Science.gov

Sample records for air particulates collected

  1. Methods to determine the biological composition of particulate matter collected from outdoor air

    NASA Astrophysics Data System (ADS)

    Womiloju, Taiwo O.; Miller, J. David; Mayer, Paul M.; Brook, Jeffrey R.

    Associations between increased morbidity and exposure to ambient air particulates have been the subject of intense study. Few data exist on the presence of cells or cell materials of fungi, bacteria and pollen in fine particle samples (< 2.5 μm). Because it is not possible to recognize such fragments by conventional means, one approach is to determine the presence of signature biochemicals. This paper reports the development of a method for the analysis of intact glycerophospholipids present in extracts of fungi and pollen common in outdoor air by normal-phase liquid chromatography/electrospray ionization tandem mass spectrometry. Using cluster analysis of the phospholipids found, both mycelia and spores of fungi and pollen common in outdoor air could be separated. Little variation was detected between single spore isolates of individual strains of such fungi isolated across North America. White Birch and ragweed pollen contained similar phospholipid patterns but different from the fungi. From literature data, both were different than Gram negative bacteria. Semi-hivolume fine particle samples were collected on glass fibre filters in three locations in and near Toronto, extracted and analyzed. The concentrations of phospholipids measured suggested that fungal cells and pollen were responsible for 12-22% of the organic carbon fraction or 4-11% of the total mass depending upon location. The qualitative and quantitative estimates obtained compared favourably to data from concurrent rotorod samples. This suggests that, with improved sensitivity, the analysis of a larger number of samples would provide useful data for epidemiological studies and on the nature of organic carbon in fine particulate samples.

  2. Particulate Air Pollution: The Particulars

    ERIC Educational Resources Information Center

    Murphy, James E.

    1973-01-01

    Describes some of the causes and consequences of particulate air pollution. Outlines the experimental procedures for measuring the amount of particulate materials that settles from the air and for observing the nature of particulate air pollution. (JR)

  3. Air Pollution Particulate Matter Collected from an Appalachian Mountaintop Mining Site Induces Microvascular Dysfunction

    PubMed Central

    KNUCKLES, TRAVIS L.; STAPLETON, PHOEBE A.; MINARCHICK, VALERIE C.; ESCH, LAURA; MCCAWLEY, MICHAEL; HENDRYX, MICHAEL; NURKIEWICZ, TIMOTHY R.

    2016-01-01

    Objective Air pollution PM is associated with cardiovascular morbidity and mortality. In Appalachia, PM from mining may represent a health burden to this sensitive population that leads the nation in cardiovascular disease, among others. Cardiovascular consequences following inhalation of PMMTM are unclear, but must be identified to establish causal effects. Methods PM was collected within 1 mile of an active MTM site in southern WV. The PM was extracted and was primarily <10μm in diameter (PM10), consisting largely of sulfur (38%) and silica (24%). Adult male rats were IT with 300 μg PMMTM. Twenty-four hours following exposure, rats were prepared for intravital microscopy, or isolated arteriole experiments. Results PMMTM exposure blunted endothelium-dependent dilation in mesenteric and coronary arterioles by 26%, and 25%, respectively, as well as endothelium-independent dilation. In vivo, PMMTM exposure inhibited endothelium-dependent arteriolar dilation (60% reduction). α-adrenergic receptor blockade inhibited PVNS-induced vasoconstriction in exposed animals compared with sham. Conclusions These data suggest that PMMTM exposure impairs microvascular function in disparate microvascular beds, through alterations in NO-mediated dilation and sympathetic nerve influences. Microvascular dysfunction may contribute to cardiovascular disease in regions with MTM sites. PMID:22963349

  4. EVALUATION OF THE CMB AND PMF MODELS USING ORGANIC MOLECULAR MARKERS IN FINE PARTICULATE MATTER COLLECTED DURING THE PITTSBURGH AIR QUALITY STUDY

    EPA Science Inventory

    This research investigated different strategies for source apportionment of airborne fine particulate matter (PM2.5) collected as part of the Pittsburgh Air Quality Study. Two source receptor models were used, the EPA Chemical Mass Balance 8.2 (CMB) and EPA Positive Matrix Facto...

  5. Prediction of the collection efficiency, the porosity, and the pressure drop across filter cakes in particulate air filtration

    NASA Astrophysics Data System (ADS)

    Al-Otoom, Awni Y.

    This study presents a new statistical model to predict the collection efficiency, cake thickness, cake porosity, and pressure drop across filter cakes during the particulate filtration of gases. This model is based on generation of a random distribution of particle sizes and particle falling locations. The model predicts the cake collection efficiency, which was found to be strongly dependent on the ratio of the mean particle size to the mean pore size of the filter medium. The average cake porosity decreases with increasing cake thickness and the pressure drop increases when the mean particle diameter decreases.

  6. Air Quality Criteria for Particulate Matter.

    ERIC Educational Resources Information Center

    National Air Pollution Control Administration (DHEW), Washington, DC.

    To assist states in developing air quality standards, this book offers a review of literature related to atmospheric particulates and the development of criteria for air quality. It not only summarizes the current scientific knowledge of particulate air pollution, but points up the major deficiencies in that knowledge and the need for further…

  7. Large scale air monitoring: lichen vs. air particulate matter analysis.

    PubMed

    Rossbach, M; Jayasekera, R; Kniewald, G; Thang, N H

    1999-07-15

    Biological indicator organisms have been widely used for monitoring and banking purposes for many years. Although the complexity of the interactions between organisms and their environment is generally not easily comprehensible, environmental quality assessment using the bioindicator approach offers some convincing advantages compared to direct analysis of soil, water, or air. Measurement of air particulates is restricted to experienced laboratories with access to expensive sampling equipment. Additionally, the amount of material collected generally is just enough for one determination per sampling and no multidimensional characterization might be possible. Further, fluctuations in air masses have a pronounced effect on the results from air filter sampling. Combining the integrating property of bioindicators with the world wide availability and particular matrix characteristics of air particulate matter as a prerequisite for global monitoring of air pollution is discussed. A new approach for sampling urban dust using large volume filtering devices installed in air conditioners of large hotel buildings is assessed. A first experiment was initiated to collect air particulates (300-500 g each) from a number of hotels during a period of 3-4 months by successive vacuum cleaning of used inlet filters from high volume air conditioning installations reflecting average concentrations per 3 months in different large cities. This approach is expected to be upgraded and applied for global monitoring. Highly positive correlated elements were found in lichens such as K/S, Zn/P, the rare earth elements (REE) and a significant negative correlation between Hg and Cu was observed in these samples. The ratio of concentrations of elements in dust and Usnea spp. is highest for Cz, Zn and Fe (400-200) and lowest for elements such as Ca, Rb, and Sr (20-10).

  8. CHEMICAL AND PHYSICAL CHARACTERISTICS OF OUTDOOR, INDOOR, AND PERSONAL PARTICULATE AIR SAMPLES COLLECTED IN AND AROUND A RETIREMENT FACILITY

    EPA Science Inventory

    Residential, personal, indoor, and outdoor sampling of particulate matter was conducted at a retirement center in the Towson area of northern Baltimore County in 1998. Concurrent sampling was conducted at a central community site. Computer-controlled scanning electron microsco...

  9. The Particulate Air Pollution Controversy

    PubMed Central

    Phalen, Robert F.

    2004-01-01

    Scientists, regulators, legislators, and segments of industry and the lay public are attempting to understand and respond to epidemiology findings of associations between measures of modern particulate air pollutants (PM) and adverse health outcomes in urban dwellers. The associations have been interpreted to imply that tens of thousands of Americans are killed annually by small daily increments in PM. These epidemiology studies and their interpretations have been challenged, although it is accepted that high concentrations of air pollutants have claimed many lives in the past. Although reproducible and statistically significant, the relative risks associated with modern PM are very small and confounded by many factors. Neither toxicology studies nor human clinical investigations have identified the components and/or characteristics of PM that might be causing the health-effect associations. Currently, a massive worldwide research effort is under way in an attempt to identify whom might be harmed and by what substances and mechanisms. Finding the answers is important, because control measures have the potential not only to be costly but also to limit the availability of goods and services that are important to public health. PMID:19330148

  10. COPPER-DEPENDENT INFLAMMATION AND NUCLEAR FACTOR-KB ACTIVATION BY PARTICULATE AIR POLLUTION

    EPA Science Inventory

    Particulate air pollution causes increased cardiopulmonary morbidity and mortality, but the chemical determinants responsible for its biologic effects are not understood. We studied the effect of total suspended particulates collected in Provo, Utah, an area where an increase in ...

  11. Control Techniques for Particulate Air Pollutants.

    ERIC Educational Resources Information Center

    National Air Pollution Control Administration (DHEW), Washington, DC.

    Included is a comprehensive review of the approaches commonly recommended for controlling the sources of particulate air pollution. Not all possible combinations of control techniques that might bring about more stringent control of each individual source are reviewed. The many agricultural, commercial, domestic, industrial, and municipal…

  12. HIGH VOLUME INJECTION FOR GCMS ANALYSIS OF PARTICULATE ORGANIC SPECIES IN AMBIENT AIR

    EPA Science Inventory

    Detection of organic species in ambient particulate matter typically requires large air sample volumes, frequently achieved by grouping samples into monthly composites. Decreasing the volume of air sample required would allow shorter collection times and more convenient sample c...

  13. Effects of particulate air pollution on asthmatics

    SciTech Connect

    Perry, G.B.; Chai, H.; Dickey, D.W.; Jones, R.H.; Kinsman, R.A.; Morrill, C.G.; Spector, S.L.; Weiser, P.C.

    1983-01-01

    Twenty-four asthmatic subjects in Denver were followed from January through March 1979, a three-month period in which Denver air pollution levels are generally high and variable. Dichotomous, virtual impactor samplers provided daily measurements (micrograms/m3) of inhaled particulate matter (total mass, sulfates, and nitrates) for coarse (2.5--15 micrograms in aerodynamic diameter) and fine fractions (less than 2.5 micrometers). Carbon monoxide, sulfur dioxide, ozone, temperature, and barometric pressure were also measured. Twice daily measurements of each subject's peak expiratory flow rates, use of as-needed aerosolized bronchodilators, and report of airways obstruction symptoms characteristic of asthma were tested for relationships to air pollutants using a random effects model across subjects. During the time actually observed, there were very few days in which high levels of suspended particulates were recorded. Of the environmental variables studied, only fine nitrates were associated with increased symptom reports and increased aerosolized bronchodilator usage.

  14. Apparatus for real-time airborne particulate radionuclide collection and analysis

    DOEpatents

    Smart, John E.; Perkins, Richard W.

    2001-01-01

    An improved apparatus for collecting and analyzing an airborne particulate radionuclide having a filter mounted in a housing, the housing having an air inlet upstream of the filter and an air outlet downstream of the filter, wherein an air stream flows therethrough. The air inlet receives the air stream, the filter collects the airborne particulate radionuclide and permits a filtered air stream to pass through the air outlet. The improvement which permits real time counting is a gamma detecting germanium diode mounted downstream of the filter in the filtered air stream. The gamma detecting germanium diode is spaced apart from a downstream side of the filter a minimum distance for a substantially maximum counting detection while permitting substantially free air flow through the filter and uniform particulate radionuclide deposition on the filter.

  15. Particulate air pollution and impaired lung function

    PubMed Central

    Paulin, Laura; Hansel, Nadia

    2016-01-01

    Air pollution is a leading cause of morbidity and mortality throughout the world, particularly in individuals with existing lung disease. Of the most common air pollutants, particulate matter (PM) is associated with an increased risk of exacerbations and respiratory symptoms in individuals with existing lung disease, and to a lesser extent, in those without known respiratory issues. The majority of published research has focused on the effects of PM exposures on symptoms and health care utilization. Fewer studies focus on the impact of PM on objective measurements of pulmonary function. This review will focus on the effects of PM exposure on objective measurements of lung function in both healthy individuals and those with existing lung disease. PMID:26962445

  16. Particulate air pollution and impaired lung function.

    PubMed

    Paulin, Laura; Hansel, Nadia

    2016-01-01

    Air pollution is a leading cause of morbidity and mortality throughout the world, particularly in individuals with existing lung disease. Of the most common air pollutants, particulate matter (PM) is associated with an increased risk of exacerbations and respiratory symptoms in individuals with existing lung disease, and to a lesser extent, in those without known respiratory issues. The majority of published research has focused on the effects of PM exposures on symptoms and health care utilization. Fewer studies focus on the impact of PM on objective measurements of pulmonary function. This review will focus on the effects of PM exposure on objective measurements of lung function in both healthy individuals and those with existing lung disease. PMID:26962445

  17. Particulate air pollution and impaired lung function.

    PubMed

    Paulin, Laura; Hansel, Nadia

    2016-01-01

    Air pollution is a leading cause of morbidity and mortality throughout the world, particularly in individuals with existing lung disease. Of the most common air pollutants, particulate matter (PM) is associated with an increased risk of exacerbations and respiratory symptoms in individuals with existing lung disease, and to a lesser extent, in those without known respiratory issues. The majority of published research has focused on the effects of PM exposures on symptoms and health care utilization. Fewer studies focus on the impact of PM on objective measurements of pulmonary function. This review will focus on the effects of PM exposure on objective measurements of lung function in both healthy individuals and those with existing lung disease.

  18. Alveolar macrophage interaction with air pollution particulates.

    PubMed

    Goldsmith, C A; Frevert, C; Imrich, A; Sioutas, C; Kobzik, L

    1997-09-01

    We applied flow cytometric analysis to characterize the in vitro response of alveolar macrophages (AM) to air pollution particulates. Normal hamster AM were incubated with varying concentrations of residual oil fly ash (ROFA) or concentrated ambient air particulates (CAP). We found a dose-dependent increase in AM-associated right angle light scatter (RAS) after uptake of ROFA (e.g., mean channel number 149.4 +/- 6.5, 102.5 +/- 4.1, 75.8 +/- 3.5, and 61.0 +/- 4.6 at 200, 100, 50, and 25 mg/ml, respectively) or CAP. A role for scavenger-type receptors (SR) in AM uptake of components of ROFA and CAP was identified by marked inhibition of RAS increases in AM pretreated with the specific SR inhibitor polyinosinic acid. We combined measurement of particle uptake (RAS) with flow cytometric analysis of intracellular oxidation of dichlorofluorescin. Both ROFA and CAP caused a dose-related intracellular oxidant stress within AM, comparable to that seen with phorbol myristate acetate (PMA) (e.g., fold increase over control, 6.6 +/- 0.4, 3.6 +/- 0.4, 4.6 +/- 0.5, 200 mg/ml ROFA, 100 mg/ml ROFA, and 10(-7) M PMA, respectively). We conclude that flow cytometry of RAS increases provides a useful relative measurement of AM uptake of complex particulates within ROFA and CAP. Both ROFA and CAP cause substantial intracellular oxidant stress within AM, which may contribute to subsequent cell activation and production of proinflammatory mediators.

  19. [Carbon in particulate matter in the air].

    PubMed

    Godec, Ranka

    2008-12-01

    Carbon in Particulate Matter in the AirCarbon (Latin carbo) in elemental form appears as diamond, graphite, fullerene, and black amorphous carbon. Black amorphous carbon can be found in atmospheric aerosols and its main forms are elemental (EC), organic (OC), and carbonate (CC) carbon. Atmospheric carbon particles are transmitted through more than 70 sources of air pollutants. Elemental carbon is the primary pollutant, which results from incomplete combustion of fossil and biomass fuels. It also appears as soot, in sediment, soil, and ice core. Many quantitative determinations of elemental carbon are based on its chemical inertness, thermal stability, and visual features. Organic carbon includes organic compounds such as polycyclic aromatic hydrocarbons (PAH), polychlorinated biphenyls (PCB), polychlorinated dibenzo-p-dioxins and furans, polybrominated diphenylethers, and other organic pollutants are the products of combustion and formation of secondary organic aerosols.The aim of this paper was to describe different forms of carbon in the atmosphere, how they affect people, climate, and the atmosphere, and to give an overview of different methods for their determination. PMID:19064370

  20. Health effects of particulate air pollution: time for reassessment?

    PubMed Central

    Pope, C A; Bates, D V; Raizenne, M E

    1995-01-01

    Numerous studies have observed health effects of particulate air pollution. Compared to early studies that focused on severe air pollution episodes, recent studies are more relevant to understanding health effects of pollution at levels common to contemporary cities in the developed world. We review recent epidemiologic studies that evaluated health effects of particulate air pollution and conclude that respirable particulate air pollution is likely an important contributing factor to respiratory disease. Observed health effects include increased respiratory symptoms, decreased lung function, increased hospitalizations and other health care visits for respiratory and cardiovascular disease, increased respiratory morbidity as measured by absenteeism from work or school or other restrictions in activity, and increased cardiopulmonary disease mortality. These health effects are observed at levels common to many U.S. cities including levels below current U.S. National Ambient Air Quality Standards for particulate air pollution. Images Figure 1. PMID:7656877

  1. Health effects of particulate air pollution: time for reassessment?

    PubMed

    Pope, C A; Bates, D V; Raizenne, M E

    1995-05-01

    Numerous studies have observed health effects of particulate air pollution. Compared to early studies that focused on severe air pollution episodes, recent studies are more relevant to understanding health effects of pollution at levels common to contemporary cities in the developed world. We review recent epidemiologic studies that evaluated health effects of particulate air pollution and conclude that respirable particulate air pollution is likely an important contributing factor to respiratory disease. Observed health effects include increased respiratory symptoms, decreased lung function, increased hospitalizations and other health care visits for respiratory and cardiovascular disease, increased respiratory morbidity as measured by absenteeism from work or school or other restrictions in activity, and increased cardiopulmonary disease mortality. These health effects are observed at levels common to many U.S. cities including levels below current U.S. National Ambient Air Quality Standards for particulate air pollution.

  2. Total Particulate Matter Air Sampling Data (TEOM) from Los Alamos National Laboratory

    DOE Data Explorer

    LANL measures the total particulate mass concentration in the air on a routine basis as well as during incidents that may affect ambient air. The collected data is added to the Air Quality Index (AQI). AQI is an index for reporting daily air quality. It tells you how clean or polluted your air is, and what associated health effects might be a concern for you. The AQI focuses on health effects you may experience within a few hours or days after breathing polluted air. EPA calculates the AQI for five major air pollutants regulated by the Clean Air Act.

  3. Particulate Air Contamination in Puerto Rico: A Student Involvement Project.

    ERIC Educational Resources Information Center

    Eckert, Richard R.

    1979-01-01

    Describes a research project undertaken by physics undergraduate students to monitor particulate air contamination in Ponce, Puerto Rico, and to determine the meteorological factors which contribute to it. (GA)

  4. 77 FR 38760 - National Ambient Air Quality Standards for Particulate Matter; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-29

    ... Particulate Matter; Correction AGENCY: Environmental Protection Agency (EPA). ACTION: Proposed rule... revise the national ambient air quality standards (NAAQS) for particulate matter (PM). This action...: Questions concerning the ``National Ambient Air Quality Standards for Particulate Matter'' proposed...

  5. 42 CFR 84.170 - Non-powered air-purifying particulate respirators; description.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Non-powered air-purifying particulate respirators... DEVICES Non-Powered Air-Purifying Particulate Respirators § 84.170 Non-powered air-purifying particulate respirators; description. (a) Non-powered air-purifying particulate respirators utilize the wearer's...

  6. 42 CFR 84.170 - Non-powered air-purifying particulate respirators; description.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Non-powered air-purifying particulate respirators... DEVICES Non-Powered Air-Purifying Particulate Respirators § 84.170 Non-powered air-purifying particulate respirators; description. (a) Non-powered air-purifying particulate respirators utilize the wearer's...

  7. 42 CFR 84.170 - Non-powered air-purifying particulate respirators; description.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Non-powered air-purifying particulate respirators... DEVICES Non-Powered Air-Purifying Particulate Respirators § 84.170 Non-powered air-purifying particulate respirators; description. (a) Non-powered air-purifying particulate respirators utilize the wearer's...

  8. 42 CFR 84.171 - Non-powered air-purifying particulate respirators; required components.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Non-powered air-purifying particulate respirators... PROTECTIVE DEVICES Non-Powered Air-Purifying Particulate Respirators § 84.171 Non-powered air-purifying particulate respirators; required components. (a) Each non-powered air-purifying particulate...

  9. 42 CFR 84.171 - Non-powered air-purifying particulate respirators; required components.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Non-powered air-purifying particulate respirators... PROTECTIVE DEVICES Non-Powered Air-Purifying Particulate Respirators § 84.171 Non-powered air-purifying particulate respirators; required components. (a) Each non-powered air-purifying particulate...

  10. Directed air flow to reduce airborne particulate and bacterial contamination in the surgical field during total hip arthroplasty.

    PubMed

    Stocks, Gregory W; O'Connor, Daniel P; Self, Sean D; Marcek, Geoff A; Thompson, Brandon L

    2011-08-01

    This study evaluated the use of a system that delivers a small field of local, directed air from a high-efficiency particulate air (HEPA) filter to reduce airborne particulate and airborne bacteria in the surgical field during total hip arthroplasty. Thirty-six patients were randomized into 3 groups: with directed air flow, with the directed air flow system present but turned off, and control. Airborne particulate and bacteria were collected from within 5 cm of the surgical wound. All particulate and bacterial counts at the surgical site were significantly lower in the directed air flow group (P < .001). The directed air flow system was effective in reducing airborne particulate and colony-forming units in the surgical field during total hip arthroplasty. PMID:20851565

  11. AIR QUALITY CRITERIA FOR PARTICULATE MATTER (Final Report, Oct 2004)

    EPA Science Inventory

    EPA has completed the process of updating and revising, where appropriate, its Air Quality Criteria for Particulate Matter (PM) as issued in 1996 (usually referred to as the Criteria Document). Sections 108 and 109 of the Clean Air Act require that EPA carry out a periodic revi...

  12. Particulate air pollution and daily mortality in Steubenville, Ohio

    SciTech Connect

    Schwartz, J.; Dockery, D.W. )

    1992-01-01

    Particulate air pollution has been associated with daily mortality in London, England, both in the smog episodes of the 1950s and at the lower pollution levels of the late 1960s and early 1970s. Replicating these findings in the United States has been difficult, because particulates are usually sampled every sixth day. Replication, particularly with a gravimetric measure of particulates, is important in assessing the causality of the relation. Daily measurements of total suspended particulates by high volume gravimetric sampler are available for the Steubenville, Ohio, metropolitan area. These were matched to daily mortality counts from the detail mortality tapes of the National Center for Health Statistics. Deaths of residents which occurred outside the Steubenville Standard Metropolitan Statistical Area were excluded. Because of the much smaller population, the average total number of deaths per day in the Steubenville Standard Metropolitan Statistical Area over the 11-year period 1974-1984 was about 1% of the deaths in a typical London winter. Despite this reduced statistical power, total suspended particulate count was significantly associated with increased daily mortality in Poisson regression analyses controlling for season and temperature. An increase in particulates of 100 micrograms/m3 was associated with a 4% increase in mortality on the succeeding day. Associations with sulfur dioxide were not significant after adjustment for particulates. The relation appeared to continue at levels well below the current National Ambient Air Quality Standard.

  13. ElectroCore separator for particulate air emissions

    SciTech Connect

    Easom, B.H.; Smolensky, L.A.; Wysk, S.R.; Altman, R.F.; Olen, K.R.

    1998-07-01

    Coal combustion in fossil energy power systems releases trace amounts of chemical elements identified in the Clean Air Act Amendments of 1990 as hazardous air pollutants (HAPs). Most HAPs exist as solid phase particulate matter and are emitted to the atmosphere in this form. To reduce the emissions of these HAPs, a novel, high efficiency particle collection system known as the ElectroCore is being developed. The concept involves placing a high efficiency particle separator downstream of an underperforming electrostatic precipitator (ESP) that strips the particles from the incoming flow and returns them, along with a small amount of recirculation flow, back to the inlet of the ESP. The main component of the system is the ElectroCore separator. Its design is based on the mechanical Core Separator developed by LSR as a high efficiency centrifugal separator. Enhancing the Core Separator by adding an electrical field improves the separation efficiency of particles in the sub-micron range which is the range where centrifugal separation is ineffective. In the combined system, the centrifugal forces operating on the particles augmented by electrostatic forces so that the ElectroCore has high separation efficiency for particles of all sizes. Field tests have shown that the ElectroCore operating downstream of an underperforming ESP can reduce the particulate emission rate to below 4.3 ng/J (0.01 lb{sub m}/million Btu) even for ESPs with emission rates as high as 260 ng/J (0.6 lb{sub m}/million Btu). The ElectroCore system can perform with most all coal ranks or residual fuel oils (RFO) and has a potentially low capital cost.

  14. Using Satellite Aerosol Retrievals to Monitor Surface Particulate Air Quality

    NASA Technical Reports Server (NTRS)

    Levy, Robert C.; Remer, Lorraine A.; Kahn, Ralph A.; Chu, D. Allen; Mattoo, Shana; Holben, Brent N.; Schafer, Joel S.

    2011-01-01

    The MODIS and MISR aerosol products were designed nearly two decades ago for the purpose of climate applications. Since launch of Terra in 1999, these two sensors have provided global, quantitative information about column-integrated aerosol properties, including aerosol optical depth (AOD) and relative aerosol type parameters (such as Angstrom exponent). Although primarily designed for climate, the air quality (AQ) community quickly recognized that passive satellite products could be used for particulate air quality monitoring and forecasting. However, AOD and particulate matter (PM) concentrations have different units, and represent aerosol conditions in different layers of the atmosphere. Also, due to low visible contrast over brighter surface conditions, satellite-derived aerosol retrievals tend to have larger uncertainty in urban or populated regions. Nonetheless, the AQ community has made significant progress in relating column-integrated AOD at ambient relative humidity (RH) to surface PM concentrations at dried RH. Knowledge of aerosol optical and microphysical properties, ambient meteorological conditions, and especially vertical profile, are critical for physically relating AOD and PM. To make urban-scale maps of PM, we also must account for spatial variability. Since surface PM may vary on a finer spatial scale than the resolution of standard MODIS (10 km) and MISR (17km) products, we test higher-resolution versions of MODIS (3km) and MISR (1km research mode) retrievals. The recent (July 2011) DISCOVER-AQ campaign in the mid-Atlantic offers a comprehensive network of sun photometers (DRAGON) and other data that we use for validating the higher resolution satellite data. In the future, we expect that the wealth of aircraft and ground-based measurements, collected during DISCOVER-AQ, will help us quantitatively link remote sensed and ground-based measurements in the urban region.

  15. AN INDOOR AIR QUALITY MODEL FOR PARTICULATE MATTER

    EPA Science Inventory

    Thye paper discusses an indoor air quality (IAQ) model for particulate matter (PM). The standard for PM < 2.5 micrometers in aerodynamic diameter (PM 2.5) proposed by the U.S. EPA has produced considerable interest in indoor exposures to PM. IAQ models provide a useful tool for...

  16. Exposure of organic extracts of air particulates to sunlight leads to metabolic activation independence for mutagenicity.

    PubMed

    al-Khodairy, F; Hannan, M A

    1997-06-13

    Air particulates were collected on Whatman, GFA glass fibre filters using a RADECO constant-flow air sampler from a car-parking basement and an open roadside adjacent to the basement. While the basement was not exposed to sunlight, the roadside from where air samples were collected was exposed to regular daylight in the month of July (peak summer month). The filters were soaked and sonicated in acetone to dislodge the particulates and then a residue was obtained after evaporation of acetone. The residues were either held in dark or exposed to natural sunlight or germicidal UV light before being tested for mutagenicity using the Salmonella tester strain TA98 with and without metabolic activation (S9 mix). The results showed that the addition of S9 mix resulted in only a slight increase in the frequency of histidine revertants/plate in the case of daylight-exposed roadside air samples. On the other hand, a considerable increase in mutagenicity was observed in the case of the basement air samples, particularly at higher concentrations of the organic extracts when S9 mix was added. However, a pre-exposure of the organic extract of air from the basement to sunlight abrogated the need for S9 mix for showing mutagenic activity. A pre-exposure of the same extracts to germicidal UV light failed to produce a similar effect. These results suggested that long wavelengths of natural sunlight could be responsible for the conversion of certain promutagens in air particulates into direct-acting mutagens. The environmental impact of solar radiation as a modifier of air particulate mutagens in high-sun countries like Saudi Arabia needs to be carefully considered for assessment of air pollution-related health risks. PMID:9219550

  17. Particulate Matter Levels in Ambient Air Adjacent to Industrial Area

    NASA Astrophysics Data System (ADS)

    Mohamed, R. M. S. R.; Nizam, N. M. S.; Al-Gheethi, A. A.; Lajis, A.; Kassim, A. H. M.

    2016-07-01

    Air quality in the residential areas adjacent to the industrial regions is of great concern due to the association with human health risks. In this work, the concentrations of particulate matter (PM10) in the ambient air of UTHM campus was investigated tostudy the air qualityand their compliance to the Malaysian Ambient Air Quality Guidelines (AAQG). The PM10 samples were taken over 24 hours from the most significant area at UTHM including Stadium, KolejKediamanTunDr. Ismail (KKTDI) and MakmalBahan. The meteorological parameters; temperature, relative humidity, wind speed and wind direction as well as particulate matterwere estimated by using E-Sampler Particulate Matter (PM10) Collector. The highest concentrations of PM10 (55.56 µg/m3) was recorded at MakmalBahan during the working and weekend days. However, these concentrations are less than 150 pg/m3. It can be concluded that although UTHM is surrounded by the industrial area, the air quality in the campus still within the standards limits.

  18. EDITORIAL: Global impacts of particulate matter air pollution

    NASA Astrophysics Data System (ADS)

    Bell, Michelle L.; Holloway, Tracey

    2007-10-01

    Even in well-studied, data-rich regions of the United States and Europe, understanding ambient particulate matter (PM, aka aerosols) remains a challenge. Atmospheric aerosols exhibit chemical heterogeneity, spatial and seasonal variability, and result in a wide range of health impacts (mortality, respiratory disease, cardiovascular disease, eye irritation, and others). In addition, aerosols play an important role in climate, exerting warming effects (black carbon), cooling effects (sulfate and organic carbon), and affecting precipitation and cloud cover. Characterizing the emission sources, concentrations, transport patterns, and impacts is particularly difficult in developing countries, where data are scarce, emissions are high, and health impacts are often severe. We are pleased to present this focus issue of Environmental Research Letters (ERL) devoted to the study of PM on an international scale. Our authors are leading researchers who each bring cross-cutting analysis to this critical health and environmental issue. Collectively, the research presented here contributes to our understanding of PM sources, processes, and impacts, while highlighting key steps forward. In this issue, Zhang et al examine the size distribution and composition of emitted anthropogenic PM in China, finding that the characteristics of primary aerosol emissions differ significantly between industrialized and developing regions in China. Concentration measurements of PM, like detailed emissions inventories, are rare in the developing world. van Vliet and Kinney analyze fine particles in Nairobi based on monitoring data for PM2.5 and black carbon. Using measurements from multiple locations of differing proximity to roadways, the authors evaluate traffic-source contributions to PM exposure. The impact of emission location and exposed population are also evaluated by Liu and Mauzerall, but on a continent-to-continent scale. The authors quantify the connection between SO2 emissions and

  19. AIR QUALITY: MERCURY, TRACE ELEMENTS, AND PARTICULATE MATTER CONFERENCE

    SciTech Connect

    John H. Pavlish; Steven A. Benson

    1999-07-01

    This final report summarizes the planning/preparation, facilitation, and outcome of the conference entitled ''Air Quality: Mercury, Trace Elements, and Particulate Matter'' that was held December 1-4, 1998, in McLean, Virginia (on the outskirts of Washington, DC). The goal of the conference was to bring together industry, government, and the research community to discuss the critical issue of how air quality can impact human health and the ecosystem, specifically hazardous air pollutants and fine airborne particles; available and developing control technologies; strategies and research needs; and an update on federal and state policy and regulations, related implementation issues, and the framework of the future.

  20. Ambient air concentrations of particulate matter from passenger cars.

    PubMed

    Schürmann, D

    1989-01-01

    Using our measurement results on particulate emissions from passenger cars we have calculated ambient air concentrations for various US and European scenarios. This was carried out with the help of mathematical dispersion models for different traffic situations including street canyons and motorways. We have been very conservative in our choice of the scenarios, i.e. we have always used situations in which there are very high stress levels (e.g. constantly high traffic flow instead of average traffic flow). Finally, the thus determined air concentrations are compared with the corresponding air quality standard available from the literature.

  1. Ambient air concentrations of particulate matter from passenger cars.

    PubMed

    Schürmann, D

    1989-01-01

    Using our measurement results on particulate emissions from passenger cars we have calculated ambient air concentrations for various US and European scenarios. This was carried out with the help of mathematical dispersion models for different traffic situations including street canyons and motorways. We have been very conservative in our choice of the scenarios, i.e. we have always used situations in which there are very high stress levels (e.g. constantly high traffic flow instead of average traffic flow). Finally, the thus determined air concentrations are compared with the corresponding air quality standard available from the literature. PMID:2484034

  2. 42 CFR 84.179 - Non-powered air-purifying particulate respirators; filter identification.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Non-powered air-purifying particulate respirators... RESPIRATORY PROTECTIVE DEVICES Non-Powered Air-Purifying Particulate Respirators § 84.179 Non-powered air-purifying particulate respirators; filter identification. (a) The respirator manufacturer, as part of...

  3. 42 CFR 84.179 - Non-powered air-purifying particulate respirators; filter identification.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Non-powered air-purifying particulate respirators... RESPIRATORY PROTECTIVE DEVICES Non-Powered Air-Purifying Particulate Respirators § 84.179 Non-powered air-purifying particulate respirators; filter identification. (a) The respirator manufacturer, as part of...

  4. 42 CFR 84.179 - Non-powered air-purifying particulate respirators; filter identification.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Non-powered air-purifying particulate respirators... RESPIRATORY PROTECTIVE DEVICES Non-Powered Air-Purifying Particulate Respirators § 84.179 Non-powered air-purifying particulate respirators; filter identification. (a) The respirator manufacturer, as part of...

  5. Particulate air pollution: possible relevance in asthma.

    PubMed

    Glovsky, M M; Miguel, A G; Cass, G R

    1997-01-01

    The relative importance of air pollution in the pathogenesis of bronchial asthma has been of interest for several decades. Numerous studies on the role of gaseous air pollution containing ozone, nitrogen dioxide, sulfur dioxide, and carbon monoxide have been published. Very little attention has been focused on the role of respirable particles in the causation of asthma. In this article we summarize some of our ongoing investigations into the sources and composition of airborne particles in the Los Angeles and Pasadena atmosphere, including the search for biologically active particles that may induce asthma attacks. If is found that the urban atmosphere contains not only combustion-derived particles from diesel engine exhaust and gasoline-powered motor vehicle exhaust, but also particles formed from biological starting materials including plant debris, cigarette smoke, wood smoke, and meat smoke as well as tire debris containing some natural rubber and paved road dust. Paved road dust is a very complex mixture of particles including garden soil, tire dust, plant fragments, redeposited atmospheric particles of all types, and pollen fragments presumably ground up by passing traffic. We have shown previously that latex allergen can be extracted from tire dust, from roadside dust, and from respirable air samples taken at Los Angeles and Long Beach. At present, work is underway to identify the larger range of allergens that may be contributed by the entrainment of paved road dust into the atmosphere. The possible importance of pollen fragments present in paved road dust in very small particle sizes is discussed as well as their potential relevance in asthma.

  6. Particulate air pollution and daily mortality on Utah's Wasatch Front.

    PubMed Central

    Pope, C A; Hill, R W; Villegas, G M

    1999-01-01

    Reviews of daily time-series mortality studies from many cities throughout the world suggest that daily mortality counts are associated with short-term changes in particulate matter (PM) air pollution. One U.S. city, however, with conspicuously weak PM-mortality associations was Salt Lake City, Utah; however, relatively robust PM-mortality associations have been observed in a neighboring metropolitan area (Provo/Orem, Utah). The present study explored this apparent discrepancy by collecting, comparing, and analyzing mortality, pollution, and weather data for all three metropolitan areas on Utah's Wasatch Front region of the Wasatch Mountain Range (Ogden, Salt Lake City, and Provo/Orem) for approximately 10 years (1985-1995). Generalized additive Poisson regression models were used to estimate PM-mortality associations while controlling for seasonality, temperature, humidity, and barometric pressure. Salt Lake City experienced substantially more episodes of high PM that were dominated by windblown dust. When the data were screened to exclude obvious windblown dust episodes and when PM data from multiple monitors were used to construct an estimate of mean exposure for the area, comparable PM-mortality effects were estimated. After screening and by using constructed mean PM [less than/equal to] 10 microm in aerodynamic diameter (PM10) data, the estimated percent change in mortality associated with a 10-mg/m3 increase in PM10 (and 95% confidence intervals) for the three Wasatch Front metropolitan areas equaled approximately 1. 6% (0.3-2.9), 0.8% (0.3-1.3), and 1.0% (0.2-1.8) for the Ogden, Salt Lake City, and Provo/Orem areas, respectively. We conclude that stagnant air pollution episodes with higher concentrations of primary and secondary combustion-source particles were more associated with elevated mortality than windblown dust episodes with relatively higher concentrations of coarse crustal-derived particles. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:10379003

  7. 42 CFR 84.170 - Non-powered air-purifying particulate respirators; description.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... inhalation pressure to draw the ambient air through the air-purifying filter elements (filters) to remove... 42 Public Health 1 2010-10-01 2010-10-01 false Non-powered air-purifying particulate respirators... DEVICES Non-Powered Air-Purifying Particulate Respirators § 84.170 Non-powered air-purifying...

  8. 42 CFR 84.170 - Non-powered air-purifying particulate respirators; description.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... inhalation pressure to draw the ambient air through the air-purifying filter elements (filters) to remove... 42 Public Health 1 2011-10-01 2011-10-01 false Non-powered air-purifying particulate respirators... DEVICES Non-Powered Air-Purifying Particulate Respirators § 84.170 Non-powered air-purifying...

  9. Journey-time exposure to particulate air pollution

    NASA Astrophysics Data System (ADS)

    Gulliver, John; Briggs, David J.

    Journey-time exposures to particulate air pollution were investigated in Leicester, UK, between January and March 2005. Samples of TSP, PM 10, PM 2.5, and PM 1 were simultaneously collected using light scattering devices whilst journeys were made by walking an in-car. Over a period of two months, 33 pairs of walking and in-car measurements were collected along two circular routes. Average exposures while walking were seen to be higher than those found in-car for each of the particle fractions: average walking to in-car ratios were 1.2 (± 0.6), 1.5 (± 0.6), 1.3 (± 0.6), and 1.4 (± 0.6) μg m -3 for coarse (TSP-PM 10), intermediate (PM 10-PM 2.5), fine (PM 2.5-PM 1), and very fine particles (PM 1), respectively. Correlations between walking and in-car exposures were seen to be weak for coarse particles ( r=0.10, p=0.58), moderate for the intermediate particles ( r=0.49, p<0.01) but strong for fine ( r=0.89, p<0.01) and very fine ( r=0.90, P<0.01) particles. PM 10 exposures while walking were on average 70% higher than a nearby roadside fixed-site monitor whilst in-car exposures were 25% higher than the same fixed-site monitor. Particles with an aerodynamic diameter of less than 2.5 μm were seen to be highly correlated between walking and in-car particle exposures and a rural fixed-site monitor about 30 km south of Leicester.

  10. Respirable particulate monitoring with remote sensors. (Public health ecology: Air pollution)

    NASA Technical Reports Server (NTRS)

    Severs, R. K.

    1974-01-01

    The feasibility of monitoring atmospheric aerosols in the respirable range from air or space platforms was studied. Secondary reflectance targets were located in the industrial area and near Galveston Bay. Multichannel remote sensor data were utilized to calculate the aerosol extinction coefficient and thus determine the aerosol size distribution. Houston Texas air sampling network high volume data were utilized to generate computer isopleth maps of suspended particulates and to establish the mass loading of the atmosphere. In addition, a five channel nephelometer and a multistage particulate air sampler were used to collect data. The extinction coefficient determined from remote sensor data proved more representative of wide areal phenomena than that calculated from on site measurements. It was also demonstrated that a significant reduction in the standard deviation of the extinction coefficient could be achieved by reducing the bandwidths used in remote sensor.

  11. Analysis of a workplace air particulate sample by synchronous luminescence and room-temperature phosphorescence

    SciTech Connect

    Vo-Dinh, T.; Gammage, R.B.; Martinez, P.R.

    1981-02-01

    An analysis of a XAD-2 resin extract of a particulate air sample collected at an industrial environment was conducted by use of two simple spectroscopic methods performed at ambient temperature, the synchronous luminescence and room-temperature phosphorescence techniques. Results of the analysis of 13 polynuclear aromatic compounds including anthracene, benzo(a)pyrene, benzo(e)pyrene, 2,3-benzofluorene, chrysene, 1,2,5,6-dibenzanthracene, dibenzthiophene, fluoranthene, fluorene, phenanthrene, perylene, pyrene, and tetracene were reported.

  12. High diversity of fungi in air particulate matter.

    PubMed

    Fröhlich-Nowoisky, Janine; Pickersgill, Daniel A; Després, Viviane R; Pöschl, Ulrich

    2009-08-01

    Fungal spores can account for large proportions of air particulate matter, and they may potentially influence the hydrological cycle and climate as nuclei for water droplets and ice crystals in clouds, fog, and precipitation. Moreover, some fungi are major pathogens and allergens. The diversity of airborne fungi is, however, not well-known. By DNA analysis we found pronounced differences in the relative abundance and seasonal cycles of various groups of fungi in coarse and fine particulate matter, with more plant pathogens in the coarse fraction and more human pathogens and allergens in the respirable fine particle fraction (<3 microm). Moreover, the ratio of Basidiomycota to Ascomycota was found to be much higher than previously assumed, which might also apply to the biosphere.

  13. EDITORIAL: Global impacts of particulate matter air pollution

    NASA Astrophysics Data System (ADS)

    Bell, Michelle L.; Holloway, Tracey

    2007-10-01

    Even in well-studied, data-rich regions of the United States and Europe, understanding ambient particulate matter (PM, aka aerosols) remains a challenge. Atmospheric aerosols exhibit chemical heterogeneity, spatial and seasonal variability, and result in a wide range of health impacts (mortality, respiratory disease, cardiovascular disease, eye irritation, and others). In addition, aerosols play an important role in climate, exerting warming effects (black carbon), cooling effects (sulfate and organic carbon), and affecting precipitation and cloud cover. Characterizing the emission sources, concentrations, transport patterns, and impacts is particularly difficult in developing countries, where data are scarce, emissions are high, and health impacts are often severe. We are pleased to present this focus issue of Environmental Research Letters (ERL) devoted to the study of PM on an international scale. Our authors are leading researchers who each bring cross-cutting analysis to this critical health and environmental issue. Collectively, the research presented here contributes to our understanding of PM sources, processes, and impacts, while highlighting key steps forward. In this issue, Zhang et al examine the size distribution and composition of emitted anthropogenic PM in China, finding that the characteristics of primary aerosol emissions differ significantly between industrialized and developing regions in China. Concentration measurements of PM, like detailed emissions inventories, are rare in the developing world. van Vliet and Kinney analyze fine particles in Nairobi based on monitoring data for PM2.5 and black carbon. Using measurements from multiple locations of differing proximity to roadways, the authors evaluate traffic-source contributions to PM exposure. The impact of emission location and exposed population are also evaluated by Liu and Mauzerall, but on a continent-to-continent scale. The authors quantify the connection between SO2 emissions and

  14. Health effects of particulate air pollution and airborne desert dust

    NASA Astrophysics Data System (ADS)

    Lelieveld, J.; Pozzer, A.; Giannadaki, D.; Fnais, M.

    2013-12-01

    Air pollution by fine particulate matter (PM2.5) has increased strongly with industrialization and urbanization. In the past decades this increase has taken place at a particularly high pace in South and East Asia. We estimate the premature mortality and the years of human life lost (YLL) caused by anthropogenic PM2.5 and airborne desert dust (DU2.5) on regional and national scales (Giannadaki et al., 2013; Lelieveld et al., 2013). This is based on high-resolution global model calculations that resolve urban and industrial regions in relatively great detail. We apply an epidemiological health impact function and find that especially in large countries with extensive suburban and rural populations, air pollution-induced mortality rates have been underestimated given that previous studies largely focused on the urban environment. We calculate a global premature mortality by anthropogenic aerosols of 2.2 million/year (YLL ≈ 16 million/year) due to lung cancer and cardiopulmonary disease. High mortality rates by PM2.5 are found in China, India, Bangladesh, Pakistan and Indonesia. Desert dust DU2.5 aerosols add about 0.4 million/year (YLL ≈ 3.6 million/year). Particularly significant mortality rates by DU2.5 occur in Pakistan, China and India. The estimated global mean per capita mortality caused by airborne particulates is about 0.1%/year (about two thirds of that caused by tobacco smoking). We show that the highest premature mortality rates are found in the Southeast Asia and Western Pacific regions (about 25% and 46% of the global rate, respectively) where more than a dozen of the most highly polluted megacities are located. References: Giannadaki, D., A. Pozzer, and J. Lelieveld, Modeled global effects of airborne desert dust on air quality and premature mortality, Atmos. Chem. Phys. Discuss. (submitted), 2013. Lelieveld, J., C. Barlas, D. Giannadaki, and A. Pozzer, Model calculated global, regional and megacity premature mortality due to air pollution by ozone

  15. A novel optical scattering collection system for particulate monitoring applications

    SciTech Connect

    Bernacki, B.E.; Miller, A.C. Jr.; Nuspliger, R.J.

    1996-05-01

    Light collecting systems often require radically different optical surfaces than those commonly found in optical imaging systems. An optical particulate monitor must probe a volume in emission stacks to obtain a good statistical distribution of suspended particles. However, ideal imaging systems map object planes into conjugate image planes and can probe only small volumes. The authors describe the design, fabrication and performance of a novel optical scattering collection system that exploits precision-engineered reflective conical surfaces (axicons) in a telescopic arrangement that maps a line in object space onto the detector plane in image space. Such non-spherical surfaces are nearly impossible to fabricate using traditional methods, but can readily be made using the deterministic method of single-point diamond turning. In addition to complex optical surfaces, single-point diamond turning also makes possible the precision engineering of reference surfaces useful for built-in alignment of multiple surfaces and rapid assembly of the finished system.

  16. Pulmonary phospholipidosis in rats respiring air containing diesel particulates

    SciTech Connect

    Eskelson, C.D.; Chvapil, M.; Strom, K.A.; Vostal, J.J.

    1987-12-01

    Rats chronically exposed to diesel particulates (dp) or given intratracheally a single dose of dp show increased levels of phospholipids in the lungs and in pulmonary lavage fluid. Pulmonary phospholipidosis is accompanied by increase lecithin levels and by increased palmitate content in lecithin of both lungs and pulmonary lavage fluid. A de novo increase of pulmonary and hepatic phospholipid (PL) formation was detected 5 days after rats were treated with dp. The authors hypothesize that a dp-stressed lung releases a pulmonary lipogenic factor (PLF), which stimulates hepatic lipogenesis. This was further tested by an in vitro study in which primary cultures of free hepatocytes were incubated with (2-/sup 14/C)acetate and various molecular weight fractions of a pulmonary homogenate from rats. The results from these studies indicated that in rat lung homogenates a PLF exists of greater than 100,000 Da molecular mass. The results also indicate that respired air containing a dp concentration of greater than 750 ..mu..g dp/m/sup 3/ of air would result in a mild phospholipidosis in the lung, whereas a dp dose in respired air of 250 ..mu..g dp/m/sup 3/ of air for 2 years did not alter pulmonary PL content in rats.

  17. Ventilating-air change rate versus particulate contaminant spread

    SciTech Connect

    Langer, G.; Deitesfeld, C.A.

    1987-11-13

    This study provides information on the spread of particulate contamination from glovebox leaks in plutonium manufacturing facilities, with emphasis on the effect of ventilating-air change rate on contaminated spread. A new, very sensitive aerosol tracer technique was developed to simulate plutonium aerosol leaks and its dispersion in a room. The tracer, a submicron aerosol of phloroglucinol, does not interfere with work activity and is detected by its ability to form ice crystals in a supercooled cloud. This technique was applied in Buildings 371 and 707 plutonium production areas. The tracer spread throughout the rooms in a few minutes and reached its equilibrium concentration in 10 to 25 min. Also, to clear the room of all tracer took about the same time. In one room, tracer concentration decreased proportionally to the air change rate, while in the second one, air change rate had no effect. This points out the need for air velocity data. Also, future work must include simultaneous particle concentration measurements at several points. 4 refs., 9 figs., 2 tabs.

  18. Airborne particulates and polycyclic aromatic hydrocarbons (PAHs) in ambient air in Donghe, northern China.

    PubMed

    Wang, Wei; Tao, Shu; Wang, Wentao; Shen, Guofeng; Zhao, Jingyu; Lam, Kin-Che

    2009-07-15

    Five sets of size-fractionated particles were collected in a northern China village in various seasons in order to measure respirable airborne particulates (PM10) and particulate phase polycyclic aromatic hydrocarbons (PAHs) in ambient air. The time-weighted annual mean concentration and standard deviation of PM10 were 358 +/- 107 microg/m3, higher than both the national standard (100 microg/m3) and the levels observed in several contaminated northern Chinese cities. In addition to high levels of PAHs (391 +/- 487 ng/m3), the fraction of higher molecular weight PAHs was higher than most reported in the literature, and the time-weighted annual mean benzo(a)pyrene equivalent concentration was 44.2 +/- 51.4 ng/m3, more than four times the national standard of 10 ng/m3 and 44 times the WHO guideline of 1 ng/m3. Apparently, residents in Donghe suffer from exposure to high levels of both PM10 and particulate phase PAHs. The particle size distribution was centered in the range of Dp < or = 3.3 microm in winter and shifted to the ranges of Dp < or = 2.1 microm and 5.8 microm < Dp < 10 microm in spring and summer respectively. Approximately 90.0% of PAHs were associated with airborne particulates with Dp < or = 2.1 microm. PMID:19799054

  19. Acute Effects of Fine Particulate Air Pollution on ST Segment Height: A Longitudinal Study

    EPA Science Inventory

    Background: The mechanisms for the relationship between particulate air pollution and cardiac disease are not fully understood. Air pollution-induced myocardial ischemia is one of the potentially important mechanisms. Methods: We investigate the acute effects and the time cours...

  20. BIOLOGICAL EFFECTS OF OIL FLY ASH AND RELEVANCE TO AMBIENT AIR PARTICULATE MATTER

    EPA Science Inventory

    Epidemiologic studies have demonstrated increased human morbidity and mortality with elevations in the concentration of ambient air particulate matter (PM). Fugitive fly ash from the combustion of oil and residual fuel oil significantly contributes to the ambient air particle bur...

  1. Ambient particulate matter air pollution and cardiopulmonary diseases.

    PubMed

    Thurston, George; Lippmann, Morton

    2015-06-01

    Population exposures to ambient outdoor particulate matter (PM) air pollution have been assessed to represent a major burden on global health. Ambient PM is a diverse class of air pollution, with characteristics and health implications that can vary depending on a host of factors, including a particle's original source of emission or formation. The penetration of inhaled particles into the thorax is dependent on their deposition in the upper respiratory tract during inspiration, which varies with particle size, flow rate and tidal volume, and in vivo airway dimensions. All of these factors can be quite variable from person to person, depending on age, transient illness, cigarette smoke and other short-term toxicant exposures that cause transient bronchoconstriction, and occupational history associated with loss of lung function or cumulative injury. The adverse effects of inhaled PM can result from both short-term (acute) and long-term (chronic) exposures to PM, and can range from relatively minor, such as increased symptoms, to very severe effects, including increased risk of premature mortality and decreased life expectancy from long-term exposure. Control of the most toxic PM components can therefore provide major health benefits, and can help guide the selection of the most human health optimal air quality control and climate change mitigation policy measures. As such, a continued improvement in our understanding of the nature and types of PM that are most dangerous to health, and the mechanism(s) of their respective health effects, is an important public health goal. PMID:26024349

  2. Air pollution particulate matter alters antimycobacterial respiratory epithelium innate immunity.

    PubMed

    Rivas-Santiago, César E; Sarkar, Srijata; Cantarella, Pasquale; Osornio-Vargas, Álvaro; Quintana-Belmares, Raúl; Meng, Qingyu; Kirn, Thomas J; Ohman Strickland, Pamela; Chow, Judith C; Watson, John G; Torres, Martha; Schwander, Stephan

    2015-06-01

    Inhalation exposure to indoor air pollutants and cigarette smoke increases the risk of developing tuberculosis (TB). Whether exposure to ambient air pollution particulate matter (PM) alters protective human host immune responses against Mycobacterium tuberculosis has been little studied. Here, we examined the effect of PM from Iztapalapa, a municipality of Mexico City, with aerodynamic diameters below 2.5 μm (PM2.5) and 10 μm (PM10) on innate antimycobacterial immune responses in human alveolar type II epithelial cells of the A549 cell line. Exposure to PM2.5 or PM10 deregulated the ability of the A549 cells to express the antimicrobial peptides human β-defensin 2 (HBD-2) and HBD-3 upon infection with M. tuberculosis and increased intracellular M. tuberculosis growth (as measured by CFU count). The observed modulation of antibacterial responsiveness by PM exposure was associated with the induction of senescence in PM-exposed A549 cells and was unrelated to PM-mediated loss of cell viability. Thus, the induction of senescence and downregulation of HBD-2 and HBD-3 expression in respiratory PM-exposed epithelial cells leading to enhanced M. tuberculosis growth represent mechanisms by which exposure to air pollution PM may increase the risk of M. tuberculosis infection and the development of TB. PMID:25847963

  3. Air Pollution Particulate Matter Alters Antimycobacterial Respiratory Epithelium Innate Immunity

    PubMed Central

    Rivas-Santiago, César E.; Sarkar, Srijata; Cantarella, Pasquale; Osornio-Vargas, Álvaro; Quintana-Belmares, Raúl; Meng, Qingyu; Kirn, Thomas J.; Ohman Strickland, Pamela; Chow, Judith C.; Watson, John G.; Torres, Martha

    2015-01-01

    Inhalation exposure to indoor air pollutants and cigarette smoke increases the risk of developing tuberculosis (TB). Whether exposure to ambient air pollution particulate matter (PM) alters protective human host immune responses against Mycobacterium tuberculosis has been little studied. Here, we examined the effect of PM from Iztapalapa, a municipality of Mexico City, with aerodynamic diameters below 2.5 μm (PM2.5) and 10 μm (PM10) on innate antimycobacterial immune responses in human alveolar type II epithelial cells of the A549 cell line. Exposure to PM2.5 or PM10 deregulated the ability of the A549 cells to express the antimicrobial peptides human β-defensin 2 (HBD-2) and HBD-3 upon infection with M. tuberculosis and increased intracellular M. tuberculosis growth (as measured by CFU count). The observed modulation of antibacterial responsiveness by PM exposure was associated with the induction of senescence in PM-exposed A549 cells and was unrelated to PM-mediated loss of cell viability. Thus, the induction of senescence and downregulation of HBD-2 and HBD-3 expression in respiratory PM-exposed epithelial cells leading to enhanced M. tuberculosis growth represent mechanisms by which exposure to air pollution PM may increase the risk of M. tuberculosis infection and the development of TB. PMID:25847963

  4. Ambient particulate matter air pollution and cardiopulmonary diseases.

    PubMed

    Thurston, George; Lippmann, Morton

    2015-06-01

    Population exposures to ambient outdoor particulate matter (PM) air pollution have been assessed to represent a major burden on global health. Ambient PM is a diverse class of air pollution, with characteristics and health implications that can vary depending on a host of factors, including a particle's original source of emission or formation. The penetration of inhaled particles into the thorax is dependent on their deposition in the upper respiratory tract during inspiration, which varies with particle size, flow rate and tidal volume, and in vivo airway dimensions. All of these factors can be quite variable from person to person, depending on age, transient illness, cigarette smoke and other short-term toxicant exposures that cause transient bronchoconstriction, and occupational history associated with loss of lung function or cumulative injury. The adverse effects of inhaled PM can result from both short-term (acute) and long-term (chronic) exposures to PM, and can range from relatively minor, such as increased symptoms, to very severe effects, including increased risk of premature mortality and decreased life expectancy from long-term exposure. Control of the most toxic PM components can therefore provide major health benefits, and can help guide the selection of the most human health optimal air quality control and climate change mitigation policy measures. As such, a continued improvement in our understanding of the nature and types of PM that are most dangerous to health, and the mechanism(s) of their respective health effects, is an important public health goal.

  5. Air pollution particulate matter alters antimycobacterial respiratory epithelium innate immunity.

    PubMed

    Rivas-Santiago, César E; Sarkar, Srijata; Cantarella, Pasquale; Osornio-Vargas, Álvaro; Quintana-Belmares, Raúl; Meng, Qingyu; Kirn, Thomas J; Ohman Strickland, Pamela; Chow, Judith C; Watson, John G; Torres, Martha; Schwander, Stephan

    2015-06-01

    Inhalation exposure to indoor air pollutants and cigarette smoke increases the risk of developing tuberculosis (TB). Whether exposure to ambient air pollution particulate matter (PM) alters protective human host immune responses against Mycobacterium tuberculosis has been little studied. Here, we examined the effect of PM from Iztapalapa, a municipality of Mexico City, with aerodynamic diameters below 2.5 μm (PM2.5) and 10 μm (PM10) on innate antimycobacterial immune responses in human alveolar type II epithelial cells of the A549 cell line. Exposure to PM2.5 or PM10 deregulated the ability of the A549 cells to express the antimicrobial peptides human β-defensin 2 (HBD-2) and HBD-3 upon infection with M. tuberculosis and increased intracellular M. tuberculosis growth (as measured by CFU count). The observed modulation of antibacterial responsiveness by PM exposure was associated with the induction of senescence in PM-exposed A549 cells and was unrelated to PM-mediated loss of cell viability. Thus, the induction of senescence and downregulation of HBD-2 and HBD-3 expression in respiratory PM-exposed epithelial cells leading to enhanced M. tuberculosis growth represent mechanisms by which exposure to air pollution PM may increase the risk of M. tuberculosis infection and the development of TB.

  6. Particulate Air Pollution and Clinical Cardiovascular Disease Risk Factors

    PubMed Central

    Shanley, Ryan P; Hayes, Richard B; Cromar, Kevin R; Ito, Kazuhiko; Gordon, Terry; Ahn, Jiyoung

    2016-01-01

    BACKGROUND Long-term exposure to ambient particulate matter (PM) air pollution is associated with increased cardiovascular disease (CVD); however, the impact of PM on clinical risk factors for CVD in healthy subjects is unclear. We examined the relationship of PM with levels of circulating lipids and blood pressure in the Third National Health and Nutrition Examination Survey (NHANES III), a large nationally-representative US survey. METHODS This study was based on 11,623 adult participants of NHANES III (1988–1994; median age 41.0). Serum lipids and blood pressure were measured during the NHANES III examination. Average exposure for 1988–1994 to particulate matter <10µm in aerodynamic diameter (PM10) at the residences of participants was estimated based on measurements from U.S. Environmental Protection Agency monitors. Multivariate linear regression was used to estimate the associations of PM10 with lipids and blood pressure. RESULTS An interquartile range width (IQRw) increase in PM10 exposure (11.1 µg/m3) in the study population was associated with 2.42 percent greater serum triglycerides (95% confidence interval [CI]: 1.09–3.76); multivariate adjusted means of triglycerides according to increasing quartiles of PM10 were 137.6, 142.5, 142.6, and 148.9 mg/dL, respectively. An IQRw increase in PM10 was associated with 1.43 percent greater total cholesterol (95% CI: 1.21–1.66). These relationships with triglycerides and total cholesterol did not differ by age or region. Associations of PM10 with blood pressure were modest. CONCLUSIONS Findings from this large diverse study indicate that greater long-term PM10 exposure is associated with elevated serum triglycerides and total cholesterol, potentially mediating air pollution-related effects on CVD. PMID:26605815

  7. 42 CFR 84.179 - Non-powered air-purifying particulate respirators; filter identification.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Non-powered air-purifying particulate respirators; filter identification. 84.179 Section 84.179 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH... RESPIRATORY PROTECTIVE DEVICES Non-Powered Air-Purifying Particulate Respirators § 84.179 Non-powered...

  8. 42 CFR 84.179 - Non-powered air-purifying particulate respirators; filter identification.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Non-powered air-purifying particulate respirators; filter identification. 84.179 Section 84.179 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH... RESPIRATORY PROTECTIVE DEVICES Non-Powered Air-Purifying Particulate Respirators § 84.179 Non-powered...

  9. 42 CFR 84.171 - Non-powered air-purifying particulate respirators; required components.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., mouthpiece with noseclip, hood, or helmet; (2) Filter unit; (3) Harness; (4) Attached blower; and (5... 42 Public Health 1 2014-10-01 2014-10-01 false Non-powered air-purifying particulate respirators... PROTECTIVE DEVICES Non-Powered Air-Purifying Particulate Respirators § 84.171 Non-powered...

  10. 42 CFR 84.171 - Non-powered air-purifying particulate respirators; required components.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., mouthpiece with noseclip, hood, or helmet; (2) Filter unit; (3) Harness; (4) Attached blower; and (5... 42 Public Health 1 2013-10-01 2013-10-01 false Non-powered air-purifying particulate respirators... PROTECTIVE DEVICES Non-Powered Air-Purifying Particulate Respirators § 84.171 Non-powered...

  11. 42 CFR 84.171 - Non-powered air-purifying particulate respirators; required components.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., mouthpiece with noseclip, hood, or helmet; (2) Filter unit; (3) Harness; (4) Attached blower; and (5... 42 Public Health 1 2012-10-01 2012-10-01 false Non-powered air-purifying particulate respirators... PROTECTIVE DEVICES Non-Powered Air-Purifying Particulate Respirators § 84.171 Non-powered...

  12. Particulate Air Pollution in Mexico City: A Collaborative Research Project

    SciTech Connect

    Edgerton, Sylvia A.; Bian, Xindi; Doran, J C.; Fast, Jerome D.; Hubbe, John M.; Malone, Elizabeth L.; Shaw, William J.; Whiteman, Charles D.; Zhong, Shiyuan; Arriaga, J. L.; Ortiz, E.; Ruiz, M.; Sosa, G.; Vega, E.; Limon, T.; Guzman, F.; Archuleta, J.; Bossert, J. E.; Elliott, S.; Lee, J. T.; McNair, L. A.; Chow, J. C.; Watson, J. G.; Coulter, R. L.; Doskey, P. V.; Gaffney, J. S.; Marley, N. A.; Neff, W.; Petty, R.

    1999-10-01

    PM10, PM2.5, precursor gas, and upper-air meteorological measurements were taken in Mexico City, Mexico, from February 23 to March 22, 1997, to understand concentrations and chemical compositions of the city's particulate matter (PM). Average 24-hr PM10 concentrations over the period of study at the core sites in the city were 75 micrograms/m3. The 24-hr standard of 150 micrograms/m3 was exceeded for seven samples taken during the study period; the maximum 24-hr concentration measured was 542 micrograms/m3. Nearly half of the PM10 was composed of fugitive dust from roadways, construction, and bare land. About 50% of the PM10 consisted of PM2.5, with higher percentages during the morning hours. Organic and black carbon constituted up to half of the PM2.5. PM concentrations were highest during the early morning and after sunset, when the mixed layers were shallow. Meteorological measurements taken during the field campaign show that on most days air was transported out of the Mexico City basin during the afternoon with little day-to-day carryover.

  13. 78 FR 23524 - Approval and Promulgation of Air Quality Implementation Plans; Indiana; Particulate Matter...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-19

    ... AGENCY 40 CFR Part 52 Approval and Promulgation of Air Quality Implementation Plans; Indiana; Particulate Matter Ambient Air Quality Standards AGENCY: Environmental Protection Agency (EPA). ACTION: Proposed rule... under the Clean Air Act. This submission contains the 24-hour fine particle National Ambient Air...

  14. Characterization and genotoxicity evaluation of particulate matter collected from industrial atmosphere in Tamil Nadu state, India.

    PubMed

    Senthilkumar, S; Manju, A; Muthuselvam, P; Shalini, D; Indhumathi, V; Kalaiselvi, K; Palanivel, M; Chandrasekar, P P; Rajaguru, P

    2014-06-15

    Ambient particulate matter (PM) collected in the vicinity of five industries (Cement, Chemical, Thermal power plant, Sponge-iron and Steel) in Tamil Nadu state, India was characterized for size distribution, metals and polycyclic aromatic hydrocarbons (PAHs) content. Genotoxicity of PM and organic matter (OM) extracted from PM was measured in human lung cancer cell-line, A549 and in human liver carcinoma cell-line, HepG2, respectively, using the comet assay. PM values varied from 57.0 μg/m(3) of air at Cement industry upstream to 561.0 μg/m(3) of air at Sponge iron industry downstream samples. Their metal content varied from 5.758 μg/m(3) of air at Chemical industry to 46.144 μg/m(3) of air at Sponge iron industry and PAH concentration varied from 0.5 ng/m(3) air in upstream Thermal power plant to 3302.4 ng/m(3) air in downstream Sponge iron industry samples. While all PM samples induced DNA strand breaks at higher dose levels, downstream samples of Steel and Sponge iron industries which contained relatively higher concentrations of PAHs and metals and exhibited higher levels of pro-oxidant activity as measured by DTT activity induced significantly higher levels of DNA damage in HepG2 and A549 cells. Pretreatment of A549 cells with vitamin C or quercetin significantly reduced PM induced DNA strand breaks.

  15. HUMAL ALVEOLAR MACROPHAGE RESPONSES TO AIR POLLUTION PARTICULATES ARE ASSOCIATED WITH INSOLUBLE OCMPONENTS OF COARSE MATERIAL, INCLUDING PARTICULATE ENDOTOXIN

    EPA Science Inventory


    Inhalation of particulate matter in the ambient air has been shown to cause pulmonary morbidity and exacerbate asthma. Alveolar macrophage (AM) are essential for effective removal of inhaled particles and microbes in the lower airways. While some particles minimally effect AM...

  16. Mortality Effects of a Copper Smelter Strike and Reduced Ambient Sulfate Particulate Matter Air Pollution

    PubMed Central

    Pope, C. Arden; Rodermund, Douglas L.; Gee, Matthew M.

    2007-01-01

    Background Numerous studies have reported associations between fine particulate and sulfur oxide air pollution and human mortality. Yet there continues to be concern that public policy efforts to improve air quality may not produce actual improvement in human health. Objectives This study retrospectively explored a natural experiment associated with a copper smelter strike from 15 July 1967 through the beginning of April 1968. Methods In the 1960s, copper smelters accounted for approximately 90% of all sulfate emissions in the four Southwest states of New Mexico, Arizona, Utah, and Nevada. Over the 8.5-month strike period, a regional improvement in visibility accompanied an approximately 60% decrease in concentrations of suspended sulfate particles. We collected monthly mortality counts for 1960–1975 and analyzed them using Poisson regression models. Results The strike-related estimated percent decrease in mortality was 2.5% (95% confidence interval, 1.1–4.0%), based on a Poisson regression model that controlled for time trends, mortality counts in bordering states, and nationwide mortality counts for influenza/pneumonia, cardiovascular, and other respiratory deaths. Conclusions These results contribute to the growing body of evidence that ambient sulfate particulate matter and related air pollutants are adversely associated with human health and that the reduction in this pollution can result in reduced mortality. PMID:17520052

  17. Ambient particulate matter air pollution in Mpererwe District, Kampala, Uganda: a pilot study.

    PubMed

    Schwander, Stephan; Okello, Clement D; Freers, Juergen; Chow, Judith C; Watson, John G; Corry, Melody; Meng, Qingyu

    2014-01-01

    Air quality in Kampala, the capital of Uganda, has deteriorated significantly in the past two decades. We made spot measurements in Mpererwe district for airborne particulate matter PM2.5 (fine particles) and coarse particles. PM was collected on Teflon-membrane filters and analyzed for mass, 51 elements, 3 anions, and 5 cations. Both fine and coarse particle concentrations were above 100 µg/m(3) in all the samples collected. Markers for crustal/soil (e.g., Si and Al) were the most abundant in the PM2.5 fraction, followed by primary combustion products from biomass burning and incinerator emissions (e.g., K and Cl). Over 90% of the measured PM2.5 mass can be explained by crustal species (41% and 59%) and carbonaceous aerosol (33%-55%). Crustal elements dominated the coarse particles collected from Kampala. The results of this pilot study are indicative of unhealthy air and suggest that exposure to ambient air in Kampala may increase the burden of environmentally induced cardiovascular, metabolic, and respiratory diseases including infections. Greater awareness and more extensive research are required to confirm our findings, to identify personal exposure and pollution sources, and to develop air quality management plans and policies to protect public health. PMID:24693293

  18. Biomass burning contribution to ambient air particulate levels at Navrongo in the Savannah zone of Ghana.

    PubMed

    Ofosu, Francis G; Hopke, Philip K; Aboh, Innocent J K; Bamford, Samuel A

    2013-09-01

    The concentrations of airborne particulate matter (PM) in Navrongo, a town in the Sahel Savannah Zone of Ghana, have been measured and the major sources have been identified. This area is prone to frequent particulate pollution episodes due to Harmattan dust and biomass burning, mostly from annual bushfires. The contribution of combustion emissions, particularly from biomass and fossil fuel, to ambient air particulate loadings was assessed. Sampling was conducted from February 2009 to February 2010 in Navrongo. Two Gent samplers were equipped to collect PM10 in two size fractions, coarse (PM10-2.5) and fine (PM2.5). Coarse particles are collected on a coated, 8-microm-pore Nuclepore filter. Fine particle samples were sampled with 47-mm-diameter Nuclepore and quartz filters. Elemental carbon (EC) and organic carbon (OC) concentrations were determined from the quartz filters using thermal optical reflectance (IMPROVE/TOR) methods. Elements were measured on the fine-particle Nuclepore filters using energy-dispersive x-ray fluorescence. The average PM2.5 mass concentration obtained at Navrongo was 32.3 microg/m. High carbonaceous concentrations were obtained from November to March, the period of Harmattan dust and severe bush fires. Total carbon was found to contribute approximately 40% of the PM2.5 particulate mass. Positive matrix factorization (PMF) suggested six major sources contributing to the PM2.5 mass. They are two stroke engines, gasoline emissions, soil dust, diesel emissions, biomass burning, and resuspended soil dust. Biomass combustion (16.0%) was identified as second most important source next to soil dust at Navrongo.

  19. PARTICULATE ORGANIC CARBON MEASUREMENTS COLLECTED WITH LOW FLOW PERSONAL SAMPLERS

    EPA Science Inventory

    EPA's National Exposure Research Laboratory and the Research Triangle Institute (RTI) have conducted a particulate matter (PM) personal exposure study in Research Triangle Park, NC. Particulate carbon was sampled with pre-fired quartz filters using low flow PM2.5 samplers (2 L...

  20. Ambient flow studies and particulate collection measurements: A laminar flow, reduced entrainment electrostatic precipitator

    SciTech Connect

    Greiner, G.P.; Furlong, D.A.; Bahner, M.A.

    1989-05-01

    This report describes ambient temperature testing of an electrostatic precipitator having a portion of the main precipitator flow drawn through porous (fabric) plates. The effects of flow through the plates (side flow) on precipitator turbulence and particulate removal efficiency are investigated. Ambient temperature particulate removal efficiency measurements are conducted on both indoor air dust, and on injected coal fly ash. 24 figs., 10 tabs.

  1. Acute changes in pulse pressure in relation to constituents of particulate air pollution in elderly persons

    SciTech Connect

    Jacobs, Lotte; Buczynska, Anna; Walgraeve, Christophe; Delcloo, Andy; Potgieter-Vermaak, Sanja; Van Grieken, Rene; Demeestere, Kristof; Dewulf, Jo; Van Langenhove, Herman; De Backer, Hugo; Nemery, Benoit; Nawrot, Tim S.

    2012-08-15

    An increased pulse pressure (difference between systolic and diastolic blood pressure) suggests aortic stiffening. The objective of this study was to examine the acute effects of both particulate matter (PM) mass and composition on blood pressure, among elderly persons. We carried out a panel study in persons living in elderly homes in Antwerp, Belgium. We recruited 88 non-smoking persons, 70% women with a mean age of 83 years (standard deviation: 5.2). Blood pressure was measured and a blood sample was collected on two time points, which were chosen so that there was an exposure contrast in ambient PM exposure. The elemental content of the collected indoor and outdoor PM{sub 2.5} (particulate matter with an aerodynamic diameter <2.5 {mu}m) mass concentration was measured. Oxygenated polycyclic aromatic hydrocarbons (oxy-PAHs) on outdoor PM{sub 10} (particulate matter with an aerodynamic diameter <10 {mu}m) were measured. Each interquartile range increase of 20.8 {mu}g/m Superscript-Three in 24-h mean outdoor PM{sub 2.5} was associated with an increase in pulse pressure of 4.0 mmHg (95% confidence interval: 1.8-6.2), in persons taking antihypertensive medication (n=57), but not in persons not using antihypertensive medication (n=31) (p for interaction: 0.02). Vanadium, iron and nickel contents of PM{sub 2.5} were significantly associated with systolic blood pressure and pulse pressure, among persons on antihypertensive medication. Similar results were found for indoor concentrations. Of the oxy-PAHs, chrysene-5,6-dione and benzo[a]pyrene-3,6-dione were significantly associated with increases in systolic blood pressure and pulse pressure. In elderly, pulse pressure was positively associated with acute increases in outdoor and indoor air pollution, among persons taking antihypertensive medication. These results might form a mechanistic pathway linking air pollution as a trigger of cardiovascular events.

  2. Acute changes in pulse pressure in relation to constituents of particulate air pollution in elderly persons.

    PubMed

    Jacobs, Lotte; Buczynska, Anna; Walgraeve, Christophe; Delcloo, Andy; Potgieter-Vermaak, Sanja; Van Grieken, René; Demeestere, Kristof; Dewulf, Jo; Van Langenhove, Herman; De Backer, Hugo; Nemery, Benoit; Nawrot, Tim S

    2012-08-01

    An increased pulse pressure (difference between systolic and diastolic blood pressure) suggests aortic stiffening. The objective of this study was to examine the acute effects of both particulate matter (PM) mass and composition on blood pressure, among elderly persons. We carried out a panel study in persons living in elderly homes in Antwerp, Belgium. We recruited 88 non-smoking persons, 70% women with a mean age of 83 years (standard deviation: 5.2). Blood pressure was measured and a blood sample was collected on two time points, which were chosen so that there was an exposure contrast in ambient PM exposure. The elemental content of the collected indoor and outdoor PM(2.5) (particulate matter with an aerodynamic diameter <2.5 μm) mass concentration was measured. Oxygenated polycyclic aromatic hydrocarbons (oxy-PAHs) on outdoor PM(10) (particulate matter with an aerodynamic diameter <10 μm) were measured. Each interquartile range increase of 20.8 μg/m³ in 24-h mean outdoor PM(2.5) was associated with an increase in pulse pressure of 4.0 mm Hg (95% confidence interval: 1.8-6.2), in persons taking antihypertensive medication (n=57), but not in persons not using antihypertensive medication (n=31) (p for interaction: 0.02). Vanadium, iron and nickel contents of PM(2.5) were significantly associated with systolic blood pressure and pulse pressure, among persons on antihypertensive medication. Similar results were found for indoor concentrations. Of the oxy-PAHs, chrysene-5,6-dione and benzo[a]pyrene-3,6-dione were significantly associated with increases in systolic blood pressure and pulse pressure. In elderly, pulse pressure was positively associated with acute increases in outdoor and indoor air pollution, among persons taking antihypertensive medication. These results might form a mechanistic pathway linking air pollution as a trigger of cardiovascular events.

