Science.gov

Sample records for air pollutant impact

  1. Air pollution: impact and prevention.

    PubMed

    Sierra-Vargas, Martha Patricia; Teran, Luis M

    2012-10-01

    Air pollution is becoming a major health problem that affects millions of people worldwide. In support of this observation, the World Health Organization estimates that every year, 2.4 million people die because of the effects of air pollution on health. Mitigation strategies such as changes in diesel engine technology could result in fewer premature mortalities, as suggested by the US Environmental Protection Agency. This review: (i) discusses the impact of air pollution on respiratory disease; (ii) provides evidence that reducing air pollution may have a positive impact on the prevention of disease; and (iii) demonstrates the impact concerted polices may have on population health when governments take actions to reduce air pollution.

  2. Air pollution: Impact and prevention

    PubMed Central

    SIERRA-VARGAS, MARTHA PATRICIA; TERAN, LUIS M

    2012-01-01

    ABSTRACT Air pollution is becoming a major health problem that affects millions of people worldwide. In support of this observation, the World Health Organization estimates that every year, 2.4 million people die because of the effects of air pollution on health. Mitigation strategies such as changes in diesel engine technology could result in fewer premature mortalities, as suggested by the US Environmental Protection Agency. This review: (i) discusses the impact of air pollution on respiratory disease; (ii) provides evidence that reducing air pollution may have a positive impact on the prevention of disease; and (iii) demonstrates the impact concerted polices may have on population health when governments take actions to reduce air pollution. PMID:22726103

  3. Impact of air pollutants on athletic performance

    SciTech Connect

    Pierson, W.E. )

    1989-05-01

    Human controlled and observational studies both lead to the conclusion of air pollution adversely affecting athletic performance during training and competition. The dosage of various air pollutants during exercise is much higher due to the marked increase in ventilatory rate and concomitant nasal and oral breathing. This is particularly true for sulfur dioxide which is a highly water-soluble gas and is normally absorbed in the upper airway during nasal breathing. With heavy exercise, oral pharyngeal breathing is the predominant mode of breathing and much larger amounts of sulfur dioxide are delivered to the lower airway resulting in significant impact upon the lower respiratory tract. More recently, several controlled human studies have shown that a combination of exercise and air pollutants such as ozone (O3) or sulfur dioxides (SO2) cause a significant increase in bronchoconstriction and air flow obstruction when compared to the same exposure at rest. In strenuous athletic competition such as the Olympic Games where small increments of time often determine the ultimate success of athletes, the impact of air pollutants and subsequent adverse ventilatory changes can affect athletic performance. 62 references.

  4. Health impact of air pollution to children.

    PubMed

    Sram, Radim J; Binkova, Blanka; Dostal, Miroslav; Merkerova-Dostalova, Michaela; Libalova, Helena; Milcova, Alena; Rossner, Pavel; Rossnerova, Andrea; Schmuczerova, Jana; Svecova, Vlasta; Topinka, Jan; Votavova, Hana

    2013-08-01

    Health impact of air pollution to children was studied over the last twenty years in heavily polluted parts of the Czech Republic during. The research program (Teplice Program) analyzed these effects in the polluted district Teplice (North Bohemia) and control district Prachatice (Southern Bohemia). Study of pregnancy outcomes for newborns delivered between 1994 and 1998 demonstrated that increase in intrauterine growth retardation (IUGR) was associated with PM10 and c-PAHs exposure (carcinogenic polycyclic aromatic hydrocarbons) in the first month of gestation. Morbidity was followed in the cohort of newborns (N=1492) up to the age of 10years. Coal combustion in homes was associated with increased incidence of lower respiratory track illness and impaired early childhood skeletal growth up to the age of 3years. In preschool children, we observed the effect of increased concentrations of PM2.5 and PAHs on development of bronchitis. The Northern Moravia Region (Silesia) is characterized by high concentrations of c-PAHs due to industrial air pollution. Exposure to B[a]P (benzo[a]pyrene) in Ostrava-Radvanice is the highest in the EU. Children from this part of the city of Ostrava suffered higher incidence of acute respiratory diseases in the first year of life. Gene expression profiles in leukocytes of asthmatic children compared to children without asthma were evaluated in groups from Ostrava-Radvanice and Prachatice. The results suggest the distinct molecular phenotype of asthma bronchiale in children living in polluted Ostrava region compared to children living in Prachatice. The effect of exposure to air pollution to biomarkers in newborns was analyzed in Prague vs. Ceske Budejovice, two locations with different levels of pollution in winter season. B[a]P concentrations were higher in Ceske Budejovice. DNA adducts and micronuclei were also elevated in cord blood in Ceske Budejovice in comparison to Prague. Study of gene expression profiles in the cord blood showed

  5. Population Dynamics and Air Pollution: The Impact of Demographics on Health Impact Assessment of Air Pollution

    PubMed Central

    Bønløkke, Jakob; Brønnum-Hansen, Henrik

    2013-01-01

    Objective. To explore how three different assumptions on demographics affect the health impact of Danish emitted air pollution in Denmark from 2005 to 2030, with health impact modeled from 2005 to 2050. Methods. Modeled air pollution from Danish sources was used as exposure in a newly developed health impact assessment model, which models four major diseases and mortality causes in addition to all-cause mortality. The modeling was at the municipal level, which divides the approximately 5.5 M residents in Denmark into 99 municipalities. Three sets of demographic assumptions were used: (1) a static year 2005 population, (2) morbidity and mortality fixed at the year 2005 level, or (3) an expected development. Results. The health impact of air pollution was estimated at 672,000, 290,000, and 280,000 lost life years depending on demographic assumptions and the corresponding social costs at 430.4 M€, 317.5 M€, and 261.6 M€ through the modeled years 2005–2050. Conclusion. The modeled health impact of air pollution differed widely with the demographic assumptions, and thus demographics and assumptions on demographics played a key role in making health impact assessments on air pollution. PMID:23762084

  6. Review of air pollution and health impacts in Malaysia.

    PubMed

    Afroz, Rafia; Hassan, Mohd Nasir; Ibrahim, Noor Akma

    2003-06-01

    In the early days of abundant resources and minimal development pressures, little attention was paid to growing environmental concerns in Malaysia. The haze episodes in Southeast Asia in 1983, 1984, 1991, 1994, and 1997 imposed threats to the environmental management of Malaysia and increased awareness of the environment. As a consequence, the government established Malaysian Air Quality Guidelines, the Air Pollution Index, and the Haze Action Plan to improve air quality. Air quality monitoring is part of the initial strategy in the pollution prevention program in Malaysia. Review of air pollution in Malaysia is based on the reports of the air quality monitoring in several large cities in Malaysia, which cover air pollutants such as Carbon monoxide (CO), Sulphur Dioxide (SO2), Nitrogen Dioxide (NO2), Ozone (O3), and Suspended Particulate Matter (SPM). The results of the monitoring indicate that Suspended Particulate Matter (SPM) and Nitrogen Dioxide (NO2) are the predominant pollutants. Other pollutants such as CO, O(x), SO2, and Pb are also observed in several big cities in Malaysia. The air pollution comes mainly from land transportation, industrial emissions, and open burning sources. Among them, land transportation contributes the most to air pollution. This paper reviews the results of the ambient air quality monitoring and studies related to air pollution and health impacts.

  7. Air Pollution

    MedlinePlus

    ... tobacco smoke. How is air pollution linked to climate change? While climate change is a global process, it ... ozone levels are also a concern. Impacts of Climate Change on Human Health in the United States: A ...

  8. Climate Change, Air Pollution, and the Economics of Health Impacts

    NASA Astrophysics Data System (ADS)

    Reilly, J.; Yang, T.; Paltsev, S.; Wang, C.; Prinn, R.; Sarofim, M.

    2003-12-01

    Climate change and air pollution are intricately linked. The distinction between greenhouse substances and other air pollutants is resolved at least for the time being in the context of international negotiations on climate policy through the identification of CO2, CH4, N2O, SF6 and the per- and hydro- fluorocarbons as substances targeted for control. Many of the traditional air pollutant emissions including for example CO, NMVOCs, NOx, SO2, aerosols, and NH3 also directly or indirectly affect the radiative balance of the atmosphere. Among both sets of gases are precursors of and contributors to pollutants such as tropopospheric ozone, itself a strong greenhouse gas, particulate matter, and other pollutants that affect human health. Fossil fuel combustion, production, or transportation is a significant source for many of these substances. Climate policy can thus affect traditional air pollution or air pollution policy can affect climate. Health effects of acute or chronic exposure to air pollution include increased asthma, lung cancer, heart disease and bronchitis among others. These, in turn, redirect resources in the economy toward medical expenditures or result in lost labor or non-labor time with consequent effects on economic activity, itself producing a potential feedback on emissions levels. Study of these effects ultimately requires a fully coupled earth system model. Toward that end we develop an approach for introducing air pollution health impacts into the Emissions Prediction and Policy Analysis (EPPA) model, a component of the MIT Integrated Global Systems Model (IGSM) a coupled economics-chemistry-atmosphere-ocean-terrestrial biosphere model of earth systems including an air pollution model resolving the urban scale. This preliminary examination allows us to consider how climate policy affects air pollution and consequent health effects, and to study the potential impacts of air pollution policy on climate. The novel contribution is the effort to

  9. Recognizing the impact of ambient air pollution on skin health.

    PubMed

    Mancebo, S E; Wang, S Q

    2015-12-01

    Ambient air pollution is a known public health hazard that negatively impacts non-cutaneous organs; however, our knowledge regarding the effects on skin remains limited. Current scientific evidence suggests there are four mechanisms by which ambient air pollutants cause adverse effects on skin health: (i) generation of free radicals, (ii) induction of inflammatory cascade and subsequent impairment of skin barrier, (iii) activation of the aryl hydrocarbon receptor (AhR) and (iv) alterations to skin microflora. In this review, we provide a comprehensive overview on ambient air pollutants and their relevant sources, and highlight current evidence of the effects on skin.

  10. Air Pollution

    MedlinePlus

    Air pollution is a mixture of solid particles and gases in the air. Car emissions, chemicals from factories, ... Ozone, a gas, is a major part of air pollution in cities. When ozone forms air pollution, it's ...

  11. Impact of traffic-related air pollution on health.

    PubMed

    Jakubiak-Lasocka, J; Lasocki, J; Siekmeier, R; Chłopek, Z

    2015-01-01

    Road transport contributes significantly to air quality problems through vehicle emissions, which have various detrimental impacts on public health and the environment. The aim of this study was to assess the impact of traffic-related air pollution on health of Warsaw citizens, following the basics of the Health Impact Assessment (HIA) method, and evaluate its social cost. PM10 was chosen as an indicator of traffic-related air pollution. Exposure-response functions between air pollution and health impacts were employed. The value of statistical life (VSL) approach was used for the estimation of the cost of mortality attributable to traffic-related air pollution. Costs of hospitalizations and restricted activity days were assessed basing on the cost of illness (COI) method. According to the calculations, about 827 Warsaw citizens die in a year as a result of traffic-related air pollution. Also, about 566 and 250 hospital admissions due to cardiovascular and respiratory diseases, respectively, and more than 128,453 restricted activity days can be attributed to the traffic emissions. From the social perspective, these losses generate the cost of 1,604 million PLN (1 EUR-approx. 4.2 PLN). This cost is very high and, therefore, more attention should be paid for the integrated environmental health policy.

  12. Impact of traffic-related air pollution on health.

    PubMed

    Jakubiak-Lasocka, J; Lasocki, J; Siekmeier, R; Chłopek, Z

    2015-01-01

    Road transport contributes significantly to air quality problems through vehicle emissions, which have various detrimental impacts on public health and the environment. The aim of this study was to assess the impact of traffic-related air pollution on health of Warsaw citizens, following the basics of the Health Impact Assessment (HIA) method, and evaluate its social cost. PM10 was chosen as an indicator of traffic-related air pollution. Exposure-response functions between air pollution and health impacts were employed. The value of statistical life (VSL) approach was used for the estimation of the cost of mortality attributable to traffic-related air pollution. Costs of hospitalizations and restricted activity days were assessed basing on the cost of illness (COI) method. According to the calculations, about 827 Warsaw citizens die in a year as a result of traffic-related air pollution. Also, about 566 and 250 hospital admissions due to cardiovascular and respiratory diseases, respectively, and more than 128,453 restricted activity days can be attributed to the traffic emissions. From the social perspective, these losses generate the cost of 1,604 million PLN (1 EUR-approx. 4.2 PLN). This cost is very high and, therefore, more attention should be paid for the integrated environmental health policy. PMID:25310941

  13. Acute Health Impact of Air Pollution in China

    NASA Astrophysics Data System (ADS)

    Feng, T.; Zhao, Y.; Zheng, M.

    2014-12-01

    Air pollution not only has long term health impact, but can affect health through acute exposure. This paper, using air pollution index (API) as overall evaluation of air quality, blood pressure and vital capacity as health outcomes, focuses on the acute health impact of air pollution in China. Current result suggests that after controlling smoking history, occupational exposure, income and education, API is positively associated with blood pressure and negatively associated with vital capacity. The associations became stronger for people with hypertension or pulmonary functional diseases, which indicates that these people are more sensitive to air pollution. Among three pollutants which API measures, that is inhalable particles (PM10), sulfur dioxide (SO2) and nitrogen dioxide (NO2), PM10 is most statistically associated with blood pressure increase and vital capacity decrease. Further study will focusing on the following two questions. The first question is how various time lags affect the associations among API, blood pressure and vital capacity. The second question is how differently people in various cohorts reacts to acute exposure to air pollution. The differences in reactions of blood pressure and vital capacity between people in urban and rural areas, genders, various age cohorts, distinct income and education groups will be further studied.

  14. Overview of Megacity Air Pollutant Emissions and Impacts

    NASA Astrophysics Data System (ADS)

    Kolb, C. E.

    2013-05-01

    The urban metabolism that characterizes major cities consumes very large qualities of humanly produced and/or processed food, fuel, water, electricity, construction materials and manufactured goods, as well as, naturally provided sunlight, precipitation and atmospheric oxygen. The resulting urban respiration exhalations add large quantities of trace gas and particulate matter pollutants to urban atmospheres. Key classes of urban primary air pollutants and their sources will be reviewed and important secondary pollutants identified. The impacts of these pollutants on urban and downwind regional inhabitants, ecosystems, and climate will be discussed. Challenges in quantifying the temporally and spatially resolved urban air pollutant emissions and secondary pollutant production rates will be identified and possible measurement strategies evaluated.

  15. Disparities in the Impact of Air Pollution

    MedlinePlus

    ... because of factors ranging from racism to class bias to housing market dynamics and land costs. For ... pollution in a 2012 study. However, the different racial/ethnic and income groups were often breathing very ...

  16. Acute Impact of Hourly Ambient Air Pollution on Preterm Birth

    PubMed Central

    Li, Shanshan; Guo, Yuming; Williams, Gail

    2016-01-01

    Background: Preterm birth is a major perinatal health problem, but factors leading to it are still not completely understood. Objectives: Our goal was to identify the relation between acute increase in ambient air pollution in a few hours before onset of labor and the risk of preterm birth. Methods: We collected registered birth outcome data and hourly ambient air pollution measurements during 2009‒2013 in Brisbane, Australia. Using a time-stratified case-crossover design and conditional logistic regression models with natural cubic splines, we assessed the shape of air pollution-preterm birth curve, after controlling for potential confounders. We also examined the effect modification of other factors. Results: The association between air pollution [nitrogen dioxide (NO2), sulfur dioxide (SO2), and carbon monoxide (CO)] and preterm birth was nonlinear. Threshold concentrations for the mean of 0‒24 hr NO2, 24‒48 hr SO2, and 24‒48 hr CO before onset of labor were 7.6 parts per billion (ppb), 3.8 ppb, and 162.5 ppb, respectively. Increases in air pollution concentrations above thresholds were associated with increased risks of preterm birth. The odds ratios of preterm birth at the 95th percentile of NO2, SO2, and CO against the thresholds were 1.17 (95% CI: 1.08, 1.27), 1.01 (95% CI: 0.99, 1.04), and 1.18 (95% CI: 1.06, 1.32), respectively. The associations were modified by demographic factors, such as maternal smoking and socioeconomic status. Conclusion: Acute increases in ambient air pollution concentrations above certain levels before onset of labor may stimulate preterm birth. Citation: Li S, Guo Y, Williams G. 2016. Acute impact of hourly ambient air pollution on preterm birth. Environ Health Perspect 124:1623–1629; http://dx.doi.org/10.1289/EHP200 PMID:27128028

  17. Regional and Global Impacts of Megacity Air Pollution in China

    NASA Astrophysics Data System (ADS)

    Zhang, Renyi

    2014-05-01

    Air quality has deteriorated in many megacities of China because of their rapid economic developments. For example, as the world's second largest economy, China has experienced severe air pollution, with aerosols or fine particulate matter less than 2.5 micrometers (PM2.5) reaching unprecedented high levels across many cities in recent winters. In addition to the impacts of aerosols on air chemistry, visibility, and human health, intense aerosol pollution is believed to exert profound impacts on the regional and global atmosphere and climate. In the first part of the talk, perspectives are provided on formation and transformation of haze in China. In the second part the long-term impacts of aerosols on precipitation and lightning over a megacity area in China will be presented, on the basis of atmospheric observations and simulations using a cloud-resolving WRF model. Our results reveal that elevated aerosol loading suppresses light and moderate precipitation, but enhances heavy precipitation. Also, we demonstrate climatically modulated mid-latitude cyclones by Asian pollution over past three decades, using a novel hierarchical modeling approach and observational analysis. Our results unambiguously reveal a large impact of the Asian pollutant outflows on the global general circulation and climate.

  18. Recent climate and air pollution impacts on Asian agriculture

    NASA Astrophysics Data System (ADS)

    Burney, J. A.

    2012-12-01

    The impacts of climate change on agricultural production have important ramifications for food security and policy from local to global scales. Recent research investigating these impacts has focused on the roles of temperature and precipitation on yield. However, regional climate changes are due to both global emissions of long-lived greenhouse gases (LLGHGs) as well as local emissions of aerosols and other short-lived climate pollutants (SLCPs). SLCPs can impact plant growth both directly (e.g., ozone) and indirectly, by altering regional temperature, precipitation, and surface radiation. Existing estimates of the effects of SLCPs on crop yields have been drawn from field experiments and cultivar-specific dose-response relationships; no research has as yet examined the historic role of the direct and the indirect effects of SLCPs on yields. I will present results from a statistical model of the impact of climate and air pollution on wheat and rice yields in Asia over the past 3 decades (1980-2008). This builds on work we completed for India, which was the first such analysis combining the effects of climate, aerosols, and tropospheric ozone into a statistical model. Yields across Asia in 2008 were lower for wheat and rice than they otherwise would have been, absent climate and pollutant emissions trends. Most of these losses were due to SLCPs as opposed to longer-run temperature and precipitation trends, indicating that gains from addressing regional air pollution could significantly help in offsetting expected future losses due to rising temperatures and precipitation changes. This new insight into the relative importance of these climate and air pollution factors can help inform both climate policy discussions and agricultural adaptation efforts in this critical food security region.

  19. Air Pollution.

    ERIC Educational Resources Information Center

    Gilpin, Alan

    A summary of one of our most pressing environmental problems, air pollution, is offered in this book by the Director of Air Pollution Control for the Queensland (Australia) State Government. Discussion of the subject is not restricted to Queensland or Australian problems and policies, however, but includes analysis of air pollution the world over.…

  20. Air Pollution.

    ERIC Educational Resources Information Center

    Fox, Donald L.

    1989-01-01

    Materials related to air pollution are reviewed for the period January 1987, to October 1988. The topics are pollution monitoring, air pollution, and environmental chemistry. The organization consists of two major analytical divisions: (1) gaseous methods; and (2) aerosol and particulate methods. (MVL)

  1. Characterizing climate change impacts on human exposures to air pollutants

    EPA Science Inventory

    Human exposures to air pollutants such as ozone (O3) have the potential to be altered by changes in climate through multiple factors that drive population exposures, including: ambient pollutant concentrations, human activity patterns, population sizes and distributions, and hous...

  2. Health impact assessment of air pollution in Valladolid, Spain

    PubMed Central

    Cárdaba Arranz, Mario; Muñoz Moreno, María Fe; Armentia Medina, Alicia; Alonso Capitán, Margarita; Carreras Vaquer, Fernando; Almaraz Gómez, Ana

    2014-01-01

    Objective To estimate the attributable and targeted avoidable deaths (ADs; TADs) of outdoor air pollution by ambient particulate matter (PM10), PM2.5 and O3 according to specific WHO methodology. Design Health impact assessment. Setting City of Valladolid, Spain (around 300 000 residents). Data sources Demographics; mortality; pollutant concentrations collected 1999–2008. Main outcome measures Attributable fractions; ADs and TADs per year for 1999–2008. Results Higher TADs estimates (shown here) were obtained when assuming as ‘target’ concentrations WHO Air Quality Guidelines instead of Directive 2008/50/EC. ADs are considered relative to pollutant background levels. All-cause mortality associated to PM10 (all ages): 52 ADs (95% CI 39 to 64); 31 TADs (95% CI 24 to 39).All-cause mortality associated to PM10 (<5 years): 0 ADs (95% CI 0 to 1); 0 TADs (95% CI 0 to 1). All-cause mortality associated to PM2.5 (>30 years): 326 ADs (95% CI 217 to 422); 231 TADs (95% CI 153 to 301). Cardiopulmonary and lung cancer mortality associated to PM2.5 (>30 years): ▸ Cardiopulmonary: 186 ADs (95% CI 74 to 280); 94 TADs (95% CI 36 to 148). ▸ Lung cancer : 51 ADs (95% CI 21 to 73); 27 TADs (95% CI 10 to 41).All-cause, respiratory and cardiovascular mortality associated to O3 (all ages): ▸ All-cause: 52ADs (95% CI 25 to 77) ; 31 TADs (95% CI 15 to 45). ▸ Respiratory: 5ADs (95% CI −2 to 13) ; 3 TADs (95% CI −1 to 8). ▸ Cardiovascular: 30 ADs (95% CI 8 to 51) ; 17 TADs (95% CI 5 to 30). Negative estimates which should be read as zero were obtained when pollutant concentrations were below counterfactuals or assumed risk coefficients were below one. Conclusions Our estimates suggest a not negligible negative impact on mortality of outdoor air pollution. The implementation of WHO methodology provides critical information to distinguish an improvement range in air pollution control. PMID:25326212

  3. The impact of winter heating on air pollution in China.

    PubMed

    Xiao, Qingyang; Ma, Zongwei; Li, Shenshen; Liu, Yang

    2015-01-01

    Fossil-fuel combustion related winter heating has become a major air quality and public health concern in northern China recently. We analyzed the impact of winter heating on aerosol loadings over China using the MODIS-Aqua Collection 6 aerosol product from 2004-2012. Absolute humidity (AH) and planetary boundary layer height (PBL) -adjusted aerosol optical depth (AOD*) was constructed to reflect ground-level PM2.5 concentrations. GIS analysis, standard statistical tests, and statistical modeling indicate that winter heating is an important factor causing increased PM2.5 levels in more than three-quarters of central and eastern China. The heating season AOD* was more than five times higher as the non-heating season AOD*, and the increase in AOD* in the heating areas was greater than in the non-heating areas. Finally, central heating tend to contribute less to air pollution relative to other means of household heating.

  4. Health Impacts of Air Pollution Under a Changing Climate

    NASA Astrophysics Data System (ADS)

    Kinney, P. L.; Knowlton, K.; Rosenthal, J.; Hogrefe, C.; Rosenzweig, C.; Solecki, W.

    2003-12-01

    Outdoor air pollution remains a serious public health problem in cities throughout the world. In the US, despite considerable progress in reducing emissions over the past 30 years, as many as 50,000 premature deaths each year have been attributed to airborne particulate matter alone. Tropospheric ozone has been associated with increased daily mortality and hospitalization rates, and with a variety of related respiratory problems. Weather plays an important role in the transport and transformation of air pollution. In particular, a warming climate is likely to promote the atmospheric reactions that are responsible for ozone and secondary aerosol production, as well as increasing emissions of many of their volatile precursors. Increasingly, efforts to address urban air pollution problems throughout the world will be complicated by trends and variability in climate. The New York Climate and Health Project (NYCHP) is developing and applying tools for integrated assessment of health impacts from air pollution and heat associated with climate and land-use changes in the New York City metropolitan region. Global climate change is modeled over the 21st century based on the Intergovernmental Panel on Climate Change (IPCC) A2 greenhouse gas emissions scenario using the Goddard Institute for Space Studies (GISS) Global Atmosphere-Ocean Model (GCM). Meteorological fields are downscaled to a 36 km grid over the eastern US using the Penn State/NCAR MM5 mesoscale meteorological model. MM5 results are then used as input to the Community Multiscale Air Quality (CMAQ) model for simulating air quality, with emissions based on the Sparse Matrix Operator Kernel Emissions Modeling System (SMOKE). To date, simulations have been performed for five summer seasons each during the 1990s and the 2050s. An evaluation of the present-day climate and air quality predictions indicates that the modeling system largely captures the observed climate-ozone system. Analysis of future-year predictions

  5. The Impact of Winter Heating on Air Pollution in China

    PubMed Central

    Xiao, Qingyang; Ma, Zongwei; Li, Shenshen; Liu, Yang

    2015-01-01

    Fossil-fuel combustion related winter heating has become a major air quality and public health concern in northern China recently. We analyzed the impact of winter heating on aerosol loadings over China using the MODIS-Aqua Collection 6 aerosol product from 2004–2012. Absolute humidity (AH) and planetary boundary layer height (PBL) -adjusted aerosol optical depth (AOD*) was constructed to reflect ground-level PM2.5 concentrations. GIS analysis, standard statistical tests, and statistical modeling indicate that winter heating is an important factor causing increased PM2.5 levels in more than three-quarters of central and eastern China. The heating season AOD* was more than five times higher as the non-heating season AOD*, and the increase in AOD* in the heating areas was greater than in the non-heating areas. Finally, central heating tend to contribute less to air pollution relative to other means of household heating. PMID:25629878

  6. Air Pollution.

    EPA Science Inventory

    Air quality is affected by many types of pollutants that are emitted from various sources, including stationary and mobile. These sources release both criteria and hazardous air pollutants, which cause health effects, ecological harm, and material damage. They are generally categ...

  7. EDITORIAL: Global impacts of particulate matter air pollution

    NASA Astrophysics Data System (ADS)

    Bell, Michelle L.; Holloway, Tracey

    2007-10-01

    sulfate aerosol exposure (both domestically and on downwind continents), while presenting a new metric to quantify the impact of distance on health-relevant exposure: the 'influence potential'. Extending the scope of aerosol impacts from health to climate, Bond outlines the barriers to including aerosols in climate agreements, and proposes solutions to facilitate the integration of this key climate species in a policy context. Together, the articles scope out the state-of-the-science with respect to key issues in international air pollution. All four studies advance understanding the human health implications of air pollution, by drawing from worldwide data sources and considering a global perspective on key processes and impacts. To extend exposure estimates, like those of van Vliet and Kinney or Liu and Mauzerall, and to evaluate the induced physiological response of PM exposure, typically existing dose response relationships are applied. Unfortunately, the common practice of applying health response estimates from one location to another is problematic. In addition to potential differences in the chemical composition of particles, the underlying populations may differ with respect to their baseline health status, occupational exposures, age and gender distribution, and behavioral factors such as nutrition and smoking habits. Health response to a given stressor is affected by the quality of and access to health care, which varies widely, and can be almost non-existent in some regions of developing countries. Further, exposure to ambient PM is affected by the relative fraction of time spent in different settings (e.g., work, home, outside, in transit), the activities that affect ventilation rate (e.g., exercising heavily versus sitting still), and housing characteristics that alter the penetration of outdoor particles into indoor environments (e.g., housing materials, windows, air conditioning). To make the most of exposure estimates, the 'missing link' is the

  8. [Impact of air pollution on the development of asthma].

    PubMed

    Sánchez, Jorge; Caraballo, Luis

    2015-01-01

    Air pollution affects the origin and evolution of respiratory diseases. The increased frequency of asthma in recent years has been associated with growth air pollutants and small particles produced from the combustion of petroleum or cigarette smoke. Some mechanisms of how these contaminants can influence asthma and other allergic diseases are known: 1) acting as irritating on alveolar epithelial cells, 2) actin as adjuvant for allergens inflammation, 3) and epigenetic mechanisms. In this review, we discuss the pathophysiological mechanisms by which air pollutants become risk factors for the development of asthma and other allergic diseases.

  9. Recent climate and air pollution impacts on Indian agriculture.

    PubMed

    Burney, Jennifer; Ramanathan, V

    2014-11-18

    Recent research on the agricultural impacts of climate change has primarily focused on the roles of temperature and precipitation. These studies show that India has already been negatively affected by recent climate trends. However, anthropogenic climate changes are a result of both global emissions of long-lived greenhouse gases (LLGHGs) and other short-lived climate pollutants (SLCPs). Two potent SLCPs, tropospheric ozone and black carbon, have direct effects on crop yields beyond their indirect effects through climate; emissions of black carbon and ozone precursors have risen dramatically in India over the past three decades. Here, to our knowledge for the first time, we present results of the combined effects of climate change and the direct effects of SLCPs on wheat and rice yields in India from 1980 to 2010. Our statistical model suggests that, averaged over India, yields in 2010 were up to 36% lower for wheat than they otherwise would have been, absent climate and pollutant emissions trends, with some densely populated states experiencing 50% relative yield losses. [Our point estimates for rice (-20%) are similarly large, but not statistically significant.] Upper-bound estimates suggest that an overwhelming fraction (90%) of these losses is due to the direct effects of SLCPs. Gains from addressing regional air pollution could thus counter expected future yield losses resulting from direct climate change effects of LLGHGs. PMID:25368149

  10. Recent climate and air pollution impacts on Indian agriculture.

    PubMed

    Burney, Jennifer; Ramanathan, V

    2014-11-18

    Recent research on the agricultural impacts of climate change has primarily focused on the roles of temperature and precipitation. These studies show that India has already been negatively affected by recent climate trends. However, anthropogenic climate changes are a result of both global emissions of long-lived greenhouse gases (LLGHGs) and other short-lived climate pollutants (SLCPs). Two potent SLCPs, tropospheric ozone and black carbon, have direct effects on crop yields beyond their indirect effects through climate; emissions of black carbon and ozone precursors have risen dramatically in India over the past three decades. Here, to our knowledge for the first time, we present results of the combined effects of climate change and the direct effects of SLCPs on wheat and rice yields in India from 1980 to 2010. Our statistical model suggests that, averaged over India, yields in 2010 were up to 36% lower for wheat than they otherwise would have been, absent climate and pollutant emissions trends, with some densely populated states experiencing 50% relative yield losses. [Our point estimates for rice (-20%) are similarly large, but not statistically significant.] Upper-bound estimates suggest that an overwhelming fraction (90%) of these losses is due to the direct effects of SLCPs. Gains from addressing regional air pollution could thus counter expected future yield losses resulting from direct climate change effects of LLGHGs.

  11. Recent climate and air pollution impacts on Indian agriculture

    PubMed Central

    Burney, Jennifer; Ramanathan, V.

    2014-01-01

    Recent research on the agricultural impacts of climate change has primarily focused on the roles of temperature and precipitation. These studies show that India has already been negatively affected by recent climate trends. However, anthropogenic climate changes are a result of both global emissions of long-lived greenhouse gases (LLGHGs) and other short-lived climate pollutants (SLCPs). Two potent SLCPs, tropospheric ozone and black carbon, have direct effects on crop yields beyond their indirect effects through climate; emissions of black carbon and ozone precursors have risen dramatically in India over the past three decades. Here, to our knowledge for the first time, we present results of the combined effects of climate change and the direct effects of SLCPs on wheat and rice yields in India from 1980 to 2010. Our statistical model suggests that, averaged over India, yields in 2010 were up to 36% lower for wheat than they otherwise would have been, absent climate and pollutant emissions trends, with some densely populated states experiencing 50% relative yield losses. [Our point estimates for rice (−20%) are similarly large, but not statistically significant.] Upper-bound estimates suggest that an overwhelming fraction (90%) of these losses is due to the direct effects of SLCPs. Gains from addressing regional air pollution could thus counter expected future yield losses resulting from direct climate change effects of LLGHGs. PMID:25368149

  12. Impacts of Air Pollution on Health in Eastern China: Implications for future air pollution and energy policies

    NASA Astrophysics Data System (ADS)

    Wang, X.; Mauzerall, D.

    2004-12-01

    Our objective is to establish the link between energy consumption and technologies, air pollution and resulting impacts on public health in eastern China. We quantify the impacts that air pollution in the Shandong region of eastern China has on public health in 2000 and quantify the benefits in improved air quality and health that could be obtained by 2020, relative to business-as-usual, through the implementation of new energy technology. We first develop a highly-resolved emission inventory for the year 2000 for the Shandong region of China including emissions from large point, area, mobile and biogenic sources. We use the Sparse Matrix Operator Kernel Emissions Modeling System (SMOKE) to process emissions from this inventory for use in the Community Multi-scale Air Quality modeling system (CMAQ) which we drive with the NCAR/PSU MM5 meso-scale meteorology model. We evaluate the inventory by comparing CMAQ results with available measurements of PM10 and SO2 from air pollution indices (APIs) reported in various Chinese municipalities during 2002-2004. We use epidemiological dose-response functions to quantify health impacts and values of a statistical life (VSL) and years-of-life-lost (YLL) to establish a range for the monetary value of these impacts. To examine health impacts and their monetary value, we focus explicitly on Zaozhuang, a coal-intensive city in the Shandong region of eastern China, and quantify the mortalities and morbidities resulting from air pollutants emitted from this city in 2000, and in 2020 using business-as-usual, best-available control technology, and advanced coal gasification technology scenarios. In all scenarios most health damages arise from exposure to particulate matter. We find that total health damages due to year 2000 anthropogenic emissions from Zaozhuang accounted for 4-10% of its GDP. If all health damages resulting from coal use were internalized in the market price of coal, the year 2000 price would have doubled. With no new

  13. Air Pollution.

    ERIC Educational Resources Information Center

    Scorer, Richard S.

    The purpose of this book is to describe the basic mechanisms whereby pollution is transported and diffused in the atmosphere. It is designed to give practitioners an understanding of basic mechanics and physics so they may have a correct basis on which to formulate their decisions related to practical air pollution control problems. Since many…

  14. Impact of air pollution on vegetation near the Columbia Generating Station - Wisconsin power plant impact study

    SciTech Connect

    Tibbitts, T.W.; Will-Wolf, S.; Karnowsky, D.F.; Olszyk, D.M.

    1982-06-01

    The impact of air pollution from the coal-fired Columbia Generating Station upon vegetation was investigated. Air monitoring of 03 and 02 documented levels that occurred before and with operation of the generating station. Field sampling of alfalfa, lichens, and white pines was undertaken before and after initiation of generating station operations. Controlled environmental exposures were undertaken with separate cultivars of crop species grown in the vicinity of the generating station. Alfalfa, carrots, mint, peas, beans, and trembling aspen were exposed to SO2 and O3 to establish minimum threshold pollutant levels for injury from these pollutants.

  15. EDITORIAL: Global impacts of particulate matter air pollution

    NASA Astrophysics Data System (ADS)

    Bell, Michelle L.; Holloway, Tracey

    2007-10-01

    sulfate aerosol exposure (both domestically and on downwind continents), while presenting a new metric to quantify the impact of distance on health-relevant exposure: the 'influence potential'. Extending the scope of aerosol impacts from health to climate, Bond outlines the barriers to including aerosols in climate agreements, and proposes solutions to facilitate the integration of this key climate species in a policy context. Together, the articles scope out the state-of-the-science with respect to key issues in international air pollution. All four studies advance understanding the human health implications of air pollution, by drawing from worldwide data sources and considering a global perspective on key processes and impacts. To extend exposure estimates, like those of van Vliet and Kinney or Liu and Mauzerall, and to evaluate the induced physiological response of PM exposure, typically existing dose response relationships are applied. Unfortunately, the common practice of applying health response estimates from one location to another is problematic. In addition to potential differences in the chemical composition of particles, the underlying populations may differ with respect to their baseline health status, occupational exposures, age and gender distribution, and behavioral factors such as nutrition and smoking habits. Health response to a given stressor is affected by the quality of and access to health care, which varies widely, and can be almost non-existent in some regions of developing countries. Further, exposure to ambient PM is affected by the relative fraction of time spent in different settings (e.g., work, home, outside, in transit), the activities that affect ventilation rate (e.g., exercising heavily versus sitting still), and housing characteristics that alter the penetration of outdoor particles into indoor environments (e.g., housing materials, windows, air conditioning). To make the most of exposure estimates, the 'missing link' is the

  16. Evaluating impacts of air pollution in China on public health: Implications for future air pollution and energy policies

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoping; Mauzerall, Denise L.

    Our objective is to establish the link between energy consumption and technologies, air pollution concentrations, and resulting impacts on public health in eastern China. We use Zaozhuang, a city in eastern China heavily dependent on coal, as a case study to quantify the impacts that air pollution in eastern China had on public health in 2000 and the benefits in improved air quality and health that could be obtained by 2020, relative to business-as-usual (BAU), through the implementation of best available emission control technology (BACT) and advanced coal gasification technologies (ACGT). We use an integrated assessment approach, utilizing state-of-the-science air quality and meteorological models, engineering, epidemiology, and economics, to achieve this objective. We find that total health damages due to year 2000 anthropogenic emissions from Zaozhuang, using the "willingness-to-pay" metric, was equivalent to 10% of Zaozhuang's GDP. If all health damages resulting from coal use were internalized in the market price of coal, the year 2000 price would have more than tripled. With no new air pollution controls implemented between 2000 and 2020 but with projected increases in energy use, we estimate health damages from air pollution exposure to be equivalent to 16% of Zaozhuang's projected 2020 GDP. BACT and ACGT (with only 24% penetration in Zaozhuang and providing 2% of energy needs in three surrounding municipalities) could reduce the potential health damage of air pollution in 2020 to 13% and 8% of projected GDP, respectively. Benefits to public health, of substantial monetary value, can be achieved through the use of BACT; health benefits from the use of ACGT could be even larger. Despite significant uncertainty associated with each element of the integrated assessment approach, we demonstrate that substantial benefits to public health could be achieved in this region of eastern China through the use of additional pollution controls and particularly from the

  17. The health burden of pollution: the impact of prenatal exposure to air pollutants

    PubMed Central

    Vieira, Sandra E

    2015-01-01

    Exposure to atmospheric pollutants in both open and closed environments is a major cause of morbidity and mortality that may be both controlled and minimized. Despite growing evidence, several controversies and disagreements exist among the studies that have analyzed the effects of prenatal pollutant exposure. This review article aims to analyze primary scientific evidence of the effects of air pollution during pregnancy and the impact of these effects on the fetus, infant health, and in particular, the respiratory system. We performed a review of articles from the PubMed and Web of Science databases that were published in English within the past 5 years, particularly those related to birth cohorts that began in pregnancy with follow-up until the first years of life. The largest reported effects are associated with prenatal exposure to particulate matter, nitrogen dioxide, and tobacco smoke. The primary effects affect birth weight and other parameters of fetal biometry. There is strong evidence regarding the impact of pollutants on morbidity secondary to respiratory problems. Growing evidence links maternal smoking to childhood asthma and wheezing. The role of passive maternal smoking is less clear. Great heterogeneity exists among studies. There is a need for additional studies on birth cohorts to monitor the relationship between the exposure of pregnant women to pollutants and their children’s progress during the first years of life. PMID:26089661

  18. The health burden of pollution: the impact of prenatal exposure to air pollutants.

    PubMed

    Vieira, Sandra E

    2015-01-01

    Exposure to atmospheric pollutants in both open and closed environments is a major cause of morbidity and mortality that may be both controlled and minimized. Despite growing evidence, several controversies and disagreements exist among the studies that have analyzed the effects of prenatal pollutant exposure. This review article aims to analyze primary scientific evidence of the effects of air pollution during pregnancy and the impact of these effects on the fetus, infant health, and in particular, the respiratory system. We performed a review of articles from the PubMed and Web of Science databases that were published in English within the past 5 years, particularly those related to birth cohorts that began in pregnancy with follow-up until the first years of life. The largest reported effects are associated with prenatal exposure to particulate matter, nitrogen dioxide, and tobacco smoke. The primary effects affect birth weight and other parameters of fetal biometry. There is strong evidence regarding the impact of pollutants on morbidity secondary to respiratory problems. Growing evidence links maternal smoking to childhood asthma and wheezing. The role of passive maternal smoking is less clear. Great heterogeneity exists among studies. There is a need for additional studies on birth cohorts to monitor the relationship between the exposure of pregnant women to pollutants and their children's progress during the first years of life. PMID:26089661

  19. MODELING THE IMPACT OF AIR POLLUTION ON GLOBAL CLIMATE CHANGE

    EPA Science Inventory

    Tropospheric ozone (O3) and aerosols have major effects on climate and are the two air pollutants of most concern in the developed world. O3 is a major greenhouse gas (GHG) and light-absorbing aerosols such as black carbon (BC) also contribute to global warm...

  20. Using a choice experiment to measure the environmental costs of air pollution impacts in Seoul.

    PubMed

    Yoo, Seung-Hoon; Kwak, Seung-Jun; Lee, Joo-Suk

    2008-01-01

    Air pollution, a by-product of economic growth, has been incurring extensive environmental costs in Seoul, Korea. Unfortunately, air pollution impacts are not treated as a commercial item, and thus it is difficult to measure the environmental costs arising from air pollution. There is an imminent need to find a way to measure air pollution impacts so that appropriate actions can be taken to control air pollution. Therefore, this study attempts to apply a choice experiment to quantifying the environmental costs of four air pollution impacts (mortality, morbidity, soiling damage, and poor visibility), using a specific case study of Seoul. We consider the trade-offs between price and attributes of air pollution impacts for selecting a preferred alternative and derive the marginal willingness to pay (WTP) estimate for each attribute. According to the results, the households' monthly WTP for a 10% reduction in the concentrations of major pollutants in Seoul was found to be approximately 5494 Korean won (USD 4.6) and the total annual WTP for the entire population of Seoul was about 203.4 billion Korean won (USD 169.5 million). This study is expected to provide policy-makers with useful information for evaluating and planning environmental policies relating specifically to air pollution.

  1. The burden of air pollution: impacts among racial minorities.

    PubMed Central

    Gwynn, R C; Thurston, G D

    2001-01-01

    Various epidemiologic investigations have shown that ambient air pollution levels are associated with acute increases in hospital admissions and mortality in the United States and abroad. The objectives of this investigation were a) to determine if racial minorities are more adversely affected by ambient air pollution than their white counterparts and b) to assess the contribution of socioeconomic status to any observed racial differences in pollution effect. Time-series regression methods were conducted to investigate these hypotheses for daily respiratory hospital admissions in New York City, New York. Pollutants considered included mean daily levels of particulate matter with a mass median aerodynamic diameter less than 10 microm (PM(10), ozone (O3), strong aerosol acidity (H+), and sulfates (SO4(2). The relative risk for respiratory hospital admission was calculated for each pollutant for a maximum minus mean increment in mean daily pollutant concentration. The greatest difference between the white and nonwhite subgroups was observed for O(3), where the white relative risk (RR) was 1.032 [95% confidence interval (CI): 0.977-1.089] and the nonwhite RR was 1.122 (95%CI: 1.074-1.172). Although not statistically different from each other, the various pollutants' RR estimates for the Hispanic nonwhite category in New York City were generally larger in magnitude than those for the non-Hispanic white group. When these analyses incorporated differences in the underlying respiratory hospitalization rates across races (that for nonwhites, was roughly twice that for whites), the disparities in attributable risks from pollution (in terms of excess admissions per day per million persons) were even larger for nonwhites versus whites. However, when insurance status was used as an indicator of socioeconomic/health coverage status, higher RRs were indicated for the poor/working poor (i.e., those on Medicaid and the uninsured) than for those who were economically better off (i

  2. Air Pollution

    PubMed Central

    Clifton, Marjorie

    1964-01-01

    Dr Marjorie Clifton describes the classification of gaseous and nongaseous constituents of air pollution and then outlines the methods of measuring these. The National Survey embraced 150 towns of all sizes throughout England and Wales and provided data on smoke and sulphur dioxide in relation to climate, topography, industrialization, population density, fuel utilization and urban development. Dr W C Turner discusses the relationship between air pollution and mortality from respiratory conditions, and particularly the incidence of chronic bronchitis. He postulates a theory that such respiratory conditions arise as an allergy to the spores of certain moulds, spore formation being encouraged by the air humidity in Greatv Britain and overcrowded and damp living conditions. He describes the results of a twenty-week study undertaken in 1962-3, showing associations between respiratory disease and levels of air pollution. Dr Stuart Carne undertook a survey in general practice to plot the patterns of respiratory illness in London during the winter of 1962-3. There were two peaks of respiratory illnesses coinciding with the fog at the beginning of December and the freeze-up from the end of December until the beginning of March. PMID:14178955

  3. [Superposition impact character of air pollution from decentralization docks in a freshwater port].

    PubMed

    Liu, Jian-chang; Li, Xing-hua; Xu, Hong-lei; Cheng, Jin-xiang; Wang, Zhong-dai; Xiao, Yang

    2013-05-01

    Air pollution from freshwater port is mainly caused by dust pollution, including material loading and unloading dust, road dust, and wind erosion dust from stockpile, bare soil. The dust pollution from a single dock characterized in obvious difference with air pollution from multiple scattered docks. Jining Port of Shandong Province was selected as a case study to get superposition impact contribution of air pollution for regional air environment from multiple scattered docks and to provide technical support for system evaluation of port air pollution. The results indicate that (1) the air pollution from freshwater port occupies a low proportion of pollution impact on regional environmental quality because the port is consisted of serveral small scattered docks; (2) however, the geometric center of the region distributed by docks is severely affected with the most superposition of the air pollution; and (3) the ADMS model is helpful to attain an effective and integrated assessment to predict a superposition impact of multiple non-point pollution sources when the differences of high-altitude weather conditions was not considered on a large scale.

  4. Teplice Program--The Impact of Air Pollution on Human Health

    EPA Science Inventory

    The aim of the Teplice Program is to investigate and assess the impact of air pollution on the health of the population in the district of Teplice, Czech Republic. Characterization of the air pollutants demonstrated unusually high concentrations during winter inversions of fine p...

  5. MULTIPOLLUTANT MODEL FOR ESTIMATING THE IMPACT OF POLLUTANTS ON INDOOR AIR QUALITY

    EPA Science Inventory

    The paper discusses a multipollutant model for estimating the impact of pollutant on indoor air quality (IAQ). [NOTE: Most existing IAQ models are not well suited for analysis of the impacts of sources that emit several pollutants into the indoor environment. These models are als...

  6. Indoor air pollution: impact on health and stem cells.

    PubMed

    Ghosh, Shyamasree; Ansar, Waliza

    2014-01-01

    Nearly 2 million people annually die prematurely from various illness contributed by indoor air pollutants (IAP). Such pollutants affect the lungs leading to diseases ranging from bronchial diseases to malignant lung cancer. Stem cells (SC) with the property of self-renewal, pluripotency, and capability of homing into tumors and metastases, have been reported to be promising in treatment of lung cancer. In this review, we have tried to understand the role of components of IAP affect the SC. Although very few studies have been conducted in these lines, existing reports suggest that IAP causes damage to stem cells and their niches thereby reducing successful chances of autologous stem cell transplantation and therapy. The mechanism by which components of IAP affects the functioning of stem cells thus conferring toxicity remains unexplored. The future scope of this review lies in revealing answer to underlying questions of repair and modulation of stem cells in therapeutic treatment of lung diseases.

  7. Impacts of Particulate Air Pollution on Asthma: Current Understanding and Future Perspectives.

    PubMed

    Takizawa, Hajime

    2015-01-01

    The impacts of air pollution on human health and disease have been attracting attention, especially in industrialized countries and areas with heavy traffic burdens. Fine particulate matters (PMs) are considered as an important air pollutant, since it was reported that there was a significant relationship between PM2.5 levels and mortality by cohort studies in 1990s. Epidemiological and toxicological studies have strongly suggested a causative relationship between fine particulate air pollution and increased incidence as well as exacerbations of asthma, and other respiratory disorders. Recent advances in research have elucidated that PMs primarily and secondarily induce oxidative stresses which result both in pro- and antiinflammatory activities. It has been demonstrated that gene polymorphisms of antioxidant enzymes might change responses to particulate air pollution exposures. To prevent health hazardous effects of particles, it is crucial to screen susceptible subpopulations and establish chemoprevention strategies in the world. Novel techniques and modalities are patented for future progress on better control of air pollution.

  8. The impact of European measures to reduce air pollutants on air quality, human health and climate

    NASA Astrophysics Data System (ADS)

    Turnock, S.; Butt, E. W.; Richardson, T.; Mann, G.; Forster, P.; Haywood, J. M.; Crippa, M.; Janssens-Maenhout, G. G. A.; Johnson, C.; Bellouin, N.; Spracklen, D. V.; Carslaw, K. S.; Reddington, C.

    2015-12-01

    European air quality legislation has reduced emissions of air pollutants across Europe since the 1970s, resulting in improved air quality and benefits to human health but also an unintended impact on regional climate. Here we used a coupled chemistry-climate model and a new policy relevant emission scenario to determine the impact of air pollutant emission reductions over Europe. The emission scenario shows that a combination of technological improvements and end-of-pipe abatement measures in the energy, industrial and road transport sectors reduced European emissions of sulphur dioxide, black carbon and organic carbon by 53%, 59% and 32% respectively. We estimate that these emission reductions decreased European annual mean concentrations of fine particulate matter (PM2.5) by 35%, sulphate by 44%, black carbon (BC) by 56% and particulate organic matter (POM) by 23%. The reduction in PM2.5 concentrations is calculated to have prevented 107,000 (40,000-172,000, 5-95% confidence intervals) premature deaths annually from cardiopulmonary disease and lung cancer across the EU member states. The decrease in aerosol concentrations caused a positive all-sky aerosol radiative forcing at the top of atmosphere over Europe of 2.3±0.06 W m-2 and a positive clear-sky forcing of 1.7±0.05 W m-2. Additionally, the amount of solar radiation incident at the surface over Europe increased by 3.3±0.07 W m-2 under all-sky and by 2.7±0.05 W m-2 under clear-sky conditions. Reductions in BC concentrations caused a 1 Wm-2 reduction in atmospheric absorption. We use an energy budget approximation to show that the aerosol induced radiative changes caused both temperature and precipitation to increase globally and over Europe. Our results show that the implementation of European legislation to reduce the emission of air pollutants has improved air quality and human health over Europe, as well as altered the regional radiative balance and climate.

  9. Assessment of urban air pollution and it's probable health impact.

    PubMed

    Barman, S C; Kumar, N; Singh, R; Kisku, G C; Khan, A H; Kidwai, M M; Murthy, R C; Negi, M P S; Pandey, P; Verma, A K; Jain, G; Bhargava, S K

    2010-11-01

    The present study deals with the quantitative effect of vehicular emission on ambient air quality during May 2006 in urban area of Lucknow city. In this study SPM, RSPM, SO2, NOx and 7 trace metals associated with RSPM were estimated at 10 representative locations in urban area and one village area for control. Beside this, air quality index (AQI), health effects of different metals and mortality were assessed. The 24 hr average concentration of SPM, RSPM, SO2 and NOx was found to be 382.3, 171.5, 24.3 and 33.8 microg m(-3) respectively in urban area and these concentrations were found to be significantly (p < 0.01) higher by 94.8, 134.8, 107.4 and 129.6% than control site respectively The 24 hr mean of SPM and RSPM at each location of urban area were found to be higher than prescribed limit of National Ambient Air Quality Standard (NAAQS) except SPM for industrial area. The 24 hr mean concentration of metals associated with RSPM was found to be higher than the control site by 52.3, 271.8, 408.9, 75.81, 62.7, 487.54 and 189.5% for Fe, Cu, Pb, Zn, Ni, Mn and Cr respectively. The inter correlation of metals Pb with Mn, Fe and Cr; Zn with Ni and Cr; Ni with Cr; Mn with Fe and Cu with Cr showed significant positive relation either at p < 0.05 or p < 0.01 level. Metals Pb, Mn and Cr (p < 0.01) and Cu (p < 0.05) showed significant positive correlation with RSPM. These results indicate that ambient air quality in the urban area is affected adversely due to emission and accumulation of SPM, RSPM, SO2, NOx and trace metals. These pollutants may pose detrimental effect on human health, as exposure of these are associated with cardiovascular and respiratory diseases, neurological impairments, increased risk of preterm birth and even mortality and morbidity. PMID:21506475

  10. Health impact metrics for air pollution management strategies.

    PubMed

    Martenies, Sheena E; Wilkins, Donele; Batterman, Stuart A

    2015-12-01

    Health impact assessments (HIAs) inform policy and decision making by providing information regarding future health concerns, and quantitative HIAs now are being used for local and urban-scale projects. HIA results can be expressed using a variety of metrics that differ in meaningful ways, and guidance is lacking with respect to best practices for the development and use of HIA metrics. This study reviews HIA metrics pertaining to air quality management and presents evaluative criteria for their selection and use. These are illustrated in a case study where PM2.5 concentrations are lowered from 10 to 8μg/m(3) in an urban area of 1.8 million people. Health impact functions are used to estimate the number of premature deaths, unscheduled hospitalizations and other morbidity outcomes. The most common metric in recent quantitative HIAs has been the number of cases of adverse outcomes avoided. Other metrics include time-based measures, e.g., disability-adjusted life years (DALYs), monetized impacts, functional-unit based measures, e.g., benefits per ton of emissions reduced, and other economic indicators, e.g., cost-benefit ratios. These metrics are evaluated by considering their comprehensiveness, the spatial and temporal resolution of the analysis, how equity considerations are facilitated, and the analysis and presentation of uncertainty. In the case study, the greatest number of avoided cases occurs for low severity morbidity outcomes, e.g., asthma exacerbations (n=28,000) and minor-restricted activity days (n=37,000); while DALYs and monetized impacts are driven by the severity, duration and value assigned to a relatively low number of premature deaths (n=190 to 230 per year). The selection of appropriate metrics depends on the problem context and boundaries, the severity of impacts, and community values regarding health. The number of avoided cases provides an estimate of the number of people affected, and monetized impacts facilitate additional economic analyses

  11. Topographic and spatial impacts of temperature inversions on air quality using mobile air pollution surveys.

    PubMed

    Wallace, Julie; Corr, Denis; Kanaroglou, Pavlos

    2010-10-01

    We investigated the spatial and topographic effects of temperature inversions on air quality in the industrial city of Hamilton, located at the western tip of Lake Ontario, Canada. The city is divided by a 90-m high topographic scarp, the Niagara Escarpment, and dissected by valleys which open towards Lake Ontario. Temperature inversions occur frequently in the cooler seasons, exacerbating the impact of emissions from industry and traffic. This study used pollution data gathered from mobile monitoring surveys conducted over a 3-year period, to investigate whether the effects of the inversions varied across the city. Temperature inversions were identified with vertical temperature data from a meteorological tower located within the study area. We divided the study area into an upper and lower zone separated by the Escarpment and further into six zones, based on location with respect to the Escarpment and industrial and residential areas, to explore variations across the city. The results identified clear differences in the responses of nitrogen dioxide (NO(2)) and fine particulate matter (PM2.5) to temperature inversions, based on the topographic and spatial criteria. We found that pollution levels increased as the inversion strengthened, in the lower city. However, the results also suggested that temperature inversions identified in the lower city were not necessarily experienced in the upper city with the same intensity. Further, pollution levels in the upper city appeared to decrease as the inversion deepened in the lower city, probably because of an associated change in prevailing wind direction and lower wind speeds, leading to decreased long-range transport of pollutants. PMID:20705328

  12. Air Pollution.

    ERIC Educational Resources Information Center

    Barker, K.; And Others

    Pollution of the general environment, which exposes an entire population group for an indeterminate period of time, certainly constitutes a problem in public health. Serious aid pollution episodes have resulted in increased mortality and a possible relationship between chronic exposure to a polluted atmosphere and certain diseases has been…

  13. Global Air Quality and Climate Impacts of Mitigating Short-lived Climate Pollution in China

    NASA Astrophysics Data System (ADS)

    Harper, K.; Unger, N.; Heyes, C.; Kiesewetter, G.; Klimont, Z.; Schoepp, W.; Wagner, F.

    2014-12-01

    China is a major emitter of harmful air pollutants, including the short-lived climate pollutants (SLCPs) and their precursors. Implementation of pollution control technologies provides a mechanism for simultaneously protecting human and ecosystem health and achieving near-term climate co-benefits; however, predicting the outcomes of technical and policy interventions is challenging because the SLCPs participate in both climate warming and cooling and share many common emission sources. Here, we present the results of a combined regional integrated assessment and global climate modeling study aimed at quantifying the near-term climate and air quality co-benefits of selective control of Chinese air pollution emissions. Results from IIASA's Greenhouse Gas - Air Pollution Interactions and Synergies (GAINS) integrated assessment model indicate that methane emission reductions make up > 75% of possible CO2-equivalent emission reductions of the SLCPs and their precursors in China in 2030. A multi-pollutant emission reduction scenario incorporating the 2030 Chinese pollution control measures with the highest potential for future climate impact is applied to the NASA ModelE2 - Yale Interactive Terrestrial Biosphere (NASA ModelE2-YIBs) global carbon - chemistry - climate model to assess the regional and long-range impacts of Chinese SLCP mitigation measures. Using model simulations that incorporate dynamic methane emissions and photosynthesis-dependent isoprene emissions, we quantify the impacts of Chinese reductions of the short-lived air pollutants on radiative forcing and on surface ozone and particulate air pollution. Present-day modeled methane mole fractions are evaluated against SCIAMACHY methane columns and NOAA ESRL/GMD surface flask measurements.

  14. Nutritional Solutions to Reduce Risks of Negative Health Impacts of Air Pollution.

    PubMed

    Péter, Szabolcs; Holguin, Fernando; Wood, Lisa G; Clougherty, Jane E; Raederstorff, Daniel; Antal, Magda; Weber, Peter; Eggersdorfer, Manfred

    2015-12-10

    Air pollution worldwide has been associated with cardiovascular and respiratory morbidity and mortality, particularly in urban settings with elevated concentrations of primary pollutants. Air pollution is a very complex mixture of primary and secondary gases and particles, and its potential to cause harm can depend on multiple factors-including physical and chemical characteristics of pollutants, which varies with fine-scale location (e.g., by proximity to local emission sources)-as well as local meteorology, topography, and population susceptibility. It has been hypothesized that the intake of anti-oxidant and anti-inflammatory nutrients may ameliorate various respiratory and cardiovascular effects of air pollution through reductions in oxidative stress and inflammation. To date, several studies have suggested that some harmful effects of air pollution may be modified by intake of essential micronutrients (such as B vitamins, and vitamins C, D, and E) and long-chain polyunsaturated fatty acids. Here, we review the existing literature related to the potential for nutrition to modify the health impacts of air pollution, and offer a framework for examining these interactions.

  15. Nutritional Solutions to Reduce Risks of Negative Health Impacts of Air Pollution

    PubMed Central

    Péter, Szabolcs; Holguin, Fernando; Wood, Lisa G.; Clougherty, Jane E.; Raederstorff, Daniel; Antal, Magda; Weber, Peter; Eggersdorfer, Manfred

    2015-01-01

    Air pollution worldwide has been associated with cardiovascular and respiratory morbidity and mortality, particularly in urban settings with elevated concentrations of primary pollutants. Air pollution is a very complex mixture of primary and secondary gases and particles, and its potential to cause harm can depend on multiple factors—including physical and chemical characteristics of pollutants, which varies with fine-scale location (e.g., by proximity to local emission sources)—as well as local meteorology, topography, and population susceptibility. It has been hypothesized that the intake of anti-oxidant and anti-inflammatory nutrients may ameliorate various respiratory and cardiovascular effects of air pollution through reductions in oxidative stress and inflammation. To date, several studies have suggested that some harmful effects of air pollution may be modified by intake of essential micronutrients (such as B vitamins, and vitamins C, D, and E) and long-chain polyunsaturated fatty acids. Here, we review the existing literature related to the potential for nutrition to modify the health impacts of air pollution, and offer a framework for examining these interactions. PMID:26690474

  16. Nutritional Solutions to Reduce Risks of Negative Health Impacts of Air Pollution.

    PubMed

    Péter, Szabolcs; Holguin, Fernando; Wood, Lisa G; Clougherty, Jane E; Raederstorff, Daniel; Antal, Magda; Weber, Peter; Eggersdorfer, Manfred

    2015-12-01

    Air pollution worldwide has been associated with cardiovascular and respiratory morbidity and mortality, particularly in urban settings with elevated concentrations of primary pollutants. Air pollution is a very complex mixture of primary and secondary gases and particles, and its potential to cause harm can depend on multiple factors-including physical and chemical characteristics of pollutants, which varies with fine-scale location (e.g., by proximity to local emission sources)-as well as local meteorology, topography, and population susceptibility. It has been hypothesized that the intake of anti-oxidant and anti-inflammatory nutrients may ameliorate various respiratory and cardiovascular effects of air pollution through reductions in oxidative stress and inflammation. To date, several studies have suggested that some harmful effects of air pollution may be modified by intake of essential micronutrients (such as B vitamins, and vitamins C, D, and E) and long-chain polyunsaturated fatty acids. Here, we review the existing literature related to the potential for nutrition to modify the health impacts of air pollution, and offer a framework for examining these interactions. PMID:26690474

  17. Recessions and Health: The Impact of Economic Trends on Air Pollution in California

    PubMed Central

    2012-01-01

    Objectives. I explored the hypothesis that economic activity has a significant impact on exposure to air pollution and ultimately human health. Methods. I used county-level employment statistics in California (1980–2000), along with major regulatory periods and other controlling factors, to estimate local concentrations of the coefficient of haze, carbon monoxide, and nitrogen dioxide using a mixed regression model approach. Results. The model explained between 33% and 48% of the variability in air pollution levels as estimated by the overall R2 values. The relationship between employment measures and air pollution was statistically significant, suggesting that air quality improves during economic downturns. Additionally, major air quality regulations played a significant role in reducing air pollution levels over the study period. Conclusions. This study provides important evidence of a role for the economy in understanding human exposure to environmental pollution. The evidence further suggests that the impact of environmental regulations are likely to be overstated when they occur during recessionary periods, and understated when they play out during periods of economic growth. PMID:22897522

  18. An evaluation of air pollution health impacts and costs in São Paulo, Brazil.

    PubMed

    Miraglia, Simone Georges El Khouri; Saldiva, Paulo Hilário Nascimento; Böhm, György Miklós

    2005-05-01

    The need to determine cost estimates of the hazardous effects of diseases is important in order to establish the priorities of actions for prevention and health management. The evaluation of air pollution impacts on health, based on expenditures, has been carried out, but there are obvious comparison difficulties among countries, as the health-per-capita investment varies enormously. In order to achieve a standard indicator, we applied the Disability-Adjusted Life Years (DALY) method to estimate the health burden and cost estimate due to air pollution in São Paulo, Brazil. The basic methodology was the utilization of dose-response curves of epidemiological studies conducted in São Paulo to assess air pollution and its health effects. DALY attributable to air pollution in São Paulo added up to 28,212 years annually. An indirect health cost attributable to air pollution resulted in 3,222,676 US dollars. This estimate refers to the children and the elderly population. These results give a preliminary and underestimated value of the burden of diseases promoted by air pollution.

  19. Health and Cellular Impacts of Air Pollutants: From Cytoprotection to Cytotoxicity

    PubMed Central

    Andreau, Karine; Leroux, Melanie; Bouharrour, Aida

    2012-01-01

    Air pollution as one of the ravages of our modern societies is primarily linked to urban centers, industrial activities, or road traffic. These atmospheric pollutants have been incriminated in deleterious health effects by numerous epidemiological and in vitro studies. Environmental air pollutants are a heterogeneous mixture of particles suspended into a liquid and gaseous phase which trigger the disruption of redox homeostasis—known under the term of cellular oxidative stress—in relation with the establishment of inflammation and cell death via necrosis, apoptosis, or autophagy. Activation or repression of the apoptotic process as an adaptative response to xenobiotics might lead to either acute or chronic toxicity. The purpose of this paper is to highlight the central role of oxidative stress induced by air pollutants and to focus on the subsequent cellular impacts ranging from cytoprotection to cytotoxicity by decreasing or stimulating apoptosis, respectively. PMID:22550588

  20. Integrated Assessment of Health-related Economic Impacts of U.S. Air Pollution Policy

    NASA Astrophysics Data System (ADS)

    Saari, R. K.; Rausch, S.; Selin, N. E.

    2012-12-01

    We examine the environmental impacts, health-related economic benefits, and distributional effects of new US regulations to reduce smog from power plants, namely: the Cross-State Air Pollution Rule. Using integrated assessment methods, linking atmospheric and economic models, we assess the magnitude of economy-wide effects and distributional consequences that are not captured by traditional regulatory impact assessment methods. We study the Cross-State Air Pollution Rule, a modified allowance trading scheme that caps emissions of nitrogen oxides and sulfur dioxide from power plants in the eastern United States and thus reduces ozone and particulate matter pollution. We use results from the regulatory regional air quality model, CAMx (the Comprehensive Air Quality Model with extensions), and epidemiologic studies in BenMAP (Environmental Benefits Mapping and Analysis Program), to quantify differences in morbidities and mortalities due to this policy. To assess the economy-wide and distributional consequences of these health impacts, we apply a recently developed economic and policy model, the US Regional Energy and Environmental Policy Model (USREP), a multi-region, multi-sector, multi-household, recursive dynamic computable general equilibrium economic model of the US that provides a detailed representation of the energy sector, and the ability to represent energy and environmental policies. We add to USREP a representation of air pollution impacts, including the estimation and valuation of health outcomes and their effects on health services, welfare, and factor markets. We find that the economic welfare benefits of the Rule are underestimated by traditional methods, which omit economy-wide impacts. We also quantify the distribution of benefits, which have varying effects across US regions, income groups, and pollutants, and we identify factors influencing this distribution, including the geographic variation of pollution and population as well as underlying

  1. System interactions of air pollutants

    SciTech Connect

    Pierson, W.E. )

    1992-06-01

    The impact of system interactions and simultaneous or sequential exposure to various air pollutants, both man-made and natural ones, requires greater concern in the interpretation of the total adverse impact of various air pollutants. It is clear that there are highly significant system interactions with exposure to various air pollutants, and these must be considered very carefully in the evaluation of their adverse health effects.

  2. Indoor Air Pollution

    MedlinePlus

    We usually think of air pollution as being outdoors, but the air in your house or office could also be polluted. Sources of indoor pollution include Mold and pollen Tobacco smoke Household products ...

  3. Environmental regulations on air pollution in China and their impact on infant mortality.

    PubMed

    Tanaka, Shinsuke

    2015-07-01

    This study explores the impact of environmental regulations in China on infant mortality. In 1998, the Chinese government imposed stringent air pollution regulations, in one of the first large-scale regulatory attempts in a developing country. We find that the infant mortality rate fell by 20 percent in the treatment cities designated as "Two Control Zones." The greatest reduction in mortality occurred during the neonatal period, highlighting an important pathophysiologic mechanism, and was largest among infants born to mothers with low levels of education. The finding is robust to various alternative hypotheses and specifications. Further, a falsification test using deaths from causes unrelated to air pollution supports these findings.

