Science.gov

Sample records for air pollutants emission

  1. Air Pollution

    MedlinePlus

    Air pollution is a mixture of solid particles and gases in the air. Car emissions, chemicals from factories, ... Ozone, a gas, is a major part of air pollution in cities. When ozone forms air pollution, it's ...

  2. Regional emissions of air pollutants in China.

    SciTech Connect

    Streets, D. G.

    1998-10-05

    As part of the China-MAP program, sponsored by the US National Aeronautics and Space Administration, regional inventories of air pollutants emitted in China are being characterized, in order that the atmospheric chemistry over China can be more fully understood and the resulting ambient concentrations in Chinese cities and the deposition levels to Chinese ecosystems be determined with better confidence. In addition, the contributions of greenhouse gases from China and of acidic aerosols that counteract global warming are being quantified. This paper presents preliminary estimates of the emissions of some of the major air pollutants in China: sulfur dioxide (SO{sub 2}), nitrogen oxides (NO{sub x}), carbon monoxide (CO), and black carbon (C). Emissions are estimated for each of the 27 regions of China included in the RAINS-Asia simulation model and are subsequently distributed to a 1{degree} x 1{degree} grid using appropriate disaggregation factors. Emissions from all sectors of the Chinese economy are considered, including the combustion of biofuels in rural homes. Emissions from larger power plants are calculated individually and allocated to the grid accordingly. Data for the period 1990-1995 are being developed, as well as projections for the future under alternative assumptions about economic growth and environmental control.

  3. OFFICE EQUIPMENT: DESIGN, INDOOR AIR EMISSIONS, AND POLLUTION PREVENTION OPPORTUNITIES

    EPA Science Inventory

    The report summarizes available information on office equipment design; indoor air emissions of organics, ozone, and particulates from office equipment; and pollution prevention approaches for reducing these emissions. Since much of the existing emissions data from office equipme...

  4. Projection of hazardous air pollutant emissions to future years.

    PubMed

    Strum, Madeleine; Cook, Rich; Thurman, James; Ensley, Darrell; Pope, Anne; Palma, Ted; Mason, Richard; Michaels, Harvey; Shedd, Stephen

    2006-08-01

    Projecting a hazardous air pollutant (HAP) emission inventory to future years can provide valuable information for air quality management activities such as prediction of program successes and helping to assess future priorities. We have projected the 1999 National Emission Inventory for HAPs to numerous future years up to 2020 using the following tools and data: the Emissions Modeling System for Hazardous Air Pollutants (EMS-HAP), the National Mobile Inventory Model (NMIM), emission reduction information resulting from national standards and economic growth data. This paper discusses these projection tools, the underlying data, limitations and the results. The results presented include total HAP emissions (sum of pollutants) and toxicity-weighted HAP emissions for cancer and respiratory noncancer effects. Weighting emissions by toxicity does not consider fate, transport, or location and behavior of receptor populations and can only be used to estimate relative risks of direct emissions. We show these projections, along with historical emission trends. The data show that stationary source programs under Section 112 of the Clean Air Act Amendments of 1990 and mobile source programs which reduce hydrocarbon and particulate matter emissions, as well as toxic emission performance standards for reformulated gasoline, have contributed to and are expected to continue to contribute to large declines in air toxics emissions, in spite of economic and population growth. We have also analyzed the particular HAPs that dominate the source sectors to better understand the historical and future year trends and the differences across sectors.

  5. Effects of air emissions on wildlife resources. Air pollution and acid rain report No. 1

    SciTech Connect

    Newman, J.R.

    1980-05-01

    This publication describes in general the pathways of contamination, direct and indirect effects of air emissions on wildlife resources, and the potential use of wildlife as biological indicators of air quality degradation. Also included in the report are summaries of air pollution incidents involving wildlife, responses of wildlife to air pollution, major target systems of selected air pollutants, and information on the capacity of some air pollutants to accumulate in body tissues.

  6. 76 FR 12863 - National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-09

    ... that provided national emission standards for hazardous air pollutants for existing stationary spark... Docket Center (6102T), National Emission Standards for Hazardous Air Pollutant for Stationary... Standards for Hazardous Air Pollutant for Stationary Reciprocating Internal Combustion Engines...

  7. Energy use, emissions and air pollution reduction strategies in Asia

    SciTech Connect

    Foell, W.; Green, C.; Sarkar, A.; Legler, J.

    1995-12-31

    The pace of economic progress and development experienced in many Asian countries has not occurred without costs to the natural environment. In particular, energy policies and technologies are a primary driving force behind air pollution problems arising from air pollution emissions in Asia. Economic growth, energy use, and reliance on fossil fuels are experiencing extremely high growth throughout most of the continent. Electric power expansion plans in many countries of Asia, particularly China and India, call for substantial increases in coal combustion. In the 1990`s, two-thirds of all power related investments in developing countries will be in Asia. In contrast to the situation in Europe and North America, emissions of air pollution species in Asia are increasing rapidly, resulting in both local air pollution problems and higher acidic deposition in many regions. In general, most Asian countries do not have a strong scientific nor public constituency for addressing potentially serious air pollution problems impacting important economic and cultural activities such as forestry, agriculture, and tourism. The complex political ramifications of trans-boundary air pollution in Asia have not yet begun to be addressed.

  8. Overview of Megacity Air Pollutant Emissions and Impacts

    NASA Astrophysics Data System (ADS)

    Kolb, C. E.

    2013-05-01

    The urban metabolism that characterizes major cities consumes very large qualities of humanly produced and/or processed food, fuel, water, electricity, construction materials and manufactured goods, as well as, naturally provided sunlight, precipitation and atmospheric oxygen. The resulting urban respiration exhalations add large quantities of trace gas and particulate matter pollutants to urban atmospheres. Key classes of urban primary air pollutants and their sources will be reviewed and important secondary pollutants identified. The impacts of these pollutants on urban and downwind regional inhabitants, ecosystems, and climate will be discussed. Challenges in quantifying the temporally and spatially resolved urban air pollutant emissions and secondary pollutant production rates will be identified and possible measurement strategies evaluated.

  9. 77 FR 75739 - National Emission Standards for Hazardous Air Pollutants for Chemical Manufacturing Area Sources

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-21

    ... Control Technology HAP Hazardous Air Pollutants HON National Emission Standards for Organic Hazardous Air Pollutants From the Synthetic Organic Chemical Manufacturing Industry ICR Information Collection Request lb... Hazardous Air Pollutants: Miscellaneous Organic Chemical Manufacturing MSDS Material Safety Data...

  10. Emission estimates for air pollution transport models.

    SciTech Connect

    Streets, D. G.

    1998-10-09

    The results of studies of energy consumption and emission inventories in Asia are discussed. These data primarily reflect emissions from fuel combustion (both biofuels and fossil fuels) and were collected to determine emissions of acid-deposition precursors (SO{sub 2} and NO{sub x}) and greenhouse gases (CO{sub 2} CO, CH{sub 4}, and NMHC) appropriate to RAINS-Asia regions. Current work is focusing on black carbon (soot), volatile organic compounds, and ammonia.

  11. National Emission Standards for Hazardous Air Pollutants submittal -- 1997

    SciTech Connect

    Townsend, Y.E.; Black, S.C.

    1998-06-01

    Each potential source of Nevada Test Site (NTS) emissions was characterized by one of the following methods: (1) monitoring methods and procedures previously developed at the NTS; (2) a yearly radionuclide inventory of the source, assuming that volatile radionuclide are released to the environment; (3) the measurement of tritiated water (as HTO or T{sub 2}O) concentration in liquid effluents discharged to containment ponds and assuming all the effluent evaporates over the course of the year to become an air emission; or (4) using a combination of environmental measurements and CAP88-PC to calculate emissions. The emissions for National Emission Standards for Hazardous Air Pollutants (NESHAPs) reporting are listed. They are very conservative and are used in Section 3 to calculate the EDE to the maximally exposed individual offsite. Offsite environmental surveillance data, where available, are used to confirm that calculated emissions are, indeed, conservative.

  12. Economically consistent long-term scenarios for air pollutant emissions

    SciTech Connect

    Smith, Steven J.; West, Jason; Kyle, G. Page

    2011-09-08

    Pollutant emissions such as aerosols and tropospheric ozone precursors substantially influence climate. While future century-scale scenarios for these emissions have become more realistic through the inclusion of emission controls, they still potentially lack consistency between surface pollutant concentrations and regional levels of affluence. We demonstrate a methodology combining use of an integrated assessment model and a three-dimensional atmospheric chemical transport model, whereby a reference scenario is constructed by requiring consistent surface pollutant levels as a function of regional income over the 21st century. By adjusting air pollutant emission control parameters, we improve agreement between modeled PM2.5 and economic income among world regions through time; agreement for ozone is also improved but is more difficult to achieve because of the strong influence of upwind world regions. The scenario examined here was used as the basis for one of the Representative Concentration Pathway (RCP) scenarios. This analysis methodology could also be used to examine the consistency of other pollutant emission scenarios.

  13. National Emission Standards for Hazardous Air Pollutants submittal -- 1994

    SciTech Connect

    Townsend, Y.E.; Black, S.C.

    1995-06-01

    This report focuses on air quality at the Nevada Test Site (NTS) for 1994. A general description of the effluent sources are presented. Each potential source of NTS emissions was characterized by one of the following: (1) by monitoring methods and procedures previously developed at NTS; (2) by a yearly radionuclide inventory of the source, assuming that volatile radionuclides are released to the environment; (3) by the measurement of tritiated water concentration in liquid effluents discharged to containment ponds and assuming all the effluent evaporates over the course of the year to become an air emission; or (4) by using a combination of environmental measurements and CAP88-PC to calculate emissions. Appendices A through J describe the methods used to determine the emissions from the sources. These National Emission Standards for Hazardous Air Pollutants (NESHAP) emissions are very conservative, are used to calculate the effective dose equivalent to the Maximally Exposed Individual offsite, and exceed, in some cases, those reported in DOE`s Effluent Information System (EIS). The NESHAP`s worst-case emissions that exceed the EIS reported emissions are noted. Offsite environmental surveillance data are used to confirm that calculated emissions are, indeed, conservative.

  14. Improved Estimates of Air Pollutant Emissions from Biorefinery

    SciTech Connect

    Tan, Eric C. D.

    2015-11-13

    We have attempted to use detailed kinetic modeling approach for improved estimation of combustion air pollutant emissions from biorefinery. We have developed a preliminary detailed reaction mechanism for biomass combustion. Lignin is the only biomass component included in the current mechanism and methane is used as the biogas surrogate. The model is capable of predicting the combustion emissions of greenhouse gases (CO2, N2O, CH4) and criteria air pollutants (NO, NO2, CO). The results are yet to be compared with the experimental data. The current model is still in its early stages of development. Given the acknowledged complexity of biomass oxidation, as well as the components in the feed to the combustor, obviously the modeling approach and the chemistry set discussed here may undergo revision, extension, and further validation in the future.

  15. 76 FR 42052 - National Emission Standards for Hazardous Air Pollutants From Petroleum Refineries

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-18

    ... AGENCY 40 CFR Parts 9 and 63 RIN 2060-AO55 National Emission Standards for Hazardous Air Pollutants From... portions of the final rule amending the National Emission Standards for Hazardous Air Pollutants From...) establishes a two-stage regulatory process to address emissions of hazardous air pollutants (HAP)...

  16. Air pollution radiative forcing from specific emissions sectors at 2030

    NASA Astrophysics Data System (ADS)

    Unger, Nadine; Shindell, Drew T.; Koch, Dorothy M.; Streets, David G.

    2008-01-01

    Reduction of short-lived air pollutants can contribute to mitigate global warming in the near-term with ancillary benefits to human health. However, the radiative forcings of short-lived air pollutants depend on the location and source type of the precursor emissions. We apply the Goddard Institute for Space Studies atmospheric composition-climate model to quantify near-future (2030 A1B) global annual mean radiative forcing by ozone (O3) and sulfate from six emissions sectors in seven geographic regions. At 2030 the net forcings from O3, sulfate, black and organic carbon, and indirect CH4 effects for each emission sector are (in mWm-2) biomass burning, +95; domestic, +68; transportation, +67; industry, -131; and power, -224. Biomass burning emissions in East Asia and central and southern Africa, domestic biofuel emissions in East Asia, south Asia, and central and southern Africa, and transportation emissions in Europe and North America have large net positive forcings and are therefore attractive targets to counter global warming. Power and industry emissions from East Asia, south Asia, and north Africa and the Middle East have large net negative forcings. Therefore air quality control measures that affect these regional sectors require offsetting climate measures to avoid a warming impact. Linear relationships exist between O3 forcing and biomass burning and domestic biofuel CO precursor emissions independent of region with sensitivity of +0.2 mWm-2/TgCO. Similarly, linear relationships exist between sulfate forcing and SO2 precursor emissions that depend upon region but are independent of sector with sensitivities ranging from -3 to -12 mWm-2/TgS.

  17. 77 FR 16508 - National Emission Standards for Hazardous Air Pollutant Emissions: Group IV Polymers and Resins...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-21

    ..., was published on January 9, 2012 (77 FR 1268). EPA has established the public docket for the proposed...: Group IV Polymers and Resins; Pesticide Active Ingredient Production; and Polyether Polyols Production... pollutants: National Emission Standards for Hazardous Air Pollutant Emissions: Group IV Polymers and...

  18. 76 FR 14839 - Delegation of National Emission Standards for Hazardous Air Pollutants for Source Categories...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-18

    ... AGENCY 40 CFR Part 63 Delegation of National Emission Standards for Hazardous Air Pollutants for Source... County Air Pollution Control District AGENCY: Environmental Protection Agency (EPA). ACTION: Proposed... national emission standards for hazardous air pollutants (NESHAP) to the Maricopa County Air...

  19. Emissions of air pollutants from indoor charcoal barbecue.

    PubMed

    Huang, Hsiao-Lin; Lee, Whei-May Grace; Wu, Feng-Shu

    2016-01-25

    Ten types of commercial charcoal commonly used in Taiwan were investigated to study the potential health effects of air pollutants generated during charcoal combustion in barbecue restaurants. The charcoal samples were combusted in a tubular high-temperature furnace to simulate the high-temperature charcoal combustion in barbecue restaurants. The results indicated that traditional charcoal has higher heating value than green synthetic charcoal. The amount of PM10 and PM2.5 emitted during the smoldering stage increased when the burning temperature was raised. The EF for CO and CO2 fell within the range of 68-300 and 644-1225 g/kg, respectively. Among the charcoals, the lowest EF for PM2.5 and PM10 were found in Binchōtan (B1). Sawdust briquette charcoal (I1S) emitted the smallest amount of carbonyl compounds. Charcoal briquettes (C2S) emitted the largest amount of air pollutants during burning, with the EF for HC, PM2.5, PM10, formaldehyde, and acetaldehyde being the highest among the charcoals studied. The emission of PM2.5, PM10, formaldehyde, and acetaldehyde were 5-10 times those of the second highest charcoal. The results suggest that the adverse effects of the large amounts of air pollutants generated during indoor charcoal combustion on health and indoor air quality must not be ignored.

  20. 76 FR 81327 - National Emission Standards for Hazardous Air Pollutants From the Pulp and Paper Industry

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-27

    ... Hazardous Air Pollutants From the Pulp and Paper Industry; Proposed Rule #0;#0;Federal Register / Vol. 76... Part 63 RIN 2060-AQ41 National Emission Standards for Hazardous Air Pollutants From the Pulp and Paper... proposing amendments to the national emission standards for hazardous air pollutants for the pulp and...

  1. 77 FR 41146 - Delegation of National Emission Standards for Hazardous Air Pollutants for Source Categories...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-12

    ... AGENCY 40 CFR Part 63 Delegation of National Emission Standards for Hazardous Air Pollutants for Source.... SUMMARY: Pursuant to section 112(l) of the Clean Air Act as amended in 1990, EPA is proposing to grant delegation of specific national emission standards for hazardous air pollutants (NESHAP) to the Gila...

  2. 75 FR 8888 - Delegation of National Emission Standards for Hazardous Air Pollutants for Source Categories...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-26

    ... AGENCY 40 CFR Part 63 Delegation of National Emission Standards for Hazardous Air Pollutants for Source...). ACTION: Proposed rule. SUMMARY: Pursuant to section 112(l) of the 1990 Clean Air Act, EPA granted delegation of specific national emission standards for hazardous air pollutants (NESHAP) to the...

  3. 40 CFR 63.2850 - How do I comply with the hazardous air pollutant emission standards?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 12 2011-07-01 2009-07-01 true How do I comply with the hazardous air pollutant emission standards? 63.2850 Section 63.2850 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES National...

  4. 40 CFR 63.2850 - How do I comply with the hazardous air pollutant emission standards?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 13 2013-07-01 2012-07-01 true How do I comply with the hazardous air pollutant emission standards? 63.2850 Section 63.2850 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED)...

  5. 77 FR 8575 - National Emissions Standards for Hazardous Air Pollutants: Secondary Aluminum Production

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-14

    ... February 14, 2012 Part V Environmental Protection Agency 40 CFR Part 63 National Emissions Standards for... 63 RIN 2060-AQ40 National Emissions Standards for Hazardous Air Pollutants: Secondary Aluminum... proposing amendments to the national emissions standards for hazardous air pollutants for Secondary...

  6. 1999 INEEL National Emission Standards for Hazardous Air Pollutants - Radionuclides

    SciTech Connect

    J. W. Tkachyk

    2000-06-01

    Under Section 61.94 of Title 40, Code of Federal Regulations (CFR), Part 61, Subpart H, ''National Emission Standards for Emission of Radionuclides Other Than Radon From Department of Energy Facilities,'' each Department of Energy (DOE) facility must submit an annual report documenting compliance. This report addresses the Section 61.94 reporting requirements for operations at the Idaho National Engineering and Environmental Laboratory (INEEL) for calendar year (CY) 1999. The Idaho Operations Office of the DOE is the primary contract concerning compliance with the National Emission Standards for Hazardous Air Pollutants (NESHAPs) at the INEEL. For CY 1999, airborne radionuclide emissions from the INEEL operations were calculated to result in a maximum individual dose to a member of the public of 7.92E-03 mrem (7.92E-08 Sievert). This effective dose equivalent (EDE) is well below the 40 CFR 61, Subpart H, regulatory standard of 10 mrem per year (1.0E-04 Sievert per year).

  7. 1998 INEEL National Emission Standard for Hazardous Air Pollutants - Radionuclides

    SciTech Connect

    J. W. Tkachyk

    1999-06-01

    Under Section 61.94 of Title 40, Code of Federal Regulations (CFR), Part 61, Subpart H, ''National Emission Standards for Emission of Radionuclides Other Than Radon From Department of Energy Facilities,'' each Department of Energy (DOE) facility must submit an annual report documenting compliance. This report addresses the Section 61.94 reporting requirements for operations at the Idaho National Engineering and Environmental Laboratory (INEEL) for calendar year (CY) 1998. The Idaho Operations Office of the DOE is the primary contract concerning compliance with the National Emission Standards for Hazardous Air Pollutants (NESHAPs) at the INEEL. For CY 1998, airborne radionuclide emissions from the INEEL operations were calculated to result in a maximum individual dose to a member of the public of 7.92E-03 mrem (7.92E-08 Sievert). This effective dose equivalent (EDE) is well below the 40 CFR 61, Subpart H, regulatory standard of 10 mrem per year (1.0E-04 Sievert per year).

  8. [Study on feasible emission control level of air pollutions for cement industry ].

    PubMed

    Ren, Chun; Jiang, Mei; Zou, Lan; Li, Xiao-qian; Wei, Yu-xia; Zhao, Guo-hua; Zhang, Guo-ning

    2014-09-01

    The revised National Emission Standard of Air Pollutions for Cement Industry has been issued, which will be effective for the new enterprises and the existing enterprises on Mar. 1st, 2014 and July 1st, 2015, respectively. In the process of revision, the key technical issues on determination of standard limits was how to determine the feasible emission control level of air pollutions. Feasible emission control requirements were put forward, according to air pollutants emission, technologies, environmental management requirements and foreign standards, etc. The main contents of the revised standard include expanding the scope of application, increasing the pollutants, improving the particulate and NO emissions control level, and increasing special emission limits applied to key areas of air pollutants. The standard will become the gripper of pollution prevention, total emission reduction, structural adjustment and optimization of the layout, and will promote scientific and technical progression for the cement industry.

  9. Air pollutant emissions from Chinese households: A major and underappreciated ambient pollution source.

    PubMed

    Liu, Jun; Mauzerall, Denise L; Chen, Qi; Zhang, Qiang; Song, Yu; Peng, Wei; Klimont, Zbigniew; Qiu, Xinghua; Zhang, Shiqiu; Hu, Min; Lin, Weili; Smith, Kirk R; Zhu, Tong

    2016-07-12

    As part of the 12th Five-Year Plan, the Chinese government has developed air pollution prevention and control plans for key regions with a focus on the power, transport, and industrial sectors. Here, we investigate the contribution of residential emissions to regional air pollution in highly polluted eastern China during the heating season, and find that dramatic improvements in air quality would also result from reduction in residential emissions. We use the Weather Research and Forecasting model coupled with Chemistry to evaluate potential residential emission controls in Beijing and in the Beijing, Tianjin, and Hebei (BTH) region. In January and February 2010, relative to the base case, eliminating residential emissions in Beijing reduced daily average surface PM2.5 (particulate mater with aerodynamic diameter equal or smaller than 2.5 micrometer) concentrations by 14 ± 7 μg⋅m(-3) (22 ± 6% of a baseline concentration of 67 ± 41 μg⋅m(-3); mean ± SD). Eliminating residential emissions in the BTH region reduced concentrations by 28 ± 19 μg⋅m(-3) (40 ± 9% of 67 ± 41 μg⋅m(-3)), 44 ± 27 μg⋅m(-3) (43 ± 10% of 99 ± 54 μg⋅m(-3)), and 25 ± 14 μg⋅m(-3) (35 ± 8% of 70 ± 35 μg⋅m(-3)) in Beijing, Tianjin, and Hebei provinces, respectively. Annually, elimination of residential sources in the BTH region reduced emissions of primary PM2.5 by 32%, compared with 5%, 6%, and 58% achieved by eliminating emissions from the transportation, power, and industry sectors, respectively. We also find air quality in Beijing would benefit substantially from reductions in residential emissions from regional controls in Tianjin and Hebei, indicating the value of policies at the regional level. PMID:27354524

  10. Air pollutant emissions from Chinese households: A major and underappreciated ambient pollution source

    PubMed Central

    Liu, Jun; Mauzerall, Denise L.; Chen, Qi; Zhang, Qiang; Song, Yu; Peng, Wei; Klimont, Zbigniew; Qiu, Xinghua; Zhang, Shiqiu; Hu, Min; Lin, Weili; Smith, Kirk R.; Zhu, Tong

    2016-01-01

    As part of the 12th Five-Year Plan, the Chinese government has developed air pollution prevention and control plans for key regions with a focus on the power, transport, and industrial sectors. Here, we investigate the contribution of residential emissions to regional air pollution in highly polluted eastern China during the heating season, and find that dramatic improvements in air quality would also result from reduction in residential emissions. We use the Weather Research and Forecasting model coupled with Chemistry to evaluate potential residential emission controls in Beijing and in the Beijing, Tianjin, and Hebei (BTH) region. In January and February 2010, relative to the base case, eliminating residential emissions in Beijing reduced daily average surface PM2.5 (particulate mater with aerodynamic diameter equal or smaller than 2.5 micrometer) concentrations by 14 ± 7 μg⋅m−3 (22 ± 6% of a baseline concentration of 67 ± 41 μg⋅m−3; mean ± SD). Eliminating residential emissions in the BTH region reduced concentrations by 28 ± 19 μg⋅m−3 (40 ± 9% of 67 ± 41 μg⋅m−3), 44 ± 27 μg⋅m−3 (43 ± 10% of 99 ± 54 μg⋅m−3), and 25 ± 14 μg⋅m−3 (35 ± 8% of 70 ± 35 μg⋅m−3) in Beijing, Tianjin, and Hebei provinces, respectively. Annually, elimination of residential sources in the BTH region reduced emissions of primary PM2.5 by 32%, compared with 5%, 6%, and 58% achieved by eliminating emissions from the transportation, power, and industry sectors, respectively. We also find air quality in Beijing would benefit substantially from reductions in residential emissions from regional controls in Tianjin and Hebei, indicating the value of policies at the regional level. PMID:27354524

  11. Air pollutant emissions from Chinese households: A major and underappreciated ambient pollution source.

    PubMed

    Liu, Jun; Mauzerall, Denise L; Chen, Qi; Zhang, Qiang; Song, Yu; Peng, Wei; Klimont, Zbigniew; Qiu, Xinghua; Zhang, Shiqiu; Hu, Min; Lin, Weili; Smith, Kirk R; Zhu, Tong

    2016-07-12

    As part of the 12th Five-Year Plan, the Chinese government has developed air pollution prevention and control plans for key regions with a focus on the power, transport, and industrial sectors. Here, we investigate the contribution of residential emissions to regional air pollution in highly polluted eastern China during the heating season, and find that dramatic improvements in air quality would also result from reduction in residential emissions. We use the Weather Research and Forecasting model coupled with Chemistry to evaluate potential residential emission controls in Beijing and in the Beijing, Tianjin, and Hebei (BTH) region. In January and February 2010, relative to the base case, eliminating residential emissions in Beijing reduced daily average surface PM2.5 (particulate mater with aerodynamic diameter equal or smaller than 2.5 micrometer) concentrations by 14 ± 7 μg⋅m(-3) (22 ± 6% of a baseline concentration of 67 ± 41 μg⋅m(-3); mean ± SD). Eliminating residential emissions in the BTH region reduced concentrations by 28 ± 19 μg⋅m(-3) (40 ± 9% of 67 ± 41 μg⋅m(-3)), 44 ± 27 μg⋅m(-3) (43 ± 10% of 99 ± 54 μg⋅m(-3)), and 25 ± 14 μg⋅m(-3) (35 ± 8% of 70 ± 35 μg⋅m(-3)) in Beijing, Tianjin, and Hebei provinces, respectively. Annually, elimination of residential sources in the BTH region reduced emissions of primary PM2.5 by 32%, compared with 5%, 6%, and 58% achieved by eliminating emissions from the transportation, power, and industry sectors, respectively. We also find air quality in Beijing would benefit substantially from reductions in residential emissions from regional controls in Tianjin and Hebei, indicating the value of policies at the regional level.

  12. National Emission Standards for Hazardous Air Pollutants Submittal - 1995

    SciTech Connect

    Black, S.C.; Townsend, Y.E.

    1996-06-01

    This report contains National Emission Standards for Hazardous Air Pollutants at the Nevada Test Site (NTS). It provides lists of figures and tables related to the NTS and includes a Site Description. The Source Description includes current and previous activities conducted on the NTS. The Site has been the primary location for testing of nuclear explosives in the Continental U.S. since 1951. Historical testing has included (1) atmospheric testing in the 1950`s and early 1960s, (2) earth-cratering experiments, and (3) open-air nuclear reactor and rocket engine testing. At the North Las Vegas Facility, operated for DOE/NV by EG&G Energy Measurements, there was an Unusual Occurrence that led to an insignificant potential exposure to an offsite person. The incident involved the release of tritiated water (HTO), and a description of the incident and the method of calculating the effective dose equivalent for offsite exposure are described. The Source Description further describes Ground Seepage of Noble Gases, Radioactive Waste Management Sites, and Plutonium Contaminated Surface Areas.

  13. 40 CFR 63.2850 - How do I comply with the hazardous air pollutant emission standards?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 13 2012-07-01 2012-07-01 false How do I comply with the hazardous air pollutant emission standards? 63.2850 Section 63.2850 Protection of Environment ENVIRONMENTAL PROTECTION... air pollutant emission standards? (a) General requirements. The requirements in paragraphs...

  14. 76 FR 57913 - Amendments to National Emission Standards for Hazardous Air Pollutants for Area Sources: Plating...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-19

    ... Air Pollutants for Area Sources: Plating and Polishing'' which was published on June 20, 2011 (76 FR... AGENCY 40 CFR Part 63 RIN 2060-AQ74 Amendments to National Emission Standards for Hazardous Air... standards for hazardous air pollutants (NESHAP) for the plating and polishing area source category...

  15. National Emission Standards for Hazardous Air Pollutants Calendar Year 2005

    SciTech Connect

    Bechtel Nevada

    2006-06-01

    The Nevada Test Site (NTS) is operated by the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO). From 1951 through 1992, the NTS was operated as the nation’s site for nuclear weapons testing. The release of man-made radionuclides from the NTS as a result of testing activities has been monitored since the first decade of atmospheric testing. After 1962, when nuclear tests were conducted only underground, the radiation exposure to the public surrounding the NTS was greatly reduced. After the 1992 moratorium on nuclear testing, radiation monitoring on the NTS focused on detecting airborne radionuclides that are resuspended into the air (e.g., by winds, dust-devils) along with historically-contaminated soils on the NTS. To protect the public from harmful levels of man-made radiation, the Clean Air Act, National Emission Standards for Hazardous Air Pollutants (NESHAP) (40 Code of Federal Regulations 61 Subpart H) limits the release of radioactivity from a U. S. Department of Energy (DOE) facility (e.g., the NTS) to 10 millirem per year (mrem/yr) effective dose equivalent (EDE) to any member of the public. This is the dose limit established for someone living off of the NTS for inhaling radioactive particles that may be carried by wind off of the NTS. This limit assumes that members of the public surrounding the NTS may also inhale “background levels” or radioactive particles unrelated to NTS activities that come from naturally-occurring elements in the environment (e.g., radon gas from the earth or natural building materials) or from other man-made sources (e.g., cigarette smoke). The U. S. Environmental Protection Agency (EPA) requires DOE facilities (e.g., the NTS) to demonstrate compliance with the NESHAP dose limit by annually estimating the dose to a hypothetical member of the public, referred to as the maximally exposed individual (MEI), or the member of the public who resides within an 80-kilometer (50-mile

  16. Estimating the benefits of pollution reduction on agricultural yields: Taiwan's air pollution emission fees program.

    PubMed

    Chen, Tser-yieth; Li, Chun-sheng

    2003-07-01

    Taiwan's implementation of the 1997 Air Pollution Emissions Fees Program will conceivably lead to long-term reductions in pollution emissions. The purpose of this paper is to estimate the benefits to Taiwan from the expected reduction in crop losses as a direct result of such a decrease in air pollution. We employ a demand-supply framework for rice production to estimate the change in social welfare resulting from changes in the concentration of certain pollutants in the atmosphere. Our empirical results show that, in the year 1997, social welfare increments resulting from the decline in sulfur dioxide concentrations in the atmosphere ranged between US dollars 946200 and US dollars 2435800. Meanwhile, during the same period, the increase in social welfare due to the decline in the ozone concentration in the atmosphere ranged between US dollars 838100 and US dollars 1927000. The average benefit from the reduction in both sulfur dioxide and ozone concentrations is calculated to be between US dollars 2.67 and US dollars 6.86 per acre (for sulfur dioxide), and from US dollars 2.36 to US dollars 5.43 per acre (for ozone). PMID:12837257

  17. Air Pollution.

    ERIC Educational Resources Information Center

    Gilpin, Alan

    A summary of one of our most pressing environmental problems, air pollution, is offered in this book by the Director of Air Pollution Control for the Queensland (Australia) State Government. Discussion of the subject is not restricted to Queensland or Australian problems and policies, however, but includes analysis of air pollution the world over.…

  18. Texas refinery air pollution emissions are being severely underestimated

    NASA Astrophysics Data System (ADS)

    Schultz, Colin

    2014-06-01

    The Houston-Galveston-Brazoria region of southeastern Texas is home to heavy industrial investment in oil refining and petrochemical production. Pollutants emanating from the factories and refineries have repeatedly caused the region to fail national and state-level tests for air quality and ground-level ozone.

  19. MODELS TO ESTIMATE VOLATILE ORGANIC HAZARDOUS AIR POLLUTANT EMISSIONS FROM MUNICIPAL SEWER SYSTEMS

    EPA Science Inventory

    Emissions from municipal sewers are usually omitted from hazardous air pollutant (HAP) emission inventories. This omission may result from a lack of appreciation for the potential emission impact and/or from inadequate emission estimation procedures. This paper presents an analys...

  20. 76 FR 38591 - National Emission Standards for Hazardous Air Pollutants: Secondary Lead Smelting; Extension of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-01

    ... the National Emissions Standards for Hazardous Air Pollutants for Secondary Lead Smelting (76 FR 29032... Standards for Hazardous Air Pollutants: Secondary Lead Smelting, was published May 19, 2011 (76 FR 29032... current rule. DATES: Comments on the proposed rule published May 19, 2011 (76 FR 29032) must be...

  1. Air Pollution.

    ERIC Educational Resources Information Center

    Fox, Donald L.

    1989-01-01

    Materials related to air pollution are reviewed for the period January 1987, to October 1988. The topics are pollution monitoring, air pollution, and environmental chemistry. The organization consists of two major analytical divisions: (1) gaseous methods; and (2) aerosol and particulate methods. (MVL)

  2. Strategies for emission reduction of air pollutants produced from a chemical plant.

    PubMed

    Lee, Byeong-Kyu; Cho, Sung-Woong

    2003-01-01

    Various air pollution control (APC) techniques were employed in order to reduce emissions of air pollutants produced from chemical plants, which have many different chemical production facilities. For an emission reduction of acid gases, this study employed a method to improve solubility of pollutants by decreasing the operating temperature of the scrubbers, increasing the surface area for effective contact of gas and liquid, and modifying processes in the acid scrubbers. To reduce emission of both amines and acid gases, pollutant gas components were first separated, then condensation and/or acid scrubbing, depending on the chemical and physical properties of pollutant components, were used. To reduce emission of solvents, condensation and activated carbon adsorption were employed. To reduce emission of a mixture gases containing acid gases and solvents, the mixed gases were passed into the first condenser, the acid scrubber, the second condenser, and the activated carbon adsorption tower in sequence. As a strategy to reduce emission of pollutants at the source, this study also employed the simple pollution prevention concept of modification of the previously operating APC control device. Finally, air emissions of pollutants produced from the chemical plants were much more reduced by applying proper APC methods, depending upon the types (physical or chemical properties) and the specific emission situations of pollutants. PMID:12447574

  3. Aromatic compound emissions from municipal solid waste landfill: Emission factors and their impact on air pollution

    NASA Astrophysics Data System (ADS)

    Liu, Yanjun; Lu, Wenjing; Guo, Hanwen; Ming, Zhongyuan; Wang, Chi; Xu, Sai; Liu, Yanting; Wang, Hongtao

    2016-08-01

    Aromatic compounds (ACs) are major components of volatile organic compounds emitted from municipal solid waste (MSW) landfills. The ACs emissions from the working face of a landfill in Beijing were studied from 2014 to 2015 using a modified wind tunnel system. Emission factors (EFs) of fugitive ACs emissions from the working face of the landfill were proposed according to statistical analyses to cope with their uncertainty. And their impacts on air quality were assessed for the first time. Toluene was the dominant AC with an average emission rate of 38.8 ± 43.0 μg m-2 s-1 (at a sweeping velocity of 0.26 m s-1). An increasing trend in AC emission rates was observed from 12:00 to 18:00 and then peaked at 21:00 (314.3 μg m-2 s-1). The probability density functions (PDFs) of AC emission rates could be classified into three distributions: Gaussian, log-normal, and logistic. EFs of ACs from the working face of the landfill were proposed according to the 95th percentile cumulative emission rates and the wind effects on ACs emissions. The annual ozone formation and secondary organic aerosol formation potential caused by AC emissions from landfills in Beijing were estimated to be 8.86 × 105 kg year-1 and 3.46 × 104 kg year-1, respectively. Toluene, m + p-xylene, and 1,3,5-trimethylbenzene were the most significant contributors to air pollution. Although ACs pollutions from landfills accounts for less percentage (∼0.1%) compared with other anthropogenic sources, their fugitive emissions which cannot be controlled efficiently deserve more attention and further investigation.

  4. [A comparative study on domestic and foreign emission standards of air pollutants for cement industry].

    PubMed

    Jiang, Mei; Li, Xiao-Qian; Ji, Liang; Zou, Lan; Wei, Yu-Xia; Zhao, Guo-Hua; Che, Fei; Li, Gang; Zhang, Guo-Ning

    2014-12-01

    The new National Emission Standard of Air Pollutants for Cement Industry (GB 4915-2013) becomes effective on Mar. 1st, 2014. It will play an important role in pollution prevention, total emission reduction, structure adjustment, and layout optimization for cement industry. Based on the research of emission standard in China, U. S., EU and Japan, the similarities and differences in the pollutant projects, control indicators, limits and means of implementation were discussed and advice was proposed, with the purpose to provide a reference for revision of emission standard, and to improve the level of environmental management and pollution control.

  5. 77 FR 11476 - Delegation of National Emission Standards for Hazardous Air Pollutants for Source Categories; Nevada

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-27

    ... section 112(l) of the 1990 Clean Air Act, EPA granted ] delegation of specific national emission standards... From the Federal Register Online via the Government Publishing Office ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 63 Delegation of National Emission Standards for Hazardous Air Pollutants for...

  6. 77 FR 60341 - National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-03

    ... Source Performance Standards for Stationary Internal Combustion Engines'' (77 FR 33812). The June 7, 2012... Reciprocating Internal Combustion Engines; New Source Performance Standards for Stationary Internal Combustion... Emission Standards for Hazardous Air Pollutants for Stationary Reciprocating Internal......

  7. 75 FR 10184 - National Emission Standards for Hazardous Air Pollutants: Area Source Standards for Paints and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-05

    ..., and binders into paints and other coatings, such as stains, varnishes, lacquers, enamels, shellacs... Standards for Paints and Allied Products Manufacturing-- Technical Amendment AGENCY: Environmental...; National Emission Standards for Hazardous Air Pollutants: Paints and Allied Products Manufacturing...

  8. Assessment of air pollutant emissions from brick kilns

    NASA Astrophysics Data System (ADS)

    Rajarathnam, Uma; Athalye, Vasudev; Ragavan, Santhosh; Maithel, Sameer; Lalchandani, Dheeraj; Kumar, Sonal; Baum, Ellen; Weyant, Cheryl; Bond, Tami

    2014-12-01

    India has more than 100,000 brick kilns producing around 250 billion bricks annually. Indian brick industry is often a small scale industry and third largest consumer of coal in the country. With the growing demand for building materials and characterised by lack of pollution control measures the brick industry has a potential to cause adverse effects on the environment. This paper presents assessment of five brick making technologies based on the measurements carried out at seventeen individual brick kilns. Emissions of PM, SO2, CO and CO2 were measured and these emissions were used to estimate the emission factors for comparing the emissions across different fuel or operating conditions. Estimated emission from brick kilns in South Asia are about 0.94 million tonnes of PM; 3.9 million tonnes of CO and 127 million tonnes of CO2 per year. Among various technologies that are widely used in India, Zig zag and vertical shaft brick kilns showed better performance in terms of emissions over the traditional fixed chimney Bull's trench kilns. This suggests that the replacement of traditional technologies with Zig zag, vertical shaft brick kilns or other cleaner kiln technologies will contribute towards improvements in the environmental performance of brick kiln industry in the country. Zig zag kilns appear to be the logical replacement because of low capital investment, easy integration with the existing production process, and the possibility of retrofitting fixed chimney Bull's trench kilns into Zig zag firing.

  9. [Estimation of average traffic emission factor based on synchronized incremental traffic flow and air pollutant concentration].

    PubMed

    Li, Run-Kui; Zhao, Tong; Li, Zhi-Peng; Ding, Wen-Jun; Cui, Xiao-Yong; Xu, Qun; Song, Xian-Feng

    2014-04-01

    On-road vehicle emissions have become the main source of urban air pollution and attracted broad attentions. Vehicle emission factor is a basic parameter to reflect the status of vehicle emissions, but the measured emission factor is difficult to obtain, and the simulated emission factor is not localized in China. Based on the synchronized increments of traffic flow and concentration of air pollutants in the morning rush hour period, while meteorological condition and background air pollution concentration retain relatively stable, the relationship between the increase of traffic and the increase of air pollution concentration close to a road is established. Infinite line source Gaussian dispersion model was transformed for the inversion of average vehicle emission factors. A case study was conducted on a main road in Beijing. Traffic flow, meteorological data and carbon monoxide (CO) concentration were collected to estimate average vehicle emission factors of CO. The results were compared with simulated emission factors of COPERT4 model. Results showed that the average emission factors estimated by the proposed approach and COPERT4 in August were 2.0 g x km(-1) and 1.2 g x km(-1), respectively, and in December were 5.5 g x km(-1) and 5.2 g x km(-1), respectively. The emission factors from the proposed approach and COPERT4 showed close values and similar seasonal trends. The proposed method for average emission factor estimation eliminates the disturbance of background concentrations and potentially provides real-time access to vehicle fleet emission factors.

  10. Mapping Emissions that Contribute to Air Pollution Using Adjoint Sensitivity Analysis

    NASA Astrophysics Data System (ADS)

    Bastien, L. A. J.; Mcdonald, B. C.; Brown, N. J.; Harley, R.

    2014-12-01

    The adjoint of the Community Multiscale Air Quality model (CMAQ) is used to map emissions that contribute to air pollution at receptors of interest. Adjoint tools provide an efficient way to calculate the sensitivity of a model response to a large number of model inputs, a task that would require thousands of simulations using a more traditional forward sensitivity approach. Initial applications of this technique, demonstrated here, are to benzene and directly-emitted diesel particulate matter, for which atmospheric reactions are neglected. Emissions of these pollutants are strongly influenced by light-duty gasoline vehicles and heavy-duty diesel trucks, respectively. We study air quality responses in three receptor areas where populations have been identified as especially susceptible to, and adversely affected by air pollution. Population-weighted air basin-wide responses for each pollutant are also evaluated for the entire San Francisco Bay area. High-resolution (1 km horizontal grid) emission inventories have been developed for on-road motor vehicle emission sources, based on observed traffic count data. Emission estimates represent diurnal, day of week, and seasonal variations of on-road vehicle activity, with separate descriptions for gasoline and diesel sources. Emissions that contribute to air pollution at each receptor have been mapped in space and time using the adjoint method. Effects on air quality of both relative (multiplicative) and absolute (additive) perturbations to underlying emission inventories are analyzed. The contributions of local versus upwind sources to air quality in each receptor area are quantified, and weekday/weekend and seasonal variations in the influence of emissions from upwind areas are investigated. The contribution of local sources to the total air pollution burden within the receptor areas increases from about 40% in the summer to about 50% in the winter due to increased atmospheric stagnation. The effectiveness of control

  11. 40 CFR 49.138 - Rule for the registration of air pollution sources and the reporting of emissions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 10 § 49.138 Rule for the registration of air pollution sources and the reporting of emissions. (a... maintain a current and accurate record of air pollution sources and their emissions within the Indian... part 71 source or an air pollution source that is subject to a standard established under section...

  12. Air Pollution.

    EPA Science Inventory

    Air quality is affected by many types of pollutants that are emitted from various sources, including stationary and mobile. These sources release both criteria and hazardous air pollutants, which cause health effects, ecological harm, and material damage. They are generally categ...

  13. Examining air pollution in China using production- and consumption-based emissions accounting approaches.

    PubMed

    Huo, Hong; Zhang, Qiang; Guan, Dabo; Su, Xin; Zhao, Hongyan; He, Kebin

    2014-12-16

    Two important reasons for China's air pollution are the high emission factors (emission per unit of product) of pollution sources and the high emission intensity (emissions per unit of GDP) of the industrial structure. Therefore, a wide variety of policy measures, including both emission abatement technologies and economic adjustment, must be implemented. To support such measures, this study used the production- and consumption-based emissions accounting approaches to simulate the SO2, NOx, PM2.5, and VOC emissions flows among producers and consumers. This study analyzed the emissions and GDP performance of 36 production sectors. The results showed that the equipment, machinery, and devices manufacturing and construction sectors contributed more than 50% of air pollutant emissions, and most of their products were used for capital formation and export. The service sector had the lowest emission intensities, and its output was mainly consumed by households and the government. In China, the emission intensities of production activities triggered by capital formation and export were approximately twice that of the service sector triggered by final consumption expenditure. This study suggests that China should control air pollution using the following strategies: applying end-of-pipe abatement technologies and using cleaner fuels to further decrease the emission factors associated with rural cooking, electricity generation, and the transportation sector; continuing to limit highly emission-intensive but low value-added exports; developing a plan to reduce construction activities; and increasing the proportion of service GDP in the national economy.

  14. National emission standards for hazardous air pollutants submittal -- 1996

    SciTech Connect

    Townsend, Y.E.; Black, S.C.

    1997-06-01

    The Nevada Test Site (NTS) is operated by the US Department of Energy, Nevada Operations Office (DOE/NV) as the site for nuclear weapons testing. Monitoring and evaluation of the various activities conducted onsite indicate that the potential sources of offsite radiation exposure in 1996 were releases from the following: evaporation of tritiated water from containment ponds that receive drainage from E tunnel and from wells used for site characterization studies; onsite radioanalytical laboratories; the Area 5 RWMS facility; and diffuse sources of tritium and resuspension of plutonium. Section 1 describes these sources on the NTS. Section 2 tabulates the air emissions data for the NTS. These data are used to calculate the effective dose equivalents to offsite residents. Appendices describe the methods used to determine the emissions from the sources listed.

  15. Estimation of monetary values of air pollutant emissions in various US areas

    SciTech Connect

    Wang, M.Q.; Santini, D.J.

    1994-08-17

    Two general methods of estimating monetary values of air pollutants are presented in this paper. The damage estimate method directly estimated, air pollutant by simulating air quality, identifying health and other welfare impacts damage values and valuing the identified impacts of air pollution, and valuing the identified impacts. Although the method is theoretically sound, many assumptions are involved in each of its estimation steps, and uncertainty exists in each step. The control cost estimate method estimates the marginal emission control cost, which represents the opportunity cost offset by emission reductions from some given control measures. Studies conducted to estimate emission values in US regions used either the damage estimate method or the control cost estimate method. Taking emission values estimated for some US air basins, this paper establishes regression relationships between emission values and total population and air pollutant concentrations. On the basis of the established relationships, both damage-based and control-cost-based emission values are estimated for 17 major US urban areas.

  16. Air Pollution

    MedlinePlus

    ... tobacco smoke. How is air pollution linked to climate change? While climate change is a global process, it ... ozone levels are also a concern. Impacts of Climate Change on Human Health in the United States: A ...

  17. Emissions of greenhouse gases and air pollutants from commercial aircraft at international airports in Korea

    NASA Astrophysics Data System (ADS)

    Song, Sang-Keun; Shon, Zang-Ho

    2012-12-01

    The emissions of greenhouse gases (GHGs) and air pollutants from aircraft in the boundary layer at four major international airports in Korea over a two-year period (2009-2010) were estimated using the Emissions and Dispersion Modeling System (EDMS) (i.e. activity-based (Landing/Take-Off (LTO) cycle) methodology). Both domestic and international LTOs and ground support equipment at the airports were considered. The average annual emissions of GHGs (CO2, N2O, CH4 and H2O) at all four airports during the study period were 1.11 × 103, 1.76 × 10-2, -1.85 × 10-3 and 3.84 × 108 kt yr-1, respectively. The emissions of air pollutants (NOx, CO, VOCs and particulate matter) were 5.20, 4.12, 7.46 × 10-1 and 3.37 × 10-2 kt yr-1, respectively. The negative CH4 emission indicates the consumption of atmospheric CH4 in the engine. The monthly and daily emissions of GHGs and air pollutants showed no significant variations at all airports examined. The emissions of GHGs and air pollutants for each aircraft operational mode differed considerably, with the largest emission observed in taxi-out mode.

  18. Air Pollution.

    ERIC Educational Resources Information Center

    Scorer, Richard S.

    The purpose of this book is to describe the basic mechanisms whereby pollution is transported and diffused in the atmosphere. It is designed to give practitioners an understanding of basic mechanics and physics so they may have a correct basis on which to formulate their decisions related to practical air pollution control problems. Since many…

  19. Emission of air pollutants from burning candles with different composition in indoor environments.

    PubMed

    Derudi, Marco; Gelosa, Simone; Sliepcevich, Andrea; Cattaneo, Andrea; Cavallo, Domenico; Rota, Renato; Nano, Giuseppe

    2014-03-01

    Candle composition is expected to influence the air pollutants emissions, possibly leading to important differences in the emissions of volatile organic compounds and polycyclic aromatic hydrocarbons. In this regard, the purity of the raw materials and additives used can play a key role. Consequently, in this work emission factors for some polycyclic aromatic hydrocarbons, aromatic species, short-chain aldehydes and particulate matter have been determined for container candles constituted by different paraffin waxes burning in a test chamber. It has been found that wax quality strongly influences the air pollutant emissions. These results could be used, at least at a first glance, to foresee the expected pollutant concentration in a given indoor environment with respect to health safety standards, while the test chamber used for performing the reported results could be useful to estimate the emission factors of any other candle in an easy-to-build standardised environment. PMID:24318837

  20. Quantifying the air pollutants emission reduction during the 2008 Olympic games in Beijing.

    PubMed

    Wang, Shuxiao; Zhao, Meng; Xing, Jia; Wu, Ye; Zhou, Yu; Lei, Yu; He, Kebin; Fu, Lixin; Hao, Jiming

    2010-04-01

    Air quality was a vital concern for the Beijing Olympic Games in 2008. To strictly control air pollutant emissions and ensure good air quality for the Games, Beijing municipal government announced an "Air Quality Guarantee Plan for the 29th Olympics in Beijing". In order to evaluate the effectiveness of the guarantee plan, this study analyzed the air pollutant emission reductions during the 29th Olympiad in Beijing. In June 2008, daily emissions of SO(2), NO(X), PM(10), and NMVOC in Beijing were 103.9 t, 428.5 t, 362.7 t, and 890.0 t, respectively. During the Olympic Games, the daily emissions of SO(2), NO(X), PM(10), and NMVOC in Beijing were reduced to 61.6 t, 229.1 t, 164.3 t, and 381.8 t -41%, 47%, 55%, and 57% lower than June 2008 emission levels. Closing facilities producing construction materials reduced the sector's SO(2) emissions by 85%. Emission control measures for mobile sources, including high-emitting vehicle restrictions, government vehicle use controls, and alternate day driving rules for Beijing's 3.3 million private cars, reduced mobile source NO(X) and NMVOC by 46% and 57%, respectively. Prohibitions on building construction reduced the sector's PM(10) emissions by approximately 90% or total PM(10) by 35%. NMVOC reductions came mainly from mobile source and fugitive emission reductions. Based on the emission inventories developed in this study, the CMAQ model was used to simulate Beijing's ambient air quality during the Olympic Games. The model results accurately reflect the environmental monitoring data providing evidence that the emission inventories in this study are reasonably accurate and quantitatively reflect the emission changes attributable to air pollution control measures taken during the 29th Olympic Games in 2008. PMID:20222727

  1. 40 CFR 49.138 - Rule for the registration of air pollution sources and the reporting of emissions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Reservations in Epa Region 10 § 49.138 Rule for the registration of air pollution sources and the reporting of... develop and maintain a current and accurate record of air pollution sources and their emissions within the... operates a part 71 source or an air pollution source that is subject to a standard established...

