chemical analysis, but it is mainly employed for quality control in the electronics semiconductor industry. The capability to analyze liquid and uniformly thin solid samples makes this technique suitable for other applications, and especially in the very critical field of environmental analysis. Comparison with standard methods like Inductively Coupled Plasma (ICP) and Atomic Absorption Spectroscopy (AAS) show that TXRF is a practical, accurate, and reliable technique in occupational settings. Due to the greater sensitivity necessary in trace heavy metal detection, TXRF is also suitable for environmental chemical analysis. In this paper we show that based on appropriate standards, TXRF can be considered for non-destructive routine quantitative analysis of environmental matrices such as air filters. This work has been developed in the frame of the EU-FP6 PHIME (Public Health Impact of long-term, low-level Mixed element Exposure in susceptible population strata) Integrated Project (www.phime.org). The aim of this work was to investigate Mn air pollution in the area of Vallecamonica (Italy). PMID:21315919

  12. Critical issues in air pollution epidemiology.

    PubMed Central

    Lippmann, M; Lioy, P J

    1985-01-01

    The epidemiological studies which have had significant impact on the setting of National Ambient Air Quality Standards (NAAQSs) were performed more than twenty years ago. Most of the more recent studies have been seriously flawed in their design and/or execution because they neglected to account for important variables such as: pollutant exposures other than those from ambient air; the influence of personal activity on pollutant uptake; host responsiveness; and the separate contributions of recent transient peak exposures and long-term chronic exposures on the effects endpoints. For particulate pollutants, the influence of composition and size distribution has also received too little consideration. In order to address these deficiencies, research and methods development are needed on: indices for particulate exposures; identification of exposures relevant to the effects; improved indices of effects; acquisition of response data; identification of exposed populations; and identification of susceptible subgroups. Approaches to these needs are discussed, along with brief reviews of several recent studies that have focused on critical issues of concern, made the necessary efforts to characterize the relevant exposures of the populations being studied, and demonstrated human responses to ambient pollutants at current exposure levels. PMID:4085428

  13. A review of air pollutant damage to materials

    SciTech Connect

    Yocom, J.E.; Stankunas, A.R.; Bradow, F.V.P.

    1982-06-01

    Report prepared as U.S. contribution to Panel 3 of NATO Committee on Challenges of Modern Society Pilot Study on Air Pollution Control Strategies and Impact Modeling. Panel 3 focuses on air pollutant impact and will publish 4 reports on air pollutants effects; this is the first in the series and covers effects on materials. Reviewed here are physical and economic effects of sulfur oxides, particulate matter, nitrogen oxide, ozone, hydrogen sulfides, fluoride, and ammonia on metals, textiles, paint, building materials, leathers, paper and elastomers. Report is summary of pertinent information in EPA's air quality criteria and EPA-Funded NAS review documents.

  14. Psychological reactions to air pollution

    SciTech Connect

    Evans, G.W.; Colome, S.D.; Shearer, D.F.

    1988-02-01

    Interviews with a large representative sample of Los Angeles residents reveal that these citizens are somewhat aware and concerned about air pollution, but not knowledgeable about its causes. Direct behaviors to reduce causes of pollution or one's exposure to it are rare. A moderate percentage of people seek out information about air pollution or complain about it. Fewer follow state health advisories by reducing automobile driving or restricting activity during air pollution episodes. Preliminary modeling of citizen compliance with air pollution health advisories suggest that personal beliefs about negative health effects are a important predictor of compliance. Finally, modest but significant relationships are noted between ambient photochemical oxidants and anxiety symptoms. The latter finding controls for age, socioeconomic status, and temperature.

  15. Air pollution and plant life

    SciTech Connect

    Treshow, M.

    1984-01-01

    This book addresses air pollution's sources and movement; biochemical, cellular, and whole-plant effects, impacts on agricultural and natural systems; and control. The effects of convective turbulence and atmospheric stability are well illustrated. The diagnosis of air pollution injury to plants and mimicking symptoms are discussed. The environmental and source variables that affect pollutant dispersion are explained by use of the Gaussian dispersion model. An overview is presented of the effects of sulfur dioxide, photochemical oxidants, and fluoride on stomatal function, photosynthesis, respiration, and metabolic processes and products. Information is discussed concerning combinations of air pollutants, impacts on lichens, and effects of trace metals on plants. The relationship between air pollutants and diseases or other stress factors is evaluated.

  16. Air Pollution Primer. Revised Education.

    ERIC Educational Resources Information Center

    Corman, Rena

    This revised and updated book is written to inform the citizens on the nature, causes, and effects of air pollution. It is written in terms familiar to the layman with the purpose of providing knowledge and motivation to spur community action on clean air policies. Numerous charts and drawings are provided to support discussion of air pollution…

  17. EXPOSURE TO URBAN AIR PARTICULATES ALTERS THE MACROPHAGE- MEDIATED INFLAMMATORY RESPONSE TO RESPIRATORY VIRAL INFECTION

    EPA Science Inventory

    Epidemiology studies associate increased pulmonary morbidity with episodes of high particulate air pollution (size range 0.1-10 microm diameter, PM10). Pneumonia, often viral in origin, is increased following episodes of high PM10 pollution. Therefore, this study was undertaken t...

  18. Atmospheric Chemistry and Air Pollution

    DOE PAGES

    Gaffney, Jeffrey S.; Marley, Nancy A.

    2003-01-01

    Atmospheric chemistry is an important discipline for understanding air pollution and its impacts. This mini-review gives a brief history of air pollution and presents an overview of some of the basic photochemistry involved in the production of ozone and other oxidants in the atmosphere. Urban air quality issues are reviewed with a specific focus on ozone and other oxidants, primary and secondary aerosols, alternative fuels, and the potential for chlorine releases to amplify oxidant chemistry in industrial areas. Regional air pollution issues such as acid rain, long-range transport of aerosols and visibility loss, and the connections of aerosols to ozonemore » and peroxyacetyl nitrate chemistry are examined. Finally, the potential impacts of air pollutants on the global-scale radiative balances of gases and aerosols are discussed briefly.« less

  19. Atmospheric chemistry and air pollution.

    PubMed

    Gaffney, Jeffrey S; Marley, Nancy A

    2003-04-07

    Atmospheric chemistry is an important discipline for understanding air pollution and its impacts. This mini-review gives a brief history of air pollution and presents an overview of some of the basic photochemistry involved in the production of ozone and other oxidants in the atmosphere. Urban air quality issues are reviewed with a specific focus on ozone and other oxidants, primary and secondary aerosols, alternative fuels, and the potential for chlorine releases to amplify oxidant chemistry in industrial areas. Regional air pollution issues such as acid rain, long-range transport of aerosols and visibility loss, and the connections of aerosols to ozone and peroxyacetyl nitrate chemistry are examined. Finally, the potential impacts of air pollutants on the global-scale radiative balances of gases and aerosols are discussed briefly.

  20. Using non-negative matrix factorization for the identification of daily patterns of particulate air pollution in Beijing during 2004-2008

    NASA Astrophysics Data System (ADS)

    Thiem, A.; Schlink, U.; Pan, X.-C.; Hu, M.; Peters, A.; Wiedensohler, A.; Breitner, S.; Cyrys, J.; Wehner, B.; Rösch, C.; Franck, U.

    2012-05-01

    Increasing traffic density and a changing car fleet on the one hand as well as various reduction measures on the other hand may influence the composition of the particle population and, hence, the health risks for residents of megacities like Beijing. A suitable tool for identification and quantification of source group-related particle exposure compositions is desirable in order to derive optimal adaptation and reduction strategies and therefore, is presented in this paper. Particle number concentrations have been measured in high time- and space-resolution at an urban background monitoring site in Beijing, China, during 2004-2008. In this study a new pattern recognition procedure based on non-negative matrix factorization (NMF) was introduced to extract characteristic diurnal air pollution patterns of particle number and volume size distributions for the study period. Initialization and weighting strategies for NMF applications were carefully considered and a scaling procedure for ranking of obtained patterns was implemented. In order to account for varying particle sizes in the full diameter range [3 nm; 10 μm] two separate NMF applications (a) for diurnal particle number concentration data (NMF-N) and (b) volume concentration data (NMF-V) have been performed. Five particle number concentration-related NMF-N factors were assigned to patterns mainly describing the development of ultrafine (particle diameter Dp < 100 nm instead of DP) as well as fine particles (Dp < 2.5 μm), since absolute number concentrations are highest in these diameter ranges. The factors are classified into primary and secondary sources. Primary sources mostly involved anthropogenic emission sources such as traffic emissions or emissions of nearby industrial plants, whereas secondary sources involved new particle formation and accumulation (particle growth) processes. For the NMF-V application the five extracted factors mainly described coarse particle (2.5 μm < Dp < 10 μm) variations

  1. Fine particulate matter pollution linked to respiratory illness in infants and increased hospital costs.

    PubMed

    Sheffield, Perry; Roy, Angkana; Wong, Kendrew; Trasande, Leonardo

    2011-05-01

    There has been little research to date on the linkages between air pollution and infectious respiratory illness in children, and the resulting health care costs. In this study we used data on air pollutants and national hospitalizations to study the relationship between fine particulate air pollution and health care charges and costs for the treatment of bronchiolitis, an acute viral infection of the lungs. We found that as the average exposure to fine particulate matter over the lifetime of an infant increased, so did costs for the child's health care. If the United States were to reduce levels of fine particulate matter to 7 percent below the current annual standard, the nation could save $15 million annually in reduced health care costs from hospitalizations of children with bronchiolitis living in urban areas. These findings reinforce the need for ongoing efforts to reduce levels of air pollutants. They should trigger additional investigation to determine if the current standards for fine-particulate matter are sufficiently protective of children's health.

  2. Contributions of regional air pollutant emissions to ozone and fine particulate matter-related mortalities in eastern U.S. urban areas.

    PubMed

    Hou, Xiangting; Strickland, Matthew J; Liao, Kuo-Jen

    2015-02-01

    Ground-level ozone and fine particulate matter (PM2.5) are associated with adverse human health effects such as lung structure dysfunction, inflammation and infection, asthma, and premature deaths. This study estimated contributions of emissions of anthropogenic nitrogen oxides (NOx), volatile organic compounds (VOCs) and sulfur dioxides (SO2) from four regions to summertime (i.e., June, July, and August) ozone and PM2.5-related mortalities in seven major Metropolitan Statistical Areas (MSAs with more than 4 million people) in the eastern United States (U.S.). A photochemical transport model, Community Multi-scale Air Quality (CMAQ) with sensitivity analyses, was applied to quantify the contribution of the regional anthropogenic emissions to ambient ozone and PM2.5 concentrations in the seven MSAs. The results of the sensitivity analysis, along with estimates of concentration-response from published epidemiologic studies, were used to estimate excess deaths associated with changes in ambient daily 8-h average ozone and daily PM2.5 concentrations during the summer of 2007. The results show that secondary PM2.5 (i.e., PM2.5 formed in the atmosphere) had larger effects on mortality (95% confidence interval (C.I.) ranged from 700 to 3854) than ambient ozone did (95% C.I. was 470-1353) in the seven MSAs. Emissions of anthropogenic NOx, VOCs and SO2 from the northeastern U.S. could cause up to about 2500 ozone and PM2.5-related deaths in the urban areas examined in this study. The results also show that the contributions of emissions from electrical generating units (EGUs) and anthropogenic non-EGU sources to ozone-related mortality in the MSAs were similar. However, emissions from EGUs had a more significant impact on PM2.5-related deaths than anthropogenic emissions from non-EGUs sources did. Anthropogenic NOx and VOCs emissions from the regions where the MSAs are located had the most significant contributions to ozone-related mortalities in the eastern U.S. urban

  3. Contributions of regional air pollutant emissions to ozone and fine particulate matter-related mortalities in eastern U.S. urban areas.

    PubMed

    Hou, Xiangting; Strickland, Matthew J; Liao, Kuo-Jen

    2015-02-01

    Ground-level ozone and fine particulate matter (PM2.5) are associated with adverse human health effects such as lung structure dysfunction, inflammation and infection, asthma, and premature deaths. This study estimated contributions of emissions of anthropogenic nitrogen oxides (NOx), volatile organic compounds (VOCs) and sulfur dioxides (SO2) from four regions to summertime (i.e., June, July, and August) ozone and PM2.5-related mortalities in seven major Metropolitan Statistical Areas (MSAs with more than 4 million people) in the eastern United States (U.S.). A photochemical transport model, Community Multi-scale Air Quality (CMAQ) with sensitivity analyses, was applied to quantify the contribution of the regional anthropogenic emissions to ambient ozone and PM2.5 concentrations in the seven MSAs. The results of the sensitivity analysis, along with estimates of concentration-response from published epidemiologic studies, were used to estimate excess deaths associated with changes in ambient daily 8-h average ozone and daily PM2.5 concentrations during the summer of 2007. The results show that secondary PM2.5 (i.e., PM2.5 formed in the atmosphere) had larger effects on mortality (95% confidence interval (C.I.) ranged from 700 to 3854) than ambient ozone did (95% C.I. was 470-1353) in the seven MSAs. Emissions of anthropogenic NOx, VOCs and SO2 from the northeastern U.S. could cause up to about 2500 ozone and PM2.5-related deaths in the urban areas examined in this study. The results also show that the contributions of emissions from electrical generating units (EGUs) and anthropogenic non-EGU sources to ozone-related mortality in the MSAs were similar. However, emissions from EGUs had a more significant impact on PM2.5-related deaths than anthropogenic emissions from non-EGUs sources did. Anthropogenic NOx and VOCs emissions from the regions where the MSAs are located had the most significant contributions to ozone-related mortalities in the eastern U.S. urban

  4. Air Pollution Affects Community Health

    ERIC Educational Resources Information Center

    Shy, Carl M.; Finklea, John F.

    1973-01-01

    Community Health and Environmental Surveillance System (CHESS), a nationwide program relating community health to environmental quality, is designed to evaluate existing environmental standards, obtain health intelligence for new standards, and document health benefits of air pollution control. (BL)

  5. Western forests and air pollution

    SciTech Connect

    Olson, R.K.; Binkley, D.; Boehm, M.

    1992-01-01

    The book addresses the relationships between air pollution in the western United States and trends in the growth and condition of Western coniferous forests. The major atmospheric pollutants to which forest in the region are exposed are sulfur and nitrogen compounds and ozone. The potential effects of atmospheric pollution on these forests include foliar injury, alteration of growth rates and patterns, soil acidification, shifts in species composition, and modification of the effects of natural stresses.

  6. Hazardous Air Pollutants

    MedlinePlus

    ... menu Learn the Issues Air Chemicals and Toxics Climate Change Emergencies Greener Living Health and Safety Land and Cleanup Pesticides Waste Water Science & Technology Air Climate Change Ecosystems Health Land, Waste and Cleanup Pesticides Substances ...

  7. Air pollution injury to plants

    SciTech Connect

    Seibert, R.J.

    1986-01-01

    The injuries to plants by oxidant air pollution can be used as biological indicators of pollution episodes. Bel W3 tobacco is often used as an indicator organism. Dogwood is another potential indicator organism. Specific growing procedures used for indicator organisms are described, as are diagnostic criteria for the type and extent of injuries.

  8. Bangkok and its air pollution problem

    SciTech Connect

    Panich, S.

    1995-12-31

    Bangkok is the city on a former river delta and is a very flat area. The topography is unremarkable but being only a few kilometers (about 20) from the sea in the Gulf of Bangkok, the City experiences the sea breeze every afternoon and evening. The natural phenomenon is caused by the uplifting of hot air from the sun-baked ground and heat generation in the city, to be replaced by the cooler air from the sea, which is to the south. During the nighttime the sea breeze ceases to operate as the ground temperature cools down. The late night and early morning is characterized by the calm or no wind. With 2.1 million vehicles, the city has a serious problem of carbon monoxide from the gasoline vehicles stuck in the traffic on start and stop cycles, while particulate matter is the result of diesel vehicles. Hydrocarbons mainly result from two-stroke motorcycles and tuk-tuk (three-wheeled) taxis. Air pollution in Bangkok and major cities of Thailand is the result of emissions from gasoline, diesel, and LPG fueled vehicles, which contribute to the observed levels of carbon monoxide, lead, particulate matter, sulfur dioxide, nitrogen dioxide, ozone and hydrocarbons. The industrial activities contribute smaller share due to tall stacks and more efficient combusting processes and pollution control.

  9. Temporal and spatial variations of particulate matter and gaseous pollutants in the urban area of Tehran

    NASA Astrophysics Data System (ADS)

    Alizadeh-Choobari, O.; Bidokhti, A. A.; Ghafarian, P.; Najafi, M. S.

    2016-09-01

    Being hemmed in on two sides by high mountains, the urban area of Tehran is characterized by high levels of particulate matter and gaseous pollutants, which have adverse consequences on human health, ecosystems and environment. Using air quality measurements taken in different regions of Tehran, spatial and temporal variations of particulate matter and gaseous pollutants are analyzed to identify the typical climatological aspects of air pollutants. In terms of particulate matter concentrations, South Tehran is more polluted than Central to North Tehran, while West Tehran is more polluted than the East. Concentrations of particles in North Tehran are lower in the midday compared to the midnight, whereas the opposite is true in South Tehran. The observed annual mean concentrations of PM2.5 and PM10 in North Tehran were 37.5 and 76.3 μg m-3, respectively, which are substantially greater than the national annual mean safety limits of 10 μg m-3 for PM2.5 and 20 μg m-3 for PM10. The observed high levels of particulate matter underline the essential need for a coordinated action to reduce the rapidly increasing air pollution over the growing urban area of Tehran. Noticeable monthly (seasonal) variations are evident in the observed PM10 concentrations, with a minimum of 61.5 μg m-3 in March (spring) and a maximum of 82.9 μg m-3 in July (summer), reflecting contribution of weather conditions. Analyzing daily PM2.5 (PM10) concentrations indicate that mid-week Wednesdays (Mondays) are the most polluted days. The higher mid-week concentrations reflect contribution of heavy vehicular traffic, industrial operation and increased commercial activities. Strong diurnal variations in the concentrations of particulate matter in North Tehran are detected, varying from a peak in late night to a minimum in late afternoon, indicating contribution of deeper daytime convective boundary layer and stronger winds in dispersion of particles.