  4. The impact of an air quality advisory program on voluntary mobile source air pollution reduction

    NASA Astrophysics Data System (ADS)

    Blanken, Peter D.; Dillon, Jennifer; Wismann, Genevieve

    Air pollution from mobile source emissions is a major cause of air quality degradation in the Denver, Colorado, metropolitan area. The projected increase in both population and vehicle miles driven, coupled with the high altitude, predominantly clear skies, and prevalent wintertime temperature inversions aid in the formation and retention of pollutants. The Colorado Department of Public Health issues an air quality advisory daily during the high pollution season (November 1-March 31) with the objective of improving air quality through voluntary driving restrictions and a mandatory wood burning ban. We hypothesized that the advisory had no effect on commuter behavior due to lack of awareness and understanding, lack of alternative means of travel, or lack of concern. We mailed an anonymous, self-administered survey to 1000 commuters living in the cities of Boulder and Westminster, Colorado. Despite the fact that the vast majority of the respondents were aware of the daily advisory (94%), understood what it meant (93%), and heard the posting at least once a day (71%) in time to choose alternative forms of transportation, the advisory did not alter commuter travel. Commuters traveled mainly as the sole occupant of a car and most (76%) never changed the way they commuted based on the daily advisory. Many claimed schedules or work locations did not allow them to use alternative transportation methods. We suggested a practical way to improve the advisory would be to reduce or eliminate public transit fares on poor air quality days.

  5. Air Pollution, Its Mortality Risk, and Economic Impacts in Tehran, Iran

    PubMed Central

    Brajer, V; Hall, J; Rahmatian, M

    2012-01-01

    Background: Air pollution in Tehran is widely recognized as a serious environmental challenge, posing significant threats to the health of the resident population. Improving air quality will be difficult for many reasons, including climate and topography, heavy dependence on motor vehicles for mobility, and limited resources to reduce polluting emissions. Consequently, it is useful to have information regarding the scale of the health threat and the economic value of reducing that threat. Methods: This paper integrates information on air quality, population, economic valuation, and health science to assess the most serious impact of fine particle pollution on humans, which is increased mortality risk, and provides estimates of the costs of present pollution levels, both in terms of risk and in terms of economic value relative to attaining air quality standards. Results: Mid-range results indicate that mortality risk for the population aged 30 and over would be reduced from 8.2 per 1,000 residents annually to 7.4 per 1,000 and that the estimated annual economic benefits of this reduced risk would be $378.5 million, if health-based World Health Organization-recommended annual average PM2.5 standards were met. Conclusions: The potential public health benefits of reducing particulate air pollution are significant, and will increase with growing population. PMID:23113175

  6. Smart climate ensemble exploring approaches: the example of climate impacts on air pollution in Europe.

    NASA Astrophysics Data System (ADS)

    Lemaire, Vincent; Colette, Augustin; Menut, Laurent

    2016-04-01

    Because of its sensitivity to weather patterns, climate change will have an impact on air pollution so that, in the future, a climate penalty could jeopardize the expected efficiency of air pollution mitigation measures. A common method to assess the impact of climate on air quality consists in implementing chemistry-transport models forced by climate projections. However, at present, such impact assessment lack multi-model ensemble approaches to address uncertainties because of the substantial computing cost. Therefore, as a preliminary step towards exploring large climate ensembles with air quality models, we developed an ensemble exploration technique in order to point out the climate models that should be investigated in priority. By using a training dataset from a deterministic projection of climate and air quality over Europe, we identified the main meteorological drivers of air quality for 8 regions in Europe and developed statistical models that could be used to estimate future air pollutant concentrations. Applying this statistical model to the whole EuroCordex ensemble of climate projection, we find a climate penalty for six subregions out of eight (Eastern Europe, France, Iberian Peninsula, Mid Europe and Northern Italy). On the contrary, a climate benefit for PM2.5 was identified for three regions (Eastern Europe, Mid Europe and Northern Italy). The uncertainty of this statistical model challenges limits however the confidence we can attribute to associated quantitative projections. This technique allows however selecting a subset of relevant regional climate model members that should be used in priority for future deterministic projections to propose an adequate coverage of uncertainties. We are thereby proposing a smart ensemble exploration strategy that can also be used for other impacts studies beyond air quality.

  7. Impact of Trans-Boundary Emissions on Modelled Air Pollution in Canada

    NASA Astrophysics Data System (ADS)

    Pavlovic, Radenko; Moran, Mike; Zhang, Junhua; Zheng, Qiong; Menard, Sylvain; Anselmo, David; Davignon, Didier

    2014-05-01

    The operational air quality model GEM-MACH is run twice daily at the Canadian Meteorological Centre in Montreal, Quebec to produce 48-hour forecasts of hourly O3, NO2, and PM2.5 fields over a North American domain. The hourly gridded anthropogenic emissions fields needed by GEM-MACH are currently based on the 2006 Canadian emissions inventory, a 2012 projected U.S. inventory, and the 1999 Mexican inventory. The Sparse Matrix Operator Kernel Emissions (SMOKE) processing package was used to process these three national emissions inventories to create the GEM-MACH emissions fields. While Canada is the second-largest country in the world by total area, its population and its emissions of criteria contaminants are both only about one-tenth of U.S. values and roughly 80% of the Canadian population lives within 150 km of the international border with the U.S. As a consequence, transboundary transport of air pollution has a major impact on air quality in Canada. To quantify the impact of non-Canadian emissions on forecasted pollutant levels in Canada, the following two tests were performed: (a) all U.S. and Mexican anthropogenic emissions were switched off; and (b) anthropogenic emissions from the southernmost tier of U.S. states and Mexico were switched off. These sensitivity tests were performed for the summer and winter periods of 2012 or 2011. The results obtained show that the impact of non-Canadian sources on forecasted pollution is generally larger in summer than in winter, especially in south-eastern parts of Canada. For the three pollutants considered in the Canadian national Air Quality Health Index, PM2.5 is impacted the most (up to 80%) and NO2 the least (<10%). Emissions from the southern U.S. and Mexico do impact Canadian air quality, but the sign may change depending on the season (i.e., increase vs. decrease), reflecting chemical processing en route.

  8. Evaluation of environmental impact of air pollution sources

    SciTech Connect

    Holnicki, P.

    2004-10-15

    This paper addresses the problem of evaluation and comparison of environmental impact of emission sources in the case of a complex, multisource emission field. The analysis is based on the forecasts of a short-term, dynamic dispersion model. The aim is to get a quantitative evaluation of the contribution of the selected sources according to the predefined, environmental cost function. The approach utilizes the optimal control technique for distributed parameter systems. The adjoint equation, related to the main transport equation of the forecasting model, is applied to calculate the sensitivity of the cost function to the emission intensity of the specified sources. An example implementation of a regional-scale, multilayer dynamic model of SOx transport is discussed as the main forecasting tool. The test computations have been performed for a set of the major power plants in a selected industrial region of Poland.

  9. Vegetation and other development options for mitigating urban air pollution impacts

    EPA Science Inventory

    In addition to installing air pollution control devices and reducing emissions activities, urban air pollution can be further mitigated through planning and design strategies including vegetation planting, building design, installing roadside and near source structures, and modif...

  10. The impact of communicating information about air pollution events on public health.

    PubMed

    McLaren, J; Williams, I D

    2015-12-15

    Short-term exposure to air pollution has been associated with exacerbation of asthma and chronic obstructive pulmonary disease (COPD). This study investigated the relationship between emergency hospital admissions for asthma, COPD and episodes of poor air quality in an English city (Southampton) from 2008-2013. The city's council provides a forecasting service for poor air quality to individuals with respiratory disease to reduce preventable admissions to hospital and this has been evaluated. Trends in nitrogen dioxide, ozone and particulate matter concentrations were related to hospital admissions data using regression analysis. The impacts of air quality on emergency admissions were quantified using the relative risks associated with each pollutant. Seasonal and weekly trends were apparent for both air pollution and hospital admissions, although there was a weak relationship between the two. The air quality forecasting service proved ineffective at reducing hospital admissions. Improvements to the health forecasting service are necessary to protect the health of susceptible individuals, as there is likely to be an increasing need for such services in the future.

  11. The impact of communicating information about air pollution events on public health.

    PubMed

    McLaren, J; Williams, I D

    2015-12-15

    Short-term exposure to air pollution has been associated with exacerbation of asthma and chronic obstructive pulmonary disease (COPD). This study investigated the relationship between emergency hospital admissions for asthma, COPD and episodes of poor air quality in an English city (Southampton) from 2008-2013. The city's council provides a forecasting service for poor air quality to individuals with respiratory disease to reduce preventable admissions to hospital and this has been evaluated. Trends in nitrogen dioxide, ozone and particulate matter concentrations were related to hospital admissions data using regression analysis. The impacts of air quality on emergency admissions were quantified using the relative risks associated with each pollutant. Seasonal and weekly trends were apparent for both air pollution and hospital admissions, although there was a weak relationship between the two. The air quality forecasting service proved ineffective at reducing hospital admissions. Improvements to the health forecasting service are necessary to protect the health of susceptible individuals, as there is likely to be an increasing need for such services in the future. PMID:26318685

  12. Health Impact Assessment of Air Pollution in São Paulo, Brazil.

    PubMed

    Abe, Karina Camasmie; Miraglia, Simone Georges El Khouri

    2016-07-11

    Epidemiological research suggests that air pollution may cause chronic diseases, as well as exacerbation of related pathologies such as cardiovascular and respiratory morbidity and mortality. This study evaluates air pollution scenarios considering a Health Impact Assessment approach in São Paulo, Brazil. We have analyzed abatement scenarios of Particulate Matter (PM) with an aerodynamic diameter <10 μm (PM10), <2.5 μm (PM2.5) and ozone concentrations and the health effects on respiratory and cardiovascular morbidity and mortality in the period from 2009 to 2011 through the APHEKOM tool, as well as the associated health costs. Considering World Health Organization (WHO) standards of PM2.5 (10 μg/m³), São Paulo would avoid more than 5012 premature deaths (equivalent to 266,486 life years' gain) and save US$15.1 billion annually. If São Paulo could even diminish the mean of PM2.5 by 5 μg/m³, nearly 1724 deaths would be avoided, resulting in a gain of US$ 4.96 billion annually. Reduced levels of PM10, PM2.5 and ozone could save lives and an impressive amount of money in a country where economic resources are scarce. Moreover, the reduced levels of air pollution would also lower the demand for hospital care, since hospitalizations would diminish. In this sense, Brazil should urgently adopt WHO air pollution standards in order to improve the quality of life of its population.

  13. Air Pollution Training Programs.

    ERIC Educational Resources Information Center

    Public Health Service (DHEW), Rockville, MD.

    This catalog lists the universities, both supported and not supported by the Division of Air Pollution, which offer graduate programs in the field of air pollution. The catalog briefly describes the programs and their entrance requirements, the requirements, qualifications and terms of special fellowships offered by the Division of Air Pollution.…

  14. Criteria air pollutants and toxic air pollutants.

    PubMed Central

    Suh, H H; Bahadori, T; Vallarino, J; Spengler, J D

    2000-01-01

    This review presents a brief overview of the health effects and exposures of two criteria pollutants--ozone and particulate matter--and two toxic air pollutants--benzene and formaldehyde. These pollutants were selected from the six criteria pollutants and from the 189 toxic air pollutants on the basis of their prevalence in the United States, their physicochemical behavior, and the magnitude of their potential health threat. The health effects data included in this review primarily include results from epidemiologic studies; however, some findings from animal studies are also discussed when no other information is available. Health effects findings for each pollutant are related in this review to corresponding information about outdoor, indoor, and personal exposures and pollutant sources. Images Figure 3 Figure 8 Figure 9 PMID:10940240

  15. Evaluating the Impact of Air Pollution on Human Health in China: the Price of Clean Air

    NASA Astrophysics Data System (ADS)

    Wang, X.; Mauzerall, D. L.; Hu, Y.; Russell, A. G.; Woo, J.; Streets, D. G.

    2003-12-01

    Population growth, rapid urbanization and economic development are contributing to increased energy consumption in China. One of the unintended consequences is poor air quality due to a lack of environmental controls. The coal dependent energy structure in China only worsens the situation. Quantification of the environmental costs resulting from air pollution is needed in order to provide a mechanism for making strategic energy policy that accounts for the life-cycle cost of energy use. However, few such studies have been conducted for China that examine the entire energy system. Here we examine the extent to which public health has been compromised due to elevated air pollution and how China could incorporate environmental costs into future energy and environmental policies. Taking the Shandong region in eastern China as a case study, we develop a high-resolution regional inventory for anthropogenic emissions of NOx, CO, PM2.5, PM10, VOCs, NH3 and SO2. SMOKE (Sparse Matrix Operator Kernel Emissions Modeling System) is used to process spatial and temporal distributions and chemical speciation of the regional emissions, MM5 (the Fifth-Generation NCAR/Penn State Meso-scale Model, Version 3) is used to generate meteorology and Models3/CMAQ (Community Multi-scale Air Quality Modeling System) is used to simulate ambient concentrations of particulates and other gaseous species in this region. We then estimate the mortality and morbidity in this region resulting from exposure to these air pollutants. We also estimate the monetary values associated with the resulting mortality and morbidity and quantify the contributions from various economic sectors (i.e. power generation, transportation, industry, residential and others). Finally, we examine the potential health benefits that adoption of best available or advanced energy (coal-based, in particular) and environmental technologies in different sectors could bring about. The results of these analyses are intended to provide

  16. [Quantified study on human health impact caused by coal-burning air pollution in China].

    PubMed

    Jin, Yinlong; He, Gongli; Liu, Fan; Hong, Yanfen

    2002-10-01

    To develop the mathematics model of exposure to coal-burning pollution; To confirm the exposure level of coal-burning pollutants by source analysis of atmospheric particulates; To establish the quantilification technology and methods of human health impact. Combinating the methods of epidemiology, environmental chemistry and contaminated aerography. We obtained the data of human historical expose to PM10, PM2.5, and Bap etc. that can't be obtained from the general inspect and the contribution rate of coal-burning as well as the status of coal-burning air pollutants. Confirming the degree of human health impact due to coal-burning pollutants, which included: The occurrence risk of respiratory symptoms and COPD of adults in heavily polluted area was 1.7 and 1.5 times of that of relatively clean area respectively; FVC and FEF50 of pupils decreased 194 ml and 172 ml respectively with the increasing of every unit of the Ln(PM10). FVC and FEF50 of pupils decreased 69 ml and 119 ml respectively with the increase of every unit of the Ln(SO2). Both the indices of non-specific and humoral immunity of pupils in heavily and medium polluted areas were worse than those in relatively clean area.

  17. Air Pollution in the World's Megacities.

    ERIC Educational Resources Information Center

    Richman, Barbara T., Ed.

    1994-01-01

    Reports findings of the Global Environment Monitoring System study concerning air pollution in the world's megacities. Discusses sources of air pollution, air pollution impacts, air quality monitoring, air quality trends, and control strategies. Provides profiles of the problem in Beijing, Los Angeles, Mexico City, India, Cairo, Sao Paulo, and…

  18. Patterns of understory diversity in mixed coniferous forests of southern California impacted by air pollution.

    PubMed

    Allen, Edith B; Temple, Patrick J; Bytnerowicz, Andrzej; Arbaugh, Michael J; Sirulnik, Abby G; Rao, Leela E

    2007-01-01

    The forests of the San Bernardino Mountains have been subject to ozone and nitrogen (N) deposition for some 60 years. Much work has been done to assess the impacts of these pollutants on trees, but little is known about how the diverse understory flora has fared. Understory vegetation has declined in diversity in response to elevated N in the eastern U.S. and Europe. Six sites along an ozone and N deposition gradient that had been part of a long-term study on response of plants to air pollution beginning in 1973 were resampled in 2003. Historic ozone data and leaf injury scores confirmed the gradient. Present-day ozone levels were almost half of these, and recent atmospheric N pollution concentrations confirmed the continued air pollution gradient. Both total and extractable soil N were higher in sites on the western end of the gradient closer to the urban source of pollution, pH was lower, and soil carbon (C) and litter were higher. The gradient also had decreasing precipitation and increasing elevation from west to east. However, the dominant tree species were the same across the gradient. Tree basal area increased during the 30-year interval in five of the sites. The two westernmost sites had 30-45% cover divided equally between native and exotic understory herbaceous species, while the other sites had only 3-13% cover dominated by native species. The high production is likely related to higher precipitation at the western sites as well as elevated N. The species richness was in the range of 24 to 30 in four of the sites, but one site of intermediate N deposition had 42 species, while the easternmost, least polluted site had 57 species. These were primarily native species, as no site had more than one to three exotic species. In three of six sites, 20-40% of species were lost between 1973 and 2003, including the two westernmost sites. Two sites with intermediate pollution had little change in total species number over 30 years, and the easternmost site had more

  19. The Impact of Future Emissions Changes on Air Pollution Concentrations and Related Human Health Effects

    NASA Astrophysics Data System (ADS)

    Mikolajczyk, U.; Suppan, P.; Williams, M.

    2015-12-01

    Quantification of potential health benefits of reductions in air pollution on the local scale is becoming increasingly important. The aim of this study is to conduct health impact assessment (HIA) by utilizing regionally and spatially specific data in order to assess the influence of future emission scenarios on human health. In the first stage of this investigation, a modeling study was carried out using the Weather Research and Forecasting (WRF) model coupled with Chemistry to estimate ambient concentrations of air pollutants for the baseline year 2009, and for the future emission scenarios in southern Germany. Anthropogenic emissions for the baseline year 2009 are derived from the emission inventory provided by the Netherlands Organization of Applied Scientific Research (TNO) (Denier van der Gon et al., 2010). For Germany, the TNO emissions were replaced by gridded emission data with a high spatial resolution of 1/64 x 1/64 degrees. Future air quality simulations are carried out under different emission scenarios, which reflect possible energy and climate measures in year 2030. The model set-up included a nesting approach, where three domains with horizontal resolution of 18 km, 6 km and 2 km were defined. The simulation results for the baseline year 2009 are used to quantify present-day health burdens. Concentration-response functions (CRFs) for PM2.5 and NO2 from the WHO Health risks of air Pollution in Europe (HRAPIE) project were applied to population-weighted mean concentrations to estimate relative risks and hence to determine numbers of attributable deaths and associated life-years lost. In the next step, future health impacts of projected concentrations were calculated taking into account different emissions scenarios. The health benefits that we assume with air pollution reductions can be used to provide options for future policy decisions to protect public health.

  20. Assessment of human health impact from exposure to multiple air pollutants in China based on satellite observations

    NASA Astrophysics Data System (ADS)

    Yu, Tao; Wang, Wen; Ciren, Pubu; Zhu, Yan

    2016-10-01

    Assessment of human health impact caused by air pollution is crucial for evaluating environmental hazards. In this paper, concentrations of six air pollutants (PM10, PM2.5, NO2, SO2, O3, and CO) were first derived from satellite observations, and then the overall human health risks in China caused by multiple air pollutants were assessed using an aggregated health risks index. Unlike traditional approach for human health risks assessment, which relied on the in-situ air pollution measurements, the spatial distribution of aggregated human health risks in China were obtained using satellite observations in this research. It was indicated that the remote sensing data have advantages over in-situ data in accessing human health impact caused by air pollution.

  1. Assessment of the Impact of Spatial Data on the Results of Air Pollution Dispersion Modeling

    NASA Astrophysics Data System (ADS)

    Oleniacz, Robert; Rzeszutek, Mateusz

    2014-12-01

    Advanced dispersion models, taking into account information on the relief and land cover, as well as temporal and spatial variability of meteorological conditions, are beginning to play an increasingly important role in the assessment of the impact on the air quality. There are numerous spatial databases which can be used in this type of a calculation process, however, there is no answer to the question of how the use of appropriate data set of terrain characteristics affects the results of the distribution of air pollutant concentrations at the surface of the ground. This paper presents two different sets of spatial data of the relief and land cover. Then, their impact on the results of modeling the propagation of pollutants in the ambient air was characterized, using the meteorological processor CALMET and the dispersion model CALPUFF. The obtained results of concentrations in the adopted calculation area were compared on the basis of statistical indicators used to assess pollution dispersion models contained in the statistical package BOOT Statistical Model Evaluation Software Package Version 2.0. The obtained results of calculations of the maximum 1-hour concentrations, the maximum 24-hour mean concentrations and annual mean concentrations for the prepared computational grids with a resolution of 1×1 km were analyzed.

  2. Health impact assessment of air pollution using a dynamic exposure profile: Implications for exposure and health impact estimates

    SciTech Connect

    Dhondt, Stijn; Beckx, Carolien; Degraeuwe, Bart; Lefebvre, Wouter; Kochan, Bruno; Bellemans, Tom; Int Panis, Luc; Macharis, Cathy; Putman, Koen

    2012-09-15

    In both ambient air pollution epidemiology and health impact assessment an accurate assessment of the population exposure is crucial. Although considerable advances have been made in assessing human exposure outdoors, the assessments often do not consider the impact of individual travel behavior on such exposures. Population-based exposures to NO{sub 2} and O{sub 3} using only home addresses were compared with models that integrate all time-activity patterns-including time in commute-for Flanders and Brussels. The exposure estimates were used to estimate the air pollution impact on years of life lost due to respiratory mortality. Health impact of NO{sub 2} using an exposure that integrates time-activity information was on average 1.2% higher than when assuming that people are always at their home address. For ozone the overall estimated health impact was 0.8% lower. Local differences could be much larger, with estimates that differ up to 12% from the exposure using residential addresses only. Depending on age and gender, deviations from the population average were seen. Our results showed modest differences on a regional level. At the local level, however, time-activity patterns indicated larger differences in exposure and health impact estimates, mainly for people living in more rural areas. These results suggest that for local analyses the dynamic approach can contribute to an improved assessment of the health impact of various types of pollution and to the understanding of exposure differences between population groups. - Highlights: Black-Right-Pointing-Pointer Exposure to ambient air pollution was assessed integrating population mobility. Black-Right-Pointing-Pointer This dynamic exposure was integrated into a health impact assessment. Black-Right-Pointing-Pointer Differences between the dynamic and residential exposure were quantified. Black-Right-Pointing-Pointer Modest differences in health impact were found at a regional level. Black

  3. Teplice program--the impact of air pollution on human health.

    PubMed Central

    Srám, R J; Benes, I; Binková, B; Dejmek, J; Horstman, D; Kotĕsovec, F; Otto, D; Perreault, S D; Rubes, J; Selevan, S G; Skalík, I; Stevens, R K; Lewtas, J

    1996-01-01

    The aim of the Teplice Program is to investigate and assess the impact of air pollution on the health of the population in the district of Teplice, Czech Republic. Characterization of the air pollutants demonstrated unusually high concentrations during winter inversions of fine particles dominated by acidic sulfates, genotoxic organic compounds, and toxic trace elements. The major source of airborne fine particles is the burning of coal for heating and power. Human exposure and biomarker studies demonstrated large seasonal variations in air pollution within the Teplice District and higher seasonal average pollution levels than the comparative district, Prachatice. Personal exposures to fine particles and organic carcinogens [e.g., polycyclic aromatic hydrocarbons (PAH)] were correlated with excretion of PAH metabolites in urine, several trace metals in blood, and DNA adducts in white blood cells. Respiratory and neurobehavioral studies of school children were conducted using questionnaires and clinical measures. A significantly higher prevalence of adverse respiratory symptoms and decreased lung function were found in the Teplice district than in Prachatice. The neurobehavioral studies indicated significantly higher teacher referrals for clinical assessment in Teplice, but the majority of objective performance measures did not differ. Reproductive studies were conducted in both males and females. A study of the effects of exposure on pregnancy and birth found an excess prevalence of low birth weight and premature births in Teplice; these adverse effects were more common in infants conceived in the winter and whose mothers were smokers. Based on questionnaires and medical examination, the reproductive development of young men was not different between districts and seasons, however, measures of semen quality suggest that exposure to high levels of air pollution are associated with transient decrements in semen quality. PMID:8879999

  4. Impacts of air pollution exposure on the allergenic properties of Arizona cypress pollens

    NASA Astrophysics Data System (ADS)

    Shahali, Y.; Pourpak, Z.; Moin, M.; Zare, A.; Majd, A.

    2009-02-01

    Epidemiological studies have demonstrated that urbanization and high levels of vehicle emissions correlated with the increasing trend of pollen-induced respiratory allergies. Numerous works have investigated the role of pollutants in the pathogenesis of respiratory diseases but impacts of anthropogenic pollution on pollen allergenic properties are still poorly understood. The objective of this survey was to evaluate impacts of the traffic-related pollution on the structure and allergenic protein content of Arizona cypress (Cupressus arizonica, CA) pollens, recognized as a rising cause of seasonal allergy in various regions worldwide. According to our results, traffic-related air pollution by its direct effects on the elemental composition of pollens considerably increased the fragility of the pollen exine, causing numerous cracks in its surface and facilitating pollen content liberation. Pollen grains were also covered by numerous submicronic orbicules which may act as effective vectors for pollen-released components into the lower regions of respiratory organs. On the other hand, this study provides us reliable explications about the low efficiency of standard commercial allergens in the diagnosis of the Arizona cypress pollen allergy in Tehran. Although traffic related pollution affects the allergenic components of CA pollens, the repercussions on the respiratory health of urban populations have yet to be clarified and need further investigations.

  5. High-resolution modelling of health impacts from air pollution using the integrated model system EVA

    NASA Astrophysics Data System (ADS)

    Brandt, Jørgen; Andersen, Mikael S.; Bønløkke, Jakob; Christensen, Jesper H.; Geels, Camilla; Hansen, Kaj M.; Jensen, Steen S.; Ketzel, Matthias; Plejdrup, Marlene S.; Sigsgaard, Torben; Silver, Jeremy D.

    2014-05-01

    A high-resolution assessment of health impacts from air pollution and related external cost has been conducted for Denmark using the integrated EVA model system. The EVA system has been further developed by implementing an air quality model with a 1 km x 1 km resolution covering the whole of Denmark. New developments of the integrated model system will be presented as well as results for health impacts and related external costs over several decades. Furthermore, the sensitivity of health impacts to model resolution will be studied. We have developed an integrated model system EVA (Economic Valuation of Air pollution), based on the impact-pathway chain, to assess the health impacts and health-related economic externalities of air pollution resulting from specific emission sources or sectors. The system is used to support policymaking with respect to emission control. In Brandt et al. (2013a; 2013b), the EVA system was used to assess the impacts in Europe and Denmark from the past, present and future total air pollution levels as well as the contribution from the major anthropogenic emission sectors. The EVA system was applied using the hemispheric chemistry-transport model, the Danish Eulerian Hemispheric Model (DEHM), with nesting capability for higher resolution over Europe (50 km x 50 km) and Northern Europe (16.7 km x 16.7 km). In this study an Urban Background Model (UBM) has been further developed to cover the whole of Denmark with a 1 km x 1 km resolution and the model has been implemented as a part of the integrated model system, EVA. The EVA system is based on the impact-pathway methodology. The site-specific emissions will result (via atmospheric transport and chemistry) in a concentration distribution, which together with detailed population data, are used to estimate the population-level exposure. Using exposure-response functions and economic valuations, the exposure is transformed into impacts on human health and related external costs. In this study

  6. Discriminatory Air Pollution

    ERIC Educational Resources Information Center

    McCaull, Julian

    1976-01-01

    Described are the patterns of air pollution in certain large urban areas. Persons in poverty, in occupations below the management or professional level, in low-rent districts, and in black population are most heavily exposed to air pollution. Pollution paradoxically is largely produced by high energy consuming middle-and upper-class households.…

  7. Air Pollution, Teachers' Edition.

    ERIC Educational Resources Information Center

    Lavaroni, Charles W.; O'Donnell, Patrick A.

    One of three in a series about pollution, this teacher's guide for a unit on air pollution is designed for use in junior high school grades. It offers suggestions for extending the information and activities contained in the textual material for students. Chapter 1 discusses the problem of air pollution and involves students in processes of…

  8. From Good Intentions to Proven Interventions: Effectiveness of Actions to Reduce the Health Impacts of Air Pollution

    PubMed Central

    Giles, Luisa V.; Barn, Prabjit; Künzli, Nino; Romieu, Isabelle; Mittleman, Murray A.; van Eeden, Stephan; Allen, Ryan; Carlsten, Chris; Stieb, Dave; Noonan, Curtis; Smargiassi, Audrey; Kaufman, Joel D.; Hajat, Shakoor; Kosatsky, Tom; Brauer, Michael

    2011-01-01

    Background Associations between air pollution and a multitude of health effects are now well established. Given ubiquitous exposure to some level of air pollution, the attributable health burden can be high, particularly for susceptible populations. Objectives An international multidisciplinary workshop was convened to discuss evidence of the effectiveness of actions to reduce health impacts of air pollution at both the community and individual level. The overall aim was to summarize current knowledge regarding air pollution exposure and health impacts leading to public health recommendations. Discussion During the workshop, experts reviewed the biological mechanisms of action of air pollution in the initiation and progression of disease, as well as the state of the science regarding community and individual-level interventions. The workshop highlighted strategies to reduce individual baseline risk of conditions associated with increased susceptibility to the effects of air pollution and the need to better understand the role of exposure duration in disease progression, reversal, and adaptation. Conclusion We have identified two promising and largely unexplored strategies to address and mitigate air pollution–related health impacts: reducing individual baseline risk of cardiovascular disease and incorporating air pollution–related health impacts into land-use decisions. PMID:20729178

  9. Air pollution and plant life

    SciTech Connect

    Treshow, M.

    1984-01-01

    This book addresses air pollution's sources and movement; biochemical, cellular, and whole-plant effects, impacts on agricultural and natural systems; and control. The effects of convective turbulence and atmospheric stability are well illustrated. The diagnosis of air pollution injury to plants and mimicking symptoms are discussed. The environmental and source variables that affect pollutant dispersion are explained by use of the Gaussian dispersion model. An overview is presented of the effects of sulfur dioxide, photochemical oxidants, and fluoride on stomatal function, photosynthesis, respiration, and metabolic processes and products. Information is discussed concerning combinations of air pollutants, impacts on lichens, and effects of trace metals on plants. The relationship between air pollutants and diseases or other stress factors is evaluated.

  10. Health Impact Assessment of Air Pollution in São Paulo, Brazil.

    PubMed

    Abe, Karina Camasmie; Miraglia, Simone Georges El Khouri

    2016-01-01

    Epidemiological research suggests that air pollution may cause chronic diseases, as well as exacerbation of related pathologies such as cardiovascular and respiratory morbidity and mortality. This study evaluates air pollution scenarios considering a Health Impact Assessment approach in São Paulo, Brazil. We have analyzed abatement scenarios of Particulate Matter (PM) with an aerodynamic diameter <10 μm (PM10), <2.5 μm (PM2.5) and ozone concentrations and the health effects on respiratory and cardiovascular morbidity and mortality in the period from 2009 to 2011 through the APHEKOM tool, as well as the associated health costs. Considering World Health Organization (WHO) standards of PM2.5 (10 μg/m³), São Paulo would avoid more than 5012 premature deaths (equivalent to 266,486 life years' gain) and save US$15.1 billion annually. If São Paulo could even diminish the mean of PM2.5 by 5 μg/m³, nearly 1724 deaths would be avoided, resulting in a gain of US$ 4.96 billion annually. Reduced levels of PM10, PM2.5 and ozone could save lives and an impressive amount of money in a country where economic resources are scarce. Moreover, the reduced levels of air pollution would also lower the demand for hospital care, since hospitalizations would diminish. In this sense, Brazil should urgently adopt WHO air pollution standards in order to improve the quality of life of its population. PMID:27409629

  11. Health Impact Assessment of Air Pollution in São Paulo, Brazil

    PubMed Central

    Abe, Karina Camasmie; Miraglia, Simone Georges El Khouri

    2016-01-01

    Epidemiological research suggests that air pollution may cause chronic diseases, as well as exacerbation of related pathologies such as cardiovascular and respiratory morbidity and mortality. This study evaluates air pollution scenarios considering a Health Impact Assessment approach in São Paulo, Brazil. We have analyzed abatement scenarios of Particulate Matter (PM) with an aerodynamic diameter <10 μm (PM10), <2.5 μm (PM2.5) and ozone concentrations and the health effects on respiratory and cardiovascular morbidity and mortality in the period from 2009 to 2011 through the APHEKOM tool, as well as the associated health costs. Considering World Health Organization (WHO) standards of PM2.5 (10 μg/m3), São Paulo would avoid more than 5012 premature deaths (equivalent to 266,486 life years’ gain) and save US$15.1 billion annually. If São Paulo could even diminish the mean of PM2.5 by 5 μg/m3, nearly 1724 deaths would be avoided, resulting in a gain of US$ 4.96 billion annually. Reduced levels of PM10, PM2.5 and ozone could save lives and an impressive amount of money in a country where economic resources are scarce. Moreover, the reduced levels of air pollution would also lower the demand for hospital care, since hospitalizations would diminish. In this sense, Brazil should urgently adopt WHO air pollution standards in order to improve the quality of life of its population. PMID:27409629

  12. Atmospheric Chemistry and Air Pollution

    DOE PAGES

    Gaffney, Jeffrey S.; Marley, Nancy A.

    2003-01-01

    Atmospheric chemistry is an important discipline for understanding air pollution and its impacts. This mini-review gives a brief history of air pollution and presents an overview of some of the basic photochemistry involved in the production of ozone and other oxidants in the atmosphere. Urban air quality issues are reviewed with a specific focus on ozone and other oxidants, primary and secondary aerosols, alternative fuels, and the potential for chlorine releases to amplify oxidant chemistry in industrial areas. Regional air pollution issues such as acid rain, long-range transport of aerosols and visibility loss, and the connections of aerosols to ozonemore » and peroxyacetyl nitrate chemistry are examined. Finally, the potential impacts of air pollutants on the global-scale radiative balances of gases and aerosols are discussed briefly.« less

  13. Atmospheric chemistry and air pollution.

    PubMed

    Gaffney, Jeffrey S; Marley, Nancy A

    2003-04-07

    Atmospheric chemistry is an important discipline for understanding air pollution and its impacts. This mini-review gives a brief history of air pollution and presents an overview of some of the basic photochemistry involved in the production of ozone and other oxidants in the atmosphere. Urban air quality issues are reviewed with a specific focus on ozone and other oxidants, primary and secondary aerosols, alternative fuels, and the potential for chlorine releases to amplify oxidant chemistry in industrial areas. Regional air pollution issues such as acid rain, long-range transport of aerosols and visibility loss, and the connections of aerosols to ozone and peroxyacetyl nitrate chemistry are examined. Finally, the potential impacts of air pollutants on the global-scale radiative balances of gases and aerosols are discussed briefly.

  14. [Pollution of room air].

    PubMed

    Schlatter, J

    1986-01-01

    In the last decade the significance of indoor air pollution to human health has increased because of improved thermal insulation of buildings to save energy: air turnover is reduced and air quality is impaired. The most frequent air pollutants are tobacco smoke, radioactive radon gas emanating from the soil, formaldehyde from furniture and insulation material, nitrogen oxides from gas stoves, as well as solvents from cleaning agents. The most important pollutants leading to health hazards are tobacco smoke and air pollutants which are emitted continuously from building materials and furniture. Such pollutants have to be eliminated by reducing the emission rate. A fresh air supply is necessary to reduce the pollutants resulting from the inhabitants and their activities, the amount depending on the number of inhabitants and the usage of the room. The carbon dioxide level should not exceed 1500 ppm.

  15. Controlling Indoor Air Pollution.

    ERIC Educational Resources Information Center

    Nero, Anthony V, Jr.

    1988-01-01

    Discusses the health risks posed by indoor air pollutants, such as airborne combustion products, toxic chemicals, and radioactivity. Questions as to how indoor air might be regulated. Calls for new approaches to environmental protection. (TW)

  16. "What We Breathe Impacts Our Health: Improving Understanding of the Link between Air Pollution and Health".

    PubMed

    West, J Jason; Cohen, Aaron; Dentener, Frank; Brunekreef, Bert; Zhu, Tong; Armstrong, Ben; Bell, Michelle L; Brauer, Michael; Carmichael, Gregory; Costa, Dan L; Dockery, Douglas W; Kleeman, Michael; Krzyzanowski, Michal; Künzli, Nino; Liousse, Catherine; Lung, Shih-Chun Candice; Martin, Randall V; Pöschl, Ulrich; Pope, C Arden; Roberts, James M; Russell, Armistead G; Wiedinmyer, Christine

    2016-05-17

    Air pollution contributes to the premature deaths of millions of people each year around the world, and air quality problems are growing in many developing nations. While past policy efforts have succeeded in reducing particulate matter and trace gases in North America and Europe, adverse health effects are found at even these lower levels of air pollution. Future policy actions will benefit from improved understanding of the interactions and health effects of different chemical species and source categories. Achieving this new understanding requires air pollution scientists and engineers to work increasingly closely with health scientists. In particular, research is needed to better understand the chemical and physical properties of complex air pollutant mixtures, and to use new observations provided by satellites, advanced in situ measurement techniques, and distributed micro monitoring networks, coupled with models, to better characterize air pollution exposure for epidemiological and toxicological research, and to better quantify the effects of specific source sectors and mitigation strategies. PMID:27010639

  17. "What We Breathe Impacts Our Health: Improving Understanding of the Link between Air Pollution and Health".

    PubMed

    West, J Jason; Cohen, Aaron; Dentener, Frank; Brunekreef, Bert; Zhu, Tong; Armstrong, Ben; Bell, Michelle L; Brauer, Michael; Carmichael, Gregory; Costa, Dan L; Dockery, Douglas W; Kleeman, Michael; Krzyzanowski, Michal; Künzli, Nino; Liousse, Catherine; Lung, Shih-Chun Candice; Martin, Randall V; Pöschl, Ulrich; Pope, C Arden; Roberts, James M; Russell, Armistead G; Wiedinmyer, Christine

    2016-05-17

    Air pollution contributes to the premature deaths of millions of people each year around the world, and air quality problems are growing in many developing nations. While past policy efforts have succeeded in reducing particulate matter and trace gases in North America and Europe, adverse health effects are found at even these lower levels of air pollution. Future policy actions will benefit from improved understanding of the interactions and health effects of different chemical species and source categories. Achieving this new understanding requires air pollution scientists and engineers to work increasingly closely with health scientists. In particular, research is needed to better understand the chemical and physical properties of complex air pollutant mixtures, and to use new observations provided by satellites, advanced in situ measurement techniques, and distributed micro monitoring networks, coupled with models, to better characterize air pollution exposure for epidemiological and toxicological research, and to better quantify the effects of specific source sectors and mitigation strategies.

  18. Health Effects of Air Pollution

    MedlinePlus

    ... Health effects of air pollution Health effects of air pollution Breathing air that is not clean can hurt ... important to know about the health effects that air pollution can have on you and others. Once you ...

  19. Oxidative potential and inflammatory impacts of source apportioned ambient air pollution in Beijing.

    PubMed

    Liu, Qingyang; Baumgartner, Jill; Zhang, Yuanxun; Liu, Yanju; Sun, Yongjun; Zhang, Meigen

    2014-11-01

    Air pollution exposure is associated with a range of adverse health impacts. Knowledge of the chemical components and sources of air pollution most responsible for these health effects could lead to an improved understanding of the mechanisms of such effects and more targeted risk reduction strategies. We measured daily ambient fine particulate matter (<2.5 μm in aerodynamic diameter; PM2.5) for 2 months in peri-urban and central Beijing, and assessed the contribution of its chemical components to the oxidative potential of ambient air pollution using the dithiothreitol (DTT) assay. The composition data were applied to a multivariate source apportionment model to determine the PM contributions of six sources or factors: a zinc factor, an aluminum factor, a lead point factor, a secondary source (e.g., SO4(2-), NO3(2-)), an iron source, and a soil dust source. Finally, we assessed the relationship between reactive oxygen species (ROS) activity-related PM sources and inflammatory responses in human bronchial epithelial cells. In peri-urban Beijing, the soil dust source accounted for the largest fraction (47%) of measured ROS variability. In central Beijing, a secondary source explained the greatest fraction (29%) of measured ROS variability. The ROS activities of PM collected in central Beijing were exponentially associated with in vivo inflammatory responses in epithelial cells (R2=0.65-0.89). We also observed a high correlation between three ROS-related PM sources (a lead point factor, a zinc factor, and a secondary source) and expression of an inflammatory marker (r=0.45-0.80). Our results suggest large differences in the contribution of different PM sources to ROS variability at the central versus peri-urban study sites in Beijing and that secondary sources may play an important role in PM2.5-related oxidative potential and inflammatory health impacts.

  20. Climate change and pollutant emissions impacts on air quality in 2050 over Portugal

    NASA Astrophysics Data System (ADS)

    Sá, E.; Martins, H.; Ferreira, J.; Marta-Almeida, M.; Rocha, A.; Carvalho, A.; Freitas, S.; Borrego, C.

    2016-04-01

    Changes in climate and air pollutant emissions will affect future air quality from global to urban scale. In this study, regional air quality simulations for historical and future periods are conducted, with CAMx version 6.0, to investigate the impacts of future climate and anthropogenic emission projections on air quality over Portugal and the Porto metropolitan area in 2050. The climate and the emission projections were derived from the Representative Concentrations Pathways (RCP8.5) scenario. Modelling results show that climate change will impact NO2, PM10 and O3 concentrations over Portugal. The NO2 and PM10 annual means will increase in Portugal and in the Porto municipality, and the maximum 8-hr daily O3 value will increase in the Porto suburban areas (approximately 5%) and decrease in the urban area (approximately 2%). When considering climate change and projected anthropogenic emissions, the NO2 annual mean decreases (approximately 50%); PM10 annual mean will increase in Portugal and decrease in Porto municipality (approximately 13%); however PM10 and O3 levels increase and extremes occur more often, surpassing the currently legislated annual limits and displaying a higher frequency of daily exceedances. This air quality degradation is likely to be related with the trends found for the 2046-2065 climate, which implies warmer and dryer conditions, and with the increase of background concentrations of ozone and particulate matter. The results demonstrate the need for Portuguese authorities and policy-makers to design and implement air quality management strategies that take climate change impacts into account.

  1. IMPACTS OF AIR POLLUTION AND CLIMATE CHANGE ON FOREST ECOSYSTEMS - EMERGING RESEARCH NEEDS

    EPA Science Inventory

    Outcomes from the 22nd meeting for Specialists in Air Pollution Effects on Forest Ecosystems "Forests under Anthropogenic Pressure - Effects of Air Pollution, Climate Change and Urban Development", September 10-16, 2006, Riverside, CA, USA are summarized. Tropospheric ozone is st...

  2. Model evaluation of roadside barrier impact on near-road air pollution

    EPA Science Inventory

    Roadside noise barriers are common features along major highways in urban regions and are anticipated to have important effects on near-road air pollution – the occurrence of elevated air pollutant concentrations for several hundred meters downwind of a major roadway. A 3-dimens...

  3. Impact of air pollution on oxidative DNA damage and lipid peroxidation in mothers and their newborns.

    PubMed

    Ambroz, Antonin; Vlkova, Veronika; Rossner, Pavel; Rossnerova, Andrea; Svecova, Vlasta; Milcova, Alena; Pulkrabova, Jana; Hajslova, Jana; Veleminsky, Milos; Solansky, Ivo; Sram, Radim J

    2016-08-01

    Ambient air particulate matter (PM) represents a class of heterogeneous substances that form one component of air pollution. Oxidative stress has been implicated as an important action mechanism for PM on the human organism. Oxidative damage induced by reactive oxygen species (ROS) may affect any cellular macromolecule. The aim of our study was to investigate the impact of air pollution on oxidative DNA damage [8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG)] and lipid peroxidation [15-F2t-isoprostane (15-F2t-IsoP)] in the urine and blood from mothers and newborns from two localities with different levels of air pollution: Ceske Budejovice (CB), a locality with a clean air, and Karvina, a locality with high air pollution. The samples from normal deliveries (38-41 week+) of nonsmoking mothers and their newborns were collected in the summer and winter seasons. Higher PM2.5 concentrations were found in Karvina than in CB in the summer 2013 (mean±SD: 20.41±6.28 vs. 9.45±3.62μg/m(3), P<0.001), and in the winter 2014 (mean±SD: 53.67±19.76 vs. 27.96±12.34μg/m(3), P<0.001). We observed significant differences in 15-F2t-IsoP levels between the summer and winter seasons in Karvina for newborns (mean±SD: 64.24±26.75 vs. 104.26±38.18pg/ml plasma, respectively) (P<0.001). Levels of 8-oxodG differed only in the winter season between localities, they were significantly higher (P<0.001) in newborns from Karvina in comparison with CB (mean±SD: 5.70±2.94 vs. 4.23±1.51 nmol/mmol creatinine, respectively). The results of multivariate regression analysis in newborns from Karvina showed PM2.5 concentrations to be a significant predictor for 8-oxodG excretion, PM2.5 and B[a]P (benzo[a]pyrene) concentrations to be a significant predictor for 15-F2t-IsoP levels. The results of multivariate regression analysis in mothers showed PM2.5 concentrations to be a significant predictor of 8-oxodG levels.

  4. Linking environmental effects to health impacts: a computer modelling approach for air pollution

    PubMed Central

    Mindell, J.; Barrowcliffe, R.

    2005-01-01

    Study objective and Setting: To develop a computer model, using a geographical information system (GIS), to quantify potential health effects of air pollution from a new energy from waste facility on the surrounding urban population. Design: Health impacts were included where evidence of causality is sufficiently convincing. The evidence for no threshold means that annual average increases in concentration can be used to model changes in outcome. The study combined the "contours" of additional pollutant concentrations for the new source generated by a dispersion model with a population database within a GIS, which is set up to calculate the product of the concentration increase with numbers of people exposed within each enumeration district exposure response coefficients, and the background rates of mortality and hospital admissions for several causes. Main results: The magnitude of health effects might result from the increased PM10 exposure is small—about 0.03 deaths each year in a population of 3 500 000, with 0.04 extra hospital admissions for respiratory disease. Long term exposure might bring forward 1.8–7.8 deaths in 30 years. Conclusions: This computer model is a feasible approach to estimating impacts on human health from environmental effects but sensitivity analyses are recommended. Relevance to clinical or professional practice: The availability of GIS and dispersion models on personal computers enables quantification of health effects resulting from the additional air pollution new industrial development might cause. This approach could also be used in environmental impact assessment. Care must be taken in presenting results to emphasise methodological limitations and uncertainties in the numbers. PMID:16286501

  5. Air Pollution and Industry.

    ERIC Educational Resources Information Center

    Ross, R. D., Ed.

    This book is an authoritative reference and practical guide designed to help the plant engineer identify and solve industrial air pollution problems in order to be able to meet current air pollution regulations. Prepared under the editorial supervision of an experienced chemical engineer, with each chapter contributed by an expert in his field,…

  6. [Evolution of air pollution and impact on control programs in 3 megacities in Latin America].

    PubMed

    Lacasaña-Navarro, M; Aguilar-Garduño, C; Romieu, I

    1999-01-01

    The present work discusses the problems of atmospheric pollution of three Megacities of Latin America (Mexico City, Sao Paulo and Santiago). The environmental pollution control programs implemented by the Government are revised and the evolution of pollution levels during the period of 1988-1995 at Santiago de Chile and Sao Paulo, but until 1997 at Mexico City, in order to evaluate the impact of these programs. During this period, a decreasing trend is observed in the three cities in the levels of PTS, PM10, SO2, NO2, CO and O3, although most of these contaminants still exceed the air quality standards. It must be emphasized that the largest impact has been on the levels of SO2. We recommend the development of sustainable transport policies; in this context, various strategies were proposed by the Organization for Economic Cooperation and Development (OECD) in the European Conference of Ministers of Transport. Additionally, public participation is important when decisions are taken on transport policies.

  7. Air quality data analysis system for interrelating effects, standards, and needed source reductions: Part 12. Effects on man, animals, and plants as a function of air pollutant impact

    SciTech Connect

    Larsen, R.I.; McDonnell, W.F.; Coffin, D.L.; Heck, W.W.

    1993-12-01

    The impact-effect mathematical model was developed previously to predict biological response as a function of air pollutant impact (exposure duration multiplied by pollutant concentration raised on an exponent). The purpose of this paper is plot and regress example effects on man, animals, and plants (a wide range of life forms) as a function of air pollutant impact to determine how well the plotted data fit this model and to determine, especially, how well both acute and chronic exposure data fit the model. The three examples of air pollutant effects plotted and regressed are: for man, lung function decrease after exposure to ozone (O3); for animals, mice mortality after exposure to nitrogen dioxide (NO2); and for plants, leaf injury after exposure to O3. The resultant impact-effect equations explain 95 percent of the variance for the lung function data, 92 percent for leaf injury, and 73 percent for mice mortality.

  8. Assessment of the status of urban air pollution and its impact on human health in the city of Kolkata.

    PubMed

    Ghose, Mrinal K; Paul, R; Banerjee, R K

    2005-09-01

    Air pollution has significant effects on exacerbation of asthma, allergy and other respiratory diseases. Like many other magacities in the world the ambient air quality of Kolkata is also being deteriorated day by day. Automobile exhausts and certain industrial pollutants produce O(3) by photochemical reactions. The particulate matter, particularly less than 10 microm in size, can pass through the natural protective mechanism of human respiratory system and plays an important role in genesis and augmentation of allergic disorders. Sources of air pollution in the area and the unique problem arising out of the emission from the vehicles, industries, etc. have been described. Ambient air quality was monitored along with micrometeorological data and the results are discussed. The status of air pollution in the area has been evaluated and a questionnaire survey was conducted to estimate the allergic symptoms and exposure to assess the respiratory disorders. The data are analysed to evaluate the critical situation arising out of the emission of air pollutants and the impact on human health due to respirable diseases (RDs) to middle class sub-population (activity-wise) in the area are assessed. A strategic air quality management plan has been proposed. For the mitigation of air pollution problems in the city, the different measures to be adopted to maintain the balance between sustainable development and environmental management have been discussed.

  9. Assessment of the status of urban air pollution and its impact on human health in the city of Kolkata.

    PubMed

    Ghose, Mrinal K; Paul, R; Banerjee, R K

    2005-09-01

    Air pollution has significant effects on exacerbation of asthma, allergy and other respiratory diseases. Like many other magacities in the world the ambient air quality of Kolkata is also being deteriorated day by day. Automobile exhausts and certain industrial pollutants produce O(3) by photochemical reactions. The particulate matter, particularly less than 10 microm in size, can pass through the natural protective mechanism of human respiratory system and plays an important role in genesis and augmentation of allergic disorders. Sources of air pollution in the area and the unique problem arising out of the emission from the vehicles, industries, etc. have been described. Ambient air quality was monitored along with micrometeorological data and the results are discussed. The status of air pollution in the area has been evaluated and a questionnaire survey was conducted to estimate the allergic symptoms and exposure to assess the respiratory disorders. The data are analysed to evaluate the critical situation arising out of the emission of air pollutants and the impact on human health due to respirable diseases (RDs) to middle class sub-population (activity-wise) in the area are assessed. A strategic air quality management plan has been proposed. For the mitigation of air pollution problems in the city, the different measures to be adopted to maintain the balance between sustainable development and environmental management have been discussed. PMID:16160784

  10. Modelling future impacts of air pollution using the multi-scale UK Integrated Assessment Model (UKIAM).

    PubMed

    Oxley, Tim; Dore, Anthony J; ApSimon, Helen; Hall, Jane; Kryza, Maciej

    2013-11-01

    Integrated assessment modelling has evolved to support policy development in relation to air pollutants and greenhouse gases by providing integrated simulation tools able to produce quick and realistic representations of emission scenarios and their environmental impacts without the need to re-run complex atmospheric dispersion models. The UK Integrated Assessment Model (UKIAM) has been developed to investigate strategies for reducing UK emissions by bringing together information on projected UK emissions of SO2, NOx, NH3, PM10 and PM2.5, atmospheric dispersion, criteria for protection of ecosystems, urban air quality and human health, and data on potential abatement measures to reduce emissions, which may subsequently be linked to associated analyses of costs and benefits. We describe the multi-scale model structure ranging from continental to roadside, UK emission sources, atmospheric dispersion of emissions, implementation of abatement measures, integration with European-scale modelling, and environmental impacts. The model generates outputs from a national perspective which are used to evaluate alternative strategies in relation to emissions, deposition patterns, air quality metrics and ecosystem critical load exceedance. We present a selection of scenarios in relation to the 2020 Business-As-Usual projections and identify potential further reductions beyond those currently being planned.

  11. Impact of the June 2013 Riau province Sumatera smoke haze event on regional air pollution

    NASA Astrophysics Data System (ADS)

    Dewi Ayu Kusumaningtyas, Sheila; Aldrian, Edvin

    2016-07-01

    Forest and land fires in Riau province of Sumatera increase along with the rapid deforestation, land clearing, and are induced by dry climate. Forest and land fires, which occur routinely every year, cause trans-boundary air pollution up to Singapore. Economic losses were felt by Indonesia and Singapore as the affected country thus creates tensions among neighboring countries. A high concentration of aerosols are emitted from fire which degrade the local air quality and reduce visibility. This study aimed to analyze the impact of the June 2013 smoke haze event on the environment and air quality both in Riau and Singapore as well as to characterize the aerosol properties in Singapore during the fire period. Air quality parameters combine with aerosols from Aerosol Robotic Network (AERONET) data and some environmental parameters, i.e. rainfall, visibility, and hotspot numbers are investigated. There are significant relationships between aerosol and environmental parameters both in Riau and Singapore. From Hysplit modeling and a day lag correlation, smoke haze in Singapore is traced back to fire locations in Riau province after propagated one day. Aerosol characterization through aerosol optical depth (AOD), Ångstrom parameter and particle size distribution indicate the presence of fine aerosols in a great number in Singapore, which is characteristic of biomass burning aerosols. Fire and smoke haze even impaired economic activity both in Riau and Singapore, thus leaving some accounted economic losses as reported by some agencies.

  12. Impact of ship emissions on air pollution and AOD over North Atlantic and European Arctic

    NASA Astrophysics Data System (ADS)

    Kaminski, Jacek W.; Struzewska, Joanna; Jefimow, Maciej; Durka, Pawel

    2016-04-01

    The iAREA project is combined of experimental and theoretical research in order to contribute to the new knowledge on the impact of absorbing aerosols on the climate system in the European Arctic (http://www.igf.fuw.edu.pl/iAREA). A tropospheric chemistry model GEM-AQ (Global Environmental Multiscale Air Quality) was used as a computational tool. The core of the model is based on a weather prediction model with environmental processes (chemistry and aerosols) implanted on-line and are interactive (i.e. providing feedback of chemistry on radiation and dynamics). The numerical grid covered the Euro-Atlantic region with the resolution of 50 km. Emissions developed by NILU in the ECLIPSE project was used (Klimont et al., 2013). The model was run for two 1-year scenarios. 2014 was chosen as a base year for simulations and analysis. Scenarios include a base run with most up-to-date emissions and a run without maritime emissions. The analysis will focus on the contribution of maritime emissions on levels of particulate matter and gaseous pollutants over the European Arctic, North Atlantic and coastal areas. The annual variability will be assessed based on monthly mean near-surface concentration fields. Analysis of shipping transport on near-surface air pollution over the Euro-Atlantic region will be assessed for ozone, NO2, SO2, CO, PM10, PM2.5. Also, a contribution of ship emissions to AOD will be analysed.

  13. Impact of bicycle route type on exposure to traffic-related air pollution.

    PubMed

    MacNaughton, Piers; Melly, Steven; Vallarino, Jose; Adamkiewicz, Gary; Spengler, John D

    2014-08-15

    Cyclists are exposed to traffic-related air pollution (TRAP) during their commutes due to their proximity to vehicular traffic. Two of the main components of TRAP are black carbon (BC) and nitrogen dioxide (NO2), which have both been causally associated with increased mortality. To assess the impact of cyclists' exposure to TRAP, a battery-powered mobile monitoring station was designed to sample air pollutants along five bike routes in Boston, Massachusetts. The bike routes were categorized into three types: bike paths, which are separated from vehicle traffic; bike lanes, which are adjacent to traffic; and designated bike lanes, which are shared traffic lanes for buses and cyclists. Bike lanes were found to have significantly higher concentrations of BC and NO2 than bike paths in both adjusted and unadjusted generalized linear models. Higher concentrations were observed in designated bike lanes than bike paths; however, this association was only significant for NO2. After adjusting for traffic density, background concentration, and proximity to intersections, bike lanes were found to have concentrations of BC and NO2 that were approximately 33% higher than bike paths. Distance from the road, vegetation barriers, and reduced intersection density appear to influence these variations. These findings suggest that cyclists can reduce their exposure to TRAP during their commute by using bike paths preferentially over bike lanes regardless of the potential increase of traffic near these routes.

  14. The impact of European legislative and technology measures to reduce air pollutants on air quality, human health and climate

    NASA Astrophysics Data System (ADS)

    Turnock, S. T.; Butt, E. W.; Richardson, T. B.; Mann, G. W.; Reddington, C. L.; Forster, P. M.; Haywood, J.; Crippa, M.; Janssens-Maenhout, G.; Johnson, C. E.; Bellouin, N.; Carslaw, K. S.; Spracklen, D. V.

    2016-02-01

    European air quality legislation has reduced emissions of air pollutants across Europe since the 1970s, affecting air quality, human health and regional climate. We used a coupled composition-climate model to simulate the impacts of European air quality legislation and technology measures implemented between 1970 and 2010. We contrast simulations using two emission scenarios; one with actual emissions in 2010 and the other with emissions that would have occurred in 2010 in the absence of technological improvements and end-of-pipe treatment measures in the energy, industrial and road transport sectors. European emissions of sulphur dioxide, black carbon (BC) and organic carbon in 2010 are 53%, 59% and 32% lower respectively compared to emissions that would have occurred in 2010 in the absence of legislative and technology measures. These emission reductions decreased simulated European annual mean concentrations of fine particulate matter (PM2.5) by 35%, sulphate by 44%, BC by 56% and particulate organic matter by 23%. The reduction in PM2.5 concentrations is calculated to have prevented 80 000 (37 000-116 000, at 95% confidence intervals) premature deaths annually across the European Union, resulting in a perceived financial benefit to society of US232 billion annually (1.4% of 2010 EU GDP). The reduction in aerosol concentrations due to legislative and technology measures caused a positive change in the aerosol radiative effect at the top of atmosphere, reduced atmospheric absorption and also increased the amount of solar radiation incident at the surface over Europe. We used an energy budget approximation to estimate that these changes in the radiative balance have increased European annual mean surface temperatures and precipitation by 0.45 ± 0.11 °C and by 13 ± 0.8 mm yr-1 respectively. Our results show that the implementation of European legislation and technological improvements to reduce the emission of air pollutants has improved air quality and human

  15. Air Pollution Exposure

    PubMed Central

    Balmes, John R.; Collard, Harold R.

    2015-01-01

    Air pollution exposure is a well-established risk factor for several adverse respiratory outcomes, including airways diseases and lung cancer. Few studies have investigated the relationship between air pollution and interstitial lung disease (ILD) despite many forms of ILD arising from environmental exposures. There are potential mechanisms by which air pollution could cause, exacerbate, or accelerate the progression of certain forms of ILD via pulmonary and systemic inflammation as well as oxidative stress. This article will review the current epidemiologic and translational data supporting the plausibility of this relationship and propose a new conceptual framework for characterizing novel environmental risk factors for these forms of lung disease. PMID:25846532

  16. Evaluating the Impacts of Transboundary Air pollution from China on Air Quality in the U.S. Using a Regression Framework

    NASA Astrophysics Data System (ADS)

    Ngo, N. S.; Bao, X.; Zhong, N.

    2014-12-01

    China is the largest emitter of anthropogenic air pollution in the world and previous work has shown the environmental impacts of the long-range transport (LRT) of air pollution from China to the U.S. via chemical transport models, in situ observations, isentropic back trajectories, and to a lesser extent statistical models. However, these studies generally focus on a narrow time period due to data constraints. In this study, we build upon the literature using econometric techniques to isolate the impacts on U.S. air quality from the LRT of air pollution from China. We use a unique daily data set of China's air pollution index (API) and PM10 concentrations at the city level and merge these information with daily monitor data in California (CA) between 2000 and 2013. We first employ a distributed lag model to examine daily patterns, and then exploit a "natural experiment." In the latter methodology, since air pollution is rarely randomly assigned, we examine the impacts of specific events that affect air quality in China, but are plausibly uncorrelated to factors affecting air pollution in CA. For example, Chinese New Year (CNY) is a major week-long holiday and we show pollution levels in China decrease during this time period, likely from reductions in industrial production. CNY varies each calendar year since it is based off the lunar new year, so the timing of this pollution reduction could be considered "as good as random" or exogenous to factors affecting air quality in CA. Using a regression framework including weather, seasonal and geographic controls, we can potentially isolate the impact of the LRT of air pollution to CA. First, results from the distributed lag model suggest that in the Spring, when LRT peaks, a 1 μg/m3 increase in daily PM10 from China between 10 and 14 days ago is associated with an increase in today's PM2.5 in CA of 0.022 μg/m3 (mean daily PM2.5 in CA is 12 μg/m3). Second, we find that if CNY occurred 5 to 9 days ago, today's PM2.5 in

  17. Quantifying the impact of traffic-related air pollution on the indoor air quality of a naturally ventilated building.

    PubMed

    Tong, Zheming; Chen, Yujiao; Malkawi, Ali; Adamkiewicz, Gary; Spengler, John D

    2016-01-01

    Improper natural ventilation practices may deteriorate indoor air quality when in close proximity to roadways, although the intention is often to reduce energy consumption. In this study, we employed a CFD-based air quality model to quantify the impact of traffic-related air pollution on the indoor air quality of a naturally ventilated building. Our study found that the building envelope restricts dispersion and dilution of particulate matter. The indoor concentration in the baseline condition located 10m away from the roadway is roughly 16-21% greater than that at the edge of the roadway. The indoor flow recirculation creates a well-mixed zone with little variation in fine particle concentration (i.e., 253nm). For ultrafine particles (<100nm), a noticeable decrease in particle concentrations indoors with increasing distance from the road is observed due to Brownian and turbulent diffusion. In addition, the indoor concentration strongly depends on the distance between the roadway and building, particle size, wind condition, and window size and location. A break-even point is observed at D'~2.1 (normalized distance from the roadway by the width of the road). The indoor particle concentration is greater than that at the highway where D'<2.1, and vice versa. For new building planning, the distance from the roadway and the ambient wind condition need to be considered at the early design stage whereas the size and location of the window openings, the interior layout, and the placement of fresh air intakes are important to the indoor air quality of existing buildings adjacent to roadways. PMID:26829764

  18. Quantifying the impact of traffic-related air pollution on the indoor air quality of a naturally ventilated building.

    PubMed

    Tong, Zheming; Chen, Yujiao; Malkawi, Ali; Adamkiewicz, Gary; Spengler, John D

    2016-01-01

    Improper natural ventilation practices may deteriorate indoor air quality when in close proximity to roadways, although the intention is often to reduce energy consumption. In this study, we employed a CFD-based air quality model to quantify the impact of traffic-related air pollution on the indoor air quality of a naturally ventilated building. Our study found that the building envelope restricts dispersion and dilution of particulate matter. The indoor concentration in the baseline condition located 10m away from the roadway is roughly 16-21% greater than that at the edge of the roadway. The indoor flow recirculation creates a well-mixed zone with little variation in fine particle concentration (i.e., 253nm). For ultrafine particles (<100nm), a noticeable decrease in particle concentrations indoors with increasing distance from the road is observed due to Brownian and turbulent diffusion. In addition, the indoor concentration strongly depends on the distance between the roadway and building, particle size, wind condition, and window size and location. A break-even point is observed at D'~2.1 (normalized distance from the roadway by the width of the road). The indoor particle concentration is greater than that at the highway where D'<2.1, and vice versa. For new building planning, the distance from the roadway and the ambient wind condition need to be considered at the early design stage whereas the size and location of the window openings, the interior layout, and the placement of fresh air intakes are important to the indoor air quality of existing buildings adjacent to roadways.

  19. Investigating Air Pollution

    ERIC Educational Resources Information Center

    Carter, Edward J.

    1977-01-01

    Describes an experiment using live plants and cigarette smoke to demonstrate the effects of air pollution on a living organism. Procedures include growth of the test plants in glass bottles, and construction and operation of smoking machine. (CS)

  20. AIR POLLUTION CONTROL TECHNOLOGIES

    EPA Science Inventory

    This is a chapter for John Wiley & Son's Mechanical Engineers' Handbook, and covers issues involving air pollution control. Various technologies for controlling sulfur oxides is considered including fuel desulfurization. It also considers control of nitrogen oxides including post...

  1. Air pollution and its impacts on health in Vitoria, Espirito Santo, Brazil

    PubMed Central

    de Freitas, Clarice Umbelino; de Leon, Antonio Ponce; Juger, Washington; Gouveia, Nelson

    2016-01-01

    ABSTRACT OBJECTIVE To analyze the impact of air pollution on respiratory and cardiovascular morbidity of children and adults in the city of Vitoria, state of Espirito Santo. METHODS A study was carried out using time-series models via Poisson regression from hospitalization and pollutant data in Vitoria, ES, Southeastern Brazil, from 2001 to 2006. Fine particulate matter (PM10), sulfur dioxide (SO2), and ozone (O3) were tested as independent variables in simple and cumulative lags of up to five days. Temperature, humidity and variables indicating weekdays and city holidays were added as control variables in the models. RESULTS For each increment of 10 µg/m3 of the pollutants PM10, SO2, and O3, the percentage of relative risk (%RR) for hospitalizations due to total respiratory diseases increased 9.67 (95%CI 11.84-7.54), 6.98 (95%CI 9.98-4.17) and 1.93 (95%CI 2.95-0.93), respectively. We found %RR = 6.60 (95%CI 9.53-3.75), %RR = 5.19 (95%CI 9.01-1.5), and %RR = 3.68 (95%CI 5.07-2.31) for respiratory diseases in children under the age of five years for PM10, SO2, and O3, respectively. Cardiovascular diseases showed a significant relationship with O3, with %RR = 2.11 (95%CI 3.18-1.06). CONCLUSIONS Respiratory diseases presented a stronger and more consistent relationship with the pollutants researched in Vitoria. A better dose-response relationship was observed when using cumulative lags in polynomial distributed lag models. PMID:26982960

  2. Quantifying the health impacts of air pollution under a changing climate—a review of approaches and methodology

    NASA Astrophysics Data System (ADS)

    Sujaritpong, Sarunya; Dear, Keith; Cope, Martin; Walsh, Sean; Kjellstrom, Tord

    2014-03-01

    Climate change has been predicted to affect future air quality, with inevitable consequences for health. Quantifying the health effects of air pollution under a changing climate is crucial to provide evidence for actions to safeguard future populations. In this paper, we review published methods for quantifying health impacts to identify optimal approaches and ways in which existing challenges facing this line of research can be addressed. Most studies have employed a simplified methodology, while only a few have reported sensitivity analyses to assess sources of uncertainty. The limited investigations that do exist suggest that examining the health risk estimates should particularly take into account the uncertainty associated with future air pollution emissions scenarios, concentration-response functions, and future population growth and age structures. Knowledge gaps identified for future research include future health impacts from extreme air pollution events, interactions between temperature and air pollution effects on public health under a changing climate, and how population adaptation and behavioural changes in a warmer climate may modify exposure to air pollution and health consequences.

  3. Air pollution from aircraft

    NASA Technical Reports Server (NTRS)

    Heywood, J. B.; Fay, J. A.; Chigier, N. A.