  2. 40 CFR 49.138 - Rule for the registration of air pollution sources and the reporting of emissions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Reservations in Epa Region 10 § 49.138 Rule for the registration of air pollution sources and the reporting of... develop and maintain a current and accurate record of air pollution sources and their emissions within the... operates a part 71 source or an air pollution source that is subject to a standard established...

  3. 40 CFR 49.138 - Rule for the registration of air pollution sources and the reporting of emissions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Reservations in Epa Region 10 § 49.138 Rule for the registration of air pollution sources and the reporting of... develop and maintain a current and accurate record of air pollution sources and their emissions within the... operates a part 71 source or an air pollution source that is subject to a standard established...

  4. 40 CFR 49.138 - Rule for the registration of air pollution sources and the reporting of emissions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Reservations in Epa Region 10 § 49.138 Rule for the registration of air pollution sources and the reporting of... develop and maintain a current and accurate record of air pollution sources and their emissions within the... operates a part 71 source or an air pollution source that is subject to a standard established...

  5. National Emission Standards for Hazardous Air Pollutants. Calendar Year 2012 INL Report for Radionuclides (2013)

    SciTech Connect

    Verdoorn, Mark; Haney, Tom

    2013-06-01

    This report documents the calendar year 2011 radionuclide air emissions and resulting effective dose equivalent to the maximally exposed individual member of the public from operations at the Department of Energy’s Idaho National Laboratory Site. This report was prepared in accordance with the Code of Federal Regulations, Title 40, ''Protection of the Environment,'' Part 61, ''National Emission Standards for Hazardous Air Pollutants,'' Subpart H, ''National Emission Standards for Emissions of Radionuclides Other than Radon from Department of Energy Facilities.'' The effective dose equivalent to the maximally exposed individual member of the public was 4.58E-02 mrem per year, 0.46 percent of the 10 mrem standard.

  6. National Emission Standards for Hazardous Air Pollutants. Calendar Year 2013 INL Report for Radionuclides [2014

    SciTech Connect

    Verdoorn, Mark; Haney, Tom

    2014-06-01

    This report documents the calendar year 2013 radionuclide air emissions and resulting effective dose equivalent to the maximally exposed individual member of the public from operations at the Department of Energy’s Idaho National Laboratory Site. This report was prepared in accordance with the Code of Federal Regulations, Title 40, ''Protection of the Environment,'' Part 61, ''National Emission Standards for Hazardous Air Pollutants,'' Subpart H, ''National Emission Standards for Emissions of Radionuclides Other than Radon from Department of Energy Facilities.'' The effective dose equivalent to the maximally exposed individual member of the public was 3.02 E-02 mrem per year, 0.30 percent of the 10 mrem standard.

  7. Various Perspectives of Mitigating Fossil Fuel Use and Air Pollutant Emissions in China's Megacity

    NASA Astrophysics Data System (ADS)

    Wang, H.

    2014-12-01

    It is critical to reduce energy use and air pollutions in metropolitan areas because these areas usually serve as economic engines and have large, dense populations. Fossil fuel use and air-polluting emissions were analyzed in Beijing between 1997 and 2010 from both a bottom-up and a top-down perspective. From a bottom-up perspective, the key energy-intensive industrial sectors directly caused changes in Beijing's air pollution by means of a series of energy and economic policies. From a top-down perspective, variation in industrial production caused increases in most emissions between 2000 and 2010, however, there were decreases in PM10 and PM2.5 emissions during 2005-2010. Population growth was found to be the largest driver of energy consumption and emissions between1997 and 2010. Energy use and air pollutant emissions were also found to outsource from Beijing to other regions in China. Policies for reducing urban energy consumption and emissions should consider not only the key industrial sectors but also socioeconomic drivers.

  8. Impact of Trans-Boundary Emissions on Modelled Air Pollution in Canada

    NASA Astrophysics Data System (ADS)

    Pavlovic, Radenko; Moran, Mike; Zhang, Junhua; Zheng, Qiong; Menard, Sylvain; Anselmo, David; Davignon, Didier

    2014-05-01

    The operational air quality model GEM-MACH is run twice daily at the Canadian Meteorological Centre in Montreal, Quebec to produce 48-hour forecasts of hourly O3, NO2, and PM2.5 fields over a North American domain. The hourly gridded anthropogenic emissions fields needed by GEM-MACH are currently based on the 2006 Canadian emissions inventory, a 2012 projected U.S. inventory, and the 1999 Mexican inventory. The Sparse Matrix Operator Kernel Emissions (SMOKE) processing package was used to process these three national emissions inventories to create the GEM-MACH emissions fields. While Canada is the second-largest country in the world by total area, its population and its emissions of criteria contaminants are both only about one-tenth of U.S. values and roughly 80% of the Canadian population lives within 150 km of the international border with the U.S. As a consequence, transboundary transport of air pollution has a major impact on air quality in Canada. To quantify the impact of non-Canadian emissions on forecasted pollutant levels in Canada, the following two tests were performed: (a) all U.S. and Mexican anthropogenic emissions were switched off; and (b) anthropogenic emissions from the southernmost tier of U.S. states and Mexico were switched off. These sensitivity tests were performed for the summer and winter periods of 2012 or 2011. The results obtained show that the impact of non-Canadian sources on forecasted pollution is generally larger in summer than in winter, especially in south-eastern parts of Canada. For the three pollutants considered in the Canadian national Air Quality Health Index, PM2.5 is impacted the most (up to 80%) and NO2 the least (<10%). Emissions from the southern U.S. and Mexico do impact Canadian air quality, but the sign may change depending on the season (i.e., increase vs. decrease), reflecting chemical processing en route.

  9. The effects of energy paths and emission controls and standards on future trends in China's emissions of primary air pollutants

    NASA Astrophysics Data System (ADS)

    Zhao, Y.; Zhang, J.; Nielsen, C. P.

    2014-09-01

    To examine the efficacy of China's actions to control atmospheric pollution, three levels of growth of energy consumption and three levels of implementation of emission controls are estimated, generating a total of nine combined activity-emission control scenarios that are then used to estimate trends of national emissions of primary air pollutants through 2030. The emission control strategies are expected to have more effects than the energy paths on the future emission trends for all the concerned pollutants. As recently promulgated national action plans of air pollution prevention and control (NAPAPPC) are implemented, China's anthropogenic pollutant emissions should decline. For example, the emissions of SO2, NOx, total suspended particles (TSP), PM10, and PM2.5 are estimated to decline 7, 20, 41, 34, and 31% from 2010 to 2030, respectively, in the "best guess" scenario that includes national commitment of energy saving policy and implementation of NAPAPPC. Should the issued/proposed emission standards be fully achieved, a less likely scenario, annual emissions would be further reduced, ranging from 17 (for primary PM2.5) to 29% (for NOx) declines in 2015, and the analogue numbers would be 12 and 24% in 2030. The uncertainties of emission projections result mainly from the uncertain operational conditions of swiftly proliferating air pollutant control devices and lack of detailed information about emission control plans by region. The predicted emission trends by sector and chemical species raise concerns about current pollution control strategies: the potential for emissions abatement in key sectors may be declining due to the near saturation of emission control devices use; risks of ecosystem acidification could rise because emissions of alkaline base cations may be declining faster than those of SO2; and radiative forcing could rise because emissions of positive-forcing carbonaceous aerosols may decline more slowly than those of SO2 emissions and thereby

  10. The effects of energy paths and emission controls and standards on future trends in China's emissions of primary air pollutants

    NASA Astrophysics Data System (ADS)

    Zhao, Y.; Zhang, J.; Nielsen, C. P.

    2014-03-01

    To examine the efficacy of China's actions to control atmospheric pollution, three levels of growth of energy consumption and three levels of implementation of emission controls are estimated, generating a total of nine combined activity-emission control scenarios that are then used to estimate trends of national emissions of primary air pollutants through 2030. The emission control strategies are expected to have more effects than the energy paths on the future emission trends for all the concerned pollutants. As recently promulgated national action plans of air pollution prevention and control (NAPAPPC) are implemented, China's anthropogenic pollutant emissions should decline. For example, the emissions of SO2, NOx, total primary particulate matter (PM), PM10, and PM2.5 are estimated to decline 7%, 20%, 41%, 34%, and 31% from 2010 to 2030, respectively, in the "best guess" scenario that includes national commitment of energy saving policy and partial implementation of NAPAPPC. Should the issued/proposed emission standards be fully achieved, a less likely scenario, annual emissions would be further reduced, ranging from 17% (for primary PM2.5) to 29% (for NOx) declines in 2015, and the analogue numbers would be 12% and 24% in 2030. The uncertainties of emission projections result mainly from the uncertain operational conditions of swiftly proliferating air pollutant control devices and lack of detailed information about emission control plans by region. The predicted emission trends by sector and chemical species raise concerns about current pollution control strategies: the potential for emissions abatement in key sectors may be declining due to the near saturation of emission control devices use; risks of ecosystem acidification could rise because emissions of alkaline base cations may be declining faster than those of SO2; and radiative forcing could rise because emissions of positive-forcing carbonaceous aerosols may decline more slowly than those of SO2

  11. National Emission Standards for Hazardous Air Pollutants - Radionuclide Emissions, Calendar Year 2010

    SciTech Connect

    NSTec Ecological and Environmental Monitoring

    2011-06-30

    The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office operates the Nevada National Security Site (NNSS, formerly the Nevada Test Site) and North Las Vegas Facility (NLVF). From 1951 through 1992, the NNSS was the continental testing location for U.S. nuclear weapons. The release of radionuclides from NNSS activities has been monitored since the initiation of atmospheric testing. Limitation to underground detonations after 1962 greatly reduced radiation exposure to the public surrounding the NNSS. After nuclear testing ended in 1992, NNSS radiation monitoring focused on detecting airborne radionuclides from historically contaminated soils. These radionuclides are derived from re-suspension of soil (primarily by wind) and emission of tritium-contaminated soil moisture through evapotranspiration. Low amounts of tritium are also emitted to air at the NLVF, an NNSS support complex in North Las Vegas. To protect the public from harmful levels of man-made radiation, the Clean Air Act, National Emission Standards for Hazardous Air Pollutants (NESHAP) (Title 40 Code of Federal Regulations [CFR] Part 61 Subpart H) (CFR, 2010a) limits the release of radioactivity from a U.S. Department of Energy (DOE) facility to that which would cause 10 millirem per year (mrem/yr) effective dose equivalent to any member of the public. This limit does not include radiation unrelated to NNSS activities. Unrelated doses could come from naturally occurring radioactive elements, from sources such as medically or commercially used radionuclides, or from sources outside of the United States, such as those from the damaged Fukushima nuclear power plant in Japan. Because this report is intended to discuss radioactive air emissions during calendar year 2010, data on radionuclides in air from the 2011 Fukushima nuclear power plant releases are not presented but will be included in the report for calendar year 2011. The NNSS demonstrates compliance with the NESHAP

  12. Intake fraction variability between air pollution emission sources inside an urban area.

    PubMed

    Tainio, Marko; Holnicki, Piotr; Loh, Miranda M; Nahorski, Zbigniew

    2014-11-01

    The cost-effective mitigation of adverse health effects caused by air pollution requires information on the contribution of different emission sources to exposure. In urban areas the exposure potential of different sources may vary significantly depending on emission height, population density, and other factors. In this study, we quantified this intraurban variability by predicting intake fraction (iF) for 3,066 emission sources in Warsaw, Poland. iF describes the fraction of the pollutant that is inhaled by people in the study area. We considered the following seven pollutants: particulate matter (PM), nitrogen oxides (NOx), sulfur dioxide (SO2), benzo[a] pyrene (BaP), nickel (Ni), cadmium (Cd), and lead (Pb). Emissions for these pollutants were grouped into four emission source categories (Mobile, Area, High Point, and Other Point sources). The dispersion of the pollutants was predicted with the CALPUFF dispersion model using the year 2005 emission rate data and meteorological records. The resulting annual average concentrations were combined with population data to predict the contribution of each individual source to population exposure. The iFs for different pollutant-source category combinations varied between 51 per million (PM from Mobile sources) and 0.013 per million (sulfate PM from High Point sources). The intraurban iF variability for Mobile sources primary PM emission was from 4 per million to 100 per million with the emission-weighted iF of 44 per million. These results propose that exposure due to intraurban air pollution emissions could be decreased more effectively by specifically targeting sources with high exposure potency rather than all sources.

  13. National Emission Standards for Hazardous Air Pollutants, June 2005

    SciTech Connect

    Robert F. Grossman

    2005-06-01

    The sources of radionuclides include current and previous activities conducted on the NTS. The NTS was the primary location for testing of nuclear explosives in the Continental U.S. between 1951 and 1992. Historical testing has included (1) atmospheric testing in the 1950s and early 1960s, (2) underground testing between 1951 and 1992, and (3) open-air nuclear reactor and rocket engine testing (DOE, 1996a). No nuclear tests have been conducted since September 23,1992 (DOE, 2000), however; radionuclides remaining on the soil surface in many NTS areas after several decades of radioactive decay are re-suspended into the atmosphere at concentrations that can be detected by air sampling. Limited non-nuclear testing includes spills of hazardous materials at the Non-Proliferation Test and Evaluation Complex (formerly called the Hazardous Materials Spill Center), private technology development, aerospace and demilitarization activities, and site remediating activities. Processing of radioactive materials is limited to laboratory analyses; handling, transport, storage, and assembly of nuclear explosive devices or radioactive targets for the Joint Actinide Shock Physics Experimental Research (JASPER) gas gun; and operation of radioactive waste management sites (RWMSs) for low-level radioactive and mixed waste (DOE, 1996a). Monitoring and evaluation of the various activities conducted onsite indicate that the potential sources of offsite radiation exposure in calendar year (CY) 2004 were releases from (1) evaporation of tritiated water (HTO) from containment ponds that receive drainage water from E Tunnel in Area 12 and water pumped from wells used to characterize the aquifers at the sites of past underground nuclear tests, (2) onsite radioanalytical laboratories, (3) the Area 3 and Area 5 RWMS facilities, and (4) diffuse sources of tritium (H{sup 3}) and re-suspension of plutonium ({sup 239+240}Pu) and americium ({sup 241}Am) at the sites of past nuclear tests. The following

  14. Emissions and transport of air pollutants from China to the Pacific: Major findings from the EAST-AIRE air campaign

    NASA Astrophysics Data System (ADS)

    Li, C.; Li, Z.; Dickerson, R. R.; Chen, H.

    2007-12-01

    Accompanying economic boom over the past few decades, pollutant emissions from China have increased dramatically and raised growing concerns regarding their large-scale impact. Observations over the Pacific Ocean and numerical simulations generally identify mid-latitude cyclones as the major mechanism driving the long-range transport of pollutants off the Chinese coast to downwind areas. Here we present results from the first aircraft campaign of EAST-AIRE (East Asian Study of Tropospheric Aerosols: an International Regional Experiment), carried out over an industrialized region in Northeast China in spring 2005. Prefrontal and postfrontal flights provide vertical distribution of pollutants within different sectors of two mid-latitude cyclones traveling through the area. In consistence with previous studies, both cyclones feature abundant anthropogenic pollutants ahead of cold fronts, and much lower pollutant levels (but with dust) behind cold fronts. Pollutant levels above the planetary boundary layer (PBL) were found substantial in one prefrontal flight (April 5) but low in the other (April 11), showing different potentials for long-range transport. Backward trajectories suggest that in both cases, isentropic upward motions associated with the SW flows in the warm sector were weak and largely constrained within PBL. Synoptic analysis and satellite observations further indicate that upwind dry (non- precipitating) convection may explain the pollutants observed above PBL on the 5th. With the assistance of forward trajectory analysis and chemical transport models, two satellite sensors (OMI and MODIS) successfully tracked the pollution plume associated with the April 5 cyclone, as it propagated into the North Pacific on the next few days. Satellite observed changes in SO2 and aerosol content within the plume are used to qualitatively estimate the conversion from aerosol precursor gases to secondary aerosols, in a semi-Lagrangian way.

  15. The Impact of Future Emissions Changes on Air Pollution Concentrations and Related Human Health Effects

    NASA Astrophysics Data System (ADS)

    Mikolajczyk, U.; Suppan, P.; Williams, M.

    2015-12-01

    Quantification of potential health benefits of reductions in air pollution on the local scale is becoming increasingly important. The aim of this study is to conduct health impact assessment (HIA) by utilizing regionally and spatially specific data in order to assess the influence of future emission scenarios on human health. In the first stage of this investigation, a modeling study was carried out using the Weather Research and Forecasting (WRF) model coupled with Chemistry to estimate ambient concentrations of air pollutants for the baseline year 2009, and for the future emission scenarios in southern Germany. Anthropogenic emissions for the baseline year 2009 are derived from the emission inventory provided by the Netherlands Organization of Applied Scientific Research (TNO) (Denier van der Gon et al., 2010). For Germany, the TNO emissions were replaced by gridded emission data with a high spatial resolution of 1/64 x 1/64 degrees. Future air quality simulations are carried out under different emission scenarios, which reflect possible energy and climate measures in year 2030. The model set-up included a nesting approach, where three domains with horizontal resolution of 18 km, 6 km and 2 km were defined. The simulation results for the baseline year 2009 are used to quantify present-day health burdens. Concentration-response functions (CRFs) for PM2.5 and NO2 from the WHO Health risks of air Pollution in Europe (HRAPIE) project were applied to population-weighted mean concentrations to estimate relative risks and hence to determine numbers of attributable deaths and associated life-years lost. In the next step, future health impacts of projected concentrations were calculated taking into account different emissions scenarios. The health benefits that we assume with air pollution reductions can be used to provide options for future policy decisions to protect public health.

  16. [Pollution of room air].

    PubMed

    Schlatter, J

    1986-01-01

    In the last decade the significance of indoor air pollution to human health has increased because of improved thermal insulation of buildings to save energy: air turnover is reduced and air quality is impaired. The most frequent air pollutants are tobacco smoke, radioactive radon gas emanating from the soil, formaldehyde from furniture and insulation material, nitrogen oxides from gas stoves, as well as solvents from cleaning agents. The most important pollutants leading to health hazards are tobacco smoke and air pollutants which are emitted continuously from building materials and furniture. Such pollutants have to be eliminated by reducing the emission rate. A fresh air supply is necessary to reduce the pollutants resulting from the inhabitants and their activities, the amount depending on the number of inhabitants and the usage of the room. The carbon dioxide level should not exceed 1500 ppm.

  17. [Situation and Characteristics of Air Pollutants Emission from Crematories in Beijing, China].

    PubMed

    Xue, Yi-feng; Yan, Jing; Tian, He-zhong; Xiong, Cheng-cheng; Li, Jing-dong; Wu, Xiao-ing; Wang, Wei

    2015-06-01

    Hazardous Air Pollutants (HAPs) such as exhaust particulate matter (PM), carbon monoxide (CO), sulfur dioxide (SO2), nitrogen oxide (NOx), mercury (Hg) and polychlorinated dibenzo-p-dioxins and polychlorinated dibenzo-furans ( PCDD/Fs) are emitted by the process of cremation and the burning of oblation. Risks to health posed by emissions of hazardous air pollutants from crematories are emerging concerns. Through field investigation and data collection, we obtained the related activity levels and monitored the concentrations of air pollutants from typical cremators, so as to better understand the current pollutants emission levels for crematory. Using the emission factor method, we calculated the emission inventory of HAPs for crematory of Beijing in 2012 and quantified the range of uncertainty. Using atmospheric diffusion model ADMS, we evaluated the influence of crematories on the surrounding environment, and identified the characteristics of air pollution. The results showed that: for the cremators installed with flue gas purification system, the emission concentration of exhaust PM was rather low, and the CO emission concentration fluctuated greatly. However, relative high emission concentrations of PCDD/Fs were detected mainly due to insufficient combustion. Exhaust PM, CO, SO2, NOx, Hg and PCDD/Fs emitted by crematory of Beijing in 2012 were estimated at about 11. 5 tons, 41.25 tons, 2.34 tons, 7.65 tons, 13.76 kg and 0.88 g, respectively; According to the results of dispersion model simulation, the concentration contributions of exhaust PM, CO, SO2, NOx, Hg, PCDD/Fs from crematories were 0.05947 microg x m(-3), 0.2009 microg x m(-3) and 0.0126 microg x m(-3), 0.03667 microg x m(-3) and 0.06247 microg x m(-3), 0.004213 microg x m(-3), respectively.

  18. [Situation and Characteristics of Air Pollutants Emission from Crematories in Beijing, China].

    PubMed

    Xue, Yi-feng; Yan, Jing; Tian, He-zhong; Xiong, Cheng-cheng; Li, Jing-dong; Wu, Xiao-ing; Wang, Wei

    2015-06-01

    Hazardous Air Pollutants (HAPs) such as exhaust particulate matter (PM), carbon monoxide (CO), sulfur dioxide (SO2), nitrogen oxide (NOx), mercury (Hg) and polychlorinated dibenzo-p-dioxins and polychlorinated dibenzo-furans ( PCDD/Fs) are emitted by the process of cremation and the burning of oblation. Risks to health posed by emissions of hazardous air pollutants from crematories are emerging concerns. Through field investigation and data collection, we obtained the related activity levels and monitored the concentrations of air pollutants from typical cremators, so as to better understand the current pollutants emission levels for crematory. Using the emission factor method, we calculated the emission inventory of HAPs for crematory of Beijing in 2012 and quantified the range of uncertainty. Using atmospheric diffusion model ADMS, we evaluated the influence of crematories on the surrounding environment, and identified the characteristics of air pollution. The results showed that: for the cremators installed with flue gas purification system, the emission concentration of exhaust PM was rather low, and the CO emission concentration fluctuated greatly. However, relative high emission concentrations of PCDD/Fs were detected mainly due to insufficient combustion. Exhaust PM, CO, SO2, NOx, Hg and PCDD/Fs emitted by crematory of Beijing in 2012 were estimated at about 11. 5 tons, 41.25 tons, 2.34 tons, 7.65 tons, 13.76 kg and 0.88 g, respectively; According to the results of dispersion model simulation, the concentration contributions of exhaust PM, CO, SO2, NOx, Hg, PCDD/Fs from crematories were 0.05947 microg x m(-3), 0.2009 microg x m(-3) and 0.0126 microg x m(-3), 0.03667 microg x m(-3) and 0.06247 microg x m(-3), 0.004213 microg x m(-3), respectively. PMID:26387295

  19. 75 FR 28227 - National Emission Standards for Hazardous Air Pollutants: Gold Mine Ore Processing and Production...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-20

    ..., 2010, when EPA published the proposed rule (75 FR 22470). Several parties requested that EPA extend the... provided in the SUPPLEMENTARY INFORMATION section of the April 28, 2010 (75 FR 22470) Federal Register... AGENCY 40 CFR Parts 9 and 63 RIN 2060-AP48 National Emission Standards for Hazardous Air Pollutants:...

  20. CO-DEPENDENCIES OF REACTIVE AIR TOXIC AND CRITERIA POLLUTANTS ON EMISSION REDUCTIONS

    EPA Science Inventory

    It is important to understand the effect of emission controls on the concentrations of ozone, PM2.5, and hazardous air pollutants simultaneously, in order to evaluate the full range of both health related and economic effects. Until recently, the capability of simultan...

  1. 75 FR 54969 - National Emission Standards for Hazardous Air Pollutants From the Portland Cement Manufacturing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-09

    ... requirements through the Integrated Urban Air Toxics Strategy (64 FR 38715, July 19, 1999).\\2\\ \\1\\ An area... Industry (64 FR 31898, June 14, 1999) included emission limits based on performance of MACT for the control... of CAA section 112(c)(6), we set MACT standards for these pollutants. 63 FR 17838, 17848, April...

  2. 76 FR 74708 - National Emission Standards for Hazardous Air Pollutants for Source Categories

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-01

    ... AGENCY 40 CFR Part 63 National Emission Standards for Hazardous Air Pollutants for Source Categories CFR Correction In Title 40 of the Code of Federal Regulations, Part 63 (Sec. Sec. 63.600 to 63.1199), revised as of July 1, 2011, on page 602, Sec. 63.1196 is reinstated to read as follows: Sec. 63.1196...

  3. 76 FR 80261 - National Emission Standards for Hazardous Air Pollutants: Area Source Standards for Prepared...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-23

    ... published on January 5, 2010, (75 FR 522) if adverse comments are received on this direct final rule. If we.... V. What amendments are being made to this rule? On January 5, 2010 (75 FR 522), the EPA promulgated... Air Pollutant (HAP) emissions control (75 FR 533). We added the 95-percent design...

  4. Development of a wireless air pollution sensor package for aerial-sampling of emissions

    EPA Science Inventory

    A new sensor system for mobile and aerial emission sampling was developed for open area pollutant sources, such as prescribed forest burns. The sensor system, termed “Kolibri”, consists of multiple low-cost air quality sensors measuring CO2, CO, samplers for particulate matter wi...

  5. 76 FR 13514 - National Emission Standards for Hazardous Air Pollutants for Chemical Manufacturing Area Sources

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-14

    ...). \\1\\ Chemical Manufacturing Process Unit. On February 12, 2010, the American Chemistry Council and the Society of Chemical Manufacturers and Affiliates (collectively referred to as ``Petitioners'') sought... AGENCY 40 CFR Part 63 RIN 2060-AQ89 National Emission Standards for Hazardous Air Pollutants for...

  6. Air Pollutant Emissions from Oil and Gas Production pads (Investigating Low Cost Passive Samplers)

    EPA Science Inventory

    To help achieve the goal of sustainable, environmentally responsible development of oil and gas resources, it isnecessary to understand the potential for air pollutant emissions from various extraction and production (E&P)processes at the upstream, wellpad level. Upstream oil and...

  7. 77 FR 65135 - National Emission Standards for Hazardous Air Pollutants for Chemical Manufacturing Area Sources

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-25

    ... Society of Chemical Manufacturers and Affiliates (collectively referred to as ``Petitioners'') sought... responsibilities between the federal government and Indian tribes, as specified by Executive Order 13175 (65 FR... AGENCY 40 CFR Part 63 RIN 2060-AQ89 National Emission Standards for Hazardous Air Pollutants for...

  8. Compilation of air pollutant emission factors, supplement 12

    SciTech Connect

    Not Available

    1981-04-01

    Revised or updated data are presented for dry cleaning: surface coating, storage of organic liquids, solvent degreasing, graphic arts, consumer/commercial solvent use, sulfuric acid, beer making, ammonium sulfate, primary aluminum, secondary aluminum, gray iron foundries, steel foundries, secondary zinc, asphaltic concrete, asphalt roofing, NEDS source classification codes and emission factor listing, and table of lead emission factors.

  9. Research Spotlight: Satellites monitor air pollutant emissions in China

    NASA Astrophysics Data System (ADS)

    Tretkoff, Ernie

    A new satellite study verifies that Chinese emission control efforts did reduce power plant emissions of sulfur dioxide (SO2), a harmful gas that causes acid rain and can form sulfate aerosols; these aerosols play an important role in the climate system by affecting clouds and precipitation patterns and altering the amount of sunlight that is reflected away from Earth.

  10. National Emission Standards for Hazardous Air Pollutants - Radionuclide Emissions Calendar Year 2012

    SciTech Connect

    Warren, R.

    2013-06-10

    The U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office (NNSA/NFO) operates the Nevada National Security Site (NNSS) and North Las Vegas Facility (NLVF). From 1951 through 1992, the NNSS was the continental testing location for U.S. nuclear weapons. The release of radionuclides from NNSS activities has been monitored since the initiation of atmospheric testing. Limitation to underground detonations after 1962 greatly reduced radiation exposure to the public surrounding the NNSS. After nuclear testing ended in 1992, NNSS radiation monitoring focused on detecting airborne radionuclides from historically contaminated soils. These radionuclides are derived from re-suspension of soil (primarily by wind) and emission of tritium-contaminated soil moisture through evapotranspiration. Low amounts of legacy-related tritium are also emitted to air at the NLVF, an NNSS support complex in North Las Vegas. To protect the public from harmful levels of man-made radiation, the Clean Air Act, National Emission Standards for Hazardous Air Pollutants (NESHAP) (Title 40 Code of Federal Regulations [CFR] Part 61 Subpart H) (CFR 2010a) limits the release of radioactivity from a U.S. Department of Energy (DOE) facility to that which would cause 10 millirem per year (mrem/yr) effective dose equivalent to any member of the public. This limit does not include radiation unrelated to NNSS activities. Unrelated doses could come from naturally occurring radioactive elements, from sources such as medically or commercially used radionuclides, or from sources outside of the United States, such as the damaged Fukushima nuclear power plant in Japan in 2011. NNSA/NFO demonstrates compliance with the NESHAP limit by using environmental measurements of radionuclide air concentrations at critical receptor locations on the NNSS (U.S. Environmental Protection Agency [EPA] and DOE 1995). This method was approved by the EPA for use on the NNSS in 2001 (EPA 2001a) and has

  11. National Emission Standards for Hazardous Air Pollutants - Radionuclide Emissions, Calendar Year 2011

    SciTech Connect

    NSTec Ecological and Environmental Monitoring

    2012-06-19

    The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office operates the Nevada National Security Site (NNSS) and North Las Vegas Facility (NLVF). From 1951 through 1992, the NNSS was the continental testing location for U.S. nuclear weapons. The release of radionuclides from NNSS activities has been monitored since the initiation of atmospheric testing. Limitation to underground detonations after 1962 greatly reduced radiation exposure to the public surrounding the NNSS. After nuclear testing ended in 1992, NNSS radiation monitoring focused on detecting airborne radionuclides from historically contaminated soils. These radionuclides are derived from re-suspension of soil (primarily by wind) and emission of tritium-contaminated soil moisture through evapotranspiration. Low amounts of legacy-related tritium are also emitted to air at the NLVF, an NNSS support complex in North Las Vegas. To protect the public from harmful levels of man-made radiation, the Clean Air Act, National Emission Standards for Hazardous Air Pollutants (NESHAP) (Title 40 Code of Federal Regulations [CFR] Part 61 Subpart H) limits the release of radioactivity from a U.S. Department of Energy (DOE) facility to that which would cause 10 millirem per year (mrem/yr) effective dose equivalent to any member of the public. This limit does not include radiation unrelated to NNSS activities. Unrelated doses could come from naturally occurring radioactive elements, from sources such as medically or commercially used radionuclides, or from sources outside of the United States, such as the damaged Fukushima nuclear power plant in Japan. Radionuclides from the Fukushima nuclear power plant were detected at the NNSS in March 2011 and are discussed further in Section III. The NNSS demonstrates compliance with the NESHAP limit by using environmental measurements of radionuclide air concentrations at critical receptor locations. This method was approved by the EPA for use on the

  12. National Emission Standards for Hazardous Air Pollutants - Radionuclide Emissions Calendar Year 2013

    SciTech Connect

    Warren, R.

    2014-06-04

    The U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office (NNSA/NFO) operates the Nevada National Security Site (NNSS) and North Las Vegas Facility (NLVF). From 1951 through 1992, the NNSS was the continental testing location for U.S. nuclear weapons. The release of radionuclides from NNSS activities has been monitored since the initiation of atmospheric testing. Limitations to underground detonations after 1962 greatly reduced radiation exposure to the public surrounding the NNSS. After nuclear testing ended in 1992, NNSS radiation monitoring focused on detecting airborne radionuclides from historically contaminated soils. These radionuclides are derived from re-suspension of soil (primarily by wind) and emission of tritium-contaminated soil moisture through evapotranspiration. Low amounts of legacy-related tritium are also emitted to air at the NLVF, an NNSS support complex in North Las Vegas. To protect the public from harmful levels of man-made radiation, the Clean Air Act, National Emission Standards for Hazardous Air Pollutants (NESHAP) (Title 40 Code of Federal Regulations [CFR] Part 61 Subpart H) (CFR 2010a) limits the release of radioactivity from a U.S. Department of Energy (DOE) facility to that which would cause 10 millirem per year (mrem/yr) effective dose equivalent to any member of the public. This limit does not include radiation unrelated to NNSS activities. Unrelated doses could come from naturally occurring radioactive elements, from sources such as medically or commercially used radionuclides, or from sources outside of the United States, such as the damaged Fukushima nuclear power plant in Japan in 2011. NNSA/NFO demonstrates compliance with the NESHAP limit by using environmental measurements of radionuclide air concentrations at critical receptor locations on the NNSS (U.S. Environmental Protection Agency [EPA] and DOE 1995). This method was approved by the EPA for use on the NNSS in 2001 (EPA 2001a) and has

  13. Hazardous air pollutant emissions from gas-fired combustion sources: emissions and the effects of design and fuel type.

    PubMed

    England, G C; McGrath, T P; Gilmer, L; Seebold, J G; Lev-On, M; Hunt, T

    2001-01-01

    Air emissions from gas-fired combustion devices such as boilers, process heaters, gas turbines and stationary reciprocating engines contain hazardous air pollutants (HAPs) subjected to consideration under the federal clean air act (CAA). This work presents a recently completed major research project to develop an understanding of HAP emissions from gas-fired boilers and process heaters and new HAP emission factors based on field emission tests of gas-fired external combustion devices used in the petroleum industry. The effect of combustion system design and operating parameters on HAP emissions determined by both field and research tests are discussed. Data from field tests of gas-fired petroleum industry boilers and heaters generally show very low emission levels of organic HAPs. A comparison of the emission data for boilers and process heaters, including units with and without various forms of NOx emission controls, showed no significant difference in organic HAP emission characteristics due to process or burner design. This conclusion is also supported by the results of research tests with different burner designs. Based on field tests of units fired with natural gas and various petroleum industry process gases and research tests in which gas composition was intentionally varied, organic HAP emissions were not determined to be significantly affected by the gas composition. Research data indicate that elevated organic HAP emission levels are found only under extreme operating conditions (starved air or high excess air combustion) associated with poor combustion. PMID:11219701

  14. National Emission Standards for Hazardous Air Pollutants - Radionuclide Emissions Calendar Year 2009

    SciTech Connect

    NSTec Ecological and Environmental Monitoring

    2010-06-11

    The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office operates the Nevada Test Site (NTS) and North Las Vegas Facility (NLVF). From 1951 through 1992, the NTS was the continental testing location for U.S. nuclear weapons. The release of radionuclides from NTS activities has been monitored since the initiation of atmospheric testing. Limitation to underground detonations after 1962 greatly reduced radiation exposure to the public surrounding the NTS. After nuclear testing ended in 1992, NTS radiation monitoring focused on detecting airborne radionuclides from historically contaminated soils. These radionuclides are derived from re-suspension of soil (primarily by wind) and emission of tritium-contaminated soil moisture through evapotranspiration. Low amounts of tritium were also emitted to air at the NLVF, an NTS support complex in North Las Vegas. To protect the public from harmful levels of man-made radiation, the Clean Air Act, National Emission Standards for Hazardous Air Pollutants (NESHAP) (Title 40 Code of Federal Regulations [CFR] Part 61 Subpart H) limits the release of radioactivity from a U.S. Department of Energy facility to 10 millirem per year (mrem/yr) effective dose equivalent to any member of the public. This limit does not include radiation not related to NTS activities. Unrelated doses could come from naturally occurring radioactive elements or from sources such as medically or commercially used radionuclides. The NTS demonstrates compliance with the NESHAP limit by using environmental measurements of radionuclide air concentrations at critical receptor locations. This method was approved by the U.S. Environmental Protection Agency for use on the NTS in 2001 and has been the sole method used since 2005. Six locations on the NTS have been established to act as critical receptor locations to demonstrate compliance with the NESHAP limit. These locations are actually pseudo-critical receptor stations, because no

  15. Contribution of ship emissions to the concentration and deposition of air pollutants in Europe

    NASA Astrophysics Data System (ADS)

    Aksoyoglu, S.; Prévôt, A. S. H.; Baltensperger, U.

    2015-11-01

    Emissions from the marine transport sector are one of the least regulated anthropogenic emission sources and contribute significantly to air pollution. Although strict limits were introduced recently for the maximum sulfur content in marine fuels in the SECAs (sulfur emission control areas) and in the EU ports, sulfur emissions outside the SECAs and emissions of other components in all European maritime areas have continued to increase in the last two decades. We have used the air quality model CAMx with and without ship emissions for the year 2006 to determine the effects of international shipping on the annual as well as seasonal concentrations of ozone, primary and secondary components of PM2.5 and the dry and wet deposition of nitrogen and sulfur compounds in Europe. Our results suggest that emissions from international shipping affect the air quality in northern and southern Europe differently and their contributions to the air concentrations vary seasonally. The largest changes in pollutant concentrations due to ship emissions were predicted for summer. Increased concentrations of the primary particle mass were found only along the shipping routes whereas concentrations of the secondary pollutants were affected over a larger area. Concentrations of particulate sulfate increased due to ship emissions in the Mediterranean (up to 60 %), in the English Channel and the North Sea (30-35 %) while increases in particulate nitrate levels were found especially in the north, around the Benelux area (20 %) where there were high NH3 land-based emissions. Our model results showed that not only the atmospheric concentrations of pollutants are affected by ship emissions, but also depositions of nitrogen and sulfur compounds increase significantly along the shipping routes. NOx emissions from the ships especially in the English Channel and the North Sea, cause a decrease in the dry deposition of reduced nitrogen at source regions by moving it from the gas-phase to the

  16. Air Pollution

    PubMed Central

    Clifton, Marjorie

    1964-01-01

    Dr Marjorie Clifton describes the classification of gaseous and nongaseous constituents of air pollution and then outlines the methods of measuring these. The National Survey embraced 150 towns of all sizes throughout England and Wales and provided data on smoke and sulphur dioxide in relation to climate, topography, industrialization, population density, fuel utilization and urban development. Dr W C Turner discusses the relationship between air pollution and mortality from respiratory conditions, and particularly the incidence of chronic bronchitis. He postulates a theory that such respiratory conditions arise as an allergy to the spores of certain moulds, spore formation being encouraged by the air humidity in Greatv Britain and overcrowded and damp living conditions. He describes the results of a twenty-week study undertaken in 1962-3, showing associations between respiratory disease and levels of air pollution. Dr Stuart Carne undertook a survey in general practice to plot the patterns of respiratory illness in London during the winter of 1962-3. There were two peaks of respiratory illnesses coinciding with the fog at the beginning of December and the freeze-up from the end of December until the beginning of March. PMID:14178955

  17. Traffic source emission and street level air pollution in urban areas of Guangzhou, South China (P.R.C.)

    NASA Astrophysics Data System (ADS)

    Qin, Y.; Chan, L. Y.

    Street level air pollution due to traffic emission is a cause of concern in Guangzhou City. During the winter and summer of 1988, the traffic-related air pollutant concentrations, wind field, traffic volume and vehicle speed were measured extensively in three types of street canyons in Guangzhou City. Various types of motor vehicle emission in idle condition were measured and the composite emission factors of vehicles were derived. The variation of traffic volume and vehicle speed in 223 mainstreets were also investigated. The annual air pollutant concentration levels of traffic source emission were calculated. Using CO as a traffic emission tracer for air pollution on the street, the contributions of traffic emission to street level air pollution were determined by the receptor method. Ground level air pollution in Guangzhou has changed from coal combustion emission type into traffic source emission type. The average contributions of traffic source emission to the concentration of CO and NO x on the street in 1988 are about 87% and 67%. The most significant pollutant of ambient air quality that traffic source emission influences in NO x.

  18. Plume-based analysis of vehicle fleet air pollutant emissions and the contribution from high emitters

    NASA Astrophysics Data System (ADS)

    Wang, J. M.; Jeong, C.-H.; Zimmerman, N.; Healy, R. M.; Wang, D. K.; Ke, F.; Evans, G. J.

    2015-03-01

    An automated identification and integration method has been developed to investigate in-use vehicle emissions under real-world conditions. This technique was applied to high time resolution air pollutant measurements of in-use vehicle emissions performed under real-world conditions at a near-road monitoring station in Toronto, Canada during four seasons, through month-long campaigns in 2013-2014. Based on carbon dioxide measurements, over 100 000 vehicle-related plumes were automatically identified and fuel-based emission factors for nitrogen oxides; carbon monoxide; particle number, black carbon; benzene, toluene, ethylbenzene, and xylenes (BTEX); and methanol were determined for each plume. Thus the automated identification enabled the measurement of an unprecedented number of plumes and pollutants over an extended duration. Emission factors for volatile organic compounds were also measured roadside for the first time using a proton transfer reaction time-of-flight mass spectrometer; this instrument provided the time resolution required for the plume capture technique. Mean emission factors were characteristic of the light-duty gasoline dominated vehicle fleet present at the measurement site, with mean black carbon and particle number emission factors of 35 mg kg-1 and 7.7 × 1014 kg-1, respectively. The use of the plume-by-plume analysis enabled isolation of vehicle emissions, and the elucidation of co-emitted pollutants from similar vehicle types, variability of emissions across the fleet, and the relative contribution from heavy emitters. It was found that a small proportion of the fleet (< 25%) contributed significantly to total fleet emissions; 95, 93, 76, and 75% for black carbon, carbon monoxide, BTEX, and particle number, respectively. Emission factors of a single pollutant may help classify a vehicle as a high emitter. However, regulatory strategies to more efficiently target multi-pollutants mixtures may be better developed by considering the co

  19. Plume-based analysis of vehicle fleet air pollutant emissions and the contribution from high emitters

    NASA Astrophysics Data System (ADS)

    Wang, J. M.; Jeong, C.-H.; Zimmerman, N.; Healy, R. M.; Wang, D. K.; Ke, F.; Evans, G. J.

    2015-08-01

    An automated identification and integration method has been developed for in-use vehicle emissions under real-world conditions. This technique was applied to high-time-resolution air pollutant measurements of in-use vehicle emissions performed under real-world conditions at a near-road monitoring station in Toronto, Canada, during four seasons, through month-long campaigns in 2013-2014. Based on carbon dioxide measurements, over 100 000 vehicle-related plumes were automatically identified and fuel-based emission factors for nitrogen oxides; carbon monoxide; particle number; black carbon; benzene, toluene, ethylbenzene, and xylenes (BTEX); and methanol were determined for each plume. Thus the automated identification enabled the measurement of an unprecedented number of plumes and pollutants over an extended duration. Emission factors for volatile organic compounds were also measured roadside for the first time using a proton transfer reaction time-of-flight mass spectrometer; this instrument provided the time resolution required for the plume capture technique. Mean emission factors were characteristic of the light-duty gasoline-dominated vehicle fleet present at the measurement site, with mean black carbon and particle number emission factors of 35 mg kg fuel-1 and 7.5 × 1014 # kg fuel-1, respectively. The use of the plume-by-plume analysis enabled isolation of vehicle emissions, and the elucidation of co-emitted pollutants from similar vehicle types, variability of emissions across the fleet, and the relative contribution from heavy emitters. It was found that a small proportion of the fleet (< 25 %) contributed significantly to total fleet emissions: 100, 100, 81, and 77 % for black carbon, carbon monoxide, BTEX, and particle number, respectively. Emission factors of a single pollutant may help classify a vehicle as a high emitter; however, regulatory strategies to more efficiently target multi-pollutant mixtures may be better developed by considering the co

  20. Measurements of air pollution emission factors for marine transportation

    NASA Astrophysics Data System (ADS)

    Alföldy, B.; Balzani Lööv, J.; Lagler, F.; Mellqvist, J.; Berg, N.; Beecken, J.; Weststrate, H.; Duyzer, J.; Bencs, L.; Horemans, B.; Cavalli, F.; Putaud, J.-P.; Janssens-Maenhout, G.; Pintér Csordás, A.; Van Grieken, R.; Borowiak, A.; Hjorth, J.

    2012-12-01

    The chemical composition of the plumes of seagoing ships was investigated during a two weeks long measurement campaign in the port of Rotterdam, Hoek van Holland, The Netherlands, in September 2009. Altogether, 497 ships were monitored and a statistical evaluation of emission factors (g kg-1 fuel) was provided. The concerned main atmospheric components were SO2, NO2, NOx and the aerosol particle number. In addition, the elemental and water-soluble ionic composition of the emitted particulate matter was determined. Emission factors were expressed as a function of ship type, power and crankshaft rotational speed. The average SO2 emission factor was found to be roughly half of what is allowed in sulphur emission control areas (16 vs. 30 g kg-1 fuel), and exceedances of this limit were rarely registered. A significant linear relationship was observed between the SO2 and particle number emission factor. The intercept of the regression line, 0.5 × 1016 (kg fuel)-1, gives the average number of particles formed during the burning of 1 kg zero sulphur content fuel, while the slope, 2 × 1018, provides the average number of particles formed with 1 kg sulphur burnt with the fuel. Water-soluble ionic composition analysis of the aerosol samples from the plumes showed that ~144 g of particulate sulphate was emitted from 1 kg sulphur burnt with the fuel. The mass median diameter of sulphate particles estimated from the measurements was ~42 nm.

  1. Collaborative Emission Reduction Model Based on Multi-Objective Optimization for Greenhouse Gases and Air Pollutants.

    PubMed

    Meng, Qing-chun; Rong, Xiao-xia; Zhang, Yi-min; Wan, Xiao-le; Liu, Yuan-yuan; Wang, Yu-zhi

    2016-01-01

    CO2 emission influences not only global climate change but also international economic and political situations. Thus, reducing the emission of CO2, a major greenhouse gas, has become a major issue in China and around the world as regards preserving the environmental ecology. Energy consumption from coal, oil, and natural gas is primarily responsible for the production of greenhouse gases and air pollutants such as SO2 and NOX, which are the main air pollutants in China. In this study, a mathematical multi-objective optimization method was adopted to analyze the collaborative emission reduction of three kinds of gases on the basis of their common restraints in different ways of energy consumption to develop an economic, clean, and efficient scheme for energy distribution. The first part introduces the background research, the collaborative emission reduction for three kinds of gases, the multi-objective optimization, the main mathematical modeling, and the optimization method. The second part discusses the four mathematical tools utilized in this study, which include the Granger causality test to analyze the causality between air quality and pollutant emission, a function analysis to determine the quantitative relation between energy consumption and pollutant emission, a multi-objective optimization to set up the collaborative optimization model that considers energy consumption, and an optimality condition analysis for the multi-objective optimization model to design the optimal-pole algorithm and obtain an efficient collaborative reduction scheme. In the empirical analysis, the data of pollutant emission and final consumption of energies of Tianjin in 1996-2012 was employed to verify the effectiveness of the model and analyze the efficient solution and the corresponding dominant set. In the last part, several suggestions for collaborative reduction are recommended and the drawn conclusions are stated.

  2. GIS based assessment of the spatial representativeness of air quality monitoring stations using pollutant emissions data

    NASA Astrophysics Data System (ADS)

    Righini, G.; Cappelletti, A.; Ciucci, A.; Cremona, G.; Piersanti, A.; Vitali, L.; Ciancarella, L.

    2014-11-01

    Spatial representativeness of air quality monitoring stations is a critical parameter when choosing location of sites and assessing effects on population to long term exposure to air pollution. According to literature, the spatial representativeness of a monitoring site is related to the variability of pollutants concentrations around the site. As the spatial distribution of primary pollutants concentration is strongly correlated to the allocation of corresponding emissions, in this work a methodology is presented to preliminarily assess spatial representativeness of a monitoring site by analysing the spatial variation of emissions around it. An analysis of horizontal variability of several pollutants emissions was carried out by means of Geographic Information System using a neighbourhood statistic function; the rationale is that if the variability of emissions around a site is low, the spatial representativeness of this site is high consequently. The methodology was applied to detect spatial representativeness of selected Italian monitoring stations, located in Northern and Central Italy and classified as urban background or rural background. Spatialized emission data produced by the national air quality model MINNI, covering entire Italian territory at spatial resolution of 4 × 4 km2, were processed and analysed. The methodology has shown significant capability for quick detection of areas with highest emission variability. This approach could be useful to plan new monitoring networks and to approximately estimate horizontal spatial representativeness of existing monitoring sites. Major constraints arise from the limited spatial resolution of the analysis, controlled by the resolution of the emission input data, cell size of 4 × 4 km2, and from the applicability to primary pollutants only.