  3. 78 FR 19128 - Approval and Promulgation of Air Quality Implementation Plans; Ohio; Particulate Matter Standards

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-29

    ... AGENCY 40 CFR Part 52 Approval and Promulgation of Air Quality Implementation Plans; Ohio; Particulate... state implementation plan (SIP) to a full approval. Ohio submitted a request to approve revised particulate matter (PM) rules on February 23, 2012. The PM rule revisions being approved establish...

  4. BIOAVAILABLE AIR PARTICULATE POLLUTION CONSTITUENTS DIRECTLY ALTER CARDIOVASCULAR FUNCTION EX VIVO

    EPA Science Inventory

    Epidemiological studies have reported associations between particulate air pollution exposure and cardiovascular (CV) effects within susceptible individuals. Particle characteristics and biological mechanisms responsible for these observations are not known. We examined whether s...

  5. AIR PARTICULATE POLLUTION CARDIOVASCULAR TOXICITY: HAZARD IDENTIFICATION AND MECHANISMS OF ACTION

    EPA Science Inventory


    The overall weight of evidence from epidemiological studies has shown statistical associations between air particulate pollution exposure and mortality\\morbidity particularly within individuals with cardiovascular disease (1-4). Identification of causal particle properties ...

  6. MULTISCALE AIR QUALITY SIMULATION PLATFORM (MAQSIP): INITIAL APPLICATIONS AND PERFORMANCE FOR TROPOSPHERIC OZONE AND PARTICULATE MATTER

    EPA Science Inventory

    This manuscript provides an overview of the formulation, process considerations, and performance for simulating tropospheric ozone and particulate matter distributions of the Multiscale Air Quality Simulation Platform (MAQSIP). MAQSIP is a comprehensive atmospheric chemistry/tran...

  7. Microbial counts and particulate matter levels in roadside air samples under skytrain stations, Bangkok, Thailand.

    PubMed

    Luksamijarulkul, Pipat; Kongtip, Pornpimol

    2010-05-01

    In conditions with heavy traffic and crowds of people on roadside areas under skytrain stations in Bangkok, the natural air ventilation may be insufficient and air quality may be poor. A study of 350 air samples collected from the roadside, under skytrain stations in Bangkok, was carried out to assess microbial counts (210 air samples) and particulate matter (PM10) levels (140 samples). The results reveal the mean +/- standard deviation bacterial counts and fungal counts were 406.8 +/- 302.7 cfu/m3 and 128.9 +/- 89.7 cfu/m3, respectively. The PM10 level was 186.1 +/- 188.1 microg/m3. When compared to recommended levels, 4.8% of air samples (10/210 samples) had bacterial counts more than recommended levels (> 1,000 cfu/ m3) and 27.1% (38/140 samples) had PM10 levels more than recommended levels (> 120 microg/m3). These may affect human health, especially of street venders who spend most of their working time in these areas. PMID:20578558

  8. Microbial counts and particulate matter levels in roadside air samples under skytrain stations, Bangkok, Thailand.

    PubMed

    Luksamijarulkul, Pipat; Kongtip, Pornpimol

    2010-05-01

    In conditions with heavy traffic and crowds of people on roadside areas under skytrain stations in Bangkok, the natural air ventilation may be insufficient and air quality may be poor. A study of 350 air samples collected from the roadside, under skytrain stations in Bangkok, was carried out to assess microbial counts (210 air samples) and particulate matter (PM10) levels (140 samples). The results reveal the mean +/- standard deviation bacterial counts and fungal counts were 406.8 +/- 302.7 cfu/m3 and 128.9 +/- 89.7 cfu/m3, respectively. The PM10 level was 186.1 +/- 188.1 microg/m3. When compared to recommended levels, 4.8% of air samples (10/210 samples) had bacterial counts more than recommended levels (> 1,000 cfu/ m3) and 27.1% (38/140 samples) had PM10 levels more than recommended levels (> 120 microg/m3). These may affect human health, especially of street venders who spend most of their working time in these areas.

  9. Association of particulate air pollution with daily mortality: the China Air Pollution and Health Effects Study.

    PubMed

    Chen, Renjie; Kan, Haidong; Chen, Bingheng; Huang, Wei; Bai, Zhipeng; Song, Guixiang; Pan, Guowei

    2012-06-01

    China is one of the few countries with some of the highest particulate matter levels in the world. However, only a small number of particulate matter health studies have been conducted in China. The study objective was to examine the association of particulate matter with an aerodynamic diameter of less than 10 μm (PM(10)) with daily mortality in 16 Chinese cities between 1996 and 2008. Two-stage Bayesian hierarchical models were applied to obtain city-specific and national average estimates. Poisson regression models incorporating natural spline smoothing functions were used to adjust for long-term and seasonal trends of mortality, as well as other time-varying covariates. The averaged daily concentrations of PM(10) in the 16 Chinese cities ranged from 52 μg/m(3) to 156 μg/m(3). The 16-city combined analysis showed significant associations of PM(10) with mortality: A 10-μg/m(3) increase in 2-day moving-average PM(10) was associated with a 0.35% (95% posterior interval (PI): 0.18, 0.52) increase of total mortality, 0.44% (95% PI: 0.23, 0.64) increase of cardiovascular mortality, and 0.56% (95% PI: 0.31, 0.81) increase of respiratory mortality. Females, older people, and residents with low educational attainment appeared to be more vulnerable to PM(10) exposure. Conclusively, this largest epidemiologic study of particulate air pollution in China suggests that short-term exposure to PM(10) is associated with increased mortality risk.

  10. Impacts of Particulate Air Pollution on Asthma: Current Understanding and Future Perspectives.

    PubMed

    Takizawa, Hajime

    2015-01-01

    The impacts of air pollution on human health and disease have been attracting attention, especially in industrialized countries and areas with heavy traffic burdens. Fine particulate matters (PMs) are considered as an important air pollutant, since it was reported that there was a significant relationship between PM2.5 levels and mortality by cohort studies in 1990s. Epidemiological and toxicological studies have strongly suggested a causative relationship between fine particulate air pollution and increased incidence as well as exacerbations of asthma, and other respiratory disorders. Recent advances in research have elucidated that PMs primarily and secondarily induce oxidative stresses which result both in pro- and antiinflammatory activities. It has been demonstrated that gene polymorphisms of antioxidant enzymes might change responses to particulate air pollution exposures. To prevent health hazardous effects of particles, it is crucial to screen susceptible subpopulations and establish chemoprevention strategies in the world. Novel techniques and modalities are patented for future progress on better control of air pollution.

  11. Ambient Air Quality Assessment with Particular Reference to Particulates in Jharia Coalfield, Eastern India.

    PubMed

    Singh, Gurdeep; Roy, Debananda; Sinha, Sweta

    2014-01-01

    Jharia Coalfield is the critically polluted area with the intense mining and associated industrial activities. There has been widespread concern of particulate pollution with the alarming levels of Suspended Particulate Matter (SPM) and Respirable Particulate Matter (PM10 & PM2.5). Coke oven plants, coal washing, thermal power stations and associated activities coupled with the transportation activities, give rise to critical air pollution levels in the region. This study envisages the assessment of air pollution of the region with particular reference to SPM, PM10 and PM2.5. Eighteen monitoring stations were selected considering various sources of pollution such as mining, industrial, commercial and residential areas apart from siting criteria as per IS: 5182 Part XIV. Air quality monitoring was carried out following standard methodologies and protocols as per Central Pollution Control Board (CPCB)/ National Ambient Air Quality Standard (NAAQS) norms using Respirable Dust Samplers (RDS) and Fine Particulate Samplers (PM2.5 Samplers). This study reveals considerable load of particulates (SPM, PM10, PM 2.5) which exceed not only the NAAQS but also the coal mining areas standards of Jharia coalfield, thus falling under the category of critically polluted area. Air Quality Indexing has also been developed which provides a clear map of the deterioration of air quality and also presenting comparative ranking of all the monitoring locations with respect to air quality status in the study area.

  12. Assessment of dioxin-like activity in ambient air particulate matter using recombinant yeast assays

    NASA Astrophysics Data System (ADS)

    Olivares, Alba; van Drooge, Barend L.; Pérez Ballesta, Pascual; Grimalt, Joan O.; Piña, Benjamin

    2011-01-01

    Ectopic activation of the aryl hydrocarbon receptor (AhR), also known as dioxin-like activity, is a major component of the toxicity associated with polycyclic aromatic hydrocarbons (PAH). Filtration of ambient air particulate matter through PM 10 filters followed by chemical determination of PAH concentrations and a yeast-based bioassay (RYA) were combined to evaluate and characterize dioxin-like activity in ambient air. Samples were collected in a semirural area of Northern Italy between September 2008 and February 2009. Total PAH contents ranged between 0.3 ng m -3 and 34 ng m -3 and were in correlation with seasonal variations of meteorological conditions and combustion processes. Dioxin-like activity values in air samples showed an excellent correlation (0.71 < R2 < 0.86) with the observed PAH concentrations and the predicted toxicity equivalents for PAH. This RYA-bioassay reported in the present study provides a simple and low-cost routine control for toxic PAH emissions, even at background air concentration levels.

  13. Results of Self-Absorption Study on the Versapor 3000 Filters for Radioactive Particulate Air Sampling

    SciTech Connect

    Barnett, J. Matthew; Cullinan, Valerie I.; Barnett, Debra S.; Trang-Le, Truc LT; Bliss, Mary; Greenwood, Lawrence R.; Ballinger, Marcel Y.

    2009-02-17

    Since the mid-1980s, Pacific Northwest National Laboratory (PNNL) has used a value of 0.85 as the correction factor for self absorption of activity for particulate radioactive air samples collected from building exhaust for environmental monitoring. This value accounts for activity that cannot be detected by direct counting of alpha and beta particles. Emissions can be degraded or blocked by filter fibers for particles buried in the filter material or by inactive dust particles collected with the radioactive particles. These filters are used for monitoring air emissions from PNNL stacks for radioactive particles. This paper describes an effort to re-evaluate self-absorption effects in particulate radioactive air sample filters (Versapor® 3000, 47 mm diameter) used at PNNL. There were two methods used to characterize the samples. Sixty samples were selected from the archive for acid digestion to compare the radioactivity measured by direct gas-flow proportional counting of filters to the results obtained after acid digestion of the filter and counting again by gas-flow proportional detection. Thirty different sample filters were selected for visible light microscopy to evaluate filter loading and particulate characteristics. Mass-loading effects were also considered. Filter ratios were calculated by dividing the initial counts by the post-digestion counts with the expectation that post-digestion counts would be higher because digestion would expose radioactivity embedded in the filter in addition to that on top of the filter. Contrary to expectations, the post digestion readings were almost always lower than initial readings and averaged approximately half the initial readings for both alpha and beta activity. Before and after digestion readings appeared to be related to each other, but with a low coefficient of determination (R^2) value. The ratios had a wide range of values indicating that this method did not provide sufficient precision to quantify self

  14. Estimation of unmeasured particulate air pollution data for an epidemiological study of daily respiratory morbidity.

    PubMed

    Delfino, R J; Becklake, M R; Hanley, J A; Singh, B

    1994-10-01

    The standard approach to government-mandated aerometric monitoring of airborne particulates across North America is to sample every sixth day year round. However, such data are inadequate for epidemiological studies which aim to examine daily time series relationships of particulate air pollution to respiratory health responses. The aim of the present study was to estimate missing daily particulate matter < or = 2.5 and < or = 10 microns in aerometric diameter (PM2.5 and PM10) and sulfate (SO4(2-) to a degree sufficiently accurate and reliable to allow the use of these estimates, along with the measured data, in an investigation of the relationship of air pollution to respiratory hospital admissions in Montreal during the 1980s. Prediction equations were developed for May through October periods using available daily levels of predictor variables which included: relative humidity-corrected light extinction coefficient (bext) derived from airport visual range sightings, coefficient of haze (COH), SO2, NOx, CO, O3, wind speed, wind direction, barometric pressure (BP), temperature, relative humidity, and total precipitation. Three fourths of the available gravimetric particulate data were used to develop prediction models, while the remaining fourth was used to test the reliability of the model (holdout data). All final models explained over 70% of the variability in the particulate air pollutants and were reliable when tested against the holdout data. The strongest (P < 0.001) and most consistent predictors were bext, COH, and O3 measured on the same day as the particulate, and BP lagged 1 day in the past. Other selected variables were same day NOx, BP, and minimum temperature. Although the present approach to the estimation of missing particulate air pollution may increase the level of exposure misclassification, it does allow for the use of existing network databases in epidemiological studies of daily air pollution health effects even though particulate data is

  15. Daily changes in oxygen saturation and pulse rate associated with particulate air pollution and barometric pressure.

    PubMed

    Dockery, D W; Pope, C A; Kanner, R E; Martin Villegas, G; Schwartz, J

    1999-01-01

    Epidemiologic studies have linked fine particulate air pollution with increases in morbidity and mortality rates from cardiopulmonary complications. Although the underlying biologic mechanisms responsible for this increase remain largely unknown, potential pathways include transient declines in blood oxygenation and changes in pulse rate following exposures to particulate air pollution episodes. This study evaluated potential associations between daily measures of respirable particulate matter (PM) with pulse rate and oxygen saturation of the blood. Pulse rate and oxygen saturation (Spo2) using pulse oximetry were measured daily in 90 elderly subjects living near air pollution monitors during the winter of 1995-96 in Utah Valley. We also evaluated potential associations of oxygen saturation and pulse rate with barometric pressure. Small but statistically significant positive associations between day-to-day changes in Spo2 and barometric pressure were observed. Pulse rate was inversely associated with barometric pressure. Exposure to particulate pollution was not significantly associated with Spo2 except in male participants 80 years of age or older. Increased daily pulse rate, as well as the odds of having a pulse rate 5 or 10 beats per minute (bpm) above normal (normal is defined as the individual's mean pulse rate throughout the study period), were significantly associated with exposure to particulate pollution on the previous 1 to 5 days. The medical or biologic relevance of these increases in pulse rate following exposure to particulate air pollution requires further study.

  16. Daily changes in oxygen saturation and pulse rate associated with particulate air pollution and barometric pressure.

    PubMed

    Dockery, D W; Pope, C A; Kanner, R E; Martin Villegas, G; Schwartz, J

    1999-01-01

    Epidemiologic studies have linked fine particulate air pollution with increases in morbidity and mortality rates from cardiopulmonary complications. Although the underlying biologic mechanisms responsible for this increase remain largely unknown, potential pathways include transient declines in blood oxygenation and changes in pulse rate following exposures to particulate air pollution episodes. This study evaluated potential associations between daily measures of respirable particulate matter (PM) with pulse rate and oxygen saturation of the blood. Pulse rate and oxygen saturation (Spo2) using pulse oximetry were measured daily in 90 elderly subjects living near air pollution monitors during the winter of 1995-96 in Utah Valley. We also evaluated potential associations of oxygen saturation and pulse rate with barometric pressure. Small but statistically significant positive associations between day-to-day changes in Spo2 and barometric pressure were observed. Pulse rate was inversely associated with barometric pressure. Exposure to particulate pollution was not significantly associated with Spo2 except in male participants 80 years of age or older. Increased daily pulse rate, as well as the odds of having a pulse rate 5 or 10 beats per minute (bpm) above normal (normal is defined as the individual's mean pulse rate throughout the study period), were significantly associated with exposure to particulate pollution on the previous 1 to 5 days. The medical or biologic relevance of these increases in pulse rate following exposure to particulate air pollution requires further study. PMID:10192116

  17. Monitoring lead in suspended air particulate matter in Ho Chi Minh City

    NASA Astrophysics Data System (ADS)

    Hien, P. D.; Binh, N. T.; Ngo, N. T.; Ha, V. T.; Truong, Y.; An, N. H.

    Airborne lead has been measured in Ho Chi Minh City in the framework of an environmental monitoring programme since late 1992. Air particulate matter was collected atop an eight-storey building in working hours in a near-downtown residential area. The average concentrations of lead and total suspended particulate matter (TSP) for the 1993-1994 period were (179 ± 12) and (90 ± 6) μg m -3, respectively. Autoexhaust is believed to be a major source of lead; however, refuse burning and firecracker discharges may also contribute to some extent. Lead, while decreasing in rainy season, exhibited a rather irregular seasonal pattern resulting in a poor anticorrelation with rainfall in contrast with TSP. Lead values from ˜60 to 240 ng m -3 covering over 60% of measured data fit very well with a lognormal distribution mode which reflects the lognormality of wind speed with almost the same atmospheric stability condition. The deviations from this main distribution mode of lead concentrations outside this range are interpreted as due to the changes in atmospheric stability conditions that occurred during seasonal transition periods as well as under prolonged cyclonic and anticyclonic conditions.

  18. Distribution of toxic and radiation components in air particulates.

    PubMed

    Rausch, H; Sziklai, I L; Borossay, J; Torkos, K; Rikker, T; Zemplén-Papp, E

    1995-12-01

    The concentrations of several toxic heavy metals and volatile organic compounds (VOCs) in various types of Hungarian fly-ash fine particulates were investigated by means of instrumental neutron activation analysis, X-ray fluorescence analysis and gas chromatography, coupled with mass spectrometry. Within a power station, particulate samples were taken from the boiler zone (BO), from the electrostatic dust filter chamber (FI) and from the flue-gas at the top of the stack (ST). Enrichment rates of the toxic metals both in FI and ST particulate fractions related to the BO concentrations were calculated to enable the temperature dependence on the adsorption of the toxic components to be studied. In addition, both the total amounts of the VOCs and their partial distributions in accordance with the number of carbon atoms were also studied in fly-ash particulates. From them, 31 organic species were identified and determined. Since Hungarian brown coals have high uranium and thorium contents, the specific radioactivities of the daughter isotopes of both the 232Th and 238U decay series were also measured and are discussed.

  19. Clearing the air: a review of the effects of particulate matter air pollution on human health.

    PubMed

    Anderson, Jonathan O; Thundiyil, Josef G; Stolbach, Andrew

    2012-06-01

    The World Health Organization estimates that particulate matter (PM) air pollution contributes to approximately 800,000 premature deaths each year, ranking it the 13th leading cause of mortality worldwide. However, many studies show that the relationship is deeper and far more complicated than originally thought. PM is a portion of air pollution that is made up of extremely small particles and liquid droplets containing acids, organic chemicals, metals, and soil or dust particles. PM is categorized by size and continues to be the fraction of air pollution that is most reliably associated with human disease. PM is thought to contribute to cardiovascular and cerebrovascular disease by the mechanisms of systemic inflammation, direct and indirect coagulation activation, and direct translocation into systemic circulation. The data demonstrating PM's effect on the cardiovascular system are strong. Populations subjected to long-term exposure to PM have a significantly higher cardiovascular incident and mortality rate. Short-term acute exposures subtly increase the rate of cardiovascular events within days of a pollution spike. The data are not as strong for PM's effects on cerebrovascular disease, though some data and similar mechanisms suggest a lesser result with smaller amplitude. Respiratory diseases are also exacerbated by exposure to PM. PM causes respiratory morbidity and mortality by creating oxidative stress and inflammation that leads to pulmonary anatomic and physiologic remodeling. The literature shows PM causes worsening respiratory symptoms, more frequent medication use, decreased lung function, recurrent health care utilization, and increased mortality. PM exposure has been shown to have a small but significant adverse effect on cardiovascular, respiratory, and to a lesser extent, cerebrovascular disease. These consistent results are shown by multiple studies with varying populations, protocols, and regions. The data demonstrate a dose

  20. Diagnostic Air Quality Model Evaluation of Source-Specific Primary and Secondary Fine Particulate Carbon

    EPA Science Inventory

    Ambient measurements of 78 source-specific tracers of primary and secondary carbonaceous fine particulate matter collected at four midwestern United States locations over a full year (March 2004–February 2005) provided an unprecedented opportunity to diagnostically evaluate...

  1. Design and laboratory testing of a new flow-through directional passive air sampler for ambient particulate matter.

    PubMed

    Lin, Chun; Solera Garcia, Maria Angeles; Timmis, Roger; Jones, Kevin C

    2011-03-01

    A new type of directional passive air sampler (DPAS) is described for collecting particulate matter (PM) in ambient air. The prototype sampler has a non-rotating circular sampling tray that is divided into covered angular channels, whose ends are open to winds from sectors covering the surrounding 360°. Wind-blown PM from different directions enters relevant wind-facing channels, and is retained there in collecting pools containing various sampling media. Information on source direction and type can be obtained by examining the distribution of PM between channels. Wind tunnel tests show that external wind velocities are at least halved over an extended area of the collecting pools, encouraging PM to settle from the air stream. Internal and external wind velocities are well-correlated over an external velocity range of 2.0-10.0 m s⁻¹, which suggests it may be possible to relate collected amounts of PM simply to ambient concentrations and wind velocities. Measurements of internal wind velocities in different channels show that velocities decrease from the upwind channel round to the downwind channel, so that the sampler effectively resolves wind directions. Computational fluid dynamics (CFD) analyses were performed on a computer-generated model of the sampler for a range of external wind velocities; the results of these analyses were consistent with those from the wind tunnel. Further wind tunnel tests were undertaken using different artificial particulates in order to assess the collection performance of the sampler in practice. These tests confirmed that the sampler can resolve the directions of sources, by collecting particulates preferentially in source-facing channels.

  2. 77 FR 39205 - Public Hearings for Proposed Rules-National Ambient Air Quality Standards for Particulate Matter

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-02

    ... AGENCY 40 CFR Parts 50, 51, 52, 53, and 58 Public Hearings for Proposed Rules--National Ambient Air... titled, ``National Ambient Air Quality Standards for Particulate Matter,'' that is scheduled to be... and secondary national ambient air quality standards (NAAQS) for particulate matter (PM) to...

  3. Behavior of Particulate Mercury in the Bulk Atmospheric Aerosols Simultaneously Collected at 2 Sites in Okinawa, Japan

    NASA Astrophysics Data System (ADS)

    Miyagi, Y.; Arakaki, T.; Azechi, S.; Somada, Y.; Oshiro, Y.; Tsuhako, A.; Murayama, H.; Tanahara, A.

    2013-12-01

    Mercury is toxic to animals. Mercury is emitted to the atmosphere mainly from two sources; natural and anthropogenic sources. Natural sources include volcanic eruption, forest fire and so on. Anthropogenic sources include fossil fuel combustion, metal and cement production and so on. There are three forms of mercury in the atmosphere: gaseous elemental mercury, reactive gaseous mercury and particulate mercury. Gaseous elemental mercury is the most abundant form in the atmosphere, and has long atmospheric lifetime, ca. a few years. This study focuses on particulate mercury, which has a relatively short lifetime, ca. a few days, in the atmosphere because it reflects characteristics of nearby emission sources. Objectives of this study were to elucidate the behavior of particulate mercury in aerosols and to understand relationships between mercury and other metals and water-soluble anions. Aerosol samples were collected at two sites; Cape Hedo Atmosphere and Aerosol Monitoring Station (CHAAMS, Jan.2008-Nov.2012), northern tip of Okinawa island, and University of the Ryukyus (UR, Jan.2008-Nov.2012), central and more populated area of Okinawa island. They were collected by using identical high-volume air samplers on quartz filters. Concentrations of particulate mercury in aerosols were determined by using a MA-3000 (Nippon Instruments Corporation). The results showed that particulate Hg concentrations were mostly higher for the aerosols collected at UR site than those at CHAAMS site, suggesting locally emitted Hg. Samples collected at UR showed clear seasonal variation, the lowest in summer and the highest winter. On the other hand, the CHAAMS samples showed lower concentration in winter and higher concentration in summer, but the difference was relatively small. Both UR and CHAAMS samples had similar concentration levels in summer season. Back trajectory analysis showed that particulate Hg at CHAAMS site during summer was not from Asian continent. Since samples

  4. Energy and environmental research emphasizing low-rank coal -- Task 2.4, Air toxic fine particulate control

    SciTech Connect

    Dunham, G.E.; Heidt, M.K.; Miller, S.J.

    1995-03-01

    Emission from coal-fired boilers is an issue because of the current concern over atmospheric air toxics, which contain high concentrations of trace elements. The best method of minimizing the emission of these air toxic trace elements to the atmosphere is to install high-efficiency fine-particle control devices. After collection, the dust must be removed from the filter bags or electrostatic precipitator (ESP) plates and transferred to the hopper without significant redispersion. Since it is more difficult to collect fine particles, the extent to which the dust is redispersed into its original particle-size distribution will have a major impact on the overall fine-particle collection efficiency of the filter or ESP and, subsequently, the collection efficiency of air toxic metals. The goal of Task 2.4 was to evaluate redispersion of dust in particulate control devices so that the appropriate methods to minimize redispersion can be implemented. The primary objective was to determine the extent that fly ash is redispersed as individual particles upon cleaning of the filters or ESP plates. The current research was to determine if the level of redispersion of fly ash correlates with measurable cohesive dust properties. This will contribute to the long-term project goal of developing models to the point where they can be used to help design particulate control devices for the lowest level of fine-particle emissions at a reasonable cost.

  5. Air quality limit and guide values for sulphur dioxide and suspended particulates - A European community directive.

    PubMed

    Smeets, J

    1982-12-01

    On 15 July, 1980, the Council of Ministers of the European Communities adopted a Council Directive on air quality limit values and guide values for sulphur dioxide and suspended particulates. This directive constitutes the first European legislation on stating air quality standards.The guiding principles underlying this directive are analyzed and the consequences of the directive for Member States, in terms of concrete actions destined to improve the air quality, particularly in highly polluted areas, are indicated. PMID:24264120

  6. Air quality limit and guide values for sulphur dioxide and suspended particulates - A European community directive.

    PubMed

    Smeets, J

    1982-12-01

    On 15 July, 1980, the Council of Ministers of the European Communities adopted a Council Directive on air quality limit values and guide values for sulphur dioxide and suspended particulates. This directive constitutes the first European legislation on stating air quality standards.The guiding principles underlying this directive are analyzed and the consequences of the directive for Member States, in terms of concrete actions destined to improve the air quality, particularly in highly polluted areas, are indicated.

  7. [Form of the particulate matter ambient air standards in China].

    PubMed

    Wang, Shuai; Ding, Jun-Nan; Wang, Rui-Bin; Li, Jian-Jun; Meng, Xiao-Yan; Yang, Bin; Lin, Hong

    2014-02-01

    Based on the principles from the World Health Organization (WHO) and the United States, an analysis was conducted to study the form of 24-hour standard of particulate matter in China by methods of statistical regression, proportional rollback and controlling contrast maps, using the monitoring data of inhalable particulate matter (PM10) from 120 cities in China during year 2005 to 2012. It was found that for cities in China, when the annual arithmetic mean of PM10 was equal to the national standard, the non-exceedance rates of daily average PM10 in most cities were higher than 95.0% , and the average rate for all cities was 97.1%. The average non-exceedance rate was 96.3% for cities in North China and Northwest China, 96.6% for Northeast China, 97.2% for East China and Central South China, and 98.1% for Southwest China. When the 97th percentile was chosen as the form of 24-hour standard of particulate matter for China, the 24-hour standard had an equal controlling strength with the annual standard. The 24-hour standard will become the controlling standard when larger percentiles were chosen, otherwise the contrary. By considering together the statistical characteristics of PM10 level in China, the robustness of the percentiles and protection of human health, the 95th percentile was suitable as the preferred form of the 24-hour standard of PM10 and PM2.5 in China.

  8. The shared pathoetiological effects of particulate air pollution and the social environment on fetal-placental development.

    PubMed

    Erickson, Anders C; Arbour, Laura

    2014-01-01

    Exposure to particulate air pollution and socioeconomic risk factors are shown to be independently associated with adverse pregnancy outcomes; however, their confounding relationship is an epidemiological challenge that requires understanding of their shared etiologic pathways affecting fetal-placental development. The purpose of this paper is to explore the etiological mechanisms associated with exposure to particulate air pollution in contributing to adverse pregnancy outcomes and how these mechanisms intersect with those related to socioeconomic status. Here we review the role of oxidative stress, inflammation and endocrine modification in the pathoetiology of deficient deep placentation and detail how the physical and social environments can act alone and collectively to mediate the established pathology linked to a spectrum of adverse pregnancy outcomes. We review the experimental and epidemiological literature showing that diet/nutrition, smoking, and psychosocial stress share similar pathways with that of particulate air pollution exposure to potentially exasperate the negative effects of either insult alone. Therefore, socially patterned risk factors often treated as nuisance parameters should be explored as potential effect modifiers that may operate at multiple levels of social geography. The degree to which deleterious exposures can be ameliorated or exacerbated via community-level social and environmental characteristics needs further exploration.

  9. The Shared Pathoetiological Effects of Particulate Air Pollution and the Social Environment on Fetal-Placental Development

    PubMed Central

    2014-01-01

    Exposure to particulate air pollution and socioeconomic risk factors are shown to be independently associated with adverse pregnancy outcomes; however, their confounding relationship is an epidemiological challenge that requires understanding of their shared etiologic pathways affecting fetal-placental development. The purpose of this paper is to explore the etiological mechanisms associated with exposure to particulate air pollution in contributing to adverse pregnancy outcomes and how these mechanisms intersect with those related to socioeconomic status. Here we review the role of oxidative stress, inflammation and endocrine modification in the pathoetiology of deficient deep placentation and detail how the physical and social environments can act alone and collectively to mediate the established pathology linked to a spectrum of adverse pregnancy outcomes. We review the experimental and epidemiological literature showing that diet/nutrition, smoking, and psychosocial stress share similar pathways with that of particulate air pollution exposure to potentially exasperate the negative effects of either insult alone. Therefore, socially patterned risk factors often treated as nuisance parameters should be explored as potential effect modifiers that may operate at multiple levels of social geography. The degree to which deleterious exposures can be ameliorated or exacerbated via community-level social and environmental characteristics needs further exploration. PMID:25574176

  10. Diagnostic air quality model evaluation of source-specific primary and secondary fine particulate carbon.

    PubMed

    Napelenok, Sergey L; Simon, Heather; Bhave, Prakash V; Pye, Havala O T; Pouliot, George A; Sheesley, Rebecca J; Schauer, James J

    2014-01-01

    Ambient measurements of 78 source-specific tracers of primary and secondary carbonaceous fine particulate matter collected at four midwestern United States locations over a full year (March 2004-February 2005) provided an unprecedented opportunity to diagnostically evaluate the results of a numerical air quality model. Previous analyses of these measurements demonstrated excellent mass closure for the variety of contributing sources. In this study, a carbon-apportionment version of the Community Multiscale Air Quality (CMAQ) model was used to track primary organic and elemental carbon emissions from 15 independent sources such as mobile sources and biomass burning in addition to four precursor-specific classes of secondary organic aerosol (SOA) originating from isoprene, terpenes, aromatics, and sesquiterpenes. Conversion of the source-resolved model output into organic tracer concentrations yielded a total of 2416 data pairs for comparison with observations. While emission source contributions to the total model bias varied by season and measurement location, the largest absolute bias of -0.55 μgC/m(3) was attributed to insufficient isoprene SOA in the summertime CMAQ simulation. Biomass combustion was responsible for the second largest summertime model bias (-0.46 μgC/m(3) on average). Several instances of compensating errors were also evident; model underpredictions in some sectors were masked by overpredictions in others.

  11. Diagnostic air quality model evaluation of source-specific primary and secondary fine particulate carbon.

    PubMed

    Napelenok, Sergey L; Simon, Heather; Bhave, Prakash V; Pye, Havala O T; Pouliot, George A; Sheesley, Rebecca J; Schauer, James J

    2014-01-01

    Ambient measurements of 78 source-specific tracers of primary and secondary carbonaceous fine particulate matter collected at four midwestern United States locations over a full year (March 2004-February 2005) provided an unprecedented opportunity to diagnostically evaluate the results of a numerical air quality model. Previous analyses of these measurements demonstrated excellent mass closure for the variety of contributing sources. In this study, a carbon-apportionment version of the Community Multiscale Air Quality (CMAQ) model was used to track primary organic and elemental carbon emissions from 15 independent sources such as mobile sources and biomass burning in addition to four precursor-specific classes of secondary organic aerosol (SOA) originating from isoprene, terpenes, aromatics, and sesquiterpenes. Conversion of the source-resolved model output into organic tracer concentrations yielded a total of 2416 data pairs for comparison with observations. While emission source contributions to the total model bias varied by season and measurement location, the largest absolute bias of -0.55 μgC/m(3) was attributed to insufficient isoprene SOA in the summertime CMAQ simulation. Biomass combustion was responsible for the second largest summertime model bias (-0.46 μgC/m(3) on average). Several instances of compensating errors were also evident; model underpredictions in some sectors were masked by overpredictions in others. PMID:24245475

  12. Genotoxicity to human cells induced by air particulates isolated during the Kuwait oil fires.

    PubMed

    Kelsey, K T; Xia, F; Bodell, W J; Spengler, J D; Christiani, D C; Dockery, D W; Liber, H L

    1994-01-01

    In an effort to examine the potential of exposure to soot from the 1991 oil fires in the Kuwait desert for inducing genetic effects we studied the in vitro genotoxicity of this material. Air particulates isolated near the Kuwait oil fires were studied using three assays. Dose-dependent increases were observed for both sister chromatid exchanges in human peripheral blood lymphocytes and mutation at the hprt locus in the metabolically competent human lymphoblast cell line AHH-1. Similar magnitudes of response were seen using these two assays when testing a standard air particulate sample which had been isolated from the Washington, DC, area. Using the 32P-postlabeling assay, no increase in DNA adduct formation was observed in AHH-1 cells treated with particulates isolated from sampling in Kuwait.

  13. AIR PARTICULATE POLLUTION EXPOSURE INDUCES SYSTEMIC OXIDATIVE STRESS IN HEALTHY MICE

    EPA Science Inventory

    Air particulate pollution exposure induces systemic oxidative stress in healthy mice

    Elizabeth S Roberts1 and Kevin L Dreher2. 1 College or Veterinary Medicine, NC State University, Raleigh, NC , 2US Environmental Protection Agency, NHEERL, RTP, NC

    Epidemiological s...

  14. Fugitive particulate air emissions from off-road vehicle maneuvers at military training lands

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Military training lands used for off-road vehicle maneuvers may be subject to severe soil loss and air quality degradation as a result of severe wind erosion. The objective of this study was to measure suspended particulate matter resulting from various different vehicle training scenarios. Soil s...

  15. DAILY VARIATION OF PARTICULATE AIR POLLUTION AND POOR CARDIAC AUTONOMIC CONTROL IN THE ELDERLY

    EPA Science Inventory

    Particulate matter air pollution (PM) has been related to cardiovascular disease mortality in a number of recent studies. The pathophysiologic mechanisms for this association are under study. Low heart rate variability, a marker of poor cardiac autonomic control, is associated wi...

  16. High efficiency particulate air filters. (Latest citations from the NTIS Bibliographic database). NewSearch

    SciTech Connect

    Not Available

    1994-10-01

    The bibliography contains citations concerning aspects of high efficiency particulate air (HEPA) filters. Topics include life cycle costs, efficiency, testing, and material compatibility. HEPA filter use in the gas treatment and nuclear industries is discussed. (Contains a minimum of 141 citations and includes a subject term index and title list.)

  17. EXPOSURE TO URBAN AIR PARTICULATES ALTERS THE MACROPHAGE- MEDIATED INFLAMMATORY RESPONSE TO RESPIRATORY VIRAL INFECTION

    EPA Science Inventory

    Epidemiology studies associate increased pulmonary morbidity with episodes of high particulate air pollution (size range 0.1-10 microm diameter, PM10). Pneumonia, often viral in origin, is increased following episodes of high PM10 pollution. Therefore, this study was undertaken t...

  18. 78 FR 19164 - Approval and Promulgation of Air Quality Implementation Plans; Ohio; Particulate Matter Standards

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-29

    ... AGENCY 40 CFR Part 52 Approval and Promulgation of Air Quality Implementation Plans; Ohio; Particulate... proposing to convert a conditional approval of specified provisions of the Ohio state implementation plan...) rules on February 23, 2012. The PM rule revisions being approved establish work practices for...

  19. Effects of Short-Term Exposure to Particulate Air Pollutants on the Inflammatory Response and Respiratory Symptoms: A Panel Study in Schoolchildren from Rural Areas of Japan

    PubMed Central

    Watanabe, Masanari; Noma, Hisashi; Kurai, Jun; Sano, Hiroyuki; Hantan, Degejirihu; Ueki, Masaru; Kitano, Hiroya; Shimizu, Eiji

    2016-01-01

    The relationship between particulate air pollutants and respiratory symptoms in children has not been consistent among studies, potentially owing to differences in the inflammatory response to different particulate air pollutants. This study aimed to investigate the effect of particulate air pollutants on respiratory symptoms and the inflammatory response in schoolchildren. Three hundred-and-sixty children were included in the study. The children recorded daily respiratory symptom scores for October 2015. In addition, the daily amount of interleukin (IL)-6, IL-8, and tumor necrosis factor (TNF)-α production was assessed in THP1 cells stimulated with suspended particulate matter (SPM), which was collected every day during the study period. Generalized estimating equation logistic regression analyses were used to estimate the associations among respiratory symptoms and the daily levels of SPM, IL-6, IL-8, and TNF-α. Daily SPM levels were not associated with respiratory symptoms or the daily IL-6, IL-8, and TNF-α levels. Conversely, there was a significant association between respiratory symptoms and the daily IL-6, IL-8, and TNF-α levels. These results suggested that the effects of particulate air pollutants on respiratory symptoms in schoolchildren might depend more on the pro-inflammatory response to them than on their mass concentration. PMID:27706066

  20. Sulfate concentrations as an indicator of ambient particulate matter air pollution for health risk evaluations.

    PubMed

    Lippmann, M; Thurston, G D

    1996-01-01

    Retrospective population studies that have compared regression coefficients for mortality and morbidity for sulfate (SO4(2-), fine particles (PM2.5; aerodynamic diameter < 2.5 microns), thoracic particles (PM10; aerodynamic diameter < 10 microns), and total suspended particulates (TSP; undefined and variable upper cut-size) generally have found SO4(2-) concentrations to be correlated with effects as well as or better than PM2.5. In addition, both SO4(2-) and PM2.5 have yielded somewhat stronger associations with adverse health effects than PM10, and much stronger associations than TSP. Sulfate has advantages over PM2.5 for retrospective epidemiology, at least in the United States, because considerably more data on sulfate have been collected in recent decades, and there is a broader epidemiological database in the literature for comparison to other studies. While SO4(2-), per se, is an unlikely causal factor for mortality or morbidity, it often is correlated closely with variations in the strong acid component of ambient particulate matter (H+) and PM2.5 concentrations (especially in summer), which are more likely causal factors. A detailed analysis of the SO4(2-) epidemiological database is presented in this paper. In addition, drawing on our substantial archives of SO4(2-) and H+ data, we show that SO4(2-) and H+ correlate, both spatially and over time, in the eastern United States. We demonstrate the utility of SO4(2-) as a useful surrogate for ambient PM2.5 and H+ in epidemiological studies and as an index of PM exposure in ambient air quality guidelines and standards.

  1. The concentrations of culturable microorganisms in relation to particulate matter in urban air

    NASA Astrophysics Data System (ADS)

    Haas, D.; Galler, H.; Luxner, J.; Zarfel, G.; Buzina, W.; Friedl, H.; Marth, E.; Habib, J.; Reinthaler, F. F.

    2013-02-01

    The ambient air consists not only of gases but also of bioaerosols and particulate matter. The concentrations of particulate matter in relation to the culturable microorganisms in the urban ambient air and their dependence on air temperature and relative humidity were investigated. The seasonal distribution of particles sizes, the concentrations of aerobic mesophilic bacteria and xerophilic fungi in the air were evaluated. Moreover, the identification of the fungal genera Cladosporium, Aspergillus and Penicillium were conducted. Within one year at 177 days particle and microorganism concentrations in the ambient air were recorded in the city centre of Graz/Austria. The results show that the concentrations of fine particles and coarse particles were the highest in winter and decreased continuously to a minimum in the summer months depending on temperature and air humidity. The concentrations of xerophilic fungi showed no correlation to the different particle concentrations. The spore concentrations of Cladosporium spp. showed the same results of xerophilic fungi whereas the genera Penicillium and Aspergillus increased with the increase of fine particles. The concentrations of mesophilic bacteria were positively correlated with all particle counts. The maximum mesophilic bacteria concentrations were found in the winter months. Further studies are required to evaluate the concentrations of specific microorganisms in the natural environment in relation to the particulate matter.

  2. Pyrolysis-gas chromatography/mass spectrometry analyses of biological particulates collected during recent space shuttle missions

    NASA Technical Reports Server (NTRS)

    Matney, M. L.; Limero, T. F.; James, J. T.

    1994-01-01

    Biological particulates collected on air filters during shuttle missions (STS-40 and STS-42) were identified using pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS). A method was developed for identifying the atmospheric particles and their sources through the analysis of standard materials and the selection of "marker" compounds specific to the particle type. Pyrolysis spectra of biological standards were compared with those of airborne particles collected during two space shuttle missions; marker compounds present in the shuttle particle spectra were matched with those of the standards to identify the source of particles. Particles of 0,5--1-mm diameter and weighing as little as 40 micrograms could be identified using this technique. The Py-GC/MS method identified rat food and soilless plant-growth media as two sources of particles collected from the shuttle atmosphere during flight.

  3. Pyrolysis-gas chromatography/mass spectrometry analyses of biological particulates collected during recent space shuttle missions.

    PubMed

    Matney, M L; Limero, T F; James, J T

    1994-09-15

    Biological particulates collected on air filters during shuttle missions (STS-40 and STS-42) were identified using pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS). A method was developed for identifying the atmospheric particles and their sources through the analysis of standard materials and the selection of "marker" compounds specific to the particle type. Pyrolysis spectra of biological standards were compared with those of airborne particles collected during two space shuttle missions; marker compounds present in the shuttle particle spectra were matched with those of the standards to identify the source of particles. Particles of 0,5--1-mm diameter and weighing as little as 40 micrograms could be identified using this technique. The Py-GC/MS method identified rat food and soilless plant-growth media as two sources of particles collected from the shuttle atmosphere during flight.

  4. Impact of fine particulate fluctuation and other variables on Beijing's air quality index.

    PubMed

    Chen, Bo; Lu, Shaowei; Li, Shaoning; Wang, Bing

    2015-04-01

    We analyzed fluctuation in Beijing's air quality over 328 days, based on air quality grades and air quality data from 35 atmospheric monitoring stations. Our results show the air over Beijing is subject to pollution 152 days of the year, or 46.34%. Among all pollutants, fine particulates, solid or liquid, 2.5 μm or less in size (PM2.5), appeared most frequently as the primary pollutant: 249 days, or 76% of the sample year (328 days). Nitrogen dioxide (NO2) and coarse particulates (PM10) cause the least pollution, appearing only 7 and 3 days, or 2 and 1% of the sample year, respectively. In Beijing, fine particulates like PM2.5 vary seasonally: 154.54 ± 18.60 in winter > 145.22 ± 18.61 in spring > 140.16 ± 20.76 in autumn > 122.37 ± 13.42 in summer. Air quality is best in August and worst in December, while various districts in Beijing experience different air quality. To be specific, from south to north and from west to east, air quality tends to improve. Meteorological elements have a constraining effect on air pollutants, which means there is a linear correlation between the air quality index and humidity, rainfall, wind speed, and temperature. Under a typical pollution scenario, the higher the air quality index (AQI) value, the lower the wind speed and the greater the relative humidity; the lower the AQI value, the higher the wind speed and lower the relative humidity. Analysis of influencing factors reveals that the air pollution is mainly particulate matter produced by burning coal, vehicle emissions, volatile oils and gas, fast development of food services, emissions from the surrounding region, and natural dust clouds formed in arid areas to the northwest. Topography affects the distribution of meteorological conditions, in turn varying air quality over the region from one location to another. Human activities also exercise impact on urban air quality with dual functions.

  5. Impact of fine particulate fluctuation and other variables on Beijing's air quality index.

    PubMed

    Chen, Bo; Lu, Shaowei; Li, Shaoning; Wang, Bing

    2015-04-01

    We analyzed fluctuation in Beijing's air quality over 328 days, based on air quality grades and air quality data from 35 atmospheric monitoring stations. Our results show the air over Beijing is subject to pollution 152 days of the year, or 46.34%. Among all pollutants, fine particulates, solid or liquid, 2.5 μm or less in size (PM2.5), appeared most frequently as the primary pollutant: 249 days, or 76% of the sample year (328 days). Nitrogen dioxide (NO2) and coarse particulates (PM10) cause the least pollution, appearing only 7 and 3 days, or 2 and 1% of the sample year, respectively. In Beijing, fine particulates like PM2.5 vary seasonally: 154.54 ± 18.60 in winter > 145.22 ± 18.61 in spring > 140.16 ± 20.76 in autumn > 122.37 ± 13.42 in summer. Air quality is best in August and worst in December, while various districts in Beijing experience different air quality. To be specific, from south to north and from west to east, air quality tends to improve. Meteorological elements have a constraining effect on air pollutants, which means there is a linear correlation between the air quality index and humidity, rainfall, wind speed, and temperature. Under a typical pollution scenario, the higher the air quality index (AQI) value, the lower the wind speed and the greater the relative humidity; the lower the AQI value, the higher the wind speed and lower the relative humidity. Analysis of influencing factors reveals that the air pollution is mainly particulate matter produced by burning coal, vehicle emissions, volatile oils and gas, fast development of food services, emissions from the surrounding region, and natural dust clouds formed in arid areas to the northwest. Topography affects the distribution of meteorological conditions, in turn varying air quality over the region from one location to another. Human activities also exercise impact on urban air quality with dual functions. PMID:25563832

  6. HEPA (high efficiency particulate air) filter optimization/implementation

    SciTech Connect

    Nenni, J.A.

    1988-02-10

    Prefilters were installed in high efficiency particularly air (HEPA) filter plenums at the Rocky Flats Plant. It was determined that prefiltration systems would extend the life of first-stage HEPA filters and reduce the amount of HEPA filter waste in the transuranic waste category. A remote handling system was designed to remove prefilters without entry into the plenum to reduce secondary waste and decrease exposure to Filter Technicians. 3 figs., 4 tabs.

  7. The INAA of air particulates from three sites in Lagos

    SciTech Connect

    Spyrou, N.M. ); Asubiojo, O.I.; Oluwole, A.F.; Oluyemi, E.A. ); Farooqi, A.S.; Akanle, O.A. )

    1993-01-01

    This work is part of an ongoing project on environmental monitoring and impact assessment carried out in Nigeria in a collaboration between the University of Surrey and the Obafemi Awolowo University and funded by the Commission of the European Communities under the Lorme III agreement. Lagos is the biggest industrial city in Nigeria and shares [approximately]38% of the total manufacturing industries. These are associated in the main with the manufacture of cement, glass, plastics, pharmaceutical, cars, textiles, and paints. In the early 1970s, 80% of the air pollution was reported to be due to vehicular exhaust in Nigeria. The speed of motorcars plays an important role in causing pollution through exhaust, and in Lagos, the operating speed of vehicles has been reported to be very low, <10 km/h, for most of the roads in the city. However, domestic waste generation in Lagos city is estimated as >5 x 10[sup 5] tonne/yr and is another source of air pollution because roughly half is combustible. The selection of three sampling sites in the northeastern part of the city of Lagos provided an opportunity to study air pollution in an industrial area and a nearby residential area.

  8. Chemical characterization of particulate air pollutants Case studies on indoor air quality, cultural heritage and the marine environment

    NASA Astrophysics Data System (ADS)

    Horemans, Benjamin

    When attempting to discuss the effects of airborne particulate matter (PM), it is important to address both physical and chemical aspects of this pollutant. This work reports on the results of three separate case studies, each approaching a specific problem of air pollution by evaluating the chemical composition of PM. 1. In the US and Europe, office workers often complain about work-related health symptoms. These symptoms are collectively referred as the 'sick building syndrome'. This work could be considered as one of the largest data collections on particulate pollutants in Belgian offices. It helps to understand the sources as well as the behavior and fate of PM at our workplace environments. Especially the chemical information on PM makes the results unique, since it enables a better evaluation of the health risks connected to office dust. 2. The Alhambra and Generalife bring every year more than 3 million people to Granada in Southern Spain. Recently, the increasing urbanization of Granada and the immense pressure of mass tourism form a threat for this heritage. Despite the fact that atmospheric pollutants are known to he potentially aggressive for our cultural patrimony. this case study is the first to assess the effects of environmental aerosols on the Alhambra monument. The results of this study could help decision-makers at the Alhambra and the city of Granada with the formulation of preventive conservation measures. They show how local vehicular traffic is the main source for atmospheric pollution in and around the Alhambra monument. Targeted strategies are necessary in order to maximally preserve these monuments and their UNESCO world cultural heritage label. 3. Excessive input of nitrogen-containing atmospheric nutrients via dry and wet deposition can cause entrophication of marine regions, which is also a common, seasonal phenomenon along the coasts of the North Sea. This study is the first to give a complete quantitative description of the

  9. [Particulate matter (PM10) air pollution, daily mortality, and hospital admissions: recent findings].

    PubMed

    Colucci, Maria Eugenia; Veronesi, Licia; Roveda, Anna Maria; Marangio, Emilio; Sansebastiano, Giuliano

    2006-01-01

    The first studies conducted to evaluate a possible association between air pollution and mortality date back to the serious events that occurred in the Mosa Valley, Belgium (1930), in the small city of Donora ("killer fog" incident of 1948) and in London (1952). The latter episode led to the introduction of air pollution control policies. Following the introduction of air pollution control measures in economically advanced cities in the 60s and 70s, the concentration levels of pollutants reached were believed, for many years, to be risk free. However, despite improvements in air quality achieved by many industrialized countries the negative effects of air pollution remain today an important public health problem. Among all air pollutants, particulate matter is the type of air pollution that causes the most numerous and serious effects on human health, because of the broad range of diverse toxic substances it contains,. For this reason, when assessing human health risk, PM10 may be considered to be a reliable indicator of the impact of global air pollution. Various epidemiologic studies conducted in the last 10 years, such as the Air Pollution and Health-European Approach (APHEA) project, the National Morbidity, Mortality and Air Pollution (NMMAPS) Study and Italian Meta-analysis of Studies on the short-term effects of Air pollution (MISA), have shown that current ambient concentrations of PM10 may lead to increased mortality and morbidity. Various studies have reported mean increases in mortality below 1% for 10 ?g/mc increases of ambient PM10. Studies have also underscored the role of particulate matter in aggravating cardiorespiratory diseases and consequently increasing hospital admissions. Air quality standards have been recently revised by legislation. The EU has issued a directive that sets limiting values and, where appropriate, threshold values, for the different air pollutants.

  10. Recent outcomes in European multicentre projects on ambient particulate air pollution

    SciTech Connect

    Sandstroem, Thomas . E-mail: thomas.sandstrom@lung.umu.se; Cassee, Flemming R.; Salonen, Raimo; Dybing, Erik

    2005-09-01

    The adverse health effects associated with ambient air pollution have triggered epidemiologists, toxicologists and chemists to combine their experience to investigate the toxicity of ambient PM (particulate matter) from European sites with differing traffic intensity, in order to increase the understanding of the role of fine and coarse PM, the role of chemical characteristics and relate that to health effects. Under the European Union 5th Framework Programme (FP5), the HEPMEAP, RAIAP and PAMCHAR projects have utilised high-volume samplers to collect PM in European locations with contrasting PM sources and performed a range of different laboratory investigations. The PM investigated generally induced significant biological responses, with both coarse (2.5-10 {mu}m) and fine (0.1-2.5 {mu}m) PM being able to induce toxic effects. The chemical composition of the PM (also reflecting the differences in the emission-source contribution) has been suggested to play an important role in these responses. Oxidative and immune effects have been demonstrated in several in vitro and animal models. Investigations have also given support for the assumption that asthmatic and elderly subjects with chronic obstructive pulmonary disease may be more susceptible to PM exposure.

  11. Evaluation of sampling methods for toxicological testing of indoor air particulate matter.

    PubMed

    Tirkkonen, Jenni; Täubel, Martin; Hirvonen, Maija-Riitta; Leppänen, Hanna; Lindsley, William G; Chen, Bean T; Hyvärinen, Anne; Huttunen, Kati

    2016-09-01

    There is a need for toxicity tests capable of recognizing indoor environments with compromised air quality, especially in the context of moisture damage. One of the key issues is sampling, which should both provide meaningful material for analyses and fulfill requirements imposed by practitioners using toxicity tests for health risk assessment. We aimed to evaluate different existing methods of sampling indoor particulate matter (PM) to develop a suitable sampling strategy for a toxicological assay. During three sampling campaigns in moisture-damaged and non-damaged school buildings, we evaluated one passive and three active sampling methods: the Settled Dust Box (SDB), the Button Aerosol Sampler, the Harvard Impactor and the National Institute for Occupational Safety and Health (NIOSH) Bioaerosol Cyclone Sampler. Mouse RAW264.7 macrophages were exposed to particle suspensions and cell metabolic activity (CMA), production of nitric oxide (NO) and tumor necrosis factor (TNFα) were determined after 24 h of exposure. The repeatability of the toxicological analyses was very good for all tested sampler types. Variability within the schools was found to be high especially between different classrooms in the moisture-damaged school. Passively collected settled dust and PM collected actively with the NIOSH Sampler (Stage 1) caused a clear response in exposed cells. The results suggested the higher relative immunotoxicological activity of dust from the moisture-damaged school. The NIOSH Sampler is a promising candidate for the collection of size-fractionated PM to be used in toxicity testing. The applicability of such sampling strategy in grading moisture damage severity in buildings needs to be developed further in a larger cohort of buildings. PMID:27569522

  12. Evaluation of sampling methods for toxicological testing of indoor air particulate matter.

    PubMed

    Tirkkonen, Jenni; Täubel, Martin; Hirvonen, Maija-Riitta; Leppänen, Hanna; Lindsley, William G; Chen, Bean T; Hyvärinen, Anne; Huttunen, Kati

    2016-09-01

    There is a need for toxicity tests capable of recognizing indoor environments with compromised air quality, especially in the context of moisture damage. One of the key issues is sampling, which should both provide meaningful material for analyses and fulfill requirements imposed by practitioners using toxicity tests for health risk assessment. We aimed to evaluate different existing methods of sampling indoor particulate matter (PM) to develop a suitable sampling strategy for a toxicological assay. During three sampling campaigns in moisture-damaged and non-damaged school buildings, we evaluated one passive and three active sampling methods: the Settled Dust Box (SDB), the Button Aerosol Sampler, the Harvard Impactor and the National Institute for Occupational Safety and Health (NIOSH) Bioaerosol Cyclone Sampler. Mouse RAW264.7 macrophages were exposed to particle suspensions and cell metabolic activity (CMA), production of nitric oxide (NO) and tumor necrosis factor (TNFα) were determined after 24 h of exposure. The repeatability of the toxicological analyses was very good for all tested sampler types. Variability within the schools was found to be high especially between different classrooms in the moisture-damaged school. Passively collected settled dust and PM collected actively with the NIOSH Sampler (Stage 1) caused a clear response in exposed cells. The results suggested the higher relative immunotoxicological activity of dust from the moisture-damaged school. The NIOSH Sampler is a promising candidate for the collection of size-fractionated PM to be used in toxicity testing. The applicability of such sampling strategy in grading moisture damage severity in buildings needs to be developed further in a larger cohort of buildings.

  13. Multifractal nature of particulate matters (PMs) in Hong Kong urban air.

    PubMed

    Xue, Yu; Pan, Wei; Lu, Wei-Zhen; He, Hong-Di

    2015-11-01

    In this study, we investigate the persistent variation and the multifractal nature of particulate matter (PM) concentrations from vehicle emissions at a typical traffic intersection of street canyon in Hong Kong. Six size groups of PMs are measured and collected during rush hour sessions on different dates respectively. A recently developed model, namely multifractal detrended fluctuation analysis (MF-DFA), is employed to decompose and analyze the collected database. Through estimating the scaling exponent, it is found that the PM levels from vehicular emissions display long-term correlation characters. By employing MF-DFA method to calculate the generalized Hurst exponent and discuss the multifractal spectrums of all size groups, it is noticed that the fine particulate matters in grain diameter of 0.3-0.499 μm present strong multifractal nature, intensive oscillations of concentration variations, and long-term persistence. For fine particulate matters in the grain diameter ranges from 0.5 μm to 4.99 μm, their similar and weak multifractal natures reflect the self-similarity behaviors among these groups and the gradual decreases of the lasting effects. For large size particulate matters, i.e., grain diameter above 5 μm, certain mono-fractal nature and sharp decay of long-term persistence are obtained, even for intermittent effects. It can therefore be concluded that the fine particulate matter diffuses anomaly and persists for a long time.

  14. Impact of maritime traffic on polycyclic aromatic hydrocarbons, metals and particulate matter in Venice air.

    PubMed

    Gregoris, Elena; Barbaro, Elena; Morabito, Elisa; Toscano, Giuseppa; Donateo, Antonio; Cesari, Daniela; Contini, Daniele; Gambaro, Andrea

    2016-04-01

    Harbours are important hubs for economic growth in both tourism and commercial activities. They are also an environmental burden being a source of atmospheric pollution often localized near cities and industrial complexes. The aim of this study is to quantify the relative contribution of maritime traffic and harbour activities to atmospheric pollutant concentration in the Venice lagoon. The impact of ship traffic was quantified on various pollutants that are not directly included in the current European legislation for shipping emission reduction: (i) gaseous and particulate PAHs; (ii) metals in PM10; and (iii) PM10 and PM2.5. All contributions were correlated with the tonnage of ships during the sampling periods and results were used to evaluate the impact of the European Directive 2005/33/EC on air quality in Venice comparing measurements taken before and after the application of the Directive (year 2010). The outcomes suggest that legislation on ship traffic, which focused on the issue of the emissions of sulphur oxides, could be an efficient method also to reduce the impact of shipping on primary particulate matter concentration; on the other hand, we did not observe a significant reduction in the contribution of ship traffic and harbour activities to particulate PAHs and metals. Graphical abstract Impact of maritime traffic on polycyclic aromatic hydrocarbons, metals and particulate matter and evaluation of the effect of an European Directive on air quality in Venice. PMID:26681325

  15. Impact of maritime traffic on polycyclic aromatic hydrocarbons, metals and particulate matter in Venice air.

    PubMed

    Gregoris, Elena; Barbaro, Elena; Morabito, Elisa; Toscano, Giuseppa; Donateo, Antonio; Cesari, Daniela; Contini, Daniele; Gambaro, Andrea

    2016-04-01

    Harbours are important hubs for economic growth in both tourism and commercial activities. They are also an environmental burden being a source of atmospheric pollution often localized near cities and industrial complexes. The aim of this study is to quantify the relative contribution of maritime traffic and harbour activities to atmospheric pollutant concentration in the Venice lagoon. The impact of ship traffic was quantified on various pollutants that are not directly included in the current European legislation for shipping emission reduction: (i) gaseous and particulate PAHs; (ii) metals in PM10; and (iii) PM10 and PM2.5. All contributions were correlated with the tonnage of ships during the sampling periods and results were used to evaluate the impact of the European Directive 2005/33/EC on air quality in Venice comparing measurements taken before and after the application of the Directive (year 2010). The outcomes suggest that legislation on ship traffic, which focused on the issue of the emissions of sulphur oxides, could be an efficient method also to reduce the impact of shipping on primary particulate matter concentration; on the other hand, we did not observe a significant reduction in the contribution of ship traffic and harbour activities to particulate PAHs and metals. Graphical abstract Impact of maritime traffic on polycyclic aromatic hydrocarbons, metals and particulate matter and evaluation of the effect of an European Directive on air quality in Venice.

  16. 76 FR 2904 - Agency Information Collection Activities; Proposed Collection; Comment Request; Air Stationary...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-18

    ... Information Collection Activities; Proposed Collection; Comment Request; Air Stationary Source Compliance and...: (202) 501-0411. Mail: Air Stationary Source Compliance and Enforcement Information, Environmental... this action are State, District, ] Local, and Commonwealth governments. Title: Air Stationary...

  17. Particulate matter in the indoor air of classrooms—exploratory results from Munich and surrounding area

    NASA Astrophysics Data System (ADS)

    Fromme, H.; Twardella, D.; Dietrich, S.; Heitmann, D.; Schierl, R.; Liebl, B.; Rüden, H.

    Numerous epidemiological studies have demonstrated the association between particle mass (PM) concentration in outside air and the occurrence of health related problems and/or diseases. However, much less is known about indoor PM concentrations and associated health risks. In particular, data are needed on air quality in schools, since children are assumed to be more vulnerable to health hazards and spend a large part of their time in classrooms. On this background, we evaluated indoor air quality in 64 schools in the city of Munich and a neighbouring district outside the city boundary. In winter 2004-2005 in 92 classrooms, and in summer 2005 in 75 classrooms, data on indoor air climate parameters (temperature, relative humidity), carbon dioxide (CO 2) and various dust particle fractions (PM 10, PM 2.5) were collected; for the latter both gravimetrical and continuous measurements by laser aerosol spectrometer (LAS) were implemented. In the summer period, the particle number concentration (PNC), was determined using a scanning mobility particle sizer (SMPS). Additionally, data on room and building characteristics were collected by use of a standardized form. Only data collected during teaching hours were considered in analysis. For continuously measured parameters the daily median was used to describe the exposure level in a classroom. The median indoor CO 2 concentration in a classroom was 1603 ppm in winter and 405 ppm in summer. With LAS in winter, median PM concentrations of 19.8 μg m -3 (PM 2.5) and 91.5 μg m -3 (PM 10) were observed, in summer PM concentrations were significantly reduced (median PM 2.5=12.7 μg m -3, median PM 10=64.9 μg m -3). PM 2.5 concentrations determined by the gravimetric method were in general higher (median in winter: 36.7 μg m -3, median in summer: 20.2 μg m -3) but correlated strongly with the LAS-measured results. In explorative analysis, we identified a significant increase of LAS-measured PM 2.5 by 1.7 μg m -3 per increase

  18. Ultra High Efficiency ESP for Fine Particulate and Air Toxics Control

    SciTech Connect

    Srinivasachar, Srivats; Pease, Benjamin R.; Porle, Kjell; Mauritzson, Christer; Haythornthwaite, Sheila

    1997-07-01

    Nearly ninety percent of U.S. coal-fired utility boilers are equipped with electrostatic precipitators (ESP). Cost effective retrofittable ESP technologies are the only means to accomplish Department of Energy's (DOE) goal of a major reduction in fine particulate and air toxic emissions from coal-fired power plants. Particles in the size range of 0.1 to 5 {micro}m typically escape ESPs. Metals, such as arsenic, cadmium, lead, molybdenum and antimony, concentrate on these particles. This is the main driver for improved fine particulate control. Vapor phase emissions of mercury, selenium and arsenic are also of major concern. Current dry ESPs, which operate at temperatures greater than 280 F, provide little control for vapor phase toxics. The need for inherent improvement to ESPs has to be considered keeping in perspective the current trend towards the use of low sulfur coals. Switching to low sulfur coals is the dominant approach for SO{sub 2} emission reduction in the utility industry. Low sulfur coals generate high resistivity ash, which can cause an undesirable phenomenon called ''back corona.'' Higher particulate emissions occur if there is back corona in the ESP. Results of the pilot-scale testing identified the ''low temperature ESP'' concept to have the biggest impact for the two low sulfur coals investigated. Lowering the flue gas temperature to 220 F provided the maximum impact in terms of decreased emissions. Intermediate operating temperatures (reduction from 340 to 270 F) also gave significant ESP performance improvement. A significant reduction in particulate emissions was also noted when the flue gas humidity was increased (temperature held constant) from the baseline condition for these moderately high resistivity ash coals. Independent control of flue gas humidity and temperature was an important and a notable element in this project. Mercury emissions were also measured as a function of flue gas temperature. Mercury emissions decreased as the flue

  19. Exhaust temperature profiles for application of passive diesel particulate filters to solid waste collection vehicles in California.

    PubMed

    Reul-Chen, Crystal K; Ross, Charles; Steele, Nancy L C; Winer, Arthur M

    2005-02-01

    To reduce public exposure to diesel particulate matter (DPM), the California Air Resources Board has begun adoption of a series of rules to reduce these emissions from in-use heavy-duty vehicles. Passive diesel particulate filter (DPF) after-treatment technologies are a cost-effective method to reduce DPM emissions and have been used on a variety of vehicles worldwide. Two passive DPFs were interim-verified in California and approved federally for use in most 1994--2002 engine families for vehicles meeting min engine exhaust temperature requirements for successful filter regeneration. Some vehicles, however, may not be suited to passive DPFs because of lower engine exhaust temperatures. The purpose of this study was to determine the applicability of two types of passive DPFs to solid waste collection vehicles, the group of vehicles for which California recently mandated in-use DPM reductions. We selected 60 collection vehicles to represent the four main types of collection vehicle duty cycles--rolloffs, and front-end, rear, and side loaders--and collected second-by-second engine exhaust temperature readings for one week from each vehicle. As a group, the collection vehicles exhibited low engine exhaust temperatures, making the application of passive DPFs to these vehicles difficult. Only 35% of tested vehicles met the temperature requirements for one passive DPF, whereas 60% met the temperature requirements for the other. Engine exhaust temperatures varied by vehicle type. Side and front-end loaders met the engine exhaust temperature requirements in the greatest number of cases with approximately 50-90% achieving the required regeneration temperatures. Only 8-25% of the rear loader and roll-off collection vehicles met the engine exhaust temperature requirements. Solid waste collection vehicles represent a diverse fleet with a variety of duty cycles. Low engine exhaust temperatures will need to be addressed for successful use of passive DPFs in this application.

  20. Air particulate matter and cardiovascular disease: the epidemiological, biomedical and clinical evidence

    PubMed Central

    Du, Yixing; Xu, Xiaohan; Chu, Ming; Guo, Yan

    2016-01-01

    Air pollution is now becoming an independent risk factor for cardiovascular morbidity and mortality. Numerous epidemiological, biomedical and clinical studies indicate that ambient particulate matter (PM) in air pollution is strongly associated with increased cardiovascular disease such as myocardial infarction (MI), cardiac arrhythmias, ischemic stroke, vascular dysfunction, hypertension and atherosclerosis. The molecular mechanisms for PM-caused cardiovascular disease include directly toxicity to cardiovascular system or indirectly injury by inducing systemic inflammation and oxidative stress in peripheral circulation. Here, we review the linking between PM exposure and the occurrence of cardiovascular disease and discussed the possible underlying mechanisms for the observed PM induced increases in cardiovascular morbidity and mortality. PMID:26904258

  1. DETECTION AND MOLECULAR ANALYSIS OF PARTICULATE AIR POLLUTION INDUCED CARDIOPULMONARY OXIDATIVE STRESS USING A TRANSGENIC MOUSE MODEL AND EMERGING TECHNOLOGIES

    EPA Science Inventory


    Identification of particle characteristics and biological mechanism(s) responsible for the adverse pulmonary and cardiovascular responses associated with particulate air pollution exposure remains a critical research activity. We have employed an oxidative stress sensitive an...

  2. Fine Ambient Air Particulate Matter Exposure Induces Molecular Alterations Indicative of Cardiovascular Disease Progression in Atherosclerotic Susceptible Mice -- B

    EPA Science Inventory

    Background: Epidemiology studies have reported associations between increased mortality and morbidity with exposure to particulate air pollution, particularly within individuals with pre-existing cardiovascular disease (CVD). Clinical and toxicological studies have provided evide...

  3. Results of a Self-Absorption Study on the Versapor 3000 47-mm Filters for Radioactive Particulate Air Stack Sampling

    SciTech Connect

    Barnett, J. Matthew; Cullinan, Valerie I.; Barnett, Debra S.; Trang-Le, Truc LT; Bliss, Mary; Greenwood, Lawrence R.; Ballinger, Marcel Y.

    2009-11-01

    Since the mid-1980s the Pacific Northwest National Laboratory (PNNL) has used a value of 0.85 as a correction factor for the self absorption of activity for particulate radioactive air samples collected from building exhaust for environmental monitoring. More recently, an effort was made to evaluate the current particulate radioactive air sample filters (Versapor® 3000, 47-mm diameter) used at PNNL for self absorption effects. There were two methods used to characterize the samples. Sixty samples were selected from the archive for acid digestion to compare the radioactivity measured by direct gas-flow proportional counting of filters to the results obtained after acid digestion of the filter and counting again by gas-flow proportional detection. Thirty different sample filters were selected for visible light microscopy to evaluate filter loading and particulate characteristics. Mass-loading effects were also considered. Large error is associated with the sample filter analysis comparison and subsequently with the estimation of the absorption factor resulting in an inadequate method to estimate losses from self-absorption in the sample filter. The mass loading on the sample filter as determined after digestion and drying was ~0.08 mg cm-2; however, this value may not represent the total filter mass loading given that there may be undetermined losses associated with the digestion process. While it is difficult to determine how much material is imbedded in the filter, observations from the microscopy analysis indicate that the vast majority of the particles remain on the top of the filter. In comparing the results obtained, the continued use of 0.85 as a conservative correction factor is recommended.

  4. [Emission of particulates from a pig farm with central air exhaust in the pig stall].

    PubMed

    Hartung, J; Seedorf, J; Trickl, T; Gronauer, H

    1998-06-01

    There is increasing concern that airborne dust and particulates from animal enterprises which are emitted into the environment may impair the health of people living in nearby residential areas. Investigations were carried out to trace the distribution of particulate emissions from a piggery in the vicinity by means of an aerosol lidar. Additionally, dust was sampled with a high volume impactor (HVS) at two places downwind (50 m, 115 m) and at a reference point 50 m upwind the piggery. The total dust concentraction in the animal house air varied between 0.2 and 1.0 mg/m3 within 24 hours. 50 m downwind the building 0.08 mg/m3 dust was measured by means of the HVS. At a distance of 115 m downwind the same concentrations (0.037 mg/m3) as the reference point (0.037 mg/m3 upwind the animal house were found. The endotoxin concentrations were 60 ng/m3 (50 m downwind), 15 ng/m3 (115 m downwind) and 9 ng/m3 (50 m upwind). The lidar signals discriminated clearly between the density of the air directly above the exhaust chimney and the 115 m downwind position. It seems that the lidar technique in combination with high volume impaction form an useful tool to describe the distribution distance of particulate pollutants farm animal housing. PMID:9693460

  5. Vapor-phase and particulate-associated pesticides and PCB concentrations in eastern North Dakota air samples

    SciTech Connect

    Hawthorne, S.B.; Miller, D.J.; Louie, P.K.K.

    1996-05-01

    Vapor-phase and suspended particulate (<50 {mu}m) samples were collected on polyurethane foam (PUF) and quartz fiber filters in rural North Dakota to determine the air concentrations of pesticides in an area where agriculture is a primary source of semivolatile pollutants. Samples were collected at two sites from 1992 to 1994 that were at least 0.4 km from the nearest farmed fields and known application of pesticides, and analyzed for 22 different organochlorine, triazine, and acid herbicide pesticides. Fourteen pesticides were found above the detection limits (typically <1 pg/m{sup 3}). Concentrations of polychlorinated biphenyl (PCB) congeners were much lower (<50 pg/m{sup 3} in all cases) than many of the pesticides. These results demonstrate that pesticides are among the most prevalent chlorinated semivolatile pollutants present in rural North Dakota, that significant transport of pesticides occurs both in the vapor-phase and on suspended particulate matter, and that blown soil may be a significant mechanism for introducing pesticides into surface and ground waters. 32 refs., 2 figs., 4 tabs.

  6. Characteristics and chemical compositions of particulate matter collected at the selected metro stations of Shanghai, China.

    PubMed

    Guo, Li; Hu, Yunjie; Hu, Qingqing; Lin, Jun; Li, Chunlin; Chen, Jianmin; Li, Lina; Fu, Hongbo

    2014-10-15

    A campaign was conducted to assess and compare the air quality at the different metro platforms at Shanghai City, focusing on particulate matter (PM) levels, chemical compositions, morphology and mineralogy, as well as species of iron. Our results indicated that the average PM₂.₅ concentrations for the three metro lines were 177.7 μg/m(3), 105.7 μg/m(3) and 82.5 μg/m(3), respectively, and the average PM1 concentrations for the three lines were 122.3 μg/m(3), 84.1 μg/m(3) and 59.6 μg/m(3), respectively. Fe, Mn, Cr, Cu, Sr, Ba and Pb concentrations in all of the sampling sites were significantly higher than that in the urban ambient air, implicating that these trace metals may be associated with the metro systems working. Individual airborne dusts were studied for morphology and mineralogy characteristics. The results revealed that the presence of most individual particles were with no definite shape and most of them were with a large metal content. Furthermore, Fe-rich particles had significantly higher abundance in the metro systems, which were more frequently encountered in the underground lines than the aboveground line. The 2D distribution map of an interested Fe-rich particle showed an uneven Fe distribution, implying that a hollow or core of other substance exists in the particle center during the formation process. Cluster analysis revealed that Fe-rich particles were possibly a mixture of Fe species. Fitting of X-ray absorption near-edge fine structure spectra (XANES) showed the main iron species within the particles collected from the three contrasting metro lines of Shanghai to be hematite, magnetite, iron-metal and mineral Fe. Hematite and mineral Fe were all found in three lines, while magnetite only existed in aboveground metro line. Iron-metal was determined in both the older and younger underground lines, based on the X-ray diffraction (XRD) analysis. As diverse Fe species have different physical-chemical characteristics and toxicity, the

  7. Indoor air quality in urban nurseries at Porto city: Particulate matter assessment

    NASA Astrophysics Data System (ADS)

    Branco, P. T. B. S.; Alvim-Ferraz, M. C. M.; Martins, F. G.; Sousa, S. I. V.

    2014-02-01

    Indoor air quality in nurseries is an interesting case of study mainly due to children's high vulnerability to exposure to air pollution (with special attention to younger ones), and because nursery is the public environment where young children spend most of their time. Particulate matter (PM) constitutes one of the air pollutants with greater interest. In fact, it can cause acute effects on children's health, as well as may contribute to the prevalence of chronic respiratory diseases like asthma. Thus, the main objectives of this study were: i) to evaluate indoor concentrations of particulate matter (PM1, PM2.5, PM10 and PMTotal) on different indoor microenvironments in urban nurseries of Porto city; and ii) to analyse those concentrations according to guidelines and references for indoor air quality and children's health. Indoor PM measurements were performed in several class and lunch rooms in three nurseries on weekdays and weekends. Outdoor PM10 concentrations were also obtained to determine I/O ratios. PM concentrations were often found high in the studied classrooms, especially for the finer fractions, reaching maxima hourly mean concentrations of 145 μg m-3 for PM1 and 158 μg m-3 PM2.5, being often above the limits recommended by WHO, reaching 80% of exceedances for PM2.5, which is concerning in terms of exposure effects on children's health. Mean I/O ratios were always above 1 and most times above 2 showing that indoor sources (re-suspension phenomena due to children's activities, cleaning and cooking) were clearly the main contributors to indoor PM concentrations when compared with the outdoor influence. Though, poor ventilation to outdoors in classrooms affected indoor air quality by increasing the PM accumulation. So, enhancing air renovation rate and performing cleaning activities after the occupancy period could be good practices to reduce PM indoor air concentrations in nurseries and, consequently, to improve children's health and welfare.

  8. Air Quality Standards for Particulate Matter (PM) at high altitude cities.

    PubMed

    Bravo Alvarez, H; Sosa Echeverria, R; Sanchez Alvarez, P; Krupa, S

    2013-02-01

    The Air Quality Standards for Particulate Matter (PM) at high altitude urban areas in different countries, must consider the pressure and temperature due to the effect that these parameters have on the breath volume. This paper shows the importance to correct Air Quality Standards for PM considering pressure and temperature at different altitudes. Specific factors were suggested to convert the information concerning PM, from local to standard conditions, and adjust the Air Quality Standards for different high altitudes cities. The correction factors ranged from: 1.03 for Santiago de Chile to 1.47 for El Alto Bolivia. Other cities in this study include: Mexico City, México; La Paz, Bolivia; Bogota, Cali and Medellin, Colombia; Quito, Ecuador and Cuzco, Peru. If these corrections are not considered, the atmospheric concentrations will be underestimated. PMID:23202983

  9. Respiratory disease and particulate air pollution in Santiago Chile: contribution of erosion particles from fine sediments.