    1979-01-01

    A series of fundamental problems related to jet engine air pollution and combustion were examined. These include soot formation and oxidation, nitric oxide and carbon monoxide emissions mechanisms, pollutant dispension, flow and combustion characteristics of the NASA swirl can combustor, fuel atomization and fuel-air mixing processes, fuel spray drop velocity and size measurement, ignition and blowout. A summary of this work, and a bibliography of 41 theses and publications which describe this work, with abstracts, is included.

  4. Air Pollution Surveillance Systems

    ERIC Educational Resources Information Center

    Morgan, George B.; And Others

    1970-01-01

    Describes atmospheric data monitoring as part of total airpollution control effort. Summarizes types of gaseous, liquid and solid pollutants and their sources; contrast between urban and rural environmental air quality; instrumentation to identify pollutants; and anticipated new non-wet chemical physical and physiochemical techniques tor cetection…

  5. Typical synoptic situations and their impacts on the wintertime air pollution in the Guanzhong basin, China

    NASA Astrophysics Data System (ADS)

    Bei, Naifang; Li, Guohui; Huang, Ru-Jin; Cao, Junji; Meng, Ning; Feng, Tian; Liu, Suixin; Zhang, Ting; Zhang, Qiang; Molina, Luisa T.

    2016-06-01

    Rapid industrialization and urbanization have caused severe air pollution in the Guanzhong basin, northwestern China, with heavy haze events occurring frequently in recent winters. Using the NCEP reanalysis data, the large-scale synoptic situations influencing the Guanzhong basin during wintertime of 2013 are categorized into six types to evaluate the contribution of synoptic situations to the air pollution, including "north-low", "southwest-trough", "southeast-high", "transition", "southeast-trough", and "inland-high". The FLEXPART model has been utilized to demonstrate the corresponding pollutant transport patterns for the typical synoptic situations in the basin. Except for "southwest-trough" and "southeast-high" (defined as favorable synoptic situations), the other four synoptic conditions (defined as unfavorable synoptic situations) generally facilitate the accumulation of air pollutants, causing heavy air pollution in the basin. In association with the measurement of PM2.5 (particulate matter with aerodynamic diameter less than 2.5 µm) in the basin, the unfavorable synoptic situations correspond to high PM2.5 mass concentrations or poor air quality and vice versa. The same analysis has also been applied to winters of 2008-2012, which shows that the basin was mainly influenced by the unfavorable synoptic situations during wintertime leading to poor air quality. The WRF-CHEM model has further been applied to simulate the selected 6 days representing the typical synoptic situations during the wintertime of 2013, and the results generally show a good agreement between the modeled distributions and variations of PM2.5 and the corresponding synoptic situations, demonstrating reasonable classification for the synoptic situations in the basin. Detailed meteorological conditions, such as temperature inversion, low-level horizontal wind speed, and planetary boundary layer, all contribute to heavy air pollution events in the basin under unfavorable synoptic conditions

  6. Evaluation of ambient air pollution impact on carrot plants at a suburban site using open top chambers.

    PubMed

    Tiwari, S; Agrawal, M; Marshall, F M

    2006-08-01

    The present experiment was done to evaluate the impact of ambient air pollution on carrot (Dacus carota var. Pusa Kesar) plants using open top chambers (OTCs) ventilated with ambient (NFCs) or charcoal filtered air (FCs) at a suburban site of Varanasi, India. Various morphological, physiological and biochemical characteristics of the plants were studied at different growth stages. Air monitoring data clearly showed high concentrations of SO2, NO2 and O3 in the ambient air of study site. SO2 and NO2 concentrations were higher during early growth stages of carrot, whereas O3 concentration was highest during later growth stages. Filtration of air has caused significant reductions in all the three pollutant concentrations in FCs as compared to NFCs. Plants growing in FCs showed significantly higher photosynthetic rate, stomatal conductance, water use efficiency and variable fluorescence as compared to plants growing in NFCs. Protein content also showed a similar pattern, however, lipid peroxidation, ascorbic acid content and peroxidase activity were higher in plants growing in NFCs as compared to FCs. Shoot length, number of leaves per plant, leaf area and root and shoot weight increased significantly upon filtration of ambient air. Total nitrogen decreased significantly in root, but increased significantly in shoot of plants grown in NFCs. Total P, Mg, Ca and K contents decreased significantly in plants grown in NFCs as compared to FCs. The individual pollutant concentrations were below threshold for plant injury, but the combined effect of all the three seems to act synergistically in causing greater adverse impact on dry weight and physiology of carrot plants. The study clearly indicates that air pollutants are high enough in the ambient air to cause significant unfavorable impact on carrot plants. The work further supports the usefulness of OTCs for assessing air pollution damage under field conditions in developing countries.

  7. Current State of the Evidence: Air Pollution Impacts on Human Health

    EPA Science Inventory

    Epidemiologic studies have demonstrated a consistent association between ambient levels of air pollution and adverse human health effects, including mortality and morbidity. Many of these studies have relied on the US Air Quality System (AQS) for exposure assessment. The AQS is a...

  8. Transformations in understanding the health impacts of air pollutants in the 20th century

    NASA Astrophysics Data System (ADS)

    Brimblecombe, P.

    2009-02-01

    The transformations of air pollution in the 20th century are well known. The century opened with urban atmospheres polluted by the combustion products of burning coal: smoke and sulfur dioxide. At the millennium these pollutants had almost vanished, replaced by the pollutants, both primary and secondary, a function of fossil-fuelled vehicles. However transitions in terms of health outcomes have been equally dramatic. Fine particulate matter causes notable cardiovascular problems such as increased incidence of stroke and heart attack, although the mechanism remains somewhat unclear. Cancer inducing air pollutants remain a concern, but in addition more recently there has been a rising interest in the presence of neurotoxins and endocrine disrupting substances in the environment.

  9. Air Pollution Primer.

    ERIC Educational Resources Information Center

    National Tuberculosis and Respiratory Disease Association, New York, NY.

    As the dangers of polluted air to the health and welfare of all individuals became increasingly evident and as the complexity of the causes made responsibility for solutions even more difficult to fix, the National Tuberculosis and Respiratory Disease Association felt obligated to give greater emphasis to its clean air program. To this end they…

  10. Climate and Air Pollution Impacts on Indian Agriculture, 1979-2009

    NASA Astrophysics Data System (ADS)

    Burney, J. A.; Ramanathan, V.

    2011-12-01

    The impacts of climate change on agricultural production have important ramifications for food security and policy from local to global scales. Recent research investigating these impacts has focused on the roles of temperature and precipitation (including extremes) on yield, using historical panel data and statistical models to tease out the effects of weather deviations on productivity. These studies have shown that India is one of the regions that has already been most negatively affected by climate change. Indian rice and wheat yields are several percent lower than they otherwise would be, based on temperature and precipitation changes alone over the last 30 years (Lobell et. al, 2011). However, regional climate and crop productivity changes in India are likely due to both global emissions of long-lived greenhouse gases (GHGs) as well as regional emissions of short-lived climate forcers (SLCFs) like aerosols and ozone precursers, which can impact crop production indirectly, by altering surface radiation and precipitation dynamics (aerosols), and directly, by damaging plants (ozone). Existing estimates of the effects of these short-lived climate forcers on crop yields have been drawn from field experiments and cultivar-specific dose-response relationships. Some work has been done to incorporate radiation changes into a statistical panel model for rice production (Auffhammer et. al. 2006, 2011), but no research has as yet simultaneously examined the roles of both longer-run trends and short-lived climate forcers. We present results from a statistical model of the impact of temperature, precipitation, and short-lived climate forcers on rice and wheat yields in India over the past 30 years. This is the first such analysis fully combining effects of SLCFs including ozone, and shows that yield gains from addressing regional air pollution could help offset expected future losses due to rising temperatures and T & P extremes. This new insight into the relative

  11. Aromatic compound emissions from municipal solid waste landfill: Emission factors and their impact on air pollution

    NASA Astrophysics Data System (ADS)

    Liu, Yanjun; Lu, Wenjing; Guo, Hanwen; Ming, Zhongyuan; Wang, Chi; Xu, Sai; Liu, Yanting; Wang, Hongtao

    2016-08-01

    Aromatic compounds (ACs) are major components of volatile organic compounds emitted from municipal solid waste (MSW) landfills. The ACs emissions from the working face of a landfill in Beijing were studied from 2014 to 2015 using a modified wind tunnel system. Emission factors (EFs) of fugitive ACs emissions from the working face of the landfill were proposed according to statistical analyses to cope with their uncertainty. And their impacts on air quality were assessed for the first time. Toluene was the dominant AC with an average emission rate of 38.8 ± 43.0 μg m-2 s-1 (at a sweeping velocity of 0.26 m s-1). An increasing trend in AC emission rates was observed from 12:00 to 18:00 and then peaked at 21:00 (314.3 μg m-2 s-1). The probability density functions (PDFs) of AC emission rates could be classified into three distributions: Gaussian, log-normal, and logistic. EFs of ACs from the working face of the landfill were proposed according to the 95th percentile cumulative emission rates and the wind effects on ACs emissions. The annual ozone formation and secondary organic aerosol formation potential caused by AC emissions from landfills in Beijing were estimated to be 8.86 × 105 kg year-1 and 3.46 × 104 kg year-1, respectively. Toluene, m + p-xylene, and 1,3,5-trimethylbenzene were the most significant contributors to air pollution. Although ACs pollutions from landfills accounts for less percentage (∼0.1%) compared with other anthropogenic sources, their fugitive emissions which cannot be controlled efficiently deserve more attention and further investigation.

  12. Fighting ambient air pollution and its impact on health: from human rights to the right to a clean environment.

    PubMed

    Guillerm, N; Cesari, G

    2015-08-01

    Clean air is one of the basic requirements of human health and well-being. However, almost nine out of 10 individuals living in urban areas are affected by air pollution. Populations living in Africa, South-East Asia, and in low- and middle-income countries across all regions are the most exposed. Exposure to outdoor air pollution ranks as the ninth leading risk factor for mortality, killing 3.2 million people each year, especially young children, the elderly, persons with lung or cardiovascular disease, those who work or exercise outdoors and low-income populations. In October 2013, the International Agency for Research on Cancer (IARC) classified outdoor air pollution as carcinogenic to humans, calling air pollution 'a major environmental health problem'. Human rights and environmental norms are powerful tools to combat air pollution and its impact on health. The dependence of human rights on environmental quality has been recognised in international texts and by human rights treaty bodies. The growing awareness of the environment has already yielded considerable legislative and regulatory output. However, the implementation of standards remains a pervasive problem. In the fight against violations of norms, citizens have a crucial role to play. We discuss the relevance of a yet to be proclaimed standalone right to a healthy environment.

  13. Roadside vegetation barrier designs to mitigate near-road air pollution impacts.

    PubMed

    Tong, Zheming; Baldauf, Richard W; Isakov, Vlad; Deshmukh, Parikshit; Zhang, K Max

    2016-01-15

    With increasing evidence that exposures to air pollution near large roadways increases risks of a number of adverse human health effects, identifying methods to reduce these exposures has become a public health priority. Roadside vegetation barriers have shown the potential to reduce near-road air pollution concentrations; however, the characteristics of these barriers needed to ensure pollution reductions are not well understood. Designing vegetation barriers to mitigate near-road air pollution requires a mechanistic understanding of how barrier configurations affect the transport of traffic-related air pollutants. We first evaluated the performance of the Comprehensive Turbulent Aerosol Dynamics and Gas Chemistry (CTAG) model with Large Eddy Simulation (LES) to capture the effects of vegetation barriers on near-road air quality, compared against field data. Next, CTAG with LES was employed to explore the effects of six conceptual roadside vegetation/solid barrier configurations on near-road size-resolved particle concentrations, governed by dispersion and deposition. Two potentially viable design options are revealed: a) a wide vegetation barrier with high Leaf Area Density (LAD), and b) vegetation-solid barrier combinations, i.e., planting trees next to a solid barrier. Both designs reduce downwind particle concentrations significantly. The findings presented in the study will assist urban planning and forestry organizations with evaluating different green infrastructure design options. PMID:26457737

  14. Roadside vegetation barrier designs to mitigate near-road air pollution impacts.

    PubMed

    Tong, Zheming; Baldauf, Richard W; Isakov, Vlad; Deshmukh, Parikshit; Zhang, K Max

    2016-01-15

    With increasing evidence that exposures to air pollution near large roadways increases risks of a number of adverse human health effects, identifying methods to reduce these exposures has become a public health priority. Roadside vegetation barriers have shown the potential to reduce near-road air pollution concentrations; however, the characteristics of these barriers needed to ensure pollution reductions are not well understood. Designing vegetation barriers to mitigate near-road air pollution requires a mechanistic understanding of how barrier configurations affect the transport of traffic-related air pollutants. We first evaluated the performance of the Comprehensive Turbulent Aerosol Dynamics and Gas Chemistry (CTAG) model with Large Eddy Simulation (LES) to capture the effects of vegetation barriers on near-road air quality, compared against field data. Next, CTAG with LES was employed to explore the effects of six conceptual roadside vegetation/solid barrier configurations on near-road size-resolved particle concentrations, governed by dispersion and deposition. Two potentially viable design options are revealed: a) a wide vegetation barrier with high Leaf Area Density (LAD), and b) vegetation-solid barrier combinations, i.e., planting trees next to a solid barrier. Both designs reduce downwind particle concentrations significantly. The findings presented in the study will assist urban planning and forestry organizations with evaluating different green infrastructure design options.

  15. A feasibility study on assessing public health impacts of cumulative air pollution reduction activities in a small geographic area

    EPA Science Inventory

    Background and Objective: The rnain objective ofthis study was to examine the feasibility ofconducting a local (e.g., city level) assessment ofthe public health impacts ofcumulative air pollution reduction activities (a.k.a. accountability) from the federal, state, local and vo...

  16. Assessing the Impact of Air Pollution on Grain Yield of Winter Wheat - A Case Study in the North China Plain.

    PubMed

    Liu, Xiuwei; Sun, Hongyong; Feike, Til; Zhang, Xiying; Shao, Liwei; Chen, Suying

    2016-01-01

    The major wheat production region of China the North China Plain (NCP) is seriously affected by air pollution. In this study, yield of winter wheat (Triticum aestivum L.) was analyzed with respect to the potential impact of air pollution index under conditions of optimal crop management in the NCP from 2001 to 2012. Results showed that air pollution was especially serious at the early phase of winter wheat growth significantly influencing various weather factors. However, no significant correlations were found between final grain yield and the weather factors during the early growth phase. In contrast, significant correlations were found between grain yield and total solar radiation gap, sunshine hour gap, diurnal temperature range and relative humidity during the late growing phase. To disentangle the confounding effects of various weather factors, and test the isolated effect of air pollution induced changes in incoming global solar radiation on yield under ceteris paribus conditions, crop model based scenario-analysis was conducted. The simulation results of the calibrated Agricultural Production Systems Simulator (APSIM) model indicated that a reduction in radiation by 10% might cause a yield reduction by more than 10%. Increasing incident radiation by 10% would lead to yield increases of (only) 7%, with the effects being much stronger during the late growing phase compared to the early growing phase. However, there is evidence that APSIM overestimates the effect of air pollution induced changes on radiation, as it does not consider the changes in radiative properties of solar insulation, i.e. the relative increase of diffuse over direct radiation, which may partly alleviate the negative effects of reduced total radiation by air pollution. Concluding, the present study could not detect a significantly negative effect of air pollution on wheat yields in the NCP.

  17. Assessing the Impact of Air Pollution on Grain Yield of Winter Wheat - A Case Study in the North China Plain.

    PubMed

    Liu, Xiuwei; Sun, Hongyong; Feike, Til; Zhang, Xiying; Shao, Liwei; Chen, Suying

    2016-01-01

    The major wheat production region of China the North China Plain (NCP) is seriously affected by air pollution. In this study, yield of winter wheat (Triticum aestivum L.) was analyzed with respect to the potential impact of air pollution index under conditions of optimal crop management in the NCP from 2001 to 2012. Results showed that air pollution was especially serious at the early phase of winter wheat growth significantly influencing various weather factors. However, no significant correlations were found between final grain yield and the weather factors during the early growth phase. In contrast, significant correlations were found between grain yield and total solar radiation gap, sunshine hour gap, diurnal temperature range and relative humidity during the late growing phase. To disentangle the confounding effects of various weather factors, and test the isolated effect of air pollution induced changes in incoming global solar radiation on yield under ceteris paribus conditions, crop model based scenario-analysis was conducted. The simulation results of the calibrated Agricultural Production Systems Simulator (APSIM) model indicated that a reduction in radiation by 10% might cause a yield reduction by more than 10%. Increasing incident radiation by 10% would lead to yield increases of (only) 7%, with the effects being much stronger during the late growing phase compared to the early growing phase. However, there is evidence that APSIM overestimates the effect of air pollution induced changes on radiation, as it does not consider the changes in radiative properties of solar insulation, i.e. the relative increase of diffuse over direct radiation, which may partly alleviate the negative effects of reduced total radiation by air pollution. Concluding, the present study could not detect a significantly negative effect of air pollution on wheat yields in the NCP. PMID:27612146

  18. Impact of air pollution on pulmonary function and respiratory symptoms in children. Longitudinal repeated-measures study

    PubMed Central

    2010-01-01

    Background Salamanca, Mexico occupied fourth place nationally in contaminating emissions. The aim of the study was to determine the impact of air pollution on the frequency of pulmonary function alterations and respiratory symptoms in school-age children in a longitudinal repeated-measures study. Methods We recruited a cohort of 464 children from 6 to 14 years of age, from two schools differing in distance from the major stationary air pollution sources. Spirometry, respiratory symptoms and air pollutants (O3, SO2, NO, NO2, NOx, PM10,) were obtained for each season. Mixed models for continuous variables and multilevel logistic regression for respiratory symptoms were fitted taking into account seasonal variations in health effects according to air pollution levels. Results Abnormalities in lung function and frequency of respiratory symptoms were higher in the school closer to major stationary air pollution sources than in the distant school. However, in winter differences on health disappeared. The principal alteration in lung function was the obstructive type, which frequency was greater in those students with greater exposure (10.4% vs. 5.3%; OR = 1.95, 95% CI 1.0-3.7), followed by the mixed pattern also more frequent in the same students (4.1% vs. 0.9%; OR = 4.69, 95% CI, 1.0-21.1). PM10 levels were the most consistent factor with a negative relationship with FVC, FEV1 and PEF but with a positive relationship with FEV1/FVC coefficient according to its change per 3-month period. Conclusions Students from the school closer to major stationary air pollution sources had in general more respiratory symptoms than those from the distant school. However, in winter air pollution was generalized in this city and differences in health disappeared. PM10 levels were the most consistent factor related to pulmonary function according, to its change per 3-month period. PMID:21106102

  19. Assessing the Impact of Air Pollution on Grain Yield of Winter Wheat - A Case Study in the North China Plain

    PubMed Central

    Zhang, Xiying; Shao, Liwei; Chen, Suying

    2016-01-01

    The major wheat production region of China the North China Plain (NCP) is seriously affected by air pollution. In this study, yield of winter wheat (Triticum aestivum L.) was analyzed with respect to the potential impact of air pollution index under conditions of optimal crop management in the NCP from 2001 to 2012. Results showed that air pollution was especially serious at the early phase of winter wheat growth significantly influencing various weather factors. However, no significant correlations were found between final grain yield and the weather factors during the early growth phase. In contrast, significant correlations were found between grain yield and total solar radiation gap, sunshine hour gap, diurnal temperature range and relative humidity during the late growing phase. To disentangle the confounding effects of various weather factors, and test the isolated effect of air pollution induced changes in incoming global solar radiation on yield under ceteris paribus conditions, crop model based scenario-analysis was conducted. The simulation results of the calibrated Agricultural Production Systems Simulator (APSIM) model indicated that a reduction in radiation by 10% might cause a yield reduction by more than 10%. Increasing incident radiation by 10% would lead to yield increases of (only) 7%, with the effects being much stronger during the late growing phase compared to the early growing phase. However, there is evidence that APSIM overestimates the effect of air pollution induced changes on radiation, as it does not consider the changes in radiative properties of solar insulation, i.e. the relative increase of diffuse over direct radiation, which may partly alleviate the negative effects of reduced total radiation by air pollution. Concluding, the present study could not detect a significantly negative effect of air pollution on wheat yields in the NCP. PMID:27612146

  20. Indoor Air Pollutant Exposure for Life Cycle Assessment: Regional Health Impact Factors for Households.

    PubMed

    Rosenbaum, Ralph K; Meijer, Arjen; Demou, Evangelia; Hellweg, Stefanie; Jolliet, Olivier; Lam, Nicholas L; Margni, Manuele; McKone, Thomas E

    2015-11-01

    Human exposure to indoor pollutant concentrations is receiving increasing interest in Life Cycle Assessment (LCA). We address this issue by incorporating an indoor compartment into the USEtox model, as well as by providing recommended parameter values for households in four different regions of the world differing geographically, economically, and socially. With these parameter values, intake fractions and comparative toxicity potentials for indoor emissions of dwellings for different air tightness levels were calculated. The resulting intake fractions for indoor exposure vary by 2 orders of magnitude, due to the variability of ventilation rate, building occupation, and volume. To compare health impacts as a result of indoor exposure with those from outdoor exposure, the indoor exposure characterization factors determined with the modified USEtox model were applied in a case study on cooking in non-OECD countries. This study demonstrates the appropriateness and significance of integrating indoor environments into LCA, which ensures a more holistic account of all exposure environments and allows for a better accountability of health impacts. The model, intake fractions, and characterization factors are made available for use in standard LCA studies via www.usetox.org and in standard LCA software. PMID:26444519

  1. Indoor Air Pollutant Exposure for Life Cycle Assessment: Regional Health Impact Factors for Households.

    PubMed

    Rosenbaum, Ralph K; Meijer, Arjen; Demou, Evangelia; Hellweg, Stefanie; Jolliet, Olivier; Lam, Nicholas L; Margni, Manuele; McKone, Thomas E

    2015-11-01

    Human exposure to indoor pollutant concentrations is receiving increasing interest in Life Cycle Assessment (LCA). We address this issue by incorporating an indoor compartment into the USEtox model, as well as by providing recommended parameter values for households in four different regions of the world differing geographically, economically, and socially. With these parameter values, intake fractions and comparative toxicity potentials for indoor emissions of dwellings for different air tightness levels were calculated. The resulting intake fractions for indoor exposure vary by 2 orders of magnitude, due to the variability of ventilation rate, building occupation, and volume. To compare health impacts as a result of indoor exposure with those from outdoor exposure, the indoor exposure characterization factors determined with the modified USEtox model were applied in a case study on cooking in non-OECD countries. This study demonstrates the appropriateness and significance of integrating indoor environments into LCA, which ensures a more holistic account of all exposure environments and allows for a better accountability of health impacts. The model, intake fractions, and characterization factors are made available for use in standard LCA studies via www.usetox.org and in standard LCA software.

  2. Particulate Air Pollution: The Particulars

    ERIC Educational Resources Information Center

    Murphy, James E.

    1973-01-01

    Describes some of the causes and consequences of particulate air pollution. Outlines the experimental procedures for measuring the amount of particulate materials that settles from the air and for observing the nature of particulate air pollution. (JR)

  3. Impact of urbanization on the air pollution “holiday effect” in Taiwan

    NASA Astrophysics Data System (ADS)

    Tan, Pei-Hua; Chou, Chia; Chou, Charles C.-K.

    2013-05-01

    The spatio-temporal characteristics of the “holiday effect”, defined as the difference in air pollutant concentrations between the holiday (Chinese New Year) and non-holiday periods during 1994-2008, and its association with the degree of urbanization in Taiwan are examined. Daily surface measurements of six major pollutants from 54 monitoring stations of the Taiwan Environmental Protection Administration are used. Holiday effects are found for almost all air pollutants in all divisions and individual stations. A widespread holiday effect with consistent signs suggests a high degree of urbanization over Taiwan. Holiday effects are stronger in the west than in the east, due to urban-rural differences, and have a distinct north-south difference in the west, due to different emission sources. In the spatial distribution, as the population (motor vehicle) number in the division increases, holiday effects of NOx, CO and NMHC are intensified. Holiday effects of pollutants can also be stronger when the associated dominant anthropogenic sources in the division have larger emissions. Both imply the association of a stronger holiday effect with a higher degree of urbanization in the division. In the temporal variation, on the other hand, holiday effects and pollutant concentrations tend to weaken and reduce in almost all the urban divisions for all six pollutants except O3. These weakening trends imply possible contributions of other effects, such as the mature state of urbanization for the urban division, the effective pollution-control measures and behavioral pattern changes.

  4. Household air pollution from coal and biomass fuels in China: Measurements, health impacts, and interventions

    SciTech Connect

    Zhang, J.J.; Smith, K.R.

    2007-06-15

    Nearly all China's rural residents and a shrinking fraction of urban residents use solid fuels (biomass and coal) for household cooking and/or heating. Consequently, global meta-analyses of epidemiologic studies indicate that indoor air pollution from solid fuel use in China is responsible for approximately 420,000 premature deaths annually, more than the approximately 300,000 attributed to urban outdoor air pollution in the country. Our objective in this review was to help elucidate the extent of this indoor air pollution health hazard. We reviewed approximately 200 publications in both Chinese- and English language journals that reported health effects, exposure characteristics, and fuel/stove intervention options. Observed health effects include respiratory illnesses, lung cancer, chronic obstructive pulmonary disease, weakening of the immune system, and reduction in lung function. Arsenic poisoning and fluorosis resulting from the use of 'Poisonous' coal have been observed in certain regions of China. Although attempts have been made in a few studies to identify specific coal smoke constituents responsible for specific adverse health effects, the majority of indoor air measurements include those of only particulate matter, carbon monoxide, sulfur dioxide, and/or nitrogen dioxide. These measurements indicate that pollution levels in households using solid fuel generally exceed China's indoor air quality standards. Intervention technologies ranging from simply adding a chimney to the more complex modernized bioenergy program are available, but they can be viable only with coordinated support from the government and the commercial sector.

  5. Epidemiology of air pollution and diabetes.

    PubMed

    Thiering, Elisabeth; Heinrich, Joachim

    2015-07-01

    Air pollution affects a large proportion of the global population. Air pollutants are hypothesized to exert their effects via impaired endothelial function, elevated systemic inflammation, mitochondrial dysfunction, and oxidative stress, all of which are hallmarks of type 2 diabetes (T2D). Here we review epidemiological studies aimed at answering whether diabetes patients are more vulnerable to ambient (outdoor) air pollution exposure and whether air pollution is associated with diabetes development or other predisposing conditions for T2D. Current evidence suggests an association between air pollution exposure and T2D, but more critical analysis is warranted. Understanding the associations between air pollution exposure and the development of T2D is critical in our efforts to control sources of air pollution and their impact on the disease.

  6. Approaches for controlling air pollutants and their environmental impacts generated from coal-based electricity generation in China.

    PubMed

    Xu, Changqing; Hong, Jinglan; Ren, Yixin; Wang, Qingsong; Yuan, Xueliang

    2015-08-01

    This study aims at qualifying air pollutants and environmental impacts generated from coal-based power plants and providing useful information for decision makers on the management of coal-based power plants in China. Results showed that approximately 9.03, 54.95, 62.08, and 12.12% of the national carbon dioxide, sulfur dioxide, nitrogen oxides, and particulate matter emissions, respectively, in 2011were generated from coal-based electricity generation. The air pollutants were mainly generated from east China because of the well-developed economy and energy-intensive industries in the region. Coal-washing technology can simply and significantly reduce the environmental burden because of the relativity low content of coal gangue and sulfur in washed coal. Optimizing the efficiency of raw materials and energy consumption is additional key factor to reduce the potential environmental impacts. In addition, improving the efficiency of air pollutants (e.g., dust, mercury, sulfur dioxide, nitrogen oxides) control system and implementing the strict requirements on air pollutants for power plants are important ways for reducing the potential environmental impacts of coal-based electricity generation in China.

  7. Evaluating the climate and air quality impacts of short-lived pollutants

    NASA Astrophysics Data System (ADS)

    Stohl, A.; Aamaas, B.; Amann, M.; Baker, L. H.; Bellouin, N.; Berntsen, T. K.; Boucher, O.; Cherian, R.; Collins, W.; Daskalakis, N.; Dusinska, M.; Eckhardt, S.; Fuglestvedt, J. S.; Harju, M.; Heyes, C.; Hodnebrog, Ø.; Hao, J.; Im, U.; Kanakidou, M.; Klimont, Z.; Kupiainen, K.; Law, K. S.; Lund, M. T.; Maas, R.; MacIntosh, C. R.; Myhre, G.; Myriokefalitakis, S.; Olivié, D.; Quaas, J.; Quennehen, B.; Raut, J.-C.; Rumbold, S. T.; Samset, B. H.; Schulz, M.; Seland, Ø.; Shine, K. P.; Skeie, R. B.; Wang, S.; Yttri, K. E.; Zhu, T.

    2015-09-01

    This paper presents a summary of the work done within the European Union's Seventh Framework Programme project ECLIPSE (Evaluating the Climate and Air Quality Impacts of Short-Lived Pollutants). ECLIPSE had a unique systematic concept for designing a realistic and effective mitigation scenario for short-lived climate pollutants (SLCPs; methane, aerosols and ozone, and their precursor species) and quantifying its climate and air quality impacts, and this paper presents the results in the context of this overarching strategy. The first step in ECLIPSE was to create a new emission inventory based on current legislation (CLE) for the recent past and until 2050. Substantial progress compared to previous work was made by including previously unaccounted types of sources such as flaring of gas associated with oil production, and wick lamps. These emission data were used for present-day reference simulations with four advanced Earth system models (ESMs) and six chemistry transport models (CTMs). The model simulations were compared with a variety of ground-based and satellite observational data sets from Asia, Europe and the Arctic. It was found that the models still underestimate the measured seasonality of aerosols in the Arctic but to a lesser extent than in previous studies. Problems likely related to the emissions were identified for northern Russia and India, in particular. To estimate the climate impacts of SLCPs, ECLIPSE followed two paths of research: the first path calculated radiative forcing (RF) values for a large matrix of SLCP species emissions, for different seasons and regions independently. Based on these RF calculations, the Global Temperature change Potential metric for a time horizon of 20 years (GTP20) was calculated for each SLCP emission type. This climate metric was then used in an integrated assessment model to identify all emission mitigation measures with a beneficial air quality and short-term (20-year) climate impact. These measures together

  8. Evaluating the climate and air quality impacts of short-lived pollutants

    NASA Astrophysics Data System (ADS)

    Stohl, A.; Aamaas, B.; Amann, M.; Baker, L. H.; Bellouin, N.; Berntsen, T. K.; Boucher, O.; Cherian, R.; Collins, W.; Daskalakis, N.; Dusinska, M.; Eckhardt, S.; Fuglestvedt, J. S.; Harju, M.; Heyes, C.; Hodnebrog, Ø.; Hao, J.; Im, U.; Kanakidou, M.; Klimont, Z.; Kupiainen, K.; Law, K. S.; Lund, M. T.; Maas, R.; MacIntosh, C. R.; Myhre, G.; Myriokefalitakis, S.; Olivié, D.; Quaas, J.; Quennehen, B.; Raut, J.-C.; Rumbold, S. T.; Samset, B. H.; Schulz, M.; Seland, Ø.; Shine, K. P.; Skeie, R. B.; Wang, S.; Yttri, K. E.; Zhu, T.

    2015-06-01

    This paper presents a summary of the work done within the European Union's Seventh Framework Programme project ECLIPSE (Evaluating the Climate and Air Quality Impacts of Short-Lived Pollutants). ECLIPSE had a unique systematic concept for designing a realistic and effective mitigation scenario for short-lived climate pollutants (SLCPs: methane, aerosols and ozone, and their precursor species) and quantifying its climate and air quality impacts, and this paper presents the results in the context of this overarching strategy. The first step in ECLIPSE was to create a new emission inventory based on current legislation (CLE) for the recent past and until 2050. Substantial progress compared to previous work was made by including previously unaccounted types of sources such as flaring of gas associated with oil production, and wick lamps. These emission data were used for present-day reference simulations with four advanced Earth system models (ESMs) and six chemistry transport models (CTMs). The model simulations were compared with a variety of ground-based and satellite observational data sets from Asia, Europe and the Arctic. It was found that the models still underestimate the measured seasonality of aerosols in the Arctic but to a lesser extent than in previous studies. Problems likely related to the emissions were identified for Northern Russia and India, in particular. To estimate the climate impacts of SLCPs, ECLIPSE followed two paths of research: the first path calculated radiative forcing (RF) values for a large matrix of SLCP species emissions, for different seasons and regions independently. Based on these RF calculations, the Global Temperature change Potential metric for a time horizon of 20 years (GTP20) was calculated for each SLCP emission type. This climate metric was then used in an integrated assessment model to identify all emission mitigation measures with a beneficial air quality and short-term (20 year) climate impact. These measures together

  9. An integrated assessment of two decades of air pollution policy making in Spain: Impacts, costs and improvements.

    PubMed

    Vedrenne, Michel; Borge, Rafael; Lumbreras, Julio; Conlan, Beth; Rodríguez, María Encarnación; de Andrés, Juan Manuel; de la Paz, David; Pérez, Javier; Narros, Adolfo

    2015-09-15

    This paper analyses the effects of policy making for air pollution abatement in Spain between 2000 and 2020 under an integrated assessment approach with the AERIS model for number of pollutants (NOx/NO2, PM10/PM2.5, O3, SO2, NH3 and VOC). The analysis of the effects of air pollution focused on different aspects: compliance with the European limit values of Directive 2008/50/EC for NO2 and PM10 for the Spanish air quality management areas; the evaluation of impacts caused by the deposition of atmospheric sulphur and nitrogen on ecosystems; the exceedance of critical levels of NO2 and SO2 in forest areas; the analysis of O3-induced crop damage for grapes, maize, potato, rice, tobacco, tomato, watermelon and wheat; health impacts caused by human exposure to O3 and PM2.5; and costs on society due to crop losses (O3), disability-related absence of work staff and damage to buildings and public property due to soot-related soiling (PM2.5). In general, air quality policy making has delivered improvements in air quality levels throughout Spain and has mitigated the severity of the impacts on ecosystems, health and vegetation in 2020 as target year. The findings of this work constitute an appropriate diagnosis for identifying improvement potentials for further mitigation for policy makers and stakeholders in Spain.

  10. An integrated assessment of two decades of air pollution policy making in Spain: Impacts, costs and improvements.

    PubMed

    Vedrenne, Michel; Borge, Rafael; Lumbreras, Julio; Conlan, Beth; Rodríguez, María Encarnación; de Andrés, Juan Manuel; de la Paz, David; Pérez, Javier; Narros, Adolfo

    2015-09-15

    This paper analyses the effects of policy making for air pollution abatement in Spain between 2000 and 2020 under an integrated assessment approach with the AERIS model for number of pollutants (NOx/NO2, PM10/PM2.5, O3, SO2, NH3 and VOC). The analysis of the effects of air pollution focused on different aspects: compliance with the European limit values of Directive 2008/50/EC for NO2 and PM10 for the Spanish air quality management areas; the evaluation of impacts caused by the deposition of atmospheric sulphur and nitrogen on ecosystems; the exceedance of critical levels of NO2 and SO2 in forest areas; the analysis of O3-induced crop damage for grapes, maize, potato, rice, tobacco, tomato, watermelon and wheat; health impacts caused by human exposure to O3 and PM2.5; and costs on society due to crop losses (O3), disability-related absence of work staff and damage to buildings and public property due to soot-related soiling (PM2.5). In general, air quality policy making has delivered improvements in air quality levels throughout Spain and has mitigated the severity of the impacts on ecosystems, health and vegetation in 2020 as target year. The findings of this work constitute an appropriate diagnosis for identifying improvement potentials for further mitigation for policy makers and stakeholders in Spain. PMID:25965050

  11. Pupils' Understanding of Air Pollution

    ERIC Educational Resources Information Center

    Dimitriou, Anastasia; Christidou, Vasilia

    2007-01-01

    This paper reports on a study of pupils' knowledge and understanding of atmospheric pollution. Specifically, the study is aimed at identifying: 1) the extent to which pupils conceptualise the term "air pollution" in a scientifically appropriate way; 2) pupils' knowledge of air pollution sources and air pollutants; and 3) pupils' knowledge of air…

  12. Guidelines for evaluating air-pollution impacts on Class I wilderness areas in the Pacific Northwest. Forest Service general technical report

    SciTech Connect

    Peterson, J.; Schmoldt, D.; Peterson, D.; Eilers, J.; Fisher, R.

    1992-05-01

    Forest Service air resource managers in the Pacific Northwest are responsible for protecting class 1 wilderness areas from air pollution. To do this, they need scientifically defensible information to determine critical concentrations of air pollution having the potential to impact class 1 wilderness values. This report documents the results of a workshop where current information on air pollution effects on aquatic and terrestrial resources and visibility was gathered from participating scientists and managers. Critical air pollution concentrations were determined for sulfur dioxide, nitrogen dioxide, and ozone. Critical values for sulfur and nitrogen deposition to forest ecosystems are listed.

  13. Roadside vegetation barrier designs to mitigate near-road air pollution impacts

    EPA Science Inventory

    With increasing evidence that exposures to air pollution near large roadways increases risks of a number of adverse human health effects, identifying methods to reduce these exposures has become a public health priority. Roadside vegetation barriers have shown the potential to re...

  14. Chapter 7: Impact of Nitrogen and Climate Change Interactions on Ambient Air Pollution and Human Health

    EPA Science Inventory

    Nitrogen oxides (NOX) are important components of ambient and indoor air pollution and are emitted from a range of combustion sources, including on-road mobile sources, electric power generators, and non-road mobile sources. While anthropogenic sources dominate, NOX is also forme...

  15. Impact of Air Pollutants on Oxidative Stress in Common Autophagy-Mediated Aging Diseases

    PubMed Central

    Numan, Mohamed Saber; Brown, Jacques P.; Michou, Laëtitia

    2015-01-01

    Atmospheric pollution-induced cellular oxidative stress is probably one of the pathogenic mechanisms involved in most of the common autophagy-mediated aging diseases, including neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS), Alzheimer’s, disease, as well as Paget’s disease of bone with or without frontotemporal dementia and inclusion body myopathy. Oxidative stress has serious damaging effects on the cellular contents: DNA, RNA, cellular proteins, and cellular organelles. Autophagy has a pivotal role in recycling these damaged non-functional organelles and misfolded or unfolded proteins. In this paper, we highlight, through a narrative review of the literature, that when autophagy processes are impaired during aging, in presence of cumulative air pollution-induced cellular oxidative stress and due to a direct effect on air pollutant, autophagy-mediated aging diseases may occur. PMID:25690002

  16. THE USE OF AIR QUALITY FORECASTS TO ASSESS IMPACTS OF AIR POLLUTION ON CROPS: METHODOLOGY AND CASE STUDY

    EPA Science Inventory

    It has been reported that ambient ozone (O3), either alone or in concurrence with acid rain precursors, accounts for up to 90% of U.S. crop losses resulting from exposure to all major air pollutants. Crop damage due to O3 exposure is of particular concern as...

  17. Cancer incidence in Priolo, Sicily: a spatial approach for estimation of industrial air pollution impact.

    PubMed

    Fazzo, Lucia; Carere, Mario; Tisano, Francesco; Bruno, Caterina; Cernigliaro, Achille; Cicero, Maria Rita; Comba, Pietro; Contrino, Maria Luisa; De Santis, Marco; Falleni, Fabrizio; Ingallinella, Vincenzo; Madeddu, Anselmo; Marcello, Ida; Regalbuto, Carlo; Sciacca, Giovanna; Soggiu, Maria Eleonora; Zona, Amerigo

    2016-01-01

    The territory around the industrial Sicilian area of Priolo, Italy, has been defined as a contaminated site (CS) of national priority for remediation because of diffuse environmental contamination caused by large industrial settlements. The present study investigates the spatial distribution of cancer into the CS territory (period 1999-2006). Different geographical methods used for the evaluation of the impact of industrial air pollutants were adopted. Using the database of Syracuse Province Cancer Registry, gender-specific standardised incidence ratios were calculated for 35 tumour sites for the CS overall and for each municipality included in the CS. A cluster analysis for 17 selected neoplasms was performed at micro-geographical level. The identification of the priority index contaminants (PICs) present in environmental matrices and a review of their carcinogenicity have been performed and applied in the interpretation of the findings. The area has a higher cancer incidence with respect to the provincial population, in particular excess is registered among both genders of lung, bladder and breast cancers as well as skin melanoma and pleural mesothelioma and there is an a priori evidence of association with the exposure to PICs. The study highlights the need to provide different approaches in CSs where several exposure pathways might be relevant for the population. The presence of potential sources of asbestos exposure deserves specific concern. PMID:27087035

  18. Testing for Air Pollution.

    ERIC Educational Resources Information Center

    Dunbar, Artice

    Three experiments are presented in this Science Study Aid to provide the teacher with some fundamental air pollution activities. The first experiment involved particulates, the second deals with microorganisms, and the third looks at gases in the atmosphere. Each activity outlines introductory information, objectives, materials required, procedure…

  19. AIR POLLUTION AND HUMMINGBIRDS

    EPA Science Inventory

    A multidisciplinary team of EPA-RTP ORD pulmonary toxicologists, engineers, ecologists, and statisticians have designed a study of how ground-level ozone and other air pollutants may influence feeding activity of the ruby-throated hummingbird (Archilochus colubris). Be...

  20. Air pollution, a rising environmental risk factor for cognition, neuroinflammation and neurodegeneration: The clinical impact on children and beyond.

    PubMed

    Calderón-Garcidueñas, L; Leray, E; Heydarpour, P; Torres-Jardón, R; Reis, J

    2016-01-01

    Air pollution (indoors and outdoors) is a major issue in public health as epidemiological studies have highlighted its numerous detrimental health consequences (notably, respiratory and cardiovascular pathological conditions). Over the past 15 years, air pollution has also been considered a potent environmental risk factor for neurological diseases and neuropathology. This review examines the impact of air pollution on children's brain development and the clinical, cognitive, brain structural and metabolic consequences. Long-term potential consequences for adults' brains and the effects on multiple sclerosis (MS) are also discussed. One challenge is to assess the effects of lifetime exposures to outdoor and indoor environmental pollutants, including occupational exposures: how much, for how long and what type. Diffuse neuroinflammation, damage to the neurovascular unit, and the production of autoantibodies to neural and tight-junction proteins are worrisome findings in children chronically exposed to concentrations above the current standards for ozone and fine particulate matter (PM2.5), and may constitute significant risk factors for the development of Alzheimer's disease later in life. Finally, data supporting the role of air pollution as a risk factor for MS are reviewed, focusing on the effects of PM10 and nitrogen oxides.

  1. Air pollution, a rising environmental risk factor for cognition, neuroinflammation and neurodegeneration: The clinical impact on children and beyond.

    PubMed

    Calderón-Garcidueñas, L; Leray, E; Heydarpour, P; Torres-Jardón, R; Reis, J

    2016-01-01

    Air pollution (indoors and outdoors) is a major issue in public health as epidemiological studies have highlighted its numerous detrimental health consequences (notably, respiratory and cardiovascular pathological conditions). Over the past 15 years, air pollution has also been considered a potent environmental risk factor for neurological diseases and neuropathology. This review examines the impact of air pollution on children's brain development and the clinical, cognitive, brain structural and metabolic consequences. Long-term potential consequences for adults' brains and the effects on multiple sclerosis (MS) are also discussed. One challenge is to assess the effects of lifetime exposures to outdoor and indoor environmental pollutants, including occupational exposures: how much, for how long and what type. Diffuse neuroinflammation, damage to the neurovascular unit, and the production of autoantibodies to neural and tight-junction proteins are worrisome findings in children chronically exposed to concentrations above the current standards for ozone and fine particulate matter (PM2.5), and may constitute significant risk factors for the development of Alzheimer's disease later in life. Finally, data supporting the role of air pollution as a risk factor for MS are reviewed, focusing on the effects of PM10 and nitrogen oxides. PMID:26718591

  2. Control of household air pollution for child survival: estimates for intervention impacts

    PubMed Central

    2013-01-01

    Background Exposure to household air pollution (HAP) from cooking with solid fuels affects 2.8 billion people in developing countries, including children and pregnant women. The aim of this review is to propose intervention estimates for child survival outcomes linked to HAP. Methods Systematic reviews with meta-analysis were conducted for ages 0-59 months, for child pneumonia, adverse pregnancy outcomes, stunting and all-cause mortality. Evidence for each outcome was assessed against Bradford-Hill viewpoints, and GRADE used for certainty about intervention effect size for which all odds ratios (OR) are presented as protective effects. Results Reviews found evidence linking HAP exposure with child ALRI, low birth weight (LBW), stillbirth, preterm birth, stunting and all-cause mortality. Most studies were observational and rated low/very low in GRADE despite strong causal evidence for some outcomes; only one randomised trial was eligible.Intervention effect (OR) estimates of 0.64 (95% CI: 0.55, 0.75) for ALRI, 0.71 (0.65, 0.79) for LBW and 0.66 (0.54, 0.81) for stillbirth are proposed, specific outcomes for which causal evidence was sufficient. Exposure-response evidence suggests this is a conservative estimate for ALRI risk reduction expected with sustained, low exposure. Statistically significant protective ORs were also found for stunting [OR=0.79 (0.70, 0.89)], and in one study of pre-term birth [OR=0.70 (0.54, 0.90)], indicating these outcomes would also likely be reduced. Five studies of all-cause mortality had an OR of 0.79 (0.70, 0.89), but heterogenity precludes a reliable estimate for mortality impact. Although interventions including clean fuels and improved solid fuel stoves are available and can deliver low exposure levels, significant challenges remain in achieving sustained use at scale among low-income households. Conclusions Reducing exposure to HAP could substantially reduce the risk of several child survival outcomes, including fatal pneumonia

  3. Air pollution and plant life

    SciTech Connect

    Treshow, M.

    1984-01-01

    The publication of this volume could hardly have been more timely, for concern about the damage to plants from air pollution has grown rapidly in the last few years. The book comprises eighteen chapters by contributors of high repute. Three early chapters deal with Dispersion and Fate of Atmospheric Pollutants, Long Range Transport and Monitoring Levels and Effects of Air Pollutants. They provide essential reading for those working on effects in the field, and they set the scene for a contribution from the Volume Editor on the problems of diagnosis. The central chapters (7 to 11) provide, in considerable depth, a summary of the knowledge of the mechanism of action of pollutants on plants, in terms of physiology, biochemistry, and ultrastructure. Particularly valuable is the essay entitled Impact of Air Pollutant Combinations on Plants, which concludes that even though few generalizations are possible, there is now sufficient evidence to suggest that interactions between some pollutants (e.g. SO/sub 2/ and O/sub 3/, SO/sub 2/ and NO/sub 2/) may seriously damage some plants.

  4. Aerosol Light Absorption and Scattering Assessments and the Impact of City Size on Air Pollution

    NASA Astrophysics Data System (ADS)

    Paredes-Miranda, Guadalupe

    The general problem of urban pollution and its relation to the city population is examined in this dissertation. A simple model suggests that pollutant concentrations should scale approximately with the square root of city population. This model and its experimental evaluation presented here serve as important guidelines for urban planning and attainment of air quality standards including the limits that air pollution places on city population. The model was evaluated using measurements of air pollution. Optical properties of aerosol pollutants such as light absorption and scattering plus chemical species mass concentrations were measured with a photoacoustic spectrometer, a reciprocal nephelometer, and an aerosol mass spectrometer in Mexico City in the context of the multinational project "Megacity Initiative: Local And Global Research Observations (MILAGRO)" in March 2006. Aerosol light absorption and scattering measurements were also obtained for Reno and Las Vegas, NV USA in December 2008-March 2009 and January-February 2003, respectively. In all three cities, the morning scattering peak occurs a few hours later than the absorption peak due to the formation of secondary photochemically produced aerosols. In particular, for Mexico City we determined the fraction of photochemically generated secondary aerosols to be about 75% of total aerosol mass concentration at its peak near midday. The simple 2-d box model suggests that commonly emitted primary air pollutant (e.g., black carbon) mass concentrations scale approximately as the square root of the urban population. This argument extends to the absorption coefficient, as it is approximately proportional to the black carbon mass concentration. Since urban secondary pollutants form through photochemical reactions involving primary precursors, in linear approximation their mass concentration also should scale with the square root of population. Therefore, the scattering coefficient, a proxy for particulate matter

  5. Evaluating the climate and air quality impacts of short-lived pollutants

    NASA Astrophysics Data System (ADS)

    Stohl, A.; Aamaas, B.; Amann, M.; Baker, L. H.; Bellouin, N.; Berntsen, T. K.; Boucher, O.; Cherian, R.; Collins, W.; Daskalakis, N.; Dusinska, M.; Eckhardt, S.; Fuglestvedt, J. S.; Harju, M.; Heyes, C.; Hodnebrog, Ø.; Hao, J.; Im, U.; Kanakidou, M.; Klimont, Z.; Kupiainen, K.; Law, K. S.; Lund, M. T.; Maas, R.; MacIntosh, C. R.; Myhre, G.; Myriokefalitakis, S.; Olivié, D.; Quaas, J.; Quennehen, B.; Raut, J.-C.; Rumbold, S. T.; Samset, B. H.; Schulz, M.; Seland, Ø.; Shine, K. P.; Skeie, R. B.; Wang, S.; Yttri, K. E.; Zhu, T.

    2015-06-01

    This paper presents a summary of the work done within the European Union's Seventh Framework Programme project ECLIPSE (Evaluating the Climate and Air Quality Impacts of Short-Lived Pollutants). ECLIPSE had a unique systematic concept for designing a realistic and effective mitigation scenario for short-lived climate pollutants (SLCPs: methane, aerosols and ozone, and their precursor species) and quantifying its climate and air quality impacts, and this paper presents the results in the context of this overarching strategy. The first step in ECLIPSE was to create a new emission inventory based on current legislation (CLE) for the recent past and until 2050. Substantial progress compared to previous work was made by including previously unaccounted types of sources such as flaring of gas associated with oil production, and wick lamps. These emission data were used for present-day reference simulations with four advanced Earth system models (ESMs) and six chemistry transport models (CTMs). The model simulations were compared with a variety of ground-based and satellite observational data sets from Asia, Europe and the Arctic. It was found that the models still underestimate the measured seasonality of aerosols in the Arctic but to a lesser extent than in previous studies. Problems likely related to the emissions were identified for Northern Russia and India, in particular. To estimate the climate impacts of SLCPs, ECLIPSE followed two paths of research: the first path calculated radiative forcing (RF) values for a large matrix of SLCP species emissions, for different seasons and regions independently. Based on these RF calculations, the Global Temperature change Potential metric for a time horizon of 20 years (GTP20) was calculated for each SLCP emission type. This climate metric was then used in an integrated assessment model to identify all emission mitigation measures with a beneficial air quality and short-term (20 year) climate impact. These measures together

  6. Evaluating the climate and air quality impacts of short-lived pollutants

    NASA Astrophysics Data System (ADS)

    Stohl, A.; Aamaas, B.; Amann, M.; Baker, L. H.; Bellouin, N.; Berntsen, T. K.; Boucher, O.; Cherian, R.; Collins, W.; Daskalakis, N.; Dusinska, M.; Eckhardt, S.; Fuglestvedt, J. S.; Harju, M.; Heyes, C.; Hodnebrog, Ø.; Hao, J.; Im, U.; Kanakidou, M.; Klimont, Z.; Kupiainen, K.; Law, K. S.; Lund, M. T.; Maas, R.; MacIntosh, C. R.; Myhre, G.; Myriokefalitakis, S.; Olivié, D.; Quaas, J.; Quennehen, B.; Raut, J.-C.; Rumbold, S. T.; Samset, B. H.; Schulz, M.; Seland, Ø.; Shine, K. P.; Skeie, R. B.; Wang, S.; Yttri, K. E.; Zhu, T.

    2015-09-01

    This paper presents a summary of the work done within the European Union's Seventh Framework Programme project ECLIPSE (Evaluating the Climate and Air Quality Impacts of Short-Lived Pollutants). ECLIPSE had a unique systematic concept for designing a realistic and effective mitigation scenario for short-lived climate pollutants (SLCPs; methane, aerosols and ozone, and their precursor species) and quantifying its climate and air quality impacts, and this paper presents the results in the context of this overarching strategy. The first step in ECLIPSE was to create a new emission inventory based on current legislation (CLE) for the recent past and until 2050. Substantial progress compared to previous work was made by including previously unaccounted types of sources such as flaring of gas associated with oil production, and wick lamps. These emission data were used for present-day reference simulations with four advanced Earth system models (ESMs) and six chemistry transport models (CTMs). The model simulations were compared with a variety of ground-based and satellite observational data sets from Asia, Europe and the Arctic. It was found that the models still underestimate the measured seasonality of aerosols in the Arctic but to a lesser extent than in previous studies. Problems likely related to the emissions were identified for northern Russia and India, in particular. To estimate the climate impacts of SLCPs, ECLIPSE followed two paths of research: the first path calculated radiative forcing (RF) values for a large matrix of SLCP species emissions, for different seasons and regions independently. Based on these RF calculations, the Global Temperature change Potential metric for a time horizon of 20 years (GTP20) was calculated for each SLCP emission type. This climate metric was then used in an integrated assessment model to identify all emission mitigation measures with a beneficial air quality and short-term (20-year) climate impact. These measures together

  7. High-Resolution Modelling of Health Impacts from Air Pollution for Denmark using the Integrated Model System EVA

    NASA Astrophysics Data System (ADS)

    Brandt, Jørgen; Andersen, Mikael S.; Bønløkke, Jakob; Christensen, Jesper H.; Hansen, Kaj M.; Hertel, Ole; Im, Ulas; Jensen, Steen S.; Ketzel, Matthias; Nielsen, Ole-Kenneth; Plejdrup, Marlene S.; Sigsgaard, Torben; Geels, Camilla

    2015-04-01

    We have developed an integrated health impact assessment system EVA (Economic Valuation of Air pollution; Brandt et al., 2013a; 2013b), based on the impact-pathway chain, to assess the health impacts and health-related economic externalities of air pollution resulting from specific emission sources or sectors. The system is used to support policymaking with respect to emission control. The EVA system has previously been used to assess the health impacts based on results from a regional model DEHM (the Danish Eulerian Hemispheric Model; Brandt et al., 2012). In this study we have used a coupling of two chemistry transport models to calculate the air pollution concentration at different scales; the DEHM model to calculate the air pollution levels with a resolution down to 5.6 km x 5.6 km and the UBM model (Urban Background Model ; Berkowicz, 2000; Brandt et al., 2001) to further calculate the air pollution at 1 km x 1 km resolution for Denmark using results from DEHM as boundary conditions. Both the emission data based on the SPREAD model (Plejdrup and Gyldenkærne, 2011) as well as the population density has been represented in the model system with the same high resolution. The new developments of the integrated model system will be presented as well as results for health impacts and related external costs over the years 2006-2014 for Denmark. Furthermore, a sensitivity study of the health impact using coarse and fine resolutions in the model system has been carried out to evaluate the effect of improved description of the geographical population distribution with respect to location of local emissions. References Berkowicz, R., 2000. A Simple Model for Urban Background Pollution. Environmental Monitoring and Assessment, 65, 1/2, 259-267. Brandt, J., J. H. Christensen, L. M. Frohn, F. Palmgren, R. Berkowicz and Z. Zlatev, 2001: "Operational air pollution forecasts from European to local scale". Atmospheric Environment, Vol. 35, Sup. No. 1, pp. S91-S98, 2001 Brandt

  8. The impact of energy, transport, and trade on air pollution in China

    SciTech Connect

    Poon, J.P.H.; Casas, I.; He, C.F.

    2006-09-15

    A team of U.S.- and China-based geographers examines the relationship between China's economic development and its environment by modeling the effects of energy, transport, and trade on local air pollution emissions (sulfur dioxide and soot particulates) using the Environmental Kuznets model. Specifically, the latter model is investigated using spatial econometrics that take into account potential regional spillover effects from high-polluting neighbors. The analysis finds an inverted-U relationship for sulfur dioxide but a U-shaped curve for soot particulates. This suggests that soot particulates such as black carbon may pose a more serious environmental problem in China than sulfur dioxide.

  9. Air quality during the 2008 Beijing Olympics: secondary pollutants and regional impact

    NASA Astrophysics Data System (ADS)

    Wang, T.; Nie, W.; Gao, J.; Xue, L. K.; Gao, X. M.; Wang, X. F.; Qiu, J.; Poon, C. N.; Meinardi, S.; Blake, D.; Wang, S. L.; Ding, A. J.; Chai, F. H.; Zhang, Q. Z.; Wang, W. X.

    2010-08-01

    This paper presents the first results of the measurements of trace gases and aerosols at three surface sites in and outside Beijing before and during the 2008 Olympics. The official air pollution index near the Olympic Stadium and the data from our nearby site revealed an obvious association between air quality and meteorology and different responses of secondary and primary pollutants to the control measures. Ambient concentrations of vehicle-related nitrogen oxides (NOx) and volatile organic compounds (VOCs) at an urban site dropped by 25% and 20-45% in the first two weeks after full control was put in place, but the levels of ozone, sulfate and nitrate in PM2.5 increased by 16%, 64%, 37%, respectively, compared to the period prior to the full control; wind data and back trajectories indicated the contribution of regional pollution from the North China Plain. Air quality (for both primary and secondary pollutants) improved significantly during the Games, which were also associated with the changes in weather conditions (prolonged rainfall, decreased temperature, and more frequent air masses from clean regions). A comparison of the ozone data at three sites on eight ozone-pollution days, when the air masses were from the southeast-south-southwest sector, showed that regional pollution sources contributed >34-88% to the peak ozone concentrations at the urban site in Beijing. Regional sources also contributed significantly to the CO concentrations in urban Beijing. Ozone production efficiencies at two sites were low (~3 ppbv/ppbv), indicating that ozone formation was being controlled by VOCs. Compared with data collected in 2005 at a downwind site, the concentrations of ozone, sulfur dioxide (SO2), total sulfur (SO2+PM2.5 sulfate), carbon monoxide (CO), reactive aromatics (toluene and xylenes) sharply decreased (by 8-64%) in 2008, but no significant changes were observed for the concentrations of PM2.5, fine sulfate, total odd reactive nitrogen (NOy), and longer

  10. Impact of traffic-related air pollution on the expression of Platanus orientalis pollen allergens

    NASA Astrophysics Data System (ADS)

    Sedghy, Farnaz; Sankian, Mojtaba; Moghadam, Maliheh; Ghasemi, Ziba; Mahmoudi, Mahmoud; Varasteh, Abdol-Reza

    2016-06-01

    Air pollutants and their interaction with environmental allergens have been considered as an important reason for the recent increase in the prevalence of allergic diseases. The aim of this study was to investigate the traffic pollution effect, as a stressor, on Platanus orientalis pollen allergens messenger RNA (mRNA) and protein expression. P. orientalis pollen grains were collected along main streets of heavy traffic and from unpolluted sites in Mashhad city, in northeast Iran. The pollen samples were examined by scanning electron microscopy. To assess the abundance of pollen allergens (Pla or 1, Pla or 2, and Pla or 3) from polluted and unpolluted sites, immunoblotting was performed. Moreover, the sequences encoding P. orientalis allergens were amplified using real-time PCR. Scanning electron microscopy showed a number of particles of 150-550 nm on the surface of pollen from polluted sites. Also, protein and gene expression levels of Pla or 1 and Pla or 3 were considerably greater in pollen samples from highly polluted areas than in pollen from unpolluted areas (p < 0.05). In contrast, no statically significant difference in Pla or 2 protein and mRNA expression level was found between samples from the two areas. We found greater expression of allergens involved in plant defense mechanisms (Pla or 1 and Pla or 3) in polluted sites than in unpolluted ones. The high expression of these proteins can lead to an increase in the prevalence of allergic diseases. These findings suggest the necessity of supporting public policies aimed at controlling traffic pollution to improve air quality and prevent the subsequent clinical outcomes and new cases of asthma.

  11. Household Air Pollution from Coal and Biomass Fuels in China: Measurements, Health Impacts, and Interventions

    PubMed Central

    Zhang, Junfeng (Jim); Smith, Kirk R.

    2007-01-01

    Objective Nearly all China’s rural residents and a shrinking fraction of urban residents use solid fuels (biomass and coal) for household cooking and/or heating. Consequently, global meta-analyses of epidemiologic studies indicate that indoor air pollution from solid fuel use in China is responsible for approximately 420,000 premature deaths annually, more than the approximately 300,000 attributed to urban outdoor air pollution in the country. Our objective in this review was to help elucidate the extent of this indoor air pollution health hazard. Data sources We reviewed approximately 200 publications in both Chinese- and English-language journals that reported health effects, exposure characteristics, and fuel/stove intervention options. Conclusions Observed health effects include respiratory illnesses, lung cancer, chronic obstructive pulmonary disease, weakening of the immune system, and reduction in lung function. Arsenic poisoning and fluorosis resulting from the use of “poisonous” coal have been observed in certain regions of China. Although attempts have been made in a few studies to identify specific coal smoke constituents responsible for specific adverse health effects, the majority of indoor air measurements include those of only particulate matter, carbon monoxide, sulfur dioxide, and/or nitrogen dioxide. These measurements indicate that pollution levels in households using solid fuel generally exceed China’s indoor air quality standards. Intervention technologies ranging from simply adding a chimney to the more complex modernized bioenergy program are available, but they can be viable only with coordinated support from the government and the commercial sector. PMID:17589590

  12. Air pollution and lung cancer.

    PubMed

    Böhm, G M

    1982-01-01

    Epidemiological evidence proves conclusively that lung cancer correlates with air pollution. However, data on lung cancer death rates and smoking show that mankind accepts the risk of long-term and low-level exposure to carcinogens. As a rule, immediate benefits are sought and remote hazards ignored. Fear of atmospheric contamination by radioactive fallout seems to be the main factor for awareness of air pollution. Experimental works help us to understand physics of particle deposition in the lungs (inertial impactation, sedimentation, Brownian movement), shed light on carcinogenesis (eg, bay region theory in case of polycyclic aromatic hydrocarbons and surface charge changes regarding asbestos), show that atmospheric particulates accepted as harmless may act as co-carcinogens (eg, iron and benzo(a)pyrene) and stress the importance of in vitro researches (bacterial mutation tests, organ cultures, sister chromatid exchange system) to screen pollutants for their malignant potential and study their pathogenesis.

  13. Air pollution and lung cancer

    SciTech Connect

    Boehm, G.M.

    1982-01-01

    Epidemiological evidence proves conclusively that lung cancer correlates with air pollution. However, data on lung cancer death rates and smoking show that mankind accepts the risk of long-term and low-level exposure to carcinogens. As a rule, immediate benefits are sought and remote hazards ignored. Fear of atmospheric contamination by radioactive fallout seems to be the main factor for awareness of air pollution. Experimental works help us to understand physics of particle deposition in the lungs (inertial impactation, sedimentation, Brownian movement), shed light on carcinogenesis (eg, bay region theory in case of polycyclic aromatic hydrocarbons and surface charge changes regarding asbestos), show that atmospheric particulates accepted as harmless may act as co-carcinogens (eg, iron and benzo(a)pyrene) and stress the importance of in vitro research (bacterial mutation tests, organ cultures, sister chromatid exchange system) to screen pollutants for their malignant potential and study their pathogenesis.

  14. Climate Impacts of Ozone and Sulfate Air Pollution from Specific Emissions Sectors and Regions

    NASA Astrophysics Data System (ADS)

    Unger, N.; Koch, D. M.; Shindell, D. T.; Streets, D. G.

    2006-12-01

    The secondary air pollutants ozone (O3) and sulfate aerosol are generated by human activities and affect the Earth's climate system. The global mean radiative forcings of these short-lived species depend on the location of the precursor gas emissions, which has so far prevented their incorporation into climate-motivated policy agreements. O3 and sulfate aerosol are strongly coupled through tropospheric photochemistry and yet air quality control efforts consider each species separately. Previous modeling work to assess climate impacts of O3 has focused on individual precursors, such as nitrogen oxides, even though policy action would target a particular sector. We use the G-PUCCINI atmospheric composition-climate model to isolate the O3 and sulfate direct radiative forcing impacts of 6 specific emissions sectors (industry, transport, power, domestic biofuel, domestic fossil fuel and biomass burning) from 7 geographic regions (North America, Europe, South Asia, East Asia, North Africa and the Middle East, Central and South Africa and South America) for the near future 2030 atmosphere. The goal of the study is to identify specific source sectors and regions that present the most effective opportunities to mitigate global warming. At 2030, the industry and power sectors dominate the sulfate forcing across all regions, with East Asia, South Asia and North Africa and Middle East contributing the largest sulfate forcings (-100 to 120 mWm-2). The transport sector represents an important O3 forcing from all regions ranging from 5 mWm-2 (Europe) to 12 mWm-2 (East Asia). Domestic biofuel O3 forcing is important for the East Asia (13 mWm-2), South Asia (7 mWm-2) and Central and South Africa (10 mWm-2) regions. Biomass burning contributes large O3 forcings for the Central and South Africa (15 mWm-2) and South America (11 mWm-2) regions. In addition, the power sector O3 forcings from East Asia (14 mWm-2) and South Asia (8 mWm-2) are also substantial. Considering the sum of the O

  15. The impact of traffic volume, composition, and road geometry on personal air pollution exposures among cyclists in Montreal, Canada.

    PubMed

    Hatzopoulou, Marianne; Weichenthal, Scott; Dugum, Hussam; Pickett, Graeme; Miranda-Moreno, Luis; Kulka, Ryan; Andersen, Ross; Goldberg, Mark

    2013-01-01

    Cyclists may experience increased exposure to traffic-related air pollution owing to increased minute ventilation and close proximity to vehicle emissions. The aims of this study were to characterize personal exposures to air pollution among urban cyclists and to identify potential determinants of exposure including the type of cycling lane (separated vs on-road), traffic counts, and meteorological factors. In total, personal air pollution exposure data were collected over 64 cycling routes during morning and evening commutes in Montreal, Canada, over 32 days during the summer of 2011. Measured pollutants included ultrafine particles (UFPs), fine particles (PM(2.5)), black carbon (BC), and carbon monoxide (CO). Counts of diesel vehicles were important predictors of personal exposures to BC, with each 10 vehicle/h increase associated with a 15.0% (95% confidence interval (CI): 5.7%, 24.0%) increase in exposure. Use of separated cycling lanes had less impact on personal exposures with a 12% (95% CI: -43%, 14%) decrease observed for BC and smaller decreases observed for UFPs (mean: -1.3%, 95% CI: -20%, 17%) and CO (mean: -5.6%, 95% CI: -17%, 4%) after adjusting for meteorological factors and traffic counts. On average, PM(2.5) exposure increased 7.8% (95% CI: -17%, 35%) with separate cycling lane use, but this estimate was imprecise and not statistically significant. In general, our findings suggest that diesel vehicle traffic is an important contributor to personal BC exposures and that separate cycling lanes may have a modest impact on personal exposure to some air pollutants. Further evaluation is required, however, as the impact of separate cycling lanes and/or traffic counts on personal exposures may vary between regions.

  16. Impact of nocturnal planetary boundary layer on urban air pollutants: measurements from a 250-m tower over Tianjin, China.