  3. Collaborative Emission Reduction Model Based on Multi-Objective Optimization for Greenhouse Gases and Air Pollutants

    PubMed Central

    Zhang, Yi-min; Wan, Xiao-le; Liu, Yuan-yuan; Wang, Yu-zhi

    2016-01-01

    CO2 emission influences not only global climate change but also international economic and political situations. Thus, reducing the emission of CO2, a major greenhouse gas, has become a major issue in China and around the world as regards preserving the environmental ecology. Energy consumption from coal, oil, and natural gas is primarily responsible for the production of greenhouse gases and air pollutants such as SO2 and NOX, which are the main air pollutants in China. In this study, a mathematical multi-objective optimization method was adopted to analyze the collaborative emission reduction of three kinds of gases on the basis of their common restraints in different ways of energy consumption to develop an economic, clean, and efficient scheme for energy distribution. The first part introduces the background research, the collaborative emission reduction for three kinds of gases, the multi-objective optimization, the main mathematical modeling, and the optimization method. The second part discusses the four mathematical tools utilized in this study, which include the Granger causality test to analyze the causality between air quality and pollutant emission, a function analysis to determine the quantitative relation between energy consumption and pollutant emission, a multi-objective optimization to set up the collaborative optimization model that considers energy consumption, and an optimality condition analysis for the multi-objective optimization model to design the optimal-pole algorithm and obtain an efficient collaborative reduction scheme. In the empirical analysis, the data of pollutant emission and final consumption of energies of Tianjin in 1996–2012 was employed to verify the effectiveness of the model and analyze the efficient solution and the corresponding dominant set. In the last part, several suggestions for collaborative reduction are recommended and the drawn conclusions are stated. PMID:27010658

  4. Collaborative Emission Reduction Model Based on Multi-Objective Optimization for Greenhouse Gases and Air Pollutants.

    PubMed

    Meng, Qing-chun; Rong, Xiao-xia; Zhang, Yi-min; Wan, Xiao-le; Liu, Yuan-yuan; Wang, Yu-zhi

    2016-01-01

    CO2 emission influences not only global climate change but also international economic and political situations. Thus, reducing the emission of CO2, a major greenhouse gas, has become a major issue in China and around the world as regards preserving the environmental ecology. Energy consumption from coal, oil, and natural gas is primarily responsible for the production of greenhouse gases and air pollutants such as SO2 and NOX, which are the main air pollutants in China. In this study, a mathematical multi-objective optimization method was adopted to analyze the collaborative emission reduction of three kinds of gases on the basis of their common restraints in different ways of energy consumption to develop an economic, clean, and efficient scheme for energy distribution. The first part introduces the background research, the collaborative emission reduction for three kinds of gases, the multi-objective optimization, the main mathematical modeling, and the optimization method. The second part discusses the four mathematical tools utilized in this study, which include the Granger causality test to analyze the causality between air quality and pollutant emission, a function analysis to determine the quantitative relation between energy consumption and pollutant emission, a multi-objective optimization to set up the collaborative optimization model that considers energy consumption, and an optimality condition analysis for the multi-objective optimization model to design the optimal-pole algorithm and obtain an efficient collaborative reduction scheme. In the empirical analysis, the data of pollutant emission and final consumption of energies of Tianjin in 1996-2012 was employed to verify the effectiveness of the model and analyze the efficient solution and the corresponding dominant set. In the last part, several suggestions for collaborative reduction are recommended and the drawn conclusions are stated. PMID:27010658

  5. Economic development and multiple air pollutant emissions from the industrial sector.

    PubMed

    Fujii, Hidemichi; Managi, Shunsuke

    2016-02-01

    This study analyzed the relationship between economic growth and emissions of eight environmental air pollutants (carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), nitrogen oxide (NOx), sulfur oxide (SOx), carbon monoxide (CO), non-methane volatile organic compound (NMVOC), and ammonia (NH3)) in 39 countries from 1995 to 2009. We tested an environmental Kuznets curve (EKC) hypothesis for 16 individual industry sectors and for the total industrial sector. The results clarified that at least ten individual industries do not have an EKC relationship in eight air pollutants even though this relationship was observed in the country and total industrial sector level data. We found that the key industries that dictated the EKC relationship in the country and the total industrial sector existed in CO2, N2O, CO, and NMVOC emissions. Finally, the EKC turning point and the relationship between economic development and trends of air pollutant emissions differ among industries according to the pollution substances. These results suggest inducing new environmental policy design such as the sectoral crediting mechanism, which focuses on the industrial characteristics of emissions.

  6. [Major Air Pollutant Emissions of Coal-Fired Power Plant in Yangtze River Delta].

    PubMed

    Ding, Qing-qing; Wei, Wei; Shen, Qun; Sun, Yu-han

    2015-07-01

    The emission factor method was used to estimate major air pollutant emissions of coal-fired power plant in the Yangtze River Delta (YRD) region of the year 2012. Results showed that emissions of SO2, NOx, dust, PM10, PM2.5 were respectively 473 238, 1 566 195, 587 713, 348 773 and 179 820 t. For SO2 and NOx, 300 MW and above class units made contributions of 85% and 82% in emission; while in the respect of dust, PM10 and PM2.5 contribution rates of 100 MW and below class units were respectively 81%, 53% and 40%. Considering the regional distribution, Jiangsu discharged the most, followed by Zhejiang, Shanghai. According to discharge data of several local power plants, we also calculated and made a comparative analysis of emission factors in different unit levels in Shanghai, which indicated a lower emission level. Assuming an equal level was reached in whole YRD, SO2 emission would cut down 55. 8% - 65. 3%; for NOx and dust emissions were 50. 5% - 64. 1% and 3. 4% - 11. 3%, respectively. If technologies and pollution control of lower class units were improved, the emission cuts would improve. However, according to the pollution realities of YRD, we suggested to make a multiple-cuts plan, which could effectively improve the reaional atmospheric environment. PMID:26489303

  7. [Major Air Pollutant Emissions of Coal-Fired Power Plant in Yangtze River Delta].

    PubMed

    Ding, Qing-qing; Wei, Wei; Shen, Qun; Sun, Yu-han

    2015-07-01

    The emission factor method was used to estimate major air pollutant emissions of coal-fired power plant in the Yangtze River Delta (YRD) region of the year 2012. Results showed that emissions of SO2, NOx, dust, PM10, PM2.5 were respectively 473 238, 1 566 195, 587 713, 348 773 and 179 820 t. For SO2 and NOx, 300 MW and above class units made contributions of 85% and 82% in emission; while in the respect of dust, PM10 and PM2.5 contribution rates of 100 MW and below class units were respectively 81%, 53% and 40%. Considering the regional distribution, Jiangsu discharged the most, followed by Zhejiang, Shanghai. According to discharge data of several local power plants, we also calculated and made a comparative analysis of emission factors in different unit levels in Shanghai, which indicated a lower emission level. Assuming an equal level was reached in whole YRD, SO2 emission would cut down 55. 8% - 65. 3%; for NOx and dust emissions were 50. 5% - 64. 1% and 3. 4% - 11. 3%, respectively. If technologies and pollution control of lower class units were improved, the emission cuts would improve. However, according to the pollution realities of YRD, we suggested to make a multiple-cuts plan, which could effectively improve the reaional atmospheric environment.

  8. National estimates of residential firewood and air pollution emissions

    SciTech Connect

    Lipfert, F. W.; Dungan, J. L.

    1981-01-01

    Estimates are presented for the distribution and quantity of recent (1978-1979) use of residential firewood in the United States, based on a correlation of survey data from 64 New England counties. The available survey data from other states are in agreement with the relationship derived from New England; no constraints due to wood supply are apparent. This relationship indicates that the highest density of wood usage (Kg/ha) occurs in urban areas; thus exacerbation of urban air quality problems is a matter of some concern. The data presentation used here gives an upper limit to this density of firewood usage which will allow realistic estimates of air quality impact to be made.

  9. National Emission Standards for Hazardous Air Pollutants Calendar Year 2006

    SciTech Connect

    NSTec Environmental Technical Services

    2007-06-01

    The Nevada Test Site (NTS) is operated by the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO). From 1951 through 1992, the NTS was operated as the nation's site for nuclear weapons testing. The release of man-made radionuclides from the NTS as a result of testing activities has been monitored since the first decade of atmospheric testing. After 1962, when nuclear tests were conducted only underground, the radiation exposure to the public surrounding the NTS was greatly reduced. After the 1992 moratorium on nuclear testing, radiation monitoring on the NTS focused on detecting airborne radionuclides which come from historically-contaminated soils resuspended into the air (e.g., by winds) and tritium-contaminated soil moisture emitted to the air from soils through evapotranspiration.

  10. International trade and air pollution: estimating the economic costs of air emissions from waterborne commerce vessels in the United States.

    PubMed

    Gallagher, Kevin P

    2005-10-01

    Although there is a burgeoning literature on the effects of international trade on the environment, relatively little work has been done on where trade most directly effects the environment: the transportation sector. This article shows how international trade is affecting air pollution emissions in the United States' shipping sector. Recent work has shown that cargo ships have been long overlooked regarding their contribution to air pollution. Indeed, ship emissions have recently been deemed "the last unregulated source of traditional air pollutants". Air pollution from ships has a number of significant local, national, and global environmental effects. Building on past studies, we examine the economic costs of this increasing and unregulated form of environmental damage. We find that total emissions from ships are largely increasing due to the increase in foreign commerce (or international trade). The economic costs of SO2 pollution range from dollars 697 million to dollars 3.9 billion during the period examined, or dollars 77 to dollars 435 million on an annual basis. The bulk of the cost is from foreign commerce, where the annual costs average to dollars 42 to dollars 241 million. For NOx emissions the costs are dollars 3.7 billion over the entire period or dollars 412 million per year. Because foreign trade is driving the growth in US shipping, we also estimate the effect of the Uruguay Round on emissions. Separating out the effects of global trade agreements reveals that the trade agreement-led emissions amounted to dollars 96 to dollars 542 million for SO2 between 1993 and 2001, or dollars 10 to dollars 60 million per year. For NOx they were dollars 745 million for the whole period or dollars 82 million per year. Without adequate policy responses, we predict that these trends and costs will continue into the future.

  11. Air pollutant emission rates for sources at the Deaf Smith County repository site

    SciTech Connect

    Not Available

    1985-11-01

    This document summarizes the air-quality source terms used for the Deaf Smith County, Texas environmental assessment report and explains their derivation. The engineering data supporting these source terms appear as appendixes to this report and include summary equipment lists for the repository and detailed equipment lists for the exploratory shaft. Although substantial work has been performed in establishing the current repository design, a greater effort will be required for the final design. Consequently, the repository emission rates presented here should be considered as preliminary estimates. Another set of air pollution emission rates will be calculated after design data are more firmly established. 18 refs., 15 tabs.

  12. [Implementation results of emission standards of air pollutants for thermal power plants: a numerical simulation].

    PubMed

    Wang, Zhan-Shan; Pan, Li-Bo

    2014-03-01

    The emission inventory of air pollutants from the thermal power plants in the year of 2010 was set up. Based on the inventory, the air quality of the prediction scenarios by implementation of both 2003-version emission standard and the new emission standard were simulated using Models-3/CMAQ. The concentrations of NO2, SO2, and PM2.5, and the deposition of nitrogen and sulfur in the year of 2015 and 2020 were predicted to investigate the regional air quality improvement by the new emission standard. The results showed that the new emission standard could effectively improve the air quality in China. Compared with the implementation results of the 2003-version emission standard, by 2015 and 2020, the area with NO2 concentration higher than the emission standard would be reduced by 53.9% and 55.2%, the area with SO2 concentration higher than the emission standard would be reduced by 40.0%, the area with nitrogen deposition higher than 1.0 t x km(-2) would be reduced by 75.4% and 77.9%, and the area with sulfur deposition higher than 1.6 t x km(-2) would be reduced by 37.1% and 34.3%, respectively.

  13. Portable air pollution control equipment for the control of toxic particulate emissions

    SciTech Connect

    Chaurushia, A.; Odabashian, S.; Busch, E.

    1997-12-31

    Chromium VI (Cr VI) has been identified by the environmental regulatory agencies as a potent carcinogen among eleven heavy metals. A threshold level of 0.0001 lb/year for Cr VI emissions has been established by the California Air Resources Board for reporting under Assembly Bill 2588. A need for an innovative control technology to reduce fugitive emissions of Cr VI was identified during the Air Toxic Emissions Reduction Program at Northrop Grumman Military Aircraft Systems Division (NGMASD). NGMASD operates an aircraft assembly facility in El Segundo, CA. Nearly all of the aircraft components are coated with a protective coating (primer) prior to assembly. The primer has Cr VI as a component for its excellent corrosion resistance property. The complex assembly process requires fasteners which also need primer coating. Therefore, NGMASD utilizes High Volume Low Pressure (HVLP) guns for the touch-up spray coating operations. During the touch-up spray coating operations, Cr VI particles are atomized and transferred to the aircraft surface. The South Coast Air Quality Management District (SCAQMD) has determined that the HVLP gun transfers 65% of the paint particles onto the substrate and the remaining 35% are emitted as an overspray if air pollution controls are not applied. NGMASD has developed the Portable Air Pollution Control Equipment (PAPCE) to capture and control the overspray in order to reduce fugitive Cr VI emissions from the touch-up spray coating operations. A source test was performed per SCAQMD guidelines and the final report has been approved by the SCAQMD.

  14. Aircraft engine exhaust emissions and other airport-related contributions to ambient air pollution: A review

    NASA Astrophysics Data System (ADS)

    Masiol, Mauro; Harrison, Roy M.

    2014-10-01

    Civil aviation is fast-growing (about +5% every year), mainly driven by the developing economies and globalisation. Its impact on the environment is heavily debated, particularly in relation to climate forcing attributed to emissions at cruising altitudes and the noise and the deterioration of air quality at ground-level due to airport operations. This latter environmental issue is of particular interest to the scientific community and policymakers, especially in relation to the breach of limit and target values for many air pollutants, mainly nitrogen oxides and particulate matter, near the busiest airports and the resulting consequences for public health. Despite the increased attention given to aircraft emissions at ground-level and air pollution in the vicinity of airports, many research gaps remain. Sources relevant to air quality include not only engine exhaust and non-exhaust emissions from aircraft, but also emissions from the units providing power to the aircraft on the ground, the traffic due to the airport ground service, maintenance work, heating facilities, fugitive vapours from refuelling operations, kitchens and restaurants for passengers and operators, intermodal transportation systems, and road traffic for transporting people and goods in and out to the airport. Many of these sources have received inadequate attention, despite their high potential for impact on air quality. This review aims to summarise the state-of-the-art research on aircraft and airport emissions and attempts to synthesise the results of studies that have addressed this issue. It also aims to describe the key characteristics of pollution, the impacts upon global and local air quality and to address the future potential of research by highlighting research needs.

  15. Improving the City-scale Emission Inventory of Anthropogenic Air Pollutants: A Case Study of Nanjing

    NASA Astrophysics Data System (ADS)

    Qiu, L.; Zhao, Y.; Xu, R.; Xie, F.; Wang, H.; Qin, H.; Wu, X.; Zhang, J.

    2014-12-01

    To evaluate the improvement of city-scale emission inventory, a high-resolution emission inventory of air pollutants for Nanjing is first developed combining detailed source information, and then justified through quantitative analysis with observations. The best available domestic emission factors and unit-/facility-based activity level data were compiled based on a thorough field survey on major emission sources. Totally 1089 individual emission sources were identified as point sources and all the emission-related parameters including burner type, combustion technology, fuel quality, and removal efficiency of pollution control devices, are carefully investigated and analyzed. Some new data such as detailed information of city fueling-gas stations, construction sites, monthly activity level, data from continuous emission monitoring systems and traffic flow information were combined to improve spatiotemporal distribution of this inventory. For SO2, NOX and CO, good spatial correlations were found between ground observation (9 state controlling air sampling sites in Nanjing) and city-scale emission inventory (R2=0.34, 0.38 and 0.74, respectively). For TSP, PM10 and PM2.5, however, poorer correlation was found due to relatively weaker accuracy in emission estimation and spatial distribution of road dust. The mixing ratios between specific pollutants including OC/EC, BC/CO and CO2/CO, are well correlated between those from ground observation and emission. Compared to MEIC (Multi-resolution Emission Inventory for China), there is a better spatial consistence between this city-scale emission inventory and NO2 measured by OMI (Ozone Monitoring Instrument). In particular, the city-scale emission inventory still correlated well with satellite observations (R2=0.28) while the regional emission inventory showed little correlation with satellite observations (R2=0.09) when grids containing power plants are excluded. It thus confirms the improvement of city-scale emission

  16. Air pollution response to changing weather and power plant emissions in the eastern United States

    NASA Astrophysics Data System (ADS)

    Bloomer, Bryan Jaye

    Air pollution in the eastern United States causes human sickness and death as well as damage to crops and materials. NOX emission reduction is observed to improve air quality. Effectively reducing pollution in the future requires understanding the connections between smog, precursor emissions, weather, and climate change. Numerical models predict global warming will exacerbate smog over the next 50 years. My analysis of 21 years of CASTNET observations quantifies a climate change penalty. I calculate, for data collected prior to 2002, a climate penalty factor of ˜3.3 ppb O3/°C across the power plant dominated receptor regions in the rural, eastern U.S. Recent reductions in NOX emissions decreased the climate penalty factor to ˜2.2 ppb O3/°C. Prior to 1995, power plant emissions of CO2, SO2, and NOX were estimated with fuel sampling and analysis methods. Currently, emissions are measured with continuous monitoring equipment (CEMS) installed directly in stacks. My comparison of the two methods show CO 2 and SO2 emissions are ˜5% lower when inferred from fuel sampling; greater differences are found for NOX emissions. CEMS are the method of choice for emission inventories and commodity trading and should be the standard against which other methods are evaluated for global greenhouse gas trading policies. I used CEMS data and applied chemistry transport modeling to evaluate improvements in air quality observed by aircraft during the North American electrical blackout of 2003. An air quality model produced substantial reductions in O3, but not as much as observed. The study highlights weaknesses in the model as commonly used for evaluating a single day event and suggests areas for further investigation. A new analysis and visualization method quantifies local-daily to hemispheric-seasonal scale relationships between weather and air pollution, confirming improved air quality despite increasing temperatures across the eastern U.S. Climate penalty factors indicate

  17. Increased estimates of air-pollution emissions from Brazilian sugar-cane ethanol

    NASA Astrophysics Data System (ADS)

    Tsao, C.-C.; Campbell, J. E.; Mena-Carrasco, M.; Spak, S. N.; Carmichael, G. R.; Chen, Y.

    2012-01-01

    Accelerating biofuel production has been promoted as an opportunity to enhance energy security, offset greenhouse-gas emissions and support rural economies. However, large uncertainties remain in the impacts of biofuels on air quality and climate. Sugar-cane ethanol is one of the most widely used biofuels, and Brazil is its largest producer. Here we use a life-cycle approach to produce spatially and temporally explicit estimates of air-pollutant emissions over the whole life cycle of sugar-cane ethanol in Brazil. We show that even in regions where pre-harvest field burning has been eliminated on half the croplands, regional emissions of air pollutants continue to increase owing to the expansion of sugar-cane growing areas, and burning continues to be the dominant life-cycle stage for emissions. Comparison of our estimates of burning-phase emissions with satellite estimates of burning in São Paulo state suggests that sugar-cane field burning is not fully accounted for in satellite-based inventories, owing to the small spatial scale of individual fires. Accounting for this effect leads to revised regional estimates of burned area that are four times greater than some previous estimates. Our revised emissions maps thus suggest that biofuels may have larger impacts on regional climate forcing and human health than previously thought.

  18. Factorization of air pollutant emissions: projections versus observed trends in Europe.

    PubMed

    Rafaj, Peter; Amann, Markus; Siri, José G

    2014-10-01

    This paper revisits the emission scenarios of the European Commission's 2005 Thematic Strategy on Air Pollution (TSAP) in light of today's knowledge. We review assumptions made in the past on the main drivers of emission changes, i.e., demographic trends, economic growth, changes in the energy intensity of GDP, fuel-switching, and application of dedicated emission control measures. Our analysis shows that for most of these drivers, actual trends have not matched initial expectations. Observed ammonia and sulfur emissions in European Union in 2010 were 10% to 20% lower than projected, while emissions of nitrogen oxides and particulate matter exceeded estimates by 8% to 15%. In general, a higher efficiency of dedicated emission controls compensated for a lower-than-expected decline in total energy consumption as well as a delay in the phase-out of coal. For 2020, updated projections anticipate lower sulfur and nitrogen oxide emissions than those under the 2005 baseline, whereby the degree to which these emissions are lower depends on what assumptions are made for emission controls and new vehicle standards. Projected levels of particulates are about 10% higher, while smaller differences emerge for other pollutants. New emission projections suggest that environmental targets established by the TSAP for the protection of human health, eutrophication and forest acidification will not be met without additional measures. PMID:25058894

  19. Factorization of air pollutant emissions: projections versus observed trends in Europe.

    PubMed

    Rafaj, Peter; Amann, Markus; Siri, José G

    2014-10-01

    This paper revisits the emission scenarios of the European Commission's 2005 Thematic Strategy on Air Pollution (TSAP) in light of today's knowledge. We review assumptions made in the past on the main drivers of emission changes, i.e., demographic trends, economic growth, changes in the energy intensity of GDP, fuel-switching, and application of dedicated emission control measures. Our analysis shows that for most of these drivers, actual trends have not matched initial expectations. Observed ammonia and sulfur emissions in European Union in 2010 were 10% to 20% lower than projected, while emissions of nitrogen oxides and particulate matter exceeded estimates by 8% to 15%. In general, a higher efficiency of dedicated emission controls compensated for a lower-than-expected decline in total energy consumption as well as a delay in the phase-out of coal. For 2020, updated projections anticipate lower sulfur and nitrogen oxide emissions than those under the 2005 baseline, whereby the degree to which these emissions are lower depends on what assumptions are made for emission controls and new vehicle standards. Projected levels of particulates are about 10% higher, while smaller differences emerge for other pollutants. New emission projections suggest that environmental targets established by the TSAP for the protection of human health, eutrophication and forest acidification will not be met without additional measures.

  20. National Emission Standards for Hazardous Air Pollutants Submittal - 1998

    SciTech Connect

    Stuart Black; Yvonne Townsend

    1999-06-01

    The Nevada Test Site (NTS) is operated by the U.S. Department of Energy Nevada Operations Office (DOE/NV) as the site for nuclear weapons testing, now limited to readiness activities and experiments in support of the national Stockpile Stewardship Management Program. It is located in Nye County, Nevada, with the southeast corner about 105 km (65 mi) northwest of Las Vegas, Nevada. The NTS covers about 3,500 km2 (1,350 mi2), an area larger than Rhode Island. Its size is about 46 to 56 km (28 to 35 mi) east to west and from 64 to 88 km (40 to 55 mi)north to south. The NTS is surrounded, except on the south side, by public exclusion areas (Nellis Air Force Range) that provide another 24 to 104 km (15 to 65 mi) between the NTS and public lands. The NTS is characterized by desert valley and Great Basin mountain topography, with a climate, flora, and fauna typical of the southwest deserts. Surface waters are scarce on the NTS and there is great depth to slow-moving groundwater.

  1. National Emission Standards for Hazardous Air Pollutants Calendar Year 1999

    SciTech Connect

    R. F. Grossman

    2000-06-01

    The Nevada Test Site (NTS) is operated by the US Department of Energy's Nevada Operations Office (DOE/NV) as the site for nuclear weapons testing, now limited to readiness activities and experiments in support of the national Stockpile Stewardship Management Program. It is located in Nye County, Nevada, with the southeast corner about 105 km (65 mi) northwest of Las Vegas, Nevada. The NTS covers about 3,561 km{sup 2} (1,375 mi{sup 2}), an area larger than Rhode Island. Its size is about 46 to 56 km (28 to 35 mi) east to west and from 64 to 88 km (40 to 55 mi) north to south. The NTS is surrounded, except on the south side, by public exclusion areas (Nellis Air Force Range [NAFR]) that provide another 24 to 104 km (15 to 65 mi) between the NTS and public lands. The NTS is characterized by desert valley and Great Basin mountain topography, with a climate, flora, and fauna typical of the southwest deserts. Population density within 150 km (93 mi) of the NTS is only about 0.2 persons per square kilometer, excluding the Las Vegas area. Restricted access, low population density in the surrounding area, and extended wind transport times are advantageous factors for the activities conducted at the NTS. Surface waters are scarce on the NTS and there is great depth to slow-moving groundwater.

  2. Assessment of China's virtual air pollution transport embodied in trade by using a consumption-based emission inventory

    NASA Astrophysics Data System (ADS)

    Zhao, H. Y.; Zhang, Q.; Guan, D. B.; Davis, S. J.; Liu, Z.; Huo, H.; Lin, J. T.; Liu, W. D.; He, K. B.

    2015-05-01

    Substantial anthropogenic emissions from China have resulted in serious air pollution, and this has generated considerable academic and public concern. The physical transport of air pollutants in the atmosphere has been extensively investigated; however, understanding the mechanisms how the pollutant was transferred through economic and trade activities remains a challenge. For the first time, we quantified and tracked China's air pollutant emission flows embodied in interprovincial trade, using a multiregional input-output model framework. Trade relative emissions for four key air pollutants (primary fine particle matter, sulfur dioxide, nitrogen oxides and non-methane volatile organic compounds) were assessed for 2007 in each Chinese province. We found that emissions were significantly redistributed among provinces owing to interprovincial trade. Large amounts of emissions were embodied in the imports of eastern regions from northern and central regions, and these were determined by differences in regional economic status and environmental policy. It is suggested that measures should be introduced to reduce air pollution by integrating cross-regional consumers and producers within national agreements to encourage efficiency improvement in the supply chain and optimize consumption structure internationally. The consumption-based air pollutant emission inventory developed in this work can be further used to attribute pollution to various economic activities and final demand types with the aid of air quality models.

  3. National Emission Standards for Hazardous Air Pollutants Calendar Year 2001

    SciTech Connect

    Y. E. Townsend

    2002-06-01

    The Nevada Test Site (NTS) is operated by the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Operations Office (NNSA/NV) as the site for nuclear weapons testing, now limited to readiness activities, experiments in support of the national Stockpile Stewardship Program, and the activities listed below. Located in Nye County, Nevada, the site's southeast corner is about 88 km (55 mi) northwest of the major population center, Las Vegas, Nevada. The NTS covers about 3,561 km2 (1,375 mi2), an area larger than Rhode Island. Its size is 46 to 56 km (28 to 35 mi) east to west and from 64 to 88 km (40 to 55 mi) north to south. The NTS is surrounded, except on the south side, by public exclusion areas (Nellis Air Force Range [NAFR]) that provide another 24 to 104 km (15 to 65 mi) between the NTS and public lands (Figure 1.0). The NTS is characterized by desert valley and Great Basin mountain topography, with a climate, flora, and fauna typical of the southwest deserts. Population density within 150 km (93 mi) of the NTS is only about 0.2 persons per square kilometer, excluding the Las Vegas area. Restricted access, low population density in the surrounding area, and extended wind transport times are advantageous factors for the activities conducted at the NTS. Surface waters are scarce on the NTS, and slow-moving groundwater is present hundreds to thousands of feet below the land surface. The sources of radionuclides include current and previous activities conducted on the NTS (Figure 2.0). The NTS was the primary location for testing of nuclear explosives in the Continental U.S. between 1951 and 1992. Historical testing above or at ground surface has included (1) atmospheric testing in the 1950s and early 1960s, (2) earth-cratering experiments, and (3) open-air nuclear reactor and rocket engine testing. Since the mid-1950s, testing of nuclear explosive devices has occurred underground in drilled vertical holes or in mined tunnels (DOE 1996a

  4. Global Scenarios of Air Pollutant Emissions from Road Transport through to 2050

    PubMed Central

    Takeshita, Takayuki

    2011-01-01

    This paper presents global scenarios of sulphur dioxide (SO2), nitrogen oxides (NOx), and particulate matter (PM) emissions from road transport through to 2050, taking into account the potential impacts of: (1) the timing of air pollutant emission regulation implementation in developing countries; (2) global CO2 mitigation policy implementation; and (3) vehicle cost assumptions, on study results. This is done by using a global energy system model treating the transport sector in detail. The major conclusions are the following. First, as long as non-developed countries adopt the same vehicle emission standards as in developed countries within a 30-year lag, global emissions of SO2, NOx, and PM from road vehicles decrease substantially over time. Second, light-duty vehicles and heavy-duty trucks make a large and increasing contribution to future global emissions of SO2, NOx, and PM from road vehicles. Third, the timing of air pollutant emission regulation implementation in developing countries has a large impact on future global emissions of SO2, NOx, and PM from road vehicles, whereas there is a possibility that global CO2 mitigation policy implementation has a comparatively small impact on them. PMID:21845172

  5. Contribution of ship emissions to the concentration and deposition of air pollutants in Europe

    NASA Astrophysics Data System (ADS)

    Aksoyoglu, Sebnem; Baltensperger, Urs; Prévôt, André S. H.

    2016-02-01

    Emissions from the marine transport sector are one of the least-regulated anthropogenic emission sources and contribute significantly to air pollution. Although strict limits were introduced recently for the maximum sulfur content in marine fuels in the SECAs (sulfur emission control areas) and in EU ports, sulfur emissions outside the SECAs and emissions of other components in all European maritime areas have continued to increase in the last two decades. We have used the air quality model CAMx (Comprehensive Air Quality Model with Extensions) with and without ship emissions for the year 2006 to determine the effects of international shipping on the annual as well as seasonal concentrations of ozone, primary and secondary components of PM2.5, and the dry and wet deposition of nitrogen and sulfur compounds in Europe. The largest changes in pollutant concentrations due to ship emissions were predicted for summer. Concentrations of particulate sulfate increased due to ship emissions in the Mediterranean (up to 60 %), the English Channel and the North Sea (30-35 %), while increases in particulate nitrate levels were found especially in the north, around the Benelux area (20 %), where there were high NH3 land-based emissions. Our model results showed that not only are the atmospheric concentrations of pollutants affected by ship emissions, but also depositions of nitrogen and sulfur compounds increase significantly along the shipping routes. NOx emissions from the ships, especially in the English Channel and the North Sea, cause a decrease in the dry deposition of reduced nitrogen at source regions by moving it from the gas phase to the particle phase which then contributes to an increase in the wet deposition at coastal areas with higher precipitation. In the western Mediterranean region, on the other hand, model results show an increase in the deposition of oxidized nitrogen (mostly HNO3) due to the ship traffic. Dry deposition of SO2 seems to be significant along

  6. Air pollution from aircraft

    NASA Technical Reports Server (NTRS)

    Heywood, J. B.; Fay, J. A.; Chigier, N. A.

    1979-01-01

    A series of fundamental problems related to jet engine air pollution and combustion were examined. These include soot formation and oxidation, nitric oxide and carbon monoxide emissions mechanisms, pollutant dispension, flow and combustion characteristics of the NASA swirl can combustor, fuel atomization and fuel-air mixing processes, fuel spray drop velocity and size measurement, ignition and blowout. A summary of this work, and a bibliography of 41 theses and publications which describe this work, with abstracts, is included.

  7. ESP 2.0: Improved method for projecting U.S. GHG and air pollution emissions through 2055

    EPA Science Inventory

    The Emission Scenario Projection (ESP) method is used to develop multi-decadal projections of U.S. Greenhouse Gas (GHG) and criteria pollutant emissions. The resulting future-year emissions can then translated into an emissions inventory and applied in climate and air quality mod...

  8. Nature of air pollution, emission sources, and management in the Indian cities

    NASA Astrophysics Data System (ADS)

    Guttikunda, Sarath K.; Goel, Rahul; Pant, Pallavi

    2014-10-01

    The global burden of disease study estimated 695,000 premature deaths in 2010 due to continued exposure to outdoor particulate matter and ozone pollution for India. By 2030, the expected growth in many of the sectors (industries, residential, transportation, power generation, and construction) will result in an increase in pollution related health impacts for most cities. The available information on urban air pollution, their sources, and the potential of various interventions to control pollution, should help us propose a cleaner path to 2030. In this paper, we present an overview of the emission sources and control options for better air quality in Indian cities, with a particular focus on interventions like urban public transportation facilities; travel demand management; emission regulations for power plants; clean technology for brick kilns; management of road dust; and waste management to control open waste burning. Also included is a broader discussion on key institutional measures, like public awareness and scientific studies, necessary for building an effective air quality management plan in Indian cities.

  9. Spatial variations, temporal trends, and emission sources of air pollutants in seven cities of northern China

    NASA Astrophysics Data System (ADS)

    LI, WEI; TAO, SHU; WANG, CHEN

    2014-05-01

    Particulate matter (PM), polycyclic aromatic hydrocarbons (PAHs), and the derivatives of PAHs (nitro-PAHs and oxy-PAHs) were measured each month between April, 2010 and March, 2011 in seven large cities (18 sites) in the ambient air of northern China. Similarities in the concentrations of PM, PAHs and oxy-PAHs between rural village and urban area are found, indicating the severe air pollution in the rural villages and strong contribution of solid fuels combustion. Higher nitro-PAHs concentrations in the cities than those in the rural area suggests the influence of motor vehicles, both on primary emission and secondary formation. Without local emission sources, pollutants levels in the rural field area are the lowest. Air pollution in the less developed west China is as severe as that in the east with more population and urbanization, both heavier than that in the coastal area. Such spatial patterns are caused by differences in the sources of contaminants and the removal process. A strong seasonality of all pollutants with higher concentrations in winter and lower in summer is observed due to large heating demand for solid fuel combustion in winter and rich precipitation in summer. Natural sources such as sandstorms also take effects on the spatial distribution and temporal trend of PM.

  10. Quantifying baseline emission factors of air pollutants in China's regional power grids.

    PubMed

    Cai, Wenjia; Wang, Can; Jin, Zhugang; Chen, Jining

    2013-04-16

    Drawing lessons from the clean development mechanism (CDM), this paper developed a combined margin methodology to quantify baseline emission factors of air pollutants in China's regional power grids. The simple average of baseline emission factors of SO2, NOX, and PM2.5 in China's six power grids in 2010 were respectively 1.91 kg/MWh, 1.83 kg/MWh and 0.32 kg/MWh. Several low-efficient mitigation technologies, such as low nitrogen oxide burner (LNB), were suggested to be replaced or used together with other technologies in order to virtually decrease the grid's emission factor. The synergies between GHG and air pollution mitigation in China's power sector was also notable. It is estimated that in 2010, that every 1% CO2 reduction in China's power generation sector resulted in the respective coreduction of 1.1%, 0.5%, and 0.8% of SO2, NOX, and PM2.5. Wind is the best technology to achieve the largest amount of coabatement in most parts of China. This methodology is recommended to be used in making comprehensive air pollution control strategies and in cobenefits analysis in future CDM approval processes.

  11. Supplement B to compilation of air pollutant emission factors, volume 1. Stationary point and area sources

    SciTech Connect

    1996-11-01

    This document contains emission factors and process information for more than 200 air pollution source categories. This Supplement to AP-42 addresses pollutant-generating activity from Bituminous And Subbituminous Coal Combustion, Anthracite Coal Combustion, Fuel Oil Combustion, Natural Gas Combustion, Liquefied Petroleum Gas Combustion, Wood Waste Combustion In Boilers, Lignite Combustion, Bagasse Combustion In Sugar Mills, Residential Fireplaces, Residential Wood Stoves, Waste Oil Combustion, Stationary Gas Turbines For Electricity Generation, Heavy-duty Natural Gas-fired Pipeline Compressor Engines And Turbines, Gasoline and Diesel Industrial Engines, Large Stationary Diesel And All Stationary Dual-fuel Engines, Adipic Acid, Cotton Ginning, Alfafalfa Dehydrating, Malt Beverages, Ceramic Products Manufacturing, Electroplating, Wildfires And Prescribed Burning, Emissions From Soils-Greenhouse Gases, Termites-Greenhouse Gases, and Lightning Emissions-Greenhouse Gases.

  12. 78 FR 32223 - Control of Air Pollution From Motor Vehicles: Tier 3 Motor Vehicle Emission and Fuel Standards

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-29

    ... AGENCY 40 CFR Parts 80, 85, 86, 600, 1036, 1037, 1065, and 1066 RIN 2060-A0 Control of Air Pollution From... (``EPA'') is announcing an extension of the public comment period for the proposed rule ``Control of Air Pollution from Motor Vehicles: Tier 3 Motor Vehicle Emission and Fuel Standards'' (the proposed rule...

  13. IN VIVO EVIDENCE OF FREE RADICAL FORMATION IN THE RAT LUNG AFTER EXPOSURE TO AN EMISSION SOURCE AIR POLLUTION PARTICLE

    EPA Science Inventory

    Exposure to air pollution particles can be associated with increased human morbidity and mortality. The mechanism(s) of lung injury remains unknown. We tested the hypothesis that lung exposure to oil fly ash (an emission source air pollution particle) causes in vivo free radical ...

  14. EFFECTS OF CHANGING COALS ON THE EMISSIONS OF METAL HAZARDOUS AIR POLLUTANTS FROM THE COMBUSTION OF PULVERIZED COAL

    EPA Science Inventory

    The report discusses tests conducted at EPA's Air Pollution Prevention and Control Division to evaluate the effects of changing coals on emissions of metal hazardous air pollutants from coal-fired boilers. Six coals were burned in a 29 kW (100,000 Btu/hr) down-fired combustor und...

  15. 78 FR 20881 - Control of Air Pollution From Motor Vehicles: Tier 3 Motor Vehicle Emission and Fuel Standards...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-08

    ... AGENCY 40 CFR Part 80 RIN 2060-AQ86 Control of Air Pollution From Motor Vehicles: Tier 3 Motor Vehicle... hearings to be held for the proposed rule ``Control of Air Pollution from Motor Vehicles: Tier 3 Motor Vehicle Emission and Fuel Standards'' (the proposed rule is hereinafter referred to as ``Tier 3''),...

  16. Alternative methods of reducing air pollution from low-emissions sources in Krakow

    SciTech Connect

    Bieda, J.; Bardel, J.; Nedoma, J.; Pierce, B.

    1994-10-01

    A study on air quality monitoring carried out in the 1980s indicated that around 40% of the high concentrations of air pollutants adversely affecting residents and the natural environment were contributed by coal-fired home stoves and boiler houses using solid fuels. These heat sources discharging particulate matters at low heights, basically lacking any pollution control devices, are called the ``low emission sources.`` The American-Polish Program on Clean Fossil Fuels and Energy Efficiency in Krakow, which began in 1992, was preceded by a detailed inventory of low emissions sources completed in 1991. In the American-Polish program it has been accepted that all possible technical means would be used to reduce pollution, mainly those which enable utilization of reserves present in the existing networks of: district heating; gas distribution; and power distribution. The analysis indicated that the following activities can bring about realistic progress in reducing air pollution: elimination of the existing solid fuel boiler houses by connecting the buildings they serve to the municipal district heating network; elimination of solid fuel boiler houses by converting them to natural gas; elimination of solid fuel-fired home stoves by replacing them with electric heating; modernization of those solid fuel boiler houses which cannot by eliminated because of their function; and reducing the adverse environmental effects of home stove use throughout the city by changes in the combustion process, eliminating coal and replacing it with natural gas or electricity, and/or looking for combustion devices that can burn coal without producing air pollutants.

  17. Air pollution monitoring using emission inventories combined with the moss bag approach.

    PubMed

    Iodice, P; Adamo, P; Capozzi, F; Di Palma, A; Senatore, A; Spagnuolo, V; Giordano, S

    2016-01-15

    Inventory of emission sources and biomonitoring with moss transplants are two different methods to evaluate air pollution. In this study, for the first time, both these approaches were simultaneously applied in five municipalities in Campania (southern Italy), deserving attention for health-oriented interventions as part of a National Interest Priority Site. The pollutants covered by the inventory were CO, NOx, particulate matter (PM10), volatile organic compounds (VOCs), and some heavy metals (As, Cd, Cr, Cu, Hg, Ni, Pb, Se, and Zn). The biomonitoring survey was based on the use of the devitalized moss Hypnum cupressiforme transplanted into bags, following a harmonized protocol. The exposure covered 40 agricultural and urban/residential sites, with half of them located in proximity to roads. The pollutants monitored were Al, As, Cd, Cr, Cu, Fe, Hg, Ni, Pb, Se, and Zn, as well as total polycyclic aromatic hydrocarbons (PAHs) only in five sites. Using the emission inventory approach, high emission loads were detected for all the major air pollutants and the following heavy metals: Cr, Cu, Ni, Pb and Zn, over the entire study area. Arsenic, Pb, and Zn were the elements most accumulated by moss. Total PAH postexposure contents were higher than the preexposure values (~20-50% of initial value). Moss uptakes did not differ substantially among municipalities or within exposure sites. In the five municipalities, a similar spatial pattern was evidenced for Pb by emission inventory and moss accumulation. Both approaches indicated the same most polluted municipality, suggesting their combined use as a valuable resource to reveal contaminants that are not routinely monitored.

  18. Air pollution monitoring using emission inventories combined with the moss bag approach.

    PubMed

    Iodice, P; Adamo, P; Capozzi, F; Di Palma, A; Senatore, A; Spagnuolo, V; Giordano, S

    2016-01-15

    Inventory of emission sources and biomonitoring with moss transplants are two different methods to evaluate air pollution. In this study, for the first time, both these approaches were simultaneously applied in five municipalities in Campania (southern Italy), deserving attention for health-oriented interventions as part of a National Interest Priority Site. The pollutants covered by the inventory were CO, NOx, particulate matter (PM10), volatile organic compounds (VOCs), and some heavy metals (As, Cd, Cr, Cu, Hg, Ni, Pb, Se, and Zn). The biomonitoring survey was based on the use of the devitalized moss Hypnum cupressiforme transplanted into bags, following a harmonized protocol. The exposure covered 40 agricultural and urban/residential sites, with half of them located in proximity to roads. The pollutants monitored were Al, As, Cd, Cr, Cu, Fe, Hg, Ni, Pb, Se, and Zn, as well as total polycyclic aromatic hydrocarbons (PAHs) only in five sites. Using the emission inventory approach, high emission loads were detected for all the major air pollutants and the following heavy metals: Cr, Cu, Ni, Pb and Zn, over the entire study area. Arsenic, Pb, and Zn were the elements most accumulated by moss. Total PAH postexposure contents were higher than the preexposure values (~20-50% of initial value). Moss uptakes did not differ substantially among municipalities or within exposure sites. In the five municipalities, a similar spatial pattern was evidenced for Pb by emission inventory and moss accumulation. Both approaches indicated the same most polluted municipality, suggesting their combined use as a valuable resource to reveal contaminants that are not routinely monitored. PMID:26479914

  19. Impact of ship emissions on air pollution and AOD over North Atlantic and European Arctic

    NASA Astrophysics Data System (ADS)

    Kaminski, Jacek W.; Struzewska, Joanna; Jefimow, Maciej; Durka, Pawel

    2016-04-01

    The iAREA project is combined of experimental and theoretical research in order to contribute to the new knowledge on the impact of absorbing aerosols on the climate system in the European Arctic (http://www.igf.fuw.edu.pl/iAREA). A tropospheric chemistry model GEM-AQ (Global Environmental Multiscale Air Quality) was used as a computational tool. The core of the model is based on a weather prediction model with environmental processes (chemistry and aerosols) implanted on-line and are interactive (i.e. providing feedback of chemistry on radiation and dynamics). The numerical grid covered the Euro-Atlantic region with the resolution of 50 km. Emissions developed by NILU in the ECLIPSE project was used (Klimont et al., 2013). The model was run for two 1-year scenarios. 2014 was chosen as a base year for simulations and analysis. Scenarios include a base run with most up-to-date emissions and a run without maritime emissions. The analysis will focus on the contribution of maritime emissions on levels of particulate matter and gaseous pollutants over the European Arctic, North Atlantic and coastal areas. The annual variability will be assessed based on monthly mean near-surface concentration fields. Analysis of shipping transport on near-surface air pollution over the Euro-Atlantic region will be assessed for ozone, NO2, SO2, CO, PM10, PM2.5. Also, a contribution of ship emissions to AOD will be analysed.

  20. Emissions inventory and scenario analyses of air pollutants in Guangdong Province, China

    NASA Astrophysics Data System (ADS)

    Chen, Hui; Meng, Jing

    2016-03-01

    Air pollution, causing significantly adverse health impacts and severe environmental problems, has raised great concerns in China in the past few decades. Guangdong Province faces major challenges to address the regional air pollution problem due to the lack of an emissions inventory. To fill this gap, an emissions inventory of primary fine particles (PM2.5) is compiled for the year 2012, and the key precursors (sulfur dioxide, nitrogen oxides) are identified. Furthermore, policy packages are simulated during the period of 2012-2030 to investigate the potential mitigation effect. The results show that in 2012, SO2, NO x , and PM2.5 emissions in Guangdong Province were as high as (951.7, 1363.6, and 294.9) kt, respectively. Industrial production processes are the largest source of SO2 and PM2.5 emissions, and transport is the top contributor of NO x emissions. Both the baseline scenario and policy scenario are constructed based on projected energy growth and policy designs. Under the baseline scenario, SO2, NO x , and PM2.5 emissions will almost double in 2030 without proper emissions control policies. The suggested policies are categorized into end-of-pipe control in power plants (ECP), end-of-pipe control in industrial processes (ECI), fuel improvement (FI), energy efficiency improvement (EEI), substitution-pattern development (SPD), and energy saving options (ESO). With the implementation of all these policies, SO2, NO x , and PM2.5 emissions are projected to drop to (303.1, 585.4, and 102.4) kt, respectively, in 2030. This inventory and simulated results will provide deeper insights for policy makers to understand the present situation and the evolution of key emissions in Guangdong Province.

  1. Emissions of air pollutants from household stoves: honeycomb coal versus coal cake.

    PubMed

    Ge, Su; Xu, Xu; Chow, Judith C; Watson, John; Sheng, Qing; Liu, Weili; Bai, Zhipeng; Zhu, Tan; Zhang, Junfeng

    2004-09-01

    Domestic coal combustion can emit various air pollutants. In the present study, we measured emissions of particulate matter (PM) and gaseous pollutants from burning a specially formulated honeycomb coal (H-coal) and a coal cake (C-coal). Flue gas samples for PM2.5, PM coarse (PM2.5-10), and TSP were collected isokinetically using a cascade impactor; PM mass concentrations were determined gravimetrically. Concentrations of SO2, NOx, and ionic Cr(VI) in PM were analyzed using spectrometric methods. Fluoride concentrations were measured using a specific ion electrode method. PM elemental components were analyzed using an X-ray fluorescence technique. Total (gas and particle phase) benzo[a]pyrene (BaP) concentration was determined using an HPLC/fluorescence method. Elemental and organic carbon contents of PM were analyzed using a thermal/optical reflectance technique. The compositional and structural differences between the H-coal and C-coal resulted in different emission characteristics. In generating 1 MJ of delivered energy, the H-coal resulted in a significant reduction in emissions of SO2 (by 68%), NOx (by 47%), and TSP (by 56%) as compared to the C-coal, whereas the emissions of PM2.5 and total BaP from the H-coal combustion were 2-3-fold higher, indicating that improvements are needed to further reduce emissions of these pollutants in developing future honeycomb coals. Although the H-coal and the C-coal had similar emission factors for gas-phase fluoride, the H-coal had a particle-phase fluoride emission factor that was only half that of the C-coal. The H-coal had lower energy-based emissions of all the measured toxic elements in TSP but higher emissions of Cd and Ni in PM2.5.

  2. Transport and Environment Database System (TRENDS): Maritime air pollutant emission modelling

    NASA Astrophysics Data System (ADS)

    Georgakaki, Aliki; Coffey, Robert A.; Lock, Graham; Sorenson, Spencer C.

    This paper reports the development of the maritime module within the framework of the Transport and Environment Database System (TRENDS) project. A detailed database has been constructed for the calculation of energy consumption and air pollutant emissions. Based on an in-house database of commercial vessels kept at the Technical University of Denmark, relationships between the fuel consumption and size of different vessels have been developed, taking into account the fleet's age and service speed. The technical assumptions and factors incorporated in the database are presented, including changes from findings reported in Methodologies for Estimating air pollutant Emissions from Transport (MEET). The database operates on statistical data provided by Eurostat, which describe vessel and freight movements from and towards EU 15 major ports. Data are at port to Maritime Coastal Area (MCA) level, so a bottom-up approach is used. A port to MCA distance database has also been constructed for the purpose of the study. This was the first attempt to use Eurostat maritime statistics for emission modelling; and the problems encountered, since the statistical data collection was not undertaken with a view to this purpose, are mentioned. Examples of the results obtained by the database are presented. These include detailed air pollutant emission calculations for bulk carriers entering the port of Helsinki, as an example of the database operation, and aggregate results for different types of movements for France. Overall estimates of SO x and NO x emission caused by shipping traffic between the EU 15 countries are in the area of 1 and 1.5 million tonnes, respectively.

  3. EMISSION OF ORGANIC HAZARDOUS AIR POLLUTANTS FROM THE COMBUSION OF PULVERIZED COAL IN A SMALL-SCALE COMBUSTOR

    EPA Science Inventory

    The emissions of hazardous air pollutants (HAPs) from the combustion of pulverized coal have become an important issue in light of the requirements of Title I11 of the 1990 Clean Air Act Amendments, which impose emission limits on 189 compounds and compound classes. Although pre...

  4. Emission inventory of primary air pollutants in 2010 from industrial processes in Turkey.

    PubMed

    Alyuz, Ummugulsum; Alp, Kadir

    2014-08-01

    The broad objective of this study was to develop CO2, PM, SOx, CO, NOx, VOC, NH3 and N2O emission inventory of organic and inorganic chemicals, mineral products, metallurgical, petroleum refining, wood products, food industries of Turkey for 2010 for both co]ntrolled and uncontrolled conditions. In this study, industries were investigated in 7 main categories and 53 sub-sectors and a representative number of pollutants per sub-sector were considered. Each industry was evaluated in terms of emitted emissions only from industrial processes, and fuel combustion activities were excluded (except cement industry). The study employed an approach designed in four stages; identification of key categories; activity data & emission factor search; emission factor analyzing; calculation of emissions. Emission factor analyzing required aggregate and firm analysis of sectors and sub-sectors and deeper insights into underlying specific production methods used in the industry to decide on the most representative emission factor. Industry specific abatement technologies were considered by using open-source documents and industry specific reports. Regarding results of this study, mineral industry and iron & steel industry were determined as important contributors of industrial emissions in Turkey in 2010. Respectively, organic chemicals, petroleum refining, and pulp & paper industries had serious contributions to Turkey's air pollutant emission inventory from industrial processes. The results showed that calculated CO2 emissions for year 2010 was 55,124,263 t, also other emissions were 48,853 t PM, 24,533 t SOx, 79,943 t NOx, 31,908 t VOC, 454 t NH3 and 2264 t N2O under controlled conditions.