    PubMed

    Garcia-Chevesich, Pablo A; Alvarado, Sergio; Neary, Daniel G; Valdes, Rodrigo; Valdes, Juan; Aguirre, Juan José; Mena, Marcelo; Pizarro, Roberto; Jofré, Paola; Vera, Mauricio; Olivares, Claudio

    2014-04-01

    Air pollution in Santiago is a serious problem every winter, causing thousands of cases of breathing problems within the population. With more than 6 million people and almost two million vehicles, this large city receives rainfall only during winters. Depending on the frequency of storms, statistics show that every time it rains, air quality improves for a couple of days, followed by extreme levels of air pollution. Current regulations focus mostly on PM10 and PM2.5, due to its strong influence on respiratory diseases. Though more than 50% of the ambient PM10s in Santiago is represented by soil particles, most of the efforts have been focused on the remaining 50%, i.e. particulate material originating from fossil and wood fuel combustion, among others. This document emphasizes the need for the creation of erosion/sediment control regulations in Chile, to decrease respiratory diseases on Chilean polluted cities.

  10. Respiratory disease and particulate air pollution in Santiago Chile: contribution of erosion particles from fine sediments.

    PubMed

    Garcia-Chevesich, Pablo A; Alvarado, Sergio; Neary, Daniel G; Valdes, Rodrigo; Valdes, Juan; Aguirre, Juan José; Mena, Marcelo; Pizarro, Roberto; Jofré, Paola; Vera, Mauricio; Olivares, Claudio

    2014-04-01

    Air pollution in Santiago is a serious problem every winter, causing thousands of cases of breathing problems within the population. With more than 6 million people and almost two million vehicles, this large city receives rainfall only during winters. Depending on the frequency of storms, statistics show that every time it rains, air quality improves for a couple of days, followed by extreme levels of air pollution. Current regulations focus mostly on PM10 and PM2.5, due to its strong influence on respiratory diseases. Though more than 50% of the ambient PM10s in Santiago is represented by soil particles, most of the efforts have been focused on the remaining 50%, i.e. particulate material originating from fossil and wood fuel combustion, among others. This document emphasizes the need for the creation of erosion/sediment control regulations in Chile, to decrease respiratory diseases on Chilean polluted cities. PMID:24485904

  11. Air Quality Standards for Particulate Matter (PM) at high altitude cities.

    PubMed

    Bravo Alvarez, H; Sosa Echeverria, R; Sanchez Alvarez, P; Krupa, S

    2013-02-01

    The Air Quality Standards for Particulate Matter (PM) at high altitude urban areas in different countries, must consider the pressure and temperature due to the effect that these parameters have on the breath volume. This paper shows the importance to correct Air Quality Standards for PM considering pressure and temperature at different altitudes. Specific factors were suggested to convert the information concerning PM, from local to standard conditions, and adjust the Air Quality Standards for different high altitudes cities. The correction factors ranged from: 1.03 for Santiago de Chile to 1.47 for El Alto Bolivia. Other cities in this study include: Mexico City, México; La Paz, Bolivia; Bogota, Cali and Medellin, Colombia; Quito, Ecuador and Cuzco, Peru. If these corrections are not considered, the atmospheric concentrations will be underestimated.

  12. Exposure to ambient air particulate matter and non-alcoholic fatty liver disease.

    PubMed

    Tarantino, Giovanni; Capone, Domenico; Finelli, Carmine

    2013-07-01

    The present study was designed to alert the public opinion and policy makers on the supposed enhancing effects of exposure to ambient air particulate matter with aerodynamic diameters < 2.5 mm (PM2.5) on non-alcoholic fatty liver disease (NAFLD), the most common chronic liver disease in Western countries. For far too long literature data have been fixated on pulmonary diseases and/or cardiovascular disease, as consequence of particulate exposure, ignoring the link between the explosion of obesity with related syndromes such as NAFLD and air pollution, the worst characteristics of nowadays civilization. In order to delineate a clear picture of this major health problem, further studies should investigate whether and at what extent cigarette smoking and exposure to ambient air PM2.5 impact the natural history of patients with obesity-related NAFLD, i.e., development of non alcoholic steatohepatitis, disease characterized by a worse prognosis due its progression towards fibrosis and hepatocarcinoma. PMID:23840139

  13. Tonopah Test Range Air Monitoring: CY2012 Meteorological, Radiological, and Airborne Particulate Observations

    SciTech Connect

    Mizell, Steve A; Nikolich, George; Shadel, Craig; McCurdy, Greg; Miller, Julianne J

    2013-07-01

    In 1963, the Atomic Energy Commission (AEC), predecessor to the US Department of Energy (DOE), implemented Operation Roller Coaster on the Tonopah Test Range (TTR) and an adjacent area of the Nevada Test and Training Range (NTTR) (formerly the Nellis Air Force Range (NAFR)). Operation Roller Coaster consisted of four tests in which chemical explosions were detonated in the presence of nuclear devices to assess the dispersal of radionuclides and evaluate the effectiveness of storage structures to contain the ejected radionuclides. These tests resulted in dispersal of plutonium over the ground surface downwind of the test ground zero. Three tests, Clean Slate 1, 2, and 3, were conducted on the TTR in Cactus Flat; the fourth, Double Tracks, was conducted in Stonewall Flat on the NTTR. DOE is working to clean up and close all four sites. Substantial cleaned up has been accomplished at Double Tracks and Clean Slate 1. Cleanup of Clean Slate 2 and 3 is on the DOE planning horizon for some time in the next several years. The Desert Research Institute installed two monitoring stations, number 400 at the Sandia National Laboratories Range Operations Center and number 401 at Clean Slate 3, in 2008 and a third monitoring station, number 402 at Clean Slate 1, in 2011 to measure radiological, meteorological, and dust conditions. The primary objectives of the data collection and analysis effort are to (1) monitor the concentration of radiological parameters in dust particles suspended in air, (2) determine whether winds are re-distributing radionuclides or contaminated soil material, (3) evaluate the controlling meteorological conditions if wind transport is occurring, and (4) measure ancillary radiological, meteorological, and environmental parameters that might provide insight to the above assessments. The following observations are based on data collected during CY2012. The mean annual concentration of gross alpha and gross beta is highest at Station 400 and lowest at Station

  14. Occupational exposure to particulate air pollution and mortality due to ischaemic heart disease and cerebrovascular disease

    PubMed Central

    Torén, Kjell; Bergdahl, Ingvar A; Nilsson, Tohr; Järvholm, Bengt

    2007-01-01

    Objectives A growing number of epidemiological studies are showing that ambient exposure to particulate matter air pollution is a risk factor for cardiovascular disease; however, whether occupational exposure increases this risk is not clear. The aim of the present study was to examine whether occupational exposure to particulate air pollution increases the risk for ischaemic heart disease and cerebrovascular disease. Methods The study population was a cohort of 176 309 occupationally exposed Swedish male construction workers and 71 778 unexposed male construction workers. The definition of exposure to inorganic dust (asbestos, man‐made mineral fibres, dust from cement, concrete and quartz), wood dust, fumes (metal fumes, asphalt fumes and diesel exhaust) and gases and irritants (organic solvents and reactive chemicals) was based on a job‐exposure matrix with focus on exposure in the mid‐1970s. The cohort was followed from 1971 to 2002 with regard to mortality to ischaemic heart disease and cerebrovascular disease. Relative risks (RR) were obtained by the person‐years method and from Poisson regression models adjusting for baseline values of blood pressure, body mass index, age and smoking habits. Results Any occupational particulate air pollution was associated with an increased risk for ischemic heart disease (RR 1.13, 95% CI 1.07 to 1.19), but there was no increased risk for cerebrovascular disease (RR 0.97, 95% CI 0.88 to 1.07). There was an increased risk for ischaemic heart disease and exposure to inorganic dust (RR 1.07, 95% CI 1.03 to 1.12) and exposure to fumes (RR 1.05, 95% CI 1.00 to 1.10), especially diesel exhaust (RR 1.18, 95% CI 1.13 to 1.24). There was no significantly increased risk for cerebrovascular disease and exposure to inorganic dust, fumes or wood dust. Conclusions Occupational exposure to particulate air pollution, especially diesel exhaust, among construction workers increases the risk for ischaemic heart disease. PMID

  15. Plutonium Finishing Plant (PFP) Waste Composition and High Efficiency Particulate Air Filter Loading

    SciTech Connect

    ZIMMERMAN, B.D.

    2000-12-11

    This analysis evaluates the effect of the Plutonium Finishing Plant (PFP) waste isotopic composition on Tank Farms Final Safety Analysis Report (FSAR) accidents involving high-efficiency particulate air (HEPA) filter failure in Double-Contained Receiver Tanks (DCRTs). The HEPA Filter Failure--Exposure to High Temperature or Pressure, and Steam Intrusion From Interfacing Systems accidents are considered. The analysis concludes that dose consequences based on the PFP waste isotopic composition are bounded by previous FSAR analyses. This supports USQD TF-00-0768.

  16. Natural and anthropogenic radionuclides in airborne particulate samples collected in Barcelona (Spain).

    PubMed

    Vallés, I; Camacho, A; Ortega, X; Serrano, I; Blázquez, S; Pérez, S

    2009-02-01

    Results for naturally occurring (7)Be, (210)Pb, (40)K, (214)Bi, (214)Pb, (212)Pb, (228)Ac and (208)Tl and anthropogenic (137)Cs in airborne particulate matter in the Barcelona area during the period from January 2001 to December 2005 are presented and discussed. The (212)Pb and (208)Tl, (214)Bi and (214)Pb, (7)Be and (210)Pb radionuclide levels showed a significant correlation with each other, with correlation coefficients of 0.99, 0.78 and 0.69, respectively, suggesting similar origin/behaviour of these radionuclides in the air. Caessium-137 and Potassium-40 were transported to the air as resuspended particle from the soil. The (7)Be and (210)Pb concentrations showed similar seasonal variations, with a tendency for maximum concentrations during the summer months. An inverse relationship was observed between the (7)Be, (210)Pb, (40)K and (137)Cs concentrations and weekly rainfall, indicating washout of atmospheric aerosols carrying these radionuclides.

  17. Estimation of economic costs of particulate air pollution from road transport in China

    NASA Astrophysics Data System (ADS)

    Guo, X. R.; Cheng, S. Y.; Chen, D. S.; Zhou, Y.; Wang, H. Y.

    2010-09-01

    Valuation of health effects of air pollution is becoming a critical component of the performance of cost-benefit analysis of pollution control measures, which provides a basis for setting priorities for action. Beijing has focused on control of transport emission as vehicular emissions have recently become an important source of air pollution, particularly during Olympic games and Post-games. In this paper, we conducted an estimation of health effects and economic cost caused by road transport-related air pollution using an integrated assessment approach which utilizes air quality model, engineering, epidemiology, and economics. The results show that the total economic cost of health impacts due to air pollution contributed from transport in Beijing during 2004-2008 was 272, 297, 310, 323, 298 million US (mean value), respectively. The economic costs of road transport accounted for 0.52, 0.57, 0.60, 0.62, and 0.58% of annual Beijing GDP from 2004 to 2008. Average cost per vehicle and per ton of PM 10 emission from road transport can also be estimated as 106 US /number and 3584 US $ t -1, respectively. These findings illustrate that the impact of road transport contributed particulate air pollution on human health could be substantial in Beijing, whether in physical and economic terms. Therefore, some control measures to reduce transport emissions could lead to considerable economic benefit.

  18. Epidemiology of fine particulate air pollution and human health: biologic mechanisms and who's at risk?

    PubMed Central

    Pope, C A

    2000-01-01

    This article briefly summarizes the epidemiology of the health effects of fine particulate air pollution, provides an early, somewhat speculative, discussion of the contribution of epidemiology to evaluating biologic mechanisms, and evaluates who's at risk or is susceptible to adverse health effects. Based on preliminary epidemiologic evidence, it is speculated that a systemic response to fine particle-induced pulmonary inflammation, including cytokine release and altered cardiac autonomic function, may be part of the pathophysiologic mechanisms or pathways linking particulate pollution with cardiopulmonary disease. The elderly, infants, and persons with chronic cardiopulmonary disease, influenza, or asthma are most susceptible to mortality and serious morbidity effects from short-term acutely elevated exposures. Others are susceptible to less serious health effects such as transient increases in respiratory symptoms, decreased lung function, or other physiologic changes. Chronic exposure studies suggest relatively broad susceptibility to cumulative effects of long-term repeated exposure to fine particulate pollution, resulting in substantive estimates of population average loss of life expectancy in highly polluted environments. Additional knowledge is needed about the specific pollutants or mix of pollutants responsible for the adverse health effects and the biologic mechanisms involved. PMID:10931790

  19. Satellite remote sensing of particulate matter and air quality assessment over global cities

    NASA Astrophysics Data System (ADS)

    Gupta, Pawan; Christopher, Sundar A.; Wang, Jun; Gehrig, Robert; Lee, Yc; Kumar, Naresh

    Using 1 year of aerosol optical thickness (AOT) retrievals from the MODerate resolution Imaging Spectro-radiometer (MODIS) on board NASA's Terra and Aqua satellite along with ground measurements of PM 2.5 mass concentration, we assess particulate matter air quality over different locations across the global urban areas spread over 26 locations in Sydney, Delhi, Hong Kong, New York City and Switzerland. An empirical relationship between AOT and PM 2.5 mass is obtained and results show that there is an excellent correlation between the bin-averaged daily mean satellite and ground-based values with a linear correlation coefficient of 0.96. Using meteorological and other ancillary datasets, we assess the effects of wind speed, cloud cover, and mixing height (MH) on particulate matter (PM) air quality and conclude that these data are necessary to further apply satellite data for air quality research. Our study clearly demonstrates that satellite-derived AOT is a good surrogate for monitoring PM air quality over the earth. However, our analysis shows that the PM 2.5-AOT relationship strongly depends on aerosol concentrations, ambient relative humidity (RH), fractional cloud cover and height of the mixing layer. Highest correlation between MODIS AOT and PM 2.5 mass is found under clear sky conditions with less than 40-50% RH and when atmospheric MH ranges from 100 to 200 m. Future remote sensing sensors such as Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) that have the capability to provide vertical distribution of aerosols will further enhance our ability to monitor and forecast air pollution. This study is among the first to examine the relationship between satellite and ground measurements over several global locations.

  20. AIR QUALITY CRITERIA FOR PARTICULATE MATTER (FOURTH EXTERNAL REVIEW DRAFT) [REVISED CHAPTERS 7, 8, AND 9, JUNE 2004

    EPA Science Inventory

    EPA is in the process of updating and revising, where appropriate, its Air Quality Criteria for Particulate Matter as issued in 1996 (usually referred to as the Criteria Document). Sections 108 and 109 of the Clean Air Act require that EPA carry out a periodic review and revisio...

  1. GUIDANCE FOR THE PERFORMANCE EVALUATION OF THREE-DIMENSIONAL AIR QUALITY MODELING SYSTEMS FOR PARTICULATE MATTER AND VISIBILITY

    EPA Science Inventory

    The National Ambient Air Quality Standards for particulate matter (PM) and the federal regional haze regulations place some emphasis on the assessment of fine particle (PM; 5) concentrations. Current air quality models need to be improved and evaluated against observations to a...

  2. ARE CARS OR TREES MORE IMPORTANT TO PARTICULATE MATTER AIR POLUTION? WHAT RADIOCARBON MEASUREMENTS HAVE TO SAY

    EPA Science Inventory

    Air pollution in the form of particulate matter (PM) originates from both human activities and "natural" phenomena. Setting and achieving National Ambient Air Quality Standards (NAAQS) for PM has to take into account the latter since they are in general less controllable than th...

  3. Use of constant wavelength synchronous spectrofluorimetry for identification of polycyclic aromatic hydrocarbons in air particulate samples

    NASA Astrophysics Data System (ADS)

    Sharma, Homdutt; Jain, V. K.; Khan, Zahid H.

    2013-05-01

    We have developed a simple, rapid, inexpensive method for the identification of fluoranthene (Flan), benz(a)anthracene (BaA), benzo(a)pyrene (BaP), benzo(k)fluoranthene (BkF), pyrene (Pyr), benz(ghi)perylene (BghiP) in suspended particulate matter in an urban environment of Delhi. Suspended particulate matter samples of 24 h duration were collected on glass fiber filter papers. Polycyclic aromatic hydrocarbons (PAHs) were extracted from the filter papers using dichloromethane (DCM) and hexane with ultrasonication method. Comparison of the characteristic emission of spectra of PAHs with standard spectra indicated the degree of condensation of aromatic compounds present in investigated mixtures. It was also possible to identify some individual compounds. However, this identification could be more effective with the use of the respective values of Δλ parameter for each particular component of the mixture.

  4. Use of constant wavelength synchronous spectrofluorimetry for identification of polycyclic aromatic hydrocarbons in air particulate samples.

    PubMed

    Sharma, Homdutt; Jain, V K; Khan, Zahid H

    2013-05-01

    We have developed a simple, rapid, inexpensive method for the identification of fluoranthene (Flan), benz(a)anthracene (BaA), benzo(a)pyrene (BaP), benzo(k)fluoranthene (BkF), pyrene (Pyr), benz(ghi)perylene (BghiP) in suspended particulate matter in an urban environment of Delhi. Suspended particulate matter samples of 24h duration were collected on glass fiber filter papers. Polycyclic aromatic hydrocarbons (PAHs) were extracted from the filter papers using dichloromethane (DCM) and hexane with ultrasonication method. Comparison of the characteristic emission of spectra of PAHs with standard spectra indicated the degree of condensation of aromatic compounds present in investigated mixtures. It was also possible to identify some individual compounds. However, this identification could be more effective with the use of the respective values of Δλ parameter for each particular component of the mixture. PMID:23501938

  5. Determination and analysis of trace metals and surfactant in air particulate matter during biomass burning haze episode in Malaysia

    NASA Astrophysics Data System (ADS)

    Ahmed, Manan; Guo, Xinxin; Zhao, Xing-Min

    2016-09-01

    Trace metal species and surface active agent (surfactant) emitted into the atmosphere from natural and anthropogenic source can cause various health related and environmental problems. Limited data exists for determinations of atmospheric particulate matter particularly trace metals and surfactant concentration in Malaysia during biomass burning haze episode. We used simple and validated effective methodology for the determination of trace metals and surfactant in atmospheric particulate matter (TSP & PM2.5) collected during the biomass burning haze episode in Kampar, Malaysia from end of August to October 2015. Colorimetric method of analysis was undertaken to determine the concentration of anionic surfactant as methylene blue active substance (MBAS) and cationic surfactant as disulphine blue active substance (DBAS) using a UV-Visible spectrophotometer. Particulate samples were also analyzed for trace metals with inductive coupled plasma mass spectrometer (ICP-MS) followed by extraction from glass microfiber filters with close vessel microwave acid digestion. The result showed that the concentrations of surfactant in both samples (TSP & PM2.5) were dominated by MBAS (0.147-4.626 mmol/m3) rather than DBAS (0.111-0.671 mmol/m3) and higher than the other researcher found. Iron (147.31-1381.19 μg/m3) was recorded leading trace metal in PM followed by Al, Zn, Pb, Cd, Cr and others. During the haze period the highest mass concentration of TSP 313.34 μg/m3 and 191.07 μg/m3 for PM2.5 were recorded. Furthermore, the backward air trajectories from Kampar in north of peninsular Malaysia confirmed that nearly all the winds paths originate from Sumatera and Kalimantan, Indonesia.

  6. Ambient particulate air pollution and circulating antioxidant enzymes: A repeated-measure study in healthy adults in Beijing, China.

    PubMed

    Wu, Shaowei; Wang, Bin; Yang, Di; Wei, Hongying; Li, Hongyu; Pan, Lu; Huang, Jing; Wang, Xin; Qin, Yu; Zheng, Chanjuan; Shima, Masayuki; Deng, Furong; Guo, Xinbiao

    2016-01-01

    The association of systemic antioxidant activity with ambient air pollution has been unclear. A panel of 40 healthy college students underwent repeated blood collection for 12 occasions under three exposure scenarios before and after relocating from a suburban area to an urban area in Beijing, China in 2010-2011. We measured various air pollutants including fine particles (PM2.5) and determined circulating levels of antioxidant enzymes extracellular superoxide dismutase (EC-SOD) and glutathione peroxidase 1 (GPX1) in the laboratory. An interquartile range increase of 63.4 μg/m(3) at 3-d PM2.5 moving average was associated with a 6.3% (95% CI: 0.6, 12.4) increase in EC-SOD and a 5.5% (95% CI: 1.3, 9.8) increase in GPX1. Several PM2.5 chemical constituents, including negative ions (nitrate and chloride) and metals (e.g., iron and strontium), were consistently associated with increases in EC-SOD and GPX1. Our results support activation of circulating antioxidant enzymes following exposure to particulate air pollution.

  7. Chemical compositions responsible for inflammation and tissue damage in the mouse lung by coarse and fine particulate samples from contrasting air pollution in Europe.

    PubMed

    Happo, Mikko S; Hirvonen, Maija-Riitta; Halinen, Arja I; Jalava, Pasi I; Pennanen, Arto S; Sillanpaa, Markus; Hillamo, Risto; Salonen, Raimo O

    2008-11-01

    Inflammation is regarded as an important mechanism in mortality and morbidity associated with exposures of cardiorespiratory patients to urban air particulate matter. We investigated the association of the chemical composition and sources of urban air fine (PM(2.5-0.2)) and coarse (PM(10-2.5)) particulate samples with the inflammatory activity in the mouse lung. The particulate samples were collected during selected seasons in six European cities using a high-volume cascade impactor. Healthy C57BL/6J mice were intratracheally instilled with a single dose (10 mg/kg) of the particulate samples. At 4, 12, and 24 h after the exposure, the lungs were lavaged and the bronchoalveolar lavage fluid (BALF) was assayed for indicators of inflammation and tissue damage: cell number, total protein, and cytokines (tumor necrosis factor [TNF]-alpha, interleukin [IL]-6, and KC). Dicarboxylic acids and transition metals, especially Ni and V, in PM(2.5-0.2) correlated positively and some secondary inorganic ions (NO3(-), NH4(+)) negatively with the inflammatory activity. Total organic matter and SO4(2-) had no consistent correlations. In addition, the soil-derived constituents (Ca2+, Al, Fe, Si) showed positive correlations with the PM(2.5-0.2)-induced inflammatory activity, but their role in PM(10-2.5) remained obscure, possibly due to largely undefined biogenic material. Markers of poor biomass and coal combustion, i.e., monosaccharide anhydrides and As, were associated with elevated PAH contents in PM(2.5-0.2) and a consistent immunosuppressive effect. Overall, our results support epidemiological findings that the local sources of incomplete combustion and resuspended road dust are important in urban air particulate pollution-related health effects.

  8. Monitoring particulate carbon collected on Teflon filters: an evaluation of photoacoustic and transmission techniques.

    PubMed

    Bennett, C A; Patty, R R

    1982-02-01

    The Colorado State University Aerosol Workshop provided an excellent opportunity to obtain various particulate samples collected on filters. Our results indicate that the photoacoustic technique is preferable to the transmission technique (integrating plate method) for ambient samples with low-filter loadings since the presence of a nonabsorbing scattering aerosol (ammonium sulfate) only slightly perturbs the photoacoustic signal and significantly affects the transmitted signal. Measurements indicate that the photoacoustic signal depends not only on the energy absorbed from the incident beam but also on the existence of thermal wave interference effects and, especially for heavily loaded filters, on the presence of a nonabsorbing scattering aerosol. PMID:20372464

  9. Polycyclic aromatic hydrocarbons and nitropolycyclic aromatic hydrocarbons in urban air particulates and their relationship to emission sources in the Pan-Japan Sea countries

    NASA Astrophysics Data System (ADS)

    Tang, Ning; Hattori, Tetsuyuki; Taga, Rina; Igarashi, Kazuhiko; Yang, Xiaoyang; Tamura, Kenji; Kakimoto, Hitoshi; Mishukov, Vasiliy F.; Toriba, Akira; Kizu, Ryoichi; Hayakawa, Kazuichi

    Airborne particulates were collected in seven cities in the Pan-Japan Sea countries, Shenyang (China), Vladivostok (Russia), Seoul (South Korea), Kitakyushu, Kanazawa, Tokyo and Sapporo (Japan), in winter and summer from 1997 to 2002. In addition, particulates from domestic coal-burning heaters and diesel engine automobiles were collected in Shenyang and Kanazawa, respectively. Nine polycyclic aromatic hydrocarbons (PAHs) and four nitropolycyclic aromatic hydrocarbons (NPAHs) in the extracts from the particulates were analysed by HPLC with fluorescence and chemiluminescence detections, respectively. The PAHs were fluoranthene, pyrene (Pyr), benz[ a]anthracene, chrysene, benzo[ b]fluoranthene, benzo[ k]fluoranthene, benzo[ a]pyrene, benzo[ ghi]perylene and indeno[1,2,3- cd]pyrene, and NPAHs were 1,3-, 1,6-, 1,8-dinitropyrenes, and 1-nitropyrene (1-NP). Mean atmospheric concentrations of PAHs in Shenyang and Vladivostok were substantially higher than those in Seoul, Tokyo, Sapporo, Kitakyushu and Kanazawa. However, the mean atmospheric concentrations of NPAHs were at the same levels in all cities except Kitakyushu. The expected seasonal variations (greater PAH and NPAH concentrations in winter than in summer) were observed in all cities. In order to study the major contributors of atmospheric PAHs and NPAHs, both cluster analysis and factor analysis were used and three large clusters were identified. Furthermore, the concentration ratios of 1-NP to Pyr were significantly smaller in Shenyang, Vladivostok and Kitakyushu and the values were close to those observed in particulates from coal stove exhaust. By contrast, in Seoul, Kanazawa, Tokyo and Sapporo the [1-NP]/[Pyr] ratio reached values similar to those of particulates released from diesel-engine automobiles. The [1-NP]/[Pyr] concentration ratio seemed to be a suitable indicator of the contribution made by diesel-engine vehicles and coal combustion to urban air particulates.

  10. Concentration, size, and density of total suspended particulates at the air exhaust of concentrated animal feeding operations.

    PubMed

    Yang, Xufei; Lee, Jongmin; Zhang, Yuanhui; Wang, Xinlei; Yang, Liangcheng

    2015-08-01

    Total suspended particulate (TSP) samples were seasonally collected at the air exhaust of 15 commercial concentrated animal feeding operations (CAFOs; including swine finishing, swine farrowing, swine gestation, laying hen, and tom turkey) in the U.S. Midwest. The measured TSP concentrations ranged from 0.38 ± 0.04 mg m⁻³ (swine gestation in summer) to 10.9 ± 3.9 mg m⁻³ (tom turkey in winter) and were significantly affected by animal species, housing facility type, feeder type (dry or wet), and season. The average particle size of collected TSP samples in terms of mass median equivalent spherical diameter ranged from 14.8 ± 0.5 µm (swine finishing in winter) to 30.5 ± 2.0 µm (tom turkey in summer) and showed a significant seasonal effect. This finding affirmed that particulate matter (PM) released from CAFOs contains a significant portion of large particles. The measured particle size distribution (PSD) and the density of deposited particles (on average 1.65 ± 0.13 g cm⁻³) were used to estimate the mass fractions of PM10 and PM2.5 (PM ≤ 10 and ≤ 2.5 μm, respectively) in the collected TSP. The results showed that the PM10 fractions ranged from 12.7 ± 5.1% (tom turkey) to 21.1 ± 3.2% (swine finishing), whereas the PM2.5 fractions ranged from 3.4 ± 1.9% (tom turkey) to 5.7 ± 3.2% (swine finishing) and were smaller than 9.0% at all visited CAFOs. This study applied a filter-based method for PSD measurement and deposited particles as a surrogate to estimate the TSP's particle density. The limitations, along with the assumptions adopted during the calculation of PM mass fractions, must be recognized when comparing the findings to other studies.

  11. Particulate matter concentrations in residences: an intervention study evaluating stand-alone filters and air conditioners

    PubMed Central

    Batterman, S.; Du, L.; Mentz, G.; Mukherjee, B.; Parker, E.; Godwin, C.; Chin, J.-Y.; O'Toole, A.; Robins, T.; Rowe, Z.; Lewis, T.

    2014-01-01

    This study, a randomized controlled trial, evaluated the effectiveness of free-standing air filters and window air conditioners (ACs) in 126 low-income households of children with asthma. Households were randomized into a control group, a group receiving a free-standing HEPA filter placed in the child's sleeping area, and a group receiving the filter and a window-mounted AC. Indoor air quality (IAQ) was monitored for week-long periods over three to four seasons. High concentrations of particulate matter (PM) and carbon dioxide were frequently seen. When IAQ was monitored, filters reduced PM levels in the child's bedroom by an average of 50%. Filter use varied greatly among households and declined over time, for example, during weeks when pollutants were monitored, filter use was initially high, averaging 84 ± 27%, but dropped to 63 ± 33% in subsequent seasons. In months when households were not visited, use averaged only 34 ± 30%. Filter effectiveness did not vary in homes with central or room ACs. The study shows that measurements over multiple seasons are needed to characterize air quality and filter performance. The effectiveness of interventions using free-standing air filters depends on occupant behavior, and strategies to ensure filter use should be an integral part of interventions. PMID:22145709

  12. Biomass fuel use and the exposure of children to particulate air pollution in southern Nepal

    PubMed Central

    Devakumar, D.; Semple, S.; Osrin, D.; Yadav, S.K.; Kurmi, O.P.; Saville, N.M.; Shrestha, B.; Manandhar, D.S.; Costello, A.; Ayres, J.G.

    2014-01-01

    The exposure of children to air pollution in low resource settings is believed to be high because of the common use of biomass fuels for cooking. We used microenvironment sampling to estimate the respirable fraction of air pollution (particles with median diameter less than 4 μm) to which 7–9 year old children in southern Nepal were exposed. Sampling was conducted for a total 2649 h in 55 households, 8 schools and 8 outdoor locations of rural Dhanusha. We conducted gravimetric and photometric sampling in a subsample of the children in our study in the locations in which they usually resided (bedroom/living room, kitchen, veranda, in school and outdoors), repeated three times over one year. Using time activity information, a 24-hour time weighted average was modeled for all the children in the study. Approximately two-thirds of homes used biomass fuels, with the remainder mostly using gas. The exposure of children to air pollution was very high. The 24-hour time weighted average over the whole year was 168 μg/m3. The non-kitchen related samples tended to show approximately double the concentration in winter than spring/autumn, and four times that of the monsoon season. There was no difference between the exposure of boys and girls. Air pollution in rural households was much higher than the World Health Organization and the National Ambient Air Quality Standards for Nepal recommendations for particulate exposure. PMID:24533994

  13. Medication use modifies the health effects of particulate sulfate air pollution in children with asthma.

    PubMed Central

    Peters, A; Dockery, D W; Heinrich, J; Wichmann, H E

    1997-01-01

    Previous controlled studies have indicated that asthma medication modifies the adverse effects of sulfur dioxide (SO2) on lung function and asthma symptoms. The present report analyzed the role of medication use in a panel study of children with mild asthma. Children from Sokolov (n = 82) recorded daily peak expiratory flow (PEF) measurements, symptoms, and medication use in a diary. Linear and logistic regression analyses estimated the impact of concentrations of sulfate particles with diameters less than 2.5 microns, adjusting for linear trend, mean temperature, weekend (versus weekday), and prevalence of fever in the sample. Fifty-one children took no asthma medication, and only 31 were current medication users. Most children were treated with theophylline; only nine used sprays containing beta-agonist. For the nonmedicated children, weak associations between a 5-day mean of sulfates and respiratory symptoms were observed. Medicated children, in contrast, increased their beta-agonist use in direct association with an increase in 5-day mean of sulfates, but medication use did not prevent decreases in PEF and increases in the prevalence of cough attributable to particulate air pollution. Medication use was not a confounder but attenuated the associations between particulate air pollution and health outcomes. Images Figure 1. Figure 1. Figure 2. A Figure 2. B PMID:9189709

  14. Extracts of airborne particulates collected at different locations in the Copenhagen area induce the expression of cytochrome P-450IA1

    SciTech Connect

    Roepstorff, V.; Ostenfeldt, N.; Autrup, H. )

    1990-08-01

    Acetone extracts of airborne particulates collected at different sites in the greater Copenhagen area were tested for their ability to induce the expression of cytochrome P-450IA1 RNA in a human breast cancer cell line, T47-D. The induction efficiency was expressed as an benz(a) anthracene equivalents, that is, the amount of benz(a)anthracene required to give the same level of induction. A significantly higher level of induction of P-450IA1 RNA was seen with samples collected on days with a smog alert. The inducibility of samples collected in rural areas was lower, but no significant difference in inducibility was found between samples collected in urban and suburban areas. Lack of correlation between the mutagenic activity in the Ames assay and the P-450IA1-inducing activity of the samples suggests that the complex mixture of compounds found in airborne particulates may have different biological activities in the two short-term test systems. Measurements of P-450IA1 inducibility provide a new, sensitive approach to assess the biological activity of material present in air pollution. The presence in airborne particulates of chemical compounds that induce cytochrome P-450IA1 an enzyme responsible for the metabolism of ubiquitous chemical carcinogens, suggests that the general environment may change an individual's response to the impact of exogenous chemicals, including the carcinogens present in cigarette smoke.

  15. PAH and PCB in the Baltic -- A budget approach including fluxes, occurrence and concentration variability in air, suspended and settling particulates in water, surface sediments and river water

    SciTech Connect

    Broman, D.; Axelman, J.; Bandh, C.; Ishaq, R.; Naef, C.; Pettersen, H.; Zebuehr, Y.

    1995-12-31

    In order to study the fate and occurrence of two groups of hydrophobic compounds in the Baltic aquatic environment a large number of samples were collected from the southern Baltic proper to the northern Bothnian Bay for the analyses of polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs). The following sample matrices were collected; bottom surface sediments (0--1 cm, collected with gravity corer), settling particulate matter (collected with sediment traps), open water samples and over water samples (suspended particulates and dissolved fraction sampled by filtration) and air samples (aerosols and vapor phase sampled by filtration). All samples (except over water and air) were collected at open sea in the Baltic. The analyses results have been used to make a model approach on the whole Baltic and to elucidate different aspects of the behavior of PAHs and PCBs in the Baltic, such as the occurrence of the compounds in water and sediment, the total content as well as the concentration variabilities over such a large geographical area, Further, the data on settling particulate matter as well as the air concentration data were used to estimate the total fluxes of PAHs and PCBs to the bottoms of the Baltic and t o the total water area of the Baltic, respectively. Further, data on the PAH and PCB content in river water from four major rivers provides rough estimates of the riverine input to the Baltic. The dynamics of PAHs and PCBs within the water mass have also been studied in terms of settling velocities and residence times in the water mass for these type of compounds in the open Baltic.

  16. The Lighter-Than-Air Society Collection.

    ERIC Educational Resources Information Center

    Akron - Summit County Public Library, OH.

    This bibliography of the holdings of the Lighter-Than-Air Society includes books, serials, manuscripts, and photographs acquired by gift and purchase. Information on Lighter-Than-Air craft is contained in technical treatises, scholarly histories, biographies, popular narratives and tales of adventure in English, French, German, Italian, Spanish,…

  17. AQA-PM: Extension of the Air-Quality model for Austria with satellite based Particulate Matter estimates

    NASA Astrophysics Data System (ADS)

    Hirtl, M.; Mantovani, S.; Krüger, B. C.; Triebnig, G.

    2012-04-01

    Air quality is a key element for the well-being and quality of life of European citizens. Air pollution measurements and modeling tools are essential for assessment of air quality according to EU legislation. The responsibilities of ZAMG as the national weather service of Austria include the support of the federal states and the public in questions connected to the protection of the environment in the frame of advisory and counseling services as well as expert opinions. The Air Quality model for Austria (AQA) is operated at ZAMG in cooperation with the University of Natural Resources and Applied Life Sciences in Vienna (BOKU) by order of the regional governments since 2005. AQA conducts daily forecasts of gaseous and particulate (PM10) air pollutants over Austria. In the frame of the project AQA-PM (funded by FFG), satellite measurements of the Aerosol Optical Thickness (AOT) and ground-based PM10-measurements are combined to highly-resolved initial fields using assimilation techniques. It is expected that the assimilation of satellite measurements will significantly improve the quality of AQA. Currently no observations are considered in the modeling system. At the current stage of the project, different datasets have been collected (ground measurements, satellite measurements, fine resolved regional emission inventories) and are analyzed and prepared for further processing. This contribution gives an overview of the project working plan and the upcoming developments. The goal of this project is to improve the PM10-forecasts for Austria with the integration of satellite based measurements and to provide a comprehensive product-platform.

  18. Real-Time Cell-Electronic Sensing of Coal Fly Ash Particulate Matter for Toxicity-Based Air Quality Monitoring.

    PubMed

    Moe, Birget; Yuan, Chungang; Li, Jinhua; Du, Haiying; Gabos, Stephan; Le, X Chris; Li, Xing-Fang

    2016-06-20

    The development of a unique bioassay for cytotoxicity analysis of coal fly ash (CFA) particulate matter (PM) and its potential application for air quality monitoring is described. Using human cell lines, A549 and SK-MES-1, as live probes on microelectrode-embedded 96-well sensors, impedance changes over time are measured as cells are treated with varying concentrations (1 μg/mL-20 mg/mL) of CFA samples. A dose-dependent impedance change is determined for each CFA sample, from which an IC50 histogram is obtained. The assay was successfully applied to examine CFA samples collected from three coal-fired power plants (CFPs) in China. The samples were separated into three size fractions: PM2.5 (<2.5 μm), PM10-2.5 (2.5 μm < x < 10 μm), and PM10 (>10 μm). Dynamic cell-response profiles and temporal IC50 histograms of all samples show that CFA cytotoxicity depends on concentration, exposure time (0-60 h), and cell-type (SK-MES-1 > A549). The IC50 values differentiate the cytotoxicity of CFA samples based on size fraction (PM2.5 ≈ PM10-2.5 ≫ PM10) and the sampling location (CFP2 > CFP1 ≈ CFP3). Differential cytotoxicity measurements of particulates in human cell lines using cell-electronic sensing provide a useful tool for toxicity-based air quality monitoring and risk assessment. PMID:27124590

  19. Retinal Microvascular Responses to Short-Term Changes in Particulate Air Pollution in Healthy Adults

    PubMed Central

    Louwies, Tijs; Kicinski, Michal; De Boever, Patrick; Nawrot, Tim S.

    2013-01-01

    Background: Microcirculation plays an important role in the physiology of cardiovascular health. Air pollution is an independent risk factor for the development and progression of cardiovascular diseases, but the number of studies on the relation between air pollution and the microcirculation is limited. Objectives: We examined the relationship between short-term changes in air pollution and microvascular changes. Methods: We measured retinal microvasculature using fundus image analysis in a panel of 84 healthy adults (52% female), 22–63 years of age, during January–May 2012. Blood vessels were measured as central retinal arteriolar/venular equivalent (CRAE/CRVE), with a median of 2 measurements (range, 1–3). We used monitoring data on particulate air pollution (PM10) and black carbon (BC). Mixed-effect models were used to estimate associations between CRAE/CRVE and exposure to PM10 and BC using various exposure windows. Results: CRAE and CRVE were associated with PM10 and BC concentrations, averaged over the 24 hr before the retinal examinations. Each 10-µg/m3 increase in PM10 was associated with a 0.93-µm decrease (95% CI: –1.42, –0.45; p = 0.0003) in CRAE and a 0.86-µm decrease (95% CI: –1.42, –0.30; p = 0.004) in CRVE after adjusting for individual characteristics and time varying conditions such as ambient temperature. Each 1-µg/m3 increase in BC was associated with a 1.84-µm decrease (95% CI: –3.18, –0.51; p < 0.001) in CRAE. Conclusions: Our findings suggest that the retinal microvasculature responds to short-term changes in air pollution levels. These results support a mechanistic pathway through which air pollution can act as a trigger of cardiovascular events at least in part through effects on the microvasculature. Citation: Louwies T, Int Panis L, Kicinski M, De Boever P, Nawrot TS. 2013. Retinal microvascular responses to short-term changes in particulate air pollution in healthy adults. Environ Health Perspect 121:1011–1016;

  20. Regional anomalies in chronic obstructive pulmonary disease; comparison with acid air pollution particulate characteristics.

    PubMed

    Winchester, J W

    1989-01-01

    Mortality rates due to chronic obstructive pulmonary disease (COPD) for males and females in standard metropolitan statistical areas are highest in two broad regions of the U.S. One is the southeast, with age-adjusted rates high in Georgia and north Florida but decreasing toward south Florida; the other is the western plains, with rates high in Colorado and north Texas but decreasing toward south Texas. Rates are generally low in the northeast, upper midwest, and far west, as well as in the largest cities of these regions. These geographic patterns suggest that atmospheric environmental conditions may contribute to the risk of COPD. Based on measured aerosol characteristics and atmospheric chemical reasoning, it is argued that ambient air in the high COPD regions may be especially irritating to the respiratory tract because of fine particles that contain the reaction products of acid air pollutants. In the southeast, sulfuric acid aerosol concentrations are high, apparently because of a sunny warm humid climate that favors rapid oxidation of sulfur dioxide as well as the region's proximity to large primary air pollution sources further north. Particulate sulfur is also associated with soil mineral constituents. In the western plains, concentrations of alkaline dust are high because of soil erosion during windy dry conditions. Acid air pollutants can be scavenged to mineral particle surfaces and form chemical reaction products that may include solubilized mineral aluminum. These may be inhaled and deposited in the respiratory tract so as to contribute to COPD mortality risk.

  1. Spatial variations of particulate matter and air toxics in communities adjacent to the Port of Oakland.

    PubMed

    Fujita, Eric M; Campbell, David E; Arnott, W Patrick; Lau, Virginia; Martien, Philip T

    2013-12-01

    The Bay Area Air Quality Management District (BAAQMD) sponsored the West Oakland Monitoring Study (WOMS) to provide supplemental air quality monitoring that will be used by the BAAQMD to evaluate local-scale dispersion modeling of diesel emissions and other toxic air contaminants for the area within and around the Port of Oakland. The WOMS was conducted during two seasonal periods of 4 weeks in summer 2009 and winter 2009/2010. Monitoring data showed spatial patterns of pollutant concentrations that were generally consistent with proximity to vehicle traffic. Concentrations of directly emitted pollutants were highest on heavily traveled roads with consistently lower concentrations away from the roadways. Pollutants that have higher emission rates from diesel trucks (nitric oxide, black carbon) tended to exhibit sharper gradients than pollutants that are largely associated with gasoline vehicles, such as carbon monoxide and volatile organic compounds, including benzene, toluene, ethylbenzene, and xylenes (BTEX). BTEX concentrations in West Oakland were similar to those measured at the three air toxics monitoring network sites in the Bay Area (San Francisco, Fremont, and San Jose). Aldehyde levels were higher in Fremont and San Jose than in West Oakland, reflecting greater contributions from photo-oxidation of hydrocarbons downwind of the Bay Area. A 2005 modeling-based health risk assessment of diesel particulate matter concentrations is consistent with aerosol carbon concentrations measured during the WOMS after adjusting for recent mitigation measures and improved estimates of heavy-duty truck traffic volumes.

  2. Framework for using deciduous tree leaves as biomonitors for intraurban particulate air pollution in exposure assessment.

    PubMed

    Gillooly, Sara E; Shmool, Jessie L Carr; Michanowicz, Drew R; Bain, Daniel J; Cambal, Leah K; Shields, Kyra Naumoff; Clougherty, Jane E

    2016-08-01

    Fine particulate matter (PM2.5) air pollution, varying in concentration and composition, has been shown to cause or exacerbate adverse effects on both human and ecological health. The concept of biomonitoring using deciduous tree leaves as a proxy for intraurban PM air pollution in different areas has previously been explored using a variety of study designs (e.g., systematic coverage of an area, source-specific focus), deciduous tree species, sampling strategies (e.g., single day, multi-season), and analytical methods (e.g., chemical, magnetic) across multiple geographies and climates. Biomonitoring is a low-cost sampling method and may potentially fill an important gap in current air monitoring methods by providing low-cost, longer-term urban air pollution measures. As such, better understanding of the range of methods, and their corresponding strengths and limitations, is critical for employing the use of tree leaves as biomonitors for pollution to improve spatially resolved exposure assessments for epidemiological studies and urban planning strategies. PMID:27450373

  3. 76 FR 56750 - Agency Information Collection Activities; Proposed Collection; Comment Request; Air Emissions...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-14

    ... AGENCY Agency Information Collection Activities; Proposed Collection; Comment Request; Air Emissions... submitting comments. E-mail: a-and-r-docket@epa.gov . Fax: (202) 566-1741. Mail: Air Emissions Reporting... on that basis, are authorized to implement and enforce the Air Emissions Reporting Requirements...

  4. Health impacts due to particulate air pollution in Volos City, Greece.

    PubMed

    Moustris, Konstantinos P; Proias, George T; Larissi, Ioanna K; Nastos, Panagiotis T; Koukouletsos, Konstantinos V; Paliatsos, Athanasios G

    2016-01-01

    There is great consensus among the scientific community that suspended particulate matter is considered as one of the most harmful pollutants, particularly the inhalable particulate matter with aerodynamic diameter less than 10 μm (PM10) causing respiratory health problems and heart disorders. Average daily concentrations exceeding established standard values appear, among other cases, to be the main cause of such episodes, especially during Saharan dust episodes, a natural phenomenon that degrades air quality in the urban area of Volos. In this study the AirQ2.2.3 model, developed by the World Health Organization (WHO) European Center for Environment and Health, was used to evaluate adverse health effects by PM10 pollution in the city of Volos during a 5-year period (2007-2011). Volos is a coastal medium size city in the Thessaly region. The city is located on the northern side of the Gulf of Pagassitikos, on the east coast of Central Greece. Air pollution data were obtained by a fully automated monitoring station, which was established by the Municipal Water Supply and Sewage Department in the Greater Area of Volos, located in the centre of the city. The results of the current study indicate that when the mean annual PM10 concentration exceeds the corresponding European Union (EU) threshold value, the number of hospital admissions for respiratory disease (HARD) is increased by 25% on average. There is also an estimated increase of about 2.5% in HARD compared to the expected annual HARD cases for Volos. Finally, a strong correlation was found between the number of days exceeding the EU daily threshold concentration ([PM10] ≥ 50 μg m(-3)) and the annual HARD cases.

  5. Health impacts due to particulate air pollution in Volos City, Greece.

    PubMed

    Moustris, Konstantinos P; Proias, George T; Larissi, Ioanna K; Nastos, Panagiotis T; Koukouletsos, Konstantinos V; Paliatsos, Athanasios G

    2016-01-01

    There is great consensus among the scientific community that suspended particulate matter is considered as one of the most harmful pollutants, particularly the inhalable particulate matter with aerodynamic diameter less than 10 μm (PM10) causing respiratory health problems and heart disorders. Average daily concentrations exceeding established standard values appear, among other cases, to be the main cause of such episodes, especially during Saharan dust episodes, a natural phenomenon that degrades air quality in the urban area of Volos. In this study the AirQ2.2.3 model, developed by the World Health Organization (WHO) European Center for Environment and Health, was used to evaluate adverse health effects by PM10 pollution in the city of Volos during a 5-year period (2007-2011). Volos is a coastal medium size city in the Thessaly region. The city is located on the northern side of the Gulf of Pagassitikos, on the east coast of Central Greece. Air pollution data were obtained by a fully automated monitoring station, which was established by the Municipal Water Supply and Sewage Department in the Greater Area of Volos, located in the centre of the city. The results of the current study indicate that when the mean annual PM10 concentration exceeds the corresponding European Union (EU) threshold value, the number of hospital admissions for respiratory disease (HARD) is increased by 25% on average. There is also an estimated increase of about 2.5% in HARD compared to the expected annual HARD cases for Volos. Finally, a strong correlation was found between the number of days exceeding the EU daily threshold concentration ([PM10] ≥ 50 μg m(-3)) and the annual HARD cases. PMID:26421944

  6. Aerodynamic size distribution of suspended particulate matter in the ambient air in the city of Cleveland, Ohio

    NASA Technical Reports Server (NTRS)

    Leibecki, H. F.; King, R. B.; Fordyce, J. S.

    1974-01-01

    The City of Cleveland Division of Air Pollution Control and NASA jointly investigated the chemical and physical characteristics of the suspended particulate matter in Cleveland, and as part of the program, measurements of the particle size distribution of ambient air samples at five urban locations during August and September 1972 were made using high-volume cascade impactions. The distributions were evaluated for lognormality, and the mass median diameters were compared between locations and as a function of resultant wind direction. Junge-type distributions were consistent with dirty continental aerosols. About two-thirds of the suspended particulate matter observed in Cleveland is less than 7 microns in diameter.

  7. The association of particulate air metal concentrations with heart rate variability.

    PubMed Central

    Magari, Shannon R; Schwartz, Joel; Williams, Paige L; Hauser, Russ; Smith, Thomas J; Christiani, David C

    2002-01-01

    Numerous studies show an association between particulate air pollution and adverse health effects. Particulate matter is a complex mixture of elemental carbon, ammonium, sulfates, nitrates, organic components, and metals. The mechanisms of action of particulate matter less than or equal to 2.5 micro m in mean aerodynamic diameter (PM(2.5)), as well as the constituents responsible for the observed cardiopulmonary health effects, have not been identified. In this study we focused on the association between the metallic component of PM(2.5) and cardiac autonomic function based on standard heart rate variability (HRV) measures in an epidemiologic study of boilermakers. Thirty-nine male boilermakers were monitored throughout a work shift. Each subject wore an ambulatory electrocardiogram (Holter) monitor and a personal monitor to measure PM(2.5). We used mixed-effects models to regress heart rate and SDNN index (standard deviation of the normal-to-normal) on PM(2.5) and six metals (vanadium, nickel, chromium, lead, copper, and manganese). There were statistically significant mean increases in the SDNN index of 11.30 msec and 3.98 msec for every 1 micro g/m(3) increase in the lead and vanadium concentrations, respectively, after adjusting for mean heart rate, age, and smoking status. Small changes in mean heart rate were seen with all exposure metrics. The results of this study suggest an association between exposure to airborne metals and significant alterations in cardiac autonomic function. These results extend our understanding of the adverse health effects of the metals component of ambient PM(2.5). PMID:12204821

  8. Collection of ultrafine diesel particulate matter (DPM) in cylindrical single-stage wet electrostatic precipitators.

    PubMed

    Saiyasitpanich, Phirun; Keener, Tim C; Lu, Mingming; Khang, Soon-Jai; Evans, Douglas E

    2006-12-15

    Long-term exposures to diesel particulate matter (DPM) emissions are linked to increasing adverse human health effects due to the potential association of DPM with carcinogenicity. Current diesel vehicular particulate emission regulations are based solely upon total mass concentration, albeit it is the submicrometer particles that are highly respirable and the most detrimental to human health. In this study, experiments were performed with a tubular single-stage wet electrostatic precipitator (wESP) to evaluate its performance for the removal of number-based DPM emissions. A nonroad diesel generator utilizing a low sulfur diesel fuel (500 ppmw) operating under varying load conditions was used as a stationary DPM emission source. An electrical low-pressure impactor (ELPI) was used to quantify the number concentration distributions of diesel particles in the diluted exhaust gas at each tested condition. The wESP was evaluated with respect to different operational control parameters such as applied voltage, gas residence time, etc., to determine their effect on overall collection efficiency, as well as particle size dependent collection efficiency. The results show that the total DPM number concentrations in the untreated diesel exhaust are in the magnitude of approximately108/cm(3) at all engine loads with the particle diameter modes between 20 and 40 nm. The measured collection efficiency of the wESP operating at 70 kV based on total particle numbers was 86% at 0 kW engine load and the efficiency decreased to 67% at 75 kW due to a decrease in gas residence time and an increase in particle concentrations. At a constant wESP voltage of 70 kV and at 75 kW engine load, the variation of gas residence time within the wESP from approximately 0.1 to approximately 0.4 s led to a substantial increase in the collection efficiency from 67% to 96%. In addition, collection efficiency was found to be directly related to the applied voltage, with increasing collection efficiency

  9. Health and respirable particulate (PM10) air pollution: a causal or statistical association?

    PubMed Central

    Gamble, J F; Lewis, R J

    1996-01-01

    Numerous studies have reported weak but statistically significant acute health effects of particulate air pollution. The associations are observed at levels below the current U.S. standard of 150 micrograms/m3 (24 hr). Health effects include acute increased mortality from cardiopulmonary conditions and acute morbidity such as hospital admissions for related diseases. We reviewed recent epidemiology studies to evaluate whether criteria for causality are met, and we conclude that they are not. The weak associations are as likely to be due to confounding by weather, copollutants, or exposure misclassification as by ambient particulate matter (PM). The results from the same metropolitan areas are inconsistent, and PM explains such a small amount of the variability in mortality/morbidity that the association has little practical significance. Finally, experimental chamber studies of susceptible individuals exposed to PM concentrations well above 150 micrograms/m3 provide no evidence to support the morbidity/mortality findings. None of the criteria for establishing causality of the PM/mortality hypothesis are clearly met at ambient concentrations common in many U.S. cities. Images p838-a Figure 1. PMID:8875158

  10. Health risk assessment of inhabitants exposed to PAHs particulate matter in air.

    PubMed

    Froehner, Sandro; Maceno, Marcell; Machado, Karina Scurupa; Grube, Marianne

    2011-01-01

    The presence of polycyclic aromatic hydrocarbon compounds (PAHs) was investigated in the particulate matter of samples taken at six sampling sites in the city of Curitiba (southern Brazil). The concentrations of suspended particulate matter ranged from 11.02 to 177.27 ng/m(3). The analysis showed that 14 of the 16 PAHs are considered a priority compound by the USEPA (US Environmental Protection Agency). The mixture of PAHs was predominantly composed of PAHs with 3 and 4 aromatic rings. Isomer pair ratios show that the main source of PAHs was from burning fossil fuels (gasoline and diesel oil), although other sources may have contributed also. Benzo(a)pyrene, (BaP), regarded one of the most toxic PAHs, was present in all samples, but with concentrations lower than the maximum concentrations defined by some EU Countries. The risk assessment was conducted using the toxic equivalent factor (TEF) considering the toxicity of the individual PAHs compared to BaP. The BaP(eq) for all samples was between 0.42-1.12 ng/m(3). The equivalent BaP(eq) indicated low health risk associated with exposure to the total PAHs content in air. The incremental lifetime cancer risk (ILCR) model was used to find the risk level for workers close to the emitting pollution sources. Outdoor exposure showed no risk for the amount of PAHs emitted. The acceptable risk is 10(-6); however, all results were lower than this value. PMID:21644163

  11. 76 FR 60020 - Agency Information Collection Activities: Proposed Collection; Comment Request; Ambient Air...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-28

    .../quality control data and air monitoring network design information. The U.S. EPA and others (e.g., state... AGENCY Agency Information Collection Activities: Proposed Collection; Comment Request; Ambient Air... is planning to submit a request to renew an existing approved Information Collection Request (ICR)...

  12. Toxicologically important trace elements and organic compounds investigated in size-fractionated urban particulate matter collected near the Prague highway.

    PubMed

    Sysalová, Jiřina; Sýkorová, Ivana; Havelcová, Martina; Száková, Jiřina; Trejtnarová, Hana; Kotlík, Bohumil

    2012-10-15

    Urban particulate matter was collected in the most exposed area of Prague, near a busy highway, in order to provide petrographic and chemical characterization useful for health impact assessment in that locality or other applications. Samples were collected from filters of the air conditioning system in two years, 2009 and 2010, and sieved into four grain-size fractions: 0.507-0.119 mm, 0.119-0.063 mm, <0.063 mm and sub-fraction <0.025 mm. Methods of destructive and non-destructive analyses were used for the determination of total analyte (As, Cd, Cr, Mn, Ni, Pb, Zn) contents. Labile forms of some toxicologically important analytes were tested in 2 M HNO(3) extracted solutions. A composition of inorganic and carbonaceous particles of natural and anthropogenic origin and their morphology were studied by optical and electron microscopy. Organic solvent extracts of the samples were analyzed using gas chromatography to compare the organic compound distribution in fractions. Only slight differences between 2009 and 2010 years are visible. The relatively high extractable part of most investigated elements confirms mobility and potential availability to organisms. The changes can be recognized in the petrographic and organic composition in samples from both years, which were likely the result of various inputs of source materials. Specific organic marker compounds indicate contribution from fossil fuels, plant materials and bacteria.

  13. An indoor air filtration study in homes of elderly: cardiovascular and respiratory effects of exposure to particulate matter

    PubMed Central

    2013-01-01

    Background Exposure to particulate air pollution increases respiratory and cardiovascular morbidity and mortality, especially in elderly, possibly through inflammation and vascular dysfunction. Methods We examined potential beneficial effects of indoor air filtration in the homes of elderly, including people taking vasoactive drugs. Forty-eight nonsmoking subjects (51 to 81 years) in 27 homes were included in this randomized, double-blind, crossover intervention study with consecutive two-week periods with or without the inclusion of a high-efficiency particle air filter in re-circulating custom built units in their living room and bedroom. We measured blood pressure, microvascular and lung function and collected blood samples for hematological, inflammation, monocyte surface and lung cell damage markers before and at day 2, 7 and 14 during each exposure scenario. Results The particle filters reduced the median concentration of PM2.5 from approximately 8 to 4 μg/m3 and the particle number concentration from 7669 to 5352 particles/cm3. No statistically significant effects of filtration as category were observed on microvascular and lung function or the biomarkers of systemic inflammation among all subjects, or in the subgroups taking (n = 11) or not taking vasoactive drugs (n = 37). However, the filtration efficacy was variable and microvascular function was within 2 days significantly increased with the actual PM2.5 decrease in the bedroom, especially among 25 subjects not taking any drugs. Conclusion Substantial exposure contrasts in the bedroom and no confounding by drugs appear required for improved microvascular function by air filtration, whereas no other beneficial effect was found in this elderly population. PMID:24373585

  14. Characterization of particulate and vapor phase polycyclic aromatic hydrocarbons in indoor and outdoor air of primary schools

    NASA Astrophysics Data System (ADS)

    Krugly, Edvinas; Martuzevicius, Dainius; Sidaraviciute, Ruta; Ciuzas, Darius; Prasauskas, Tadas; Kauneliene, Violeta; Stasiulaitiene, Inga; Kliucininkas, Linas

    2014-01-01

    The indoor air of schools is considered as one of the most important factors affecting the health of children. The aim of the presented research was to characterize polycyclic aromatic hydrocarbons (PAHs) in indoor and outdoor air of schools. The sampling campaign was conducted during the heating season of 2011/2012. Five primary schools from various urban settings in the city of Kaunas, Lithuania. 150 daily samples of particulate and vapor phases were collected during the sampling period. The ultrasonic extractions followed by the gas chromatography and mass spectroscopy (GS/MS) analyses were used for the determination of PAHs. The concentration of total PAHs in the PM2.5 fraction ranged from 20.3 to 131.1 ng m-3, while total suspended particles (TSP) fraction contained from 19.9 to 80.3 ng m-3 of total PAHs. The vapor phase concentration of PAHs ranged from 67.2 to 372.5 ng m-3. The most abundant PAH in both phases was naphthalene. In order to define sources of indoor and outdoor PAHs several source apportionment methods were applied. The analysis revealed that emissions from motor vehicles and fuel burning for heating purposes were the major sources of PAHs in the city of Kaunas.

  15. Analytical methods in bioassay-directed investigations of mutagenicity of air particulate material.

    PubMed

    Marvin, Christopher H; Hewitt, L Mark

    2007-01-01

    The combination of short-term bioassays and analytical chemical techniques has been successfully used in the identification of a variety of mutagenic compounds in complex mixtures. Much of the early work in the field of bioassay-directed fractionation resulted from the development of a short-term bacterial assay employing Salmonella typhimurium; this assay is commonly known as the Ames assay. Ideally, analytical methods for assessment of mutagenicity of any environmental matrix should exhibit characteristics including high capacity, good selectivity, good analytical resolution, non-destructiveness, and reproducibility. A variety of extraction solvents have been employed in investigations of mutagenicity of air particulate; sequential combination of dichloromethane followed by methanol is most popular. Soxhlet extraction has been the most common extraction method, followed by sonication. Attempts at initial fractionation using different extraction solvents have met with limited success and highlight the need for fractionation schemes applicable to moderately polar and polar mutagenic compounds. Fractionation methods reported in the literature are reviewed according to three general schemas: (i) acid/base/neutral partitioning followed by fractionation using open-column chromatography and/or HPLC; (ii) fractionation based on normal-phase (NP) HPLC using a cyanopropyl or chemically similar stationary phase; and (iii) fractionation by open-column chromatography followed by NP-HPLC. The HPLC methods may be preparative, semi-preparative, or analytical scale. Variations based on acid/base/neutral partitioning followed by a chromatographic separation have also been employed. Other lesser-used approaches involve fractionation based on ion-exchange and thin-layer chromatographies. Although some of the methodologies used in contemporary studies of mutagenicity of air particulate do not represent significant advances in technology over the past 30 years, their simplicity, low

  16. Removal of particulate matter in a tubular wet electrostatic precipitator using a water collection electrode.

    PubMed

    Kim, Jong-Ho; Yoo, Hee-Jung; Hwang, You-Seong; Kim, Hyeok-Gyu

    2012-01-01

    As one of the effective control devices of air pollutants, the wet electrostatic precipitator (ESP) is an effective technique to eliminate acid mist and fine particles that are re-entrained in a collection electrode. However, its collection efficiency can deteriorate, as its operation is subject to water-induced corrosion of the collection electrode. To overcome this drawback, we modified the wet ESP system with the installation of a PVC dust precipitator wherein water is supplied as a replacement of the collection electrode. With this modification, we were able to construct a compact wet ESP with a small specific collection area (SCA, 0.83 m(2)/(m(3)/min)) that can acquire a high collection efficiency of fine particles (99.7%).

  17. Removal of Particulate Matter in a Tubular Wet Electrostatic Precipitator Using a Water Collection Electrode

    PubMed Central

    Kim, Jong-Ho; Yoo, Hee-Jung; Hwang, You-Seong; Kim, Hyeok-Gyu

    2012-01-01

    As one of the effective control devices of air pollutants, the wet electrostatic precipitator (ESP) is an effective technique to eliminate acid mist and fine particles that are re-entrained in a collection electrode. However, its collection efficiency can deteriorate, as its operation is subject to water-induced corrosion of the collection electrode. To overcome this drawback, we modified the wet ESP system with the installation of a PVC dust precipitator wherein water is supplied as a replacement of the collection electrode. With this modification, we were able to construct a compact wet ESP with a small specific collection area (SCA, 0.83 m2/(m3/min)) that can acquire a high collection efficiency of fine particles (99.7%). PMID:22577353

  18. Particulate matter, air quality and climate: lessons learned and future needs

    NASA Astrophysics Data System (ADS)

    Fuzzi, S.; Baltensperger, U.; Carslaw, K.; Decesari, S.; Denier van der Gon, H.; Facchini, M. C.; Fowler, D.; Koren, I.; Langford, B.; Lohmann, U.; Nemitz, E.; Pandis, S.; Riipinen, I.; Rudich, Y.; Schaap, M.; Slowik, J. G.; Spracklen, D. V.; Vignati, E.; Wild, M.; Williams, M.; Gilardoni, S.

    2015-07-01

    The literature on atmospheric particulate matter (PM), or atmospheric aerosol, has increased enormously over the last 2 decades and amounts now to some 1500-2000 papers per year in the refereed literature. This is in part due to the enormous advances in measurement technologies, which have allowed for an increasingly accurate understanding of the chemical composition and of the physical properties of atmospheric particles and of their processes in the atmosphere. The growing scientific interest in atmospheric aerosol particles is due to their high importance for environmental policy. In fact, particulate matter constitutes one of the most challenging problems both for air quality and for climate change policies. In this context, this paper reviews the most recent results within the atmospheric aerosol sciences and the policy needs, which have driven much of the increase in monitoring and mechanistic research over the last 2 decades. The synthesis reveals many new processes and developments in the science underpinning climate-aerosol interactions and effects of PM on human health and the environment. However, while airborne particulate matter is responsible for globally important influences on premature human mortality, we still do not know the relative importance of the different chemical components of PM for these effects. Likewise, the magnitude of the overall effects of PM on climate remains highly uncertain. Despite the uncertainty there are many things that could be done to mitigate local and global problems of atmospheric PM. Recent analyses have shown that reducing black carbon (BC) emissions, using known control measures, would reduce global warming and delay the time when anthropogenic effects on global temperature would exceed 2 °C. Likewise, cost-effective control measures on ammonia, an important agricultural precursor gas for secondary inorganic aerosols (SIA), would reduce regional eutrophication and PM concentrations in large areas of Europe, China

  19. Novel Collection and Toxicological Analysis Techniques for IC Engine Exhaust Particulate Matter

    SciTech Connect

    Michael Keane; Xiao-Chun Shi; Tong-man Ong

    2008-09-30

    The project staff partnered with Costas Sioutas from the University of Southern California to apply the VACES (Versatile Aerosol Concentration Enhancement System) to a diesel engine test facility at West Virginia University Department of Mechanical Engineering and later the NIOSH Lake Lynn Mine facility. The VACES system was able to allow diesel exhaust particulate matter (DPM) to grow to sufficient particle size to be efficiently collected with the SKC Biosampler impinger device, directly into a suspension of simulated pulmonary surfactant. At the WVU-MAE facility, the concentration of the aerosol was too high to allow efficient use of the VACES concentration enhancement, although aerosol collection was successful. Collection at the LLL was excellent with the diluted exhaust stream. In excess of 50 samples were collected at the LLL facility, along with matching filter samples, at multiple engine speed and load conditions. Replicate samples were combined and concentration increased using a centrifugal concentrator. Bioassays were negative for all tested samples, but this is believed to be due to insufficient concentration in the final assay suspensions.

  20. Natural and anthropogenic radionuclides in airborne particulate samples collected in Barcelona (Spain).

    PubMed

    Vallés, I; Camacho, A; Ortega, X; Serrano, I; Blázquez, S; Pérez, S

    2009-02-01

    Results for naturally occurring (7)Be, (210)Pb, (40)K, (214)Bi, (214)Pb, (212)Pb, (228)Ac and (208)Tl and anthropogenic (137)Cs in airborne particulate matter in the Barcelona area during the period from January 2001 to December 2005 are presented and discussed. The (212)Pb and (208)Tl, (214)Bi and (214)Pb, (7)Be and (210)Pb radionuclide levels showed a significant correlation with each other, with correlation coefficients of 0.99, 0.78 and 0.69, respectively, suggesting similar origin/behaviour of these radionuclides in the air. Caessium-137 and Potassium-40 were transported to the air as resuspended particle from the soil. The (7)Be and (210)Pb concentrations showed similar seasonal variations, with a tendency for maximum concentrations during the summer months. An inverse relationship was observed between the (7)Be, (210)Pb, (40)K and (137)Cs concentrations and weekly rainfall, indicating washout of atmospheric aerosols carrying these radionuclides. PMID:19027201

  1. Evaluation of Methods for Analysis of Lead in Air Particulates: An Intra-Laboratory and Inter-Laboratory Comparison

    EPA Science Inventory

    In 2008, the United States Environmental Protection Agency (USEPA) set a new National Ambient Air Quality Standard (NAAQS) for lead (Pb) in total suspended particulate matter (Pb-TSP) which called for significant decreases in the allowable limits. The Federal Reference Method (FR...

  2. SPECIAL ISSUE OF THE JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION ON THE PARTICULATE MATTER SUPERSITES PROGRAM AND RELATED STUDIES

    EPA Science Inventory

    This article is the preface or editors note to the dedicated issue of the Journal of the Air & Waste Management Association for a selection of scientific papers from the specialty conference entitled, "Particulate Matter Supersites Program and Related Studies," that was...

  3. Microfabricated Air-Microfluidic Sensor for Personal Monitoring of Airborne Particulate Matter: Design, Fabrication, and Experimental Results

    EPA Science Inventory

    We present the design and fabrication of a micro electro mechanical systems (MEMS) air-microfluidic particulate matter (PM) sensor, and show experimental results obtained from exposing the sensor to concentrations of tobacco smoke and diesel exhaust, two commonly occurring P...

  4. IN VITRO EFFECTS OF PARTICULATE MATTER ON AIRWAY EPITHELIAL CELLS ISOLATED FROM CONCENTRATED AIR PARTICLES-EXPOSED SPONTANEOUS HYPERTENSIVE RATS

    EPA Science Inventory

    In vitro effects of particulate matter on airway epithelial cells isolated from concentrated air particles-exposed spontaneous hypertensive rats

    Ines Pagan, Urmila Kodavanti, Paul Evansky, Daniel L Costa and Janice A Dye. U.S. Environmental Protection Agency, ORD, National...

  5. Fungal spores and pollen in particulate matter collected during agricultural activities in the Po Valley (Italy).

    PubMed

    Telloli, Chiara; Chicca, Milvia; Leis, Marilena; Vaccaro, Carmela

    2016-08-01

    Airborne particulate matter (PM) containing fungal spores and pollen grains was sampled within a monitoring campaign of wheat threshing, plowing and sowing agricultural operations. Fungal spores and pollen grains were detected and identified on morphological basis. No studies were previously available about fungal spore and pollen content in agricultural PM in the Po Valley. Sampling was conducted in a Po Valley farmland in Mezzano (Ferrara, Italy). The organic particles collected were examined by scanning electron microscopy with energy dispersive X-ray spectrometer. Fungal spores and pollen grains were identified when possible at the level of species. The most frequent components of the organic particles sampled were spores of Aspergillus sp., which could represent a risk of developing allergies and aspergillosis for crop farmers. PMID:27521955

  6. Ambient air particulates and particulate-bound mercury Hg(p) concentrations: dry deposition study over a Traffic, Airport, Park (T.A.P.) areas during years of 2011-2012.

    PubMed

    Fang, Guor-Cheng; Lin, Yen-Heng; Zheng, Yu-Cheng

    2016-02-01

    The main purpose of this study was to monitor ambient air particles and particulate-bound mercury Hg(p) in total suspended particulate (TSP) concentrations and dry deposition at the Hung Kuang (Traffic), Taichung airport and Westing Park sampling sites during the daytime and nighttime, from 2011 to 2012. In addition, the calculated/measured dry deposition flux ratios of ambient air particles and particulate-bound mercury Hg(p) were also studied with Baklanov & Sorensen and the Williams models. For a particle size of 10 μm, the Baklanov & Sorensen model yielded better predictions of dry deposition of ambient air particulates and particulate-bound mercury Hg(p) at the Hung Kuang (Traffic), Taichung airport and Westing Park sampling site during the daytime and nighttime sampling periods. However, for particulates with sizes 20-23 μm, the results obtained in the study reveal that the Williams model provided better prediction results for ambient air particulates and particulate-bound mercury Hg(p) at all sampling sites in this study.

  7. A Quasi-Experimental Analysis of Elementary School Absences and Fine Particulate Air Pollution.

    PubMed

    Hales, Nicholas M; Barton, Caleb C; Ransom, Michael R; Allen, Ryan T; Pope, C Arden

    2016-03-01

    Fine particulate air pollution (PM2.5) has been associated with many adverse health outcomes including school absences. Specifically, a previous study in the Utah Valley area, conducted during a time with relatively high air pollution exposure, found significant positive correlations between school absences and air pollution. We examined the hypothesis that ambient PM2.5 exposures are associated with elementary school absences using a quasi-natural experiment to help control for observed and unobserved structural factors that influence school absences. The Alpine, Provo, and Salt Lake City school districts are located in valleys subject to daily mean PM2.5 concentrations almost twice as high as those in the Park City School District. We used seminonparametric generalized additive Poisson regression models to evaluate associations between absences and daily PM2.5 levels in the 3 districts that were exposed to the most pollution while using Park City absences as a quasi-control. The study covered 3 school years (2011/12-2013/14). School absences were most strongly associated with observed structural factors such as seasonal trends across school years, day-of-week effects, holiday effects, weather, etc. However, after controlling for these structural factors directly and using a control district, a 10 μg/m increase in PM2.5 was associated with an approximately 1.7% increase in daily elementary school absences. Exposure to ambient air pollution can contribute to elementary school absences, although this effect is difficult to disentangle from various other factors.

  8. A Quasi-Experimental Analysis of Elementary School Absences and Fine Particulate Air Pollution.

    PubMed

    Hales, Nicholas M; Barton, Caleb C; Ransom, Michael R; Allen, Ryan T; Pope, C Arden

    2016-03-01

    Fine particulate air pollution (PM2.5) has been associated with many adverse health outcomes including school absences. Specifically, a previous study in the Utah Valley area, conducted during a time with relatively high air pollution exposure, found significant positive correlations between school absences and air pollution. We examined the hypothesis that ambient PM2.5 exposures are associated with elementary school absences using a quasi-natural experiment to help control for observed and unobserved structural factors that influence school absences. The Alpine, Provo, and Salt Lake City school districts are located in valleys subject to daily mean PM2.5 concentrations almost twice as high as those in the Park City School District. We used seminonparametric generalized additive Poisson regression models to evaluate associations between absences and daily PM2.5 levels in the 3 districts that were exposed to the most pollution while using Park City absences as a quasi-control. The study covered 3 school years (2011/12-2013/14). School absences were most strongly associated with observed structural factors such as seasonal trends across school years, day-of-week effects, holiday effects, weather, etc. However, after controlling for these structural factors directly and using a control district, a 10 μg/m increase in PM2.5 was associated with an approximately 1.7% increase in daily elementary school absences. Exposure to ambient air pollution can contribute to elementary school absences, although this effect is difficult to disentangle from various other factors. PMID:26945391

  9. A Quasi-Experimental Analysis of Elementary School Absences and Fine Particulate Air Pollution

    PubMed Central

    Hales, Nicholas M.; Barton, Caleb C.; Ransom, Michael R.; Allen, Ryan T.; Pope, C. Arden

    2016-01-01

    Abstract Fine particulate air pollution (PM2.5) has been associated with many adverse health outcomes including school absences. Specifically, a previous study in the Utah Valley area, conducted during a time with relatively high air pollution exposure, found significant positive correlations between school absences and air pollution. We examined the hypothesis that ambient PM2.5 exposures are associated with elementary school absences using a quasi-natural experiment to help control for observed and unobserved structural factors that influence school absences. The Alpine, Provo, and Salt Lake City school districts are located in valleys subject to daily mean PM2.5 concentrations almost twice as high as those in the Park City School District. We used seminonparametric generalized additive Poisson regression models to evaluate associations between absences and daily PM2.5 levels in the 3 districts that were exposed to the most pollution while using Park City absences as a quasi-control. The study covered 3 school years (2011/12-2013/14). School absences were most strongly associated with observed structural factors such as seasonal trends across school years, day-of-week effects, holiday effects, weather, etc. However, after controlling for these structural factors directly and using a control district, a 10 μg/m3 increase in PM2.5 was associated with an approximately 1.7% increase in daily elementary school absences. Exposure to ambient air pollution can contribute to elementary school absences, although this effect is difficult to disentangle from various other factors. PMID:26945391

  10. [Leaf micro-morphology and features in adsorbing air suspended particulate matter and accumulating heavy metals in seven trees species].