    PubMed

    Han, Suqin; Bian, Hai; Tie, Xuexi; Xie, Yiyang; Sun, Meiling; Liu, Aixia

    2009-02-15

    It is well known that nocturnal planetary boundary layer (NPBL) has important effects on urban air pollutants. However, the direct measurements of the interactions between the NPBL height and urban air pollutants are normally difficult, because such measurements require continuous vertical profiles of air pollutants and meteorological parameters. This paper provides an unique data, which temperature, NPBL, NO(x) and O(3) concentrations are measured at a 250-m meteorological tower in the city of Tianjin, China (a much polluted city located in central-eastern China). The results are analyzed to study the trend of NPBL and the impacts of NPBL on air pollutants in the city. The results show that the measured NPBL height ranges from 100m to 150m. The measurement of 10-year trend of the NPBL height suggests that the averaged NPBL height increases by about 20% between 1995 and 2006. The results also show that the NPBL height has important effects on air pollutants. This study suggests that NO(x) and O(3) concentrations are strongly anti-correlated inside of the NPBL height. During nighttime, NO(x) is directly emitted from the surface and is limited to inside of NPBL (40m), resulting in high NO(x) concentrations near the surface. The high NO(x) concentrations depress O(3), producing low O(3) concentrations near the surface. The measurements of vertical gradient of O(3) show that about 30-50ppbv of O(3) concentrations are chemically destroyed due to the surface emission of NO(x) during nighttime, suggesting that NPBL plays important roles in regulating the diurnal cycle of O(3) at the surface.

  17. Contributions of gas flaring to a global air pollution hotspot: Spatial and temporal variations, impacts and alleviation

    NASA Astrophysics Data System (ADS)

    Anejionu, Obinna C. D.; Whyatt, J. Duncan; Blackburn, G. Alan; Price, Catheryn S.

    2015-10-01

    Studies of environmental impacts of gas flaring in the Niger Delta are hindered by limited access to official flaring emissions records and a paucity of reliable ambient monitoring data. This study uses a combination of geospatial technologies and dispersion modelling techniques to evaluate air pollution impacts of gas flaring on human health and natural ecosystems in the region. Results indicate that gas flaring is a major contributor to air pollution across the region, with concentrations exceeding WHO limits in some locations over certain time periods. Due to the predominant south-westerly wind, concentrations are higher in some states with little flaring activity than in others with significant flaring activity. Twenty million people inhabit areas of high flare-associated air pollution, which include all of the main ecological zones of the region, indicating that flaring poses a substantial threat to human health and the environment. Model scenarios demonstrated that substantial reductions in pollution could be achieved by stopping flaring at a small number of the most active sites and by improving overall flaring efficiency.

  18. Impact of air pollution on pine forests in north-west part of Russia

    SciTech Connect

    Yarmishko, V.T.; Yarmishko, M.A.; Lyanguzova, I.V.

    1995-09-01

    The goal of research-assessment of industrial air contamination on pine stands ecosystems and their components. These studies were made in Pineta Hylocomiosa of III-IV age classes in western part of Leningrad region. Studies did not reveal visible traits of worsening of vitality state of pine forests under air pollution. Fundamental characteristics of vegetation layers (tree, grass-dwarf shrub, moss-lichen and epiphytic lichen cover) are determined mainly by conditions of habitats on permanent sample areas (age of stands, time of fires, cuttings, etc.). At the same time our research of fine roots of Scots pine has shown that with increase of airtechnogenic pollution or with approach to sources of emission in upper parts of soil horizons mycorrhize formation intensifies in 30-40 times. Diversity of mycorrhizas in form, color of mycelia cap, branching pattern and arrangement on sucking roots increase considerably.

  19. Factors influencing time-location patterns and their impact on estimates of exposure: the Multi-Ethnic Study of Atherosclerosis and Air Pollution (MESA Air).

    PubMed

    Spalt, Elizabeth W; Curl, Cynthia L; Allen, Ryan W; Cohen, Martin; Williams, Kayleen; Hirsch, Jana A; Adar, Sara D; Kaufman, Joel D

    2016-06-01

    We assessed time-location patterns and the role of individual- and residential-level characteristics on these patterns within the Multi-Ethnic Study of Atherosclerosis and Air Pollution (MESA Air) cohort and also investigated the impact of individual-level time-location patterns on individual-level estimates of exposure to outdoor air pollution. Reported time-location patterns varied significantly by demographic factors such as age, gender, race/ethnicity, income, education, and employment status. On average, Chinese participants reported spending significantly more time indoors and less time outdoors and in transit than White, Black, or Hispanic participants. Using a tiered linear regression approach, we predicted time indoors at home and total time indoors. Our model, developed using forward-selection procedures, explained 43% of the variability in time spent indoors at home, and incorporated demographic, health, lifestyle, and built environment factors. Time-weighted air pollution predictions calculated using recommended time indoors from USEPA overestimated exposures as compared with predictions made with MESA Air participant-specific information. These data fill an important gap in the literature by describing the impact of individual and residential characteristics on time-location patterns and by demonstrating the impact of population-specific data on exposure estimates.

  20. Air quality during the 2008 Beijing Olympics: secondary pollutants and regional impact

    NASA Astrophysics Data System (ADS)

    Wang, T.; Nie, W.; Gao, J.; Xue, L. K.; Gao, X. M.; Wang, X. F.; Qiu, J.; Poon, C. N.; Meinardi, S.; Blake, D.; Ding, A. J.; Chai, F. H.; Zhang, Q. Z.; Wang, W. X.

    2010-05-01

    This paper presents the first results of the atmospheric measurements of trace gases and aerosols at three surface sites in and around Beijing before and during the 2008 Olympics. We focus on secondary pollutants including ozone, fine sulfate and nitrate, and the contribution of regional sources in summer 2008. The results reveal different responses of secondary pollutants to the control measures from primary pollutants. Ambient concentrations of vehicle-related nitrogen oxides (NOx) and volatile organic compounds (VOCs) at an urban site dropped by 25% and 20-45% in the first two weeks after full control was put in place, but the levels of ozone, sulfate and nitrate in PM2.5 increased by 16%, 64%, 37%, respectively, compared to the period prior to the full control; wind data and back trajectories indicated the contribution of regional pollution from the North China Plain. Air quality (for both primary and secondary pollutants) improved significantly during the Games, which were also associated with the changes in weather conditions (prolonged rainfall, decreased temperature, and more frequent air masses from clean regions). A comparison of the ozone data at three sites on eight ozone-pollution days, when the air masses were from the southeast-south-southwest sector, showed that regional pollution sources contributed 34%-88% to the peak ozone concentrations in urban Beijing. Ozone production efficiencies at two sites were low (~3 ppbv/ppbv), indicating that ozone formation was being controlled by VOCs. Compared with data collected in 2005 at a downwind site, the concentrations of ozone, sulfur dioxide (SO2), total sulfur (SO2+PM2.5 sulfate), carbon monoxide (CO), reactive aromatics (toluene and xylenes) sharply decreased (by 8-64%) in 2008, but no significant changes were observed for the concentrations of PM2.5, fine sulfate, total odd reactive nitrogen (NOy), and longer lived alkanes and benzene. We suggest that these results indicate the success of the government

  1. Economic impact of air pollution on timber markets: Studies from North America and Europe. Forest Service general technical report

    SciTech Connect

    Steiguer, J.E. de.

    1992-04-01

    The impact of air pollution on forest health has in recent years become an issue of major public concern. This is true despite the fact that irrefutable cause-and-effect relationships have in most instances been quite difficult to establish. The purpose of the report is to assist government officials and other concerned parties by contributing to a better understanding of the economics of forest damage from air pollution. The papers presented here were written by seven economists who have studied the forestry air pollution situation and its relationship to timber markets. The first paper explains the economic linkages among fossil fuel consumption, air pollution externalities, and losses in timber markets. The five papers that follow are concerned with the actual estimation of damages across selected large geographic areas. One study deals with the Southeastern United States; three are national studies from Finland, the U.S., and Canada; and one is concerned with the entire European continent. Yet, while each of the studies is concerned with estimating damage within a large geographic area, the methods of analysis are diverse.

  2. Modeling the Impact of Arctic Shipping Pollution on Air Quality off the Coast of Northern Norway

    NASA Astrophysics Data System (ADS)

    Thomas, J. L.; Law, K.; Marelle, L.; Raut, J.; Jalkanen, J.; Johansson, L.; Roiger, A.; Schlager, H.; Kim, J.; Reiter, A.; Weinzierl, B.; Rose, M.; Fast, J. D.

    2013-12-01

    As the Arctic is undergoing rapid and potentially irreversible changes, such as the shrinking and thinning of sea-ice cover, the levels of atmospheric pollution are expected to rise dramatically due to the emergence of local pollution sources including shipping. Shipping routes through the Arctic (such as Russia's Northern Sea Route) are already used as an alternative to the traditional global transit shipping routes. In summer 2012, the ACCESS (Arctic Climate Change, Economy, and Society) aircraft campaign focused on studying pollution sources off the coast of northern Norway to quantify emissions from shipping and other anthropogenic pollution sources. To complement these measurements, a regional chemical transport model is used to study the impact of shipping pollution on gas and aerosol concentrations in the region. WRF-Chem (The Weather Research and Forecasting Model with Chemistry, which simulates gas and aerosols simultaneously with meteorology) is run with real time shipping emissions from STEAM (Ship Traffic Emission Assessment Model) for July 2012. The STEAM model calculates gas and aerosol emissions of marine traffic based on the ship type and location provided by the Automatic Identification System (AIS). Use of real time position, speed, and ship specific information allows for development of emissions with very high spatial (1x1 km) and temporal (30 min) resolution, which are used in the regional model runs. STEAM emissions have been specifically generated for shipping off the coast of Norway during the entire ACCESS campaign period. Simulated ship plumes from high-resolution model runs are compared to aircraft measurements. The regional impact of current summertime shipping is also examined. At present, relatively light ship traffic off the coast of northern Norway results in only a small impact of shipping pollution on regional atmospheric chemistry. The impact of increased future shipping on regional atmospheric chemistry is also assessed.

  3. Air pollution: a tale of two countries.

    PubMed

    Haryanto, Budi; Franklin, Peter

    2011-01-01

    The fast growing economies and continued urbanization in Asian countries have increased the demand for mobility and energy in the region, resulting in high levels of air pollution in cities from mobile and stationary sources. In contrast, low level of urbanization in Australia produces low level of urban air pollution. The World Health Organization estimates that about 500,000 premature deaths per year are caused by air pollution, leaving the urban poor particularly vulnerable since they live in air pollution hotspots, have low respiratory resistance due to bad nutrition, and lack access to quality health care. Identifying the differences and similarities of air pollution levels and its impacts, between Indonesia and Australia, will provide best lesson learned to tackle air pollution problems for Pacific Basin Rim countries.

  4. Air pollution: a tale of two countries.

    PubMed

    Haryanto, Budi; Franklin, Peter

    2011-01-01

    The fast growing economies and continued urbanization in Asian countries have increased the demand for mobility and energy in the region, resulting in high levels of air pollution in cities from mobile and stationary sources. In contrast, low level of urbanization in Australia produces low level of urban air pollution. The World Health Organization estimates that about 500,000 premature deaths per year are caused by air pollution, leaving the urban poor particularly vulnerable since they live in air pollution hotspots, have low respiratory resistance due to bad nutrition, and lack access to quality health care. Identifying the differences and similarities of air pollution levels and its impacts, between Indonesia and Australia, will provide best lesson learned to tackle air pollution problems for Pacific Basin Rim countries. PMID:21714382

  5. Measurement of Air Pollutants in the Troposphere

    ERIC Educational Resources Information Center

    Clemitshaw, Kevin C.

    2011-01-01

    This article describes the principles, applications and performances of methods to measure gas-phase air pollutants that either utilise passive or active sampling with subsequent laboratory analysis or involve automated "in situ" sampling and analysis. It focuses on air pollutants that have adverse impacts on human health (nitrogen dioxide, carbon…

  6. Air Pollution in São Paulo and Santiago de Chile: Sources and Impacts

    NASA Astrophysics Data System (ADS)

    Artaxo, P.; Castanho, A.; Oyolla, P.; Gramsch, E.; Martinez, R.

    2007-05-01

    Urban air pollution is a serious issue for millions in Latin America. São Paulo, Santiago de Chile, México City and many other large urban conglomerates. Fast industrialization, large population growth, emissions from the transportation sectors and many other issues are the cause for the air pollution in these mega cities. São Paulo, with 17 million people, 5.5 million vehicles and strong industry suffers from severe particulate matter and ozone exposure. Santiago de Chile with very unfavorable dispersion characteristics also has problems with PM10 and ozone. Health effects in these areas are a public health concern. In Sao Paulo alone, about 30,000 excess deaths are attributable to air pollution issues. There are also critical institutional issues in the São Paulo metropolitan area, which has 39 municipalities, as well as three other metropolitan areas within a 100-km radius. In Santiago de Chile, a dry climate makes ressuspended soil dust an important PM10 component, and vehicle emissions produces high concentration of secondary organic aerosols. Old diesel buses make black carbon concentrations very high in Santiago. We carried out extensive aerosol source apportionment studies for several years, using PIXE as trace element analysis technique and multivariate statistical analysis to separate and quantify aerosol sources in Santiago and Sao Paulo. We will present results from 5 years studies in both Santiago and Sao Paulo. Vehicles and soil dust dominates the picture, with a strong sulfate component in Santiago de Chile.

  7. Local-Scale Exposure Assessment of Air Pollutants in Source-Impacted Neighborhoods in Detroit, MI (Invited)

    NASA Astrophysics Data System (ADS)

    Vette, A. F.; Bereznicki, S.; Sobus, J.; Norris, G.; Williams, R.; Batterman, S.; Breen, M.; Isakov, V.; Perry, S.; Heist, D.; Community Action Against Asthma Steering Committee

    2010-12-01

    There has been growing interest in improving local-scale (< 1-km) exposure assessments to better understand the impact of local sources of air pollutants on adverse health outcomes. This paper describes two research studies aimed at understanding the impact of local sources contributing to spatial gradients at the neighborhood-scale in Detroit, MI. The first study, the Detroit Exposure and Aerosol Research Study (DEARS), was designed to assess the variability in concentrations of air pollutants derived from local and regional sources on community, neighborhood and personal exposures to air pollutants. Homes were identified at random in six different neighborhoods throughout Wayne County, MI that varied proximally to local industrial and mobile sources. Data were collected in summer (July-August) and winter (January-March) at a total of 135 homes over a three-year period (2004-2007). For five consecutive days at each home in summer and winter concurrent samples were collected of personal exposures, residential indoor and outdoor concentrations, and at a community monitoring site. The samples were analyzed for PM2.5 (mass and composition), air toxics, O3 and NO2. The second study is on-going and focuses on characterizing the impacts of mobile sources on near-road air quality and exposures among a cohort of asthmatic children. The Near-road EXposures and effects from Urban air pollutants Study (NEXUS) is designed to examine the relationship between near-road exposures to traffic-related air pollutants (BC, CO, NOx and PM components) and respiratory health of asthmatic children who live close to major roadways. The study will investigate the effects of traffic-associated exposures on exaggerated airway responses, biomolecular responses of inflammatory and oxidative stress, and how these exposures affect the frequency and severity of adverse respiratory outcomes. The study will also examine different near-road exposure assessment metrics, including monitoring and

  8. Impact of air pollution control measures and weather conditions on asthma during the 2008 Summer Olympic Games in Beijing.

    PubMed

    Li, Yi; Wang, Wen; Wang, Jizhi; Zhang, Xiaoling; Lin, Weili; Yang, Yuanqin

    2011-07-01

    The alternative transportation strategy implemented during the 2008 Summer Olympic Games in Beijing provided an opportunity to study the impact of the control measures and weather conditions on air quality and asthma morbidity. An ecological study compared the 41 days of the Olympic Games (8 August-17 September 2008) to a baseline period (1-30 June). Also, in order to emphasize the impact of weather conditions on air quality, a pollution linking meteorological index (Plam) was introduced to represent the air pollution meteorological condition. Our study showed that the average number of outpatient visits for asthma was 12.5 per day at baseline and 7.3 per day during the Olympics-a 41.6% overall decrease. Compared with the baseline, the Games were associated with a significant reduction in asthma visits (RR 0.58, 95%CI: 0.52-0.65). At 16.5 visits per day, asthma visits were also significantly higher, during the pre-Olympic period (RR 1.32, 95% CI: 1.15-1.52). The study also showed that the RR of asthma events on a given day, as well as the average daily peak ozone concentration during the preceding 48-72 h, increased at cumulative ozone concentrations of 70 to 100 ppb and 100 ppb or more compared with ozone concentrations of less than 70 ppb (P < 0.05). We concluded that along with "good" weather conditions, efforts to reduce traffic congestion in Beijing during the Olympic Games were associated with a prolonged reduction in air pollution and significantly lower rates of adult asthma events. These data provide support for efforts to reduce air pollution and improve health via reductions in motor vehicle traffic. PMID:21076997

  9. Impact of air pollution control measures and weather conditions on asthma during the 2008 Summer Olympic Games in Beijing.

    PubMed

    Li, Yi; Wang, Wen; Wang, Jizhi; Zhang, Xiaoling; Lin, Weili; Yang, Yuanqin

    2011-07-01

    The alternative transportation strategy implemented during the 2008 Summer Olympic Games in Beijing provided an opportunity to study the impact of the control measures and weather conditions on air quality and asthma morbidity. An ecological study compared the 41 days of the Olympic Games (8 August-17 September 2008) to a baseline period (1-30 June). Also, in order to emphasize the impact of weather conditions on air quality, a pollution linking meteorological index (Plam) was introduced to represent the air pollution meteorological condition. Our study showed that the average number of outpatient visits for asthma was 12.5 per day at baseline and 7.3 per day during the Olympics-a 41.6% overall decrease. Compared with the baseline, the Games were associated with a significant reduction in asthma visits (RR 0.58, 95%CI: 0.52-0.65). At 16.5 visits per day, asthma visits were also significantly higher, during the pre-Olympic period (RR 1.32, 95% CI: 1.15-1.52). The study also showed that the RR of asthma events on a given day, as well as the average daily peak ozone concentration during the preceding 48-72 h, increased at cumulative ozone concentrations of 70 to 100 ppb and 100 ppb or more compared with ozone concentrations of less than 70 ppb (P < 0.05). We concluded that along with "good" weather conditions, efforts to reduce traffic congestion in Beijing during the Olympic Games were associated with a prolonged reduction in air pollution and significantly lower rates of adult asthma events. These data provide support for efforts to reduce air pollution and improve health via reductions in motor vehicle traffic.

  10. Impact of air pollution control measures and weather conditions on asthma during the 2008 Summer Olympic Games in Beijing

    NASA Astrophysics Data System (ADS)

    Li, Yi; Wang, Wen; Wang, Jizhi; Zhang, Xiaoling; Lin, Weili; Yang, Yuanqin

    2011-07-01

    The alternative transportation strategy implemented during the 2008 Summer Olympic Games in Beijing provided an opportunity to study the impact of the control measures and weather conditions on air quality and asthma morbidity. An ecological study compared the 41 days of the Olympic Games (8 August-17 September 2008) to a baseline period (1-30 June). Also, in order to emphasize the impact of weather conditions on air quality, a pollution linking meteorological index (Plam) was introduced to represent the air pollution meteorological condition. Our study showed that the average number of outpatient visits for asthma was 12.5 per day at baseline and 7.3 per day during the Olympics—a 41.6% overall decrease. Compared with the baseline, the Games were associated with a significant reduction in asthma visits (RR 0.58, 95%CI: 0.52-0.65). At 16.5 visits per day, asthma visits were also significantly higher, during the pre-Olympic period (RR 1.32, 95% CI: 1.15-1.52). The study also showed that the RR of asthma events on a given day, as well as the average daily peak ozone concentration during the preceding 48-72 h, increased at cumulative ozone concentrations of 70 to 100 ppb and 100 ppb or more compared with ozone concentrations of less than 70 ppb ( P < 0.05). We concluded that along with "good" weather conditions, efforts to reduce traffic congestion in Beijing during the Olympic Games were associated with a prolonged reduction in air pollution and significantly lower rates of adult asthma events. These data provide support for efforts to reduce air pollution and improve health via reductions in motor vehicle traffic.

  11. Using statistical models to explore ensemble uncertainty in climate impact studies: the example of air pollution in Europe

    NASA Astrophysics Data System (ADS)

    Lemaire, Vincent E. P.; Colette, Augustin; Menut, Laurent

    2016-03-01

    Because of its sensitivity to unfavorable weather patterns, air pollution is sensitive to climate change so that, in the future, a climate penalty could jeopardize the expected efficiency of air pollution mitigation measures. A common method to assess the impact of climate on air quality consists in implementing chemistry-transport models forced by climate projections. However, the computing cost of such methods requires optimizing ensemble exploration techniques. By using a training data set from a deterministic projection of climate and air quality over Europe, we identified the main meteorological drivers of air quality for eight regions in Europe and developed statistical models that could be used to predict air pollutant concentrations. The evolution of the key climate variables driving either particulate or gaseous pollution allows selecting the members of the EuroCordex ensemble of regional climate projections that should be used in priority for future air quality projections (CanESM2/RCA4; CNRM-CM5-LR/RCA4 and CSIRO-Mk3-6-0/RCA4 and MPI-ESM-LR/CCLM following the EuroCordex terminology). After having tested the validity of the statistical model in predictive mode, we can provide ranges of uncertainty attributed to the spread of the regional climate projection ensemble by the end of the century (2071-2100) for the RCP8.5. In the three regions where the statistical model of the impact of climate change on PM2.5 offers satisfactory performances, we find a climate benefit (a decrease of PM2.5 concentrations under future climate) of -1.08 (±0.21), -1.03 (±0.32), -0.83 (±0.14) µg m-3, for respectively Eastern Europe, Mid-Europe and Northern Italy. In the British-Irish Isles, Scandinavia, France, the Iberian Peninsula and the Mediterranean, the statistical model is not considered skillful enough to draw any conclusion for PM2.5. In Eastern Europe, France, the Iberian Peninsula, Mid-Europe and Northern Italy, the statistical model of the impact of climate change

  12. Monitoring trace elements generated by automobiles: air pollutants with possible health impacts.

    PubMed

    Anwar, Khaleeq; Ejaz, Sohail; Ashraf, Muhammad; Ahmad, Nisar; Javeed, Aqeel

    2013-07-01

    Major transformations in the environmental composition are principally attributable to the combustion of fuels by automobiles. Motorized gasoline-powered two-stroke auto-rickshaws (TSA) and compressed natural gas (CNG)-powered four-stroke auto-rickshaws (FSA) are potential source of air pollution in south Asia and produce toxic amount of particulate matter (PM) to the environment. In this study, we attempted to characterize elemental pollutants from the PM of TSA and FSA using proton-induced X-ray emission (PIXE) analysis. The observations of the existing investigation recognized significant increase in Al (P < 0.05), P (P < 0.01), and Zn (P < 0.01) from the PM samples of FSA. In addition, the concentrations of Cu, Fe, K, Mg, Na and S were also observed exceeding the recommended National Institute for Environmental Studies limits. On the contrary, increased concentration of Sr and V were observed in the PM samples from TSA. It is generally believed that FSA generates smaller amount of PM but data obtained from FSA are clearly describing that emissions from FSA comprised potentially more toxic substances than TSA. The current research is specific to metropolitan population and has evidently revealed an inconsistent burden of exposure to air pollutants engendered by FSA in urban communities, which could lead to the disruption of several biological activities and may cause severe damage to entire ecological system. PMID:23263758

  13. Monitoring trace elements generated by automobiles: air pollutants with possible health impacts.

    PubMed

    Anwar, Khaleeq; Ejaz, Sohail; Ashraf, Muhammad; Ahmad, Nisar; Javeed, Aqeel

    2013-07-01

    Major transformations in the environmental composition are principally attributable to the combustion of fuels by automobiles. Motorized gasoline-powered two-stroke auto-rickshaws (TSA) and compressed natural gas (CNG)-powered four-stroke auto-rickshaws (FSA) are potential source of air pollution in south Asia and produce toxic amount of particulate matter (PM) to the environment. In this study, we attempted to characterize elemental pollutants from the PM of TSA and FSA using proton-induced X-ray emission (PIXE) analysis. The observations of the existing investigation recognized significant increase in Al (P < 0.05), P (P < 0.01), and Zn (P < 0.01) from the PM samples of FSA. In addition, the concentrations of Cu, Fe, K, Mg, Na and S were also observed exceeding the recommended National Institute for Environmental Studies limits. On the contrary, increased concentration of Sr and V were observed in the PM samples from TSA. It is generally believed that FSA generates smaller amount of PM but data obtained from FSA are clearly describing that emissions from FSA comprised potentially more toxic substances than TSA. The current research is specific to metropolitan population and has evidently revealed an inconsistent burden of exposure to air pollutants engendered by FSA in urban communities, which could lead to the disruption of several biological activities and may cause severe damage to entire ecological system.

  14. The impact on human health of car-related air pollution in the UK, 1995-2005

    NASA Astrophysics Data System (ADS)

    Smith, T. W.; Axon, C. J.; Darton, R. C.

    2013-10-01

    We have analysed the impact on human health of emissions produced by the UK car fleet in the years 1995 and 2005. Calculations were based on reported measurements of pollutant concentration, literature values of exposure response coefficients and data for mortality and morbidity. A share was attributed to the car fleet based on emissions data. Although the total distance driven in the UK increased by 16% over this period to 460 billion km, there was a significant fall in engine emissions as increasingly stringent regulations (EURO standards) were introduced. As a result there was a decrease of some 25% in the number of deaths attributable to car-related air pollution - down to 5589 in 2005. The estimated number of years of life lost at 65 000 (England and Wales) in 2005, was about half that caused by road accidents involving cars in the same year. We report further calculations which show the effect of car-related pollution on hospital admissions. Our method is straightforward, providing acceptable estimates for health impacts on the predominantly urban population of the UK. There remains a need for more work, particularly cohort studies of morbidity, to establish the long-term effects of air pollution.

  15. Inorganic nitrogenous air pollutants, atmospheric nitrogen deposition and their potential ecological impacts in remote areas of western North America (Invited)

    NASA Astrophysics Data System (ADS)

    Bytnerowicz, A.; Fenn, M. E.; Fraczek, W.; Johnson, R.; Allen, E. B.

    2013-12-01

    Dry deposition of gaseous inorganic nitrogenous (N) air pollutants plays an important role in total atmospheric N deposition and its ecological effects in the arid and semi-arid ecosystems. Passive samplers and denuder/ filter pack systems have been used for determining ambient concentrations of ammonia (NH3), nitric oxide (NO), nitrogen dioxide (NO2), and nitric acid vapor (HNO3) in the topographically complex remote areas of the western United States and Canada. Concentrations of the measured pollutants varied significantly between the monitoring areas. Highest NH3, NO2 and HNO3 levels occurred in southern California areas downwind of the Los Angeles Basin and in the western Sierra Nevada impacted by emissions from the California Central Valley and the San Francisco Bay area. Strong spatial gradients of N pollutants were also present in southeastern Alaska due to cruise ship emissions and in the Athabasca Oil Sands Region in Canada affected by oil exploitation. Distribution of these pollutants has been depicted by maps generated by several geostatistical methodologies within the ArcGIS Geostatistical Analyst (ESRI, USA). Such maps help to understand spatial and temporal changes of air pollutants caused by various anthropogenic activities and locally-generated vs. long range-transported air pollutants. Pollution distribution maps for individual N species and gaseous inorganic reactive nitrogen (Nr) have been developed for the southern portion of the Sierra Nevada, Lake Tahoe Basin, San Bernardino Mountains, Joshua Tree National Park and the Athabasca Oil Sands Region. The N air pollution data have been utilized for estimates of dry and total N deposition by a GIS-based inferential method specifically developed for understanding potential ecological impacts in arid and semi-arid areas. The method is based on spatial and temporal distribution of concentrations of major drivers of N dry deposition, their surface deposition velocities and stomatal conductance values

  16. Air pollution and COPD in China.

    PubMed

    Hu, Guoping; Zhong, Nanshan; Ran, Pixin

    2015-01-01

    Recently, many researchers paid more attentions to the association between air pollution and chronic obstructive pulmonary disease (COPD). Haze, a severe form of outdoor air pollution, affected most parts of northern and eastern China in the past winter. In China, studies have been performed to evaluate the impact of outdoor air pollution and biomass smoke exposure on COPD; and most studies have focused on the role of air pollution in acutely triggering symptoms and exacerbations. Few studies have examined the role of air pollution in inducing pathophysiological changes that characterise COPD. Evidence showed that outdoor air pollution affects lung function in both children and adults and triggers exacerbations of COPD symptoms. Hence outdoor air pollution may be considered a risk factor for COPD mortality. However, evidence to date has been suggestive (not conclusive) that chronic exposure to outdoor air pollution increases the prevalence and incidence of COPD. Cross-sectional studies showed biomass smoke exposure is a risk factor for COPD. A long-term retrospective study and a long-term prospective cohort study showed that biomass smoke exposure reductions were associated with a reduced decline in forced expiratory volume in 1 second (FEV1) and with a decreased risk of COPD. To fully understand the effect of air pollution on COPD, we recommend future studies with longer follow-up periods, more standardized definitions of COPD and more refined and source-specific exposure assessments.

  17. Air pollution and COPD in China

    PubMed Central

    Hu, Guoping; Zhong, Nanshan

    2015-01-01

    Recently, many researchers paid more attentions to the association between air pollution and chronic obstructive pulmonary disease (COPD). Haze, a severe form of outdoor air pollution, affected most parts of northern and eastern China in the past winter. In China, studies have been performed to evaluate the impact of outdoor air pollution and biomass smoke exposure on COPD; and most studies have focused on the role of air pollution in acutely triggering symptoms and exacerbations. Few studies have examined the role of air pollution in inducing pathophysiological changes that characterise COPD. Evidence showed that outdoor air pollution affects lung function in both children and adults and triggers exacerbations of COPD symptoms. Hence outdoor air pollution may be considered a risk factor for COPD mortality. However, evidence to date has been suggestive (not conclusive) that chronic exposure to outdoor air pollution increases the prevalence and incidence of COPD. Cross-sectional studies showed biomass smoke exposure is a risk factor for COPD. A long-term retrospective study and a long-term prospective cohort study showed that biomass smoke exposure reductions were associated with a reduced decline in forced expiratory volume in 1 second (FEV1) and with a decreased risk of COPD. To fully understand the effect of air pollution on COPD, we recommend future studies with longer follow-up periods, more standardized definitions of COPD and more refined and source-specific exposure assessments. PMID:25694818

  18. Visibility characteristics and the impacts of air pollutants and meteorological conditions over Shanghai, China.

    PubMed

    Xue, Dan; Li, Chengfan; Liu, Qian

    2015-06-01

    In China, visibility condition has become an important issue that concerns both society and the scientific community. In order to study visibility characteristics and its influencing factors, visibility data, air pollutants, and meteorological data during the year 2013 were obtained over Shanghai. The temporal variation of atmospheric visibility was analyzed. The mean value of daily visibility of Shanghai was 19.1 km. Visibility exhibited an obvious seasonal cycle. The maximum and minimum visibility occurred in September and December with the values of 27.5 and 7.7 km, respectively. The relationships between the visibility and air pollutant data were calculated. The visibility had negative correlation with NO2, CO, PM2.5, PM10, and SO2 and weak positive correlation with O3. Meteorological data were clustered into four groups to reveal the joint contribution of meteorological variables to the daily average visibility. Usually, under the meteorological condition of high temperature and wind speed, the visibility of Shanghai reached about 25 km, while visibility decreased to 16 km under the weather type of low wind speed and temperature and high relative humid. Principle component analysis was also applied to identify the main cause of visibility variance. The results showed that the low visibility over Shanghai was mainly due to the high air pollution concentrations associated with low wind speed, which explained the total variance of 44.99 %. These results provide new knowledge for better understanding the variations of visibility and have direct implications to supply sound policy on visibility improvement in Shanghai.

  19. Health impacts due to particulate air pollution in Volos City, Greece.

    PubMed

    Moustris, Konstantinos P; Proias, George T; Larissi, Ioanna K; Nastos, Panagiotis T; Koukouletsos, Konstantinos V; Paliatsos, Athanasios G

    2016-01-01

    There is great consensus among the scientific community that suspended particulate matter is considered as one of the most harmful pollutants, particularly the inhalable particulate matter with aerodynamic diameter less than 10 μm (PM10) causing respiratory health problems and heart disorders. Average daily concentrations exceeding established standard values appear, among other cases, to be the main cause of such episodes, especially during Saharan dust episodes, a natural phenomenon that degrades air quality in the urban area of Volos. In this study the AirQ2.2.3 model, developed by the World Health Organization (WHO) European Center for Environment and Health, was used to evaluate adverse health effects by PM10 pollution in the city of Volos during a 5-year period (2007-2011). Volos is a coastal medium size city in the Thessaly region. The city is located on the northern side of the Gulf of Pagassitikos, on the east coast of Central Greece. Air pollution data were obtained by a fully automated monitoring station, which was established by the Municipal Water Supply and Sewage Department in the Greater Area of Volos, located in the centre of the city. The results of the current study indicate that when the mean annual PM10 concentration exceeds the corresponding European Union (EU) threshold value, the number of hospital admissions for respiratory disease (HARD) is increased by 25% on average. There is also an estimated increase of about 2.5% in HARD compared to the expected annual HARD cases for Volos. Finally, a strong correlation was found between the number of days exceeding the EU daily threshold concentration ([PM10] ≥ 50 μg m(-3)) and the annual HARD cases.

  20. Health impacts due to particulate air pollution in Volos City, Greece.

    PubMed

    Moustris, Konstantinos P; Proias, George T; Larissi, Ioanna K; Nastos, Panagiotis T; Koukouletsos, Konstantinos V; Paliatsos, Athanasios G

    2016-01-01

    There is great consensus among the scientific community that suspended particulate matter is considered as one of the most harmful pollutants, particularly the inhalable particulate matter with aerodynamic diameter less than 10 μm (PM10) causing respiratory health problems and heart disorders. Average daily concentrations exceeding established standard values appear, among other cases, to be the main cause of such episodes, especially during Saharan dust episodes, a natural phenomenon that degrades air quality in the urban area of Volos. In this study the AirQ2.2.3 model, developed by the World Health Organization (WHO) European Center for Environment and Health, was used to evaluate adverse health effects by PM10 pollution in the city of Volos during a 5-year period (2007-2011). Volos is a coastal medium size city in the Thessaly region. The city is located on the northern side of the Gulf of Pagassitikos, on the east coast of Central Greece. Air pollution data were obtained by a fully automated monitoring station, which was established by the Municipal Water Supply and Sewage Department in the Greater Area of Volos, located in the centre of the city. The results of the current study indicate that when the mean annual PM10 concentration exceeds the corresponding European Union (EU) threshold value, the number of hospital admissions for respiratory disease (HARD) is increased by 25% on average. There is also an estimated increase of about 2.5% in HARD compared to the expected annual HARD cases for Volos. Finally, a strong correlation was found between the number of days exceeding the EU daily threshold concentration ([PM10] ≥ 50 μg m(-3)) and the annual HARD cases. PMID:26421944

  1. Air pollution source identification

    NASA Technical Reports Server (NTRS)

    Fordyce, J. S.

    1975-01-01

    Techniques for air pollution source identification are reviewed, and some results obtained with them are evaluated. Described techniques include remote sensing from satellites and aircraft, on-site monitoring, and the use of injected tracers and pollutants themselves as tracers. The use of a large number of trace elements in ambient airborne particulate matter as a practical means of identifying sources is discussed in detail. Sampling and analysis techniques are described, and it is shown that elemental constituents can be related to specific source types such as those found in the earth's crust and those associated with specific industries. Source identification sytems are noted which utilize charged particle X-ray fluorescence analysis of original field data.

  2. Indoor air pollution

    SciTech Connect

    Gold, D.R. )

    1992-06-01

    This article summarizes the health effects of indoor air pollutants and the modalities available to control them. The pollutants discussed include active and passive exposure to tobacco smoke; combustion products of carbon monoxide; nitrogen dioxide; products of biofuels, including wood and coal; biologic agents leading to immune responses, such as house dust mites, cockroaches, fungi, animal dander, and urine; biologic agents associated with infection such as Legionella and tuberculosis; formaldehyde; and volatile organic compounds. An approach to assessing building-related illness and tight building' syndrome is presented. Finally, the article reviews recent data on hospital-related asthma and exposures to potential respiratory hazards such as antineoplastic agents, anesthetic gases, and ethylene oxide.88 references.

  3. [Ambient air pollution and its impact on the incidence of respiratory diseases in children].

    PubMed

    Stamova, L G; Chesnokova, E A

    2005-01-01

    The increased number of ecological problems in Russia has stimulated the development of methodological approaches to studying a human chemical load under the conditions of an industrial town. The data on mortality in children under 3 years of age, who lived in a developed industrial town, have been analyzed. Comparison of data on ambient air purity and those on the incidence of respiratory disease has established a correlation between environment pollution and the likelihood of diseases in children under the influence of harmful factors. PMID:16276987

  4. Impact of air pollution on respiratory diseases in children with recurrent wheezing or asthma

    PubMed Central

    2014-01-01

    Background Air pollution has many negative health effects on the general population, especially children, subjects with underlying chronic disease and the elderly. The aims of this study were to evaluate the effects of traffic-related pollution on the exacerbation of asthma and development of respiratory infections in Italian children suffering from asthma or wheezing compared with healthy subjects and to estimate the association between incremental increases in principal pollutants and the incidence of respiratory symptoms. Methods This prospective study enrolled 777 children aged 2 to 18 years (375 with recurrent wheezing or asthma and 402 healthy subjects). Over 12 months, parents filled out a daily clinical diary to report information about respiratory symptoms, type of medication used and healthcare utilization. Clinical data were combined with the results obtained using an air pollution monitoring system of the five most common pollutants. Results Among the 329 children with recurrent wheezing or asthma and 364 healthy subjects who completed follow-up, children with recurrent wheezing or asthma reported significantly more days of fever (p = 0.005) and cough (p < 0.001), episodes of rhinitis (p = 0.04) and tracheitis (p = 0.01), asthma attacks (p < 0.001), episodes of pneumonia (p < 0.001) and hospitalizations (p = 0.02). In the wheezing/asthma cohort, living close to the street with a high traffic density was a risk factor for asthma exacerbations (odds ratio [OR] = 1.79; 95% confidence interval [CI], 1.13-2.84), whereas living near green areas was found to be protective (OR = 0.50; 95% CI, 0.31 -0.80). An increase of 10 μg/m3 of particulates less than 10 microns in diameter (PM10) and nitrogen dioxide (NO2) increased the onset of pneumonia only in wheezing/asthmatic children (continuous rate ratio [RR] = 1.08, 95% CI: 1.00-1.17 for PM10; continuous RR = 1.08, 95% CI: 1.01-1.17 for NO2). Conclusions There is a

  5. Children's well-being at schools: Impact of climatic conditions and air pollution.

    PubMed

    Salthammer, Tunga; Uhde, Erik; Schripp, Tobias; Schieweck, Alexandra; Morawska, Lidia; Mazaheri, Mandana; Clifford, Sam; He, Congrong; Buonanno, Giorgio; Querol, Xavier; Viana, Mar; Kumar, Prashant

    2016-09-01

    Human civilization is currently facing two particular challenges: population growth with a strong trend towards urbanization and climate change. The latter is now no longer seriously questioned. The primary concern is to limit anthropogenic climate change and to adapt our societies to its effects. Schools are a key part of the structure of our societies. If future generations are to take control of the manifold global problems, we have to offer our children the best possible infrastructure for their education: not only in terms of the didactic concepts, but also with regard to the climatic conditions in the school environment. Between the ages of 6 and 19, children spend up to 8h a day in classrooms. The conditions are, however, often inacceptable and regardless of the geographic situation, all the current studies report similar problems: classrooms being too small for the high number of school children, poor ventilation concepts, considerable outdoor air pollution and strong sources of indoor air pollution. There have been discussions about a beneficial and healthy air quality in classrooms for many years now and in recent years extensive studies have been carried out worldwide. The problems have been clearly outlined on a scientific level and there are prudent and feasible concepts to improve the situation. The growing number of publications also highlights the importance of this subject. High carbon dioxide concentrations in classrooms, which indicate poor ventilation conditions, and the increasing particle matter in urban outdoor air have, in particular, been identified as primary causes of poor indoor air quality in schools. Despite this, the conditions in most schools continue to be in need of improvement. There are many reasons for this. In some cases, the local administrative bodies do not have the budgets required to address such concerns, in other cases regulations and laws stand in contradiction to the demands for better indoor air quality, and sometimes

  6. Children's well-being at schools: Impact of climatic conditions and air pollution.

    PubMed

    Salthammer, Tunga; Uhde, Erik; Schripp, Tobias; Schieweck, Alexandra; Morawska, Lidia; Mazaheri, Mandana; Clifford, Sam; He, Congrong; Buonanno, Giorgio; Querol, Xavier; Viana, Mar; Kumar, Prashant

    2016-09-01

    Human civilization is currently facing two particular challenges: population growth with a strong trend towards urbanization and climate change. The latter is now no longer seriously questioned. The primary concern is to limit anthropogenic climate change and to adapt our societies to its effects. Schools are a key part of the structure of our societies. If future generations are to take control of the manifold global problems, we have to offer our children the best possible infrastructure for their education: not only in terms of the didactic concepts, but also with regard to the climatic conditions in the school environment. Between the ages of 6 and 19, children spend up to 8h a day in classrooms. The conditions are, however, often inacceptable and regardless of the geographic situation, all the current studies report similar problems: classrooms being too small for the high number of school children, poor ventilation concepts, considerable outdoor air pollution and strong sources of indoor air pollution. There have been discussions about a beneficial and healthy air quality in classrooms for many years now and in recent years extensive studies have been carried out worldwide. The problems have been clearly outlined on a scientific level and there are prudent and feasible concepts to improve the situation. The growing number of publications also highlights the importance of this subject. High carbon dioxide concentrations in classrooms, which indicate poor ventilation conditions, and the increasing particle matter in urban outdoor air have, in particular, been identified as primary causes of poor indoor air quality in schools. Despite this, the conditions in most schools continue to be in need of improvement. There are many reasons for this. In some cases, the local administrative bodies do not have the budgets required to address such concerns, in other cases regulations and laws stand in contradiction to the demands for better indoor air quality, and sometimes

  7. Remote air pollution measurement

    NASA Technical Reports Server (NTRS)

    Byer, R. L.

    1975-01-01

    This paper presents a discussion and comparison of the Raman method, the resonance and fluorescence backscatter method, long path absorption methods and the differential absorption method for remote air pollution measurement. A comparison of the above remote detection methods shows that the absorption methods offer the most sensitivity at the least required transmitted energy. Topographical absorption provides the advantage of a single ended measurement, and differential absorption offers the additional advantage of a fully depth resolved absorption measurement. Recent experimental results confirming the range and sensitivity of the methods are presented.

  8. Air Pollution Control, Part I.

    ERIC Educational Resources Information Center

    Strauss, Werner, Ed.

    Authoritative reviews in seven areas of current importance in air pollution control are supplied in this volume, the first of a two-part set. Titles contained in this book are: "Dispersion of Pollutants Emitted into the Atmosphere,""The Formation and Control of Oxides of Nitrogen in Air Pollution,""The Control of Sulfur Emissions from Combustion…

  9. The Federal Air Pollution Program.

    ERIC Educational Resources Information Center

    National Air Pollution Control Administration (DHEW), Washington, DC.

    Described is the Federal air pollution program as it was in 1967. The booklet is divided into these major topics: History of the Federal Program; Research; Assistance to State and Local Governments; Abatement and Prevention of Air Pollution; Control of Motor Vehicle Pollution; Information and Education; and Conclusion. Federal legislation has…

  10. In Search of Air Pollution

    ERIC Educational Resources Information Center

    Beckendorf, Kirk

    2006-01-01

    Air pollution is no longer just a local issue; it is a global problem. The atmosphere is a very dynamic system. Pollution not only changes in chemical composition after it is emitted, but also is transported on local and global air systems hundreds and even thousands of miles away. Some of the pollutants that are major health concerns are not even…

  11. Air pollution from aircraft

    NASA Technical Reports Server (NTRS)

    Heywood, J. B.; Fay, J. A.; Chigier, N. A.

    1979-01-01

    Forty-one annotated abstracts of reports generated at MIT and the University of Sheffield are presented along with summaries of the technical projects undertaken. Work completed includes: (1) an analysis of the soot formation and oxidation rates in gas turbine combustors, (2) modelling the nitric oxide formation process in gas turbine combustors, (3) a study of the mechanisms causing high carbon monoxide emissions from gas turbines at low power, (4) an analysis of the dispersion of pollutants from aircraft both around large airports and from the wakes of subsonic and supersonic aircraft, (5) a study of the combustion and flow characteristics of the swirl can modular combustor and the development and verification of NO sub x and CO emissions models, (6) an analysis of the influence of fuel atomizer characteristics on the fuel-air mixing process in liquid fuel spray flames, and (7) the development of models which predict the stability limits of fully and partially premixed fuel-air mixtures.

  12. Fundamentals of air pollution. Third edition

    SciTech Connect

    Boubel, R.W.; Fox, D.L.; Turner, D.B.; Stern, A.C.

    1994-12-31

    This book presents an overview of air pollution. In Part I, the history of air pollution and the basic concepts involved with air pollution such as sources, scales, definitions are covered. Part II describes how airborne pollutants damage materials, vegetation, animals, and humans. Six fundamental aspects of air pollution are included in the text: The Elements of Air Pollution; The Effects of Air Pollution; Measurement and Monitoring of Air Pollution; Meterology of Air Pollution; regulatory Control of Air Pollution; and Engineering Control of Air Pollution.

  13. Air Pollution, Causes and Cures.

    ERIC Educational Resources Information Center

    Manufacturing Chemists Association, Washington, DC.

    This commentary on sources of air pollution and air purification treatments is accompanied by graphic illustrations. Sources of carbon monoxide, sulfur oxides, nitrogen oxides, and hydrocarbons found in the air are discussed. Methods of removing these pollutants at their source are presented with cut-away diagrams of the facilities and technical…

  14. Impact of outdoor air pollution on the incidence of tuberculosis in the Seoul metropolitan area, South Korea

    PubMed Central

    Hwang, Seung-sik; Kang, Sungchan; Lee, Ji-Young; Lee, Ji Sun; Kim, Hee Jin; Han, Sung Koo

    2014-01-01

    Background/Aims Although indoor air pollution is a well-known risk factor for tuberculosis (TB), the possible link between outdoor air pollution and TB development has not been examined fully. We assessed the impact of outdoor air pollution on TB development in the Seoul metropolitan area, South Korea. Methods The mean concentrations of ambient particulate matter (PM) with an aerodynamic diameter ≤ 10 µm (PM10), O3, CO, NO2, and SO2 levels in Seoul, between January 1, 1997 and December 31, 2006, were determined. Furthermore, their association with the risk of developing TB after adjusting for socioeconomic status, between January 1, 2002 and December 31, 2006, was investigated. Results Between January 1, 2002 and December 31, 2006, a total of 41,185 TB cases were reported in Seoul. Concentrations of PM10, O3, CO, and NO2 were not associated with TB incidence in males or females. However, the interquartile increase in SO2 concentration was associated with a 7% increment in TB incidence (relative risk [RR], 1.07; 95% credible interval [CrI], 1.03 to 1.12) in males but not in females (RR, 1.02; 95% CrI, 0.98 to 1.07). Conclusions Long-term exposure to ambient SO2 increased the risk of TB in males. PMID:24648801

  15. Outdoor air pollution and asthma

    PubMed Central

    Guarnieri, Michael; Balmes, John R.

    2015-01-01

    Traffic and power generation are the main sources of urban air pollution. The idea that outdoor air pollution can cause exacerbations of pre-existing asthma is supported by an evidence base that has been accumulating for several decades, with several studies suggesting a contribution to new-onset asthma as well. In this Series paper, we discuss the effects of particulate matter (PM), gaseous pollutants (ozone, nitrogen dioxide, and sulphur dioxide), and mixed traffic-related air pollution. We focus on clinical studies, both epidemiological and experimental, published in the previous 5 years. From a mechanistic perspective, air pollutants probably cause oxidative injury to the airways, leading to inflammation, remodelling, and increased risk of sensitisation. Although several pollutants have been linked to new-onset asthma, the strength of the evidence is variable. We also discuss clinical implications, policy issues, and research gaps relevant to air pollution and asthma. PMID:24792855

  16. Air Pollution: Mechanisms of Neuroinflammation & CNS Disease

    PubMed Central

    Block, Michelle L.; Calderón-Garcidueñas, Lilian

    2009-01-01

    Emerging evidence implicates air pollution as a chronic source of neuroinflammation, reactive oxygen species (ROS), and neuropathology instigating central nervous system (CNS) disease. Stroke incidence, and Alzheimer’s and Parkinson’s disease pathology are linked to air pollution. Recent reports reveal that air pollution components reach the brain. Further, systemic effects known to impact lung and cardiovascular disease also impinge upon CNS health. While mechanisms driving air pollution-induced CNS pathology are poorly understood, new evidence suggests that activation of microglia and changes in the blood brain barrier may be key to this process. Here, we summarize recent findings detailing the mechanisms through which air pollution reaches the brain and activates the resident innate immune response to become a chronic source of pro-inflammatory factors and ROS culpable in CNS disease. PMID:19716187

  17. "Exposure Track"-The Impact of Mobile-Device-Based Mobility Patterns on Quantifying Population Exposure to Air Pollution.

    PubMed

    Nyhan, Marguerite; Grauwin, Sebastian; Britter, Rex; Misstear, Bruce; McNabola, Aonghus; Laden, Francine; Barrett, Steven R H; Ratti, Carlo

    2016-09-01

    Air pollution is now recognized as the world's single largest environmental and human health threat. Indeed, a large number of environmental epidemiological studies have quantified the health impacts of population exposure to pollution. In previous studies, exposure estimates at the population level have not considered spatially- and temporally varying populations present in study regions. Therefore, in the first study of it is kind, we use measured population activity patterns representing several million people to evaluate population-weighted exposure to air pollution on a city-wide scale. Mobile and wireless devices yield information about where and when people are present, thus collective activity patterns were determined using counts of connections to the cellular network. Population-weighted exposure to PM2.5 in New York City (NYC), herein termed "Active Population Exposure" was evaluated using population activity patterns and spatiotemporal PM2.5 concentration levels, and compared to "Home Population Exposure", which assumed a static population distribution as per Census data. Areas of relatively higher population-weighted exposures were concentrated in different districts within NYC in both scenarios. These were more centralized for the "Active Population Exposure" scenario. Population-weighted exposure computed in each district of NYC for the "Active" scenario were found to be statistically significantly (p < 0.05) different to the "Home" scenario for most districts. In investigating the temporal variability of the "Active" population-weighted exposures determined in districts, these were found to be significantly different (p < 0.05) during the daytime and the nighttime. Evaluating population exposure to air pollution using spatiotemporal population mobility patterns warrants consideration in future environmental epidemiological studies linking air quality and human health. PMID:27518311

  18. "Exposure Track"-The Impact of Mobile-Device-Based Mobility Patterns on Quantifying Population Exposure to Air Pollution.

    PubMed

    Nyhan, Marguerite; Grauwin, Sebastian; Britter, Rex; Misstear, Bruce; McNabola, Aonghus; Laden, Francine; Barrett, Steven R H; Ratti, Carlo

    2016-09-01

    Air pollution is now recognized as the world's single largest environmental and human health threat. Indeed, a large number of environmental epidemiological studies have quantified the health impacts of population exposure to pollution. In previous studies, exposure estimates at the population level have not considered spatially- and temporally varying populations present in study regions. Therefore, in the first study of it is kind, we use measured population activity patterns representing several million people to evaluate population-weighted exposure to air pollution on a city-wide scale. Mobile and wireless devices yield information about where and when people are present, thus collective activity patterns were determined using counts of connections to the cellular network. Population-weighted exposure to PM2.5 in New York City (NYC), herein termed "Active Population Exposure" was evaluated using population activity patterns and spatiotemporal PM2.5 concentration levels, and compared to "Home Population Exposure", which assumed a static population distribution as per Census data. Areas of relatively higher population-weighted exposures were concentrated in different districts within NYC in both scenarios. These were more centralized for the "Active Population Exposure" scenario. Population-weighted exposure computed in each district of NYC for the "Active" scenario were found to be statistically significantly (p < 0.05) different to the "Home" scenario for most districts. In investigating the temporal variability of the "Active" population-weighted exposures determined in districts, these were found to be significantly different (p < 0.05) during the daytime and the nighttime. Evaluating population exposure to air pollution using spatiotemporal population mobility patterns warrants consideration in future environmental epidemiological studies linking air quality and human health.

  19. Mechanistic impact of outdoor air pollution on asthma and allergic diseases

    PubMed Central

    Zhang, Qingling; Qiu, Zhiming; Chung, Kian Fan

    2015-01-01

    Over the past decades, asthma and allergic diseases, such as allergic rhinitis and eczema, have become increasingly common, but the reason for this increased prevalence is still unclear. It has become apparent that genetic variation alone is not sufficient to account for the observed changes; rather, the changing environment, together with alterations in lifestyle and eating habits, are likely to have driven the increase in prevalence, and in some cases, severity of disease. This is particularly highlighted by recent awareness of, and concern about, the exposure to ubiquitous environmental pollutants, including chemicals with oxidant-generating capacities, and their impact on the human respiratory and immune systems. Indeed, several epidemiological studies have identified a variety of risk factors, including ambient pollutant gases and airborne particles, for the prevalence and the exacerbation of allergic diseases. However, the responsible pollutants remain unclear and the causal relationship has not been established. Recent studies of cellular and animal models have suggested several plausible mechanisms, with the most consistent observation being the direct effects of particle components on the generation of reactive oxygen species (ROS) and the resultant oxidative stress and inflammatory responses. This review attempts to highlight the experimental findings, with particular emphasis on several major mechanistic events initiated by exposure to particulate matters (PMs) in the exposure-disease relationship. PMID:25694815

  20. Regional air pollution over Malaysia

    NASA Astrophysics Data System (ADS)

    Krysztofiak, G.; Catoire, V.; Dorf, M.; Grossmann, K.; Hamer, P. D.; Marécal, V.; Reiter, A.; Schlager, H.; Eckhardt, S.; Jurkat, T.; Oram, D.; Quack, B.; Atlas, E.; Pfeilsticker, K.

    2012-12-01

    During the SHIVA (Stratospheric Ozone: Halogen Impacts in a Varying Atmosphere) campaign in Nov. and Dec. 2011 a number of polluted air masses were observed in the marine and terrestrial boundary layer (0 - 2 km) and in the free troposphere (2 - 12 km) over Borneo/Malaysia. The measurements include isoprene, CO, CO2, CH4, N2O, NO2, SO2 as primary pollutants, O3 and HCHO as secondary pollutants, and meteorological parameters. This set of trace gases can be used to fingerprint different sources of local and regional air pollution (e.g., biomass burning and fossil fuel burning, gas flaring on oil rigs, emission of ships and from urban areas, volcanic emissions, and biogenic emissions). Individual sources and location can be identified when the measurements are combined with a nested-grid regional scale chemical and meteorological model and lagrangian particle dispersion model (e.g., CCATT-BRAMS and FLEXPART). In the case of the former, emission inventories of the primary pollutants provide the basis for the trace gas simulations. In this region, the anthropogenic influence on air pollution seems to dominate over natural causes. For example, CO2 and CH4 often show strong correlations with CO, suggesting biomass burning or urban fossil fuel combustion dominates the combustion sources. The study of the CO/CO2 and CH4/CO ratios can help separate anthropogenic combustion from biomass burning pollution sources. In addition, these ratios can be used as a measure of combustion efficiency to help place the type of biomass burning particular to this region within the wider context of fire types found globally. On several occasions, CH4 enhancements are observed near the ocean surface, which are not directly correlated with CO enhancements thus indicating a non-combustion-related CH4 source. Positive correlations between SO2 and CO show the anthropogenic influence of oil rigs located in the South China Sea. Furthermore, SO2 enhancements are observed without any increase in CO

  1. Integrating Human Indoor Air Pollutant Exposure within Life Cycle Impact Assessment

    SciTech Connect

    Hellweg, Stefanie; Demou, Evangelia; Bruzzi, Raffaella; Meijer, Arjen; Rosenbaum, Ralph K.; Huijbregts, Mark A.J.; McKone, Thomas E.

    2008-12-21

    Neglecting health effects from indoor pollutant emissions and exposure, as currently done in Life Cycle Assessment (LCA), may result in product or process optimizations at the expense of workers? or consumers? health. To close this gap, methods for considering indoor exposure to chemicals are needed to complement the methods for outdoor human exposure assessment already in use. This paper summarizes the work of an international expert group on the integration of human indoor and outdoor exposure in LCA, within the UNEP/SETAC Life Cycle Initiative. A new methodological framework is proposed for a general procedure to include human-health effects from indoor exposure in LCA. Exposure models from occupational hygiene and household indoor air quality studies and practices are critically reviewed and recommendations are provided on the appropriateness of various model alternatives in the context of LCA. A single-compartment box model is recommended for use as a default in LCA, enabling one to screen occupational and household exposures consistent with the existing models to assess outdoor emission in a multimedia environment. An initial set of model parameter values was collected. The comparison between indoor and outdoor human exposure per unit of emission shows that for many pollutants, intake per unit of indoor emission may be several orders of magnitude higher than for outdoor emissions. It is concluded that indoor exposure should be routinely addressed within LCA.

  2. Assessing the long term impact of power plant emissions on regional air pollution using extensive monitoring data.

    PubMed

    Yuval; Broday, David M

    2009-02-01

    In spite of the recent increasing interest in energy production from renewable sources, polluting hydrocarbon-fueled power plants will continue to provide most of the electricity to the world's population in the coming decades. This work studies the long term impact on the regional ambient air which can be attributable to three plants with different power outputs, fuel types, and stack heights. The study is carried out in an area with relatively flat topography and typical coastal meteorology. A dense air pollution monitoring network, operating for many years, makes this area a real life laboratory for studying the pollution routes, the impact of the sources at different directions and distances, and the effects of transition to cleaner fuel. The direct impact of each of the two large power plants on the ambient SO2 levels could be clearly detected in most of the monitoring stations at distances up to 40 km away. Interestingly, a relatively large impact can also be attributed to the indirect effect of emissions that are recirculated back to the region with the land breeze. The transition from using fuel oil to natural gas in one of the large power plants resulted in a dramatic reduction in the mean SO2 levels in all of the monitoring stations. The contribution of the industrial emissions to the ambient NO2 levels seems to be very modest relative to that from traffic. An analysis of the NO, NO2 and O3 records suggests that the highest mean NO2 concentrations, and a large proportion of the total NO2 encountered in the study area, are probably due to recirculated NOx emitted by traffic in a densely populated region north of it. PMID:19216124

  3. Assessing the long term impact of power plant emissions on regional air pollution using extensive monitoring data.

    PubMed

    Yuval; Broday, David M

    2009-02-01

    In spite of the recent increasing interest in energy production from renewable sources, polluting hydrocarbon-fueled power plants will continue to provide most of the electricity to the world's population in the coming decades. This work studies the long term impact on the regional ambient air which can be attributable to three plants with different power outputs, fuel types, and stack heights. The study is carried out in an area with relatively flat topography and typical coastal meteorology. A dense air pollution monitoring network, operating for many years, makes this area a real life laboratory for studying the pollution routes, the impact of the sources at different directions and distances, and the effects of transition to cleaner fuel. The direct impact of each of the two large power plants on the ambient SO2 levels could be clearly detected in most of the monitoring stations at distances up to 40 km away. Interestingly, a relatively large impact can also be attributed to the indirect effect of emissions that are recirculated back to the region with the land breeze. The transition from using fuel oil to natural gas in one of the large power plants resulted in a dramatic reduction in the mean SO2 levels in all of the monitoring stations. The contribution of the industrial emissions to the ambient NO2 levels seems to be very modest relative to that from traffic. An analysis of the NO, NO2 and O3 records suggests that the highest mean NO2 concentrations, and a large proportion of the total NO2 encountered in the study area, are probably due to recirculated NOx emitted by traffic in a densely populated region north of it.

  4. Air pollution impacts of speed limitation measures in large cities: The need for improving traffic data in a metropolitan area

    NASA Astrophysics Data System (ADS)

    Baldasano, José M.; Gonçalves, María; Soret, Albert; Jiménez-Guerrero, Pedro

    2010-08-01

    Assessing the effects of air quality management strategies in urban areas is a major concern worldwide because of the large impacts on health caused by the exposure to air pollution. In this sense, this work analyses the changes in urban air quality due to the introduction of a maximum speed limit to 80 km h -1 on motorways in a large city by using a novel methodology combining traffic assimilation data and modelling systems implemented in a supercomputing facility. Albeit the methodology has been non-specifically developed and can be extrapolated to any large city or megacity, the case study of Barcelona is presented here. Hourly simulations take into account the entire year 2008 (when the 80 km h -1 limit has been introduced) vs. the traffic conditions for the year 2007. The data has been assimilated in an emission model, which considers hourly variable speeds and hourly traffic intensity in the affected area, taken from long-term measurement campaigns for the aforementioned years; it also permits to take into account the traffic congestion effect. Overall, the emissions are reduced up to 4%; however the local effects of this reduction achieve an important impact for the adjacent area to the roadways, reaching 11%. In this sense, the speed limitation effects assessed represent enhancements in air quality levels (5-7%) of primary pollutants over the area, directly improving the welfare of 1.35 million inhabitants (over 41% of the population of the Metropolitan Area) and affecting 3.29 million dwellers who are potentially benefited from this strategy for air quality management (reducing 0.6% the mortality rates in the area).

  5. The use of air quality forecasts to assess impacts of air pollution on crops: Methodology and case study

    NASA Astrophysics Data System (ADS)

    Tong, Daniel; Mathur, Rohit; Schere, Kenneth; Kang, Daiwen; Yu, Shaocai

    It has been reported that ambient ozone (O 3), either alone or in concurrence with acid rain precursors, accounts for up to 90% of US crop losses resulting from exposure to all major air pollutants. Crop damage due to O 3 exposure is of particular concern as ambient O 3 concentrations remain high in many major food-producing regions. Assessing O 3 damage to crops is challenging due to the difficulties in determining the reduction in crop yield that results from exposure to surface O 3, for which monitors are limited and mostly deployed in non-rural areas. This work explores the potential benefits of using operational air quality forecast (AQF) data to estimate rural O 3 exposure. Using the results from the first nationwide AQF as a case study, we demonstrate how the O 3 data provided by AQF can be combined with concurrent crop information to assess O 3 damages to soybeans in the United States. We estimate that exposure to ambient O 3 reduces the US soybean production by 10% in 2005.

  6. The Impact of Individual Anthropogenic Emissions Sectors on the Global Burden of Human Mortality due to Ambient Air Pollution

    PubMed Central

    Silva, Raquel A.; Adelman, Zachariah; Fry, Meridith M.; West, J. Jason

    2016-01-01

    Background: Exposure to ozone and fine particulate matter (PM2.5) can cause adverse health effects, including premature mortality due to cardiopulmonary diseases and lung cancer. Recent studies quantify global air pollution mortality but not the contribution of different emissions sectors, or they focus on a specific sector. Objectives: We estimated the global mortality burden of anthropogenic ozone and PM2.5, and the impact of five emissions sectors, using a global chemical transport model at a finer horizontal resolution (0.67° × 0.5°) than previous studies. Methods: We performed simulations for 2005 using the Model for Ozone and Related Chemical Tracers, version 4 (MOZART-4), zeroing out all anthropogenic emissions and emissions from specific sectors (All Transportation, Land Transportation, Energy, Industry, and Residential and Commercial). We estimated premature mortality using a log-linear concentration–response function for ozone and an integrated exposure–response model for PM2.5. Results: We estimated 2.23 (95% CI: 1.04, 3.33) million deaths/year related to anthropogenic PM2.5, with the highest mortality in East Asia (48%). The Residential and Commercial sector had the greatest impact globally—675 (95% CI: 428, 899) thousand deaths/year—and in most regions. Land Transportation dominated in North America (32% of total anthropogenic PM2.5 mortality), and it had nearly the same impact (24%) as Residential and Commercial (27%) in Europe. Anthropogenic ozone was associated with 493 (95% CI: 122, 989) thousand deaths/year, with the Land Transportation sector having the greatest impact globally (16%). Conclusions: The contributions of emissions sectors to ambient air pollution–related mortality differ among regions, suggesting region-specific air pollution control strategies. Global sector-specific actions targeting Land Transportation (ozone) and Residential and Commercial (PM2.5) sectors would particularly benefit human health. Citation: Silva RA

  7. Indoor Air Pollution (Environmental Health Student Portal)

    MedlinePlus

    ... Gases Impact on Weather Health Effects Take Action Water Pollution Water Pollution Home Chemicals and Pollutants Natural Disasters Drinking Water ... Gases Impact on Weather Health Effects Take Action Water Pollution Water Pollution Home Chemicals and Pollutants Natural Disasters ...

  8. Air pollution and allergic disease.

    PubMed

    Kim, Haejin; Bernstein, Jonathan A

    2009-03-01

    Over the past several decades, there has been increased awareness of the health effects of air pollution and much debate regarding the role of global warming. The prevalence of asthma and allergic disease has risen in industrialized countries, and most epidemiologic studies focus on possible causalities between air pollution and these conditions. This review examines salient articles and summarizes findings important to the interaction between allergies and air pollution, specifically volatile organic compounds, global warming, particulate pollutants, atopic risk, indoor air pollution, and prenatal exposure. Further work is necessary to determine whether patients predisposed to developing allergic disease may be more susceptible to the health effects of air pollutants due to the direct interaction between IgE-mediated disease and air pollutants. Until we have more definitive answers, patient education about the importance of good indoor air quality in the home and workplace is essential. Health care providers and the general community should also support public policy designed to improve outdoor air quality by developing programs that provide incentives for industry to comply with controlling pollution emissions.

  9. Air Pollution and Human Health

    ERIC Educational Resources Information Center

    Lave, Lester B.; Seskin, Eugene P.

    1970-01-01

    Reviews studies statistically relating air pollution to mortality and morbidity rates for respiratory, and cardiovascular diseases, cancer and infant mortality. Some data recalculated. Estimates 50 percent air pollution reduction will save 4.5 percent (2080 million dollars per year) of all economic loss (hospitalization, income loss) associated…

  10. Children, Pediatricians, and Polluted Air.

    ERIC Educational Resources Information Center

    Kane, Dorothy Noyes

    Explored are children's vulnerability and the pediatrician's role in relation to the problems posed by air pollution. Research is noted to have included a search of biomedical literature over the past 10 years; attendance at medical meetings; conferences with air pollution researchers, environmental protection administrators, and specialists in…

  11. Intercontinental Transport of Air Pollution

    NASA Technical Reports Server (NTRS)

    Rogers, David; Whung, Pai-Yei; Einaudi, Franco (Technical Monitor)

    2001-01-01

    The development of the global economy goes beyond raising our standards of living. We are in an ear of increasing environmental as well as economic interdependence. Long-range transport of anthropogenic atmospheric pollutants such as ozone, ozone precursors, airborne particles, heavy metals (such as mercury) and persistent organic pollutants are the four major types of pollution that are transported over intercontinental distances and have global environmental effects. The talk includes: 1) an overview of the international agreements related to intercontinental transport of air pollutants, 2) information needed for decision making, 3) overview of the past research on intercontinental transport of air pollutants - a North American's perspective, and 4) future research needs.

  12. Comparing toxic air pollutant programs

    SciTech Connect

    Hawkins, S.C.