  10. Air pollution and multiple acute respiratory outcomes.

    PubMed

    Faustini, Annunziata; Stafoggia, Massimo; Colais, Paola; Berti, Giovanna; Bisanti, Luigi; Cadum, Ennio; Cernigliaro, Achille; Mallone, Sandra; Scarnato, Corrado; Forastiere, Francesco

    2013-08-01

    Short-term effects of air pollutants on respiratory mortality and morbidity have been consistently reported but usually studied separately. To more completely assess air pollution effects, we studied hospitalisations for respiratory diseases together with out-of-hospital respiratory deaths. A time-stratified case-crossover study was carried out in six Italian cities from 2001 to 2005. Daily particulate matter (particles with a 50% cut-off aerodynamic diameter of 10 μm (PM10)) and nitrogen dioxide (NO2) associations with hospitalisations for respiratory diseases (n = 100 690), chronic obstructive pulmonary disease (COPD) (n = 38 577), lower respiratory tract infections (LRTI) among COPD patients (n = 9886) and out-of-hospital respiratory deaths (n = 5490) were estimated for residents aged ≥35 years. For an increase of 10 μg·m(-3) in PM10, we found an immediate 0.59% (lag 0-1 days) increase in hospitalisations for respiratory diseases and a 0.67% increase for COPD; the 1.91% increase in LRTI hospitalisations lasted longer (lag 0-3 days) and the 3.95% increase in respiratory mortality lasted 6 days. Effects of NO2 were stronger and lasted longer (lag 0-5 days). Age, sex and previous ischaemic heart disease acted as effect modifiers for different outcomes. Analysing multiple rather than single respiratory events shows stronger air pollution effects. The temporal relationship between the pollutant increases and hospitalisations or mortality for respiratory diseases differs.

  11. The health effects of exercising in air pollution.

    PubMed

    Giles, Luisa V; Koehle, Michael S

    2014-02-01

    The health benefits of exercise are well known. Many of the most accessible forms of exercise, such as walking, cycling, and running often occur outdoors. This means that exercising outdoors may increase exposure to urban air pollution. Regular exercise plays a key role in improving some of the physiologic mechanisms and health outcomes that air pollution exposure may exacerbate. This problem presents an interesting challenge of balancing the beneficial effects of exercise along with the detrimental effects of air pollution upon health. This article summarizes the pulmonary, cardiovascular, cognitive, and systemic health effects of exposure to particulate matter, ozone, and carbon monoxide during exercise. It also summarizes how air pollution exposure affects maximal oxygen consumption and exercise performance. This article highlights ways in which exercisers could mitigate the adverse health effects of air pollution exposure during exercise and draws attention to the potential importance of land use planning in selecting exercise facilities.

  12. Sources and Processes Affecting Particulate Matter Pollution over North China

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Shao, J.; Lu, X.; Zhao, Y.; Gong, S.; Henze, D. K.

    2015-12-01

    Severe fine particulate matter (PM2.5) pollution over North China has received broad attention worldwide in recent years. Better understanding the sources and processes controlling pollution over this region is of great importance with urgent implications for air quality policy. We will present a four-dimensional variational (4D-Var) data assimilation system using the GEOS-Chem chemical transport model and its adjoint model at 0.25° × 0.3125° horizontal resolution, and apply it to analyze the factors affecting PM2.5 concentrations over North China. Hourly surface observations of PM2.5 and sulfur dioxide (SO2) from the China National Environmental Monitoring Center (CNEMC) can be assimilated into the model to evaluate and constrain aerosol (primary and precursors) emissions. Application of the data assimilation system to the APEC period (the Asia-Pacific Economic Cooperation summit; 5-11 November 2014) shows that 46% of the PM2.5 pollution reduction during APEC ("The APEC Blue") can be attributed to meteorology conditions and the rest 54% to emission reductions due to strict emission controls. Ammonia emissions are shown to significantly contribute to PM2.5 over North China in the fall. By converting sulfuric acid and nitric acid to longer-lived ammonium sulfate and ammonium nitrate aerosols, ammonia plays an important role in promoting their regional transport influences. We will also discuss the pathways and mechanisms of external long-range transport influences to the PM2.5 pollution over North China.

  13. Title III hazardous air pollutants

    SciTech Connect

    Todd, R.

    1995-12-31

    The author presents an overview of the key provisions of Title III of the Clean Air Act Amendments of 1990. The key provisions include the following: 112(b) -- 189 Hazardous Air Pollutants (HAP); 112(a) -- Major Source: 10 TPY/25 TPY; 112(d) -- Application of MACT; 112(g) -- Modifications; 112(I) -- State Program; 112(j) -- The Hammer; and 112(r) -- Accidental Release Provisions.

  14. Children's response to air pollutants.

    PubMed

    Bateson, Thomas F; Schwartz, Joel

    2008-01-01

    It is important to focus on children with respect to air pollution because (1) their lungs are not completely developed, (2) they can have greater exposures than adults, and (3) those exposures can deliver higher doses of different composition that may remain in the lung for greater duration. The undeveloped lung is more vulnerable to assault and less able to fully repair itself when injury disrupts morphogenesis. Children spend more time outside, where concentrations of combustion-generated air pollution are generally higher. Children have higher baseline ventilation rates and are more physically active than adults, thus exposing their lungs to more air pollution. Nasal breathing in adults reduces some pollution concentrations, but children are more typically mouth-breathers--suggesting that the composition of the exposure mixture at the alveolar level may be different. Finally, higher ventilation rates and mouth-breathing may pull air pollutants deeper into children's lungs, thereby making clearance slower and more difficult. Children also have immature immune systems, which plays a significant role in asthma. The observed consequences of early life exposure to adverse levels of air pollutants include diminished lung function and increased susceptibility to acute respiratory illness and asthma. Exposure to diesel exhaust, in particular, is an area of concern for multiple endpoints, and deserves further research. PMID:18097949

  15. Ambient air quality and the effects of air pollutants on otolaryngology in Beijing.

    PubMed

    Zhang, Fengying; Xu, Jin; Zhang, Ziying; Meng, Haiying; Wang, Li; Lu, Jinmei; Wang, Wuyi; Krafft, Thomas

    2015-08-01

    To investigate temporal patterns, pollution concentrations and the health effects of air pollutants in Beijing we carried out time-series analyses on daily concentrations of ambient air pollutants and daily numbers of outpatient visits for otolaryngology over 2 years (2011-2012) to identify possible health effects of air pollutants. The results showed that PM10 was the major air pollutant in Beijing and that air quality was slightly better in 2012 than in 2011. Seasonal differences were apparent for SO2 and NO2. Both the background and urban areas of Beijing experienced particulate matter pollution in 2011. In addition to local air pollution, Beijing was also affected by pollutants transported from other regions, especially during heavy air pollution episodes. PM10, NO2, and SO2 concentrations showed positive associations with numbers of outpatient visits for otolaryngology during winter. NO2 and SO2 also had adverse ear, nose, and throat health effects outside of winter. The ear, nose, and throat health risks caused by air pollutants were higher during the winter than during the summer. NO2 had stronger influence on increased the likelihood of outpatient visits than SO2. The findings provide additional information about air quality and health effects of air pollution in Beijing.

  16. Cause-specific mortality and the extended effects of particulate pollution and temperature exposure.

    PubMed

    Goodman, Patrick G; Dockery, Douglas W; Clancy, Luke

    2004-02-01

    Air pollution exposure studies in the past decade have focused on acute (days) or long-term (years) effects. We present an analysis of medium-term (weeks to months) exposure effects of particulate pollution and temperature. We assessed the associations of particulate pollution (black smoke) and temperature with age-standardized daily mortality rates over 17 years in Dublin, Ireland, using a polynomial distributed lag model of both temperature and particulate air pollution simultaneously through 40 days after exposure. When only acute effects (3-day mean) were considered, we found total mortality increased by 0.4% for each 10-microg/m3 increase in black smoke concentration. When deaths in the 40 days after exposure were considered, we found a 1.1% increase. For respiratory mortality, the estimated effect was 0.9% for acute exposures, but 3.6% for the extended follow-up. We found each increase in current-day temperature by 1 degree C was associated with a 0.4% increase in total mortality, whereas each decrease of 1 degree C was associated with a 2.6% increase in mortality in the following 40 days. For both temperature and pollution, the largest effects on cardiovascular mortality were observed immediately, whereas respiratory mortality was delayed and distributed over several weeks. These effects were two to three times greater than the acute effects reported in other studies, and approach the effects reported in longer-term survival studies. This analysis suggests that studies on the acute effects of air pollution have underestimated the total effects of temperature and particulate air pollution on mortality.

  17. Accumulation of particulate matter and trace elements on vegetation as affected by pollution level, rainfall and the passage of time.

    PubMed

    Przybysz, A; Sæbø, A; Hanslin, H M; Gawroński, S W

    2014-05-15

    Particulate matter is harmful to human health. To reduce its concentration in air, plants could be used as biological filters, accumulating particulate matter on their foliage. In a study carried out at three sites with differing pollution levels and exposure to precipitation, the capacity of evergreen species (Taxus baccata L., Hedera helix L. and Pinus sylvestris L.) to accumulate particulate matter and trace elements from ambient air in urban areas was investigated. The effects of rainfall and the passage of time on particulate matter deposition on foliage were also determined. The results showed that foliage accumulated an increasing quantity of particulate matter in successive months, but the actual amount of particulate matter and trace elements accumulated differed considerably between sites and plant species. The greatest accumulation of air pollutants occurred on the foliage of plants protected from the rain at a site exposed to traffic related pollution and the smallest accumulation at a rural site. Among the species analysed, the deposited mass of particulate matter and trace elements was the greatest on P. sylvestris. In all species, precipitation removed a considerable proportion of particles accumulated on foliage. Most of the removed particulate matter was large size fraction, but little belong to the smallest size fraction. These results showed that both, the dynamics of deposition and leaf washing by rain during the season need to be considered when evaluating the total effect of vegetation in pollutant remediation.

  18. Fine Ambient Air Particulate Matter Exposure Induces Molecular Alterations Indicative of Cardiovascular Disease Progression in Atherosclerotic Susceptible Mice -- B

    EPA Science Inventory

    Background: Epidemiology studies have reported associations between increased mortality and morbidity with exposure to particulate air pollution, particularly within individuals with pre-existing cardiovascular disease (CVD). Clinical and toxicological studies have provided evide...

  19. Air pollution: brown skies research.

    PubMed Central

    Tattersfield, A. E.

    1996-01-01

    Direct information on the health effects of air pollution in humans relies mainly on chamber studies and epidemiological studies. Although chamber studies have limitations they allow the acute effects of individual pollutants to be studied in well characterised subjects under controlled conditions. Most chamber studies have shown relatively small falls in lung function and relatively small increases in bronchial reactivity at the concentrations of ozone, SO2, and NO2 that occur even during high pollution episodes in the UK. The possible exception is SO2 where sensitive asthmatic patients may show a greater response at concentrations that are seen from time to time in certain areas and in proximity to power stations. There is no convincing evidence of potentiation between pollutants in chamber studies. Epidemiological studies are more difficult to carry out and require considerable epidemiological and statistical expertise to deal with the main problem-confounding by other factors. Although the health effects seen with current levels of pollution are small compared with those seen in the 1950s and close to the limits of detection, this should not be interpreted as being unimportant. A small effect may have large consequences when the population exposed is large (the whole population in this case). Recent data suggest that particles have more important health effects than the pollutant gases that have been studied. Much of this information comes from the USA though the findings are probably applicable in the UK. More information is needed on the size of the health effects that occur during the three types of air pollution episodes seen in this country and the relative contributions of particles, pollutant gases, pollen, and other factors such as temperature. Research into air pollution declined in the UK following the introduction of the Clean Air Acts; it is now increasing again following pressure from certain individuals and ginger groups, including the British

  20. Lung cancer and air pollution.

    PubMed

    Cohen, A J; Pope, C A

    1995-11-01

    Epidemiologic studies over the last 40 years suggest rather consistently that general ambient air pollution, chiefly due to the incomplete combustion of fossil fuels, may be responsible for increased rates of lung cancer. This evidence derives from studies of lung cancer trends, studies of occupational groups, comparisons of urban and rural populations, and case-control and cohort studies using diverse exposure metrics. Recent prospective cohort studies observed 30 to 50% increases in lung cancer rates associated with exposure to respirable particles. While these data reflect the effects of exposures in past decades, and despite some progress in reducing air pollution, large numbers of people in the United States continue to be exposed to pollutant mixtures containing known or suspected carcinogens. It is not known how many people in the United States are exposed to levels of fine respirable particles that have been associated with lung cancer in recent epidemiologic studies. These observations suggest that the most widely cited estimates of the proportional contribution of air pollution to lung cancer occurrence in the United States based largely on the results of animal studies, may be too low. It is important that better epidemiologic research be conducted to allow improved estimates of lung cancer risk from air pollution among the general population. The development and application of new epidemiologic methods, particularly the improved characterization of population-wide exposure to mixtures of air pollutants and the improved design of ecologic studies, could improve our ability to measure accurately the magnitude of excess cancer associated with air pollution. PMID:8741787

  1. Air Pollution in the World's Megacities.

    ERIC Educational Resources Information Center

    Richman, Barbara T., Ed.

    1994-01-01

    Reports findings of the Global Environment Monitoring System study concerning air pollution in the world's megacities. Discusses sources of air pollution, air pollution impacts, air quality monitoring, air quality trends, and control strategies. Provides profiles of the problem in Beijing, Los Angeles, Mexico City, India, Cairo, Sao Paulo, and…

  2. How to conquer air pollution

    SciTech Connect

    Nishimura, H. . Faculty of Engineering)

    1989-01-01

    Many parts of the world suffer from urban air pollution and, despite the vast amount of knowledge about its causes, most countries are slow to implement counter-measures. An exception is Tokyo which, once blanketed in a mantle of smog, now enjoys clean air in spite of highly concentrated activity and congested traffic. Based on the successful Japanese experience, this book describes all aspects of the measures necessary to combat air pollution. It begins with a well-documented history of the fight against air pollution and describes the processes and mechanisms of reaching a social consensus on pollution control. The essential steps in the process are the establishment of ambient air quality standards, the introduction of the total allowable mass of emission, and the legal control of each emission based on diffusion equations. The scientific background to this approach is explained, from epidemiology to computer simulations of air quality. An up-to-date account of emission control technology is also given, and the controversial issue of health damage compensation is examined, based on actual experience.

  3. Air quality and pollution control in Taiwan

    NASA Astrophysics Data System (ADS)

    Fang, Shu-Hwei; Chen, Hsiung-Wen

    Due to limited land and great emphasis on economic growth in the past, Taiwan has an extremely heavy environmental burden. Population density, factory density, as well as densities of motor vehicles are several times higher than those in the United States and Japan. According to the statistics of 1991, the Pollutant Standards Index (PSI) fell mostly in the "moderate" category, i.e., in the range of 50-100. There were 16.25% of the monitored days with PSI above 100, and 0.51% with PSI beyond 200. Suspended particulates were the major pollutant responsible for PSI above 100, followed by carbon monoxide, ozone, and sulfur dioxide. The measures adopted to control air pollution can be divided into four categories, namely law and regulations, control measures on stationary sources, mobile sources and construction projects. The latest amended Air Pollution Control Act was promulgated on 1 February 1992. Several major revisions were introduced to make the amended Act much more stringent than the 1982 amendment, especially on the offenses likely to endanger public health and welfare. In regard to stationary sources, a permit system was enacted to regulate the establishment and alteration of stationary sources. Designated stationary sources are required to be equipped with automatic monitoring facilities. An inspection and enforcement program have expanded to cover more than 10,000 factories. Major control measures for motor vehicles include introducing stringent emission standards for gasoline-fueled vehicles and diesel cars, setting up ratification and approval program for new vehicle model, promoting the inspection/maintenance program on in-used motorcycles and encouraging the use of unleaded and low sulfur fuels. In order to control the pollution caused by construction work, constructors are required to use low-pollution machinery and engineering methods and incorporate pollution prevention into the construction budget.

  4. Human health effects of air pollution.

    PubMed

    Kampa, Marilena; Castanas, Elias

    2008-01-01

    Hazardous chemicals escape to the environment by a number of natural and/or anthropogenic activities and may cause adverse effects on human health and the environment. Increased combustion of fossil fuels in the last century is responsible for the progressive change in the atmospheric composition. Air pollutants, such as carbon monoxide (CO), sulfur dioxide (SO(2)), nitrogen oxides (NOx), volatile organic compounds (VOCs), ozone (O(3)), heavy metals, and respirable particulate matter (PM2.5 and PM10), differ in their chemical composition, reaction properties, emission, time of disintegration and ability to diffuse in long or short distances. Air pollution has both acute and chronic effects on human health, affecting a number of different systems and organs. It ranges from minor upper respiratory irritation to chronic respiratory and heart disease, lung cancer, acute respiratory infections in children and chronic bronchitis in adults, aggravating pre-existing heart and lung disease, or asthmatic attacks. In addition, short- and long-term exposures have also been linked with premature mortality and reduced life expectancy. These effects of air pollutants on human health and their mechanism of action are briefly discussed.

  5. Civil aviation, air pollution and human health

    NASA Astrophysics Data System (ADS)

    Harrison, Roy M.; Masiol, Mauro; Vardoulakis, Sotiris

    2015-04-01

    Air pollutant emissions from aircraft have been subjected to less rigorous control than road traffic emissions, and the rapid growth of global aviation is a matter of concern in relation to human exposures to pollutants, and consequent effects upon health. Yim et al (2015 Environ. Res. Lett. 3 034001) estimate exposures globally arising from aircraft engine emissions of primary particulate matter, and from secondary sulphates and ozone, and use concentration-response functions to calculate the impact upon mortality, which is monetised using the value of statistical life. This study makes a valuable contribution to estimating the magnitude of public health impact at various scales, ranging from local, near airport, regional and global. The results highlight the need to implement future mitigation actions to limit impacts of aviation upon air quality and public health. The approach adopted in Yim et al only accounts for the air pollutants emitted by aircraft engine exhausts. Whilst aircraft emissions are often considered as dominant near runways, there are a number of other sources and processes related to aviation that still need to be accounted for. This includes impacts of nitrate aerosol formed from NOx emissions, but probably more important, are the other airport-related emissions from ground service equipment and road traffic. By inclusion of these, and consideration of non-fatal impacts, future research will generate comprehensive estimates of impact related to aviation and airports.

  6. New Approach to Monitor Transboundary Particulate Pollution over Northeast Asia

    NASA Technical Reports Server (NTRS)

    Park, M. E.; Song, C. H.; Park, R. S.; Lee, Jaehwa; Kim, J.; Lee, S.; Woo, J. H.; Carmichael, G. R.; Eck, Thomas F.; Holben, Brent N.; Lee, S. S.; Song, C. K.; Hong, Y. D.

    2014-01-01

    A new approach to more accurately monitor and evaluate transboundary particulate matter (PM) pollution is introduced based on aerosol optical products from Korea's Geostationary Ocean Color Imager (GOCI). The area studied is Northeast Asia (including eastern parts of China, the Korean peninsula and Japan), where GOCI has been monitoring since June 2010. The hourly multi-spectral aerosol optical data that were retrieved from GOCI sensor onboard geostationary satellite COMS (Communication, Ocean, and Meteorology Satellite) through the Yonsei aerosol retrieval algorithm were first presented and used in this study. The GOCI-retrieved aerosol optical data are integrated with estimated aerosol distributions from US EPA Models-3/CMAQ (Community Multi-scale Air Quality) v4.5.1 model simulations via data assimilation technique, thereby making the aerosol data spatially continuous and available even for cloud contamination cells. The assimilated aerosol optical data are utilized to provide quantitative estimates of transboundary PM pollution from China to the Korean peninsula and Japan. For the period of 1 April to 31 May, 2011 this analysis yields estimates that AOD as a proxy for PM2.5 or PM10 during long-range transport events increased by 117-265% compared to background average AOD (aerosol optical depth) at the four AERONET sites in Korea, and average AOD increases of 121% were found when averaged over the entire Korean peninsula. This paper demonstrates that the use of multi-spectral AOD retrievals from geostationary satellites can improve estimates of transboundary PM pollution. Such data will become more widely available later this decade when new sensors such as the GEMS (Geostationary Environment Monitoring Spectrometer) and GOCI-2 are scheduled to be launched.