    PubMed

    Liu, Ling; Fang, Yan-Ming; Wang, Shun-Chang; Xie, Ying; Yang, Dan-Dan

    2013-06-01

    The purpose of this study was to assess the relationship between tree leaf micro-morphology and features in adsorbing air suspended particulate matter and accumulating heavy metals. Seven tree species, including Ginkgo biloba, at heavy traffic density site in Huainan were selected to analyze the frequency of air particulate matter retained by leaves, the particle amount of different sizes per unit leaf area retained by leaves and its related micro-morphology structure, and the relationship between particle amount of different sizes per unit leaf area retained by leaves and its related accumulation of heavy metals. We found that the species characterized by small leaf area, special epidemis with abundant fax, and highly uneven cell wall, as well as big and dense stomata and without trichomes mainly absorbed fine particulate matter; while those species with many trichomes mainly retained coarse particulate matter. Accumulation of heavy metals in leaves of the seven species was significantly different except for Ph. Tree species with high capacities in heavy metal accumulation were Ginkgo biloba, Ligustrum lucidum, and Cinnamomum camphora. Accumulation of Cd, Cr, Ni, Zn, Cu and total heavy metal concentration for seven tree species was positively related to the amount of particulate matter absorbed. Correlation coefficients of d10 vs d2.5, d10 vs d1.0, d2.5 vs d1.0 were 0.987, 0.971, 0.996, respective, and the correlate level was significant. The ratios of d2.5/d10, d1.0/d10, d1.0/d2.5 were 0.844, 0.763, 0.822, indicating that the particulate matter from traffic was mainly fine particulates. PMID:23947057

  11. Hydrocarbons and heavy metals in fine particulates in oil field air: possible impacts on production of natural silk.

    PubMed

    Devi, Gitumani; Devi, Arundhuti; Bhattacharyya, Krishna Gopal

    2016-02-01

    Analyses of fine particulates (PM2.5) from the upper Assam oil fields of India indicated considerable presence of higher hydrocarbons (C22-C35) and heavy metals, Cd, Co, Cr, Cu, Ni, Pb, and Zn. This has raised serious concern for the sustainability of the exotic Muga (Antheraea assama) silk production, which has been a prime activity of a large number of people living in the area. The Muga worm feeds on the leaves of Machilus bombycina plant, and the impacts of air quality on its survival were further investigated by analyzing the leaves of the plant, the plantation soil, and the Muga cocoons. PM2.5 content in the air was much more during the winter due to near calm conditions and high humidity. Fourier transform infrared (FTIR), thermogravimetric analysis (TGA), and gas chromatography-mass spectrometer (GC-MS) analysis of PM2.5 showed the presence of higher alkanes (C22-C35) that could be traced to crude oil. Cr, Ni, and Zn were found in higher concentrations in PM2.5, M. bombycina leaves, and the plantation soil indicating a common origin. The winter has been the best period for production of the silk cocoons, and the unhealthy air during this period is likely to affect the production, which is already reflected in the declining yield of Muga cocoons from the area. SEM and protein analyses of the Muga silk fiber produced in the oil field area have exhibited the deteriorating quality of the silk. This is the first report from India on hydrocarbons and associated metals in PM2.5 collected from an oil field and on their possible effects on production of silk by A. assama.

  12. A rapid method for the analysis of methyl dihydrojasmonate and galaxolide in indoor and outdoor air particulate matter.

    PubMed

    Fontal, Marta; van Drooge, Barend L; Grimalt, Joan O

    2016-05-20

    A method for the analysis of methyl dihydrojasmonate (MHDJ) in air particulate matter (PM1 and PM2.5) is described for the first time. This fragrance is determined together galaxolide (HHCB). Airborne particles were collected by filtration of air volumes between 100 and 1000m(3). Recovery efficiencies of filter extraction with Soxhlet and pressurized liquids were evaluated. The method included reaction with BSTFA:TMCS for generation of trimethylsilyloxy derivatives which prevented deleterious effects in the gas capillary column by interaction of hydroxyl groups from air constituents other than these fragrances. This step avoided the use of additional clean up methods such as liquid column chromatography affording direct quantification by GC-EI-MS. The proposed method had enough sensitivity for quantification of these fragrances in indoor and outdoor environmental samples using small aliquots of the PM extracts, e.g. 2.5%, and therefore saving sample material for eventual determination of other compounds. The detection limits were 0.03ng and 0.01ng for MHDJ and HHCB, respectively. Both MHDJ and HHCB were predominantly found in the smallest PM fraction analyzed (<0.5μm). The outdoor concentrations were highest in busy urban streets. However, indoor levels in school classrooms and subway stations were one order of magnitude higher than those observed outdoor. This difference was consistent with the use of these compounds as additives in cleaning and personal care products and the small dispersion of these fragrances in indoor environments. Information on the occurrence of this and other fragrances is needed to increase the understanding on the influence of anthropogenic activities in the formation of organic aerosols and source apportionment.

  13. Hydrocarbons and heavy metals in fine particulates in oil field air: possible impacts on production of natural silk.

    PubMed

    Devi, Gitumani; Devi, Arundhuti; Bhattacharyya, Krishna Gopal

    2016-02-01

    Analyses of fine particulates (PM2.5) from the upper Assam oil fields of India indicated considerable presence of higher hydrocarbons (C22-C35) and heavy metals, Cd, Co, Cr, Cu, Ni, Pb, and Zn. This has raised serious concern for the sustainability of the exotic Muga (Antheraea assama) silk production, which has been a prime activity of a large number of people living in the area. The Muga worm feeds on the leaves of Machilus bombycina plant, and the impacts of air quality on its survival were further investigated by analyzing the leaves of the plant, the plantation soil, and the Muga cocoons. PM2.5 content in the air was much more during the winter due to near calm conditions and high humidity. Fourier transform infrared (FTIR), thermogravimetric analysis (TGA), and gas chromatography-mass spectrometer (GC-MS) analysis of PM2.5 showed the presence of higher alkanes (C22-C35) that could be traced to crude oil. Cr, Ni, and Zn were found in higher concentrations in PM2.5, M. bombycina leaves, and the plantation soil indicating a common origin. The winter has been the best period for production of the silk cocoons, and the unhealthy air during this period is likely to affect the production, which is already reflected in the declining yield of Muga cocoons from the area. SEM and protein analyses of the Muga silk fiber produced in the oil field area have exhibited the deteriorating quality of the silk. This is the first report from India on hydrocarbons and associated metals in PM2.5 collected from an oil field and on their possible effects on production of silk by A. assama. PMID:26490906

  14. A rapid method for the analysis of methyl dihydrojasmonate and galaxolide in indoor and outdoor air particulate matter.

    PubMed

    Fontal, Marta; van Drooge, Barend L; Grimalt, Joan O

    2016-05-20

    A method for the analysis of methyl dihydrojasmonate (MHDJ) in air particulate matter (PM1 and PM2.5) is described for the first time. This fragrance is determined together galaxolide (HHCB). Airborne particles were collected by filtration of air volumes between 100 and 1000m(3). Recovery efficiencies of filter extraction with Soxhlet and pressurized liquids were evaluated. The method included reaction with BSTFA:TMCS for generation of trimethylsilyloxy derivatives which prevented deleterious effects in the gas capillary column by interaction of hydroxyl groups from air constituents other than these fragrances. This step avoided the use of additional clean up methods such as liquid column chromatography affording direct quantification by GC-EI-MS. The proposed method had enough sensitivity for quantification of these fragrances in indoor and outdoor environmental samples using small aliquots of the PM extracts, e.g. 2.5%, and therefore saving sample material for eventual determination of other compounds. The detection limits were 0.03ng and 0.01ng for MHDJ and HHCB, respectively. Both MHDJ and HHCB were predominantly found in the smallest PM fraction analyzed (<0.5μm). The outdoor concentrations were highest in busy urban streets. However, indoor levels in school classrooms and subway stations were one order of magnitude higher than those observed outdoor. This difference was consistent with the use of these compounds as additives in cleaning and personal care products and the small dispersion of these fragrances in indoor environments. Information on the occurrence of this and other fragrances is needed to increase the understanding on the influence of anthropogenic activities in the formation of organic aerosols and source apportionment. PMID:27113676

  15. 75 FR 17894 - Approval and Promulgation of Air Quality Implementation Plans; Wisconsin; Particulate Matter...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-08

    ...; Particulate Matter Standards AGENCY: Environmental Protection Agency (EPA). ACTION: Proposed rule. SUMMARY... September 11, 2009. EPA revised its particulate matter standards in October 2006 by strengthening the 24... particulate matter. DATES: Comments must be received on or before May 10, 2010. ADDRESSES: Submit...

  16. Particulate air pollution and susceptibility to the development of pulmonary tuberculosis disease in North Carolina: an ecological study

    PubMed Central

    Schoenbach, Victor J.; Richardson, David B.; Gammon, Marilie D.

    2015-01-01

    Although Mycobacterium tuberculosis is the causative agent of pulmonary tuberculosis (PTB), environmental factors may influence disease progression. Ecologic studies conducted in countries outside the USA with high levels of air pollution and PTB have suggested a link between active disease and ambient air pollution. The present investigation is the first to examine the ambient air pollution/PTB association in a country, where air pollution levels are comparatively lower. We used Poisson regression models to examine the association of outdoor air pollutants, PM10 and PM2.5 with rates of PTB in North Carolina residents during 1993–2007. Results suggest a potential association between long-term exposure to particulate matter (PM) and PTB disease. In view of the high levels of air pollution and high rates of PTB worldwide, a potential association between ambient air pollution and tuberculosis warrants further study. PMID:24387197

  17. Particulate air pollution and susceptibility to the development of pulmonary tuberculosis disease in North Carolina: an ecological study.

    PubMed

    Smith, Genee S; Schoenbach, Victor J; Richardson, David B; Gammon, Marilie D

    2014-04-01

    Although Mycobacterium tuberculosis is the causative agent of pulmonary tuberculosis (PTB), environmental factors may influence disease progression. Ecologic studies conducted in countries outside the USA with high levels of air pollution and PTB have suggested a link between active disease and ambient air pollution. The present investigation is the first to examine the ambient air pollution-PTB association in a country, where air pollution levels are comparatively lower. We used Poisson regression models to examine the association of outdoor air pollutants, PM10 and PM2.5 with rates of PTB in North Carolina residents during 1993-2007. Results suggest a potential association between long-term exposure to particulate matter (PM) and PTB disease. In view of the high levels of air pollution and high rates of PTB worldwide, a potential association between ambient air pollution and tuberculosis warrants further study.

  18. Air quality modelling : effects of emission reductions on concentrations of particulate matter

    NASA Astrophysics Data System (ADS)

    Girault, L.; Roustan, Y.; Seigneur, C.

    2012-04-01

    Atmospheric particulate matter (PM) has adverse effects on human health. PM acts primarily on respiratory and cardiovascular (due to their small size they can penetrate deep into the lungs), but they are also known effects on the skin. In France, the "Particulate Plan" - developed as part of the second National Environmental Health Plan - aims to reduce by 30% fine PM (noted PM2.5because these particles have an aerodynamic diameter of 2.5 micrometers or less) by 2015. A recent study by Airparif (the organization in charge of monitoring air quality in the Paris region, the Île-de-France) and LSCE (Laboratory of climate and the environmental science, France) has allowed, through a large measurement campaign conducted between 2009 and 2011, to quantify the proportion of PM produced in Île-de-France and those transported from the surrounding areas. The study by numerical modelling of air pollution presented here complements these results by investigating future emission scenarios. The CEREA develops and uses an air quality model which simulates the concentrations of pollutants from an emission inventory, meteorological data and boundary conditions of the area studied. After an evaluation of simulation results for the year 2005, the model is used to assess the effects of various scenarios of reductions in NOx and NH3 emissions on the concentrations of PM2.5in Île-de-France. The effects of the controls on the local pollution and the long-range pollution are considered separately. For each emitted species, three scenarios of emission reductions are identified: an emission reduction at the local level (Île-de-France), a reduction at the regional scale (France) and a reduction at the continental scale (across Europe). In each case, a 15% reduction is applied. The comparison of the results allows us to assess the respective contributions of local emissions and long-range transport to PM2.5 concentrations. For instance, the reduction of NOx emissions in Europe leads to a

  19. JV Task 94 - Air Quality V: Mercury, Trace Elements, SO3, and Particulate Matter Conference

    SciTech Connect

    Thomas A. Erickson

    2007-01-31

    This final report summarizes the planning, preparation, facilitation and production, and summary of the conference entitled 'Air Quality V: Mercury, Trace Elements, SO{sub 3}, and Particulate Matter,' held September 18-21, 2005, in Arlington, Virginia. The goal of the conference was to build on the discussions of the first four Air Quality Conferences, providing further opportunity for leading representatives of industry, government, research institutions, academia, and environmental organizations to discuss the key interrelationships between policy and science shaping near-term regulations and controls and to assist in moving forward on emerging issues that will lead to acceptable programs and policies to protect human health, the environment, and economic growth. The conference was extremely timely, as it was the last large conference prior to publication of the U.S. Environmental Protection Agency's final regulations for mercury control from coal-fired utilities, and provided a forum to realistically assess the status of mercury controls in relation to the new regulations.

  20. Variation in particulate PAHs levels and their relation with the transboundary movement of the air masses.

    PubMed

    Ravindra, Khaiwal; Wauters, Eric; Van Grieken, René

    2008-06-25

    The levels of particulate polycyclic aromatic hydrocarbons (PAHs) were determined with a fast analytical approach to study their seasonal variations at Menen (Belgium) during 2003; they were found to be 5-7 times higher in January, February and December, in comparison to May, June and August. The annual average concentration of the sum of 16 US Environmental Protection Agency (EPA) criteria PAHs was 6.7 ng/m3 and around 63% of it was found to be probably carcinogenic to humans. The application of diagnostic ratio and principal component analysis showed vehicular emission as a major source. An increased ratio of 'combustion PAHs' to 'total EPA-PAHs' during the winter season indicated towards combustion activities. Further, the differences in PAHs concentration were assessed with relation to backward air mass trajectories, which show that the levels of PAHs increase when there is an air mass movement from Central and Western Europe and a fall when the trajectories spend most of their 4-day time over the Atlantic Ocean or in the Arctic region.

  1. Mutagenicity, sister chromatid exchange inducibility and in vitro cell transforming ability of particulates from Athens air

    SciTech Connect

    Athanasiou, K.; Arzimanoglou, I.; Piccoli, C.; Yamasaki, H.

    1987-09-01

    Airborne particulates were collected over a period of twelve months by the use of Hi-Vol samplers in the basin of Athens, Greece. N-Hexane extracts were tested in a battery of in vitro tests for their ability to induce mutation in bacteria as well as mutations, sister chromatid exchange and morphological transformation in cultured mammalian cells. Positive results were found for mutagenicity with Salmonella strain TA98 in the Ames assay, for sister chromatid exchange induction in CHO cells and for transformation in BALB/c 3T3 cells in culture. They also showed weak non-dose-related induction of ouabain resistance in BALB/c 3T3 cells. The contribution of oxidizing and nitrating agents found in the Athens atmosphere, together with sunlight UV irradiation in the formation of direct acting mutagens and potential carcinogens from ambient polycyclic aromatic hydrocarbons, is suggested.

  2. 78 FR 12052 - Agency Information Collection Activities: Proposed Collection; Comment Request; Ambient Air...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-21

    ... AGENCY Agency Information Collection Activities: Proposed Collection; Comment Request; Ambient Air... is planning to submit a request to renew an existing approved Information Collection Request (ICR) to... proposed information collection as described below. DATES: Comments must be submitted on or before April...

  3. Particulate air pollution and panel studies in children: a systematic review

    PubMed Central

    Ward, D; Ayres, J

    2004-01-01

    Aims: To systematically review the results of such studies in children, estimate summary measures of effect, and investigate potential sources of heterogeneity. Methods: Studies were identified by searching electronic databases to June 2002, including those where outcomes and particulate level measurements were made at least daily for ⩾8 weeks, and analysed using an appropriate regression model. Study results were compared using forest plots, and fixed and random effects summary effect estimates obtained. Publication bias was considered using a funnel plot. Results: Twenty two studies were identified, all except two reporting PM10 (24 hour mean) >50 µg.m-3. Reported effects of PM10 on PEF were widely spread and smaller than those for PM2.5 (fixed effects summary: -0.012 v -0.063 l.min-1 per µg.m-3 rise). A similar pattern was evident for symptoms. Random effects models produced larger estimates. Overall, in between-study comparisons, panels of children with diagnosed asthma or pre-existing respiratory symptoms appeared less affected by PM10 levels than those without, and effect estimates were larger where studies were conducted in higher ozone conditions. Larger PM10 effect estimates were obtained from studies using generalised estimating equations to model autocorrelation and where results were derived by pooling subject specific regression coefficients. A funnel plot of PM10 results for PEF was markedly asymmetrical. Conclusions: The majority of identified studies indicate an adverse effect of particulate air pollution that is greater for PM2.5 than PM10. However, results show considerable heterogeneity and there is evidence consistent with publication bias, so limited confidence may be placed on summary estimates of effect. The possibility of interaction between particle and ozone effects merits further investigation, as does variability due to analytical differences that alter the interpretation of final estimates. PMID:15031404

  4. Particulate matter, air quality and climate: lessons learned and future needs

    NASA Astrophysics Data System (ADS)

    Fuzzi, S.; Baltensperger, U.; Carslaw, K.; Decesari, S.; Denier van der Gon, H.; Facchini, M. C.; Fowler, D.; Koren, I.; Langford, B.; Lohmann, U.; Nemitz, E.; Pandis, S.; Riipinen, I.; Rudich, Y.; Schaap, M.; Slowik, J.; Spracklen, D. V.; Vignati, E.; Wild, M.; Williams, M.; Gilardoni, S.

    2015-01-01

    The literature on atmospheric particulate matter (PM), or atmospheric aerosol, has increased enormously over the last two decades and amounts now to some 1500-2000 papers per year in the refereed literature. This is in part due to the enormous advances in measurement technologies, which has allowed for an increasingly accurate understanding of the chemical composition and of the physical properties of atmospheric particles and of their processes in the atmosphere. The growing scientific interest in atmospheric aerosol particles is due to their high importance for environmental policy. In fact, particulate matter constitutes one of the most challenging problems both for air quality and climate change policies. In this context, this paper reviews the most recent results within the atmospheric aerosol science, and the policy needs, which have driven much of the increase in monitoring and mechanistic research over the last two decades. The synthesis reveals many new processes and developments in the science underpinning climate-aerosol interactions and effects of PM on human health and the environment. But, while airborne particulate matter is responsible for globally important effects on premature human mortality, we still do not know the relative importance of different chemical components of PM for these effects. Likewise, the magnitude of the overall effects of PM on climate remains highly uncertain. Despite the uncertainty there are many things that could be done to mitigate local and global problems of atmospheric PM. Recent analyses have shown that reducing BC emissions, using known control measures would reduce global warming and delay the time when anthropogenic effects on global temperature would exceed 2 °C. Likewise, cost effective control measures on ammonia, an important agricultural precursor gas for secondary inorganic aerosols (SIA), would reduce regional eutrophication and PM concentrations in large areas of Europe, China, and the USA. Thus there is

  5. Characterization of Airborne Particles Collected from Car Engine Air Filters Using SEM and EDX Techniques

    PubMed Central

    Heredia Rivera, Birmania; Gerardo Rodriguez, Martín

    2016-01-01

    Particulate matter accumulated on car engine air-filters (CAFs) was examined in order to investigate the potential use of these devices as efficient samplers for collecting street level air that people are exposed to. The morphology, microstructure, and chemical composition of a variety of particles were studied using scanning electron microscopy (SEM) and energy-dispersive X-ray (EDX). The particulate matter accumulated by the CAFs was studied in two categories; the first was of removed particles by friction, and the second consisted of particles retained on the filters. Larger particles with a diameter of 74–10 µm were observed in the first category. In the second one, the detected particles had a diameter between 16 and 0.7 µm. These particles exhibited different morphologies and composition, indicating mostly a soil origin. The elemental composition revealed the presence of three groups: mineral (clay and asphalt), metallic (mainly Fe), and biological particles (vegetal and animal debris). The palynological analysis showed the presence of pollen grains associated with urban plants. These results suggest that CAFs capture a mixture of atmospheric particles, which can be analyzed in order to monitor urban air. Thus, the continuous availability of large numbers of filters and the retroactivity associated to the car routes suggest that these CAFs are very useful for studying the high traffic zones within a city. PMID:27706087

  6. Chemical constituents of fine particulate air pollution and pulmonary function in healthy adults: the Healthy Volunteer Natural Relocation study.

    PubMed

    Wu, Shaowei; Deng, Furong; Hao, Yu; Shima, Masayuki; Wang, Xin; Zheng, Chanjuan; Wei, Hongying; Lv, Haibo; Lu, Xiuling; Huang, Jing; Qin, Yu; Guo, Xinbiao

    2013-09-15

    The study examined the associations of 32 chemical constituents of particulate matter with an aerodynamic diameter ≤2.5 μm (PM₂.₅) with pulmonary function in a panel of 21 college students. Study subjects relocated from a suburban area to an urban area with changing ambient air pollution levels and contents in Beijing, China, and provided daily morning/evening peak expiratory flow (PEF) and forced expiratory volume in 1s (FEV₂₁) measurements over 6 months in three study periods. There were significant reductions in evening PEF and morning/evening FEV₂₁ associated with various air pollutants and PM₂.₅ constituents. Four PM₂.₅ constituents (copper, cadmium, arsenic and stannum) were found to be most consistently associated with the reductions in these pulmonary function measures. These findings provide clues for the respiratory effects of specific particulate chemical constituents in the context of urban air pollution. PMID:23747477

  7. Chemical constituents of fine particulate air pollution and pulmonary function in healthy adults: the Healthy Volunteer Natural Relocation study.

    PubMed

    Wu, Shaowei; Deng, Furong; Hao, Yu; Shima, Masayuki; Wang, Xin; Zheng, Chanjuan; Wei, Hongying; Lv, Haibo; Lu, Xiuling; Huang, Jing; Qin, Yu; Guo, Xinbiao

    2013-09-15

    The study examined the associations of 32 chemical constituents of particulate matter with an aerodynamic diameter ≤2.5 μm (PM₂.₅) with pulmonary function in a panel of 21 college students. Study subjects relocated from a suburban area to an urban area with changing ambient air pollution levels and contents in Beijing, China, and provided daily morning/evening peak expiratory flow (PEF) and forced expiratory volume in 1s (FEV₂₁) measurements over 6 months in three study periods. There were significant reductions in evening PEF and morning/evening FEV₂₁ associated with various air pollutants and PM₂.₅ constituents. Four PM₂.₅ constituents (copper, cadmium, arsenic and stannum) were found to be most consistently associated with the reductions in these pulmonary function measures. These findings provide clues for the respiratory effects of specific particulate chemical constituents in the context of urban air pollution.

  8. Incorrect interpretation of moving-filter continuous particulate air monitor responses.

    PubMed

    Evans, William C

    2013-04-01

    The graphs supplied by the vendors of moving-filter continuous particulate air monitors (CPAMs) in their sales literature show linear curves on a log-log scale, with net count rate on one axis and concentration on the other. The implication is that the monitor user is to read the concentration from the graph, given an observed net count rate, at any time. For the nominal filter speeds commonly used for these monitors, using the graph in this way is incorrect. The graphs do not state the limitations of the calculation: (1) the nuclide measured must be long-lived; (2) the concentration of that nuclide in the sampled air must remain constant; and (3) the reading of the net count rate must be obtained after a specific time, called the "transit time." This time is typically on the order of several hours. Reading the net count rate at any time earlier than this will result in an incorrect concentration estimate. Given that a major purpose of a CPAM is to alert plant personnel to a change in airborne radioactivity concentrations, by definition when this happens the concentration is not constant. Thus, using the supplied curves will result in an incorrect estimate of that concentration. The solution is to use instead a fixed-filter CPAM and a previously-published quantitative method. With this approach, there is no need to attempt to estimate a concentration, much less to assume that it is constant over long periods of time or that it can only change in a stair-step manner. With this alternative to a moving-filter CPAM, a signal proportional to the time-integrated worker intake can be generated continuously for any time-varying air concentration, including the sums-of-exponentials shapes expected during transient events in compartmental systems.

  9. Indoor Air Quality Investigations on Particulate Matter, Carbonyls, and Tobacco Specific Nitrosamines

    NASA Astrophysics Data System (ADS)

    Frey, Sarah E.

    Americans spend upwards of 90% of their time indoors, hence indoor air quality (IAQ) and the impact of IAQ on human health is a major public health concern. IAQ can be negatively impacted by outdoor pollution infiltrating indoors, the emission of indoor pollutants, indoor atmospheric chemistry and poor ventilation. Energy saving measures like retrofits to seal the building envelope to prevent the leakage of heated or cooled air will impact IAQ. However, existing studies have been inconclusive as to whether increased energy efficiency is leading to detrimental IAQ. In this work, field campaigns were conducted in apartment homes in Phoenix, Arizona to evaluate IAQ as it relates to particulate matter (PM), carbonyls, and tobacco specific nitrosamines (TSNA). To investigate the impacts of an energy efficiency retrofit on IAQ, indoor and outdoor air quality sampling was carried out at Sunnyslope Manor, a city-subsidized senior living apartment complex. Measured indoor formaldehyde levels before the building retrofit exceeded reference exposure limits, but in the long term follow-up sampling, indoor formaldehyde decreased for the entire study population by a statistically significant margin. Indoor PM levels were dominated by fine particles and showed a statistically significant decrease in the long term follow-up sampling within certain resident subpopulations (i.e. residents who reported smoking and residents who had lived longer at the apartment complex). Additionally, indoor glyoxal and methylglyoxal exceeded outdoor concentrations, with methylglyoxal being more prevalent pre-retrofit than glyoxal, suggesting different chemical pathways are involved. Indoor concentrations reported are larger than previous studies. TSNAs, specifically N'-nitrosonornicotine (NNN), 4-(methyl-nitrosamino)-4-(3-pyridyl)-butanal (NNA) and 4-(methylnitrosoamino)-1-(3-pyridyl)-1-butanone (NNK) were evaluated post-retrofit at Sunnyslope Manor. Of the units tested, 86% of the smoking units and

  10. Disrupted Nitric Oxide Metabolism from Type II Diabetes and Acute Exposure to Particulate Air Pollution

    PubMed Central

    Pettit, Ashley P.; Kipen, Howard; Laumbach, Robert; Ohman-Strickland, Pamela; Kelly-McNeill, Kathleen; Cepeda, Clarimel; Fan, Zhi-Hua; Amorosa, Louis; Lubitz, Sara; Schneider, Stephen; Gow, Andrew

    2015-01-01

    Type II diabetes is an established cause of vascular impairment. Particulate air pollution is known to exacerbate cardiovascular and respiratory conditions, particularly in susceptible populations. This study set out to determine the impact of exposure to traffic pollution, with and without particle filtration, on vascular endothelial function in Type II diabetes. Endothelial production of nitric oxide (NO) has previously been linked to vascular health. Reactive hyperemia induces a significant increase in plasma nitrite, the proximal metabolite of NO, in healthy subjects, while diabetics have a lower and more variable level of response. Twenty type II diabetics and 20 controls (ages 46–70 years) were taken on a 1.5hr roadway traffic air pollution exposure as passengers. We analyzed plasma nitrite, as a measure of vascular function, using forearm ischemia to elicit a reactive hyperemic response before and after exposure to one ride with and one without filtration of the particle components of pollution. Control subjects displayed a significant increase in plasma nitrite levels during reactive hyperemia. This response was no longer present following exposure to traffic air pollution, but did not vary with whether or not the particle phase was filtered out. Diabetics did not display an increase in nitrite levels following reactive hyperemia. This response was not altered following pollution exposure. These data suggest that components of acute traffic pollution exposure diminish vascular reactivity in non-diabetic individuals. It also confirms that type II diabetics have a preexisting diminished ability to appropriately respond to a vascular challenge, and that traffic pollution exposure does not cause a further measureable acute change in plasma nitrite levels in Type II diabetics. PMID:26656561

  11. Association of Systemic Inflammation with Marked Changes in Particulate Air Pollution in Beijing in 2008

    PubMed Central

    Xu, Xiaohua; Deng, Furong; Guo, Xinbiao; Lv, Peng; Zhong, Mianhua; Liu, Cuiqing; Wang, Aixia; Tzan, Kevin; Jiang, Silis Y.; Lippmann, Morton; Rajagopalan, Sanjay; Qu, Qingshan; Chen, Lung-Chi; Sun, Qinghua

    2012-01-01

    Many studies have linked ambient fine particulate matter (aerodynamic diameters less than 2.5 μm, PM2.5) air pollution to increased morbidity and mortality of cardiovascular diseases in the general population, but the biologic mechanisms of these associations are yet to be elucidated. In this study, we aimed to evaluate the relationship between daily variations in exposure to PM2.5 and inflammatory responses in mice during and for 2 months after the Beijing Olympic Games. Male C57BL/6 mice were exposed to Beijing PM2.5 or filtered air (FA) in 2008 during the 2 months of Beijing Olympic and Paralympic Games, and for 2 months after the end of the Games. During the Games, circulating monocyte chemoattractant protein 1 and interleukin 6 were increased significantly in the PM2.5 exposure group, when compared with the FA control group, although there were no significant inter-group differences in tumor necrosis factor α or interferon γ, or in macrophages, neutrophils or lymphocytes in the spleen or thymus between these 2 groups. However, macrophages were significantly increased in the lung and visceral fat with increasing PM2.5. After the Olympic Games, there were no significant PM2.5-associated differences for macrophages, neutrophils or lymphocytes in the thymus, but macrophages were significantly elevated in the lung, spleen, subcutaneous and visceral fat with increasing PM2.5, and the numbers of macrophages were even higher after than those during the Games. Moreover, the number of neutrophils was markedly higher in the spleen for the PM2.5-exposed- than the FA-group. These data suggest that short-term increases in exposure to ambient PM2.5 leads to increased systemic inflammatory responses, primarily macrophages and neutrophils in the lung, spleen, and visceral adipose tissue. Short-term air quality improvements were significantly associated with reduced overall inflammatory responses. PMID:22617750

  12. Disrupted Nitric Oxide Metabolism from Type II Diabetes and Acute Exposure to Particulate Air Pollution.

    PubMed

    Pettit, Ashley P; Kipen, Howard; Laumbach, Robert; Ohman-Strickland, Pamela; Kelly-McNeill, Kathleen; Cepeda, Clarimel; Fan, Zhi-Hua; Amorosa, Louis; Lubitz, Sara; Schneider, Stephen; Gow, Andrew

    2015-01-01

    Type II diabetes is an established cause of vascular impairment. Particulate air pollution is known to exacerbate cardiovascular and respiratory conditions, particularly in susceptible populations. This study set out to determine the impact of exposure to traffic pollution, with and without particle filtration, on vascular endothelial function in Type II diabetes. Endothelial production of nitric oxide (NO) has previously been linked to vascular health. Reactive hyperemia induces a significant increase in plasma nitrite, the proximal metabolite of NO, in healthy subjects, while diabetics have a lower and more variable level of response. Twenty type II diabetics and 20 controls (ages 46-70 years) were taken on a 1.5 hr roadway traffic air pollution exposure as passengers. We analyzed plasma nitrite, as a measure of vascular function, using forearm ischemia to elicit a reactive hyperemic response before and after exposure to one ride with and one without filtration of the particle components of pollution. Control subjects displayed a significant increase in plasma nitrite levels during reactive hyperemia. This response was no longer present following exposure to traffic air pollution, but did not vary with whether or not the particle phase was filtered out. Diabetics did not display an increase in nitrite levels following reactive hyperemia. This response was not altered following pollution exposure. These data suggest that components of acute traffic pollution exposure diminish vascular reactivity in non-diabetic individuals. It also confirms that type II diabetics have a preexisting diminished ability to appropriately respond to a vascular challenge, and that traffic pollution exposure does not cause a further measureable acute change in plasma nitrite levels in Type II diabetics.

  13. Particulate air pollution and health inequalities: a Europe-wide ecological analysis

    PubMed Central

    2013-01-01

    Background Environmental disparities may underlie the unequal distribution of health across socioeconomic groups. However, this assertion has not been tested across a range of countries: an important knowledge gap for a transboundary health issue such as air pollution. We consider whether populations of low-income European regions were a) exposed to disproportionately high levels of particulate air pollution (PM10) and/or b) disproportionately susceptible to pollution-related mortality effects. Methods Europe-wide gridded PM10 and population distribution data were used to calculate population-weighted average PM10 concentrations for 268 sub-national regions (NUTS level 2 regions) for the period 2004–2008. The data were mapped, and patterning by mean household income was assessed statistically. Ordinary least squares regression was used to model the association between PM10 and cause-specific mortality, after adjusting for regional-level household income and smoking rates. Results Air quality improved for most regions between 2004 and 2008, although large differences between Eastern and Western regions persisted. Across Europe, PM10 was correlated with low household income but this association primarily reflected East–West inequalities and was not found when Eastern or Western Europe regions were considered separately. Notably, some of the most polluted regions in Western Europe were also among the richest. PM10 was more strongly associated with plausibly-related mortality outcomes in Eastern than Western Europe, presumably because of higher ambient concentrations. Populations of lower-income regions appeared more susceptible to the effects of PM10, but only for circulatory disease mortality in Eastern Europe and male respiratory mortality in Western Europe. Conclusions Income-related inequalities in exposure to ambient PM10 may contribute to Europe-wide mortality inequalities, and to those in Eastern but not Western European regions. We found some evidence that

  14. Analysis of particulate matter collected by sediment traps and from sediment Cores

    NASA Astrophysics Data System (ADS)

    Collier, Bob; Dymond, Jack; Conard, Roberta; Robbins, Jim

    These contributions are primarily directed at elemental analyses for major and trace cations and silicon on particles collected by sediment traps and sediment cores; samples typically having at least several hundred milligrams available. The techniques outlined below and other wet chemical methods are reviewed in more detail in an OSU technical report by Robbins et al. [1984]. Typically, our group filters water samples for trace metal analyses immediately upon their arrival at the surface. The primary emphasis of these techniques focuses on the dissolved material. Since we have not had a full clean-lab available, we subsample the Niskins immediately using a semi-closed connection to large mouth bottles (LPE) which minimizes atmospheric exposure to contamination. The samples are then vacuum filtered within a portable laminar-flow hood (HEPA filtered) using plastic filtration "chimneys" (Millipore or Nuclepore) placed over a plastic vacuum chamber which contains the filtrate sample bottle. Filtration is carried out with 1 N HCl acid-leached Nuclepore or Poretics filters (0.4 μm) and the filtrate is collected directly into the final sample bottle. Both filtered and unfiltered subsamples are acidified to a pH<2 with 2 mL 6 N HCl L-1 sample using subboiling-distilled HCl, and the difference in concentration between the filtered and unfiltered sample is taken to represent an acid-labile particulate fraction.

  15. Community air pollution and mortality: Analysis of 1980 data from US metropolitan areas. 1: Particulate air pollution

    SciTech Connect

    Lipfert, F.W.

    1992-11-01

    1980 data from up to 149 metropolitan areas were used to define cross-sectional associations between community air pollution and excess human mortality. The regression model proposed by Oezkaynak and Thurston, which accounted for age, race, education, poverty, and population density, was evaluated and several new models were developed. The new models also accounted for population change, drinking water hardness, and smoking, and included a more detailed description of race. Cause-of-death categories analyzed include all causes, all non-external causes, major cardiovascular diseases, and chronic obstructive pulmonary diseases (COPD). Both annual mortality rates and their logarithms were analyzed. The data on particulates were averaged across all monitoring stations available for each SMSA and the TSP data were restricted to the year 1980. The associations between mortality and air pollution were found to be dependent on the socioeconomic factors included in the models, the specific locations included din the data set, and the type of statistical model used. Statistically significant associations were found between TSP and mortality due to non-external causes with log-linear models, but not with a linear model, and between TS and COPD mortality for both linear and log-linear models. When the sulfate contribution to TSP was subtracted, the relationship with COPD mortality was strengthened. Scatter plots and quintile analyses suggested a TSP threshold for COPD mortality at around 65 ug/m{sup 3} (annual average). SO{sub 4}{sup {minus}2}, Mn, PM{sup 15}, and PM{sub 2.5} were not significantly associated with mortality using the new models.

  16. Powered, air-purifying particulate respirator filter penetration by a DOP aerosol.

    PubMed

    Martin, Stephen; Moyer, Ernest; Jensen, Paul

    2006-11-01

    In 1995, new certification requirements for all nonpowered, air-purifying particulate filter respirators were put in place when 42 CFR 84 replaced 30 CFR 11. However, the certification requirements for all other classes of respirators, including powered air-purifying respirators (PAPRs), were transferred to 42 CFR 84 from 30 CFR 11 without major changes. Since the inception of 42 CFR 84, researchers have learned that the efficiency of electrostatic filter media, in contrast with mechanical filter media, can be rapidly degraded by oil aerosols. Further, confusion may exist among respirator users, since electrostatic PAPR filters have the same magenta color assigned to high-efficiency filters for nonpowered particulate respirators that have been tested and certified for use against oil aerosols (i.e., P100 filters). Users may expect that the magenta color of certified PAPR filters indicates suitability for use against oil aerosols. This may not be the case. To illustrate the potential degradation of electrostatic PAPR filters, new filters certified under 42 CFR 84 were tested using a TSI model 8122 Automated Respirator Tester against charged and neutralized DOP aerosols with intermittent loading schedules. The performance of a magenta-colored electrostatic PAPR filter--one for which the manufacturer's user instructions appropriately indicates is not suitable for use in oily environments--was compared with the performance of several mechanical PAPR filters. In tests against both DOP aerosols, the electrostatic PAPR filter showed a significant decrease in performance at DOP loadings exceeding 400 mg, whereas mechanical filters showed no significant change in the performance except at extremely high loadings. The decreased performance of the electrostatic PAPR filter was found to be significantly greater when tested against a neutralized DOP aerosol when compared with a charged DOP aerosol. While laboratory tests show that the filtration efficiency of this electrostatic

  17. Ambient Fine Particulate (PM2.5) Air Pollution Attributable to Household Cooking Fuel in Asia

    NASA Astrophysics Data System (ADS)

    Chafe, Z.; Mehta, S.; Smith, K. R.

    2011-12-01

    Using the Greenhouse Gas and Air Pollution Interactions and Synergies (GAINS) model, hosted by the International Institute for Applied Systems Analysis (IIASA), we estimate the proportion of fine particulate ambient air pollution (PM2.5) attributable to household fuel use for cooking in Asia. This analysis considers primary anthropogenic PM2.5 emissions in two years: 1990 and 2005. Only emissions from household cooking fuels-not heating or lighting-are considered. Due to data availability, this analysis focuses solely on Asian countries, notably India and China which are home to about half of the households using solid fuel use worldwide. Forest and grassland fires, dust, and other "natural" particle sources were omitted from this analysis. The impact of emission sources on secondary particles from aerosol precursors was not determined. In China, the proportion of total primary anthropogenic PM2.5 attributable to household cooking decreased from 44% to 31% between 1990 and 2005. In India, the percent of primary anthropogenic PM2.5 emissions attributable to household cooking decreased from 55% to 49% between 1990 and 2005. Total mass change in primary anthropogenic PM2.5 emissions was much more variable by state in India, between 1990 and 2005, than by province in China (where there was a general downward trend in the total mass emitted). Similarly, growth in industrial emissions was much more variable at the sub-national level, between 1990 and 2005, in India than in China. Energy production played a more prominent role in the growth of primary anthropogenic PM2.5 emissions in India than it did in China. Forward-looking GAINS scenarios show that the contribution of household cooking to total primary anthropogenic PM2.5 emissions is much greater than that from on-road transport in India and China between 1990 and 2030. On-road cars, trucks, and other transport vehicles are, however, the cause of important pollutants other than PM2.5 (as are as cooking stoves that do

  18. In vitro inflammatory and cytotoxic effects of size-segregated particulate samples collected during long-range transport of wildfire smoke to Helsinki

    SciTech Connect

    Jalava, Pasi I. . E-mail: Pasi.Jalava@ktl.fi; Salonen, Raimo O.; Haelinen, Arja I.; Penttinen, Piia; Pennanen, Arto S.; Sillanpaeae, Markus; Sandell, Erik; Hillamo, Risto; Hirvonen, Maija-Riitta

    2006-09-15

    The impact of long-range transport (LRT) episodes of wildfire smoke on the inflammogenic and cytotoxic activity of urban air particles was investigated in the mouse RAW 264.7 macrophages. The particles were sampled in four size ranges using a modified Harvard high-volume cascade impactor, and the samples were chemically characterized for identification of different emission sources. The particulate mass concentration in the accumulation size range (PM{sub 1-0.2}) was highly increased during two LRT episodes, but the contents of total and genotoxic polycyclic aromatic hydrocarbons (PAH) in collected particulate samples were only 10-25% of those in the seasonal average sample. The ability of coarse (PM{sub 10-2.5}), intermodal size range (PM{sub 2.5-1}), PM{sub 1-0.2} and ultrafine (PM{sub 0.2}) particles to cause cytokine production (TNF{alpha}, IL-6, MIP-2) reduced along with smaller particle size, but the size range had a much smaller impact on induced nitric oxide (NO) production and cytotoxicity or apoptosis. The aerosol particles collected during LRT episodes had a substantially lower activity in cytokine production than the corresponding particles of the seasonal average period, which is suggested to be due to chemical transformation of the organic fraction during aging. However, the episode events were associated with enhanced inflammogenic and cytotoxic activities per inhaled cubic meter of air due to the greatly increased particulate mass concentration in the accumulation size range, which may have public health implications.

  19. Evaluation of near surface ozone and particulate matter in air quality simulations driven by dynamically downscaled historical meteorological fields

    NASA Astrophysics Data System (ADS)

    Seltzer, Karl M.; Nolte, Christopher G.; Spero, Tanya L.; Appel, K. Wyat; Xing, Jia

    2016-08-01

    In this study, techniques typically used for future air quality projections are applied to a historical 11-year period to assess the performance of the modeling system when the driving meteorological conditions are obtained using dynamical downscaling of coarse-scale fields without correcting toward higher-resolution observations. The Weather Research and Forecasting model and the Community Multiscale Air Quality model are used to simulate regional climate and air quality over the contiguous United States for 2000-2010. The air quality simulations for that historical period are then compared to observations from four national networks. Comparisons are drawn between defined performance metrics and other published modeling results for predicted ozone, fine particulate matter, and speciated fine particulate matter. The results indicate that the historical air quality simulations driven by dynamically downscaled meteorology are typically within defined modeling performance benchmarks and are consistent with results from other published modeling studies using finer-resolution meteorology. This indicates that the regional climate and air quality modeling framework utilized here does not introduce substantial bias, which provides confidence in the method's use for future air quality projections.

  20. Mouse lung inflammation after instillation of particulate matter collected from a working dairy barn

    SciTech Connect

    Wegesser, Teresa C.; Last, Jerold A.

    2009-05-01

    Coarse and fine particulate matter (PM{sub 2.5-10} and PM{sub 2.5}, respectively) are regulated ambient air pollutants thought to have major adverse health effects in exposed humans. The role of endotoxin and other bioaerosol components in the toxicity of PM from ambient air is controversial. This study evaluated the inflammatory lung response in mice instilled intratracheally with PM{sub 2.5-10} and PM{sub 2.5} emitted from a working dairy barn, a source presumed to have elevated concentrations of endotoxin. PM{sub 2.5-10} was more pro-inflammatory on an equal weight basis than was PM{sub 2.5}; both fractions elicited a predominantly neutrophilic response. The inflammatory response was reversible, with a peak response to PM{sub 2.5-10} observed at 24 h after instillation, and a return to control values by 72 h after instillation. The major active pro-inflammatory component in whole PM{sub 2.5-10}, but not in whole PM{sub 2.5}, is heat-labile, consistent with it being endotoxin. A heat treatment protocol for the gradual inactivation of biological materials in the PM fractions over a measurable time course was developed and optimized in this study using pure lipopolysaccharide (LPS) as a model system. The time course of heat inactivation of pure LPS and of endotoxin activity in PM{sub 2.5-10} as measured by Limulus bioassay is identical. The active material in both PM{sub 2.5-10} and PM{sub 2.5} remained in the insoluble fraction when the whole PM samples were extracted with physiological saline solution. Histological analysis of lung sections from mice instilled with PM{sub 2.5-10} or PM{sub 2.5} showed evidence of inflammation consistent with the cellular responses observed in lung lavage fluid. The major pro-inflammatory components present in endotoxin-rich PM were found in the insoluble fraction of PM{sub 2.5-10}; however, in contrast with PM{sub 2.5-10} isolated from ambient air in the Central Valley of California, the active components in the insoluble

  1. A health-based assessment of particulate air pollution in urban areas of Beijing in 2000-2004.

    PubMed

    Zhang, Minsi; Song, Yu; Cai, Xuhui

    2007-04-15

    Particulate air pollution is a serious problem in Beijing. The annual concentration of particulate matter with aerodynamic diameter less than 10 microm (PM(10)), ranging from 141 to 166 microg m(-3) in 2000-2004, could be very harmful to human health. In this paper, we presented the mortality and morbidity effects of PM(10) pollution based on statistical data and the epidemiological exposure-response function. The economic costs to health during the 5 years were estimated to lie between US$1670 and $3655 million annually, accounting for about 6.55% of Beijing's gross domestic product each year. The total costs were apportioned into two parts caused by: the local emissions and long-range transported pollution. The contribution from local emissions dominated the total costs, accounting on average for 3.60% of GDP. However, the contributions from transported pollution cannot be neglected, and the relative percentage to the total costs from the other regions could account for about 45%. An energy policy and effective measures should be proposed to reduce particulate matter, especially PM(2.5) pollution in Beijing to protect public health. The Beijing government also needs to cooperate with the other local governments to reduce high background level of particulate air pollution.

  2. A health-based assessment of particulate air pollution in urban areas of Beijing in 2000-2004.

    PubMed

    Zhang, Minsi; Song, Yu; Cai, Xuhui

    2007-04-15

    Particulate air pollution is a serious problem in Beijing. The annual concentration of particulate matter with aerodynamic diameter less than 10 microm (PM(10)), ranging from 141 to 166 microg m(-3) in 2000-2004, could be very harmful to human health. In this paper, we presented the mortality and morbidity effects of PM(10) pollution based on statistical data and the epidemiological exposure-response function. The economic costs to health during the 5 years were estimated to lie between US$1670 and $3655 million annually, accounting for about 6.55% of Beijing's gross domestic product each year. The total costs were apportioned into two parts caused by: the local emissions and long-range transported pollution. The contribution from local emissions dominated the total costs, accounting on average for 3.60% of GDP. However, the contributions from transported pollution cannot be neglected, and the relative percentage to the total costs from the other regions could account for about 45%. An energy policy and effective measures should be proposed to reduce particulate matter, especially PM(2.5) pollution in Beijing to protect public health. The Beijing government also needs to cooperate with the other local governments to reduce high background level of particulate air pollution. PMID:17316765

  3. Indoor air sampling for fine particulate matter and black carbon in industrial communities in Pittsburgh.

    PubMed

    Tunno, Brett J; Naumoff Shields, Kyra; Cambal, Leah; Tripathy, Sheila; Holguin, Fernando; Lioy, Paul; Clougherty, Jane E

    2015-12-01

    Impacts of industrial emissions on outdoor air pollution in nearby communities are well-documented. Fewer studies, however, have explored impacts on indoor air quality in these communities. Because persons in northern climates spend a majority of their time indoors, understanding indoor exposures, and the role of outdoor air pollution in shaping such exposures, is a priority issue. Braddock and Clairton, Pennsylvania, industrial communities near Pittsburgh, are home to an active steel mill and coke works, respectively, and the population experiences elevated rates of childhood asthma. Twenty-one homes were selected for 1-week indoor sampling for fine particulate matter (PM2.5) and black carbon (BC) during summer 2011 and winter 2012. Multivariate linear regression models were used to examine contributions from both outdoor concentrations and indoor sources. In the models, an outdoor infiltration component explained 10 to 39% of variability in indoor air pollution for PM2.5, and 33 to 42% for BC. For both PM2.5 models and the summer BC model, smoking was a stronger predictor than outdoor pollution, as greater pollutant concentration increases were identified. For winter BC, the model was explained by outdoor pollution and an open windows modifier. In both seasons, indoor concentrations for both PM2.5 and BC were consistently higher than residence-specific outdoor concentration estimates. Mean indoor PM2.5 was higher, on average, during summer (25.8±22.7 μg/m3) than winter (18.9±13.2 μg/m3). Contrary to the study's hypothesis, outdoor concentrations accounted for only little to moderate variability (10 to 42%) in indoor concentrations; a much greater proportion of PM2.5 was explained by cigarette smoking. Outdoor infiltration was a stronger predictor for BC compared to PM2.5, especially in winter. Our results suggest that, even in industrial communities of high outdoor pollution concentrations, indoor activities--particularly cigarette smoking--may play a larger

  4. Indoor air sampling for fine particulate matter and black carbon in industrial communities in Pittsburgh.

    PubMed

    Tunno, Brett J; Naumoff Shields, Kyra; Cambal, Leah; Tripathy, Sheila; Holguin, Fernando; Lioy, Paul; Clougherty, Jane E

    2015-12-01

    Impacts of industrial emissions on outdoor air pollution in nearby communities are well-documented. Fewer studies, however, have explored impacts on indoor air quality in these communities. Because persons in northern climates spend a majority of their time indoors, understanding indoor exposures, and the role of outdoor air pollution in shaping such exposures, is a priority issue. Braddock and Clairton, Pennsylvania, industrial communities near Pittsburgh, are home to an active steel mill and coke works, respectively, and the population experiences elevated rates of childhood asthma. Twenty-one homes were selected for 1-week indoor sampling for fine particulate matter (PM2.5) and black carbon (BC) during summer 2011 and winter 2012. Multivariate linear regression models were used to examine contributions from both outdoor concentrations and indoor sources. In the models, an outdoor infiltration component explained 10 to 39% of variability in indoor air pollution for PM2.5, and 33 to 42% for BC. For both PM2.5 models and the summer BC model, smoking was a stronger predictor than outdoor pollution, as greater pollutant concentration increases were identified. For winter BC, the model was explained by outdoor pollution and an open windows modifier. In both seasons, indoor concentrations for both PM2.5 and BC were consistently higher than residence-specific outdoor concentration estimates. Mean indoor PM2.5 was higher, on average, during summer (25.8±22.7 μg/m3) than winter (18.9±13.2 μg/m3). Contrary to the study's hypothesis, outdoor concentrations accounted for only little to moderate variability (10 to 42%) in indoor concentrations; a much greater proportion of PM2.5 was explained by cigarette smoking. Outdoor infiltration was a stronger predictor for BC compared to PM2.5, especially in winter. Our results suggest that, even in industrial communities of high outdoor pollution concentrations, indoor activities--particularly cigarette smoking--may play a larger

  5. The persistence of pesticides in atmospheric particulate phase: An emerging air quality issue.

    PubMed

    Socorro, Joanna; Durand, Amandine; Temime-Roussel, Brice; Gligorovski, Sasho; Wortham, Henri; Quivet, Etienne

    2016-01-01

    The persistent organic pollutants (POPs) due to their physicochemical properties can be widely spread all over the globe; as such they represent a serious threat to both humans and wildlife. According to Stockholm convention out of 24 officially recognized POPs, 16 are pesticides. The atmospheric life times of pesticides, up to now were estimated based on their gas-phase reactivity. It has been only speculated that sorption to aerosol particles may increase significantly the half-lives of pesticides in the atmosphere. The results presented here challenge the current view of the half-lives of pesticides in the lower boundary layer of the atmosphere and their impact on air quality and human health. We demonstrate that semivolatile pesticides which are mostly adsorbed on atmospheric aerosol particles are very persistent with respect to the highly reactive hydroxyl radicals (OH) that is the self-cleaning agent of the atmosphere. The half-lives in particulate phase of difenoconazole, tetraconazole, fipronil, oxadiazon, deltamethrin, cyprodinil, permethrin, and pendimethalin are in order of several days and even higher than one month, implying that these pesticides can be transported over long distances, reaching the remote regions all over the world; hence these pesticides shall be further evaluated prior to be confirmed as POPs. PMID:27628441

  6. The persistence of pesticides in atmospheric particulate phase: An emerging air quality issue

    NASA Astrophysics Data System (ADS)

    Socorro, Joanna; Durand, Amandine; Temime-Roussel, Brice; Gligorovski, Sasho; Wortham, Henri; Quivet, Etienne

    2016-09-01

    The persistent organic pollutants (POPs) due to their physicochemical properties can be widely spread all over the globe; as such they represent a serious threat to both humans and wildlife. According to Stockholm convention out of 24 officially recognized POPs, 16 are pesticides. The atmospheric life times of pesticides, up to now were estimated based on their gas-phase reactivity. It has been only speculated that sorption to aerosol particles may increase significantly the half-lives of pesticides in the atmosphere. The results presented here challenge the current view of the half-lives of pesticides in the lower boundary layer of the atmosphere and their impact on air quality and human health. We demonstrate that semivolatile pesticides which are mostly adsorbed on atmospheric aerosol particles are very persistent with respect to the highly reactive hydroxyl radicals (OH) that is the self-cleaning agent of the atmosphere. The half-lives in particulate phase of difenoconazole, tetraconazole, fipronil, oxadiazon, deltamethrin, cyprodinil, permethrin, and pendimethalin are in order of several days and even higher than one month, implying that these pesticides can be transported over long distances, reaching the remote regions all over the world; hence these pesticides shall be further evaluated prior to be confirmed as POPs.

  7. The persistence of pesticides in atmospheric particulate phase: An emerging air quality issue

    PubMed Central

    Socorro, Joanna; Durand, Amandine; Temime-Roussel, Brice; Gligorovski, Sasho; Wortham, Henri; Quivet, Etienne

    2016-01-01

    The persistent organic pollutants (POPs) due to their physicochemical properties can be widely spread all over the globe; as such they represent a serious threat to both humans and wildlife. According to Stockholm convention out of 24 officially recognized POPs, 16 are pesticides. The atmospheric life times of pesticides, up to now were estimated based on their gas-phase reactivity. It has been only speculated that sorption to aerosol particles may increase significantly the half‐lives of pesticides in the atmosphere. The results presented here challenge the current view of the half-lives of pesticides in the lower boundary layer of the atmosphere and their impact on air quality and human health. We demonstrate that semivolatile pesticides which are mostly adsorbed on atmospheric aerosol particles are very persistent with respect to the highly reactive hydroxyl radicals (OH) that is the self-cleaning agent of the atmosphere. The half-lives in particulate phase of difenoconazole, tetraconazole, fipronil, oxadiazon, deltamethrin, cyprodinil, permethrin, and pendimethalin are in order of several days and even higher than one month, implying that these pesticides can be transported over long distances, reaching the remote regions all over the world; hence these pesticides shall be further evaluated prior to be confirmed as POPs. PMID:27628441

  8. Some Analysis of Integrated-count Processing for Fixed-filter Continuous Particulate Air Monitors.

    PubMed

    Evans, William C

    2016-09-01

    A calculation for estimating concentrations of long-lived airborne particulate radioactivity using fixed-filter continuous air monitors is given in an ISO standard. The method uses counts integrated over relatively long time intervals, rather than the 'instantaneous' count rates that in digital systems are evaluated using much shorter time intervals and some form of variance-reduction filtering. This article presents three ways of deriving and interpreting this calculation, based on previously published mathematical models that were derived from first principles. The method is also extended here to apply for short-lived activity. Some statistical properties of the estimator are discussed, including its time-dependent variance and the presence of strong autocorrelation in the concentration estimates. An interactive simulation was used to examine the performance of the concentration estimation, using physically plausible concentration time-dependence profiles; example plots are provided. The conclusion of these studies is that the method, as modified herein, can perform remarkably well in providing periodic average-concentration estimates for both long- and short-lived activity, and it should be considered an appropriate method in those situations where the tracking of a time-dependent concentration is deemed necessary. PMID:27472754

  9. Air pollution and skin diseases: Adverse effects of airborne particulate matter on various skin diseases.

    PubMed

    Kim, Kyung Eun; Cho, Daeho; Park, Hyun Jeong

    2016-05-01

    Environmental air pollution encompasses various particulate matters (PMs). The increased ambient PM from industrialization and urbanization is highly associated with morbidity and mortality worldwide, presenting one of the most severe environmental pollution problems. This article focuses on the correlation between PM and skin diseases, along with related immunological mechanisms. Recent epidemiological studies on the cutaneous impacts of PM showed that PM affects the development and exacerbation of skin diseases. PM induces oxidative stress via production of reactive oxygen species and secretion of pro-inflammatory cytokines such as TNF-α, IL-1α, and IL-8. In addition, the increased production of ROS such as superoxide and hydroxyl radical by PM exposure increases MMPs including MMP-1, MMP-2, and MMP-9, resulting in the degradation of collagen. These processes lead to the increased inflammatory skin diseases and skin aging. In addition, environmental cigarette smoke, which is well known as an oxidizing agent, is closely related with androgenetic alopecia (AGA). Also, ultrafine particles (UFPs) including black carbon and polycyclic aromatic hydrocarbons (PAHs) enhance the incidence of skin cancer. Overall, increased PM levels are highly associated with the development of various skin diseases via the regulation of oxidative stress and inflammatory cytokines. Therefore, anti-oxidant and anti-inflammatory drugs may be useful for treating PM-induced skin diseases. PMID:27018067

  10. Effect of particulate matter air pollution on C-reactive protein: a review of epidemiologic studies

    PubMed Central

    Li, Yanli; Rittenhouse-Olson, Kate; L.Scheider, William; Mu, Lina

    2013-01-01

    Inflammatory response is implicated as a biologic mechanism that links particulate matter (PM) air pollution with health effects. C-reactive protein (CRP), an important acute-phase reactant with profound proinflammatory properties, is used clinically as an indicator of the presence and intensity of inflammation. In vitro and in vivo animal studies suggest that CRP levels increase in response to PM exposure, but there was no consistency in epidemiologic studies. Herein, a systematic review was conducted to examine the association between PM exposure and serum CRP levels in humans. Elevated CRP levels were consistently found among children, and CRP elevations were also observed among healthy adults, albeit requiring higher peak levels of PM exposure. PM-induced CRP responses were not consistently found in adults with chronic inflammatory conditions, perhaps because of the use of anti-inflammatory medications in this population. Of the eight examined randomized trials, only one trial with a longer intervention period supported the effect of PM exposure on CRP concentrations. To provide conclusive evidence, further epidemiologic studies are needed to better quantify the magnitude of CRP level changes in response to PM with well-defined study populations and better control of various confounding factors. PMID:23023922

  11. The persistence of pesticides in atmospheric particulate phase: An emerging air quality issue.

    PubMed

    Socorro, Joanna; Durand, Amandine; Temime-Roussel, Brice; Gligorovski, Sasho; Wortham, Henri; Quivet, Etienne

    2016-09-15

    The persistent organic pollutants (POPs) due to their physicochemical properties can be widely spread all over the globe; as such they represent a serious threat to both humans and wildlife. According to Stockholm convention out of 24 officially recognized POPs, 16 are pesticides. The atmospheric life times of pesticides, up to now were estimated based on their gas-phase reactivity. It has been only speculated that sorption to aerosol particles may increase significantly the half-lives of pesticides in the atmosphere. The results presented here challenge the current view of the half-lives of pesticides in the lower boundary layer of the atmosphere and their impact on air quality and human health. We demonstrate that semivolatile pesticides which are mostly adsorbed on atmospheric aerosol particles are very persistent with respect to the highly reactive hydroxyl radicals (OH) that is the self-cleaning agent of the atmosphere. The half-lives in particulate phase of difenoconazole, tetraconazole, fipronil, oxadiazon, deltamethrin, cyprodinil, permethrin, and pendimethalin are in order of several days and even higher than one month, implying that these pesticides can be transported over long distances, reaching the remote regions all over the world; hence these pesticides shall be further evaluated prior to be confirmed as POPs.

  12. Particulate matter air pollution causes oxidant-mediated increase in gut permeability in mice

    PubMed Central

    2011-01-01

    Background Exposure to particulate matter (PM) air pollution may be an important environmental factor leading to exacerbations of inflammatory illnesses in the GI tract. PM can gain access to the gastrointestinal (GI) tract via swallowing of air or secretions from the upper airways or mucociliary clearance of inhaled particles. Methods We measured PM-induced cell death and mitochondrial ROS generation in Caco-2 cells stably expressing oxidant sensitive GFP localized to mitochondria in the absence or presence of an antioxidant. C57BL/6 mice were exposed to a very high dose of urban PM from Washington, DC (200 μg/mouse) or saline via gastric gavage and small bowel and colonic tissue were harvested for histologic evaluation, and RNA isolation up to 48 hours. Permeability to 4kD dextran was measured at 48 hours. Results PM induced mitochondrial ROS generation and cell death in Caco-2 cells. PM also caused oxidant-dependent NF-κB activation, disruption of tight junctions and increased permeability of Caco-2 monolayers. Mice exposed to PM had increased intestinal permeability compared with PBS treated mice. In the small bowel, colocalization of the tight junction protein, ZO-1 was lower in the PM treated animals. In the small bowel and colon, PM exposed mice had higher levels of IL-6 mRNA and reduced levels of ZO-1 mRNA. Increased apoptosis was observed in the colon of PM exposed mice. Conclusions Exposure to high doses of urban PM causes oxidant dependent GI epithelial cell death, disruption of tight junction proteins, inflammation and increased permeability in the gut in vitro and in vivo. These PM-induced changes may contribute to exacerbations of inflammatory disorders of the gut. PMID:21658250

  13. High-efficiency particulate air filter test stand and aerosol generator for particle loading studies.

    PubMed

    Arunkumar, R; Hogancamp, Kristina U; Parsons, Michael S; Rogers, Donna M; Norton, Olin P; Nagel, Brian A; Alderman, Steven L; Waggoner, Charles A

    2007-08-01

    This manuscript describes the design, characterization, and operational range of a test stand and high-output aerosol generator developed to evaluate the performance of 30 x 30 x 29 cm(3) nuclear grade high-efficiency particulate air (HEPA) filters under variable, highly controlled conditions. The test stand system is operable at volumetric flow rates ranging from 1.5 to 12 standard m(3)/min. Relative humidity levels are controllable from 5%-90% and the temperature of the aerosol stream is variable from ambient to 150 degrees C. Test aerosols are produced through spray drying source material solutions that are introduced into a heated stainless steel evaporation chamber through an air-atomizing nozzle. Regulation of the particle size distribution of the aerosol challenge is achieved by varying source solution concentrations and through the use of a postgeneration cyclone. The aerosol generation system is unique in that it facilitates the testing of standard HEPA filters at and beyond rated media velocities by consistently providing, into a nominal flow of 7 standard m(3)/min, high mass concentrations (approximately 25 mg/m(3)) of dry aerosol streams having count mean diameters centered near the most penetrating particle size for HEPA filters (120-160 nm). Aerosol streams that have been generated and characterized include those derived from various concentrations of KCl, NaCl, and sucrose solutions. Additionally, a water insoluble aerosol stream in which the solid component is predominantly iron (III) has been produced. Multiple ports are available on the test stand for making simultaneous aerosol measurements upstream and downstream of the test filter. Types of filter performance related studies that can be performed using this test stand system include filter lifetime studies, filtering efficiency testing, media velocity testing, evaluations under high mass loading and high humidity conditions, and determination of the downstream particle size distributions.

  14. Pulmonary T cell activation in response to chronic particulate air pollution

    PubMed Central

    Deiuliis, Jeffrey A.; Kampfrath, Thomas; Zhong, Jixin; Oghumu, Steve; Maiseyeu, Andrei; Chen, Lung Chi; Sun, Qinghua; Satoskar, Abhay R.

    2012-01-01

    The purpose of this study was to investigate the effects of chronically inhaled particulate matter <2.5 μm (PM2.5) on inflammatory cell populations in the lung and systemic circulation. A prominent component of air pollution exposure is a systemic inflammatory response that may exaggerate chronic diseases such as atherosclerosis and insulin resistance. T cell response was measured in wild-type C57B/L6, Foxp3-green fluorescent protein (GFP) “knockin,” and chemokine receptor 3 knockout (CXCR3−/−) mice following 24–28 wk of PM2.5 or filtered air. Chronic PM2.5 exposure resulted in increased CXCR3-expressing CD4+ and CD8+ T cells in the lungs, spleen, and blood with elevation in CD11c+ macrophages in the lung and oxidized derivatives of 1-palmitoyl-2-arachidonyl-sn-glycero-3-phosphorylcholine in wild-type mice. CXCR3 deficiency decreased T cells in the lung. GFP+ regulatory T cells increased with PM2.5 exposure in the spleen and blood of Foxp3-GFP mice but were present at very low levels in the lung irrespective of PM2.5 exposure. Mixed lymphocyte cultures using primary, PM2.5-treated macrophages demonstrated enhanced T cell proliferation. Our experiments indicate that PM2.5 potentiates a proinflammatory Th1 response involving increased homing of CXCR3+ T effector cells to the lung and modulation of systemic T cell populations. PMID:22160305

  15. High-efficiency particulate air filter test stand and aerosol generator for particle loading studies.

    PubMed

    Arunkumar, R; Hogancamp, Kristina U; Parsons, Michael S; Rogers, Donna M; Norton, Olin P; Nagel, Brian A; Alderman, Steven L; Waggoner, Charles A

    2007-08-01

    This manuscript describes the design, characterization, and operational range of a test stand and high-output aerosol generator developed to evaluate the performance of 30 x 30 x 29 cm(3) nuclear grade high-efficiency particulate air (HEPA) filters under variable, highly controlled conditions. The test stand system is operable at volumetric flow rates ranging from 1.5 to 12 standard m(3)/min. Relative humidity levels are controllable from 5%-90% and the temperature of the aerosol stream is variable from ambient to 150 degrees C. Test aerosols are produced through spray drying source material solutions that are introduced into a heated stainless steel evaporation chamber through an air-atomizing nozzle. Regulation of the particle size distribution of the aerosol challenge is achieved by varying source solution concentrations and through the use of a postgeneration cyclone. The aerosol generation system is unique in that it facilitates the testing of standard HEPA filters at and beyond rated media velocities by consistently providing, into a nominal flow of 7 standard m(3)/min, high mass concentrations (approximately 25 mg/m(3)) of dry aerosol streams having count mean diameters centered near the most penetrating particle size for HEPA filters (120-160 nm). Aerosol streams that have been generated and characterized include those derived from various concentrations of KCl, NaCl, and sucrose solutions. Additionally, a water insoluble aerosol stream in which the solid component is predominantly iron (III) has been produced. Multiple ports are available on the test stand for making simultaneous aerosol measurements upstream and downstream of the test filter. Types of filter performance related studies that can be performed using this test stand system include filter lifetime studies, filtering efficiency testing, media velocity testing, evaluations under high mass loading and high humidity conditions, and determination of the downstream particle size distributions. PMID

  16. High-efficiency particulate air filter test stand and aerosol generator for particle loading studies

    NASA Astrophysics Data System (ADS)

    Arunkumar, R.; Hogancamp, Kristina U.; Parsons, Michael S.; Rogers, Donna M.; Norton, Olin P.; Nagel, Brian A.; Alderman, Steven L.; Waggoner, Charles A.

    2007-08-01

    This manuscript describes the design, characterization, and operational range of a test stand and high-output aerosol generator developed to evaluate the performance of 30×30×29cm3 nuclear grade high-efficiency particulate air (HEPA) filters under variable, highly controlled conditions. The test stand system is operable at volumetric flow rates ranging from 1.5to12standardm3/min. Relative humidity levels are controllable from 5%-90% and the temperature of the aerosol stream is variable from ambient to 150°C. Test aerosols are produced through spray drying source material solutions that are introduced into a heated stainless steel evaporation chamber through an air-atomizing nozzle. Regulation of the particle size distribution of the aerosol challenge is achieved by varying source solution concentrations and through the use of a postgeneration cyclone. The aerosol generation system is unique in that it facilitates the testing of standard HEPA filters at and beyond rated media velocities by consistently providing, into a nominal flow of 7standardm3/min, high mass concentrations (˜25mg/m3) of dry aerosol streams having count mean diameters centered near the most penetrating particle size for HEPA filters (120-160nm). Aerosol streams that have been generated and characterized include those derived from various concentrations of KCl, NaCl, and sucrose solutions. Additionally, a water insoluble aerosol stream in which the solid component is predominantly iron (III) has been produced. Multiple ports are available on the test stand for making simultaneous aerosol measurements upstream and downstream of the test filter. Types of filter performance related studies that can be performed using this test stand system include filter lifetime studies, filtering efficiency testing, media velocity testing, evaluations under high mass loading and high humidity conditions, and determination of the downstream particle size distributions.

  17. Is particulate air pollution at the front door a good proxy of residential exposure?

    PubMed

    Zauli Sajani, Stefano; Trentini, Arianna; Rovelli, Sabrina; Ricciardelli, Isabella; Marchesi, Stefano; Maccone, Claudio; Bacco, Dimitri; Ferrari, Silvia; Scotto, Fabiana; Zigola, Claudia; Cattaneo, Andrea; Cavallo, Domenico Maria; Lauriola, Paolo; Poluzzi, Vanes; Harrison, Roy M

    2016-06-01

    The most advanced epidemiological studies on health effects of air pollution assign exposure to individuals based on residential outdoor concentrations of air pollutants measured or estimated at the front-door. In order to assess to what extent this approach could cause misclassification, indoor measurements were carried out in unoccupied rooms at the front and back of a building which fronted onto a major urban road. Simultaneous measurements were also carried out at adjacent outdoor locations to the front and rear of the building. Two 15-day monitoring campaigns were conducted in the period June-December 2013 in a building located in the urban area of Bologna, Italy. Particulate matter metrics including PM2.5 mass and chemical composition, particle number concentration and size distribution were measured. Both outdoor and indoor concentrations at the front of the building substantially exceeded those at the rear. The highest front/back ratio was found for ultrafine particles with outdoor concentration at the front door 3.4 times higher than at the rear. A weak influence on front/back ratios was found for wind direction. Particle size distribution showed a substantial loss of particles within the sub-50 nm size range between the front and rear of the building and a further loss of this size range in the indoor data. The chemical speciation data showed relevant reductions for most constituents between the front and the rear, especially for traffic related elements such as Elemental Carbon, Iron, Manganese and Tin. The main conclusion of the study is that gradients in concentrations between the front and rear, both outside and inside the building, are relevant and comparable to those measured between buildings located in high and low traffic areas. These findings show high potential for misclassification in the epidemiological studies that assign exposure based on particle concentrations estimated or measured at subjects' home addresses. PMID:26925757

  18. Source assessment of particulate air pollutants measured at the southwest european coast

    NASA Astrophysics Data System (ADS)

    Pio, Casimiro A.; Castro, Luis M.; Cerqueira, Mario A.; Santos, Isabel M.; Belchior, Filipa; Salgueiro, Maria L.

    Aerosol particles and gaseous species were measured in air masses transported to the west coast of Portugal, between November 1993 and August 1994. Samples were taken during four monitoring campaigns distributed along the various seasons of the year, integrated in the EC Project: BMCAPE. Aerosol particles were collected with separation in two size fractions and analysed in relation to total mass, water soluble ions, trace elements and black/organic carbon. Local micro-meteorological parameters and air mass backward trajectories were compared with analytical results in order to define characteristic air mass types and to evaluate the origin of pollutants. Average concentrations on the Portuguese west coast, even in maritime air masses, are higher than values observed in remote oceanic locations. This is probably a consequence of continental European air masses recirculation through the eastern Atlantic Ocean, reinforced by situations of mesoscale transport from the Iberian Peninsula. Principal Component Analysis permitted the identification of five source groups for the fine and coarse aerosol fractions, namely combustion plus road traffic, sea salt spray, secondary aerosol production, soil and possibly non-ferrous metallurgy industries. In the aerosol fine fraction road traffic and combustion contribute on average with 25% of the total fine aerosol mass, while sea spray and secondary production represent 14% and 31%, respectively of the mass loading. Sea spray is by far the major contributor to the coarse fraction with an average of 88% of the suspended coarse aerosol mass.

  19. Determination of polycyclic aromatic hydrocarbons from ambient air particulate matter using a cold fiber solid phase microextraction gas chromatography-mass spectrometry method.

    PubMed

    Menezes, Helvécio Costa; de Lourdes Cardeal, Zenilda

    2011-05-27

    Polycyclic aromatic hydrocarbons (PAH) from ambient air particulate matter (PM) were analyzed by a new method that utilized direct immersion (DI) and cold fiber (CF) SPME-GC/MS. Experimental design was used to optimize the conditions of extraction by DI-CF-SPME with a 100μm polydimethylsiloxane (PDMS) fiber. The optimal conditions included a 5min equilibration at 70°C time in an ultrasonic bath with an extraction time of 60min. The optimized method was validated by the analysis of a NIST standard reference material (SRM), 1649b urban dust. The results obtained were in good agreement with certified values. PAH recoveries for reference materials were between 88 and 98%, with a relative standard deviation ranging from 5 to 17%. Detection limits (LOD) varied from 0.02 to 1.16ng and the quantification limits (LOQ) varied from 0.05 to 3.86ng. The optimized and validated method was applied to the determination of PAH from real particulate matter (PM10) and total suspended particulate (TPS) samples collected on quartz fiber filters with high volume samplers.

  20. Determination of rare earth elements (REES) in airborne particulate matter (APM) collected in Tokyo, Japan, and a positive anomaly of europium and terbium.

    PubMed

    Suzuki, Yoshinari; Suzuki, Tatsunosuke; Furuta, Naoki

    2010-01-01

    The determination of rare earth elements (REEs) in airborne particulate matter (APM) was conducted, and the distribution pattern of atmospheric REEs was evaluated in this study. The APM was collected in the center of Tokyo, Japan, where serious air pollution is always of concern. A cellulose acetate membrane filter was used to collect the APM because Ba and REEs contamination is lower than that in a quartz glass fiber filter. The REEs measurement was conducted by ICP-MS after the digestion of the APM by a microwave acid digestion procedure. The standard reference material (SRM) of NIST 1648 urban particulate matter was used to validate the accuracy of the analytical method. The analytical results for SRM well agreed with those of the reference and reported values. Consequently, the analytical method established in this study was applied to the determination of REEs in APM collected in Tokyo, Japan. The obtained REEs distribution pattern in the APM showed a positive anomaly of Tb and Eu. The La/Sm ratio, which is considered to be as a good indicator of the anthropogenic effect, in size-classified APM showed a high degree of the anthropogenic effect in fine APM with a diameter of <1.1 µm. Emission sources of Tb, Eu and other REEs are discussed.

  1. Cleaning efficacy of high-efficiency particulate air-filtered vacuuming and "dry steam" cleaning on carpet.

    PubMed

    Yiin, Lih-Ming; Yu, Chang Ho; Ashley, Peter; Rhoads, George

    2008-02-01

    Previous studies for lead exposure reduction have indicated the difficulty in reducing surface contamination of carpets with the use of regular vacuum cleaners. To find a solution, a household vacuum cleaner equipped with a high-efficiency particulate air (HEPA) filter and a dust finder indicator, and a "dry steam" cleaner previously reported effective in reducing dust mite allergens in carpets and mattresses were tested for effectiveness in reducing lead dust in carpets. Fifty homes of lead-exposed children were tested in New Jersey. A selected carpet in the living area of each home was tested with two interventions: half was cleaned by HEPA vacuuming twice (VAC-VAC) and the other half by dry steaming between the two HEPA vacuumings (VAC-DSC-VAC). Wipe and vacuum samples, representing surface dust and total dust collections, respectively, were taken before and after cleaning. The wipe and vacuum sample data indicated that both cleaning methods substantially reduced dust lead levels (p < 0.001). The mean percent reductions in lead loading were approximately 29% and 40% for the VAC-VAC and VAC-DSC-VAC interventions, respectively. The difference between the two postcleaning levels was statistically significant by wipe sampling (p = 0.038) but was marginally insignificant by vacuum sampling (p = 0.072). A subset of sample data collected before repeat vacuuming (VAC-DSC) suggested that repeat vacuuming after dry steam cleaning is unnecessary. In summary, slow and steady HEPA vacuuming with the help of a dust finder indicator reduces surface and overall lead dust in carpets, and dry steam cleaning further reduces surface lead contamination as compared with HEPA vacuuming alone.