    1997-05-01

    This article compares state and federal toxic air pollutant programs. The Clean Air Act Ammendments created a program for the control of Hazardous Air Pollutants based on the establishment of control technology standards. State toxic programs can be classified into two categories: control technology-based and ambient concentration-based. Many states have opened to implement the MACT standards while enforcing their own state air toxics programs. Specific topics discussed include the following: the Federal air toxics program; existing state regulations; New Jersey Air Toxic Program; New York Toxics program.

  13. THE IMPACT OF SHRINKING HANFORD BOUNDARIES ON PERMITS FOR TOXIC AIR POLLUTANT EMISSIONS FROM THE HANFORD 200 WEST AREA

    SciTech Connect

    JOHNSON, R.E.

    2005-11-09

    This presentation (CE-580. Graduate Seminar) presents a brief description of an approach to use a simpler dispersion modeling method (SCREEN3) in conjunction with joint frequency tables for Hanford wind conditions to evaluate the impacts of shrinking the Hanford boundaries on the current permits for facilities in the 200 West Area. To fulfill requirements for the graduate student project (CE-702. Master's Special Problems), this evaluation will be completed and published over the next two years. Air toxic emissions play an important role in environmental quality and require a state approved permit. One example relates to containers or waste that are designated as Transuranic Waste (TRU), which are required to have venting devices due to hydrogen generation. The Washington State Department of Ecology (Ecology) determined that the filters used did not meet the definition of a ''pressure relief device'' and that a permit application would have to be submitted by the Central Waste Complex (CWC) for criteria pollutant and toxic air pollutant (TAP) emissions in accordance with Washington Administrative Code (WAC) 173-400 and 173-460. The permit application submitted in 2000 to Ecology used Industrial Source Code III (ISCIII) dispersion modeling to demonstrate that it was not possible for CWC to release a sufficient quantity of fugitive Toxic Air Pollutant emissions that could exceed the Acceptable Source Impact Levels (ASILs) at the Hanford Site Boundary. The modeled emission rates were based on the diurnal breathing in and out through the vented drums (approximately 20% of the drums), using published vapor pressure, molecular weight, and specific gravity data for all 600+ compounds, with a conservative estimate of one exchange volume per day (208 liters per drum). Two permit applications were submitted also to Ecology for the Waste Receiving and Processing Facility and the T Plant Complex. Both permit applications were based on the Central Waste Complex approach, and

  14. Impacts of Air Pollution on Solar Photovoltaic Electricity Generation in China

    NASA Astrophysics Data System (ADS)

    Li, X.; Mauzerall, D. L.; Wagner, F.; Yang, J.

    2015-12-01

    Solar photovoltaic (PV) electricity generation has been expanding rapidly in China with total capacity quadrupled from 8 to 32 GW between 2012 and 2014. Studies find that China has the potential to increase solar PV in total energy generation up towards 10% (about 300 GW in total capacity) by 2030. However, severe air pollution in China reduces the productivity of solar PV panels by scattering and absorbing sunlight before it reaches the surface. In this study, we first calculate the surface radiative forcing of anthropogenic aerosols (considering only the direct effect) over China from 2003 to 2013 using the Monitoring Atmospheric Composition and Climate (MACC) reanalysis dataset constrained by satellite derived greenhouse gas, reactive gases and aerosols. Our results indicate that, from 2003-2013, the attenuation of sunlight by aerosols over Eastern China averaged about -25 W m-2 compared with the global mean effect of -4.4 W m-2. The largest attenuation is found in Northern China in spring when mean attenuation reached as high as -57 W m-2. This attenuation reduced surface radiative flux by approximately 10%. In Southeastern China, maximum attenuation also occurred in spring, but had a smaller -40 W m-2 monthly mean. Western China is pristine in comparison, featuring no more than a -15 W m-2 monthly mean attenuation. These results imply a potentially large benefit for solar PV efficiency of improving air quality in eastern regions of China. We estimate that, if anthropogenic aerosols were entirely removed in China, solar PV generation would (1) increase 4.5-6.7% (varying among provinces) in Northeastern China where there is abundant solar resource,; (2) reduce the payback period by up to 1 year, increasing investment incentives particularly for distributed PV in Eastern China; and (3) increase total electricity generation in China in 2030 by up to 34 TWh/yr if the total capacity reaches 480 GW, equivalent to one-third of current annual electricity generation

  15. The impacts of short-term exposure to noise and traffic-related air pollution on heart rate variability in young healthy adults.

    PubMed

    Huang, Jing; Deng, Furong; Wu, Shaowei; Lu, Henry; Hao, Yu; Guo, Xinbiao

    2013-01-01

    Traffic-related air pollution and noise are associated with cardiovascular diseases, and alternation of heart rate variability (HRV), which reflects cardiac autonomic function, is one of the mechanisms. However, few studies considered the impacts of noise when exploring associations between air pollution and HRV. We explored whether noise modifies associations between short-term exposure to traffic-related air pollution and HRV in young healthy adults. In this randomized, crossover study, 40 young healthy adults stayed for 2 h in a traffic center and, on a separate occasion, in a park. Personal exposure to traffic-related air pollutants and noise were measured and ambulatory electrocardiogram was performed. Effects were estimated using mixed-effects regression models. Traffic-related air pollution and noise were both associated with HRV, and effects of air pollutants were amplified at high noise level (>65.6 A-weighted decibels (dB[A])) compared with low noise level (≤ 65.6 dB[A]). High frequency (HF) decreased by -4.61% (95% confidence interval, -6.75% to-2.42%) per 10 μg/m(3) increment in fine particle (PM2.5) at 5-min moving average, but effects became insignificant at low noise level (P>0.05). Similar effects modification was observed for black carbon (BC) and carbon monoxide (CO). We conclude that noise is an important factor influencing the effects of air pollution on HRV.

  16. Physical activity, air pollution and the brain.

    PubMed

    Bos, Inge; De Boever, Patrick; Int Panis, Luc; Meeusen, Romain

    2014-11-01

    This review introduces an emerging research field that is focused on studying the effect of exposure to air pollution during exercise on cognition, with specific attention to the impact on concentrations of brain-derived neurotrophic factor (BDNF) and inflammatory markers. It has been repeatedly demonstrated that regular physical activity enhances cognition, and evidence suggests that BDNF, a neurotrophin, plays a key role in the mechanism. Today, however, air pollution is an environmental problem worldwide and the high traffic density, especially in urban environments and cities, is a major cause of this problem. During exercise, the intake of air pollution increases considerably due to an increased ventilation rate and particle deposition fraction. Recently, air pollution exposure has been linked to adverse effects on the brain such as cognitive decline and neuropathology. Inflammation and oxidative stress seem to play an important role in inducing these health effects. We believe that there is a need to investigate whether the well-known benefits of regular physical activity on the brain also apply when physical activity is performed in polluted air. We also report our findings about exercising in an environment with ambient levels of air pollutants. Based on the latter results, we hypothesize that traffic-related air pollution exposure during exercise may inhibit the positive effect of exercise on cognition. PMID:25119155

  17. Physical activity, air pollution and the brain.

    PubMed

    Bos, Inge; De Boever, Patrick; Int Panis, Luc; Meeusen, Romain

    2014-11-01

    This review introduces an emerging research field that is focused on studying the effect of exposure to air pollution during exercise on cognition, with specific attention to the impact on concentrations of brain-derived neurotrophic factor (BDNF) and inflammatory markers. It has been repeatedly demonstrated that regular physical activity enhances cognition, and evidence suggests that BDNF, a neurotrophin, plays a key role in the mechanism. Today, however, air pollution is an environmental problem worldwide and the high traffic density, especially in urban environments and cities, is a major cause of this problem. During exercise, the intake of air pollution increases considerably due to an increased ventilation rate and particle deposition fraction. Recently, air pollution exposure has been linked to adverse effects on the brain such as cognitive decline and neuropathology. Inflammation and oxidative stress seem to play an important role in inducing these health effects. We believe that there is a need to investigate whether the well-known benefits of regular physical activity on the brain also apply when physical activity is performed in polluted air. We also report our findings about exercising in an environment with ambient levels of air pollutants. Based on the latter results, we hypothesize that traffic-related air pollution exposure during exercise may inhibit the positive effect of exercise on cognition.

  18. Assessing the Health Impacts of Air Pollution Regulations Using BenMAP, the Environmental Benefits Mapping and Analysis Program

    NASA Astrophysics Data System (ADS)

    Hubbell, B.; McCubbin, D.; Hallberg, A.

    2003-12-01

    The U.S. EPA Office of Air and Radiation has developed BenMAP, the environmental Benefits Mapping and Analysis Program, a new software tool for estimating the health and environmental impacts of environmental regulations. BenMAP is the US EPA's premier tool for estimating benefits associated with air pollution reduction strategies, and has recently been used in evaluating US EPA's Proposed Non-Road Diesel Vehicle Standards and the proposed Clear Skies Act legislation. BenMAP is a geographic information system (GIS) that uses modeled and monitored air quality data combined with population forecasts to develop estimates of changes in community level exposure to ambient environmental pollution (currently ambient air pollution, e.g. ozone and PM). These estimated changes in exposure to ambient pollution are used as inputs to concentration-response functions derived from the epidemiological literature, along with data on baseline incidence of health effects, i.e. county level age and cause specific mortality rates. The resulting point estimates of changes in incidence of health effects, along with their associated uncertainty distributions (currently based on reported standard errors in the literature), are then multiplied by economic unit values (represented by distributions), i.e. the cost of a hospital admission, to derive dollar estimates of health benefits. BenMAP is unique in that it uses highly detailed census and health data matched with spatially detailed environmental quality data to estimate health benefits. The program can also provide estimates of the uncertainty associated with the estimated benefits. Other features of the program include the ability to pool results from multiple studies of the same endpoint, using fixed or random effects weights, or user supplied weights. BenMAP also incorporates functions to manipulate and combine information on environmental quality from many different sources. For the current version focusing on air pollution, these

  19. Chronic Effects of Air Pollution are Probably Overestimated.

    PubMed

    Boffetta, Paolo; La Vecchia, Carlo; Moolgavkar, Suresh

    2015-05-01

    Inappropriate measures of exposure, including inadequate consideration of latency in the analysis of chronic effects of air pollution, may lead to overestimation of the impact of air pollution on health effects. A relatively simple way to check the plausibility of results on chronic effects of air pollution would be to report in parallel the smoking-associated risks.

  20. Psychological reactions to air pollution

    SciTech Connect

    Evans, G.W.; Colome, S.D.; Shearer, D.F.

    1988-02-01

    Interviews with a large representative sample of Los Angeles residents reveal that these citizens are somewhat aware and concerned about air pollution, but not knowledgeable about its causes. Direct behaviors to reduce causes of pollution or one's exposure to it are rare. A moderate percentage of people seek out information about air pollution or complain about it. Fewer follow state health advisories by reducing automobile driving or restricting activity during air pollution episodes. Preliminary modeling of citizen compliance with air pollution health advisories suggest that personal beliefs about negative health effects are a important predictor of compliance. Finally, modest but significant relationships are noted between ambient photochemical oxidants and anxiety symptoms. The latter finding controls for age, socioeconomic status, and temperature.

  1. [METHODOLOGY FOR THE ASSESSMENT OF THE IMPACT OF THE ATMOSPHERIC AIR POLLUTION ON THE FORMATION OF THE LEVELS OF OVERALL MORBIDITY RATE OF BRONCHIAL ASTHMA].

    PubMed

    Veremchuk, L V; Cherpack, N A; Gvozdenko, T A; Volkova, M V

    2015-01-01

    In large cities with strong air pollution the formation of the levels of morbidity rate of bronchial asthma has a complex causation that requires the search for informative methods for identification of causes and consequences of this dependence. Method for the assessment of the dependence of overall levels of morbidity rate of bronchial asthma on the degree of air pollution allows you to select a "useful information" of the direct impact of air pollution on a background of random processes and latent relationship between human and environment. The use of the method of the information entropy analysis allowed us to estimate the total and the individual contribution of the separate components of air pollution on the formation of levels of total morbidity rate of bronchial asthma in the population of the city of Vladivostok. Levels of total incidence of this pathology were established to differ in various age groups. The adult population is more adapted to air pollution, but retains a high sensitivity to the impact of nitrogen dioxide. Levels of overall l morbidity rate of bronchial asthma in children and adolescents depend on the total air pollution with some dominance of the influence of suspended matter and carbon monoxide.

  2. International expert workshop on the analysis of the economic and public health impacts of air pollution: workshop summary.

    PubMed Central

    Bell, Michelle L; Davis, Devra; Cifuentes, Luis; Cohen, Aaron; Gouveia, Nelson; Grant, Lester; Green, Collin; Johnson, Todd; Rogat, Jorge; Spengler, Jack; Thurston, George

    2002-01-01

    Forty-nine experts from 18 industrial and developing countries met on 6 September 2001 in Garmisch-Partenkirchen, Germany, to discuss the economic and public health impacts of air pollution, particularly with respect to assessing the public health benefits from technologies and policies that reduce greenhouse gas (GHG) emissions. Such measures would provide immediate public health benefits, such as reduced premature mortality and chronic morbidity, through improved local air quality. These mitigation strategies also allow long-term goals--for example, reducing the buildup of GHG emissions--to be achieved alongside short-term aims, such as immediate improvements in air quality, and therefore benefits to public health. The workshop aimed to foster research partnerships by improving collaboration and communication among various agencies and researchers; providing a forum for presentations by sponsoring agencies and researchers regarding research efforts and agency activities; identifying key issues, knowledge gaps, methodological shortcomings, and research needs; and recommending activities and initiatives for research, collaboration, and communication. This workshop summary briefly describes presentations made by workshop participants and the conclusions of three separate working groups: economics, benefits transfer, and policy; indoor air quality issues and susceptible populations; and development and transfer of dose-response relationships and exposure models in developing countries. Several common themes emerged from the working group sessions and subsequent discussion. Key recommendations include the need for improved communication and extended collaboration, guidance and support for researchers, advances in methods, and resource support for data collection, assessment, and research. PMID:12417489

  3. Regionalized life cycle impact assessment of air pollution on the global scale: Damage to human health and vegetation

    NASA Astrophysics Data System (ADS)

    van Zelm, Rosalie; Preiss, Philipp; van Goethem, Thomas; Van Dingenen, Rita; Huijbregts, Mark

    2016-06-01

    We developed regionalized characterization factors (CFs) for human health damage from particulate matter (PM2.5) and ozone, and for damage to vegetation from ozone, at the global scale. These factors can be used in the impact assessment phase of an environmental life cycle assessment. CFs express the overall damage of a certain pollutant per unit of emission of a precursor, i.e. primary PM2.5, nitrogen oxides (NOx), ammonia (NH3), sulfur dioxide (SO2) and non-methane volatile organic compounds (NMVOCs). The global chemical transport model TM5 was used to calculate intake fractions of PM2.5 and ozone for 56 world regions covering the whole globe. Furthermore, region-specific effect and damage factors were derived, using mortality rates, background concentrations and years of life lost. The emission-weighted world average CF for primary PM2.5 emissions is 629 yr kton-1, varying up to 3 orders of magnitude over the regions. Larger CFs were obtained for emissions in central Asia and Europe, and smaller factors in Australia and South America. The world average CFs for PM2.5 from secondary aerosols, i.e. NOx, NH3, and SO2, is 67.2 to 183.4 yr kton-1. We found that the CFs for ozone human health damage are 2-4 orders of magnitude lower compared to the CFs for damage due to primary PM2.5 and PM2.5 precursor emissions. Human health damage due to the priority air pollutants considered in this study was 1.7·10-2 yr capita-1 worldwide in year 2010, with primary PM2.5 emissions as the main contributor (62%). The emission-weighted world average CF for ecosystem damage due to ozone was 2.5 km2 yr kton-1 for NMVOCs and 8.7 m2 yr kg-1 for NOx emissions, varying 2-3 orders of magnitude over the regions. Ecosystem damage due to the priority air pollutants considered in this study was 1.6·10-4 km2 capita-1 worldwide in 2010, with NOx as the main contributor (72%). The spatial range in CFs stresses the importance of including spatial variation in life cycle impact assessment of

  4. Regionalized life cycle impact assessment of air pollution on the global scale: Damage to human health and vegetation

    NASA Astrophysics Data System (ADS)

    van Zelm, Rosalie; Preiss, Philipp; van Goethem, Thomas; Van Dingenen, Rita; Huijbregts, Mark

    2016-06-01

    We developed regionalized characterization factors (CFs) for human health damage from particulate matter (PM2.5) and ozone, and for damage to vegetation from ozone, at the global scale. These factors can be used in the impact assessment phase of an environmental life cycle assessment. CFs express the overall damage of a certain pollutant per unit of emission of a precursor, i.e. primary PM2.5, nitrogen oxides (NOx), ammonia (NH3), sulfur dioxide (SO2) and non-methane volatile organic compounds (NMVOCs). The global chemical transport model TM5 was used to calculate intake fractions of PM2.5 and ozone for 56 world regions covering the whole globe. Furthermore, region-specific effect and damage factors were derived, using mortality rates, background concentrations and years of life lost. The emission-weighted world average CF for primary PM2.5 emissions is 629 yr kton-1, varying up to 3 orders of magnitude over the regions. Larger CFs were obtained for emissions in central Asia and Europe, and smaller factors in Australia and South America. The world average CFs for PM2.5 from secondary aerosols, i.e. NOx, NH3, and SO2, is 67.2 to 183.4 yr kton-1. We found that the CFs for ozone human health damage are 2-4 orders of magnitude lower compared to the CFs for damage due to primary PM2.5 and PM2.5 precursor emissions. Human health damage due to the priority air pollutants considered in this study was 1.7·10-2 yr capita-1 worldwide in year 2010, with primary PM2.5 emissions as the main contributor (62%). The emission-weighted world average CF for ecosystem damage due to ozone was 2.5 km2 yr kton-1 for NMVOCs and 8.7 m2 yr kg-1 for NOx emissions, varying 2-3 orders of magnitude over the regions. Ecosystem damage due to the priority air pollutants considered in this study was 1.6·10-4 km2 capita-1 worldwide in 2010, with NOx as the main contributor (72%). The spatial range in CFs stresses the importance of including spatial variation in life cycle impact

  5. Air Pollution Primer. Revised Education.

    ERIC Educational Resources Information Center

    Corman, Rena

    This revised and updated book is written to inform the citizens on the nature, causes, and effects of air pollution. It is written in terms familiar to the layman with the purpose of providing knowledge and motivation to spur community action on clean air policies. Numerous charts and drawings are provided to support discussion of air pollution…

  6. Impact of air pollutants from surface transport sources on human health: A modeling and epidemiological approach.

    PubMed

    Aggarwal, Preeti; Jain, Suresh

    2015-10-01

    This study adopted an integrated 'source-to-receptor' assessment paradigm in order to determine the effects of emissions from passenger transport on urban air quality and human health in the megacity, Delhi. The emission modeling was carried out for the base year 2007 and three alternate (ALT) policy scenarios along with a business as usual (BAU) scenario for the year 2021. An Activity-Structure-Emission Factor (ASF) framework was adapted for emission modeling, followed by a grid-wise air quality assessment using AERMOD and a health impact assessment using an epidemiological approach. It was observed that a 2021-ALT-III scenario resulted in a maximum concentration reduction of ~24%, ~42% and ~58% for carbon monoxide (CO), nitrogen dioxide (NO2) and particulate matter (PM), respectively, compared to a 2021-BAU scenario. Further, it results in significant reductions in respiratory and cardiovascular mortality, morbidity and Disability Adjusted Life Years (DALY) by 41% and 58% on exposure to PM2.5 and NO2 concentrations when compared to the 2021-BAU scenario, respectively. In other words, a mix of proposed policy interventions namely the full-phased introduction of the Integrated Mass Transit System, fixed bus speed, stringent vehicle emission norms and a hike in parking fees for private vehicles would help in strengthening the capability of passenger transport to cater to a growing transport demand with a minimum health burden in the Delhi region. Further, the study estimated that the transport of goods would be responsible for ~5.5% additional VKT in the 2021-BAU scenario; however, it will contribute ~49% and ~55% additional NO2 and PM2.5 concentrations, respectively, in the Delhi region. Implementation of diesel particulate filters for goods vehicles in the 2021-ALT-IV-O scenario would help in the reduction of ~87% of PM2.5 concentration, compared to the 2021-BAU scenario; translating into a gain of 1267 and 505 DALY per million people from exposure to PM2.5 and NO

  7. Weather and air pollutants have an impact on patients with respiratory diseases and breathing difficulties in Munich, Germany

    NASA Astrophysics Data System (ADS)

    Wanka, E. R.; Bayerstadler, A.; Heumann, C.; Nowak, D.; Jörres, R. A.; Fischer, R.

    2014-03-01

    This study determined the influence of various meteorological variables and air pollutants on airway disorders in general, and asthma and/or chronic obstructive pulmonary disease in particular, in Munich, Bavaria, during 2006 and 2007. This was achieved through an evaluation of the daily frequency of calls to medical and emergency call centres, ambulatory medical care visits at general practitioners, and prescriptions of antibiotics for respiratory diseases. Meteorological parameters were extracted from data supplied by the European Centre for Medium Range Weather Forecast. Data on air pollutant levels were extracted from the air quality database of the European Environmental Agency for different measurement sites. In addition to descriptive analyses, a backward elimination procedure was performed to identify variables associated with medical outcome variables. Afterwards, generalised additive models (GAM) were used to verify whether the selected variables had a linear or nonlinear impact on the medical outcomes. The analyses demonstrated associations between environmental parameters and daily frequencies of different medical outcomes, such as visits at GPs and air pressure (-27 % per 10 hPa change) or ozone (-24 % per 10 μg/m3 change). The results of the GAM indicated that the effects of some covariates, such as carbon monoxide on consultations at GPs, or humidity on medical calls in general, were nonlinear, while the type of association varied between medical outcomes. These data suggest that the multiple, complex effect of environmental factors on medical outcomes should not be assumed homogeneous or linear a priori and that different settings might be associated with different types of associations.

  8. Weather and air pollutants have an impact on patients with respiratory diseases and breathing difficulties in Munich, Germany.

    PubMed

    Wanka, E R; Bayerstadler, A; Heumann, C; Nowak, D; Jörres, R A; Fischer, R

    2014-03-01

    This study determined the influence of various meteorological variables and air pollutants on airway disorders in general, and asthma and/or chronic obstructive pulmonary disease in particular, in Munich, Bavaria, during 2006 and 2007. This was achieved through an evaluation of the daily frequency of calls to medical and emergency call centres, ambulatory medical care visits at general practitioners, and prescriptions of antibiotics for respiratory diseases. Meteorological parameters were extracted from data supplied by the European Centre for Medium Range Weather Forecast. Data on air pollutant levels were extracted from the air quality database of the European Environmental Agency for different measurement sites. In addition to descriptive analyses, a backward elimination procedure was performed to identify variables associated with medical outcome variables. Afterwards, generalised additive models (GAM) were used to verify whether the selected variables had a linear or nonlinear impact on the medical outcomes. The analyses demonstrated associations between environmental parameters and daily frequencies of different medical outcomes, such as visits at GPs and air pressure (-27 % per 10 hPa change) or ozone (-24 % per 10 μg/m(3) change). The results of the GAM indicated that the effects of some covariates, such as carbon monoxide on consultations at GPs, or humidity on medical calls in general, were nonlinear, while the type of association varied between medical outcomes. These data suggest that the multiple, complex effect of environmental factors on medical outcomes should not be assumed homogeneous or linear a priori and that different settings might be associated with different types of associations.

  9. The impact of drought and air pollution on metal profiles in peat cores.

    PubMed

    Souter, Laura; Watmough, Shaun A

    2016-01-15

    Peat cores have long been used to reconstruct atmospheric metal deposition; however, debate remains regarding how well historical depositional patterns are preserved in peat. This study examined peat cores sampled from 14 peatlands in the Sudbury region of Ontario, Canada, which has a well-documented history of acid and metal deposition. Copper (Cu) and lead (Pb) concentrations within individual peat cores were strongly correlated and were elevated in the upper 10 cm, especially in the sites closest to the main Copper Cliff smelter. In contrast, nickel (Ni) and cobalt (Co) concentrations were often elevated at depths greater than 10 cm, indicating much greater post-depositional movement of these metals compared with Cu and Pb. Post-depositional movement of metals is supported by the observation that Ni and Co concentrations in peat pore water increased by approximately 530 and 960% for Ni and Co, respectively between spring and summer due to drought-induced acidification, but there was much less change in Cu concentration. Sphagnum cover and (210)Pb activity measured at 10 cm at the 14 sites significantly increased with distance from Copper Cliff, and the surface peat von Post score decreased with distance from Copper Cliff, indicating the rate of peat formation increases with distance from Sudbury presumably as a result of improved Sphagnum survival. This study shows that the ability of peat to preserve deposition histories of some metals is strongly affected by drought-induced post-depositional movement and that loss of Sphagnum due to air pollution impairs the rate of peat formation, further affecting metal profiles in peatlands. PMID:26473705

  10. The impact of drought and air pollution on metal profiles in peat cores.

    PubMed

    Souter, Laura; Watmough, Shaun A

    2016-01-15

    Peat cores have long been used to reconstruct atmospheric metal deposition; however, debate remains regarding how well historical depositional patterns are preserved in peat. This study examined peat cores sampled from 14 peatlands in the Sudbury region of Ontario, Canada, which has a well-documented history of acid and metal deposition. Copper (Cu) and lead (Pb) concentrations within individual peat cores were strongly correlated and were elevated in the upper 10 cm, especially in the sites closest to the main Copper Cliff smelter. In contrast, nickel (Ni) and cobalt (Co) concentrations were often elevated at depths greater than 10 cm, indicating much greater post-depositional movement of these metals compared with Cu and Pb. Post-depositional movement of metals is supported by the observation that Ni and Co concentrations in peat pore water increased by approximately 530 and 960% for Ni and Co, respectively between spring and summer due to drought-induced acidification, but there was much less change in Cu concentration. Sphagnum cover and (210)Pb activity measured at 10 cm at the 14 sites significantly increased with distance from Copper Cliff, and the surface peat von Post score decreased with distance from Copper Cliff, indicating the rate of peat formation increases with distance from Sudbury presumably as a result of improved Sphagnum survival. This study shows that the ability of peat to preserve deposition histories of some metals is strongly affected by drought-induced post-depositional movement and that loss of Sphagnum due to air pollution impairs the rate of peat formation, further affecting metal profiles in peatlands.

  11. Structural Impacts on Thallus and Algal Cell Components of Two Lichen Species in Response to Low-Level Air Pollution in Pacific Northwest Forests

    NASA Astrophysics Data System (ADS)

    Ra, Hyung-Shim Y.; Rubin, Laura; Crang, Richard F. E.

    2004-04-01

    Lichens have long been regarded as bioindicators of air pollution, and structural studies typically have indicated negative impacts in highly polluted areas. In this research, Parmelia sulcata and Platismatia glauca were collected from one clean and two polluted sites in the Pacific Northwest forests of the United States to investigate the anatomical and ultrastructural responses of relatively resistant lichens to moderate air pollution. Light microscopy of polluted materials revealed only slight increases in the algal cell proportions of the thallus, and a decrease in the fungal cells of the medulla. Using transmission electron microscopy, increased lipid droplets in the cytoplasm and an increase in the cell wall thickness of the photobionts were found in the polluted lichens. These results were compared with physiological data in which the net carbon uptake did not show any significant differences; however, the total chlorophyll content was heightened in the polluted samples. The increased total chlorophyll content and the absence of any changes in the algal cell proportions of the polluted samples suggest that the photobionts possessed a higher chlorophyll content per unit volume of the photobiont at polluted sites. The results also indicate that lichens have altered their storage allocation in different cellular compartments. This may be a result of symbiotic readjustment(s) between the photobiont and the mycobiont. In comparison with the physiological results from these two species, these changes do not represent damaging effects by low-level air pollution.

  12. Structural impacts on thallus and algal cell components of two lichen species in response to low-level air pollution in pacific northwest forests.

    PubMed

    Ra, Hyung-Shim Y; Rubin, Laura; Crang, Richard F E

    2004-04-01

    Lichens have long been regarded as bioindicators of air pollution, and structural studies typically have indicated negative impacts in highly polluted areas. In this research, Parmelia sulcata and Platismatia glauca were collected from one clean and two polluted sites in the Pacific Northwest forests of the United States to investigate the anatomical and ultrastructural responses of relatively resistant lichens to moderate air pollution. Light microscopy of polluted materials revealed only slight increases in the algal cell proportions of the thallus, and a decrease in the fungal cells of the medulla. Using transmission electron microscopy, increased lipid droplets in the cytoplasm and an increase in the cell wall thickness of the photobionts were found in the polluted lichens. These results were compared with physiological data in which the net carbon uptake did not show any significant differences; however, the total chlorophyll content was heightened in the polluted samples. The increased total chlorophyll content and the absence of any changes in the algal cell proportions of the polluted samples suggest that the photobionts possessed a higher chlorophyll content per unit volume of the photobiont at polluted sites. The results also indicate that lichens have altered their storage allocation in different cellular compartments. This may be a result of symbiotic readjustment(s) between the photobiont and the mycobiont. In comparison with the physiological results from these two species, these changes do not represent damaging effects by low-level air pollution.

  13. Long-term continuous measurement of near-road air pollution in Las Vegas: Seasonal variability in traffic emissions impact on local air quality

    EPA Science Inventory

    Excess air pollution along roadways is an issue of public health concern and motivated a long-term measurement effort established by the U.S. Environmental Protection Agency in Las Vegas, Nevada. Measurements of air pollutants – including black carbon (BC), carbon monoxide (CO),...

  14. Study of air pollutant detectors

    NASA Technical Reports Server (NTRS)

    Gutshall, P. L.; Bowles, C. Q.

    1974-01-01

    The application of field ionization mass spectrometry (FIMS) to the detection of air pollutants was investigated. Current methods are reviewed for measuring contaminants of fixed gases, sulfur compounds, nitrogen oxides, hydrocarbons, and particulates. Two enriching devices: the dimethyl silicone rubber membrane separator, and the selective adsorber of polyethylene foam were studied along with FIMS. It is concluded that the membrane enricher system is not a suitable method for removing air pollutants. However, the FIMS shows promise as a useable system for air pollution detection.

  15. Evaluating the Intersections of Socioeconomic Status and Health Impacts from Exposure to Air Pollution in Bogotá, Colombia

    NASA Astrophysics Data System (ADS)

    Baublitz, C. B.; Henderson, B. H.; Pachon, J. E.; Galvis, B. R.

    2014-12-01

    Colombia has strict economic divisions, which may be represented by six strata assigned by the National Planning Department. These are assigned by housing conditions and are arranged such that the divisions with subpar living conditions (strata levels one through three) may receive support from those with better than acceptable living conditions (strata levels five and six). Notably, division three no longer receives aid, and division four neither contributes to this system nor receives support. About ten percent of the population is in the upper three strata, while the remaining populace experiences subpar living conditions. Bogotá, DC has poor air quality that sometimes puts sensitive populations at risk due to particulate matter (PM). The local environmental agency has developed seven strategies to reduce air pollution, predominantly by regulating fixed and mobile sources, for the promotion of public health. Preliminary mapping of results indicates there may be higher concentrations of pollutants in areas whose residents are of a lower socioeconomic status (SES). Because it's more difficult for impoverished people to miss work or afford healthcare, higher exposure could have more significance for the city's overall health burden. The aim of this project is to determine the effective impactful regulatory strategy for the benefit of public health as a result of emission reductions. This will be done by using CMAQ results and BenMAP with information for long-term relative risk estimates for PM to find premature mortality rates per source type and location, segregated by strata division. A statistical regression will define the correspondence between health impact and SES. The benefit per reduction will be given in premature mortalities avoided per ton of PM emissions reduced per source type. For each of seven proposed regulatory strategies, this project provides results in mortalities avoided per ton of emissions of PM reduced per source type. It also compares

  16. Chemical air pollutants and otorhinolaryngeal toxicity

    SciTech Connect

    Bisesi, M.S.; Rubin, A.M. . Occupational Health and Otolaryngology)

    1994-03-01

    Air pollution and the specific issue regarding the impact of airborne chemical agents to human health are familiar topics to most members of the environmental health science and environmental medicine communities. Some aspects, however, have received relatively less attention. Much has been published regarding the impact of air pollutants on the human upper and lower respiratory system, including interaction with the rhinologic (nasal) system. Relatively fewer data have been published, however, regarding the potential impact of air pollutants in reference specifically to the otologic (auditory and vestibular) and the laryngeal (larynx) system. Adverse impact to the ears, nose and throat, referred to as the otorhinolaryngeal system'', warrants attention as an important environmental health issue. Toxic interactions from exposure to many chemical air pollutants not only causes potential respiratory irritation and lung disease, but can also result in impaired hearing, balance, sense of smell, taste, and speech due to interaction with related target systems. This may be significant to environmental health risk assessment of chemical air pollutants if multi-target site models are considered.

  17. Outdoor air pollution and human infertility: a systematic review.

    PubMed

    Checa Vizcaíno, Miguel A; González-Comadran, Mireia; Jacquemin, Benedicte

    2016-09-15

    Air pollution is a current research priority because of its adverse effects on human health, including on fertility. However, the mechanisms through which air pollution impairs fertility remain unclear. In this article, we perform a systematic review to evaluate currently available evidence on the impact of air pollution on fertility in humans. Several studies have assessed the impact of air pollutants on the general population, and have found reduced fertility rates and increased risk of miscarriage. In subfertile patients, women exposed to higher concentrations of air pollutants while undergoing IVF showed lower live birth rates and higher rates of miscarriage. After exposure to similar levels of air pollutants, comparable results have been found regardless of the mode of conception (IVF versus spontaneous conception), suggesting that infertile women are not more susceptible to the effects of pollutants than the general population. In addition, previous studies have not observed impaired embryo quality after exposure to air pollution, although evidence for this question is sparse.

  18. Impact of Geocoding Methods on Associations between Long-term Exposure to Urban Air Pollution and Lung Function

    PubMed Central

    Jacquemin, Bénédicte; Lepeule, Johanna; Boudier, Anne; Arnould, Caroline; Benmerad, Meriem; Chappaz, Claire; Ferran, Joane; Kauffmann, Francine; Morelli, Xavier; Pin, Isabelle; Pison, Christophe; Rios, Isabelle; Temam, Sofia; Künzli, Nino; Slama, Rémy

    2013-01-01

    Background: Errors in address geocodes may affect estimates of the effects of air pollution on health. Objective: We investigated the impact of four geocoding techniques on the association between urban air pollution estimated with a fine-scale (10 m × 10 m) dispersion model and lung function in adults. Methods: We measured forced expiratory volume in 1 sec (FEV1) and forced vital capacity (FVC) in 354 adult residents of Grenoble, France, who were participants in two well-characterized studies, the Epidemiological Study on the Genetics and Environment on Asthma (EGEA) and the European Community Respiratory Health Survey (ECRHS). Home addresses were geocoded using individual building matching as the reference approach and three spatial interpolation approaches. We used a dispersion model to estimate mean PM10 and nitrogen dioxide concentrations at each participant’s address during the 12 months preceding their lung function measurements. Associations between exposures and lung function parameters were adjusted for individual confounders and same-day exposure to air pollutants. The geocoding techniques were compared with regard to geographical distances between coordinates, exposure estimates, and associations between the estimated exposures and health effects. Results: Median distances between coordinates estimated using the building matching and the three interpolation techniques were 26.4, 27.9, and 35.6 m. Compared with exposure estimates based on building matching, PM10 concentrations based on the three interpolation techniques tended to be overestimated. When building matching was used to estimate exposures, a one-interquartile range increase in PM10 (3.0 μg/m3) was associated with a 3.72-point decrease in FVC% predicted (95% CI: –0.56, –6.88) and a 3.86-point decrease in FEV1% predicted (95% CI: –0.14, –3.24). The magnitude of associations decreased when other geocoding approaches were used [e.g., for FVC% predicted –2.81 (95% CI: –0.26, –5

  19. The Impacts of a 2-Degree Rise in Global Temperatures upon Gas-Phase Air Pollutants in Europe

    NASA Astrophysics Data System (ADS)

    Watson, Laura; Josse, Béatrice; Marecal, Virginie; Lacressonnière, Gwendoline; Vautard, Robert; Gauss, Michael; Engardt, Magnuz; Nyiri, Agnes; Siour, Guillaume

    2014-05-01

    The 15th session of the Conference of Parties (COP 15) in 2009 ratified the Copenhagen Accord, which "recognises the scientific view that" global temperature rise should be held below 2 degrees C above pre-industrial levels in order to limit the impacts of climate change. Due to the fact that a 2-degree limit has been frequently referred to by policy makers in the context of the Copenhagen Accord and many other high-level policy statements, it is important that the impacts of this 2-degree increase in temperature are adequately analysed. To this end, the European Union sponsored the project IMPACT2C, which uses a multi-disciplinary international team to assess a wide variety of impacts of a 2-degree rise in global temperatures. For example, this future increase in temperature is expected to have a significant influence upon meteorological conditions such as temperature, precipitation, and wind direction and intensity; which will in turn affect the production, deposition, and distribution of air pollutants. For the first part of the air quality analysis within the IMPACT2C project, the impact of meteorological forcings on gas phase air pollutants over Europe was studied using four offline atmospheric chemistry transport models. Two sets of meteorological forcings were used for each model: reanalysis of past observation data and global climate model output. Anthropogenic emissions of ozone precursors for the year 2005 were used for all simulations in order to isolate the impact of meteorology and assess the robustness of the results across the different models. The differences between the simulations that use reanalysis of past observation data and the simulations that use global climate model output show how global climate models modify climate hindcasts by boundary conditions inputs: information that is necessary in order to interpret simulations of future climate. The baseline results were assessed by comparison with AirBase (Version 7) measurement data, and were

  20. Impact of a new gasoline benzene regulation on ambient air pollutants in Anchorage, Alaska

    NASA Astrophysics Data System (ADS)

    Yano, Yuriko; Morris, Stephen S.; Salerno, Christopher; Schlapia, Anne M.; Stichick, Mathew

    2016-05-01

    The purpose of this study was to quantify the impact of a new U.S. Environmental Protection Agency (EPA) standard that limits the amount of benzene allowed in gasoline on ambient benzene concentrations. This new standard, together with two companion regulations that limit cold-temperature automotive emissions and the permeability of portable fuel containers, was expected to lower the levels of ambient benzene and other volatile organic compounds (VOCs) nationwide. In this study the impact of the gasoline benzene standard was evaluated in Anchorage, Alaska in a two-phase ambient air monitoring study conducted before and after the new gasoline standard was implemented. Gasoline sold by Anchorage retailers was also evaluated in each phase to determine the content of benzene and other gasoline components. The average benzene content in Anchorage gasoline was reduced by 70%, from 5.05% (w/w) to 1.53% (w/w) following the implementation of the standard. The annual mean ambient benzene concentration fell by 51%, from 0.99 ppbv in Phase 1 to 0.49 ppbv in Phase 2. Analysis suggests the change in gasoline benzene content alone reduced benzene emissions by 46%. The changes in toluene, ethylbenzene, and xylene content in gasoline between Phase 1 and 2 were relatively small and the differences in the mean ambient concentrations of these compounds between phases were modest. Our results suggest that cold winter communities in high latitude and mountainous regions may benefit more from the gasoline benzene standard because of high benzene emissions resulting from vehicle cold start and a tendency to develop atmospheric stagnation conditions in the winter.

  1. Air Pollution Affects Community Health

    ERIC Educational Resources Information Center

    Shy, Carl M.; Finklea, John F.

    1973-01-01

    Community Health and Environmental Surveillance System (CHESS), a nationwide program relating community health to environmental quality, is designed to evaluate existing environmental standards, obtain health intelligence for new standards, and document health benefits of air pollution control. (BL)

  2. Megacities air pollution problems: Mexico City Metropolitan Area critical issues on the central nervous system pediatric impact.

    PubMed

    Calderón-Garcidueñas, Lilian; Kulesza, Randy J; Doty, Richard L; D'Angiulli, Amedeo; Torres-Jardón, Ricardo

    2015-02-01

    The chronic health effects associated with sustained exposures to high concentrations of air pollutants are an important issue for millions of megacity residents and millions more living in smaller urban and rural areas. Particulate matter (PM) and ozone (O3) concentrations close or above their respective air quality standards during the last 20 years affect 24 million people living in the Mexico City Metropolitan Area (MCMA). Herein we discuss PM and O3 trends in MCMA and their possible association with the observed central nervous system (CNS) effects in clinically healthy children. We argue that prenatal and postnatal sustained exposures to a natural environmental exposure chamber contribute to detrimental neural responses. The emerging picture for MCMA children shows systemic inflammation, immunodysregulation at both systemic and brain levels, oxidative stress, neuroinflammation, small blood vessel pathology, and an intrathecal inflammatory process, along with the early neuropathological hallmarks for Alzheimer and Parkinson's diseases. Exposed brains are briskly responding to their harmful environment and setting the bases for structural and volumetric changes, cognitive, olfactory, auditory and vestibular deficits and long term neurodegenerative consequences. We need to improve our understanding of the PM pediatric short and long term CNS impact through multidisciplinary research. Public health benefit can be achieved by integrating interventions that reduce fine PM levels and pediatric exposures and establishing preventative screening programs targeting pediatric populations that are most at risk. We fully expect that the health of 24 million residents is important and blocking pediatric air pollution research and hiding critical information that ought to be available to our population, health, education and social workers is not in the best interest of our children. PMID:25543546

  3. Megacities air pollution problems: Mexico City Metropolitan Area critical issues on the central nervous system pediatric impact.

    PubMed

    Calderón-Garcidueñas, Lilian; Kulesza, Randy J; Doty, Richard L; D'Angiulli, Amedeo; Torres-Jardón, Ricardo

    2015-02-01

    The chronic health effects associated with sustained exposures to high concentrations of air pollutants are an important issue for millions of megacity residents and millions more living in smaller urban and rural areas. Particulate matter (PM) and ozone (O3) concentrations close or above their respective air quality standards during the last 20 years affect 24 million people living in the Mexico City Metropolitan Area (MCMA). Herein we discuss PM and O3 trends in MCMA and their possible association with the observed central nervous system (CNS) effects in clinically healthy children. We argue that prenatal and postnatal sustained exposures to a natural environmental exposure chamber contribute to detrimental neural responses. The emerging picture for MCMA children shows systemic inflammation, immunodysregulation at both systemic and brain levels, oxidative stress, neuroinflammation, small blood vessel pathology, and an intrathecal inflammatory process, along with the early neuropathological hallmarks for Alzheimer and Parkinson's diseases. Exposed brains are briskly responding to their harmful environment and setting the bases for structural and volumetric changes, cognitive, olfactory, auditory and vestibular deficits and long term neurodegenerative consequences. We need to improve our understanding of the PM pediatric short and long term CNS impact through multidisciplinary research. Public health benefit can be achieved by integrating interventions that reduce fine PM levels and pediatric exposures and establishing preventative screening programs targeting pediatric populations that are most at risk. We fully expect that the health of 24 million residents is important and blocking pediatric air pollution research and hiding critical information that ought to be available to our population, health, education and social workers is not in the best interest of our children.

  4. Western forests and air pollution

    SciTech Connect

    Olson, R.K.; Binkley, D.; Boehm, M.

    1992-01-01

    The book addresses the relationships between air pollution in the western United States and trends in the growth and condition of Western coniferous forests. The major atmospheric pollutants to which forest in the region are exposed are sulfur and nitrogen compounds and ozone. The potential effects of atmospheric pollution on these forests include foliar injury, alteration of growth rates and patterns, soil acidification, shifts in species composition, and modification of the effects of natural stresses.

  5. Hazardous Air Pollutants

    MedlinePlus

    ... menu Learn the Issues Air Chemicals and Toxics Climate Change Emergencies Greener Living Health and Safety Land and Cleanup Pesticides Waste Water Science & Technology Air Climate Change Ecosystems Health Land, Waste and Cleanup Pesticides Substances ...

  6. Air pollution injury to plants

    SciTech Connect

    Seibert, R.J.

    1986-01-01

    The injuries to plants by oxidant air pollution can be used as biological indicators of pollution episodes. Bel W3 tobacco is often used as an indicator organism. Dogwood is another potential indicator organism. Specific growing procedures used for indicator organisms are described, as are diagnostic criteria for the type and extent of injuries.

  7. Air pollution and children's health.

    PubMed

    Schwartz, Joel

    2004-04-01

    Children's exposure to air pollution is a special concern because their immune system and lungs are not fully developed when exposure begins, raising the possibility of different responses than seen in adults. In addition, children spend more time outside, where the concentrations of pollution from traffic, powerplants, and other combustion sources are generally higher. Although air pollution has long been thought to exacerbate minor acute illnesses, recent studies have suggested that air pollution, particularly traffic-related pollution, is associated with infant mortality and the development of asthma and atopy. Other studies have associated particulate air pollution with acute bronchitis in children and demonstrated that rates of bronchitis and chronic cough declined in areas where particle concentrations have fallen. More mixed results have been reported for lung function. Overall, evidence for effects of air pollution on children have been growing, and effects are seen at concentrations that are common today. Although many of these associations seem likely to be causal, others require and warrant additional investigation.

  8. Chinese air pollution embodied in trade

    NASA Astrophysics Data System (ADS)

    Davis, S. J.

    2014-12-01

    Rapid economic development in China has been accompanied by high levels of air pollution in many areas of China. Although researchers have applied a range of methods to monitor and track pollutant emissions in the atmosphere, studies of the underlying economic and technological drivers of this pollution have received considerably less attention. I will present results of a series of studies that have quantified the air pollutants embodied in goods being traded both within China and internationally. The results show that trade is facilitating the concentration of pollution in less economically developed areas, which in turn export pollution-intensive goods to more affluent areas. However, the export-related pollution itself is sometimes transported long distances; for instance, we have quantified the impacts of the Chinese pollution embodied in internationally-exported goods on air quality in the US. These findings important implications for Chinese efforts to curb CO2 emissions and improve air quality. The research to be presented reflects the efforts of a multiple year, ongoing collaboration among interdisciplinary researchers in China, the US and the UK.

  9. Hazardous air pollutants and asthma.

    PubMed Central

    Leikauf, George D

    2002-01-01

    Asthma has a high prevalence in the United States, and persons with asthma may be at added risk from the adverse effects of hazardous air pollutants (HAPs). Complex mixtures (fine particulate matter and tobacco smoke) have been associated with respiratory symptoms and hospital admissions for asthma. The toxic ingredients of these mixtures are HAPs, but whether ambient HAP exposures can induce asthma remains unclear. Certain HAPs are occupational asthmagens, whereas others may act as adjuncts during sensitization. HAPs may exacerbate asthma because, once sensitized, individuals can respond to remarkably low concentrations, and irritants lower the bronchoconstrictive threshold to respiratory antigens. Adverse responses after ambient exposures to complex mixtures often occur at concentrations below those producing effects in controlled human exposures to a single compound. In addition, certain HAPs that have been associated with asthma in occupational settings may interact with criteria pollutants in ambient air to exacerbate asthma. Based on these observations and past experience with 188 HAPs, a list of 19 compounds that could have the highest impact on the induction or exacerbation of asthma was developed. Nine additional compounds were identified that might exacerbate asthma based on their irritancy, respirability, or ability to react with biological macromolecules. Although the ambient levels of these 28 compounds are largely unknown, estimated exposures from emissions inventories and limited air monitoring suggest that aldehydes (especially acrolein and formaldehyde) and metals (especially nickel and chromium compounds) may have possible health risk indices sufficient for additional attention. Recommendations for research are presented regarding exposure monitoring and evaluation of biologic mechanisms controlling how these substances induce and exacerbate asthma. PMID:12194881

  10. A Modeling Methodology to Support Evaluation Public Health Impacts on Air Pollution Reduction Programs

    EPA Science Inventory

    Environmental public health protection requires a good understanding of types and locations of pollutant emissions of health concern and their relationship to environmental public health indicators. Therefore, it is necessary to develop the methodologies, data sources, and tools...

  11. Indoor air pollution

    SciTech Connect

    Not Available

    1985-05-01

    This factsheet reviews what is currently known about pollutant sources, abatement and control equipment and techniques for poorly ventilated houses. Radon, formaldehyde, tobacco smokes, carbon dioxide, carbon monoxide, particulates, bacteria, fungi and viruses are addressed. (PSB)

  12. Health impact assessment of traffic-related air pollution at the urban project scale: influence of variability and uncertainty.

    PubMed

    Chart-Asa, Chidsanuphong; Gibson, Jacqueline MacDonald

    2015-02-15

    This paper develops and then demonstrates a new approach for quantifying health impacts of traffic-related particulate matter air pollution at the urban project scale that includes variability and uncertainty in the analysis. We focus on primary particulate matter having a diameter less than 2.5 μm (PM2.5). The new approach accounts for variability in vehicle emissions due to temperature, road grade, and traffic behavior variability; seasonal variability in concentration-response coefficients; demographic variability at a fine spatial scale; uncertainty in air quality model accuracy; and uncertainty in concentration-response coefficients. We demonstrate the approach for a case study roadway corridor with a population of 16,000, where a new extension of the University of North Carolina (UNC) at Chapel Hill campus is slated for construction. The results indicate that at this case study site, health impact estimates increased by factors of 4-9, depending on the health impact considered, compared to using a conventional health impact assessment approach that overlooks these variability and uncertainty sources. In addition, we demonstrate how the method can be used to assess health disparities. For example, in the case study corridor, our method demonstrates the existence of statistically significant racial disparities in exposure to traffic-related PM2.5 under present-day traffic conditions: the correlation between percent black and annual attributable deaths in each census block is 0.37 (t(114)=4.2, p<0.0001). Overall, our results show that the proposed new campus will cause only a small incremental increase in health risks (annual risk 6×10(-10); lifetime risk 4×10(-8)), compared to if the campus is not built. Nonetheless, the approach we illustrate could be useful for improving the quality of information to support decision-making for other urban development projects.

  13. High-resolution modelling of health impacts and related external cost from air pollution over 36 years using the integrated model system EVA

    NASA Astrophysics Data System (ADS)

    Brandt, Jørgen; Andersen, Mikael S.; Bønløkke, Jakob; Christensen, Jesper H.; Geels, Camilla; Hansen, Kaj M.; Hertel, Ole; Im, Ulas; Jensen, Steen S.; Ketzel, Matthias; Nielsen, Ole-Kenneth; Plejdrup, Marlene S.; Sigsgaard, Torben

    2016-04-01

    A high-resolution assessment of health impacts from air pollution and related external cost has been conducted for Denmark using the integrated EVA model system. The EVA system is based on the impact-pathway methodology, where the site-specific emissions will result, via atmospheric transport and chemistry, in a concentration distribution, which together with detailed population data, is used to estimate the population-level exposure. Using exposure-response functions and economic valuations, the exposure is transformed into impacts on human health and related external costs. In this study we have used a coupling of two chemistry transport models to calculate the air pollution concentration at different domain and scales; the Danish Eulerian Hemispheric Model (DEHM) to calculate the air pollution levels in the Northern Hemisphere with a resolution down to 5.6 km x 5.6 km and the Urban Background Model (UBM) to further calculate the air pollution in Denmark at 1 km x 1 km resolution using results from DEHM as boundary conditions. Both the emission data as well as the population density has been represented in the model system with the same high resolution. Previous health impact assessments related to air pollution have been made on a lower resolution. In this study, the integrated model system, EVA, has been used to estimate the health impacts and related external cost for Denmark at a 1 km x 1 km resolution. New developments of the integrated model system will be presented as well as the development of health impacts and related external costs in Europe and Denmark over a period of 36 years (1979-2014). Acknowledgements This work was funded by: DCE - National Centre for Environment and Energy. Project: "Health impacts and external costs from air pollution in Denmark over 25 years" and NordForsk under the Nordic Programme on Health and Welfare. Project: "Understanding the link between air pollution and distribution of related health impacts and welfare in the

  14. Transport and urban air pollution in India.

    PubMed

    Badami, Madhav G

    2005-08-01

    The rapid growth in motor vehicle activity in India and other rapidly industrializing low-income countries is contributing to high levels of urban air pollution, among other adverse socioeconomic, environmental, health, and welfare impacts. This paper first discusses the local, regional, and global impacts associated with air pollutant emissions resulting from motor vehicle activity, and the technological, behavioral, and institutional factors that have contributed to these emissions, in India. The paper then discusses some implementation issues related to various policy measures that have been undertaken, and the challenges of the policy context. Finally, the paper presents insights and lessons based on the recent Indian experience, for better understanding and more effectively addressing the transport air pollution problem in India and similar countries, in a way that is sensitive to their needs, capabilities, and constraints.

  15. Title III hazardous air pollutants

    SciTech Connect

    Todd, R.

    1995-12-31

    The author presents an overview of the key provisions of Title III of the Clean Air Act Amendments of 1990. The key provisions include the following: 112(b) -- 189 Hazardous Air Pollutants (HAP); 112(a) -- Major Source: 10 TPY/25 TPY; 112(d) -- Application of MACT; 112(g) -- Modifications; 112(I) -- State Program; 112(j) -- The Hammer; and 112(r) -- Accidental Release Provisions.

  16. Children's response to air pollutants.

    PubMed

    Bateson, Thomas F; Schwartz, Joel

    2008-01-01

    It is important to focus on children with respect to air pollution because (1) their lungs are not completely developed, (2) they can have greater exposures than adults, and (3) those exposures can deliver higher doses of different composition that may remain in the lung for greater duration. The undeveloped lung is more vulnerable to assault and less able to fully repair itself when injury disrupts morphogenesis. Children spend more time outside, where concentrations of combustion-generated air pollution are generally higher. Children have higher baseline ventilation rates and are more physically active than adults, thus exposing their lungs to more air pollution. Nasal breathing in adults reduces some pollution concentrations, but children are more typically mouth-breathers--suggesting that the composition of the exposure mixture at the alveolar level may be different. Finally, higher ventilation rates and mouth-breathing may pull air pollutants deeper into children's lungs, thereby making clearance slower and more difficult. Children also have immature immune systems, which plays a significant role in asthma. The observed consequences of early life exposure to adverse levels of air pollutants include diminished lung function and increased susceptibility to acute respiratory illness and asthma. Exposure to diesel exhaust, in particular, is an area of concern for multiple endpoints, and deserves further research. PMID:18097949

  17. Laboratory and field ecophysiological studies on the impact of air pollution on red spruce and Fraser fir

    SciTech Connect

    Tyszko, P.B.

    1991-01-01

    In the first study, red spruce (Picea rubens Sarg.) and Fraser fir (Abies fraseri (Pursh.) Poir.) seedlings were submitted to long-term multiple growing cycle intermittent ozone fumigations. No effect of ozone exposure on growth and gas exchange of the seedlings was found. Net photosynthesis at saturating light intensity was reduced in both species and the light compensation point was shifted upwards in spruce when exposed to ozone. Fraser fir seedlings showed inconsistent responses of CO{sub 2} curve parameters to ozone exposure. In the second study, the impact of summer exposure to ambient pollutants on winter hardiness in red spruce seedlings was examined. The seedlings were subjected to the following summertime treatments while kept in exclusion chambers on the top of Whitetop Mountain (Virginia): ambient air and clouds, ambient air with clouds excluded, charcoal filtered air, and chamberless control treatment. During the following winter the seedlings were placed in Blacksburg (Virginia), in two locations: in the open and in a shadehouse. A number of conducted tests indicated that there were significant differences in winter damage between the chamber treatments and chamberless control, as well as between the winter exposure locations. Among the summer chamber exposure regimes, the treatment excluding clouds seemed to perform the best. In the third study, the physiology of red spruce trees of various sizes growing on two sites on the top of Whitetop Mtn., was compared and related to ambient ozone concentration. Some seedlings were treated with an antioxidant EDU, to help evaluate the impact of ozone on their physiology.

  18. Effectiveness of a federal healthy start program in reducing the impact of particulate air pollutants on feto-infant morbidity outcomes.

    PubMed

    Salihu, Hamisu M; August, Euna M; Mbah, Alfred K; Alio, Amina P; de Cuba, Raymond; Jaward, Foday M; Berry, Estrellita Lo

    2012-11-01

    We sought to assess (1) the relationship between air particulate pollutants and feto-infant morbidity outcomes and (2) the impact of a Federal Healthy Start program on this relationship. This is a retrospective cohort study using de-identified hospital discharge information linked to vital records, and air pollution data from 2000 through 2007 for the zip codes served by the Central Hillsborough Federal Healthy Start Project in Tampa, Florida. Mathematical modeling was employed to compute minimal Euclidean distances to capture exposure to ambient air particulate matter. The outcomes of interest were low birth weight (LBW), very low birth weight (VLBW), small for gestational age, preterm (PTB), and very preterm birth. We used odds ratios to approximate relative risks. A total of 12,356 live births were analyzed. Overall, women exposed to air particulate pollutants were at elevated risk for LBW (AOR = 1.24; 95% CI = 1.07-1.43), VLBW (AOR = 1.58; 95% CI = 1.09-2.29) and PTB (AOR = 1.18; 95% CI = 1.03-1.34). Analysis by race/ethnicity revealed that the adverse effects of air particulate pollutants were most profound among black infants. Infants of women who received services provided by the Central Hillsborough Federal Healthy Start Project experienced improved feto-infant morbidity outcomes despite exposure to air particulate pollutants. Environmental air pollutants represent important risk factors for adverse birth outcomes, particularly among black women. Multi-level interventional approaches implemented by the Central Hillsborough Federal Healthy Start were found to be associated with reduced likelihood for feto-infant morbidities triggered by exposure to ambient air particulate pollutants.

  19. Air pollution and early deaths in the United States. Part I: Quantifying the impact of major sectors in 2005

    NASA Astrophysics Data System (ADS)

    Caiazzo, Fabio; Ashok, Akshay; Waitz, Ian A.; Yim, Steve H. L.; Barrett, Steven R. H.

    2013-11-01

    Combustion emissions adversely impact air quality and human health. A multiscale air quality model is applied to assess the health impacts of major emissions sectors in United States. Emissions are classified according to six different sources: electric power generation, industry, commercial and residential sources, road transportation, marine transportation and rail transportation. Epidemiological evidence is used to relate long-term population exposure to sector-induced changes in the concentrations of PM2.5 and ozone to incidences of premature death. Total combustion emissions in the U.S. account for about 200,000 (90% CI: 90,000-362,000) premature deaths per year in the U.S. due to changes in PM2.5 concentrations, and about 10,000 (90% CI: -1000 to 21,000) deaths due to changes in ozone concentrations. The largest contributors for both pollutant-related mortalities are road transportation, causing ∼53,000 (90% CI: 24,000-95,000) PM2.5-related deaths and ∼5000 (90% CI: -900 to 11,000) ozone-related early deaths per year, and power generation, causing ∼52,000 (90% CI: 23,000-94,000) PM2.5-related and ∼2000 (90% CI: -300 to 4000) ozone-related premature mortalities per year. Industrial emissions contribute to ∼41,000 (90% CI: 18,000-74,000) early deaths from PM2.5 and ∼2000 (90% CI: 0-4000) early deaths from ozone. The results are indicative of the extent to which policy measures could be undertaken in order to mitigate the impact of specific emissions from different sectors - in particular black carbon emissions from road transportation and sulfur dioxide emissions from power generation.

  20. Air pollution: brown skies research.

    PubMed Central

    Tattersfield, A. E.

    1996-01-01

    Direct information on the health effects of air pollution in humans relies mainly on chamber studies and epidemiological studies. Although chamber studies have limitations they allow the acute effects of individual pollutants to be studied in well characterised subjects under controlled conditions. Most chamber studies have shown relatively small falls in lung function and relatively small increases in bronchial reactivity at the concentrations of ozone, SO2, and NO2 that occur even during high pollution episodes in the UK. The possible exception is SO2 where sensitive asthmatic patients may show a greater response at concentrations that are seen from time to time in certain areas and in proximity to power stations. There is no convincing evidence of potentiation between pollutants in chamber studies. Epidemiological studies are more difficult to carry out and require considerable epidemiological and statistical expertise to deal with the main problem-confounding by other factors. Although the health effects seen with current levels of pollution are small compared with those seen in the 1950s and close to the limits of detection, this should not be interpreted as being unimportant. A small effect may have large consequences when the population exposed is large (the whole population in this case). Recent data suggest that particles have more important health effects than the pollutant gases that have been studied. Much of this information comes from the USA though the findings are probably applicable in the UK. More information is needed on the size of the health effects that occur during the three types of air pollution episodes seen in this country and the relative contributions of particles, pollutant gases, pollen, and other factors such as temperature. Research into air pollution declined in the UK following the introduction of the Clean Air Acts; it is now increasing again following pressure from certain individuals and ginger groups, including the British

  1. Impacts of Hazardous Air Pollutants Emitted from Phosphate Fertilizer Production Plants on their Ambient Concentration Levels in the Tampa Bay Area

    EPA Science Inventory

    The concentrations and distribution of Hazardous Air Pollutants (HAPs) metals emitted from four phosphate fertilizer plants in Central Florida, as well as their environmental and health impacts, were assessed. The dominant HAP metals emitted from the stacks of these plants were M...

  2. Lung cancer and air pollution.

    PubMed

    Cohen, A J; Pope, C A

    1995-11-01

    Epidemiologic studies over the last 40 years suggest rather consistently that general ambient air pollution, chiefly due to the incomplete combustion of fossil fuels, may be responsible for increased rates of lung cancer. This evidence derives from studies of lung cancer trends, studies of occupational groups, comparisons of urban and rural populations, and case-control and cohort studies using diverse exposure metrics. Recent prospective cohort studies observed 30 to 50% increases in lung cancer rates associated with exposure to respirable particles. While these data reflect the effects of exposures in past decades, and despite some progress in reducing air pollution, large numbers of people in the United States continue to be exposed to pollutant mixtures containing known or suspected carcinogens. It is not known how many people in the United States are exposed to levels of fine respirable particles that have been associated with lung cancer in recent epidemiologic studies. These observations suggest that the most widely cited estimates of the proportional contribution of air pollution to lung cancer occurrence in the United States based largely on the results of animal studies, may be too low. It is important that better epidemiologic research be conducted to allow improved estimates of lung cancer risk from air pollution among the general population. The development and application of new epidemiologic methods, particularly the improved characterization of population-wide exposure to mixtures of air pollutants and the improved design of ecologic studies, could improve our ability to measure accurately the magnitude of excess cancer associated with air pollution. PMID:8741787

  3. AIR POLLUTION EFFECTS ON SEMEN QUALITY

    EPA Science Inventory

    The potential impact of exposure to periods of high air pollution on male reproductive health was examined within the framework of an international project conducted in the Czech Republic. Semen quality was evaluated in young men (age 18) living in the Teplice District who are ex...

  4. Air pollution source identification

    NASA Technical Reports Server (NTRS)

    Fordyce, J. S.

    1975-01-01

    The techniques available for source identification are reviewed: remote sensing, injected tracers, and pollutants themselves as tracers. The use of the large number of trace elements in the ambient airborne particulate matter as a practical means of identifying sources is discussed. Trace constituents are determined by sensitive, inexpensive, nondestructive, multielement analytical methods such as instrumental neutron activation and charged particle X-ray fluorescence. The application to a large data set of pairwise correlation, the more advanced pattern recognition-cluster analysis approach with and without training sets, enrichment factors, and pollutant concentration rose displays for each element is described. It is shown that elemental constituents are related to specific source types: earth crustal, automotive, metallurgical, and more specific industries. A field-ready source identification system based on time and wind direction resolved sampling is described.

  5. How to conquer air pollution

    SciTech Connect

    Nishimura, H. . Faculty of Engineering)

    1989-01-01

    Many parts of the world suffer from urban air pollution and, despite the vast amount of knowledge about its causes, most countries are slow to implement counter-measures. An exception is Tokyo which, once blanketed in a mantle of smog, now enjoys clean air in spite of highly concentrated activity and congested traffic. Based on the successful Japanese experience, this book describes all aspects of the measures necessary to combat air pollution. It begins with a well-documented history of the fight against air pollution and describes the processes and mechanisms of reaching a social consensus on pollution control. The essential steps in the process are the establishment of ambient air quality standards, the introduction of the total allowable mass of emission, and the legal control of each emission based on diffusion equations. The scientific background to this approach is explained, from epidemiology to computer simulations of air quality. An up-to-date account of emission control technology is also given, and the controversial issue of health damage compensation is examined, based on actual experience.

  6. Impact of improved stoves, house construction and child location on levels of indoor air pollution exposure in young Guatemalan children.

    PubMed

    Bruce, Nigel; McCracken, John; Albalak, Rachel; Schei, Morten A; Smith, Kirk R; Lopez, Victorina; West, Chris

    2004-01-01

    The goal of this study was to assess the impact of improved stoves, house ventilation, and child location on levels of indoor air pollution and child exposure in a rural Guatemalan population reliant on wood fuel. The study was a random sample of 204 households with children less than 18 months in a rural village in the western highlands of Guatemala. Socio-economic and household information was obtained by interview and observation. Twenty-four hour carbon monoxide (CO) was used as the primary measure of kitchen pollution and child exposure in all homes, using Gastec diffusion tubes. Twenty-four hour kitchen PM(3.5) was measured in a random sub-sample (n=29) of kitchens with co-located CO tubes. Almost 50% of the homes still used open fires, around 30% used chimney stoves (planchas) mostly from a large donor-funded programme, and the remainder of homes used various combinations including bottled gas and open fires. The 24-h kitchen CO was lowest for homes with self-purchased planchas: mean (95% CI) CO of 3.09 ppm (1.87-4.30) vs. 12.4 ppm (10.2-14.5) for open fires. The same ranking was found for child CO exposure, but with proportionately smaller differentials (P<0.0001). The 24-h kitchen PM(3.5) in the sub-sample showed similar differences (n=24, P<0.05). The predicted child PM for all 203 children (based on a regression model from the sub-sample) was 375 microg/m(3) (270-480) for self-purchased planchas and 536 microg/m(3) (488-584) for open fires. Multivariate analysis showed that stove/fuel type was the most important determinant of kitchen CO, with some effect of kitchen volume and eaves. Stove/fuel type was also the key determinant of child CO, with some effect of child position during cooking. The improved stoves in this community have been effective in reducing indoor air pollution and child exposure, although both measures were still high by international standards. Large donor-funded stove programmes need to aim for wider acceptance and uptake by the

  7. Impacts of Roadway Emissions on Urban Fine Particle Exposures: the Nairobi Area Traffic Contribution to Air Pollution (NATCAP) Study

    NASA Astrophysics Data System (ADS)

    Gatari, Michael; Ngo, Nicole; Ndiba, Peter; Kinney, Patrick

    2010-05-01

    quality and transportation planning and management directed at mitigating roadway pollution. Reducing PM emissions from motor vehicles would have direct health benefits for residents of Nairobi and other SSA cities. However, further studies are required to depict the seasonal variations, include gaseous pollution aspect, and strengthen the knowledge on air quality in the region as well as improving the data base for health impact assessment. Acknowledgement This study was initiated and funded by Columbia University's Earth Institute's Center for Sustainable Urban Development (CSUD). CSUD is a Volvo Research and Educational Foundations Center of Excellence for Future Urban Transport. International Science Programs (ISP), Uppsala University, Sweden is recognized for its research support to Institute of Nuclear Science & Technology. Additional technical support for air monitoring and analysis was provided by the Exposure Assessment Facility Core of the Center for Environmental Health in Northern Manhattan (NIEHS P30 ES09089).