  5. Emission inventory of primary air pollutants in 2010 from industrial processes in Turkey.

    PubMed

    Alyuz, Ummugulsum; Alp, Kadir

    2014-08-01

    The broad objective of this study was to develop CO2, PM, SOx, CO, NOx, VOC, NH3 and N2O emission inventory of organic and inorganic chemicals, mineral products, metallurgical, petroleum refining, wood products, food industries of Turkey for 2010 for both co]ntrolled and uncontrolled conditions. In this study, industries were investigated in 7 main categories and 53 sub-sectors and a representative number of pollutants per sub-sector were considered. Each industry was evaluated in terms of emitted emissions only from industrial processes, and fuel combustion activities were excluded (except cement industry). The study employed an approach designed in four stages; identification of key categories; activity data & emission factor search; emission factor analyzing; calculation of emissions. Emission factor analyzing required aggregate and firm analysis of sectors and sub-sectors and deeper insights into underlying specific production methods used in the industry to decide on the most representative emission factor. Industry specific abatement technologies were considered by using open-source documents and industry specific reports. Regarding results of this study, mineral industry and iron & steel industry were determined as important contributors of industrial emissions in Turkey in 2010. Respectively, organic chemicals, petroleum refining, and pulp & paper industries had serious contributions to Turkey's air pollutant emission inventory from industrial processes. The results showed that calculated CO2 emissions for year 2010 was 55,124,263 t, also other emissions were 48,853 t PM, 24,533 t SOx, 79,943 t NOx, 31,908 t VOC, 454 t NH3 and 2264 t N2O under controlled conditions. PMID:24576652

  6. Characteristics of emissions of air pollutants from burning of incense in temples, Hong Kong.

    PubMed

    Wang, B; Lee, S C; Ho, K F; Kang, Y M

    2007-05-01

    Field investigations of target air pollutants at two of the most famous temples in Hong Kong were conducted. The air pollution problems in these two temples during peak and non-peak periods were characterized. The target air pollutants included particulate matters (PM(10), PM(2.5)), volatile organic compounds (VOCs), carbonyl compounds, carbon monoxide (CO), nitrogen oxides (NO(x)), methane (CH(4)), non-methane hydrocarbons (NMHC), organic carbon (OC), elemental carbon (EC), and inorganic ions (Cl(-), NO(3)(-), SO(4)(2-), Na(+), NH(4)(+), and K(+)). The pollutant levels of the two temples during peak period were shown to be significantly higher than those during non-peak period. The highest average CO level was obtained at Temple 1 during peak period, which exceeded IAQO 8-h Good Class criteria. In general, the average PM(2.5)/PM(10) ratios were approximately 82%. The results revealed that the fine particulates (PM(2.5)) constituted the majority of suspended particulates at both temples. It was noted that formaldehyde was the most abundant carbonyl compounds, followed by acetaldehyde. At Temple 1 during peak period, the average benzene concentration exceeded almost 8 times more than Indoor Air Quality Objectives for Office Buildings and Public Places (IAQO) [HKEPD, 2003. Guidance notes for the management of indoor air quality in offices and public places. Indoor air quality management group, The Government of the Hong Kong Special Administrative Region.] Good Class criteria. The average OC/EC ratios ranged from 2.6 to 17 in PM(10) and from 4.2 to 18 in PM(2.5) at two temples, which suggested that OC measured in these two temple areas may be due to both direct emission from incense burning and secondary formation by chemical reactions. The total mass of inorganic ions, organic carbon, and elemental carbon accounted for about 71% in PM(2.5) and 72% in PM(10).

  7. Speed-dependent emission of air pollutants from gasoline-powered passenger cars.

    PubMed

    Jung, Sungwoon; Lee, Meehye; Kim, Jongchoon; Lyu, Youngsook; Park, Junhong

    2011-01-01

    In Korea emissions from motor vehicles are a major source of air pollution in metropolitan cities, and in Seoul a large proportion of the vehicle fleet is made up of gasoline-powered passenger cars. The carbon monoxide (CO), hydrocarbons (HC), oxides of nitrogen (NOx) and carbon dioxide (CO2) contained in the exhaust emissions from 76 gasoline-powered passenger cars equipped with three-way catalysts has been assessed by vehicle speed, vehicle mileage and model year. The results show that CO, HC, NOx and CO2 emissions remained almost unchanged at higher speeds but decreased rapidly at lower speeds. While a reduction in CO, HC and NOx emissions was noticeable in vehicles of recent manufacture and lower mileage, CO2 emissions were found to be insensitive to vehicle mileage, but strongly dependent on gross vehicle weight. Lower emissions from more recent gasoline-powered vehicles arose mainly from improvements in three-way catalytic converter technology following strengthened emission regulations. The correlation between CO2 emission and fuel consumption has been investigated with a view to establishing national CO2 emission standards for Korea.

  8. Speed-dependent emission of air pollutants from gasoline-powered passenger cars.

    PubMed

    Jung, Sungwoon; Lee, Meehye; Kim, Jongchoon; Lyu, Youngsook; Park, Junhong

    2011-01-01

    In Korea emissions from motor vehicles are a major source of air pollution in metropolitan cities, and in Seoul a large proportion of the vehicle fleet is made up of gasoline-powered passenger cars. The carbon monoxide (CO), hydrocarbons (HC), oxides of nitrogen (NOx) and carbon dioxide (CO2) contained in the exhaust emissions from 76 gasoline-powered passenger cars equipped with three-way catalysts has been assessed by vehicle speed, vehicle mileage and model year. The results show that CO, HC, NOx and CO2 emissions remained almost unchanged at higher speeds but decreased rapidly at lower speeds. While a reduction in CO, HC and NOx emissions was noticeable in vehicles of recent manufacture and lower mileage, CO2 emissions were found to be insensitive to vehicle mileage, but strongly dependent on gross vehicle weight. Lower emissions from more recent gasoline-powered vehicles arose mainly from improvements in three-way catalytic converter technology following strengthened emission regulations. The correlation between CO2 emission and fuel consumption has been investigated with a view to establishing national CO2 emission standards for Korea. PMID:21970159

  9. Assessment of air pollutant emissions from the Akrotiri landfill site (Chania, Greece).

    PubMed

    Chalvatzaki, E; Lazaridis, M

    2010-09-01

    Air pollutants emitted from landfills affect air quality, contribute to the greenhouse effect and may cause serious problems to human health under certain circumstances. The current study was focused on the determination of air emissions from the Akrotiri landfill site which is located in the Akrotiri area (Chania, Greece). The landfill consists of two phases, phase A (first phase) which is currently closed (operational between 2003 and 2007) and phase B (second phase, operation between 2007 and (foreseen) 2013). Three different emission models (the EPA LandGEM model, the triangular model and the stoichiometric model) were used for the quantification of emissions. The LandGEM 3.02 software was further adopted and used in conjunction with the long-term dispersion model ISC3-LT for the evaluation of the dispersion of gaseous chemical components from the landfill. The emission and meteorological conditions under which the models were applied were based on the worst-case emission scenario. Furthermore, the concentration of hydrogen sulfide, vinyl chloride and benzene were determined in and around the landfill site. The concentrations of hydrogen sulfide and benzene were calculated to be far below the limit value proposed by the World Health Organization (WHO) for human health safety. However, the vinyl chloride concentrations were above the WHO reference lifetime exposure health criteria for the phase B area.

  10. Evaluating near highway air pollutant levels and estimating emission factors: Case study of Tehran, Iran.

    PubMed

    Nayeb Yazdi, Mohammad; Delavarrafiee, Maryam; Arhami, Mohammad

    2015-12-15

    A field sampling campaign was implemented to evaluate the variation in air pollutants levels near a highway in Tehran, Iran (Hemmat highway). The field measurements were used to estimate road link-based emission factors for average vehicle fleet. These factors were compared with results of an in tunnel measurement campaign (in Resalat tunnel). Roadside and in-tunnel measurements of carbon monoxide (CO) and size-fractionated particulate matter (PM) were conducted during the field campaign. The concentration gradient diagrams showed exponential decay, which represented a substantial decay, more than 50-80%, in air pollutants level in a distance between 100 and 150meters (m) of the highway. The changes in particle size distribution by distancing from highway were also captured and evaluated. The results showed particle size distribution shifted to larger size particles by distancing from highway. The empirical emission factors were obtained by using the roadside and in tunnel measurements with a hypothetical box model, floating machine model, CALINE4, CT-EMFAC or COPERT. Average CO emission factors were estimated to be in a range of 4 to 12g/km, and those of PM10 were 0.1 to 0.2g/km, depending on traffic conditions. Variations of these emission factors under real working condition with speeds were determined.

  11. Evaluation of national emissions inventories of anthropogenic air pollutants for Brunei Darussalam

    NASA Astrophysics Data System (ADS)

    Dotse, Sam-Quarcoo; Dagar, Lalit; Petra, Mohammad Iskandar; De Silva, Liyanage C.

    2016-05-01

    Haze and other air pollution related problems are getting more significant in Brunei Darussalam but till date there is absence of comprehensive national emission inventory for Brunei Darussalam. Although there are few regional and global inventories available for Brunei Darussalam, large variations in the emission estimates exist in these datasets. Therefore, there is an important need for an updated inventory, based on data available from government and other sources. This study presents a sector-wise anthropogenic emission estimates and trends (2001-2012) for the pollutants CO2, CH4, N2O, NOX, NMVOC, CO, SOX, and PM10. The results suggest no significant contributions from residential sector (<1%) whilst road transport is the main contributor for most of the pollutants. CO2 is largely emitted by power plants (∼72% in 2001 and∼ 62% in 2012) and the main source of CH4 is Solid waste disposal and wastewater handling (∼92%). There were also significant contributions from industrial processes and solvent use to NMVOC and PM10 emissions (∼74% and ∼45% respectively).

  12. Compilation and application of Japanese inventories for energy consumption and air pollutant emissions using input-output tables.

    PubMed

    Nansai, Keisuke; Moriguchi, Yuichi; Tohno, Susumu

    2003-05-01

    Preparing emission inventories is essential to the assessment and management of our environment. In this study, Japanese air pollutant emissions, energy consumption, and CO2 emissions categorized by approximately 400 sectors (as classified by Japanese input-output tables in 1995) were estimated, and the contributions of each sector to the total amounts were analyzed. The air pollutants examined were nitrogen oxides (NOx), sulfur oxides (SOx), and suspended particulate matter (SPM). Consumptions of about 20 fossil fuels and five other fuels were estimated according to sector. Air pollutant emission factors for stationary sources were calculated from the results of a survey on air pollution prevention in Japan. Pollutant emissions from mobile sources were estimated taking into consideration vehicle types, traveling speeds, and distances. This work also counted energy supply and emissions from seven nonfossil fuel sources, including nonthermal electric power, and CO2 emissions from limestone (for example, during cement production). The total energy consumption in 1995 was concluded to be 18.3 EJ, and the annual total emissions of CO2, NOx, SOx, and SPM were, respectively, 343 Mt-C, 3.51 Mt, 1.87 Mt, and 0.32 Mt. An input-output analysis of the emission inventories was used to calculate the amounts of energy consumption and emissions induced in each sector by the economic final demand. PMID:12775078

  13. Air quality in postunification Erfurt, East Germany: associating changes in pollutant concentrations with changes in emissions.

    PubMed Central

    Ebelt, S; Brauer, M; Cyrys, J; Tuch, T; Kreyling, W G; Wichmann, H E; Heinrich, J

    2001-01-01

    The unification of East and West Germany in 1990 resulted in sharp decreases in emissions of major air pollutants. This change in air quality has provided an opportunity for a natural experiment to evaluate the health impacts of air pollution. We evaluated airborne particle size distribution and gaseous co-pollutant data collected in Erfurt, Germany, throughout the 1990s and assessed the extent to which the observed changes are associated with changes in the two major emission sources: coal burning for power production and residential heating, and motor vehicles. Continuous data for sulfur dioxide, total suspended particulates (TSP), nitric oxide, carbon monoxide, and meteorologic parameters were available for 1990-1999, and size-selective particle number and mass concentration measurements were made during winters of 1991 and 1998. We used hourly profiles of pollutants and linear regression analyses, stratified by year, weekday/weekend, and hour, using NO and SO(2) as markers of traffic- and heating-related combustion sources, respectively, to study the patterns of various particle size fractions. Supplementary data on traffic and heating-related sources were gathered to support hypotheses linking these sources with observed changes in ambient air pollution levels. Substantially decreased (19-91%) concentrations were observed for all pollutants, with the exception of particles in the 0.01-0.03 microm size range (representing the smallest ultrafine particles that were measured). The number concentration for these particles increased by 115% between 1991 and 1998. The ratio of these ultrafine particles to TSP also increased by more than 500%, indicating a dramatic change in the size distribution of airborne particles. Analysis of hourly concentration patterns indicated that in 1991, concentrations of SO(2) and larger particle sizes were related to residential heating with coal. These peaks were no longer evident in 1998 due to decreases in coal consumption and

  14. Air Pollution.

    ERIC Educational Resources Information Center

    Barker, K.; And Others

    Pollution of the general environment, which exposes an entire population group for an indeterminate period of time, certainly constitutes a problem in public health. Serious aid pollution episodes have resulted in increased mortality and a possible relationship between chronic exposure to a polluted atmosphere and certain diseases has been…

  15. Air emission from the co-combustion of alternative derived fuels within cement plants: Gaseous pollutants.

    PubMed

    Richards, Glen; Agranovski, Igor E

    2015-02-01

    Cement manufacturing is a resource- and energy-intensive industry, utilizing 9% of global industrial energy use while releasing more than 5% of global carbon dioxide (CO₂) emissions. With an increasing demand of production set to double by 2050, so too will be its carbon footprint. However, Australian cement plants have great potential for energy savings and emission reductions through the substitution of combustion fuels with a proportion of alternative derived fuels (ADFs), namely, fuels derived from wastes. This paper presents the environmental emissions monitoring of 10 cement batching plants while under baseline and ADF operating conditions, and an assessment of parameters influencing combustion. The experiential runs included the varied substitution rates of seven waste streams and the monitoring of seven target pollutants. The co-combustion tests of waste oil, wood chips, wood chips and plastic, waste solvents, and shredded tires were shown to have the minimal influence when compared to baseline runs, or had significantly reduced the unit mass emission factor of pollutants. With an increasing ADF% substitution, monitoring identified there to be no subsequent emission effects and that key process parameters contributing to contaminant suppression include (1) precalciner and kiln fuel firing rate and residence time; (2) preheater and precalciner gas and material temperature; (3) rotary kiln flame temperature; (4) fuel-air ratio and percentage of excess oxygen; and (5) the rate of meal feed and rate of clinker produced. PMID:25947054

  16. Air emission from the co-combustion of alternative derived fuels within cement plants: Gaseous pollutants.

    PubMed

    Richards, Glen; Agranovski, Igor E

    2015-02-01

    Cement manufacturing is a resource- and energy-intensive industry, utilizing 9% of global industrial energy use while releasing more than 5% of global carbon dioxide (CO₂) emissions. With an increasing demand of production set to double by 2050, so too will be its carbon footprint. However, Australian cement plants have great potential for energy savings and emission reductions through the substitution of combustion fuels with a proportion of alternative derived fuels (ADFs), namely, fuels derived from wastes. This paper presents the environmental emissions monitoring of 10 cement batching plants while under baseline and ADF operating conditions, and an assessment of parameters influencing combustion. The experiential runs included the varied substitution rates of seven waste streams and the monitoring of seven target pollutants. The co-combustion tests of waste oil, wood chips, wood chips and plastic, waste solvents, and shredded tires were shown to have the minimal influence when compared to baseline runs, or had significantly reduced the unit mass emission factor of pollutants. With an increasing ADF% substitution, monitoring identified there to be no subsequent emission effects and that key process parameters contributing to contaminant suppression include (1) precalciner and kiln fuel firing rate and residence time; (2) preheater and precalciner gas and material temperature; (3) rotary kiln flame temperature; (4) fuel-air ratio and percentage of excess oxygen; and (5) the rate of meal feed and rate of clinker produced.

  17. Air Pollution Control, Part I.

    ERIC Educational Resources Information Center

    Strauss, Werner, Ed.

    Authoritative reviews in seven areas of current importance in air pollution control are supplied in this volume, the first of a two-part set. Titles contained in this book are: "Dispersion of Pollutants Emitted into the Atmosphere,""The Formation and Control of Oxides of Nitrogen in Air Pollution,""The Control of Sulfur Emissions from Combustion…

  18. Interactions of fire emissions and urban pollution over California: Ozone formation and air quality simulations

    NASA Astrophysics Data System (ADS)

    Singh, H. B.; Cai, C.; Kaduwela, A.; Weinheimer, A.; Wisthaler, A.

    2012-09-01

    An instrumented DC-8 aircraft was employed to perform airborne observations in rural and urban environs of California during the summer 2008 NASA ARCTAS-CARB campaign. The fortuitous occurrence of large wildfire episodes in Northern California allowed for studies of fire emissions, their composition, and their interactions with rural and urban air. Relative to CO, emissions of HCN were shown to vary non-linearly with fire characteristics while those of CH3CN were nearly unchanged, making the latter a superior quantitative tracer of biomass combustion. Although some fire plumes over California contained little NOx and virtually no O3 enhancement, others contained ample VOCs and sufficient NOx, largely from urban influences, to result in significant ozone formation. The highest observed O3 mixing ratios (170 ppb) were also in fire-influenced urban air masses. Attempts to simulate these interactions using CMAQ, a high-resolution state of the art air quality model, were only minimally successful and indicated several shortcomings in simulating fire emission influences on urban smog formation. A variety of secondary oxidation products (e.g. O3, PAN, HCHO) were substantially underestimated in fire-influenced air masses. Available data involving fire plumes and anthropogenic pollution interactions are presently quite sparse and additional observational and mechanistic studies are needed.

  19. Climate change and pollutant emissions impacts on air quality in 2050 over Portugal

    NASA Astrophysics Data System (ADS)

    Sá, E.; Martins, H.; Ferreira, J.; Marta-Almeida, M.; Rocha, A.; Carvalho, A.; Freitas, S.; Borrego, C.

    2016-04-01

    Changes in climate and air pollutant emissions will affect future air quality from global to urban scale. In this study, regional air quality simulations for historical and future periods are conducted, with CAMx version 6.0, to investigate the impacts of future climate and anthropogenic emission projections on air quality over Portugal and the Porto metropolitan area in 2050. The climate and the emission projections were derived from the Representative Concentrations Pathways (RCP8.5) scenario. Modelling results show that climate change will impact NO2, PM10 and O3 concentrations over Portugal. The NO2 and PM10 annual means will increase in Portugal and in the Porto municipality, and the maximum 8-hr daily O3 value will increase in the Porto suburban areas (approximately 5%) and decrease in the urban area (approximately 2%). When considering climate change and projected anthropogenic emissions, the NO2 annual mean decreases (approximately 50%); PM10 annual mean will increase in Portugal and decrease in Porto municipality (approximately 13%); however PM10 and O3 levels increase and extremes occur more often, surpassing the currently legislated annual limits and displaying a higher frequency of daily exceedances. This air quality degradation is likely to be related with the trends found for the 2046-2065 climate, which implies warmer and dryer conditions, and with the increase of background concentrations of ozone and particulate matter. The results demonstrate the need for Portuguese authorities and policy-makers to design and implement air quality management strategies that take climate change impacts into account.

  20. Emission inventory of anthropogenic air pollutants and VOC species in the Yangtze River Delta region, China

    NASA Astrophysics Data System (ADS)

    Huang, C.; Chen, C. H.; Li, L.; Cheng, Z.; Wang, H. L.; Huang, H. Y.; Streets, D. G.; Wang, Y. J.; Zhang, G. F.; Chen, Y. R.

    2011-05-01

    The purpose of this study is to develop an emission inventory for major anthropogenic air pollutants and VOC species in the Yangtze River Delta (YRD) region for the year 2007. A "bottom-up" methodology was adopted to compile the inventory based on major emission sources in the sixteen cities of this region. Results show that the emissions of SO2, NOx, CO, PM10, PM2.5, VOCs, and NH3 in the YRD region for the year 2007 are 2392 kt, 2293 kt, 6697 kt, 3116 kt, 1511 kt, 2767 kt, and 459 kt, respectively. Ethylene, mp-xylene, o-xylene, toluene, 1,2,4-trimethylbenzene, 2,4-dimethylpentane, ethyl benzene, propylene, 1-pentene, and isoprene are the key species contributing 77 % to the total ozone formation potential (OFP). The spatial distribution of the emissions shows the emissions and OFPs are mainly concentrated in the urban and industrial areas along the Yangtze River and around Hangzhou Bay. The industrial sources, including power plants other fuel combustion facilities, and non-combustion processes contribute about 97 %, 86 %, 89 %, 91 %, and 69 % of the total SO2, NOx, PM10, PM2.5, and VOC emissions. Vehicles take up 12.3 % and 12.4 % of the NOx and VOC emissions, respectively. Regarding OFPs, the chemical industry, domestic use of paint & printing, and gasoline vehicles contribute 38 %, 24 %, and 12 % to the ozone formation in the YRD region.

  1. Effects of ethanol-blended gasoline on air pollutant emissions from motorcycle.

    PubMed

    Yao, Yung-Chen; Tsai, Jiun-Horng; Chiang, Hung-Lung

    2009-09-15

    The effect of ethanol-gasoline blends on criteria air pollutant emissions was investigated in a four-stroke motorcycle. The ethanol was blended with unleaded gasoline in four percentages (3, 10, 15, and 20% v/v) and controlled at a constant research octane number, RON (95), to accurately represent commercial gasoline. CO, THC, and NOx emissions were evaluated using the Economic Commission for Europe cycle on the chassis dynamometers. The results of the ethanol-gasoline blends were compared to those of commercial unleaded gasoline with methyl tert-butyl ether as the oxygenated additive. In general, the exhaust CO and NOx emissions decreased with increasing oxygen content in fuels. In contrast, ethanol added in the gasoline did not reduce the THC emissions for a constant RON gasoline. The 15% ethanol blend had the highest emission reductions relative to the reference fuel. The high ethanol-gasoline blend ratio (20%) resulted in a less emission reduction than those of low ratio blends (<15%). This may be attributed to the changes in the combustion conditions in the carburetor engine with 20% ethanol addition. Furthermore, the influence of ethanol-gasoline blends on the reduction of exhaust emissions was observed at different driving modes, especially at 15km/h cruising speed for CO and THC and acceleration stages for NOx. PMID:19595441

  2. Effects of ethanol-blended gasoline on air pollutant emissions from motorcycle.

    PubMed

    Yao, Yung-Chen; Tsai, Jiun-Horng; Chiang, Hung-Lung

    2009-09-15

    The effect of ethanol-gasoline blends on criteria air pollutant emissions was investigated in a four-stroke motorcycle. The ethanol was blended with unleaded gasoline in four percentages (3, 10, 15, and 20% v/v) and controlled at a constant research octane number, RON (95), to accurately represent commercial gasoline. CO, THC, and NOx emissions were evaluated using the Economic Commission for Europe cycle on the chassis dynamometers. The results of the ethanol-gasoline blends were compared to those of commercial unleaded gasoline with methyl tert-butyl ether as the oxygenated additive. In general, the exhaust CO and NOx emissions decreased with increasing oxygen content in fuels. In contrast, ethanol added in the gasoline did not reduce the THC emissions for a constant RON gasoline. The 15% ethanol blend had the highest emission reductions relative to the reference fuel. The high ethanol-gasoline blend ratio (20%) resulted in a less emission reduction than those of low ratio blends (<15%). This may be attributed to the changes in the combustion conditions in the carburetor engine with 20% ethanol addition. Furthermore, the influence of ethanol-gasoline blends on the reduction of exhaust emissions was observed at different driving modes, especially at 15km/h cruising speed for CO and THC and acceleration stages for NOx.

  3. An investigation of air emission levels from distinct iron and steel production processes with the adoption of pollution control and pollution prevention alternatives

    SciTech Connect

    Costa, M.M.; Schaeffer, R.

    1999-07-01

    This paper aims to investigate environmental aspects from different iron and steel production processes. A methodology based on material flows is developed in order to verify some air emission levels attained by Pollution Control and Pollution Prevention alternatives. The data basis for modeling energy and materials flows in iron and steel production is obtained from a literature review on different technological processes, energy and materials consumption and pollutant releases to the environmental Modeling combines both process analysis and input-output techniques to simulate the different iron and steel production routes and to estimate the resulting total atmospheric pollution releases based on air emission factors for several pollutants by each production step. Processes examined include: (1) Conventional Integrated (100% ore-based and partly scrap-based); (2) Mini-mill with EAF (100% scrap-based and partly DRI-based); and (3) New Integrated based on the COREX smelting reduction process. Among the alternatives considered for air emissions reductions are those related to Pollution Control (mainly gas cleaning systems) and to Pollution Prevention (change/reduction in input materials, operational procedures and housekeeping improvements, on-site recycling and technology innovations and modifications). Results indicate higher air pollution intensity for the Conventional Integrated Route over the Mini-mill with EAF and COREX smelting reduction processes, though pointing out that final figures are strongly affected by the systems' boundaries and the different air emission levels of each production step.

  4. Emission trends and mitigation options for air pollutants in East Asia

    NASA Astrophysics Data System (ADS)

    Wang, S. X.; Zhao, B.; Cai, S. Y.; Klimont, Z.; Nielsen, C. P.; Morikawa, T.; Woo, J. H.; Kim, Y.; Fu, X.; Xu, J. Y.; Hao, J. M.; He, K. B.

    2014-07-01

    Emissions of air pollutants in East Asia play an important role in the regional and global atmospheric environment. In this study we evaluated the recent emission trends of sulfur dioxide (SO2), nitrogen oxides (NOx), particulate matter (PM), and non-methane volatile organic compounds (NMVOC) in East Asia, and projected their future emissions up until 2030 with six emission scenarios. The results will provide future emission projections for the modeling community of the model inter-comparison program for Asia (MICS-Asia). During 2005-2010, the emissions of SO2 and PM2.5 in East Asia decreased by 15 and 12%, respectively, mainly attributable to the large-scale deployment of flue gas desulfurization (FGD) at China's power plants, and the promotion of highly efficient PM removal technologies in China's power plants and cement industry. During this period, the emissions of NOx and NMVOC increased by 25 and 15%, driven by rapid increase in the emissions from China due to inadequate control strategies. In contrast, the NOx and NMVOC emissions in East Asia except China decreased by 13-17%, mainly due to the implementation of stringent vehicle emission standards in Japan and South Korea. Under current regulations and current levels of implementation, NOx, SO2, and NMVOC emissions in East Asia are projected to increase by about one-quarter over 2010 levels by 2030, while PM2.5 emissions are expected to decrease by 7%. Assuming enforcement of new energy-saving policies, emissions of NOx, SO2, PM2.5 and NMVOC in East Asia are expected to decrease by 28, 36, 28, and 15%, respectively, compared with the baseline case. The implementation of "progressive" end-of-pipe control measures would lead to another one-third reduction of the baseline emissions of NOx, and about one-quarter reduction of SO2, PM2.5, and NMVOC. Assuming the full application of technically feasible energy-saving policies and end-of-pipe control technologies, the emissions of NOx, SO2, and PM2.5 in East Asia

  5. Hazardous air pollutant (HAP) emission characterization of sewage treatment facilities in Korea.

    PubMed

    Kang, Kyoung-Hee; Dong, Jong-In

    2010-04-01

    Until recently, nearly all sewage treatment-related regulations and researches have focused on the removal of the conventional and toxic pollutants from liquid effluents. The discharge of toxic compounds to the atmosphere has been implicitly regarded as a way of removal or destruction. During sewage treatment, the fate mechanism of volatilization/stripping, sorption and biotransformation primarily determines the fate of volatile HAPs. The objectives of this study are to investigate the emission characteristics of HAPs, which are generated from the liquid surface of sewage treatment facilities, by using an emission isolation flux chamber. HAP emissions increased at the inlet of the aerobic chamber during summer due to the relatively high atmospheric temperature. The percent ratio of flux for toluene reached its peak in winter, accounting for 33.6-34.2% of the total, but decreased to 25.1-28.6% in summer. In autumn, trichloroethene (TCE) was the highest, recording 17.6-18.1%, with chloroform and toluene showing similar levels. It seems that the ratio of chlorinated hydrocarbons increases in both summer and autumn because the chamber temperature during that time is higher than winter. This study is the initial study to investigate the emission characteristics of volatile HAPs emitted from domestic sewage treatment facilities to the air in Korea. Therefore, the isolation flux chamber will be used as an emission estimations tool to measure HAPs from sewage treatment facilities and may be applied to develop the emission factor and national source inventory of HAPs. PMID:20383371

  6. Improving the accuracy of vehicle emissions profiles for urban transportation greenhouse gas and air pollution inventories.

    PubMed

    Reyna, Janet L; Chester, Mikhail V; Ahn, Soyoung; Fraser, Andrew M

    2015-01-01

    Metropolitan greenhouse gas and air emissions inventories can better account for the variability in vehicle movement, fleet composition, and infrastructure that exists within and between regions, to develop more accurate information for environmental goals. With emerging access to high quality data, new methods are needed for informing transportation emissions assessment practitioners of the relevant vehicle and infrastructure characteristics that should be prioritized in modeling to improve the accuracy of inventories. The sensitivity of light and heavy-duty vehicle greenhouse gas (GHG) and conventional air pollutant (CAP) emissions to speed, weight, age, and roadway gradient are examined with second-by-second velocity profiles on freeway and arterial roads under free-flow and congestion scenarios. By creating upper and lower bounds for each factor, the potential variability which could exist in transportation emissions assessments is estimated. When comparing the effects of changes in these characteristics across U.S. cities against average characteristics of the U.S. fleet and infrastructure, significant variability in emissions is found to exist. GHGs from light-duty vehicles could vary by -2%-11% and CAP by -47%-228% when compared to the baseline. For heavy-duty vehicles, the variability is -21%-55% and -32%-174%, respectively. The results show that cities should more aggressively pursue the integration of emerging big data into regional transportation emissions modeling, and the integration of these data is likely to impact GHG and CAP inventories and how aggressively policies should be implemented to meet reductions. A web-tool is developed to aide cities in improving emissions uncertainty. PMID:25438089

  7. Improving the accuracy of vehicle emissions profiles for urban transportation greenhouse gas and air pollution inventories.

    PubMed

    Reyna, Janet L; Chester, Mikhail V; Ahn, Soyoung; Fraser, Andrew M

    2015-01-01

    Metropolitan greenhouse gas and air emissions inventories can better account for the variability in vehicle movement, fleet composition, and infrastructure that exists within and between regions, to develop more accurate information for environmental goals. With emerging access to high quality data, new methods are needed for informing transportation emissions assessment practitioners of the relevant vehicle and infrastructure characteristics that should be prioritized in modeling to improve the accuracy of inventories. The sensitivity of light and heavy-duty vehicle greenhouse gas (GHG) and conventional air pollutant (CAP) emissions to speed, weight, age, and roadway gradient are examined with second-by-second velocity profiles on freeway and arterial roads under free-flow and congestion scenarios. By creating upper and lower bounds for each factor, the potential variability which could exist in transportation emissions assessments is estimated. When comparing the effects of changes in these characteristics across U.S. cities against average characteristics of the U.S. fleet and infrastructure, significant variability in emissions is found to exist. GHGs from light-duty vehicles could vary by -2%-11% and CAP by -47%-228% when compared to the baseline. For heavy-duty vehicles, the variability is -21%-55% and -32%-174%, respectively. The results show that cities should more aggressively pursue the integration of emerging big data into regional transportation emissions modeling, and the integration of these data is likely to impact GHG and CAP inventories and how aggressively policies should be implemented to meet reductions. A web-tool is developed to aide cities in improving emissions uncertainty.

  8. Effects of Automobile Emissions on Air Pollution in the United States

    NASA Astrophysics Data System (ADS)

    Cohen, Ryan; Singh, Ramesh

    2016-07-01

    Currently, about more than 253,000,000 automobiles and trucks, some are new, old, gas and electric, ply on the roads in the United States of America. Around the world, human activities and energy demand are the main sources for the air pollution and ozone depletion, causing dense haze, fog and smog especially during winter season in the country like China and India and also observed in different parts of the world. In recent years, automakers have been pushed by new governmental regulations and global expectations to create more fuel-efficient vehicles that burn less fossil fuels and create fewer harmful emissions. Automakers are exploring alternative fuel options such as hydrogen, natural gas, hybrids, and completely electric vehicles. Since the Nissan Leaf's introduction in 2010, fully electric vehicles have become widely produced and just fewer than 400,000 fully electric cars have been sold in the United States. Taking the influx of more fuel-efficient and alternative energy vehicles in the market into account, we have analyzed satellite and ground observed atmospheric pollution and greenhouse gases during 2009-2014 in the United States of America. Our results show that the increasing population of hybrid and fuel efficient vehicles have cut down the atmospheric pollution and greenhouse emissions in US in general, whereas in California the pollution level has increased as a result frequency of fog and haze events are seen during winter season. We will present a comparison of atmospheric pollution over US and California State in view of the increasing hybrid and fuel efficient vehicles.

  9. Global emissions of trace gases, particulate matter, and hazardous air pollutants from open burning of domestic waste

    EPA Science Inventory

    The open burning of waste, whether at individual residences, businesses, or dump sites, is a large source of air pollutants. These emissions, however, are not included in many current emission inventories used in chemistry and climate modeling applications. This paper presents th...

  10. "The Incorporation of National Emission Inventories into Version 2 of the Hemispheric Transport of Air Pollutants Inventory"

    EPA Science Inventory

    EPA’s National Emission Inventory has been incorporated into the Emission Database for Global Atmospheric Research-Hemispheric Transport of Air Pollutants (EDGAR-HTAP) version 2. This work involves the creation of a detailed mapping of EPA Source Classification Codes (SCC) to the...

  11. Remote monitoring of air pollutant emissions from point sources by a mobile lidar/sodar system.

    PubMed

    Schröter, Marc; Obermeier, Andreas; Brüggemann, Dieter; Plechschmidt, Michael; Klemm, Otto

    2003-06-01

    This paper describes remote monitoring of air pollutant emissions by a mobile lidar (light detection and ranging)/ sodar (sound detection and ranging) system. First, measurements are carried out in the flue gas plume of a public power plant. The investigations focus mainly on quantifying SO2 emissions, but the uncertainties of such measurements are also emphasized. Furthermore, an example providing valuable data sets for the development and validation of plume dispersion models is outlined with measurements of the dilution of SO2 along the plume axis. Series of repeated determinations of SO2 emissions show a large variation in the obtained flux values, with moderate margins of error. Incomplete recording of the plume within the individual lidar scans, induced by strong looping movements of the flue gas plume, predominantly causes the variations of flux values. Therefore, the highest flux values determined are considered to be the most exact. This is verified by a comparison of measured fluxes with in situ measurements made by the plant operators. The results further indicate that lidar measurements illustrate the location and dimension of aerosol plumes better than the location and dimension of the plumes of gaseous compounds. The wind direction affecting the plume at any moment can be determined faster by lidar than by sodar because the latter requires much longer time intervals of signal averaging. Measurements show higher concentrations of SO2 compared with results from a Gaussian plume model for periods of less than 5 min after dispersion. The findings emphasize the suitability of remote sensing for detecting emissions and for investigating the propagation and dilution of air pollutant plumes.

  12. Assessment of China's virtual air pollution transport embodied in trade by a consumption-based emission inventory

    NASA Astrophysics Data System (ADS)

    Zhao, H. Y.; Zhang, Q.; Davis, S. J.; Guan, D.; Liu, Z.; Huo, H.; Lin, J. T.; Liu, W. D.; He, K. B.

    2014-10-01

    High anthropogenic emissions from China have resulted in serious air pollution, and it has attracted considerable academic and public concern. The physical transport of air pollutants in the atmosphere has been extensively investigated, however, understanding the mechanisms how the pollutants were transferred through economic and trade activities remains challenge. In this work, we assessed China's virtual air pollutant transport embodied in trade, by using consumption-based accounting approach. We first constructed a consumption-based emission inventory for China's four key air pollutants (primary PM2.5, sulfur dioxide (SO2), nitrogen oxides (NOx) and non-methane volatile organic compounds (NMVOC)) in 2007, based on the bottom-up sectoral emission inventory concerning their production activities - a production-based inventory. We used a multiregional input-output (MRIO) model to integrate the sectoral production-based emissions and the associated economic and trade activities, and finally obtained consumption-based inventory. Unlike the production-based inventory, the consumption-based inventory tracked emissions throughout the supply chain related to the consumption of goods and services and hereby identified the emission flows followed the supply chains. From consumption-based perspective, emissions were significantly redistributed among provinces due to interprovincial trade. Large amount of emissions were embodied in the net imports of east regions from northern and central regions; these were determined by differences in the regional economic status and environmental policies. We also calculated the emissions embodied in exported and imported goods and services. It is found that 15-23% of China's pollutant emissions were related to exports for foreign consumption; that proportion was much higher for central and export-oriented coastal regions. It is suggested that measures should be introduced to reduce air pollution by integrating cross-regional consumers

  13. Air pollution and associated human mortality: The role of air pollutant emissions, climate change and methane concentration increases during the industrial period

    NASA Astrophysics Data System (ADS)

    Fang, Y.; Naik, V.; Horowitz, L. W.; Mauzerall, D. L.

    2012-12-01

    Increases in surface ozone (O3) and fine particulate matter (≤ 2.5μm aerodynamic diameter, PM2.5) are associated with excess premature human mortalities. Here we estimate changes in surface O3 and PM2.5 since preindustrial (1860) times and the global present-day (2000) premature human mortalities associated with these changes. We go beyond previous work to analyze and differentiate the contribution of three factors: changes in emissions of short-lived air pollutants, climate change, and increased methane (CH4) concentrations, to air pollution levels and the associated premature mortalities. We use a coupled chemistry-climate model in conjunction with global population distributions in 2000 to estimate exposure attributable to concentration changes since 1860 from each factor. Attributable mortalities are estimated using health impact functions of long-term relative risk estimates for O3 and PM2.5 from the epidemiology literature. We find global mean surface PM2.5 and health-relevant O3 (defined as the maximum 6-month mean of 1-hour daily maximum O3 in a year) have increased by 8±0.16 μg/m3 and 30±0.16 ppbv, respectively, over this industrial period as a result of combined changes in emissions of air pollutants (EMIS), climate (CLIM) and CH4 concentrations (TCH4). EMIS, CLIM and TCH4 cause global average PM2.5 (O3) to change by +7.5±0.19 μg/m3 (+25±0.30 ppbv), +0.4±0.17 μg/m3 (+0.5±0.28 ppbv), and -0.02±0.01 μg/m3 (+4.3±0.33 ppbv), respectively. Total changes in PM2.5 are associated with 1.5 (95% confidence interval, CI, 1.0-2.5) million all-cause mortalities annually and in O3 are associated with 375 (95% CI, 129-592) thousand respiratory mortalities annually. Most air pollution mortality is driven by changes in emissions of short-lived air pollutants and their precursors (95% and 85% of mortalities from PM2.5 and O3 respectively). However, changing climate and increasing CH4 concentrations also increased premature mortality associated with air

  14. Air pollution and associated human mortality: the role of air pollutant emissions, climate change and methane concentration increases during the industrial period

    NASA Astrophysics Data System (ADS)

    Fang, Y.; Naik, V.; Horowitz, L. W.; Mauzerall, D. L.

    2012-09-01

    Increases in surface ozone (O3) and fine particulate matter (≤2.5 μm} aerodynamic diameter, PM2.5) are associated with excess premature human mortalities. Here we estimate changes in surface O3 and PM2.5 since preindustrial (1860) times and the global present-day (2000) premature human mortalities associated with these changes. We go beyond previous work to analyze and differentiate the contribution of three factors: changes in emissions of short-lived air pollutants, climate change, and increased methane (CH4) concentrations, to air pollution levels and the associated premature mortalities. We use a coupled chemistry-climate model in conjunction with global population distributions in 2000 to estimate exposure attributable to concentration changes since 1860 from each factor. Attributable mortalities are estimated using health impact functions of long-term relative risk estimates for O3 and PM2.5 from the epidemiology literature. We find global mean surface PM2.5 and health-relevant O3 (defined as the maximum 6-month mean of 1-h daily maximum O3 in a year) have increased by 8 ± 0.16 μg m-3 and 30 ± 0.16 ppbv, respectively, over this industrial period as a result of combined changes in emissions of air pollutants (EMIS), climate (CLIM) and CH4 concentrations (TCH4). EMIS, CLIM and TCH4 cause global average PM2.5(O3) to change by +7.5 ± 0.19 μg m-3 (+25 ± 0.30 ppbv), +0.4 ± 0.17 μg m-3 (+0.5 ± 0.28 ppbv), and -0.02 ± 0.01 μg m-3 (+4.3 ± 0.33 ppbv), respectively. Total changes in PM2.5 are associated with 1.5 (95% confidence interval, CI, 1.0-2.5) million all-cause mortalities annually and in O3 are associated with 375 (95% CI, 129-592) thousand respiratory mortalities annually. Most air pollution mortality is driven by changes in emissions of short-lived air pollutants and their precursors (95% and 85% of mortalities from PM2.5 and O3, respectively). However, changing climate and increasing CH4 concentrations also increased premature mortality

  15. Indoor Air Pollution

    MedlinePlus

    We usually think of air pollution as being outdoors, but the air in your house or office could also be polluted. Sources of indoor pollution include Mold and pollen Tobacco smoke Household products ...

  16. National emission standards for hazardous air pollutants--EPA. Final rule.

    PubMed

    1991-04-24

    Today EPA is staying the effectiveness of subpart I of 40 CFR part 61, the National Emission Standards for Hazardous Air Pollutants for Radionuclide Emissions (54 FR 51654, December 15, 1989) as applied to facilities licensed by the Nuclear Regulatory Commission or an Agreement State ("NRC-licensed facilities"), other than nuclear power reactors, until November 15, 1992. The purpose or this rule is to afford EPA the time required to make an initial determination pursuant to section 112(d)(9) of the 1990 Clean Air Amendments before subpart I becomes effective for such facilities. EPA intends to propose a rule pursuant to section 112(d)(9) to rescind subpart I for nuclear power reactors, and to take final action no later than June 30, 1991, concerning a separate proposal to stay the effectiveness of subpart I for nuclear power reactors during the pendency of the rulemaking on recission. This rule staying subpart I for NRC-licensed facilities other than nuclear power reactors, and the Agency's final action on its proposal to stay subpart I for nuclear power reactors, will completely supplant all stays previously entered for such facilities during the Agency's reconsideration of subpart I under Clean Air Act section 307(d)(7)(B).

  17. Decadal trends in fossil fuel energy consumption and related air pollutant emissions

    NASA Astrophysics Data System (ADS)

    Shekar Reddy, M.; Venkataraman, C.; Boucher, O.

    2003-04-01

    The economic liberalization in the early 1990s in India fuelled the industrial production, enabled the decadal annual average rate of 5.9% in the gross domestic product (GDP) during 1990-2000. This resulted in a steady increase of fossil fuels energy consumption throughout the decade. This paper investigates the trends in the GDP growth rate, sectoral fossil fuels consumption and resultant atmospheric air pollutant emissions during the above period. The fossil fuels energy consumption in the 1990 was 6875 PJ, and increased to 10801 PJ in 2000, with a decadal annual average growth rate of 5.7%. Share of the coal and petroleum fuels are 52% and 35%, respectively during 2000. The relative share contribution of power, industrial, transport, and domestic sectors are 40%, 48%, 5% and 7%, respectively. The contribution of various sectors to fossil fuels energy consumption, and the relative distribution of the different fuels within each sector will be discussed. The annual sulfur dioxide (SO_2) and aerosols (particulate matter, black carbon, organic carbon) emissions are estimated using sector and fuel specific average emission factors (mass of pollutant per unit mass of fuel burnt). The estimates take into account the changes in the fuel characteristics and technology during the study period. The estimated SO_2 emissions are 1.7 Tg S yr-1 in 1990 and increased to 2.5 Tg S yr-1 in 2000, with an annual average increase of 5%. Majority of the SO_2 emissions are from coal consumption accounting 62%, predominantly from the power plants. Trends in fuel and sectoral contributions to SO2 emissions over the decade will be presented. In the transportation sector, diesels contribute significantly to BC. Notably, in India, two-stroke engines account for 78% of total vehicle fleet, and contribute significantly to organic carbon emissions. An analysis of available SO_2 and aerosols concentration measurements will be made to explore the possible correlations between trends in the

  18. Ozone sensitivity to its precursor emissions in northeastern Mexico for a summer air pollution episode.

    PubMed

    Sierra, A; Vanoye, A Y; Mendoza, A

    2013-10-01

    A summer episode was modeled to address the expected response of ambient air O3 to hypothetical emission control scenarios in northeastern Mexico, and in particular in the Monterrey Metropolitan Area (MMA). This region is of interest because the MMA holds one of the worst air quality problems in the country and levels of air pollutants in the rest of northeastern Mexico are starting to be a concern. The MM5-SMOKE-CMAQ platform was used to conduct the numerical experiments. Twenty-four control scenarios were evaluated, combining the level of emission controls of O3 precursors (NO(x) and volatile organic compounds [VOCs]) from 0% to 50%. For the MMA, VOC-only controls result in the best option to reduce O3 concentrations, though the benefit is limited to the urban core. This same strategy results in negligible benefits for the rest of northeastern Mexico. NO(x) controls result in an increase in O3 concentration within the MMA of up to 20 ppbv and a decrease at downwind locations of up to 11 ppbv, with respect to the base-case scenario. Indicator ratios were also used to probe for NO(x)-sensitive and VOC-sensitive areas. Locations with an important influence of NO(x) point sources (i.e., Monclova and Nava/Acuña) are quite sensitive to changes in NO(x) emissions. Border cities in the Rio Bravo/Grande Valley tend to be marginally NO(x)-sensitive. Overall, the MMA seems to be dominated by a VOC-sensitive regime, while the rest of the region would tend to have a NO(x)-sensitive response. The results obtained serve to expand the current knowledge on the chemical regimes that dominate this region (VOC- or NO(x)-sensitive), and thus could help guide public policies related to emission regional control strategies. PMID:24282975

  19. Air pollution

    SciTech Connect

    Not Available

    1988-01-01

    Although the Environmental Protection Agency proposed controls in the early 1970s, marine vessel emissions remain largely unregulated, in part, because industry, the Coast Guard, and the Maritime Administration questioned the safety, cost, and effects on interstate commerce. The Coast Guard and EPA attempted to resolve some of these issues but discontinued their efforts when EPA reduced its overall budget and the Coast Guard perceived no state interest in regulating vessel emissions. Efforts resumed when the Coast Guard became aware of a growing state movement to regulate vessel emissions; it then requested a study by the National Research Council. The study found that additional operating experience, testing, and studies were necessary. The Coast Guard then began developing safety standards in 1987 and EPA proposed a national ozone strategy.

  20. Quantification of emission reduction potentials of primary air pollutants from residential solid fuel combustion by adopting cleaner fuels in China.

    PubMed

    Shen, Guofeng

    2015-11-01

    Residential low efficient fuel burning is a major source of many air pollutants produced during incomplete combustions, and household air pollution has been identified as one of the top environmental risk factors. Here we compiled literature-reported emission factors of pollutants including carbon monoxide (CO), total suspended particles (TSPs), PM2.5, organic carbon (OC), elemental carbon (EC) and polycyclic aromatic hydrocarbons (PAHs) for different household energy sources, and quantified the potential for emission reduction by clean fuel adoption. The burning of crop straws, firewood and coal chunks in residential stoves had high emissions per unit fuel mass but lower thermal efficiencies, resulting in high levels of pollution emissions per unit of useful energy, whereas pelletized biofuels and coal briquettes had lower pollutant emissions and higher thermal efficiencies. Briquetting coal may lead to 82%-88% CO, 74%-99% TSP, 73%-76% PM2.5, 64%-98% OC, 92%-99% EC and 80%-83% PAH reductions compared to raw chunk coal. Biomass pelletizing technology would achieve 88%-97% CO, 73%-87% TSP, 79%-88% PM2.5, 94%-96% OC, 91%-99% EC and 63%-96% PAH reduction compared to biomass burning. The adoption of gas fuels (i.e., liquid petroleum gas, natural gas) would achieve significant pollutant reduction, nearly 96% for targeted pollutants. The reduction is related not only to fuel change, but also to the usage of high efficiency stoves.

  1. Temporal trends and spatial variation characteristics of primary air pollutants emissions from coal-fired industrial boilers in Beijing, China.

    PubMed

    Xue, Yifeng; Tian, Hezhong; Yan, Jing; Zhou, Zhen; Wang, Junling; Nie, Lei; Pan, Tao; Zhou, Junrui; Hua, Shenbing; Wang, Yong; Wu, Xiaoqing

    2016-06-01

    Coal-fired combustion is recognized as a significant anthropogenic source of atmospheric compounds in Beijing, causing heavy air pollution events and associated deterioration in visibility. Obtaining an accurate understanding of the temporal trends and spatial variation characteristics of emissions from coal-fired industrial combustion is essential for predicting air quality changes and evaluating the effectiveness of current control measures. In this study, an integrated emission inventory of primary air pollutants emitted from coal-fired industrial boilers in Beijing is developed for the period of 2007-2013 using a technology-based approach. Future emission trends are projected through 2030 based on current energy-related and emission control policies. Our analysis shows that there is a general downward trend in primary air pollutants emissions because of the implementation of stricter local emission standards and the promotion by the Beijing municipal government of converting from coal-fired industrial boilers to gas-fired boilers. However, the ratio of coal consumed by industrial boilers to total coal consumption has been increasing, raising concerns about the further improvement of air quality in Beijing. Our estimates indicate that the total emissions of PM10, PM2.5, SO2, NOx, CO and VOCs from coal-fired industrial boilers in Beijing in 2013 are approximately 19,242 t, 13,345 t, 26,615 t, 22,965 t, 63,779 t and 1406 t, respectively. Under the current environmental policies and relevant energy savings and emission control plans, it may be possible to reduce NOx and other air pollutant emissions by 94% and 90% by 2030, respectively, if advanced flue gas purification technologies are implemented and coal is replaced with natural gas in the majority of existing boilers.

  2. Temporal trends and spatial variation characteristics of primary air pollutants emissions from coal-fired industrial boilers in Beijing, China.