  7. Understanding Air Pollution and Cardiovascular Diseases: Is It Preventable?

    PubMed Central

    Morishita, Masako; Thompson, Kathryn C.

    2015-01-01

    Fine particulate matter (<2.5 µm, PM2.5) air pollution is a leading risk factor for morbidity and mortality worldwide. The largest portion of adverse health effects is from cardiovascular diseases. In North America, PM2.5 concentrations have shown a steady decline over the past several decades; however, the opposite trend has occurred throughout much of the developing world whereby daily concentrations commonly reach extraordinarily high levels. While air quality regulations can reduce air pollution at a societal level, what individuals can do to reduce their personal exposures remains an active field of investigation. Here, we review the emerging evidence that several interventions (e.g., air filters) and/or behavioral changes can lower PM pollution exposure and as such, may be capable of mitigating the ensuing adverse cardiovascular health consequences. Air pollution remains a worldwide epidemic and a multi-tiered prevention strategy is required in order to optimally protect global public health. PMID:26097526

  8. [Air pollution and population health].

    PubMed

    Kristoforović-Ilić, Miroslava; Ilić, Miroslav

    2006-10-01

    In the last few decades, there has been increased population concern for quality of environment, for it is, after life style, the second risk factor of disease development. Particular problem is that a large majority of serious impairments of health is manifested only after a long latent period, so it is not always possible to establish clear association with environmental factors. It is considered today that around 40% of lethal cases are caused by polluted environment in various ways, while environment is the most important etiologic factor in 5% of disease incidence. Problems arising due to environment pollution are most frequently related to air pollution. The World Resource Institute, Washington, has developed the indicators for evaluation of risk of environment pollution to population health. There is one common indicator both for developed and developing countries--air pollution. EPA recommended new standards for some polluting substances. The document reviewed these standards and their implementation in our community. New Law on Environment Protection ("Official Gazette of RS" No. 135/2004) from December 20th, 2004, followed by relevant documents on air quality, should be beneficial to experts at the level of subtle diagnostics and proposal of adequate measures with a view to improve the quality of life.

  9. Air pollution and plant life

    SciTech Connect

    Treshow, M.

    1984-01-01

    The publication of this volume could hardly have been more timely, for concern about the damage to plants from air pollution has grown rapidly in the last few years. The book comprises eighteen chapters by contributors of high repute. Three early chapters deal with Dispersion and Fate of Atmospheric Pollutants, Long Range Transport and Monitoring Levels and Effects of Air Pollutants. They provide essential reading for those working on effects in the field, and they set the scene for a contribution from the Volume Editor on the problems of diagnosis. The central chapters (7 to 11) provide, in considerable depth, a summary of the knowledge of the mechanism of action of pollutants on plants, in terms of physiology, biochemistry, and ultrastructure. Particularly valuable is the essay entitled Impact of Air Pollutant Combinations on Plants, which concludes that even though few generalizations are possible, there is now sufficient evidence to suggest that interactions between some pollutants (e.g. SO/sub 2/ and O/sub 3/, SO/sub 2/ and NO/sub 2/) may seriously damage some plants.

  10. Contemporary threats and air pollution

    NASA Astrophysics Data System (ADS)

    Hopke, Philip K.

    It is now well understood that air pollution produces significant adverse health effects in the general public and over the past 60 years, there have been on-going efforts to reduce the emitted pollutants and their resulting health effects. There are now shifting patterns of industrialization with many heavily polluting industries moving from developed countries with increasingly stringent air quality standards to the developing world. However, even in decreasing concentrations of pollutants, health effects remain important possibly as a result of changes in the nature of the pollutants as new chemicals are produced and as other causes of mortality and morbidity are reduced. In addition, there is now the potential for deliberate introduction of toxic air pollutants by local armed conflicts and terrorists. Thus, there are new challenges to understand the role of the atmospheric environment on public health in this time of changing economic and demographic conditions overlaid with the willingness to indirectly attack governments and other established entities through direct attacks on the general public.

  11. [Air pollution and population health].

    PubMed

    Kristoforović-Ilić, Miroslava; Ilić, Miroslav

    2006-10-01

    In the last few decades, there has been increased population concern for quality of environment, for it is, after life style, the second risk factor of disease development. Particular problem is that a large majority of serious impairments of health is manifested only after a long latent period, so it is not always possible to establish clear association with environmental factors. It is considered today that around 40% of lethal cases are caused by polluted environment in various ways, while environment is the most important etiologic factor in 5% of disease incidence. Problems arising due to environment pollution are most frequently related to air pollution. The World Resource Institute, Washington, has developed the indicators for evaluation of risk of environment pollution to population health. There is one common indicator both for developed and developing countries--air pollution. EPA recommended new standards for some polluting substances. The document reviewed these standards and their implementation in our community. New Law on Environment Protection ("Official Gazette of RS" No. 135/2004) from December 20th, 2004, followed by relevant documents on air quality, should be beneficial to experts at the level of subtle diagnostics and proposal of adequate measures with a view to improve the quality of life. PMID:18172966

  12. Air Pollution and Its Effects on an Individual's Health and Exercise Performance.

    ERIC Educational Resources Information Center

    Singh, A. I. Clifford

    1988-01-01

    Air Pollution is a common environmental stressor affecting the training and competitive performance of athletes, commonly irritating the eyes, nose, and throat. The health and exercise effects of such primary and secondary air pollutants as carbon monoxide, sulfur dioxide, air particulates, ozone, and nitrogen dioxide are discussed. (CB)

  13. Air pollution and infant mortality from pneumonia

    SciTech Connect

    Penna, M.L.; Duchiade, M.P. )

    1991-03-01

    This study examines the relationship between air pollution, measured as concentration of suspended particulates in the atmosphere, and infant mortality due to pneumonia in the metropolitan area of Rio de Janeiro. Multiple linear regression (progressive or stepwise method) was used to analyze infant mortality due to pneumonia, diarrhea, and all causes in 1980, by geographic area, income level, and degree of contamination. While the variable proportion of families with income equivalent to more than two minimum wages was included in the regressions corresponding to the three types of infant mortality, the average contamination index had a statistically significant coefficient (b = 0.2208; t = 2.670; P = 0.0137) only in the case of mortality due to pneumonia. This would suggest a biological association, but, as in any ecological study, such conclusions should be viewed with caution. The authors believe that air quality indicators are essential to consider in studies of acute respiratory infections in developing countries.

  14. In Brief: Air pollution app

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2010-10-01

    A new smartphone application takes advantage of various technological capabilities and sensors to help users monitor air quality. Tapping into smartphone cameras, Global Positioning System (GPS) sensors, compasses, and accelerometers, computer scientists with the University of Southern California's (USC) Viterbi School of Engineering have developed a new application, provisionally entitled “Visibility.” Currently available for the Android telephone operating system, the application is available for free download at http://robotics.usc.edu/˜mobilesensing/Projects/AirVisibilityMonitoring. An iPhone application may be introduced soon. Smartphone users can take a picture of the sky and then compare it with models of sky luminance to estimate visibility. While conventional air pollution monitors are costly and thinly deployed in some areas, the smartphone application potentially could help fill in some blanks in existing air pollution maps, according to USC computer science professor Gaurav Sukhatme.

  15. Long-term Changes in Extreme Air Pollution Meteorology and the Implications for Air Quality.

    PubMed

    Hou, Pei; Wu, Shiliang

    2016-01-01

    Extreme air pollution meteorological events, such as heat waves, temperature inversions and atmospheric stagnation episodes, can significantly affect air quality. Based on observational data, we have analyzed the long-term evolution of extreme air pollution meteorology on the global scale and their potential impacts on air quality, especially the high pollution episodes. We have identified significant increasing trends for the occurrences of extreme air pollution meteorological events in the past six decades, especially over the continental regions. Statistical analysis combining air quality data and meteorological data further indicates strong sensitivities of air quality (including both average air pollutant concentrations and high pollution episodes) to extreme meteorological events. For example, we find that in the United States the probability of severe ozone pollution when there are heat waves could be up to seven times of the average probability during summertime, while temperature inversions in wintertime could enhance the probability of severe particulate matter pollution by more than a factor of two. We have also identified significant seasonal and spatial variations in the sensitivity of air quality to extreme air pollution meteorology. PMID:27029386

  16. Long-term Changes in Extreme Air Pollution Meteorology and the Implications for Air Quality.

    PubMed

    Hou, Pei; Wu, Shiliang

    2016-03-31

    Extreme air pollution meteorological events, such as heat waves, temperature inversions and atmospheric stagnation episodes, can significantly affect air quality. Based on observational data, we have analyzed the long-term evolution of extreme air pollution meteorology on the global scale and their potential impacts on air quality, especially the high pollution episodes. We have identified significant increasing trends for the occurrences of extreme air pollution meteorological events in the past six decades, especially over the continental regions. Statistical analysis combining air quality data and meteorological data further indicates strong sensitivities of air quality (including both average air pollutant concentrations and high pollution episodes) to extreme meteorological events. For example, we find that in the United States the probability of severe ozone pollution when there are heat waves could be up to seven times of the average probability during summertime, while temperature inversions in wintertime could enhance the probability of severe particulate matter pollution by more than a factor of two. We have also identified significant seasonal and spatial variations in the sensitivity of air quality to extreme air pollution meteorology.

  17. Long-term Changes in Extreme Air Pollution Meteorology and the Implications for Air Quality

    PubMed Central

    Hou, Pei; Wu, Shiliang

    2016-01-01

    Extreme air pollution meteorological events, such as heat waves, temperature inversions and atmospheric stagnation episodes, can significantly affect air quality. Based on observational data, we have analyzed the long-term evolution of extreme air pollution meteorology on the global scale and their potential impacts on air quality, especially the high pollution episodes. We have identified significant increasing trends for the occurrences of extreme air pollution meteorological events in the past six decades, especially over the continental regions. Statistical analysis combining air quality data and meteorological data further indicates strong sensitivities of air quality (including both average air pollutant concentrations and high pollution episodes) to extreme meteorological events. For example, we find that in the United States the probability of severe ozone pollution when there are heat waves could be up to seven times of the average probability during summertime, while temperature inversions in wintertime could enhance the probability of severe particulate matter pollution by more than a factor of two. We have also identified significant seasonal and spatial variations in the sensitivity of air quality to extreme air pollution meteorology. PMID:27029386

  18. Long-term Changes in Extreme Air Pollution Meteorology and the Implications for Air Quality

    NASA Astrophysics Data System (ADS)

    Hou, Pei; Wu, Shiliang

    2016-03-01

    Extreme air pollution meteorological events, such as heat waves, temperature inversions and atmospheric stagnation episodes, can significantly affect air quality. Based on observational data, we have analyzed the long-term evolution of extreme air pollution meteorology on the global scale and their potential impacts on air quality, especially the high pollution episodes. We have identified significant increasing trends for the occurrences of extreme air pollution meteorological events in the past six decades, especially over the continental regions. Statistical analysis combining air quality data and meteorological data further indicates strong sensitivities of air quality (including both average air pollutant concentrations and high pollution episodes) to extreme meteorological events. For example, we find that in the United States the probability of severe ozone pollution when there are heat waves could be up to seven times of the average probability during summertime, while temperature inversions in wintertime could enhance the probability of severe particulate matter pollution by more than a factor of two. We have also identified significant seasonal and spatial variations in the sensitivity of air quality to extreme air pollution meteorology.

  19. Air quality limit and guide values for sulphur dioxide and suspended particulates - A European community directive.

    PubMed

    Smeets, J

    1982-12-01

    On 15 July, 1980, the Council of Ministers of the European Communities adopted a Council Directive on air quality limit values and guide values for sulphur dioxide and suspended particulates. This directive constitutes the first European legislation on stating air quality standards.The guiding principles underlying this directive are analyzed and the consequences of the directive for Member States, in terms of concrete actions destined to improve the air quality, particularly in highly polluted areas, are indicated. PMID:24264120

  20. Air quality limit and guide values for sulphur dioxide and suspended particulates - A European community directive.

    PubMed

    Smeets, J

    1982-12-01

    On 15 July, 1980, the Council of Ministers of the European Communities adopted a Council Directive on air quality limit values and guide values for sulphur dioxide and suspended particulates. This directive constitutes the first European legislation on stating air quality standards.The guiding principles underlying this directive are analyzed and the consequences of the directive for Member States, in terms of concrete actions destined to improve the air quality, particularly in highly polluted areas, are indicated.

  1. Indoor air pollutants

    SciTech Connect

    Angle, C.R.

    1988-01-01

    A major contribution of the pediatrician is to help families rank the multitude of pollutants according to their known risk for child health. Elimination of household smoking and completely effective venting of indoor heating devices are beneficial to all and mandatory in homes of allergic children. Acute releases of NO/sub 2/ by gas ranges and ovens may be a significant factor in an increased incidence of respiratory infection, especially in children under two years. Despite intensive investigation, immunosuppressive and other health effects have not been defined for indoor levels of PBBs, PCBs, and related halogenated hydrocarbons. The analytic ability to determine nanomolar concentrations of numerous toxic chemicals opens a Pandora's box of inquiry. New methods, particularly immunologic, are urgently needed to quantitate the dose response to multiple combinations of chemicals and determine their significance for the health of the tight-box generation of children. 136 references.

  2. Possibilities of observing air pollution from orbital altitudes

    NASA Technical Reports Server (NTRS)

    Barringer, A.

    1972-01-01

    Research carried out over a number of years has indicated the feasibility of monitoring global air pollution from orbiting satellites. Optical methods show considerable promise of measuring the burdens of pollution, both gaseous and particulates. Important pollution gases, such as sulfur dioxide, nitrogen dioxide, carbon monoxide, and ozone, as well as some hydrocarbon vapors, appear amenable to optical remote sensing. Satellite platforms for carrying out this work would not compete with ground monitoring stations but rather supplement them with a different type of data which could be integrated with ground level measurements to provide an all-embracing picture of pollution buildup, mass migration, and dissipation.

  3. Air Pollution and Acid Rain, Report 5. The effects of air pollution and acid rain on fish, wildlife, and their habitats: rivers and streams

    SciTech Connect

    Potter, W.; Chang, B.K.Y.

    1982-06-01

    This report on rivers and streams is part of a series synthesizing the results of scientific research related to the effects of air pollution and acid deposition on fish and wildlife resources. The effects of photochemical oxidants, particulates, and acidifying air pollutants on water quality and river and stream biota are summarized. The characteristics that reflect river and stream sensitivity to air pollutants, in particular acidifying pollutants, are presented. Socioeconomic aspects of air pollution impacts on river and stream ecosystems are discussed. 71 references, 2 figures, 5 tables.

  4. Air pollution and daily mortality in Shenyang, China

    SciTech Connect

    Xu, Z.; Yu, D.; Jing, L.; Xu, X.

    2000-04-01

    The authors analyzed daily mortality data in Shenyang, China, for calendar year 1992 to identify possible associations with ambient sulfur dioxide and total suspended particulates. Both total suspended particulate concentrations and sulfur dioxide concentrations far exceeded the World Health Organizations' recommended criteria. An average of 45.5 persons died each day. The lagged moving averages of air-pollution levels, calculated as the mean of the nonmissing air-pollution levels of the concurrent and 3 preceding days, were used for all analyses. Locally weighted regression analysis, including temperature, humidity, day of week, and a time variable, showed a positive association between daily mortality and both total suspended particulates and sulfur dioxide. When the authors included total suspended particulates and sulfur dioxide separately in the model, both were highly significant predictors of daily mortality. The risk of all-cause mortality increased by an estimated 1.7% and 2.4% with a 100-{micro}g/m{sup 3} concomitant increase in total suspended particulate and sulfur dioxide, respectively. When the authors analyzed mortality separately by cause of death, the association with total suspended particulates was significant for cardiovascular disease, but not statistically significant for chronic obstructive pulmonary diseases. In contrast, the association with sulfur dioxide was significant for chronic obstructive pulmonary diseases, but not for cardiovascular disease. The mortality from cancer was not associated significantly with total suspended particles or with sulfur dioxide. The correlation between sulfur dioxide and total suspended particulates was high. When the authors included sulfur dioxide and total suspended particulates simultaneously in the model, the association between total suspended particulates and mortality from all causes and cardiovascular diseases remained significant. Sulfur dioxide was associated significantly with increased

  5. Particulate matter pollution and population exposure assessment over mainland China in 2010 with remote sensing.

    PubMed

    Yao, Ling; Lu, Ning

    2014-05-01

    The public is increasingly concerned about particulate matter pollution caused by respirable suspended particles (PM10) and fine particles (PM2.5). In this paper, PM10 and PM2.5 concentration are estimated with remote sensing and individual air quality indexes of PM10 and PM2.5 (IPM10 and IPM2.5) over mainland China in 2010 are calculated. We find that China suffered more serious PM2.5 than PM10 pollution in 2010, and they presented a spatial differentiation. Consequently, a particulate-based air quality index (PAQI) based on a weighting method is proposed to provide a more objective assessment of the particulate pollution. The study demonstrates that, in 2010, most of mainland China faced a lightly polluted situation in PAQI case; there were three areas obviously under moderate pollution (Hubei, Sichuan-Chongqing border region and Ningxia-Inner Mongolia border region). Simultaneously, two indicators are calculated with the combination of population density gridded data to reveal Chinese population exposure to PM2.5. Comparing per capita PM2.5 concentration with population-weighted PM2.5 concentration, the former shows that the high-level regions are distributed in Guangdong, Shanghai, and Tianjin, while the latter are in Hebei, Chongqing, and Shandong. By comparison, the results demonstrate that population-weighted PM2.5 concentration is more in line with the actual situation.

  6. Air pollution: An environmental factor contributing to intestinal disease.

    PubMed

    Beamish, Leigh A; Osornio-Vargas, Alvaro R; Wine, Eytan

    2011-08-01

    The health impacts of air pollution have received much attention and have recently been subject to extensive study. Exposure to air pollutants such as particulate matter (PM) has been linked to lung and cardiovascular disease and increases in both hospital admissions and mortality. However, little attention has been given to the effects of air pollution on the intestine. The recent discovery of genes linked to susceptibility to inflammatory bowel diseases (IBD) explains only a fraction of the hereditary variance for these diseases. This, together with evidence of increases in incidence of IBD in the past few decades of enhanced industrialization, suggests that environmental factors could contribute to disease pathogenesis. Despite this, little research has examined the potential contribution of air pollution and its components to intestinal disease. Exposure of the bowel to air pollutants occurs via mucociliary clearance of PM from the lungs as well as ingestion via food and water sources. Gaseous pollutants may also induce systemic effects. Plausible mechanisms mediating the effects of air pollutants on the bowel could include direct effects on epithelial cells, systemic inflammation and immune activation, and modulation of the intestinal microbiota. Although there is limited epidemiologic evidence to confirm this, we suggest that a link between air pollution and intestinal disease exists and warrants further study. This link may explain, at least in part, how environmental factors impact on IBD epidemiology and disease pathogenesis.