  2. Cleaning efficacy of high-efficiency particulate air-filtered vacuuming and "dry steam" cleaning on carpet.

    PubMed

    Yiin, Lih-Ming; Yu, Chang Ho; Ashley, Peter; Rhoads, George

    2008-02-01

    Previous studies for lead exposure reduction have indicated the difficulty in reducing surface contamination of carpets with the use of regular vacuum cleaners. To find a solution, a household vacuum cleaner equipped with a high-efficiency particulate air (HEPA) filter and a dust finder indicator, and a "dry steam" cleaner previously reported effective in reducing dust mite allergens in carpets and mattresses were tested for effectiveness in reducing lead dust in carpets. Fifty homes of lead-exposed children were tested in New Jersey. A selected carpet in the living area of each home was tested with two interventions: half was cleaned by HEPA vacuuming twice (VAC-VAC) and the other half by dry steaming between the two HEPA vacuumings (VAC-DSC-VAC). Wipe and vacuum samples, representing surface dust and total dust collections, respectively, were taken before and after cleaning. The wipe and vacuum sample data indicated that both cleaning methods substantially reduced dust lead levels (p < 0.001). The mean percent reductions in lead loading were approximately 29% and 40% for the VAC-VAC and VAC-DSC-VAC interventions, respectively. The difference between the two postcleaning levels was statistically significant by wipe sampling (p = 0.038) but was marginally insignificant by vacuum sampling (p = 0.072). A subset of sample data collected before repeat vacuuming (VAC-DSC) suggested that repeat vacuuming after dry steam cleaning is unnecessary. In summary, slow and steady HEPA vacuuming with the help of a dust finder indicator reduces surface and overall lead dust in carpets, and dry steam cleaning further reduces surface lead contamination as compared with HEPA vacuuming alone. PMID:18075882

  3. Quantitative extraction of organic tracer compounds from ambient particulate matter collected on polymer substrates.

    PubMed

    Sun, Qinyue; Alexandrova, Olga A; Herckes, Pierre; Allen, Jonathan O

    2009-05-15

    Organic compounds in ambient particulate matter (PM) samples are used as tracers for PM source apportionment. These PM samples are collected using high volume samplers; one such sampler is an impactor in which polyurethane foam (PUF) and polypropylene foam (PPF) are used as the substrates. The polymer substrates have the advantage of limiting particle bounce artifacts during sampling; however these substrates may contain background organic additives. A protocol of two extractions with isopropanol followed by three extractions with dichloromethane (DCM) was developed for both substrate precleaning and analyte extraction. Some residual organic contaminants were present after precleaning; expressed as concentrations in a 24-h ambient PM sample, the residual amounts were 1 microg m(-3) for plasticizers and antioxidants, and 10 ng m(-3) for n-alkanes with carbon number lower than 26. The quantification limit for all other organic tracer compounds was approximately 0.1 ng m(-3) in a 24-h ambient PM sample. Recovery experiments were done using NIST Standard Reference Material (SRM) Urban Dust (1649a); the average recoveries for polycyclic aromatic hydrocarbons (PAHs) from PPF and PUF substrates were 117+/-8% and 107+/-11%, respectively. Replicate extractions were also done using the ambient samples collected in Nogales, Arizona. The relative differences between repeat analyses were less than 10% for 47 organic tracer compounds quantified. After the first extraction of ambient samples, less than 7% of organic tracer compounds remained in the extracted substrates. This method can be used to quantify a suite of semi- and non-polar organic tracer compounds suitable for source apportionment studies in 24-h ambient PM samples.

  4. Ambient particulate air pollution and cardiac arrhythmia in a panel of older adults in Steubenville, Ohio

    PubMed Central

    Sarnat, S E; Suh, H H; Coull, B A; Schwartz, J; Stone, P H; Gold, D R

    2006-01-01

    Objectives Ambient particulate air pollution has been associated with increased risk of cardiovascular morbidity and mortality. Pathways by which particles may act involve autonomic nervous system dysfunction or inflammation, which can affect cardiac rate and rhythm. The importance of these pathways may vary by particle component or source. In an eastern US location with significant regional pollution, the authors examined the association of air pollution and odds of cardiac arrhythmia in older adults. Methods Thirty two non‐smoking older adults were evaluated on a weekly basis for 24 weeks during the summer and autumn of 2000 with a standardised 30 minute protocol that included continuous electrocardiogram measurements. A central ambient monitoring station provided daily concentrations of fine particles (PM2.5, sulfate, elemental carbon) and gases. Sulfate was used as a marker of regional pollution. The authors used logistic mixed effects regression to examine the odds of having any supraventricular ectopy (SVE) or ventricular ectopy (VE) in association with increases in air pollution for moving average pollutant concentrations up to 10 days before the health assessment. Results Participant specific mean counts of arrhythmia over the protocol varied between 0.1–363 for SVE and 0–350 for VE. The authors observed odds ratios for having SVE over the length of the protocol of 1.42 (95% CI 0.99 to 2.04), 1.70 (95% CI 1.12 to 2.57), and 1.78 (95% CI 0.95 to 3.35) for 10.0 μg/m3, 4.2 μg/m3, and 14.9 ppb increases in five day moving average PM2.5, sulfate, and ozone concentrations respectively. The other pollutants, including elemental carbon, showed no effect on arrhythmia. Participants reporting cardiovascular conditions (for example, previous myocardial infarction or hypertension) were the most susceptible to pollution induced SVE. The authors found no association of pollution with VE. Conclusion Increased levels of ambient sulfate and ozone may increase

  5. Desorption electrospray ionization-mass spectrometric analysis of low vapor pressure chemical particulates collected from a surface.

    PubMed

    Ewing, K J; Gibson, D; Sanghera, J; Miklos, F

    2015-01-01

    The collection of a low vapor pressure chemical simulant triethyl phosphate sorbed onto silica gel (TEP/SG) from a surface with subsequent analysis of the TEP/SG particulates using desorption electrospray ionization-mass spectrometry (DESI-MS) is described. Collection of TEP/SG particulates on a surface was accomplished using a sticky screen sampler composed of a stainless steel screen coated with partially polymerized polydimethylsiloxane (PDMS). DESI-MS analysis of TEP/SG particulates containing different percentages of TEP sorbed onto silica gel enabled the generation of response curves for the TEP ions m/z 155 and m/z 127. Using the response curves the calculation of the mass of TEP in a 25 wt% sample of TEP/SG was calculated, results show that the calculated mass of TEP was 14% different from the actual mass of TEP in the sample using the m/z 127 TEP ion response curve. Detection limits for the TEP vapor and TEP/SG particulates were calculated to be 4 μg and 6 particles, respectively.

  6. Statistical summary of air quality data for metropolitian Cleveland, Ohio, 1967 - 1972: Total suspended particulates, nitrogen dioxide, and sulfur dioxide

    NASA Technical Reports Server (NTRS)

    King, R. B.; Neustadter, H. E.; Fordyce, J. S.; Burr, J. C., Jr.; Cornett, C. L.

    1974-01-01

    Air-quality data for metropolitan Cleveland, Ohio, from 1967 through 1972 were collated and statistically analyzed. Total suspended particulates (TSP) departed from lognormal distribution in 1972. Nitrogen dioxide and sulfur dioxide, departed significantly from lognormal distributions in 1972. In Cleveland the Ohio standards were not met. However, the data indicate a general improvement in air quality. Unusually high precipitation (43% above the average in 1972) may be responsible in lowering these values from the 1971 levels. The mean values of TSP, NO2, and SO2 are 104, 191, and 83 microgram/cu m respectively.

  7. EFFECTS OF INHALATION OF METALLIC CONSTITUENTS OF PARTICULATE MATTER AIR POLLUTION ON CARDIOPULMONARY AND THERMOREGULATORY PARAMETERS IN HEALTH AND COMPROMISED RATS

    EPA Science Inventory


    EFFECTS OF INHALATION OF METALLIC CONSTITUENTS OF PARTICULATE MATTER AIR POLLUTION ON CARDIOPULMONARY AND THERMOREGULATORY PARAMETERS IN HEALTHY AND COMPROMISED RATS. Watkinson, WP, Campen, MJ, Wichers, LB, Nolan, JP, Kodavanti, UP, Schladweiler, MCJ, Evansky, PA, Lappi, ER,...

  8. Occurrence of phthalate diesters in particulate and vapor phases in indoor air and implications for human exposure in Albany, New York, USA.

    PubMed

    Tran, Tri Manh; Kannan, Kurunthachalam

    2015-04-01

    Phthalate diesters are used as plasticizers in a wide range of consumer products. Because phthalates have been shown in laboratory animal studies to be toxic, human exposure to these chemicals is a matter of concern. Nevertheless, little is known about inhalation exposure to phthalates in the United States. In this study, occurrence of nine phthalates was determined in 60 indoor air samples collected in 2014 in Albany, New York, USA. Airborne particulate and vapor phase samples were collected from various sampling locations by use of a low-volume air sampler. The median concentrations of nine phthalates in air samples collected from homes, offices, laboratories, schools, salons (hair and nail salons), and public places were 732, 143, 170, 371, 2600, and 354 ng/m(3), respectively. Diethyl phthalate (DEP) was found at the highest concentrations, which ranged from 4.83 to 2250 ng/m(3) (median 152) followed by di-n-butyl phthalate, which ranged from 4.05 to 1170 ng/m(3) (median 63.3). The median inhalation exposure dose to phthalates was estimated at 0.845, 0.423, 0.203, 0.089, and 0.070 µg/kg-bw/d for infants, toddlers, children, teenagers, and adults, respectively. Inhalation is an important pathway of human exposure to DEP.

  9. Trace Elements Speciation of Submicron Particulate Matter (PM1) Collected in the Surroundings of Power Plants

    PubMed Central

    Zajusz-Zubek, Elwira; Kaczmarek, Konrad; Mainka, Anna

    2015-01-01

    This study reports the concentrations of PM1 trace elements (As, Cd, Co, Cr, Hg, Mn, Ni, Pb, Sb and Se) content in highly mobile (F1), mobile (F2), less mobile (F3) and not mobile (F4) fractions in samples that were collected in the surroundings of power plants in southern Poland. It also reports source identification by enrichment factors (EF) and a principal component analysis (PCA). There is limited availability of scientific data concerning the chemical composition of dust, including fractionation analyses of trace elements, in the surroundings of power plants. The present study offers important results in order to fill this data gap. The data collected in this study can be utilized to validate air quality models in this rapidly developing area. They are also crucial for comparisons with datasets from similar areas all over the world. Moreover, the identification of the bioavailability of selected carcinogenic and toxic elements in the future might be used as output data for potential biological and population research on risk assessment. This is important in the context of air pollution being hazardous to human health. PMID:26501310

  10. Trace Elements Speciation of Submicron Particulate Matter (PM1) Collected in the Surroundings of Power Plants.

    PubMed

    Zajusz-Zubek, Elwira; Kaczmarek, Konrad; Mainka, Anna

    2015-10-16

    This study reports the concentrations of PM1 trace elements (As, Cd, Co, Cr, Hg, Mn, Ni, Pb, Sb and Se) content in highly mobile (F1), mobile (F2), less mobile (F3) and not mobile (F4) fractions in samples that were collected in the surroundings of power plants in southern Poland. It also reports source identification by enrichment factors (EF) and a principal component analysis (PCA). There is limited availability of scientific data concerning the chemical composition of dust, including fractionation analyses of trace elements, in the surroundings of power plants. The present study offers important results in order to fill this data gap. The data collected in this study can be utilized to validate air quality models in this rapidly developing area. They are also crucial for comparisons with datasets from similar areas all over the world. Moreover, the identification of the bioavailability of selected carcinogenic and toxic elements in the future might be used as output data for potential biological and population research on risk assessment. This is important in the context of air pollution being hazardous to human health.

  11. Summary of performance data for technologies to control gaseous, odor, and particulate emissions from livestock operations: Air management practices assessment tool (AMPAT)

    PubMed Central

    Maurer, Devin L.; Koziel, Jacek A.; Harmon, Jay D.; Hoff, Steven J.; Rieck-Hinz, Angela M.; Andersen, Daniel S.

    2016-01-01

    The livestock and poultry production industry, regulatory agencies, and researchers lack a current, science-based guide and data base for evaluation of air quality mitigation technologies. Data collected from science-based review of mitigation technologies using practical, stakeholders-oriented evaluation criteria to identify knowledge gaps/needs and focuses for future research efforts on technologies and areas with the greatest impact potential is presented in the Literature Database tab on the air management practices tool (AMPAT). The AMPAT is web-based (available at www.agronext.iastate.edu/ampat) and provides an objective overview of mitigation practices best suited to address odor, gaseous, and particulate matter (PM) emissions at livestock operations. The data was compiled into Excel spreadsheets from a literature review of 265 papers was performed to (1) evaluate mitigation technologies performance for emissions of odor, volatile organic compounds (VOCs), ammonia (NH3), hydrogen sulfide (H2S), particulate matter (PM), and greenhouse gases (GHGs) and to (2) inform future research needs. PMID:27158660

  12. Summary of performance data for technologies to control gaseous, odor, and particulate emissions from livestock operations: Air management practices assessment tool (AMPAT).

    PubMed

    Maurer, Devin L; Koziel, Jacek A; Harmon, Jay D; Hoff, Steven J; Rieck-Hinz, Angela M; Andersen, Daniel S

    2016-06-01

    The livestock and poultry production industry, regulatory agencies, and researchers lack a current, science-based guide and data base for evaluation of air quality mitigation technologies. Data collected from science-based review of mitigation technologies using practical, stakeholders-oriented evaluation criteria to identify knowledge gaps/needs and focuses for future research efforts on technologies and areas with the greatest impact potential is presented in the Literature Database tab on the air management practices tool (AMPAT). The AMPAT is web-based (available at www.agronext.iastate.edu/ampat) and provides an objective overview of mitigation practices best suited to address odor, gaseous, and particulate matter (PM) emissions at livestock operations. The data was compiled into Excel spreadsheets from a literature review of 265 papers was performed to (1) evaluate mitigation technologies performance for emissions of odor, volatile organic compounds (VOCs), ammonia (NH3), hydrogen sulfide (H2S), particulate matter (PM), and greenhouse gases (GHGs) and to (2) inform future research needs. PMID:27158660

  13. Summary of performance data for technologies to control gaseous, odor, and particulate emissions from livestock operations: Air management practices assessment tool (AMPAT).

    PubMed

    Maurer, Devin L; Koziel, Jacek A; Harmon, Jay D; Hoff, Steven J; Rieck-Hinz, Angela M; Andersen, Daniel S

    2016-06-01

    The livestock and poultry production industry, regulatory agencies, and researchers lack a current, science-based guide and data base for evaluation of air quality mitigation technologies. Data collected from science-based review of mitigation technologies using practical, stakeholders-oriented evaluation criteria to identify knowledge gaps/needs and focuses for future research efforts on technologies and areas with the greatest impact potential is presented in the Literature Database tab on the air management practices tool (AMPAT). The AMPAT is web-based (available at www.agronext.iastate.edu/ampat) and provides an objective overview of mitigation practices best suited to address odor, gaseous, and particulate matter (PM) emissions at livestock operations. The data was compiled into Excel spreadsheets from a literature review of 265 papers was performed to (1) evaluate mitigation technologies performance for emissions of odor, volatile organic compounds (VOCs), ammonia (NH3), hydrogen sulfide (H2S), particulate matter (PM), and greenhouse gases (GHGs) and to (2) inform future research needs.

  14. Satellite remote sensing of particulate matter air quality: the cloud-cover problem.

    PubMed

    Christopher, Sundar A; Gupta, Pawan

    2010-05-01

    Satellite assessments of particulate matter (PM) air quality that use solar reflectance methods are dependent on availability of clear sky; in other words, mass concentrations of PM less than 2.5 microm in aerodynamic diameter (PM2.5) cannot be estimated from satellite observations under cloudy conditions or bright surfaces such as snow/ice. Whereas most ground monitors measure PM2.5 concentrations on an hourly basis regardless of cloud conditions, space-borne sensors can only estimate daytime PM2.5 in cloud-free conditions, therefore introducing a bias. In this study, an estimate of this clear-sky bias is provided from monthly to yearly time scales over the continental United States. One year of the Moderate Resolution Imaging Spectroradiometer (MODIS) 550-nm aerosol optical depth (AOD) retrievals from Terra and Aqua satellites, collocated with 371 U.S. Environmental Protection Agency (EPA) ground monitors, have been analyzed. The results indicate that the mean differences between PM2.5 reported by ground monitors and PM2.5 calculated from ground monitors during the satellite overpass times during cloud-free conditions are less than +/- 2.5 microg m(-3), although this value varies by season and location. The mean differences are not significant as calculated by t tests (alpha = 0.05). On the basis of this analysis, it is concluded that for the continental United States, cloud cover is not a major problem for inferring monthly to yearly PM2.5 from space-borne sensors. PMID:20480859

  15. Tonopah Test Range Air Monitoring. CY2014 Meteorological, Radiological, and Airborne Particulate Observations

    SciTech Connect

    Nikoloch, George; Shadel, Craig; Chapman, Jenny; Mizell, Steve A.; McCurdy, Greg; Etyemezian, Vicken; Miller, Julianne J.

    2015-10-01

    In 1963, the U.S. Department of Energy (DOE) (formerly the Atomic Energy Commission [AEC]), implemented Operation Roller Coaster on the Tonopah Test Range (TTR) and an adjacent area of the Nevada Test and Training Range (NTTR) (formerly the Nellis Air Force Range). This test resulted in radionuclide-contaminated soils at Clean Slate I, II, and III. This report documents observations made during ongoing monitoring of radiological, meteorological, and dust conditions at stations installed adjacent to Clean Slate I and Clean Slate III and at the TTR Range Operations Control center. The primary objective of the monitoring effort is to determine if winds blowing across the Clean Slate sites are transporting particles of radionuclide-contaminated soils beyond both the physical and administrative boundaries of the sites. Results for the calendar year (CY) 2014 monitoring are: (1) the gross alpha and gross beta values from the monitoring stations are approximately equivalent to the highest values observed during the CY2014 reporting at the surrounding Community Environmental Monitoring Program (CEMP) stations; (2) only naturally occurring radionuclides were identified in the gamma spectral analyses; (3) the ambient gamma radiation measurements indicate that the average annual gamma exposure is similar at all three monitoring stations and periodic intervals of increased gamma values appear to be associated with storm fronts passing through the area; and (4) the concentrations of both resuspended dust and saltated sand particles generally increase with increasing wind speed. Differences in the observed dust concentrations are likely the result of differences in the soil characteristics immediately adjacent to the monitoring stations. Neither the resuspended particulate radiological analyses nor the ambient gamma radiation measurements suggest wind transport of radionuclide-contaminated soils.

  16. Association between Particulate Air Pollution and QT Interval Duration in an Elderly Cohort

    PubMed Central

    Mordukhovich, Irina; Kloog, Itai; Coull, Brent; Koutrakis, Petros; Vokonas, Pantel; Schwartz, Joel

    2016-01-01

    BACKGROUND Short-term fine particulate matter (PM2.5) exposure has been linked with increased QT interval duration, a marker of ventricular repolarization and a risk factor for cardiac arrhythmia and sudden death, in several studies. Only one previous study evaluated whether long-term PM exposure is related to the QT interval. We aim to evaluate whether sub-chronic and long-term exposure to PM2.5 at home is linked with QT duration in an elderly cohort. METHODS We measured heart-rate corrected QT interval duration among 404 participants from the Greater Boston area between 2003 and 2011. We modeled residential PM2.5 exposures using a hybrid satellite- and land use-based model. We evaluated associations between moving averages of short-term (1–2 day), sub-chronic (3–28 day) and long-term (1 year) pollutant exposures and corrected QT duration using linear mixed models. We also evaluated effect modification by oxidative stress genetic score using separated regression models and interaction terms. RESULTS We observed positive associations between sub-chronic and long-term PM2.5 exposure and corrected QT duration, with the strongest results for longer-term exposures. For example, a 1 standard deviation increase in 1-year PM2.5 was associated with a 6.3 ms increase in corrected QT (95% confidence interval: 1.8, 11). We observed somewhat greater effects among subjects with higher (8.5 ms) rather than lower (3.1 ms) oxidative stress allelic profiles (p-interaction=0.25). CONCLUSIONS PM2.5 was associated with increased corrected QT duration in an elderly cohort. While most previous studies focused on short-term air pollution exposures, our results suggest that longer-term exposures are associated with cardiac repolarization. PMID:26605812

  17. Fine particulate air pollution, nitrogen dioxide, and systemic autoimmune rheumatic disease in Calgary, Alberta

    PubMed Central

    Bernatsky, Sasha; Smargiassi, Audrey; Johnson, Markey; Kaplan, Gilaad G.; Barnabe, Cheryl; Svenson, Larry; Brand, Allan; Bertazzon, Stefania; Hudson, Marie; Clarke, Ann E; Fortin, Paul; Edworthy, Steven; Bélisle, Patrick; Joseph, Lawrence

    2015-01-01

    Objective To estimate the association between fine particulate (PM2.5) and nitrogen dioxide (NO2) pollution and systemic autoimmune rheumatic diseases (SARDs). Methods Associations between ambient air pollution (PM2.5 and NO2) and SARDs were assessed using land-use regression models for Calgary, Alberta and administrative health data (1993-2007). SARD case definitions were based on ≥2 physician claims, or ≥1 rheumatology billing code; or ≥1 hospitalization code (for systemic lupus, Sjogren's Syndrome, scleroderma, polymyositis, dermatomyositis, or undifferentiated connective tissue disease). Bayesian hierarchical latent class regression models estimated the probability that each resident was a SARD case, based on these case definitions. The sum of individual level probabilities provided the estimated number of cases in each area. The latent class model included terms for age, sex, and an interaction term between age and sex. Bayesian logistic regression models were used to generate adjusted odds ratios (OR) for NO2 and PM2.5. pollutant models, adjusting for neighborhood income, age, sex, and an interaction between age and sex. We also examined models stratified for First-Nations (FN) and non-FN subgroups. Results Residents that were female and/or aged > 45 had a greater probability of being a SARD case, with the highest OR estimates for older females. Independently, the odds of being a SARDs case increased with PM2.5 levels, but the results were inconclusive for NO2. The results stratified by FN and Non-FN groups were not distinctly different. Conclusion In this urban Canadian sample, adjusting for demographics, exposure to PM2.5 was associated with an increased risk of SARDs. The results for NO2 were inconclusive. PMID:25988990

  18. The UK particulate matter air pollution episode of March-April 2014: more than Saharan dust

    NASA Astrophysics Data System (ADS)

    Vieno, M.; Heal, M. R.; Twigg, M. M.; MacKenzie, I. A.; Braban, C. F.; Lingard, J. J. N.; Ritchie, S.; Beck, R. C.; Móring, A.; Ots, R.; Di Marco, C. F.; Nemitz, E.; Sutton, M. A.; Reis, S.

    2016-04-01

    A period of elevated surface concentrations of airborne particulate matter (PM) in the UK in spring 2014 was widely associated in the UK media with a Saharan dust plume. This might have led to over-emphasis on a natural phenomenon and consequently to a missed opportunity to inform the public and provide robust evidence for policy-makers about the observed characteristics and causes of this pollution event. In this work, the EMEP4UK regional atmospheric chemistry transport model (ACTM) was used in conjunction with speciated PM measurements to investigate the sources and long-range transport (including vertical) processes contributing to the chemical components of the elevated surface PM. It is shown that the elevated PM during this period was mainly driven by ammonium nitrate, much of which was derived from emissions outside the UK. In the early part of the episode, Saharan dust remained aloft above the UK; we show that a significant contribution of Saharan dust at surface level was restricted only to the latter part of the elevated PM period and to a relatively small geographic area in the southern part of the UK. The analyses presented in this paper illustrate the capability of advanced ACTMs, corroborated with chemically-speciated measurements, to identify the underlying causes of complex PM air pollution episodes. Specifically, the analyses highlight the substantial contribution of secondary inorganic ammonium nitrate PM, with agricultural ammonia emissions in continental Europe presenting a major driver. The findings suggest that more emphasis on reducing emissions in Europe would have marked benefits in reducing episodic PM2.5 concentrations in the UK.

  19. Long-Term Urban Particulate Air Pollution, Traffic Noise, and Arterial Blood Pressure

    PubMed Central

    Moebus, Susanne; Hertel, Sabine; Viehmann, Anja; Nonnemacher, Michael; Dragano, Nico; Möhlenkamp, Stefan; Jakobs, Hermann; Kessler, Christoph; Erbel, Raimund; Hoffmann, Barbara

    2011-01-01

    Background: Recent studies have shown an association of short-term exposure to fine particulate matter (PM) with transient increases in blood pressure (BP), but it is unclear whether long-term exposure has an effect on arterial BP and hypertension. Objectives: We investigated the cross-sectional association of residential long-term PM exposure with arterial BP and hypertension, taking short-term variations of PM and long-term road traffic noise exposure into account. Methods: We used baseline data (2000–2003) on 4,291 participants, 45–75 years of age, from the Heinz Nixdorf Recall Study, a population-based prospective cohort in Germany. Urban background exposure to PM with aerodynamic diameter ≤ 2.5 μm (PM2.5) and ≤ 10 μm (PM10) was assessed with a dispersion and chemistry transport model. We used generalized additive models, adjusting for short-term PM, meteorology, traffic proximity, and individual risk factors. Results: An interquartile increase in PM2.5 (2.4 μg/m3) was associated with estimated increases in mean systolic and diastolic BP of 1.4 mmHg [95% confidence interval (CI): 0.5, 2.3] and 0.9 mmHg (95% CI: 0.4, 1.4), respectively. The observed relationship was independent of long-term exposure to road traffic noise and robust to the inclusion of many potential confounders. Residential proximity to high traffic and traffic noise exposure showed a tendency toward higher BP and an elevated prevalence of hypertension. Conclusions: We found an association of long-term exposure to PM with increased arterial BP in a population-based sample. This finding supports our hypothesis that long-term PM exposure may promote atherosclerosis, with air-pollution–induced increases in BP being one possible biological pathway. PMID:21827977

  20. Tonopah Test Range Air Monitoring: CY2013 Meteorological, Radiological, and Airborne Particulate Observations

    SciTech Connect

    Mizell, Steve A; Nikolich, George; Shadel, Craig; McCurdy, Greg; Etyemezian, Vicken; Miller, Julianne J

    2014-10-01

    In 1963, the U.S. Department of Energy (DOE) (formerly the Atomic Energy Commission [AEC]), implemented Operation Roller Coaster on the Tonopah Test Range (TTR) and an adjacent area of the Nevada Test and Training Range (NTTR) (formerly the Nellis Air Force Range). This test resulted in radionuclide-contaminated soils at Clean Slate I, II, and III. This report documents observations made during on-going monitoring of radiological, meteorological, and dust conditions at stations installed adjacent to Clean Slate I and Clean Slate III and at the TTR Range Operations Control center. The primary objective of the monitoring effort is to determine if winds blowing across the Clean Slate sites are transporting particles of radionuclide-contaminated soils beyond both the physical and administrative boundaries of the sites. Results for the calendar year (CY) 2013 monitoring include: (1) the gross alpha and gross beta values from the monitoring stations are approximately equivalent to the highest values observed during the CY2012 reporting at the surrounding Community Environmental Monitoring Program (CEMP) stations (this was the latest documented data available at the time of this writing); (2) only naturally occurring radionuclides were identified in the gamma spectral analyses; (3) the ambient gamma radiation measurements indicate that the average annual gamma exposure is similar at all three monitoring stations and periodic intervals of increased gamma values appear to be associated with storm fronts passing through the area; and (4) the concentrations of both resuspended dust and saltated sand particles generally increase with increasing wind speed. However, differences in the observed dust concentrations are likely due to differences in the soil characteristics immediately adjacent to the monitoring stations. Neither the resuspended particulate radiological analyses nor the ambient gamma radiation measurements suggest wind transport of radionuclide-contaminated soils.

  1. The UK particulate matter air pollution episode of March–April 2014: more than Saharan dust

    NASA Astrophysics Data System (ADS)

    Vieno, M.; Heal, M. R.; Twigg, M. M.; MacKenzie, I. A.; Braban, C. F.; Lingard, J. J. N.; Ritchie, S.; Beck, R. C.; Móring, A.; Ots, R.; Di Marco, C. F.; Nemitz, E.; Sutton, M. A.; Reis, S.

    2016-04-01

    A period of elevated surface concentrations of airborne particulate matter (PM) in the UK in spring 2014 was widely associated in the UK media with a Saharan dust plume. This might have led to over-emphasis on a natural phenomenon and consequently to a missed opportunity to inform the public and provide robust evidence for policy-makers about the observed characteristics and causes of this pollution event. In this work, the EMEP4UK regional atmospheric chemistry transport model (ACTM) was used in conjunction with speciated PM measurements to investigate the sources and long-range transport (including vertical) processes contributing to the chemical components of the elevated surface PM. It is shown that the elevated PM during this period was mainly driven by ammonium nitrate, much of which was derived from emissions outside the UK. In the early part of the episode, Saharan dust remained aloft above the UK; we show that a significant contribution of Saharan dust at surface level was restricted only to the latter part of the elevated PM period and to a relatively small geographic area in the southern part of the UK. The analyses presented in this paper illustrate the capability of advanced ACTMs, corroborated with chemically-speciated measurements, to identify the underlying causes of complex PM air pollution episodes. Specifically, the analyses highlight the substantial contribution of secondary inorganic ammonium nitrate PM, with agricultural ammonia emissions in continental Europe presenting a major driver. The findings suggest that more emphasis on reducing emissions in Europe would have marked benefits in reducing episodic PM2.5 concentrations in the UK.

  2. Genotoxicity of Polycyclic Aromatic Hydrocarbons and Nitro-Derived in Respirable Airborne Particulate Matter Collected from Urban Areas of Rio de Janeiro (Brazil)

    PubMed Central

    Ramos de Rainho, Claudia; Machado Corrêa, Sérgio; Luiz Mazzei, José; Alessandra Fortes Aiub, Claudia

    2013-01-01

    Air pollution toxic effects are mainly attributed to small inhalable particulates with an aerodynamic diameter of less than 2.5 µm (PM 2.5). Our objective was to investigate mutagenic and clastogenic activity in PM samples collected in Rio de Janeiro. Samples were collected using a high-volume sampler at three sites: with low traffic and (2) and (3) with a heavy traffic. Six polycyclic aromatic hydrocarbons (PAHs) were quantified by gas chromatography/mass spectrometry (GC/MS). Salmonella typhimurium TA98 and the derivative strains YG1021 and YG1024 were used in mutagenicity assays in the presence of organic extracts (10–50 µg/ plate) with and without exogenous metabolization. Allium cepa test was performed to evaluate possible cytotoxic and clastogenic activities. The highest PM 2.5 µm (132.73 µm/m3) and PAH values (1.22 ng/m3 for benzo(a)pyrene) were detected at site 3. High mutagenic frameshift responses in absence and presence of metabolic activation were detected at site 3. The participation of nitroarenes and dinitroarenes was detected in the total mutagenicity of the extracts studied. The cytotoxic effect and the abnormalities detected by Allium cepa test can be attributed to the PAH nitroderivatives in the organic extracts. Evaluation of the genotoxicity of urban airborne particulate matter is important as a basis for decision making by regulatory authorities. PMID:23738331

  3. Genotoxicity of polycyclic aromatic hydrocarbons and nitro-derived in respirable airborne particulate matter collected from urban areas of Rio de Janeiro (Brazil).

    PubMed

    Ramos de Rainho, Claudia; Machado Corrêa, Sérgio; Luiz Mazzei, José; Alessandra Fortes Aiub, Claudia; Felzenszwalb, Israel

    2013-01-01

    Air pollution toxic effects are mainly attributed to small inhalable particulates with an aerodynamic diameter of less than 2.5 µ m (PM 2.5). Our objective was to investigate mutagenic and clastogenic activity in PM samples collected in Rio de Janeiro. Samples were collected using a high-volume sampler at three sites: with low traffic and (2) and (3) with a heavy traffic. Six polycyclic aromatic hydrocarbons (PAHs) were quantified by gas chromatography/mass spectrometry (GC/MS). Salmonella typhimurium TA98 and the derivative strains YG1021 and YG1024 were used in mutagenicity assays in the presence of organic extracts (10-50 µ g/ plate) with and without exogenous metabolization. Allium cepa test was performed to evaluate possible cytotoxic and clastogenic activities. The highest PM 2.5 µ m (132.73 µ m/m(3)) and PAH values (1.22 ng/m(3) for benzo(a)pyrene) were detected at site 3. High mutagenic frameshift responses in absence and presence of metabolic activation were detected at site 3. The participation of nitroarenes and dinitroarenes was detected in the total mutagenicity of the extracts studied. The cytotoxic effect and the abnormalities detected by Allium cepa test can be attributed to the PAH nitroderivatives in the organic extracts. Evaluation of the genotoxicity of urban airborne particulate matter is important as a basis for decision making by regulatory authorities. PMID:23738331

  4. Divergent effects of urban particulate air pollution on allergic airway responses in experimental asthma: a comparison of field exposure studies

    PubMed Central

    2012-01-01

    Background Increases in ambient particulate matter of aerodynamic diameter of 2.5 μm (PM2.5) are associated with asthma morbidity and mortality. The overall objective of this study was to test the hypothesis that PM2.5 derived from two distinct urban U.S. communities would induce variable responses to aggravate airway symptoms during experimental asthma. Methods We used a mobile laboratory to conduct community-based inhalation exposures to laboratory rats with ovalbumin-induced allergic airways disease. In Grand Rapids exposures were conducted within 60 m of a major roadway, whereas the Detroit was located in an industrial area more than 400 m from roadways. Immediately after nasal allergen challenge, Brown Norway rats were exposed by whole body inhalation to either concentrated air particles (CAPs) or filtered air for 8 h (7:00 AM - 3:00 PM). Both ambient and concentrated PM2.5 was assessed for mass, size fractionation, and major component analyses, and trace element content. Sixteen hours after exposures, bronchoalveolar lavage fluid (BALF) and lung lobes were collected and evaluated for airway inflammatory and mucus responses. Results Similar CAPs mass concentrations were generated in Detroit (542 μg/m3) and Grand Rapids (519 μg/m3). Exposure to CAPs at either site had no effects in lungs of non-allergic rats. In contrast, asthmatic rats had 200% increases in airway mucus and had more BALF neutrophils (250% increase), eosinophils (90%), and total protein (300%) compared to controls. Exposure to Detroit CAPs enhanced all allergic inflammatory endpoints by 30-100%, whereas inhalation of Grand Rapids CAPs suppressed all allergic responses by 50%. Detroit CAPs were characterized by high sulfate, smaller sized particles and were derived from local combustion sources. Conversely Grand Rapids CAPs were derived primarily from motor vehicle sources. Conclusions Despite inhalation exposure to the same mass concentration of urban PM2.5, disparate health

  5. THE IMPACT OF PARTICULATE EMISSIONS CONTROL ON THE CONTROL OF OTHER MWC AIR EMISSIONS

    EPA Science Inventory

    On December 20, 1989, the Environmental Protection Agency (EPA) proposed revised new source performance standards for new municipal waste combustion (MWC) units and guidelines for existing sources. The proposed national regulations require tighter particulate matter control and a...

  6. Cumulative health risk assessment of halogenated and parent polycyclic aromatic hydrocarbons associated with particulate matters in urban air.

    PubMed

    Sun, Jian-Lin; Jing, Xin; Chang, Wen-Jing; Chen, Zheng-Xia; Zeng, Hui

    2015-03-01

    Halogenated polycyclic aromatic hydrocarbons (HPAHs) have been reported to occur widely in urban air. Nevertheless, knowledge about the human health risk associated with inhalation exposure to HPAHs is scarce so far. In the present study, nine HPAHs and 16 PAHs were determined in atmospheric particulate matter (PM) collected from Shenzhen, China to address this issue. Concentrations of Σ9HPAHs varied from 0.1 to 1.5 ng/m(3) and from 0.09 to 0.4 ng/m(3) in PM10 and PM2.5 samples, respectively. As for individuals, 9-bromoanthracene, 7-bromobenz(a)anthracene, and 9,10-dibromoanthracene were the dominant congeners. Levels of Σ16PAHs in PM10 and PM2.5 samples ranged from 3.2 to 81 ng/m(3) and from 2.8 to 85 ng/m(3), respectively. Among individual PAHs, chrysene, benzo[b]fluoranthene, and indeno[1,2,3-c,d]pyrene were the main congeners. According to the season, concentrations of HPAHs and PAHs in atmospheric PM10/PM2.5 samples show a similar decreasing trend with an order: winter>autumn>spring>summer. The daily intake (DI) of PM10/PM2.5-bound HPAHs and PAHs were estimated. Our results indicated that children have the highest DI levels via inhalation exposure. The incremental lifetime cancer risk (ILCR) induced by PM10/PM2.5-bound HPAHs and PAHs were calculated. The ILCR values showed a similar decreasing trend with an order: adults>children>seniors>adolescent. Overall, the ILCR values induced by HPAHs and PAHs were far below the priority risk level (10(-4)), indicating no obvious cancer risk. To our knowledge, this is the first study to investigate the human health risk associated with inhalation exposure to PM10/PM2.5-bound HPAHs. PMID:25483369

  7. Air filtration in the free molecular flow regime: a review of high-efficiency particulate air filters based on carbon nanotubes.

    PubMed

    Li, Peng; Wang, Chunya; Zhang, Yingying; Wei, Fei

    2014-11-01

    Air filtration in the free molecular flow (FMF) regime is important and challenging because a higher filtration efficiency and lower pressure drop are obtained when the fiber diameter is smaller than the gas mean free path in the FMF regime. In previous studies, FMF conditions have been obtained by increasing the gas mean free path through reducing the pressure and increasing the temperature. In the case of carbon nanotubes (CNTs) with nanoscale diameters, it is possible to filtrate in the FMF regime under normal conditions. This paper reviews recent progress in theoretical and experimental studies of air filtration in the FMF regime. Typical structure models of high-efficiency particulate (HEPA) air filters based on CNTs are introduced. The pressure drop in air filters operated in the FMF regime is less than that predicted by the conventional air filtration theory. The thinnest HEPA filters fabricated from single-walled CNT films have an extremely low pressure drop. CNT air filters with a gradient nanostructure are shown to give a much better filtration performance in dynamic filtration. CNT air filters with a hierarchical structure and an agglomerated CNT fluidized bed air filter are also introduced. Finally, the challenges and opportunities for the application of CNTs in air filtration are discussed.

  8. Air filtration in the free molecular flow regime: a review of high-efficiency particulate air filters based on carbon nanotubes.

    PubMed

    Li, Peng; Wang, Chunya; Zhang, Yingying; Wei, Fei

    2014-11-01

    Air filtration in the free molecular flow (FMF) regime is important and challenging because a higher filtration efficiency and lower pressure drop are obtained when the fiber diameter is smaller than the gas mean free path in the FMF regime. In previous studies, FMF conditions have been obtained by increasing the gas mean free path through reducing the pressure and increasing the temperature. In the case of carbon nanotubes (CNTs) with nanoscale diameters, it is possible to filtrate in the FMF regime under normal conditions. This paper reviews recent progress in theoretical and experimental studies of air filtration in the FMF regime. Typical structure models of high-efficiency particulate (HEPA) air filters based on CNTs are introduced. The pressure drop in air filters operated in the FMF regime is less than that predicted by the conventional air filtration theory. The thinnest HEPA filters fabricated from single-walled CNT films have an extremely low pressure drop. CNT air filters with a gradient nanostructure are shown to give a much better filtration performance in dynamic filtration. CNT air filters with a hierarchical structure and an agglomerated CNT fluidized bed air filter are also introduced. Finally, the challenges and opportunities for the application of CNTs in air filtration are discussed. PMID:25288476

  9. Comparative microarray analysis and pulmonary changes in Brown Norway rats exposed to ovalbumin and concentrated air particulates.

    PubMed

    Heidenfelder, Brooke L; Reif, David M; Harkema, Jack R; Cohen Hubal, Elaine A; Hudgens, Edward E; Bramble, Lori A; Wagner, James G; Morishita, Masako; Keeler, Gerald J; Edwards, Stephen W; Gallagher, Jane E

    2009-03-01

    The interaction between air particulates and genetic susceptibility has been implicated in the pathogenesis of asthma. The overall objective of this study was to determine the effects of inhalation exposure to environmentally relevant concentrated air particulates (CAPs) on the lungs of ovalbumin (ova) sensitized and challenged Brown Norway rats. Changes in gene expression were compared with lung tissue histopathology, morphometry, and biochemical and cellular parameters in bronchoalveolar lavage fluid (BALF). Ova challenge was responsible for the preponderance of gene expression changes, related largely to inflammation. CAPs exposure alone resulted in no significant gene expression changes, but CAPs and ova-exposed rodents exhibited an enhanced effect relative to ova alone with differentially expressed genes primarily related to inflammation and airway remodeling. Gene expression data was consistent with the biochemical and cellular analyses of the BALF, the pulmonary pathology, and morphometric changes when comparing the CAPs-ova group to the air-saline or CAPs-saline group. However, the gene expression data were more sensitive than the BALF cell type and number for assessing the effects of CAPs and ova versus the ova challenge alone. In addition, the gene expression results provided some additional insight into the TGF-beta-mediated molecular processes underlying these changes. The broad-based histopathology and functional genomic analyses demonstrate that exposure to CAPs exacerbates rodents with allergic inflammation induced by an allergen and suggests that asthmatics may be at increased risk for air pollution effects. PMID:19176365

  10. Biphilic Surfaces for Enhanced Water Collection from Humid Air

    NASA Astrophysics Data System (ADS)

    Benkoski, Jason; Gerasopoulos, Konstantinos; Luedeman, William

    Surface wettability plays an important role in water recovery, distillation, dehumidification, and heat transfer. The efficiency of each process depends on the rate of droplet nucleation, droplet growth, and mass transfer. Unfortunately, hydrophilic surfaces are good at nucleation but poor at shedding. Hydrophobic surfaces are the reverse. Many plants and animals overcome this tradeoff through biphilic surfaces with patterned wettability. For example, the Stenocara beetle uses hydrophilic patches on a superhydrophobic background to collect fog from air. Cribellate spiders similarly collect fog on their webs through periodic spindle-knot structures. In this study, we investigate the effects of wettability patterns on the rate of water collection from humid air. The steady state rate of water collection per unit area is measured as a function of undercooling, angle of inclination, water contact angle, hydrophilic patch size, patch spacing, area fraction, and patch height relative to the hydrophobic background. We then model each pattern by comparing the potential and kinetic energy of a droplet as it rolls downwards at a fixed angle. The results indicate that the design rules for collecting fog differ from those for condensation from humid air. The authors gratefully acknowledge the Office of Naval Research for financial support through Grant Number N00014-15-1-2107.

  11. Association between particulate matter and its chemical constituents of urban air pollution and daily mortality or morbidity in Beijing City.

    PubMed

    Li, Pei; Xin, Jinyuan; Wang, Yuesi; Li, Guoxing; Pan, Xiaochuan; Wang, Shigong; Cheng, Mengtian; Wen, Tianxue; Wang, Guangcheng; Liu, Zirui

    2015-01-01

    Recent time series studies have indicated that daily mortality and morbidity are associated with particulate matters. However, about the relative effects and its seasonal patterns of fine particulate matter constituents is particularly limited in developing Asian countries. In this study, we examined the role of particulate matters and its key chemical components of fine particles on both mortality and morbidity in Beijing. We applied several overdispersed Poisson generalized nonlinear models, adjusting for time, day of week, holiday, temperature, and relative humidity, to investigate the association between risk of mortality or morbidity and particulate matters and its constituents in Beijing, China, for January 2005 through December 2009. Particles and several constituents were associated with multiple mortality or morbidity categories, especially on respiratory health. For a 3-day lag, the nonaccident mortality increased by 1.52, 0.19, 1.03, 0.56, 0.42, and 0.32% for particulate matter (PM)2.5, PM10, K(+), SO4(2-), Ca(2+), and NO3(-) based on interquartile ranges of 36.00, 64.00, 0.41, 8.75, 1.43, and 2.24 μg/m(3), respectively. The estimates of short-term effects for PM2.5 and its components in the cold season were 1 ~ 6 times higher than that in the full year on these health outcomes. Most of components had stronger adverse effects on human health in the heavy PM2.5 mass concentrations, especially for K(+), NO3(-), and SO4(2-). This analysis added to the growing body of evidence linking PM2.5 with mortality or morbidity and indicated that excess risks may vary among specific PM2.5 components. Combustion-related products, traffic sources, vegetative burning, and crustal component and resuspended road dust may play a key role in the associations between air pollution and public health in Beijing.

  12. Fine Particulate Air Pollution and Hospital Emergency Room Visits for Respiratory Disease in Urban Areas in Beijing, China, in 2013

    PubMed Central

    Wang, Shuo; Wang, Chao; Huang, Fangfang; Gao, Qi; Wu, Lijuan; Tao, Lixin; Guo, Jin; Wang, Wei; Guo, Xiuhua

    2016-01-01

    Background Heavy fine particulate matter (PM2.5) air pollution occurs frequently in China. However, epidemiological research on the association between short-term exposure to PM2.5 pollution and respiratory disease morbidity is still limited. This study aimed to explore the association between PM2.5 pollution and hospital emergency room visits (ERV) for total and cause-specific respiratory diseases in urban areas in Beijing. Methods Daily counts of respiratory ERV from Jan 1 to Dec 31, 2013, were obtained from ten general hospitals located in urban areas in Beijing. Concurrently, data on PM2.5 were collected from the Beijing Environmental Protection Bureau, including 17 ambient air quality monitoring stations. A generalized-additive model was used to explore the respiratory effects of PM2.5, after controlling for confounding variables. Subgroup analyses were also conducted by age and gender. Results A total of 92,464 respiratory emergency visits were recorded during the study period. The mean daily PM2.5 concentration was 102.1±73.6 μg/m3. Every 10 μg/m3 increase in PM2.5 concentration at lag0 was associated with an increase in ERV, as follows: 0.23% for total respiratory disease (95% confidence interval [CI]: 0.11%-0.34%), 0.19% for upper respiratory tract infection (URTI) (95%CI: 0.04%-0.35%), 0.34% for lower respiratory tract infection (LRTI) (95%CI: 0.14%-0.53%) and 1.46% for acute exacerbation of chronic obstructive pulmonary disease (AECOPD) (95%CI: 0.13%-2.79%). The strongest association was identified between AECOPD and PM2.5 concentration at lag0-3 (3.15%, 95%CI: 1.39%-4.91%). The estimated effects were robust after adjusting for SO2, O3, CO and NO2. Females and people 60 years of age and older demonstrated a higher risk of respiratory disease after PM2.5 exposure. Conclusion PM2.5 was significantly associated with respiratory ERV, particularly for URTI, LRTI and AECOPD in Beijing. The susceptibility to PM2.5 pollution varied by gender and age. PMID

  13. Association of particulate air pollution and acute mortality: involvement of ultrafine particles?

    NASA Technical Reports Server (NTRS)

    Oberdorster, G.; Gelein, R. M.; Ferin, J.; Weiss, B.; Clarkson, T. W. (Principal Investigator)

    1995-01-01

    Recent epidemiological studies show an association between particulate air pollution and acute mortality and morbidity down to ambient particle concentrations below 100 micrograms/m3. Whether this association also implies a causality between acute health effects and particle exposure at these low levels is unclear at this time; no mechanism is known that would explain such dramatic effects of low ambient particle concentrations. Based on results of our past and most recent inhalation studies with ultrafine particles in rats, we propose that such particles, that is, particles below approximately 50 nm in diameter, may contribute to the observed increased mortality and morbidity In the past we demonstrated that inhalation of highly insoluble particles of low intrinsic toxicity, such as TiO2, results in significantly increased pulmonary inflammatory responses when their size is in the ultrafine particle range, approximately 20 nm in diameter. However, these effects were not of an acute nature and occurred only after prolonged inhalation exposure of the aggregated ultrafine particles at concentrations in the milligrams per cubic meter range. In contrast, in the course of our most recent studies with thermodegradation products of polytetrafluoroethylene (PTFE) we found that freshly generated PTFE fumes containing singlet ultrafine particles (median diameter 26 nm) were highly toxic to rats at inhaled concentrations of 0.7-1.0 x 10(6) particles/cm3, resulting in acute hemorrhagic pulmonary inflammation and death after 10-30 min of exposure. We also found that work performance of the rats in a running wheel was severely affected by PTFE fume exposure. These results confirm reports from other laboratories of the highly toxic nature of PTFE fumes, which cannot be attributed to gas-phase components of these fumes such as HF, carbonylfluoride, or perfluoroisobutylene, or to reactive radicals. The calculated mass concentration of the inhaled ultrafine PTFE particles in our

  14. The Effect of Fine and Coarse Particulate Air Pollution on Mortality: A National Analysis

    PubMed Central

    Zanobetti, Antonella; Schwartz, Joel

    2009-01-01

    Background Although many studies have examined the effects of air pollution on mortality, data limitations have resulted in fewer studies of both particulate matter with an aerodynamic diameter of ≤ 2.5 μm (PM2.5; fine particles) and of coarse particles (particles with an aerodynamic diameter > 2.5 and < 10 μm; PM coarse). We conducted a national, multicity time-series study of the acute effect of PM2.5 and PM coarse on the increased risk of death for all causes, cardiovascular disease (CVD), myocardial infarction (MI), stroke, and respiratory mortality for the years 1999–2005. Method We applied a city- and season-specific Poisson regression in 112 U.S. cities to examine the association of mean (day of death and previous day) PM2.5 and PM coarse with daily deaths. We combined the city-specific estimates using a random effects approach, in total, by season and by region. Results We found a 0.98% increase [95% confidence interval (CI), 0.75–1.22] in total mortality, a 0.85% increase (95% CI, 0.46–1.24) in CVD, a 1.18% increase (95% CI, 0.48–1.89) in MI, a 1.78% increase (95% CI, 0.96–2.62) in stroke, and a 1.68% increase (95% CI, 1.04–2.33) in respiratory deaths for a 10-μg/m3 increase in 2-day averaged PM2.5. The effects were higher in spring. For PM coarse, we found significant but smaller increases for all causes analyzed. Conclusions We conclude that our analysis showed an increased risk of mortality for all and specific causes associated with PM2.5, and the risks are higher than what was previously observed for PM10. In addition, coarse particles are also associated with more deaths. PMID:19590680

  15. Extended follow-up and spatial analysis of the American Cancer Society study linking particulate air pollution and mortality.

    PubMed

    Krewski, Daniel; Jerrett, Michael; Burnett, Richard T; Ma, Renjun; Hughes, Edward; Shi, Yuanli; Turner, Michelle C; Pope, C Arden; Thurston, George; Calle, Eugenia E; Thun, Michael J; Beckerman, Bernie; DeLuca, Pat; Finkelstein, Norm; Ito, Kaz; Moore, D K; Newbold, K Bruce; Ramsay, Tim; Ross, Zev; Shin, Hwashin; Tempalski, Barbara

    2009-05-01

    We conducted an extended follow-up and spatial analysis of the American Cancer Society (ACS) Cancer Prevention Study II (CPS-II) cohort in order to further examine associations between long-term exposure to particulate air pollution and mortality in large U.S. cities. The current study sought to clarify outstanding scientific issues that arose from our earlier HEI-sponsored Reanalysis of the original ACS study data (the Particle Epidemiology Reanalysis Project). Specifically, we examined (1) how ecologic covariates at the community and neighborhood levels might confound and modify the air pollution-mortality association; (2) how spatial autocorrelation and multiple levels of data (e.g., individual and neighborhood) can be taken into account within the random effects Cox model; (3) how using land-use regression to refine measurements of air pollution exposure to the within-city (or intra-urban) scale might affect the size and significance of health effects in the Los Angeles and New York City regions; and (4) what exposure time windows may be most critical to the air pollution-mortality association. The 18 years of follow-up (extended from 7 years in the original study [Pope et al. 1995]) included vital status data for the CPS-II cohort (approximately 1.2 million participants) with multiple cause-of-death codes through December 31, 2000 and more recent exposure data from air pollution monitoring sites for the metropolitan areas. In the Nationwide Analysis, the influence of ecologic covariate data (such as education attainment, housing characteristics, and level of income; data obtained from the 1980 U.S. Census; see Ecologic Covariates sidebar on page 14) on the air pollution-mortality association were examined at the Zip Code area (ZCA) scale, the metropolitan statistical area (MSA) scale, and by the difference between each ZCA value and the MSA value (DIFF). In contrast to previous analyses that did not directly include ecologic covariates at the ZCA scale, risk

  16. Extended follow-up and spatial analysis of the American Cancer Society study linking particulate air pollution and mortality.

    PubMed

    Krewski, Daniel; Jerrett, Michael; Burnett, Richard T; Ma, Renjun; Hughes, Edward; Shi, Yuanli; Turner, Michelle C; Pope, C Arden; Thurston, George; Calle, Eugenia E; Thun, Michael J; Beckerman, Bernie; DeLuca, Pat; Finkelstein, Norm; Ito, Kaz; Moore, D K; Newbold, K Bruce; Ramsay, Tim; Ross, Zev; Shin, Hwashin; Tempalski, Barbara

    2009-05-01

    We conducted an extended follow-up and spatial analysis of the American Cancer Society (ACS) Cancer Prevention Study II (CPS-II) cohort in order to further examine associations between long-term exposure to particulate air pollution and mortality in large U.S. cities. The current study sought to clarify outstanding scientific issues that arose from our earlier HEI-sponsored Reanalysis of the original ACS study data (the Particle Epidemiology Reanalysis Project). Specifically, we examined (1) how ecologic covariates at the community and neighborhood levels might confound and modify the air pollution-mortality association; (2) how spatial autocorrelation and multiple levels of data (e.g., individual and neighborhood) can be taken into account within the random effects Cox model; (3) how using land-use regression to refine measurements of air pollution exposure to the within-city (or intra-urban) scale might affect the size and significance of health effects in the Los Angeles and New York City regions; and (4) what exposure time windows may be most critical to the air pollution-mortality association. The 18 years of follow-up (extended from 7 years in the original study [Pope et al. 1995]) included vital status data for the CPS-II cohort (approximately 1.2 million participants) with multiple cause-of-death codes through December 31, 2000 and more recent exposure data from air pollution monitoring sites for the metropolitan areas. In the Nationwide Analysis, the influence of ecologic covariate data (such as education attainment, housing characteristics, and level of income; data obtained from the 1980 U.S. Census; see Ecologic Covariates sidebar on page 14) on the air pollution-mortality association were examined at the Zip Code area (ZCA) scale, the metropolitan statistical area (MSA) scale, and by the difference between each ZCA value and the MSA value (DIFF). In contrast to previous analyses that did not directly include ecologic covariates at the ZCA scale, risk

  17. Overview of the reanalysis of the Harvard Six Cities Study and American Cancer Society Study of Particulate Air Pollution and Mortality.

    PubMed

    Krewski, Daniel; Burnett, Richard T; Goldberg, Mark S; Hoover, B Kristin; Siemiatycki, Jack; Jerrett, Michael; Abrahamowicz, Michal; White, Warren H

    This article provides an overview of the Reanalysis Study of the Harvard Six Cities and the American Cancer Society (ACS) studies of particulate air pollution and mortality. The previous findings of the studies have been subject to debate. In response, a reanalysis team, comprised of Canadian and American researchers, was invited to participate in an independent reanalysis project to address the concerns. Phase I of the reanalysis involved the design of data audits to determine whether each study conformed to the consistency and accuracy of their data. Phase II of the reanalysis involved conducting a series of comprehensive analyses using alternative statistical methods. Alternative models were also used to identify covariates that may confound or modify the association of particulate air pollution as well as identify sensitive population subgroups. The audit demonstrated that the data in the original analyses were of high quality, as were the risk estimates reported by the original investigators. The sensitivity analysis illustrated that the mortality risk estimates reported in both studies were found to be robust against alternative Cox models. Detailed investigation of the covariate effects found a significant modifying effect of education and a relative risk of mortality associated with fine particles and declining education levels. The study team applied spatial analytic methods to the ACS data, resulting in various levels of spatial autocorrelations supporting the reported association for fine particles mortality of the original investigators as well as demonstrating a significant association between sulfur dioxide and mortality. Collectively, our reanalysis suggest that mortality may be attributable to more than one component of the complex mixture of ambient air pollutants for U.S. urban areas.

  18. [Particulate matter air pollution effects on the incidence of heart diseases among the urban population].

    PubMed

    Tabakaev, M V; Artamonova, G V

    2014-01-01

    Increasing prevalence of cardiovascular diseases induces an urgent need to identify and clear delineation of the most important risk factors for the development and progression of atherosclerosis. Unlike the second part of XXth century, today the World Health Organization considers particulate matter ambient pollution one of the most important predictors of cardiovascular events. However, results of similar studies conducted in the last decades, is highly fragmented. The authors' objective was to try to understand and organize this massive of accumulated information and analyze it to draw conclusions about the impact of particulate matter on the functioning of human cardiovascular system.

  19. In-place HEPA (high efficiency, particulate air) filter testing at Hanford: Operating experiences, calibrations, and lessons learned

    SciTech Connect

    Flores, D.S.; Decelis, D.G.

    1989-10-01

    High Efficiency, Particulate Air (HEPA) Filters provide a minimum of 99.97% removal efficiency for particles greater than or equal to .3 microns in diameter. Each HEPA filter installation at Hanford is, at specified intervals, functionally tested for leaks. The test procedure involves a dioctylphthalate (DOP) smoke generator and a calibrated airborne particle detector. The DOP generator produces smoke of a known quantitative particle size distribution upstream of the filter. The airborne particle detector is first placed upstream, and then downstream of the filter to determine percent penetration. The smoke generator is characterized using a calibrated laser spectrometer, and the particle detector is calibrated using a calibrated picoammeter. 2 refs., 4 figs.

  20. Use of naturally occurring radon progeny for in-place testing of high-efficiency particulate air filters

    SciTech Connect

    Newton, G.J.; Hoover, M.D.; Yeh, Hsu-Chi

    1997-12-01

    High-efficiency particulate air (HEPA) filters are routinely used to control emissions of radioactive particles from nuclear facilities. Because HEPA filters play a critical role in protecting members of the public and the environment, there are stringent requirements for verifying the efficiency of HEPA filters prior to their installation and during their use. Traditional methods for the performance tests involve introducing a challenge aerosol before the filter and comparing the concentration of particles before and after the filter. We describe a proof-of-principle test for evaluating use of naturally occurring radon progeny for testing HEPA filters.

  1. Synoptic weather modeling and estimates of the exposure-response relationship between daily mortality and particulate air pollution.

    PubMed Central

    Pope, C A; Kalkstein, L S

    1996-01-01

    This study estimated the association between particulate air pollution and daily mortality in Utah Valley using the synoptic climatological approach to control for potential weather effects. This approach was compared with alternative weather modeling approaches. Although seasonality explained a significant amount of variability in mortality, other weather variables explained only a very small amount of additional variability in mortality. The synoptic climatological approach performed as well or slightly better than alternative approaches to controlling for weather. However, the estimated effect of particulate pollution on mortality was mostly unchanged or slightly larger when synoptic categories were used to control for weather. Furthermore, the shape of the estimated dose-response relationship was similar when alternative approaches to controlling for weather were used. The associations between particulate pollution and daily mortality were not significantly different from a linear exposure-response relationship that extends throughout the full observed range of pollution. Images Figure 1. Figure 2. A Figure 2. B Figure 2. C Figure 2. D PMID:8732952

  2. Evaluation of a high efficiency cabin air (HECA) filtration system for reducing particulate pollutants inside school buses.

    PubMed

    Lee, Eon S; Fung, Cha-Chen D; Zhu, Yifang

    2015-03-17

    An increasing number of studies have reported deleterious health effects of vehicle-emitted particulate matter (PM), including PM2.5 (aerodynamic diameter≤2.5 μm), black carbon (BC), and ultrafine particles (UFPs, diameter≤100 nm). When commuting inside school buses, children are exposed to high level of these pollutants due to emissions from both school bus itself and other on-road vehicles. This study developed an on-board high efficiency cabin air (HECA) filtration system for reducing children's exposure inside school buses. Six school buses were driven on two typical routes to evaluate to what extent the system reduces particulate pollutant levels inside the buses. The testing routes included freeways and major arterial roadways in Los Angeles, CA. UFP number concentrations and size distributions as well as BC and PM2.5 concentrations were monitored concurrently inside and outside of each bus. With the HECA filtration system on, in-cabin UFP and BC levels were reduced by 88±6% and 84±5% on averages across all driving conditions, respectively. The system was less effective for PM2.5 (55±22%) but successfully kept its levels below 12 μg/m3 inside all the buses. For all three types of particulate pollutants, in-cabin reductions were higher on freeways than on arterial roadways.

  3. Evaluation of a high efficiency cabin air (HECA) filtration system for reducing particulate pollutants inside school buses.

    PubMed

    Lee, Eon S; Fung, Cha-Chen D; Zhu, Yifang

    2015-03-17

    An increasing number of studies have reported deleterious health effects of vehicle-emitted particulate matter (PM), including PM2.5 (aerodynamic diameter≤2.5 μm), black carbon (BC), and ultrafine particles (UFPs, diameter≤100 nm). When commuting inside school buses, children are exposed to high level of these pollutants due to emissions from both school bus itself and other on-road vehicles. This study developed an on-board high efficiency cabin air (HECA) filtration system for reducing children's exposure inside school buses. Six school buses were driven on two typical routes to evaluate to what extent the system reduces particulate pollutant levels inside the buses. The testing routes included freeways and major arterial roadways in Los Angeles, CA. UFP number concentrations and size distributions as well as BC and PM2.5 concentrations were monitored concurrently inside and outside of each bus. With the HECA filtration system on, in-cabin UFP and BC levels were reduced by 88±6% and 84±5% on averages across all driving conditions, respectively. The system was less effective for PM2.5 (55±22%) but successfully kept its levels below 12 μg/m3 inside all the buses. For all three types of particulate pollutants, in-cabin reductions were higher on freeways than on arterial roadways. PMID:25728749

  4. Determination of nitro polynuclear aromatic hydrocarbons in air and diesel particulate matter using liquid chromatography with electrochemical and fluorescence detection

    SciTech Connect

    MacCrehan, W.A.; May, W.E.; Yang, S.D.; Benner, B.A. Jr.

    1988-02-01

    Three different approaches to the liquid chromatographic detection of nitro polynuclear aromatic hydrocarbons in air and diesel particulate extracts are presented, based on differential pulse (LCDPD) and amperometric (LCEC) electrochemical detection and fluorescence detection following online reduction to the amine (LCFI). The particulate extraction/fractionation procedure for each detection approach is discussed. The operational advantages of oxygen removal with a platinum oxygen scrubber (all three types of detection), the use of modulated pulse detection, and wavelength-programmed fluorescence detection are explored. 1-Nitropyrene is determined in Standard Reference Material (SRM) 1650 diesel particulate matter and in several other round robin samples by all three methods. Results are compared to those obtained by other techniques (gas chromatography/mass spectrometry) and by other laboratories (LCFI). Additionally, 2-nitrofluorene, 9-nitroanthracene, 7-nitrobenz(a)anthracene, and 6-nitrobenzo(a)pyrene are determined in SRM 1650 by LCFI. The detection limits for 1-nitropyrene (expressed as picograms) are 5200 (LCDPD), 60 (LCEC), and 10 (LCFI).

  5. Air quality monitor and acid rain networks

    NASA Technical Reports Server (NTRS)

    Rudolph, H.

    1980-01-01

    The air quality monitor program which consists of two permanent air monitor stations (PAMS's) and four mobile shuttle pollutant air monitor stations (SPAMS's) is evaluated. The PAMS measures SO sub X, NO sub X particulates, CO, O3, and nonmethane hydrocarbons. The SPAMS measures O3, SO2, HCl, and particulates. The collection and analysis of data in the rain monitor program are discussed.

  6. A multi-residue method for characterization of endocrine disruptors in gaseous and particulate phases of ambient air

    NASA Astrophysics Data System (ADS)

    Alliot, Fabrice; Moreau-Guigon, Elodie; Bourges, Catherine; Desportes, Annie; Teil, Marie-Jeanne; Blanchard, Martine; Chevreuil, Marc

    2014-08-01

    A number of semi-volatile compounds occur in indoor air most of them being considered as potent endocrine disruptors and thus, exerting a possible impact upon health. To assess their concentration levels in indoor air, we developed and validated a method for sampling and multi-residue analysis of 58 compounds including phthalates, polycyclic aromatic hydrocarbons (PAHs), polybromodiphenylethers (PBDEs), polychlorobiphenyls (PCBs), parabens, bisphenol A (BPA) and tetrabromobisphenol A (TBBPA) in gaseous and particulate phases of air. We validated each step of procedures from extraction until analysis. Matrice spiking were performed at extraction, fractionation and purification stages. The more volatile compounds were analyzed with a gas chromatography system coupled with a mass spectrometer (GC/MS) or with a tandem mass spectrometer (GC/MS/MS). The less volatile compounds were analyzed with a liquid chromatography system coupled with a tandem mass spectrometer (LC/MS/MS). Labeled internal standard method was used ensuring high quantification accuracy. The instrumental detection limits were under 1 pg for all compounds and therefore, a limit of quantification averaging 1 pg m-3 for the gaseous and the particulate phases and a volume of 150 m3, except for phthalates, phenol compounds and BDE-209. Satisfactory recoveries were found except for phenol compounds. That method was successfully applied to several indoor air samples (office, apartment and day nursery) and most of the targeted compounds were quantified, mainly occurring in the gaseous phase. The most abundant were phthalates (up to 918 ng m-3 in total air), followed by PCBs > parabens > BPA > PAHs > PBDEs.

  7. A COMPARISON OF THE UCD/CIT AIR QUALITY MODEL AND THE CMB SOURCE-RECEPTOR MODEL FOR PRIMARY AIRBORNE PARTICULATE MATTER. (R831082)

    EPA Science Inventory

    Source contributions to primary airborne particulate matter calculated using the source-oriented UCD/CIT air quality model and the receptor-oriented chemical mass balance (CMB) model are compared for two air quality episodes in different parts of California. The first episode ...

  8. Climate change and the meteorological drivers of PM air pollution: Understanding U.S. particulate matter concentrations in a changing climate

    EPA Science Inventory

    Particulate matter (PM) air pollution is a serious public health issue for the United States. While there is a growing body of evidence that climate change will partially counter the effectiveness of future precursor emission reductions to reduce ozone (O3) air pollution, the lin...

  9. Particulate PAHs and n-alkanes in the air over Southern and Eastern Mediterranean Sea.

    PubMed

    Romagnoli, Paola; Balducci, Catia; Perilli, Mattia; Perreca, Erica; Cecinato, Angelo

    2016-09-01

    Particulate polycyclic aromatic hydrocarbons, n-alkanes and polar organic compounds were investigated in the marine atmosphere of Southern and Eastern Mediterranean Sea, in the frame of the scientific cruise of Urania ship between 27 July and 11 August 2013. The PM10 fraction of aerosol to which most organic substances are associated, were collected daily; contemporarily, gaseous regulated toxicants (ozone, nitrogen oxides and carbon oxide) and carbonyls were recorded. Samplings were carried out in front of Palermo and Messina, respectively the start and end harbors, and along the cruise, both in movement (transects, N = 14) and at stops (N = 11). Total PAHs ranged from 0.06 ng/m(3) up to 1.8 ng/m(3), with the maximums observed close to harbors. Unlike total concentrations that were in general comparable, the percent composition of PAHs was distinct for harbors, transects and stops, which allowed to draw insights about the pollution sources impact. Concentrations of n-alkanes (C18-C35) ranging from 6.7 to 43 ng/m(3) were quantified. The carbonyls evaluation revealed relatively high concentrations of formaldehyde (∼4-24 μg/m(3)) and acetone (∼5-35 μg/m(3)) near harbors, and of acrolein (up to 12 μg/m(3)) offshore, while benzaldehyde was quite independent of the site type (≈0.5 μg/m(3)). Nicotine and caffeine were detected, at different extents (0.0-2.2 ng/m(3) and 0.01-0.17 ng/m(3), respectively), in ca. 70% and 100% of samples. Alkyl phthalates ranged from 2.7 to 67 ng/m(3) and showed variable percentages in the samples. Finally, traces of N,N-diethyl-meta-toluene amide (up to 0.4 ng/m(3)) were found at all sites. PMID:27341155

  10. Ambient Air Pollution and Increases in Blood Pressure: Role for biological constituents of particulate matter

    EPA Science Inventory

    Particulate matter (PM) is a complex mixture of extremely small particles and liquid droplets made up of a number of components including elemental carbon, organic chemicals, metals, acids (such as nitrates and sulfates), and soil and dust particles. Epidemiological studies con...

  11. RELATIONSHIP BETWEEN HVAC SYSTEM OPERATION, AIR EXCHANGE RATE, AND INDOOR-OUTDOOR PARTICULATE MATTER RATIOS

    EPA Science Inventory

    Measurements of duty cycle , the fraction of time the heating and cooling (HVAC) system was operating, were made in each participant's home during the spring season of the RTP Particulate Matter Panel Study. A miniature temperature sensor/data logger combination placed on the ...

  12. Effectiveness of a federal healthy start program in reducing the impact of particulate air pollutants on feto-infant morbidity outcomes.

    PubMed

    Salihu, Hamisu M; August, Euna M; Mbah, Alfred K; Alio, Amina P; de Cuba, Raymond; Jaward, Foday M; Berry, Estrellita Lo

    2012-11-01

    We sought to assess (1) the relationship between air particulate pollutants and feto-infant morbidity outcomes and (2) the impact of a Federal Healthy Start program on this relationship. This is a retrospective cohort study using de-identified hospital discharge information linked to vital records, and air pollution data from 2000 through 2007 for the zip codes served by the Central Hillsborough Federal Healthy Start Project in Tampa, Florida. Mathematical modeling was employed to compute minimal Euclidean distances to capture exposure to ambient air particulate matter. The outcomes of interest were low birth weight (LBW), very low birth weight (VLBW), small for gestational age, preterm (PTB), and very preterm birth. We used odds ratios to approximate relative risks. A total of 12,356 live births were analyzed. Overall, women exposed to air particulate pollutants were at elevated risk for LBW (AOR = 1.24; 95% CI = 1.07-1.43), VLBW (AOR = 1.58; 95% CI = 1.09-2.29) and PTB (AOR = 1.18; 95% CI = 1.03-1.34). Analysis by race/ethnicity revealed that the adverse effects of air particulate pollutants were most profound among black infants. Infants of women who received services provided by the Central Hillsborough Federal Healthy Start Project experienced improved feto-infant morbidity outcomes despite exposure to air particulate pollutants. Environmental air pollutants represent important risk factors for adverse birth outcomes, particularly among black women. Multi-level interventional approaches implemented by the Central Hillsborough Federal Healthy Start were found to be associated with reduced likelihood for feto-infant morbidities triggered by exposure to ambient air particulate pollutants.

  13. Estimation of high-level, rapidly-changing concentrations using moving-filter continuous particulate air monitors.

    PubMed

    Evans, William C

    2012-04-01

    A previously published mathematical model for the dynamic response of moving-filter continuous particulate air monitors has been enhanced to extend that model to include decay chains. During this work, it was observed that a quantitative relationship appeared to exist between the monitor count rate and the time-dependent particulate airborne radioactive material concentration if, and only if, the filter (tape) speed was much faster than the nominal 2.54 cm h(-1) (1 in h(-1)). The extended model demonstrated that operating moving-filter monitors at this nominal filter speed does not provide a quantitative measurement of a changing airborne particulate concentration of a fission product or other contaminant. By contrast, at faster filter speeds [e.g., 76.2 or 152.4 cm h(-1) (30 or 60 in h(-1))], numerical experimentation with this model showed that the count rate trace has essentially the same shape as the concentration profile. It was then found that a quantitative relationship applies, but only when the filter speed is sufficiently fast so that a Taylor series expansion of the monitor count rate can be reasonably well truncated at the first-order term. This mode of operation, which does not require any new monitor hardware, is capable of tracking rapidly changing concentrations. Since the fast filter speed also reduces the monitor's count rate, all else being equal, the approach will best be used for relatively high-level concentrations, such as may occur in abnormal or "accident" conditions. The count rate suppression may also be useful for reducing the detector saturation that can occur with higher levels of airborne particulate radioactivity in post-accident situations.

  14. Control of fine particulate emissions from coal-fired utility boilers: Spin filter collection device (rotary cyclone)

    SciTech Connect

    He, Bo X.

    1990-01-01

    A bench-scale test program has been performed to evaluate the concept of placing a porous cylindrical surface (such as a metal screen) at the core of a container and spinning the surface with an external motor for fine particulate/gas separation. The rotating surface enhances the centrifugal effects in the annular region and provides a smooth transition between the flow in the annular and core regions and acts like an enhanced cyclone. It is therefore called a rotary cyclone.'' The porous surface is self-cleaning and offers good steady-state pressure drop characteristics. Objectives of this project are: (1) to carry out theoretical and experimental investigations using the rotary cyclone concept to capture particulates in the 0.5 to 10 micron size range; and (2) to evaluate its economic feasibility based on an engineering scale-up and comparison with conventional fabric filter and electrostatic precipitator systems. It was demonstrated that the efficiency in separating fine particulates is governed by two major characteristics, i.e., the magnitude of the centrifugal force and the approach velocity or the gas-to-surface area ratio. Results from the bench-scale tests have shown a collection efficiency of well over 99% for a typical fly ash. A preliminary conceptual design for a 40 MW installation was developed based on the experimental work. 4 refs., 4 figs., 8 tabs.

  15. Particulate Air Pollution Exposure and Expression of Viral and Human MicroRNAs in Blood: The Beijing Truck Driver Air Pollution Study

    PubMed Central

    Hou, Lifang; Barupal, Jitendra; Zhang, Wei; Zheng, Yinan; Liu, Lei; Zhang, Xiao; Dou, Chang; McCracken, John P.; Díaz, Anaité; Motta, Valeria; Sanchez-Guerra, Marco; Wolf, Katherine Rose; Bertazzi, Pier Alberto; Schwartz, Joel D.; Wang, Sheng; Baccarelli, Andrea A.

    2015-01-01

    Background MicroRNAs (miRNAs) are post-transcriptional gene suppressors and potential mediators of environmental effects. In addition to human miRNAs, viral miRNAs expressed from latent viral sequences are detectable in human cells. Objective In a highly exposed population in Beijing, China, we evaluated the associations of particulate air pollution exposure on blood miRNA profiles. Methods The Beijing Truck Driver Air Pollution Study (BTDAS) included 60 truck drivers and 60 office workers. We investigated associations of short-term air pollution exposure, using measures of personal PM2.5 (particulate matter ≤ 2.5 μm) and elemental carbon (EC), and ambient PM10 (≤ 10 μm), with blood NanoString nCounter miRNA profiles at two exams separated by 1–2 weeks. Results No miRNA was significantly associated with personal PM2.5 at a false discovery rate (FDR) of 20%. Short-term ambient PM10 was associated with the expression of 12 miRNAs in office workers only (FDR < 20%). Short-term EC was associated with differential expression of 46 human and 7 viral miRNAs, the latter including 3 and 4 viral miRNAs in office workers and truck drivers, respectively. EC-associated miRNAs differed between office workers and truck drivers with significant effect modification by occupational group. Functional interaction network analysis suggested enriched cellular proliferation/differentiation pathways in truck drivers and proinflammation pathways in office workers. Conclusions Short-term EC exposure was associated with the expression of human and viral miRNAs that may influence immune responses and other biological pathways. Associations between EC exposure and viral miRNA expression suggest that latent viral miRNAs are potential mediators of air pollution–associated health effects. PM2.5/PM10 exposures showed no consistent relationships with miRNA expression. Citation Hou L, Barupal J, Zhang W, Zheng Y, Liu L, Zhang X, Dou C, McCracken JP, Díaz A, Motta V, Sanchez-Guerra M, Wolf

  16. Technical comments on EPA`s proposed revisions to the National Ambient Air Quality Standard for particulate matter

    SciTech Connect

    Lipfert, F.W.