  8. The potential impacts of climate variability and change on air pollution-related health effects in the United States.

    PubMed Central

    Bernard, S M; Samet, J M; Grambsch, A; Ebi, K L; Romieu, I

    2001-01-01

    Climate change may affect exposures to air pollutants by affecting weather, anthropogenic emissions, and biogenic emissions and by changing the distribution and types of airborne allergens. Local temperature, precipitation, clouds, atmospheric water vapor, wind speed, and wind direction influence atmospheric chemical processes, and interactions occur between local and global-scale environments. If the climate becomes warmer and more variable, air quality is likely to be affected. However, the specific types of change (i.e., local, regional, or global), the direction of change in a particular location (i.e., positive or negative), and the magnitude of change in air quality that may be attributable to climate change are a matter of speculation, based on extrapolating present understanding to future scenarios. There is already extensive evidence on the health effects of air pollution. Ground-level ozone can exacerbate chronic respiratory diseases and cause short-term reductions in lung function. Exposure to particulate matter can aggravate chronic respiratory and cardiovascular diseases, alter host defenses, damage lung tissue, lead to premature death, and possibly contribute to cancer. Health effects of exposures to carbon monoxide, sulfur dioxide, and nitrogen dioxide can include reduced work capacity, aggravation of existing cardiovascular diseases, effects on pulmonary function, respiratory illnesses, lung irritation, and alterations in the lung's defense systems. Adaptations to climate change should include ensuring responsiveness of air quality protection programs to changing pollution levels. Research needs include basic atmospheric science work on the association between weather and air pollutants; improving air pollution models and their linkage with climate change scenarios; and closing gaps in the understanding of exposure patterns and health effects. PMID:11359687

  9. The potential impacts of climate variability and change on air pollution-related health effects in the United States.

    PubMed

    Bernard, S M; Samet, J M; Grambsch, A; Ebi, K L; Romieu, I

    2001-05-01

    Climate change may affect exposures to air pollutants by affecting weather, anthropogenic emissions, and biogenic emissions and by changing the distribution and types of airborne allergens. Local temperature, precipitation, clouds, atmospheric water vapor, wind speed, and wind direction influence atmospheric chemical processes, and interactions occur between local and global-scale environments. If the climate becomes warmer and more variable, air quality is likely to be affected. However, the specific types of change (i.e., local, regional, or global), the direction of change in a particular location (i.e., positive or negative), and the magnitude of change in air quality that may be attributable to climate change are a matter of speculation, based on extrapolating present understanding to future scenarios. There is already extensive evidence on the health effects of air pollution. Ground-level ozone can exacerbate chronic respiratory diseases and cause short-term reductions in lung function. Exposure to particulate matter can aggravate chronic respiratory and cardiovascular diseases, alter host defenses, damage lung tissue, lead to premature death, and possibly contribute to cancer. Health effects of exposures to carbon monoxide, sulfur dioxide, and nitrogen dioxide can include reduced work capacity, aggravation of existing cardiovascular diseases, effects on pulmonary function, respiratory illnesses, lung irritation, and alterations in the lung's defense systems. Adaptations to climate change should include ensuring responsiveness of air quality protection programs to changing pollution levels. Research needs include basic atmospheric science work on the association between weather and air pollutants; improving air pollution models and their linkage with climate change scenarios; and closing gaps in the understanding of exposure patterns and health effects.

  10. The potential impacts of climate variability and change on air pollution-related health effects in the United States.

    PubMed

    Bernard, S M; Samet, J M; Grambsch, A; Ebi, K L; Romieu, I

    2001-05-01

    Climate change may affect exposures to air pollutants by affecting weather, anthropogenic emissions, and biogenic emissions and by changing the distribution and types of airborne allergens. Local temperature, precipitation, clouds, atmospheric water vapor, wind speed, and wind direction influence atmospheric chemical processes, and interactions occur between local and global-scale environments. If the climate becomes warmer and more variable, air quality is likely to be affected. However, the specific types of change (i.e., local, regional, or global), the direction of change in a particular location (i.e., positive or negative), and the magnitude of change in air quality that may be attributable to climate change are a matter of speculation, based on extrapolating present understanding to future scenarios. There is already extensive evidence on the health effects of air pollution. Ground-level ozone can exacerbate chronic respiratory diseases and cause short-term reductions in lung function. Exposure to particulate matter can aggravate chronic respiratory and cardiovascular diseases, alter host defenses, damage lung tissue, lead to premature death, and possibly contribute to cancer. Health effects of exposures to carbon monoxide, sulfur dioxide, and nitrogen dioxide can include reduced work capacity, aggravation of existing cardiovascular diseases, effects on pulmonary function, respiratory illnesses, lung irritation, and alterations in the lung's defense systems. Adaptations to climate change should include ensuring responsiveness of air quality protection programs to changing pollution levels. Research needs include basic atmospheric science work on the association between weather and air pollutants; improving air pollution models and their linkage with climate change scenarios; and closing gaps in the understanding of exposure patterns and health effects. PMID:11359687

  11. [Air pollution and population health].

    PubMed

    Kristoforović-Ilić, Miroslava; Ilić, Miroslav

    2006-10-01

    In the last few decades, there has been increased population concern for quality of environment, for it is, after life style, the second risk factor of disease development. Particular problem is that a large majority of serious impairments of health is manifested only after a long latent period, so it is not always possible to establish clear association with environmental factors. It is considered today that around 40% of lethal cases are caused by polluted environment in various ways, while environment is the most important etiologic factor in 5% of disease incidence. Problems arising due to environment pollution are most frequently related to air pollution. The World Resource Institute, Washington, has developed the indicators for evaluation of risk of environment pollution to population health. There is one common indicator both for developed and developing countries--air pollution. EPA recommended new standards for some polluting substances. The document reviewed these standards and their implementation in our community. New Law on Environment Protection ("Official Gazette of RS" No. 135/2004) from December 20th, 2004, followed by relevant documents on air quality, should be beneficial to experts at the level of subtle diagnostics and proposal of adequate measures with a view to improve the quality of life.

  12. Contemporary threats and air pollution

    NASA Astrophysics Data System (ADS)

    Hopke, Philip K.

    It is now well understood that air pollution produces significant adverse health effects in the general public and over the past 60 years, there have been on-going efforts to reduce the emitted pollutants and their resulting health effects. There are now shifting patterns of industrialization with many heavily polluting industries moving from developed countries with increasingly stringent air quality standards to the developing world. However, even in decreasing concentrations of pollutants, health effects remain important possibly as a result of changes in the nature of the pollutants as new chemicals are produced and as other causes of mortality and morbidity are reduced. In addition, there is now the potential for deliberate introduction of toxic air pollutants by local armed conflicts and terrorists. Thus, there are new challenges to understand the role of the atmospheric environment on public health in this time of changing economic and demographic conditions overlaid with the willingness to indirectly attack governments and other established entities through direct attacks on the general public.

  13. [Air pollution and population health].

    PubMed

    Kristoforović-Ilić, Miroslava; Ilić, Miroslav

    2006-10-01

    In the last few decades, there has been increased population concern for quality of environment, for it is, after life style, the second risk factor of disease development. Particular problem is that a large majority of serious impairments of health is manifested only after a long latent period, so it is not always possible to establish clear association with environmental factors. It is considered today that around 40% of lethal cases are caused by polluted environment in various ways, while environment is the most important etiologic factor in 5% of disease incidence. Problems arising due to environment pollution are most frequently related to air pollution. The World Resource Institute, Washington, has developed the indicators for evaluation of risk of environment pollution to population health. There is one common indicator both for developed and developing countries--air pollution. EPA recommended new standards for some polluting substances. The document reviewed these standards and their implementation in our community. New Law on Environment Protection ("Official Gazette of RS" No. 135/2004) from December 20th, 2004, followed by relevant documents on air quality, should be beneficial to experts at the level of subtle diagnostics and proposal of adequate measures with a view to improve the quality of life. PMID:18172966

  14. [Airport related air pollution and health effects].

    PubMed

    Iavicoli, Ivo; Fontana, Luca; Ancona, Carla; Forastiere, Francesco

    2014-01-01

    Airport is an extremely complex emission source of airborne pollutants that can have a significant impact on the environment. Indeed, several airborne chemicals emitted during airport activities may significantly get worse air quality and increase exposure level of both airport workers and general population living nearby the airports. In recent years airport traffic has increased and consequently several studies investigated the association between airport-related air pollution and occurrence of adverse health effects, particularly on respiratory system, in exposed workers and general population resident nearby. In this context, we carried out a critical evaluation of the studies that investigated this correlation in order to obtain a deeper knowledge of this issue and to identify the future research needs. Results show that the evidence of association between airport-related air pollution and health effects on workers and residents is still limited. PMID:25115476

  15. [Airport related air pollution and health effects].

    PubMed

    Iavicoli, Ivo; Fontana, Luca; Ancona, Carla; Forastiere, Francesco

    2014-01-01

    Airport is an extremely complex emission source of airborne pollutants that can have a significant impact on the environment. Indeed, several airborne chemicals emitted during airport activities may significantly get worse air quality and increase exposure level of both airport workers and general population living nearby the airports. In recent years airport traffic has increased and consequently several studies investigated the association between airport-related air pollution and occurrence of adverse health effects, particularly on respiratory system, in exposed workers and general population resident nearby. In this context, we carried out a critical evaluation of the studies that investigated this correlation in order to obtain a deeper knowledge of this issue and to identify the future research needs. Results show that the evidence of association between airport-related air pollution and health effects on workers and residents is still limited.

  16. Numerical Study on the Impact of SST Initialization on Regional Circulation and Air Pollution at Southern Korean Peninsula

    NASA Astrophysics Data System (ADS)

    Jeon, W.; Lee, H.; Lee, S.

    2010-12-01

    Numerical simulations were carried out to investigate the impact of temporal resolution of sea surface temperature on regional circulation and air pollution over southern Korean Peninsula. Well urbanized target area with densely populated inventories called Gwangyang bay is situated at the southern part of the Korean Peninsula, and assessment period is from 15 to 19 August 2007 for investigating the SST impact under various synoptic conditions. A three-dimensional non-hydrostatic atmospheric model RAMS and New Generation Sea Surface Temperature (NGSST) data was applied in this study. Two different numerical experiments were carried out in accordance with the temporal resolution of SST, which are, NGSST without temporal update (case NO-UP), and temporally varied NGSST for whole period (case YES-UP). Based on the Buoy observation, SST at Geoje Island near Gwayang bay region increased 4.1°C for target period. This rapid variation of SST cannot be negligible to estimate the meteorological wind field and the distribution of photochemical ozone emitted at the well urbanized Gwangyang bay. Wind intensity including wind direction is also influenced by the temporal variation of SST distribution. In case YES-UP with high temporal resolution of SST, Sea breeze is stronger and more reasonable than that estimated in any other cases due to the precise information of SST distribution. In IOA analysis, most successfully estimated IOA values for surface air temperature and wind speed arose in case YES-UP and their values reached on the 0.958 and 0.829, respectively. These differences were due to the discrepancy of the temperature gradient caused by different SST initialization. Diurnal variation of temperature and wind speed for YES_UP has indicated great agreement with the observation data and the statistics such as root mean squared error, index of agreement were also better than NO_UP. In order to assess the influence of the difference of the meteorological input data to air

  17. In Brief: Air pollution app

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2010-10-01

    A new smartphone application takes advantage of various technological capabilities and sensors to help users monitor air quality. Tapping into smartphone cameras, Global Positioning System (GPS) sensors, compasses, and accelerometers, computer scientists with the University of Southern California's (USC) Viterbi School of Engineering have developed a new application, provisionally entitled “Visibility.” Currently available for the Android telephone operating system, the application is available for free download at http://robotics.usc.edu/˜mobilesensing/Projects/AirVisibilityMonitoring. An iPhone application may be introduced soon. Smartphone users can take a picture of the sky and then compare it with models of sky luminance to estimate visibility. While conventional air pollution monitors are costly and thinly deployed in some areas, the smartphone application potentially could help fill in some blanks in existing air pollution maps, according to USC computer science professor Gaurav Sukhatme.

  18. Development of a vehicle emission inventory with high temporal-spatial resolution based on NRT traffic data and its impact on air pollution in Beijing - Part 2: Impact of vehicle emission on urban air quality

    NASA Astrophysics Data System (ADS)

    He, Jianjun; Wu, Lin; Mao, Hongjun; Liu, Hongli; Jing, Boyu; Yu, Ye; Ren, Peipei; Feng, Cheng; Liu, Xuehao

    2016-03-01

    A companion paper developed a vehicle emission inventory with high temporal-spatial resolution (HTSVE) with a bottom-up methodology based on local emission factors, complemented with the widely used emission factors of COPERT model and near-real-time (NRT) traffic data on a specific road segment for 2013 in urban Beijing (Jing et al., 2016), which is used to investigate the impact of vehicle pollution on air pollution in this study. Based on the sensitivity analysis method of switching on/off pollutant emissions in the Chinese air quality forecasting model CUACE, a modelling study was carried out to evaluate the contributions of vehicle emission to the air pollution in Beijing's main urban areas in the periods of summer (July) and winter (December) 2013. Generally, the CUACE model had good performance of the concentration simulation of pollutants. The model simulation has been improved by using HTSVE. The vehicle emission contribution (VEC) to ambient pollutant concentrations not only changes with seasons but also changes with time. The mean VEC, affected by regional pollutant transports significantly, is 55.4 and 48.5 % for NO2 and 5.4 and 10.5 % for PM2.5 in July and December 2013 respectively. Regardless of regional transports, relative vehicle emission contribution (RVEC) to NO2 is 59.2 and 57.8 % in July and December 2013, while it is 8.7 and 13.9 % for PM2.5. The RVEC to PM2.5 is lower than the PM2.5 contribution rate for vehicle emission in total emission, which may be due to dry deposition of PM2.5 from vehicle emission in the near-surface layer occuring more easily than from elevated source emission.

  19. Comparative evaluation of the impacts of domestic gas and electric heat pump heating on air pollution in California

    SciTech Connect

    Ganji, A. . Div. of Engineering)

    1992-07-01

    Residential space and water heating accounts for approximately 12% of California's and 15% of the United States, energy consumption. most Of the residential heating is by direct use of natural gas. combustion of natural gas is a contributor to the overall air pollution,, especially CO and NO{sub x} in the urban areas. Another efficient method for domestic water and space heating is use of electric heat pumps, the most popular category of which uses air as its heat source. Electric heat pumps do not emit air pollutants at the point of use, but use electric power, which is a major contributor to air pollution at its point of generation from fossil fuels. It is the specific objective of this report to evaluate and compare the energy efficiency and source air pollutants of natural gas heaters and electric heat pumps used for domestic heating. Effect of replacing natural gas heaters with electric heat pumps on air pollutant emissions due to domestic heating in two urban areas and in California as a whole has also been evaluated. The analysis shows that with the present state of technology, electric heat pumps have higher heating efficiencies than natural gas heaters. Considering the current electricity generation mix in the US, electric heat pumps produce two to four times more NO{sub x}, much less CO, and comparable amount of CO{sub 2} per unit of useful heating energy compared to natural gas heaters. With California mix, electric heat pumps produce comparable NO{sub x} and much less CO and approximately 30% less CO{sub 2} per unit heat output. Replacement of natural gas heaters with electric heat pumps will slightly increase the overall NO{sub x}, and reduce CO and CO{sub 2} emissions in California. The effect of advanced technology power generation and heat pump heating has also been analyzed.

  20. Comparative evaluation of the impacts of domestic gas and electric heat pump heating on air pollution in California. Final report

    SciTech Connect

    Ganji, A.

    1992-07-01

    Residential space and water heating accounts for approximately 12% of California`s and 15% of the United States, energy consumption. most Of the residential heating is by direct use of natural gas. combustion of natural gas is a contributor to the overall air pollution,, especially CO and NO{sub x} in the urban areas. Another efficient method for domestic water and space heating is use of electric heat pumps, the most popular category of which uses air as its heat source. Electric heat pumps do not emit air pollutants at the point of use, but use electric power, which is a major contributor to air pollution at its point of generation from fossil fuels. It is the specific objective of this report to evaluate and compare the energy efficiency and source air pollutants of natural gas heaters and electric heat pumps used for domestic heating. Effect of replacing natural gas heaters with electric heat pumps on air pollutant emissions due to domestic heating in two urban areas and in California as a whole has also been evaluated. The analysis shows that with the present state of technology, electric heat pumps have higher heating efficiencies than natural gas heaters. Considering the current electricity generation mix in the US, electric heat pumps produce two to four times more NO{sub x}, much less CO, and comparable amount of CO{sub 2} per unit of useful heating energy compared to natural gas heaters. With California mix, electric heat pumps produce comparable NO{sub x} and much less CO and approximately 30% less CO{sub 2} per unit heat output. Replacement of natural gas heaters with electric heat pumps will slightly increase the overall NO{sub x}, and reduce CO and CO{sub 2} emissions in California. The effect of advanced technology power generation and heat pump heating has also been analyzed.

  1. Indoor air pollutants

    SciTech Connect

    Angle, C.R.

    1988-01-01

    A major contribution of the pediatrician is to help families rank the multitude of pollutants according to their known risk for child health. Elimination of household smoking and completely effective venting of indoor heating devices are beneficial to all and mandatory in homes of allergic children. Acute releases of NO/sub 2/ by gas ranges and ovens may be a significant factor in an increased incidence of respiratory infection, especially in children under two years. Despite intensive investigation, immunosuppressive and other health effects have not been defined for indoor levels of PBBs, PCBs, and related halogenated hydrocarbons. The analytic ability to determine nanomolar concentrations of numerous toxic chemicals opens a Pandora's box of inquiry. New methods, particularly immunologic, are urgently needed to quantitate the dose response to multiple combinations of chemicals and determine their significance for the health of the tight-box generation of children. 136 references.

  2. Civil aviation, air pollution and human health

    NASA Astrophysics Data System (ADS)

    Harrison, Roy M.; Masiol, Mauro; Vardoulakis, Sotiris

    2015-04-01

    Air pollutant emissions from aircraft have been subjected to less rigorous control than road traffic emissions, and the rapid growth of global aviation is a matter of concern in relation to human exposures to pollutants, and consequent effects upon health. Yim et al (2015 Environ. Res. Lett. 3 034001) estimate exposures globally arising from aircraft engine emissions of primary particulate matter, and from secondary sulphates and ozone, and use concentration-response functions to calculate the impact upon mortality, which is monetised using the value of statistical life. This study makes a valuable contribution to estimating the magnitude of public health impact at various scales, ranging from local, near airport, regional and global. The results highlight the need to implement future mitigation actions to limit impacts of aviation upon air quality and public health. The approach adopted in Yim et al only accounts for the air pollutants emitted by aircraft engine exhausts. Whilst aircraft emissions are often considered as dominant near runways, there are a number of other sources and processes related to aviation that still need to be accounted for. This includes impacts of nitrate aerosol formed from NOx emissions, but probably more important, are the other airport-related emissions from ground service equipment and road traffic. By inclusion of these, and consideration of non-fatal impacts, future research will generate comprehensive estimates of impact related to aviation and airports.

  3. Air pollution holiday effect in metropolitan Kaohsiung

    NASA Astrophysics Data System (ADS)

    Tan, P.; Chen, P. Y.

    2014-12-01

    Different from Taipei, the metropolitan Kaohsiung which is a coastal and industrial city has the major pollution sources from stationary sources such as coal-fired power plants, petrochemical facilities and steel plants, rather than mobile sources. This study was an attempt to conduct a comprehensive and systematical examination of the holiday effect, defined as the difference in air pollutant concentrations between holiday and non-holiday periods, over the Kaohsiung metropolitan area. We documented evidence of a "holiday effect", where concentrations of NOx, CO, NMHC, SO2 and PM10 were significantly different between holidays and non-holidays, in the Kaohsiung metropolitan area from daily surface measurements of seven air quality monitoring stations of the Taiwan Environmental Protection Administration during the Chinese New Year (CNY) and non-Chinese New Year (NCNY) periods of 1994-2010. Concentrations of the five pollutants were lower in the CNY than in the NCNY period, however, that of O3 was higher in the CNY than in the NCNY period and had no holiday effect. The exclusion of the bad air quality day (PSI > 100) and the Lantern Festival Day showed no significant effects on the holiday effects of air pollutants. Ship transportation data of Kaohsiung Harbor Bureau showed a statistically significant difference in the CNY and NCNY period. This difference was consistent with those found in air pollutant concentrations of some industrial and general stations in coastal areas, implying the possible impact of traffic activity on the air quality of coastal areas. Holiday effects of air pollutants over the Taipei metropolitan area by Tan et al. (2009) are also compared.

  4. An investigation of the impact of inorganic air pollutants on soils in Saguaro National Monument, Tucson, Arizona

    SciTech Connect

    Gladney, E.S.; Ferenbaugh, R.W.; Stolte, K.W.; Duriscoe, D.M.

    1993-08-01

    Environmental data related to the evaluation of inorganic air pollution input to the Saguaro National Monument ecosystem were collected over four years. The data specific to soils are presented in this document. The enrichment factor approach is employed to provide a framework for simplified interpretation of this large collection of data.

  5. Air Pollution. Part A: Analysis.

    ERIC Educational Resources Information Center

    Ledbetter, Joe O.

    Two facets of the engineering control of air pollution (the analysis of possible problems and the application of effective controls) are covered in this two-volume text. Part A covers Analysis, and Part B, Prevention and Control. (This review is concerned with Part A only.) This volume deals with the terminology, methodology, and symptomatology…

  6. Air pollution and cardiovascular disease.

    PubMed

    Franklin, Barry A; Brook, Robert; Arden Pope, C

    2015-05-01

    An escalating body of epidemiologic and clinical research provides compelling evidence that exposure to fine particulate matter air pollution contributes to the development of cardiovascular disease and the triggering of acute cardiac events. There are 3 potential mediating pathways that have been implicated, including "systemic spillover," autonomic imbalance, and circulating particulate matter constituents. Further support that the increased morbidity and mortality attributed to air pollution comes from studies demonstrating the adverse cardiovascular effects of even brief periods of exposure to secondhand smoke. Accordingly, persons with known or suspected cardiovascular disease, the elderly, diabetic patients, pregnant women, and those with pulmonary disease should be counseled to limit leisure-time outdoor activities when air pollution is high. Recognizing the insidious and pervasive nature of air pollution, and the associated odds ratios and population attributable fractions for this widely underappreciated chemical trigger of acute cardiovascular events, may serve to maximize the potential for cardiovascular risk reduction by addressing at least a portion of the 10%-25% incidence of coronary disease that is unexplained by traditional risk factors.

  7. Air Pollution Control, Part II.

    ERIC Educational Resources Information Center

    Strauss, Werner, Ed.

    This book contains five major articles in areas of current importance in air pollution control. They are written by authors who are actively participating in the areas on which they report. It is the aim of each article to completely cover theory, experimentation, and practice in the field discussed. The contents are as follows: Emissions,…

  8. Health Effects of Air Pollution.

    ERIC Educational Resources Information Center

    Environmental Education Report and Newsletter, 1985

    1985-01-01

    Summarizes health hazards associated with air pollution, highlighting the difficulty in establishing acceptable thresholds of exposure. Respiratory disease, asthma, cancer, cardiovascular disease, and other problems are addressed. Indicates that a wide range of effects from any one chemical exists and that there are differences in sensitivity to…

  9. Solid Waste, Air Pollution and Health

    ERIC Educational Resources Information Center

    Kupchik, George J.; Franz, Gerald J.

    1976-01-01

    This article examines the relationships among solid waste disposal, air pollution, and human disease. It is estimated that solid waste disposal contributes 9.7 percent of the total air pollution and 9.9 percent of the total air pollution health effect. Certain disposal-resource recovery systems can be implemented to meet air quality standards. (MR)

  10. Air Pollution in the Mexico Megacity

    NASA Astrophysics Data System (ADS)

    Ruiz-Suarez, L. G.

    2007-05-01

    Mexico City is a megacity whose metropolitan area includes the country federal district, 18 municipalities of the State of Mexico. In year 1992, only 16 municipalities of the State of Mexico were part of MCMA. In year 1940 the Mexico City population was 1.78 millions in an area of 118 km2, in year 2000 the population was 17.9 millions in an area of 1,500 km2. Population has grown a ten fold whereas population density has dropped 20%. Total number of private cars has grown from 2,341,731 in year 1998 to 2,967,893 in year 2004. Nowadays, people and goods travel longer at lower speed to reach school, work and selling points. In addition highly efficient public transport lost a significant share of transport demand from 19.1 in 1986 to 14.3 in 1998. Air pollution is a public concern since early eighties last century; systematic public efforts have been carried out since late eighties. Energy consumption has steadily increased in the MCMA whereas emissions have also decreased. From year 2000 to 2004, the private cars fleet increased 17% whereas CO, NOx and COV emissions decreased between 20-30%. Average concentrations of criteria pollutants have decreased The number of days that the one-hour national standard for bad air quality was exceeded in year 1990 was 160. In year 2005 was 70. Research efforts and public policies on air pollution have been focused on public health. We are now better able to estimate the cost in human lives due to air pollution, or the cost in labor lost due to illness. Little if none at all work has been carried out to look at the effect of air pollution on private and public property or onto the cultural heritage. Few reports have can be found on the impact of air pollution in rural areas, including forest and crops, around the mega city. Mexico City is in the south end of a Valley with mountain ranges higher than 1000 m above the average city altitude. In spite the heavy loss of forested areas to the city, the mountains still retain large

  11. Acid rain and transported air pollutants

    SciTech Connect

    Not Available

    1985-01-01

    This book considers aspects of the air pollutant controversy. It discusses the following: the policy dilemma - including impact on terrestrial and aquatic eco-systems, effects on human health, diplomatic issues, and how control would benefit some industries and hurt others; scientific uncertainties about the extent and location of current damage, future damage, the origin of transported air pollutants, and the efficacy of current and proposed emissions control programs; how three major pollutants - sulfur dioxide, nitrous oxide, and reactive hydrocarbons - are distributed geographically; the effect of current legislation on acid rain and its distribution; how geographic and economic risks are dispersed throughout the United States; and other risks, such as potential damage to buildings and metals.

  12. Regional-scale transport of air pollutants: impacts of Southern California emissions on Phoenix ground-level ozone concentrations

    NASA Astrophysics Data System (ADS)

    Li, J.; Georgescu, M.; Hyde, P.; Mahalov, A.; Moustaoui, M.

    2015-08-01

    In this study, WRF-Chem is utilized at high resolution (1.333 km grid spacing for the innermost domain) to investigate impacts of southern California anthropogenic emissions (SoCal) on Phoenix ground-level ozone concentrations ([O3]) for a pair of recent exceedance episodes. First, WRF-Chem control simulations, based on the US Environmental Protection Agency (EPA) 2005 National Emissions Inventories (NEI05), are conducted to evaluate model performance. Compared with surface observations of hourly ozone, CO, NOX, and wind fields, the control simulations reproduce observed variability well. Simulated [O3] are comparable with the previous studies in this region. Next, the relative contribution of SoCal and Arizona local anthropogenic emissions (AZ) to ozone exceedances within the Phoenix metropolitan area is investigated via a trio of sensitivity simulations: (1) SoCal emissions are excluded, with all other emissions as in Control; (2) AZ emissions are excluded with all other emissions as in Control; and (3) SoCal and AZ emissions are excluded (i.e., all anthropogenic emissions are eliminated) to account only for Biogenic emissions and lateral boundary inflow (BILB). Based on the USEPA NEI05, results for the selected events indicate the impacts of AZ emissions are dominant on daily maximum 8 h average (DMA8) [O3] in Phoenix. SoCal contributions to DMA8 [O3] for the Phoenix metropolitan area range from a few ppbv to over 30 ppbv (10-30 % relative to Control experiments). [O3] from SoCal and AZ emissions exhibit the expected diurnal characteristics that are determined by physical and photochemical processes, while BILB contributions to DMA8 [O3] in Phoenix also play a key role. Finally, ozone transport processes and pathways within the lower troposphere are investigated. During daytime, pollutants (mainly ozone) near the Southern California coasts are pumped into the planetary boundary-layer over the Southern California desert through the mountain chimney and pass

  13. Regional-scale transport of air pollutants: impacts of southern California emissions on Phoenix ground-level ozone concentrations

    NASA Astrophysics Data System (ADS)

    Li, J.; Georgescu, M.; Hyde, P.; Mahalov, A.; Moustaoui, M.

    2015-03-01

    In this study, WRF-Chem is utilized at high-resolution (1.333 km grid spacing for the innermost domain) to investigate impacts of southern California anthropogenic emissions (SoCal) on Phoenix ground-level ozone concentrations ([O3]) for a pair of recent exceedance episodes. First, WRF-Chem Control simulations are conducted to evaluate model performance. Compared with surface observations of hourly ozone, CO, NOx, and wind fields, the Control simulations reproduce observed variability well. Simulated [O3] are within acceptance ranges recommended by the Environmental Protection Agency (EPA) that characterize skillful experiments. Next, the relative contribution of SoCal and Arizona local anthropogenic emissions (AZ) to ozone exceedance within the Phoenix metropolitan area is investigated via a trio of sensitivity simulations: (1) SoCal emissions are excluded, with all other emissions as in Control; (2) AZ emissions are excluded with all other emissions as in Control; and (3) SoCal and AZ emissions are excluded (i.e., all anthropogenic emissions are eliminated) to account only for biogenic emissions [BEO]. Results for the selected events indicate the impacts of AZ emissions are dominant on daily maximum 8 h average (DMA8) [O3] in Phoenix. SoCal contributions to DMA8 [O3] for the Phoenix metropolitan area range from a few ppbv to over 30 ppbv (10-30% relative to Control experiments). [O3] from SoCal and AZ emissions exhibit the expected diurnal characteristics that are determined by physical and photochemical processes, while BEO contributions to DMA8 [O3] in Phoenix also play a key role. Finally, ozone transport processes and pathways within the lower troposphere are investigated. During daytime, pollutants (mainly ozone) near the southern California coasts are pumped into the planetary boundary-layer over the southern California desert through the mountain chimney and pass channel effects, aiding eastward transport along the desert air basins in southern California

  14. Air Pollution and Heart Disease, Stroke

    MedlinePlus

    ... Pressure High Blood Pressure Tools & Resources Stroke More Air Pollution and Heart Disease, Stroke Updated:Aug 30,2016 ... or Longer-Term Acute short-term effects of air pollution tend to strike people who are elderly or ...

  15. AIR POLLUTION CONTROL TECHNOLOGIES (CHAPTER 65)

    EPA Science Inventory

    The chapter discusses the use of technologies for reducing air pollution emissions from stationary sources, with emphasis on the control of combustion gen-erated air pollution. Major stationary sources include utility power boilers, industrial boilers and heaters, metal smelting ...

  16. Clean Air Slots Amid Atmospheric Pollution

    NASA Technical Reports Server (NTRS)

    Hobbs, Peter V.

    2002-01-01

    This article investigates the mechanism for those layers in the atmosphere that are free of air borne pollution even though the air above and below them carry pollutants. Atmospheric subsidence is posed as a mechanism for this phenomenon.

  17. Respiratory effects of air pollution on children.

    PubMed

    Goldizen, Fiona C; Sly, Peter D; Knibbs, Luke D

    2016-01-01

    A substantial proportion of the global burden of disease is directly or indirectly attributable to exposure to air pollution. Exposures occurring during the periods of organogenesis and rapid lung growth during fetal development and early post-natal life are especially damaging. In this State of the Art review, we discuss air toxicants impacting on children's respiratory health, routes of exposure with an emphasis on unique pathways relevant to young children, methods of exposure assessment and their limitations and the adverse health consequences of exposures. Finally, we point out gaps in knowledge and research needs in this area. A greater understanding of the adverse health consequences of exposure to air pollution in early life is required to encourage policy makers to reduce such exposures and improve human health.

  18. Air Pollution and Exercise: A Perspective from China

    ERIC Educational Resources Information Center

    Wang, Zhen

    2016-01-01

    China is experiencing an air pollution crisis, which has already had a significantly negative impact on the health of the Chinese people. Although exercising is considered a useful means to prevent chronic diseases, it could actually lead to adverse effects due to extra exposure to polluted air when done outdoors. After a brief description of the…

  19. The impact of shipping emissions on air pollution in the greater North Sea region - Part 1: Current emissions and concentrations

    NASA Astrophysics Data System (ADS)

    Aulinger, A.; Matthias, V.; Zeretzke, M.; Bieser, J.; Quante, M.; Backes, A.

    2016-01-01

    The North Sea is one of the areas with the highest ship traffic densities worldwide. At any time, about 3000 ships are sailing its waterways. Previous scientific publications have shown that ships contribute significantly to atmospheric concentrations of NOx, particulate matter and ozone. Especially in the case of particulate matter and ozone, this influence can even be seen in regions far away from the main shipping routes. In order to quantify the effects of North Sea shipping on air quality in its bordering states, it is essential to determine the emissions from shipping as accurately as possible. Within Interreg IVb project Clean North Sea Shipping (CNSS), a bottom-up approach was developed and used to thoroughly compile such an emission inventory for 2011 that served as the base year for the current emission situation. The innovative aspect of this approach was to use load-dependent functions to calculate emissions from the ships' current activities instead of averaged emission factors for the entire range of the engine loads. These functions were applied to ship activities that were derived from hourly records of Automatic Identification System signals together with a database containing the engine characteristics of the vessels that traveled the North Sea in 2011. The emission model yielded ship emissions among others of NOx and SO2 at high temporal and spatial resolution that were subsequently used in a chemistry transport model in order to simulate the impact of the emissions on pollutant concentration levels. The total emissions of nitrogen reached 540 Gg and those of sulfur oxides 123 Gg within the North Sea - including the adjacent western part of the Baltic Sea until 5° W. This was about twice as much of those of a medium-sized industrialized European state like the Netherlands. The relative contribution of ships to, for example, NO2 concentration levels ashore close to the sea can reach up to 25 % in summer and 15 % in winter. Some hundred kilometers

  20. The impact of shipping emissions on air pollution in the Greater North Sea region - Part 1: Current emissions and concentrations

    NASA Astrophysics Data System (ADS)

    Aulinger, A.; Matthias, V.; Zeretzke, M.; Bieser, J.; Quante, M.; Backes, A.

    2015-04-01

    The North Sea is one of the areas with the highest ship traffic densities worldwide. At any time, about 3000 ships are sailing its waterways. Previous scientific publications have shown that ships contribute significantly to atmospheric concentrations of NOx, particulate matter and ozone. Especially in the case of particulate matter and ozone this influence can even be seen in regions far away from the main shipping routes. In order to quantify the effects of North Sea shipping on air quality in its bordering states, it is essential to determine the emissions from shipping as accurately as possible. Within the Interreg IVb project Clean North Sea Shipping (CNSS) a bottom-up approach was developed and used to thoroughly compile such an emission inventory for 2011 that served as the base year for the current emission situation. The innovative aspect of this approach was to use load dependent functions to calculate emissions from the ships' current activities instead of averaged emission factors for the entire range of the engine loads. These functions were applied to ship activities that were derived from hourly records of Automatic Identification System signals together with a data base containing the engine characteristics of the vessels that traveled the North Sea in 2011. The emission model yielded ship emissions among others of NOx and SO2 in high temporal and spatial resolution that were subsequently used in a chemistry transport model in order to simulate the impact of the emissions on pollutant concentration levels. The total emissions of nitrogen reached 540 Gg and of sulfur oxides 123 Gg within the North Sea, which was about twice as much of those of a medium-sized industrialized European state like the Netherlands. The relative contribution of ships to, for example, NO2 concentration levels ashore close to the sea can reach up to 25% in summer and 15% in winter. Some hundred kilometers away from the sea the contribution was about 6% in summer and 4% in

  1. The Fort Collins Commuter Study: Impact of route type and transport mode on personal exposure to multiple air pollutants

    PubMed Central

    Good, Nicholas; Mölter, Anna; Ackerson, Charis; Bachand, Annette; Carpenter, Taylor; Clark, Maggie L; Fedak, Kristen M; Kayne, Ashleigh; Koehler, Kirsten; Moore, Brianna; L'Orange, Christian; Quinn, Casey; Ugave, Viney; Stuart, Amy L; Peel, Jennifer L; Volckens, John

    2016-01-01

    Traffic-related air pollution is associated with increased mortality and morbidity, yet few studies have examined strategies to reduce individual exposure while commuting. The present study aimed to quantify how choice of mode and route type affects personal exposure to air pollutants during commuting. We analyzed within-person difference in exposures to multiple air pollutants (black carbon (BC), carbon monoxide (CO), ultrafine particle number concentration (PNC), and fine particulate matter (PM2.5)) during commutes between the home and workplace for 45 participants. Participants completed 8 days of commuting by car and bicycle on direct and alternative (reduced traffic) routes. Mean within-person exposures to BC, PM2.5, and PNC were higher when commuting by cycling than when driving, but mean CO exposure was lower when cycling. Exposures to CO and BC were reduced when commuting along alternative routes. When cumulative exposure was considered, the benefits from cycling were attenuated, in the case of CO, or exacerbated, in the case of particulate exposures, owing to the increased duration of the commute. Although choice of route can reduce mean exposure, the effect of route length and duration often offsets these reductions when cumulative exposure is considered. Furthermore, increased ventilation rate when cycling may result in a more harmful dose than inhalation at a lower ventilation rate. PMID:26507004

  2. The Fort Collins Commuter Study: Impact of route type and transport mode on personal exposure to multiple air pollutants.

    PubMed

    Good, Nicholas; Mölter, Anna; Ackerson, Charis; Bachand, Annette; Carpenter, Taylor; Clark, Maggie L; Fedak, Kristen M; Kayne, Ashleigh; Koehler, Kirsten; Moore, Brianna; L'Orange, Christian; Quinn, Casey; Ugave, Viney; Stuart, Amy L; Peel, Jennifer L; Volckens, John

    2016-06-01

    Traffic-related air pollution is associated with increased mortality and morbidity, yet few studies have examined strategies to reduce individual exposure while commuting. The present study aimed to quantify how choice of mode and route type affects personal exposure to air pollutants during commuting. We analyzed within-person difference in exposures to multiple air pollutants (black carbon (BC), carbon monoxide (CO), ultrafine particle number concentration (PNC), and fine particulate matter (PM2.5)) during commutes between the home and workplace for 45 participants. Participants completed 8 days of commuting by car and bicycle on direct and alternative (reduced traffic) routes. Mean within-person exposures to BC, PM2.5, and PNC were higher when commuting by cycling than when driving, but mean CO exposure was lower when cycling. Exposures to CO and BC were reduced when commuting along alternative routes. When cumulative exposure was considered, the benefits from cycling were attenuated, in the case of CO, or exacerbated, in the case of particulate exposures, owing to the increased duration of the commute. Although choice of route can reduce mean exposure, the effect of route length and duration often offsets these reductions when cumulative exposure is considered. Furthermore, increased ventilation rate when cycling may result in a more harmful dose than inhalation at a lower ventilation rate. PMID:26507004

  3. The Fort Collins Commuter Study: Impact of route type and transport mode on personal exposure to multiple air pollutants.

    PubMed

    Good, Nicholas; Mölter, Anna; Ackerson, Charis; Bachand, Annette; Carpenter, Taylor; Clark, Maggie L; Fedak, Kristen M; Kayne, Ashleigh; Koehler, Kirsten; Moore, Brianna; L'Orange, Christian; Quinn, Casey; Ugave, Viney; Stuart, Amy L; Peel, Jennifer L; Volckens, John

    2016-06-01

    Traffic-related air pollution is associated with increased mortality and morbidity, yet few studies have examined strategies to reduce individual exposure while commuting. The present study aimed to quantify how choice of mode and route type affects personal exposure to air pollutants during commuting. We analyzed within-person difference in exposures to multiple air pollutants (black carbon (BC), carbon monoxide (CO), ultrafine particle number concentration (PNC), and fine particulate matter (PM2.5)) during commutes between the home and workplace for 45 participants. Participants completed 8 days of commuting by car and bicycle on direct and alternative (reduced traffic) routes. Mean within-person exposures to BC, PM2.5, and PNC were higher when commuting by cycling than when driving, but mean CO exposure was lower when cycling. Exposures to CO and BC were reduced when commuting along alternative routes. When cumulative exposure was considered, the benefits from cycling were attenuated, in the case of CO, or exacerbated, in the case of particulate exposures, owing to the increased duration of the commute. Although choice of route can reduce mean exposure, the effect of route length and duration often offsets these reductions when cumulative exposure is considered. Furthermore, increased ventilation rate when cycling may result in a more harmful dose than inhalation at a lower ventilation rate.

  4. The Crisis in Air Pollution Manpower Development

    ERIC Educational Resources Information Center

    Moeller, Dade W.

    1974-01-01

    Three studies conducted by the National Air Pollution Manpower Development Advisory Committee concluded there is a crisis in air pollution manpower development within the United States today. The studies investigated the existing federal manpower program, air pollution educational requirements and the quality of graduate level university programs.…

  5. Product Guide/1972 [Air Pollution Control Association].

    ERIC Educational Resources Information Center

    Journal of the Air Pollution Control Association, 1971

    1971-01-01

    Reprinted in this pamphlet is the fifth annual directory of air pollution control products as compiled in the "Journal of the Air Pollution Control Association" for December, 1971. The 16-page guide lists manufacturers of emission control equipment and air pollution instrumentation under product classifications as derived from McGraw-Hill's "Air…

  6. Air pollution ranks as largest health risk

    NASA Astrophysics Data System (ADS)

    Wendel, JoAnna

    2014-04-01

    The World Health Organization (WHO) reports that 7 million people died in 2012 from air-pollution-related sicknesses, marking air pollution as the single largest environmental health risk. This finding, a result of better knowledge and assessment of the diseases, is more than double previous estimates of the risk of death from air pollution.

  7. A review of air pollutant damage to materials

    SciTech Connect

    Yocom, J.E.; Stankunas, A.R.; Bradow, F.V.P.

    1982-06-01

    Report prepared as U.S. contribution to Panel 3 of NATO Committee on Challenges of Modern Society Pilot Study on Air Pollution Control Strategies and Impact Modeling. Panel 3 focuses on air pollutant impact and will publish 4 reports on air pollutants effects; this is the first in the series and covers effects on materials. Reviewed here are physical and economic effects of sulfur oxides, particulate matter, nitrogen oxide, ozone, hydrogen sulfides, fluoride, and ammonia on metals, textiles, paint, building materials, leathers, paper and elastomers. Report is summary of pertinent information in EPA's air quality criteria and EPA-Funded NAS review documents.

  8. Air pollution and brain damage.

    PubMed

    Calderón-Garcidueñas, Lilian; Azzarelli, Biagio; Acuna, Hilda; Garcia, Raquel; Gambling, Todd M; Osnaya, Norma; Monroy, Sylvia; DEL Tizapantzi, Maria Rosario; Carson, Johnny L; Villarreal-Calderon, Anna; Rewcastle, Barry

    2002-01-01

    Exposure to complex mixtures of air pollutants produces inflammation in the upper and lower respiratory tract. Because the nasal cavity is a common portal of entry, respiratory and olfactory epithelia are vulnerable targets for toxicological damage. This study has evaluated, by light and electron microscopy and immunohistochemical expression of nuclear factor-kappa beta (NF-kappaB) and inducible nitric oxide synthase (iNOS), the olfactory and respiratory nasal mucosae, olfactory bulb, and cortical and subcortical structures from 32 healthy mongrel canine residents in Southwest Metropolitan Mexico City (SWMMC), a highly polluted urban region. Findings were compared to those in 8 dogs from Tlaxcala, a less polluted, control city. In SWMMC dogs, expression of nuclear neuronal NF-kappaB and iNOS in cortical endothelial cells occurred at ages 2 and 4 weeks; subsequent damage included alterations of the blood-brain barrier (BBB), degenerating cortical neurons, apoptotic glial white matter cells, deposition of apolipoprotein E (apoE)-positive lipid droplets in smooth muscle cells and pericytes, nonneuritic plaques, and neurofibrillary tangles. Persistent pulmonary inflammation and deteriorating olfactory and respiratory barriers may play a role in the neuropathology observed in the brains of these highly exposed canines. Neurodegenerative disorders such as Alzheimer's may begin early in life with air pollutants playing a crucial role.

  9. Impact of control for air pollution and respiratory epidemics on the estimated associations of temperature and daily mortality

    NASA Astrophysics Data System (ADS)

    O'Neill, Marie S.; Hajat, Shakoor; Zanobetti, Antonella; Ramirez-Aguilar, Matiana; Schwartz, Joel

    2005-11-01

    We assessed the influence of control for air pollution and respiratory epidemics on associations between apparent temperature (AT) and daily mortality in Mexico City and Monterrey. Poisson regressions were fit to mortality among all ages, children (ages 0 14 years) and the elderly (ages ≥65 years). Predictors included mean daily AT, season, day of week and public holidays for the base model. Respiratory epidemics and air pollution (particulate matter <10 μm in aerodynamic diameter and O3) were added singly and then jointly for a fully adjusted model. Percent changes in mortality were calculated for days of relatively extreme temperatures [cold (10 11°C) for both cities and heat (35 36°C) for Monterrey], compared to days at the overall mean temperature in each city (15°C in Mexico City, 25°C in Monterrey). In Mexico City, total mortality increased 12.4% [95% confidence interval (CI) 10.5%, 14.5%] on cold days (fully adjusted). Among children, the adjusted association was similar [10.9% (95% CI: 5.4%, 16.7%)], but without control for pollution and epidemics, was nearly twice as large [19.7% (95% CI: 13.9%, 25.9)]. In Monterrey, the fully adjusted heat effect for all deaths was 18.7% (95% CI: 11.7%, 26.1%), a third lower than the unadjusted estimate; the heat effect was lower among children [5.5% (95% CI: -10.1%, 23.8%)]. Cold had a similar effect on all-age mortality as in Mexico City [11.7% (95% CI: 3.7%, 20.3%)]. Responses of the elderly differed little from all-ages responses in both cities. Associations between weather and health persisted even with control for air pollution and respiratory epidemics in two Mexican cities, but risk assessments and climate change adaptation programs are best informed by analyses that account for these potential confounders.

  10. Air Pollution and Control Legislation in India

    NASA Astrophysics Data System (ADS)

    P Bhave, Prashant; Kulkarni, Nikhil

    2015-09-01

    Air pollution in urban areas arises from multiple sources, which may vary with location and developmental activities. Anthropogenic activities as rampant industrialization, exploitation and over consumption of natural resources, ever growing population size are major contributors of air pollution. The presented review is an effort to discuss various aspects of air pollution and control legislation in India emphasizing on the history, present scenario, international treaties, gaps and drawbacks. The review also presents legislative controls with judicial response to certain landmark judgments related to air pollution. The down sides related to enforcement mechanism for the effective implementation of environmental laws for air pollution control have been highlighted.

  11. Self-organized criticality of air pollution

    NASA Astrophysics Data System (ADS)

    Shi, Kai; Liu, Chun-Qiong

    In this work, we investigate the frequency-size distribution of three pollution indexes (PM 10, NO 2 and SO 2) in Shanghai. They are well approximated by power-law distributions, which suggest that air pollution might be a manifestation of self-organized criticality. We introduce a new numerical sandpile model with decay coefficient to reveal inherent dynamic mechanism of air pollution. Only changing the number value of decay coefficient of pollutants, this model gives a good simulation of three pollutants' statistical characteristic. This work shows that it is the self-organized criticality of the air pollutants that results in the temporal variation of air pollutant indexes and the minor air pollution sources can trigger the occurrence of large pollutant events by SOC behavior.

  12. A multicentric case-control study on the impact of air pollution on eyes in a metropolitan city of India

    PubMed Central

    Gupta, S. K.; Gupta, S. C.; Agarwal, Renu; Sushma, Srivastava; Agrawal, S. S.; Saxena, Rohit

    2007-01-01

    Purpose: To study the effect of exposure to high level of air pollution on ocular surface health. Materials and Methods: A total of 520 subjects volunteered to participate in this study. All volunteers were required to give a detailed history and were subjected to ophthalmic examination under slit lamp, visual acuity test, tear film break-up time (BUT) and Schrimer's test. Results: Significantly high number of subjects in study group complained of ophthalmic symptoms compared to control group. Sevent eight per cent subjects in the study group had symptoms such as redness, watering, irritation, strain or photophobia whereas this number was 45% in control group. Schirmer's test showed a significantly low value of 22.75±8.91 mm in study group as compared to 30.30±7.92 mm in control group (P<0.001). Average tear break-up time in study group was significantly low (P<0.05) with a value of 11.17±2.92 seconds compared to 12.13 ± 3.24 seconds in control group. Conclusion: Results of our study indicate that people traveling in highly polluted areas and exposed to high level of air pollutants are likely to suffer from significantly high incidence of subclinical ocular surface disorders. PMID:21957371

  13. Mobile phone tracking: in support of modelling traffic-related air pollution contribution to individual exposure and its implications for public health impact assessment

    PubMed Central

    2013-01-01

    We propose a new approach to assess the impact of traffic-related air pollution on public health by mapping personal trajectories using mobile phone tracking technology in an urban environment. Although this approach is not based on any empirical studies, we believe that this method has great potential and deserves serious attention. Mobile phone tracking technology makes it feasible to generate millions of personal trajectories and thereby cover a large fraction of an urban population. Through analysis, personal trajectories are not only associated to persons, but it can also be associated with vehicles, vehicle type, vehicle speed, vehicle emission rates, and sources of vehicle emissions. Pollution levels can be estimated by dispersion models from calculated traffic emissions. Traffic pollution exposure to individuals can be estimated based on the exposure along the individual human trajectories in the estimated pollution concentration fields by utilizing modelling tools. By data integration, one may identify trajectory patterns of particularly exposed human groups. The approach of personal trajectories may open a new paradigm in understanding urban dynamics and new perspectives in population-wide empirical public health research. This new approach can be further applied to individual commuter route planning, land use planning, urban traffic network planning, and used by authorities to formulate air pollution mitigation policies and regulations. PMID:24188173

  14. Mobile phone tracking: in support of modelling traffic-related air pollution contribution to individual exposure and its implications for public health impact assessment.

    PubMed

    Liu, Hai-Ying; Skjetne, Erik; Kobernus, Mike

    2013-11-04

    We propose a new approach to assess the impact of traffic-related air pollution on public health by mapping personal trajectories using mobile phone tracking technology in an urban environment. Although this approach is not based on any empirical studies, we believe that this method has great potential and deserves serious attention. Mobile phone tracking technology makes it feasible to generate millions of personal trajectories and thereby cover a large fraction of an urban population. Through analysis, personal trajectories are not only associated to persons, but it can also be associated with vehicles, vehicle type, vehicle speed, vehicle emission rates, and sources of vehicle emissions. Pollution levels can be estimated by dispersion models from calculated traffic emissions. Traffic pollution exposure to individuals can be estimated based on the exposure along the individual human trajectories in the estimated pollution concentration fields by utilizing modelling tools. By data integration, one may identify trajectory patterns of particularly exposed human groups. The approach of personal trajectories may open a new paradigm in understanding urban dynamics and new perspectives in population-wide empirical public health research. This new approach can be further applied to individual commuter route planning, land use planning, urban traffic network planning, and used by authorities to formulate air pollution mitigation policies and regulations.

  15. Impact of urban air pollution on the allergenicity of Aspergillus fumigatus conidia: Outdoor exposure study supported by laboratory experiments.

    PubMed

    Lang-Yona, Naama; Shuster-Meiseles, Timor; Mazar, Yinon; Yarden, Oded; Rudich, Yinon

    2016-01-15

    Understanding the chemical interactions of common allergens in urban environments may help to decipher the general increase in susceptibility to allergies observed in recent decades. In this study, asexual conidia of the allergenic mold Aspergillus fumigatus were exposed to air pollution under natural (ambient) and controlled (laboratory) conditions. The allergenic activity was measured using two immunoassays and supported by a protein mass spectrometry analysis. The allergenicity of the conidia was found to increase by 2-5 fold compared to the control for short exposure times of up to 12h (accumulated exposure of about 50 ppb NO2 and 750 ppb O3), possibly due to nitration. At higher exposure times, the allergenicity increase lessened due to protein deamidation. These results indicate that during the first 12h of exposure, the allergenic potency of the fungal allergen A. fumigatus in polluted urban environments is expected to increase. Additional work is needed in order to determine if this behavior occurs for other allergens.

  16. Air pollution impact on phagocytic capacity of peripheral blood macrophages and antioxidant activity of plasma among school children

    SciTech Connect

    Ruiz, F.; Videla, L.A.; Vargas, N.; Parra, M.A.; Trier, A.; Silva, C.

    1988-07-01

    Peripheral blood macrophages of school children from downtown Santiago, Chile--a highly polluted city--exhibited a lower phagocytic index with higher percentage of killing than those of the rural village of Maria Pinto. These findings were observed concomitantly with a lower antioxidant activity of plasma in Santiago students. No differences were observed in serum immunoglobulins (IgA, IgG, and IgM), secretory IgA in saliva, and complement component C3. White blood cell count was higher in Maria Pinto residents than in Santiago students, including those cells with phagocytic capacity. It is suggested that particulate air pollution may enhance macrophage activity with impairment of the antioxidant capacity of plasma.

  17. Can the Air Pollution Index be used to communicate the health risks of air pollution?

    PubMed

    Li, Li; Lin, Guo-Zhen; Liu, Hua-Zhang; Guo, Yuming; Ou, Chun-Quan; Chen, Ping-Yan

    2015-10-01

    The validity of using the Air Pollution Index (API) to assess health impacts of air pollution and potential modification by individual characteristics on air pollution effects remain uncertain. We applied distributed lag non-linear models (DLNMs) to assess associations of daily API, specific pollution indices for PM10, SO2, NO2 and the weighted combined API (APIw) with mortality during 2003-2011 in Guangzhou, China. An increase of 10 in API was associated with a 0.88% (95% confidence interval (CI): 0.50, 1.27%) increase of non-accidental mortality at lag 0-2 days. Harvesting effects appeared after 2 days' exposure. The effect estimate of API over lag 0-15 days was statistically significant and similar with those of pollutant-specific indices and APIw. Stronger associations between API and mortality were observed in the elderly, females and residents with low educational attainment. In conclusion, the API can be used to communicate health risks of air pollution.

  18. Can the Air Pollution Index be used to communicate the health risks of air pollution?

    PubMed

    Li, Li; Lin, Guo-Zhen; Liu, Hua-Zhang; Guo, Yuming; Ou, Chun-Quan; Chen, Ping-Yan

    2015-10-01

    The validity of using the Air Pollution Index (API) to assess health impacts of air pollution and potential modification by individual characteristics on air pollution effects remain uncertain. We applied distributed lag non-linear models (DLNMs) to assess associations of daily API, specific pollution indices for PM10, SO2, NO2 and the weighted combined API (APIw) with mortality during 2003-2011 in Guangzhou, China. An increase of 10 in API was associated with a 0.88% (95% confidence interval (CI): 0.50, 1.27%) increase of non-accidental mortality at lag 0-2 days. Harvesting effects appeared after 2 days' exposure. The effect estimate of API over lag 0-15 days was statistically significant and similar with those of pollutant-specific indices and APIw. Stronger associations between API and mortality were observed in the elderly, females and residents with low educational attainment. In conclusion, the API can be used to communicate health risks of air pollution. PMID:26057478

  19. [Molybdenum as an air pollutant].

    PubMed

    Lindner, R; Junker, E; Hoheiser, H

    1990-07-01

    Investigations into the reasons for the retarded growth and discolouration of a small area of a field of rape situated on the outskirts of Vienna revealed higher than normal levels of molybdenum in the soil (up to 430 micrograms/l) and in the water (up to 9.7 mg/l). The source of the pollution was traced to a neighbouring industrial plant that was emitting the metal via the chimney stack. A review of the literature on the toxic effects of molybdenum in general and as an air pollutant in particular is provided. This shows that, in contrast to animals, this effect is relatively small in humans and plants. Nevertheless, the occupation-related inhalation of the metal has been shown to be associated with pneumoconiosis and gout-like symptoms.

  20. Air pollution measurements from satellites

    NASA Technical Reports Server (NTRS)

    Ludwig, C. B.; Griggs, M.; Malkmus, W.; Bartle, E. R.

    1973-01-01

    A study is presented on the remote sensing of gaseous and particulate air pollutants which is an extension of a previous report. Pollutants can be observed by either active or passive remote sensing systems. Calculations discussed herein indicate that tropospheric CO, CO2, SO2, NO2, NH3, HCHO, and CH4 can be measured by means of nadir looking passive systems. Additional species such as NO, HNO3, O3, and H2O may be measured in the stratosphere through a horizon experiment. A brief theoretical overview of resonance Raman scattering and resonance fluorescence is given. It is found that radiance measurements are most promising for general global applications, and that stratospheric aerosols may be measured using a sun occultation technique. The instrumentation requirements for both active and passive systems are examined and various instruments now under development are described.

  1. The impact of the congestion charging scheme on air quality in London. Part 1. Emissions modeling and analysis of air pollution measurements.

    PubMed

    Kelly, Frank; Anderson, H Ross; Armstrong, Ben; Atkinson, Richard; Barratt, Ben; Beevers, Sean; Derwent, Dick; Green, David; Mudway, Ian; Wilkinson, Paul

    2011-04-01

    monitoring site for the period from February 17, 2001, to February 16, 2005, were transferred from the LAQN database. In the third part of our project, these data were used to compare geometric means for the 2 years before and the 2 years after the CCS was introduced. Temporal changes within the CCZ were compared with changes, over the same period, at similarly sited (roadside or background) monitors in a control area 8 km distant from the center of the CCZ. The analysis was confined to measurements obtained during the hours and days on which the scheme was in operation and focused on pollutants derived from vehicles (NO, NO2, NOx, PM10, and CO). This set of analyses was based on the limited data available from within the CCZ. When compared with data from outside the zone, we did not find evidence of temporal changes in roadside measurements of NOx, NO, and NO2, nor in urban background concentrations of NOx. (The latter result, however, concealed divergent trends in NO, which fell, and NO2, which rose.) Although based upon fewer stations, there was evidence that background concentrations of PM10 and CO fell within the CCZ compared with outside the zone. We also analyzed the trends in background concentrations for all London monitoring stations; as distance from the center of the CCZ increased, we found some evidence of an increasing gradation in NO and PM10 concentrations before versus after the intervention. This suggests a possible intermediate effect on air quality in the area immediately surrounding the CCZ. Although London is relatively well served with air quality monitoring stations, our study was restricted by the availability of only a few monitoring sites within the CCZ, and only one of those was at a roadside location. The results derived from this single roadside site are not likely to be an adequate basis for evaluating this complex urban traffic management scheme. Our primary approach to assessing the impact of the CCS was to analyze the changes in geometric

  2. Evaluating sources of indoor air pollution

    SciTech Connect

    Tichenor, B.A.; Sparks, L.E.; White, J.B.; Jackson, M.D. )

    1988-01-01

    Scientists and engineers in the Indoor Air Brand of EPS'a Air and Energy Engineering Research Laboratory are conducting research to increase the state of knowledge concerning indoor air pollution factors. A three phase program is being implemented. The purpose of this paper is to show how their approach can be used to evaluate specific sources of indoor air pollution. Pollutants from two sources are examined: para-dichlorobenzene emissions from moth crystal cakes; and particulate emissions from unvented kerosene heaters.

  3. Particulate air pollution and impaired lung function

    PubMed Central

    Paulin, Laura; Hansel, Nadia

    2016-01-01

    Air pollution is a leading cause of morbidity and mortality throughout the world, particularly in individuals with existing lung disease. Of the most common air pollutants, particulate matter (PM) is associated with an increased risk of exacerbations and respiratory symptoms in individuals with existing lung disease, and to a lesser extent, in those without known respiratory issues. The majority of published research has focused on the effects of PM exposures on symptoms and health care utilization. Fewer studies focus on the impact of PM on objective measurements of pulmonary function. This review will focus on the effects of PM exposure on objective measurements of lung function in both healthy individuals and those with existing lung disease. PMID:26962445

  4. Particulate air pollution and impaired lung function.

    PubMed

    Paulin, Laura; Hansel, Nadia

    2016-01-01

    Air pollution is a leading cause of morbidity and mortality throughout the world, particularly in individuals with existing lung disease. Of the most common air pollutants, particulate matter (PM) is associated with an increased risk of exacerbations and respiratory symptoms in individuals with existing lung disease, and to a lesser extent, in those without known respiratory issues. The majority of published research has focused on the effects of PM exposures on symptoms and health care utilization. Fewer studies focus on the impact of PM on objective measurements of pulmonary function. This review will focus on the effects of PM exposure on objective measurements of lung function in both healthy individuals and those with existing lung disease. PMID:26962445

  5. Particulate air pollution and impaired lung function.

    PubMed

    Paulin, Laura; Hansel, Nadia

    2016-01-01

    Air pollution is a leading cause of morbidity and mortality throughout the world, particularly in individuals with existing lung disease. Of the most common air pollutants, particulate matter (PM) is associated with an increased risk of exacerbations and respiratory symptoms in individuals with existing lung disease, and to a lesser extent, in those without known respiratory issues. The majority of published research has focused on the effects of PM exposures on symptoms and health care utilization. Fewer studies focus on the impact of PM on objective measurements of pulmonary function. This review will focus on the effects of PM exposure on objective measurements of lung function in both healthy individuals and those with existing lung disease.

  6. Air pollution vulnerabiity of 22 midwestern parks

    SciTech Connect

    Bennett, J.P.; Banerjee, N.

    1995-08-01

    Air pollution increases in United States national parks as sources grow closer. As this happens, biota will be increasingly affected. Can it be determined in advance which parks will be more impacted by these air pollutants that others? This study of 22 park units in the midwestern United States attempted to answer this question. Plant lists were compiled for the 22 parks, relative abundances of all species (common, intermediate, rare) estimated, their sensitivities from their life cycle types (annual, perennial-deciduous, perennial-evergreen) determined, and overall vulnerability as the average product of the two was calculated using a 3-2-1 scale for weighting the abundances. Scotts Bluff National Monument in western Nebraska was the most vulnerable park in the region, while Isle Royale National Park in Lake Superior was the least. This difference was due to the higher abundances of annual plant species in Scotts Bluff. Changing the values used for abundances changed the order of park vulnerabilites. Three air pollutants (ozone, sulfur dioxide, and sulfate) were found to increase from west to east in the midwest. Overlaying these patterns on the park vulnerabilities, and a customer analysis of the data, resulted in a determination of the air pollution risks to groups of parks. The parks most at risk (high vulnerability+high pollution levels) were two in Ohio (Hopewell Culture National Historical Park and Cuyahoga Valley National Recreation Area) and one in Indiana (Lincoln Boyhood National Memorial). Ten parks were grouped at lowest risk in an arc from Lake Superior, northern Minnesota, and Wisconsin through Nebraska and Kansas. Of three different surrogate methods tested for a relationship with overall vulnerability, only one appeared to be useful. Vulnerability could be directly calculated if a park`s vegetative structure was known without assembling the complete flora. 22 refs., 7 figs., 9 tabs.

  7. The public health relevance of air pollution abatement.

    PubMed

    Künzli, N

    2002-07-01

    Assuming a causal relationship between current levels of air pollution and morbidity/mortality, it is crucial to estimate the public health relevance of the problem. The derivation of air pollution attributable cases faces inherent uncertainties and requires influential assumptions. Based on the results of the trinational impact assessment study of Austria, France, and Switzerland, where prudent estimates of the air pollution attributable cases (mortality, chronic bronchitis incidence, hospital admissions, acute bronchitis among children, restricted activity days, asthma attacks) have been made, influential uncertainties are quantified in this review. The public health impact of smoking, environmental tobacco smoke, and air pollution on the prevalence of chronic cough/phlegm are outlined. Despite all methodological caveats, impact assessment studies clearly suggest that public health largely benefits from better air quality. The studies are selective underestimates as they are strongly driven by mortality, but do not include full quantification of the impact on morbidity and their consequences on quality of life among the diseased and the caregivers. Air pollution abatement strategies are usually political in nature, targeting at polities, regulation and technology in mobile or stationary sources rather than at individuals. It is of note that key clean air strategies converge into abatement of climate change. In general, energy consumption is very closely related to both air pollution and greenhouse gases. The dominant causes of both problems are the excessive and inefficient combustion of fossil fuel. Thus, for many policy options, the benefit of air pollution abatement will go far beyond what prudent health-impact assessments may derive. From a climate change and air pollution perspective, improved energy efficiency and a strong and decisive departure from the "fossil fuel" combustion society is a science-based must. Health professionals must raise their voices

  8. Environmental Chemistry: Air and Water Pollution.

    ERIC Educational Resources Information Center

    Stoker, H. Stephen; Seager, Spencer L.

    This is a book about air and water pollution whose chapters cover the topics of air pollution--general considerations, carbon monoxide, oxides of nitrogen, hydrocarbons and photochemical oxidants, sulfur oxides, particulates, temperature inversions and the greenhouse effect; and water pollution--general considerations, mercury, lead, detergents,…

  9. An air quality data analysis system for interrelating effects, standards, and needed source reductions: Part 12. Effects on man, animals, and plants as a function of air pollutant impact.

    PubMed

    Larsen, R I; McDonnell, W F; Coffin, D L; Heck, W W

    1993-12-01

    The impact-effect mathematical model, developed in 1991, improves on a previous mathematical model, and was developed to predict biological response as a function of air pollutant impact. Impact is defined here as exposure duration multiplied by air pollutant concentration raised to an exponent (t.cd). This paper's purpose is to plot and regress example biological effects as a function of air pollutant impact to determine how well the plotted data fit the impact-effect model for three target populations: man, animals, and plants (a wide range of life forms). The three biological effects are: for man, lung function decrease after exposure to ozone (O3); for animals, mouse mortality after exposure to nitrogen dioxide (NO2); and for plants, leaf injury after exposure to O3. The three resultant regression equations account for a substantial amount of the data variance: 95 percent for lung function, 92 percent for leaf injury, and 73 percent for mouse mortality. The model fits the animal and plant data that cover both acute and chronic exposures. The animal exposures ranged from 6 min to 1 yr. The plant exposures ranged from 0.75 to 552 h.

  10. The Particulate Air Pollution Controversy

    PubMed Central

    Phalen, Robert F.

    2004-01-01

    Scientists, regulators, legislators, and segments of industry and the lay public are attempting to understand and respond to epidemiology findings of associations between measures of modern particulate air pollutants (PM) and adverse health outcomes in urban dwellers. The associations have been interpreted to imply that tens of thousands of Americans are killed annually by small daily increments in PM. These epidemiology studies and their interpretations have been challenged, although it is accepted that high concentrations of air pollutants have claimed many lives in the past. Although reproducible and statistically significant, the relative risks associated with modern PM are very small and confounded by many factors. Neither toxicology studies nor human clinical investigations have identified the components and/or characteristics of PM that might be causing the health-effect associations. Currently, a massive worldwide research effort is under way in an attempt to identify whom might be harmed and by what substances and mechanisms. Finding the answers is important, because control measures have the potential not only to be costly but also to limit the availability of goods and services that are important to public health. PMID:19330148

  11. CRITICAL HEALTH ISSUES OF CRITERIA AIR POLLUTANTS

    EPA Science Inventory

    This chapter summarizes the key health information on ubiquitous outdoor air pollutants that can cause adverse health effects at current or historical ambient levels in the United States. Of the thousands of air pollutants, very few meet this definition. The Clean Air Act (CA...