  7. Ambient air pollution and allergic diseases in children.

    PubMed

    Kim, Byoung-Ju; Hong, Soo-Jong

    2012-06-01

    The prevalence of allergic diseases has increased worldwide, a phenomenon that can be largely attributed to environmental effects. Among environmental factors, air pollution due to traffic is thought to be a major threat to childhood health. Residing near busy roadways is associated with increased asthma hospitalization, decreased lung function, and increased prevalence and severity of wheezing and allergic rhinitis. Recently, prospective cohort studies using more accurate measurements of individual exposure to air pollution have been conducted and have provided definitive evidence of the impact of air pollution on allergic diseases. Particulate matter and ground-level ozone are the most frequent air pollutants that cause harmful effects, and the mechanisms underlying these effects may be related to oxidative stress. The reactive oxidative species produced in response to air pollutants can overwhelm the redox system and damage the cell wall, lipids, proteins, and DNA, leading to airway inflammation and hyper-reactivity. Pollutants may also cause harmful effects via epigenetic mechanisms, which control the expression of genes without changing the DNA sequence itself. These mechanisms are likely to be a target for the prevention of allergies. Further studies are necessary to identify children at risk and understand how these mechanisms regulate gene-environment interactions. This review provides an update of the current understanding on the impact of air pollution on allergic diseases in children and facilitates the integration of issues regarding air pollution and allergies into pediatric practices, with the goal of improving pediatric health.

  8. Air Pollution. Part A: Analysis.

    ERIC Educational Resources Information Center

    Ledbetter, Joe O.

    Two facets of the engineering control of air pollution (the analysis of possible problems and the application of effective controls) are covered in this two-volume text. Part A covers Analysis, and Part B, Prevention and Control. (This review is concerned with Part A only.) This volume deals with the terminology, methodology, and symptomatology…

  9. Air Pollution Control, Part II.

    ERIC Educational Resources Information Center

    Strauss, Werner, Ed.

    This book contains five major articles in areas of current importance in air pollution control. They are written by authors who are actively participating in the areas on which they report. It is the aim of each article to completely cover theory, experimentation, and practice in the field discussed. The contents are as follows: Emissions,…

  10. Health Effects of Air Pollution.

    ERIC Educational Resources Information Center

    Environmental Education Report and Newsletter, 1985

    1985-01-01

    Summarizes health hazards associated with air pollution, highlighting the difficulty in establishing acceptable thresholds of exposure. Respiratory disease, asthma, cancer, cardiovascular disease, and other problems are addressed. Indicates that a wide range of effects from any one chemical exists and that there are differences in sensitivity to…

  11. Solid Waste, Air Pollution and Health

    ERIC Educational Resources Information Center

    Kupchik, George J.; Franz, Gerald J.

    1976-01-01

    This article examines the relationships among solid waste disposal, air pollution, and human disease. It is estimated that solid waste disposal contributes 9.7 percent of the total air pollution and 9.9 percent of the total air pollution health effect. Certain disposal-resource recovery systems can be implemented to meet air quality standards. (MR)

  12. Air pollution and sports performance in Beijing.

    PubMed

    Lippi, G; Guidi, G C; Maffulli, N

    2008-08-01

    The Beijing Olympics will begin in August 2008 and athletes will face an unpredictable challenge. Based on present data, Beijing is one of the most polluted megacities in the world; the air concentrations of carbon monoxide (CO), ozone, nitrogen oxides (NO and NO2), sulphur dioxide (SO2) and particulate matter approach or exceed the current limits established by U. S. Environmental Protection Agency (EPA). Although the athletes who will be competing in Beijing are physiologically very different to the participants in most published studies, and it is therefore difficult to predict individual responses, there is little doubt that the presence of these air pollutants might be detrimental to athletic performance due to the marked increase (up to 20-fold) in ventilatory rate and concomitant nasal and oral breathing. Moreover, mouth breathing often bypasses the noise during strenuous exercise, increasing the deleterious effects of pollutants on health and athletic performance. Although limited, each decrement in athletic performance would have a potentially deleterious impact on top-class athletes competing in the next Olympics in China. Several Olympic records are regularly broken during the Olympics. Will this be the case for Beijing? PMID:18512178

  13. Overview of Megacity Air Pollutant Emissions and Impacts

    NASA Astrophysics Data System (ADS)

    Kolb, C. E.

    2013-05-01

    The urban metabolism that characterizes major cities consumes very large qualities of humanly produced and/or processed food, fuel, water, electricity, construction materials and manufactured goods, as well as, naturally provided sunlight, precipitation and atmospheric oxygen. The resulting urban respiration exhalations add large quantities of trace gas and particulate matter pollutants to urban atmospheres. Key classes of urban primary air pollutants and their sources will be reviewed and important secondary pollutants identified. The impacts of these pollutants on urban and downwind regional inhabitants, ecosystems, and climate will be discussed. Challenges in quantifying the temporally and spatially resolved urban air pollutant emissions and secondary pollutant production rates will be identified and possible measurement strategies evaluated.

  14. Characterization of ambient air pollution for stochastic health models

    SciTech Connect

    Batterman, S.A.

    1981-08-01

    This research is an analysis of various measures of ambient air pollution useful in cross-sectional epidemiological investigations and rick assessments. The Chestnut Ridge area health effects investigation, which includes a cross-sectional study of respiratory symptoms in young children, is used as a case study. Four large coal-fired electric generating power plants are the dominant pollution sources in this area of western Pennsylvania. The air pollution data base includes four years of sulfur dioxide and five years of total suspended particulate concentrations at seventeen monitors. Some 70 different characterizations of pollution are constructed and tested. These include pollutant concentrations at various percentiles and averaging times, exceedence measures which show the amount of time a specified threshold concentration is exceeded, and several dosage measures which transform non-linear dose-response relationships onto pollutant concentrations.

  15. High secondary aerosol contribution to particulate pollution during haze events in China

    NASA Astrophysics Data System (ADS)

    Huang, Ru-Jin; Zhang, Yanlin; Bozzetti, Carlo; Ho, Kin-Fai; Cao, Jun-Ji; Han, Yongming; Daellenbach, Kaspar R.; Slowik, Jay G.; Platt, Stephen M.; Canonaco, Francesco; Zotter, Peter; Wolf, Robert; Pieber, Simone M.; Bruns, Emily A.; Crippa, Monica; Ciarelli, Giancarlo; Piazzalunga, Andrea; Schwikowski, Margit; Abbaszade, Gülcin; Schnelle-Kreis, Jürgen; Zimmermann, Ralf; An, Zhisheng; Szidat, Sönke; Baltensperger, Urs; Haddad, Imad El; Prévôt, André S. H.

    2014-10-01

    Rapid industrialization and urbanization in developing countries has led to an increase in air pollution, along a similar trajectory to that previously experienced by the developed nations. In China, particulate pollution is a serious environmental problem that is influencing air quality, regional and global climates, and human health. In response to the extremely severe and persistent haze pollution experienced by about 800 million people during the first quarter of 2013 (refs 4, 5), the Chinese State Council announced its aim to reduce concentrations of PM2.5 (particulate matter with an aerodynamic diameter less than 2.5 micrometres) by up to 25 per cent relative to 2012 levels by 2017 (ref. 6). Such efforts however require elucidation of the factors governing the abundance and composition of PM2.5, which remain poorly constrained in China. Here we combine a comprehensive set of novel and state-of-the-art offline analytical approaches and statistical techniques to investigate the chemical nature and sources of particulate matter at urban locations in Beijing, Shanghai, Guangzhou and Xi'an during January 2013. We find that the severe haze pollution event was driven to a large extent by secondary aerosol formation, which contributed 30-77 per cent and 44-71 per cent (average for all four cities) of PM2.5 and of organic aerosol, respectively. On average, the contribution of secondary organic aerosol (SOA) and secondary inorganic aerosol (SIA) are found to be of similar importance (SOA/SIA ratios range from 0.6 to 1.4). Our results suggest that, in addition to mitigating primary particulate emissions, reducing the emissions of secondary aerosol precursors from, for example, fossil fuel combustion and biomass burning is likely to be important for controlling China's PM2.5 levels and for reducing the environmental, economic and health impacts resulting from particulate pollution.

  16. High secondary aerosol contribution to particulate pollution during haze events in China.

    PubMed

    Huang, Ru-Jin; Zhang, Yanlin; Bozzetti, Carlo; Ho, Kin-Fai; Cao, Jun-Ji; Han, Yongming; Daellenbach, Kaspar R; Slowik, Jay G; Platt, Stephen M; Canonaco, Francesco; Zotter, Peter; Wolf, Robert; Pieber, Simone M; Bruns, Emily A; Crippa, Monica; Ciarelli, Giancarlo; Piazzalunga, Andrea; Schwikowski, Margit; Abbaszade, Gülcin; Schnelle-Kreis, Jürgen; Zimmermann, Ralf; An, Zhisheng; Szidat, Sönke; Baltensperger, Urs; El Haddad, Imad; Prévôt, André S H

    2014-10-01

    Rapid industrialization and urbanization in developing countries has led to an increase in air pollution, along a similar trajectory to that previously experienced by the developed nations. In China, particulate pollution is a serious environmental problem that is influencing air quality, regional and global climates, and human health. In response to the extremely severe and persistent haze pollution experienced by about 800 million people during the first quarter of 2013 (refs 4, 5), the Chinese State Council announced its aim to reduce concentrations of PM2.5 (particulate matter with an aerodynamic diameter less than 2.5 micrometres) by up to 25 per cent relative to 2012 levels by 2017 (ref. 6). Such efforts however require elucidation of the factors governing the abundance and composition of PM2.5, which remain poorly constrained in China. Here we combine a comprehensive set of novel and state-of-the-art offline analytical approaches and statistical techniques to investigate the chemical nature and sources of particulate matter at urban locations in Beijing, Shanghai, Guangzhou and Xi'an during January 2013. We find that the severe haze pollution event was driven to a large extent by secondary aerosol formation, which contributed 30-77 per cent and 44-71 per cent (average for all four cities) of PM2.5 and of organic aerosol, respectively. On average, the contribution of secondary organic aerosol (SOA) and secondary inorganic aerosol (SIA) are found to be of similar importance (SOA/SIA ratios range from 0.6 to 1.4). Our results suggest that, in addition to mitigating primary particulate emissions, reducing the emissions of secondary aerosol precursors from, for example, fossil fuel combustion and biomass burning is likely to be important for controlling China's PM2.5 levels and for reducing the environmental, economic and health impacts resulting from particulate pollution. PMID:25231863

  17. Heart Rate Variability, Ambient Particulate Matter Air Pollution, and Glucose Homeostasis: The Environmental Epidemiology of Arrhythmogenesis in the Women's Health Initiative

    PubMed Central

    Quibrera, P. Miguel; Christ, Sharon L.; Liao, Duanping; Prineas, Ronald J.; Anderson, Garnet L.; Heiss, Gerardo

    2009-01-01

    Metabolic neuropathophysiology underlying the prediabetic state may confer susceptibility to the adverse health effects of ambient particulate matter <10 μm in diameter (PM10). The authors therefore examined whether impaired glucose homeostasis modifies the effect of PM10 on heart rate variability in a stratified, random sample of 4,295 Women's Health Initiative clinical trial participants, among whom electrocardiograms and fasting blood draws were repeated at 3-year intervals from 1993 to 2004. In multilevel, mixed models weighted for sampling design and adjusted for clinical and environmental covariables, PM10 exposure was inversely associated with heart rate variability. Inverse PM10–heart rate variability associations were strongest for the root mean square of successive differences in normal-to-normal RR intervals (RMSSD). Among participants with impaired fasting glucose, there were −8.3% (95% confidence interval: −13.9, −2.4) versus −0.6% (95% confidence interval: −2.4, 1.3), −8.4% (95% confidence interval: −13.8, −2.7) versus −0.3% (95% confidence interval: −2.1, 1.6), and −4.3% (95% confidence interval: −9.4, 1.0) versus −0.8% (95% confidence interval: −2.7, 1.0) decreases in the RMSSD per 10-μg/m3 increase in PM10 at high versus low levels of insulin (P < 0.01), insulin resistance (P < 0.01), and glucose (P = 0.16), respectively. These associations were stronger among participants with diabetes and weaker among those without diabetes or impaired fasting glucose. The findings suggest that insulin and insulin resistance exacerbate the adverse effect of PM10 on cardiac autonomic control and thus risk of coronary heart disease among nondiabetic, postmenopausal women with impaired fasting glucose. PMID:19208727

  18. Inter-alpha-trypsin inhibitor heavy chain 4: a novel biomarker for environmental exposure to particulate air pollution in patients with chronic obstructive pulmonary disease.

    PubMed

    Lee, Kang-Yun; Feng, Po-Hao; Ho, Shu-Chuan; Chuang, Kai-Jen; Chen, Tzu-Tao; Su, Chien-Ling; Liu, Wen-Te; Chuang, Hsiao-Chi

    2015-01-01

    Chronic obstructive pulmonary disease (COPD) is a chronic inflammatory disease that is correlated with environmental stress. Particulate matter ≤10 μm (PM10) is considered to be a risk factor for COPD development; however, the effects of PM10 on the protein levels in COPD remain unclear. Fifty subjects with COPD and 15 healthy controls were recruited. Gene ontology analysis of differentially expressed proteins identified immune system process and binding as the most important biological process and molecular function, respectively, in the responses of PM10-exposed patients with COPD. Biomarkers for PM10 in COPD were identified and compared with the same in healthy controls and included proteoglycan 4 (PRG4), inter-alpha-trypsin inhibitor heavy chain 4 (ITIH4), and apolipoprotein F (APOF). PRG4 and ITIH4 were associated with a past 3-year PM10 exposure level. The receiver operating characteristic curve analysis showed that ITIH4 is a sensitive and specific biomarker for PM10 exposure (area under the curve [AUC] =0.690, P=0.015) compared with PRG4 (AUC =0.636, P=0.083), APOF (AUC =0.523, P=0.766), 8-isoprostane (AUC =0.563, P=0.405), and C-reactive protein (CRP; AUC =0.634, P=0.086). ITIH4 levels were correlated with CRP (r=0.353, P=0.005), suggesting that ITIH4 may be involved in an inflammatory mechanism. In summary, serum ITIH4 may be a PM10-specific biomarker in COPD and may be related to inflammation.

  19. Inter-alpha-trypsin inhibitor heavy chain 4: a novel biomarker for environmental exposure to particulate air pollution in patients with chronic obstructive pulmonary disease

    PubMed Central

    Lee, Kang-Yun; Feng, Po-Hao; Ho, Shu-Chuan; Chuang, Kai-Jen; Chen, Tzu-Tao; Su, Chien-Ling; Liu, Wen-Te; Chuang, Hsiao-Chi

    2015-01-01

    Chronic obstructive pulmonary disease (COPD) is a chronic inflammatory disease that is correlated with environmental stress. Particulate matter ≤10 μm (PM10) is considered to be a risk factor for COPD development; however, the effects of PM10 on the protein levels in COPD remain unclear. Fifty subjects with COPD and 15 healthy controls were recruited. Gene ontology analysis of differentially expressed proteins identified immune system process and binding as the most important biological process and molecular function, respectively, in the responses of PM10-exposed patients with COPD. Biomarkers for PM10 in COPD were identified and compared with the same in healthy controls and included proteoglycan 4 (PRG4), inter-alpha-trypsin inhibitor heavy chain 4 (ITIH4), and apolipoprotein F (APOF). PRG4 and ITIH4 were associated with a past 3-year PM10 exposure level. The receiver operating characteristic curve analysis showed that ITIH4 is a sensitive and specific biomarker for PM10 exposure (area under the curve [AUC] =0.690, P=0.015) compared with PRG4 (AUC =0.636, P=0.083), APOF (AUC =0.523, P=0.766), 8-isoprostane (AUC =0.563, P=0.405), and C-reactive protein (CRP; AUC =0.634, P=0.086). ITIH4 levels were correlated with CRP (r=0.353, P=0.005), suggesting that ITIH4 may be involved in an inflammatory mechanism. In summary, serum ITIH4 may be a PM10-specific biomarker in COPD and may be related to inflammation. PMID:25977605

  20. A Bayesian Multivariate Receptor Model for Estimating Source Contributions to Particulate Matter Pollution using National Databases

    PubMed Central

    Hackstadt, Amber J.; Peng, Roger D.

    2014-01-01

    Summary Time series studies have suggested that air pollution can negatively impact health. These studies have typically focused on the total mass of fine particulate matter air pollution or the individual chemical constituents that contribute to it, and not source-specific contributions to air pollution. Source-specific contribution estimates are useful from a regulatory standpoint by allowing regulators to focus limited resources on reducing emissions from sources that are major contributors to air pollution and are also desired when estimating source-specific health effects. However, researchers often lack direct observations of the emissions at the source level. We propose a Bayesian multivariate receptor model to infer information about source contributions from ambient air pollution measurements. The proposed model incorporates information from national databases containing data on both the composition of source emissions and the amount of emissions from known sources of air pollution. The proposed model is used to perform source apportionment analyses for two distinct locations in the United States (Boston, Massachusetts and Phoenix, Arizona). Our results mirror previous source apportionment analyses that did not utilize the information from national databases and provide additional information about uncertainty that is relevant to the estimation of health effects. PMID:25309119

  1. Clean fuel vehicles: The air pollution solution

    SciTech Connect

    Meotti, M.P.

    1995-11-01

    Clean fuels for cars and trucks can do more for air quality, and do it sooner, than any other alternative on the drawing boards today. In much of the country, vehicles are the single biggest cause of air pollution. It`s not the industrial smoke stacks, but the tail pipes on cars that foul the air. Ninety percent of the carbon monoxide, 50% of the volatile organic compounds, and 40% of the ozone in metropolitan areas come from motor vehicles. Many state and local government officials are pursuing vehicle emission inspection, high occupancy vehicle lanes, and carpooling programs to reduce auto pollution. These efforts are valuable and should be continued. But clean fuels can quickly reduce auto emissions at a much lower cost. Alternative fuel vehicles produce fewer emissions, are much less dependent on foreign sources, and have the potential to create new jobs. One alternative fuel, natural gas, emits no particulates, 90% less carbon monoxide, and 85% fewer of the gases that form ozone.