    1997-03-01

    The US Environmental Protection Agency (EPA) has proposed new ambient air quality standards specifically for fine particulate matter, regulating concentrations of particles with median aerodynamic diameters less than 2.5 {mu}m (PM{sub 2.5}). Two new standards have been proposed: a maximum 24-hr concentration that is intended to protect against acute health effects, and an annual concentration limit that is intended to protect against longer-term health effects. EPA has also proposed a slight relaxation of the 24-hr standard for inhalable particles (PM{sub 10}), by allowing additional exceedances each year. Fine particles are currently being indirectly controlled by means of regulations for PM{sub 10} and TSP, under the Clean Air Act of 1970 and subsequent amendments. Although routine monitoring of PM{sub 2.5} is rare and data are sparse, the available data indicate that ambient concentrations have been declining at about 6% per year under existing regulations.

  17. Wood stove effects on indoor air quality in Brazilian homes: carcinogens, suspended particulate matter, and nitrogen dioxide analysis.

    PubMed

    Hamada, G S; Kowalski, L P; Murata, Y; Matsushita, H; Matsuki, H

    1992-10-01

    The effects of wood burning stoves on indoor air quality was investigated in a rural community of southern Brazil, during the winter season of 1991. The concentrations of polycyclic aromatic hydrocarbons (PAHs), nitrogen dioxide (NO2) and suspended particulate matter (SPM) were assessed in houses with wood stoves and the results compared with levels found in houses with gas stoves. Strikingly higher (p < 0.01) levels of PAHs, and much higher (p = 0.07) levels of SPM were found in the kitchens with wood stoves. In contrast, NO2 concentrations in the kitchen as well in personal exposure, were found to be slightly higher in houses with gas stoves. All these differences were minimally affected by smoking, outdoor air pollution or other emissions from indoor combustion products. These findings appear to support the hypothesis that domestic wood burning stoves are risk factors for some upper digestive and respiratory tract cancers in Brazil.

  18. The characteristics of coarse particulate matter air pollution associated with alterations in blood pressure and heart rate during controlled exposures

    PubMed Central

    Morishita, Masako; Bard, Robert L.; Wang, Lu; Das, Ritabrata; Dvonch, J. Timothy; Spino, Catherine; Mukherjee, Bhramar; Sun, Qinghua; Harkema, Jack R.; Rajagopalan, Sanjay; Brook, Robert D.

    2015-01-01

    Although fine particulate matter (PM) air pollution <2.5 μm in aerodynamic diameter (PM2.5) is a leading cause of global morbidity and mortality, the potential health effects of coarse PM (2.5–10 μm in aerodynamic diameter; PM10–2.5) remain less clearly understood. We aimed to elucidate the components within coarse PM most likely responsible for mediating these hemodynamic alterations. Thirty-two healthy adults (25.9 ± 6.6 years) were exposed to concentrated ambient coarse PM (CAP) (76.2 ± 51.5 μg/m3) and filtered air (FA) for 2 h in a rural location in a randomized double-blind crossover study. The particle constituents (24 individual elements, organic and elemental carbon) were analyzed from filter samples and associated with the blood pressure (BP) and heart rate (HR) changes occurring throughout CAP and FA exposures in mixed model analyses. Total coarse PM mass along with most of the measured elements were positively associated with similar degrees of elevations in both systolic BP and HR. Conversely, total PM mass was unrelated, whereas only two elements (Cu and Mo) were positively associated with and Zn was inversely related to diastolic BP changes during exposures. Inhalation of coarse PM from a rural location rapidly elevates systolic BP and HR in a concentration-responsive manner, whereas the particulate composition does not appear to be an important determinant of these responses. Conversely, exposure to certain PM elements may be necessary to trigger a concomitant increase in diastolic BP. These findings suggest that particulate mass may be an adequate metric of exposure to predict some, but not all, hemodynamic alterations induced by coarse PM mass. PMID:25227729

  19. Indoor Air Quality in Urban and Rural Preschools in Upper Silesia, Poland: Particulate Matter and Carbon Dioxide

    PubMed Central

    Mainka, Anna; Zajusz-Zubek, Elwira

    2015-01-01

    Indoor air quality (IAQ) in preschools is an important public health challenge. Particular attention should be paid to younger children, because they are more vulnerable to air pollution than higher grade children and because they spend more time indoors. Among air pollutants, particulate matter (PM) is of the greatest interest mainly due to its acute and chronic effects on children’s health. In addition, carbon dioxide (CO2) levels indicate ventilation conditions. In this paper, we present the concentrations of PM (PM1, PM2.5, PM10 and total—TSP) and CO2 monitored in four naturally ventilated nursery schools located in the area of Gliwice, Poland. The nursery schools were selected to characterize areas with different degrees of urbanization and traffic densities during the winter season. The results indicate the problem of elevated concentrations of PM inside the examined classrooms, as well as that of high levels of CO2 exceeding 1000 ppm in relation to outdoor air. The characteristics of IAQ were significantly different, both in terms of classroom occupation (younger or older children) and of localization (urban or rural). To evaluate the children’s exposure to poor IAQ, indicators based on air quality guidelines were proposed to rank classrooms according to their hazard on the health of children. PMID:26184249

  20. Indoor Air Quality in Urban and Rural Preschools in Upper Silesia, Poland: Particulate Matter and Carbon Dioxide.

    PubMed

    Mainka, Anna; Zajusz-Zubek, Elwira

    2015-07-08

    Indoor air quality (IAQ) in preschools is an important public health challenge. Particular attention should be paid to younger children, because they are more vulnerable to air pollution than higher grade children and because they spend more time indoors. Among air pollutants, particulate matter (PM) is of the greatest interest mainly due to its acute and chronic effects on children's health. In addition, carbon dioxide (CO2) levels indicate ventilation conditions. In this paper, we present the concentrations of PM (PM1, PM2.5, PM10 and total-TSP) and CO2 monitored in four naturally ventilated nursery schools located in the area of Gliwice, Poland. The nursery schools were selected to characterize areas with different degrees of urbanization and traffic densities during the winter season. The results indicate the problem of elevated concentrations of PM inside the examined classrooms, as well as that of high levels of CO2 exceeding 1000 ppm in relation to outdoor air. The characteristics of IAQ were significantly different, both in terms of classroom occupation (younger or older children) and of localization (urban or rural). To evaluate the children's exposure to poor IAQ, indicators based on air quality guidelines were proposed to rank classrooms according to their hazard on the health of children.

  1. Assessment of personal exposure to particulate air pollution during commuting in European cities--recommendations and policy implications.

    PubMed

    Karanasiou, Angeliki; Viana, Mar; Querol, Xavier; Moreno, Teresa; de Leeuw, Frank

    2014-08-15

    Commuting is considered as one of the high-exposure periods among various daily activities, especially in high vehicle-density metropolitan areas. There is a growing awareness of the need to change our transportation habits by reducing our use of cars and shifting instead to active transport, i.e. walking or cycling. A review was undertaken using the ISI web of knowledge database with the objective to better understand personal exposure during commuting by different modes of transport, and to suggest potential strategies to minimise exposure. The air pollutants studied include particulate matter, PM black carbon, BC and particle number concentration. We focused only in European studies in order to have comparable situation in terms of vehicle fleet and policy regulations applied. Studies on personal exposure to air pollutants during car commuting are more numerous than those dealing with other types of transport, and typically conclude by emphasising that travelling by car involves exposure to relatively high particulate matter, PM exposure concentrations. Thus, compared to other transport methods, travelling by car has been shown to involve exposure both to higher PM and BC as compared with cycling. Widespread dependence on private car transport has produced a significant daily health threat to the urban commuter. However, a forward-looking, integrated transport policy, involving the phased renovation of existing public vehicles and the withdrawal of the more polluting private vehicles, combined with incentives to use public transport and the encouragement of commuter physical exercise, would reduce commuters' exposure.

  2. Assessment of personal exposure to particulate air pollution during commuting in European cities--recommendations and policy implications.

    PubMed

    Karanasiou, Angeliki; Viana, Mar; Querol, Xavier; Moreno, Teresa; de Leeuw, Frank

    2014-08-15

    Commuting is considered as one of the high-exposure periods among various daily activities, especially in high vehicle-density metropolitan areas. There is a growing awareness of the need to change our transportation habits by reducing our use of cars and shifting instead to active transport, i.e. walking or cycling. A review was undertaken using the ISI web of knowledge database with the objective to better understand personal exposure during commuting by different modes of transport, and to suggest potential strategies to minimise exposure. The air pollutants studied include particulate matter, PM black carbon, BC and particle number concentration. We focused only in European studies in order to have comparable situation in terms of vehicle fleet and policy regulations applied. Studies on personal exposure to air pollutants during car commuting are more numerous than those dealing with other types of transport, and typically conclude by emphasising that travelling by car involves exposure to relatively high particulate matter, PM exposure concentrations. Thus, compared to other transport methods, travelling by car has been shown to involve exposure both to higher PM and BC as compared with cycling. Widespread dependence on private car transport has produced a significant daily health threat to the urban commuter. However, a forward-looking, integrated transport policy, involving the phased renovation of existing public vehicles and the withdrawal of the more polluting private vehicles, combined with incentives to use public transport and the encouragement of commuter physical exercise, would reduce commuters' exposure. PMID:24907613

  3. Particulate Air Pollution and the Rate of Hospitalization for Congestive Heart Failure among Medicare Beneficiaries in Pittsburgh, Pennsylvania.

    PubMed Central

    Wellenius, Gregory A.; Bateson, Thomas F.; Mittleman, Murray A.; Schwartz., Joel

    2006-01-01

    We used a case-crossover approach to evaluate the association between ambient air pollution and the rate of hospitalization for congestive heart failure (CHF) among Medicare recipients (age ≥ 65) residing in Allegheny County (Pittsburgh area), PA, during 1987–1999. We also explored effect modification by age, gender, and specific secondary diagnoses. During follow-up, there were 55,019 admissions with a primary diagnosis of CHF. We found that particulate matter with aerodynamic diameter ≤ 10 μm (PM10), carbon monoxide (CO), nitrogen dioxide (NO2), and sulfur dioxide – but not ozone – were positively and significantly associated with the rate of admission on the same day in single-pollutant models. The strongest associations were observed with CO, NO2 and PM10. The associations with CO and NO2 were the most robust in two-pollutant models, remaining statistically significant even after adjusting for other pollutants. Patients with a recent myocardial infarction were at greater risk of particulate-related admission, but there was otherwise no significant effect modification by age, gender, or other secondary diagnoses. These results suggest that short-term elevations in air pollution from traffic-related sources may trigger acute cardiac decompensation of heart failure patients and that those with certain comorbid conditions may be more susceptible to these effects. PMID:15901623

  4. Global Air Quality Predictions of Particulate Matter in the Middle East and Sensitivity to Future Emissions Scenarios

    NASA Astrophysics Data System (ADS)

    Couzo, E. A.; Holmes, C. D.; Paltsev, S.; Alawad, A.; Selin, N. E.

    2014-12-01

    We examine the influence of natural and anthropogenic drivers of future PM in the Middle East region using two future emissions scenarios to drive the GEOS-Chem atmospheric chemistry model. The Arabian Peninsula is a major source of windblown dust as well as anthropogenic aerosols. Future emissions - driven jointly and individually by climate change and anthropogenic emissions from this rapidly growing region - will play an important role in both climate forcing and human health impacts from particulate matter. We use two scenarios to compare their climate and air quality implications. First, we use the Intergovernmental Panel on Climate Change Representative Concentration Pathways (RCPs) for four radiative forcing cases. Second, we develop a consistent future greenhouse gas and conventional pollutant emission inventory using the MIT Emissions Prediction and Policy Analysis (EPPA) model, which is a general equilibrium model of the global economy that calculates how economic growth and anthropogenic emissions change as a result of policies and other stressors. With EPPA, we examine three emissions cases, a business-as-usual case and two stabilization cases leading to anthropogenic radiative forcings of 3.7 W/m2 and 4.5 W/m2. We use these scenarios to drive GEOS-Chem for present and future climate, assessing changes in chemical composition of aerosol and drivers, both natural and anthropogenic, out to 2050. We find that projected anthropogenic emissions are strong determinants of future particulate matter air quality in the Middle East region.

  5. Method to characterize collective impact of factors on indoor air

    NASA Astrophysics Data System (ADS)

    Szczurek, Andrzej; Maciejewska, Monika; Teuerle, Marek; Wyłomańska, Agnieszka

    2015-02-01

    One of the most important problems in studies of building environment is a description of how it is influenced by various dynamically changing factors. In this paper we characterized the joint impact of a collection of factors on indoor air quality (IAQ). We assumed that the influence is reflected in the temporal variability of IAQ parameters and may be deduced from it. The proposed method utilizes mean square displacement (MSD) analysis which was originally developed for studying the dynamics in various systems. Based on the MSD time-dependence descriptor β, we distinguished three types of the collective impact of factors on IAQ: retarding, stabilizing and promoting. We presented how the aggregated factors influence the temperature, relative humidity and CO2 concentration, as these parameters are informative for the condition of indoor air. We discovered, that during a model day there are encountered one, two or even three types of influence. The presented method allows us to study the impacts from the perspective of the dynamics of indoor air.

  6. THE INFLUENCE OF PARTICULATE AIR POLLUTANTS ON ALLERGIC SENSITIZATION IN ANIMAL MODELS

    EPA Science Inventory

    Air pollution has long been associated with detrimental health risks in susceptible populations including asthmatics. Experimental evidence in rodents indicates that inhaled or instilled air pollutants such as diesel exhaust particles (DEPs), residual oil fly ash or its constitu...

  7. Airborne particulate matter from livestock production systems: a review of an air pollution problem.

    PubMed

    Cambra-López, María; Aarnink, André J A; Zhao, Yang; Calvet, Salvador; Torres, Antonio G

    2010-01-01

    Livestock housing is an important source of emissions of particulate matter (PM). High concentrations of PM can threaten the environment, as well as the health and welfare of humans and animals. Particulate matter in livestock houses is mainly coarse, primary in origin, and organic; it can adsorb and contain gases, odorous compounds, and micro-organisms, which can enhance its biological effect. Levels of PM in livestock houses are high, influenced by kind of housing and feeding, animal type, and environmental factors. Improved knowledge on particle morphology, primarily size, composition, levels, and the factors influencing these can be useful to identify and quantify sources of PM more accurately, to evaluate their effects, and to propose adequate abatement strategies in livestock houses. This paper reviews the state-of-the-art of PM in and from livestock production systems. Future research to characterize and control PM in livestock houses is discussed.

  8. Persistent activation of DNA damage signaling in response to complex mixtures of PAHs in air particulate matter

    SciTech Connect

    Jarvis, Ian W.H.; Bergvall, Christoffer; Bottai, Matteo; Westerholm, Roger; Stenius, Ulla; Dreij, Kristian

    2013-02-01

    Complex mixtures of polycyclic aromatic hydrocarbons (PAHs) are present in air particulate matter (PM) and have been associated with many adverse human health effects including cancer and respiratory disease. However, due to their complexity, the risk of exposure to mixtures is difficult to estimate. In the present study the effects of binary mixtures of benzo[a]pyrene (BP) and dibenzo[a,l]pyrene (DBP) and complex mixtures of PAHs in urban air PM extracts on DNA damage signaling was investigated. Applying a statistical model to the data we observed a more than additive response for binary mixtures of BP and DBP on activation of DNA damage signaling. Persistent activation of checkpoint kinase 1 (Chk1) was observed at significantly lower BP equivalent concentrations in air PM extracts than BP alone. Activation of DNA damage signaling was also more persistent in air PM fractions containing PAHs with more than four aromatic rings suggesting larger PAHs contribute a greater risk to human health. Altogether our data suggests that human health risk assessment based on additivity such as toxicity equivalency factor scales may significantly underestimate the risk of exposure to complex mixtures of PAHs. The data confirms our previous findings with PAH-contaminated soil (Niziolek-Kierecka et al., 2012) and suggests a possible role for Chk1 Ser317 phosphorylation as a biological marker for future analyses of complex mixtures of PAHs. -- Highlights: ► Benzo[a]pyrene (BP), dibenzo[a,l]pyrene (DBP) and air PM PAH extracts were compared. ► Binary mixture of BP and DBP induced a more than additive DNA damage response. ► Air PM PAH extracts were more potent than toxicity equivalency factor estimates. ► Larger PAHs (> 4 rings) contribute more to the genotoxicity of PAHs in air PM. ► Chk1 is a sensitive marker for persistent activation of DNA damage signaling from PAH mixtures.

  9. Exposure information in environmental health research: Current opportunities and future directions for particulate matter, ozone, and toxic air pollutants

    SciTech Connect

    McKone, Thomas E.; Ryan, P. Barry; Ozkaynak, Haluk

    2007-02-01

    Understanding and quantifying outdoor and indoor sources of human exposure are essential but often not adequately addressed in health-effects studies for air pollution. Air pollution epidemiology, risk assessment, health tracking and accountability assessments are examples of health-effects studies that require but often lack adequate exposure information. Recent advances in exposure modeling along with better information on time-activity and exposure factors data provide us with unique opportunities to improve the assignment of exposures for both future and ongoing studies linking air pollution to health impacts. In September 2006, scientists from the US Environmental Protection Agency (EPA) and the Centers for Disease Control and Prevention (CDC) along with scientists from the academic community and state health departments convened a symposium on air pollution exposure and health in order to identify, evaluate, and improve current approaches for linking air pollution exposures to disease. This manuscript presents the key issues, challenges and recommendations identified by the exposure working group, who used cases studies of particulate matter, ozone, and toxic air pollutant exposure to evaluate health-effects for air pollution. One of the over-arching lessons of this workshop is that obtaining better exposure information for these different health-effects studies requires both goal-setting for what is needed and mapping out the transition pathway from current capabilities to meeting these goals. Meeting our long-term goals requires definition of incremental steps that provide useful information for the interim and move us toward our long-term goals. Another over-arching theme among the three different pollutants and the different health study approaches is the need for integration among alternate exposure assessment approaches. For example, different groups may advocate exposure indicators, biomonitoring, mapping methods (GIS), modeling, environmental media

  10. Mortality in the Medicare Population and Chronic Exposure to Fine Particulate Air Pollution in Urban Centers (2000–2005)

    PubMed Central

    Zeger, Scott L.; Dominici, Francesca; McDermott, Aidan; Samet, Jonathan M.

    2008-01-01

    Background Prospective cohort studies constitute the major source of evidence about the mortality effects of chronic exposure to particulate air pollution. Additional studies are needed to provide evidence on the health effects of chronic exposure to particulate matter ≤ 2.5 μm in aerodynamic diameter (PM2.5) because few studies have been carried out and the cohorts have not been representative. Objectives This study was designed to estimate the relative risk of death associated with long-term exposure to PM2.5 by region and age groups in a U.S. population of elderly, for the period 2000–2005. Methods By linking PM2.5 monitoring data to the Medicare billing claims by ZIP code of residence of the enrollees, we have developed a new retrospective cohort study, the Medicare Cohort Air Pollution Study. The study population comprises 13.2 million participants living in 4,568 ZIP codes having centroids within 6 miles of a PM2.5 monitor. We estimated relative risks adjusted by socioeconomic status and smoking by fitting log-linear regression models. Results In the eastern and central regions, a 10-μg/m3 increase in 6-year average of PM2.5 is associated with 6.8% [95% confidence interval (CI), 4.9–8.7%] and 13.2% (95% CI, 9.5–16.9) increases in mortality, respectively. We found no evidence of an association in the western region or for persons ≥ 85 years of age. Conclusions We established a cohort of Medicare participants for investigating air pollution and mortality on longer-term time frames. Chronic exposure to PM2.5 was associated with mortality in the eastern and central regions, but not in the western United States. PMID:19079710

  11. Accuracy and reliability of Chile's National Air Quality Information System for measuring particulate matter: Beta attenuation monitoring issue.

    PubMed

    Toro A, Richard; Campos, Claudia; Molina, Carolina; Morales S, Raul G E; Leiva-Guzmán, Manuel A

    2015-09-01

    A critical analysis of Chile's National Air Quality Information System (NAQIS) is presented, focusing on particulate matter (PM) measurement. This paper examines the complexity, availability and reliability of monitoring station information, the implementation of control systems, the quality assurance protocols of the monitoring station data and the reliability of the measurement systems in areas highly polluted by particulate matter. From information available on the NAQIS website, it is possible to confirm that the PM2.5 (PM10) data available on the site correspond to 30.8% (69.2%) of the total information available from the monitoring stations. There is a lack of information regarding the measurement systems used to quantify air pollutants, most of the available data registers contain gaps, almost all of the information is categorized as "preliminary information" and neither standard operating procedures (operational and validation) nor assurance audits or quality control of the measurements are reported. In contrast, events that cause saturation of the monitoring detectors located in northern and southern Chile have been observed using beta attenuation monitoring. In these cases, it can only be concluded that the PM content is equal to or greater than the saturation concentration registered by the monitors and that the air quality indexes obtained from these measurements are underestimated. This occurrence has been observed in 12 (20) public and private stations where PM2.5 (PM10) is measured. The shortcomings of the NAQIS data have important repercussions for the conclusions obtained from the data and for how the data are used. However, these issues represent opportunities for improving the system to widen its use, incorporate comparison protocols between equipment, install new stations and standardize the control system and quality assurance.

  12. Small for gestational age and exposure to particulate air pollution in the early-life environment of twins.

    PubMed

    Bijnens, Esmée M; Derom, Catherine; Gielen, Marij; Winckelmans, Ellen; Fierens, Frans; Vlietinck, Robert; Zeegers, Maurice P; Nawrot, Tim S

    2016-07-01

    Several studies in singletons have shown that maternal exposure to ambient air pollutants is associated with restricted fetal growth. About half of twins have low birth weight compared with six percent in singletons. So far, no studies have investigated maternal air pollution exposure in association with birth weight and small for gestational age in twins. We examined 4760 twins of the East Flanders Prospective Twins Survey (2002-2013), to study the association between in utero exposure to air pollution with birth weight and small for gestational age. Maternal particulate air pollution (PM10) and nitric dioxide (NO2) exposure was estimated using a spatial temporal interpolation method over various time windows during pregnancy. In the total group of twins, we observed that higher PM10 and NO2 exposure during the third trimester was significantly associated with a lower birth weight and higher risk of small for gestational age. However, the association was driven by moderate to late preterm twins (32-36 weeks of gestation). In these twins born between 32 and 36 weeks of gestation, birth weight decreased by 40.2g (95% CI: -69.0 to -11.3; p=0.006) and by 27.3g (95% CI: -52.9 to -1.7; p=0.04) in association for each 10µg/m³ increment in PM10 and NO2 concentration during the third trimester. The corresponding odds ratio for small for gestational age were 1.68 (95% CI: 1.27-2.33; p=0.0003) and 1.51 (95% CI: 1.18-1.95; p=0.001) for PM10 or NO2, respectively. No associations between air pollution and birth weight or small for gestational age were observed among term born twins. Finally, in all twins, we found that for each 10µg/m³ increase in PM10 during the last month of pregnancy the within-pair birth weight difference increased by 19.6g (95% CI: 3.7-35.4; p=0.02). Assuming causality, an achievement of a 10µg/m³ decrease of particulate air pollution may account for a reduction by 40% in small for gestational age, in twins born moderate to late preterm.

  13. Assessment of potential long-range transport of particulate air pollution using trajectory modeling and monitoring data

    NASA Astrophysics Data System (ADS)

    Pongkiatkul, Prapat; Kim Oanh, Nguyen Thi

    2007-07-01

    Quantification of the long-range transport (LRT) contribution to ambient air pollution levels at a location is a challenging task and is normally done with a high uncertainty. In the lack of accurate emission data over the large regional domain for dispersion modeling, this study attempts to use both trajectory analysis and monitoring data to assess the potential contribution of LRT to particulate air pollution (PM) in the Bangkok Metropolitan Region (BMR). The 10-day backward trajectories of air masses arriving at BMR from January 2002 to December 2004 were determined using Hybrid Single-Particle Langrangian Integrated Trajectory model version 4 (HYSPLIT4) and were categorized by k-means clustering into 6 clusters. Subsequently, PM levels in the BMR associated with each air mass cluster during this period were analyzed. Clusters 1 and 6 were observed with the highest and 2nd highest average PM 10 and PM 2.5 levels in the BMR, respectively, which commonly have a longer air mass pathway over populated South East Asia (SEA). The third highest PM levels were associated with air masses from the east (clusters 2 and 5), which enter the BMR via the Gulf of Thailand without passing the SEA regions. The other two clusters (3 and 4) are characterized with a long pathway of air masses over the Indian Ocean and the lowest PM levels. High PM days, which are defined based on the spatial coverage of high PM levels in the BMR, were identified and analyzed for the possibility of long-range transport contribution of PM. The potential source contribution function (PSCF) and air mass trajectories show that on high PM day, the air masses commonly originated and passed over populated regions before arriving at the BMR, which suggests a possible LRT contribution. Considerations are made for surface ozone, SO 42-/SO 2 and average SO 2, PM 2.5/PM 10, and weekday-weekend traffic emission within each air mass trajectory cluster to reveal the possible LRT contribution.

  14. Multisorbent tubes for collecting volatile organic compounds in spacecraft air

    NASA Technical Reports Server (NTRS)

    Matney, M. L.; Beck, S. W.; Limero, T. F.; James, J. T.

    2000-01-01

    The sampling capability of Tenax-TA tubes, used in the National Aeronautics and Space Administration's solid sorbent air sampler to trap and concentrate contaminants from air aboard spacecraft, was improved by incorporating two sorbents within the tubes. Existing tubes containing only Tenax-TA allowed highly volatile compounds to "break through" during collection of a 1.5 L air sample. First the carbon molecular sieve-type sorbents Carboxen 569 and Carbosieve S-III were tested for their ability to quantitatively trap the highly volatile compounds. Breakthrough volumes were determined with the direct method, whereby low ppm levels of methanol or Freon 12 in nitrogen were flowed through the sorbent tubes at 30 mL/min, and breakthrough was detected by gas chromatography. Breakthrough volumes for methanol were about 9 L/g on Carboxen 569 and 11 L/g on Carbosieve S-III; breakthrough volumes for Freon 12 were about 7 L/g on Carboxen 569 and > 26 L/g on Carbosieve S-III. Next, dual-bed tubes containing either Tenax-TA/Carbosieve S-III, Tenax-TA/Carboxen 569, or Carbotrap/Carboxen 569 to a 10-component gas mixture were exposed, in dry and in humidified air (50% relative humidity), and percentage recoveries of each compound were determined. The Tenax-TA/Carboxen 569 combination gave the best overall recoveries (75-114% for the 10 compounds). Acetaldehyde had the lowest recovery (75%) of the 10 compounds, but this value was still an improvement over either the other two sorbent combinations or the original single-sorbent tubes.

  15. Small-angle light scattering by airborne particulates: Environnement S.A. continuous particulate monitor

    NASA Astrophysics Data System (ADS)

    Renard, Jean-Baptiste; Thaury, Claire; Mineau, Jean-Luc; Gaubicher, Bertrand

    2010-08-01

    Airborne particulate matter may have an effect on human health. It is therefore necessary to determine and control in real time the evolution of the concentration and mass of particulates in the ambient air. These parameters can be obtained using optical methods. We propose here a new instrument, 'CPM' (continuous particulate monitor), for the measurement of light scattered by ambient particulates at small angles. This geometry allows simultaneous and separate detections of PM10, PM2.5 and PM1 fractions of airborne particulate matter, with no influence of their chemical nature and without using theoretical calculations. The ambient air is collected through a standard sampling head (PM10 inlet according to EN 12341, PM2.5 inlet according to EN 14907; or PM1, TSP inlets, standard US EPA inlets). The analysis of the first measurements demonstrates that this new instrument can detect, for each of the seven defined size ranges, real-time variations of particulate content in the ambient air. The measured concentrations (expressed in number per liter) can be converted into total mass concentrations (expressed in micrograms per cubic meter) of all fractions of airborne particulate matters sampled by the system. Periodic comparison with a beta-attenuation mass monitor (MP101M Beta Gauge Analyzer from Environnement S.A. company) allows the calculation of a calibration factor as a function of the mean particulate density that is used for this conversion. It is then possible to provide real-time relative variations of aerosol mass concentration.

  16. 77 FR 38889 - National Ambient Air Quality Standards for Particulate Matter

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-29

    ... review, including extended analyses of key epidemiological studies, and evidence of health effects... plans for the next periodic review of the air quality criteria and NAAQS for PM (62 FR 55201, October 23...: Environmental Protection Agency (EPA). ACTION: Proposed rule. SUMMARY: Based on its review of the air...

  17. Particulate air pollution and short-term mortality due to specific causes among the elderly in Madrid (Spain): seasonal differences.

    PubMed

    Jiménez, Eva; Linares, Cristina; Martínez, David; Díaz, Julio

    2011-10-01

    A time-series study was conducted to ascertain the short-term effects of different-sized airborne particulate matter (PM) on daily respiratory and cardiovascular cause-specific mortality in winter and summer, among subjects aged over 75 years in Madrid. Poisson regression was used to analyse the time-series, in which the dependent variable was daily mortality due to different specific respiratory and circulatory causes, and the principal independent variables were daily mean PM10, PM2.5 and PM10-2.5 concentrations; other variables: other air pollutants (chemicals, biotic and acoustic), influenza, trend, seasonality and autocorrelation of the series. The results indicated an association between coarser PM fractions (PM10 and PM10-2.5) and respiratory-specific mortality on the one hand, and between PM2.5 and cardiovascular-specific mortality on the other. While the risk of mortality due to exposure to particulate matter was greater in summer than in winter, this difference was statistically significant solely for total organic-cause mortality.

  18. Culture, nature and particulate matter - Hybrid reframings in air pollution scholarship

    NASA Astrophysics Data System (ADS)

    Cupples, Julie

    Air pollution is a thoroughly hybrid phenomenon. It is composed of inseparable physical, scientific, cultural, social, economic and political dimensions. It is both an object of environmental science and embedded in our everyday social and cultural worlds. Nevertheless, much air pollution scholarship focuses solely on the physical dimensions of air pollution which are expressed quantitatively and pays little or no regard to the identities, discourses, bodies and emotions which constitute and are constituted by air pollution as a physical reality. This article argues for a more reflexive and hybrid approach to air pollution research which bridges intellectually confining binaries. Drawing on the work of Bruno Latour and other actor-network theorists, it argues that if we can let go of a foundational nature, disrupt our humanism and take non-scientific knowledges seriously, we might develop a new respect for the atmospheric environment and begin the task of building a better common world.

  19. An approach to assess the Particulate Matter exposure for the population living around a cement plant: modelling indoor air and particle deposition in the respiratory tract.

    PubMed

    Sánchez-Soberón, Francisco; Mari, Montse; Kumar, Vikas; Rovira, Joaquim; Nadal, Martí; Schuhmacher, Marta

    2015-11-01

    In this paper we studied the exposure to three size fractions of outdoor particulate matter (PM10, PM2.5, and PM1) collected in an area influenced by a cement plant. For that purpose, three groups of population were evaluated (children, adults and retired) in two seasons (summer and winter). Outdoor measured PM concentrations, as well as physiological parameters and activity patterns of the three groups of population were used as input data in two different models. The first one was an indoor air quality model, used to elucidate indoor PM concentrations in different microenvironments. The second one was a dosimetry model, used to evaluate the internal exposure and the distribution of the different PM fractions in the respiratory tract. Results from the indoor air quality model showed that special attention must be paid to the finest particles, since they penetrate indoors in a greater degree. Highest pulmonary doses for the three PM sizes were reported for retired people, being this a result of the high amount of time in outdoor environments exercising lightly. For children, the exposure was mainly influenced by the time they also spend outdoors, but in this case due to heavy intensity activities. It was noticed that deposition of fine particles was more significant in the pulmonary regions of children and retired people in comparison with adults, which has implications in the expected adverse health effects for those vulnerable groups of population.

  20. Mapping the Vertical Distribution of Population and Particulate Air Pollution in a Near–Highway Urban Neighborhood: Implications for Exposure Assessment

    PubMed Central

    Wu, Chih-Da; MacNaughton, Piers; Melly, Steve; Lane, Kevin; Adamkiewicz, Gary; Durant, John L.; Brugge, Doug; Spengler, John D.

    2015-01-01

    Due to data collection challenges, the vertical variation in population in cities and particulate air pollution are typically not accounted for in exposure assessments, which may lead to misclassification of exposures based on elevation of residency. To better assess this misclassification, the vertical distribution of the potentially highly exposed population (PHEP), defined as all residents within the 100-m buffer zone of above-ground highways or the 200-m buffer zone of a highway-tunnel exit, was estimated for four floor categories in Boston’s Chinatown (MA, USA) using the three-dimensional digital geography (3DIG) methodology. Vertical profiles of particle number concentration (7–1000 nm; PNC) and PM2.5 mass concentration were measured by hoisting instruments up the vertical face of an 11-story (35-m) building near the study area throughout the day on multiple days. The concentrations from all the profiles (n=23) were averaged together for each floor category. As measurement elevation increased from 0 to 35 m PNC decreased by 7.7%, compared to 3.6% for PM2.5. PHEP was multiplied by the average PNC for each floor category to assess exposures for near-highway populations. The results show that adding temporally-averaged vertical air pollution data had a small effect on residential ambient exposures for our study population; however, greater effects were observed when individual days were considered (e.g., winds were off the highways). PMID:24084758

  1. Polycyclic organic material (POM) in urban air. Fractionation, chemical analysis and genotoxicity of particulate and vapour phases in an industrial town in Finland

    NASA Astrophysics Data System (ADS)

    Pyysalo, Heikki; Tuominen, Jari; Wickström, Kim; Skyttä, Eija; Tikkanen, Leena; Salomaa, Sisko; Sorsa, Marja; Nurmela, Tuomo; Mattila, Tiina; Pohjola, Veijo

    Polycyclic organic material (POM) was collected by high-volume sampling on filter and on XAD-2 resin from the air of a small industrial town in Finland. Concurrent chemical analysis and the assays for genotoxic activity were performed on the particulate and the vapour phases of ambient air POM and their chemical fractions. Furthermore, correlations between seasonal meteorological parameters and POM concentrations were studied to reveal characteristic POM profiles for various emission sources. The range of total POM concentrations varied from 115 to 380 ng m -3 in late spring and from 17 to 83 ng m -3 in early winter. No direct correlation of ambient POM was seen with the temperature, but rather with the wind direction from various emission sources. Especially the low molecular weight compounds were associated with wind direction from industrial sources. Genotoxic activity, as detected by the Ames Salmonella/microsome test and the SCE assay in CHO cells, was found not only in the paniculate phase samples but also in the vapour phase. The polar fractions of some of the samples showed genotoxic activity, and also direct mutagenicity was observed with both the assay systems; these facts support the significance of compounds other than conventional polycyclic aromatic hydrocarbons (PAH) in the samples.

  2. Chronic exposure to high levels of particulate air pollution and small airway remodeling.

    PubMed Central

    Churg, Andrew; Brauer, Michael; del Carmen Avila-Casado, Maria; Fortoul, Teresa I; Wright, Joanne L

    2003-01-01

    Recent evidence suggests that chronic exposure to high levels of ambient particulate matter (PM) is associated with decreased pulmonary function and the development of chronic airflow obstruction. To investigate the possible role of PM-induced abnormalities in the small airways in these functional changes, we examined histologic sections from the lungs of 20 women from Mexico City, a high PM locale. All subjects were lifelong residents of Mexico City, were never-smokers, never had occupational dust exposure, and never used biomass fuel for cooking. Twenty never-smoking, non-dust-exposed subjects from Vancouver, British Columbia, Canada, a low PM region, were used as a control. By light microscopy, abnormal small airways with fibrotic walls and excess muscle, many containing visible dust, were present in the Mexico City lungs. Formal grading analysis confirmed the presence of significantly greater amounts of fibrous tissue and muscle in the walls of the airways in the Mexico City compared with the Vancouver lungs. Electron microscopic particle burden measurements on four cases from Mexico City showed that carbonaceous aggregates of ultrafine particles, aggregates likely to be combustion products, were present in the airway mucosa. We conclude that PM penetrates into and is retained in the walls of small airways, and that, even in nonsmokers, long-term exposure to high levels of ambient particulate pollutants is associated with small airway remodeling. This process may produce chronic airflow obstruction. PMID:12727599

  3. COMPARATIVE TOXICITY OF AIR POLLUTION PARTICLES COLLECTED FROM DIFFERENT GEOGRAPHICAL LOCATIONS

    EPA Science Inventory

    Air pollution particulate matter (PM) is responsible for more than 500,000 deaths worldwide each year. PM pollution is a complex mixture containing dozens of different compounds; the composition of PM can vary dramatically among different locations depending on the sources of pa...

  4. Assessing the impact of the forthcoming decrease in diesel exhaust particulate matter emissions on air quality: implications for black carbon concentrations in ambient air

    NASA Astrophysics Data System (ADS)

    González, Y.; Rodríguez, S.; Cuevas, E.; Ramos, R.; Abreu-Afonso, J.; Baldasano, J. M.

    2009-04-01

    Forthcoming regulations (e.g. EURO 5 and EURO 6) are planned to reduce particulate matter emissions (PM) in the exhaust of forthcoming vehicles. In this study we assess the impact of such reduction in the diesel PM exhaust emissions on the urban ambient air PM concentrations. This has been done by studying the relationship between black carbon (BC) and carbon monoxide (CO) in urban ambient air and in the exhaust of current and forthcoming vehicles. The slope of the BC-vs-CO linear relationship is mainly affected by the percentage (%) of diesel automobiles in the urban vehicles fleet. This slope is a better indicator of the diesel PM emissions than bulk BC concentrations in urban ambient air. BC-vs-CO slopes within the range 1-3 and 7-14 ngBC/µgCO are typically observed in urban areas with low (<25%) and high (≥50%) proportions of diesel-fuel consumption for on road transportation, respectively. The entry into force of forthcoming regulations will decrease the BC-vs-CO slope in urban ambient air from about 10 to 5 ngBC/µgCO in the next decade, according to calculations based on the current data on diesel vehicles in urban fleets in Spanish cities. However, this will not necessary prompt a significant decrease in the urban BC concentrations if road traffic volume follows the increasing trend of the last decade. The results of this study shows that the analysis of the BC-vs-CO slope trend in ambient air is an useful tool for understanding the involvement "of the changes in the vehicle exhaust emissions rates" and "of the changes in the road traffic volume" in the BC and PMx trends in urban ambient air.

  5. AQA-PM: Extension of the Air-Quality Model For Austria with Satellite based Particulate Matter Estimates

    NASA Astrophysics Data System (ADS)

    Hirtl, Marcus; Mantovani, Simone; Krüger, Bernd C.; Triebnig, Gerhard; Flandorfer, Claudia

    2013-04-01

    Air quality is a key element for the well-being and quality of life of European citizens. Air pollution measurements and modeling tools are essential for assessment of air quality according to EU legislation. The responsibilities of ZAMG as the national weather service of Austria include the support of the federal states and the public in questions connected to the protection of the environment in the frame of advisory and counseling services as well as expert opinions. The Air Quality model for Austria (AQA) is operated at ZAMG in cooperation with the University of Natural Resources and Life Sciences in Vienna (BOKU) by order of the regional governments since 2005. AQA conducts daily forecasts of gaseous and particulate (PM10) air pollutants over Austria. In the frame of the project AQA-PM (funded by FFG), satellite measurements of the Aerosol Optical Thickness (AOT) and ground-based PM10-measurements are combined to highly-resolved initial fields using regression- and assimilation techniques. For the model simulations WRF/Chem is used with a resolution of 3 km over the alpine region. Interfaces have been developed to account for the different measurements as input data. The available local emission inventories provided by the different Austrian regional governments were harmonized and used for the model simulations. An episode in February 2010 is chosen for the model evaluation. During that month exceedances of PM10-thresholds occurred at many measurement stations of the Austrian network. Different model runs (only model/only ground stations assimilated/satellite and ground stations assimilated) are compared to the respective measurements. The goal of this project is to improve the PM10-forecasts for Austria with the integration of satellite based measurements and to provide a comprehensive product-platform.

  6. Dissolved, particulate and acid-leachable trace metal concentrations in North Atlantic precipitation collected on the Global Change Expedition

    SciTech Connect

    Lim, B.; Jickells, T.D. )

    1990-12-01

    Atmospheric inputs of trace metals into surface waters are an important pathway for the oceanic biogeochemical cycling of many trace constituents. Rainwater samples from six precipitation events were collected on board ship during legs 3 and 4 of the Global Change Expedition over the North Atlantic Ocean and analyzed for dissolved, particulate (Al and Pb), and acid-leachable trace metals (Al, Fe, Mn, Cd, Cu, Pb, Zn). Acid-leachable concentrations of the elements were similar to reported values from the North Atlantic and Pacific Oceans which were measured using comparable acidification procedures. Concentrations of dissolved and particulate Al and Pb were determined in rain events acid-leachable and total trace metal concentrations suggest that the acid-leachable fraction of metals can significantly underestimate total concentrations of crustal elements in rain. The solubilities of Al and Pb in precipitation were variable and mean solubilities of the elements were 13% and 45%, respectively. Recycled sea salt components were less than 14% for Al, Fe, Mn, Pb, Cd, Cu, and Zn, indicating that the net trace metal flux is from the atmosphere to the oceans. Deep sea particle fluxes for these metals through the western tropical North Atlantic exceed atmospheric deposition fluxes by a factor of 18 to 41. 57 refs., 2 figs., 12 tabs.

  7. Ambient particulate air pollution, heart rate variability, and blood markers of inflammation in a panel of elderly subjects.

    PubMed Central

    Pope, C Arden; Hansen, Matthew L; Long, Russell W; Nielsen, Karen R; Eatough, Norman L; Wilson, William E; Eatough, Delbert J

    2004-01-01

    Epidemiologic studies report associations between particulate air pollution and cardiopulmonary morbidity and mortality. Although the underlying pathophysiologic mechanisms remain unclear, it has been hypothesized that altered autonomic function and pulmonary/systemic inflammation may play a role. In this study we explored the effects of air pollution on autonomic function measured by changes in heart rate variability (HRV) and blood markers of inflammation in a panel of 88 elderly subjects from three communities along the Wasatch Front in Utah. Subjects participated in multiple sessions of 24-hr ambulatory electrocardiographic monitoring and blood tests. Regression analysis was used to evaluate associations between fine particulate matter [aerodynamic diameter less than or equal to 2.5 microm (PM2.5)] and HRV, C-reactive protein (CRP), blood cell counts, and whole blood viscosity. A 100- microg/m3 increase in PM2.5 was associated with approximately a 35 (SE = 8)-msec decline in standard deviation of all normal R-R intervals (SDNN, a measure of overall HRV); a 42 (SE = 11)-msec decline in square root of the mean of the squared differences between adjacent normal R-R intervals (r-MSSD, an estimate of short-term components of HRV); and a 0.81 (SE = 0.17)-mg/dL increase in CRP. The PM2.5-HRV associations were reasonably consistent and statistically robust, but the CRP association dropped to 0.19 (SE = 0.10) after excluding the most influential subject. PM2.5 was not significantly associated with white or red blood cell counts, platelets, or whole-blood viscosity. Most short-term variability in temporal deviations of HRV and CRP was not explained by PM2.5; however, the small statistically significant associations that were observed suggest that exposure to PM2.5 may be one of multiple factors that influence HRV and CRP. PMID:14998750

  8. [Using the Mini-Mental State Examination (MMSE) for preliminary assessment of cognitive impairment in subjects exposed to air pollution with particulate matter].

    PubMed

    Pedata, Paola; Grella, Rodolfo; Lamberti, Monica; Bergamasco, Nadia

    2014-01-01

    Epidemiologic and clinical studies have linked elevated concentrations of particulate matter to adverse health effects. In particular, has been demonstrated an association between UFPs exposure and occurrence of acute respiratory infections, lung cancer, chronic chronic obstructive pulmonary diseases and cardiovascular diseases. Recently, the exposure to particulate air pollution has been linked to cognitive decline. In this work, we used the Mini-Mental State Examination (MMSE) in a preliminary assessment of cognitive function in individuals who have lived and carried out work in heavily urbanized areas, where ambient levels of particulate air pollution were frequently above the standard of the law. The results showed the presence of mild-moderate cognitive impairment in 39.4% of the subjects examined compared to the control group.

  9. Association between Source-Specific Particulate Matter Air Pollution and hs-CRP: Local Traffic and Industrial Emissions

    PubMed Central

    Fuks, Kateryna; Moebus, Susanne; Weinmayr, Gudrun; Memmesheimer, Michael; Jakobs, Hermann; Bröcker-Preuss, Martina; Führer-Sakel, Dagmar; Möhlenkamp, Stefan; Erbel, Raimund; Jöckel, Karl-Heinz; Hoffmann, Barbara

    2014-01-01

    Background: Long-term exposures to particulate matter air pollution (PM2.5 and PM10) and high traffic load have been associated with markers of systemic inflammation. Epidemiological investigations have focused primarily on total PM, which represents a mixture of pollutants originating from different sources. Objective: We investigated associations between source-specific PM and high-sensitive C-reactive protein (hs-CRP), an independent predictor of cardiovascular disease. Methods: We used data from the first (2000–2003) and second examination (2006–2008) of the Heinz Nixdorf Recall study, a prospective population-based German cohort of initially 4,814 participants (45–75 years of age). We estimated residential long-term exposure to local traffic- and industry-specific fine particulate matter (PM2.5) at participants’ residences using a chemistry transport model. We used a linear mixed model with a random participant intercept to estimate associations of source-specific PM and natural log-transformed hs-CRP, controlling for age, sex, education, body mass index, low- and high-density lipoprotein cholesterol, smoking variables, physical activity, season, humidity, and city (8,204 total observations). Results: A 1-μg/m3 increase in total PM2.5 was associated with a 4.53% increase in hs-CRP concentration (95% CI: 2.76, 6.33%). hs-CRP was 17.89% (95% CI: 7.66, 29.09%) and 7.96% (95% CI: 3.45, 12.67%) higher in association with 1-μg/m3 increases in traffic- and industry-specific PM2.5, respectively. Results for PM10 were similar. Conclusions: Long-term exposure to local traffic-specific PM (PM2.5, PM10) was more strongly associated with systemic inflammation than total PM. Associations of local industry-specific PM were slightly stronger but not significantly different from associations with total PM. Citation: Hennig F, Fuks K, Moebus S, Weinmayr G, Memmesheimer M, Jakobs H, Bröcker-Preuss M, Führer-Sakel D, Möhlenkamp S, Erbel R, Jöckel KH, Hoffmann B

  10. Particulate Air Pollution, Exceptional Aging, and Rates of Centenarians: A Nationwide Analysis of the United States, 1980–2010

    PubMed Central

    Baccarelli, Andrea A.; Hales, Nick; Burnett, Richard T.; Jerrett, Michael; Mix, Carter; Dockery, Douglas W.; Pope, C. Arden

    2016-01-01

    Background: Exceptional aging, defined as reaching age 85 years, shows geographic inequalities that may depend on local environmental conditions. Links between particulate pollution—a well-recognized environmental risk factor—and exceptional aging have not been investigated. Objectives: We conducted a nationwide analysis of ~28 million adults in 3,034 United States counties to determine whether local PM2.5 levels (particulate matter < 2.5 μm in aerodynamic diameter) affected the probability of becoming 85- to 94-year-olds or centenarians (100- to 104-year-olds) in 2010 for individuals who were 55–64 or 70–74 years old, respectively, in 1980. Methods: We used population-weighted regression models including county-level PM2.5 from hybrid land-use regression and geostatistical interpolation, smoking, obesity, sociodemographic, and age-specific migration variables. Results: On average, 2,295 and 71.4 per 10,000 of the 55- to 64- and 70- to 74-year-olds in 1980, respectively, remained in the 85- to 94- and 100- to 104-year-old population in 2010. An interquartile range (4.19 μg/m3) increase in PM2.5 was associated with 93.7 fewer 85- to 94-year-olds (p < 0.001) and 3.5 fewer centenarians (p < 0.05). These associations were nearly linear, were stable to model specification, and were detectable below the annual PM2.5 national standard. Exceptional aging was strongly associated with smoking, with an interquartile range (4.77%) increase in population who smoked associated with 181.9 fewer 85- to 94-year-olds (p < 0.001) and 6.4 fewer centenarians (p < 0.001). Exceptional aging was also associated with obesity rates and median income. Conclusions: Communities with the most exceptional aging have low ambient air pollution and low rates of smoking, poverty, and obesity. Improvements in these determinants may contribute to increasing exceptional aging. Citation: Baccarelli AA, Hales N, Burnett RT, Jerrett M, Mix C, Dockery DW, Pope CA III. 2016. Particulate air

  11. Methods and apparatus for handling or treating particulate material

    NASA Technical Reports Server (NTRS)

    Littman, Howard (Inventor); Plawsky, Joel L. (Inventor); Paccione, John D. (Inventor)

    2009-01-01

    An improved draft tube spout fluid bed (DTSFB) mixing, handling, conveying, and treating apparatus and systems, and methods for operating are provided. The apparatus and systems can accept particulate material and pneumatically or hydraulically conveying the material to mix and/or treat the material. In addition to conveying apparatus, a collection and separation apparatus adapted to receive the conveyed particulate material is also provided. The collection apparatus may include an impaction plate against which the conveyed material is directed to improve mixing and/or treatment. The improved apparatus are characterized by means of controlling the operation of the pneumatic or hydraulic transfer to enhance the mixing and/or reacting by controlling the flow of fluids, for example, air, into and out of the apparatus. The disclosed apparatus may be used to mix particulate material, for example, mortar; react fluids with particulate material; coat particulate material, or simply convey particulate material.

  12. Difference in Pro-Inflammatory Cytokine Responses Induced in THP1 Cells by Particulate Matter Collected on Days with and without ASIAN Dust Storms

    PubMed Central

    Watanabe, Masanari; Kurai, Jun; Sano, Hiroyuki; Yamasaki, Akira; Shimizu, Eiji

    2015-01-01

    The associations between particulate matter from Asian dust storms (ADS) and health disorders differ among studies, and the underlying mechanisms remain unclear. In this study, ADS and non-ADS particles were tested for their potential to induce pro-inflammatory cytokines associated with adverse respiratory effects. Particulate matter was collected in Japan during four periods in 2013 (2 × ADS periods; 2 × non-ADS). THP1 cells were exposed to this particulate matter, and the levels of various interleukins (ILs), and tumor necrosis factor (TNF)-α were measured. Levels of IL-2 increased significantly following exposure to all particulate matter samples (compared to levels in a solvent control). Increased levels of IL-10 and TNF-α were also observed following exposure to particles collected during three (one ADS and two non-ADS) and two (one ADS and one non-ADS) collection periods, respectively. Thus, the effects of particulate matter on cytokine responses differed according to collection period, and the effects of ADS particles differed for each ADS event. Additionally, the levels of pro-inflammatory cytokines induced by ADS particles were not always higher than those induced by non-ADS particles. PMID:26184251

  13. Difference in Pro-Inflammatory Cytokine Responses Induced in THP1 Cells by Particulate Matter Collected on Days with and without ASIAN Dust Storms.

    PubMed

    Watanabe, Masanari; Kurai, Jun; Sano, Hiroyuki; Yamasaki, Akira; Shimizu, Eiji

    2015-07-01

    The associations between particulate matter from Asian dust storms (ADS) and health disorders differ among studies, and the underlying mechanisms remain unclear. In this study, ADS and non-ADS particles were tested for their potential to induce pro-inflammatory cytokines associated with adverse respiratory effects. Particulate matter was collected in Japan during four periods in 2013 (2 × ADS periods; 2 × non-ADS). THP1 cells were exposed to this particulate matter, and the levels of various interleukins (ILs), and tumor necrosis factor (TNF)-α were measured. Levels of IL-2 increased significantly following exposure to all particulate matter samples (compared to levels in a solvent control). Increased levels of IL-10 and TNF-α were also observed following exposure to particles collected during three (one ADS and two non-ADS) and two (one ADS and one non-ADS) collection periods, respectively. Thus, the effects of particulate matter on cytokine responses differed according to collection period, and the effects of ADS particles differed for each ADS event. Additionally, the levels of pro-inflammatory cytokines induced by ADS particles were not always higher than those induced by non-ADS particles. PMID:26184251

  14. Detection of particulate air pollution plumes from major point sources using ERTS-1 imagery

    NASA Technical Reports Server (NTRS)

    Lyons, W. A.; Pease, S. R.

    1973-01-01

    The Earth Resources Technology Satellite (ERTS-1) launched by NASA in July 1972 has been providing thousands of high resolution multispectral images of interest to geographers, cartographers, hydrologists, and agroculturists. It has been found possible to detect the long-range (over 50 km) transport of suspected particulate plumes from the Chicago-Gary steel mill complex over Lake Michigan. The observed plumes are readily related to known steel mills, a cement plant, refineries, and fossil-fuel power plants. This has important ramifications when discussing the interregional transport of atmospheric pollutants. Analysis reveals that the Multispectral Scanner Band 5 (0.6 to 0.7 micrometer) provides the best overall contrast between the smoke and the underlying water surface.

  15. Ambient Coarse Particulate Matter and Hospital Admissions in the Medicare Cohort Air Pollution Study, 1999–2010

    PubMed Central

    Powell, Helen; Krall, Jenna R.; Wang, Yun; Bell, Michelle L.

    2015-01-01

    Background In recent years a number of studies have examined the short-term association between coarse particulate matter (PM10–2.5) and mortality and morbidity outcomes. These studies, however, have produced inconsistent conclusions. Objectives We estimated both the national- and regional-level associations between PM10–2.5 and emergency hospitalizations for both cardiovascular and respiratory disease among Medicare enrollees ≥ 65 years of age during the 12-year period 1999 through 2010. Methods Using air pollution data obtained from the U.S. Environmental Protection Agency air quality monitoring network and daily emergency hospitalizations for 110 large urban U.S. counties assembled from the Medicare Cohort Air Pollution Study (MCAPS), we estimated the association between short-term exposure to PM10–2.5 and hospitalizations using a two-stage Bayesian hierarchical model and Poisson log-linear regression models. Results A 10-μg/m3 increase in PM10–2.5 was associated with a significant increase in same-day cardiovascular hospitalizations [0.69%; 95% posterior interval (PI): 0.45, 0.92]. After adjusting for PM2.5, this association remained significant (0.63%; 95% PI: 0.38, 0.88). A 10-μg/m3 increase in PM10–2.5 was not associated with a significant increase in respiratory-related hospitalizations. Conclusions We found statistically significant evidence that daily variation in PM10–2.5 is associated with emergency hospitalizations for cardiovascular diseases among Medicare enrollees ≥ 65 years of age. This association was robust to adjustment for concentrations of PM2.5. Citation Powell H, Krall JR, Wang Y, Bell ML, Peng RD. 2015. Ambient coarse particulate matter and hospital admissions in the Medicare Cohort Air Pollution Study, 1999–2010. Environ Health Perspect 123:1152–1158; http://dx.doi.org/10.1289/ehp.1408720 PMID:25872223

  16. Statistical summary and trend evaluation of air quality data for Cleveland, Ohio in 1967 to 1971: Total suspended particulate, nitrogen dioxide, and sulfur dioxide

    NASA Technical Reports Server (NTRS)

    Neustadter, H. E.; Sidik, S. M.; Burr, J. C., Jr.

    1972-01-01

    Air quality data for Cleveland, Ohio, for the period of 1967 to 1971 were collated and subjected to statistical analysis. The total suspended particulate component is lognormally distributed; while sulfur dioxide and nitrogen dioxide are reasonably approximated by lognormal distributions. Only sulfur dioxide, in some residential neighborhoods, meets Ohio air quality standards. Air quality has definitely improved in the industrial valley, while in the rest of the city, only sulfur dioxide has shown consistent improvement. A pollution index is introduced which displays directly the degree to which the environmental air conforms to mandated standards.

  17. PREFACE: SPECIAL SECTION OF THE JOURNAL OF AIR & WASTE MANAGEMENT ASSOCIATION FOR PARTICULATE MATTER: ATMOSPHERIC SCIENCES, EXPOSURE AND THE FOURTH COLLOQUIUM ON PM AND HUMAN HEALTH

    EPA Science Inventory

    This dedicated issue of the Journal of the Air & Waste Management Association contains 17 peer-reviewed scientific papers that were presented at the specialty conference, “Particulate Matter: Atmospheric Sciences, Exposure and the Fourth Colloquium on PM and Human Health,” that w...

  18. Exposures to Walkability and Particulate Air Pollution in a Nationwide Cohort of Women

    PubMed Central

    James, Peter; Hart, Jaime E.; Laden, Francine

    2015-01-01

    Background Features of neighborhoods associated with walkability (i.e., connectivity, accessibility, and density) may also be correlated with levels of ambient air pollution, which would attenuate the health benefits of walkability. Objectives We examined the relationship between neighborhood walkability and ambient air pollution in a cross-sectional analysis of a cohort study spanning the entire United States using residence-level exposure assessment for ambient air pollution and the built environment. Methods Using data from the Nurses’ Health Study, we used linear regression to estimate the association between a neighborhood walkability index, combining neighborhood intersection count, business count, and population density (defined from Census data, infoUSA business data, and StreetMap USA data), and air pollution, defined from a GIS-based spatiotemporal PM2.5 model. Results After adjustment for Census tract median income, median home value, and percent with no high school education, the highest tertile of walkability index, intersection count, business count, and population density was associated with a with 1.58 (95% CI 1.54, 1.62), 1.20 (95% CI 1.16, 1.24), 1.31 (95% CI 1.27, 1.35), and 1.84 (95% CI 1.80, 1.88) μg/m3 higher level of PM2.5 respectively, compared to the lowest tertile. Results varied somewhat by neighborhood socioeconomic status and greatly by region. Conclusions This nationwide analysis showed a positive relationship between neighborhood walkability and modeled air pollution levels, which were consistent after adjustment for neighborhood-level socioeconomic status. Regional differences in the air pollution-walkability relationship demonstrate that there are factors that vary across region that allow for walkable neighborhoods with low levels of air pollution. PMID:26397775

  19. Seasonal variation of the size distribution of urban particulate matter and associated organic pollutants in the ambient air

    NASA Astrophysics Data System (ADS)

    Chrysikou, Loukia P.; Samara, Constantini A.

    Size-segregated samples of urban particulate matter (<0.95, 0.95-1.5, 1.5-3.0, 3.0-7.5, >7.5 μm) were collected in Thessaloniki, northern Greece, during winter and summer of 2007-2008, in order to study the size distribution of organic compounds such as polycyclic aromatic hydrocarbons (PAHs), aliphatic hydrocarbons (AHs) including n-alkanes and the isoprenoids pristane and phytane, organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs). All organic compounds were accumulated in the particle size fraction <0.95 μm particularly in the cold season. Particulate matter displayed a bimodal normalized distribution in both seasons with a stable coarse mode located at 3.0-7.5 μm and a fine mode shifting from 0.95-1.5 μm in winter to <0.95 μm in summer. Unimodal normalized distributions, predominant at 0.95-1.5 μm size range, were found for most organic compounds in both seasons, suggesting gas-to-particle transformation after emission. A second minor mode at larger particles (3.0-7.5 μm) was observed for C 19 and certain OCPs suggesting redistribution due to volatilization and condensation.

  20. Advanced Hybrid Particulate Collector Project Management Plan

    SciTech Connect

    Miller, S.J.

    1995-11-01

    As the consumption of energy increases, its impact on ambient air quality has become a significant concern. Recent studies indicate that fine particles from coal combustion cause health problems as well as atmospheric visibility impairment. These problems are further compounded by the concentration of hazardous trace elements such as mercury, cadmium, selenium, and arsenic in fine particles. Therefore, a current need exists to develop superior, but economical, methods to control emissions of fine particles. Since most of the toxic metals present in coal will be in particulate form, a high level of fine- particle collection appears to be the best method of overall air toxics control. However, over 50% of mercury and a portion of selenium emissions are in vapor form and cannot be collected in particulate control devices. Therefore, this project will focus on developing technology not only to provide ultrahigh collection efficiency of particulate air toxic emissions, but also to capture vapor- phase trace metals such as mercury and selenium. Currently, the primary state-of-the-art technologies for particulate control are fabric filters (baghouses) and electrostatic precipitators (ESPs). However, they both have limitations that prevent them from achieving ultrahigh collection of fine particulate matter and vapor-phase trace metals. The objective of this project is to develop a highly reliable advanced hybrid particulate collector (AHPC) that can provide > 99.99 % particulate collection efficiency for all particle sizes between 0.01 and 50 14m, is applicable for use with all U.S. coals, and is cost-0443competitive with existing technologies. Phase I of the project is organized into three tasks: Task I - Project Management, Reporting, and Subcontract Consulting Task 2 - Modeling, Design, and Construction of 200-acfm AHPC Model Task 3 - Experimental Testing and Subcontract Consulting

  1. Portable air pollution control equipment for the control of toxic particulate emissions

    SciTech Connect

    Chaurushia, A.; Odabashian, S.; Busch, E.

    1997-12-31

    Chromium VI (Cr VI) has been identified by the environmental regulatory agencies as a potent carcinogen among eleven heavy metals. A threshold level of 0.0001 lb/year for Cr VI emissions has been established by the California Air Resources Board for reporting under Assembly Bill 2588. A need for an innovative control technology to reduce fugitive emissions of Cr VI was identified during the Air Toxic Emissions Reduction Program at Northrop Grumman Military Aircraft Systems Division (NGMASD). NGMASD operates an aircraft assembly facility in El Segundo, CA. Nearly all of the aircraft components are coated with a protective coating (primer) prior to assembly. The primer has Cr VI as a component for its excellent corrosion resistance property. The complex assembly process requires fasteners which also need primer coating. Therefore, NGMASD utilizes High Volume Low Pressure (HVLP) guns for the touch-up spray coating operations. During the touch-up spray coating operations, Cr VI particles are atomized and transferred to the aircraft surface. The South Coast Air Quality Management District (SCAQMD) has determined that the HVLP gun transfers 65% of the paint particles onto the substrate and the remaining 35% are emitted as an overspray if air pollution controls are not applied. NGMASD has developed the Portable Air Pollution Control Equipment (PAPCE) to capture and control the overspray in order to reduce fugitive Cr VI emissions from the touch-up spray coating operations. A source test was performed per SCAQMD guidelines and the final report has been approved by the SCAQMD.

  2. Novel method for determining DDT in vapour and particulate phases within contaminated indoor air in a malaria area of South Africa.

    PubMed

    Naudé, Yvette; Rohwer, Egmont R

    2012-06-12

    The organochlorine insecticide DDT (1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane) is still used for malaria vector control in certain areas of South Africa. The strict Stockholm Convention on Persistent Organic Pollutants (POPs) allows spraying on the inside of traditional dwellings with DDT. In rural villages contaminated dust presents an additional pathway for exposure to DDT. We present a new method for the determination of DDT in indoor air where separate vapour and particulate samples are collected in a single step with a denuder configuration of a multi-channel open tubular silicone rubber (polydimethylsiloxane (PDMS)) trap combined with a micro quartz fibre filter. The multi-channel PDMS trap section of the denuder concentrates vapour phase insecticide whereas particle associated insecticide is transferred downstream where it is collected on a micro-fibre filter followed by a second multi-channel PDMS trap to capture the blow-off from the filter. The multi-channel PDMS trap and filter combination are designed to fit a commercial thermal desorber for direct introduction of samples into a GC-MS. The technique is solvent-free. Analyte extraction and sample clean-up is not required. Two fractions, vapour phase and particulate phase p,p'-DDT, o,p'-DDT; p,p'-DDD, o,p'-DDD; p,p'-DDE and o,p'-DDE in 4 L contaminated indoor air, were each quantitatively analysed by GC-MS using isotopically labelled ring substituted (13)C(12) -p,p'-DDT as an internal standard. Limits of detection were 0.07-0.35 ng m(-3) for p,p'-DDT, o,p'-DDT, p,p'-DDD, o,p'-DDD, p,p'-DDE and o,p'-DDE. Ratios of airborne p,p'-DDD/p,p'-DDT and of o,p'-DDT/p,p'-DDT are unusual and do not match the ideal certified ingredient composition required of commercial DDT. Results suggest that the DDT products used for indoor residual spraying (IRS) prior to, and during 2007, may have been compromised with regards to insecticidal efficacy, demonstrating the power of this new environmental forensics tool.

  3. Study on the effect of high-temperature air treatment on particulate CdS

    NASA Astrophysics Data System (ADS)

    Zhengshi, Chen; Huqing, Zhang; Zhensheng, Jin

    1989-07-01

    The influence of high-temperature air treatment on the surface composition and structure of CdS was studied by means of XPS, XRD, and H +/OH - adsorption. The results show that the relative concentration of surface oxygen atoms increases considerably with duration of the air treatment, but there is no apparent change in percentage of oxygen atoms consumed in forming CdSO 4. In the ion sputtering of samples treated with different times, it was found that the CdO can be formed deep within the CdS particles, but formation of CdSO 4 takes place only at the surface. The high-temperature air treatment also increases the surface basicity of CdS and the content of hexagonal crystal form in bulk CdS.

  4. Benzo[a]pyrene-specific online high-performance liquid chromatography fractionation of air particulate extracts - a tool for evaluating biological interactions.

    PubMed

    Lim, Hwanmi; Bergvall, Christoffer; Jarvis, Ian; Mattsson, Åse; Dreij, Kristian; Stenius, Ulla; Westerholm, Roger

    2014-08-15

    Benzo[a]pyrene (B[a]P) is a known human carcinogen and is commonly used as a surrogate for assessing the carcinogenic risk posed by complex mixtures of polycyclic aromatic hydrocarbons (PAHs) present in air particulate matter (PM). However, studies have shown that using B[a]P as a surrogate may underestimate the carcinogenic potential of PAH mixtures, as the risk assessment approach does not consider interaction effects. Thus, toxicological studies using B[a]P to assess its carcinogenic potential in environmentally derived complex mixtures, as opposed to single compound experiments, could improve risk assessment. The intention of the present study was to develop an online HPLC fractionation system for the selective removal of B[a]P from air PM extracts. Two serial pyrenylethyl (PYE) columns enabled selective separation of B[a]P from its isomers and other PAHs as well as a short fractionation cycle of 30min. One run consisted of three collection steps: the first fraction contained PAHs eluting earlier than B[a]P, the second contained B[a]P and the last contained later-eluting PAHs. The selectivity and recovery of the system was investigated using extracts of Stockholm air PM samples. The overall recovery for all PAHs was approximately 80%, and the system proved to be selective, as it removed 94% of B[a]P and less than 3% of benzo[b]fluoranthene from the complex PAH mixture. Exposing human cells to blanks generated by the fractionation system did not induce cytotoxicity or DNA damage signalling. In conclusion, the online HPLC system was selective for B[a]P fractionation whilst minimising run-to-run variation and allowing repeated fractionations for larger samples due to its relatively short run time. PMID:24947883

  5. Isotopic and Chemical Characterization of Particulate Nitrogen in Marine Air at Bermuda during Spring

    NASA Astrophysics Data System (ADS)

    Turekian, V.; Macko, S.; Keene, W.

    2001-12-01

    Size resolved particulate nitrogen species were measured on Bermuda during spring, 1998. NO3- was primarily associated with super-†m radius aerosol and NH4+ with sub-†m radius aerosol, which is consistent with thermodynamic properties of the gaseous precursors and the size distribution of aerosol acidity. The average d15N for the super-†m aerosol (-2.1 +- 0.5ooo) was depleted in 15N relative to submicron aerosol (d15N = 5.3 +- 1.5 o/oo). The d15N range between super-{μ }m and sub-†m aerosol is consistent with the different sources for NO3- and NH4+. The d15N values indicate that high temperature combustion was the dominant source for the NO3-. The strong correlation between the d15N for paired aerosols with geometric mean radii (GMR) 5.4 and 2.3{μ }m suggests that incorporation of NO3- into the aerosol was unidirectional following the reaction HNO3(g) <--> HNO3(aq)<--> H+ + NO3-(aq). There was nosignificant correlation between the d15N values for paired aerosols with GMR 0.34 and 0.18 {μ }m, suggesting that NH3 actively recycles between phases: NH3(g)<--> NH3 (aq) + H20 (aq) <--> H+ + OH- + NH3(aq) <--> NH4+(aq) + OH- The dry deposition of super-†m aerosol accounted for over 99% of the dry deposition of total NO3- (HNO3 + particulate NO3-) and 62% of NH4+. Based on long-term measurements of wet deposition fluxes on Bermuda during spring, dry-deposition accounted for 24% of the wet + dry deposition total NO3 and approximately 3% of the wet + particuate dry NH4+ flux. Most of the organic nitrogen was associated with the smallest aerosol fraction and accounted for approxiamtely 6% of the total particualte N concentration and <4% of total N depositon flux during this period.

  6. Comparison of lead isotopes with source apportionment models, including SOM, for air particulates.

    PubMed

    Gulson, Brian; Korsch, Michael; Dickson, Bruce; Cohen, David; Mizon, Karen; Davis, J Michael

    2007-08-01

    We have measured high precision lead isotopes in PM(2.5) particulates from a highly-trafficked site (Mascot) and rural site (Richmond) in the Sydney Basin, New South Wales, Australia to compare with isotopic data from total suspended particulates (TSP) from other sites in the Sydney Basin and evaluate relationships with source fingerprints obtained from multi-element PM(2.5) data. The isotopic data for the period 1998 to 2004 show seasonal peaks and troughs that are more pronounced in the rural site for the PM(2.5).samples but are consistent with the TSP. The Self Organising Map (SOM) method has been applied to the multi-element PM(2.5) data to evaluate its use in obtaining fingerprints for comparison with standard statistical procedures (ANSTO model). As seasonal effects are also significant for the multi-element data, the SOM modelling is reported as site and season dependent. At the Mascot site, the ANSTO model exhibits decreasing (206)Pb/(204)Pb ratios with increasing contributions of fingerprints for "secondary smoke" (industry), "soil", "smoke" and "seaspray". Similar patterns were shown by SOM winter fingerprints for both sites. At the rural site, there are large isotopic variations but for the majority of samples these are not associated with increased contributions from the main sources with the ANSTO model. For two winter sampling times, there are increased contributions from "secondary industry", "smoke", "soil" and seaspray with one time having a source or sources of Pb similar to that of Mascot. The only positive relationship between increasing (206)Pb/(204)Pb ratio and source contributions is found at the rural site using the SOM summer fingerprints, both of which show a significant contribution from sulphur. Several of the fingerprints using either model have significant contributions from black carbon (BC) and/or sulphur (S) that probably derive from diesel fuels and industrial sources. Increased contributions from sources with the SOM summer

  7. 78 FR 22501 - Designation of Areas for Air Quality Planning Purposes; State of Nevada; Total Suspended Particulate

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-16

    ... Suspended Particulate AGENCY: Environmental Protection Agency (EPA). ACTION: Proposed rule. SUMMARY: EPA is proposing to delete certain area designations for total suspended particulate within the State of Nevada... unclassifiable areas for total suspended particulate in Clark County as well as the following nonattainment...

  8. Extraction of semivolatile organic compounds from high-efficiency particulate air (HEPA) filters by supercritical carbon dioxide

    SciTech Connect

    Schilling, J.B.

    1997-09-01

    Supercritical fluid extraction (SFE) using unmodified carbon dioxide has been explored as an alternative method for the extraction of semivolatile organic compounds from high-efficiency particulate air (HEPA) filters. HEPA filters provide the final stage of containment on many exhaust systems in US Department of Energy (DOE) facilities by preventing the escape of chemical and radioactive materials entrained in the exhausted air. The efficiency of the filters is tested by the manufacturer and DOE using dioctylphthalate (DOP), a substance regulated by the US Environmental Protection Agency under the Resource Conservation and Recovery Act. Therefore, the filters must be analyzed for semivolatile organics before disposal. Ninety-eight acid, base, and neutral semivolatile organics were spiked onto blank HEPA material and extracted using SFE, Soxhlet, automated Soxhlet, and sonication techniques. The SFE conditions were optimized using a Dionex SFE-703 instrument. Average recoveries for the 98 semivolatile compounds are 82.7% for Soxhlet, 74.0% for sonication, 70.2% for SFE, and 62.9% for Soxtec. Supercritical fluid extraction reduces the extraction solvent volume to 10--15 mL, a factor of 20--30 less than Soxhlet and more than 5 times less than Soxtec and sonication. Extraction times of 30--45 min are used compared to 16--18 h for Soxhlet extraction.

  9. Acute exposure to air pollution particulate matter aggravates experimental myocardial infarction in mice by potentiating cytokine secretion from lung macrophages.

    PubMed

    Marchini, Timoteo; Wolf, Dennis; Michel, Nathaly Anto; Mauler, Maximilian; Dufner, Bianca; Hoppe, Natalie; Beckert, Jessica; Jäckel, Markus; Magnani, Natalia; Duerschmied, Daniel; Tasat, Deborah; Alvarez, Silvia; Reinöhl, Jochen; von Zur Muhlen, Constantin; Idzko, Marco; Bode, Christoph; Hilgendorf, Ingo; Evelson, Pablo; Zirlik, Andreas

    2016-07-01

    Clinical, but not experimental evidence has suggested that air pollution particulate matter (PM) aggravates myocardial infarction (MI). Here, we aimed to describe mechanisms and consequences of PM exposure in an experimental model of MI. C57BL/6J mice were challenged with a PM surrogate (Residual Oil Fly Ash, ROFA) by intranasal installation before MI was induced by permanent ligation of the left anterior descending coronary artery. Histological analysis of the myocardium 7 days after MI demonstrated an increase in infarct area and enhanced inflammatory cell recruitment in ROFA-exposed mice. Mechanistically, ROFA exposure increased the levels of the circulating pro-inflammatory cytokines TNF-α, IL-6, and MCP-1, activated myeloid and endothelial cells, and enhanced leukocyte recruitment to the peritoneal cavity and the vascular endothelium. Notably, these effects on endothelial cells and circulating leukocytes could be reversed by neutralizing anti-TNF-α treatment. We identified alveolar macrophages as the primary source of elevated cytokine production after PM exposure. Accordingly, in vivo depletion of alveolar macrophages by intranasal clodronate attenuated inflammation and cell recruitment to infarcted tissue of ROFA-exposed mice. Taken together, our data demonstrate that exposure to environmental PM induces the release of inflammatory cytokines from alveolar macrophages which directly worsens the course of MI in mice. These findings uncover a novel link between air pollution PM exposure and inflammatory pathways, highlighting the importance of environmental factors in cardiovascular disease. PMID:27240856

  10. Acute exposure to air pollution particulate matter aggravates experimental myocardial infarction in mice by potentiating cytokine secretion from lung macrophages.