    PubMed

    Xue, Yifeng; Tian, Hezhong; Yan, Jing; Zhou, Zhen; Wang, Junling; Nie, Lei; Pan, Tao; Zhou, Junrui; Hua, Shenbing; Wang, Yong; Wu, Xiaoqing

    2016-06-01

    Coal-fired combustion is recognized as a significant anthropogenic source of atmospheric compounds in Beijing, causing heavy air pollution events and associated deterioration in visibility. Obtaining an accurate understanding of the temporal trends and spatial variation characteristics of emissions from coal-fired industrial combustion is essential for predicting air quality changes and evaluating the effectiveness of current control measures. In this study, an integrated emission inventory of primary air pollutants emitted from coal-fired industrial boilers in Beijing is developed for the period of 2007-2013 using a technology-based approach. Future emission trends are projected through 2030 based on current energy-related and emission control policies. Our analysis shows that there is a general downward trend in primary air pollutants emissions because of the implementation of stricter local emission standards and the promotion by the Beijing municipal government of converting from coal-fired industrial boilers to gas-fired boilers. However, the ratio of coal consumed by industrial boilers to total coal consumption has been increasing, raising concerns about the further improvement of air quality in Beijing. Our estimates indicate that the total emissions of PM10, PM2.5, SO2, NOx, CO and VOCs from coal-fired industrial boilers in Beijing in 2013 are approximately 19,242 t, 13,345 t, 26,615 t, 22,965 t, 63,779 t and 1406 t, respectively. Under the current environmental policies and relevant energy savings and emission control plans, it may be possible to reduce NOx and other air pollutant emissions by 94% and 90% by 2030, respectively, if advanced flue gas purification technologies are implemented and coal is replaced with natural gas in the majority of existing boilers. PMID:27023281

  3. 76 FR 35806 - Amendments to National Emission Standards for Hazardous Air Pollutants for Area Sources: Plating...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-20

    ... AGENCY 40 CFR Part 63 RIN 2060-AM37 Amendments to National Emission Standards for Hazardous Air...: Proposed rule. SUMMARY: On June 12, 2008, EPA issued national emission standards for control of hazardous... Air Act (CAA). In today's action, EPA is proposing to amend the national emission standards...

  4. The impact of shipping emissions on air pollution in the greater North Sea region - Part 1: Current emissions and concentrations

    NASA Astrophysics Data System (ADS)

    Aulinger, A.; Matthias, V.; Zeretzke, M.; Bieser, J.; Quante, M.; Backes, A.

    2016-01-01

    The North Sea is one of the areas with the highest ship traffic densities worldwide. At any time, about 3000 ships are sailing its waterways. Previous scientific publications have shown that ships contribute significantly to atmospheric concentrations of NOx, particulate matter and ozone. Especially in the case of particulate matter and ozone, this influence can even be seen in regions far away from the main shipping routes. In order to quantify the effects of North Sea shipping on air quality in its bordering states, it is essential to determine the emissions from shipping as accurately as possible. Within Interreg IVb project Clean North Sea Shipping (CNSS), a bottom-up approach was developed and used to thoroughly compile such an emission inventory for 2011 that served as the base year for the current emission situation. The innovative aspect of this approach was to use load-dependent functions to calculate emissions from the ships' current activities instead of averaged emission factors for the entire range of the engine loads. These functions were applied to ship activities that were derived from hourly records of Automatic Identification System signals together with a database containing the engine characteristics of the vessels that traveled the North Sea in 2011. The emission model yielded ship emissions among others of NOx and SO2 at high temporal and spatial resolution that were subsequently used in a chemistry transport model in order to simulate the impact of the emissions on pollutant concentration levels. The total emissions of nitrogen reached 540 Gg and those of sulfur oxides 123 Gg within the North Sea - including the adjacent western part of the Baltic Sea until 5° W. This was about twice as much of those of a medium-sized industrialized European state like the Netherlands. The relative contribution of ships to, for example, NO2 concentration levels ashore close to the sea can reach up to 25 % in summer and 15 % in winter. Some hundred kilometers

  5. The impact of shipping emissions on air pollution in the Greater North Sea region - Part 1: Current emissions and concentrations

    NASA Astrophysics Data System (ADS)

    Aulinger, A.; Matthias, V.; Zeretzke, M.; Bieser, J.; Quante, M.; Backes, A.

    2015-04-01

    The North Sea is one of the areas with the highest ship traffic densities worldwide. At any time, about 3000 ships are sailing its waterways. Previous scientific publications have shown that ships contribute significantly to atmospheric concentrations of NOx, particulate matter and ozone. Especially in the case of particulate matter and ozone this influence can even be seen in regions far away from the main shipping routes. In order to quantify the effects of North Sea shipping on air quality in its bordering states, it is essential to determine the emissions from shipping as accurately as possible. Within the Interreg IVb project Clean North Sea Shipping (CNSS) a bottom-up approach was developed and used to thoroughly compile such an emission inventory for 2011 that served as the base year for the current emission situation. The innovative aspect of this approach was to use load dependent functions to calculate emissions from the ships' current activities instead of averaged emission factors for the entire range of the engine loads. These functions were applied to ship activities that were derived from hourly records of Automatic Identification System signals together with a data base containing the engine characteristics of the vessels that traveled the North Sea in 2011. The emission model yielded ship emissions among others of NOx and SO2 in high temporal and spatial resolution that were subsequently used in a chemistry transport model in order to simulate the impact of the emissions on pollutant concentration levels. The total emissions of nitrogen reached 540 Gg and of sulfur oxides 123 Gg within the North Sea, which was about twice as much of those of a medium-sized industrialized European state like the Netherlands. The relative contribution of ships to, for example, NO2 concentration levels ashore close to the sea can reach up to 25% in summer and 15% in winter. Some hundred kilometers away from the sea the contribution was about 6% in summer and 4% in

  6. Curbing Air Pollution and Greenhouse Gas Emissions from Industrial Boilers in China

    SciTech Connect

    Shen, Bo; Price, Lynn K; Lu, Hongyou; Liu, Xu; Tsen, Katherine; Xiangyang, Wei; Yunpeng, Zhang; Jian, Guan; Rui, Hou; Junfeng, Zhang; Yuqun, Zhuo; Shumao, Xia; Yafeng, Han; Manzhi, Liu

    2015-10-28

    China’s industrial boiler systems consume 700 million tons of coal annually, accounting for 18% of the nation’s total coal consumption. Together these boiler systems are one of the major sources of China’s greenhouse gas (GHG) emissions, producing approximately 1.3 gigatons (Gt) of carbon dioxide (CO2) annually. These boiler systems are also responsible for 33% and 27% of total soot and sulfur dioxide (SO2) emissions in China, respectively, making a substantial contribution to China’s local environmental degradation. The Chinese government - at both the national and local level - is taking actions to mitigate the significant greenhouse gas (GHG) emissions and air pollution related to the country’s extensive use of coal-fired industrial boilers. The United States and China are pursuing a collaborative effort under the U.S.-China Climate Change Working Group to conduct a comprehensive assessment of China’s coal-fired industrial boilers and to develop an implementation roadmap that will improve industrial boiler efficiency and maximize fuel-switching opportunities. Two Chinese cities – Ningbo and Xi’an – have been selected for the assessment. These cities represent coastal areas with access to liquefied natural gas (LNG) imports and inland regions with access to interprovincial natural gas pipelines, respectively.

  7. EDGAR_v4.3: a global air pollutant emission inventory from 1970 to 2010

    NASA Astrophysics Data System (ADS)

    Crippa, M.; Janssens-Maenhout, G.; Guizzardi, D.; Muntean, M.; Schaaf, E.; Olivier, J. G.; Denier Van Der Gon, H.; Dentener, F. J.

    2014-12-01

    The Emission Database for Global Atmospheric Research (EDGAR) provides consistent gridded anthropogenic emissions of greenhouse gases, precursor gases and aerosols from 1970 to 2010. Since EDGAR's first release in 1996 (EDGARv2), a continuous improvement and upgrade of the emission data resulted in a sequence of releases. Here we present EDGAR_v4.3 (2014), which features new information on emission factors and an extension to 2009-2010 data compared to EDGAR_v4.2. EDGAR_v4.2 was used in many inverse modeling studies in EU, US, Africa and Asia yielding regional refinement of emission factors and adjustments of technology penetration (e.g. coal mining, power plants) and proxy data for geospatial distribution (e.g. passenger car transport). We focus on SO2, NOx, CO, NMVOC, NH3, PM10, PM2.5, BC and OC emissions for the most recent year (2010), and compare them to two global inventories used in global modeling, as well as the regional inventories included in them. HTAP_v2 is a harmonized, global, gridded, emission database for 2010, developed for global and regional model tasks within the Task Force Hemispheric Transport Air pollution. It uses officially reported, gridded national inventories, complemented with science based data, partly gap-filled with EDGAR. However, since HTAP_v2 is relying on (sub-)national statistics, it may not be as consistent across countries and regions, as a globally calculated inventory using international statistics and global geospatial distributions. Another available global inventory is MACCity, covering the years 1980-2010. We compare EDGAR_v4.3 with HTAP_v2 and MACCity in order to explain differences from national estimates and address emission inventory uncertainties, indicating weaknesses and strengths of these databases. We present the geospatial distribution of emissions at 0.1x0.1 degree resolution, comparing the contribution of developing and emerging countries with industrialized regions, both as absolute and per capita data.

  8. Assessment of Air Pollutants and Greenhouse Gases Emission Over East Asia : A Bottom-up Inventory Perspective

    NASA Astrophysics Data System (ADS)

    Woo, J. H.; Kim, Y.; Lee, Y. M.; Choi, K. C.; Zhang, Q.; Kurokawa, J. I.; Lee, J. B.; Song, C. K.; Kim, S.

    2014-12-01

    Air pollutants (SLCPs) such as tropospheric ozone and aerosols are mainly affected by meteorological variables and emissions. East Asia is one of important source regions of both anthropogenic and natural air pollutants and GHGs. Therefore, significant environmental changes are expected in the future and air quality modeling is the important methodology to quantitatively evaluate them. Multiple emission inventories with various spatio-temporal resolutions are necessary in support of many different air quality modeling and future climate chage researches. Many emission inventories have been developed for Asia and for Globe, such as TRACE-P, INTEX, REAS, CREATE, MICS-Asia, HTAP, SRES, RCP. Those inventories have been successfully used for many international researches, but also have several limitations including relatively old base year, limited number of pollutants/types, and low transparency of sector/fuel information. Understanding discrepancies and similarities among those intentories would give us a better insights to understand not only present status regional emissions amounts but structures of society and policy that link to the future emissions. To understand these, we; 1) selected several base-year bottom-up anthropogenic emission inventories over East Asia, 2) inter-compare emission inventories with more comprehensive sector/fuel classification, 3) explorer emissions change with more updated acvities, emission factors, and control options. The tentative results show that more than 50% of emission amount could be differ by inventory selection and more than 30% of emissions could be changed by emissions factor and/or control options. More findings regarding to these objectives will be presented on site

  9. Projections of air toxic emissions from coal-fired utility combustion: Input for hazardous air pollutant regulators

    SciTech Connect

    Szpunar, C.B.

    1993-08-01

    The US Environmental Protection Agency (EPA) is required by the 1990 CAAA to promulgate rules for all ``major`` sources of any of these HAPs. According to the HAPs section of the new Title III, any stationary source emitting 10 tons per year (TPY) of one HAP or 25 TPY of a combination of HAPs will be considered and designated a major source. In contrast to the original National Emission Standards for Hazardous Air Pollutants (NESHAP), which were designed to protect public health to ``an ample margin of safety,`` the new Title III, in its first phase, will regulate by industrial category those sources emitting HAPs in excess of the 10/25-TPY threshold levels, regardless of health risks. The trace elements normally associated with coal mineral matter and the various compounds formed during coal combustion have the potential to produce hazardous air toxic emissions from coal-fired electric utilities. Under Title III, the EPA is required to perform certain studies, prior to any regulation of electric utilities; these studies are currently underway. Also, the US Department of Energy (DOE) maintains a vested interest in addressing those energy policy questions affecting electric utility generation, coal mining, and steel producing critical to this country`s economic well-being, where balancing the costs to the producers and users of energy with the benefits of environmental protection to the workers and the general populace remains of significant concern.

  10. Emissions of air pollutants from the road transport sector in Greece: year to year variation and present situation.

    PubMed

    Symeonidis, P; Ziomas, I; Proyou, A

    2003-06-01

    It is common knowledge that atmospheric emissions of various pollutants, from mobile and stationary sources, affect quality of life and public health. The impact of these emissions can be of a small (urban smog) or regional scale (acid deposition, troposheric ozone), as a result of the transportation of pollutants in the atmosphere. In terms of a local scale, road traffic is considered to be the most important pollutants source. In the present work, air pollutants emissions from road transport in Greece will be presented. The reference date for the calculations is the year 2000, but additionally, a year-to-year variation (from 1992 to 2000) of the emissions will be examined in order to clarify the impact of the vehicle fleet and the engine technology changes. To calculate emissions, a methodology developed for the European Commission in the framework of the CORINAIR project has been applied. This methodology was further improved and adjusted to the greek fleet characteristics taking into account the vehicle age, the level of the vehicle maintenance etc. Calculations have shown that, despite during the last years the amount of the emitted pollutants per vehicle has significantly decreased, the total pollutants emitted have increased as a result of the increase the number of circulating vehicles. More specifically, in heavy duty vehicles and passenger cars have the most important role for emitting NOx, whilst motorcycles are the most important polluters for non-methene article organic compounds. PMID:12868527

  11. 75 FR 80761 - National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-23

    ... Reciprocating Internal Combustion Engines AGENCY: Environmental Protection Agency (EPA). ACTION: Notice of... air pollutants for reciprocating internal combustion engines and requesting public comment on one... the limitations on operation of emergency stationary engines to allow emergency engines to operate...

  12. 76 FR 14636 - National Emission Standards for Hazardous Air Pollutants: Primary Lead Smelting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-17

    ... Air Pollutants for Primary Lead Smelting (76 FR 9410). The EPA is extending the deadline for written... Pollutants: Primary Lead Smelting, was published February 17, 2011 (76 FR 9410). EPA has established the... Lead Smelting AGENCY: Environmental Protection Agency (EPA). ACTION: Extension of public comment...

  13. 76 FR 21692 - National Emission Standards for Hazardous Air Pollutants: Primary Lead Smelting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-18

    ... Air Pollutants for Primary Lead Smelting (76 FR 9410). The EPA is extending the deadline for written... Pollutants: Primary Lead Smelting, was published February 17, 2011 (76 FR 9410). EPA has established the... Lead Smelting AGENCY: Environmental Protection Agency (EPA). ACTION: Extension of public comment...

  14. 77 FR 65823 - Control of Air Pollution From Aircraft and Aircraft Engines; Emission Standards and Test Procedures

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-31

    ... From the Federal Register Online via the Government Publishing Office ENVIRONMENTAL PROTECTION AGENCY 40 CFR Parts 87 RIN 2060-AO70 Control of Air Pollution From Aircraft and Aircraft Engines; Emission Standards and Test Procedures Correction In rule document 2012-13828 appearing on pages...

  15. 78 FR 29815 - Control of Air Pollution From Motor Vehicles: Tier 3 Motor Vehicle Emission and Fuel Standards

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-21

    ... from inventories developed for the Final Cross-State Air Pollution Rule (76 FR 48208, August 8, 2011... reductions. \\7\\ 65 FR 6698 (February 10, 2000). The proposed Tier 3 standards include new light- and heavy... emissions standards.\\10\\ \\8\\ 77 FR 62623 (October 15, 2012). \\9\\ These states include Connecticut,...

  16. An Evaluation of Hazardous Air Pollutants and Volatile Organic Compound Emissions from Tank Barges in Memphis, TN

    EPA Science Inventory

    Many urban centers have population centers near river ports, which may be affected by volatile organic compound (VOC) and hazardous air pollutant (HAP) emissions from tank barge traffic. This study will examine Memphis, Tennessee and West Memphis, Arkansas. Both cities (located ...

  17. The incorporation of the US national emission inventory into version 2 of the Hemispheric Transport of air Pollutants inventory

    EPA Science Inventory

    EPA's 2008 national emission inventory has been incorporated into version 2 of the Hemispheric Transport of Air Pollutants Inventory. This work involves the creation of a detailed mapping of EPA Source Classification Codes (SCC) to the International Nomenclature for Reporting Sy...

  18. 77 FR 9303 - National Emission Standards for Hazardous Air Pollutants From Coal- and Oil-Fired Electric...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-16

    ...). See 76 FR 25003-25005 for a fuller discussion of the health effects associated with these pollutants... generating units (76 FR 24976). After consideration of public comments, the EPA is finalizing these rules in... protects air quality and promotes public health by reducing emissions of the HAP listed in CAA section...

  19. AIR POLLUTION CONTROL TECHNOLOGIES (CHAPTER 65)

    EPA Science Inventory

    The chapter discusses the use of technologies for reducing air pollution emissions from stationary sources, with emphasis on the control of combustion gen-erated air pollution. Major stationary sources include utility power boilers, industrial boilers and heaters, metal smelting ...

  20. Formaldehyde emission behavior of building materials: on-site measurements and modeling approach to predict indoor air pollution.

    PubMed

    Bourdin, Delphine; Mocho, Pierre; Desauziers, Valérie; Plaisance, Hervé

    2014-09-15

    The purpose of this paper was to investigate formaldehyde emission behavior of building materials from on-site measurements of air phase concentration at material surface used as input data of a box model to estimate the indoor air pollution of a newly built classroom. The relevance of this approach was explored using CFD modeling. In this box model, the contribution of building materials to indoor air pollution was estimated with two parameters: the convective mass transfer coefficient in the material/air boundary layer and the on-site measurements of gas phase concentration at material surfaces. An experimental method based on an emission test chamber was developed to quantify this convective mass transfer coefficient. The on-site measurement of gas phase concentration at material surface was measured by coupling a home-made sampler to SPME. First results had shown an accurate estimation of indoor formaldehyde concentration in this classroom by using a simple box model.

  1. Emissions of air pollutants from scented candles burning in a test chamber

    NASA Astrophysics Data System (ADS)

    Derudi, Marco; Gelosa, Simone; Sliepcevich, Andrea; Cattaneo, Andrea; Rota, Renato; Cavallo, Domenico; Nano, Giuseppe

    2012-08-01

    Burning of scented candles in indoor environment can release a large number of toxic chemicals. However, in spite of the large market penetration of scented candles, very few works investigated their organic pollutants emissions. This paper investigates volatile organic compounds emissions, with particular reference to the priority indoor pollutants identified by the European Commission, from the burning of scented candles in a laboratory-scale test chamber. It has been found that BTEX and PAHs emission factors show large differences among different candles, possibly due to the raw paraffinic material used, while aldehydes emission factors seem more related to the presence of additives. This clearly evidences the need for simple and cheap methodologies to measure the emission factors of commercial candles in order to foresee the expected pollutant concentration in a given indoor environment and compare it with health safety standards.

  2. Air Pollution Training Programs.

    ERIC Educational Resources Information Center

    Public Health Service (DHEW), Rockville, MD.

    This catalog lists the universities, both supported and not supported by the Division of Air Pollution, which offer graduate programs in the field of air pollution. The catalog briefly describes the programs and their entrance requirements, the requirements, qualifications and terms of special fellowships offered by the Division of Air Pollution.…

  3. Criteria air pollutants and toxic air pollutants.

    PubMed Central

    Suh, H H; Bahadori, T; Vallarino, J; Spengler, J D

    2000-01-01

    This review presents a brief overview of the health effects and exposures of two criteria pollutants--ozone and particulate matter--and two toxic air pollutants--benzene and formaldehyde. These pollutants were selected from the six criteria pollutants and from the 189 toxic air pollutants on the basis of their prevalence in the United States, their physicochemical behavior, and the magnitude of their potential health threat. The health effects data included in this review primarily include results from epidemiologic studies; however, some findings from animal studies are also discussed when no other information is available. Health effects findings for each pollutant are related in this review to corresponding information about outdoor, indoor, and personal exposures and pollutant sources. Images Figure 3 Figure 8 Figure 9 PMID:10940240

  4. Trends of multiple air pollutants emissions from residential coal combustion in Beijing and its implication on improving air quality for control measures

    NASA Astrophysics Data System (ADS)

    Xue, Yifeng; Zhou, Zhen; Nie, Teng; Wang, Kun; Nie, Lei; Pan, Tao; Wu, Xiaoqing; Tian, Hezhong; Zhong, Lianhong; Li, Jing; Liu, Huanjia; Liu, Shuhan; Shao, Panyang

    2016-10-01

    Residential coal combustion is considered to be an important source of air pollution in Beijing. However, knowledge regarding the emission characteristics of residential coal combustion and the related impacts on the air quality is very limited. In this study, we have developed an emission inventory for multiple hazardous air pollutants (HAPs) associated with residential coal combustion in Beijing for the period of 2000-2012. Furthermore, a widely used regional air quality model, the Community Multi-Scale Air Quality model (CMAQ), is applied to analyze the impact of residential coal combustion on the air quality in Beijing in 2012. The results show that the emissions of primary air pollutants from residential coal combustion have basically remained the same levels during the past decade, however, along with the strict emission control imposed on major industrial sources, the contribution of residential coal combustion emissions to the overall emissions from anthropogenic sources have increased obviously. In particular, the contributions of residential coal combustion to the total air pollutants concentrations of PM10, SO2, NOX, and CO represent approximately 11.6%, 27.5%, 2.8% and 7.3%, respectively, during the winter heating season. In terms of impact on the spatial variation patterns, the distributions of the pollutants concentrations are similar to the distribution of the associated primary HAPs emissions, which are highly concentrated in the rural-urban fringe zones and rural suburb areas. In addition, emissions of primary pollutants from residential coal combustion are forecasted by using a scenario analysis. Generally, comprehensive measures must be taken to control residential coal combustion in Beijing. The best way to reduce the associated emissions from residential coal combustion is to use economic incentive means to promote the conversion to clean energy sources for residential heating and cooking. In areas with reliable energy supplies, the coal used

  5. 75 FR 67676 - Delegation of National Emission Standards for Hazardous Air Pollutants for Source Categories...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-03

    ... Categories; State of Nevada; Clark County Department of Air Quality and Environmental Management AGENCY... standards for hazardous air pollutants (NESHAP) to Clark County, Nevada. DATES: Any comments on this...: This proposal concerns the delegation of unchanged NESHAP to Clark County, Nevada. In the Rules...

  6. Emissions of CO2 and criteria air pollutants from mobile sources: Insights from integrating real-time traffic data into local air quality models

    NASA Astrophysics Data System (ADS)

    Gately, C.; Hutyra, L.; Sue Wing, I.; Peterson, S.; Janetos, A.

    2015-12-01

    In 2013, on-road mobile sources were responsible for over 26% of U.S. fossil fuel carbon dioxide (ffCO2) emissions, and over 34% of both CO and NOx emissions. However, accurate representations of these emissions at the scale of urban areas remains a difficult challenge. Quantifying emissions at the scale of local streets and highways is critical to provide policymakers with the information needed to develop appropriate mitigation strategies and to guide research into the underlying process that drive mobile emissions. Quantification of vehicle ffCO2 emissions at high spatial and temporal resolutions requires a detailed synthesis of data on traffic activity, roadway attributes, fleet characteristics and vehicle speeds. To accurately characterize criteria air pollutant emissions, information on local meteorology is also critical, as the temperature and relative humidity can affect emissions rates of these pollutants by as much as 400%. As the health impacts of air pollutants are more severe for residents living in close proximity (<500m) to road sources, it is critical that inventories of these emissions rely on highly resolved source data to locate potential hot-spots of exposure. In this study we utilize real-time GPS estimates of vehicle speeds to estimate ffCO2 and criteria air pollutant emissions at multiple spatial and temporal scales across a large metropolitan area. We observe large variations in emissions associated with diurnal activity patterns, congestion, sporting and civic events, and weather anomalies. We discuss the advantages and challenges of using highly-resolved source data to quantify emissions at a roadway scale, and the potential of this methodology for forecasting the air quality impacts of changes in infrastructure, urban planning policies, and regional climate.

  7. Emissions of CO2 and criteria air pollutants from mobile sources: Insights from integrating real-time traffic data into local air quality models

    NASA Astrophysics Data System (ADS)

    Gately, Conor; Hutyra, Lucy

    2016-04-01

    In 2013, on-road mobile sources were responsible for over 26% of U.S. fossil fuel carbon dioxide (ffCO2) emissions, and over 34% of both CO and NOx emissions. However, accurate representations of these emissions at the scale of urban areas remains a difficult challenge. Quantifying emissions at the scale of local streets and highways is critical to provide policymakers with the information needed to develop appropriate mitigation strategies and to guide research into the underlying process that drive mobile emissions. Quantification of vehicle ffCO2 emissions at high spatial and temporal resolutions requires a detailed synthesis of data on traffic activity, roadway attributes, fleet characteristics and vehicle speeds. To accurately characterize criteria air pollutant emissions, information on local meteorology is also critical, as the temperature and relative humidity can affect emissions rates of these pollutants by as much as 400%. As the health impacts of air pollutants are more severe for residents living in close proximity (<500m) to road sources, it is critical that inventories of these emissions rely on highly resolved source data to locate potential hot-spots of exposure. In this study we utilize real-time GPS estimates of vehicle speeds to estimate ffCO2 and criteria air pollutant emissions at multiple spatial and temporal scales across a large metropolitan area. We observe large variations in emissions associated with diurnal activity patterns, congestion, sporting and civic events, and weather anomalies. We discuss the advantages and challenges of using highly-resolved source data to quantify emissions at a roadway scale, and the potential of this methodology for forecasting the air quality impacts of changes in infrastructure, urban planning policies, and regional climate.

  8. APPLICATION OF POLLUTION PREVENTION TECHNIQUES TO REDUCE INDOOR AIR EMISSIONS FROM ENGINEERED WOOD PRODUCTS

    EPA Science Inventory

    The report gives results of an investigation of pollution prevention options to reduce indoor emissions from a type of finished engineered wood. Emissions were screened from four types of finished engineered wood: oak-veneered particleboard coated and cured with a heat-curable, a...

  9. Characteristics of emissions of air pollutants from mosquito coils and candles burning in a large environmental chamber

    NASA Astrophysics Data System (ADS)

    Lee, S. C.; Wang, B.

    The objective of this study was to characterize the emissions of air pollutants from mosquito coils and candles burning in a large environmental test chamber. The target pollutants included particulate matters (PM 10, PM 2.5), carbon monoxide (CO), nitrogen oxides (NO x), methane (CH 4), non-methane hydrocarbons (NMHC), volatile organic compounds (VOCs) and carbonyl compounds. The average PM 10 concentrations for all tested mosquito coils exceeded Excellent and Good Classes objectives specified by Indoor Air Quality Objectives for Office Buildings and Public Places (IAQO) [ HKEPD, 2003. Guidance Notes for the Management of Indoor Air Quality in Offices and Public Places. Indoor Air Quality Management Group, The Government of the Hong Kong Special Administrative Region]. The emission factors (mg g -1 mosquito coil) of mosquito coils combustion were: PM 2.5, 20.3-47.8; PM 10, 15.9-50.8; CO, 74.6-89.1; NO, 0.1-0.5; NO 2, n.d.-0.1; NO x, 0.1-0.5; CH 4, n.d.-4.7; NMHC, 0.1-5.7. Formaldehyde and acetaldehyde were the most abundant carbonyls species in the coil smoke. The average concentrations of formaldehyde and benzene of all tested mosquito coils exceeded Good Class of IAQO. Nitrogen oxides were the most abundant gas pollutants relating to candle burning among all target air pollutants. The candle made of gel (CAN 4) would emit more air pollutants than the paraffin candles (CAN 1, 2 and 3) and beeswax candle (CAN 5). Among five candles tested, CAN 5, the one made of beeswax, generated relatively smaller amount of air pollutants. It was noted that the concentrations of most VOCs from candles combustion were below the detection limit.

  10. 76 FR 22565 - National Emission Standards for Hazardous Air Pollutant Emissions: Group I Polymers and Resins...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-21

    ... Document. On October 21, 2010 (75 FR 65068), EPA proposed revisions to six NESHAP that regulate 16... Emissions: Group I Polymers and Resins were promulgated on September 5, 1996 (62 FR 46925), and codified at... Rubber Production; Butyl Rubber Production; and Polysulfide Rubber Production. See 73 FR 76220,...

  11. Air pollution from aircraft

    NASA Technical Reports Server (NTRS)

    Heywood, J. B.; Fay, J. A.; Chigier, N. A.

    1979-01-01

    Forty-one annotated abstracts of reports generated at MIT and the University of Sheffield are presented along with summaries of the technical projects undertaken. Work completed includes: (1) an analysis of the soot formation and oxidation rates in gas turbine combustors, (2) modelling the nitric oxide formation process in gas turbine combustors, (3) a study of the mechanisms causing high carbon monoxide emissions from gas turbines at low power, (4) an analysis of the dispersion of pollutants from aircraft both around large airports and from the wakes of subsonic and supersonic aircraft, (5) a study of the combustion and flow characteristics of the swirl can modular combustor and the development and verification of NO sub x and CO emissions models, (6) an analysis of the influence of fuel atomizer characteristics on the fuel-air mixing process in liquid fuel spray flames, and (7) the development of models which predict the stability limits of fully and partially premixed fuel-air mixtures.

  12. Quantitative comparisons of various air pollutant emission sources of ozone precursors in East Tennessee - a study evaluated from the emission inventory development

    SciTech Connect

    Bandyopadhyay, N.

    1996-12-31

    The United States Department of the Interior has raised concerns regarding air pollution impacts in the Great Smoky Mountains National Park (GSMNP). The formation of the Southern Appalachian Mountains Initiative (SAMI) is regional effort to understand the air quality impacts of emission sources upon the Appalachian Mountains. The Tennessee Division of Air Pollution Control (TDAPC) has recently committed additional resources for the analyses of proposals for increased emissions of air pollutants in East Tennessee. The TDAPC has planned to assess these effects by conducting an air quality modeling project. The United States Environmental Protection Agency`s (US EPA`s) Urban Airshed Model (UAM) has been used as the primary air quality model for this purpose. The purpose of this project will be to evaluate the expected impact of any major new or modified air pollution source located in Tennessee on ozone in the GSMNP. An accurate emission inventory is essential to any air quality modeling analysis. A modeling inventory has been developed by the TDAPC for the base year 1993. The modeling area includes 40 counties in East and Middle Tennessee and 42 counties in neighboring states. For the counties in Tennessee, a detailed inventory of the point sources was prepared. For the other states inside the modeling domain, the EPA`s Aerometric Information Retrieval System (AIRS)-AIRS Facility Subsystem (AFS) was used to obtain point source data, The accuracy of the AFS data for the other states was not addressed, A detailed quantitative analysis has been conducted with the emission inventory developed for Tennessee counties. The purpose of this study is to quantify the relative contributions of the emissions of Volatile Organic Compounds (VOCs) and Nitrogen Oxides (NO{sub x}) from different point, area, mobile and biogenic sources to ozone formation in the vicinity of the GSMNP.

  13. Nevada Test Site National Emission Standards for Hazardous Air Pollutants Calendar Year 2007

    SciTech Connect

    Robert Grossman; Ronald Warren

    2008-06-01

    The Nevada Test Site (NTS) is operated by the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office. From 1951 through 1992, the NTS was operated as the nation's site for nuclear weapons testing. The release of man-made radionuclides from the NTS as a result of testing activities has been monitored since the first decade of atmospheric testing. After 1962, when nuclear tests were conducted only underground, the radiation exposure to the public surrounding the NTS was greatly reduced. After the 1992 moratorium on nuclear testing, radiation monitoring on the NTS focused on detecting airborne radionuclides which come from historically contaminated soils resuspended into the air (e.g., by winds) and tritium-contaminated soil moisture emitted to the air from soils through evapotranspiration. To protect the public from harmful levels of man-made radiation, the Clean Air Act, National Emission Standards for Hazardous Air Pollutants (NESHAP) (Title 40 Code of Federal Regulations [CFR] Part 61 Subpart H) limits the release of radioactivity from a U.S. Department of Energy facility (e.g., the NTS) to 10 millirem per year (mrem/yr) effective dose equivalent to any member of the public. This is the dose limit established for someone living off of the NTS from radionuclides emitted to air from the NTS. This limit does not include the radiation doses that members of the public may receive through the intake of radioactive particles unrelated to NTS activities, such as those that come from naturally occurring elements in the environment (e.g., naturally occurring radionuclides in soil or radon gas from the earth or natural building materials), or from other man-made sources (e.g., medical treatments). The NTS demonstrates compliance using environmental measurements of radionuclide air concentrations at critical receptor locations. This method was approved by the U.S. Environmental Protection Agency for use on the NTS in 2001 and has been the sole

  14. The challenges of reducing greenhouse gas emissions and air pollution through energy sources: evidence from a panel of developed countries.

    PubMed

    Akhmat, Ghulam; Zaman, Khalid; Shukui, Tan; Sajjad, Faiza; Khan, Muhammad Azhar; Khan, Muhammad Zahir

    2014-06-01

    The objective of the study is to investigate the long-run relationship between climatic factors (i.e., greenhouse gas emissions, agricultural methane emissions, and industrial nitrous oxide emission), air pollution (i.e., carbon dioxide emissions), and energy sources (i.e., nuclear energy; oil, gas, and coal energy; and fossil fuel energy) in the panel of 35 developed countries (including EU-15, new EU member states, G-7, and other countries) over a period of 1975-2012. In order to achieve this objective, the present study uses sophisticated panel econometric techniques including panel cointegration, panel fully modified OLS (FMOLS), and dynamic OLS (DOLS). The results show that there is a long-run relationship between the variables. Nuclear energy reduces greenhouse gases and carbon emissions; however, the other emissions, i.e., agricultural methane emissions and industrial nitrous oxide, are still to increase during the study period. Electricity production from oil, gas, and coal sources increases the greenhouse gases and carbon emissions; however, the intensity to increase emissions is far less than the intensity to increase emissions through fossil fuel. Policies that reduce emissions of greenhouse gases can simultaneously alter emissions of conventional pollutants that have deleterious effects on human health and the environment.

  15. The challenges of reducing greenhouse gas emissions and air pollution through energy sources: evidence from a panel of developed countries.

    PubMed

    Akhmat, Ghulam; Zaman, Khalid; Shukui, Tan; Sajjad, Faiza; Khan, Muhammad Azhar; Khan, Muhammad Zahir

    2014-06-01

    The objective of the study is to investigate the long-run relationship between climatic factors (i.e., greenhouse gas emissions, agricultural methane emissions, and industrial nitrous oxide emission), air pollution (i.e., carbon dioxide emissions), and energy sources (i.e., nuclear energy; oil, gas, and coal energy; and fossil fuel energy) in the panel of 35 developed countries (including EU-15, new EU member states, G-7, and other countries) over a period of 1975-2012. In order to achieve this objective, the present study uses sophisticated panel econometric techniques including panel cointegration, panel fully modified OLS (FMOLS), and dynamic OLS (DOLS). The results show that there is a long-run relationship between the variables. Nuclear energy reduces greenhouse gases and carbon emissions; however, the other emissions, i.e., agricultural methane emissions and industrial nitrous oxide, are still to increase during the study period. Electricity production from oil, gas, and coal sources increases the greenhouse gases and carbon emissions; however, the intensity to increase emissions is far less than the intensity to increase emissions through fossil fuel. Policies that reduce emissions of greenhouse gases can simultaneously alter emissions of conventional pollutants that have deleterious effects on human health and the environment. PMID:24584642

  16. Nevada Test Site National Emission Standards for Hazardous Air Pollutants Calendar Year 2008

    SciTech Connect

    Ronald Warren and Robert F. Grossman

    2009-06-30

    The Nevada Test Site (NTS) is operated by the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office. From 1951 through 1992, the NTS was the continental testing location for U.S. nuclear weapons. The release of radionuclides from NTS activities has been monitored since the initiation of atmospheric testing. Limitation to under-ground detonations after 1962 greatly reduced radiation exposure to the public surrounding the NTS. After nuclear testing ended in 1992, NTS radiation monitoring focused on detecting airborne radionuclides from historically contaminated soils. These radionuclides are derived from re-suspension of soil (primarily by winds) and emission of tritium-contaminated soil moisture through evapotranspiration. Low amounts of tritium were also emitted to air at the North Las Vegas Facility (NLVF), an NTS support complex in the city of North Las Vegas. To protect the public from harmful levels of man-made radiation, the Clean Air Act, National Emission Standards for Hazardous Air Pollutants (NESHAP) (Title 40 Code of Federal Regulations [CFR] Part 61 Subpart H) (CFR, 2008a) limits the release of radioactivity from a U.S. Department of Energy facility (e.g., the NTS) to 10 millirem per year (mrem/yr) effective dose equivalent to any member of the public. This limit does not include radiation not related to NTS activities. Unrelated doses could come from naturally occurring radioactive elements or from other man-made sources such as medical treatments. The NTS demonstrates compliance with the NESHAP limit by using environmental measurements of radionuclide air concentrations at critical receptor locations. This method was approved by the U.S. Environmental Protection Agency for use on the NTS in 2001 and has been the sole method used since 2005. Six locations on the NTS have been established to act as critical receptor locations to demonstrate compliance with the NESHAP limit. These locations are actually pseudo

  17. Energy-Efficiency and Air-Pollutant Emissions-Reduction Opportunities for the Ammonia Industry in China

    SciTech Connect

    Ma, Ding; Hasanbeigi, Ali; Chen, Wenying

    2015-06-01

    As one of the most energy-intensive and polluting industries, ammonia production is responsible for significant carbon dioxide (CO2) and air-pollutant emissions. Although many energy-efficiency measures have been proposed by the Chinese government to mitigate greenhouse gas emissions and improve air quality, lack of understanding of the cost-effectiveness of such improvements has been a barrier to implementing these measures. Assessing the costs, benefits, and cost-effectiveness of different energy-efficiency measures is essential to advancing this understanding. In this study, a bottom-up energy conservation supply curve model is developed to estimate the potential for energy savings and emissions reductions from 26 energy-efficiency measures that could be applied in China’s ammonia industry. Cost-effective implementation of these measures saves a potential 271.5 petajoules/year for fuel and 5,443 gigawatt-hours/year for electricity, equal to 14% of fuel and 14% of electricity consumed in China’s ammonia industry in 2012. These reductions could mitigate 26.7 million tonnes of CO2 emissions. This study also quantifies the co-benefits of reducing air-pollutant emissions and water use that would result from saving energy in China’s ammonia industry. This quantitative analysis advances our understanding of the cost-effectiveness of energy-efficiency measures and can be used to augment efforts to reduce energy use and environmental impacts.

  18. Climate Impacts of Ozone and Sulfate Air Pollution from Specific Emissions Sectors and Regions

    NASA Astrophysics Data System (ADS)

    Unger, N.; Koch, D. M.; Shindell, D. T.; Streets, D. G.

    2006-12-01

    The secondary air pollutants ozone (O3) and sulfate aerosol are generated by human activities and affect the Earth's climate system. The global mean radiative forcings of these short-lived species depend on the location of the precursor gas emissions, which has so far prevented their incorporation into climate-motivated policy agreements. O3 and sulfate aerosol are strongly coupled through tropospheric photochemistry and yet air quality control efforts consider each species separately. Previous modeling work to assess climate impacts of O3 has focused on individual precursors, such as nitrogen oxides, even though policy action would target a particular sector. We use the G-PUCCINI atmospheric composition-climate model to isolate the O3 and sulfate direct radiative forcing impacts of 6 specific emissions sectors (industry, transport, power, domestic biofuel, domestic fossil fuel and biomass burning) from 7 geographic regions (North America, Europe, South Asia, East Asia, North Africa and the Middle East, Central and South Africa and South America) for the near future 2030 atmosphere. The goal of the study is to identify specific source sectors and regions that present the most effective opportunities to mitigate global warming. At 2030, the industry and power sectors dominate the sulfate forcing across all regions, with East Asia, South Asia and North Africa and Middle East contributing the largest sulfate forcings (-100 to 120 mWm-2). The transport sector represents an important O3 forcing from all regions ranging from 5 mWm-2 (Europe) to 12 mWm-2 (East Asia). Domestic biofuel O3 forcing is important for the East Asia (13 mWm-2), South Asia (7 mWm-2) and Central and South Africa (10 mWm-2) regions. Biomass burning contributes large O3 forcings for the Central and South Africa (15 mWm-2) and South America (11 mWm-2) regions. In addition, the power sector O3 forcings from East Asia (14 mWm-2) and South Asia (8 mWm-2) are also substantial. Considering the sum of the O

  19. VOC and hazardous air pollutant emission factors for military aircraft fuel cell inspection, maintenance, and repair operations

    SciTech Connect

    Nand, K.; Sahu, R.

    1997-12-31

    Accurate emission estimation is one of the key aspects of implementation of any air quality program. The Federal Title 5 program, specially requires an accurate and updated inventory of criteria as well hazardous air pollutants (HAPs) from all facilities. An overestimation of these two categories of pollutants, may cause the facility to be classified as a major source, when in fact it may actually be a minor source, and may also trigger unnecessary compliance requirements. A good example of where overestimation of volatile organic compounds (VOCs) and HAPs is easily possible are military aircraft fuel cells inspection, maintenance, and repair operations. The military aircraft fuel tanks, which are commonly identified as fuel cells, are routinely inspected for maintenance and repairs at military aircraft handling facilities. Prior to entry into the fuel cell by an inspector, fuel cells are first drained into bowsers and then purged with fresh air; the purged air is generally released without any controls to the atmosphere through a stack. The VOC and HAPs emission factors from these operations are not available in the literature for JP-8 fuel, which is being used increasingly by military aircraft. This paper presents two methods for estimating emissions for this source type, which are based on engineering calculations and professional judgment. This paper presents several methods for estimating emissions for this source type, which are based on engineering calculations and professional judgment. There are three emission producing phases during the draining and purging operations: (1) emissions during splash loading of bowsers (unloading of fuel cells), (2) emissions from spillage of fuel during loading of bowsers, and (3) emissions from fuel cell purging operations. Results of the emission estimation, including a comparison of the two emission estimation methods are presented in this paper.

  20. Mercury emission trend influenced by stringent air pollutants regulation for coal-fired power plants in Korea

    NASA Astrophysics Data System (ADS)

    Pudasainee, Deepak; Kim, Jeong-Hun; Seo, Yong-Chil

    2009-12-01

    Regulatory control of mercury emission from anthropogenic sources has become a global concern in the recent past. Coal-fired power plants are one of the largest sources of anthropogenic mercury emission into the atmosphere. This paper summarizes the current reducing trend of mercury emission as co-beneficial effect by more stringent regulation changes to control primary air pollutants with introducing test results from the commercial coal-fired facilities and suggesting a guideline for future regulatory development in Korea. On average, mercury emission concentrations ranged 16.3-2.7 μg Sm -3, 2.4-1.1 μg Sm -3, 3.1-0.7 μg Sm -3 from anthracite coal-fired power plants equipped with electrostatic precipitator (ESP), bituminous coal-fired power plants with ESP + flue gas desulphurization (FGD) and bituminous coal-fired power plants with selective catalytic reactor (SCR) + cold side (CS) - ESP + wet FGD, respectively. Among the existing air pollution control devices, the best configuration for mercury removal in coal-fired power plants was SCR + CS - ESP + wet FGD, which were installed due to the stringent regulation changes to control primary air pollutants emission such as SO 2, NOx and dust. It was estimated that uncontrolled and controlled mercury emission from coal-fired power plants as 10.3 ton yr -1 and 3.2 ton yr -1 respectively. After the installation of ESP, FGD and SCR system, following the enforcement of the stringent regulation, 7.1 ton yr -1 of mercury emission has been reduced (nearly 69%) from coal-fired power plants as a co-benefit control. Based on the overall study, a sample guideline including emission limits were suggested which will be applied to develop a countermeasure for controlling mercury emission from coal-fired power plants.

  1. Air pollution combustion emissions: characterization of causative agents and mechanisms associated with cancer, reproductive, and cardiovascular effects.

    PubMed

    Lewtas, Joellen

    2007-01-01

    Combustion emissions account for over half of the fine particle (PM(2.5)) air pollution and most of the primary particulate organic matter. Human exposure to combustion emissions including the associated airborne fine particles and mutagenic and carcinogenic constituents (e.g., polycyclic aromatic compounds (PAC), nitro-PAC) have been studied in populations in Europe, America, Asia, and increasingly in third-world counties. Bioassay-directed fractionation studies of particulate organic air pollution have identified mutagenic and carcinogenic polycyclic aromatic hydrocarbons (PAH), nitrated PAH, nitro-lactones, and lower molecular weight compounds from cooking. A number of these components are significant sources of human exposure to mutagenic and carcinogenic chemicals that may also cause oxidative and DNA damage that can lead to reproductive and cardiovascular effects. Chemical and physical tracers have been used to apportion outdoor and indoor and personal exposures to airborne particles between various combustion emissions and other sources. These sources include vehicles (e.g., diesel and gasoline vehicles), heating and power sources (e.g., including coal, oil, and biomass), indoor sources (e.g., cooking, heating, and tobacco smoke), as well as secondary organic aerosols and pollutants derived from long-range transport. Biomarkers of exposure, dose and susceptibility have been measured in populations exposed to air pollution combustion emissions. Biomarkers have included metabolic genotype, DNA adducts, PAH metabolites, and urinary mutagenic activity. A number of studies have shown a significant correlation of exposure to PM(2.5) with these biomarkers. In addition, stratification by genotype increased this correlation. New multivariate receptor models, recently used to determine the sources of ambient particles, are now being explored in the analysis of human exposure and biomarker data. Human studies of both short- and long-term exposures to combustion

  2. Discriminatory Air Pollution

    ERIC Educational Resources Information Center

    McCaull, Julian

    1976-01-01

    Described are the patterns of air pollution in certain large urban areas. Persons in poverty, in occupations below the management or professional level, in low-rent districts, and in black population are most heavily exposed to air pollution. Pollution paradoxically is largely produced by high energy consuming middle-and upper-class households.…

  3. Air Pollution, Teachers' Edition.

    ERIC Educational Resources Information Center

    Lavaroni, Charles W.; O'Donnell, Patrick A.

    One of three in a series about pollution, this teacher's guide for a unit on air pollution is designed for use in junior high school grades. It offers suggestions for extending the information and activities contained in the textual material for students. Chapter 1 discusses the problem of air pollution and involves students in processes of…

  4. Air pollution and allergic disease.

    PubMed

    Kim, Haejin; Bernstein, Jonathan A

    2009-03-01

    Over the past several decades, there has been increased awareness of the health effects of air pollution and much debate regarding the role of global warming. The prevalence of asthma and allergic disease has risen in industrialized countries, and most epidemiologic studies focus on possible causalities between air pollution and these conditions. This review examines salient articles and summarizes findings important to the interaction between allergies and air pollution, specifically volatile organic compounds, global warming, particulate pollutants, atopic risk, indoor air pollution, and prenatal exposure. Further work is necessary to determine whether patients predisposed to developing allergic disease may be more susceptible to the health effects of air pollutants due to the direct interaction between IgE-mediated disease and air pollutants. Until we have more definitive answers, patient education about the importance of good indoor air quality in the home and workplace is essential. Health care providers and the general community should also support public policy designed to improve outdoor air quality by developing programs that provide incentives for industry to comply with controlling pollution emissions.

  5. Basis to demonstrate compliance with the National Emission Standards for Hazardous Air Pollutants for the Stand-off Experiments Range

    SciTech Connect

    Michael Sandvig

    2011-01-01

    The purpose of this report is to provide the basis and the documentation to demonstrate general compliance with the National Emission Standard for Hazardous Air Pollutants (NESHAPS) 40 CFR 61 Subpart H, “National Emission Standards for Emissions of Radionuclides Other Than Radon from Department of Energy Facilities,” (the Standard) for outdoor linear accelerator operations at the Idaho National Laboratory (INL) Stand-off Experiments Range (SOX). The intent of this report is to inform and gain acceptance of this methodology from the governmental bodies regulating the INL.

  6. DEVELOPMENT OF HAZARDOUS AIR POLLUTANT EMISSION FACTORS FROM STATE SOURCE TEST PROGRAMS

    EPA Science Inventory

    The report gives results of a study in which emission factors were evolved from test data obtained from several Air Quality Management Districts in California and from state environmental agencies in Louisiana, Maryland, New Jersey, and Texas. The emission factors were developed...

  7. Research on the Emission Inventory of Major Air Pollutants in 2012 for the Sichuan City Cluster in China

    NASA Astrophysics Data System (ADS)

    Qian, J.; He, Q.

    2014-12-01

    This paper developed a high resolution emission inventory of major pollutants in city cluster of Sichuan Basin, one of the most polluted regions in China. The city cluster included five cities, which were Chengdu, Deyang, Mianyang, Meishan and Ziyang. Pollution source census and field measurements were conducted for the major emission sources such as the industry sources, on-road mobile sources, catering sources and the dust sources. The inventory results showed that in the year of 2012, the emission of SO2、NOX、CO、PM10、PM2.5、VOCs and NH3 in the region were 143.5、251.9、1659.9、299.3、163.5、464.1 and 995kt respectively. Chengdu, the provincial capital city, had the largest emission load of every pollutant among the cities. The industry sources, including power plants, fuel combustion facilities and non-combustion processes were the largest emission sources for SO2、NOX and CO, contributing to 84%, 46.5%, 35% of total SO2, NOX and CO emissions. On-road mobile sources accounted for 46.5%, 33%, 16% of the total NOx, CO, PM2.5 emissions and 28% of the anthropogenic VOCs emission. Dust and industry sources contributed to 42% and 23% of the PM10 emission with the dust sources also as the largest source of PM2.5, contributing to 27%. Anthropogenic and biogenic sources took 75% and 25% of the total VOCs emission while 36% of anthropogenic VOCs emission was owing to solvent use. Livestock contributed to 62% of NH3 emissions, followed by nitrogen fertilizer application whose contribution was 23%. Based on the developed emission inventory and local meteorological data, the regional air quality modeling system WRF-CMAQ was applied to simulate the status of PM2.5 pollution in a regional scale. The results showed that high PM2.5 concentration was distributed over the urban area of Chengdu and Deyang. On-road mobile sources and dust sources were two major contributors to the PM2.5 pollution in Chengdu, both had an contribution ratio of 27%. In Deyang, Mianyang

  8. Comparison of the regulated air pollutant emission characteristics of real-world driving cycle and ECE cycle for motorcycles

    NASA Astrophysics Data System (ADS)

    Chiang, Hung-Lung; Huang, Pei-Hsiu; Lai, Yen-Ming; Lee, Ting-Yi

    2014-04-01

    Motorcycles are an important means of transportation, and their numbers have increased significantly in recent years. However, motorcycles can emit significant amounts of air pollutants; therefore, the emission characteristics and driving patterns of motorcycles are necessary baseline information for the implementation of control measures for motorcycles in urban areas. The selected motorcycles were equipped with global positioning systems (GPS) to obtain speed-time data for determination of the characteristics of real-world driving parameters, and an on-board exhaust gas analyser with data logger was employed to determine the instantaneous concentration of regulated air pollutants from motorcycle exhaust. Results indicated that the time proportions of acceleration, cruising, and deceleration are different from those of the Economic Commission for Europe (ECE) driving cycle, and the time percentages of acceleration and deceleration of the ECE cycle are much less than those in Taichung city. In general, the emission factors of the Taichung motorcycle driving cycle (TMDC) were higher HC and lower NOx emission than those of the ECE cycle. The average fuel consumption of tested motorcycles on three roads during workdays was 5% higher than that on weekends. The fuel consumption in the real-world motorcycle driving cycle was also about 7% higher than that of the ECE cycle, which again indicates that the ECE cycle is unsuitable for measuring fuel consumption in the Taichung metropolitan area. Therefore, understanding the local driving cycle is necessary for developing accurate emission data for air pollution control measures for urban areas.