  2. Magnetism of outdoor and indoor settled dust and its utilization as a tool for revealing the effect of elevated particulate air pollution on cardiovascular mortality

    NASA Astrophysics Data System (ADS)

    Jordanova, Diana; Jordanova, Neli; Lanos, Philippe; Petrov, Petar; Tsacheva, Tsenka

    2012-08-01

    Settled indoor and outdoor dusts in urban environment represent an important source of secondary pollution. Magnetic characteristics of the settled dust from six cities in Bulgaria are explored, allowing comparison on a national (country) scale. Monthly variations of the mass-specific magnetic susceptibilities (χindoor) and (χoutdoor) and calculated dust loading rates for a period of 17 months do not show seasonal variability, probably due to the dominant role of traffic-related emissions and soil-derived particles in the settled dust. The main magnetic mineral is magnetite, present as spherules and irregular particles of pseudo-single-domain grain sizes. Systematically lower remanence coercivities are obtained for outdoor dusts when compared with the corresponding indoor samples, implying that penetration of smaller particles of ambient origin indoors is the main source of the indoor dust. Mean yearly values of the ratio (χindoor/χoutdoor) for each city show statistically significant correlation with mortality due to cardiovascular diseases. This ratio reveals the source- and site-specific importance of the anthropogenically derived toxicogenic fraction. Heavy metal content of the settled dust is related to the contribution from several pollution sources (soil-derived, combustion and industrial), discriminated through analysis of principal components. SEM/EDX analyses reveal abundant presence of anthopogenic Fe-containing spherules, irregular particles and diesel exhaust conglomerates. High molecular weight polyaromatic hydrocarbons (PAH) dominate the total PAH content of the outdoor dust samples. The observed linear correlation between total PAH content, coercivity of remanence and the ratio Mrs/χ suggest either adsorption of PAHs on iron oxide particles and especially magnetite, or emission related increase in total PAH concentration along with a decrease of effective magnetic grain size of the accompanying magnetic fraction.

  3. Perspective: ambient air pollution: inflammatory response and effects on the lung's vasculature.

    PubMed

    Grunig, Gabriele; Marsh, Leigh M; Esmaeil, Nafiseh; Jackson, Katelin; Gordon, Terry; Reibman, Joan; Kwapiszewska, Grazyna; Park, Sung-Hyun

    2014-03-01

    Particulates from air pollution are implicated in causing or exacerbating respiratory and systemic cardiovascular diseases and are thought to be among the leading causes of morbidity and mortality. However, the contribution of ambient particulate matter to diseases affecting the pulmonary circulation, the right heart, and especially pulmonary hypertension is much less documented. Our own work and that of other groups has demonstrated that prolonged exposure to antigens via the airways can cause severe pulmonary arterial remodeling. In addition, vascular changes have been well documented in a typical disease of the airways, asthma. These experimental and clinical findings link responses in the airways with responses in the lung's vasculature. It follows that particulate air pollution could cause, or exacerbate, diseases in the pulmonary circulation and associated pulmonary hypertension. This perspective details the literature for support of this concept. Data regarding the health effects of particulate matter from air pollution on the lung's vasculature, with emphasis on the lung's inflammatory responses to particulate matter deposition and pulmonary hypertension, are discussed. A deeper understanding of the health implications of exposure to ambient particulate matter will improve our knowledge of how to improve the management of lung diseases, including diseases of the pulmonary circulation. As man-made ambient particulate air pollution is typically linked to economic growth, a better understanding of the health effects of exposure to particulate air pollution is expected to integrate the global goal of achieving healthy living for all.

  4. Perspective: ambient air pollution: inflammatory response and effects on the lung’s vasculature

    PubMed Central

    Esmaeil, Nafiseh; Reibman, Joan

    2014-01-01

    Abstract Particulates from air pollution are implicated in causing or exacerbating respiratory and systemic cardiovascular diseases and are thought to be among the leading causes of morbidity and mortality. However, the contribution of ambient particulate matter to diseases affecting the pulmonary circulation, the right heart, and especially pulmonary hypertension is much less documented. Our own work and that of other groups has demonstrated that prolonged exposure to antigens via the airways can cause severe pulmonary arterial remodeling. In addition, vascular changes have been well documented in a typical disease of the airways, asthma. These experimental and clinical findings link responses in the airways with responses in the lung’s vasculature. It follows that particulate air pollution could cause, or exacerbate, diseases in the pulmonary circulation and associated pulmonary hypertension. This perspective details the literature for support of this concept. Data regarding the health effects of particulate matter from air pollution on the lung’s vasculature, with emphasis on the lung’s inflammatory responses to particulate matter deposition and pulmonary hypertension, are discussed. A deeper understanding of the health implications of exposure to ambient particulate matter will improve our knowledge of how to improve the management of lung diseases, including diseases of the pulmonary circulation. As man-made ambient particulate air pollution is typically linked to economic growth, a better understanding of the health effects of exposure to particulate air pollution is expected to integrate the global goal of achieving healthy living for all. PMID:25006418

  5. Cardiovascular Effects in Adults with Metabolic Syndrome Exposed to Concentrated Ultrafine Air Pollution Particles

    EPA Science Inventory

    RATIONALE: Epidemiologic studies report associations between ambient air pollution particulate matter (PM) and various indices of cardiopulmonary morbidity and mortality. A leading hypothesis contends that smaller ultrafine (UF) particles induce a greater physiologic response bec...

  6. Air Pollution and Heart Disease, Stroke

    MedlinePlus

    ... Pressure High Blood Pressure Tools & Resources Stroke More Air Pollution and Heart Disease, Stroke Updated:Aug 30,2016 ... or Longer-Term Acute short-term effects of air pollution tend to strike people who are elderly or ...

  7. AIR POLLUTION CONTROL TECHNOLOGIES (CHAPTER 65)

    EPA Science Inventory

    The chapter discusses the use of technologies for reducing air pollution emissions from stationary sources, with emphasis on the control of combustion gen-erated air pollution. Major stationary sources include utility power boilers, industrial boilers and heaters, metal smelting ...

  8. Clean Air Slots Amid Atmospheric Pollution

    NASA Technical Reports Server (NTRS)

    Hobbs, Peter V.

    2002-01-01

    This article investigates the mechanism for those layers in the atmosphere that are free of air borne pollution even though the air above and below them carry pollutants. Atmospheric subsidence is posed as a mechanism for this phenomenon.

  9. Outdoor air pollution in urban areas and allergic respiratory diseases.

    PubMed

    D'Amato, G

    1999-12-01

    Respiratory allergic diseases (rhinitis, rhinosinusitis, bronchial asthma and its equivalents) appear to be increasing in most countries, and subjects living in urban and industrialized areas are more likely to experience respiratory allergic symptoms than those living in rural areas. This increase has been linked, among various factors, to air pollution, which is now an important public health hazard. Laboratory studies confirm the epidemiological evidence that inhalation of some pollutants, either individually or in combination, adversely affect lung function in asthmatics. The most abundant air pollutants in urban areas with high levels of vehicle traffic are respirable particulate matter, nitrogen dioxide and ozone. While nitrogen dioxide does not exert consistent effects on lung function, ozone, respirable particulate matter and allergens impair lung function and lead to increased airway responsiveness and bronchial obstruction in predisposed subjects. However, besides acting as irritants, airborne pollutants can modulate the allergenicity of antigens carried by airborne particles. By attaching to the surface of pollen grains and of plant-derived paucimicronic particles, pollutants can modify the morphology of these antigen-carrying agents and after their allergenic potential. In addition, by inducing airway inflammation, which increases airway epithelial permeability, pollutants overcome the mucosal barrier and so facilitate the allergen-induced inflammatory responses. Moreover, air pollutants such as diesel exhaust emissions are thought to modulate the immune response by increasing immunoglobulin E synthesis, thus facilitating allergic sensitization in atopic subjects and the subsequent development of clinical respiratory symptoms. PMID:10695313

  10. Characterization of Urban Runoff Pollution between Dissolved and Particulate Phases

    PubMed Central

    Wei, Zhang; Simin, Li; Fengbing, Tang

    2013-01-01

    To develop urban stormwater management effectively, characterization of urban runoff pollution between dissolved and particulate phases was studied by 12 rainfall events monitored for five typical urban catchments. The average event mean concentration (AEMC) of runoff pollutants in different phases was evaluated. The AEMC values of runoff pollutants in different phases from urban roads were higher than the ones from urban roofs. The proportions of total dissolved solids, total dissolved nitrogen, and total dissolved phosphorus in total ones for all the catchments were 26.19%–30.91%, 83.29%–90.51%, and 61.54–68.09%, respectively. During rainfall events, the pollutant concentration at the initial stage of rainfall was high and then sharply decreased to a low value. Affected by catchments characterization and rainfall distribution, the highest concentration of road pollutants might appear in the later period of rainfall. Strong correlations were also found among runoffs pollutants in different phases. Total suspended solid could be considered as a surrogate for particulate matters in both road and roof runoff, while dissolved chemical oxygen demand could be regarded as a surrogate for dissolved matters in roof runoff. PMID:23935444

  11. Modelling personal exposure to particulate air pollution: an assessment of time-integrated activity modelling, Monte Carlo simulation & artificial neural network approaches.

    PubMed

    McCreddin, A; Alam, M S; McNabola, A

    2015-01-01

    An experimental assessment of personal exposure to PM10 in 59 office workers was carried out in Dublin, Ireland. 255 samples of 24-h personal exposure were collected in real time over a 28 month period. A series of modelling techniques were subsequently assessed for their ability to predict 24-h personal exposure to PM10. Artificial neural network modelling, Monte Carlo simulation and time-activity based models were developed and compared. The results of the investigation showed that using the Monte Carlo technique to randomly select concentrations from statistical distributions of exposure concentrations in typical microenvironments encountered by office workers produced the most accurate results, based on 3 statistical measures of model performance. The Monte Carlo simulation technique was also shown to have the greatest potential utility over the other techniques, in terms of predicting personal exposure without the need for further monitoring data. Over the 28 month period only a very weak correlation was found between background air quality and personal exposure measurements, highlighting the need for accurate models of personal exposure in epidemiological studies.

  12. Impacts of particulate matter pollution on plants: Implications for environmental biomonitoring.

    PubMed

    Rai, Prabhat Kumar

    2016-07-01

    Air pollution is one of the serious problems world is facing in recent Anthropocene era of rapid industrialization and urbanization. Specifically particulate matter (PM) pollution represents a threat to both the environment and human health. The changed ambient environment due to the PM pollutant in urban areas has exerted a profound influence on the morphological, biochemical and physiological status of plants and its responses. Taking into account the characteristics of the vegetation (wide distribution, greater contact area etc.) it turns out to be an effective indicator of the overall impact of PM pollution and harmful effects of PM pollution on vegetation have been reviewed in the present paper, covering an extensive span of 1960 to March 2016. The present review critically describes the impact of PM pollution and its constituents (e.g. heavy metals and poly-aromatic hydrocarbons) on the morphological attributes such as leaf area, leaf number, stomata structure, flowering, growth and reproduction as well as biochemical parameters such as pigment content, enzymes, ascorbic acid, protein, sugar and physiological aspect such as pH and Relative water content. Further, the paper provides a brief overview on the impact of PM on biodiversity and climate change. Moreover, the review emphasizes the genotoxic impacts of PM on plants. Finally, on the basis of such studies tolerant plants as potent biomonitors with high Air Pollution Tolerance Index (APTI) and Air Pollution Index (API) can be screened and may be recommended for green belt development.

  13. Impacts of particulate matter pollution on plants: Implications for environmental biomonitoring.

    PubMed

    Rai, Prabhat Kumar

    2016-07-01

    Air pollution is one of the serious problems world is facing in recent Anthropocene era of rapid industrialization and urbanization. Specifically particulate matter (PM) pollution represents a threat to both the environment and human health. The changed ambient environment due to the PM pollutant in urban areas has exerted a profound influence on the morphological, biochemical and physiological status of plants and its responses. Taking into account the characteristics of the vegetation (wide distribution, greater contact area etc.) it turns out to be an effective indicator of the overall impact of PM pollution and harmful effects of PM pollution on vegetation have been reviewed in the present paper, covering an extensive span of 1960 to March 2016. The present review critically describes the impact of PM pollution and its constituents (e.g. heavy metals and poly-aromatic hydrocarbons) on the morphological attributes such as leaf area, leaf number, stomata structure, flowering, growth and reproduction as well as biochemical parameters such as pigment content, enzymes, ascorbic acid, protein, sugar and physiological aspect such as pH and Relative water content. Further, the paper provides a brief overview on the impact of PM on biodiversity and climate change. Moreover, the review emphasizes the genotoxic impacts of PM on plants. Finally, on the basis of such studies tolerant plants as potent biomonitors with high Air Pollution Tolerance Index (APTI) and Air Pollution Index (API) can be screened and may be recommended for green belt development. PMID:27011112

  14. Can Particulate Pollution Affect Lung Function in Healthy Adults?

    EPA Science Inventory

    Accompanying editorial to paper from Harvard by Rice et al. entitled "Long-Term Exposure to Traffic Emissions and Fine Particulate Matter and Lung Function Decline in the Framingham Heart StudyBy almost any measure the Clean Air Act and its amendments has to be considered as one...

  15. Regional air pollution over Malaysia

    NASA Astrophysics Data System (ADS)

    Krysztofiak, G.; Catoire, V.; Dorf, M.; Grossmann, K.; Hamer, P. D.; Marécal, V.; Reiter, A.; Schlager, H.; Eckhardt, S.; Jurkat, T.; Oram, D.; Quack, B.; Atlas, E.; Pfeilsticker, K.

    2012-12-01

    During the SHIVA (Stratospheric Ozone: Halogen Impacts in a Varying Atmosphere) campaign in Nov. and Dec. 2011 a number of polluted air masses were observed in the marine and terrestrial boundary layer (0 - 2 km) and in the free troposphere (2 - 12 km) over Borneo/Malaysia. The measurements include isoprene, CO, CO2, CH4, N2O, NO2, SO2 as primary pollutants, O3 and HCHO as secondary pollutants, and meteorological parameters. This set of trace gases can be used to fingerprint different sources of local and regional air pollution (e.g., biomass burning and fossil fuel burning, gas flaring on oil rigs, emission of ships and from urban areas, volcanic emissions, and biogenic emissions). Individual sources and location can be identified when the measurements are combined with a nested-grid regional scale chemical and meteorological model and lagrangian particle dispersion model (e.g., CCATT-BRAMS and FLEXPART). In the case of the former, emission inventories of the primary pollutants provide the basis for the trace gas simulations. In this region, the anthropogenic influence on air pollution seems to dominate over natural causes. For example, CO2 and CH4 often show strong correlations with CO, suggesting biomass burning or urban fossil fuel combustion dominates the combustion sources. The study of the CO/CO2 and CH4/CO ratios can help separate anthropogenic combustion from biomass burning pollution sources. In addition, these ratios can be used as a measure of combustion efficiency to help place the type of biomass burning particular to this region within the wider context of fire types found globally. On several occasions, CH4 enhancements are observed near the ocean surface, which are not directly correlated with CO enhancements thus indicating a non-combustion-related CH4 source. Positive correlations between SO2 and CO show the anthropogenic influence of oil rigs located in the South China Sea. Furthermore, SO2 enhancements are observed without any increase in CO

  16. The Crisis in Air Pollution Manpower Development

    ERIC Educational Resources Information Center

    Moeller, Dade W.

    1974-01-01

    Three studies conducted by the National Air Pollution Manpower Development Advisory Committee concluded there is a crisis in air pollution manpower development within the United States today. The studies investigated the existing federal manpower program, air pollution educational requirements and the quality of graduate level university programs.…

  17. Product Guide/1972 [Air Pollution Control Association].

    ERIC Educational Resources Information Center

    Journal of the Air Pollution Control Association, 1971

    1971-01-01

    Reprinted in this pamphlet is the fifth annual directory of air pollution control products as compiled in the "Journal of the Air Pollution Control Association" for December, 1971. The 16-page guide lists manufacturers of emission control equipment and air pollution instrumentation under product classifications as derived from McGraw-Hill's "Air…

  18. Air pollution ranks as largest health risk

    NASA Astrophysics Data System (ADS)

    Wendel, JoAnna

    2014-04-01

    The World Health Organization (WHO) reports that 7 million people died in 2012 from air-pollution-related sicknesses, marking air pollution as the single largest environmental health risk. This finding, a result of better knowledge and assessment of the diseases, is more than double previous estimates of the risk of death from air pollution.

  19. Ambient particulate air pollution and ectopy - The Environmental Epidemiology of Arrhythmogenesis in Women’s Health Initiative Study, 1999-2004

    PubMed Central

    Liao, Duanping; Whitsel, Eric A.; Duan, Yinkang; Lin, Hung-Mo; Quibrera, P. Miguel; Smith, Richard; Peuquet, Donna J.; Prineas, Ronald J.; Zhang, Zhu-Ming; Anderson, Garnet

    2008-01-01

    The relationships between ambient PM2.5 and PM10 and arrhythmia and the effect modification by cigarette smoking were investigated. Data from EPA air quality monitors and an established national-scale, log-normal kriging method were used to spatially estimate daily mean concentrations of PM at addresses of 57,422 individuals from 59 examination sites in 24 US states in 1999-2004. The acute and subacute exposures were estimated as mean, geocoded address-specific PM concentrations on the day of, 0-2 days before, and averaged over 30 days before the ECG (Lag0; Lag1; Lag2; Lag1-30). At the time of standard 12-lead resting ECG, the mean age (SD) of participants was 67.5 (6.9) years (84% non-Hispanic White; 6% current smoker; 15% with coronary heart disease; 5% with ectopy). After the identification of significant effect modifiers, two-stage random-effects models were used to calculate center-pooled odds ratios and 95% confidence intervals (OR, 95% CI) of arrhythmia per 10 μg/m3 increase in PM concentrations. Among current smokers, Lag0 and Lag1 PM concentrations were significantly associated ventricular ectopy (VE) - the OR (95% CI) for VE among current smokers was 2 (1.32-3.3) and 1.32 (1.07-1.65) at Lag1 PM2.5 and PM10, respectively. The interactions between current smoking and acute exposures (Lag0; Lag1; Lag2) were significant in relationship to VE. Acute exposures were not significantly associated with supraventricular ectopy (SVE), or with VE among non-smokers. Subacute (Lag1-30) exposures were not significantly associated with arrhythmia. Acute PM2.5 and PM10 exposure is directly associated with the odds of VE among smokers, suggesting that they are more vulnerable to the arrhythmogenic effects of PM. PMID:18979352

  20. Associations between criteria air pollutants and asthma.

    PubMed Central

    Koren, H S

    1995-01-01

    The evidence that asthma is increasing in prevalence is becoming increasingly compelling. This trend has been demonstrated not only in the United States, but also in the United Kingdom, New Zealand, Australia, and several other Western countries. In the United States, the increase is largest in the group under 18 years of age. There is mounting evidence that certain environmental air pollutants are involved in exacerbating asthma. This is based primarily on epidemiologic studies and more recent clinical studies. The U.S. Clean Air Act of 1970 provides special consideration to the class of outdoor air pollutants referred to as criteria pollutants, including O3, sulfur dioxide (SO2), particulate matter (PM), NOx, CO, and Pb. Standards for these pollutants are set by the U.S. Environmental Protection Agency with particular concern for populations at risk. Current evidence suggests that asthmatics are more sensitive to the effects of O3, SO2, PM, and NO2, and are therefore at risk. High SO2 and particulate concentrations have been associated with short-term increases in morbidity and mortality in the general population during dramatic air pollution episodes in the past. Controlled exposure studies have clearly shown that asthmatics are sensitive to low levels of SO2. Exercising asthmatics exposed to SO2 develop bronchoconstriction within minutes, even at levels of 0.25 ppm. Responses are modified by air temperature, humidity, and exercise level. Recent epidemiologic studies have suggested that exposure to PM is strongly associated with morbidity and mortality in the general population and that hospital admissions for bronchitis and asthma were associated with PM10 levels. In controlled clinical studies, asthmatics appear to be no more reactive to aerosols than healthy subjects. Consequently, it is difficult to attribute the increased mortality observed in epidemiologic studies to specific effects demonstrated in controlled human studies. Epidemiologic studies of

  1. Air pollution and brain damage.

    PubMed

    Calderón-Garcidueñas, Lilian; Azzarelli, Biagio; Acuna, Hilda; Garcia, Raquel; Gambling, Todd M; Osnaya, Norma; Monroy, Sylvia; DEL Tizapantzi, Maria Rosario; Carson, Johnny L; Villarreal-Calderon, Anna; Rewcastle, Barry

    2002-01-01

    Exposure to complex mixtures of air pollutants produces inflammation in the upper and lower respiratory tract. Because the nasal cavity is a common portal of entry, respiratory and olfactory epithelia are vulnerable targets for toxicological damage. This study has evaluated, by light and electron microscopy and immunohistochemical expression of nuclear factor-kappa beta (NF-kappaB) and inducible nitric oxide synthase (iNOS), the olfactory and respiratory nasal mucosae, olfactory bulb, and cortical and subcortical structures from 32 healthy mongrel canine residents in Southwest Metropolitan Mexico City (SWMMC), a highly polluted urban region. Findings were compared to those in 8 dogs from Tlaxcala, a less polluted, control city. In SWMMC dogs, expression of nuclear neuronal NF-kappaB and iNOS in cortical endothelial cells occurred at ages 2 and 4 weeks; subsequent damage included alterations of the blood-brain barrier (BBB), degenerating cortical neurons, apoptotic glial white matter cells, deposition of apolipoprotein E (apoE)-positive lipid droplets in smooth muscle cells and pericytes, nonneuritic plaques, and neurofibrillary tangles. Persistent pulmonary inflammation and deteriorating olfactory and respiratory barriers may play a role in the neuropathology observed in the brains of these highly exposed canines. Neurodegenerative disorders such as Alzheimer's may begin early in life with air pollutants playing a crucial role.