  12. Methodology for assessing exposure and impacts of air pollutants in school children: Data collection, analysis and health effects - A literature review

    NASA Astrophysics Data System (ADS)

    Mejía, Jaime F.; Choy, Samantha Low; Mengersen, Kerrie; Morawska, Lidia

    2011-02-01

    The aim of this review is to explore the methodologies employed to assess the exposure of children to air pollutants, in particular traffic emissions, at school, and how these methodologies influence the assessment of the impact of this exposure on the children's health. This involves four main steps: the measurement of air quality at school level, the association between measured air quality and children's exposure, the association between children's exposure and health; and source identification. The comparative advantages and disadvantages of the methods used at each of these steps are discussed. Air quality in schools can be measured at three scales: broad scale, across several city blocks using remote monitors; school-based scale, through ground-level monitors installed within the schools or their immediate surroundings (i.e. only a few metres outside the school); and personal exposure scale using portable monitors attached to a sample of children. Although studies have reported high exposure to PAHs (polycyclic aromatic hydrocarbons), submicrometre (<1.0 μm) and ultrafine particles (<100 nm) at school, no study has investigated the formation of new particles in school facilities and only a handful of studies have analysed children's exposure at school. Associating air quality measurements at the broad and medium scale with children's exposure is challenging: there is spatial and temporal heterogeneity in the distribution of air quality within a school, indoor measurements can often exceed outdoor measurements; and exposure in the classroom is affected by the penetration of outdoor pollutants, wall absorption, emissions from furniture and other materials, level and length of occupancy, and quality of ventilation. This is further exacerbated by the fact that children move around during their school day. Quantifying the contribution of school exposure with observed health symptoms presents further challenges. In addition to ascertaining the impact of non

  13. Airplanes on Air Pollution: Discover-AQ

    NASA Video Gallery

    NASA's launching a new mission, summer 2011, designed to gather data on air pollution and help expand our understanding of how it affects us, and that could allow pollutants to be monitored more pr...

  14. Pigeons home faster through polluted air

    PubMed Central

    Li, Zhongqiu; Courchamp, Franck; Blumstein, Daniel T.

    2016-01-01

    Air pollution, especially haze pollution, is creating health issues for both humans and other animals. However, remarkably little is known about how animals behaviourally respond to air pollution. We used multiple linear regression to analyse 415 pigeon races in the North China Plain, an area with considerable air pollution, and found that while the proportion of pigeons successfully homed was not influenced by air pollution, pigeons homed faster when the air was especially polluted. Our results may be explained by an enhanced homing motivation and possibly an enriched olfactory environment that facilitates homing. Our study provides a unique example of animals’ response to haze pollution; future studies are needed to identify proposed mechanisms underlying this effect. PMID:26728113

  15. Pigeons home faster through polluted air

    NASA Astrophysics Data System (ADS)

    Li, Zhongqiu; Courchamp, Franck; Blumstein, Daniel T.

    2016-01-01

    Air pollution, especially haze pollution, is creating health issues for both humans and other animals. However, remarkably little is known about how animals behaviourally respond to air pollution. We used multiple linear regression to analyse 415 pigeon races in the North China Plain, an area with considerable air pollution, and found that while the proportion of pigeons successfully homed was not influenced by air pollution, pigeons homed faster when the air was especially polluted. Our results may be explained by an enhanced homing motivation and possibly an enriched olfactory environment that facilitates homing. Our study provides a unique example of animals’ response to haze pollution; future studies are needed to identify proposed mechanisms underlying this effect.

  16. Critical issues in air pollution epidemiology.

    PubMed Central

    Lippmann, M; Lioy, P J

    1985-01-01

    The epidemiological studies which have had significant impact on the setting of National Ambient Air Quality Standards (NAAQSs) were performed more than twenty years ago. Most of the more recent studies have been seriously flawed in their design and/or execution because they neglected to account for important variables such as: pollutant exposures other than those from ambient air; the influence of personal activity on pollutant uptake; host responsiveness; and the separate contributions of recent transient peak exposures and long-term chronic exposures on the effects endpoints. For particulate pollutants, the influence of composition and size distribution has also received too little consideration. In order to address these deficiencies, research and methods development are needed on: indices for particulate exposures; identification of exposures relevant to the effects; improved indices of effects; acquisition of response data; identification of exposed populations; and identification of susceptible subgroups. Approaches to these needs are discussed, along with brief reviews of several recent studies that have focused on critical issues of concern, made the necessary efforts to characterize the relevant exposures of the populations being studied, and demonstrated human responses to ambient pollutants at current exposure levels. PMID:4085428

  17. Air pollution: An environmental factor contributing to intestinal disease.

    PubMed

    Beamish, Leigh A; Osornio-Vargas, Alvaro R; Wine, Eytan

    2011-08-01

    The health impacts of air pollution have received much attention and have recently been subject to extensive study. Exposure to air pollutants such as particulate matter (PM) has been linked to lung and cardiovascular disease and increases in both hospital admissions and mortality. However, little attention has been given to the effects of air pollution on the intestine. The recent discovery of genes linked to susceptibility to inflammatory bowel diseases (IBD) explains only a fraction of the hereditary variance for these diseases. This, together with evidence of increases in incidence of IBD in the past few decades of enhanced industrialization, suggests that environmental factors could contribute to disease pathogenesis. Despite this, little research has examined the potential contribution of air pollution and its components to intestinal disease. Exposure of the bowel to air pollutants occurs via mucociliary clearance of PM from the lungs as well as ingestion via food and water sources. Gaseous pollutants may also induce systemic effects. Plausible mechanisms mediating the effects of air pollutants on the bowel could include direct effects on epithelial cells, systemic inflammation and immune activation, and modulation of the intestinal microbiota. Although there is limited epidemiologic evidence to confirm this, we suggest that a link between air pollution and intestinal disease exists and warrants further study. This link may explain, at least in part, how environmental factors impact on IBD epidemiology and disease pathogenesis.

  18. Ambient air pollution and allergic diseases in children.

    PubMed

    Kim, Byoung-Ju; Hong, Soo-Jong

    2012-06-01

    The prevalence of allergic diseases has increased worldwide, a phenomenon that can be largely attributed to environmental effects. Among environmental factors, air pollution due to traffic is thought to be a major threat to childhood health. Residing near busy roadways is associated with increased asthma hospitalization, decreased lung function, and increased prevalence and severity of wheezing and allergic rhinitis. Recently, prospective cohort studies using more accurate measurements of individual exposure to air pollution have been conducted and have provided definitive evidence of the impact of air pollution on allergic diseases. Particulate matter and ground-level ozone are the most frequent air pollutants that cause harmful effects, and the mechanisms underlying these effects may be related to oxidative stress. The reactive oxidative species produced in response to air pollutants can overwhelm the redox system and damage the cell wall, lipids, proteins, and DNA, leading to airway inflammation and hyper-reactivity. Pollutants may also cause harmful effects via epigenetic mechanisms, which control the expression of genes without changing the DNA sequence itself. These mechanisms are likely to be a target for the prevention of allergies. Further studies are necessary to identify children at risk and understand how these mechanisms regulate gene-environment interactions. This review provides an update of the current understanding on the impact of air pollution on allergic diseases in children and facilitates the integration of issues regarding air pollution and allergies into pediatric practices, with the goal of improving pediatric health.

  19. Overview of Issues in Health, Air Pollution, and Climate

    NASA Astrophysics Data System (ADS)

    Holloway, T.; McKinley, G.

    2003-12-01

    Air pollution contributes to mortality and respiratory disease worldwide, with developing countries at highest risk. The World Health Organization estimates that between 1.4 and 6 million people die each year from air pollution, and in some populations up to 30 % of all respiratory disease may be linked to air pollution. As the climate changes, increasing temperatures and changing precipitation patterns are expected to yield new health challenges and may worsen existing risks. This talk provides an overview of issues linking health impacts of air pollution and climate change, as an introduction for the session. Increasingly, health-driven projects are employing state-of-the-art modeling and measurement methodologies. We discuss how quantitative assessment methodologies have been used to understand the connections between health, air pollution and climate.

  20. Modelling the impact of climate variability and change on air pollution over Europe using the MATCH model linked to regional climate scenarios and ERA40

    NASA Astrophysics Data System (ADS)

    Langner, Joakim; Andersson, Camilla; Engardt, Magnuz

    2010-05-01

    Modelling the impact of climate variability and change on air pollution over Europe using the MATCH model linked to regional climate scenarios and ERA40 Joakim Langner, Camilla Andersson and Magnuz Engardt, Swedish Meteorological and Hydrological Institute, (SMHI), SE-601 76 Norrköping, Sweden. E-mail: joakim.langner@smhi.se Work on studying the impact of climate variability and change using the regional scale CTM MATCH has been pursued at SMHI since 2002. Here we report results from investigations using both climate scenarios from regional climate models and reanalysis data sets to investigate the importance of climate varibility for air pollution in Europe. We have studied the importance of changes in meteorological parameters as well as changes in natural emissions, wet and dry deposition, including soil moisture effects in a series of recent studies (Andersson et al. 2007; Andersson and Engardt 2009; Hole and Engardt 2008; Langner et al. 2005, 2009). We will report further extensions of these studies to account for uncertainties in climate model input, changes in air pollutant emissions, and changes in background concentrations. References Andersson, C., Langner, J. and Bergström, R., 2007. Interannual variation and trends in air pollution over Europe due to climate variability during 1958-2001 simulated with a regional CTM coupled to the ERA40 reanalysis. Tellus 59B, 77-98. doi: 10.1111/j.1600-0889.2006.00196.x Andersson, C. and Engardt, M., 2009. European ozone in a future climate: Importance of changes in dry deposition and isoprene emissions. JGR, Vol. 115. doi:10.1029/2008JD011690 Hole, L. and Engardt, M., 2008. Climate change impact on atmospheric nitrogen deposition in Northwestern Europe: A model study. Ambio 37, 9-17. Langner, J., Bergström, R. and Foltescu, V. 2005. Impact of climate change on surface ozone and deposition of sulphur and nitrogen in Europe. Atmos. Environ. 39, 1129-1141. Langner, J., Andersson, C. and Engardt, M., 2009. Atmospheric

  1. Comparative estimation of soil and plant pollution in the impact area of air emissions from an aluminium plant after technogenic load reduction.

    PubMed

    Evdokimova, Galina A; Mozgova, Natalya P

    2015-01-01

    The work provides a comparative analysis of changes in soil properties in the last 10-13 years along the pollution gradient of air emissions from Kandalaksha aluminium plant in connection with the reduction of their volume. The content of the priority pollutant fluorine (F) in atmospheric precipitation and in the organic horizon of soil in the plant impact zone significantly decreased in 2011-2013 compared to 2001. The aluminium concentrations reduced only in immediate proximity to the plant (2 km). The fluorine, calcium (Ca) and magnesium (Mg) concentrations are higher in liquid phase compared to solid phase thus these elements can migrated to greater distances from the pollution source (up to 15-20 km). Silicon (Si), aluminium (Al), iron (Fe) and phosphorus (P) can be found only in solid phases and in fall-out within the 5 km. The acidity of soil litter reduced by 2 pH units in the proximity to the plot within the 2 km. The zone of maximum soil contamination decreased from 2.5 km to 1.5 km from the emission source, the zones of heavy and moderate pollution reduced by 5 km in connection with the reduction of pollutant emissions in the plant. A high correlation between the fluorine concentrations in vegetables and litter was found. Higher fluorine concentrations in the soil result in its accumulation in plants. Mosses accumulate fluorine most intensively.

  2. Hybrid regional air pollution models

    SciTech Connect

    Drake, R.L.

    1980-03-01

    This discussion deals with a family of air quality models for predicting and analyzing the fine particulate loading in the atmosphere, for assessing the extent and degree of visibility impairment, and for determining the potential of pollutants for increasing the acidity of soils and water. The major horizontal scales of interest are from 400km to 2000km; and the time scales may vary from several hours, to days, weeks, and a few months or years, depending on the EPA regulations being addressed. First the role air quality models play in the general family of atmospheric simulation models is described. Then, the characteristics of a well-designed, comprehensive air quality model are discussed. Following this, the specific objectives of this workshop are outlined, and their modeling implications are summarized. There are significant modeling differences produced by the choice of the coordinate system, whether it be the fixed Eulerian system, the moving Lagrangian system, or some hybrid of the two. These three systems are briefly discussed, and a list of hybrid models that are currently in use are given. Finally, the PNL regional transport model is outlined and a number of research needs are listed.

  3. The impact of 9/11 on the association of ambient air pollution with daily respiratory hospital admissions in a Canada-US border city, Windsor, Ontario

    PubMed Central

    LUGINAAH, ISAAC; FUNG, KAREN Y.; GOREY, KEVIN M.; KHAN, SHAHEDUL

    2010-01-01

    The 11 September 2001 (9/11) terrorist attacks in the United States resulted in long lines of trucks at the border crossing in Windsor, Ontario. Public concern about the potential impact of these trucks spewing toxic pollutants into the air drew attention to the need to investigate the impact of 9/11 on the daily levels of air pollutants and respiratory hospitalization. In this study, significant increases in respiratory admissions were found one month and 6 months post-9/11. Mean daily respiratory admission was also significantly higher than the same period one year earlier and one year later. SO2 and CO concentration levels were found to be generally higher after 9/11 than one year before and immediately before. Relative risk estimates of respiratory hospitalization after 9/11 showed that SO2 (RR̂ = 1.15 for two-day, RR̂ = 1.18 for three-day, and RR̂ = 1.21 for five-day averages), NO2 (RR̂ = 1.10 for current day), and COH (RR̂ = 1.09 for current day, RR̂ = 1.10 for two-day average) had the most significant effects after 9/11. These results suggest the need for more stringent regulatory efforts in air quality in the region in response to the changing transportation dynamics at this Canada-US border crossing. PMID:21234298

  4. Air Pollution in Road Tunnels

    PubMed Central

    Waller, R. E.; Commins, B. T.; Lawther, P. J.

    1961-01-01

    As a part of a study of pollution of the air by motor vehicles, measurements have been made in two London road tunnels during periods of high traffic density. The concentrations of smoke and polycyclic hydrocarbons found there are much higher than the average values in Central London, but they are of the same order of magnitude as those occurring during temperature inversions on winter evenings when smoke from coal fires accumulates at a low level. An attempt has been made to relate the concentration of each pollutant to the type and amount of traffic. Both diesel and petrol vehicles make some contribution to the amounts of smoke and polycyclic hydrocarbons found in the tunnels, but in the case of smoke, fluoranthene, 1: 2-benzpyrene, pyrene, and 3: 4-benzpyrene, the concentrations appear to be more closely related to the density of diesel traffic than to that of petrol traffic. The concentrations of lead and carbon monoxide have also been determined, and these are very closely related to the density of petrol traffic. During the morning and evening rush hours the mean concentration of carbon monoxide was just over 100 p.p.m. and peak values up to 500 p.p.m. were recorded at times. Oxides of nitrogen were determined in some of the experiments and there was always much more nitric oxide than nitrogen dioxide. Eye irritation was experienced but its cause was not investigated. The concentration of pollution in the tunnels does not appear to be high enough to create any special hazards for short-term exposures. The amosphere at peak periods may become very dirty and unpleasant and the concentration of carbon monoxide would be sufficient to produce some effect over a period of several hours' continuous exposure. The total emission of pollution from road vehicles must still be small in comparison with that from coal fires, but the effect of traffic on the concentration of smoke, polycyclic hydrocarbons, carbon monoxide, and lead in the air of city streets deserves

  5. Health, wealth, and air pollution: advancing theory and methods.

    PubMed Central

    O'Neill, Marie S; Jerrett, Michael; Kawachi, Ichiro; Levy, Jonathan I; Cohen, Aaron J; Gouveia, Nelson; Wilkinson, Paul; Fletcher, Tony; Cifuentes, Luis; Schwartz, Joel

    2003-01-01

    The effects of both ambient air pollution and socioeconomic position (SEP) on health are well documented. A limited number of recent studies suggest that SEP may itself play a role in the epidemiology of disease and death associated with exposure to air pollution. Together with evidence that poor and working-class communities are often more exposed to air pollution, these studies have stimulated discussion among scientists, policy makers, and the public about the differential distribution of the health impacts from air pollution. Science and public policy would benefit from additional research that integrates the theory and practice from both air pollution and social epidemiologies to gain a better understanding of this issue. In this article we aim to promote such research by introducing readers to methodologic and conceptual approaches in the fields of air pollution and social epidemiology; by proposing theories and hypotheses about how air pollution and socioeconomic factors may interact to influence health, drawing on studies conducted worldwide; by discussing methodologic issues in the design and analysis of studies to determine whether health effects of exposure to ambient air pollution are modified by SEP; and by proposing specific steps that will advance knowledge in this field, fill information gaps, and apply research results to improve public health in collaboration with affected communities. PMID:14644658

  6. Global air pollution crossroads over the Mediterranean.

    PubMed

    Lelieveld, J; Berresheim, H; Borrmann, S; Crutzen, P J; Dentener, F J; Fischer, H; Feichter, J; Flatau, P J; Heland, J; Holzinger, R; Korrmann, R; Lawrence, M G; Levin, Z; Markowicz, K M; Mihalopoulos, N; Minikin, A; Ramanathan, V; De Reus, M; Roelofs, G J; Scheeren, H A; Sciare, J; Schlager, H; Schultz, M; Siegmund, P; Steil, B; Stephanou, E G; Stier, P; Traub, M; Warneke, C; Williams, J; Ziereis, H

    2002-10-25

    The Mediterranean Intensive Oxidant Study, performed in the summer of 2001, uncovered air pollution layers from the surface to an altitude of 15 kilometers. In the boundary layer, air pollution standards are exceeded throughout the region, caused by West and East European pollution from the north. Aerosol particles also reduce solar radiation penetration to the surface, which can suppress precipitation. In the middle troposphere, Asian and to a lesser extent North American pollution is transported from the west. Additional Asian pollution from the east, transported from the monsoon in the upper troposphere, crosses the Mediterranean tropopause, which pollutes the lower stratosphere at middle latitudes.

  7. Surveillance of the short-term impact of fine particle air pollution on cardiovascular disease hospitalizations in New York State

    PubMed Central

    2009-01-01

    Background Studies have shown that the effects of particulate matter on health vary based on factors including the vulnerability of the population, health care practices, exposure factors, and the pollutant mix. Methods We used time-stratified case-crossover to estimate differences in the short-term impacts of PM2.5 on cardiovascular disease hospital admissions in New York State by geographic area, year, age, gender, co-morbid conditions, and area poverty rates. Results PM2.5 had a stronger impact on heart failure than other cardiovascular diagnoses, with 3.1% of heart failure admissions attributable to short-term PM2.5 exposure over background levels of 5 ug/m3. Older adults were significantly more susceptible to heart failure after short-term ambient PM2.5 exposure than younger adults. Conclusion The short-term impact of PM2.5 on cardiovascular disease admissions, and modifications of that impact, are small and difficult to measure with precision. Multi-state collaborations will be necessary to attain more precision to describe spatiotemporal differences in health impacts. PMID:19772650

  8. EPA's indoor air/pollution prevention workshop

    SciTech Connect

    Leovic, K.W.; White, J.B.; Sarsony, C.

    1993-01-01

    The paper discusses a workshop held as a step toward EPA's prioritizing potential areas of research for applying pollution prevention to indoor air quality (IAQ). The workshop involved technical experts in the fields of IAQ, pollution prevention, and selected industries. Workshop goals were to identify major IAQ issues and their pollution prevention opportunities, and to suggest research strategies for IAQ/pollution prevention. The paper summarizes the suggestions made by workshop participants and highlights opportunities for IAQ/pollution prevention research.

  9. The importance of toxicity in determining the impact of hazardous air pollutants on the respiratory health of children in Tennessee.

    PubMed

    Moore, Roberta J H; Hotchkiss, Julie L

    2016-09-01

    Respiratory diseases, exacerbated through point source pollution, are currently among the leading causes of hospitalization of children in the United States. This paper investigates the relationship between the proximity of hazardous air pollutants (HAPs) emitted from Toxic Release Inventory (TRI) facilities and the number of children diagnosed in hospitals with a respiratory disease in Tennessee. The importance of controlling for toxicity of those HAPs is of particular interest. Hospital discharge, socioeconomic, TRI emission, and HAP toxicity data are used to estimate, via Generalized Linear Methods, a logistic regression model describing the relationship between the percent of children living in a zip code area treated for respiratory illness and the average annual emissions over the previous 10 years of HAPs from TRI sites in that area. Controlling for area socioeconomic characteristics, we find that accounting for toxicity is important in uncovering the relationship between HAP emissions and respiratory health of children. A one standard deviation increase in toxicity-weighted emissions per 100 square miles is associated with an increase in the number of children diagnosed with asthma (chronic bronchitis) by about 1205 (260). The evidence suggests that, with a goal to improving children's respiratory health, monitoring the toxicity of chemicals being emitted is at least as important as simply monitoring total emission levels. This suggests that the EPA should consider making efforts toward establishing toxicity adjusted emission guidelines. PMID:27342000

  10. Long-term Changes in Extreme Air Pollution Meteorology and the Implications for Air Quality.

    PubMed

    Hou, Pei; Wu, Shiliang

    2016-01-01

    Extreme air pollution meteorological events, such as heat waves, temperature inversions and atmospheric stagnation episodes, can significantly affect air quality. Based on observational data, we have analyzed the long-term evolution of extreme air pollution meteorology on the global scale and their potential impacts on air quality, especially the high pollution episodes. We have identified significant increasing trends for the occurrences of extreme air pollution meteorological events in the past six decades, especially over the continental regions. Statistical analysis combining air quality data and meteorological data further indicates strong sensitivities of air quality (including both average air pollutant concentrations and high pollution episodes) to extreme meteorological events. For example, we find that in the United States the probability of severe ozone pollution when there are heat waves could be up to seven times of the average probability during summertime, while temperature inversions in wintertime could enhance the probability of severe particulate matter pollution by more than a factor of two. We have also identified significant seasonal and spatial variations in the sensitivity of air quality to extreme air pollution meteorology. PMID:27029386

  11. Long-term Changes in Extreme Air Pollution Meteorology and the Implications for Air Quality.

    PubMed

    Hou, Pei; Wu, Shiliang

    2016-03-31

    Extreme air pollution meteorological events, such as heat waves, temperature inversions and atmospheric stagnation episodes, can significantly affect air quality. Based on observational data, we have analyzed the long-term evolution of extreme air pollution meteorology on the global scale and their potential impacts on air quality, especially the high pollution episodes. We have identified significant increasing trends for the occurrences of extreme air pollution meteorological events in the past six decades, especially over the continental regions. Statistical analysis combining air quality data and meteorological data further indicates strong sensitivities of air quality (including both average air pollutant concentrations and high pollution episodes) to extreme meteorological events. For example, we find that in the United States the probability of severe ozone pollution when there are heat waves could be up to seven times of the average probability during summertime, while temperature inversions in wintertime could enhance the probability of severe particulate matter pollution by more than a factor of two. We have also identified significant seasonal and spatial variations in the sensitivity of air quality to extreme air pollution meteorology.

  12. Long-term Changes in Extreme Air Pollution Meteorology and the Implications for Air Quality

    PubMed Central

    Hou, Pei; Wu, Shiliang

    2016-01-01

    Extreme air pollution meteorological events, such as heat waves, temperature inversions and atmospheric stagnation episodes, can significantly affect air quality. Based on observational data, we have analyzed the long-term evolution of extreme air pollution meteorology on the global scale and their potential impacts on air quality, especially the high pollution episodes. We have identified significant increasing trends for the occurrences of extreme air pollution meteorological events in the past six decades, especially over the continental regions. Statistical analysis combining air quality data and meteorological data further indicates strong sensitivities of air quality (including both average air pollutant concentrations and high pollution episodes) to extreme meteorological events. For example, we find that in the United States the probability of severe ozone pollution when there are heat waves could be up to seven times of the average probability during summertime, while temperature inversions in wintertime could enhance the probability of severe particulate matter pollution by more than a factor of two. We have also identified significant seasonal and spatial variations in the sensitivity of air quality to extreme air pollution meteorology. PMID:27029386

  13. Long-term Changes in Extreme Air Pollution Meteorology and the Implications for Air Quality

    NASA Astrophysics Data System (ADS)

    Hou, Pei; Wu, Shiliang

    2016-03-01

    Extreme air pollution meteorological events, such as heat waves, temperature inversions and atmospheric stagnation episodes, can significantly affect air quality. Based on observational data, we have analyzed the long-term evolution of extreme air pollution meteorology on the global scale and their potential impacts on air quality, especially the high pollution episodes. We have identified significant increasing trends for the occurrences of extreme air pollution meteorological events in the past six decades, especially over the continental regions. Statistical analysis combining air quality data and meteorological data further indicates strong sensitivities of air quality (including both average air pollutant concentrations and high pollution episodes) to extreme meteorological events. For example, we find that in the United States the probability of severe ozone pollution when there are heat waves could be up to seven times of the average probability during summertime, while temperature inversions in wintertime could enhance the probability of severe particulate matter pollution by more than a factor of two. We have also identified significant seasonal and spatial variations in the sensitivity of air quality to extreme air pollution meteorology.

  14. Lung cancer and air pollution.

    PubMed

    Aoki, K; Shimizu, H

    1977-12-01

    The relationship between incidence of lung cancer and the volume of traffic as indicated by auto exhaust concentration was examined; the results, though suggestive, did not yield consistent evidence of the association between them. Traffic jams in Nagoya began 15 years ago, a period that may not be long enough to provide definitive data on the incidence of lung cancer. The high standardized mortality ratio (SMR) of lung cancer was observed in cities with a population of less than 1 million and guns (rural areas) along the coast, although those in the metropolitan areas with populations of more than 1 million were average. The SMR did not correlate with various socioeconomic conditions and industrial air pollution. Meteorologic or geologic conditions and ocean currents were not associated with SMR of lung cancer by city and gun. The population of a gun or of some cities was not large enough to be statistically significant, and the mortality rate of lung cancer was not always stable.

  15. The myths of indoor air pollution

    SciTech Connect

    Levin, H.

    1993-03-01

    A popular myth holds that building energy conservation measures, implemented since the oil crises of the 1970s, cause indoor air pollution problems. This myth ignores the fact that most indoor air pollutant sources have little or nothing to do with energy conservation. Air studied inside buildings before 1973 was found to be more polluted than outdoor air even during severe air pollution events. In fact, only two types of conservation measures directly increase indoor air pollutant concentrations: inappropriately reduced ventilation and using sealants and caulks that emit pollutants. The myth ignores the fundamental responsibility (and ability) of architects, engineers, and building operators to create indoor environments that are both extremely habitable and environmentally responsible. Architects and other building design professionals must provide safe, healthy, and comfortable environments; minimize damage to the environment; and conserve energy and other resources. Achieving good indoor air quality (IAQ) is as essential as providing comfortable, healthy thermal conditions and functional, aesthetically sound lighting and acoustical environments. Reducing ventilation to conserve energy certainly increases concentrations of pollutants emitted from indoor sources. Adequate ventilation is essential to achieving and maintaining good IAQ. But there are many factors that determine IAQ and their interdependence is strong. Although ventilation is an important way to limit pollutant concentrations, limiting pollutant sources is far more effective. Pollutants from indoor sources that cannot be eliminated should be minimized by careful planning, design, specification, and construction. The preventive approach costs very little and it saves energy. 6 refs., 7 tabs.

  16. [Air pollution and the lung: epidemiological approach].

    PubMed

    Annesi-Maesano, Isabella; Dab, William

    2006-01-01

    Epidemiological evidence has concurred with clinical and experimental evidence to correlate current levels of ambient air pollution, both indoors and outdoors, with respiratory effects. In this respect, the use of specific epidemiological methods has been crucial. Common outdoor pollutants are particulate matter, nitrogen dioxide, carbon monoxide, volatile organic compounds and ozone. Short-term effects of outdoor air pollution include changes in lung function, respiratory symptoms and mortality due to respiratory causes. Increase in the use of health care resources has also been associated with short-term effects of air pollution. Long-term effects of cumulated exposure to urban air pollution include lung growth impairment, chronic obstructive pulmonary disease (COPD), lung cancer, and probably the development of asthma and allergies. Lung cancer and COPD have been related to a shorter life expectancy. Common indoor pollutants are environmental tobacco smoke, particulate matter, nitrogen dioxide, carbon monoxide, volatile organic compounds and biological allergens. Concentrations of these pollutants can be many times higher indoors than outdoors. Indoor air pollution may increase the risk of irritation phenomena, allergic sensitisation, acute and chronic respiratory disorders and lung function impairment. Recent conservative estimates have shown that 1.5-2 million deaths per year worldwide could be attributed to indoor air pollution. Further epidemiological research is necessary to better evaluate the respiratory health effects of air pollution and to implement protective programmes for public health.

  17. Linking Urban Air Pollution to Global Tropospheric Chemistry and Climate

    NASA Technical Reports Server (NTRS)

    Wang, Chien

    2005-01-01

    The two major tasks of this project are to study: (a) the impact of urban nonlinear chemistry on chemical budgets of key pollutants in non-urban areas; and (b) the influence of air pollution control strategies in selected metropolitan areas, particularly of emerging economies in East and South Asia, on tropospheric chemistry and hence on regional and global climate.

  18. Combined air and water pollution control system

    NASA Technical Reports Server (NTRS)

    Wolverton, Billy C. (Inventor); Jarrell, Lamont (Inventor)

    1990-01-01

    A bioaquatic air pollution control system for controlling both water and atmospheric pollution is disclosed. The pollution control system includes an exhaust for directing polluted gases out of a furnace and a fluid circulating system which circulates fluid, such as waste water, from a source, past the furnace where the fluid flow entrains the pollutants from the furnace. The combined fluid and pollutants are then directed through a rock/plant/microbial filtering system. A suction pump pumps the treated waste water from the filter system past the exhaust to again entrain more pollutants from the furnace where they are combined with the fluid (waste water) and directed to the filter system.

  19. APEX (Air Pollution Exercise) Volume 3: Air Pollution Control Officer's Manual.

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Research Triangle Park, NC. Office of Manpower Development.

    The Air Pollution Control Officer's (APCO) Manual is part of a set of 21 manuals (AA 001 009-001 029) used in APEX (Air Pollution Exercise) a computerized college and professional level "real world" game simulation of a community with urban and rural problems, industrial activities, and air pollution difficulties, The first two sections, which are…

  20. APEX (Air Pollution Exercise) Volume 21: Legal References: Air Pollution Control Regulations.

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Research Triangle Park, NC. Office of Manpower Development.

    The Legal References: Air Pollution Control Regulations Manual is the last in a set of 21 manuals (AA 001 009-001 029) used in APEX (Air Pollution Exercise), a computerized college and professional level "real world" game simulation of a community with urban and rural problems, industrial activities, and air pollution difficulties. The manual…

  1. Spatial resolution requirements for traffic-related air pollutant exposure evaluations

    EPA Science Inventory

    Vehicle emissions represent one of the most important air pollution sources in most urban areas, and elevated concentrations of pollutants found near major roads have been associated with many adverse health impacts. To understand these impacts, exposure estimates should reflect ...

  2. Air pollution and sports performance in Beijing.

    PubMed

    Lippi, G; Guidi, G C; Maffulli, N

    2008-08-01

    The Beijing Olympics will begin in August 2008 and athletes will face an unpredictable challenge. Based on present data, Beijing is one of the most polluted megacities in the world; the air concentrations of carbon monoxide (CO), ozone, nitrogen oxides (NO and NO2), sulphur dioxide (SO2) and particulate matter approach or exceed the current limits established by U. S. Environmental Protection Agency (EPA). Although the athletes who will be competing in Beijing are physiologically very different to the participants in most published studies, and it is therefore difficult to predict individual responses, there is little doubt that the presence of these air pollutants might be detrimental to athletic performance due to the marked increase (up to 20-fold) in ventilatory rate and concomitant nasal and oral breathing. Moreover, mouth breathing often bypasses the noise during strenuous exercise, increasing the deleterious effects of pollutants on health and athletic performance. Although limited, each decrement in athletic performance would have a potentially deleterious impact on top-class athletes competing in the next Olympics in China. Several Olympic records are regularly broken during the Olympics. Will this be the case for Beijing? PMID:18512178

  3. Source apportionment of indoor air pollution

    NASA Astrophysics Data System (ADS)

    Sexton, Ken; Hayward, Steven B.

    An understanding of the relative contributions from important pollutant sources to human exposures is necessary for the design and implementation of effective control strategies. In the past, societal efforts to control air pollution have focused almost exclusively on the outdoor (ambient) environment. As a result, substantial amounts of time and money have been spent to limit airborne discharges from mobile and stationary sources. Yet it is now recognized that exposures to elevated pollutant concentrations often occur as a result of indoor, rather than outdoor, emissions. While the major indoor sources have been identified, their relative impacts on indoor air quality have not been well defined. Application of existing source apportionment models to nonindustrial indoor environments is only just beginning. It is possible that these models might be used to distinguish between indoor and outdoor emissions, as well as to distinguish among indoor sources themselves. However, before the feasibility and suitability of source-apportionment methods for indoor applications can be assessed adequately, it is necessary to take account of model assumptions and associated data requirements. This paper examines the issue of indoor source apportionment and reviews the need for emission characterization studies to support such source-apportionment efforts.

  4. The effects of air pollution on the health of children

    PubMed Central

    Buka, Irena; Koranteng, Samuel; Osornio-Vargas, Alvaro R

    2006-01-01

    The present article is intended to inform paediatricians about the associations between ambient air pollution and adverse health outcomes in children within the context of current epidemiological evidence. The majority of the current literature pertains to adverse respiratory health outcomes, including asthma, other respiratory symptoms, and deficits in lung function and growth, as well as exposure to ambient levels of criteria air pollutants. In addition to the above, the present article highlights mortality, pregnancy outcomes, vitamin D deficiency and alteration in the immune system of children. Some of the data on the impact of improved air quality on children’s health are provided, including the reduction of air pollution in former East Germany following the reunification of Germany, as well as the reduction in the rates of childhood asthma events during the 1996 Summer Olympics in Atlanta, Georgia, due to a reduction in local motor vehicle traffic. However, there are many other toxic air pollutants that are regularly released into the air. These pollutants, which are not regularly monitored and have not been adequately researched, are also potentially harmful to children. Significant morbidity and mortality is attributed to ambient air pollution, resulting in a significant economic cost to society. As Canada’s cities grow, air pollution issues need to be a priority in order to protect the health of children and support sustainable development for future generations. PMID:19030320

  5. The effects of air pollution on the health of children.

    PubMed

    Buka, Irena; Koranteng, Samuel; Osornio-Vargas, Alvaro R

    2006-10-01

    The present article is intended to inform paediatricians about the associations between ambient air pollution and adverse health outcomes in children within the context of current epidemiological evidence.The majority of the current literature pertains to adverse respiratory health outcomes, including asthma, other respiratory symptoms, and deficits in lung function and growth, as well as exposure to ambient levels of criteria air pollutants. In addition to the above, the present article highlights mortality, pregnancy outcomes, vitamin D deficiency and alteration in the immune system of children.Some of the data on the impact of improved air quality on children's health are provided, including the reduction of air pollution in former East Germany following the reunification of Germany, as well as the reduction in the rates of childhood asthma events during the 1996 Summer Olympics in Atlanta, Georgia, due to a reduction in local motor vehicle traffic. However, there are many other toxic air pollutants that are regularly released into the air. These pollutants, which are not regularly monitored and have not been adequately researched, are also potentially harmful to children.Significant morbidity and mortality is attributed to ambient air pollution, resulting in a significant economic cost to society. As Canada's cities grow, air pollution issues need to be a priority in order to protect the health of children and support sustainable development for future generations. PMID:19030320

  6. Managing residential sources of indoor air pollution

    SciTech Connect

    Tichenor, B.A.; Sparks, L.E.

    1994-12-31

    Sources of indoor air pollutants in residential environments can be managed to reduce occupant exposures. Techniques for managing indoor air pollution sources include: source elimination, substitution, modification, and pretreatment, and altering the amount, location, or time of use. Intelligent source management requires knowledge of the source`s emission characteristics, including chemical composition, emission rates, and decay rates. In addition, knowledge of outdoor air exchange rates, heating/air-conditioning duct flow rates, and kitchen/batch exhaust fan flow rates is needed to determine pollutant concentrations. Indoor air quality (IAQ) models use this information and occupant activity patterns to determine instantaneous and/or cumulative individual exposure. This paper describes a number of residential scenarios for various indoor air pollution VOC sources, several air flow conditions, and typical occupant activity patterns. IAQ model predictions of occupant exposures for these scenarios are given for selected source management options.

  7. Adverse health effects of outdoor air pollutants.

    PubMed

    Curtis, Luke; Rea, William; Smith-Willis, Patricia; Fenyves, Ervin; Pan, Yaqin

    2006-08-01

    Much research on the health effects of outdoor air pollution has been published in the last decade. The goal of this review is to concisely summarize a wide range of the recent research on health effects of many types of outdoor air pollution. A review of the health effects of major outdoor air pollutants including particulates, carbon monoxide, sulfur and nitrogen oxides, acid gases, metals, volatile organics, solvents, pesticides, radiation and bioaerosols is presented. Numerous studies have linked atmospheric pollutants to many types of health problems of many body systems including the respiratory, cardiovascular, immunological, hematological, neurological and reproductive/ developmental systems. Some studies have found increases in respiratory and cardiovascular problems at outdoor pollutant levels well below standards set by such agencies as the US EPA and WHO. Air pollution is associated with large increases in medical expenses, morbidity and is estimated to cause about 800,000 annual premature deaths worldwide [Cohen, A.J., Ross Alexander, H., Ostro, B., Pandey, K.D., Kryzanowski, M., Kunzail, N., et al., 2005. The global burden of disease due to outdoor air pollution. J Toxicol Environ Health A. 68: 1-7.]. Further research on the health effects of air pollution and air pollutant abatement methods should be very helpful to physicians, public health officials, industrialists, politicians and the general public. PMID:16730796

  8. Air Pollution and Its Control, Second Edition.

    ERIC Educational Resources Information Center

    Sproull, Wayne T.

    A concise appraisal of our contemporary status and future prospects with regard to air pollution and its control are offered in this text for concerned laymen. What air pollution is, how it endangers health, the cost of controlling it, what is being done about it now, and what should be done are some of the basic questions considered. Topics cover…

  9. A Course in Air Pollution for Engineers.

    ERIC Educational Resources Information Center

    Seapan, Mayis

    1982-01-01

    An air pollution course covering both the fundamentals and control of air pollution introduces a new sequential structure for its topic presentation. The new structure is built on the basis of theoretical principles and has minimized the traditional case study approach. A detailed course outline is included. (Author/JN)

  10. Career Guide for Air Pollution Control

    ERIC Educational Resources Information Center

    Baldwin, Lionel V.

    1975-01-01

    This guide to career opportunities in air pollution control includes resource information in this area and provides a listing of colleges and universities offering environmental science programs. The guide was prepared by the S-11 Education and Training Committee of the Air Pollution Control Association. (Author/BT)

  11. Air pollution and respiratory viral infection

    EPA Science Inventory

    Despite current regulations, which limit the levels of certain air pollutants, there are still a number of adverse health effects that result from exposure to these agents. Numerous epidemiological studies have noted an association between the levels of air pollution and hospital...

  12. Air pollution problems in Latin America

    SciTech Connect

    Weitzenfeld, H. )

    1992-01-01

    Air pollution and associated health problems in Latin America are on the rise. This article provides an overview of conditions indicated by the admittedly limited data available, notes some of the present situation's health implications, and points out areas where air pollution data procurement and control measures could be improved.

  13. Controlling Indoor Air Pollution from Moxibustion

    PubMed Central

    Lu, Chung-Yen; Kang, Sy-Yuan; Liu, Shu-Hui; Mai, Cheng-Wei; Tseng, Chao-Heng

    2016-01-01

    Indoor air quality (IAQ) control of hospitals plays a critical role in protecting both hospital staffs and patients, particularly those who are highly susceptible to the adverse effects of indoor noxious hazards. However, moxibustion in outpatient departments (OPDs) of traditional Chinese medicine (TCM) may be a source of indoor air pollution in hospitals. Some studies have investigated indoor air pollution during moxibustion in Chinese medicine clinics (CMCs) and moxibustion rooms, demonstrating elevated air pollutants that pose a threat to the health of medical staff and patients. Our study investigated the indoor air pollutants of indoor carbon dioxide (CO2), carbon monoxide (CO), formaldehyde (HCHO), total volatile organic compounds (TVOCs), airborne particulate matter with a diameter of ≤10 µm (PM10) and ≤2.5 µm (PM2.5) during moxibustion in an acupuncture and moxibustion room of the OPD in a hospital in Taipei. To evaluate the different control strategies for indoor air pollution from moxibution, a comparison of air pollutants during moxibution among the methods of using alternative old moxa wools, local exhaust ventilation and an air cleaner was conducted. In this study, burning alternative old moxa wools for moxibustion obviously reduced all gaseous pollutants except for aerosols comparing burning fresh moxa wools. Using local exhaust ventilation reduced most of the aerosols after burning moxa. We also found that using an air cleaner was inefficient for controlling indoor air pollutants, particularly gaseous pollutants. Therefore, combining replacing alternative old moxa wools and local exhaust ventilation could be a suitable design for controlling indoor air pollution during moxibustion therapy. PMID:27331817

  14. A Modeling Investigation of Human Exposure to Select Traffic-Related Air Pollutants in the Tampa Area: Spatiotemporal Distributions of Concentrations, Social Distributions of Exposures, and Impacts of Urban Design on Both

    NASA Astrophysics Data System (ADS)

    Yu, Haofei

    Increasing vehicle dependence in the United States has resulted in substantial emissions of traffic-related air pollutants that contribute to the deterioration of urban air quality. Exposure to urban air pollutants trigger a number of public health concerns, including the potential of inequality of exposures and health effects among population subgroups. To better understand the impact of traffic-related pollutants on air quality, exposure, and exposure inequality, modeling methods that can appropriately characterize the spatiotemporally resolved concentration distributions of traffic-related pollutants need to be improved. These modeling methods can then be used to investigate the impacts of urban design and transportation management choices on air quality, pollution exposures, and related inequality. This work will address these needs with three objectives: 1) to improve modeling methods for investigating interactions between city and transportation design choices and air pollution exposures, 2) to characterize current exposures and the social distribution of exposures to traffic-related air pollutants for the case study area of Hillsborough County, Florida, and 3) to determine expected impacts of urban design and transportation management choices on air quality, air pollution exposures, and exposure inequality. To achieve these objectives, the impacts of a small-scale transportation management project, specifically the '95 Express' high occupancy toll lane project, on pollutant emissions and nearby air quality was investigated. Next, a modeling method capable of characterizing spatiotemporally resolved pollutant emissions, concentrations, and exposures was developed and applied to estimate the impact of traffic-related pollutants on exposure and exposure inequalities among several population subgroups in Hillsborough County, Florida. Finally, using these results as baseline, the impacts of sprawl and compact urban forms, as well as vehicle fleet electrification

  15. Monitoring impacts of air pollution: PIXE analysis and histopathological modalities in evaluating relative risks of elemental contamination.

    PubMed

    Ejaz, Sohail; Camer, Gerry Amor; Anwar, Khaleeq; Ashraf, Muhammad

    2014-04-01

    Environmental toxicants invariably affect all biological organisms resulting to sufferings ranging from subclinical to debilitating clinical conditions. This novel research aimed to determine the toxic burdens of increased environmental elements in some vital organs/tissues of the wild animals (starling, owl, crow and pigeon), exposed to air polluted environment were assessed using particle induced X-ray emission and histopathological approaches. The presence of significantly elevated amounts of elemental toxicants namely: Aluminum (Al), Chlorine (Cl), Iron (Fe), Potassium (K), Magnesium (Mg), Manganese (Mn), Silicon (Si) and Vanadium (V) from the skin, muscle, lungs, liver and kidney of sampled animals were in concurrence with the observed histopathological changes. The skin of sampled starling, owl, pigeon and crow spotlighted highly significant increase (P < 0.001) in Al, Cl, Mg and Si. Muscle samples with myodegenerative lesions and mineral depositions highlighted substantial augmentation (P < 0.001) in the amount of Al, Fe, Mn, Si and V. The lungs of starling, owl, and pigeon were severely intoxicated (P < 0.001) with increased amount of Al, Fe, K, Mn and Si producing pulmonary lesions of congestion, edema, pneumonitis and mineral debris depositions. Liver samples revealed that the sampled animals were laden with Cl, Fe, Mg, Mn and V with histopathological profound degenerative changes and hepatic necrosis. Kidney sections presented severe tubular degenerative and necrotic changes that may be attributed to increased amounts of Cl and Fe. These current findings implied that the environmental/elemental toxicants and the accompanying lesions that were discerned in the organs/tissues of sampled birds may as well be afflicting people living within the polluted area. Further assessment to more conclusively demonstrate correlations of current findings to those of the populace within the area is encouraged.

  16. Direct and indirect exposure to air pollution.

    PubMed

    Thron, R W

    1996-02-01

    Hazardous substances that originally are discharged as air pollutants may find their pathway to human exposure through multiple routes, including ingestion and dermal contact, as well as direct inhalation. The mechanisms for modeling and understanding the fate of air pollutants through atmospheric transport, deposition into water and soil, bioaccumulation, and ultimate uptake to receptor organs and systems in the human body are complex. Pollution prevention programs can be better engineered, pollution priorities can be identified, and greater environmental public health gains (attributable to pollution prevention) can be achieved by evaluating the multiple pathways to human exposure and through improved dosage calculations. A single contaminant source often may represent only a fraction of a total body pollutant burden. Further research is needed on source culpability and attributable risk, long-range transport of air pollutants, human dose contributions by various pathways, better techniques for health risk assessment, and an identification of human behavior patterns that affect exposure and dose.

  17. Cough and environmental air pollution in China.

    PubMed

    Zhang, Qingling; Qiu, Minzhi; Lai, Kefang; Zhong, Nanshan

    2015-12-01

    With fast-paced urbanization and increased energy consumption in rapidly industrialized modern China, the level of outdoor and indoor air pollution resulting from industrial and motor vehicle emissions has been increasing at an accelerated rate. Thus, there is a significant increase in the prevalence of respiratory symptoms such as coughing, wheezing, and decreased pulmonary function. Experimental exposure research and epidemiological studies have indicated that exposure to particulate matter, ozone, nitrogen dioxide, and environmental tobacco smoke have a harmful influence on development of respiratory diseases and are significantly associated with cough and wheeze. This review mainly discusses the effect of air pollutants on respiratory health, particularly with respect to cough, the links between air pollutants and microorganisms, and air pollutant sources. Particular attention is paid to studies in urban areas of China where the levels of ambient and indoor air pollution are significantly higher than World Health Organization recommendations.

  18. Air Pollution and Environmental Justice Awareness

    NASA Astrophysics Data System (ADS)

    Bouvier-Brown, N. C.

    2014-12-01

    Air pollution is not equally dispersed in all neighborhoods and this raises many social concerns, such as environmental justice. "Real world" data, whether extracted from online databases or collected in the field, can be used to demonstrate air quality patterns. When students explore these trends, they not only learn about atmospheric chemistry, but they also become socially aware of any inequities. This presentation outlines specific ways to link air pollution and environmental justice suitable for an undergraduate upper division Air Pollution or Atmospheric Chemistry course.

  19. Near-source air pollution and mitigation strategies

    EPA Science Inventory

    Abstract. Local-scale air pollution impact is of concern for populations located in close proximity to transit sources, including highway, port, rail, and other areas of concentrated diesel emissions. Previous near-road air monitoring research has prompted the U.S. EPA to implem...

  20. Impact of aircraft emissions on air quality in the vicinity of airports. Volume II. An updated model assessment of aircraft generated air pollution at LAX, JFK, and ORD. Final report Jan 1978-Jul 1980

    SciTech Connect

    Yamartino, R.J.; Smith, D.G.; Bremer, S.A.; Heinold, D.; Lamich, D.

    1980-07-01

    This report documents the results of the Federal Aviation Administration (FAA)/Environmental Protection Agency (EPA) air quality study which has been conducted to assess the impact of aircraft emissions of carbon monoxide (CO), hydrocarbons (HC), and oxides of nitrogen (NOx) in the vicinity of airports. This assessment includes the results of recent modeling and monitoring efforts at Washington National (DCA), Los Angeles International (LAX), Dulles International (IAD), and Lakeland, Florida airports and an updated modeling of aircraft generated pollution at LAX, John F. Kennedy (JFK) and Chicago O'Hare (ORD) airports. The Airport Vicinity Air Pollution (AVAP) model which was designed for use at civil airports was used in this assessment. In addition the results of the application of the military version of the AVAP model the Air Quality Assessment Model (AQAM), are summarized. Both the results of the pollution monitoring analyses in Volume I and the modeling studies in Volume II suggest that: maximum hourly average CO concentrations from aircraft are unlikely to exceed 5 parts per million (ppm) in areas of public exposure and are thus small in comparison to the National Ambient Air Quality Standard of 35 ppm; maximum hourly HC concentrations from aircraft can exceed 0.25 ppm over an area several times the size of the airport; and annual average NO2 concentrations from aircraft are estimated to contribute only 10 to 20 percent of the NAAQS limit level.

  1. Outdoor air pollution: a global perspective.

    PubMed

    Huang, Yuh-Chin T

    2014-10-01

    Although the air quality in Western countries has continued to improve over the past decades, rapid economic growth in developing countries has left air quality in many cities notoriously poor. The World Health Organization estimates that urban outdoor air pollution is estimated to cause 1.3 million deaths worldwide per year. The primary health concerns of outdoor air pollution come from particulate matter less than 2.5 μm (PM2.5) and ozone (O3). Short-term exposure to PM2.5 increases cardiopulmonary morbidity and mortality. Long-term exposure to PM2.5 has been linked to adverse perinatal outcomes and lung cancer. Excessive O3 exposure is known to increase respiratory morbidity. Patients with chronic cardiopulmonary diseases are more susceptible to the adverse effects of air pollution. Counseling these patients about air pollution and the associated risks should be part of the regular management plans in clinical practice.

  2. Near-Roadway Air Pollution and Coronary Heart Disease: Burden of Disease and Potential Impact of a Greenhouse Gas Reduction Strategy in Southern California

    PubMed Central

    Ghosh, Rakesh; Lurmann, Frederick; Perez, Laura; Penfold, Bryan; Brandt, Sylvia; Wilson, John; Milet, Meredith; Künzli, Nino; McConnell, Rob

    2015-01-01

    Background Several studies have estimated the burden of coronary heart disease (CHD) mortality from ambient regional particulate matter ≤ 2.5 μm (PM2.5). The burden of near-roadway air pollution (NRAP) generally has not been examined, despite evidence of a causal link with CHD. Objective We investigated the CHD burden from NRAP and compared it with the PM2.5 burden in the California South Coast Air Basin for 2008 and under a compact urban growth greenhouse gas reduction scenario for 2035. Methods We estimated the population attributable fraction and number of CHD events attributable to residential traffic density, proximity to a major road, elemental carbon (EC), and PM2.5 compared with the expected disease burden if the population were exposed to background levels of air pollution. Results In 2008, an estimated 1,300 CHD deaths (6.8% of the total) were attributable to traffic density, 430 deaths (2.4%) to residential proximity to a major road, and 690 (3.7%) to EC. There were 1,900 deaths (10.4%) attributable to PM2.5. Although reduced exposures in 2035 should result in smaller fractions of CHD attributable to traffic density, EC, and PM2.5, the numbers of estimated deaths attributable to each of these exposures are anticipated to increase to 2,500, 900, and 2,900, respectively, due to population aging. A similar pattern of increasing NRAP-attributable CHD hospitalizations was estimated to occur between 2008 and 2035. Conclusion These results suggest that a large burden of preventable CHD mortality is attributable to NRAP and is likely to increase even with decreasing exposure by 2035 due to vulnerability of an aging population. Greenhouse gas reduction strategies developed to mitigate climate change offer unexploited opportunities for air pollution health co-benefits. Citation Ghosh R, Lurmann F, Perez L, Penfold B, Brandt S, Wilson J, Milet M, Künzli N, McConnell R. 2016. Near-roadway air pollution and coronary heart disease: burden of disease and potential

  3. Evidence on the impact of sustained exposure to air pollution on life expectancy from China's Huai River policy.

    PubMed

    Chen, Yuyu; Ebenstein, Avraham; Greenstone, Michael; Li, Hongbin

    2013-08-01

    This paper's findings suggest that an arbitrary Chinese policy that greatly increases total suspended particulates (TSPs) air pollution is causing the 500 million residents of Northern China to lose more than 2.5 billion life years of life expectancy. The quasi-experimental empirical approach is based on China's Huai River policy, which provided free winter heating via the provision of coal for boilers in cities north of the Huai River but denied heat to the south. Using a regression discontinuity design based on distance from the Huai River, we find that ambient concentrations of TSPs are about 184 μg/m(3) [95% confidence interval (CI): 61, 307] or 55% higher in the north. Further, the results indicate that life expectancies are about 5.5 y (95% CI: 0.8, 10.2) lower in the north owing to an increased incidence of cardiorespiratory mortality. More generally, the analysis suggests that long-term exposure to an additional 100 μg/m(3) of TSPs is associated with a reduction in life expectancy at birth of about 3.0 y (95% CI: 0.4, 5.6).

  4. A review of the epidemiological methods used to investigate the health impacts of air pollution around major industrial areas.

    PubMed

    Pascal, Mathilde; Pascal, Laurence; Bidondo, Marie-Laure; Cochet, Amandine; Sarter, Hélène; Stempfelet, Morgane; Wagner, Vérène

    2013-01-01

    We performed a literature review to investigate how epidemiological studies have been used to assess the health consequences of living in the vicinity of industries. 77 papers on the chronic effects of air pollution around major industrial areas were reviewed. Major health themes were cancers (27 studies), morbidity (25 studies), mortality (7 studies), and birth outcome (7 studies). Only 3 studies investigated mental health. While studies were available from many different countries, a majority of papers came from the United Kingdom, Italy, and Spain. Several studies were motivated by concerns from the population or by previous observations of an overincidence of cases. Geographical ecological designs were largely used for studying cancer and mortality, including statistical designs to quantify a relationship between health indicators and exposure. Morbidity was frequently investigated through cross-sectional surveys on the respiratory health of children. Few multicenter studies were performed. In a majority of papers, exposed areas were defined based on the distance to the industry and were located from <2 km to >20 km from the plants. Improving the exposure assessment would be an asset to future studies. Criteria to include industries in multicenter studies should be defined.

  5. The health impacts of exposure to indoor air pollution from solid fuels in developing countries: knowledge, gaps, and data needs.

    PubMed Central

    Ezzati, Majid; Kammen, Daniel M

    2002-01-01

    Globally, almost 3 billion people rely on biomass (wood, charcoal, crop residues, and dung) and coal as their primary source of domestic energy. Exposure to indoor air pollution (IAP) from the combustion of solid fuels is an important cause of morbidity and mortality in developing countries. In this paper, we review the current knowledge on the relationship between IAP exposure and disease and on interventions for reducing exposure and disease. We take an environmental health perspective and consider the details of both exposure and health effects that are needed for successful intervention strategies. We also identify knowledge gaps and detailed research questions that are essential in successful design and dissemination of preventive measures and policies. In addition to specific research recommendations, we conclude that given the interaction of housing, household energy, and day-to-day household activities in determining exposure to indoor smoke, research and development of effective interventions can benefit tremendously from integration of methods and analysis tools from a range of disciplines in the physical, social, and health sciences. PMID:12417475

  6. A Review of the Epidemiological Methods Used to Investigate the Health Impacts of Air Pollution around Major Industrial Areas

    PubMed Central

    Pascal, Laurence; Bidondo, Marie-Laure; Cochet, Amandine; Sarter, Hélène; Stempfelet, Morgane; Wagner, Vérène

    2013-01-01

    We performed a literature review to investigate how epidemiological studies have been used to assess the health consequences of living in the vicinity of industries. 77 papers on the chronic effects of air pollution around major industrial areas were reviewed. Major health themes were cancers (27 studies), morbidity (25 studies), mortality (7 studies), and birth outcome (7 studies). Only 3 studies investigated mental health. While studies were available from many different countries, a majority of papers came from the United Kingdom, Italy, and Spain. Several studies were motivated by concerns from the population or by previous observations of an overincidence of cases. Geographical ecological designs were largely used for studying cancer and mortality, including statistical designs to quantify a relationship between health indicators and exposure. Morbidity was frequently investigated through cross-sectional surveys on the respiratory health of children. Few multicenter studies were performed. In a majority of papers, exposed areas were defined based on the distance to the industry and were located from <2 km to >20 km from the plants. Improving the exposure assessment would be an asset to future studies. Criteria to include industries in multicenter studies should be defined. PMID:23818910

  7. [Modeling research on impact of pH on metals leaching behavior of air pollution control residues from MSW incinerator].

    PubMed

    Zhang, Hua; He, Pin-Jing; Li, Xin-Jie; Shao, Li-Ming

    2008-01-01

    Metals leaching behavior of air pollution control residues (APC residues) from municipal solid waste incinerator (MSWI) is greatly dependent on the leachate pH. pH-varying leaching tests and Visual MINTEQ modeling were conducted to investigate the mechanism of pH effect on the metals leaching characteristics from MSWI APC residues. Results show that, under acidic environment (for Cd, Zn, and Ni, pH < 8; for Pb, Cu, and Cr, pH < 6; for Al, pH < 4), leaching concentrations of metals increase greatly with the decrease of pH. Release of amphoteric metals, Pb and Zn, can be induced in strong alkaline leachate, reaching to 42 and 2.4 mg x L(-1) at pH 12.5 respectively. The equilibrium modeling results are well in agreement with the analyzed leaching concentrations. Variation of leachate pH changes the metals speciation in the leaching system, thus influencing their leaching concentrations. Speciation and leaching behavior of Pb, Zn, Cu, Ca, and Al mainly depend on their dissolution/precipitation reactions under different leachate pH. Leachability of Cd, Cr, and Ni can be lowered under acidic and neutral leachate pH due to HFO adsorption, while under alkaline conditions, the effect of adsorption is not significant and dissolution/precipitation becomes the major reactions controlling the leaching toxicity of these heavy metals.

  8. Evidence on the impact of sustained exposure to air pollution on life expectancy from China’s Huai River policy

    PubMed Central

    Chen, Yuyu; Ebenstein, Avraham; Greenstone, Michael; Li, Hongbin

    2013-01-01

    This paper's findings suggest that an arbitrary Chinese policy that greatly increases total suspended particulates (TSPs) air pollution is causing the 500 million residents of Northern China to lose more than 2.5 billion life years of life expectancy. The quasi-experimental empirical approach is based on China’s Huai River policy, which provided free winter heating via the provision of coal for boilers in cities north of the Huai River but denied heat to the south. Using a regression discontinuity design based on distance from the Huai River, we find that ambient concentrations of TSPs are about 184 μg/m3 [95% confidence interval (CI): 61, 307] or 55% higher in the north. Further, the results indicate that life expectancies are about 5.5 y (95% CI: 0.8, 10.2) lower in the north owing to an increased incidence of cardiorespiratory mortality. More generally, the analysis suggests that long-term exposure to an additional 100 μg/m3 of TSPs is associated with a reduction in life expectancy at birth of about 3.0 y (95% CI: 0.4, 5.6). PMID:23836630

  9. Impact of Air Pollution on Age and Gender Related Increase in Cough Reflex Sensitivity of Healthy Children in Slovakia

    PubMed Central

    Demoulin-Alexikova, Silvia; Plevkova, Jana; Mazurova, Lenka; Zatko, Tomas; Alexik, Mikulas; Hanacek, Jan; Tatar, Milos

    2016-01-01

    Background: Numerous studies show higher cough reflex sensitivity (CRS) and cough outcomes in children compared to adults and in females compared to males. Despite close link that exists between cough and environment the potential influence of environmental air pollution on age- and gender -related differences in cough has not been studied yet. Purpose: The purpose of our study was to analyse whether the effects of exposure to environmental tobacco smoke (ETS) from parental smoking and PM10 from living in urban area are implied in age- and gender-related differences in cough outcomes of healthy, non-asthmatic children. Assessment of CRS using capsaicin and incidence of dry and wet cough was performed in 290 children (mean age 13.3 ± 2.6 years (138 females/152 males). Results: CRS was significantly higher in girls exposed to ETS [22.3 μmol/l (9.8–50.2 μmol/l)] compared to not exposed girls [79.9 μmol/l (56.4–112.2 μmol/l), p = 0.02] as well as compared to exposed boys [121.4 μmol/l (58.2–253.1 μmol/l), p = 0.01]. Incidence of dry cough lasting more than 3 weeks was significantly higher in exposed compared to not exposed girls. CRS was significantly higher in school-aged girls living in urban area [22.0 μmol/l (10.6–45.6 μmol/l)] compared to school-aged girls living in rural area [215.9 μmol/l (87.3–533.4 μmol/l); p = 0.003], as well as compared to teenage girls living in urban area [108.8 μmol/l (68.7–172.9 μmol/l); p = 0.007]. No CRS differences were found between urban and rural boys when controlled for age group. No CRS differences were found between school-aged and teenage boys when controlled for living area. Conclusions: Our results have shown that the effect of ETS on CRS was gender specific, linked to female gender and the effect of PM10 on CRS was both gender and age specific, related to female gender and school-age. We suggest that age and gender related differences in incidence of cough and CRS might be, at least partially

  10. Air pollutant production by algal cell cultures

    NASA Technical Reports Server (NTRS)

    Fong, F.; Funkhouser, E. A.

    1982-01-01

    The production of phytotoxic air pollutants by cultures of Chlorella vulgaris and Euglena gracilis is considered. Algal and plant culture systems, a fumigation system, and ethylene, ethane, cyanide, and nitrogen oxides assays are discussed. Bean, tobacco, mustard green, cantaloupe and wheat plants all showed injury when fumigated with algal gases for 4 hours. Only coleus plants showed any resistance to the gases. It is found that a closed or recycled air effluent system does not produce plant injury from algal air pollutants.

  11. Evaluation and Application of Alternative Air Pollution Exposure Metrics in Air Pollution Epidemiology Studies

    EPA Science Inventory

    ABSTRACT: Periodic review, revision and subsequent implementation of the National Ambient Air Quality Standards for criteria air pollutants rely upon various types of scientific air quality, exposure, toxicological dose-response and epidemiological information. Exposure assessmen...

  12. Air pollution and the respiratory system.

    PubMed

    Arbex, Marcos Abdo; Santos, Ubiratan de Paula; Martins, Lourdes Conceição; Saldiva, Paulo Hilário Nascimento; Pereira, Luiz Alberto Amador; Braga, Alfésio Luis Ferreira

    2012-01-01

    Over the past 250 years-since the Industrial Revolution accelerated the process of pollutant emission, which, until then, had been limited to the domestic use of fuels (mineral and vegetal) and intermittent volcanic emissions-air pollution has been present in various scenarios. Today, approximately 50% of the people in the world live in cities and urban areas and are exposed to progressively higher levels of air pollutants. This is a non-systematic review on the different types and sources of air pollutants, as well as on the respiratory effects attributed to exposure to such contaminants. Aggravation of the symptoms of disease, together with increases in the demand for emergency treatment, the number of hospitalizations, and the number of deaths, can be attributed to particulate and gaseous pollutants, emitted by various sources. Chronic exposure to air pollutants not only causes decompensation of pre-existing diseases but also increases the number of new cases of asthma, COPD, and lung cancer, even in rural areas. Air pollutants now rival tobacco smoke as the leading risk factor for these diseases. We hope that we can impress upon pulmonologists and clinicians the relevance of investigating exposure to air pollutants and of recognizing this as a risk factor that should be taken into account in the adoption of best practices for the control of the acute decompensation of respiratory diseases and for maintenance treatment between exacerbations.

  13. Indoor air pollution: an edifice complex.

    PubMed

    Brooks, B O; Utter, G M; DeBroy, J A; Schimke, R D

    1991-01-01

    The collision of escalating technological sophistication and surging environmental awareness has caused the reexamination of many societal paradigms. Horror stories about lethal chemical exposures involving isolated cases of ignorance, carelessness or greed have caused the public to demand constant vigilance to prevent exposure to potentially hazardous substances. Accordingly, much time and resource has been expanded by the U.S. government and citizens to abate and prevent air and water pollution. While these efforts have met with measurable success, there is increasing public concern about a new generation of pollution-related human illness in office, home and transportation environments. New instances of Sick Building Syndrome or Building Related Illness are reported daily by the popular press. Human health effects such as cancer, infectious disease, allergy and irritation have been ascribed to indoor air pollution. The clinical aspects of indoor air pollution are often discounted by consulting engineers and industrial hygienists involved in indoor air quality. Physicians and clinically-trained scientists have received a "Macedonian call" to sift clinical relevance from the emotional aspects of indoor air quality problems. Point sources of pollutants, associated human health effects, and problem solving approaches associated with indoor air pollution are described. Regulatory and litigational aspects of indoor air pollution are also discussed. PMID:1920571

  14. A process for selecting ecological indicators for application in monitoring impacts to Air Quality Related Values (AQRVs) from atmospheric pollutants. Final report

    SciTech Connect

    White, G.J.; Breckenridge, R.P.

    1997-01-01

    Section 160 of the Clean Air Act (CAA) calls for measures be taken {open_quotes}to preserve, protect, and enhance air quality in national parks, national wilderness areas, national monuments, national seashores, and other areas of special national or regional natural, recreational, scenic, or historic value.{close_quotes} Pursuant to this, stringent requirement have been established for {open_quotes}Class I{close_quotes} areas, which include most National Parks and Wilderness Areas. Federal Land Managers (FLMs) are charged with the task of carrying out these requirements through the identification of air quality related values (AQRVs) that are potentially at risk from atmospheric pollutants. This is a complex task, the success of which is dependent on the gathering of information on a wide variety of factors that contribute to the potential for impacting resources in Class I areas. Further complicating the issue is the diversity of ecological systems found in Class I areas. There is a critical need for the development of monitoring programs to assess the status of AQRVs in Class I areas with respect to impacts caused by atmospheric pollutants. These monitoring programs must be based on the measurement of a carefully selected suite of key physical, chemical, and biological parameters that serve as indicators of the status of the ecosystems found in Class I areas. Such programs must be both scientifically-based and cost-effective, and must provide the data necessary for FLMs to make objective, defensible decisions. This document summarizes a method for developing AQRV monitoring programs in Class I areas.

  15. The changing paradigm of air pollution monitoring.

    PubMed

    Snyder, Emily G; Watkins, Timothy H; Solomon, Paul A; Thoma, Eben D; Williams, Ronald W; Hagler, Gayle S W; Shelow, David; Hindin, David A; Kilaru, Vasu J; Preuss, Peter W

    2013-10-15

    The air pollution monitoring paradigm is rapidly changing due to recent advances in (1) the development of portable, lower-cost air pollution sensors reporting data in near-real time at a high-time resolution, (2) increased computational and visualization capabilities, and (3) wireless communication/infrastructure. It is possible that these advances can support traditional air quality monitoring by supplementing ambient air monitoring and enhancing compliance monitoring. Sensors are beginning to provide individuals and communities the tools needed to understand their environmental exposures with these data individual and community-based strategies can be developed to reduce pollution exposure as well as understand linkages to health indicators. Each of these areas as well as corresponding challenges (e.g., quality of data) and potential opportunities associated with development and implementation of air pollution sensors are discussed.

  16. Air pollution modeling and its application III

    SciTech Connect

    De Wispelaere, C.