  9. [Synergistic emission reduction of chief air pollutants and greenhouse gases-based on scenario simulations of energy consumptions in Beijing].

    PubMed

    Xie, Yuan-bo; Li, Wei

    2013-05-01

    It is one of the common targets and important tasks for energy management and environmental control of Beijing to improve urban air quality while reducing the emissions of greenhouse gases (GHG). Here, based on the interim and long term developmental planning and energy structure of the city, three energy consumption scenarios in low, moderate and high restrictions were designed by taking the potential energy saving policies and environmental targets into account. The long-range energy alternatives planning (LEAP) model was employed to predict and evaluate reduction effects of the chief air pollutants and GHG during 2010 to 2020 under the three given scenarios. The results showed that if urban energy consumption system was optimized or adjusted by exercising energy saving and emission reduction and pollution control measures, the predicted energy uses will be reduced by 10 to 30 million tons of coal equivalents by 2020. Under the two energy scenarios with moderate and high restrictions, the anticipated emissions of SO2, NOx, PM10, PM2.5, VOC and GHG will be respectively reduced to 71 to 100.2, 159.2 to 218.7, 89.8 to 133.8, 51.4 to 96.0, 56.4 to 74.8 and 148 200 to 164 700 thousand tons. Correspondingly, when compared with the low-restriction scenario, the reducing rate will be 53% to 67% , 50% to 64% , 33% to 55% , 25% to 60% , 41% to 55% and 26% to 34% respectively. Furthermore, based on a study of synergistic emission reduction of the air pollutants and GHG, it was proposed that the adjustment and control of energy consumptions shall be intensively developed in the three sectors of industry, transportation and services. In this way the synergistic reduction of the emissions of chief air pollutants and GHG will be achieved; meanwhile the pressures of energy demands may be deliberately relieved.

  10. Response of SO2 and particulate air pollution to local and regional emission controls: A case study in Maryland

    NASA Astrophysics Data System (ADS)

    He, Hao; Vinnikov, Konstantin Y.; Li, Can; Krotkov, Nickolay A.; Jongeward, Andrew R.; Li, Zhanqing; Stehr, Jeffrey W.; Hains, Jennifer C.; Dickerson, Russell R.

    2016-04-01

    This paper addresses the questions of what effect local regulations can have on pollutants with different lifetimes and how surface observations and remotely sensed data can be used to determine the impacts. We investigated the decadal trends of tropospheric sulfur dioxide (SO2) and aerosol pollution over Maryland and its surrounding states, using surface, aircraft, and satellite measurements. Aircraft measurements indicated fewer isolated SO2 plumes observed in summers, a ˜40% decrease of column SO2, and a ˜20% decrease of atmospheric optical depth (AOD) over Maryland after the implementation of local regulations on sulfur emissions from power plants (˜90% reduction from 2010). Surface observations of SO2 and particulate matter (PM) concentrations in Maryland show similar trends. OMI SO2 and MODIS AOD observations were used to investigate the column contents of air pollutants over the eastern U.S.; these indicate decreasing trends in column SO2 (˜60% decrease) and AOD (˜20% decrease). The decrease of upwind SO2 emissions also reduced aerosol loadings over the downwind Atlantic Ocean near the coast by ˜20%, while indiscernible changes of the SO2 column were observed. A step change of SO2 emissions in Maryland starting in 2009-2010 had an immediate and profound benefit in terms of local surface SO2 concentrations but a modest impact on aerosol pollution, indicating that short-lived pollutants are effectively controlled locally, while long-lived pollutants require regional measures.

  11. Product Guide/1972 [Air Pollution Control Association].

    ERIC Educational Resources Information Center

    Journal of the Air Pollution Control Association, 1971

    1971-01-01

    Reprinted in this pamphlet is the fifth annual directory of air pollution control products as compiled in the "Journal of the Air Pollution Control Association" for December, 1971. The 16-page guide lists manufacturers of emission control equipment and air pollution instrumentation under product classifications as derived from McGraw-Hill's "Air…

  12. 77 FR 2677 - National Emission Standards for Hazardous Air Pollutants: Primary Aluminum Reduction Plants...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-19

    ... Standards for Hazardous Air Pollutants: Primary Aluminum Reduction Plants'' is being extended for 12 days. DATES: Comments. The public comment period for the proposed rule published December 6, 2011, (76 FR... Aluminum Reduction Plants; Extension of Comment Period AGENCY: Environmental Protection Agency...

  13. 78 FR 66107 - National Emissions Standards for Hazardous Air Pollutants Residual Risk and Technology Review for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-04

    ... Flexible Polyurethane Foam (FPUF) Production were promulgated on October 7, 1998, (63 FR 53980) and... the Benzene NESHAP. (54 FR 38044, September 14, 1989.) For the FPUF production source category, we... Hazardous Air Pollutants Residual Risk and Technology Review for Flexible Polyurethane Foam...

  14. 77 FR 16987 - National Emission Standards for Hazardous Air Pollutants: Secondary Aluminum Production

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-23

    ... for hazardous air pollutants for secondary aluminum production (77 FR 8576). The EPA is extending the... Aluminum Production AGENCY: Environmental Protection Agency (EPA). ACTION: Notice of extension of public..., as well as review the test data for Group I furnaces. DATES: Comments. The public comment period...

  15. An elaborate high resolution emission inventory of primary air pollutants for the Central Plain Urban Agglomeration of China

    NASA Astrophysics Data System (ADS)

    Qiu, Peipei; Tian, Hezhong; Zhu, Chuanyong; Liu, Kaiyun; Gao, Jiajia; Zhou, Junrui

    2014-04-01

    A high resolution emission inventory of primary air pollutants was developed based on the detailed collected activity data and the latest source-specific emission factors for the year 2010 in the Central Plain Urban Agglomeration (CPUA) region of China. The total emissions of SO2, NOx, PM10, PM2.5, CO, VOCs, and NH3 were estimated to be about 863.7 kt, 1058.2 kt, 1180.4 kt, 753.2 kt, 2854.3 kt, 466.1 kt, and 496.0 kt, respectively. Therein, power plants were demonstrated to be the largest sources for NOx, contributing about 36.1% of total emissions; industrial processes and biomass burning sources were proved to be the two major contributors of PM10, PM2.5 and VOCs emissions, together accounting for about 71.1%, 79.2% and 56.9% of the total emissions respectively. Besides, 18.4% of VOCs emissions can be explained by VOCs product-related sources. Other stationary combustion sources accounted for 57.7% of SO2 and 30.3% of CO emissions, respectively. Livestock and N-fertilizer application sources contributed about 81.0% of NH3 emissions together. Further, the emissions were spatially distributed into grid cells with a resolution of 3 km × 3 km, by using spatial allocation surrogates such as high resolution gridded population density and regional GDP. This inventory will benefit for policymakers and researchers to better understand the current situation of complex air pollution in the CPUA region of China and supply important necessary input for regional air quality modeling and policymaking.

  16. Evaluating sources of indoor air pollution

    SciTech Connect

    Tichenor, B.A.; Sparks, L.E.; White, J.B.; Jackson, M.D. )

    1988-01-01

    Scientists and engineers in the Indoor Air Brand of EPS'a Air and Energy Engineering Research Laboratory are conducting research to increase the state of knowledge concerning indoor air pollution factors. A three phase program is being implemented. The purpose of this paper is to show how their approach can be used to evaluate specific sources of indoor air pollution. Pollutants from two sources are examined: para-dichlorobenzene emissions from moth crystal cakes; and particulate emissions from unvented kerosene heaters.

  17. The contributions of high- and low altitude emission sources to the near ground concentrations of air pollutants

    NASA Astrophysics Data System (ADS)

    Đorđević, Dragana S.; Šolević, Tatjana M.

    2008-02-01

    The scale of transport through the atmosphere depends on the effective height of an emission source, the meteorological conditions and the physico-chemical characteristics of the pollutants. Atmospheric surface temperature inversions play a significant role in the problem of air pollution since their upper edge acts as a natural barrier to the vertical dispersion of pollutants. When the altitude of an emission source is lower than the edge of the boundary layer, the pollution remains below the upper edge and spreads by advection inside the lower layer towards the ground. However, if the altitude of the emission source is higher than the edge of the boundary layer, then the pollution spreads above the barrier. An analysis of a pollution episode during one month (August 2004) in an urban atmosphere of industrial city, using results of continuous monitoring of minute-by-minute fluctuations of the pollutants' concentrations, is presented. Region of a developed industrial town as a model was investigated. The investigated region is characterized by maximum number of surface temperature inversions during the nights in August and their furlough during the day time. With a combination of local meteorological information, that is the number of surface temperature inversions of the atmosphere, the results showed that the concentrations of pollutants originating from low altitude emission sources, e.g. organic pollutants, were higher at night. The near ground concentrations of SO 2, originating from high-(industrial stacks) and low altitude (traffic) sources, and the PM 10 originating from various sources i.e. from complex mechanisms of formation e.g. traffic emissions, SOA mechanisms and re-suspensions, were the same during the night and during the day. However, concentrations of NH 3 from high altitude sources (fertilizer plant) were higher during the day. Cluster Analysis and Principal Component Analysis showed associations of highest correlation between pollutants, which

  18. Prospective air pollutant emissions inventory for the development and production of unconventional natural gas in the Karoo basin, South Africa

    NASA Astrophysics Data System (ADS)

    Altieri, Katye E.; Stone, Adrian

    2016-03-01

    The increased use of horizontal drilling and hydraulic fracturing techniques to produce gas from unconventional deposits has led to concerns about the impacts to local and regional air quality. South Africa has the 8th largest technically recoverable shale gas reserve in the world and is in the early stages of exploration of this resource. This paper presents a prospective air pollutant emissions inventory for the development and production of unconventional natural gas in South Africa's Karoo basin. A bottom-up Monte Carlo assessment of nitrogen oxides (NOx = NO + NO2), particulate matter less than 2.5 μm in diameter (PM2.5), and non-methane volatile organic compound (NMVOC) emissions was conducted for major categories of well development and production activities. NOx emissions are estimated to be 68 tons per day (±42; standard deviation), total NMVOC emissions are 39 tons per day (±28), and PM2.5 emissions are 3.0 tons per day (±1.9). NOx and NMVOC emissions from shale gas development and production would dominate all other regional emission sources, and could be significant contributors to regional ozone and local air quality, especially considering the current lack of industrial activity in the region. Emissions of PM2.5 will contribute to local air quality, and are of a similar magnitude as typical vehicle and industrial emissions from a large South African city. This emissions inventory provides the information necessary for regulatory authorities to evaluate emissions reduction opportunities using existing technologies and to implement appropriate monitoring of shale gas-related activities.

  19. Is it time to tackle PM(2.5) air pollutions in China from biomass-burning emissions?

    PubMed

    Zhang, Yan-Lin; Cao, Fang

    2015-07-01

    An increase in haze days has been observed in China over the past two decades due to the rapid industrialization, urbanization and energy consumptions. To address this server issue, Chinese central government has recently released the Action Plan on Prevention and Control of Air Pollution, which mainly focuses on regulation of indusial and transport-related emissions with major energy consumption from fossil fuels. This comprehensive and toughest plan is definitely a major step in the right direction aiming at beautiful and environmental-friendly China; however, based on recent source apportionment results, we suggest that strengthening regulation emissions from biomass-burning sources in both urban and rural areas is needed to meet a rigorous reduction target. Here, household biofuel and open biomass burning are highlighted, as impacts of these emissions can cause local and regional pollution. PMID:25681875

  20. Controlling Indoor Air Pollution.

    ERIC Educational Resources Information Center

    Nero, Anthony V, Jr.

    1988-01-01

    Discusses the health risks posed by indoor air pollutants, such as airborne combustion products, toxic chemicals, and radioactivity. Questions as to how indoor air might be regulated. Calls for new approaches to environmental protection. (TW)

  1. Health Effects of Air Pollution

    MedlinePlus

    ... Health effects of air pollution Health effects of air pollution Breathing air that is not clean can hurt ... important to know about the health effects that air pollution can have on you and others. Once you ...

  2. Estimation of air pollutant emission loads from construction and operational activities of a port and harbour in Mumbai, India.

    PubMed

    Joseph, Joshy; Patil, R S; Gupta, S K

    2009-12-01

    Port causes environmental and health concerns in coastal cities if its operation and development are not made environmentally compatible and sustainable. An emission inventory is necessary to assess the impact of port projects or growth in marine activity as well as to plan mitigation strategies. In this study, a detailed emission inventory of total suspended particulate (TSP) matter, respirable particulate matter (PM(10)), sulphur dioxide (SO(2)) and oxides of nitrogen (NO(x)) for a port having operation and construction activities in parallel is compiled. The study has been done for 1 year. Results show that the maximum contribution of emission of air pollutants in the port area was from TSP (68.5%) and the minimum was from SO(2) (5.3%) to the total pollutants considered in this study. Total TSP emission from all activities of the port was 4,452 tyr(-1) and PM(10) emission was 903 tyr(-1) in the year 2006. Re-suspension of dust from paved roads was the major contributor of TSP and PM(10) in the road transport sector. Construction activities of the port had contributed 3.9% of TSP and 7.4% of PM(10) to total emission of particulate matter. Of the total particulate emissions from various port activities approximately 20% of TSP could be attributed to PM(10). The sectoral composition indicates that major contribution of SO(2) emission in the port was from maritime sector and major contribution of NO(x) was from road transport sector.

  3. A regression approach for estimation of anthropogenic heat flux based on a bottom-up air pollutant emission database

    NASA Astrophysics Data System (ADS)

    Lee, Sang-Hyun; McKeen, Stuart A.; Sailor, David J.

    2014-10-01

    A statistical regression method is presented for estimating hourly anthropogenic heat flux (AHF) using an anthropogenic pollutant emission inventory for use in mesoscale meteorological and air-quality modeling. Based on bottom-up AHF estimated from detailed energy consumption data and anthropogenic pollutant emissions of carbon monoxide (CO) and nitrogen oxides (NOx) in the US National Emission Inventory year 2005 (NEI-2005), a robust regression relation between the AHF and the pollutant emissions is obtained for Houston. This relation is a combination of two power functions (Y = aXb) relating CO and NOx emissions to AHF, giving a determinant coefficient (R2) of 0.72. The AHF for Houston derived from the regression relation has high temporal (R = 0.91) and spatial (R = 0.83) correlations with the bottom-up AHF. Hourly AHF for the whole US in summer is estimated by applying the regression relation to the NEI-2005 summer pollutant emissions with a high spatial resolution of 4-km. The summer daily mean AHF range 10-40 W m-2 on a 4 × 4 km2 grid scale with maximum heat fluxes of 50-140 W m-2 for major US cities. The AHFs derived from the regression relations between the bottom-up AHF and either CO or NOx emissions show a small difference of less than 5% (4.7 W m-2) in city-scale daily mean AHF, and similar R2 statistics, compared to results from their combination. Thus, emissions of either species can be used to estimate AHF in the US cities. An hourly AHF inventory at 4 × 4 km2 resolution over the entire US based on the combined regression is derived and made publicly available for use in mesoscale numerical modeling.

  4. Changing trends in sulfur emissions in Asia: implications for acid deposition, air pollution, and climate.

    PubMed

    Carmichael, Gregory R; Streets, David G; Calori, Giuseppe; Amann, Markus; Jacobson, Mark Z; Hansen, James; Ueda, Hiromasa

    2002-11-15

    In the early 1990s, it was projected that annual SO2 emissions in Asia might grow to 80-110 Tg yr(-1) by 2020. Based on new high-resolution estimates from 1975 to 2000, we calculate that SO2 emissions in Asia might grow only to 40-45 Tg yr(-1) by 2020. The main reason for this lower estimate is a decline of SO2 emissions from 1995 to 2000 in China, which emits about two-thirds of Asian SO2. The decline was due to a reduction in industrial coal use, a slowdown of the Chinese economy, and the closure of small and inefficient plants, among other reasons. One effect of the reduction in SO2 emissions in China has been a reduction in acid deposition not only in China but also in Japan. Reductions should also improve visibility and reduce health problems. SO2 emission reductions may increase global warming, but this warming effect could be partially offset by reductions in the emissions of black carbon. How SO2 emissions in the region change in the coming decades will depend on many competing factors (economic growth, pollution control laws, etc.). However a continuation of current trends would result in sulfur emissions lower than any IPCC forecasts.

  5. Use of intelligent computational techniques for the estimation and projection of air pollutant emissions

    SciTech Connect

    Kimbrough, E.S.; Mann, C.O.

    1998-12-31

    EPA is developing a fuzzy logic and/or neural network model for predicting US greenhouse gas emissions from the electric utility sector. The model would be a refinement and modification of the existing Electric Utility Model (EUMOD). Development and testing of the model would use similar data inputs and would follow a testing and validation procedure similar to that used for EUMOD. In this case, the output from the model would be estimated future carbon dioxide (CO2) emissions for each state. CO2 is the most significant greenhouse gas pollutant in the US, accounting for about 85% of national greenhouse gas emissions. Currently electric utilities produce about one-third of the national CO2 emissions.

  6. Air Pollution and Industry.

    ERIC Educational Resources Information Center

    Ross, R. D., Ed.

    This book is an authoritative reference and practical guide designed to help the plant engineer identify and solve industrial air pollution problems in order to be able to meet current air pollution regulations. Prepared under the editorial supervision of an experienced chemical engineer, with each chapter contributed by an expert in his field,…

  7. 76 FR 28318 - National Emission Standards for Hazardous Air Pollutants From the Portland Cement Manufacturing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-17

    ... emission limits applicable to the Portland cement industry. See 75 FR 54970 (Sept. 9, 2010). The rule... Clean Air Act, 75 FR 49556, 49561 (Aug. 13, 2010). This interpretation is appropriate in light of the... see 75 FR 49556, 49560-49563 (August 13, 2010) and 76 FR 4780, 4786-4788 (January 26, 2011). II....

  8. Using daily satellite observations to estimate emissions of short-lived air pollutants on a mesoscopic scale

    NASA Astrophysics Data System (ADS)

    Mijling, B.; van der A, R. J.

    2012-09-01

    Emission inventories of air pollutants are crucial information for policy makers and form important input data for air quality models. Using satellite observations for emission estimates has important advantages over bottom-up emission inventories: they are spatially consistent, have high temporal resolution, and enable updates shortly after the satellite data become available. We present a new algorithm specifically designed to use daily satellite observations of column concentrations for fast updates of emission estimates of short-lived atmospheric constituents on a mesoscopic scale (˜25 × 25 km2). The algorithm needs only one forward model run from a chemical transport model to calculate the sensitivity of concentration to emission, using trajectory analysis to account for transport away from the source. By using a Kalman filter in the inverse step, optimal use of the a priori knowledge and the newly observed data is made. We apply the algorithm for NOx emission estimates of East China, using the CHIMERE model on a 0.25 degree resolution together with tropospheric NO2column retrievals of the OMI and GOME-2 satellite instruments. Closed loop tests show that the algorithm is capable of reproducing new emission scenarios. Applied with real satellite data, the algorithm is able to detect emerging sources (e.g., new power plants), and improves emission information for areas where proxy data are not or badly known (e.g., shipping emissions). Chemical transport model runs with the daily updated emission estimates provide better spatial and temporal agreement between observed and simulated concentrations, facilitating improved air quality forecasts.

  9. Development of a vehicle emission inventory with high temporal-spatial resolution based on NRT traffic data and its impact on air pollution in Beijing - Part 2: Impact of vehicle emission on urban air quality

    NASA Astrophysics Data System (ADS)

    He, Jianjun; Wu, Lin; Mao, Hongjun; Liu, Hongli; Jing, Boyu; Yu, Ye; Ren, Peipei; Feng, Cheng; Liu, Xuehao

    2016-03-01

    A companion paper developed a vehicle emission inventory with high temporal-spatial resolution (HTSVE) with a bottom-up methodology based on local emission factors, complemented with the widely used emission factors of COPERT model and near-real-time (NRT) traffic data on a specific road segment for 2013 in urban Beijing (Jing et al., 2016), which is used to investigate the impact of vehicle pollution on air pollution in this study. Based on the sensitivity analysis method of switching on/off pollutant emissions in the Chinese air quality forecasting model CUACE, a modelling study was carried out to evaluate the contributions of vehicle emission to the air pollution in Beijing's main urban areas in the periods of summer (July) and winter (December) 2013. Generally, the CUACE model had good performance of the concentration simulation of pollutants. The model simulation has been improved by using HTSVE. The vehicle emission contribution (VEC) to ambient pollutant concentrations not only changes with seasons but also changes with time. The mean VEC, affected by regional pollutant transports significantly, is 55.4 and 48.5 % for NO2 and 5.4 and 10.5 % for PM2.5 in July and December 2013 respectively. Regardless of regional transports, relative vehicle emission contribution (RVEC) to NO2 is 59.2 and 57.8 % in July and December 2013, while it is 8.7 and 13.9 % for PM2.5. The RVEC to PM2.5 is lower than the PM2.5 contribution rate for vehicle emission in total emission, which may be due to dry deposition of PM2.5 from vehicle emission in the near-surface layer occuring more easily than from elevated source emission.

  10. Study Uncovers Dirty Little Secret: Soil Emissions are Much-Bigger-than-Expected Component of Air Pollution

    NASA Technical Reports Server (NTRS)

    Stricherz, Vince

    2005-01-01

    Nitrogen oxides produced by huge fires and fossil fuel combustion are a major component of air pollution. They are the primary ingredients in ground-level ozone, a pollutant harmful to human health and vegetation. But new research led by a University of Washington atmospheric scientist shows that, in some regions, nitrogen oxides emitted by the soil are much greater than expected and could play a substantially larger role in seasonal air pollution than previously believed. Nitrogen oxide emissions total more than 40 million metric tons worldwide each year, with 64 percent coming from fossil fuel combustion, 14 percent from burning and a surprising 22 percent from soil, said Lyatt Jaegle, a UW assistant professor of atmospheric sciences. The new research shows that the component from soil is about 70 percent greater than scientists expected. Instead of relying on scattered ground-based measurements of burning and combustion and then extrapolating a global total for nitrogen oxide emissions, the new work used actual observations recorded in 2000 by the Global Ozone Monitoring Experiment aboard the European Space Agency's European Remote Sensing 2 satellite. Nitrogen oxide emissions from fossil fuel combustion are most closely linked to major population centers and show up in the satellite's ozone-monitoring measurements of nitrogen dioxide, part of the nitrogen oxides family.

  11. How to conquer air pollution

    SciTech Connect

    Nishimura, H. . Faculty of Engineering)

    1989-01-01

    Many parts of the world suffer from urban air pollution and, despite the vast amount of knowledge about its causes, most countries are slow to implement counter-measures. An exception is Tokyo which, once blanketed in a mantle of smog, now enjoys clean air in spite of highly concentrated activity and congested traffic. Based on the successful Japanese experience, this book describes all aspects of the measures necessary to combat air pollution. It begins with a well-documented history of the fight against air pollution and describes the processes and mechanisms of reaching a social consensus on pollution control. The essential steps in the process are the establishment of ambient air quality standards, the introduction of the total allowable mass of emission, and the legal control of each emission based on diffusion equations. The scientific background to this approach is explained, from epidemiology to computer simulations of air quality. An up-to-date account of emission control technology is also given, and the controversial issue of health damage compensation is examined, based on actual experience.

  12. Determining air pollutant emission rates based on mass balance using airborne measurement data over the Alberta oil sands operations

    NASA Astrophysics Data System (ADS)

    Gordon, M.; Li, S.-M.; Staebler, R.; Darlington, A.; Hayden, K.; O'Brien, J.; Wolde, M.

    2015-09-01

    Top-down approaches to measure total integrated emissions provide verification of bottom-up, temporally resolved, inventory-based estimations. Aircraft-based measurements of air pollutants from sources in the Canadian oil sands were made in support of the Joint Canada-Alberta Implementation Plan for Oil Sands Monitoring during a summer intensive field campaign between 13 August and 7 September 2013. The measurements contribute to knowledge needed in support of the Joint Canada-Alberta Implementation Plan for Oil Sands Monitoring. This paper describes the top-down emission rate retrieval algorithm (TERRA) to determine facility emissions of pollutants, using SO2 and CH4 as examples, based on the aircraft measurements. In this algorithm, the flight path around a facility at multiple heights is mapped to a two-dimensional vertical screen surrounding the facility. The total transport of SO2 and CH4 through this screen is calculated using aircraft wind measurements, and facility emissions are then calculated based on the divergence theorem with estimations of box-top losses, horizontal and vertical turbulent fluxes, surface deposition, and apparent losses due to air densification and chemical reaction. Example calculations for two separate flights are presented. During an upset condition of SO2 emissions on one day, these calculations are within 5 % of the industry-reported, bottom-up measurements. During a return to normal operating conditions, the SO2 emissions are within 11 % of industry-reported, bottom-up measurements. CH4 emissions calculated with the algorithm are relatively constant within the range of uncertainties. Uncertainty of the emission rates is estimated as less than 30 %, which is primarily due to the unknown SO2 and CH4 mixing ratios near the surface below the lowest flight level.

  13. Development of a high temporal-spatial resolution vehicle emission inventory based on NRT traffic data and its impact on air pollution in Beijing - Part 2: Impact of vehicle emission on urban air quality

    NASA Astrophysics Data System (ADS)

    He, J. J.; Wu, L.; Mao, H. J.; Liu, H. L.; Jing, B. Y.; Yu, Y.; Ren, P. P.; Feng, C.; Liu, X. H.

    2015-07-01

    In a companion paper (Jing et al., 2015), a high temporal-spatial resolution vehicle emission inventory (HTSVE) for 2013 in Beijing has been established based on near real time (NRT) traffic data and bottom up methodology. In this study, based on the sensitivity analysis method of switching on/off pollutant emissions in the Chinese air quality forecasting model CUACE, a modeling study was carried out to evaluate the contributions of vehicle emission to the air pollution in Beijing main urban areas in the periods of summer (July) and winter (December) 2013. Generally, CUACE model had good performance of pollutants concentration simulation. The model simulation has been improved by using HTSVE. The vehicle emission contribution (VEC) to ambient pollutant concentrations not only changes with seasons but also changes over moment. The mean VEC, affected by regional pollutant transports significantly, is 55.4 and 48.5 % for NO2, while 5.4 and 10.5 % for PM2.5 in July and December 2013, respectively. Regardless of regional transports, relative vehicle emission contribution (RVEC) to NO2 is 59.2 and 57.8 % in July and December 2013, while 8.7 and 13.9 % for PM2.5. The RVEC to PM2.5 is lower than PM2.5 contribution rate for vehicle emission in total emission, which may be caused by easily dry deposition of PM2.5 from vehicle emission in near-surface layer compared to elevated source emission.

  14. Air Pollution Exposure

    PubMed Central

    Balmes, John R.; Collard, Harold R.

    2015-01-01

    Air pollution exposure is a well-established risk factor for several adverse respiratory outcomes, including airways diseases and lung cancer. Few studies have investigated the relationship between air pollution and interstitial lung disease (ILD) despite many forms of ILD arising from environmental exposures. There are potential mechanisms by which air pollution could cause, exacerbate, or accelerate the progression of certain forms of ILD via pulmonary and systemic inflammation as well as oxidative stress. This article will review the current epidemiologic and translational data supporting the plausibility of this relationship and propose a new conceptual framework for characterizing novel environmental risk factors for these forms of lung disease. PMID:25846532

  15. Air Pollution Control, Part II.

    ERIC Educational Resources Information Center

    Strauss, Werner, Ed.

    This book contains five major articles in areas of current importance in air pollution control. They are written by authors who are actively participating in the areas on which they report. It is the aim of each article to completely cover theory, experimentation, and practice in the field discussed. The contents are as follows: Emissions,…

  16. Social, Economic, and Resource Predictors of Variability in Household Air Pollution from Cookstove Emissions

    PubMed Central

    Yadama, Gautam N.; Peipert, John; Sahu, Manoranjan; Biswas, Pratim; Dyda, Venkat

    2012-01-01

    We examine if social and economic factors, fuelwood availability, market and media access are associated with owning a modified stove and variation in household emissions from biomass combustion, a significant environmental and health concern in rural India. We analyze cross-sectional household socio-economic data, and PM2.5 and particulate surface area concentration in household emissions from cookstoves (n = 100). This data set combines household social and economic variables with particle emissions indexes associated with the household stove. The data are from the Foundation for Ecological Society, India, from a field study of household emissions. In our analysis, we find that less access to ready and free fuelwood and higher wealth are associated with owning a replacement/modified stove. We also find that additional kitchen ventilation is associated with a 12% reduction in particulate emissions concentration (p<0.05), after we account for the type of stove used. We did not find a significant association between replacement/modified stove on household emissions when controlling for additional ventilation. Higher wealth and education are associated with having additional ventilation. Social caste, market and media access did not have any effect on the presence of replacement or modified stoves or additional ventilation. While the data available to us does not allow an examination of direct health outcomes from emissions variations, adverse environmental and health impacts of toxic household emissions are well established elsewhere in the literature. The value of this study is in its further examination of the role of social and economic factors and available fuelwood from commons in type of stove use, and additional ventilation, and their effect on household emissions. These associations are important since the two direct routes to improving household air quality among the poor are stove type and better ventilation. PMID:23056293

  17. THE IMPACT OF SHRINKING HANFORD BOUNDARIES ON PERMITS FOR TOXIC AIR POLLUTANT EMISSIONS FROM THE HANFORD 200 WEST AREA

    SciTech Connect

    JOHNSON, R.E.

    2005-11-09

    This presentation (CE-580. Graduate Seminar) presents a brief description of an approach to use a simpler dispersion modeling method (SCREEN3) in conjunction with joint frequency tables for Hanford wind conditions to evaluate the impacts of shrinking the Hanford boundaries on the current permits for facilities in the 200 West Area. To fulfill requirements for the graduate student project (CE-702. Master's Special Problems), this evaluation will be completed and published over the next two years. Air toxic emissions play an important role in environmental quality and require a state approved permit. One example relates to containers or waste that are designated as Transuranic Waste (TRU), which are required to have venting devices due to hydrogen generation. The Washington State Department of Ecology (Ecology) determined that the filters used did not meet the definition of a ''pressure relief device'' and that a permit application would have to be submitted by the Central Waste Complex (CWC) for criteria pollutant and toxic air pollutant (TAP) emissions in accordance with Washington Administrative Code (WAC) 173-400 and 173-460. The permit application submitted in 2000 to Ecology used Industrial Source Code III (ISCIII) dispersion modeling to demonstrate that it was not possible for CWC to release a sufficient quantity of fugitive Toxic Air Pollutant emissions that could exceed the Acceptable Source Impact Levels (ASILs) at the Hanford Site Boundary. The modeled emission rates were based on the diurnal breathing in and out through the vented drums (approximately 20% of the drums), using published vapor pressure, molecular weight, and specific gravity data for all 600+ compounds, with a conservative estimate of one exchange volume per day (208 liters per drum). Two permit applications were submitted also to Ecology for the Waste Receiving and Processing Facility and the T Plant Complex. Both permit applications were based on the Central Waste Complex approach, and

  18. Modeling indoor air pollution from cookstove emissions in developing countries using a Monte Carlo single-box model

    NASA Astrophysics Data System (ADS)

    Johnson, Michael; Lam, Nick; Brant, Simone; Gray, Christen; Pennise, David

    2011-06-01

    A simple Monte Carlo single-box model is presented as a first approach toward examining the relationship between emissions of pollutants from fuel/cookstove combinations and the resulting indoor air pollution (IAP) concentrations. The model combines stove emission rates with expected distributions of kitchen volumes and air exchange rates in the developing country context to produce a distribution of IAP concentration estimates. The resulting distribution can be used to predict the likelihood that IAP concentrations will meet air quality guidelines, including those recommended by the World Health Organization (WHO) for fine particulate matter (PM 2.5) and carbon monoxide (CO). The model can also be used in reverse to estimate the probability that specific emission factors will result in meeting air quality guidelines. The modeled distributions of indoor PM 2.5 concentration estimated that only 4% of homes using fuelwood in a rocket-style cookstove, even under idealized conditions, would meet the WHO Interim-1 annual PM 2.5 guideline of 35 μg m -3. According to the model, the PM 2.5 emissions that would be required for even 50% of homes to meet this guideline (0.055 g MJ-delivered -1) are lower than those for an advanced gasifier fan stove, while emissions levels similar to liquefied petroleum gas (0.018 g MJ-delivered -1) would be required for 90% of homes to meet the guideline. Although the predicted distribution of PM concentrations (median = 1320 μg m -3) from inputs for traditional wood stoves was within the range of reported values for India (108-3522 μg m -3), the model likely overestimates IAP concentrations. Direct comparison with simultaneously measured emissions rates and indoor concentrations of CO indicated the model overestimated IAP concentrations resulting from charcoal and kerosene emissions in Kenyan kitchens by 3 and 8 times respectively, although it underestimated the CO concentrations resulting from wood-burning cookstoves in India by

  19. Hanford Site radionuclide national emission standards for hazardous air pollutants registered stack source assessment

    SciTech Connect

    Davis, W.E.; Barnett, J.M.

    1994-07-01

    On February 3, 1993, the US Department of Energy, Richland Operations Office received a Compliance Order and Information Request from the Director of the Air and Toxics Division of the US Environmental Protection Agency,, Region 10. The Compliance Order requires the Richland Operations Office to evaluate all radionuclide emission points at the Hanford Site . The evaluation also determined if the effective dose equivalent from any of these stack emissions exceeded 0.1 mrem/yr, which will require the stack to have continuous monitoring. The result of this assessment identified a total of 16 stacks as having potential emissions that,would cause an effective dose equivalent greater than 0.1 mrem/yr.

  20. Potential contamination of shipboard air samples by diffusive emissions of PCBs and other organic pollutants: implications and solutions.

    PubMed

    Lohmann, Rainer; Jaward, Foday M; Durham, Louise; Barber, Jonathan L; Ockenden, Wendy; Jones, Kevin C; Bruhn, Regina; Lakaschus, Soenke; Dachs, Jordi; Booij, Kees

    2004-07-15

    Air samples were taken onboard the RRS Bransfield on an Atlantic cruise from the United Kingdom to Halley, Antarctica, from October to December 1998, with the aim of establishing PCB oceanic background air concentrations and assessing their latitudinal distribution. Great care was taken to minimize pre- and post-collection contamination of the samples, which was validated through stringent QA/QC procedures. However, there is evidence that onboard contamination of the air samples occurred,following insidious, diffusive emissions on the ship. Other data (for PCBs and other persistent organic pollutants (POPs)) and examples of shipboard contamination are presented. The implications of these findings for past and future studies of global POPs distribution are discussed. Recommendations are made to help critically appraise and minimize the problems of insidious/diffusive shipboard contamination.

  1. A comprehensive emission inventory of multiple air pollutants from iron and steel industry in China: Temporal trends and spatial variation characteristics.

    PubMed

    Wang, Kun; Tian, Hezhong; Hua, Shenbing; Zhu, Chuanyong; Gao, Jiajia; Xue, Yifeng; Hao, Jiming; Wang, Yong; Zhou, Junrui

    2016-07-15

    China has become the largest producer of iron and steel throughout the world since 1996. However, as an energy-and-pollution intensive manufacturing sector, a detailed comprehensive emission inventory of air pollutants for iron and steel industry of China is still not available. To obtain and better understand the temporal trends and spatial variation characteristics of typical hazardous air pollutants (HAPs) emissions from iron and steel production in China, a comprehensive emission inventory of multiple air pollutants, including size segregated particulate matter (TSP/PM10/PM2.5), gaseous pollutants (SO2, NOx, CO), heavy metals (Pb, Cd, Hg, As, Cr, Ni etc.), as well as the more dangerous PCDD/Fs, is established with the unit-based annual activity, specific dynamic emission factors for the historical period of 1978-2011, and the future potential trends till to 2050 are forecasted by using scenario analysis. Our results show that emissions of gaseous pollutants and particulate matter have experienced a gradual increase tendency since 2000, while emissions of priority-controlled heavy metals (Hg, Pb, As, Cd, Cr, and Ni) have exhibited a short-term fluctuation during the period of 1990 to 2005. With regard to the spatial distribution of HAPs emissions in base year 2011, Bohai economic circle is identified as the top emission intensity region where iron and steel smelting plants are densely built; within iron and steel industry, blast furnaces contribute the majority of PM emissions, sinter plants account for most of gaseous pollutants and the majority of PCDD/Fs, whereas steel making processes are responsible for the majority of heavy metal emissions. Moreover, comparisons of future emission trends under three scenarios indicate that advanced technologies and integrated whole process management strategies are in great need to further diminish various hazardous air pollutants from iron and steel industry in the future. PMID:27054489

  2. A comprehensive emission inventory of multiple air pollutants from iron and steel industry in China: Temporal trends and spatial variation characteristics.

    PubMed

    Wang, Kun; Tian, Hezhong; Hua, Shenbing; Zhu, Chuanyong; Gao, Jiajia; Xue, Yifeng; Hao, Jiming; Wang, Yong; Zhou, Junrui

    2016-07-15

    China has become the largest producer of iron and steel throughout the world since 1996. However, as an energy-and-pollution intensive manufacturing sector, a detailed comprehensive emission inventory of air pollutants for iron and steel industry of China is still not available. To obtain and better understand the temporal trends and spatial variation characteristics of typical hazardous air pollutants (HAPs) emissions from iron and steel production in China, a comprehensive emission inventory of multiple air pollutants, including size segregated particulate matter (TSP/PM10/PM2.5), gaseous pollutants (SO2, NOx, CO), heavy metals (Pb, Cd, Hg, As, Cr, Ni etc.), as well as the more dangerous PCDD/Fs, is established with the unit-based annual activity, specific dynamic emission factors for the historical period of 1978-2011, and the future potential trends till to 2050 are forecasted by using scenario analysis. Our results show that emissions of gaseous pollutants and particulate matter have experienced a gradual increase tendency since 2000, while emissions of priority-controlled heavy metals (Hg, Pb, As, Cd, Cr, and Ni) have exhibited a short-term fluctuation during the period of 1990 to 2005. With regard to the spatial distribution of HAPs emissions in base year 2011, Bohai economic circle is identified as the top emission intensity region where iron and steel smelting plants are densely built; within iron and steel industry, blast furnaces contribute the majority of PM emissions, sinter plants account for most of gaseous pollutants and the majority of PCDD/Fs, whereas steel making processes are responsible for the majority of heavy metal emissions. Moreover, comparisons of future emission trends under three scenarios indicate that advanced technologies and integrated whole process management strategies are in great need to further diminish various hazardous air pollutants from iron and steel industry in the future.

  3. Regional differences in major carbon emissions observed during FRAPPE (Front Range Air Pollution Photochemical Experiment) and WINTER (Wintertime Investigation of Transport, Emissions, and Reactivity) experiments

    NASA Astrophysics Data System (ADS)

    Stell, M. H.; Campos, T. L.

    2015-12-01

    Sampling of coal powered power plant emission plumes during two NCAR airborne field campaigns using the NSF NCAR C-130, FRAPPE (Front Range Air Pollution Photochemical Experiment) and WINTER (Wintertime Investigation of Transport, Emissions, and Reactivity) revealed different plume composition in different areas of the continental United States. The FRAPPE campaign sampled along the Colorado Front Range and the WINTER campaign, based out of Virginia sampled along the East Coast. Analysis of the relative production of the three major carbon species, carbon dioxide, carbon monoxide, and methane from power plant plumes sampled in both these campaigns will be compared to the emissions reported to the EPA by the power plants. Regional differences will be highlighted. Spatial distribution of the pollution plume will also be presented, looking at factors such as topographic barriers, and meteorological phenomena such as subsidence and wind advection. This analysis will take into account experimental condition differences such as the summer versus winter sampling and night/day.

  4. The Impact of Individual Anthropogenic Emissions Sectors on the Global Burden of Human Mortality due to Ambient Air Pollution

    PubMed Central

    Silva, Raquel A.; Adelman, Zachariah; Fry, Meridith M.; West, J. Jason

    2016-01-01

    Background: Exposure to ozone and fine particulate matter (PM2.5) can cause adverse health effects, including premature mortality due to cardiopulmonary diseases and lung cancer. Recent studies quantify global air pollution mortality but not the contribution of different emissions sectors, or they focus on a specific sector. Objectives: We estimated the global mortality burden of anthropogenic ozone and PM2.5, and the impact of five emissions sectors, using a global chemical transport model at a finer horizontal resolution (0.67° × 0.5°) than previous studies. Methods: We performed simulations for 2005 using the Model for Ozone and Related Chemical Tracers, version 4 (MOZART-4), zeroing out all anthropogenic emissions and emissions from specific sectors (All Transportation, Land Transportation, Energy, Industry, and Residential and Commercial). We estimated premature mortality using a log-linear concentration–response function for ozone and an integrated exposure–response model for PM2.5. Results: We estimated 2.23 (95% CI: 1.04, 3.33) million deaths/year related to anthropogenic PM2.5, with the highest mortality in East Asia (48%). The Residential and Commercial sector had the greatest impact globally—675 (95% CI: 428, 899) thousand deaths/year—and in most regions. Land Transportation dominated in North America (32% of total anthropogenic PM2.5 mortality), and it had nearly the same impact (24%) as Residential and Commercial (27%) in Europe. Anthropogenic ozone was associated with 493 (95% CI: 122, 989) thousand deaths/year, with the Land Transportation sector having the greatest impact globally (16%). Conclusions: The contributions of emissions sectors to ambient air pollution–related mortality differ among regions, suggesting region-specific air pollution control strategies. Global sector-specific actions targeting Land Transportation (ozone) and Residential and Commercial (PM2.5) sectors would particularly benefit human health. Citation: Silva RA

  5. Investigating Air Pollution

    ERIC Educational Resources Information Center

    Carter, Edward J.

    1977-01-01

    Describes an experiment using live plants and cigarette smoke to demonstrate the effects of air pollution on a living organism. Procedures include growth of the test plants in glass bottles, and construction and operation of smoking machine. (CS)

  6. AIR POLLUTION CONTROL TECHNOLOGIES

    EPA Science Inventory

    This is a chapter for John Wiley & Son's Mechanical Engineers' Handbook, and covers issues involving air pollution control. Various technologies for controlling sulfur oxides is considered including fuel desulfurization. It also considers control of nitrogen oxides including post...

  7. Air toxic emissions from the combustion of coal: Identifying and quantifying hazardous air pollutants from US coals

    SciTech Connect

    Szpunar, C.B.

    1992-09-01

    This report addresses the key air toxic emissions likely to emanate from continued and expanded use of domestic coal. It identifies and quantifies those trace elements specified in the US 1990 Clean Air Act Amendments, by tabulating selected characterization data on various source coals by region, state, and rank. On the basis of measurements by various researchers, this report also identifies those organic compounds likely to be derived from the coal combustion process (although their formation is highly dependent on specific boiler configurations and operating conditions).

  8. Sensitivity of hazardous air pollutant emissions to the combustion of blends of petroleum diesel and biodiesel fuel

    NASA Astrophysics Data System (ADS)

    Magara-Gomez, Kento T.; Olson, Michael R.; Okuda, Tomoaki; Walz, Kenneth A.; Schauer, James J.

    2012-04-01

    Emission rates and composition of known hazardous air pollutants in the exhaust gas from a commercial agriculture tractor, burning a range of biodiesel blends operating at two different load conditions were investigated to better understand the emission characteristics of biodiesel fuel. Ultra-Low Sulfur Petroleum Diesel (ULSD) fuel was blended with soybean oil and beef tallow based biodiesel to examine fuels containing 0% (B0), 50% (B50) and 100% (B100) soybean oil based biodiesel, and 50% (B50T) and 100% (B100T) beef tallow biodiesel. Samples were collected using a dilution source sampler to simulate atmospheric dilution. Particulate matter and exhaust gases were analyzed for carbonyls, Volatile Organic Compounds (VOCs), and Polycyclic Aromatic Hydrocarbons (PAHs) to determine their respective emission rates. This analysis is focused on the emissions of organic compounds classified by the US EPA as air toxics and include 2,2,4 trimethylpentane, benzene, toluene, ethylbenzene, m-, p- and o-xylene, formaldehyde, acetaldehyde and methylethyl ketone. Emission rates of 2,2,4 trimethylpentane, toluene, ethylbenzene, m-, p- and o-xylene decreased more than 90% for B50, B100 and B100T blends; decreases in emission rates of benzene, formaldehyde and acetaldehyde were more modest, producing values between 23 and 67%, and methyl ethyl ketone showed decreases not exceeding 7% for the studied biodiesel blends. PAHs emission rates were reduced by 66% for B50, 84% for B100, and by 89% for B100T. The overall emissions of toxic organic compounds were calculated and expressed as benzene equivalents. The largest contributors of toxic risk were found to be formaldehyde and acetaldehyde. Reductions in formaldehyde emissions were 23% for B50 and 42% for B100 soybean, and 40% for B100T beef tallow compared to B0. Similarly, acetaldehyde reductions were 34% for B50 and 53% for B100 soybean biodiesel and 42% for B100T beef tallow biodiesel.

  9. Sensitivity of air pollution simulations with LOTOS-EUROS to the temporal distribution of anthropogenic emissions

    NASA Astrophysics Data System (ADS)

    Mues, A.; Kuenen, J.; Hendriks, C.; Manders, A.; Segers, A.; Scholz, Y.; Hueglin, C.; Builtjes, P.; Schaap, M.

    2014-01-01

    In this study the sensitivity of the model performance of the chemistry transport model (CTM) LOTOS-EUROS to the description of the temporal variability of emissions was investigated. Currently the temporal release of anthropogenic emissions is described by European average diurnal, weekly and seasonal time profiles per sector. These default time profiles largely neglect the variation of emission strength with activity patterns, region, species, emission process and meteorology. The three sources dealt with in this study are combustion in energy and transformation industries (SNAP1), nonindustrial combustion (SNAP2) and road transport (SNAP7). First of all, the impact of neglecting the temporal emission profiles for these SNAP categories on simulated concentrations was explored. In a second step, we constructed more detailed emission time profiles for the three categories and quantified their impact on the model performance both separately as well as combined. The performance in comparison to observations for Germany was quantified for the pollutants NO2, SO2 and PM10 and compared to a simulation using the default LOTOS-EUROS emission time profiles. The LOTOS-EUROS simulations were performed for the year 2006 with a temporal resolution of 1 h and a horizontal resolution of approximately 25 × 25km2. In general the largest impact on the model performance was found when neglecting the default time profiles for the three categories. The daily average correlation coefficient for instance decreased by 0.04 (NO2), 0.11 (SO2) and 0.01 (PM10) at German urban background stations compared to the default simulation. A systematic increase in the correlation coefficient is found when using the new time profiles. The size of the increase depends on the source category, component and station. Using national profiles for road transport showed important improvements in the explained variability over the weekdays as well as the diurnal cycle for NO2. The largest impact of the SNAP1

  10. Sensitivity of air pollution simulations with LOTOS-EUROS to temporal distribution of anthropogenic emissions

    NASA Astrophysics Data System (ADS)

    Mues, A.; Kuenen, J.; Hendriks, C.; Manders, A.; Segers, A.; Scholz, Y.; Hueglin, C.; Builtjes, P.; Schaap, M.

    2013-07-01

    In this study the sensitivity of the model performance of the chemistry transport model (CTM) LOTOS-EUROS to the description of the temporal variability of emissions was investigated. Currently the temporal release of anthropogenic emissions is described by European average diurnal, weekly and seasonal time profiles per sector. These default time profiles largely neglect the variation of emission strength with activity patterns, region, species, emission process and meteorology. The three sources dealt with in this study are combustion in energy and transformation industries (SNAP1), non-industrial combustion (SNAP2) and road transport (SNAP7). First the impact of neglecting the temporal emission profiles for these SNAP categories on simulated concentrations was explored. In a~second step, we constructed more detailed emission time profiles for the three categories and quantified their impact on the model performance separately as well as combined. The performance in comparison to observations for Germany was quantified for the pollutants NO2, SO2 and PM10 and compared to a simulation using the default LOTOS-EUROS emission time profiles. In general the largest impact on the model performance was found when neglecting the default time profiles for the three categories. The daily average correlation coefficient for instance decreased by 0.04 (NO2), 0.11 (SO2) and 0.01 (PM10) at German urban background stations compared to the default simulation. A systematic increase of the correlation coefficient is found when using the new time profiles. The size of the increase depends on the source category, the component and station. Using national profiles for road transport showed important improvements of the explained variability over the weekdays as well as the diurnal cycle for NO2. The largest impact of the SNAP1 and 2 profiles were found for SO2. When using all new time profiles simultaneously in one simulation the daily average correlation coefficient increased by 0

  11. Air Pollution Surveillance Systems

    ERIC Educational Resources Information Center

    Morgan, George B.; And Others

    1970-01-01

    Describes atmospheric data monitoring as part of total airpollution control effort. Summarizes types of gaseous, liquid and solid pollutants and their sources; contrast between urban and rural environmental air quality; instrumentation to identify pollutants; and anticipated new non-wet chemical physical and physiochemical techniques tor cetection…

  12. Estimation of air pollutant emission loads from construction and operational activities of a port and harbour in Mumbai, India.