    PubMed

    Marchini, Timoteo; Wolf, Dennis; Michel, Nathaly Anto; Mauler, Maximilian; Dufner, Bianca; Hoppe, Natalie; Beckert, Jessica; Jäckel, Markus; Magnani, Natalia; Duerschmied, Daniel; Tasat, Deborah; Alvarez, Silvia; Reinöhl, Jochen; von Zur Muhlen, Constantin; Idzko, Marco; Bode, Christoph; Hilgendorf, Ingo; Evelson, Pablo; Zirlik, Andreas

    2016-07-01

    Clinical, but not experimental evidence has suggested that air pollution particulate matter (PM) aggravates myocardial infarction (MI). Here, we aimed to describe mechanisms and consequences of PM exposure in an experimental model of MI. C57BL/6J mice were challenged with a PM surrogate (Residual Oil Fly Ash, ROFA) by intranasal installation before MI was induced by permanent ligation of the left anterior descending coronary artery. Histological analysis of the myocardium 7 days after MI demonstrated an increase in infarct area and enhanced inflammatory cell recruitment in ROFA-exposed mice. Mechanistically, ROFA exposure increased the levels of the circulating pro-inflammatory cytokines TNF-α, IL-6, and MCP-1, activated myeloid and endothelial cells, and enhanced leukocyte recruitment to the peritoneal cavity and the vascular endothelium. Notably, these effects on endothelial cells and circulating leukocytes could be reversed by neutralizing anti-TNF-α treatment. We identified alveolar macrophages as the primary source of elevated cytokine production after PM exposure. Accordingly, in vivo depletion of alveolar macrophages by intranasal clodronate attenuated inflammation and cell recruitment to infarcted tissue of ROFA-exposed mice. Taken together, our data demonstrate that exposure to environmental PM induces the release of inflammatory cytokines from alveolar macrophages which directly worsens the course of MI in mice. These findings uncover a novel link between air pollution PM exposure and inflammatory pathways, highlighting the importance of environmental factors in cardiovascular disease.

  11. (CZ)BIOMARKERS OF EXPOSURE TO PARTICULATE AIR POLLUTION IN THE CZECH REPUBLIC

    EPA Science Inventory

    The use of biomarkers in the Teplice Program, provided a key tool to relate health outcomes to individual personal exposures and to provide measures of confounding exposures. This research program on the health effects of air pollution studied a population living in the heavil...

  12. (PRAGUE)BIOMARKERS OF EXPOSURE TO PARTICULATE AIR POLLUTION IN THE CZECH REPUBLIC

    EPA Science Inventory

    The use of biomarkers in the Teplice Program, provided a key tool to relate health outcomes to individual personal exposures and to provide measures of confounding exposures. This research program on the health effects of air pollution studied a population living in the heavil...

  13. 78 FR 3085 - National Ambient Air Quality Standards for Particulate Matter

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-15

    ... the last review, including extended analyses of key epidemiological studies, and evidence of health... review of the air quality criteria and NAAQS for PM (62 FR 55201, October 23, 1997). After CASAC and... development of Federal Equivalent Methods (FEMs) to support future reviews of the PM NAAQS (71 FR...

  14. 77 FR 44551 - Approval of Air Quality Implementation Plans; Arizona; Interstate Transport of Fine Particulate...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-30

    ...); Revisions to Acid Rain Program; Revisions to the NO X SIP Call,'' 70 FR 25162 (May 12, 2005) (``CAIR''). \\5... per cubic meter ( g/m\\3\\) to 35 g/m\\3\\. 71 FR 61144 (October 17, 2006). Section 110(a)(1) of the CAA...' measures to prevent significant deterioration of air quality on June 27, 2012. See 77 FR 38239. The...

  15. EXPOSURE TO PARTICULATE MATTER, VOLATILE ORGANIC COMPOUNDS, AND OTHER AIR POLLUTANTS INSIDE PATROL CARS

    EPA Science Inventory

    People driving in a vehicle might receive an enhanced dose of mobile source pollutants that are considered a potential risk for cardiovascular diseases. The exposure to components of air pollution in highway patrol vehicles, at an ambient, and a roadside location was determined d...

  16. 75 FR 65594 - Approval and Promulgation of Air Quality Implementation Plans; Ohio; Particulate Matter Standards

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-26

    ... Matter Standards.'' The revisions were submitted by Ohio EPA to satisfy the State's 5-year review... Matter Standards AGENCY: Environmental Protection Agency (EPA). ACTION: Proposed rule. SUMMARY: EPA is... revise the Ohio State Implementation Plan under the Clean Air Act. The State has submitted revisions...

  17. Particulate air pollution and increased mortality: Biological plausibility for causal relationship

    SciTech Connect

    Henderson, R.F.

    1995-02-01

    Recently, a number of epidemiological studies have concluded that ambient particulate exposure is associated with increased mortality and morbidity at PM concentrations well below those previously thought to affect human health. These studies have been conducted in several different geographical locations and have involved a range of populations. While the consistency of the findings and the presence of an apparent concentration response relationship provide a strong argument for causality, epidemiological studies can only conclude this based upon inference from statistical associations. The biological plausibility of a causal relationship between low concentrations of PM and daily mortality and morbidity rates is neither intuitively obvious nor expected based on past experimental studies on the toxicity of inhaled particles. Chronic toxicity from inhaled, poorly soluble particles has been observed based on the slow accumulation of large lung burdens of particles, not on small daily fluctuations in PM levels. Acute toxicity from inhaled particles is associated mainly with acidic particles and is observed at much higher concentrations than those observed in the epidemiology studies reporting an association between PM concentrations and morbidity/mortality. To approach the difficult problem of determining if the association between PM concentrations and daily morbidity and mortality is biologically plausible and causal, one must consider (1) the chemical and physical characteristics of the particles in the inhaled atmospheres, (2) the characteristics of the morbidity/mortality observed and the people who are affected, and (3) potential mechanisms that might link the two.

  18. Vegetation fires, particulate air pollution and asthma: a panel study in the Australian monsoon tropics.

    PubMed

    Johnston, Fay H; Webby, Rosalind J; Pilotto, Louis S; Bailie, Ross S; Parry, David L; Halpin, Stephen J

    2006-12-01

    We examined the relationship between particulate matter (PM) <10 and <2.5 microns in diameter (PM10 and PM2.5) generated by vegetation fires and daily health outcomes in 251 adults and children with asthma over a 7-month period. Data were analysed using generalized estimating equations adjusted for potential environmental confounders, autocorrelation, weekends and holidays. PM10 ranged from 2.6 - 43.3 microg m-3and was significantly associated with onset of asthma symptoms, commencing oral steroid medication, the mean daily symptom count and the mean daily dose of reliever medication. Similar results were found for PM2.5. No associations were found with the more severe outcomes of asthma attacks, increased health care attendances or missed school/work days. These results help fill a gap in the evidence about the population health impacts of lower levels of pollution characteristic of deliberate landscape burning to control fuel loads versus the better documented risks of more intense and severely polluting wildfires.

  19. SPATIAL PREDICTION OF FINE PARTICULATE MATTER

    EPA Science Inventory

    A new national monitoring network for the measurement of fine particular matter (PM2.5) is currently under development. A primary goal of this network is to collect monitoring data in residential communities for the evaluation of compliance with particulate air quality standards...

  20. Characteristics and popular topics of latest researches into the effects of air particulate matter on cardiovascular system by bibliometric analysis.

    PubMed

    Jia, Xiaofeng; Guo, Xinbiao; Li, Haicun; An, Xinying; Zhao, Yingguang

    2013-03-01

    In recent years, many epidemiological and toxicological studies have investigated the adverse effects of air particulate matter (PM) on the cardiovascular system. However, it is difficult for the researchers to have a timely and effective overall command of the latest characteristics and popular topics in such a wide field. Different from the previous reviews, in which the research characteristics and trends are empirically concluded by experts, we try to have a comprehensive evaluation of the above topics for the first time by bibliometric analysis, a quantitative tool in information exploration. This study aims to introduce the bibliometric method into the field of PM and cardiovascular system. The articles were selected by searching PubMed/MEDLINE (from 2007 to 2012) using Medical Subject Headings (MeSH) terms "particulate matter" and "cardiovascular system". A total of 935 eligible articles and 1895 MeSH terms were retrieved and processed by the software Thomson Data Analyzer (TDA). The bibliographic information and the MeSH terms of these articles were classified and analyzed to summarize the research characteristics. The top 200 high-frequency MeSH terms (the cumulative frequency percentage was 74.2%) were clustered for popular-topic conclusion. We summarized the characteristics of published articles, of researcher collaborations and of the contents. Ten clusters of MeSH terms are presented. Six popular topics are concluded and elaborated for reference. Our study presents an overview of the characteristics and popular topics in the field of PM and cardiovascular system in the past five years by bibliometric tools, which may provide a new perspective for future researchers.

  1. Mold occurring on the air cleaner high-efficiency particulate air filters used in the houses of child patients with atopic dermatitis.

    PubMed

    Kim, Seong Hwan; Ahn, Geum Ran; Son, Seung Yeol; Bae, Gwi-Nam; Yun, Yeo Hong

    2014-09-01

    Fungi are the known sources of irritation associated with atopic diseases (e.g., asthma, allergic rhinoconjunctivitis, and atopic eczema). To quantitatively estimate their presence in the indoor environment of atopic dermatitis-inflicted child patient's houses (ADCPHs), the high-efficiency particulate air (HEPA) filters installed inside the air cleaners of three different ADCPHs were investigated for the presence of mold. The air cleaner HEPA filters obtained from the three different ADCPHs were coded as HEPA-A, -B, and -C, respectively, and tested for the presence of mold. The colony forming units (CFUs) corresponding to the HEPA-A, -B, and -C filters were estimated to be 6.51 × 10(2) ± 1.50 × 10(2) CFU/cm(2), 8.72 × 10(2) ± 1.69 × 10(2) CFU/cm(2), and 9.71 × 10(2) ± 1.35 × 10(2) CFU/cm(2), respectively. Aspergillus, Penicillium, Alternaria, Cladosporium, Trichoderma, and other fungal groups were detected in the 2,494 isolates. The distribution of these fungal groups differed among the three filters. Cladosporium was the major fungal group in filters HEPA-A and -C, whereas Penicillium was the major fungal group in the filter HEPA-B. Nine fungal species, including some of the known allergenic species, were identified in these isolates. Cladosporium cladosporioides was the most common mold among all the three filters. This is the first report on the presence of fungi in the air cleaner HEPA filters from ADCPHs in Korea.

  2. Mold Occurring on the Air Cleaner High-Efficiency Particulate Air Filters Used in the Houses of Child Patients with Atopic Dermatitis

    PubMed Central

    Kim, Seong Hwan; Ahn, Geum Ran; Son, Seung Yeol; Bae, Gwi-Nam

    2014-01-01

    Fungi are the known sources of irritation associated with atopic diseases (e.g., asthma, allergic rhinoconjunctivitis, and atopic eczema). To quantitatively estimate their presence in the indoor environment of atopic dermatitis-inflicted child patient's houses (ADCPHs), the high-efficiency particulate air (HEPA) filters installed inside the air cleaners of three different ADCPHs were investigated for the presence of mold. The air cleaner HEPA filters obtained from the three different ADCPHs were coded as HEPA-A, -B, and -C, respectively, and tested for the presence of mold. The colony forming units (CFUs) corresponding to the HEPA-A, -B, and -C filters were estimated to be 6.51 × 102 ± 1.50 × 102 CFU/cm2, 8.72 × 102 ± 1.69 × 102 CFU/cm2, and 9.71 × 102 ± 1.35 × 102 CFU/cm2, respectively. Aspergillus, Penicillium, Alternaria, Cladosporium, Trichoderma, and other fungal groups were detected in the 2,494 isolates. The distribution of these fungal groups differed among the three filters. Cladosporium was the major fungal group in filters HEPA-A and -C, whereas Penicillium was the major fungal group in the filter HEPA-B. Nine fungal species, including some of the known allergenic species, were identified in these isolates. Cladosporium cladosporioides was the most common mold among all the three filters. This is the first report on the presence of fungi in the air cleaner HEPA filters from ADCPHs in Korea. PMID:25346608

  3. Mold occurring on the air cleaner high-efficiency particulate air filters used in the houses of child patients with atopic dermatitis.

    PubMed

    Kim, Seong Hwan; Ahn, Geum Ran; Son, Seung Yeol; Bae, Gwi-Nam; Yun, Yeo Hong

    2014-09-01

    Fungi are the known sources of irritation associated with atopic diseases (e.g., asthma, allergic rhinoconjunctivitis, and atopic eczema). To quantitatively estimate their presence in the indoor environment of atopic dermatitis-inflicted child patient's houses (ADCPHs), the high-efficiency particulate air (HEPA) filters installed inside the air cleaners of three different ADCPHs were investigated for the presence of mold. The air cleaner HEPA filters obtained from the three different ADCPHs were coded as HEPA-A, -B, and -C, respectively, and tested for the presence of mold. The colony forming units (CFUs) corresponding to the HEPA-A, -B, and -C filters were estimated to be 6.51 × 10(2) ± 1.50 × 10(2) CFU/cm(2), 8.72 × 10(2) ± 1.69 × 10(2) CFU/cm(2), and 9.71 × 10(2) ± 1.35 × 10(2) CFU/cm(2), respectively. Aspergillus, Penicillium, Alternaria, Cladosporium, Trichoderma, and other fungal groups were detected in the 2,494 isolates. The distribution of these fungal groups differed among the three filters. Cladosporium was the major fungal group in filters HEPA-A and -C, whereas Penicillium was the major fungal group in the filter HEPA-B. Nine fungal species, including some of the known allergenic species, were identified in these isolates. Cladosporium cladosporioides was the most common mold among all the three filters. This is the first report on the presence of fungi in the air cleaner HEPA filters from ADCPHs in Korea. PMID:25346608

  4. Particulate Matter Air Pollution Exposure, Distance to Road, and Incident Lung Cancer in the Nurses’ Health Study Cohort

    PubMed Central

    Hart, Jaime E.; Yanosky, Jeff D.; Spiegelman, Donna; Wang, Molin; Fisher, Jared A.; Hong, Biling; Laden, Francine

    2014-01-01

    Background: A body of literature has suggested an elevated risk of lung cancer associated with particulate matter and traffic-related pollutants. Objective: We examined the relation of lung cancer incidence with long-term residential exposures to ambient particulate matter and residential distance to roadway, as a proxy for traffic-related exposures. Methods: For participants in the Nurses’ Health Study, a nationwide prospective cohort of women, we estimated 72-month average exposures to PM2.5, PM2.5–10, and PM10 and residential distance to road. Follow-up for incident cases of lung cancer occurred from 1994 through 2010. Cox proportional hazards models were adjusted for potential confounders. Effect modification by smoking status was examined. Results: During 1,510,027 person-years, 2,155 incident cases of lung cancer were observed among 103,650 participants. In fully adjusted models, a 10-μg/m3 increase in 72-month average PM10 [hazard ratio (HR) = 1.04; 95% CI: 0.95, 1.14], PM2.5 (HR = 1.06; 95% CI: 0.91, 1.25), or PM2.5–10 (HR = 1.05; 95% CI: 0.92, 1.20) was positively associated with lung cancer. When the cohort was restricted to never-smokers and to former smokers who had quit at least 10 years before, the associations appeared to increase and were strongest for PM2.5 (PM10: HR = 1.15; 95% CI: 1.00, 1.32; PM2.5: HR = 1.37; 95% CI: 1.06, 1.77; PM2.5–10: HR = 1.11; 95% CI: 0.90, 1.37). Results were most elevated when restricted to the most prevalent subtype, adenocarcinomas. Risks with roadway proximity were less consistent. Conclusions: Our findings support those from other studies indicating increased risk of incident lung cancer associated with ambient PM exposures, especially among never- and long-term former smokers. Citation: Puett RC, Hart JE, Yanosky JD, Spiegelman D, Wang M, Fisher JA, Hong B, Laden F. 2014. Particulate matter air pollution exposure, distance to road, and incident lung cancer in the Nurses’ Health Study Cohort. Environ

  5. 77 FR 33002 - Proposed Extension of Existing Information Collection; Health Standards for Diesel Particulate...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-04

    ...As part of its continuing effort to reduce paperwork and respondent burden, the Department of Labor conducts a pre-clearance consultation program to provide the general public and Federal agencies with an opportunity to comment on proposed and continuing collections of information in accordance with the Paperwork Reduction Act of 1995. This program helps to assure that requested data can be......

  6. Removal of Sulfur from Natural Gas to Reduce Particulate Matter Emission from a Turbine Engine

    NASA Astrophysics Data System (ADS)

    Spang, Brent Loren

    The present work investigates the effect of natural gas fuel sulfur on particulate emissions from stationary gas turbine engines used for electricity generation. Fuel sulfur from standard line gas was scrubbed using a system of fluidized reactor beds containing a specially designed activated carbon purpose built for sulfur absorption. A sulfur injection system using sonic orifices was designed and constructed to inject methyl mercaptan into the scrubbed gas stream at varying concentrations. Using these systems, particulate emissions created by various fuel sulfur levels between 0 and 8.3 ppmv were investigated. Particulate samples were collected from a Capstone C65 microturbine generator system using a Horiba MDLT-1302TA micro dilution tunnel and analyzed using a Horiba MEXA-1370PM particulate analyzer. In addition, ambient air samples were collected to determine incoming particulate levels in the combustion air. The Capstone C65 engine air filter was also tested for particulate removal efficiency by sampling downstream of the filter. To further differentiate the particulate entering the engine in the combustion air from particulate being emitted from the exhaust stack, two high efficiency HEPA filters were installed to eliminate a large portion of incoming particulate. Variable fuel sulfur testing showed that there was a strong correlation between total particulate emission factor and fuel sulfur concentration. Using eleven variable sulfur tests, it was determined that an increase of 1 ppmv fuel sulfur will produce an increase of approximately 3.2 microg/m3 total particulate. Also, the correlation also predicted that, for this particular engine, the total particulate emission factor for zero fuel sulfur was approximately 19.1 microg/m3. With the EC and OC data removed, the correlation became 3.1 microg/m3 of sulfur particulate produced for each ppmv of fuel sulfur. The correlation also predicted that with no fuel sulfur present, 6.6 microg/m3 of particulate will

  7. Endocrine disrupting compounds in gaseous and particulate outdoor air phases according to environmental factors.

    PubMed

    Teil, Marie-Jeanne; Moreau-Guigon, Elodie; Blanchard, Martine; Alliot, Fabrice; Gasperi, Johnny; Cladière, Mathieu; Mandin, Corinne; Moukhtar, Sophie; Chevreuil, Marc

    2016-03-01

    This study investigated, for the first time in France, the spatial and temporal patterns of 55 endocrine disrupting chemicals (EDCs) in ambient air at three sites (urban, suburban and forest) under two climatic periods (warm/cold) for 2 successive years. All EDCs, except tetrabromobisphenol A (TBBPA), were encountered with various frequencies of up to 100%. Phthalate diesters (PAEs) were the most abundant chemicals with total concentrations as the sum of compounds, ranging from 10 to 100 ng m(-3) of total air, followed by alkylphenols (APs) and polycyclic aromatic hydrocarbons (PAHs), which were both approximately 1 ng m(-3). Polychlorinated biphenyl (PCBs) and bisphenol A (BPA) concentrations were notably lower (approximately 0.1 ng m(-3)). Air concentrations, depending on the considered compounds, were from 1.2 to 2 times higher in the urban than the suburban area and from 2 to 5 times higher in the urban than the forest site. PAH emissions were higher in the cold period, due to combustion processes. This finding is contrary to the other EDCs that are more abundant in the summer and governed by volatilisation. Most of the EDCs were largely distributed in the gaseous phase (>80% in the summer). The octanol/air partition coefficient (KOA) and vapour pressure (Vp) were relevant parameters for predicting EDC partitioning and direct relationships (p < 0.001) were observed i) between log K particle/gas partitioning (log Kp) and log KOA and ii) between EDC ratios in the gaseous phase and log vapour pressure (log Vp). PMID:26714291

  8. Study on particulate matter air pollution in Beijing with MODIS aerosol level 2 products

    NASA Astrophysics Data System (ADS)

    Mao, Jietai; Li, Chengcai; Lau, Alexis K.

    2004-09-01

    In the run-up to the 2008 Olympic Games in Beijing, Chinese government officials at both the central and municipal levels are keenly aware that they must transform Beijing into a world-class city. According to the Beijing Municipal Environmental Protection Bureau (BJEPB) to improve its air quality some actions are adopting, including taking steps to increase the forested area surrounding the city preventing dust storms, reducing the automotive vehicles, moving polluting factories now inside the fourth ring road ringing the inner city to locations outside of the fourth ring road, and switching the fuel of public buses and taxis from diesel to natural gas, etc. Will they eliminate most serious environmental problems in Beijing? MODIS aerosol products are helping us to answer this kind of questions. A long-term validation has been finished by sun-photometer observations, and the results proved the relative error of MODIS level 2 products was slightly larger than the estimation of Chu et al. (2002) from the results in most AERONET sites. However, the comparison between the products and moisture-corrected air pollution index (API) data, which were daily released to public by EPB, showed a high correlation coefficient. An air pollution episode in 2003 was investigated by the usage of satellite products. Our conclusion for the air pollution control strategy in Beijing is that only reducing the pollution sources from inner city can't fully solve the pollution problems in Beijing and the regional transports from the nearby southern provinces are contributing a lot to the pollution situation in Beijing.

  9. A Source Apportionment of U.S. Fine Particulate Matter Air Pollution

    PubMed Central

    Thurston, George D.; Ito, Kazuhiko; Lall, Ramona

    2011-01-01

    Using daily fine particulate matter (PM2.5) composition data from the 2000–2005 U.S. EPA Chemical Speciation Network (CSN) for over 200 sites, we applied multivariate methods to identify and quantify the major fine particulate matter (PM2.5) source components in the U.S. Novel aspects of this work were: (1) the application of factor analysis (FA) to multi-city daily data, drawing upon both spatial and temporal variations of chemical species; and, (2) the exclusion of secondary components (sulfates, nitrates and organic carbon) from the source identification FA to more clearly discern and apportion the PM2.5 mass to primary emission source categories. For the quantification of source-related mass, we considered two approaches based upon the FA results: 1) using single key tracers for sources identified by FA in a mass regression; and, 2) applying Absolute Principal Component Analysis (APCA). In each case, we followed a two-stage mass regression approach, in which secondary components were first apportioned among the identified sources, and then mass was apportioned to the sources and to other secondary mass not explained by the individual sources. The major U.S. PM2.5 source categories identified via FA (and their key elements) were: Metals Industry (Pb, Zn); Crustal/Soil Particles (Ca, Si); Motor Vehicle Traffic (EC, NO2); Steel Industry (Fe, Mn); Coal Combustion (As, Se); Oil Combustion (V, Ni); Salt Particles (Na, Cl) and Biomass Burning (K). Nationwide spatial plots of the source-related PM2.5 impacts were confirmatory of the factor interpretations: ubiquitous sources, such as Traffic and Soil, were found to be spread across the nation, more unique sources (such as Steel and Metals Processing) being highest in select industrialized cities, Biomass Burning was highest in the U.S. Northwest, while Residual Oil combustion was highest in cities in the Northeastern U.S. and in cities with major seaports. The sum of these source contributions and the secondary PM2

  10. Collection efficiency of the soot-particle aerosol mass spectrometer (SP-AMS) for internally mixed particulate black carbon

    NASA Astrophysics Data System (ADS)

    Willis, M. D.; Lee, A. K. Y.; Onasch, T. B.; Fortner, E. C.; Williams, L. R.; Lambe, A. T.; Worsnop, D. R.; Abbatt, J. P. D.

    2014-12-01

    The soot-particle aerosol mass spectrometer (SP-AMS) uses an intra-cavity infrared laser to vaporize refractory black carbon (rBC) containing particles, making the particle beam-laser beam overlap critical in determining the collection efficiency (CE) for rBC and associated non-refractory particulate matter (NR-PM). This work evaluates the ability of the SP-AMS to quantify rBC and NR-PM mass in internally mixed particles with different thicknesses of organic coating. Using apparent relative ionization efficiencies for uncoated and thickly coated rBC particles, we report measurements of SP-AMS sensitivity to NR-PM and rBC, for Regal Black, the recommended particulate calibration material. Beam width probe (BWP) measurements are used to illustrate an increase in sensitivity for highly coated particles due to narrowing of the particle beam, which enhances the CE of the SP-AMS by increasing the laser beam-particle beam overlap. Assuming complete overlap for thick coatings, we estimate CE for bare Regal Black particles of 0.6 ± 0.1, which suggests that previously measured SP-AMS sensitivities to Regal Black were underestimated by up to a factor of 2. The efficacy of the BWP measurements is highlighted by studies at a busy road in downtown Toronto and at a non-roadside location, which show particle beam widths similar to, but greater than that of bare Regal Black and coated Regal Black, respectively. Further BWP measurements at field locations will help to constrain the range of CE for fresh and aged rBC-containing particles. The ability of the SP-AMS to quantitatively assess the composition of internally mixed particles is validated through measurements of laboratory-generated organic coated particles, which demonstrate that the SP-AMS can quantify rBC and NR-PM over a wide range of particle compositions and rBC core sizes.

  11. Temperature modifies the association between particulate air pollution and mortality: A multi-city study in South Korea.

    PubMed

    Kim, Satbyul Estella; Lim, Youn-Hee; Kim, Ho

    2015-08-15

    Substantial epidemiologic literature has demonstrated the effects of air pollution and temperature on mortality. However, there is inconsistent evidence regarding the temperature modification effect on acute mortality due to air pollution. Herein, we investigated the effects of temperature on the relationship between air pollution and mortality due to non-accidental, cardiovascular, and respiratory death in seven cities in South Korea. We applied stratified time-series models to the data sets in order to examine whether the effects of particulate matter <10 μm (PM10) on mortality were modified by temperature. The effect of PM10 on daily mortality was first quantified within different ranges of temperatures at each location using a time-series model, and then the estimates were pooled through a random-effects meta-analysis using the maximum likelihood method. From all the data sets, 828,787 non-accidental deaths were registered from 2000-2009. The highest overall risk between PM10 and non-accidental or cardiovascular mortality was observed on extremely hot days (daily mean temperature: >99th percentile) in individuals aged <65 years. In those aged ≥65 years, the highest overall risk between PM10 and non-accidental or cardiovascular mortality was observed on very hot days and not on extremely hot days (daily mean temperature: 95-99th percentile). There were strong harmful effects from PM10 on non-accidental mortality with the highest temperature range (>99th percentile) in men, with a very high temperature range (95-99th percentile) in women. Our findings showed that temperature can affect the relationship between the PM10 levels and cause-specific mortality. Moreover, the differences were apparent after considering the age and sex groups.

  12. Beneficial cardiovascular effects of reducing exposure to particulate air pollution with a simple facemask

    PubMed Central

    Langrish, Jeremy P; Mills, Nicholas L; Chan, Julian KK; Leseman, Daan LAC; Aitken, Robert J; Fokkens, Paul HB; Cassee, Flemming R; Li, Jing; Donaldson, Ken; Newby, David E; Jiang, Lixin

    2009-01-01

    Background Exposure to air pollution is an important risk factor for cardiovascular morbidity and mortality, and is associated with increased blood pressure, reduced heart rate variability, endothelial dysfunction and myocardial ischaemia. Our objectives were to assess the cardiovascular effects of reducing air pollution exposure by wearing a facemask. Methods In an open-label cross-over randomised controlled trial, 15 healthy volunteers (median age 28 years) walked on a predefined city centre route in Beijing in the presence and absence of a highly efficient facemask. Personal exposure to ambient air pollution and exercise was assessed continuously using portable real-time monitors and global positional system tracking respectively. Cardiovascular effects were assessed by continuous 12-lead electrocardiographic and ambulatory blood pressure monitoring. Results Ambient exposure (PM2.5 86 ± 61 vs 140 ± 113 μg/m3; particle number 2.4 ± 0.4 vs 2.3 ± 0.4 × 104 particles/cm3), temperature (29 ± 1 vs 28 ± 3°C) and relative humidity (63 ± 10 vs 64 ± 19%) were similar (P > 0.05 for all) on both study days. During the 2-hour city walk, systolic blood pressure was lower (114 ± 10 vs 121 ± 11 mmHg, P < 0.01) when subjects wore a facemask, although heart rate was similar (91 ± 11 vs 88 ± 11/min; P > 0.05). Over the 24-hour period heart rate variability increased (SDNN 65.6 ± 11.5 vs 61.2 ± 11.4 ms, P < 0.05; LF-power 919 ± 352 vs 816 ± 340 ms2, P < 0.05) when subjects wore the facemask. Conclusion Wearing a facemask appears to abrogate the adverse effects of air pollution on blood pressure and heart rate variability. This simple intervention has the potential to protect susceptible individuals and prevent cardiovascular events in cities with high concentrations of ambient air pollution. PMID:19284642

  13. 78 FR 54279 - Proposed Information Collection; Health Standards for Diesel Particulate Matter Exposure...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-03

    ...The Department of Labor, as part of its continuing effort to reduce paperwork and respondent burden, conducts a pre-clearance consultation program to provide the general public and Federal agencies with an opportunity to comment on proposed and continuing collections of information in accordance with the Paperwork Reduction Act of 1995, 44 U.S.C. 3506(c)(2)(A). This program helps to assure......

  14. Studies on size distribution and health risk of 37 species of polycyclic aromatic hydrocarbons associated with fine particulate matter collected in the atmosphere of a suburban area of Shanghai city, China.

    PubMed

    Wang, Qingyue; Kobayashi, Keisuke; Lu, Senlin; Nakajima, Daisuke; Wang, Weiqian; Zhang, Wenchao; Sekiguchi, Kazuhiko; Terasaki, Masanori

    2016-07-01

    Polycyclic aromatic hydrocarbons (PAHs) in suspended particulate matter (SPM) contribute significantly to health risk. Our objectives were to assess the size distribution and sources of 26 PAHs and 11 polycyclic aromatic compounds (PACs) in SPM in the suburban area, Shanghai city, China. Air sampling was carried out on the rooftop of a five-stories building in the campus of Shanghai University. An Andersen high-volume air sampler was employed to collect ambient size-segregated particles from August to September 2015. The toxic particulate PAHs were determined by the gas chromatography mass spectrometry. The concentrations of total PAHs (TPAHs) in SPM and PM1.1 (suspended particulate matter below 1.1 μm) were in the ranges of 4.58-14.5 ng m(-3) and 1.82-8.56 ng m(-3), respectively. 1,8-naphthalic anhydride showed the highest concentrations among 37 species of PAHs and PACs ranging 7.76-47.9 ng m(-3) and 1.50-17.6 ng m(-3) in SPM and PM1.1, respectively. The concentrations of high molecular weight 5-6 ring PAHs followed a nearly unimodal size distribution with the highest peak in PM1.1, while other lower molecular weight PAHs were not dependent on particle sizes. The toxicity analysis indicated that the carcinogenic potency of particulate PAHs primarily existed in PM1.1. Regarding meteorological parameters and other pollutants, the positive effect of humidity and NO2 over PAHs was confirmed. Diagnostic ration indicated that the particulate PAHs in Shanghai were mainly derived from motor-vehicle or petroleum combustion. The highest benzo[a]pyrene equivalent (BaPeq) in SPM and PM1.1 were 2.15 ng m(-3) and 1.43 ng m(-3) calculated by the toxicity equivalency factor, and 69.31 ng m(-3) and 47.81 ng m(-3) estimated by the potency equivalency factors, respectively. The highest contributors in the total carcinogenicity of the particulate PAHs were dibenzo[a,h]pyrene (46.2% and 45.0%) and benz[j]aceanthrylene (80.2% and 83.1%), respectively while benzo

  15. The complementarity of PIXE and PIGE techniques: A case study of size segregated airborne particulates collected from a Nigeria city.

    PubMed

    Ezeh, G C; Obioh, I B; Asubiojo, O I; Chiari, M; Nava, S; Calzolai, G; Lucarelli, F; Nuviadenu, C

    2015-09-01

    The Proton Induced X-ray Emission (PIXE) technique is a reliable ion beam analytical tool for the characterization of thin aerosol samples, but it can underestimate the lightest measurable elements (such as Na, Mg, Al and Si) owing to the absorption of their X-rays inside the sample. The Proton Induced Gamma-ray Emission (PIGE) technique could be employed as avalid means to determine corrections for such an effect. Hence, in this study, Fine (PM(2.5)) and Coarse (PM(10-2.5)) particulate matter samples collected at Ikeja, Lagos-Nigeria, using a double staged 'Gent' stacked sampler were analyzed for their elemental concentrations using an external beam set-up for simultaneous PIXE and PIGE measurements. The measured PIXE concentrations as well as the PIGE correction factors for Na and Al detected in the PM(10-2.5) samples (collected on polycarbonate Nuclepore membranes) are reported. The concentrations of 24 elements (Na, Mg, Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Se, Br, Rb, Sr, Zr, Cs and Pb) detected in both fractions were displayed, discussed and likely sources of these elements were also identified.

  16. Commuters’ Exposure to Particulate Matter Air Pollution Is Affected by Mode of Transport, Fuel Type, and Route

    PubMed Central

    Zuurbier, Moniek; Hoek, Gerard; Oldenwening, Marieke; Lenters, Virissa; Meliefste, Kees; van den Hazel, Peter; Brunekreef, Bert

    2010-01-01

    Background Commuters are exposed to high concentrations of air pollutants, but little quantitative information is currently available on differences in exposure between different modes of transport, routes, and fuel types. Objectives The aim of our study was to assess differences in commuters’ exposure to traffic-related air pollution related to transport mode, route, and fuel type. Methods We measured particle number counts (PNCs) and concentrations of PM2.5 (particulate matter ≤ 2.5 μm in aerodynamic diameter), PM10, and soot between June 2007 and June 2008 on 47 weekdays, from 0800 to 1000 hours, in diesel and electric buses, gasoline- and diesel-fueled cars, and along two bicycle routes with different traffic intensities in Arnhem, the Netherlands. In addition, each-day measurements were taken at an urban background location. Results We found that median PNC exposures were highest in diesel buses (38,500 particles/cm3) and for cyclists along the high-traffic intensity route (46,600 particles/cm3) and lowest in electric buses (29,200 particles/cm3). Median PM10 exposure was highest from diesel buses (47 μg/m3) and lowest along the high- and low-traffic bicycle routes (39 and 37 μg/m3). The median soot exposure was highest in gasoline-fueled cars (9.0 × 10−5/m), diesel cars (7.9 × 10−5/m), and diesel buses (7.4 × 10−5/m) and lowest along the low-traffic bicycle route (4.9 × 10−5/m). Because the minute ventilation (volume of air per minute) of cyclists, which we estimated from measured heart rates, was twice the minute ventilation of car and bus passengers, we calculated that the inhaled air pollution doses were highest for cyclists. With the exception of PM10, we found that inhaled air pollution doses were lowest for electric bus passengers. Conclusions Commuters’ rush hour exposures were significantly influenced by mode of transport, route, and fuel type. PMID:20185385

  17. Genome-Wide Analysis of DNA Methylation and Fine Particulate Matter Air Pollution in Three Study Populations: KORA F3, KORA F4, and the Normative Aging Study

    PubMed Central

    Panni, Tommaso; Mehta, Amar J.; Schwartz, Joel D.; Baccarelli, Andrea A.; Just, Allan C.; Wolf, Kathrin; Wahl, Simone; Cyrys, Josef; Kunze, Sonja; Strauch, Konstantin; Waldenberger, Melanie; Peters, Annette

    2016-01-01

    Background: Epidemiological studies have reported associations between particulate matter (PM) concentrations and cancer and respiratory and cardiovascular diseases. DNA methylation has been identified as a possible link but so far it has only been analyzed in candidate sites. Objectives: We studied the association between DNA methylation and short- and mid-term air pollution exposure using genome-wide data and identified potential biological pathways for additional investigation. Methods: We collected whole blood samples from three independent studies—KORA F3 (2004–2005) and F4 (2006–2008) in Germany, and the Normative Aging Study (1999–2007) in the United States—and measured genome-wide DNA methylation proportions with the Illumina 450k BeadChip. PM concentration was measured daily at fixed monitoring stations and three different trailing averages were considered and regressed against DNA methylation: 2-day, 7-day and 28-day. Meta-analysis was performed to pool the study-specific results. Results: Random-effect meta-analysis revealed 12 CpG (cytosine-guanine dinucleotide) sites as associated with PM concentration (1 for 2-day average, 1 for 7-day, and 10 for 28-day) at a genome-wide Bonferroni significance level (p ≤ 7.5E-8); 9 out of these 12 sites expressed increased methylation. Through estimation of I2 for homogeneity assessment across the studies, 4 of these sites (annotated in NSMAF, C1orf212, MSGN1, NXN) showed p > 0.05 and I2 < 0.5: the site from the 7-day average results and 3 for the 28-day average. Applying false discovery rate, p-value < 0.05 was observed in 8 and 1,819 additional CpGs at 7- and 28-day average PM2.5 exposure respectively. Conclusion: The PM-related CpG sites found in our study suggest novel plausible systemic pathways linking ambient PM exposure to adverse health effect through variations in DNA methylation. Citation: Panni T, Mehta AJ, Schwartz JD, Baccarelli AA, Just AC, Wolf K, Wahl S, Cyrys J, Kunze S, Strauch K

  18. Human health risk assessment based on trace metals in suspended air particulates, surface dust, and floor dust from e-waste recycling workshops in Hong Kong, China.

    PubMed

    Lau, Winifred Ka Yan; Liang, Peng; Man, Yu Bon; Chung, Shan Shan; Wong, Ming Hung

    2014-03-01

    This study investigated health risks exerted on electronic waste (e-waste) recycling workers exposed to cadmium (Cd), chromium (Cr), copper (Cu), lead (Pb), nickel (Ni), mercury (Hg), and zinc (Zn) in Hong Kong. E-waste recycling workshops were classified into eight working areas: 1 = office, 2 = repair, 3 = dismantling, 4 = storage, 5 = desoldering, 6 = loading, 7 = cable shredding, and 8 = chemical waste. The aforementioned metal concentrations were analyzed in suspended air particulates, surface dust and floor dust collected from the above study areas in five workshops. Elevated Pb levels were measured in dismantling and desoldering areas (582 and 486 μg/100 cm(2) in surface and 3,610 and 19,172 mg/kg in floor dust, respectively). Blood lead levels of 10 and 39.5 μg/dl were estimated using United States Environmental Protection Agency's Adult Lead Model as a result of exposure to the floor dust from these two areas. Human health risk assessments were conducted to evaluate cancer and noncancer risks resulting from exposure to floor dust through the combined pathways of ingestion, dermal contact, and inhalation. Findings indicated that workers may be exposed to cancer risks above the acceptable range at 147 in a million at the 95th percentile in the dismantling area. Workers should be informed of associated risks to safeguard their health. PMID:24288065

  19. Human health risk assessment based on trace metals in suspended air particulates, surface dust, and floor dust from e-waste recycling workshops in Hong Kong, China.

    PubMed

    Lau, Winifred Ka Yan; Liang, Peng; Man, Yu Bon; Chung, Shan Shan; Wong, Ming Hung

    2014-03-01

    This study investigated health risks exerted on electronic waste (e-waste) recycling workers exposed to cadmium (Cd), chromium (Cr), copper (Cu), lead (Pb), nickel (Ni), mercury (Hg), and zinc (Zn) in Hong Kong. E-waste recycling workshops were classified into eight working areas: 1 = office, 2 = repair, 3 = dismantling, 4 = storage, 5 = desoldering, 6 = loading, 7 = cable shredding, and 8 = chemical waste. The aforementioned metal concentrations were analyzed in suspended air particulates, surface dust and floor dust collected from the above study areas in five workshops. Elevated Pb levels were measured in dismantling and desoldering areas (582 and 486 μg/100 cm(2) in surface and 3,610 and 19,172 mg/kg in floor dust, respectively). Blood lead levels of 10 and 39.5 μg/dl were estimated using United States Environmental Protection Agency's Adult Lead Model as a result of exposure to the floor dust from these two areas. Human health risk assessments were conducted to evaluate cancer and noncancer risks resulting from exposure to floor dust through the combined pathways of ingestion, dermal contact, and inhalation. Findings indicated that workers may be exposed to cancer risks above the acceptable range at 147 in a million at the 95th percentile in the dismantling area. Workers should be informed of associated risks to safeguard their health.

  20. Ambient Particulate Matter Air Pollution Exposure and Mortality in the NIH-AARP Diet and Health Cohort

    PubMed Central

    Thurston, George D.; Ahn, Jiyoung; Cromar, Kevin R.; Shao, Yongzhao; Reynolds, Harmony R.; Jerrett, Michael; Lim, Chris C.; Shanley, Ryan; Park, Yikyung; Hayes, Richard B.

    2015-01-01

    Background: Outdoor fine particulate matter (≤ 2.5 μm; PM2.5) has been identified as a global health threat, but the number of large U.S. prospective cohort studies with individual participant data remains limited, especially at lower recent exposures. Objectives: We aimed to test the relationship between long-term exposure PM2.5 and death risk from all nonaccidental causes, cardiovascular (CVD), and respiratory diseases in 517,041 men and women enrolled in the National Institutes of Health-AARP cohort. Methods: Individual participant data were linked with residence PM2.5 exposure estimates across the continental United States for a 2000–2009 follow-up period when matching census tract–level PM2.5 exposure data were available. Participants enrolled ranged from 50 to 71 years of age, residing in six U.S. states and two cities. Cox proportional hazard models yielded hazard ratio (HR) estimates per 10 μg/m3 of PM2.5 exposure. Results: PM2.5 exposure was significantly associated with total mortality (HR = 1.03; 95% CI: 1.00, 1.05) and CVD mortality (HR = 1.10; 95% CI: 1.05, 1.15), but the association with respiratory mortality was not statistically significant (HR = 1.05; 95% CI: 0.98, 1.13). A significant association was found with respiratory mortality only among never smokers (HR = 1.27; 95% CI: 1.03, 1.56). Associations with 10-μg/m3 PM2.5 exposures in yearly participant residential annual mean, or in metropolitan area-wide mean, were consistent with baseline exposure model results. Associations with PM2.5 were similar when adjusted for ozone exposures. Analyses of California residents alone also yielded statistically significant PM2.5 mortality HRs for total and CVD mortality. Conclusions: Long-term exposure to PM2.5 air pollution was associated with an increased risk of total and CVD mortality, providing an independent test of the PM2.5–mortality relationship in a new large U.S. prospective cohort experiencing lower post-2000 PM2.5 exposure levels

  1. Air Pollution and Stillbirth Risk: Exposure to Airborne Particulate Matter during Pregnancy Is Associated with Fetal Death

    PubMed Central

    DeFranco, Emily; Hall, Eric; Hossain, Monir; Chen, Aimin; Haynes, Erin N.; Jones, David; Ren, Sheng; Lu, Long; Muglia, Louis

    2015-01-01

    Objective To test the hypothesis that exposure to fine particulate air pollution (PM2.5) is associated with stillbirth. Study Design Geo-spatial population-based cohort study using Ohio birth records (2006-2010) and local measures of PM2.5, recorded by the EPA (2005-2010) via 57 monitoring stations across Ohio. Geographic coordinates of the mother’s residence for each birth were linked to the nearest PM2.5 monitoring station and monthly exposure averages calculated. The association between stillbirth and increased PM2.5 levels was estimated, with adjustment for maternal age, race, education level, quantity of prenatal care, smoking, and season of conception. Results There were 349,188 live births and 1,848 stillbirths of non-anomalous singletons (20-42 weeks) with residence ≤10 km of a monitor station in Ohio during the study period. The mean PM2.5 level in Ohio was 13.3 μg/m3 [±1.8 SD, IQR(Q1: 12.1, Q3: 14.4, IQR: 2.3)], higher than the current EPA standard of 12 μg/m3. High average PM2.5 exposure through pregnancy was not associated with a significant increase in stillbirth risk, adjOR 1.21(95% CI 0.96,1.53), nor was it increased with high exposure in the 1st or 2nd trimester. However, exposure to high levels of PM2.5 in the third trimester of pregnancy was associated with 42% increased stillbirth risk, adjOR 1.42(1.06,1.91). Conclusions Exposure to high levels of fine particulate air pollution in the third trimester of pregnancy is associated with increased stillbirth risk. Although the risk increase associated with high PM2.5 levels is modest, the potential impact on overall stillbirth rates could be robust as all pregnant women are potentially at risk. PMID:25794052

  2. Metabolic Syndrome and Inflammatory Responses to Long-Term Particulate Air Pollutants

    PubMed Central

    Chen, Jiu-Chiuan; Schwartz, Joel

    2008-01-01

    Background Human data linking inflammation with long-term particulate matter (PM) exposure are still lacking. Emerging evidence suggests that people with metabolic syndrome (MS) may be a more susceptible population. Objectives Our goal was to examine potential inflammatory responses associated with long-term PM exposure and MS-dependent susceptibility. Methods We conducted secondary analyses of white blood cell (WBC) count and MS data from The Third National Health and Nutrition Examination Survey and PM10 (PM with aerodynamic diameter < 10 μm) data from the U.S. Environmental Protection Agency Aerometric Information Retrieval System. Estimated 1-year PM10 exposures were aggregated at the centroid of each residential census-block group, using distance-weighted averages from all monitors in the residing and adjoining counties. We restricted our analyses to adults (20–89 years of age) with normal WBC (4,000–11,000 × 106/L), no existing cardiovascular disease, complete PM10 and MS data, and living in current residences > 1 year (n = 2,978; age 48.5 ± 17.8 years). Mixed-effects models were constructed to account for autocorrelation and potential confounders. Results After adjustment for demographics, socioeconomic factors, lifestyles, residential characteristics, and MS, we observed a statistically significant association between WBC count and estimated local PM10 levels (p = 0.035). Participants from the least polluted areas (1-year PM10 < 1st quartile cutoff: 27.8 μg/m3) had lower WBC counts than the others (difference = 145 × 106/L; 95% confidence interval, 10–281). We also noted a graded association between PM10 and WBC across subpopulations with increasing MS components, with 91 × 106/L difference in WBC for those with no MS versus 214, 338, and 461 × 106/L for those with 3, 4, and 5 metabolic abnormalities (trend-test p = 0.15). Conclusions Our study revealed a positive association between long-term PM exposure and hematological markers of

  3. Particulate air pollution induces arrhythmia via oxidative stress and calcium calmodulin kinase II activation

    SciTech Connect

    Kim, Jin-Bae; Kim, Changsoo; Choi, Eunmi; Park, Sanghoon; Park, Hyelim; Pak, Hui-Nam; Lee, Moon-Hyoung; Shin, Dong Chun; Hwang, Ki-Chul; Joung, Boyoung

    2012-02-15

    Ambient particulate matter (PM) can increase the incidence of arrhythmia. However, the arrhythmogenic mechanism of PM is poorly understood. This study investigated the arrhythmogenic mechanism of PM. In Sprague–Dawley rats, QT interval was increased from 115.0 ± 14.0 to 142.1 ± 18.4 ms (p = 0.02) after endotracheal exposure of DEP (200 μg/ml for 30 min, n = 5). Ventricular premature contractions were more frequently observed after DEP exposure (100%) than baseline (20%, p = 0.04). These effects were prevented by pretreatment of N-acetylcysteine (NAC, 5 mmol/L, n = 3). In 12 Langendorff-perfused rat hearts, DEP infusion of 12.5 μg/ml for 20 min prolonged action potential duration (APD) at only left ventricular base increasing apicobasal repolarization gradients. Spontaneous early afterdepolarization (EAD) and ventricular tachycardia (VT) were observed in 8 (67%) and 6 (50%) hearts, respectively, versus no spontaneous triggered activity or VT in any hearts before DEP infusion. DEP-induced APD prolongation, EAD and VT were successfully prevented with NAC (5 mmol/L, n = 5), nifedipine (10 μmol/L, n = 5), and active Ca{sup 2+}/calmodulin-dependent protein kinase II (CaMKII) blockade, KN 93 (1 μmol/L, n = 5), but not by thapsigargin (200 nmol/L) plus ryanodine (10 μmol/L, n = 5) and inactive CaMKII blockade, KN 92 (1 μmol/L, n = 5). In neonatal rat cardiomyocytes, DEP provoked ROS generation in dose dependant manner. DEP (12.5 μg/ml) induced apoptosis, and this effect was prevented by NAC and KN 93. Thus, this study shows that in vivo and vitro exposure of PM induced APD prolongation, EAD and ventricular arrhythmia. These effects might be caused by oxidative stress and CaMKII activation. -- Highlights: ► The ambient PM consistently prolonged repolarization. ► The ambient PM induced triggered activity and ventricular arrhythmia. ► These effects were prevented by antioxidants, I{sub CaL} blockade and CaMKII blockade. ► The ambient PM can induce

  4. Source-specific fine particulate air pollution and systemic inflammation in ischaemic heart disease patients

    PubMed Central

    Siponen, Taina; Yli-Tuomi, Tarja; Aurela, Minna; Dufva, Hilkka; Hillamo, Risto; Hirvonen, Maija-Riitta; Huttunen, Kati; Pekkanen, Juha; Pennanen, Arto; Salonen, Iiris; Tiittanen, Pekka; Salonen, Raimo O; Lanki, Timo

    2015-01-01

    Objective To compare short-term effects of fine particles (PM2.5; aerodynamic diameter <2.5 µm) from different sources on the blood levels of markers of systemic inflammation. Methods We followed a panel of 52 ischaemic heart disease patients from 15 November 2005 to 21 April 2006 with clinic visits in every second week in the city of Kotka, Finland, and determined nine inflammatory markers from blood samples. In addition, we monitored outdoor air pollution at a fixed site during the study period and conducted a source apportionment of PM2.5 using the Environmental Protection Agency's model EPA PMF 3.0. We then analysed associations between levels of source-specific PM2.5 and markers of systemic inflammation using linear mixed models. Results We identified five source categories: regional and long-range transport (LRT), traffic, biomass combustion, sea salt, and pulp industry. We found most evidence for the relation of air pollution and inflammation in LRT, traffic and biomass combustion; the most relevant inflammation markers were C-reactive protein, interleukin-12 and myeloperoxidase. Sea salt was not positively associated with any of the inflammatory markers. Conclusions Results suggest that PM2.5 from several sources, such as biomass combustion and traffic, are promoters of systemic inflammation, a risk factor for cardiovascular diseases. PMID:25479755

  5. Modeling of indoor air treatment of polychlorinated dibenzo-p-dioxins and dibenzofurans using high-efficiency particulate air-carbon filtration.

    PubMed

    Li, Hebi; Chen, Yongsheng; Crittenden, John; Hand, David; Taylor, Roy

    2006-08-01

    A high-efficiency particulate air (HEPA)-carbon filtration system was developed by the Access Business Group, LLC, to reduce the indoor levels of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs). The HEPA filter removes the particle-bound PCDD/Fs, and the carbon filter removes the gaseous fraction. Because of the toxicity of PCDD/Fs, it is very difficult to handle them in the laboratory. In this study, mathematical modeling was performed to evaluate the performance of the HEPA-carbon filtration system for PCDD/Fs removal and to optimize its design and operation. The model was calibrated with experimental data conducted with toluene in a sealed room. Model simulations with four selected congeners demonstrated that it takes approximately 1 hr for the indoor air treatment system to reach the maximum removal efficiency and that the carbon air filter has a life time of 10(7) yr for dioxin removal. Given a zero emission from the HEPA filter, the overall removal efficiency is 78.7% for 2,3,7,8-tetrachloro dibenzo-p-dioxins, 89.8% for octa-chlorodibenzodioxin, 78% for tetra-chlorodibenzofuran, and 89.8% for octa-chlorodibenzofuran. The larger the mass emission from the HEPA filter, the lower the overall removal efficiency, and the larger the ratio of the filter flow rate (Q(f)) to the room flow rate (Q), the higher the overall removal efficiency. When the ratio of Q(f)/Q is 15, an overall removal efficiency of 90% can be reached for all four of the selected compounds. The removal of the four selected compounds does not change as the relative humidity increases < or = 90%. PMID:16933648

  6. Modeling of indoor air treatment of polychlorinated dibenzo-p-dioxins and dibenzofurans using high-efficiency particulate air-carbon filtration.

    PubMed

    Li, Hebi; Chen, Yongsheng; Crittenden, John; Hand, David; Taylor, Roy

    2006-08-01

    A high-efficiency particulate air (HEPA)-carbon filtration system was developed by the Access Business Group, LLC, to reduce the indoor levels of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs). The HEPA filter removes the particle-bound PCDD/Fs, and the carbon filter removes the gaseous fraction. Because of the toxicity of PCDD/Fs, it is very difficult to handle them in the laboratory. In this study, mathematical modeling was performed to evaluate the performance of the HEPA-carbon filtration system for PCDD/Fs removal and to optimize its design and operation. The model was calibrated with experimental data conducted with toluene in a sealed room. Model simulations with four selected congeners demonstrated that it takes approximately 1 hr for the indoor air treatment system to reach the maximum removal efficiency and that the carbon air filter has a life time of 10(7) yr for dioxin removal. Given a zero emission from the HEPA filter, the overall removal efficiency is 78.7% for 2,3,7,8-tetrachloro dibenzo-p-dioxins, 89.8% for octa-chlorodibenzodioxin, 78% for tetra-chlorodibenzofuran, and 89.8% for octa-chlorodibenzofuran. The larger the mass emission from the HEPA filter, the lower the overall removal efficiency, and the larger the ratio of the filter flow rate (Q(f)) to the room flow rate (Q), the higher the overall removal efficiency. When the ratio of Q(f)/Q is 15, an overall removal efficiency of 90% can be reached for all four of the selected compounds. The removal of the four selected compounds does not change as the relative humidity increases < or = 90%.

  7. Evaluation of the chemically speciated particulate matter from a high-resolution air quality modeling system over the Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    Pay, M. T.; Piot, M.; Jimenez-Guerrero, P.; Jorba, O.; Perez, C.; Baldasano, J. M.

    2009-04-01

    Particulate matter (PM) is a complex mixture of many compounds, both natural and anthropogenic; that determines its compositions and size. In addition, it is influenced by multiple atmospheric physico-chemical processes that can affect this matter from its release point, as a primary aerosol, or via gas-to-particle conversion processes that give rise to secondary aerosols. Inter-comparisons of European air quality models at regional and urban scales show that models tend to underestimate the observed concentrations of PM10 and PM2.5. Definitely, an accurate representation of the chemically speciated aerosols compounds is required in order to adequately simulate PM concentrations. The Barcelona Supercomputing Center-Centro Nacional de Supercomputacion (BSC-CNS) currently operates high-resolution air quality forecasts for Europe (12km, 1hr) and the Iberian Peninsula (4km, 1hr) with WRF-ARW/HERMES/CMAQ/DREAM modelling system under the umbrella of the CALIOPE project (http://www.bsc.es/caliope/) and Saharan dust forecasts with BSC-DREAM (http://www.bsc.es/projects/earthscience/DREAM/). In this framework, PM10 and PM2.5 products in both domains are achieved adding the Saharan dust contribution from DREAM (8 bins version) to the anthropogenic output of CMAQ. Furthermore, the CMAQ version used for this modelling system includes the contribution of sea salt aerosols. Eleven different chemical aerosol components can be distinguished, namely nitrates, sulphates, ammonium, elemental carbon, organic carbon with three subcomponents: primary, secondary anthropogenic and secondary biogenic, soil, sodium, chlorine and mineral dust. This study is focused on the evaluation of these aforementioned aerosol compounds from WRF-ARW/HERMES/CMAQ/DREAM over the Iberian Peninsula domain for the year 2004. The model evaluation with respect to the individual aerosol components has been performed for the domains of study. Albeit PM composition evaluation is presently hampered by the lack of

  8. Wintertime vertical variations in particulate matter (PM) and precursor concentrations in the San Joaquin Valley during the California Regional Coarse PM/Fine PM Air Quality Study.

    PubMed

    Brown, Steven G; Roberts, Paul T; McCarthy, Michael C; Lurmann, Frederick W; Hyslop, Nicole P

    2006-09-01

    Air quality monitoring was conducted at a rural site with a tower in the middle of California's San Joaquin Valley (SJV) and at elevated sites in the foothills and mountains surrounding the SJV for the California Regional PM10/ PM2.5 Air Quality Study. Measurements at the surface and n a tower at 90 m were collected in Angiola, CA, from December 2000 through February 2001 and included hourly black carbon (BC), particle counts from optical particle counters, nitric oxide, ozone, temperature, relative humidity, wind speed, and direction. Boundary site measurements were made primarily using 24-hr integrated particulate matter (PM) samples. These measurements were used to understand the vertical variations of PM and PM precursors, the effect of stratification in the winter on concentrations and chemistry aloft and at the surface, and the impact of aloft-versus-surface transport on PM concentrations. Vertical variations of concentrations differed among individual species. The stratification may be important to atmospheric chemistry processes, particularly nighttime nitrate formation aloft, because NO2 appeared to be oxidized by ozone in the stratified aloft layer. Additionally, increases in accumulation-mode particle concentrations in the aloft layer during a fine PM (PM2.5) episode corresponded with increases in aloft nitrate, demonstrating the likelihood of an aloft nighttime nitrate formation mechanism. Evidence of local transport at the surface and regional transport aloft was found; transport processes also varied among the species. The distribution of BC appeared to be regional, and BC was often uniformly mixed vertically. Overall, the combination of time-resolved tower and surface measurements provided important insight into PM stratification, formation, and transport.

  9. Efficiency of mitigation measures to reduce particulate air pollution--a case study during the Olympic Summer Games 2008 in Beijing, China.

    PubMed

    Schleicher, Nina; Norra, Stefan; Chen, Yizhen; Chai, Fahe; Wang, Shulan

    2012-06-15

    Atmospheric particles were studied before, during, and after the period of the Olympic Summer Games in Beijing, China, in August 2008 in order to investigate the efficiency of the mitigation measures implemented by the Chinese Government. Total suspended particles (TSP) and fine particles (PM(2.5) and PM(1)) were collected continuously from October 2007 to February 2009 and were analyzed in detail with regard to mass and element concentrations, water-soluble ions, and black carbon (BC). Mass as well as element concentrations during the Olympic air quality control period were lower than the respective concentrations during the time directly before and after the Olympic Games. The results showed that the applied aerosol source control measures, such as shutting down industries and reducing traffic, had a huge impact on the reduction of aerosol pollution in Beijing. However, the meteorological conditions, especially rainfall, certainly also contributed to the successful reduction of particulate air pollution. Coarse particles were reduced more efficiently than finer particles, which indicates that long-range transport of atmospheric particles is difficult to control and that presumably the established mitigation area was not large enough. The study further showed that elements from predominantly anthropogenic sources, such as S, Cu, As, Cd, and Pb, as well as BC, were reduced more efficiently during the Olympic Games than elements for which geogenic sources are more significant, such as Al, Fe, Rb or Sr. Furthermore, the mentioned anthropogenic element concentrations were reduced more in the finer PM(2.5) samples whereas geogenic ones were reduced stronger in TSP samples including the coarser fraction. Consequently, it can be assumed that the mitigation measures, as intended, were successful in reducing more toxic and health-relevant particles from anthropogenic sources. Firework displays, especially at the Opening Ceremony, could be identified as a special short

  10. Response of SO2 and particulate air pollution to local and regional emission controls: A case study in Maryland

    NASA Astrophysics Data System (ADS)

    He, Hao; Vinnikov, Konstantin Y.; Li, Can; Krotkov, Nickolay A.; Jongeward, Andrew R.; Li, Zhanqing; Stehr, Jeffrey W.; Hains, Jennifer C.; Dickerson, Russell R.

    2016-04-01

    This paper addresses the questions of what effect local regulations can have on pollutants with different lifetimes and how surface observations and remotely sensed data can be used to determine the impacts. We investigated the decadal trends of tropospheric sulfur dioxide (SO2) and aerosol pollution over Maryland and its surrounding states, using surface, aircraft, and satellite measurements. Aircraft measurements indicated fewer isolated SO2 plumes observed in summers, a ˜40% decrease of column SO2, and a ˜20% decrease of atmospheric optical depth (AOD) over Maryland after the implementation of local regulations on sulfur emissions from power plants (˜90% reduction from 2010). Surface observations of SO2 and particulate matter (PM) concentrations in Maryland show similar trends. OMI SO2 and MODIS AOD observations were used to investigate the column contents of air pollutants over the eastern U.S.; these indicate decreasing trends in column SO2 (˜60% decrease) and AOD (˜20% decrease). The decrease of upwind SO2 emissions also reduced aerosol loadings over the downwind Atlantic Ocean near the coast by ˜20%, while indiscernible changes of the SO2 column were observed. A step change of SO2 emissions in Maryland starting in 2009-2010 had an immediate and profound benefit in terms of local surface SO2 concentrations but a modest impact on aerosol pollution, indicating that short-lived pollutants are effectively controlled locally, while long-lived pollutants require regional measures.

  11. Source apportionment of airborne particulate matter in Southeast Texas using a source-oriented 3D air quality model

    NASA Astrophysics Data System (ADS)

    Zhang, Hongliang; Ying, Qi

    2010-09-01

    A nested version of the source-oriented externally mixed UCD/CIT model was developed to study the source contributions to airborne particulate matter (PM) during a two-week long air quality episode during the Texas 2000 Air Quality Study (TexAQS 2000). Contributions to primary PM and secondary ammonium sulfate in the Houston-Galveston Bay (HGB) and Beaumont-Port Arthur (BPA) areas were determined. The predicted 24-h elemental carbon (EC), organic compounds (OC), sulfate, ammonium ion and primary PM 2.5 mass are in good agreement with filter-based observations. Predicted concentrations of hourly sulfate, ammonium ion, and primary OC from diesel and gasoline engines and biomass burning organic aerosol (BBOA) at La Porte, Texas agree well with measurements from an Aerodyne Aerosol Mass Spectrometer (AMS). The UCD/CIT model predicts that EC is mainly from diesel engines and majority of the primary OC is from internal combustion engines and industrial sources. Open burning contributes large fractions of EC, OC and primary PM 2.5 mass. Road dust, internal combustion engines and industries are the major sources of primary PM 2.5. Wildfire dominates the contributions to all primary PM components in areas near the fires. The predicted source contributions to primary PM are in general agreement with results from a chemical mass balance (CMB) model. Discrepancy between the two models suggests that further investigations on the industrial PM emissions are necessary. Secondary ammonium sulfate accounts for the majority of the secondary inorganic PM. Over 80% of the secondary sulfate in the 4 km domain is produced in upwind areas. Coal combustion is the largest source of sulfate. Ammonium ion is mainly from agriculture sources and contributions from gasoline vehicles are significant in urban areas.

  12. Evaluating the mutagenicity of the water-soluble fraction of air particulate matter: A comparison of two extraction strategies.

    PubMed

    Palacio, Isabel C; Oliveira, Ivo F; Franklin, Robson L; Barros, Silvia B M; Roubicek, Deborah A

    2016-09-01

    Many studies have focused on assessing the genotoxic potential of the organic fraction of airborne particulate matter. However, the determination of water-soluble compounds, and the evaluation of the toxic effects of these elements can also provide valuable information for the development of novel strategies to control atmospheric air pollution. To determine an appropriate extraction method for assessing the mutagenicity of the water-soluble fraction of PM, we performed microwave assisted (MW) and ultrasonic bath (US) extractions, using water as solvent, in eight different air samples (TSP and PM10). Mutagenicity and extraction performances were evaluated using the Salmonella/microsome assay with strains TA98 and TA100, followed by chemical determination of water-soluble metals. Additionally, we evaluated the chemical and biological stability of the extracts testing their mutagenic potential and chemically determining elements present in the samples along several periods after extraction. Reference material SRM 1648a was used. The comparison of MW and US extractions did not show differences on the metals concentrations, however positive mutagenic responses were detected with TA98 strain in all samples extracted using the MW method, but not with the US bath extraction. The recovery, using reference material was better in samples extracted with MW. We concluded that the MW extraction is more efficient to assess the mutagenic activity of the soluble fraction of airborne PM. We also observed that the extract freezing and storage over 60 days has a significant effect on the mutagenic and analytical results on PM samples, and should be avoided. PMID:27258903

  13. Evaluating the mutagenicity of the water-soluble fraction of air particulate matter: A comparison of two extraction strategies.

    PubMed

    Palacio, Isabel C; Oliveira, Ivo F; Franklin, Robson L; Barros, Silvia B M; Roubicek, Deborah A

    2016-09-01

    Many studies have focused on assessing the genotoxic potential of the organic fraction of airborne particulate matter. However, the determination of water-soluble compounds, and the evaluation of the toxic effects of these elements can also provide valuable information for the development of novel strategies to control atmospheric air pollution. To determine an appropriate extraction method for assessing the mutagenicity of the water-soluble fraction of PM, we performed microwave assisted (MW) and ultrasonic bath (US) extractions, using water as solvent, in eight different air samples (TSP and PM10). Mutagenicity and extraction performances were evaluated using the Salmonella/microsome assay with strains TA98 and TA100, followed by chemical determination of water-soluble metals. Additionally, we evaluated the chemical and biological stability of the extracts testing their mutagenic potential and chemically determining elements present in the samples along several periods after extraction. Reference material SRM 1648a was used. The comparison of MW and US extractions did not show differences on the metals concentrations, however positive mutagenic responses were detected with TA98 strain in all samples extracted using the MW method, but not with the US bath extraction. The recovery, using reference material was better in samples extracted with MW. We concluded that the MW extraction is more efficient to assess the mutagenic activity of the soluble fraction of airborne PM. We also observed that the extract freezing and storage over 60 days has a significant effect on the mutagenic and analytical results on PM samples, and should be avoided.

  14. Particulate matter air pollution and cardiovascular disease: An update to the scientific statement from the American Heart Association.

    PubMed

    Brook, Robert D; Rajagopalan, Sanjay; Pope, C Arden; Brook, Jeffrey R; Bhatnagar, Aruni; Diez-Roux, Ana V; Holguin, Fernando; Hong, Yuling; Luepker, Russell V; Mittleman, Murray A; Peters, Annette; Siscovick, David; Smith, Sidney C; Whitsel, Laurie; Kaufman, Joel D

    2010-06-01

    In 2004, the first American Heart Association scientific statement on "Air Pollution and Cardiovascular Disease" concluded that exposure to particulate matter (PM) air pollution contributes to cardiovascular morbidity and mortality. In the interim, numerous studies have expanded our understanding of this association and further elucidated the physiological and molecular mechanisms involved. The main objective of this updated American Heart Association scientific statement is to provide a comprehensive review of the new evidence linking PM exposure with cardiovascular disease, with a specific focus on highlighting the clinical implications for researchers and healthcare providers. The writing group also sought to provide expert consensus opinions on many aspects of the current state of science and updated suggestions for areas of future research. On the basis of the findings of this review, several new conclusions were reached, including the following: Exposure to PM <2.5 microm in diameter (PM(2.5)) over a few hours to weeks can trigger cardiovascular disease-related mortality and nonfatal events; longer-term exposure (eg, a few years) increases the risk for cardiovascular mortality to an even greater extent than exposures over a few days and reduces life expectancy within more highly exposed segments of the population by several months to a few years; reductions in PM levels are associated with decreases in cardiovascular mortality within a time frame as short as a few years; and many credible pathological mechanisms have been elucidated that lend biological plausibility to these findings. It is the opinion of the writing group that the overall evidence is consistent with a causal relationship between PM(2.5) exposure and cardiovascular morbidity and mortality. This body of evidence has grown and been strengthened substantially since the first American Heart Association scientific statement was published. Finally, PM(2.5) exposure is deemed a modifiable factor

  15. On-bicycle exposure to particulate air pollution: Particle number, black carbon, PM2.5, and particle size

    NASA Astrophysics Data System (ADS)

    Hankey, Steve; Marshall, Julian D.

    2015-12-01

    Inhalation of air pollution during transport is an important exposure pathway, especially for certain modes of travel and types of particles. We measured concentrations of particulate air pollution (particle number [PN], black carbon [BC], fine particles [PM2.5], particle size) using a mobile, bicycle-based monitoring platform during morning and afternoon rush-hour to explore patterns of exposure while cycling (34 days between August 14 and October 16, 2012 in Minneapolis, MN). Measurements were geo-located at 1 ​s intervals along 3 prescribed monitoring routes totaling 85 h (1426 km) of monitoring. Mean morning [afternoon] on-road concentrations were 32,500 [16,600] pt cm-3, 2.5 [0.7] μg m-3 BC, 8.7 [8.3] μg m-3 PM2.5, and 42 [39] nm particle diameter. Concentrations were correlated with street functional class and declined within small distances from a major road (e.g., for PN and BC, mean concentration decreased ∼20% by moving 1 block away from major roads to adjacent local roads). We estimate the share of on-bicycle exposure attributable to near-traffic emissions (vs. regional pollution) is ∼50% for PN and BC; ∼25% for PM2.5. Regression models of instantaneous traffic volumes, derived from on-bicycle video recordings of nearby traffic, quantify the increase in particle-concentrations associated with each passing vehicle; for example, trucks were associated with acute, high concentration exposure events (average concentration-increase per truck: 31,000 pt cm-3, 1.0 μg m-3 PM2.5, 1.6 μg m-3 BC). Our findings could be used to inform design of low-exposure bicycle networks in urban areas.

  16. Particulate matter in the indoor and outdoor air of a gymnasium and a fronton.

    PubMed

    Alves, Célia; Calvo, Ana I; Marques, Liliana; Castro, Amaya; Nunes, Teresa; Coz, Esther; Fraile, Roberto

    2014-11-01

    An indoor/outdoor monitoring programme of PM10 was carried out in two sports venues (a fronton and a gymnasium). Levels always below 50 μg m(-3) were obtained in the fronton and outdoor air. Due to the climbing chalk and the constant process of resuspension, concentrations above 150 μg m(-3) were registered in the gymnasium. The chalk dust contributed to CO3 (2-) concentrations of 32 ± 9.4 μg m(-3) in this sports facility, which represented, on average, 18 % of the PM10 mass. Here, the carbonate levels were 128 times higher than those registered outdoors. Much lower concentrations, around 1 μg m(-3), were measured in the fronton. The chalk dust is also responsible for the high Mg(2+) concentrations in the gym (4.7 ± 0.89 μg m(-3)), unfolding a PM10 mass fraction of 2.7 %. Total carbon accounted for almost 30 % of PM10 in both indoor spaces. Aerosol size distributions were bimodal and revealed a clear dependence on physical activities and characteristics of the sports facilities. The use of climbing chalk in the gymnasium contributed significantly to the coarse mode. The average geometric mean diameter, geometric standard deviation and total number of coarse particles were 0.77 μm, 2.79 cm(-3) and 28 cm(-3), respectively.

  17. Source apportionment of size resolved particulate matter at a European air pollution hot spot.

    PubMed

    Pokorná, P; Hovorka, J; Klán, M; Hopke, P K

    2015-01-01

    Positive Matrix Factorization-PMF was applied to hourly resolved elemental composition of fine (PM0.15-1.15) and coarse (PM1.15-10) aerosol particles to apportion their sources in the airshed of residential district, Ostrava-Radvanice and Bartovice in winter 2012. Multiple-site measurement by PM2.5 monitors complements the source apportionment. As there were no statistical significant differences amongst the monitors, the source apportionment derived for the central site data is expected to apply to whole residential district. The apportioned sources of the fine aerosol particles were coal combustion (58.6%), sinter production-hot phase (22.9%), traffic (15%), raw iron production (3.5%), and desulfurization slag processing (<0.5%) whilst road dust (47.3%), sinter production-cold phase (27.7%), coal combustion (16.8%), and raw iron production (8.2%) were resolved being sources of the coarse aerosol particles. The shape and elemental composition of size-segregated aerosol airborne-sampled by an airship aloft presumed air pollution sources helped to interpret the PMF solution. PMID:25260163

  18. Gene expression profiling and pathway analysis of human bronchial epithelial cells exposed to airborne particulate matter collected from Saudi Arabia

    PubMed Central

    Sun, Hong; Shamy, Magdy; Kluz, Thomas; Muñoz, Alexandra B.; Zhong, Mianhua; Laulicht, Freda; Alghamdi, Mansour A.; Khoder, Mamdouh I.; Chen, Lung-Chi; Costa, Max

    2013-01-01

    Epidemiological studies have established a positive correlation between human mortality and increased concentration of airborne particulate matters (PM). However, the mechanisms underlying PM related human diseases, as well as the molecules and pathways mediating the cellular response to PM, are not fully understood. This study aims to investigate the global gene expression changes in human cells exposed to PM10 and to identify genes and pathways that may contribute to PM related adverse health effects. Human bronchial epithelial cells were exposed to PM10 collected from Saudi Arabia for 1 or 4 days, and whole transcript expression was profiled using the GeneChip human gene 1.0 ST array. A total of 140 and 230 genes were identified that significantly changed more than 1.5 fold after PM10 exposure for 1 or 4 days, respectively. Ingenuity Pathway Analysis revealed that different exposure durations triggered distinct pathways. Genes involved in NRF2-mediated response to oxidative stress were up-regulated after 1 day exposure. In contrast, cells exposed for 4 days exhibited significant changes in genes related to cholesterol and lipid synthesis pathways. These observed changes in cellular oxidative stress and lipid synthesis might contribute to PM related respiratory and cardiovascular disease. PMID:23085030

  19. A case-crossover analysis of fine particulate matter air pollution and out-of-hospital sudden cardiac arrest.

    PubMed

    Checkoway, H; Levy, D; Sheppard, L; Kaufman, J; Koenig, J; Siscovick, D

    2000-12-01

    Numerous recent epidemiologic studies report increases in the daily incidence of cardiovascular disease mortality and morbidity related to increases in daily levels of fine particulate matter (PM)* air pollution. This study sought to evaluate the possible association between the occurrence of out-of-hospital sudden cardiac arrest (SCA) and daily PM levels in the Seattle metropolitan area. The underlying hypothesis was that PM exposure may act as a cardiovascular trigger for SCA. A case-crossover study was conducted among 362 SCA cases identified by paramedics from October 1988 through June 1994. Cases were King County WA residents who were married, aged 25 to 74 years at the time of their SCA, with no prior history of clinically recognized heart disease or other life-threatening comorbid conditions. Daily averages of regional PM monitoring data for nephelometry measures of PM (reported in units of bsp, referred to as coefficient of light scattering) and PM10 (particulate matter 10 microm or smaller in aerodynamic diameter) from three monitoring sites were used as indicators of exposure. In the case-crossover analysis, PM levels during index times of cases within the five days preceding an SCA were compared with PM levels at referent days, defined as the same days of the week during the month of SCA occurrence. Lag periods for index days of 0 to 5 days were investigated. The estimated relative risk (RR) at a lag of 1 day for an interquartile range (IQR) change in nephelometry (0.51 bsp) was 0.893 (95% confidence interval [CI] 0.779-1.024). Varying the lag period had only minimal change on the observed association. The estimated relative risk at a lag of 1 day for an IQR change of PM10 (19.3 microg/m3) was 0.868 (95% CI 0.744-1.012). There was no evidence of confounding by ambient daily exposures to carbon monoxide or sulfur dioxide. Analysis of effect modification by individual-level variables, including age, cigarette smoke exposure, physical activity, and other

  20. Alpha B-crystallin prevents the arrhythmogenic effects of particulate matter isolated from ambient air by attenuating oxidative stress

    SciTech Connect

    Park, Hyelim; Park, Sanghoon; Jeon, Hyunju; Song, Byeong-Wook; Kim, Jin-Bae; Kim, Chang-Soo; Pak, Hui-Nam; Hwang, Ki-Chul; Lee, Moon-Hyoung; Chung, Ji Hyung; Joung, Boyoung

    2013-01-15

    Ca{sup 2+}/calmodulin-dependent protein kinase II (CaMKII) is activated by particulate matter (PM) isolated from ambient air and linked to prolonged repolarization and cardiac arrhythmia. We evaluated whether alpha B-crystallin (CryAB), a heat shock protein, could prevent the arrhythmogenic effects of PM by preventing CaMKII activation. CryAB was delivered into cardiac cells using a TAT-protein transduction domain (TAT-CryAB). ECGs were measured before and after tracheal exposure of diesel exhaust particles (DEP) and each intervention in adult Sprague–Dawley rats. After endotracheal exposure of DEP (200 μg/mL for 30 minutes, n = 11), QT intervals were prolonged from 115 ± 14 ms to 144 ± 20 ms (p = 0.03), and premature ventricular contractions were observed more frequently (0% vs. 44%) than control (n = 5) and TAT-Cry (n = 5). However, DEP-induced arrhythmia was not observed in TAT-CryAB (1 mg/kg) pretreated rats (n = 5). In optical mapping of Langendorff-perfused rat heats, compared with baseline, DEP infusion of 12.5 μg/mL (n = 12) increased apicobasal action potential duration (APD) differences from 2 ± 6 ms to 36 ± 15 ms (p < 0.001), APD restitution slope from 0.26 ± 0.07 to 1.19 ± 0.11 (p < 0.001) and ventricular tachycardia (VT) from 0% to 75% (p < 0.001). DEP infusion easily induced spatially discordant alternans. However, the effects of DEP were prevented by TAT-CryAB (1 mg/kg, n = 9). In rat myocytes, while DEP increased reactive oxygen species (ROS) generation and phosphated CaMKII, TAT-CryAB prevented these effects. In conclusion, CryAB, a small heat shock protein, might prevent the arrhythmogenic effects of PM by attenuating ROS generation and CaMKII activation. -- Highlights: ► Particulate matter (PM) increases arrhythmia. ► PM induced arrhythmias are related with oxidative stress and CaMKII activation. ► Alpha B-crystallin (CryAB) could attenuate the arrhythmogenic effect of PM. ► CryAB decreases oxidative stress and CaMKII activation

  1. Airborne particulate discriminator

    DOEpatents

    Creek, Kathryn Louise; Castro, Alonso; Gray, Perry Clayton

    2009-08-11

    A method and apparatus for rapid and accurate detection and discrimination of biological, radiological, and chemical particles in air. A suspect aerosol of the target particulates is treated with a taggant aerosol of ultrafine particulates. Coagulation of the taggant and target particles causes a change in fluorescent properties of the cloud, providing an indication of the presence of the target.