    1984-01-01

    This book focuses on the Lagrangian modeling of air pollution. Modeling cooling tower and power plant plumes, modeling the dispersion of heavy gases, remote sensing as a tool for air pollution modeling, dispersion modeling including photochemistry, and the evaluation of model performances in practical applications are discussed. Specific topics considered include dispersion in the convective boundary layer, the application of personal computers to Lagrangian modeling, the dynamic interaction of cooling tower and stack plumes, the diffusion of heavy gases, correlation spectrometry as a tool for mesoscale air pollution modeling, Doppler acoustic sounding, tetroon flights, photochemical air quality simulation modeling, acid deposition of photochemical oxidation products, atmospheric diffusion modeling, applications of an integral plume rise model, and the estimation of diffuse hydrocarbon leakages from petrochemical factories. This volume constitutes the proceedings of the Thirteenth International Technical Meeting on Air Pollution Modeling and Its Application held in France in 1982.

  17. The level of air pollution in the impact zone of coal-fired power plant (Karaganda City) using the data of geochemical snow survey (Republic of Kazakhstan)

    NASA Astrophysics Data System (ADS)

    Adil'bayeva, T. E.; Talovskaya, A. V.; Yazikov, Ye G.; Matveenko, I. A.

    2016-09-01

    Coal-fired power plants emissions impact the air quality and human health. Of great significance is assessment of solid airborne particles emissions from those plants and distance of their transportation. The article presents the results of air pollution assessment in the zone of coal-fired power plant (Karaganda City) using snow survey. Based on the mass of solid airborne particles deposited in snow, time of their deposition on snow at the distance from 0.5 to 4.5 km a value of dust load has been determined. It is stated that very high level of pollution is observed at the distance from 0.5 to 1 km. there is a trend in decrease of dust burden value with the distance from the stacks of coal-fired power plant that may be conditioned by the particle size and washing out smaller ash particles by ice pellets forming at freezing water vapour in stacks of the coal-fired power plant. Study in composition of solid airborne particles deposited in snow has shown that they mainly contain particulates of underburnt coal, Al-Si- rich spheres, Fe-rich spheres, and coal dust. The content of the particles in samples decreases with the distance from the stacks of the coal-fired power plant.

  18. Internal migration and urbanization in China: impacts on population exposure to household air pollution (2000-2010).

    PubMed

    Aunan, Kristin; Wang, Shuxiao

    2014-05-15

    Exposure to fine particles ≤ 2.5 μm in aerodynamic diameter (PM2.5) from incomplete combustion of solid fuels in household stoves, denoted household air pollution (HAP), is a major contributor to ill health in China and globally. Chinese households are, however, undergoing a massive transition to cleaner household fuels. The objective of the present study is to establish the importance of internal migration when it comes to the changing household fuel use pattern and the associated exposure to PM2.5 for the period 2000 to 2010. We also estimate health benefits of the fuel transition in terms of avoided premature deaths. Using China Census data on population, migration, and household fuel use for 2000 and 2010 we identify the size, place of residence, and main cooking fuel of sub-populations in 2000 and 2010, respectively. We combine these data with estimated exposure levels for the sub-populations and estimate changes in population exposure over the decade. We find that the population weighted exposure (PWE) for the Chinese population as a whole was reduced by 52 (36-70) μg/m(3) PM2.5 over the decade, and that about 60% of the reduction can be linked to internal migration. During the same period the migrant population, in total 261 million people, was subject to a reduced population weighted exposure (ΔPWE) of 123 (87-165) μg/m(3) PM2.5. The corresponding figure for non-migrants is 34 (23-47) μg/m(3). The largest ΔPWE was estimated for rural-to-urban migrants (138 million people), 214 (154-283) μg/m(3). The estimated annual health benefit associated with the reduced exposure in the total population is 31 (26-37) billion USD, corresponding to 0.4% of the Chinese GDP.

  19. Impact of air pollution control costs on the cost and spatial arrangement of cellulosic biofuel production in the U.S.

    PubMed

    Murphy, Colin W; Parker, Nathan C

    2014-02-18

    Air pollution emissions regulation can affect the location, size, and technology choice of potential biofuel production facilities. Difficulty in obtaining air pollutant emission permits and the cost of air pollution control devices have been cited by some fuel producers as barriers to development. This paper expands on the Geospatial Bioenergy Systems Model (GBSM) to evaluate the effect of air pollution control costs on the availability, cost, and distribution of U.S. biofuel production by subjecting potential facility locations within U.S. Clean Air Act nonattainment areas, which exceed thresholds for healthy air quality, to additional costs. This paper compares three scenarios: one with air quality costs included, one without air quality costs, and one in which conversion facilities were prohibited in Clean Air Act nonattainment areas. While air quality regulation may substantially affect local decisions regarding siting or technology choices, their effect on the system as a whole is small. Most biofuel facilities are expected to be sited near to feedstock supplies, which are seldom in nonattainment areas. The average cost per unit of produced energy is less than 1% higher in the scenarios with air quality compliance costs than in scenarios without such costs. When facility construction is prohibited in nonattainment areas, the costs increase by slightly over 1%, due to increases in the distance feedstock is transported to facilities in attainment areas.

  20. Evaluating strategies to reduce urban air pollution

    NASA Astrophysics Data System (ADS)

    Duque, L.; Relvas, H.; Silveira, C.; Ferreira, J.; Monteiro, A.; Gama, C.; Rafael, S.; Freitas, S.; Borrego, C.; Miranda, A. I.

    2016-02-01

    During the last years, specific air quality problems have been detected in the urban area of Porto (Portugal). Both PM10 and NO2 limit values have been surpassed in several air quality monitoring stations and, following the European legislation requirements, Air Quality Plans were designed and implemented to reduce those levels. In this sense, measures to decrease PM10 and NO2 emissions have been selected, these mainly related to the traffic sector, but also regarding the industrial and residential combustion sectors. The main objective of this study is to investigate the efficiency of these reduction measures with regard to the improvement of PM10 and NO2 concentration levels over the Porto urban region using a numerical modelling tool - The Air Pollution Model (TAPM). TAPM was applied over the study region, for a simulation domain of 80 × 80 km2 with a spatial resolution of 1 × 1 km2. The entire year of 2012 was simulated and set as the base year for the analysis of the impacts of the selected measures. Taking into account the main activity sectors, four main scenarios have been defined and simulated, with focus on: (1) hybrid cars; (2) a Low Emission Zone (LEZ); (3) fireplaces and (4) industry. The modelling results indicate that measures to reduce PM10 should be focused on residential combustion (fireplaces) and industrial activity and for NO2 the strategy should be based on the traffic sector. The implementation of all the defined scenarios will allow a total maximum reduction of 4.5% on the levels of both pollutants.

  1. Oxidative Stress and Air Pollution Exposure

    PubMed Central

    Lodovici, Maura; Bigagli, Elisabetta

    2011-01-01

    Air pollution is associated with increased cardiovascular and pulmonary morbidity and mortality. The mechanisms of air pollution-induced health effects involve oxidative stress and inflammation. As a matter of fact, particulate matter (PM), especially fine (PM2.5, PM < 2.5 μm) and ultrafine (PM0.1, PM < 0.1 μm) particles, ozone, nitrogen oxides, and transition metals, are potent oxidants or able to generate reactive oxygen species (ROS). Oxidative stress can trigger redox-sensitive pathways that lead to different biological processes such as inflammation and cell death. However, it does appear that the susceptibility of target organ to oxidative injury also depends upon its ability to upregulate protective scavenging systems. As vehicular traffic is known to importantly contribute to PM exposure, its intensity and quality must be strongly relevant determinants of the qualitative characteristics of PM spread in the atmosphere. Change in the composition of this PM is likely to modify its health impact. PMID:21860622

  2. Air pollution detection using MODIS data

    NASA Astrophysics Data System (ADS)

    Harbula, Jan; Kopacková, Veronika

    2011-11-01

    The quality of the environment has a great impact on public health while air quality is a major factor that is especially relevant for respiratory diseases. PM10 (particulate matter below 10 μ) particles are among the most dangerous pollutants, which enter the lower respiratory tract and cause serious health problems. Obtaining reliable air pollution data is limited to a number of ground measuring stations and their spatial location. We used an alternative approach and created statistical models that employed remotely sensed imageries. To establish empirical relationships, we used multi-temporal (2006-2009) MODIS aerosol optical thickness data (product MOD04, Level 2) and the PM10 ground mass concentrations. The north-western part of the Czech Republic (namely the Karlovarský and the Ustecký regions) was chosen as a test site, as all the different types of cultural landscape (forest-economical, agricultural, mining, and urban) can be found within one MODIS scene. This study was focused on the various aspects as follows (i) analysis of MODIS AOT / stationary PM10 time-series trend between 2006-2009, (ii) establishing a linear relationship between PM10 and AOT values for each station and (iii) evaluation of a spatial relationship of the annual mean AE (Ångstrom Exponent) and PM10 values.

  3. Health effects of outdoor air pollution

    PubMed Central

    Abelsohn, Alan; Stieb, Dave M.

    2011-01-01

    Abstract Objective To inform family physicians about the health effects of air pollution and to provide an approach to counseling vulnerable patients in order to reduce exposure. Sources of information MEDLINE was searched using terms relevant to air pollution and its adverse effects. We reviewed English-language articles published from January 2008 to December 2009. Most studies provided level II evidence. Main message Outdoor air pollution causes substantial morbidity and mortality in Canada. It can affect both the respiratory system (exacerbating asthma and chronic obstructive pulmonary disease) and the cardiovascular system (triggering arrhythmias, cardiac failure, and stroke). The Air Quality Health Index (AQHI) is a new communication tool developed by Health Canada and Environment Canada that indicates the level of health risk from air pollution on a scale of 1 to 10. The AQHI is widely reported in the media, and the tool might be of use to family physicians in counseling high-risk patients (such as those with asthma, chronic obstructive pulmonary disease, or cardiac failure) to reduce exposure to outdoor air pollution. Conclusion Family physicians can use the AQHI and its health messages to teach patients with asthma and other high-risk patients how to reduce health risks from air pollution. PMID:21841106

  4. Air Pollution and Acid Rain, Report 5. The effects of air pollution and acid rain on fish, wildlife, and their habitats: rivers and streams

    SciTech Connect

    Potter, W.; Chang, B.K.Y.

    1982-06-01

    This report on rivers and streams is part of a series synthesizing the results of scientific research related to the effects of air pollution and acid deposition on fish and wildlife resources. The effects of photochemical oxidants, particulates, and acidifying air pollutants on water quality and river and stream biota are summarized. The characteristics that reflect river and stream sensitivity to air pollutants, in particular acidifying pollutants, are presented. Socioeconomic aspects of air pollution impacts on river and stream ecosystems are discussed. 71 references, 2 figures, 5 tables.

  5. Evaluating sources of indoor air pollution

    SciTech Connect

    Tichenor, B.A.; Sparks, L.A.; White, J.B.; Jackson, M.D. )

    1990-04-01

    Evaluation of indoor air pollution problems requires an understanding of the relationship between sources, air movement, and outdoor air exchange. Research is underway to investigate these relationships. A three-phase program is being implemented: (1) Environmental chambers are used to provide source emission factors for specific indoor pollutants; (2) An IAQ (Indoor Air Quality) model has been developed to calculate indoor pollutant concentrations based on chamber emissions data and the air exchange and air movement within the indoor environment; and (3) An IAQ test house is used to conduct experiments to evaluate the model results. Examples are provided to show how this coordinated approach can be used to evaluate specific sources of indoor air pollution. Two sources are examined: (1) para-dichlorobenzene emissions from solid moth repellant; and (2) emissions from unvented kerosene heaters. The evaluation process for both sources followed the three-phase approach discussed above. Para-dichlorobenzene emission factors were determined by small chamber testing at EPA's Air and Energy Engineering Research Laboratory. Particle emission factors for the kerosene heaters were developed in large chambers at the J.B. Pierce Foundation Laboratory. Both sources were subsequently evaluated in EPA's IAQ test house. The IAQ model predictions showed good agreement with the test house measurements when appropriate values were provided for source emissions, outside air exchange, in-house air movement, and deposition on sink surfaces.

  6. AIR POLLUTION, OXIDATIVE STRESS AND NEUROTOXICITY.

    EPA Science Inventory

    Increased incidents of classic and variant forms of neurodegenerative diseases suggest that environmental chemicals and susceptibility factors (e.g., genetics, diseased states, obesity, etc.) may be contributory. Particulate matter (PM) is a type of air pollution that is associat...

  7. Motor Vehicles, Air Pollution, and Climate Change

    NASA Astrophysics Data System (ADS)

    Mark, Jason

    2000-04-01

    Despite years of technical progress, motor vehicles continue to be a leading cause of environmental damage in the United States. For example, today's cars and trucks are the largest source of air pollution in many urban areas. US motor vehicles also account for 25 percent of the nation's carbon emissions, more than most countries emit from all sources combined. Fortunately, a host of technical improvements are emerging that could go a long ways towards taking vehicles out of the pollution picture. In the near-term, improving on the century-old internal combustion engine can deliver much-needed incremental gains. But electric drive vehicles--whether powered by batteries, small engines in hybrid configuration, or fuel cells--ultimately offer the greatest promise. Such technologies could dramatically reduce energy use, greenhouse gas emissions, and key air pollutants. The bulk of technical attention in recent years has been focused on improving the passenger vehicle, which will be the dominant energy consumer in the transportation sector for years to come. But freight trucks are also of growing concern, both because their contribution to global warming is on the rise and because serious questions are being raised about the public health impact of diesel technology. As a result, heavy trucks are emerging as a priority issue. Capitalizing on the opportunity presented by new technologies will not only require continued technical innovation but also policy action. As research into improved engines, fuels, and drive systems bears fruit over the coming years, aggressive and prudent policies will ensure that these new options make it onto the road and deliver on their environmental promise.

  8. Air Pollution over the States

    ERIC Educational Resources Information Center

    Environmental Science and Technology, 1972

    1972-01-01

    State plans for implementing air quality standards are evaluated together with problems in modeling procedures and enforcement. Monitoring networks, standards, air quality regions, and industrial problems are also discussed. (BL)

  9. Air Conditioning Does Reduce Air Pollution Indoors

    ERIC Educational Resources Information Center

    Healy, Bud

    1970-01-01

    Report of the winter meeting of the American Society of Heating, Refrigerating and Air-Conditioning Engineers. Subjects covered are--(1) title subject, (2) predictions for the human habitat in 1994, (3) fans, and (4) fire safety in buildings. (JW)

  10. ASTM Validates Air Pollution Test Methods

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1973

    1973-01-01

    The American Society for Testing and Materials (ASTM) has validated six basic methods for measuring pollutants in ambient air as the first part of its Project Threshold. Aim of the project is to establish nationwide consistency in measuring pollutants; determining precision, accuracy and reproducibility of 35 standard measuring methods. (BL)

  11. [Air Pollution Unit, Edmonds School District.

    ERIC Educational Resources Information Center

    Edmonds School District 15, Lynnwood, WA.

    This interdisciplinary program, developed for secondary students, contains 16 air pollution activities that can either be used directly in, or as a supplement to, curriculum in Science, Photography, Mathematics, English, Social Studies, Industrial Arts and Home Economics. The topics to be investigated include: pollutants from automobiles, exhaust…

  12. Air pollution assessment on city of Tirana

    NASA Astrophysics Data System (ADS)

    Mandija, F.; Zoga, P.

    2012-04-01

    Air pollution is one of the hot topics on nowadays studies. This problem is often encountered on urban centers, especially on metropolitan areas. These areas are usually characterized by densely population, heavy traffic rates and the presence of many industrial plants on their suburbs. Problems regarding to air pollution on these areas are more evident over metropolitan areas in developing countries. Air pollution is mostly related to health effects, especially in outdoor environments. These effects regards primarily on respiratory and cardiovascular diseases. Air pollution assessment on a specific area requires not only the estimation of pollutant concentrations in that area, but also determination of their principal sources as well as prediction of eventual scenarios on the area under investigation. This study is focused on air pollution assessment on the city of Tirana, which is the major urban centre and the capital city of Albania. This city has about one million inhabitants. During the last 20 years, its population has grown about four fold, and it is still growing. Because of Albania is a developing country, its capital city is involved on serious environmental problems. Considering these facts, we have conducted continuous monitoring campaigns on several sites of Tirana. These monitoring campaigns consist on measurement of several pollutant gases (SO2, CO, CO2, NOx, etc.) and particulate matter over a period of 20 months. In this paper there are obtained diurnal and annual variations of pollutant concentrations, there is modeled their spatial distributions over the area of the city, and there are estimated the potential contributions of principal sources like traffic and industrial plants. During the entire monitoring campaign there are recorded also meteorological parameters, like temperature, relative humidity, atmospheric pressure, wind speed, wind direction, precipitations, etc. In this way we have tried to obtain the correlations between pollutant

  13. Indoor air pollution and airway disease.

    PubMed

    Viegi, G; Simoni, M; Scognamiglio, A; Baldacci, S; Pistelli, F; Carrozzi, L; Annesi-Maesano, I

    2004-12-01

    Scientific interest in indoor pollution has been increasing since the second half of the 1980s. Growing scientific evidence has shown that because people generally spend the majority of their time indoors, indoor pollution plays a significant role in affecting health and is thus an important health issue. Indoor environments include dwellings, workplaces, schools and day care centres, bars, discotheques and vehicles. Common indoor pollutants are environmental tobacco smoke, particulate matter, nitrogen dioxide, carbon monoxide, volatile organic compounds and biological allergens. In developing countries, relevant sources of indoor pollution include biomass and coal burning for cooking and heating. Concentrations of these pollutants can be many times higher indoors than outdoors. Indoor air pollution may increase the risk of irritation phenomena, allergic sensitisation, acute and chronic respiratory disorders and lung function impairment. Recent conservative estimates have shown that 1.5-2 million deaths per year worldwide could be attributed to indoor air pollution. Approximately 1 million of these deaths occur in children aged under 5 years due to acute respiratory infections, and significant proportions of deaths occur due to chronic obstructive pulmonary disease and lung cancer in women. Today, indoor air pollution ranks tenth among preventable risk factors contributing to the global burden of disease. Further research is necessary to better evaluate the respiratory health effects of indoor pollution and to implement protective programmes for public health.

  14. Clean Air Slots Amid Atmospheric Pollution

    NASA Technical Reports Server (NTRS)

    Hobbs, Peter V.

    2002-01-01

    Layering in the Earth's atmosphere is most commonly seen where parts of the atmosphere resist the incursion of air parcels from above and below - for example, when there is an increase in temperature with height over a particular altitude range. Pollutants tend to accumulate underneath the resulting stable layers. which is why visibility often increases markedly above certain altitudes. Here we describe the occurrence of an opposite effect, in which stable layers generate a layer of remarkably clean air (we refer to these layers as clean-air 'slots') sandwiched between layers of polluted air. We have observed clean-air slots in various locations around the world, but they are particularly well defined and prevalent in southern Africa during the dry season August-September). This is because at this time in this region, stable layers are common and pollution from biomass burning is widespread.

  15. Energy use, emissions and air pollution reduction strategies in Asia

    SciTech Connect

    Foell, W.; Green, C.; Sarkar, A.; Legler, J.

    1995-12-31

    The pace of economic progress and development experienced in many Asian countries has not occurred without costs to the natural environment. In particular, energy policies and technologies are a primary driving force behind air pollution problems arising from air pollution emissions in Asia. Economic growth, energy use, and reliance on fossil fuels are experiencing extremely high growth throughout most of the continent. Electric power expansion plans in many countries of Asia, particularly China and India, call for substantial increases in coal combustion. In the 1990`s, two-thirds of all power related investments in developing countries will be in Asia. In contrast to the situation in Europe and North America, emissions of air pollution species in Asia are increasing rapidly, resulting in both local air pollution problems and higher acidic deposition in many regions. In general, most Asian countries do not have a strong scientific nor public constituency for addressing potentially serious air pollution problems impacting important economic and cultural activities such as forestry, agriculture, and tourism. The complex political ramifications of trans-boundary air pollution in Asia have not yet begun to be addressed.

  16. Experience with urban air pollution in Paterson, New Jersey and implications for air pollution communication.

    PubMed

    Johnson, Branden B

    2012-01-01

    Communication about air pollution can help reduce health risks, but a scattered, largely qualitative literature on air pollution beliefs, attitudes, and behaviors raises questions about its effectiveness. A telephone survey of Paterson, New Jersey (USA) residents tested four hypotheses aimed toward integrating these findings. Self-reported sheltering indoors during high pollution, the recommended strategy, was predicted by perceived air quality and self-reported "sensitivity" to air pollution. Nearly a quarter of the sample reported mandatory outdoor activity (e.g., work) that might increase their exposures, but this factor did not significantly affect self-reported sheltering. Perceptions of air quality did not correlate strongly with official monitoring data (U.S. Air Quality Index (AQI)); even people who regularly sought AQI data relied upon sensory cues to high pollution, and secondarily upon health cues. Use of sensory and health cues, definitions of what makes someone sensitive to air pollution, and (less strongly) definitions of vulnerability to air pollution varied widely. The minority aware of the AQI were more likely to seek it if they had illnesses or saw themselves in the targeted AQI audience, yet less likely if they believed themselves sensitive to pollution. However, their sense of the AQI's match to their own experience was driven by whether they used sensory (yes) or health (no) cues, not by illness status. Some urban residents might not have access to AQI data, but this barrier seems outweighed by need to bridge interpretive gaps over definitions of air pollution, sensory perception, vulnerability, and health consequences.

  17. GOSAT Air Pollution Watch - Rapid Response System for Local Air Pollution

    NASA Astrophysics Data System (ADS)

    Matsunaga, T.; Sawada, Y.; Kamei, A.; Uchiyama, A.

    2015-12-01

    GOSAT (Greenhouse Gases Observing Satellite) launched in 2009 and its successor, GOSAT-2, to be launched in FY 2017, have push-broom imaging systems with more than one UV band with higher spatial resolution than OMI, MODIS, and VIIRS. Such imaging systems are useful for mapping the spatial extent of the optically thick air mass with particulate matters. GOSAT Air Pollution Watch, a rapid response system mainly using GOSAT CAI (Cloud and Aerosol Imager) data for local air pollution issues is being developed in NIES (National Institute for Environmental Studies) GOSAT-2 Project. The current design of GOSAT Air Pollution Watch has three data processing steps as follows: Step 1) Making a cloud mask Step 2) Estimating AOT (Aerosol Optical Thickness) in the UV region (380 nm for CAI) Step 3) Converting AOT to atmospheric pollution parameters such as PM2.5 concentration Data processing algorithms in GOSAT Air Pollution Watch are based on GOSAT/GOSAT-2 algorithms for aerosol product generation with some modification for faster and timely data processing. Data from GOSAT Air Pollution Watch will be used to inform the general public the current distribution of the polluted air. In addition, they will contribute to short term prediction of the spatial extent of the polluted air using atmospheric transport models. In this presentation, the background, the current status, and the future prospect of GOSAT Air Pollution Watch will be reported together with the development status of GOSAT-2.

  18. [Air pollution and asthma in childhood].

    PubMed

    Latzin, Philipp

    2013-12-01

    Exposure to outdoor air pollutants and passive tobacco smoke are common but avoidable worldwide risk factors for morbidity and mortality of individuals. In addition to well-known effects of pollutants on the cardiovascular system and the development of cancer, in recent years the association between air pollution and respiratory morbidity has become increasingly apparent. Not only in adults, but also in children with asthma and in healthy children a clear harmful effect of exposure towards air pollutants has been demonstrated in many studies. Among others increased pollution has been shown to result in more frequent and more severe respiratory symptoms, more frequent exacerbations, higher need for asthma medication, poorer lung function and increased visits to the emergency department and more frequent hospitalisations. While these associations are well established, the available data on the role of air pollution in the development of asthma seems less clear. Some studies have shown that increased exposure towards tobacco smoke and air pollution leads to an increase in asthma incidence and prevalence; others were not able to confirm those findings. Possible reasons for this discrepancy are different definitions of the outcome asthma, different methods for exposure estimation and differences in the populations studied with differing underlying genetic backgrounds. Regardless of this inconsistency, several mechanisms have already been identified linking air pollution with asthma development. Among these are impaired lung growth and development, immunological changes, genetic or epigenetic effects or increased predisposition for allergic sensitisation. What the exact interactions are and which asthmatic phenotypes will be influenced most by pollutants will be shown by future studies. This knowledge will then be helpful in exploring possible preventive measures for the individual and to help policy makers in deciding upon most appropriate regulations on a population

  19. Instrumentation for Air Pollution Monitoring

    ERIC Educational Resources Information Center

    Hollowell, Craig D.; McLaughlin, Ralph D.

    1973-01-01

    Describes the techniques which form the basis of current commercial instrumentation for monitoring five major gaseous atmospheric pollutants (sulfur dioxide, oxides of nitrogen, oxidants, carbon monoxide, and hydrocarbons). (JR)

  20. Air Pollution Potential from Electroplating Operations.

    ERIC Educational Resources Information Center

    Diamond, Philip

    Measurements were made of emission rates from electroplating operations considered to have maximum air pollution potential. Sampling was performed at McClellan and additional data from a previous survey at Hill Air Force Base was used. Values obtained were extremely low. Based on existing Federal standards, no collectors are specifically required…

  1. Variance Design and Air Pollution Control

    ERIC Educational Resources Information Center

    Ferrar, Terry A.; Brownstein, Alan B.

    1975-01-01

    Air pollution control authorities were forced to relax air quality standards during the winter of 1972 by granting variances. This paper examines the institutional characteristics of these variance policies from an economic incentive standpoint, sets up desirable structural criteria for institutional design and arrives at policy guidelines for…

  2. Topics in Air Pollution Control (SI: 428).

    ERIC Educational Resources Information Center

    Rampacek, Anne; Chaput, Linda

    This course provides information about air pollution control efforts since the passage of the Clean Air Act and places in perspective various issues that have arisen since passage of the act--significant deterioration, maintenance of standards, indirect source review, and transportation controls. Court decisions affecting these issues are cited…

  3. Urban Air Pollution: State of the Science.

    ERIC Educational Resources Information Center

    Seinfeld, John H.

    1989-01-01

    Describes the highly complex mixture of gaseous and particulate matter found in urban air. Explains progress made in the understanding of the physics and chemistry of air pollution, the effects of precursors on ozone, the role of biogenic hydrocarbons, and the principal benefit of methanol-fueled vehicles. (RT)

  4. Mobile Sensors and Applications for Air Pollutants

    EPA Science Inventory

    Executive Summary The public has long been interested in understanding what pollutants are in the air they breathe so they can best protect their environmental health and welfare. The current air quality monitoring network consists of discrete stations with expensive equipment ...

  5. Vegetation fires and air pollution in Vietnam.

    PubMed

    Le, Thanh Ha; Thanh Nguyen, Thi Nhat; Lasko, Kristofer; Ilavajhala, Shriram; Vadrevu, Krishna Prasad; Justice, Chris

    2014-12-01

    Forest fires are a significant source of air pollution in Asia. In this study, we integrate satellite remote sensing data and ground-based measurements to infer fire-air pollution relationships in selected regions of Vietnam. We first characterized the active fires and burnt areas at a regional scale from MODIS satellite data. We then used satellite-derived active fire data to correlate the resulting atmospheric pollution. Further, we analyzed the relationship between satellite atmospheric variables and ground-based air pollutant parameters. Our results show peak fire activity during March in Vietnam, with hotspots in the Northwest and Central Highlands. Active fires were significantly correlated with UV Aerosol Index (UVAI), aerosol extinction absorption optical depth (AAOD), and Carbon Monoxide. The use of satellite aerosol optical thickness improved the prediction of Particulate Matter (PM) concentration significantly.

  6. The impact of plug-in vehicles on greenhouse gas and criteria pollutants emissions in an urban air shed using a spatially and temporally resolved dispatch model

    NASA Astrophysics Data System (ADS)

    Razeghi, Ghazal; Brown, Tim; Samuelsen, G. Scott

    With the introduction of plug-in vehicles (PEVs) into the light-duty vehicle fleet, the tail-pipe emissions of GHGs and criteria pollutants will be partly transferred to electricity generating units. To study the impact of PEVs on well-to-wheels emissions, the U.S. Western electrical grid serving the South Coast Air Basin (SoCAB) of California is modeled with both spatial and temporal resolution at the level of individual power plants. Electricity load is calculated and projected for future years, and the temporal electricity generation of each power plant within the SoCAB is modeled based on historical data and knowledge of electricity generation and dispatch. Due to the efficiency and pollutant controls governing the performance of the Western grid, the deployment of PEVs results in a daily reduction of greenhouse gases (GHGs) and tail-pipe emissions, especially in the critical morning and afternoon commute hours. The extent of improvement depends on charging scenarios, future grid mix, and the number and type of plug-in vehicles. In addition, charging PEVs using wind energy that would otherwise be curtailed can result in a substantial emissions reduction. Smart control will be required to manage PEV charging in order to mitigate renewable intermittencies and decrease emissions associated with peaking power production.

  7. Oil sands development and its impact on atmospheric wet deposition of air pollutants to the Athabasca Oil Sands Region, Alberta, Canada.

    PubMed

    Lynam, Mary M; Dvonch, J Timothy; Barres, James A; Morishita, Masako; Legge, Allan; Percy, Kevin

    2015-11-01

    Characterization of air pollutant deposition resulting from Athabasca oil sands development is necessary to assess risk to humans and the environment. To investigate this we collected event-based wet deposition during a pilot study in 2010-2012 at the AMS 6 site 30 km from the nearest upgrading facility in Fort McMurray, AB, Canada. Sulfate, nitrate and ammonium deposition was (kg/ha) 1.96, 1.60 and 1.03, respectively. Trace element pollutant deposition ranged from 2 × 10(-5) - 0.79 and exhibited the trend Hg < Se < As < Cd < Pb < Cu < Zn < S. Crustal element deposition ranged from 1.4 × 10(-4) - 0.46 and had the trend: La < Ce < Sr < Mn < Al < Fe < Mg. S, Se and Hg demonstrated highest median enrichment factors (130-2020) suggesting emissions from oil sands development, urban activities and forest fires were deposited. High deposition of the elements Sr, Mn, Fe and Mg which are tracers for soil and crustal dust implies land-clearing, mining and hauling emissions greatly impacted surrounding human settlements and ecosystems.

  8. An OSSE to Quantify the Impact of S5 Spaceborne Carbon Monoxide Total Column Measurements on Air Pollution Analysis and Forecast over Europe

    NASA Astrophysics Data System (ADS)

    Abida, R.; Attié, J. L.; El Amraoui, L.; Ricaud, P.; Eskes, H.; Kujanpää, J.; Segers, A.

    2014-12-01

    In the framework of ISOTROP project (Impact of Spaceborne Observations on Tropospheric Composition Analysis and Forecast) aiming to assess the impact of sentinel 4 (GEO) and 5 (LEO) measurements of O3, CO, NO2 and HCHO to better constrain pollutant concentrations and precursor emissions that influence air quality. A Regional-scale Observing System Simulattion Experiment (OSSE ) has been conducted over Europe to determine the impact of S5-precursor carbon monoxide total column future observations on tropospheric composition forecasting and analysis. This OSSE study involves two independant CTM models which is a considerable advantage for the study, since it guarantees that the OSSE results will not be overly optimistic results and the OSSE will more realistically simulate an assimilation of real observations. The nature run which consitute the true composition atmospheric state is simulated by LOTOS-EUROS model combined with the global TM5 chemistry-transport model. The synthetic S5-p CO total column measurements and their error characterisitcs are derived from the nature run data and generated by KNMI and FMI teams using a state-of-the-art retrieval algorithm involved in TROPOMI development. The control run in which we assimilate the CO measurements is MOCAGE model. Interestingly, the OSSE results show substantial benefit from CO data assimilation especially in the boundary layer on both the forecast and analysis, and demenstrated that a high-spatial resolution and high-quality measurements of S5 CO total column could potentially constrain the concentration in the atmospheric boundar layer.

  9. Measurement of toxic and related air pollutants

    SciTech Connect

    Jayanty, R.K.M.; Gay, B.W. Jr.

    1990-12-01

    A joint conference for the fifth straight year cosponsored by the Air and Waste Management Association's EM-3, EM-4, and ITF-2 technical committees, and the Atmospheric Research and Exposure Assessment Laboratory (AREAL) of the US Environmental Protection Agency, was held in Raleigh, North Carolina, May 1-4, 1990. The technical program consisted of 187 presentations, held in 20 technical sessions, on recent advances in the measurement and monitoring of toxic and related pollutants found in ambient and source atmospheres. Covering a wide range of measurement topics and supported by 66 exhibitors of instrumentation and consulting services, the symposium was attended by more than 850 professionals from the US and other countries. This overview highlights a selection of the technical presentations. A synopsis of the keynote address to the symposium is also included. Presentations include: (1) radon, (2) atmospheric chemistry and fate of toxic pollutants, (3) supercritical fluid extraction, (4) acidic deposition, (5) determination of polar and volatile organic pollutants in ambient air, (6) Delaware Superfund innovative technology evaluation (SITE) study, (7) mobile sources emissions characterization, (8) Superfund site air monitoring, (9) exposure assessment, (10) chemometrics and environmental data analysis, (11) nicotine in environmental tobacco smoke, (12) source monitoring, (13) effects of air toxics on plants, (14) measurement of volatile organic pollutants, (15) general, (16) air pollution dispersion modeling, (17) measurement of hazardous waste emissions, (18) measurement of indoor toxic air contaminants, and (19) environmental quality assurance.

  10. Air pollution in mega cities in China

    NASA Astrophysics Data System (ADS)

    Chan, Chak K.; Yao, Xiaohong

    Due to its rapidly expanding economic and industrial developments, China is currently considered to be the engine of the world's economic growth. China's economic growth has been accompanied by an expansion of the urban area population and the emergence of a number of mega cities since the 1990. This expansion has resulted in tremendous increases in energy consumption, emissions of air pollutants and the number of poor air quality days in mega cities and their immediate vicinities. Air pollution has become one of the top environmental concerns in China. Currently, Beijing, Shanghai, and the Pearl River Delta region including Guangzhou, Shenzhen and Hong Kong, and their immediate vicinities are the most economically vibrant regions in China. They accounted for about 20% of the total GDP in China in 2005. These are also areas where many air pollution studies have been conducted, especially over the last 6 years. Based on these previous studies, this review presents the current state of understanding of the air pollution problems in China's mega cities and identifies the immediate challenges to understanding and controlling air pollution in these densely populated areas.

  11. The status of indoor air pollution.

    PubMed Central

    Esmen, N A

    1985-01-01

    Indoor air pollution, specifically restricted in its meaning to chemicals in home indoor air environment, presents a new and probably an important challenge to the researchers of the air pollution field. The general overview of this topic suggests that the voluminous data generated in the past ten or so years have only defined the rudiments of the problem, and significant areas of research still exist. Among the important areas where information is lacking, the exposures to contaminants generated by the use of consumer products and through hobbies and crafts represent perhaps the most urgent need for substantial research. PMID:4085429

  12. Implications of air pollution effects on athletic performance

    SciTech Connect

    Pierson, W.E.; Covert, D.S.; Koenig, J.Q.; Namekata, T.; Kim, Y.S.

    1986-06-01

    Both controlled human studies and observational studies suggest that air pollution adversely affects athletic performance during both training and competition. The air pollution dosage during exercise is much higher than during rest because of a higher ventilatory rate and both nasal and oral breathing in the former case. For example, sulfur dioxide, which is a highly water-soluble gas, is almost entirely absorbed in the upper respiratory tract during nasal breathing. However, with oral pharyngeal breathing, the amount of sulfur dioxide that is absorbed is significantly less, and with exercise and oral pharyngeal breathing a significant decrease in upper airway absorption occurs, resulting in a significantly larger dosage of this pollutant being delivered to the tracheobronchial tree. Recently, several controlled human studies have shown that the combination of exercise and pollutant exposure (SO/sub 2/ or O/sub 3/) caused a marked bronchoconstriction and reduced ventilatory flow when compared to pollution exposure at rest. In a situation like the Olympic Games where milliseconds and millimeters often determine the success of athletes, air pollution can be an important factor in affecting their performance. This paper examines possible impacts of air pollution on athletic competition.

  13. Review: Implications of air pollution effects on athletic performance

    NASA Astrophysics Data System (ADS)

    Pierson, William E.; Covert, David S.; Koenig, Jane Q.; Namekata, Tsukasa; Kim, Yoon Shin

    Both controlled human studies and observational studies suggest air pollution adversely affects athletic performance during both training and competition. The air pollution dosage during exercise is much higher than during rest because of a higher ventilatory rate and both nasal and oral breathing in the former case. For example, SO 2 which is a highly water soluble gas, is almost entirely absorbed in the upper respiratory tract during nasal breathing. However, with oral pharyngeal breathing, the amount of sulfur dioxide that is absorbed is significantly less, and with exercise and oral pharyngeal breathing a significant decrease in upper airway absorption occurs, resulting in a significantly larger dosage of this pollutant being delivered to the tracheobronchial tree. Recently, several controlled human studies have shown that the combination of exercise and pollutant exposure (SO 2 or O 3) caused a marked bronchoconstriction and reduced ventilatory flow when compared with pollution exposure at rest. In a situation like the Olympic Games where ms and mm often determine success of athletes, air pollution can be an important factor in affecting their performance. This paper examines possible impacts of air pollution on athletic competition.

  14. Assessment of socioeconomic costs to China's air pollution

    NASA Astrophysics Data System (ADS)

    Xia, Yang; Guan, Dabo; Jiang, Xujia; Peng, Liqun; Schroeder, Heike; Zhang, Qiang

    2016-08-01

    Particulate air pollution has had a significant impact on human health in China and it is associated with cardiovascular and respiratory diseases and high mortality and morbidity. These health impacts could be translated to reduced labor availability and time. This paper utilized a supply-driven input-output (I-O) model to estimate the monetary value of total output losses resulting from reduced working time caused by diseases related to air pollution across 30 Chinese provinces in 2007. Fine particulate matter (PM2.5) pollution was used as an indicator to assess impacts to health caused by air pollution. The developed I-O model is able to capture both direct economic costs and indirect cascading effects throughout inter-regional production supply chains and the indirect effects greatly outnumber the direct effects in most Chinese provinces. Our results show the total economic losses of 346.26 billion Yuan (approximately 1.1% of the national GDP) based on the number of affected Chinese employees (72 million out of a total labor population of 712 million) whose work time in years was reduced because of mortality, hospital admissions and outpatient visits due to diseases resulting from PM2.5 air pollution in 2007. The loss is almost the annual GDP of Vietnam in 2010. The proposed modelling approach provides an alternative method for health-cost measurement with additional insights on inter-industrial and inter-regional linkages along production supply chains.

  15. The association between air pollution and mortality in Thailand

    PubMed Central

    Guo, Yuming; Li, Shanshan; Tawatsupa, Benjawan; Punnasiri, Kornwipa; Jaakkola, Jouni J. K.; Williams, Gail

    2014-01-01

    Bayesian statistical inference with a case-crossover design was used to examine the effects of air pollutants {Particulate matter <10 μm in aerodynamic diameter (PM10), sulphur dioxide (SO2), and ozone (O3)} on mortality. We found that all air pollutants had significant short-term impacts on non-accidental mortality. An increase of 10 μg/m3 in PM10, 10 ppb in O3, 1 ppb in SO2 were associated with a 0.40% (95% posterior interval (PI): 0.22, 0.59%), 0.78% (95% PI: 0.20, 1.35%) and 0.34% (95% PI: 0.17, 0.50%) increase of non-accidental mortality, respectively. O3 air pollution is significantly associated with cardiovascular mortality, while PM10 is significantly related to respiratory mortality. In general, the effects of all pollutants on all mortality types were higher in summer and winter than those in the rainy season. This study highlights the effects of exposure to air pollution on mortality risks in Thailand. Our findings support the Thailand government in aiming to reduce high levels of air pollution. PMID:24981315

  16. Development of a high temporal-spatial resolution vehicle emission inventory based on NRT traffic data and its impact on air pollution in Beijing - Part 2: Impact of vehicle emission on urban air quality

    NASA Astrophysics Data System (ADS)

    He, J. J.; Wu, L.; Mao, H. J.; Liu, H. L.; Jing, B. Y.; Yu, Y.; Ren, P. P.; Feng, C.; Liu, X. H.

    2015-07-01

    In a companion paper (Jing et al., 2015), a high temporal-spatial resolution vehicle emission inventory (HTSVE) for 2013 in Beijing has been established based on near real time (NRT) traffic data and bottom up methodology. In this study, based on the sensitivity analysis method of switching on/off pollutant emissions in the Chinese air quality forecasting model CUACE, a modeling study was carried out to evaluate the contributions of vehicle emission to the air pollution in Beijing main urban areas in the periods of summer (July) and winter (December) 2013. Generally, CUACE model had good performance of pollutants concentration simulation. The model simulation has been improved by using HTSVE. The vehicle emission contribution (VEC) to ambient pollutant concentrations not only changes with seasons but also changes over moment. The mean VEC, affected by regional pollutant transports significantly, is 55.4 and 48.5 % for NO2, while 5.4 and 10.5 % for PM2.5 in July and December 2013, respectively. Regardless of regional transports, relative vehicle emission contribution (RVEC) to NO2 is 59.2 and 57.8 % in July and December 2013, while 8.7 and 13.9 % for PM2.5. The RVEC to PM2.5 is lower than PM2.5 contribution rate for vehicle emission in total emission, which may be caused by easily dry deposition of PM2.5 from vehicle emission in near-surface layer compared to elevated source emission.

  17. Ambient air pollution, climate change, and population health in China.

    PubMed

    Kan, Haidong; Chen, Renjie; Tong, Shilu

    2012-07-01

    As the largest developing country, China has been changing rapidly over the last three decades and its economic expansion is largely driven by the use of fossil fuels, which leads to a dramatic increase in emissions of both ambient air pollutants and greenhouse gases (GHGs). China is now facing the worst air pollution problem in the world, and is also the largest emitter of carbon dioxide. A number of epidemiological studies on air pollution and population health have been conducted in China, using time-series, case-crossover, cross-sectional, cohort, panel or intervention designs. The increased health risks observed among Chinese population are somewhat lower in magnitude, per amount of pollution, than the risks found in developed countries. However, the importance of these increased health risks is greater than that in North America or Europe, because the levels of air pollution in China are very high in general and Chinese population accounts for more than one fourth of the world's totals. Meanwhile, evidence is mounting that climate change has already affected human health directly and indirectly in China, including mortality from extreme weather events; changes in air and water quality; and changes in the ecology of infectious diseases. If China acts to reduce the combustion of fossil fuels and the resultant air pollution, it will reap not only the health benefits associated with improvement of air quality but also the reduced GHG emissions. Consideration of the health impact of air pollution and climate change can help the Chinese government move forward towards sustainable development with appropriate urgency.

  18. Effects of Ambient Air Pollution Exposure on Olfaction: A Review

    PubMed Central

    Ajmani, Gaurav S.; Suh, Helen H.; Pinto, Jayant M.

    2016-01-01

    Background: Olfactory dysfunction affects millions of people worldwide. This sensory impairment is associated with neurodegenerative disease and significantly decreased quality of life. Exposure to airborne pollutants has been implicated in olfactory decline, likely due to the anatomic susceptibility of the olfactory nerve to the environment. Historically, studies have focused on occupational exposures, but more recent studies have considered effects from exposure to ambient air pollutants. Objectives: To examine all relevant human data evaluating a link between ambient pollution exposure and olfaction and to review supporting animal data in order to examine potential mechanisms for pollution-associated olfactory loss. Methods: We identified and reviewed relevant articles from 1950 to 2015 using PubMed and Web of Science and focusing on human epidemiologic and pathophysiologic studies. Animal studies were included only to support pertinent data on humans. We reviewed findings from these studies evaluating a relationship between environmental pollutant exposure and olfactory function. Results: We identified and reviewed 17 articles, with 1 additional article added from a bibliography search, for a total of 18 human studies. There is evidence in human epidemiologic and pathologic studies that increased exposure to ambient air pollutants is associated with olfactory dysfunction. However, most studies have used proxies for pollution exposure in small samples of convenience. Human pathologic studies, with supporting animal work, have also shown that air pollution can contact the olfactory epithelium, translocate to the olfactory bulb, and migrate to the olfactory cortex. Pollutants can deposit at each location, causing direct damage and disruption of tissue morphology or inducing local inflammation and cellular stress responses. Conclusions: Ambient air pollution may impact human olfactory function. Additional studies are needed to examine air pollution

  19. The use of video for air pollution source monitoring

    SciTech Connect

    Ferreira, F.; Camara, A.

    1999-07-01

    The evaluation of air pollution impacts from single industrial emission sources is a complex environmental engineering problem. Recent developments in multimedia technologies used by personal computers improved the digitizing and processing of digital video sequences. This paper proposes a methodology where statistical analysis of both meteorological and air quality data combined with digital video images are used for monitoring air pollution sources. One of the objectives of this paper is to present the use of image processing algorithms in air pollution source monitoring. CCD amateur video cameras capture images that are further processed by computer. The use of video as a remote sensing system was implemented with the goal of determining some particular parameters, either meteorological or related with air quality monitoring and modeling of point sources. These parameters include the remote calculation of wind direction, wind speed, gases stack's outlet velocity, and stack's effective emission height. The characteristics and behavior of a visible pollutant's plume is also studied. Different sequences of relatively simple image processing operations are applied to the images gathered by the different cameras to segment the plume. The algorithms are selected depending on the atmospheric and lighting conditions. The developed system was applied to a 1,000 MW fuel power plant located at Setubal, Portugal. The methodology presented shows that digital video can be an inexpensive form to get useful air pollution related data for monitoring and modeling purposes.

  20. Impact of traffic-related air pollution on acute changes in cardiac autonomic modulation during rest and physical activity: a cross-over study.

    PubMed

    Cole-Hunter, Tom; Weichenthal, Scott; Kubesch, Nadine; Foraster, Maria; Carrasco-Turigas, Glòria; Bouso, Laura; Martínez, David; Westerdahl, Dane; de Nazelle, Audrey; Nieuwenhuijsen, Mark

    2016-01-01

    People are often exposed to traffic-related air pollution (TRAP) during physical activity (PA), but it is not clear if PA modifies the impact of TRAP on cardiac autonomic modulation. We conducted a panel study among 28 healthy adults in Barcelona, Spain to examine how PA may modify the impact of TRAP on cardiac autonomic regulation. Participants completed four 2-h exposure scenarios that included either rest or intermittent exercise in high- and low-traffic environments. Time- and frequency-domain measures of heart rate variability (HRV) were monitored during each exposure period along with continuous measures of TRAP. Linear mixed-effects models were used to estimate the impact of TRAP on HRV as well as potential effect modification by PA. Exposure to TRAP was associated with consistent decreases in HRV; however, exposure-response relationships were not always linear over the broad range of exposures. For example, each 10 μg/m(3) increase in black carbon was associated with a 23% (95% CI: -31, -13) decrease in high frequency power at the low-traffic site, whereas no association was observed at the high-traffic site. PA modified the impact of TRAP on HRV at the high-traffic site and tended to weaken inverse associations with measures reflecting parasympathetic modulation (P ≤ 0.001). Evidence of effect modification at the low-traffic site was less consistent. The strength and direction of the relationship between TRAP and HRV may vary across exposure gradients. PA may modify the impact of TRAP on HRV, particularly at higher concentrations.

  1. Healthy Neighborhoods: Walkability and Air Pollution

    PubMed Central

    Marshall, Julian D.; Brauer, Michael; Frank, Lawrence D.

    2009-01-01

    Background The built environment may influence health in part through the promotion of physical activity and exposure to pollution. To date, no studies have explored interactions between neighborhood walkability and air pollution exposure. Methods We estimated concentrations of nitric oxide (NO), a marker for direct vehicle emissions), and ozone (O3) and a neighborhood walkability score, for 49,702 (89% of total) postal codes in Vancouver, British Columbia, Canada. NO concentrations were estimated from a land-use regression model, O3 was estimated from ambient monitoring data; walkability was calculated based on geographic attributes such as land-use mix, street connectivity, and residential density. Results All three attributes exhibit an urban–rural gradient, with high walkability and NO concentrations, and low O3 concentrations, near the city center. Lower-income areas tend to have higher NO concentrations and walkability and lower O3 concentrations. Higher-income areas tend to have lower pollution (NO and O3). “Sweet-spot” neighborhoods (low pollution, high walkability) are generally located near but not at the city center and are almost exclusively higher income. Policy implications Increased concentration of activities in urban settings yields both health costs and benefits. Our research identifies neighborhoods that do especially well (and especially poorly) for walkability and air pollution exposure. Work is needed to ensure that the poor do not bear an undue burden of urban air pollution and that neighborhoods designed for walking, bicycling, or mass transit do not adversely affect resident’s exposure to air pollution. Analyses presented here could be replicated in other cities and tracked over time to better understand interactions among neighborhood walkability, air pollution exposure, and income level. PMID:20049128

  2. Coping with Indoor Air Pollution

    MedlinePlus

    ... itself. Household chemical cleaners Use baking soda or vinegar and water as household cleaners. For a job ... after each use by using one-part white vinegar to three-parts water. Let the pieces air- ...

  3. Air pollution: a smoking gun for cancer.

    PubMed

    Zhang, Wei; Qian, Chao-Nan; Zeng, Yi-Xin

    2014-04-01

    Once considered a taboo topic or stigma, cancer is the number one public health enemy in the world. Once a product of an almost untouchable industry, tobacco is indisputably recognized as a major cause of cancer and a target for anticancer efforts. With the emergence of new economic powers in the world, especially in highly populated countries such as China, air pollution has rapidly emerged as a smoking gun for cancer and has become a hot topic for public health debate because of the complex political, economic, scientific, and technologic issues surrounding the air pollution problem. This editorial and the referred articles published in this special issue of the Chinese Journal of Cancer discuss these fundamental questions. Does air pollution cause a wide spectrum of cancers? Should air pollution be considered a necessary evil accompanying economic transformation in developing countries? Is an explosion of cancer incidence coming to China and how soon will it arrive? What must be done to prevent this possible human catastrophe? Finally, the approaches for air pollution control are also discussed.

  4. The Outdoor Air Pollution and Brain Health Workshop

    EPA Science Inventory

    Accumulating evidence suggests that air pollution may have a significant impact on central nervous system (CNS) health and disease. To address this issue, the National Institute of Environmental Health Sciences/National Institute of Health convened a panel of research scientists...

  5. Results of the California Healthy Homes Indoor Air Quality Study of 2011-2013: Impact of natural gas appliances on air pollutant concentrations

    DOE PAGES

    Mullen, Nasim A.; Li, Jina; Russell, Marion L.; Spears, Michael; Less, Brennan D.; Singer, Brett C.

    2015-03-17

    This study was conducted to assess the current impact of natural gas appliances on air quality in California homes. Data were collected via telephone interviews and measurements inside and outside of 352 homes. Passive samplers measured time-resolved CO and time-integrated NOX, NO2, formaldehyde, and acetaldehyde over ~6d periods in November 2011 - April 2012 and October 2012 - March 2013. The fraction of indoor NOX and NO2 attributable to indoor sources was estimated. NOX, NO2 and highest 1-h CO were higher in homes that cooked with gas and increased with amount of gas cooking. NOX and NO2 were higher inmore » homes with cooktop pilot burners, relative to gas cooking without pilots. Homes with a pilot burner on a floor or wall furnace had higher kitchen and bedroom NOX and NO2 compared to homes without a furnace pilot. When scaled to account for varying home size and mixing volume, indoor-attributed bedroom and kitchen NOX and kitchen NO2 were not higher in homes with wall or floor furnace pilot burners, though bedroom NO2 was higher. In homes that cooked 4 h or more with gas, self-reported use of kitchen exhaust was associated with lower NOX, NO2 and highest 1-h CO. Gas appliances were not associated with higher concentrations of formaldehyde or acetaldehyde.« less

  6. Results of the California Healthy Homes Indoor Air Quality Study of 2011-2013: impact of natural gas appliances on air pollutant concentrations.

    PubMed

    Mullen, N A; Li, J; Russell, M L; Spears, M; Less, B D; Singer, B C

    2016-04-01

    This study was conducted to assess the current impact of natural gas appliances on air quality in California homes. Data were collected via telephone interviews and measurements inside and outside of 352 homes. Passive samplers measured time-resolved CO and time-integrated NOX , NO2 , formaldehyde, and acetaldehyde over ~6-day periods in November 2011 - April 2012 and October 2012 - March 2013. The fraction of indoor NOX and NO2 attributable to indoor sources was estimated. NOX , NO2 , and highest 1-h CO were higher in homes that cooked with gas and increased with amount of gas cooking. NOX and NO2 were higher in homes with cooktop pilot burners, relative to gas cooking without pilots. Homes with a pilot burner on a floor or wall furnace had higher kitchen and bedroom NOX and NO2 compared to homes without a furnace pilot. When scaled to account for varying home size and mixing volume, indoor-attributed bedroom and kitchen NOX and kitchen NO2 were not higher in homes with wall or floor furnace pilot burners, although bedroom NO2 was higher. In homes that cooked 4 h or more with gas, self-reported use of kitchen exhaust was associated with lower NOX , NO2 , and highest 1-h CO. Gas appliances were not associated with higher concentrations of formaldehyde or acetaldehyde.

  7. Survey of Ambient Air Pollution Health Risk Assessment Tools.

    PubMed

    Anenberg, Susan C; Belova, Anna; Brandt, Jørgen; Fann, Neal; Greco, Sue; Guttikunda, Sarath; Heroux, Marie-Eve; Hurley, Fintan; Krzyzanowski, Michal; Medina, Sylvia; Miller, Brian; Pandey, Kiran; Roos, Joachim; Van Dingenen, Rita

    2016-09-01

    Designing air quality policies that improve public health can benefit from information about air pollution health risks and impacts, which include respiratory and cardiovascular diseases and premature death. Several computer-based tools help automate air pollution health impact assessments and are being used for a variety of contexts. Expanding information gathered for a May 2014 World Health Organization expert meeting, we survey 12 multinational air pollution health impact assessment tools, categorize them according to key technical and operational characteristics, and identify limitations and challenges. Key characteristics include spatial resolution, pollutants and health effect outcomes evaluated, and method for characterizing population exposure, as well as tool format, accessibility, complexity, and degree of peer review and application in policy contexts. While many of the tools use common data sources for concentration-response associations, population, and baseline mortality rates, they vary in the exposure information source, format, and degree of technical complexity. We find that there is an important tradeoff between technical refinement and accessibility for a broad range of applications. Analysts should apply tools that provide the appropriate geographic scope, resolution, and maximum degree of technical rigor for the intended assessment, within resources constraints. A systematic intercomparison of the tools' inputs, assumptions, calculations, and results would be helpful to determine the appropriateness of each for different types of assessment. Future work would benefit from accounting for multiple uncertainty sources and integrating ambient air pollution health impact assessment tools with those addressing other related health risks (e.g., smoking, indoor pollution, climate change, vehicle accidents, physical activity).

  8. AIR POLLUTION AND INFANT HEALTH: LESSONS FROM NEW JERSEY*

    PubMed Central

    Currie, Janet; Neidell, Matthew; Schmieder, Johannes

    2009-01-01

    We examine the impact of three “criteria” air pollutants on infant health in New Jersey in the 1990s by combining information about mother’s residential location from birth certificates with information from air quality monitors. Our work offers three important innovations: First, we use the exact addresses of mothers to select those closest to air monitors to improve the accuracy of air quality exposure. Second, we include maternal fixed effects to control for unobserved characteristics of mothers. Third, we examine interactions of air pollution with smoking and other risk factors for poor infant health outcomes. We find consistently negative effects of exposure to carbon monoxide, both during and after birth, with effects considerably larger for smokers and older mothers. Since automobiles are the main source of carbon monoxide emissions, our results have important implications for regulation of automobile emissions. PMID:19328569

  9. Air pollution toxicology--a brief review of the role of the science in shaping the current understanding of air pollution health risks.

    PubMed

    Stanek, Lindsay Wichers; Brown, James S; Stanek, John; Gift, Jeff; Costa, Daniel L

    2011-03-01

    Human and animal toxicology has had a profound impact on our historical and current understanding of air pollution health effects. Early animal toxicological studies of air pollution had distinctively military or workplace themes. With the discovery that ambient air pollution episodes led to excess illness and death, there became an emergence of toxicological studies that focused on industrial air pollution encountered by the general public. Not only did the pollutants investigated evolve from ambient mixtures to individual pollutants but also the endpoints and outcomes evaluated became more sophisticated, resulting in our present state of the science. Currently, a large toxicological database exists for the effects of particulate matter and ozone, and we provide a focused review of some of the major contributions to the biological understanding for these two "criteria" air pollutants. A limited discussion of the toxicological advancements in the scientific knowledge of two hazardous air pollutants, formaldehyde and phosgene, is also included. Moving forward, the future challenge of air pollution toxicology lies in the health assessment of complex mixtures and their interactions, given the projected impacts of climate change and altered emissions on ambient conditions. In the coming years, the toxicologist will need to be flexible and forward thinking in order to dissect the complexity of the biological system itself, as well as that of air pollution in all its varied forms.

  10. LOWER RIO GRANDE VALLEY TRANSBOUNDARY AIR POLLUTION PROJECT (TAPP) (MAIN REPORT)

    EPA Science Inventory

    The purpose of the Lower Rio Grande Valley Transboundary Air Pollution Project (TAPP) was to obtain air quality data for a full year at three border monitoring sites to assess anthropogenic and biogenic emission impacts and transboundary air pollution transport in the Lower Rio...

  11. The Outdoor Air Pollution and Brain Health Workshop

    PubMed Central

    Block, Michelle L.; Elder, Alison; Auten, Rick L.; Bilbo, Staci D.; Chen, Honglei; Chen, Jiu-Chiuan; Cory-Slechta, Deborah A.; Costa, Daniel; Diaz-Sanchez, David; Dorman, David C.; Gold, Diane; Gray, Kimberly; Jeng, Hueiwang Anna; Kaufman, Joel D.; Kleinman, Michael T.; Kirshner, Annette; Lawler, Cindy; Miller, David S.; Nadadur, Sri; Ritz, Beate; Semmens, Erin O.; Tonelli, Leonardo H.; Veronesi, Bellina; Wright, Robert O.; Wright, Rosalind

    2013-01-01

    Accumulating evidence suggests that outdoor air pollution may have a significant impact on central nervous system (CNS) health and disease. To address this issue, the National Institute of Environmental Health Sciences/National Institute of Health convened a panel of research scientists that was assigned the task of identifying research gaps and priority goals essential for advancing this growing field and addressing an emerging human health concern. Here, we review recent findings that have established the effects of inhaled air pollutants in the brain, explore the potential mechanisms driving these phenomena, and discuss the recommended research priorities/approaches that were identified by the panel. PMID:22981845

  12. Indoor air pollution aggravates symptoms of atopic dermatitis in children.

    PubMed

    Kim, Eun-Hye; Kim, Soyeon; Lee, Jung Hyun; Kim, Jihyun; Han, Youngshin; Kim, Young-Min; Kim, Gyo-Boong; Jung, Kweon; Cheong, Hae-Kwan; Ahn, Kangmo

    2015-01-01

    Most of researches on the impact of indoor air pollutants on atopic dermatitis (AD) have been based upon animal models, in vitro experiments and case-control studies. However, human data to elucidate the role of indoor air pollution on worsening symptoms of pre-existing AD from a longitudinal study are scarce. The objective of this prospective study was to evaluate the effect of indoor air pollution on AD symptoms in children. We surveyed 30 children with AD in a day-care centre, which moved to a new building during the study. These children stayed there for 8 hours a day Monday through Friday, and their daily symptom scores were recorded. Indoor and outdoor air pollutant levels were continuously measured 24 hours a day for 12 months (Period 1 to 4). Data were analyzed using a generalized linear mixed model. Compared to the period before moving (Period 1), concentrations of indoor air pollutants mostly increased after moving (Period 2) and decreased by natural ventilation and bake-out (Periods 3 and 4). The rate of positive AD symptom increased from 32.8% (Period 1) up to 43.8% (Period 2) and 50.5% (Period 3), then decreased to 35.4% in Period 4 (P < 0.0001). When the delayed effects of indoor air pollutants on AD symptoms 2 days later were evaluated, AD symptoms significantly increased by 12.7% (95% CI: -0.01 to 27.1) as toluene levels increased by 1 ppb (P = 0.05). In conclusion, indoor air pollutants increase the risk of AD aggravation in children and toluene in the indoor environment might act as an aggravating factor.

  13. Urban air pollution and solar energy

    NASA Technical Reports Server (NTRS)

    Gammon, R. B.; Huning, J. R.; Reid, M. S.; Smith, J. H.

    1981-01-01

    The design and performance of solar energy systems for many potential applications (industrial/residential heat, electricity generation by solar concentration and photovoltaics) will be critically affected by local insolation conditions. The effects of urban air pollution are considered and reviewed. A study of insolation data for Alhambra, California (9 km south of Pasadena) shows that, during a recent second-stage photochemical smog alert (greater than or equal to 0.35 ppm ozone), the direct-beam insolation at solar noon was reduced by 40%, and the total global by 15%, from clean air values. Similar effects have been observed in Pasadena, and are attributable primarily to air pollution. Effects due to advecting smog have been detected 200 km away, in the Mojave Desert. Preliminary performance and economic simulations of solar thermal and photovoltaic power systems indicate increasing nonlinear sensitivity of life cycle plant cost to reductions in insolation levels due to pollution.

  14. Higher fuel prices are associated with lower air pollution levels.

    PubMed

    Barnett, Adrian G; Knibbs, Luke D

    2014-05-01

    Air pollution is a persistent problem in urban areas, and traffic emissions are a major cause of poor air quality. Policies to curb pollution levels often involve raising the price of using private vehicles, for example, congestion charges. We were interested in whether higher fuel prices were associated with decreased air pollution levels. We examined an association between diesel and petrol prices and four traffic-related pollutants in Brisbane from 2010 to 2013. We used a regression model and examined pollution levels up to 16 days after the price change. Higher diesel prices were associated with statistically significant short-term reductions in carbon monoxide and nitrogen oxides. Changes in petrol prices had no impact on air pollution. Raising diesel taxes in Australia could be justified as a public health measure. As raising taxes is politically unpopular, an alternative political approach would be to remove schemes that put a downward pressure on fuel prices, such as industry subsidies and shopping vouchers that give fuel discounts.

  15. Dependence of urban air pollutants on meteorology.

    PubMed

    Elminir, Hamdy K

    2005-11-01

    Dependence of air pollutants on meteorology is presented with the aim of understanding the governing processes pollutants phase interaction. Intensive measurements of particulate matter (PM10) and gaseous materials (e.g., CO, NO2, SO2, and O3) are carried out regularly in 2002 at 14 measurement sites distributed over the whole territory of Great Cairo by the Egyptian Environmental Affairs Agency to assess the characteristics of air pollutants. The discussions in this work are based upon measurements performed at Abbassiya site as a case study. The nature of the contributing sources has been investigated and some attempts have been made to indicate the role played by neighboring regions in determining the air quality at the site mentioned. The results hint that, wind direction was found to have an influence not only on pollutant concentrations but also on the correlation between pollutants. As expected, the pollutants associated with traffic were at highest ambient concentration levels when wind speed was low. At higher wind speeds, dust and sand from the surrounding desert was entrained by the wind, thus contributing to ambient particulate matter levels. We also found that, the highest average concentration for NO2 and O3 occurred at humidity

  16. Air pollutant transport in a street canyon

    SciTech Connect

    Luke Chen; Hsu-Cheng Chang

    1996-12-31

    An air pollutant (CO) distribution in a typical street canyon is simulated to evaluate pedestrian exposure. In this study, we consider factors those may affect the pollutant distribution in a typical street canyon. The considered factors include aspect ratio of a street canyon, atmospheric stability, traffic load and turbulent buoyancy effect. A two-dimensional domain that includes suburban roughness and urban street canyon is considered. The factors such as atmospheric stability, traffic load and turbulent buoyancy are imposed through the associated boundary conditions. With numerical simulation, the critical aspect ration of a street canyon the includes two vortices and results in pollutant accumulation are found. The buoyant effect is found to raise the same pollutant concentration up to the position higher than the results come out from the case without buoyancy. The pedestrian exposure to the street air pollutant under various traffic loads and atmospheric stability are evaluated. This study conclude that the local building regulations that specify the building height/street width ratio will not cause significant pedestrian exposure to the street air pollution in most of traffic loads and atmospheric stability conditions.

  17. Air Pollution and Exercise: A Perspective From China.

    PubMed

    Wang, Zhen

    2016-09-01

    China is experiencing an air pollution crisis, which has already had a significantly negative impact on the health of the Chinese people. Although exercising is considered a useful means to prevent chronic diseases, it could actually lead to adverse effects due to extra exposure to polluted air when done outdoors. After a brief description of the rather scary situation in China, critical issues and challenges related to exercising in polluted air are outlined. The author calls for the exercise science community to work together to address these issues and challenges so that the health status of the current populations can be improved, the relationship among environment, exercising, and human health can be better understood, and future generations can live in a healthier environment. PMID:27462823

  18. Chronic obstructive pulmonary disease secondary to household air pollution.

    PubMed

    Assad, Nour A; Balmes, John; Mehta, Sumi; Cheema, Umar; Sood, Akshay

    2015-06-01

    Approximately 3 billion people around the world cook and heat their homes using solid fuels in open fires and rudimentary stoves, resulting in household air pollution. Household air pollution secondary to indoor combustion of solid fuel is associated with multiple chronic obstructive pulmonary disease (COPD) outcomes. The exposure is associated with both chronic bronchitis and emphysema phenotypes of COPD as well as a distinct form of obstructive airway disease called bronchial anthracofibrosis. COPD from household air pollution differs from COPD from tobacco smoke with respect to its disproportionately greater bronchial involvement, lesser emphysematous change, greater impact on quality of life, and possibly greater oxygen desaturation and pulmonary hypertensive changes. Interventions that decrease exposure to biomass smoke may decrease the risk for incident COPD and attenuate the longitudinal decline in lung function, but more data on exposure-response relationships from well-designed longitudinal studies are needed. PMID:26024348

  19. Chronic obstructive pulmonary disease secondary to household air pollution.

    PubMed

    Assad, Nour A; Balmes, John; Mehta, Sumi; Cheema, Umar; Sood, Akshay

    2015-06-01

    Approximately 3 billion people around the world cook and heat their homes using solid fuels in open fires and rudimentary stoves, resulting in household air pollution. Household air pollution secondary to indoor combustion of solid fuel is associated with multiple chronic obstructive pulmonary disease (COPD) outcomes. The exposure is associated with both chronic bronchitis and emphysema phenotypes of COPD as well as a distinct form of obstructive airway disease called bronchial anthracofibrosis. COPD from household air pollution differs from COPD from tobacco smoke with respect to its disproportionately greater bronchial involvement, lesser emphysematous change, greater impact on quality of life, and possibly greater oxygen desaturation and pulmonary hypertensive changes. Interventions that decrease exposure to biomass smoke may decrease the risk for incident COPD and attenuate the longitudinal decline in lung function, but more data on exposure-response relationships from well-designed longitudinal studies are needed.

  20. A pound of prevention: Air pollution and the fuel cell

    SciTech Connect

    Johnson, B.L.; Rose, R.

    1996-12-31

    The expanded use of fuel cells in transportation and power generation is an exciting proposition for public health officials because of the potential of this technology to help reduce air pollution levels around the globe. Such work is about prevention -- prevention of air emissions of hazardous substances. Prevention is a key concept in public health. An example is quarantine, which aims to prevent the spread of a disease-causing organism. In the environmental arena, prevention includes cessation of pollution. Air pollution prevention policies also have a practical impact. Sooner or later ideas on technology, especially new technology, must be sold to policy makers, legislators, and eventually the public. Advocating technologies that will improve human health and welfare can be an effective marketing strategy.