    PubMed

    Joseph, Joshy; Patil, R S; Gupta, S K

    2009-12-01

    Port causes environmental and health concerns in coastal cities if its operation and development are not made environmentally compatible and sustainable. An emission inventory is necessary to assess the impact of port projects or growth in marine activity as well as to plan mitigation strategies. In this study, a detailed emission inventory of total suspended particulate (TSP) matter, respirable particulate matter (PM(10)), sulphur dioxide (SO(2)) and oxides of nitrogen (NO(x)) for a port having operation and construction activities in parallel is compiled. The study has been done for 1 year. Results show that the maximum contribution of emission of air pollutants in the port area was from TSP (68.5%) and the minimum was from SO(2) (5.3%) to the total pollutants considered in this study. Total TSP emission from all activities of the port was 4,452 tyr(-1) and PM(10) emission was 903 tyr(-1) in the year 2006. Re-suspension of dust from paved roads was the major contributor of TSP and PM(10) in the road transport sector. Construction activities of the port had contributed 3.9% of TSP and 7.4% of PM(10) to total emission of particulate matter. Of the total particulate emissions from various port activities approximately 20% of TSP could be attributed to PM(10). The sectoral composition indicates that major contribution of SO(2) emission in the port was from maritime sector and major contribution of NO(x) was from road transport sector. PMID:19030999

  13. Air pollution from a large steel factory: polycyclic aromatic hydrocarbon emissions from coke-oven batteries

    SciTech Connect

    Lorenzo Liberti; Michele Notarnicola; Roberto Primerano; Paolo Zannetti

    2006-03-15

    A systematic investigation of solid and gaseous atmospheric emissions from some coke-oven batteries of one of Europe's largest integrated steel factory (Taranto, Italy) has been carried out. These emissions, predominantly diffuse, originate from oven leakages, as well as from cyclic operations of coal loading and coke unloading. In air monitoring samples, polycyclic aromatic hydrocarbons (PAHs) were consistently detected at concentrations largely exceeding threshold limit values. By means of PAHs speciation profile and benzo-(a)pyrene (BaP) equivalent dispersion modeling from diffuse sources, the study indicated that serious health risks exist not only in working areas, but also in a densely populated residential district near the factory. 30 refs., 5 figs., 3 tabs.

  14. Regional-scale transport of air pollutants: impacts of Southern California emissions on Phoenix ground-level ozone concentrations

    NASA Astrophysics Data System (ADS)

    Li, J.; Georgescu, M.; Hyde, P.; Mahalov, A.; Moustaoui, M.

    2015-08-01

    In this study, WRF-Chem is utilized at high resolution (1.333 km grid spacing for the innermost domain) to investigate impacts of southern California anthropogenic emissions (SoCal) on Phoenix ground-level ozone concentrations ([O3]) for a pair of recent exceedance episodes. First, WRF-Chem control simulations, based on the US Environmental Protection Agency (EPA) 2005 National Emissions Inventories (NEI05), are conducted to evaluate model performance. Compared with surface observations of hourly ozone, CO, NOX, and wind fields, the control simulations reproduce observed variability well. Simulated [O3] are comparable with the previous studies in this region. Next, the relative contribution of SoCal and Arizona local anthropogenic emissions (AZ) to ozone exceedances within the Phoenix metropolitan area is investigated via a trio of sensitivity simulations: (1) SoCal emissions are excluded, with all other emissions as in Control; (2) AZ emissions are excluded with all other emissions as in Control; and (3) SoCal and AZ emissions are excluded (i.e., all anthropogenic emissions are eliminated) to account only for Biogenic emissions and lateral boundary inflow (BILB). Based on the USEPA NEI05, results for the selected events indicate the impacts of AZ emissions are dominant on daily maximum 8 h average (DMA8) [O3] in Phoenix. SoCal contributions to DMA8 [O3] for the Phoenix metropolitan area range from a few ppbv to over 30 ppbv (10-30 % relative to Control experiments). [O3] from SoCal and AZ emissions exhibit the expected diurnal characteristics that are determined by physical and photochemical processes, while BILB contributions to DMA8 [O3] in Phoenix also play a key role. Finally, ozone transport processes and pathways within the lower troposphere are investigated. During daytime, pollutants (mainly ozone) near the Southern California coasts are pumped into the planetary boundary-layer over the Southern California desert through the mountain chimney and pass

  15. Air Pollution Primer.

    ERIC Educational Resources Information Center

    National Tuberculosis and Respiratory Disease Association, New York, NY.

    As the dangers of polluted air to the health and welfare of all individuals became increasingly evident and as the complexity of the causes made responsibility for solutions even more difficult to fix, the National Tuberculosis and Respiratory Disease Association felt obligated to give greater emphasis to its clean air program. To this end they…

  16. Updated greenhouse gas and criteria air pollutant emission factors and their probability distribution functions for electricity generating units

    SciTech Connect

    Cai, H.; Wang, M.; Elgowainy, A.; Han, J.

    2012-07-06

    Greenhouse gas (CO{sub 2}, CH{sub 4} and N{sub 2}O, hereinafter GHG) and criteria air pollutant (CO, NO{sub x}, VOC, PM{sub 10}, PM{sub 2.5} and SO{sub x}, hereinafter CAP) emission factors for various types of power plants burning various fuels with different technologies are important upstream parameters for estimating life-cycle emissions associated with alternative vehicle/fuel systems in the transportation sector, especially electric vehicles. The emission factors are typically expressed in grams of GHG or CAP per kWh of electricity generated by a specific power generation technology. This document describes our approach for updating and expanding GHG and CAP emission factors in the GREET (Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation) model developed at Argonne National Laboratory (see Wang 1999 and the GREET website at http://greet.es.anl.gov/main) for various power generation technologies. These GHG and CAP emissions are used to estimate the impact of electricity use by stationary and transportation applications on their fuel-cycle emissions. The electricity generation mixes and the fuel shares attributable to various combustion technologies at the national, regional and state levels are also updated in this document. The energy conversion efficiencies of electric generating units (EGUs) by fuel type and combustion technology are calculated on the basis of the lower heating values of each fuel, to be consistent with the basis used in GREET for transportation fuels. On the basis of the updated GHG and CAP emission factors and energy efficiencies of EGUs, the probability distribution functions (PDFs), which are functions that describe the relative likelihood for the emission factors and energy efficiencies as random variables to take on a given value by the integral of their own probability distributions, are updated using best-fit statistical curves to characterize the uncertainties associated with GHG and CAP emissions in life

  17. Regional-scale transport of air pollutants: impacts of southern California emissions on Phoenix ground-level ozone concentrations

    NASA Astrophysics Data System (ADS)

    Li, J.; Georgescu, M.; Hyde, P.; Mahalov, A.; Moustaoui, M.

    2015-03-01

    In this study, WRF-Chem is utilized at high-resolution (1.333 km grid spacing for the innermost domain) to investigate impacts of southern California anthropogenic emissions (SoCal) on Phoenix ground-level ozone concentrations ([O3]) for a pair of recent exceedance episodes. First, WRF-Chem Control simulations are conducted to evaluate model performance. Compared with surface observations of hourly ozone, CO, NOx, and wind fields, the Control simulations reproduce observed variability well. Simulated [O3] are within acceptance ranges recommended by the Environmental Protection Agency (EPA) that characterize skillful experiments. Next, the relative contribution of SoCal and Arizona local anthropogenic emissions (AZ) to ozone exceedance within the Phoenix metropolitan area is investigated via a trio of sensitivity simulations: (1) SoCal emissions are excluded, with all other emissions as in Control; (2) AZ emissions are excluded with all other emissions as in Control; and (3) SoCal and AZ emissions are excluded (i.e., all anthropogenic emissions are eliminated) to account only for biogenic emissions [BEO]. Results for the selected events indicate the impacts of AZ emissions are dominant on daily maximum 8 h average (DMA8) [O3] in Phoenix. SoCal contributions to DMA8 [O3] for the Phoenix metropolitan area range from a few ppbv to over 30 ppbv (10-30% relative to Control experiments). [O3] from SoCal and AZ emissions exhibit the expected diurnal characteristics that are determined by physical and photochemical processes, while BEO contributions to DMA8 [O3] in Phoenix also play a key role. Finally, ozone transport processes and pathways within the lower troposphere are investigated. During daytime, pollutants (mainly ozone) near the southern California coasts are pumped into the planetary boundary-layer over the southern California desert through the mountain chimney and pass channel effects, aiding eastward transport along the desert air basins in southern California

  18. Roadside BTEX and other gaseous air pollutants in relation to emission sources

    NASA Astrophysics Data System (ADS)

    Truc, Vo Thi Quynh; Kim Oanh, Nguyen Thi

    Hourly concentrations of benzene, toluene, ethylbenzene, m, p-xylenes, and o-xylene (BTEX) plus CO, NO x, SO 2 were monitored at roadsides simultaneously with the traffic volume during the dry season of 2004, in Hanoi, Vietnam. The selected three streets included Truong Chinh (TC) with high traffic volume, Dien Bien Phu (DBP) with low traffic volume, and Nguyen Trai (NT) with high traffic volume running through an industrial estate. BTEX were sampled by SKC charcoal tubes and analyzed by GC-FID. Geometric means of hourly benzene, toluene, ethylbenzene, m, p-xylenes and o-xylene are, respectively, 65, 62, 15, 43, and 22 μg m -3 in TC street; 30, 38, 9, 26, and 13 μg m -3 in DBP street; and 123, 87, 24, 56, and 30 μg m -3 in NT street. Levels of other gaseous pollutants including CO, NO x, and SO 2, measured by automatic instruments, were low and not exceeding the Vietnam national ambient air quality standards. BTEX levels were comparatively analyzed for different downwind distances (3-50 m) from the street, between peak hours and off-peak hours, as well as between weekdays and weekend. Results of principal component analysis suggest that the gaseous pollutants are associated with different vehicle types.

  19. Assessment of Volatile Organic Compound and Hazardous Air Pollutant Emissions from Oil and Natural Gas Well Pads using Mobile Remote and On-site Direct Measurements

    EPA Science Inventory

    Emissions of volatile organic compounds (VOC) and hazardous air pollutants (HAP) from oil and natural gas production were investigated using direct measurements of component-level emissions on well pads in the Denver-Julesburg (DJ) Basin and remote measurements of production pad-...

  20. Regional air pollution over Malaysia

    NASA Astrophysics Data System (ADS)

    Krysztofiak, G.; Catoire, V.; Dorf, M.; Grossmann, K.; Hamer, P. D.; Marécal, V.; Reiter, A.; Schlager, H.; Eckhardt, S.; Jurkat, T.; Oram, D.; Quack, B.; Atlas, E.; Pfeilsticker, K.

    2012-12-01

    During the SHIVA (Stratospheric Ozone: Halogen Impacts in a Varying Atmosphere) campaign in Nov. and Dec. 2011 a number of polluted air masses were observed in the marine and terrestrial boundary layer (0 - 2 km) and in the free troposphere (2 - 12 km) over Borneo/Malaysia. The measurements include isoprene, CO, CO2, CH4, N2O, NO2, SO2 as primary pollutants, O3 and HCHO as secondary pollutants, and meteorological parameters. This set of trace gases can be used to fingerprint different sources of local and regional air pollution (e.g., biomass burning and fossil fuel burning, gas flaring on oil rigs, emission of ships and from urban areas, volcanic emissions, and biogenic emissions). Individual sources and location can be identified when the measurements are combined with a nested-grid regional scale chemical and meteorological model and lagrangian particle dispersion model (e.g., CCATT-BRAMS and FLEXPART). In the case of the former, emission inventories of the primary pollutants provide the basis for the trace gas simulations. In this region, the anthropogenic influence on air pollution seems to dominate over natural causes. For example, CO2 and CH4 often show strong correlations with CO, suggesting biomass burning or urban fossil fuel combustion dominates the combustion sources. The study of the CO/CO2 and CH4/CO ratios can help separate anthropogenic combustion from biomass burning pollution sources. In addition, these ratios can be used as a measure of combustion efficiency to help place the type of biomass burning particular to this region within the wider context of fire types found globally. On several occasions, CH4 enhancements are observed near the ocean surface, which are not directly correlated with CO enhancements thus indicating a non-combustion-related CH4 source. Positive correlations between SO2 and CO show the anthropogenic influence of oil rigs located in the South China Sea. Furthermore, SO2 enhancements are observed without any increase in CO

  1. Rising critical emission of air pollutants from renewable biomass based cogeneration from the sugar industry in India

    NASA Astrophysics Data System (ADS)

    Sahu, S. K.; Ohara, T.; Beig, G.; Kurokawa, J.; Nagashima, T.

    2015-09-01

    In the recent past, the emerging India economy is highly dependent on conventional as well as renewable energy to deal with energy security. Keeping the potential of biomass and its plentiful availability, the Indian government has been encouraging various industrial sectors to generate their own energy from it. The Indian sugar industry has adopted and made impressive growth in bagasse (a renewable biomass, i.e. left after sugercane is crushed) based cogeneration power to fulfil their energy need, as well as to export a big chunk of energy to grid power. Like fossil fuel, bagasse combustion also generates various critical pollutants. This article provides the first ever estimation, current status and overview of magnitude of air pollutant emissions from rapidly growing bagasse based cogeneration technology in Indian sugar mills. The estimated emission from the world’s second largest sugar industry in India for particulate matter, NOX, SO2, CO and CO2 is estimated to be 444 ± 225 Gg yr-1, 188 ± 95 Gg yr-1, 43 ± 22 Gg yr-1, 463 ± 240 Gg yr-1 and 47.4 ± 9 Tg yr-1, respectively in 2014. The studies also analyze and identify potential hot spot regions across the country and explore the possible further potential growth for this sector. This first ever estimation not only improves the existing national emission inventory, but is also useful in chemical transport modeling studies, as well as for policy makers.

  2. Air pollution from gas flaring: new emission factor estimates and detection in a West African aerosol remote-sensing climatology

    NASA Astrophysics Data System (ADS)

    MacKenzie, Rob; Fawole, Olusegun Gabriel; Levine, James; Cai, Xiaoming

    2016-04-01

    Gas flaring, the disposal of gas through stacks in an open-air flame, is a common feature in the processing of crude oil, especially in oil-rich regions of the world. Gas flaring is a prominent source of volatile organic compounds (VOCs), polycyclic aromatic hydrocarbons (PAH), CO, CO2, nitrogen oxides (NOx), SO2 (in "sour" gas only), and soot (black carbon), as well as the release of locally significant amounts of heat. The rates of emission of these pollutants from gas flaring depend on a number of factors including, but not limited to, fuel composition and quantity, stack geometry, flame/combustion characteristics, and prevailing meteorological conditions. Here, we derive new estimated emission factors (EFs) for carbon-containing pollutants (excluding PAH). The air pollution dispersion model, ADMS5, is used to simulate the dispersion of the pollutants from flaring stacks in the Niger delta. A seasonal variation of the dispersion pattern of the pollutant within a year is studied in relation to the movements of the West Africa Monsoon (WAM) and other prevailing meteorological factors. Further, we have clustered AERONET aerosol signals using trajectory analysis to identify dominant aerosol sources at the Ilorin site in West Africa (4.34 oE, 8.32 oN). A 10-year trajectory-based analysis was undertaken (2005-2015, excluding 2010). Of particular interest are air masses that have passed through the gas flaring region in the Niger Delta area en-route the AERONET site. 7-day back trajectories were calculated using the UK Universities Global Atmospheric Modelling Programme (UGAMP) trajectory model which is driven by analyses from the European Centre for Medium-Range Weather Forecasts (ECMWF). From the back-trajectory calculations, dominant sources are identified, using literature classifications: desert dust (DD); Biomass burning (BB); and Urban-Industrial (UI). We use a combination of synoptic trajectories and aerosol optical properties to distinguish a fourth source

  3. Particulate Air Pollution: The Particulars

    ERIC Educational Resources Information Center

    Murphy, James E.

    1973-01-01

    Describes some of the causes and consequences of particulate air pollution. Outlines the experimental procedures for measuring the amount of particulate materials that settles from the air and for observing the nature of particulate air pollution. (JR)

  4. A novel approach to produce road-level inventories of on-road greenhouse gas and air pollutant emissions

    NASA Astrophysics Data System (ADS)

    Powell, J.; Butenhoff, C. L.

    2015-12-01

    Emissions inventories are an important tool often built by governments tomanage and assess greenhouse gases and other air pollutants. High resolutioninventories, both in space and time, are necessary to capture localcharacteristics of on-road transportation emissions in particular. Emissionsvary widely due to the local nature of the fleet, fuel, and roads and thisheterogeneity must inform effective emissions modeling on the urban level. Inaddition, widespread availability of low-cost computing now makes highresolution climate and air quality modeling feasible, but efforts to improveinventories have not kept pace. There currently is a lack of inventories atcomparable resolutions. This motivated similar work such as the VULCAN projectwhich used county-level data to estimate on-road emissions. We are motivatedto improve upon this by using site-level traffic count data where available.Here we show a new high resolution model of CO2 emissions for the Portland,OR metropolitan region. The backbone is an archive of traffic counterrecordings taken by the Portland Bureau of Transportation intermittently at9,352 sites over 21 years and continuing today (1986-2006 data are summarizedhere) and by The Portland Regional Transportation Archive Listing at 309freeway sites. We constructed a regression model to fill in traffic networkgaps using GIS data such as road class and population density. After stepwisetesting of each of eighteen road classes (from minor streets to freeway), wewere able to select ten variables that are significant (P < 0.001) predictorsof traffic; particularly freeway, unimproved road, and minor streets. Themodel was tested by holding back one-third of the data. The R2 for the linearmodel (based on road class and land use) is 0.84. The EPA MOVES model was thenused to estimate transportation CO2 emissions using local fleet, traffic, andmeteorology data.

  5. Assessing the long term impact of power plant emissions on regional air pollution using extensive monitoring data.

    PubMed

    Yuval; Broday, David M

    2009-02-01

    In spite of the recent increasing interest in energy production from renewable sources, polluting hydrocarbon-fueled power plants will continue to provide most of the electricity to the world's population in the coming decades. This work studies the long term impact on the regional ambient air which can be attributable to three plants with different power outputs, fuel types, and stack heights. The study is carried out in an area with relatively flat topography and typical coastal meteorology. A dense air pollution monitoring network, operating for many years, makes this area a real life laboratory for studying the pollution routes, the impact of the sources at different directions and distances, and the effects of transition to cleaner fuel. The direct impact of each of the two large power plants on the ambient SO2 levels could be clearly detected in most of the monitoring stations at distances up to 40 km away. Interestingly, a relatively large impact can also be attributed to the indirect effect of emissions that are recirculated back to the region with the land breeze. The transition from using fuel oil to natural gas in one of the large power plants resulted in a dramatic reduction in the mean SO2 levels in all of the monitoring stations. The contribution of the industrial emissions to the ambient NO2 levels seems to be very modest relative to that from traffic. An analysis of the NO, NO2 and O3 records suggests that the highest mean NO2 concentrations, and a large proportion of the total NO2 encountered in the study area, are probably due to recirculated NOx emitted by traffic in a densely populated region north of it. PMID:19216124

  6. Assessing the long term impact of power plant emissions on regional air pollution using extensive monitoring data.

    PubMed

    Yuval; Broday, David M

    2009-02-01

    In spite of the recent increasing interest in energy production from renewable sources, polluting hydrocarbon-fueled power plants will continue to provide most of the electricity to the world's population in the coming decades. This work studies the long term impact on the regional ambient air which can be attributable to three plants with different power outputs, fuel types, and stack heights. The study is carried out in an area with relatively flat topography and typical coastal meteorology. A dense air pollution monitoring network, operating for many years, makes this area a real life laboratory for studying the pollution routes, the impact of the sources at different directions and distances, and the effects of transition to cleaner fuel. The direct impact of each of the two large power plants on the ambient SO2 levels could be clearly detected in most of the monitoring stations at distances up to 40 km away. Interestingly, a relatively large impact can also be attributed to the indirect effect of emissions that are recirculated back to the region with the land breeze. The transition from using fuel oil to natural gas in one of the large power plants resulted in a dramatic reduction in the mean SO2 levels in all of the monitoring stations. The contribution of the industrial emissions to the ambient NO2 levels seems to be very modest relative to that from traffic. An analysis of the NO, NO2 and O3 records suggests that the highest mean NO2 concentrations, and a large proportion of the total NO2 encountered in the study area, are probably due to recirculated NOx emitted by traffic in a densely populated region north of it.

  7. National Emission Standard for Hazardous Air Pollutants compliance verification plan for the K-1435 Toxic Substances Control Act Incinerator

    SciTech Connect

    Ambrose, M.L.

    1986-07-28

    This documentation was prepared for submittal to the Environmental Protection Agency (EPA) in order to meet the requirements of the National Emissions Standards for Hazardous Air Pollutants (NESHAP). This document will emphasize the control of radioactive emissions from the K-1435 Toxic Substances Control Act (TSCA) Incinerator. The TSCA Incinerator is a dual purpose solid/liquid incinerator that is under construction at the Oak Ridge Gaseous Diffusion Plant to destroy radioactively contaminated polychlorinated biphenyls (PCBs) and other hazardous organic wastes in compliance with the TSCA and the Resource Conservation and Recovery Act (RCRA). These wastes are generated at the facilities managed by the Department of Energy, Oak Ridge Operations (DOE-ORO). Destruction of the PCBs and the hazardous organic wastes will be accomplished in a rotary kiln incinerator with an afterburner. The incinerator will thermally destroy the organic constituents of the liquids, solids, and sludges to produce an organically inert ash. In addition to the incinerator, an extensive off-gas treatment facility is being constructed to remove particulate and acidic gas air emissions.

  8. Regulating emission of air pollutants for near-term relief from global warming

    NASA Astrophysics Data System (ADS)

    Ramanathan, V.; Xu, Y.

    2011-12-01

    The manmade greenhouse gases that are now blanketing the planet is thick enough to warm the system beyond the 20C threshold. Even with a targeted reduction in CO2 emission of 50% by 2050, we will still be adding more than 50 ppm of CO2 and add another 10C to the warming. Fortunately, there are still ways to contain the warming by reducing non-CO2 climate warmers (methane, lower atmosphere ozone, black carbon and HFCs), using available and field tested technologies. The major advantage of going for these 'low-hanging fruits' is that this approach will clean up the air and improve health and food security of south and east Asia, thus engaging developing nations more effectively in climate negotiations. These non-CO2 mitigation actions will have significant (beneficial) impacts on the chemistry, clouds and precipitation of the atmosphere and these have to be quantified adequately. For example, reducing black and organic carbon emissions (through cleaner cooking technologies in developing countries) will also lead to significant reductions in carbon monoxide, which is an ozone precursor. The institutional infrastructure for reducing non-CO2 climate warmers already exist and have a proven track record for successful climate mitigation.

  9. Enhanced formation of secondary air pollutants and aggravation of urban smog due to crop residue burning emissions in North India

    NASA Astrophysics Data System (ADS)

    Sarkar, Chinmoy; Kumar, Vinod; Sinha, Vinayak

    2013-04-01

    Biomass burning causes intense perturbations to regional atmospheric chemistry and air quality and is a significant global source of reactive pollutants to the atmosphere (Andreae and Merlet, 2001). In November 2012, large areas in North India including New Delhi experienced several weeks of aggravated smog and poor air quality due to the impact of crop residue burning, which is a biannual post harvest activity that occurs during Oct-Nov and April-May every year in the agricultural belts of North western India. In-situ high temporal resolution (1 measurement every minute) measurements of a suite of volatile organic compounds measured using proton transfer reaction mass spectrometry (PTR-MS) such as acetonitrile (biomass burning tracer) and aromatic hydrocarbons were performed simultaneously with carbon monoxide, nitrogen oxides, ozone and aerosol mass concentrations (PM 2.5 and PM 10) at a suburban site (30.667°N, 76.729°E and 310 m asl), impacted by air masses that had passed over the burning fields less than 72 hours ago. By using data from the same season but before the post harvest crop residue burning activity had commenced, we were able to quantify enhancements in ambient levels of the measured species due to the crop residue burning activity. When air masses influenced by the fire emissions reached the measurement site, peak values of about 8 ppbV acetonitrile, 4 ppmV CO, 100 ppbV NOx , 30 ppbV toluene and 15 ppbV benzene were observed which represented a factor of 2-5 increase over their ambient levels in the non-fire influenced period. Emission ratios of aromatic hydrocarbons/CO also showed a marked increase. Non fire event (N.F. E.) influenced and fire event (F.E.) influenced air masses had the following emission ratio enhancements: benzene/CO (N.F.E = 3; F.E. = 5), toluene/CO (N.F.E = 4; F.E. = 8.7) and sum of C8 aromatics/CO (N.F.E = 4; F.E. = 7.3) and sum of C9 aromatics/CO (N.F.E = 2.6; F.E. = 3.4). The OH reactivity of air masses which has strong

  10. Geothermal ground gas emissions and indoor air pollution in Rotorua, New Zealand.

    PubMed

    Durand, Michael; Scott, Bradley J

    2005-06-01

    The emission of toxic gases from the soil is a hazard in geothermal regions that are also urbanized because buildings constructed on geothermal ground may be subject to the ingress of gases from the soil directly into the structure. The Rotorua geothermal field, New Zealand, is extensively urbanized but to date no studies have evaluated the extent of the ground gas hazard. The main gases emitted are hydrogen sulphide (H2S) and carbon dioxide (CO2), both of which are highly toxic and denser than air. This paper reports preliminary findings from a study of selected buildings constructed in the gas anomaly area. Properties were investigated for evidence of ingress by H2S, CO2, and 222Rn, with a view to determine the means and rates of gas entry and the nature of any consequent hazard. H2S and CO2 were investigated using infrared active gas analysers and passive detector tubes left in place for 10-48 h. 222Rn was measured over a period of 3 months by poly-allyl diglycol carbonate sensors. Eight of the nine buildings studied were found to suffer problems with soil gases entering the indoor air through the structure. The primary means of gas entry was directly from the ground through the floors, walls, and subsurface pipes. Indoor vents were located and found emitting up to approximately 200 ppm H2S and approximately 15% CO2, concentrations high enough to present an acute respiratory hazard to persons close to the vent (e.g., children playing at floor level). In some properties, gas problems occurred despite preventative measures having been made during construction or during later renovations. Typically, these measures include the under-laying of concrete floors with a gas-proof butanol seal, under-floor ventilation systems or the installation of positive-pressure air conditioning. Recently constructed buildings (<10 years) with butanol seals were nevertheless affected by ground gas emissions, and we conclude that such measures are not always effective in the long term

  11. Spatially- and Temporally-Resolved Measurements of Roadway Air Pollution Using a Zero-Emission Electric Vehicle

    EPA Science Inventory

    Vehicle-related air pollution has an intrinsically dynamic nature. Recent field measurements and modeling work have demonstrated that near-road topography may modify levels of air pollutants reaching populations residing and working in close proximity to roadways. However, the ma...

  12. Pupils' Understanding of Air Pollution

    ERIC Educational Resources Information Center

    Dimitriou, Anastasia; Christidou, Vasilia

    2007-01-01

    This paper reports on a study of pupils' knowledge and understanding of atmospheric pollution. Specifically, the study is aimed at identifying: 1) the extent to which pupils conceptualise the term "air pollution" in a scientifically appropriate way; 2) pupils' knowledge of air pollution sources and air pollutants; and 3) pupils' knowledge of air…

  13. Evaluating sources of indoor air pollution

    SciTech Connect

    Tichenor, B.A.; Sparks, L.A.; White, J.B.; Jackson, M.D. )

    1990-04-01

    Evaluation of indoor air pollution problems requires an understanding of the relationship between sources, air movement, and outdoor air exchange. Research is underway to investigate these relationships. A three-phase program is being implemented: (1) Environmental chambers are used to provide source emission factors for specific indoor pollutants; (2) An IAQ (Indoor Air Quality) model has been developed to calculate indoor pollutant concentrations based on chamber emissions data and the air exchange and air movement within the indoor environment; and (3) An IAQ test house is used to conduct experiments to evaluate the model results. Examples are provided to show how this coordinated approach can be used to evaluate specific sources of indoor air pollution. Two sources are examined: (1) para-dichlorobenzene emissions from solid moth repellant; and (2) emissions from unvented kerosene heaters. The evaluation process for both sources followed the three-phase approach discussed above. Para-dichlorobenzene emission factors were determined by small chamber testing at EPA's Air and Energy Engineering Research Laboratory. Particle emission factors for the kerosene heaters were developed in large chambers at the J.B. Pierce Foundation Laboratory. Both sources were subsequently evaluated in EPA's IAQ test house. The IAQ model predictions showed good agreement with the test house measurements when appropriate values were provided for source emissions, outside air exchange, in-house air movement, and deposition on sink surfaces.

  14. The study of emission inventory on anthropogenic air pollutants and VOC species in the Yangtze River Delta region, China

    NASA Astrophysics Data System (ADS)

    Huang, C.; Chen, C. H.; Li, L.; Cheng, Z.; Wang, H. L.; Huang, H. Y.; Streets, D. G.; Wang, Y. J.

    2011-01-01

    The purpose of this study is to develop an emission inventory for major anthropogenic air pollutants and VOC species in the Yangtze River Delta (YRD) region for the year 2007. A "bottom-up" methodology was adopted to compile the inventory based on major emission sources in the sixteen cities of this region. Results show that the emissions of SO2, NOx, CO, PM10, PM2.5, VOCs, and NH3 in the YRD region for the year 2007 are 2391.8 kt, 2292.9 kt, 6697.1 kt, 3115.7 kt, 1510.8 kt, 2767.4 kt, and 458.9 kt, respectively. Ethylene, mp-xylene, o-xylene, toluene, and 1,2,4-trimethylbenzene, 2,4-dimethylpentane, ethyl benzene, propylene, 1-pentene, and isoprene are the key species contributing 77% to the total OFPs. The spatial distribution of the emissions shows the emissions and OFPs are mainly concentrated in the urban and industrial areas along the Yangtze River and around the Hangzhou Bay. The industrial sources including power plant, other fuel combustion facilities, and non-combustion processes contribute about 97%, 86%, 89%, 91%, and 69% of the total SO2, NOx, PM10, PM2.5, and VOC emissions. Vehicles take up 12.3% and 12.4% of the NOx and VOC emissions, respectively. Regarding OFPs, chemical industry, domestic use of paint and printing, and gasoline vehicle contribute 38.2%, 23.9%, and 11.6% to the ozone formation in the YRD region.

  15. 1996 Idaho National Engineering and Environmental Laboratory (INEEL) National Emissions Standards for Hazardous Air Pollutants (NESHAPs) -- Radionuclides. Annual report

    SciTech Connect

    1997-06-01

    Under Section 61.94 of Title 40, Code of Federal Regulations (CFR), Part 61, Subpart H, ``National Emission Standards for Emissions of Radionuclides Other Than Radon From Department of Energy Facilities,`` each Department of Energy (DOE) facility must submit an annual report documenting compliance. This report addresses the Section 61.94 reporting requirements for operations at the Idaho National Engineering and Environmental Laboratory (INEEL) for calendar year (CY) 1996. The Idaho Operations Office of the DOE is the primary contact concerning compliance with the National Emission Standards for Hazardous Air Pollutants (NESHAPs) at the INEEL. For calendar year 1996, airborne radionuclide emissions from the INEEL operations were calculated to result in a maximum individual dose to a member of the public of 3.14E-02 mrem (3.14E-07 Sievert). This effective dose equivalent (EDE) is well below the 40 CFR 61, Subpart H, regulatory standard of 10 mrem per year (1.0E-04 Sievert per year).

  16. Future anthropogenic pollutant emissions in a Mediterranean port city with emphasis on the maritime sector emissions - Study of the impact on the city air quality

    NASA Astrophysics Data System (ADS)

    Liora, Natalia; Poupkou, Anastasia; Markakis, Konstantinos; Giannaros, Theodoros; Karagiannidis, Athanasios; Melas, Dimitrios

    2013-04-01

    traffic changes as foreseen for the year 2020 by the Port Authority Investment Plan and by the reduction of the sulfur content in fuels used by ships in cruising mode to 0.5% m/m according to a revision of the MARPOL Annex VI. Based on the above, an approximately 60% increase in the future maritime sector PM10 emissions is expected due to the high increase of the traffic of vessels. The impact of future emissions on the air quality of Thessaloniki is examined with the use of the modelling system WRF-CAMx applied with 2km spatial resolution over the study area. Simulations of the modelling system are performed for a summertime (July 2011) and a wintertime (15 November to 15 December 2011) period accounting for present time (scenario A) and future time (scenario B) pollutant emissions. The differences in pollutant levels (mainly PM) between the scenarios examined are presented and discussed.

  17. Managing residential sources of indoor air pollution

    SciTech Connect

    Tichenor, B.A.; Sparks, L.E.

    1994-12-31

    Sources of indoor air pollutants in residential environments can be managed to reduce occupant exposures. Techniques for managing indoor air pollution sources include: source elimination, substitution, modification, and pretreatment, and altering the amount, location, or time of use. Intelligent source management requires knowledge of the source`s emission characteristics, including chemical composition, emission rates, and decay rates. In addition, knowledge of outdoor air exchange rates, heating/air-conditioning duct flow rates, and kitchen/batch exhaust fan flow rates is needed to determine pollutant concentrations. Indoor air quality (IAQ) models use this information and occupant activity patterns to determine instantaneous and/or cumulative individual exposure. This paper describes a number of residential scenarios for various indoor air pollution VOC sources, several air flow conditions, and typical occupant activity patterns. IAQ model predictions of occupant exposures for these scenarios are given for selected source management options.

  18. 77 FR 16547 - Radionuclide National Emission Standards for Hazardous Air Pollutants; Notice of Construction...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-21

    ... for Radon Emissions from Underground Uranium Mines (Subpart B) and 40 CFR part 61, subpart W, National Emission Standards for Radon Emissions from Operating Mill Tailings (Subpart W). EPA Region 8 issued...

  19. Evaluation of emission control strategies to reduce ozone pollution in the Paso del Norte region using a photochemical air quality modeling system

    NASA Astrophysics Data System (ADS)

    Valenzuela, Victor Hugo

    Air pollution emissions control strategies to reduce ozone precursor pollutants are analyzed by applying a photochemical modeling system. Simulations of air quality conditions during an ozone episode which occurred in June, 2006 are undertaken by increasing or reducing area source emissions in Ciudad Juarez, Chihuahua, Mexico. Two air pollutants are primary drivers in the formation of tropospheric ozone. Oxides of nitrogen (NOx) and volatile organic compounds (VOC) undergo multiple chemical reactions under favorable meteorological conditions to form ozone, which is a secondary pollutant that irritates respiratory systems in sensitive individuals especially the elderly and young children. The U.S. Environmental Protection Agency established National Ambient Air Quality Standards (NAAQS) to limit ambient air pollutants such as ozone by establishing an 8-hour average concentration of 0.075 ppm as the threshold at which a violation of the standard occurs. Ozone forms primarily due reactions in the troposphere of NOx and VOC emissions generated primarily by anthropogenic sources in urban regions. Data from emissions inventories indicate area sources account for ˜15 of NOx and ˜45% of regional VOC emissions. Area sources include gasoline stations, automotive paint bodyshops and nonroad mobile sources. Multiplicity of air pollution emissions sources provides an opportunity to investigate and potentially implement air quality improvement strategies to reduce emissions which contribute to elevated ozone concentrations. A baseline modeling scenario was established using the CAMx photochemical air quality model from which a series of sensitivity analyses for evaluating air quality control strategies were conducted. Modifications to area source emissions were made by varying NOx and / or VOC emissions in the areas of particular interest. Model performance was assessed for each sensitivity analysis. Normalized bias (NB) and normalized error (NE) were used to identify

  20. Testing for Air Pollution.

    ERIC Educational Resources Information Center

    Dunbar, Artice

    Three experiments are presented in this Science Study Aid to provide the teacher with some fundamental air pollution activities. The first experiment involved particulates, the second deals with microorganisms, and the third looks at gases in the atmosphere. Each activity outlines introductory information, objectives, materials required, procedure…

  1. AIR POLLUTION AND HUMMINGBIRDS

    EPA Science Inventory

    A multidisciplinary team of EPA-RTP ORD pulmonary toxicologists, engineers, ecologists, and statisticians have designed a study of how ground-level ozone and other air pollutants may influence feeding activity of the ruby-throated hummingbird (Archilochus colubris). Be...

  2. Air Emission Inventory for the INEEL -- 1999 Emission Report

    SciTech Connect

    Zohner, Steven K

    2000-05-01

    This report presents the 1999 calendar year update of the Air Emission Inventory for the Idaho National Engineering and Environmental Laboratory (INEEL). The INEEL Air Emission Inventory documents sources and emissions of nonradionuclide pollutants from operations at the INEEL. The report describes the emission inventory process and all of the sources at the INEEL, and provides nonradionuclide emissions estimates for stationary sources.

  3. National emission standards for hazardous air pollutants application for approval to stabilize the 105N Basin

    SciTech Connect

    Not Available

    1994-05-01

    The 105N Basin (basin) Stabilization will place the basin in a radiologically and environmentally safe condition so that it can be decommissioned at a later date. The basin stabilization objectives are to inspect for Special Nuclear Material (SNM) (i.e., fuel assemblies and fuel pieces), remove the water from the basin and associated pits, and stabilize the basin surface. The stabilization will involve removal of basin hardware, removal of basin sediments, draining of basin water, and cleaning and stabilizing basin surfaces-to prevent resuspension of radioactive emissions to the air. These activities will be conducted in accordance with all applicable regulations. The basin is in the 105N Building, which is located in the 100N Area. The 100N Area is located in the Northern portion of the Hanford Site approximately 35 miles northwest of the city of Richland, Washington. The basin is a reinforced unlined concrete structure 150 feet long, 50 feet wide, and 24 feet deep. The basin is segregated into seven areas sharing a common pool of water; the Discharge/Viewing (``D``) Pit, the fuel segregation pit (including a water tunnel that connects the ``D`` pit and segregation pit), two storage basins designated as North Basin and South Basin, two cask load-out pits, and a fuel examination area. The North Basin floor is entirely covered and the South Basin is partly covered by a modular array of cubicles formed by boron concrete posts and boron concrete panels.

  4. Emission factors of air pollutants from CNG-gasoline bi-fuel vehicles: Part II. CO, HC and NOx.

    PubMed

    Huang, Xiaoyan; Wang, Yang; Xing, Zhenyu; Du, Ke

    2016-09-15

    The estimation of emission factors (EFs) is the basis of accurate emission inventory. However, the EFs of air pollutants for motor vehicles vary under different operating conditions, which will cause uncertainty in developing emission inventory. Natural gas (NG), considered as a "cleaner" fuel than gasoline, is increasingly being used to reduce combustion emissions. However, information is scarce about how much emission reduction can be achieved by motor vehicles burning NG (NGVs) under real road driving conditions, which is necessary for evaluating the environmental benefits for NGVs. Here, online, in situ measurements of the emissions from nine bi-fuel vehicles were conducted under different operating conditions on the real road. A comparative study was performed for the EFs of black carbon (BC), carbon monoxide (CO), hydrocarbons (HCs) and nitrogen oxides (NOx) for each operating condition when the vehicles using gasoline and compressed NG (CNG) as fuel. BC EFs were reported in part I. The part II in this paper series reports the influence of operating conditions and fuel types on the EFs of CO, HC and NOx. Fuel-based EFs of CO showed good correlations with speed when burning CNG and gasoline. The correlation between fuel-based HC EFs and speed was relatively weak whether burning CNG or gasoline. The fuel-based NOx EFs moderately correlated with speed when burning CNG, but weakly correlated with gasoline. As for HC, the mileage-based EFs of gasoline vehicles are 2.39-12.59 times higher than those of CNG vehicles. The mileage-based NOx EFs of CNG vehicles are slightly higher than those of gasoline vehicles. These results would facilitate a detailed analysis of the environmental benefits for replacing gasoline with CNG in light duty vehicles.

  5. Emission factors of air pollutants from CNG-gasoline bi-fuel vehicles: Part II. CO, HC and NOx.

    PubMed

    Huang, Xiaoyan; Wang, Yang; Xing, Zhenyu; Du, Ke

    2016-09-15

    The estimation of emission factors (EFs) is the basis of accurate emission inventory. However, the EFs of air pollutants for motor vehicles vary under different operating conditions, which will cause uncertainty in developing emission inventory. Natural gas (NG), considered as a "cleaner" fuel than gasoline, is increasingly being used to reduce combustion emissions. However, information is scarce about how much emission reduction can be achieved by motor vehicles burning NG (NGVs) under real road driving conditions, which is necessary for evaluating the environmental benefits for NGVs. Here, online, in situ measurements of the emissions from nine bi-fuel vehicles were conducted under different operating conditions on the real road. A comparative study was performed for the EFs of black carbon (BC), carbon monoxide (CO), hydrocarbons (HCs) and nitrogen oxides (NOx) for each operating condition when the vehicles using gasoline and compressed NG (CNG) as fuel. BC EFs were reported in part I. The part II in this paper series reports the influence of operating conditions and fuel types on the EFs of CO, HC and NOx. Fuel-based EFs of CO showed good correlations with speed when burning CNG and gasoline. The correlation between fuel-based HC EFs and speed was relatively weak whether burning CNG or gasoline. The fuel-based NOx EFs moderately correlated with speed when burning CNG, but weakly correlated with gasoline. As for HC, the mileage-based EFs of gasoline vehicles are 2.39-12.59 times higher than those of CNG vehicles. The mileage-based NOx EFs of CNG vehicles are slightly higher than those of gasoline vehicles. These results would facilitate a detailed analysis of the environmental benefits for replacing gasoline with CNG in light duty vehicles. PMID:27219504

  6. Aggregated GPS tracking of vehicles and its use as a proxy of traffic-related air pollution emissions

    NASA Astrophysics Data System (ADS)

    Chen, Shimon; Bekhor, Shlomo; Yuval; Broday, David M.

    2016-10-01

    Most air quality models use traffic-related variables as an input. Previous studies estimated nearby vehicular activity through sporadic traffic counts or via traffic assignment models. Both methods have previously produced poor or no data for nights, weekends and holidays. Emerging technologies allow the estimation of traffic through passive monitoring of location-aware devices. Examples of such devices are GPS transceivers installed in vehicles. In this work, we studied traffic volumes that were derived from such data. Additionally, we used these data for estimating ambient nitrogen dioxide concentrations, using a non-linear optimisation model that includes basic dispersion properties. The GPS-derived data show great potential for use as a proxy for pollutant emissions from motor-vehicles.

  7. Development of a speciated, hourly, and gridded air pollutants emission modeling system--a case study on the precursors of photochemical smog in the Seoul metropolitan area, Korea.

    PubMed

    Kim, D Y; Kim, J W

    2000-03-01

    A speciated, hourly, and gridded air pollutants emission modeling system (SHEMS) was developed and applied in predicting hourly nitrogen dioxide (NO2) and ozone (O3) levels in the Seoul Metropolitan Area (SMA). The primary goal of the SHEMS was to produce a systemized emission inventory for air pollutants including ozone precursors for modeling air quality in urban areas. The SHEMS is principally composed of three parts: (1) a pre-processor to process emission factors, activity levels, and spatial and temporal information using a geographical information system; (2) an emission model for each source type; and (3) a post-processor to produce report and input data for air quality models through database modeling. The source categories in SHEMS are point, area, mobile, natural, and other sources such as fugitive emissions. The emission database produced by SHEMS contains 22 inventoried compounds: sulfur dioxide, NO2, carbon monoxide, and 19 speciated volatile organic compounds. To validate SHEMS, the emission data were tested with the Urban Airshed Model to predict NO2 and O3 concentrations in the SMA during selected episode days in 1994. The results turned out to be reliable in describing temporal variation and spatial distribution of those pollutants.

  8. 76 FR 15266 - National Emission Standards for Hazardous Air Pollutants; Notice of Reconsideration

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-21

    ... standards of performance for new Commercial and ] Industrial Solid Waste Incineration Units and emission guidelines for existing Commercial and Industrial Solid Waste Incineration Units published as final rules... Sources and Emission Guidelines for Existing Sources: Commercial and Industrial Solid Waste...

  9. 77 FR 22847 - National Emission Standards for Hazardous Air Pollutants for Polyvinyl Chloride and Copolymers...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-17

    ... pollutants HCl hydrogen chloride HON Hazardous Organic NESHAP ICR information collection request LAER lowest... MACT maximum achievable control technology MDL method detection levels MON Miscellaneous Organic... voluntary consensus standards VOC volatile organic compound WWW World Wide Web Organization of This...

  10. Long-memory property in air pollutant concentrations

    NASA Astrophysics Data System (ADS)

    Chelani, Asha

    2016-05-01

    In the present paper, long-memory in air pollutant concentrations is reviewed and outcome of the past studies is analyzed to provide the possible mechanism behind temporal evolution of air pollutant concentrations. It is observed that almost all the studies show air pollutant concentrations over time possess persistence up to a certain limit. Self-organized criticality of air pollution, multiplicative process of pollutant concentrations, and uniformity in emission sources leading to self-organized criticality are few of the phenomena behind the persistent property of air pollutant concentrations. The self-organized criticality of air pollution is linked to atmosphere's self-cleansing mechanism. This demonstrates that inspite of increasing anthropogenic emissions, self-organized criticality of air pollution is sustained and has low influence of human interventions. In the future, this property may, however, be perturbed due to continuous air pollution emissions, which may influence the accuracy in predictions.

  11. Probe into Gaseous Pollution and Assessment of Air Quality Benefit under Sector Dependent Emission Control Strategies over Megacities in Yangtze River Delta, China

    SciTech Connect

    Dong, Xinyi; Gao, Yang; Fu, Joshua S.; Li, Juan; Huang, Kan; Zhuang, G.; Zhou, Ying

    2013-11-01

    On February 29th 2012, China published its new National Ambient Air Quality Standard (CH-NAAQS) aiming at revising the standards and measurements for both gaseous pollutants including ozone (O3), nitrogen dioxide (NO2), and sulfur dioxide (SO2), and also particle pollutants including PM10 and PM2.5. In order to understand the air pollution status regarding this new standard, the integrated MM5/CMAQ modeling system was applied over Yangtze River Delta (YRD) within this study to examine the criteria gaseous pollutants listed in the new CH-NAAQS. Sensitivity simulations were also conducted to assess the responses of gaseous pollutants under 8 different sector-dependent emission reduction scenarios in order to evaluate the potential control strategies. 2006 was selected as the simulation year in order to review the air quality condition at the beginning of China’s 11th Five-Year-Plan (FYP, from 2006 to 2010), and also compared with air quality status in 2010 as the end of 11th FYP to probe into the effectiveness of the national emission control efforts. Base case simulation showed distinct seasonal variation for gaseous pollutants: SO2, and NO2 were found to have higher surface concentrations in winter while O3 was found to have higher concentrations in spring and summer than other seasons. According to the analyses focused on 3 megacities within YRD, Shanghai, Nanjing, and Hangzhou, we found different air quality conditions among the cities: NO2 was the primary pollutant that having the largest number of days exceeding the CH-NAAQS daily standard (80 μg/m3) in Shanghai (59 days) and Nanjing (27 days); SO2 was the primary pollutant with maximum number of days exceeding daily air quality standard (150 μg/m3) in Hangzhou (28 days), while O3 exceeding the daily maximum 8-hour standard (160 μg/m3) for relatively fewer days in all the three cities (9 days in Shanghai, 14 days in Nanjing, and 11 days in Hangzhou). Simulation results from predefined potential applicable

  12. Compilation of air pollutant emission factors, third edition (including supplements 1-7) supplement 12

    SciTech Connect

    Not Available

    1981-04-01

    In this Supplement for AP-42, revised or updated emissions data are presented for Dry Cleaning; Surface Coating; Storage of Organic Liquids; Solvent Degreasing; Graphic Arts; Consumer/commercial Solvent Use; Sulfuric Acid; Beer Making; Ammonium Sulfate; Primary Aluminum; Secondary Aluminum; Gray Iron Foundries; Steel Foundries; Secondary Zinc; Asphaltic Concrete; Asphalt Roofing; NEDS Source Classification Codes and Emission Factor Listing; and Table of Lead Emission Factors.

  13. Two reduced form air quality modeling techniques for rapidly calculating pollutant mitigation potential across many sources, locations and precursor emission types

    EPA Science Inventory

    Due to the computational cost of running regional-scale numerical air quality models, reduced form models (RFM) have been proposed as computationally efficient simulation tools for characterizing the pollutant response to many different types of emission reductions. The U.S. Envi...

  14. 76 FR 15553 - National Emission Standards for Hazardous Air Pollutants for Area Sources: Industrial, Commercial...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-21

    ... Electronic Reporting Tool FR Federal Register GACT Generally Available Control Technology HAP Hazardous Air... implemented this provision in 1999 in the Integrated Urban Air Toxics Strategy (Strategy), (64 FR 38715, July..., commercial coal combustion, commercial oil combustion, and commercial wood combustion. (See 63 FR...

  15. 75 FR 521 - National Emission Standards for Hazardous Air Pollutants: Area Source Standards for Prepared...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-05

    ...-Income Populations K. Congressional Review Act I. General Information A. Does This Action Apply to Me... provision in 1999 in the Integrated Urban Air Toxics Strategy, (64 FR 38715, July 19, 1999). Specifically... the Integrated Urban Air Toxics Strategy (64 FR 38715, July 19, 1999). A primary goal of the...

  16. 76 FR 80531 - National Emission Standards for Hazardous Air Pollutants for Area Sources: Industrial, Commercial...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-23

    ... category (see 40 CFR 63.7491(j), and 76 FR 15665 (March 21, 2011)), and is now proposing to do the same in... December 23, 2011 Part III Environmental Protection Agency 40 CFR Part 63 National Emission Standards for...; ] ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 63 RIN 2060-AR14 National Emission Standards for Hazardous...

  17. Long-term continuous measurement of near-road air pollution in Las Vegas: Seasonal variability in traffic emissions impact on local air quality

    EPA Science Inventory

    Excess air pollution along roadways is an issue of public health concern and motivated a long-term measurement effort established by the U.S. Environmental Protection Agency in Las Vegas, Nevada. Measurements of air pollutants – including black carbon (BC), carbon monoxide (CO),...