  2. Impact of fine particulate fluctuation and other variables on Beijing's air quality index.

    PubMed

    Chen, Bo; Lu, Shaowei; Li, Shaoning; Wang, Bing

    2015-04-01

    We analyzed fluctuation in Beijing's air quality over 328 days, based on air quality grades and air quality data from 35 atmospheric monitoring stations. Our results show the air over Beijing is subject to pollution 152 days of the year, or 46.34%. Among all pollutants, fine particulates, solid or liquid, 2.5 μm or less in size (PM2.5), appeared most frequently as the primary pollutant: 249 days, or 76% of the sample year (328 days). Nitrogen dioxide (NO2) and coarse particulates (PM10) cause the least pollution, appearing only 7 and 3 days, or 2 and 1% of the sample year, respectively. In Beijing, fine particulates like PM2.5 vary seasonally: 154.54 ± 18.60 in winter > 145.22 ± 18.61 in spring > 140.16 ± 20.76 in autumn > 122.37 ± 13.42 in summer. Air quality is best in August and worst in December, while various districts in Beijing experience different air quality. To be specific, from south to north and from west to east, air quality tends to improve. Meteorological elements have a constraining effect on air pollutants, which means there is a linear correlation between the air quality index and humidity, rainfall, wind speed, and temperature. Under a typical pollution scenario, the higher the air quality index (AQI) value, the lower the wind speed and the greater the relative humidity; the lower the AQI value, the higher the wind speed and lower the relative humidity. Analysis of influencing factors reveals that the air pollution is mainly particulate matter produced by burning coal, vehicle emissions, volatile oils and gas, fast development of food services, emissions from the surrounding region, and natural dust clouds formed in arid areas to the northwest. Topography affects the distribution of meteorological conditions, in turn varying air quality over the region from one location to another. Human activities also exercise impact on urban air quality with dual functions.

  3. Impact of fine particulate fluctuation and other variables on Beijing's air quality index.

    PubMed

    Chen, Bo; Lu, Shaowei; Li, Shaoning; Wang, Bing

    2015-04-01

    We analyzed fluctuation in Beijing's air quality over 328 days, based on air quality grades and air quality data from 35 atmospheric monitoring stations. Our results show the air over Beijing is subject to pollution 152 days of the year, or 46.34%. Among all pollutants, fine particulates, solid or liquid, 2.5 μm or less in size (PM2.5), appeared most frequently as the primary pollutant: 249 days, or 76% of the sample year (328 days). Nitrogen dioxide (NO2) and coarse particulates (PM10) cause the least pollution, appearing only 7 and 3 days, or 2 and 1% of the sample year, respectively. In Beijing, fine particulates like PM2.5 vary seasonally: 154.54 ± 18.60 in winter > 145.22 ± 18.61 in spring > 140.16 ± 20.76 in autumn > 122.37 ± 13.42 in summer. Air quality is best in August and worst in December, while various districts in Beijing experience different air quality. To be specific, from south to north and from west to east, air quality tends to improve. Meteorological elements have a constraining effect on air pollutants, which means there is a linear correlation between the air quality index and humidity, rainfall, wind speed, and temperature. Under a typical pollution scenario, the higher the air quality index (AQI) value, the lower the wind speed and the greater the relative humidity; the lower the AQI value, the higher the wind speed and lower the relative humidity. Analysis of influencing factors reveals that the air pollution is mainly particulate matter produced by burning coal, vehicle emissions, volatile oils and gas, fast development of food services, emissions from the surrounding region, and natural dust clouds formed in arid areas to the northwest. Topography affects the distribution of meteorological conditions, in turn varying air quality over the region from one location to another. Human activities also exercise impact on urban air quality with dual functions. PMID:25563832

  4. Air pollution and venous thrombosis: a meta-analysis

    PubMed Central

    Tang, Liang; Wang, Qing-Yun; Cheng, Zhi-Peng; Hu, Bei; Liu, Jing-Di; Hu, Yu

    2016-01-01

    Exposure to air pollution has been linked to cardiovascular and respiratory disorders. However, the effect of air pollution on venous thrombotic disorders is uncertain. We performed a meta-analysis to assess the association between air pollution and venous thrombosis. PubMed, Embase, EBM Reviews, Healthstar, Global Health, Nursing Database, and Web of Science were searched for citations on air pollutants (carbon monoxide, sulfur dioxide, nitrogen dioxide, ozone, and particulate matters) and venous thrombosis. Using a random-effects model, overall risk estimates were derived for each increment of 10 μg/m3 of pollutant concentration. Of the 485 in-depth reviewed studies, 8 citations, involving approximately 700,000 events, fulfilled the inclusion criteria. All the main air pollutants analyzed were not associated with an increased risk of venous thrombosis (OR = 1.005, 95% CI = 0.998–1.012 for PM2.5; OR = 0.995, 95% CI = 0.984–1.007 for PM10; OR = 1.006, 95% CI = 0.994–1.019 for NO2). Based on exposure period and thrombosis location, additional subgroup analyses provided results comparable with those of the overall analyses. There was no evidence of publication bias. Therefore, this meta analysis does not suggest the possible role of air pollution as risk factor for venous thrombosis in general population. PMID:27600652

  5. Air pollution and venous thrombosis: a meta-analysis

    NASA Astrophysics Data System (ADS)

    Tang, Liang; Wang, Qing-Yun; Cheng, Zhi-Peng; Hu, Bei; Liu, Jing-Di; Hu, Yu

    2016-09-01

    Exposure to air pollution has been linked to cardiovascular and respiratory disorders. However, the effect of air pollution on venous thrombotic disorders is uncertain. We performed a meta-analysis to assess the association between air pollution and venous thrombosis. PubMed, Embase, EBM Reviews, Healthstar, Global Health, Nursing Database, and Web of Science were searched for citations on air pollutants (carbon monoxide, sulfur dioxide, nitrogen dioxide, ozone, and particulate matters) and venous thrombosis. Using a random-effects model, overall risk estimates were derived for each increment of 10 μg/m3 of pollutant concentration. Of the 485 in-depth reviewed studies, 8 citations, involving approximately 700,000 events, fulfilled the inclusion criteria. All the main air pollutants analyzed were not associated with an increased risk of venous thrombosis (OR = 1.005, 95% CI = 0.998–1.012 for PM2.5; OR = 0.995, 95% CI = 0.984–1.007 for PM10; OR = 1.006, 95% CI = 0.994–1.019 for NO2). Based on exposure period and thrombosis location, additional subgroup analyses provided results comparable with those of the overall analyses. There was no evidence of publication bias. Therefore, this meta analysis does not suggest the possible role of air pollution as risk factor for venous thrombosis in general population.

  6. Air pollution and venous thrombosis: a meta-analysis.

    PubMed

    Tang, Liang; Wang, Qing-Yun; Cheng, Zhi-Peng; Hu, Bei; Liu, Jing-Di; Hu, Yu

    2016-01-01

    Exposure to air pollution has been linked to cardiovascular and respiratory disorders. However, the effect of air pollution on venous thrombotic disorders is uncertain. We performed a meta-analysis to assess the association between air pollution and venous thrombosis. PubMed, Embase, EBM Reviews, Healthstar, Global Health, Nursing Database, and Web of Science were searched for citations on air pollutants (carbon monoxide, sulfur dioxide, nitrogen dioxide, ozone, and particulate matters) and venous thrombosis. Using a random-effects model, overall risk estimates were derived for each increment of 10 μg/m(3) of pollutant concentration. Of the 485 in-depth reviewed studies, 8 citations, involving approximately 700,000 events, fulfilled the inclusion criteria. All the main air pollutants analyzed were not associated with an increased risk of venous thrombosis (OR = 1.005, 95% CI = 0.998-1.012 for PM2.5; OR = 0.995, 95% CI = 0.984-1.007 for PM10; OR = 1.006, 95% CI = 0.994-1.019 for NO2). Based on exposure period and thrombosis location, additional subgroup analyses provided results comparable with those of the overall analyses. There was no evidence of publication bias. Therefore, this meta analysis does not suggest the possible role of air pollution as risk factor for venous thrombosis in general population. PMID:27600652

  7. Assessment of Near-Source Air Pollution at a Fine Spatial Scale Utilizing Mobile Monitoring Approach

    EPA Science Inventory

    Mobile monitoring is an emerging strategy to characterize spatially and temporally variable air pollution in areas near sources. EPA’s Geospatial Monitoring of Air Pollution (GMAP) vehicle – an all-electric vehicle measuring real-time concentrations of particulate and gaseous po...

  8. Air Pollution and Health: Bridging the Gap from Sources to Health Outcomes

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) has established National Ambient Air Quality Standards (NAAQS) for six principal air pollutants (“criteria” pollutants): carbon monoxide (CO), lead (Pb), nitrogen dioxide (NO2), particulate matter (PM) in two size ranges [...

  9. Assessment of Near-Source Air Pollution at a Fine Spatial Scale Utilizing Mobile Monitoring Approach

    EPA Science Inventory

    Mobile monitoring is an emerging strategy to characterize spatially and temporally variable air pollution in areas near sources. EPA’s Geospatial Monitoring of Air Pollution (GMAP) vehicle – an all-electric vehicle measuring real-time concentrations of particulate an...

  10. Oxidative Stress and Air Pollution Exposure

    PubMed Central

    Lodovici, Maura; Bigagli, Elisabetta

    2011-01-01

    Air pollution is associated with increased cardiovascular and pulmonary morbidity and mortality. The mechanisms of air pollution-induced health effects involve oxidative stress and inflammation. As a matter of fact, particulate matter (PM), especially fine (PM2.5, PM < 2.5 μm) and ultrafine (PM0.1, PM < 0.1 μm) particles, ozone, nitrogen oxides, and transition metals, are potent oxidants or able to generate reactive oxygen species (ROS). Oxidative stress can trigger redox-sensitive pathways that lead to different biological processes such as inflammation and cell death. However, it does appear that the susceptibility of target organ to oxidative injury also depends upon its ability to upregulate protective scavenging systems. As vehicular traffic is known to importantly contribute to PM exposure, its intensity and quality must be strongly relevant determinants of the qualitative characteristics of PM spread in the atmosphere. Change in the composition of this PM is likely to modify its health impact. PMID:21860622

  11. Air pollution detection using MODIS data

    NASA Astrophysics Data System (ADS)

    Harbula, Jan; Kopacková, Veronika

    2011-11-01

    The quality of the environment has a great impact on public health while air quality is a major factor that is especially relevant for respiratory diseases. PM10 (particulate matter below 10 μ) particles are among the most dangerous pollutants, which enter the lower respiratory tract and cause serious health problems. Obtaining reliable air pollution data is limited to a number of ground measuring stations and their spatial location. We used an alternative approach and created statistical models that employed remotely sensed imageries. To establish empirical relationships, we used multi-temporal (2006-2009) MODIS aerosol optical thickness data (product MOD04, Level 2) and the PM10 ground mass concentrations. The north-western part of the Czech Republic (namely the Karlovarský and the Ustecký regions) was chosen as a test site, as all the different types of cultural landscape (forest-economical, agricultural, mining, and urban) can be found within one MODIS scene. This study was focused on the various aspects as follows (i) analysis of MODIS AOT / stationary PM10 time-series trend between 2006-2009, (ii) establishing a linear relationship between PM10 and AOT values for each station and (iii) evaluation of a spatial relationship of the annual mean AE (Ångstrom Exponent) and PM10 values.

  12. Particulate Air Contamination in Puerto Rico: A Student Involvement Project.

    ERIC Educational Resources Information Center

    Eckert, Richard R.

    1979-01-01

    Describes a research project undertaken by physics undergraduate students to monitor particulate air contamination in Ponce, Puerto Rico, and to determine the meteorological factors which contribute to it. (GA)

  13. Air Pollution and Control Legislation in India

    NASA Astrophysics Data System (ADS)

    P Bhave, Prashant; Kulkarni, Nikhil

    2015-09-01

    Air pollution in urban areas arises from multiple sources, which may vary with location and developmental activities. Anthropogenic activities as rampant industrialization, exploitation and over consumption of natural resources, ever growing population size are major contributors of air pollution. The presented review is an effort to discuss various aspects of air pollution and control legislation in India emphasizing on the history, present scenario, international treaties, gaps and drawbacks. The review also presents legislative controls with judicial response to certain landmark judgments related to air pollution. The down sides related to enforcement mechanism for the effective implementation of environmental laws for air pollution control have been highlighted.

  14. Climate Change, Air Pollution, and the Economics of Health Impacts

    NASA Astrophysics Data System (ADS)

    Reilly, J.; Yang, T.; Paltsev, S.; Wang, C.; Prinn, R.; Sarofim, M.

    2003-12-01

    Climate change and air pollution are intricately linked. The distinction between greenhouse substances and other air pollutants is resolved at least for the time being in the context of international negotiations on climate policy through the identification of CO2, CH4, N2O, SF6 and the per- and hydro- fluorocarbons as substances targeted for control. Many of the traditional air pollutant emissions including for example CO, NMVOCs, NOx, SO2, aerosols, and NH3 also directly or indirectly affect the radiative balance of the atmosphere. Among both sets of gases are precursors of and contributors to pollutants such as tropopospheric ozone, itself a strong greenhouse gas, particulate matter, and other pollutants that affect human health. Fossil fuel combustion, production, or transportation is a significant source for many of these substances. Climate policy can thus affect traditional air pollution or air pollution policy can affect climate. Health effects of acute or chronic exposure to air pollution include increased asthma, lung cancer, heart disease and bronchitis among others. These, in turn, redirect resources in the economy toward medical expenditures or result in lost labor or non-labor time with consequent effects on economic activity, itself producing a potential feedback on emissions levels. Study of these effects ultimately requires a fully coupled earth system model. Toward that end we develop an approach for introducing air pollution health impacts into the Emissions Prediction and Policy Analysis (EPPA) model, a component of the MIT Integrated Global Systems Model (IGSM) a coupled economics-chemistry-atmosphere-ocean-terrestrial biosphere model of earth systems including an air pollution model resolving the urban scale. This preliminary examination allows us to consider how climate policy affects air pollution and consequent health effects, and to study the potential impacts of air pollution policy on climate. The novel contribution is the effort to

  15. Self-organized criticality of air pollution

    NASA Astrophysics Data System (ADS)

    Shi, Kai; Liu, Chun-Qiong

    In this work, we investigate the frequency-size distribution of three pollution indexes (PM 10, NO 2 and SO 2) in Shanghai. They are well approximated by power-law distributions, which suggest that air pollution might be a manifestation of self-organized criticality. We introduce a new numerical sandpile model with decay coefficient to reveal inherent dynamic mechanism of air pollution. Only changing the number value of decay coefficient of pollutants, this model gives a good simulation of three pollutants' statistical characteristic. This work shows that it is the self-organized criticality of the air pollutants that results in the temporal variation of air pollutant indexes and the minor air pollution sources can trigger the occurrence of large pollutant events by SOC behavior.

  16. Assessment of socioeconomic costs to China's air pollution

    NASA Astrophysics Data System (ADS)

    Xia, Yang; Guan, Dabo; Jiang, Xujia; Peng, Liqun; Schroeder, Heike; Zhang, Qiang

    2016-08-01

    Particulate air pollution has had a significant impact on human health in China and it is associated with cardiovascular and respiratory diseases and high mortality and morbidity. These health impacts could be translated to reduced labor availability and time. This paper utilized a supply-driven input-output (I-O) model to estimate the monetary value of total output losses resulting from reduced working time caused by diseases related to air pollution across 30 Chinese provinces in 2007. Fine particulate matter (PM2.5) pollution was used as an indicator to assess impacts to health caused by air pollution. The developed I-O model is able to capture both direct economic costs and indirect cascading effects throughout inter-regional production supply chains and the indirect effects greatly outnumber the direct effects in most Chinese provinces. Our results show the total economic losses of 346.26 billion Yuan (approximately 1.1% of the national GDP) based on the number of affected Chinese employees (72 million out of a total labor population of 712 million) whose work time in years was reduced because of mortality, hospital admissions and outpatient visits due to diseases resulting from PM2.5 air pollution in 2007. The loss is almost the annual GDP of Vietnam in 2010. The proposed modelling approach provides an alternative method for health-cost measurement with additional insights on inter-industrial and inter-regional linkages along production supply chains.

  17. Temporal-spatial variations of the physicochemical characteristics of air pollution Particulate Matter (PM2.5-0.3) and toxicological effects in human bronchial epithelial cells (BEAS-2B).