  2. Collection efficiency of the Soot-Particle Aerosol Mass Spectrometer (SP-AMS) for internally mixed particulate black carbon

    DOE PAGES

    Willis, M. D.; Lee, A. K. Y.; Onasch, T. B.; Fortner, E. C.; Williams, L. R.; Lambe, A. T.; Worsnop, D. R.; Abbatt, J. P. D.

    2014-05-26

    The soot-particle aerosol mass spectrometer (SP-AMS) uses an intra-cavity infrared laser to vaporize refractory black carbon (rBC) containing particles, making the particle beam–laser beam overlap critical in determining the collection efficiency (CE) for rBC and associated non-refractory particulate matter (NR-PM). This work evaluates the ability of the SP-AMS to quantify rBC and NR-PM mass in internally mixed particles with different thicknesses of organic coating. Using apparent relative ionization efficiencies for uncoated and thickly coated rBC particles, we report measurements of SP-AMS sensitivity to NR-PM and rBC, for Regal Black, the recommended particulate calibration material. Beam width probe (BWP) measurements aremore » used to illustrate an increase in sensitivity for highly coated particles due to narrowing of the particle beam, which enhances the CE of the SP-AMS by increasing the laser beam–particle beam overlap. Assuming complete overlap for thick coatings, we estimate CE for bare Regal Black particles of 0.6 ± 0.1, which suggests that previously measured SP-AMS sensitivities to Regal Black were underestimated by up to a factor of two. The efficacy of the BWP measurements is highlighted by studies at a busy road in downtown Toronto and at a non-roadside location, which show particle beam widths similar to, but greater than that of bare Regal Black and coated Regal Black, respectively. Further BWP measurements at field locations will help to constrain the range of CE for fresh and aged rBC-containing particles. The ability of the SP-AMS to quantitatively assess the composition of internally mixed particles is validated through measurements of laboratory-generated organic coated particles, which demonstrate that the SP-AMS can quantify rBC and NR-PM over a wide range of particle compositions and rBC core sizes.« less

  3. Collection efficiency of the soot-particle aerosol mass spectrometer (SP-AMS) for internally mixed particulate black carbon

    DOE PAGES

    Willis, M. D.; Lee, A. K. Y.; Onasch, T. B.; Fortner, E. C.; Williams, L. R.; Lambe, A. T.; Worsnop, D. R.; Abbatt, J. P. D.

    2014-12-18

    The soot-particle aerosol mass spectrometer (SP-AMS) uses an intra-cavity infrared laser to vaporize refractory black carbon (rBC) containing particles, making the particle beam–laser beam overlap critical in determining the collection efficiency (CE) for rBC and associated non-refractory particulate matter (NR-PM). This work evaluates the ability of the SP-AMS to quantify rBC and NR-PM mass in internally mixed particles with different thicknesses of organic coating. Using apparent relative ionization efficiencies for uncoated and thickly coated rBC particles, we report measurements of SP-AMS sensitivity to NR-PM and rBC, for Regal Black, the recommended particulate calibration material. Beam width probe (BWP) measurements aremore » used to illustrate an increase in sensitivity for highly coated particles due to narrowing of the particle beam, which enhances the CE of the SP-AMS by increasing the laser beam–particle beam overlap. Assuming complete overlap for thick coatings, we estimate CE for bare Regal Black particles of 0.6 ± 0.1, which suggests that previously measured SP-AMS sensitivities to Regal Black were underestimated by up to a factor of 2. The efficacy of the BWP measurements is highlighted by studies at a busy road in downtown Toronto and at a non-roadside location, which show particle beam widths similar to, but greater than that of bare Regal Black and coated Regal Black, respectively. Further BWP measurements at field locations will help to constrain the range of CE for fresh and aged rBC-containing particles. The ability of the SP-AMS to quantitatively assess the composition of internally mixed particles is validated through measurements of laboratory-generated organic coated particles, which demonstrate that the SP-AMS can quantify rBC and NR-PM over a wide range of particle compositions and rBC core sizes.« less

  4. Chemical and morphological properties of particulate matter (PM 10, PM 2.5) in school classrooms and outdoor air

    NASA Astrophysics Data System (ADS)

    Fromme, H.; Diemer, J.; Dietrich, S.; Cyrys, J.; Heinrich, J.; Lang, W.; Kiranoglu, M.; Twardella, D.

    Studies have shown high concentrations of particulate matter (PM) in schools. Further insights into the sources and the composition of these particles are needed. During school hours for a period of 6 weeks, outdoor air and the air in two classrooms were sampled. PM was measured gravimetrically, and PM filters were used for the determination of the elemental and organic carbon, light absorbance, and 10 water-soluble ions. Some filters were further analyzed by scanning electron microscopy (SEM) and energy dispersive microanalysis (EDX). The median PM 10 concentrations were 118.2 μg m -3 indoors and 24.2 μg m -3 outdoors; corresponding results for PM 2.5 were 37.4 μg m -3 indoors and 17.0 μg m -3 outdoors. Using PM 10 and PM 2.5 data, we calculated the following indoor/outdoor ratios: 0.3 and 0.4 (sulfate), 0.1 and 0.2 (nitrate), 0.1 and 0.3 (ammonium), and 1.4 and 1.6 (calcium). Using the measured sulfate content on PM filters as an indicator for ambient PM sources, we estimated that 43% of PM 2.5 and 24% of PM 10, respectively, were of ambient origin. The composition of the classrooms' PM (e.g., high calcium concentrations) and the findings from SEM/EDX suggest that the indoor PM consists mainly of earth crustal materials, detrition of the building materials and chalk. Physical activity of the pupils leads to resuspension of mainly indoor coarse particles and greatly contributes to increased PM 10 in classrooms. The concentration of fine particles caused by combustion processes indoors and outdoors is comparable. We conclude that PM measured in classrooms has major sources other than outdoor particles. Assuming that combustion-related particles and crustal materials vary in toxicity, our results support the hypothesis that indoor-generated PM may be less toxic compared to PM in ambient air.

  5. Exposures to fine particulate air pollution and respiratory outcomes in adults using two national datasets: a cross-sectional study

    PubMed Central

    2012-01-01

    Background Relationships between chronic exposures to air pollution and respiratory health outcomes have yet to be clearly articulated for adults. Recent data from nationally representative surveys suggest increasing disparity by race/ethnicity regarding asthma-related morbidity and mortality. The objectives of this study are to evaluate the relationship between annual average ambient fine particulate matter (PM2.5) concentrations and respiratory outcomes for adults using modeled air pollution and health outcome data and to examine PM2.5 sensitivity across race/ethnicity. Methods Respondents from the 2002-2005 National Health Interview Survey (NHIS) were linked to annual kriged PM2.5 data from the USEPA AirData system. Logistic regression was employed to investigate increases in ambient PM2.5 concentrations and self-reported prevalence of respiratory outcomes including asthma, sinusitis and chronic bronchitis. Models included health, behavioral, demographic and resource-related covariates. Stratified analyses were conducted by race/ethnicity. Results Of nearly 110,000 adult respondents, approximately 8,000 and 4,000 reported current asthma and recent attacks, respectively. Overall, odds ratios (OR) for current asthma (0.97 (95% Confidence Interval: 0.87-1.07)) and recent attacks (0.90 (0.78-1.03)) did not suggest an association with a 10 μg/m3 increase in PM2.5. Stratified analyses revealed significant associations for non-Hispanic blacks [OR = 1.73 (1.17-2.56) for current asthma and OR = 1.76 (1.07-2.91) for recent attacks] but not for Hispanics and non-Hispanic whites. Significant associations were observed overall (1.18 (1.08-1.30)) and in non-Hispanic whites (1.31 (1.18-1.46)) for sinusitis, but not for chronic bronchitis. Conclusions Non-Hispanic blacks may be at increased sensitivity of asthma outcomes from PM2.5 exposure. Increased chronic PM2.5 exposures in adults may contribute to population sinusitis burdens. PMID:22490087

  6. In-vehicle exposures to particulate air pollution in Canadian metropolitan areas: the urban transportation exposure study.

    PubMed

    Weichenthal, Scott; Van Ryswyk, Keith; Kulka, Ryan; Sun, Liu; Wallace, Lance; Joseph, Lawrence

    2015-01-01

    Commuters may be exposed to increased levels of traffic-related air pollution owing to close proximity to traffic-emissions. We collected in-vehicle and roof-top air pollution measurements over 238 commutes in Montreal, Toronto, and Vancouver, Canada between 2010 and 2013. Voice recordings were used to collect real-time information on traffic density and the presence of diesel vehicles and multivariable linear regression models were used to estimate the impact of these factors on in-vehicle pollutant concentrations (and indoor/outdoor ratios) along with parameters for road type, land use, and meteorology. In-vehicle PM2.5 and NO2 concentrations consistently exceeded regional outdoor levels and each unit increase in the rate of encountering diesel vehicles (count/min) was associated with substantial increases (>100%) in in-vehicle concentrations of ultrafine particles (UFPs), black carbon, and PM2.5 as well as strong increases (>15%) in indoor/outdoor ratios. A model based on meteorology and the length of highway roads within a 500 m buffer explained 53% of the variation in in-vehicle UFPs; however, models for PM2.5 (R(2) = 0.24) and black carbon (R(2) = 0.30) did not perform as well. Our findings suggest that vehicle commuters experience increased exposure to air pollutants and that traffic characteristics, land use, road types, and meteorology are important determinants of these exposures.

  7. Daily variation of particulate air pollution and poor cardiac autonomic control in the elderly.

    PubMed Central

    Liao, D; Creason, J; Shy, C; Williams, R; Watts, R; Zweidinger, R

    1999-01-01

    examined the cardiac autonomic response to daily variations in PM in 26 elderly (mean age 81) individuals for 3 consecutive weeks. Several standardized methods were used to measure 24-hr average PM concentrations prior to the clinical test inside (indoor PM2.5) and immediately outside (outdoor PM2.5 and PM2.5-10) of participants' residences. Resting, supine, 6-min R wave to R wave (R-R) interval data were collected to estimate high frequency (0.15-0.40 Hz) and low frequency (0.04-0.15 Hz) powers and standard deviation of normal R-R intervals (SDNN) as cardiac autonomic control indices. Participant-specific lower heart rate variability days were defined as days for which the high-frequency indices fell below the first tertile of the individual's high-frequency distribution over the study period. Indoor PM2.5 > 15 microg/m3 was used to define high pollution days. Results show that the odds ratio (95% confidence interval) of low heart rate variability high frequency for high (vs. not high) pollution days was 3.08 (1.43, 6.59). The ss-coefficients (standard error) from mixed models to assess the quantitative relationship between variations in indoor PM2.5 and the log-transformed high frequency, low frequency, and SDNN were: -0.029 (0.010), -0.027 (0.009), and -0.004 (0.003), respectively. This first study of cardiac autonomic control response to daily variations of PM2.5 indicates that increased levels of PM2.5 are associated with lower cardiac autonomic control, suggesting a possible mechanistic link between PM and cardiovascular disease mortality. Images Figure 1 PMID:10378998

  8. A simple, comprehensive, and miniaturized solvent extraction method for determination of particulate-phase polycyclic aromatic compounds in air.

    PubMed

    Santos, Aldenor G; Regis, Ana Carla D; da Rocha, Gisele O; Bezerra, Marcos de A; de Jesus, Robson M; de Andrade, Jailson B

    2016-02-26

    The method allowed simultaneous characterization of PAHs, nitro-PAHs and quinones in atmospheric particulate matter. This method employs a miniaturized micro-extraction step that uses 500 μL of an acetonitrile-dichloromethane mix and instrumental analysis by means of a high-resolution GC-MS. The method was validated using the SRM1649b NIST standard reference material as well as deuterated internal standards. The results are in good agreement with the certified values and show recoveries between 75% and 145%. Limit of detection (LOD) values for PAHs were found to be between 0.5 pg (benzo[a]pyrene) to 2.1 pg (dibenzo[a,h]anthracene), for nitro-PAHs ranged between 3.2 pg (1-nitrobenzo[e]pyrene) and 22.2 pg (3-nitrophenanthrene), and for quinones ranged between 11.5 pg (1,4-naphthoquinone) and 458 pg (9,10-phenanthraquinone). The validated method was applied to real PM10 samples collected on quartz fiber filters. Concentrations in the PM10 samples ranged from 0.06 to 15 ng m(-3) for PAHs, from

  9. A simple, comprehensive, and miniaturized solvent extraction method for determination of particulate-phase polycyclic aromatic compounds in air.

    PubMed

    Santos, Aldenor G; Regis, Ana Carla D; da Rocha, Gisele O; Bezerra, Marcos de A; de Jesus, Robson M; de Andrade, Jailson B

    2016-02-26

    The method allowed simultaneous characterization of PAHs, nitro-PAHs and quinones in atmospheric particulate matter. This method employs a miniaturized micro-extraction step that uses 500 μL of an acetonitrile-dichloromethane mix and instrumental analysis by means of a high-resolution GC-MS. The method was validated using the SRM1649b NIST standard reference material as well as deuterated internal standards. The results are in good agreement with the certified values and show recoveries between 75% and 145%. Limit of detection (LOD) values for PAHs were found to be between 0.5 pg (benzo[a]pyrene) to 2.1 pg (dibenzo[a,h]anthracene), for nitro-PAHs ranged between 3.2 pg (1-nitrobenzo[e]pyrene) and 22.2 pg (3-nitrophenanthrene), and for quinones ranged between 11.5 pg (1,4-naphthoquinone) and 458 pg (9,10-phenanthraquinone). The validated method was applied to real PM10 samples collected on quartz fiber filters. Concentrations in the PM10 samples ranged from 0.06 to 15 ng m(-3) for PAHs, from

  10. Mutagenic and genotoxic potential of native air borne particulate matter from industrial area of Rourkela city, Odisha, India.

    PubMed

    Das, Durgesh Nandini; Sinha, Niharika; Naik, Prajna Paramita; Panda, Prashanta Kumar; Mukhopadhyay, Subhadip; Mallick, Sanjaya K; Sarangi, Itisam; Bhutia, Sujit K

    2016-09-01

    In this study, we examined potential adverse health effect of particulate matter (PM) collected from industrial areas of Rourkela, Odisha, India. Results indicate that PM in these areas contains benzo[a]pyrene in addition to other unidentified molecules. Ames test revealed the above PM to be highly mutagenic. Further studies of PM in HaCaT cells suggest its DNA damaging potential which may lead to apoptosis. Generation of reactive oxygen and nitrogen species following PM exposure may be an early event in the PM induced apoptosis. In addition, the activity of cytochrome P450 (CYP450), the key xenobiotic metabolism enzyme, was found to be increased following PM exposure indicating its role in PM induced toxicity. To confirm this, we used genetic and pharmacological inhibitors of CYP450 like CYP1B1 siRNA and Clotrimazole. Interestingly, we found that the use of these inhibitors significantly suppressed the PM induced apoptosis in HaCaT cells, which confirm the crucial role of CYP1B1 in the toxic manifestation of PM. For further analysis, blood samples were collected from the volunteer donor and analyzed for immunophenotypes and comet assay to survey any change in immune cells and DNA damage in blood cells respectively. The study was performed with 55 blood samples including 32 from industrial areas and 23 people from non-industrial zone of Rourkela city. Samples had a mean±SD age of 35±6.2years (35 men and 20 women). Our investigation did not observe any significant alteration in lymphocytes (P=0.671), B cell (P=0.104), cytotoxic T cell (P=0.512), helper T cell (P=0.396), NK cell (P=0.675) and monocytes (P=0.170) of blood cells from these two groups. Taken together; this study first time reports the possible health hazards of PM from industrial areas of Odisha, India. PMID:27458701

  11. Associations between size-fractionated particulate air pollution and blood pressure in a panel of type II diabetes mellitus patients.

    PubMed

    Zhao, Ang; Chen, Renjie; Wang, Cuicui; Zhao, Zhuohui; Yang, Changyuan; Lu, Jianxiong; Chen, Xuan; Kan, Haidong

    2015-07-01

    Little is known regarding how the size distribution of particulate matter (PM) air pollution influences its effect on blood pressure (BP), especially among patients with diabetes. The objective of this study was to explore the short-term associations between size-fractionated PM and BP among diabetes patients. We scheduled 6 repeated BP examinations every 2 weeks from 13 April 2013 to 30 June 2013 in a panel of 35 type 2 diabetes mellitus patients recruited from an urban community in Shanghai, China. We measured real-time PM concentrations in the size range of 0.25 to 10 μm. We used linear mixed-effect models to examine the short-term association of size-fractionated PM and BP after controlling for individual characteristics, mean temperature, relative humidity, day of the week, years with diabetes and use of antihypertensive medication. The association with systolic BP and pulse pressure strengthened with decreasing diameter. The size fractions with the strongest associations were 0.25 to 0.40 μm for number concentrations and ≤ 2.5 μm for mass concentrations. Furthermore, these effects occurred immediately even after 0-2h and lasted for up to 48 h following exposure. An interquartile range increase in 24-h average number concentrations of PM0.25-0.40 was associated with increases of 3.61 mmHg in systolic BP and 2.96 mmHg in pulse pressure. Females, patients younger than 65 years of age and patients without antihypertensive treatment were more susceptible to these effects. Our results revealed important size and temporal patterns of PM in elevating BP among diabetes patients in China.

  12. Particulate matter air pollution and respiratory symptoms in individuals having either asthma or chronic obstructive pulmonary disease: a European multicentre panel study

    PubMed Central

    2012-01-01

    Background Particulate matter air pollution has been associated with adverse health effects. The fraction of ambient particles that are mainly responsible for the observed health effects is still a matter of controversy. Better characterization of the health relevant particle fraction will have major implications for air quality policy since it will determine which sources should be controlled. The RUPIOH study, an EU-funded multicentre study, was designed to examine the distribution of various ambient particle metrics in four European cities (Amsterdam, Athens, Birmingham, Helsinki) and assess their health effects in participants with asthma or COPD, based on a detailed exposure assessment. In this paper the association of central site measurements with respiratory symptoms and restriction of activities is examined. Methods At each centre a panel of participants with either asthma or COPD recorded respiratory symptoms and restriction of activities in a diary for six months. Exposure assessment included simultaneous measurements of coarse, fine and ultrafine particles at a central site. Data on gaseous pollutants were also collected. The associations of the 24-hour average concentrations of air pollution indices with the health outcomes were assessed in a hierarchical modelling approach. A city specific analysis controlling for potential confounders was followed by a meta-analysis to provide overall effect estimates. Results A 10 μg/m3 increase in previous day coarse particles concentrations was positively associated with most symptoms (an increase of 0.6 to 0.7% in average) and limitation in walking (OR= 1.076, 95% CI: 1.026-1.128). Same day, previous day and previous two days ozone concentrations were positively associated with cough (OR= 1.061, 95% CI: 1.013-1.111; OR= 1.049, 95% CI: 1.016-1.083 and OR= 1.059, 95% CI: 1.027-1.091, respectively). No consistent associations were observed between fine particle concentrations, nitrogen dioxide and respiratory

  13. A new direct thermal desorption-GC/MS method: Organic speciation of ambient particulate matter collected in Golden, BC

    NASA Astrophysics Data System (ADS)

    Ding, Luyi C.; Ke, Fu; Wang, Daniel K. W.; Dann, Tom; Austin, Claire C.

    Particulate matter having an aerodynamic diameter less than 2.5 μm (PM2.5) is thought to be implicated in a number of medical conditions, including cancer, rheumatoid arthritis, heart attack, and aging. However, very little chemical speciation data is available for the organic fraction of ambient aerosols. A new direct thermal desorption-gas chromatography/mass spectrometry (TD-GC/MS) method was developed for the analysis of the organic fraction of PM2.5. Samples were collected in Golden, British Columbia, over a 15-month period. n-Alkanes constituted 33-98% by mass of the organic compounds identified. PAHs accounted for 1-65% and biomarkers (hopanes and steranes) 1-8% of the organic mass. Annual mean concentrations were: n-alkanes (0.07-1.55 ng m -3), 16 PAHs (0.02-1.83 ng m -3), and biomarkers (0.02-0.18 ng m -3). Daily levels of these organics were 4.89-74.38 ng m -3, 0.27-100.24 ng m -3, 0.14-4.39 ng m -3, respectively. Ratios of organic carbon to elemental carbon (OC/EC) and trends over time were similar to those observed for PM2.5. There was no clear seasonal variation in the distribution of petroleum biomarkers, but elevated levels of other organic species were observed during the winter. Strong correlations between PAHs and EC, and between petroleum biomarkers and EC, suggest a common emission source - most likely motor vehicles and space heating.

  14. Comparative Toxicity of Size-Fractionated Airborne Particulate Matter Collected at Different Distances from an Urban Highway

    PubMed Central

    Cho, Seung-Hyun; Tong, Haiyan; McGee, John K.; Baldauf, Richard W.; Krantz, Q. Todd; Gilmour, M. Ian

    2009-01-01

    Background Epidemiologic studies have reported an association between proximity to highway traffic and increased cardiopulmonary illnesses. Objectives We investigated the effect of size-fractionated particulate matter (PM), obtained at different distances from a highway, on acute cardiopulmonary toxicity in mice. Methods We collected PM for 2 weeks in July–August 2006 using a three-stage (ultrafine, < 0.1 μm; fine, 0.1–2.5 μm; coarse, 2.5–10 μm) high-volume impactor at distances of 20 m [near road (NR)] and 275 m [far road (FR)] from an interstate highway in Raleigh, North Carolina. Samples were extracted in methanol, dried, diluted in saline, and then analyzed for chemical constituents. Female CD-1 mice received either 25 or 100 μg of each size fraction via oropharyngeal aspiration. At 4 and 18 hr postexposure, mice were assessed for pulmonary responsiveness to inhaled methacholine, biomarkers of lung injury and inflammation; ex vivo cardiac pathophysiology was assessed at 18 hr only. Results Overall chemical composition between NR and FR PM was similar, although NR samples comprised larger amounts of PM, endotoxin, and certain metals than did the FR samples. Each PM size fraction showed differences in ratios of major chemical classes. Both NR and FR coarse PM produced significant pulmonary inflammation irrespective of distance, whereas both NR and FR ultrafine PM induced cardiac ischemia–reperfusion injury. Conclusions On a comparative mass basis, the coarse and ultrafine PM affected the lung and heart, respectively. We observed no significant differences in the overall toxicity end points and chemical makeup between the NR and FR PM. The results suggest that PM of different size-specific chemistry might be associated with different toxicologic mechanisms in cardiac and pulmonary tissues. PMID:20049117

  15. In Vivo Exposures to Particulate Matter Collected from Saudi Arabia or Nickel Chloride Display Similar Dysregulation of Metabolic Syndrome Genes.

    PubMed

    Brocato, Jason; Hernandez, Michelle; Laulicht, Freda; Sun, Hong; Shamy, Magdy; Alghamdi, Mansour A; Khoder, Mamdouh I; Kluz, Thomas; Chen, Lung-Chi; Costa, Max

    2015-01-01

    Particulate matter (PM) exposures have been linked to mortality, low birth weights, hospital admissions, and diseases associated with metabolic syndrome, including diabetes mellitus, cardiovascular disease, and obesity. In a previous in vitro and in vivo study, data demonstrated that PM(10μm) collected from Jeddah, Saudi Arabia (PMSA), altered expression of genes involved in lipid and cholesterol metabolism, as well as many other genes associated with metabolic disorders. PMSA contains a relatively high concentration of nickel (Ni), known to be linked to several metabolic disorders. In order to evaluate whether Ni and PM exposures induce similar gene expression profiles, mice were exposed to 100 μg/50 μl PM(SA) (PM-100), 50 μg/50 μl nickel chloride (Ni-50), or 100 μg/50 μl nickel chloride (Ni-100) twice per week for 4 wk and hepatic gene expression changes were determined. Ultimately, 55 of the same genes were altered in all 3 exposures. However, where the two Ni groups differed markedly was in the regulation (up or down) of these genes. Ni-100 and PM-100 groups displayed similar regulations, whereby 104 of the 107 genes were similarly modulated. Many of the 107 genes are involved in metabolic syndrome and include ALDH4A1, BCO2, CYP1A, CYP2U, TOP2A. In addition, the top affected pathways, such as fatty acid α-oxidation, and lipid and carbohydrate metabolism, are involved in metabolic diseases. Most notably, the top diseased outcome affected by these changes in gene expression was cardiovascular disease. Given these data, it appears that Ni and PM(SA) exposures display similar gene expression profiles, modulating the expression of genes involved in metabolic disorders.

  16. In Vivo Exposures to Particulate Matter Collected from Saudi Arabia or Nickel Chloride Display Similar Dysregulation of Metabolic Syndrome Genes.

    PubMed

    Brocato, Jason; Hernandez, Michelle; Laulicht, Freda; Sun, Hong; Shamy, Magdy; Alghamdi, Mansour A; Khoder, Mamdouh I; Kluz, Thomas; Chen, Lung-Chi; Costa, Max

    2015-01-01

    Particulate matter (PM) exposures have been linked to mortality, low birth weights, hospital admissions, and diseases associated with metabolic syndrome, including diabetes mellitus, cardiovascular disease, and obesity. In a previous in vitro and in vivo study, data demonstrated that PM(10μm) collected from Jeddah, Saudi Arabia (PMSA), altered expression of genes involved in lipid and cholesterol metabolism, as well as many other genes associated with metabolic disorders. PMSA contains a relatively high concentration of nickel (Ni), known to be linked to several metabolic disorders. In order to evaluate whether Ni and PM exposures induce similar gene expression profiles, mice were exposed to 100 μg/50 μl PM(SA) (PM-100), 50 μg/50 μl nickel chloride (Ni-50), or 100 μg/50 μl nickel chloride (Ni-100) twice per week for 4 wk and hepatic gene expression changes were determined. Ultimately, 55 of the same genes were altered in all 3 exposures. However, where the two Ni groups differed markedly was in the regulation (up or down) of these genes. Ni-100 and PM-100 groups displayed similar regulations, whereby 104 of the 107 genes were similarly modulated. Many of the 107 genes are involved in metabolic syndrome and include ALDH4A1, BCO2, CYP1A, CYP2U, TOP2A. In addition, the top affected pathways, such as fatty acid α-oxidation, and lipid and carbohydrate metabolism, are involved in metabolic diseases. Most notably, the top diseased outcome affected by these changes in gene expression was cardiovascular disease. Given these data, it appears that Ni and PM(SA) exposures display similar gene expression profiles, modulating the expression of genes involved in metabolic disorders. PMID:26692068

  17. Gene expression profiling and pathway analysis of human bronchial epithelial cells exposed to airborne particulate matter collected from Saudi Arabia

    SciTech Connect

    Sun, Hong; Shamy, Magdy; Kluz, Thomas; Muñoz, Alexandra B.; Zhong, Mianhua; Laulicht, Freda; Alghamdi, Mansour A.; Khoder, Mamdouh I.; Chen, Lung-Chi; Costa, Max

    2012-12-01

    Epidemiological studies have established a positive correlation between human mortality and increased concentration of airborne particulate matters (PM). However, the mechanisms underlying PM related human diseases, as well as the molecules and pathways mediating the cellular response to PM, are not fully understood. This study aims to investigate the global gene expression changes in human cells exposed to PM{sub 10} and to identify genes and pathways that may contribute to PM related adverse health effects. Human bronchial epithelial cells were exposed to PM{sub 10} collected from Saudi Arabia for 1 or 4 days, and whole transcript expression was profiled using the GeneChip human gene 1.0 ST array. A total of 140 and 230 genes were identified that significantly changed more than 1.5 fold after PM{sub 10} exposure for 1 or 4 days, respectively. Ingenuity Pathway Analysis revealed that different exposure durations triggered distinct pathways. Genes involved in NRF2-mediated response to oxidative stress were up-regulated after 1 day exposure. In contrast, cells exposed for 4 days exhibited significant changes in genes related to cholesterol and lipid synthesis pathways. These observed changes in cellular oxidative stress and lipid synthesis might contribute to PM related respiratory and cardiovascular disease. -- Highlights: ► PM exposure modulated gene expression and associated pathways in BEAS-2B cells. ► One-day exposure to PM induced genes involved in responding to oxidative stress. ► 4-day exposure to PM changed genes associated to cholesterol and lipid synthesis.

  18. In vivo exposures to particulate matter collected from Saudi Arabia or nickel chloride display similar dysregulation of metabolic syndrome genes

    PubMed Central

    Brocato, Jason; Hernandez, Michelle; Laulicht, Freda; Sun, Hong; Shamy, Magdy; Alghamdi, Mansour A.; Khoder, Mamdouh I.; Kluz, Thomas; Chen, Lung-Chi; Costa, Max

    2016-01-01

    Particulate matter (PM) exposures have been linked to mortality, low birth weights, hospital admissions, and diseases associated with metabolic syndrome, including diabetes mellitus, cardiovascular disease, and obesity. In a previous in vitro and in vivo study, data demonstrated that PM10µm collected from Jeddah, Saudi Arabia (PMSA) altered expression of genes involved in lipid and cholesterol metabolism, as well as many other genes associated with metabolic disorders. PMSA contains a relatively high concentration of nickel (Ni), known to be linked to several metabolic disorders. In order to evaluate if Ni and PM exposures induce similar gene expression profiles, mice were exposed to 100µg/50µl PMSA (PM-100), 50µg/50µl nickel chloride (Ni-50), or 100µg/50µl nickel chloride (Ni-100) twice a week for 4 weeks and hepatic gene expression changes determined. Ultimately, 55 of the same genes were altered in all 3 exposures. However, where the two Ni groups differed markedly was in the regulation (up or down) of these genes. Ni-100 and PM-100 groups displayed similar regulations, whereby 104 of the 107 genes were similarly modulated. Many of the 107 genes involved in metabolic syndrome and include ALDH4A1, BCO2, CYP1A, CYP2U, TOP2A. In addition, the top affected pathways such as fatty acid α-oxidation, and lipid and carbohydrate metabolism, are involved in metabolic diseases. Most notably, the top diseased outcome affected by these changes in gene expression was cardiovascular disease. Given these data, it appears that Ni and PMSA exposures display similar gene expression profiles, modulating the expression of genes involved in metabolic disorders. PMID:26692068

  19. THE ASSOCIATION OF EXPOSURE TO PARTICULATE MATTER AND RELATED AIR POLLUTANTS WITH SPECIFIC HEALTH EFFECTS IN HEALTHY HIGHWAY PATROL OFFICERS

    EPA Science Inventory

    Estimated exposures to ambient respirable particulate matter (PM) and related co-pollutants have been statistically associated with mortality and morbidity in epidemiological studies conducted throughout the world. Although some subpopulations (e.g., asthmatics; elderly, pulmonar...

  20. A Simplified and Rapid Screening Assay using Zebrafish to Assess Cardiac Effects of Air Pollution-derived Particulate Matter

    EPA Science Inventory

    Comparative toxicity assessment of particulate matter (PM) from different sources will potentially inform the understanding of regional differences in PM-induced cardiac health effects by identifying PM sources linked to highest potency components. Conventional low-throughput in...

  1. Arsenic species in atmospheric particulate matter as tracer of the air quality of Doñana Natural Park (SW Spain).

    PubMed

    González-Castanedo, Y; Sanchez-Rodas, D; Sánchez de la Campa, A M; Pandolfi, M; Alastuey, A; Cachorro, V E; Querol, X; de la Rosa, J D

    2015-01-01

    Sampling and chemical analyses, including major compounds and trace elements, of atmospheric particulate matter (PM10 and PM2.5) have been performed during 2006-2007 in a regional background monitoring station located within the Doñana Natural Park (SW of Spain). This region is strategic for air quality and climate change studies, representing a meeting place of the European and African continents, and the Atlantic Ocean and Mediterranean Sea. The present study based on meteorological parameters demonstrated long-range transport and impact of industrial plumes on the Doñana Natural. Inorganic arsenic species (arsenate and arsenite) have been analyzed in particulate matter (PM) to characterize the impact of near Cu-smelter plumes and demonstrated the long-range transport of industrial pollutants. As(V) is the main specie of As and varies between 95% and 98% of total As in PM10 and 96-97% in PM2.5. The As(V)/As(III) ratio measured in emission plumes of a Cu-smelter are similar to the ratio found in the Doñana Natural Park. The application of Positive Matrix Factorization (PMF) to atmospheric particulate matter estimated the contributions and chemical profiles of natural and anthropogenic sources impacting the Natural Park, demonstrating the industrial origin of the As and other toxic elements in the air. PMID:25460775

  2. Advanced Air Transportation Technologies Project, Final Document Collection

    NASA Technical Reports Server (NTRS)

    Mogford, Richard H.; Wold, Sheryl (Editor)

    2008-01-01

    This CD ROM contains a compilation of the final documents of the Advanced Air Transportation Technologies (AAIT) project, which was an eight-year (1996 to 2004), $400M project managed by the Airspace Systems Program office, which was part of the Aeronautics Research Mission Directorate at NASA Headquarters. AAIT focused on developing advanced automation tools and air traffic management concepts that would help improve the efficiency of the National Airspace System, while maintaining or enhancing safety. The documents contained in the CD are final reports on AAIT tasks that serve to document the project's accomplishments over its eight-year term. Documents include information on: Advanced Air Transportation Technologies, Autonomous Operations Planner, Collaborative Arrival Planner, Distributed Air/Ground Traffic Management Concept Elements 5, 6, & 11, Direct-To, Direct-To Technology Transfer, Expedite Departure Path, En Route Data Exchange, Final Approach Spacing Tool - (Active and Passive), Multi-Center Traffic Management Advisor, Multi Center Traffic Management Advisor Technology Transfer, Surface Movement Advisor, Surface Management System, Surface Management System Technology Transfer and Traffic Flow Management Research & Development.

  3. The fate of mercury collected from air pollution control devices

    EPA Science Inventory

    The mercury that enters a coal-fired power plant, originates from the coal that is burned, and leaves through the output streams that include stack emissions and air pollution control (APC) residues (either in solid or liquid form). This article describes recent fmdings on the fa...

  4. A multivariate receptor modeling study of air-borne particulate PAHs: Regional contributions in a roadside environment.

    PubMed

    Kim, Bong Mann; Lee, Seung-Bok; Kim, Jin Young; Kim, Sunwha; Seo, Jihoon; Bae, Gwi-Nam; Lee, Ji Yi

    2016-02-01

    Understanding the geographic source contributions by particulate polycyclic aromatic hydrocarbons (PAHs) is important for the Korean peninsula due to its downwind location from source areas. Regional influence of particulate PAHs was previously identified using diagnostic ratios applied to mobile source dominated roadside sampling data (Kim et al., 2012b). However, no study has yet been conducted to quantify the regional source contributions. We applied a multivariate receptor modeling tool to identify and quantify the regional source contributions to particulate PAHs in Seoul. Sampling of roadside particulate PAHs was conducted in Seoul, Korea for four years between May 2005 and April 2009, and data analysis was performed with a new multivariate receptor model, Solver for Mixture Problem (SMP). The SMP model identified two sources, local mobile source and transported regional source, and quantified their source contributions. Analysis of the particulate PAHs data reveals three types of episodic periods: a high regional source contribution period with one case, a high mobile source contribution period with three cases, and a normal contribution period with eight cases. Four-year average particulate PAHs source contributions from the two sources are 4.6 ng m(-3) and 10.7 ng m(-3) for regional and mobile sources, respectively and equivalent to 30% and 70% of the total estimated contribution from each of these sources. PMID:26473551

  5. Relation between sources of particulate air pollution and biological effect parameters in samples from four European cities: An exploratory study

    SciTech Connect

    Steerenberg, P.A.; van Amelsvoort, L.; Lovik, M.; Hetland, R.B.; Alberg, T.; Halatek, T.; Bloemen, H.J.T.; Rydzynski, K.; Swaen, G.; Schwarze, P.; Dybing, E.; Cassee, F.R.

    2006-05-15

    Given that there are widely different prevalence rates of respiratory allergies and asthma between the countries of Europe and that exposure to ambient particulate matter (PM) is substantial in urban environments throughout Europe, an EU project entitled 'Respiratory Allergy and Inflammation Due to Ambient Particles' (RAIAP) was set up. The project focused on the role of physical and chemical composition of PM on release of cytokines of cells in vitro, on respiratory inflammation in vivo, and on adjuvant potency in allergy animal models. Coarse (2.5 - 10 {mu}m) and fine (0.15 - 2.5 {mu}m) particles were collected during the spring, summer and winter in Rome ( I), Oslo (N), Lodz (PL), and Amsterdam (NL). Markers within the same model were often well correlated. Markers of inflammation in the in vitro and in vivo models also showed a high degree of correlation. In contrast, correlation between parameters in the different allergy models and between allergy and inflammation markers was generally poor. This suggests that various bioassays are needed to assess the potential hazard of PM. The present study also showed that by clustering chemical constituents of PM based on the overall response pattern in the bioassays, five distinct groups could be identified. The clusters of traffic, industrial combustion and/or incinerators, and combustion of black and brown coal/wood smoke were associated primarily with adjuvant activity for respiratory allergy, whereas clusters of crustal of material and sea spray are predominantly associated with measures for inflammation and acute toxicity. The present study has shown that biological effect of PM can be linked to one or more PM emission sources and that this linkage requires a wide range of bioassays.

  6. Flexible modeling of exposure-response relationship between long-term average levels of particulate air pollution and mortality in the American Cancer Society study.

    PubMed

    Abrahamowicz, Michal; Schopflocher, Tom; Leffondré, Karen; du Berger, Roxane; Krewski, Daniel

    Accurate estimation of the exposure-response relationship between environmental particulate air pollution and mortality is important from both an etiologic and regulatory perspective. However, little is known about the actual shapes of these exposure-response curves. The objective of this study was to estimate the exposure-response relationships between mortality and long-term average city-specific levels of sulfates and fine particulate matter (PM(2.5)). We reanalyzed the data derived from the American Cancer Society (ACS) Cancer Prevention Study II, a large prospective study conducted in the United States between 1982 and 1989. Exposure to particulate air pollution was assessed prior to entry into the cohort. Mean sulfate concentrations for 1980 were available in 151 cities, and median PM(2.5) levels between 1979 and 1983 were available in 50 cities. Two sampling strategies were employed to reduce the computational burden. The modified case-cohort approach combined a random subcohort of 1200 individuals with an additional 1300 cases (i.e., deaths). The second strategy involved pooling the results of separate analyses of 10 disjoint random subsets, each with about 2200 participants. To assess the independent effect of the particulate levels on all-causes mortality, we relied on flexible, nonparametric survival analytical methods. To eliminate potentially restrictive assumptions underlying the conventional models, we employed a flexible regression spline generalization of the Cox proportional-hazards (PH) model. The regression spline method allowed us to model simultaneously the time-dependent changes in the effect of particulate matter on the hazard and a possibly nonlinear exposure-response relationship. The PH and linearity hypotheses were tested using likelihood ratio tests. In all analyses, we stratified by age and 5-yr age groups and adjusted for the subject's age, lifetime smoking exposure, obesity, and education. For both fine particles (PM(2.5)) and

  7. The EMECAM project: a multicentre study on air pollution and mortality in Spain: combined results for particulates and for sulfur dioxide

    PubMed Central

    Ballester, F; Saez, M; Perez-Hoyos, S; Iniguez, C; Gandarillas, A; Tobias, A; Bellido, J; Taracido, M; Arribas, F; Daponte, A; Alonso, E; Canada, A; Guillen-Grima, F; Cirera, L; Perez-Boillos, M; Saurina, C; Gomez, F; Tenias, J

    2002-01-01

    Objective: The EMECAM study is a collaborative effort to evaluate the impact of air pollution on mortality in Spain. In this paper the combined results are presented for the short term effects of particulates and sulfur dioxide on both daily mortality for all and for specific causes. Methods: The relation between daily mortality for all causes, cardiovascular diseases, and respiratory diseases, and air pollution for particulates (daily concentrations) and SO2 (24 and 1 hour concentrations) was assessed in 13 Spanish cities for the period 1990–6. With a standardised method, magnitude of association in each city was estimated by Poisson regression in a generalised additive model. Local estimates were obtained from both single and two pollutant analyses. Lastly, combined estimates for each cause and pollutant were obtained. Results: For combined results, in single pollutant models a 10 µg/m3 increase in the concentration of the mean of the concurrent and one day lag for black smoke was associated with a 0.8% (95% confidence interval (95% CI) 0.4 to 1.1%) increase in total mortality. The estimates for total suspended particles (TSPs) and particulate matter of aerodynamic diameter <10 µm (PM10) and total mortality were slightly lower. The same increase in concentrations of SO2 was associated with a 0.5% increase in daily deaths. For groups of specific causes, higher estimations were found, specially for respiratory conditions. Peak concentrations of SO2 showed significant associations with the three groups of mortality. When two pollutant analyses were performed, estimates for particulates, specially for black smoke, did not substantially change. The estimates for daily concentrations of SO2 were greatly reduced, but, on the contrary, the association with peak concentrations of SO2 did not show any change. Conclusions: There is an association between mortality and pollution through particulates among city populations in Spain. Peak rather than daily concentrations

  8. Ambient Particulate Matter Air Pollution and Venous Thromboembolism in the Women’s Health Initiative Hormone Therapy Trials

    PubMed Central

    Shih, Regina A.; Griffin, Beth Ann; Salkowski, Nicholas; Jewell, Adria; Eibner, Christine; Bird, Chloe E.; Liao, Duanping; Cushman, Mary; Margolis, Helene G.; Eaton, Charles B.; Whitsel, Eric A.

    2011-01-01

    Background The putative effects of postmenopausal hormone therapy on the association between particulate matter (PM) air pollution and venous thromboembolism (VTE) have not been assessed in a randomized trial of hormone therapy, despite its widespread use among postmenopausal women. Objective In this study, we examined whether hormone therapy modifies the association of PM with VTE risk. Methods Postmenopausal women 50–79 years of age (n = 26,450) who did not have a history of VTE and who were not taking anticoagulants were enrolled in the Women’s Health Initiative Hormone Therapy trials at 40 geographically diverse U.S. clinical centers. The women were randomized to treatment with estrogen versus placebo (E trial) or to estrogen plus progestin versus placebo (E + P trial). We used age-stratified Cox proportional hazard models to examine the association between time to incident, centrally adjudicated VTE, and daily mean PM concentrations spatially interpolated at geocoded addresses of the participants and averaged over 1, 7, 30, and 365 days. Results During the follow-up period (mean, 7.7 years), 508 participants (2.0%) had VTEs at a rate of 2.6 events per 1,000 person-years. Unadjusted and covariate-adjusted VTE risk was not associated with concentrations of PM < 2.5 μm (PM2.5) or < 10 μm (PM10)] in aerodynamic diameter and PM × active treatment interactions were not statistically significant (p > 0.05) regardless of PM averaging period, either before or after combining data from both trials [e.g., combined trial-adjusted hazard ratios (95% confidence intervals) per 10 μg/m3 increase in annual mean PM2.5 and PM10, were 0.93 (0.54–1.60) and 1.05 (0.72–1.53), respectively]. Findings were insensitive to alternative exposure metrics, outcome definitions, time scales, analytic methods, and censoring dates. Conclusions In contrast to prior research, our findings provide little evidence of an association between short-term or long-term PM exposure and VTE, or

  9. Fate of mercury collected from air pollution control devices

    SciTech Connect

    Constance L. Senior; Susan Thorneloe; Bernine Khan; David Goss

    2009-07-15

    Mercury that enters a coal-fired power plant originates from the coal that is burned and leaves through the output streams, which include stack emissions and air pollution control (APC) residues (either in solid or liquid form). This article describes recent findings on the fate and environmental stability of mercury in coal combustion residues (CCRs) such as fly ash and solid products from flue gas desulfurization (FGD) scrubbers when either disposed or reused in agricultural, commercial, or engineering applications. 19 refs., 4 figs., 5 tabs.

  10. Diesel particulate control

    SciTech Connect

    Bertelsen, F.I. )

    1988-01-01

    Diesel particulates, because of their chemical composition and extremely small size, have raised health and welfare issues. Health experts have expressed concern that they contribute to or aggravate chronic lung diseases such as asthma, bronchitis and emphysema, and there is the lingering issue about the potential cancer risk from exposure to diesel particulate. Diesel particulates impair visibility, soil buildings, contribute to structural damage through corrosion and give off a pungent odor. Diesel trucks, buses and cars together are such a significant and growing source of particulate emissions. Such vehicles emit 30 to 70 times more particulate matter than gasoline vehicles equipped with catalytic converters. Diesel engines currently power the majority of larger trucks and buses. EPA predicted that, if left uncontrolled, diesel particulate from motor vehicles would increase significantly. Diesel particulate emissions from motor vehicles are particularly troublesome because they frequently are emitted directly into the breathing zone where we work and recreate. The U.S. Congress recognized the risks posed by diesel particulate and as part of the 1977 Clean Air Act Amendments established specific, technology-forcing requirements for controlling these emissions. The U.S. Environmental Protection Agency (EPA) in 1980 established particulate standards for automobiles and light trucks and in 1985, heavy trucks and buses. California, concerned that EPA standards would not adequately protect its citizens, adopted its own set of standards for passenger cars and light trucks. This paper discusses emerging technologies proposed to address the problem.

  11. Particulate air pollution and health effects for cardiovascular and respiratory causes in Temuco, Chile: a wood-smoke-polluted urban area.

    PubMed

    Sanhueza, Pedro A; Torreblanca, Monica A; Diaz-Robles, Luis A; Schiappacasse, L Nicolas; Silva, Maria P; Astete, Teresa D

    2009-12-01

    Temuco is one of the most highly wood-smoke-polluted cities in the world. Its population in 2004 was 340,000 inhabitants with 1587 annual deaths, of which 24% were due to cardiovascular and 11% to respiratory causes. For hospital admissions, cardiovascular diseases represented 6% and respiratory diseases 13%. Emergency room visits for acute respiratory infections represented 28%. The objective of the study presented here was to determine the relationship between air pollution from particulate matter less than or equal to 10 microm in aerodynamic diameter (PM10; mostly PM2.5, or particulate matter <2.5 microm in aerodynamic diameter) and health effects measured as the daily number of deaths, hospital admissions, and emergency room visits for cardiovascular, respiratory, and acute respiratory infection (ARI) diseases. The Air Pollution Health Effects European Approach (APHEA2) protocol was followed, and a multivariate Poisson regression model was fitted, controlling for trend, seasonality, and confounders for Temuco during 1998-2006. The results show that PM10 had a significant association with daily mortality and morbidity, with the elderly (population >65 yr of age) being the group that presented the greatest risk. The relative risk for respiratory causes, with an increase of 100 microg/m3 of PM10, was 1.163 with a 95% confidence interval (CI) of 1.057-1.279 for mortality, 1.137 (CI 1.096-1.178) for hospital admissions, and 1.162 for ARI (CI 1.144-1.181). There is evidence in Temuco of positive relationships between ambient particulate levels and mortality, hospital admissions, and ARI for cardiovascular and respiratory diseases. These results are consistent with those of comparable studies in other similar cities where wood smoke is the most important air pollution problem.

  12. Impact of short-term preconceptional exposure to particulate air pollution on treatment outcome in couples undergoing in vitro fertilization and embryo transfer (IVF/ET)

    PubMed Central

    Maluf, Mariangela; Czeresnia, Carlos Eduardo; Januário, Daniela Aparecida Nicolosi Foltran; Saldiva, Paulo Hilário Nascimento

    2010-01-01

    Purpose To assess the potential effects of short-term exposure to particulate air pollution during follicular phase on clinical, laboratory, and pregnancy outcomes of women undergoing IVF/ET. Methods Retrospective cohort study of 400 first IVF/ET cycles of women exposed to ambient particulate matter during follicular phase. Particulate matter (PM) was categorized into quartiles (Q1: ≤30.48 µg/m3, Q2: 30.49–42.00 µg/m3, Q3: 42.01–56.72 µg/m3, and Q4: >56.72 µg/m3). Results Clinical, laboratory, or treatment variables were not affected by follicular phase PM exposure periods. Women exposed to Q4 period during the follicular phase of conception cycles had a higher risk of miscarriage (odds ratio, 5.05; 95% confidence interval: 1.04–25.51) when compared to women exposed to Q1–3 periods. Conclusion Our results show an association between brief exposure to high levels of ambient PM during the preconceptional period and early pregnancy loss, although no effect of this exposure on clinical, laboratory, and treatment outcomes was observed. PMID:20405197

  13. Annual and diurnal variations of gaseous and particulate pollutants in 31 provincial capital cities based on in situ air quality monitoring data from China National Environmental Monitoring Center.

    PubMed

    Zhao, Suping; Yu, Ye; Yin, Daiying; He, Jianjun; Liu, Na; Qu, Jianjun; Xiao, Jianhua

    2016-01-01

    Long-term air quality data with high temporal and spatial resolutions are needed to understand some important processes affecting the air quality and corresponding environmental and health effects. The annual and diurnal variations of each criteria pollutant including PM2.5 and PM10 (particulate matter with aerodynamic diameter less than 2.5 μm and 10 μm, respectively), CO (carbon monoxide), NO2 (nitrogen dioxide), SO2 (sulfur dioxide) and O3 (ozone) in 31 provincial capital cities between April 2014 and March 2015 were investigated by cluster analysis to evaluate current air pollution situations in China, and the cities were classified as severely, moderately, and slightly polluted cities according to the variations. The concentrations of air pollutants in winter months were significantly higher than those in other months with the exception of O3, and the cities with the highest CO and SO2 concentrations were located in northern China. The annual variation of PM2.5 concentrations in northern cities was bimodal with comparable peaks in October 2014 and January 2015, while that in southern China was unobvious with slightly high PM2.5 concentrations in winter months. The concentrations of particulate matter and trace gases from primary emissions (SO2 and CO) and NO2 were low in the afternoon (~16:00), while diurnal variation of O3 concentrations was opposite to that of other pollutants with the highest values in the afternoon. The most polluted cities were mainly located in North China Plain, while slightly polluted cities mostly focus on southern China and the cities with high altitude such as Lasa. This study provides a basis for the formulation of future urban air pollution control measures in China.

  14. Annual and diurnal variations of gaseous and particulate pollutants in 31 provincial capital cities based on in situ air quality monitoring data from China National Environmental Monitoring Center.

    PubMed

    Zhao, Suping; Yu, Ye; Yin, Daiying; He, Jianjun; Liu, Na; Qu, Jianjun; Xiao, Jianhua

    2016-01-01

    Long-term air quality data with high temporal and spatial resolutions are needed to understand some important processes affecting the air quality and corresponding environmental and health effects. The annual and diurnal variations of each criteria pollutant including PM2.5 and PM10 (particulate matter with aerodynamic diameter less than 2.5 μm and 10 μm, respectively), CO (carbon monoxide), NO2 (nitrogen dioxide), SO2 (sulfur dioxide) and O3 (ozone) in 31 provincial capital cities between April 2014 and March 2015 were investigated by cluster analysis to evaluate current air pollution situations in China, and the cities were classified as severely, moderately, and slightly polluted cities according to the variations. The concentrations of air pollutants in winter months were significantly higher than those in other months with the exception of O3, and the cities with the highest CO and SO2 concentrations were located in northern China. The annual variation of PM2.5 concentrations in northern cities was bimodal with comparable peaks in October 2014 and January 2015, while that in southern China was unobvious with slightly high PM2.5 concentrations in winter months. The concentrations of particulate matter and trace gases from primary emissions (SO2 and CO) and NO2 were low in the afternoon (~16:00), while diurnal variation of O3 concentrations was opposite to that of other pollutants with the highest values in the afternoon. The most polluted cities were mainly located in North China Plain, while slightly polluted cities mostly focus on southern China and the cities with high altitude such as Lasa. This study provides a basis for the formulation of future urban air pollution control measures in China. PMID:26562560

  15. Proinflammatory and cytotoxic effects of Mexico City air pollution particulate matter in vitro are dependent on particle size and composition.

    PubMed Central

    Osornio-Vargas, Alvaro R; Bonner, James C; Alfaro-Moreno, Ernesto; Martínez, Leticia; García-Cuellar, Claudia; Ponce-de-León Rosales, Sergio; Miranda, Javier; Rosas, Irma

    2003-01-01

    Exposure to urban airborne particulate matter (PM) is associated with adverse health effects. We previously reported that the cytotoxic and proinflammatory effects of Mexico City PM10 (less than or equal to 10 micro m mean aerodynamic diameter) are determined by transition metals and endotoxins associated with these particles. However, PM2.5 (less than or equal to 2.5 micro m mean aerodynamic diameter) could be more important as a human health risk because this smaller PM has the potential to reach the distal lung after inhalation. In this study, we compared the cytotoxic and proinflammatory effects of Mexico City PM10 with those of PM2.5 using the murine monocytic J774A.1 cell line in vitro. PMs were collected from the northern zone or the southeastern zone of Mexico City. Elemental composition and bacterial endotoxin on PMs were measured. Tumor necrosis factor-alpha (TNF-alpha) and interleukin-6 (IL-6) production by J774A.1 cells was measured in the presence or absence of recombinant endotoxin-neutralizing protein (rENP). Both northern and southeastern PMs contained endotoxin and a variety of transition metals. Southeastern PM10 contained the highest endotoxin levels, 2-fold higher than that in northern PM10. Northern and southeastern PM2.5 contained the lowest endotoxin levels. Accordingly, southeastern PM10 was the most potent in causing secretion of the proinflammatory cytokines TNF-alpha and IL-6. All PM2.5 and PM10 samples caused cytotoxicity, but northern PMs were the most toxic. Cytokine secretion induced by southeastern PM10 was reduced 50-75% by rENP. These results indicate major differences in PM10 and PM2.5. PM2.5 induces cytotoxicity in vitro through an endotoxin-independent mechanism that is likely mediated by transition metals. In contrast, PM10 with relatively high levels of endotoxin induces proinflammatory cytokine release via an endotoxin-dependent mechanism. PMID:12896848

  16. Long-Term Exposure to Constituents of Fine Particulate Air Pollution and Mortality: Results from the California Teachers Study

    PubMed Central

    Ostro, Bart; Lipsett, Michael; Reynolds, Peggy; Goldberg, Debbie; Hertz, Andrew; Garcia, Cynthia; Henderson, Katherine D.; Bernstein, Leslie

    2010-01-01

    Background Several studies have reported associations between long-term exposure to ambient fine particulate matter (PM) and cardiovascular mortality. However, the health impacts of long-term exposure to specific constituents of PM2.5 (PM with aerodynamic diameter ≤ 2.5 μm) have not been explored. Methods We used data from the California Teachers Study, a prospective cohort of active and former female public school professionals. We developed estimates of long-term exposures to PM2.5 and several of its constituents, including elemental carbon, organic carbon (OC), sulfates, nitrates, iron, potassium, silicon, and zinc. Monthly averages of exposure were created using pollution data from June 2002 through July 2007. We included participants whose residential addresses were within 8 and 30 km of a monitor collecting PM2.5 constituent data. Hazard ratios (HRs) were estimated for long-term exposure for mortality from all nontraumatic causes, cardiopulmonary disease, ischemic heart disease (IHD), and pulmonary disease. Results Approximately 45,000 women with 2,600 deaths lived within 30 km of a monitor. We observed associations of all-cause, cardiopulmonary, and IHD mortality with PM2.5 mass and each of its measured constituents, and between pulmonary mortality and several constituents. For example, for cardiopulmonary mortality, HRs for interquartile ranges of PM2.5, OC, and sulfates were 1.55 [95% confidence interval (CI), 1.43–1.69], 1.80 (95% CI, 1.68–1.93), and 1.79 (95% CI, 1.58–2.03), respectively. Subsequent analyses indicated that, of the constituents analyzed, OC and sulfates had the strongest associations with all four outcomes. Conclusions Long-term exposures to PM2.5 and several of its constituents were associated with increased risks of all-cause and cardiopulmonary mortality in this cohort. Constituents derived from combustion of fossil fuel (including diesel), as well as those of crustal origin, were associated with some of the greatest risks

  17. Define and Quantify the Physics of Air Flow, Pressure Drop and Aerosol Collection in Nuclear Grade HEPA Filters

    SciTech Connect

    Moore, Murray E.

    2015-02-23

    Objective: Develop a set of peer-review and verified analytical methods to adjust HEPA filter performance to different flow rates, temperatures and altitudes. Experimental testing will measure HEPA filter flow rate, pressure drop and efficiency to verify the analytical approach. Nuclear facilities utilize HEPA (High Efficiency Particulate Air) filters to purify air flow for workspace ventilation. However, the ASME AG-1 technical standard (Code on Nuclear Air and Gas Treatment) does not adequately describe air flow measurement units for HEPA filter systems. Specifically, the AG-1 standard does not differentiate between volumetric air flow in ACFM (actual cubic feet per minute)compared to mass flow measured in SCFM (standard cubic feet per minute). More importantly, the AG-1 standard has an overall deficiency for using HEPA filter devices at different air flow rates, temperatures, and altitudes. Technical Approach: The collection efficiency and pressure drops of 18 different HEPA filters will be measured over a range of flow rates, temperatures and altitudes. The experimental results will be compared to analytical scoping calculations. Three manufacturers have allocated six HEPA filters each for this effort. The 18 filters will be tested at two different flow rates, two different temperatures and two different altitudes. The 36 total tests will be conducted at two different facilities: the ATI Test facilities (Baltimore MD) and the Los Alamos National Laboratory (Los Alamos NM). The Radiation Protection RP-SVS group at Los Alamos has an aerosol wind tunnel that was originally designed to evaluate small air samplers. In 2010, modifications were started to convert the wind tunnel for HEPA filter testing. (Extensive changes were necessary for the required aerosol generators, HEPA test fixtures, temperature control devices and measurement capabilities.) To this date, none of these modification activities have been funded through a specific DOE or NNSA program. This is

  18. Ambient air levels and health risk assessment of benzo(a)pyrene in atmospheric particulate matter samples from low-polluted areas: application of an optimized microwave extraction and HPLC-FL methodology.

    PubMed

    de la Gala Morales, María; Holgado, Fernando Rueda; Marín, Ma Rosario Palomo; Blázquez, Lorenzo Calvo; Gil, Eduardo Pinilla

    2015-04-01

    A new methodology involving a simple and fast pretreatment of the samples by microwave-assisted extraction and concentration by N2 stream, followed by HPLC with fluorescence detection, was used for determining the concentration of benzo(a)pyrene (BaP) in atmospheric particulate matter (PM10 fraction). Obtained LOD, 1.0 × 10(-3) ng/m(3), was adequate for the analysis of benzo(a)pyrene in the samples, and BaP recovery from PAH in Fine Dust (PM10-like) certified reference material was nearly quantitative (86%). The validated procedure was applied for analyzing 115 PM10 samples collected at different sampling locations in the low-polluted area of Extremadura (Southwest Spain) during a monitoring campaign carried out in 2011-2012. BaP spatial variations and seasonal variability were investigated as well as the influence of meteorological conditions and different air pollutants concentrations. A normalized protocol for health risk assessment was applied to estimate lifetime cancer risk due to BaP inhalation in the sampling areas, finding that around eight inhabitants per million people may develop lung cancer due to the exposition to BaP in atmospheric particulates emitted by the investigated sources.

  19. Association of ozone and particulate air pollution with out-of-hospital cardiac arrest in Helsinki, Finland: evidence for two different etiologies.

    PubMed

    Rosenthal, Frank S; Kuisma, Markku; Lanki, Timo; Hussein, Tareq; Boyd, James; Halonen, Jaana I; Pekkanen, Juha

    2013-01-01

    Out-of-hospital cardiac arrest (OHCA) has been previously associated with exposure to particulate air pollution. However, there is uncertainty about the agents and mechanisms that are involved. We aimed to determine the association of gases and particulates with OHCA, and differences in pollutant effects on OHCAs due to acute myocardial infarction (AMI) vs those due to other causes. Helsinki Emergency Medical Services provided data on OHCAs of cardiac origin (OHCA_Cardiac). Hospital and autopsy reports determined whether OHCAs were due to AMI (OHCA_MI) or other cardiac causes (OHCA_Other). Pollutant data was obtained from central ambient monitors. A case-crossover analysis determined odds ratios (ORs) for hourly lagged exposures (Lag 0-3) and daily lagged exposures (Lag 0d-3d), expressed per interquartile range of pollutant level. For OHCA_Cardiac, elevated ORs were found for PM(2.5) (Lag 0, 1.07; 95% confidence interval (CI): 1.01-1.13) and ozone (O(3)) (Lag 2d, 1.18; CI: 1.03-1.35). For OHCA_MI, elevated ORs were found for PM(2.5) (Lag 0, 1.14; CI: 1.03-1.27; Lag 0d, 1.17; CI: 1.03-1.33), accumulation mode particulate (Acc) (Lag 0d, 1.19; CI: 1.04-1.35), NO (Lag 0d, 1.07; CI: 1.01-1.13), and ultrafine particulate (Lag 0d, 1.27; CI: 1.05-1.54). For OHCA_Other, elevated ORs were found only for O(3) (Lag 1d, 1.26; CI: 1.07-1.48; Lag 2d, 1.30; CI: 1.11-1.53). Results from two-pollutant models, with one of the pollutants either PM(2.5) or O(3), suggested that associations were primarily due to effects of PM(2.5) and O(3), rather than other pollutants. The results suggest that air pollution triggers OHCA via two distinct modes: one associated with particulates leading to AMI and one associated with O(3) involving etiologies other than AMI, for example, arrhythmias or respiratory insufficiency.

  20. 78 FR 69361 - Development of Inward Leakage Standards for Half-Mask Air-Purifying Particulate Respirators

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-19

    ... Particulate Respirators AGENCY: Centers for Disease Control and Prevention, HHS. ACTION: Reopening of comment period. SUMMARY: On September 17, 2013, the National Institute for Occupational Safety and Health (NIOSH) of the Centers for Disease Control and Prevention (CDC) located within the Department of Health...

  1. 78 FR 54432 - Development of Inward Leakage Standards for Half-Mask Air-Purifying Particulate Respirators

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-04

    ... Particulate Respirators AGENCY: Centers for Disease Control and Prevention, HHS. ACTION: Request for comment and notice of public meeting. SUMMARY: The National Institute for Occupational Safety and Health (NIOSH) of the Centers for Disease Control and Prevention (CDC) announces a public meeting...

  2. 40 CFR Appendix K to Part 50 - Interpretation of the National Ambient Air Quality Standards for Particulate Matter

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... particulate matter data to determine attainment of the 24-hour standards specified in 40 CFR 50.6. For the... Determinations 2.124-Hour Primary and Secondary Standards (a) Under 40 CFR 50.6(a) the 24-hour primary and....1, which is the lowest rate for nonattainment). 2.2Reserved 2.3Data Requirements (a) 40 CFR...

  3. 40 CFR Appendix K to Part 50 - Interpretation of the National Ambient Air Quality Standards for Particulate Matter

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... particulate matter data to determine attainment of the 24-hour standards specified in 40 CFR 50.6. For the... Determinations 2.124-Hour Primary and Secondary Standards (a) Under 40 CFR 50.6(a) the 24-hour primary and....1, which is the lowest rate for nonattainment). 2.2Reserved 2.3Data Requirements (a) 40 CFR...

  4. 40 CFR Appendix K to Part 50 - Interpretation of the National Ambient Air Quality Standards for Particulate Matter

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... particulate matter data to determine attainment of the 24-hour standards specified in 40 CFR 50.6. For the... Determinations 2.124-Hour Primary and Secondary Standards (a) Under 40 CFR 50.6(a) the 24-hour primary and....1, which is the lowest rate for nonattainment). 2.2Reserved 2.3Data Requirements (a) 40 CFR...

  5. 40 CFR Appendix K to Part 50 - Interpretation of the National Ambient Air Quality Standards for Particulate Matter

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... particulate matter data to determine attainment of the 24-hour standards specified in 40 CFR 50.6. For the... Determinations 2.124-Hour Primary and Secondary Standards (a) Under 40 CFR 50.6(a) the 24-hour primary and....1, which is the lowest rate for nonattainment). 2.2Reserved 2.3Data Requirements (a) 40 CFR...

  6. 40 CFR Appendix K to Part 50 - Interpretation of the National Ambient Air Quality Standards for Particulate Matter

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... particulate matter data to determine attainment of the 24-hour standards specified in 40 CFR 50.6. For the... Determinations 2.124-Hour Primary and Secondary Standards (a) Under 40 CFR 50.6(a) the 24-hour primary and....1, which is the lowest rate for nonattainment). 2.2Reserved 2.3Data Requirements (a) 40 CFR...

  7. Fine Particulate Air Pollution and the Progression of Carotid Intima-Medial Thickness: A Prospective Cohort Study from the Multi-Ethnic Study of Atherosclerosis and Air Pollution

    PubMed Central

    Adar, Sara D.; Sheppard, Lianne; Vedal, Sverre; Polak, Joseph F.; Sampson, Paul D.; Diez Roux, Ana V.; Budoff, Matthew; Jacobs, David R.; Barr, R. Graham; Watson, Karol; Kaufman, Joel D.

    2013-01-01

    Background Fine particulate matter (PM2.5) has been linked to cardiovascular disease, possibly via accelerated atherosclerosis. We examined associations between the progression of the intima-medial thickness (IMT) of the common carotid artery, as an indicator of atherosclerosis, and long-term PM2.5 concentrations in participants from the Multi-Ethnic Study of Atherosclerosis (MESA). Methods and Results MESA, a prospective cohort study, enrolled 6,814 participants at the baseline exam (2000–2002), with 5,660 (83%) of those participants completing two ultrasound examinations between 2000 and 2005 (mean follow-up: 2.5 years). PM2.5 was estimated over the year preceding baseline and between ultrasounds using a spatio-temporal model. Cross-sectional and longitudinal associations were examined using mixed models adjusted for confounders including age, sex, race/ethnicity, smoking, and socio-economic indicators. Among 5,362 participants (5% of participants had missing data) with a mean annual progression of 14 µm/y, 2.5 µg/m3 higher levels of residential PM2.5 during the follow-up period were associated with 5.0 µm/y (95% CI 2.6 to 7.4 µm/y) greater IMT progressions among persons in the same metropolitan area. Although significant associations were not found with IMT progression without adjustment for metropolitan area (0.4 µm/y [95% CI −0.4 to 1.2 µm/y] per 2.5 µg/m3), all of the six areas showed positive associations. Greater reductions in PM2.5 over follow-up for a fixed baseline PM2.5 were also associated with slowed IMT progression (−2.8 µm/y [95% CI −1.6 to −3.9 µm/y] per 1 µg/m3 reduction). Study limitations include the use of a surrogate measure of atherosclerosis, some loss to follow-up, and the lack of estimates for air pollution concentrations prior to 1999. Conclusions This early analysis from MESA suggests that higher long-term PM2.5 concentrations are associated with increased IMT progression and that greater reductions in PM2.5 are

  8. Collection and analysis of NASA clean room air samples

    NASA Technical Reports Server (NTRS)

    Sheldon, L. S.; Keever, J.

    1985-01-01

    The environment of the HALOE assembly clean room at NASA Langley Research Center is analyzed to determine the background levels of airborne organic compounds. Sampling is accomplished by pumping the clean room air through absorbing cartridges. For volatile organics, cartridges are thermally desorbed and then analyzed by gas chromatography and mass spectrometry, compounds are identified by searching the EPA/NIH data base using an interactive operator INCOS computer search algorithm. For semivolatile organics, cartridges are solvent entracted and concentrated extracts are analyzed by gas chromatography-electron capture detection, compound identification is made by matching gas chromatogram retention times with known standards. The detection limits for the semivolatile organics are; 0.89 ng cu m for dioctylphlhalate (DOP) and 1.6 ng cu m for polychlorinated biphenyls (PCB). The detection limit for volatile organics ranges from 1 to 50 parts per trillion. Only trace quantities of organics are detected, the DOP levels do not exceed 2.5 ng cu m and the PCB levels do not exceed 454 ng cu m.

  9. Pressurized liquid extraction of diesel and air particulate standard reference materials: effect of extraction temperature and pressure.

    PubMed

    Schantz, Michele M; McGaw, Elizabeth; Wise, Stephen A

    2012-10-01

    Four particulate matter Standard Reference Materials (SRMs) available from the National Institute of Standards and Technology (NIST) were used to evaluate the effect of solvent, number of static cycles and static times, pressure, and temperature when using pressurized liquid extraction (PLE) for the extraction of polycyclic aromatic hydrocarbons (PAHs) and nitrated-PAHs. The four materials used in the study were SRM 1648a Urban Particulate Matter, SRM 1649b Urban Dust, SRM 1650b Diesel Particulate Matter, and SRM 2975 Diesel Particulate Matter (Industrial Forklift). The results from the study indicate that the choice of solvent, dichloromethane compared to toluene and toluene/methanol mixtures, had little effect on the extraction efficiency. With three to five extraction cycles, increasing the extraction time for each cycle from 5 to 30 min had no significant effect on the extraction efficiency. The differences in extraction efficiency were not significant (with over 95% of the differences being <10%) when the pressure was increased from 13.8 to 20.7 MPa. The largest increase in extraction efficiency occurred for selected PAHs when the temperature of extraction was increased from 100 to 200 °C. At 200 °C naphthalene, biphenyl, fluorene, dibenzothiophene, and anthracene show substantially higher mass fractions (>30%) than when extracted at 100 °C in all the SRMs studied. For SRM 2975, large increases (>100%) are also observed for some other PAHs including benz[a]anthracene, benzo[k]fluoranthene, benzo[e]pyrene, benzo[a]pyrene, benzo[ghi]perylene, and benzo[b]chrysene when extracted at the higher temperatures; however, similar trends were not observed for the other diesel particulate sample, SRM 1650b. The results are discussed in relation to the use of the SRMs for evaluating analytical methods.

  10. Have the short-term mortality effects of particulate matter air pollution changed in Australia over the period 1993-2007?

    PubMed

    Roberts, Steven

    2013-11-01

    The author investigates whether the mortality effect of particulate matter air pollution (PM10) has changed in Australia over the period 1993-2007. This period corresponds to an era of increasing Government intervention aimed at improving air quality and, as a result, a potential decrease in the toxicity of PM10. Evidence is found that the mortality effect of PM10 has declined in both Brisbane and Sydney. For Sydney we estimate that the effects of PM10 on total and cardiovascular mortality are, respectively, decreasing at the rate of 10% and 13% annually. We speculate that one possible reason for this decline could be a reduction in the toxicity of PM10. A difference between this study and a similar United States study is that PM10 concentrations have not been declining in Australia. This means that the observed decline in the mortality effect of PM10 is not an artefact of a declining PM10 concentration.

  11. 75 FR 73076 - Agency Information Collection Activities; Proposed Collection; Comment Request; Clean Air Act...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-29

    ... responsibility for the development and implementation of CAA programs. The regulation, Indian Tribes: Air Quality... Delivery: EPA Docket Center, Public Reading Room, EPA West Building, Room 3334, 1301 Constitution Ave. NW... 3334, 1301 Constitution Ave., NW., Washington, DC. The EPA/DC Public Reading Room is open from 8...

  12. Particulate control for the year 2000

    SciTech Connect

    Sloat, D.G.; Gaikwad, R.P.

    1997-09-01

    As a response to the Clean Air Act Amendments (CAAAs) of 1990, utilities will be faced with new emission limitations on SO{sub 2} and NO{sub x} that could have a major impact on their current particulate control equipment. Most of the plants affected already have electrostatic precipitators for particulate control. A large number of power plants will be switching to lower sulfur coals as part of the CAAA Title IV Phase 2 SO{sub 2} rules. The lower sulfur coal ash usually does not collect well in a small precipitator so the existing precipitator will need to be upgraded to continue to meet their current emission limitations. Title IV also requires plants to lower NO{sub x} emissions which is often accomplished by modifications to the boiler such as retrofitting low NO{sub x} burners. These boiler modifications can increase the amount of unburned carbon in the ash as well as reduce the size distribution of the fly ash. Both of these changes can negatively impact a precipitator`s performance. Finally, the CAAA Title III identifies 189 pollutants as hazardous air pollutants, also known as air toxics, which have been viewed as a risk to human health. This may result in further tightening of particulate regulations for power plants and place an increased burden on the existing particulate control equipment. This paper evaluates the technologies available to comply with these new and more stringent particulate control requirements. To demonstrate the retrofit alternatives available to meet these new particulate emission requirements, two hypothetical case studies are discussed.

  13. Summary of efficiency testing of standard and high-capacity high-efficiency particulate air filters subjected to simulated tornado depressurization and explosive shock waves

    SciTech Connect

    Smith, P.R.; Gregory, W.S.

    1985-04-01

    Pressure transients in nuclear facility air cleaning systems can originate from natural phenomena such as tornadoes or from accident-induced explosive blast waves. This study was concerned with the effective efficiency of high-efficiency particulate air (HEPA) filters during pressure surges resulting from simulated tornado and explosion transients. The primary objective of the study was to examine filter efficiencies at pressure levels below the point of structural failure. Both standard and high-capacity 0.61-m by 0.61-m HEPA filters were evaluated, as were several 0.2-m by 0.2-m HEPA filters. For a particular manufacturer, the material release when subjected to tornado transients is the same (per unit area) for both the 0.2-m by 0.2-m and the 0.61-m by 0.61-m filters. For tornado transients, the material release was on the order of micrograms per square meter. When subjecting clean HEPA filters to simulated tornado transients with aerosol entrained in the pressure pulse, all filters tested showed a degradation of filter efficiency. For explosive transients, the material release from preloaded high-capacity filters was as much as 340 g. When preloaded high-capacity filters were subjected to shock waves approximately 50% of the structural limit level, 1 to 2 mg of particulate was released.

  14. Impact of wood combustion for secondary heating and recreational purposes on particulate air pollution in a suburb in Finland.

    PubMed

    Yli-Tuomi, Tarja; Siponen, Taina; Taimisto, R Pauliina; Aurela, Minna; Teinilä, Kimmo; Hillamo, Risto; Pekkanen, Juha; Salonen, Raimo O; Lanki, Timo

    2015-04-01

    Little information is available on the concentrations of ambient fine particles (PM2.5) in residential areas where wood combustion is common for recreational purposes and secondary heating. Further, the validity of central site measurements of PM2.5 as a measure of exposure is unclear. Therefore, outdoor PM2.5 samples were repeatedly collected at a central site and home outdoor locations from a panel of 29 residents in a suburb in Kuopio, Finland. Source apportionment results from the central site were used to estimate the contributions from local sources, including wood combustion, to PM2.5 and absorption coefficient (ABS) at home outdoor locations. Correlations between the central and home outdoor concentrations of PM2.5, ABS, and their local