    PubMed

    Dergham, Mona; Lepers, Capucine; Verdin, Anthony; Cazier, Fabrice; Billet, Sylvain; Courcot, Dominique; Shirali, Pirouz; Garçon, Guillaume

    2015-02-01

    While the evidence for the health adverse effects of air pollution Particulate Matter (PM) has been growing, there is still uncertainty as to which constituents within PM are most harmful. Hence, to contribute to fulfill this gap of knowledge, some physicochemical characteristics and toxicological endpoints (i.e. cytotoxicity, oxidative damage, cytokine secretion) of PM2.5-0.3 samples produced during two different seasons (i.e. spring/summer or autumn/winter) in three different surroundings (i.e. rural, urban, or industrial) were studied, thereby expecting to differentiate their respective adverse effects in human bronchial epithelial cells (BEAS-2B). Physicochemical characteristics were closely related to respective origins and seasons of the six PM2.5-0.3 samples, highlighting the respective contributions of industrial and heavy motor vehicle traffic sources. Space- and season-dependent differences in cytotoxicity of the six PM2.5-0.3 samples could only be supported by considering both the physicochemical properties and the variance in air PM concentrations. Whatever spaces and seasons, dose- and even time-dependent increases in oxidative damage and cytokine secretion were reported in PM2.5-0.3-exposed BEAS-2B cells. However, the relationship between the chemical composition of each of the six PM2.5-0.3 samples and their oxidative or inflammatory potentials seemed to be very complex. These results supported the role of inorganic, ionic and organic components as exogenous source of Reactive Oxygen Species and, thereafter, cytokine secretion. Nevertheless, one of the most striking observation was that some inorganic, ionic and organic chemical components were preferentially associated with early oxidative events whereas others in the later oxidative damage and/or cytokine secretion. Taken together, these results indicated that PM mass concentration alone might not be able to explain the health outcomes, because PM is chemically nonspecific, and supported growing

  18. 77 FR 38760 - National Ambient Air Quality Standards for Particulate Matter; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-29

    ... Particulate Matter; Correction AGENCY: Environmental Protection Agency (EPA). ACTION: Proposed rule... revise the national ambient air quality standards (NAAQS) for particulate matter (PM). This action...: Questions concerning the ``National Ambient Air Quality Standards for Particulate Matter'' proposed...

  19. Epidemiology of air pollution and diabetes.

    PubMed

    Thiering, Elisabeth; Heinrich, Joachim

    2015-07-01

    Air pollution affects a large proportion of the global population. Air pollutants are hypothesized to exert their effects via impaired endothelial function, elevated systemic inflammation, mitochondrial dysfunction, and oxidative stress, all of which are hallmarks of type 2 diabetes (T2D). Here we review epidemiological studies aimed at answering whether diabetes patients are more vulnerable to ambient (outdoor) air pollution exposure and whether air pollution is associated with diabetes development or other predisposing conditions for T2D. Current evidence suggests an association between air pollution exposure and T2D, but more critical analysis is warranted. Understanding the associations between air pollution exposure and the development of T2D is critical in our efforts to control sources of air pollution and their impact on the disease.

  20. [Prevention and control of air pollution needs to strengthen further study on health damage caused by air pollution].

    PubMed

    Wu, T C

    2016-08-01

    Heath issues caused by air pollution such as particulate matter (PM) are much concerned and focused among air, water and soil pollutions because human breathe air for whole life span. Present comments will review physical and chemical characteristics of PM2.5 and PM10; Dose-response associations of PM10, PM2.5 and their components with mortality and risk of cardiopulmonary diseases, early health damages such as the decrease of lung functions and heart rate variability, DNA damage; And the roles of genetic variations and epigenetic changes in lung functions and heart rate variability, DNA damage related to PMs and their components. This comments list some limitations and perspectives about the associations of air pollution with health.

  1. [Prevention and control of air pollution needs to strengthen further study on health damage caused by air pollution].

    PubMed

    Wu, T C

    2016-08-01

    Heath issues caused by air pollution such as particulate matter (PM) are much concerned and focused among air, water and soil pollutions because human breathe air for whole life span. Present comments will review physical and chemical characteristics of PM2.5 and PM10; Dose-response associations of PM10, PM2.5 and their components with mortality and risk of cardiopulmonary diseases, early health damages such as the decrease of lung functions and heart rate variability, DNA damage; And the roles of genetic variations and epigenetic changes in lung functions and heart rate variability, DNA damage related to PMs and their components. This comments list some limitations and perspectives about the associations of air pollution with health. PMID:27539517

  2. Air pollution in autoimmune rheumatic diseases: a review.

    PubMed

    Farhat, Sylvia C L; Silva, Clovis A; Orione, Maria Angelica M; Campos, Lucia M A; Sallum, Adriana M E; Braga, Alfésio L F

    2011-11-01

    Air pollution consists of a heterogeneous mixture of gasses and particles that include carbon monoxide, nitrates, sulfur dioxide, ozone, lead, toxic by-product of tobacco smoke and particulate matter. Oxidative stress and inflammation induced by inhaled pollutants may result in acute and chronic disorders in the respiratory system, as well as contribute to a state of systemic inflammation and autoimmunity. This paper reviews the mechanisms of air contaminants influencing the immune response and autoimmunity, and it focuses on studies of inhaled pollutants triggering and/or exacerbating rheumatic diseases in cities around the world. Remarkably, environmental factors contribute to the onset of autoimmune diseases, especially smoking and occupational exposure to silica in rheumatoid arthritis and systemic lupus erythematosus. Other diseases such as scleroderma may be triggered by the inhalation of chemical solvents, herbicides and silica. Likewise, primary vasculitis associated with anti-neutrophil cytoplasmic antibody (ANCA) may be triggered by silica exposure. Only few studies showed that air pollutants could trigger or exacerbate juvenile idiopathic arthritis and systemic lupus erythematosus. In contrast, no studies of tropospheric pollution triggering inflammatory myopathies and spondyloarthropathies were carried out. In conclusion, air pollution is one of the environmental factors involved in systemic inflammation and autoimmunity. Further studies are needed in order to evaluate air pollutants and their potentially serious effects on autoimmune rheumatic diseases and the mechanisms involved in the onset and the exacerbation of these diseases.

  3. Air pollution effects on ventricular repolarization.

    PubMed

    Lux, Robert L; Pope, C Arden

    2009-05-01

    We conducted a retrospective study of a set of previously published electrocardiographic data to investigate the possible direct association between levels of particulate air pollution and changes in ventricular repolarization -- the cardiac electrophysiologic process that manifests itself as the T wave* of the electrocardiogram (ECG) and that is definitively linked to and responsible for increased arrhythmogenesis. The published findings from this data set demonstrated a clear cardiac effect, namely, a reduction in heart rate variability (HRV) parameter values with increased levels of particulate air pollution (Pope et al. 2004), suggesting possible arrhythmogenic effects. Given this positive finding and the well-established sensitivity of cardiac repolarization to physiologic, pharmacologic, and neurologic interventions, and in light of emerging novel tools for assessing repolarization, we hypothesized that high levels of particulate air pollution would alter repolarization independent of changes in heart rate and, consequently, would increase arrhythmogenic risk. The likely mechanism of any deleterious effects on repolarization would be alteration of sodium, calcium, and potassium channels. The channel's structure, function, and kinetics are responsible for generating the cellular action potentials, which, when summed over the entire heart, result in the waves recorded by the ECG. A positive finding would provide evidence that increased levels of air pollution may be directly linked to increases in arrhythmogenic risk and, potentially, sudden cardiac death. The study population consisted of 88 nonsmoking, elderly subjects in whom multiple, continuous, 24-hour, 2-channel ECG recordings were collected, along with blood samples to evaluate inflammatory mechanisms (not pursued in the current study). The concentration of fine particulate matter (PM2.5, particulate matter with an aerodynamic diameter < or = 2.5 microm) in daily samples was measured or estimated and

  4. ElectroCore separator for particulate air emissions

    SciTech Connect

    Easom, B.H.; Smolensky, L.A.; Wysk, S.R.; Altman, R.F.; Olen, K.R.

    1998-07-01

    Coal combustion in fossil energy power systems releases trace amounts of chemical elements identified in the Clean Air Act Amendments of 1990 as hazardous air pollutants (HAPs). Most HAPs exist as solid phase particulate matter and are emitted to the atmosphere in this form. To reduce the emissions of these HAPs, a novel, high efficiency particle collection system known as the ElectroCore is being developed. The concept involves placing a high efficiency particle separator downstream of an underperforming electrostatic precipitator (ESP) that strips the particles from the incoming flow and returns them, along with a small amount of recirculation flow, back to the inlet of the ESP. The main component of the system is the ElectroCore separator. Its design is based on the mechanical Core Separator developed by LSR as a high efficiency centrifugal separator. Enhancing the Core Separator by adding an electrical field improves the separation efficiency of particles in the sub-micron range which is the range where centrifugal separation is ineffective. In the combined system, the centrifugal forces operating on the particles augmented by electrostatic forces so that the ElectroCore has high separation efficiency for particles of all sizes. Field tests have shown that the ElectroCore operating downstream of an underperforming ESP can reduce the particulate emission rate to below 4.3 ng/J (0.01 lb{sub m}/million Btu) even for ESPs with emission rates as high as 260 ng/J (0.6 lb{sub m}/million Btu). The ElectroCore system can perform with most all coal ranks or residual fuel oils (RFO) and has a potentially low capital cost.

  5. [Molybdenum as an air pollutant].

    PubMed

    Lindner, R; Junker, E; Hoheiser, H

    1990-07-01

    Investigations into the reasons for the retarded growth and discolouration of a small area of a field of rape situated on the outskirts of Vienna revealed higher than normal levels of molybdenum in the soil (up to 430 micrograms/l) and in the water (up to 9.7 mg/l). The source of the pollution was traced to a neighbouring industrial plant that was emitting the metal via the chimney stack. A review of the literature on the toxic effects of molybdenum in general and as an air pollutant in particular is provided. This shows that, in contrast to animals, this effect is relatively small in humans and plants. Nevertheless, the occupation-related inhalation of the metal has been shown to be associated with pneumoconiosis and gout-like symptoms.

  6. Air Pollution Tests Using the "DEMA"

    ERIC Educational Resources Information Center

    Wilt, L. M.

    1970-01-01

    Describes the making and calibrating of a DEMA (DEvice for Measuring Air) from readily available, inexpensive materials. Procedures for measuring atmospheric particulates, acids, and carbon monoxide are described. (PR)

  7. 42 CFR 84.170 - Non-powered air-purifying particulate respirators; description.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Non-powered air-purifying particulate respirators... DEVICES Non-Powered Air-Purifying Particulate Respirators § 84.170 Non-powered air-purifying particulate respirators; description. (a) Non-powered air-purifying particulate respirators utilize the wearer's...

  8. 42 CFR 84.170 - Non-powered air-purifying particulate respirators; description.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Non-powered air-purifying particulate respirators... DEVICES Non-Powered Air-Purifying Particulate Respirators § 84.170 Non-powered air-purifying particulate respirators; description. (a) Non-powered air-purifying particulate respirators utilize the wearer's...

  9. 42 CFR 84.170 - Non-powered air-purifying particulate respirators; description.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Non-powered air-purifying particulate respirators... DEVICES Non-Powered Air-Purifying Particulate Respirators § 84.170 Non-powered air-purifying particulate respirators; description. (a) Non-powered air-purifying particulate respirators utilize the wearer's...

  10. 42 CFR 84.171 - Non-powered air-purifying particulate respirators; required components.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Non-powered air-purifying particulate respirators... PROTECTIVE DEVICES Non-Powered Air-Purifying Particulate Respirators § 84.171 Non-powered air-purifying particulate respirators; required components. (a) Each non-powered air-purifying particulate...

  11. 42 CFR 84.171 - Non-powered air-purifying particulate respirators; required components.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Non-powered air-purifying particulate respirators... PROTECTIVE DEVICES Non-Powered Air-Purifying Particulate Respirators § 84.171 Non-powered air-purifying particulate respirators; required components. (a) Each non-powered air-purifying particulate...

  12. Air particulate matter and cardiovascular disease: the epidemiological, biomedical and clinical evidence

    PubMed Central

    Du, Yixing; Xu, Xiaohan; Chu, Ming; Guo, Yan

    2016-01-01

    Air pollution is now becoming an independent risk factor for cardiovascular morbidity and mortality. Numerous epidemiological, biomedical and clinical studies indicate that ambient particulate matter (PM) in air pollution is strongly associated with increased cardiovascular disease such as myocardial infarction (MI), cardiac arrhythmias, ischemic stroke, vascular dysfunction, hypertension and atherosclerosis. The molecular mechanisms for PM-caused cardiovascular disease include directly toxicity to cardiovascular system or indirectly injury by inducing systemic inflammation and oxidative stress in peripheral circulation. Here, we review the linking between PM exposure and the occurrence of cardiovascular disease and discussed the possible underlying mechanisms for the observed PM induced increases in cardiovascular morbidity and mortality. PMID:26904258

  13. [Etiological and exacerbation factors for COPD. Air pollution].

    PubMed

    Ogawa, Kazumasa; Kishi, Kazuma

    2016-05-01

    Recently, it has been found that the number of patients with chronic obstructive pulmonary disease (COPD) who do not have a history of smoking is higher than expected, and a number of factors affect the development of COPD. Although adequate evidence for the relation of ambient air pollution, including the presence of particulate matter (PM2.5), with the development of COPD is lacking, higher mortality from respiratory and cardiovascular diseases has been reported among patients exposed to air pollution for a long time. In addition, several reports have pointed out the possibility that acute exacerbation of COPD can be caused by short-term exposure to air pollution. Tobacco smoke is the main cause of highly concentrated PM2.5 indoors, and second hand smoke is related with the development of COPD and the high mortality from COPD. In developing countries, biomass fuel combustion contributes to COPD, especially among housewives who do not smoke.

  14. [Etiological and exacerbation factors for COPD. Air pollution].

    PubMed

    Ogawa, Kazumasa; Kishi, Kazuma

    2016-05-01

    Recently, it has been found that the number of patients with chronic obstructive pulmonary disease (COPD) who do not have a history of smoking is higher than expected, and a number of factors affect the development of COPD. Although adequate evidence for the relation of ambient air pollution, including the presence of particulate matter (PM2.5), with the development of COPD is lacking, higher mortality from respiratory and cardiovascular diseases has been reported among patients exposed to air pollution for a long time. In addition, several reports have pointed out the possibility that acute exacerbation of COPD can be caused by short-term exposure to air pollution. Tobacco smoke is the main cause of highly concentrated PM2.5 indoors, and second hand smoke is related with the development of COPD and the high mortality from COPD. In developing countries, biomass fuel combustion contributes to COPD, especially among housewives who do not smoke. PMID:27254939

  15. ARE CARS OR TREES MORE IMPORTANT TO PARTICULATE MATTER AIR POLUTION? WHAT RADIOCARBON MEASUREMENTS HAVE TO SAY

    EPA Science Inventory

    Air pollution in the form of particulate matter (PM) originates from both human activities and "natural" phenomena. Setting and achieving National Ambient Air Quality Standards (NAAQS) for PM has to take into account the latter since they are in general less controllable than th...

  16. Fine Particulate Pollution and Source Apportionment in the Urban Centers for Africa, Asia and Latin America

    NASA Astrophysics Data System (ADS)

    Guttikunda, S. K.; Johnson, T. M.; Procee, P.

    2004-12-01

    Fossil fuel combustion for domestic cooking and heating, power generation, industrial processes, and motor vehicles are the primary sources of air pollution in the developing country cities. Over the past twenty years, major advances have been made in understanding the social and economic consequences of air pollution. In both industrialized and developing countries, it has been shown that air pollution from energy combustion has detrimental impacts on human health and the environment. Lack of information on the sectoral contributions to air pollution - especially fine particulates, is one of the typical constraints for an effective integrated urban air quality management program. Without such information, it is difficult, if not impossible, for decision makers to provide policy advice and make informed investment decisions related to air quality improvements in developing countries. This also raises the need for low-cost ways of determining the principal sources of fine PM for a proper planning and decision making. The project objective is to develop and verify a methodology to assess and monitor the sources of PM, using a combination of ground-based monitoring and source apportionment techniques. This presentation will focus on four general tasks: (1) Review of the science and current activities in the combined use of monitoring data and modeling for better understanding of PM pollution. (2) Review of recent advances in atmospheric source apportionment techniques (e.g., principal component analysis, organic markers, source-receptor modeling techniques). (3) Develop a general methodology to use integrated top-down and bottom-up datasets. (4) Review of a series of current case studies from Africa, Asia and Latin America and the methodologies applied to assess the air pollution and its sources.

  17. The association between air pollution and mortality in Thailand

    PubMed Central

    Guo, Yuming; Li, Shanshan; Tawatsupa, Benjawan; Punnasiri, Kornwipa; Jaakkola, Jouni J. K.; Williams, Gail

    2014-01-01

    Bayesian statistical inference with a case-crossover design was used to examine the effects of air pollutants {Particulate matter <10 μm in aerodynamic diameter (PM10), sulphur dioxide (SO2), and ozone (O3)} on mortality. We found that all air pollutants had significant short-term impacts on non-accidental mortality. An increase of 10 μg/m3 in PM10, 10 ppb in O3, 1 ppb in SO2 were associated with a 0.40% (95% posterior interval (PI): 0.22, 0.59%), 0.78% (95% PI: 0.20, 1.35%) and 0.34% (95% PI: 0.17, 0.50%) increase of non-accidental mortality, respectively. O3 air pollution is significantly associated with cardiovascular mortality, while PM10 is significantly related to respiratory mortality. In general, the effects of all pollutants on all mortality types were higher in summer and winter than those in the rainy season. This study highlights the effects of exposure to air pollution on mortality risks in Thailand. Our findings support the Thailand government in aiming to reduce high levels of air pollution. PMID:24981315

  18. CRITICAL HEALTH ISSUES OF CRITERIA AIR POLLUTANTS

    EPA Science Inventory

    This chapter summarizes the key health information on ubiquitous outdoor air pollutants that can cause adverse health effects at current or historical ambient levels in the United States. Of the thousands of air pollutants, very few meet this definition. The Clean Air Act (CA...

  19. Airplanes on Air Pollution: Discover-AQ

    NASA Video Gallery

    NASA's launching a new mission, summer 2011, designed to gather data on air pollution and help expand our understanding of how it affects us, and that could allow pollutants to be monitored more pr...

  20. Pigeons home faster through polluted air

    PubMed Central

    Li, Zhongqiu; Courchamp, Franck; Blumstein, Daniel T.

    2016-01-01

    Air pollution, especially haze pollution, is creating health issues for both humans and other animals. However, remarkably little is known about how animals behaviourally respond to air pollution. We used multiple linear regression to analyse 415 pigeon races in the North China Plain, an area with considerable air pollution, and found that while the proportion of pigeons successfully homed was not influenced by air pollution, pigeons homed faster when the air was especially polluted. Our results may be explained by an enhanced homing motivation and possibly an enriched olfactory environment that facilitates homing. Our study provides a unique example of animals’ response to haze pollution; future studies are needed to identify proposed mechanisms underlying this effect. PMID:26728113

  1. Pigeons home faster through polluted air

    NASA Astrophysics Data System (ADS)

    Li, Zhongqiu; Courchamp, Franck; Blumstein, Daniel T.

    2016-01-01

    Air pollution, especially haze pollution, is creating health issues for both humans and other animals. However, remarkably little is known about how animals behaviourally respond to air pollution. We used multiple linear regression to analyse 415 pigeon races in the North China Plain, an area with considerable air pollution, and found that while the proportion of pigeons successfully homed was not influenced by air pollution, pigeons homed faster when the air was especially polluted. Our results may be explained by an enhanced homing motivation and possibly an enriched olfactory environment that facilitates homing. Our study provides a unique example of animals’ response to haze pollution; future studies are needed to identify proposed mechanisms underlying this effect.

  2. AIR QUALITY CRITERIA FOR PARTICULATE MATTER (Final Report, Oct 2004)

    EPA Science Inventory

    EPA has completed the process of updating and revising, where appropriate, its Air Quality Criteria for Particulate Matter (PM) as issued in 1996 (usually referred to as the Criteria Document). Sections 108 and 109 of the Clean Air Act require that EPA carry out a periodic revi...

  3. The role of sea spray in cleansing air pollution over ocean via cloud processes.

    PubMed

    Rosenfeld, Daniel; Lahav, Ronen; Khain, Alexander; Pinsky, Mark

    2002-09-01

    Particulate air pollution has been shown to strongly suppress precipitation from convective clouds over land. New observations show that precipitation from similar polluted clouds over oceans is much less affected, because large sea salt nuclei override the precipitation suppression effect of the large number of small pollution nuclei. Raindrops initiated by the sea salt grow by collecting small cloud droplets that form on the pollution particles, thereby cleansing the air. Therefore, sea salt helps cleanse the atmosphere of the air pollution via cloud processes. This implies that over oceans, the climatic aerosol indirect effects are significantly smaller than current estimates.

  4. Air pollution: a tale of two countries.

    PubMed

    Haryanto, Budi; Franklin, Peter

    2011-01-01

    The fast growing economies and continued urbanization in Asian countries have increased the demand for mobility and energy in the region, resulting in high levels of air pollution in cities from mobile and stationary sources. In contrast, low level of urbanization in Australia produces low level of urban air pollution. The World Health Organization estimates that about 500,000 premature deaths per year are caused by air pollution, leaving the urban poor particularly vulnerable since they live in air pollution hotspots, have low respiratory resistance due to bad nutrition, and lack access to quality health care. Identifying the differences and similarities of air pollution levels and its impacts, between Indonesia and Australia, will provide best lesson learned to tackle air pollution problems for Pacific Basin Rim countries.

  5. Air pollution: a tale of two countries.

    PubMed

    Haryanto, Budi; Franklin, Peter

    2011-01-01

    The fast growing economies and continued urbanization in Asian countries have increased the demand for mobility and energy in the region, resulting in high levels of air pollution in cities from mobile and stationary sources. In contrast, low level of urbanization in Australia produces low level of urban air pollution. The World Health Organization estimates that about 500,000 premature deaths per year are caused by air pollution, leaving the urban poor particularly vulnerable since they live in air pollution hotspots, have low respiratory resistance due to bad nutrition, and lack access to quality health care. Identifying the differences and similarities of air pollution levels and its impacts, between Indonesia and Australia, will provide best lesson learned to tackle air pollution problems for Pacific Basin Rim countries. PMID:21714382

  6. Air pollutant penetration through airflow leaks into buildings

    SciTech Connect

    Liu, De-Ling

    2002-09-01

    The penetration of ambient air pollutants into the indoor environment is of concern owing to several factors: (1) epidemiological studies have shown a strong association between ambient fine particulate pollution and elevated risk of human mortality; (2) people spend most of their time in indoor environments; and (3) most information about air pollutant concentration is only available from ambient routine monitoring networks. A good understanding of ambient air pollutant transport from source to receptor requires knowledge about pollutant penetration across building envelopes. Therefore, it is essential to gain insight into particle penetration in infiltrating air and the factors that affect it in order to assess human exposure more accurately, and to further prevent adverse human health effects from ambient particulate pollution. In this dissertation, the understanding of air pollutant infiltration across leaks in the building envelope was advanced by performing modeling predictions as well as experimental investigations. The modeling analyses quantified the extent of airborne particle and reactive gas (e.g., ozone) penetration through building cracks and wall cavities using engineering analysis that incorporates existing information on building leakage characteristics, knowledge of pollutant transport processes, as well as pollutant-surface interactions. Particle penetration is primarily governed by particle diameter and by the smallest dimension of the building cracks. Particles of 0.1-1 {micro}m are predicted to have the highest penetration efficiency, nearly unity for crack heights of 0.25 mm or higher, assuming a pressure differential of 4 Pa or greater and a flow path length of 3 cm or less. Supermicron and ultrafine particles (less than 0.1 {micro}m) are readily deposited on crack surfaces by means of gravitational settling and Brownian diffusion, respectively. The fraction of ozone penetration through building leaks could vary widely, depending

  7. Impact of maritime traffic on polycyclic aromatic hydrocarbons, metals and particulate matter in Venice air.

    PubMed

    Gregoris, Elena; Barbaro, Elena; Morabito, Elisa; Toscano, Giuseppa; Donateo, Antonio; Cesari, Daniela; Contini, Daniele; Gambaro, Andrea

    2016-04-01

    Harbours are important hubs for economic growth in both tourism and commercial activities. They are also an environmental burden being a source of atmospheric pollution often localized near cities and industrial complexes. The aim of this study is to quantify the relative contribution of maritime traffic and harbour activities to atmospheric pollutant concentration in the Venice lagoon. The impact of ship traffic was quantified on various pollutants that are not directly included in the current European legislation for shipping emission reduction: (i) gaseous and particulate PAHs; (ii) metals in PM10; and (iii) PM10 and PM2.5. All contributions were correlated with the tonnage of ships during the sampling periods and results were used to evaluate the impact of the European Directive 2005/33/EC on air quality in Venice comparing measurements taken before and after the application of the Directive (year 2010). The outcomes suggest that legislation on ship traffic, which focused on the issue of the emissions of sulphur oxides, could be an efficient method also to reduce the impact of shipping on primary particulate matter concentration; on the other hand, we did not observe a significant reduction in the contribution of ship traffic and harbour activities to particulate PAHs and metals. Graphical abstract Impact of maritime traffic on polycyclic aromatic hydrocarbons, metals and particulate matter and evaluation of the effect of an European Directive on air quality in Venice. PMID:26681325

  8. Impact of maritime traffic on polycyclic aromatic hydrocarbons, metals and particulate matter in Venice air.

    PubMed

    Gregoris, Elena; Barbaro, Elena; Morabito, Elisa; Toscano, Giuseppa; Donateo, Antonio; Cesari, Daniela; Contini, Daniele; Gambaro, Andrea

    2016-04-01

    Harbours are important hubs for economic growth in both tourism and commercial activities. They are also an environmental burden being a source of atmospheric pollution often localized near cities and industrial complexes. The aim of this study is to quantify the relative contribution of maritime traffic and harbour activities to atmospheric pollutant concentration in the Venice lagoon. The impact of ship traffic was quantified on various pollutants that are not directly included in the current European legislation for shipping emission reduction: (i) gaseous and particulate PAHs; (ii) metals in PM10; and (iii) PM10 and PM2.5. All contributions were correlated with the tonnage of ships during the sampling periods and results were used to evaluate the impact of the European Directive 2005/33/EC on air quality in Venice comparing measurements taken before and after the application of the Directive (year 2010). The outcomes suggest that legislation on ship traffic, which focused on the issue of the emissions of sulphur oxides, could be an efficient method also to reduce the impact of shipping on primary particulate matter concentration; on the other hand, we did not observe a significant reduction in the contribution of ship traffic and harbour activities to particulate PAHs and metals. Graphical abstract Impact of maritime traffic on polycyclic aromatic hydrocarbons, metals and particulate matter and evaluation of the effect of an European Directive on air quality in Venice.

  9. Energy consumption and resultant air pollution; An ARIMA forecasting model for Taiwan

    SciTech Connect

    Hsu, G.J.Y. ); Liu, M.C. )

    1991-01-01

    In this paper, an ARIMA transfer model is developed toe valuate the interactions between energy use and particulate air pollution in eight major areas in Taiwan. Based on time series data from 1971 to 1985 and the estimates of the parameters of the model, a five-year (from 1986 to 1990) forecast is made for particulate pollution for these eight major areas. Finally, policy implications and recommendations are presented.

  10. Air Pollution in Road Tunnels

    PubMed Central

    Waller, R. E.; Commins, B. T.; Lawther, P. J.

    1961-01-01

    As a part of a study of pollution of the air by motor vehicles, measurements have been made in two London road tunnels during periods of high traffic density. The concentrations of smoke and polycyclic hydrocarbons found there are much higher than the average values in Central London, but they are of the same order of magnitude as those occurring during temperature inversions on winter evenings when smoke from coal fires accumulates at a low level. An attempt has been made to relate the concentration of each pollutant to the type and amount of traffic. Both diesel and petrol vehicles make some contribution to the amounts of smoke and polycyclic hydrocarbons found in the tunnels, but in the case of smoke, fluoranthene, 1: 2-benzpyrene, pyrene, and 3: 4-benzpyrene, the concentrations appear to be more closely related to the density of diesel traffic than to that of petrol traffic. The concentrations of lead and carbon monoxide have also been determined, and these are very closely related to the density of petrol traffic. During the morning and evening rush hours the mean concentration of carbon monoxide was just over 100 p.p.m. and peak values up to 500 p.p.m. were recorded at times. Oxides of nitrogen were determined in some of the experiments and there was always much more nitric oxide than nitrogen dioxide. Eye irritation was experienced but its cause was not investigated. The concentration of pollution in the tunnels does not appear to be high enough to create any special hazards for short-term exposures. The amosphere at peak periods may become very dirty and unpleasant and the concentration of carbon monoxide would be sufficient to produce some effect over a period of several hours' continuous exposure. The total emission of pollution from road vehicles must still be small in comparison with that from coal fires, but the effect of traffic on the concentration of smoke, polycyclic hydrocarbons, carbon monoxide, and lead in the air of city streets deserves

  11. Air Quality in Lanzhou, a Major Industrial City in China: Characteristics of Air Pollution and Review of Existing Evidence from Air Pollution and Health Studies

    PubMed Central

    Zhang, Yaqun; Li, Min; Bravo, Mercedes A.; Jin, Lan; Nori-Sarma, Amruta; Xu, Yanwen; Guan, Donghong; Wang, Chengyuan; Chen, Mingxia; Wang, Xiao; Tao, Wei; Qiu, Weitao; Zhang, Yawei

    2015-01-01

    Air pollution contributes substantially to global health burdens; however, less is known about pollution patterns in China and whether they differ from those elsewhere. We evaluated temporal and spatial heterogeneity of air pollution in Lanzhou, an urban Chinese city (April 2009–December 2012), and conducted a systematic review of literature on air pollution and health in Lanzhou. Average levels were 141.5, 42.3, and 47.2 µg/m3 for particulate matter with an aerodynamic diameter ≤10 µm (PM10), NO2, and SO2, respectively. Findings suggest some seasonality, particularly for SO2, with higher concentrations during colder months relative to warmer months, although a longer time frame of data is needed to evaluate seasonality fully. Correlation coefficients generally declined with distance between monitors, while coefficients of divergence increased with distance. However, these trends were not statistically significant. PM10 levels exceeded Chinese and other health-based standards and guidelines. The review identified 13 studies on outdoor air pollution and health. Although limited, the studies indicate that air pollution is associated with increased risk of health outcomes in Lanzhou. These studies and the high air pollution levels suggest potentially serious health consequences. Findings can provide guidance to future epidemiological studies, monitor placement programs, and air quality policies. PMID:25838615

  12. Air pollution and COPD in China.

    PubMed

    Hu, Guoping; Zhong, Nanshan; Ran, Pixin

    2015-01-01

    Recently, many researchers paid more attentions to the association between air pollution and chronic obstructive pulmonary disease (COPD). Haze, a severe form of outdoor air pollution, affected most parts of northern and eastern China in the past winter. In China, studies have been performed to evaluate the impact of outdoor air pollution and biomass smoke exposure on COPD; and most studies have focused on the role of air pollution in acutely triggering symptoms and exacerbations. Few studies have examined the role of air pollution in inducing pathophysiological changes that characterise COPD. Evidence showed that outdoor air pollution affects lung function in both children and adults and triggers exacerbations of COPD symptoms. Hence outdoor air pollution may be considered a risk factor for COPD mortality. However, evidence to date has been suggestive (not conclusive) that chronic exposure to outdoor air pollution increases the prevalence and incidence of COPD. Cross-sectional studies showed biomass smoke exposure is a risk factor for COPD. A long-term retrospective study and a long-term prospective cohort study showed that biomass smoke exposure reductions were associated with a reduced decline in forced expiratory volume in 1 second (FEV1) and with a decreased risk of COPD. To fully understand the effect of air pollution on COPD, we recommend future studies with longer follow-up periods, more standardized definitions of COPD and more refined and source-specific exposure assessments.

  13. Air pollution and COPD in China

    PubMed Central

    Hu, Guoping; Zhong, Nanshan

    2015-01-01

    Recently, many researchers paid more attentions to the association between air pollution and chronic obstructive pulmonary disease (COPD). Haze, a severe form of outdoor air pollution, affected most parts of northern and eastern China in the past winter. In China, studies have been performed to evaluate the impact of outdoor air pollution and biomass smoke exposure on COPD; and most studies have focused on the role of air pollution in acutely triggering symptoms and exacerbations. Few studies have examined the role of air pollution in inducing pathophysiological changes that characterise COPD. Evidence showed that outdoor air pollution affects lung function in both children and adults and triggers exacerbations of COPD symptoms. Hence outdoor air pollution may be considered a risk factor for COPD mortality. However, evidence to date has been suggestive (not conclusive) that chronic exposure to outdoor air pollution increases the prevalence and incidence of COPD. Cross-sectional studies showed biomass smoke exposure is a risk factor for COPD. A long-term retrospective study and a long-term prospective cohort study showed that biomass smoke exposure reductions were associated with a reduced decline in forced expiratory volume in 1 second (FEV1) and with a decreased risk of COPD. To fully understand the effect of air pollution on COPD, we recommend future studies with longer follow-up periods, more standardized definitions of COPD and more refined and source-specific exposure assessments. PMID:25694818

  14. Global air pollution crossroads over the Mediterranean.

    PubMed

    Lelieveld, J; Berresheim, H; Borrmann, S; Crutzen, P J; Dentener, F J; Fischer, H; Feichter, J; Flatau, P J; Heland, J; Holzinger, R; Korrmann, R; Lawrence, M G; Levin, Z; Markowicz, K M; Mihalopoulos, N; Minikin, A; Ramanathan, V; De Reus, M; Roelofs, G J; Scheeren, H A; Sciare, J; Schlager, H; Schultz, M; Siegmund, P; Steil, B; Stephanou, E G; Stier, P; Traub, M; Warneke, C; Williams, J; Ziereis, H

    2002-10-25

    The Mediterranean Intensive Oxidant Study, performed in the summer of 2001, uncovered air pollution layers from the surface to an altitude of 15 kilometers. In the boundary layer, air pollution standards are exceeded throughout the region, caused by West and East European pollution from the north. Aerosol particles also reduce solar radiation penetration to the surface, which can suppress precipitation. In the middle troposphere, Asian and to a lesser extent North American pollution is transported from the west. Additional Asian pollution from the east, transported from the monsoon in the upper troposphere, crosses the Mediterranean tropopause, which pollutes the lower stratosphere at middle latitudes.

  15. King Coal causes air pollution problems.

    PubMed

    Wang, A; Zhao, D; Liu, J

    1989-01-01

    Every year, China is blanketed with some 23 million tons of particulates from smoke and dust along with 17 million tons of sulphur dioxide from the use of coal in power plants, factories, and home furnaces. Elevated concentrations of sulphur dioxide are found in cities like Chongqing and Guiyang, which are plagued by stagnant air masses during the winter months. Beijing, Shenyang, Shanghai, Xi'an, Guangzhou, Chongqing, and Guiyang all suffer from soot, ash, and dust fallout for much of the year. Northern cities like Beijing and Tianjin are also afflicted with high levels of heavy metals like lead, cadmium and even arsenic, which are bound to soot and dust particles. Hundreds of people in Xuanwei in Yunnan Province suffer from respiratory diseases and lung cancer brought on by pollution. Government studies have shown that between 1949 and 1979, cancer mortality in the Beijing area increased by 145%, with lung cancer being the most prevalent. Another atmospheric scourge that is spreading throughout China is acid rain. More than half of all rainfall events in large areas south of the Yangtze River have a pH of less than 5.6. The south-western part of China is also experiencing a forest dieback as severe as anything in Europe. For example, about half of all the pines on top of Mt. Nanshen (near Chongqing) have died, and nearly 40% of the fir forests on Mt. Emi have withered and died. On June 1, 1988, the National Prevention and Control of Air Pollution Law came into force. Acid rain research has been listed as one of the major priorities for the most recent National Five-Year Research Program, which runs from 1986 to 1990. For the future environmental protection measures must be taken into account when extracting coal; coal processing techniques must be improved: and new clean coal technologies should be introduced on a large scale.

  16. Effect of pollution by particulate iron on the morphoanatomy, histochemistry, and bioaccumulation of three mangrove plant species in Brazil.

    PubMed

    Arrivabene, Hiulana Pereira; Souza, Iara da Costa; Có, Walter Luiz Oliveira; Conti, Melina Moreira; Wunderlin, Daniel Alberto; Milanez, Camilla Rozindo Dias

    2015-05-01

    In Brazil, some mangrove areas are subjected to air pollution by particulate iron from mining activities. However, the effect of this pollutant on mangrove plants is not well known. This study aimed to comparatively analyze the morphoanatomy, histochemistry, and iron accumulation in leaves of Avicennia schaueriana, Laguncularia racemosa, and Rhizophora mangle. Samples were collected from five mangrove sites of Espírito Santo state, each of which is exposed to different levels of particulate iron pollution. The amount of particulate material settled on the leaf surface was greater in A. schaueriana and L. racemosa, which contain salt glands. High iron concentrations were found in leaves of this species, collected from mangrove areas with high particulate iron pollution, which suggests the foliar absorption of this element. None of the samples from any of the sites showed morphological or structural damage on the leaves. Scanning electron microscopy (SEM) coupled to X-ray diffraction rendered a good method for evaluating iron on leaves surfaces. A histochemical test using Prussian blue showed to be an appropriate method to detect iron in plant tissue, however, proved to be an unsuitable method for the assessment of the iron bioaccumulation in leaves of A. schaueriana and R. mangle. So far, this study demonstrates the need of evaluating the pathway used by plants exposed to contaminated particulate matter to uptake atmospheric pollutants.

  17. Effect of pollution by particulate iron on the morphoanatomy, histochemistry, and bioaccumulation of three mangrove plant species in Brazil.

    PubMed

    Arrivabene, Hiulana Pereira; Souza, Iara da Costa; Có, Walter Luiz Oliveira; Conti, Melina Moreira; Wunderlin, Daniel Alberto; Milanez, Camilla Rozindo Dias

    2015-05-01<