  18. Tackling agricultural diffuse pollution: What might uptake of farmer-preferred measures deliver for emissions to water and air?

    PubMed

    Collins, A L; Zhang, Y S; Winter, M; Inman, A; Jones, J I; Johnes, P J; Cleasby, W; Vrain, E; Lovett, A; Noble, L

    2016-03-15

    Mitigation of agricultural diffuse pollution poses a significant policy challenge across Europe and particularly in the UK. Existing combined regulatory and voluntary approaches applied in the UK continue to fail to deliver the necessary environmental outcomes for a variety of reasons including failure to achieve high adoption rates. It is therefore logical to identify specific on-farm mitigation measures towards which farmers express positive attitudes for higher future uptake rates. Accordingly, a farmer attitudinal survey was undertaken during phase one of the Demonstration Test Catchment programme in England to understand those measures towards which surveyed farmers are most receptive to increasing implementation in the future. A total of 29 on-farm measures were shortlisted by this baseline farm survey. This shortlist comprised many low cost or cost-neutral measures suggesting that costs continue to represent a principal selection criterion for many farmers. The 29 measures were mapped onto relevant major farm types and input, assuming 95% uptake, to a national scale multi-pollutant modelling framework to predict the technically feasible impact on annual agricultural emissions to water and air, relative to business as usual. Simulated median emission reductions, relative to current practise, for water management catchments across England and Wales, were estimated to be in the order sediment (20%)>ammonia (16%)>total phosphorus (15%) ≫ nitrate/methane (11%)>nitrous oxide (7%). The corresponding median annual total cost of the modelled scenario to farmers was £3 ha(-1)yr(-1), with a corresponding range of -£84 ha(-1)yr(-1) (i.e. a net saving) to £33 ha(-1)yr(-1). The results suggest that those mitigation measures which surveyed farmers are most inclined to implement in the future would improve the environmental performance of agriculture in England and Wales at minimum to low cost per hectare. PMID:26789365

  19. Tackling agricultural diffuse pollution: What might uptake of farmer-preferred measures deliver for emissions to water and air?

    PubMed

    Collins, A L; Zhang, Y S; Winter, M; Inman, A; Jones, J I; Johnes, P J; Cleasby, W; Vrain, E; Lovett, A; Noble, L

    2016-03-15

    Mitigation of agricultural diffuse pollution poses a significant policy challenge across Europe and particularly in the UK. Existing combined regulatory and voluntary approaches applied in the UK continue to fail to deliver the necessary environmental outcomes for a variety of reasons including failure to achieve high adoption rates. It is therefore logical to identify specific on-farm mitigation measures towards which farmers express positive attitudes for higher future uptake rates. Accordingly, a farmer attitudinal survey was undertaken during phase one of the Demonstration Test Catchment programme in England to understand those measures towards which surveyed farmers are most receptive to increasing implementation in the future. A total of 29 on-farm measures were shortlisted by this baseline farm survey. This shortlist comprised many low cost or cost-neutral measures suggesting that costs continue to represent a principal selection criterion for many farmers. The 29 measures were mapped onto relevant major farm types and input, assuming 95% uptake, to a national scale multi-pollutant modelling framework to predict the technically feasible impact on annual agricultural emissions to water and air, relative to business as usual. Simulated median emission reductions, relative to current practise, for water management catchments across England and Wales, were estimated to be in the order sediment (20%)>ammonia (16%)>total phosphorus (15%) ≫ nitrate/methane (11%)>nitrous oxide (7%). The corresponding median annual total cost of the modelled scenario to farmers was £3 ha(-1)yr(-1), with a corresponding range of -£84 ha(-1)yr(-1) (i.e. a net saving) to £33 ha(-1)yr(-1). The results suggest that those mitigation measures which surveyed farmers are most inclined to implement in the future would improve the environmental performance of agriculture in England and Wales at minimum to low cost per hectare.

  20. Technical and Non-Technical Measures for air pollution emission reduction: The integrated assessment of the regional Air Quality Management Plans through the Italian national model

    NASA Astrophysics Data System (ADS)

    D'Elia, I.; Bencardino, M.; Ciancarella, L.; Contaldi, M.; Vialetto, G.

    2009-12-01

    The Italian Air Quality legislation underwent sweeping changes with the implementation of the 1996 European Air Quality Framework Directive when the Italian administrative Regions were entrusted with air quality management tasks. The most recent Regional Air Quality Management Plans (AQMPs) highlighted the importance of Non-Technical Measures (NTMs), in addition to Technical Measures (TMs), in meeting environmental targets. The aim of the present work is to compile a list of all the TMs and NTMs taken into account in the Italian Regional AQMPs and to give in the target year, 2010, an estimation of SO 2, NO x and PM 10 emission reductions, of PM 10 concentration and of the health impact of PM 2.5 concentrations in terms of Life Expectancy Reduction. In order to do that, RAINS-Italy, as part of the National Integrated Modeling system for International Negotiation on atmospheric pollution (MINNI), has been applied. The management of TMs and NTMs inside RAINS have often obliged both the introduction of exogenous driving force scenarios and the control strategy modification. This has inspired a revision of the many NTM definitions and a clear choice of the definition adopted. It was finally highlighted that only few TMs and NTMs implemented in the AQMPs represent effective measures in reaching the environmental targets.

  1. 76 FR 78872 - National Emission Standards for Hazardous Air Pollutants for Wool Fiberglass Manufacturing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-20

    ... Fiberglass Manufacturing AGENCY: Environmental Protection Agency (EPA). ACTION: Proposed rule; notice of... Pollutants: Mineral Wool Production and Wool Fiberglass Manufacturing.'' The EPA was asked to hold a public... hearing for the proposed Wool Fiberglass Manufacturing rule will be held on January 4, 2012 in Kansas...

  2. Impacts of Roadway Emissions on Urban Fine Particle Exposures: the Nairobi Area Traffic Contribution to Air Pollution (NATCAP) Study

    NASA Astrophysics Data System (ADS)

    Gatari, Michael; Ngo, Nicole; Ndiba, Peter; Kinney, Patrick

    2010-05-01

    quality and transportation planning and management directed at mitigating roadway pollution. Reducing PM emissions from motor vehicles would have direct health benefits for residents of Nairobi and other SSA cities. However, further studies are required to depict the seasonal variations, include gaseous pollution aspect, and strengthen the knowledge on air quality in the region as well as improving the data base for health impact assessment. Acknowledgement This study was initiated and funded by Columbia University's Earth Institute's Center for Sustainable Urban Development (CSUD). CSUD is a Volvo Research and Educational Foundations Center of Excellence for Future Urban Transport. International Science Programs (ISP), Uppsala University, Sweden is recognized for its research support to Institute of Nuclear Science & Technology. Additional technical support for air monitoring and analysis was provided by the Exposure Assessment Facility Core of the Center for Environmental Health in Northern Manhattan (NIEHS P30 ES09089).

  3. Modeling U.S. air pollutant emissions and controls in GCAM-USA

    EPA Science Inventory

    We describe extensions to the GCAM-USA modeling framework that facilitate exploration of the co-benefits, tradeoffs and synergies among strategies for addressing climate, air quality, and other environmental goals.

  4. Cough and environmental air pollution in China.

    PubMed

    Zhang, Qingling; Qiu, Minzhi; Lai, Kefang; Zhong, Nanshan

    2015-12-01

    With fast-paced urbanization and increased energy consumption in rapidly industrialized modern China, the level of outdoor and indoor air pollution resulting from industrial and motor vehicle emissions has been increasing at an accelerated rate. Thus, there is a significant increase in the prevalence of respiratory symptoms such as coughing, wheezing, and decreased pulmonary function. Experimental exposure research and epidemiological studies have indicated that exposure to particulate matter, ozone, nitrogen dioxide, and environmental tobacco smoke have a harmful influence on development of respiratory diseases and are significantly associated with cough and wheeze. This review mainly discusses the effect of air pollutants on respiratory health, particularly with respect to cough, the links between air pollutants and microorganisms, and air pollutant sources. Particular attention is paid to studies in urban areas of China where the levels of ambient and indoor air pollution are significantly higher than World Health Organization recommendations.

  5. ESP v2.0: Improved method for projecting U.S. GHG and air pollution emissions through 2055

    EPA Science Inventory

    This product includes both a presentation and an extended abstract. We describe the Emission Scenario Projection (ESP) method, version 2.0. ESP is used to develop multi-decadal projections of U.S. greenhouse gas (GHG) and criteria pollutant emissions. The resulting future-year em...

  6. Measurements of air pollution emission factors for marine transportation in SECA

    NASA Astrophysics Data System (ADS)

    Alföldy, B.; Lööv, J. B.; Lagler, F.; Mellqvist, J.; Berg, N.; Beecken, J.; Weststrate, H.; Duyzer, J.; Bencs, L.; Horemans, B.; Cavalli, F.; Putaud, J.-P.; Janssens-Maenhout, G.; Csordás, A. P.; Van Grieken, R.; Borowiak, A.; Hjorth, J.

    2013-07-01

    The chemical composition of the plumes of seagoing ships was measured during a two week long measurement campaign in the port of Rotterdam, Hoek van Holland The Netherlands, in September 2009. Altogether, 497 ships were monitored and a statistical evaluation of emission factors (g kg-1 fuel) was provided. The concerned main atmospheric components were SO2, NO2, NOx and the aerosol particle number. In addition, the elemental and water-soluble ionic composition of the emitted particulate matter was determined. Emission factors were expressed as a function of ship type, power and crankshaft rotational speed. The average SO2 emission factor was found to be roughly half of what is allowed in sulphur emission control areas (16 vs. 30 g kg-1 fuel), and exceedances of this limit were rarely registered. A significant linear relationship was observed between the SO2 and particle number emission factors. The intercept of the regression line, 4.8 × 1015 (kg fuel)-1, gives the average number of particles formed during the burning of 1 kg zero sulphur content fuel, while the slope, 2 × 1018, provides the average number of particles formed with 1 kg sulphur burnt with the fuel. Water-soluble ionic composition analysis of the aerosol samples from the plumes showed that ~144 g of particulate sulphate was emitted from 1 kg sulphur burnt with the fuel. The mass median diameter of sulphate particles estimated from the measurements was ~42 nm.

  7. Potential hazards of air pollutant emissions from unconventional oil and natural gas operations on the respiratory health of children and infants.

    PubMed

    Webb, Ellen; Hays, Jake; Dyrszka, Larysa; Rodriguez, Brian; Cox, Caroline; Huffling, Katie; Bushkin-Bedient, Sheila

    2016-06-01

    Research on air pollutant emissions associated with unconventional oil and gas (UOG) development has grown significantly in recent years. Empirical investigations have focused on the identification and measurement of oil and gas air pollutants [e.g. volatile organic compounds (VOCs), particulate matter (PM), methane] and the influence of UOG on local and regional ambient air quality (e.g. tropospheric ozone). While more studies to better characterize spatial and temporal trends in exposure among children and newborns near UOG sites are needed, existing research suggests that exposure to air pollutants emitted during lifecycle operations can potentially lead to adverse respiratory outcomes in this population. Children are known to be at a greater risk from exposure to air pollutants, which can impair lung function and neurodevelopment, or exacerbate existing conditions, such as asthma, because the respiratory system is particularly vulnerable during development in-utero, the postnatal period, and early childhood. In this article, we review the literature relevant to respiratory risks of UOG on infants and children. Existing epidemiology studies document the impact of air pollutant exposure on children in other contexts and suggest impacts near UOG. Research is sparse on long-term health risks associated with frequent acute exposures - especially in children - hence our interpretation of these findings may be conservative. Many data gaps remain, but existing data support precautionary measures to protect the health of infants and children. PMID:27171386

  8. Air pollution source identification

    NASA Technical Reports Server (NTRS)

    Fordyce, J. S.

    1975-01-01

    Techniques for air pollution source identification are reviewed, and some results obtained with them are evaluated. Described techniques include remote sensing from satellites and aircraft, on-site monitoring, and the use of injected tracers and pollutants themselves as tracers. The use of a large number of trace elements in ambient airborne particulate matter as a practical means of identifying sources is discussed in detail. Sampling and analysis techniques are described, and it is shown that elemental constituents can be related to specific source types such as those found in the earth's crust and those associated with specific industries. Source identification sytems are noted which utilize charged particle X-ray fluorescence analysis of original field data.

  9. Indoor air pollution

    SciTech Connect

    Gold, D.R. )

    1992-06-01

    This article summarizes the health effects of indoor air pollutants and the modalities available to control them. The pollutants discussed include active and passive exposure to tobacco smoke; combustion products of carbon monoxide; nitrogen dioxide; products of biofuels, including wood and coal; biologic agents leading to immune responses, such as house dust mites, cockroaches, fungi, animal dander, and urine; biologic agents associated with infection such as Legionella and tuberculosis; formaldehyde; and volatile organic compounds. An approach to assessing building-related illness and tight building' syndrome is presented. Finally, the article reviews recent data on hospital-related asthma and exposures to potential respiratory hazards such as antineoplastic agents, anesthetic gases, and ethylene oxide.88 references.

  10. NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS (NESHAP) SUBPART H RADIONUCLIDES POTENTIAL TO EMIT CALCULATIONS

    SciTech Connect

    EARLEY JN

    2008-07-23

    This document provides an update of the status of stacks on the Hanford Site and the potential radionuclide emissions, i.e., emissions that could occur with no control devices in place. This review shows the calculations that determined whether the total effective dose equivalent (TEDE) received by the maximum public receptor as a result of potential emissions from any one of these stacks would exceed 0.1 millirem/year. Such stacks require continuous monitoring of the effluent, or other monitoring, to meet the requirements of Washington Administrative code (WAC) 246-247-035(1)(a)(ii) and WAC 246-247-075(1), -(2), and -(6). This revised update reviews the potential-to-emit (PTE) calculations of 31 stacks for Fluor Hanford, Inc. Of those 31 stacks, 11 have the potential to cause a TEDE greater than 0.1 mrem/year.

  11. Emission of atmospheric pollutants out of Africa - Analysis of CARIBIC aircraft air samples

    NASA Astrophysics Data System (ADS)

    Thorenz, Ute R.; Baker, Angela K.; Schuck, Tanja; van Velthoven, Peter F. J.; Ziereis, Helmut; Brenninkmeijer, Carl A. M.

    2014-05-01

    Africa is the single largest continental source of biomass burning (BB) emissions. The burning African savannas and tropical forests are a source for a wide range of chemical species, which are important for global atmospheric chemistry, especially for the pristine Southern Hemisphere. Emitted compounds include carbon monoxide (CO), nitrogen oxides (NOx), hydrocarbons, oxygenated hydrocarbons and particles. Deep convection over Central Africa transports boundary layer emissions to the free troposphere making aircraft-based observations useful for investigation of surface emissions and examination of transport and chemistry processes over Africa The CARIBIC project (Civil Aircraft for the Regular Investigation of the Atmosphere Based on an Instrument Container, www.caribic-atmosphere.com part of IAGOS www.iagos.org) is a long term atmospheric measurement program using an instrument container deployed aboard a Lufthansa Airbus A340-600 for a monthly sequence of long-distance passenger flights. Besides the online measurements mixing ratios of greenhouse gases and a suite of C2-C8 non methane hydrocarbons (NMHCs) are measured from flask samples collected at cruise altitude. During northern hemispheric winter 2010/2011 CARIBIC flights took place from Frankfurt to Cape Town and Johannesburg in South Africa. Several BB tracers like methane, CO and various NMHCs were found to be elevated over tropical Africa. Using tracer-CO- and tracer-NOy-correlations emissions were characterized. The NMHC-CO correlations show monthly changing slopes, indicating a change in burned biomass, major fire stage, source region and/or other factors influencing NMHC emissions. To expand our analysis of emission sources a source region data filter was used, based on backward trajectories calculated along the flight tracks. Taking all CARIBIC samples into account having backward trajectories to the African boundary layer the dataset was enlarged from 77 to 168 samples. For both datasets tracer

  12. OTM 33 Geospatial Measurement of Air Pollution, Remote Emissions Quantification (GMAP-REQ) and OTM33A Geospatial Measurement of Air Pollution-Remote Emissions Quantification-Direct Assessment (GMAP-REQ-DA)

    EPA Science Inventory

    Background: Next generation air measurement (NGAM) technologies are enabling new regulatory and compliance approaches that will help EPA better understand and meet emerging challenges associated with fugitive and area source emissions from industrial and oil and gas sectors. In...

  13. Association between Source-Specific Particulate Matter Air Pollution and hs-CRP: Local Traffic and Industrial Emissions

    PubMed Central

    Fuks, Kateryna; Moebus, Susanne; Weinmayr, Gudrun; Memmesheimer, Michael; Jakobs, Hermann; Bröcker-Preuss, Martina; Führer-Sakel, Dagmar; Möhlenkamp, Stefan; Erbel, Raimund; Jöckel, Karl-Heinz; Hoffmann, Barbara

    2014-01-01

    , Heinz Nixdorf Recall Study Investigative Group. 2014. Association between source-specific particulate matter air pollution and hs-CRP: local traffic and industrial emissions. Environ Health Perspect 122:703–710; http://dx.doi.org/10.1289/ehp.1307081 PMID:24755038

  14. 77 FR 46371 - National Emission Standards for Hazardous Air Pollutants for the Portland Cement Manufacturing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-03

    ... rule (77 FR 42368, July 18, 2012) should be addressed to Ms. Sharon Nizich, Office of Air Quality... Register on July 18, 2012, and is available at: http://www.gpo.gov/fdsys/pkg/FR-2012-07-18/pdf/2012-16166... the Portland Cement Manufacturing Industry and Standards of Performance for Portland Cement...

  15. 75 FR 31895 - National Emission Standards for Hazardous Air Pollutants for Area Sources: Industrial, Commercial...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-04

    ... implemented this provision in 1999 in the Integrated Urban Air Toxics Strategy (Strategy), (64 FR 38715, July... combustion. See 63 FR 17849. We listed these source categories under CAA section 112(c)(6) based on the.... Both source categories were included in the area source list published on July 19, 1999 (64 FR...

  16. 76 FR 72507 - National Emissions Standards for Hazardous Air Pollutants: Ferroalloys Production

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-23

    ... is no higher than approximately one in 10 thousand, that risk level is considered acceptable.'' 54 FR... of the residual risk and technology review that the EPA is required to conduct under the Clean Air....gov . For specific information regarding the risk modeling methodology, contact Ms. Darcie...

  17. 76 FR 29031 - National Emissions Standards for Hazardous Air Pollutants: Secondary Lead Smelting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-19

    ... acceptable.'' 54 FR 38045. We discussed the maximum individual lifetime cancer risk as being ``the estimated... results of the residual risk and technology review that EPA is required to conduct by the Clean Air Act... specific information regarding the risk modeling methodology, contact Ms. Elaine Manning, Health...

  18. 76 FR 29527 - National Emission Standards for Hazardous Air Pollutants for Polyvinyl Chloride and Copolymers...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-20

    ... chloride resins 325211 Facilities that manufacturing. polymerize vinyl chloride monomer to produce... provision in 1999 in the Integrated Urban Air Toxics Strategy (Strategy), (64 FR 38715, July 19, 1999... the CAA (57 FR 31576). A major source of HAP is a stationary source that has the potential to emit...

  19. 77 FR 42367 - National Emission Standards for Hazardous Air Pollutants for the Portland Cement Manufacturing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-18

    ... index. Although listed in the index, some information is not publicly available (e.g., CBI or other... 111(b) E. Summary of Proposed Standards Resulting From Reconsideration F. Standards for Fugitive... evaluated? C. What are the air quality impacts? D. What are the water quality impacts? E. What are the...

  20. COMPARISON OF AIR POLLUTANT EMISSIONS FROM THE COMBUSTION OF ORIMULSION AND OTHER FUELS

    EPA Science Inventory

    The paper gives results of inhouse emissions testing and a literature review relating to Orimulsion, an emulsion of Venezuelan bitumen, water, and a proprietary surfactant, being used as a fuel for utilities in Canada, China, Denmark, Italy, Japan, and Lithuania, primarily as a r...

  1. 75 FR 32005 - National Emission Standards for Hazardous Air Pollutants for Major Sources: Industrial...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-04

    ... section 112(c)(6) due to emissions of polycyclic organic matter (POM) and mercury (63 FR 17838, 17848... vacated the Commercial and Industrial Solid Waste Incineration (CISWI) Definitions Rule, 70 FR 55568... Advance Notice of Proposed Rulemaking (74 FR 41, January 2, 2009) soliciting comment on whether...

  2. 75 FR 32682 - National Emission Standards for Hazardous Air Pollutants for Major Sources: Industrial...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-09

    ... the deadline for written comments on the proposed rules (75 FR 32006 (major source boilers), 75 FR 31896 (area source boilers), 75 FR 31938 (CISWI), and 75 FR 31844 (waste definition)) to August 3, 2010... New Stationary Sources and Emission Guidelines for Existing Sources: Commercial and Industrial...

  3. INDOOR AIR EMISSIONS FROM OFFICE EQUIPMENT: TEST METHOD DEVELOPMENT AND POLLUTION PREVENTION OPPORTUNITIES

    EPA Science Inventory

    The report describes the development and evaluation of a large chamber test method for measuring emissions from dry-process photocopiers. The test method was developed in two phases. Phase 1 was a single-laboratory evaluation at Research Triangle Institute (RTI) using four, mid-r...

  4. 75 FR 51569 - National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-20

    ...: Background Information Document. On March 5, 2009 (71 FR 9698), EPA proposed national emission standards for... sources on June 15, 2004 (69 FR 33474). EPA promulgated NESHAP for new and reconstructed stationary RICE... on January 18, 2008 (73 FR 3568). On March 3, 2010, EPA promulgated NESHAP for existing...

  5. 76 FR 15607 - National Emission Standards for Hazardous Air Pollutants for Major Sources: Industrial...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-21

    ... pursuant to CAA section 112(c)(6) due to emissions of POM and Hg (63 FR 17838, 17848, April 10, 1998). In... Commercial and Industrial Solid Waste Incineration (CISWI) Definitions Rule, 70 FR 55568 (September 22, 2005... rule. See 75 FR 32009. CAA section 129 covers any facility that combusts any solid waste; CAA...

  6. 75 FR 9647 - National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-03

    ... . SUPPLEMENTARY INFORMATION: Background Information Document. On March 5, 2009 (71 FR 9698), EPA proposed national..., and reconstructed stationary RICE greater than 500 HP located at major sources on June 15, 2004 (69 FR... than or equal to 500 HP that are located at major sources of HAP emissions on January 18, 2008 (73...

  7. 78 FR 6673 - National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-30

    ....melanie@epa.gov . SUPPLEMENTARY INFORMATION: Background Information Document. On June 7, 2012 (77 FR 33812... emissions in 2004 (69 FR 33473). The EPA addressed new stationary RICE less than or equal to 500 HP located at major sources and new stationary RICE located at area sources in 2008 (73 FR 3568). Most...

  8. 77 FR 555 - National Emissions Standards for Hazardous Air Pollutants From Secondary Lead Smelting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-05

    ... (62 FR 32216). The standards are codified at 40 CFR part 63, subpart X. The secondary lead smelting... January 5, 2012 Part II Environmental Protection Agency 40 CFR Part 63 National Emissions Standards for... / Thursday, January 5, 2012 / Rules and Regulations#0;#0; ] ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part...

  9. Assessing the effectiveness of vegetative environmental buffers in mitigating air pollutant emissions from poultry houses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Over 560 million broilers are produced on the Delmarva Peninsula each year. However, emissions from poultry houses have come under intense scrutiny due to the potential human and environmental effects of the released particulate matter (PM), ammonia, and volatile organic compounds (VOCs). Ammonia an...

  10. 76 FR 2832 - National Emission Standards for Hazardous Air Pollutants From the Portland Cement Manufacturing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-18

    ... amendments? On September 9, 2010 (75 FR 54970), EPA issued final amendments to National Emission Standards... production if significant adverse comments are filed. II. What are the changes to the final rules (75 FR... FR at 54993), and never discussed or otherwise suggested (in either the proposed or final rule)...

  11. Air pollution and the respiratory system.

    PubMed

    Arbex, Marcos Abdo; Santos, Ubiratan de Paula; Martins, Lourdes Conceição; Saldiva, Paulo Hilário Nascimento; Pereira, Luiz Alberto Amador; Braga, Alfésio Luis Ferreira

    2012-01-01

    Over the past 250 years-since the Industrial Revolution accelerated the process of pollutant emission, which, until then, had been limited to the domestic use of fuels (mineral and vegetal) and intermittent volcanic emissions-air pollution has been present in various scenarios. Today, approximately 50% of the people in the world live in cities and urban areas and are exposed to progressively higher levels of air pollutants. This is a non-systematic review on the different types and sources of air pollutants, as well as on the respiratory effects attributed to exposure to such contaminants. Aggravation of the symptoms of disease, together with increases in the demand for emergency treatment, the number of hospitalizations, and the number of deaths, can be attributed to particulate and gaseous pollutants, emitted by various sources. Chronic exposure to air pollutants not only causes decompensation of pre-existing diseases but also increases the number of new cases of asthma, COPD, and lung cancer, even in rural areas. Air pollutants now rival tobacco smoke as the leading risk factor for these diseases. We hope that we can impress upon pulmonologists and clinicians the relevance of investigating exposure to air pollutants and of recognizing this as a risk factor that should be taken into account in the adoption of best practices for the control of the acute decompensation of respiratory diseases and for maintenance treatment between exacerbations.

  12. Remote air pollution measurement

    NASA Technical Reports Server (NTRS)

    Byer, R. L.

    1975-01-01

    This paper presents a discussion and comparison of the Raman method, the resonance and fluorescence backscatter method, long path absorption methods and the differential absorption method for remote air pollution measurement. A comparison of the above remote detection methods shows that the absorption methods offer the most sensitivity at the least required transmitted energy. Topographical absorption provides the advantage of a single ended measurement, and differential absorption offers the additional advantage of a fully depth resolved absorption measurement. Recent experimental results confirming the range and sensitivity of the methods are presented.

  13. The Federal Air Pollution Program.

    ERIC Educational Resources Information Center

    National Air Pollution Control Administration (DHEW), Washington, DC.

    Described is the Federal air pollution program as it was in 1967. The booklet is divided into these major topics: History of the Federal Program; Research; Assistance to State and Local Governments; Abatement and Prevention of Air Pollution; Control of Motor Vehicle Pollution; Information and Education; and Conclusion. Federal legislation has…

  14. In Search of Air Pollution

    ERIC Educational Resources Information Center

    Beckendorf, Kirk

    2006-01-01

    Air pollution is no longer just a local issue; it is a global problem. The atmosphere is a very dynamic system. Pollution not only changes in chemical composition after it is emitted, but also is transported on local and global air systems hundreds and even thousands of miles away. Some of the pollutants that are major health concerns are not even…

  15. Fundamentals of air pollution. Third edition

    SciTech Connect

    Boubel, R.W.; Fox, D.L.; Turner, D.B.; Stern, A.C.

    1994-12-31

    This book presents an overview of air pollution. In Part I, the history of air pollution and the basic concepts involved with air pollution such as sources, scales, definitions are covered. Part II describes how airborne pollutants damage materials, vegetation, animals, and humans. Six fundamental aspects of air pollution are included in the text: The Elements of Air Pollution; The Effects of Air Pollution; Measurement and Monitoring of Air Pollution; Meterology of Air Pollution; regulatory Control of Air Pollution; and Engineering Control of Air Pollution.

  16. Global EDGAR v4.1 emissions of air pollutants: analysis of impacts of emissions abatement in industry and road transport on regional and global scale

    NASA Astrophysics Data System (ADS)

    Janssens-Maenhout, G.; Olivier, J. G.; Doering, U. M.; van Aardenne, J.; Monni, S.; Pagliari, V.; Peters, J. A.

    2010-12-01

    The new version v4.1 of the Emission Database for Global Atmospheric Research (EDGAR) compiled by JRC and PBL provides independent estimates of the global anthropogenic emissions and emission trends of precursors of tropospheric ozone (CO, NMVOC, NOx) and acidifying substances (NOx, NH3, SO2) for the period 1970-2005. All emissions are detailed at country level consistently using the same technology-based methodology, combining activity data (international statistics) from publicly available sources and to the extent possible emission factors as recommended by the EMEP/EEA air pollutant emission inventory guidebook. By using high resolution global grid maps per source category of area sources and point sources, we also compiled datasets with annual emissions on a 0.1x0.1 degree grid, as input for atmospheric models. We provide full and up-to-date inventories per country, also for developing countries. Moreover, the time series back in time to 1970 provides for the trends in official national inventories a historic perspective. As part of our objective to contribute to more reliable inventories by providing a reference emissions database for emission scenarios, inventory comparisons and for atmospheric modellers, we strive to transparently document all data sources used and assumptions made where data was missing, in particular for assumptions made on the shares of technologies where relevant. Technology mixes per country or region were taken from other data sources (such as the Platts database) or estimated using other sources or countries as proxy. The evolution in the adoption of technologies world-wide over the 35 years covered by EDGAR v4.1 will be illustrated for the power industry and the road transport sectors, in particular for Europe and the US. Similarly the regional and global impacts of implemented control measures and end-of pipe abatements will be illustrated by the examples of - NOx and SO2 end-of pipe abatements being implemented since the late

  17. Air Pollution Potential from Electroplating Operations.

    ERIC Educational Resources Information Center

    Diamond, Philip

    Measurements were made of emission rates from electroplating operations considered to have maximum air pollution potential. Sampling was performed at McClellan and additional data from a previous survey at Hill Air Force Base was used. Values obtained were extremely low. Based on existing Federal standards, no collectors are specifically required…

  18. Air Pollution, Causes and Cures.

    ERIC Educational Resources Information Center

    Manufacturing Chemists Association, Washington, DC.

    This commentary on sources of air pollution and air purification treatments is accompanied by graphic illustrations. Sources of carbon monoxide, sulfur oxides, nitrogen oxides, and hydrocarbons found in the air are discussed. Methods of removing these pollutants at their source are presented with cut-away diagrams of the facilities and technical…

  19. Air pollution and early deaths in the United States. Part II: Attribution of PM2.5 exposure to emissions species, time, location and sector

    NASA Astrophysics Data System (ADS)

    Dedoussi, Irene C.; Barrett, Steven R. H.

    2014-12-01

    Combustion emissions constitute the largest source of anthropogenic emissions in the US, and lead to the degradation of air quality and human health. In Part I we computed the population fine particulate matter (PM2.5) exposure and number of early deaths caused by emissions from six major sectors: electric power generation, industry, commercial and residential activities, road transportation, marine transportation and rail transportation. In Part II we attribute exposure and early deaths to sectors, emissions species, time of emission, and location of emission. We apply a long-term adjoint sensitivity analysis and calculate the four dimensional sensitivities (time and space) of PM2.5 exposure with respect to each emissions species. Epidemiological evidence is used to relate increased population exposure to premature mortalities. This is the first regional application of the adjoint sensitivity analysis method to characterize long-term air pollution exposure. (A global scale application has been undertaken related to intercontinental pollution.) We find that for the electric power generation sector 75% of the attributable PM2.5 exposure is due to SO2 emissions, and 80% of the annual impacts are attributed to emissions from April to September. In the road transportation sector, 29% of PM2.5 exposure is due to NOx emissions and 33% is from ammonia (NH3), which is a result of emissions after-treatment technologies. We estimate that the benefit of reducing NH3 emissions from road transportation is ∼20 times that of NOx per unit mass. 75% of the road transportation ammonia impacts occur during the months October to March. We publicly release the sensitivity matrices computed, noting their potential use as a rapid air quality policy assessment tool.

  20. Compilation of air pollutant emission factors. Volume 1. Stationary point and area sources. Supplement E

    SciTech Connect

    Not Available

    1992-10-01

    In the Supplement to the Fourth Edition of AP-42 Volume I, new or revised emissions data are presented for Anthracite Coal Combustion; Natural Gas Combustion; Liquified Petroleum Gas Combustion; Wood Waste Combustion In Boilers; Bagasse Combustion In Sugar Mills; Residential Fireplaces; Residential Wood Stoves; Waste Oil Combustion; Automobile Body Incineration; Conical Burners; Open Burning; Stationary Gas Turbines for Electricity Generation; Heavy Duty Natural Gas Fired Pipeline Compressor Engines; Gasoline and Diesel Industrial Engines; Large Stationary Diesel and All Stationary Dual Fuel Engines; Soap and Detergents; and Storage of Organic Liquids.

  1. HTAP_v2: a mosaic of regional and global emission gridmaps for 2008 and 2010 to study hemispheric transport of air pollution

    NASA Astrophysics Data System (ADS)

    Janssens-Maenhout, G.; Crippa, M.; Guizzardi, D.; Dentener, F.; Muntean, M.; Pouliot, G.; Keating, T.; Zhang, Q.; Kurokawa, J.; Wankmüller, R.; Denier van der Gon, H.; Klimont, Z.; Frost, G.; Darras, S.; Koffi, B.

    2015-04-01

    The mandate of the Task Force Hemispheric Transport of Air Pollution (HTAP) under the Convention on Long-Range Transboundary Air Pollution (CLRTAP) is to improve the scientific understanding of the intercontinental air pollution transport, to quantify impacts on human health, vegetation and climate, to identify emission mitigation options across the regions of the Northern Hemisphere, and to guide future policies on these aspects. The harmonization and improvement of regional emission inventories is imperative to obtain consolidated estimates on the formation of global-scale air pollution. An emissions dataset has been constructed using regional emission gridmaps (annual and monthly) for SO2, NOx, CO, NMVOC, NH3, PM10, PM2.5, BC and OC for the years 2008 and 2010, with the purpose of providing consistent information to global and regional scale modelling efforts. This compilation of different regional gridded inventories, including the Environmental Protection Agency (EPA)'s for USA, EPA and Environment Canada's for Canada, the European Monitoring and Evaluation Programme (EMEP) and Netherlands Organisation for Applied Scientific Research (TNO)'s for Europe, and the Model Inter-comparison Study in Asia (MICS-Asia)'s for China, India and other Asian countries, was gap-filled with the emission gridmaps of the Emissions Database for Global Atmospheric Research (EDGARv4.3) for the rest of the world (mainly South-America, Africa, Russia and Oceania). Emissions from seven main categories of human activities (power, industry, residential, agriculture, ground transport, aviation and shipping) were estimated and spatially distributed on a common grid of 0.1° × 0.1° longitude-latitude, to yield monthly, global, sector-specific gridmaps for each substance and year. The HTAP_v2.2 air pollutant gridmaps are considered to combine latest available regional information within a complete global dataset. The disaggregation by sectors, high spatial and temporal resolution and

  2. A review of methods for predicting air pollution dispersion

    NASA Technical Reports Server (NTRS)

    Mathis, J. J., Jr.; Grose, W. L.

    1973-01-01

    Air pollution modeling, and problem areas in air pollution dispersion modeling were surveyed. Emission source inventory, meteorological data, and turbulent diffusion are discussed in terms of developing a dispersion model. Existing mathematical models of urban air pollution, and highway and airport models are discussed along with their limitations. Recommendations for improving modeling capabilities are included.

  3. Outdoor air pollution and asthma

    PubMed Central

    Guarnieri, Michael; Balmes, John R.

    2015-01-01

    Traffic and power generation are the main sources of urban air pollution. The idea that outdoor air pollution can cause exacerbations of pre-existing asthma is supported by an evidence base that has been accumulating for several decades, with several studies suggesting a contribution to new-onset asthma as well. In this Series paper, we discuss the effects of particulate matter (PM), gaseous pollutants (ozone, nitrogen dioxide, and sulphur dioxide), and mixed traffic-related air pollution. We focus on clinical studies, both epidemiological and experimental, published in the previous 5 years. From a mechanistic perspective, air pollutants probably cause oxidative injury to the airways, leading to inflammation, remodelling, and increased risk of sensitisation. Although several pollutants have been linked to new-onset asthma, the strength of the evidence is variable. We also discuss clinical implications, policy issues, and research gaps relevant to air pollution and asthma. PMID:24792855

  4. HTAP_v2.2: a mosaic of regional and global emission grid maps for 2008 and 2010 to study hemispheric transport of air pollution

    NASA Astrophysics Data System (ADS)

    Janssens-Maenhout, G.; Crippa, M.; Guizzardi, D.; Dentener, F.; Muntean, M.; Pouliot, G.; Keating, T.; Zhang, Q.; Kurokawa, J.; Wankmüller, R.; Denier van der Gon, H.; Kuenen, J. J. P.; Klimont, Z.; Frost, G.; Darras, S.; Koffi, B.; Li, M.

    2015-10-01

    The mandate of the Task Force Hemispheric Transport of Air Pollution (TF HTAP) under the Convention on Long-Range Transboundary Air Pollution (CLRTAP) is to improve the scientific understanding of the intercontinental air pollution transport, to quantify impacts on human health, vegetation and climate, to identify emission mitigation options across the regions of the Northern Hemisphere, and to guide future policies on these aspects. The harmonization and improvement of regional emission inventories is imperative to obtain consolidated estimates on the formation of global-scale air pollution. An emissions data set has been constructed using regional emission grid maps (annual and monthly) for SO2, NOx, CO, NMVOC, NH3, PM10, PM2.5, BC and OC for the years 2008 and 2010, with the purpose of providing consistent information to global and regional scale modelling efforts. This compilation of different regional gridded inventories - including that of the Environmental Protection Agency (EPA) for USA, the EPA and Environment Canada (for Canada), the European Monitoring and Evaluation Programme (EMEP) and Netherlands Organisation for Applied Scientific Research (TNO) for Europe, and the Model Inter-comparison Study for Asia (MICS-Asia III) for China, India and other Asian countries - was gap-filled with the emission grid maps of the Emissions Database for Global Atmospheric Research (EDGARv4.3) for the rest of the world (mainly South America, Africa, Russia and Oceania). Emissions from seven main categories of human activities (power, industry, residential, agriculture, ground transport, aviation and shipping) were estimated and spatially distributed on a common grid of 0.1° × 0.1° longitude-latitude, to yield monthly, global, sector-specific grid maps for each substance and year. The HTAP_v2.2 air pollutant grid maps are considered to combine latest available regional information within a complete global data set. The disaggregation by sectors, high spatial and

  5. System interactions of air pollutants

    SciTech Connect

    Pierson, W.E. )

    1992-06-01

    The impact of system interactions and simultaneous or sequential exposure to various air pollutants, both man-made and natural ones, requires greater concern in the interpretation of the total adverse impact of various air pollutants. It is clear that there are highly significant system interactions with exposure to various air pollutants, and these must be considered very carefully in the evaluation of their adverse health effects.

  6. PROJECTING FUTURE-YEAR POLLUTANT EMISSIONS: EMERGING APPROACHES FROM THE EPA ORD GLOBAL CHANGE AIR QUALITY ASSESSMENT

    EPA Science Inventory

    The U.S. EPA's Office of Research and Development is exploring approaches for assessing the relative impacts of climate and emissions changes on future-year air quality. A challenge related to this effort is the development of emissions inventories out to the year 2050. This pap...

  7. Compromising economic cost and air pollutant emissions of municipal solid waste management strategies by fuzzy multiobjective optimization model.

    PubMed

    Chang, Yao-Jen; Lin, Min-Der

    2013-06-01

    Municipal solid waste management (MSWM) is an important environmental challenge and subject in urban planning. A sustainable MSWM strategy should consider not only economic efficiency but also life-cycle assessment of environmental impact. This study employs the fuzzy multiobjective linear programming (FMOLP) technique to find the optimal compromise between economic optimization and pollutant emission reduction for the MSWM strategy. Taichung City in Taiwan is evaluated as a case study. The results indicate that the optimal compromise MSWM strategy can reduce significant amounts of pollutant emissions and still achieve positive net profits. Minimization of the sulfur oxide (SOx) and nitrogen oxide (NOx) emissions are the two major priorities in achieving this optimal compromise strategy when recyclables recovery rate is lower; however minimization of the carbon monoxide (CO) and particulate matter (PM) emissions become priority factors when recovery rate is higher.

  8. Emission characteristics of air pollutants from incense and candle burning in indoor atmospheres.

    PubMed

    Manoukian, A; Quivet, E; Temime-Roussel, B; Nicolas, M; Maupetit, F; Wortham, H

    2013-07-01

    Volatile organic compounds (VOCs) and particles emitted by incense sticks and candles combustion in an experimental room have been monitored on-line and continuously with a high time resolution using a state-of-the-art high sensitivity-proton transfer reaction-mass spectrometer (HS-PTR-MS) and a condensation particle counter (CPC), respectively. The VOC concentration-time profiles, i.e., an increase up to a maximum concentration immediately after the burning period followed by a decrease which returns to the initial concentration levels, were strongly influenced by the ventilation and surface interactions. The obtained kinetic data set allows establishing a qualitative correlation between the elimination rate constants of VOCs and their physicochemical properties such as vapor pressure and molecular weight. The emission of particles increased dramatically during the combustion, up to 9.1(±0.2) × 10(4) and 22.0(±0.2) × 10(4) part cm(-3) for incenses and candles, respectively. The performed kinetic measurements highlight the temporal evolution of the exposure level and reveal the importance of ventilation and deposition to remove the particles in a few hours in indoor environments.

  9. 77 FR 36341 - Control of Air Pollution From Aircraft and Aircraft Engines; Emission Standards and Test Procedures

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-18

    ..., Distribution, or Use I. National Technology Transfer Advancement Act J. Executive Order 12898: Federal Actions... which EPA has established National Ambient Air Quality Standards (NAAQS), i.e., a criteria pollutant... Web site located at www.icao.int/icaonet/arch/doc/7300/7300_9ed.pdf . \\12\\ ICAO, ``Convention...

  10. High-resolution simulation of link-level vehicle emissions and concentrations for air pollutants in a traffic-populated eastern Asian city

    NASA Astrophysics Data System (ADS)

    Zhang, Shaojun; Wu, Ye; Huang, Ruikun; Wang, Jiandong; Yan, Han; Zheng, Yali; Hao, Jiming

    2016-08-01

    Vehicle emissions containing air pollutants created substantial environmental impacts on air quality for many traffic-populated cities in eastern Asia. A high-resolution emission inventory is a useful tool compared with traditional tools (e.g. registration data-based approach) to accurately evaluate real-world traffic dynamics and their environmental burden. In this study, Macau, one of the most populated cities in the world, is selected to demonstrate a high-resolution simulation of vehicular emissions and their contribution to air pollutant concentrations by coupling multimodels. First, traffic volumes by vehicle category on 47 typical roads were investigated during weekdays in 2010 and further applied in a networking demand simulation with the TransCAD model to establish hourly profiles of link-level vehicle counts. Local vehicle driving speed and vehicle age distribution data were also collected in Macau. Second, based on a localized vehicle emission model (e.g. the emission factor model for the Beijing vehicle fleet - Macau, EMBEV-Macau), this study established a link-based vehicle emission inventory in Macau with high resolution meshed in a temporal and spatial framework. Furthermore, we employed the AERMOD (AMS/EPA Regulatory Model) model to map concentrations of CO and primary PM2.5 contributed by local vehicle emissions during weekdays in November 2010. This study has discerned the strong impact of traffic flow dynamics on the temporal and spatial patterns of vehicle emissions, such as a geographic discrepancy of spatial allocation up to 26 % between THC and PM2.5 emissions owing to spatially heterogeneous vehicle-use intensity between motorcycles and diesel fleets. We also identified that the estimated CO2 emissions from gasoline vehicles agreed well with the statistical fuel consumption in Macau. Therefore, this paper provides a case study and a solid framework for developing high-resolution environment assessment tools for other vehicle-populated cities

  11. Chinese air pollution embodied in trade

    NASA Astrophysics Data System (ADS)

    Davis, S. J.

    2014-12-01

    Rapid economic development in China has been accompanied by high levels of air pollution in many areas of China. Although researchers have applied a range of methods to monitor and track pollutant emissions in the atmosphere, studies of the underlying economic and technological drivers of this pollution have received considerably less attention. I will present results of a series of studies that have quantified the air pollutants embodied in goods being traded both within China and internationally. The results show that trade is facilitating the concentration of pollution in less economically developed areas, which in turn export pollution-intensive goods to more affluent areas. However, the export-related pollution itself is sometimes transported long distances; for instance, we have quantified the impacts of the Chinese pollution embodied in internationally-exported goods on air quality in the US. These findings important implications for Chinese efforts to curb CO2 emissions and improve air quality. The research to be presented reflects the efforts of a multiple year, ongoing collaboration among interdisciplinary researchers in China, the US and the UK.

  12. Air pollution prevention at the Hanford Site: Status and recommendations

    SciTech Connect

    Engel, J.A.

    1995-08-01

    With the introduction of the Clean Air Act Amendments of 1990 and other air and pollution prevention regulations, there has been increased focus on both pollution prevention and air emissions at US DOE sites. The Pollution Prevention (P2) Group of WHC reviewed the status of air pollution prevention with the goal of making recommendations on how to address air emissions at Hanford through pollution prevention. Using the air emissions inventory from Hanford`s Title V permit, the P2 Group was able to identify major and significant air sources. By reviewing the literature and benchmarking two other DOE Sites, two major activities were recommended to reduce air pollution and reduce costs at the Hanford Site. First, a pollution prevention opportunity assessment (P2OA) should be conducted on the significant painting sources in the Maintenance group and credit should be taken for reducing the burning of tumbleweeds, another significant source of air pollution. Since they are significant sources, reducing these emissions will reduce air emission fees, as well as have the potential to reduce material and labor costs, and increase worker safety. Second, a P2OA should be conducted on alternatives to the three coal-fired powerhouses (steam plants) on-site, including a significant costs analysis of alternatives. This analysis could be of significant value to other DOE sites. Overall, these two activities would reduce pollution, ease regulatory requirements and fees, save money, and help Hanford take a leadership role in air pollution prevention.

  13. Recent changes in particulate air pollution over China observed from space and the ground: effectiveness of emission control.

    PubMed

    Lin, Jintai; Nielsen, Chris P; Zhao, Yu; Lei, Yu; Liu, Yang; McElroy, Michael B

    2010-10-15

    The Chinese government has moved aggressively since 2005 to reduce emissions of a number of pollutants including primary particulate matter (PM) and sulfur dioxide (SO(2)), efforts inadvertently aided since late 2008 by economic recession. Satellite observations of aerosol optical depth (AOD) and column nitrogen dioxide (NO(2)) provide independent indicators of emission trends, clearly reflecting the sharp onset of the recession in the fall of 2008 and rebound of the economy in the latter half of 2009. Comparison of AOD with ground-based observations of PM over a longer period indicate that emission-control policies have not been successful in reducing concentrations of aerosol pollutants at smaller size range over industrialized regions of China. The lack of success is attributed to the increasing importance of anthropogenic secondary aerosols formed from precursor species including nitrogen oxides (NO(x)), non-methane volatile organic compounds (NMVOC), and ammonia (NH(3)).

  14. Emissions of air pollutants from road transport in Lebanon and other countries in the Middle East region

    NASA Astrophysics Data System (ADS)

    Waked, Antoine; Afif, Charbel

    2012-12-01

    Road transport is a major contributor to pollutant emissions in the Middle East region (MEA). Emissions originating from this sector have a significant impact on the atmosphere, health and the climate change. Identification and quantification of these emissions in this region is of great importance in order to develop emissions reductions strategies. For this purpose and because a detailed emission inventory for road transport is nonexistent for Lebanon (a small developing country in the MEA region) and for its capital city Beirut, a spatially-resolved and temporally-allocated emission inventory for road transport was developed for Lebanon and for the city of Beirut using a bottom-up approach where possible. In order to compare emissions between developed and non-developed cities on the Mediterranean basin, road transport emissions originating in normal (February-June and September-November) and touristic periods (July-August and December-January) were compared between Beirut, Barcelona and Athens, respectively. The comparison obtained between Beirut, Barcelona and Athens showed that emissions per capita for CO and SO2 are highest in Beirut while emissions of particulate matter were highest in Barcelona. The different patterns between these cities showed that emissions increases in winter in Beirut and Barcelona (11 and 9% respectively) and decreases in the city of Athens by 9%. In summer, an increase of 15% in traffic intensities is observed in Athens while in Beirut and Barcelona, traffic intensities decrease by 10 and 40% respectively. At a national level, emissions were calculated for 14 countries in the MEA in order to inter compare them with those of Lebanon. The results show that in the MEA, the highest contributors to total carbon monoxide (CO) and nitrogen oxides (NOx) emissions (78 and 79% respectively), are countries having a population that exceeds 20 million inhabitants such as Iran, Saudi Arabia, Iraq, Turkey and Egypt. For Lebanon, emissions per

  15. Air Pollution and Human Health

    ERIC Educational Resources Information Center

    Lave, Lester B.; Seskin, Eugene P.

    1970-01-01

    Reviews studies statistically relating air pollution to mortality and morbidity rates for respiratory, and cardiovascular diseases, cancer and infant mortality. Some data recalculated. Estimates 50 percent air pollution reduction will save 4.5 percent (2080 million dollars per year) of all economic loss (hospitalization, income loss) associated…

  16. Children, Pediatricians, and Polluted Air.

    ERIC Educational Resources Information Center

    Kane, Dorothy Noyes

    Explored are children's vulnerability and the pediatrician's role in relation to the problems posed by air pollution. Research is noted to have included a search of biomedical literature over the past 10 years; attendance at medical meetings; conferences with air pollution researchers, environmental protection administrators, and specialists in…

  17. Trace Elements and Common Ions in Southeastern Idaho Snow: Regional Air Pollutant Tracers for Source Area Emissions

    SciTech Connect

    Abbott, Michael Lehman; Einerson, Jeffrey James; Schuster, Paul; Susong, David D.

    2002-09-01

    Snow samples were collected in southeastern Idaho over two winters to assess trace elements and common ions concentrations in air pollutant fallout across the region. The objectives were to: 1) develop sampling and analysis techniques that would produce accurate measurements of a broad suite of elements and ions in snow, 2) identify the major elements in regional fallout and their spatial and temporal trends, 3) determine if there are unique combinations of elements that are characteristic to the major source areas in the region (source profiles), and 4) use pattern recognition and multivariate statistical techniques (principal component analysis and classical least squares regression) to investigate source apportionment of the fallout to the major source areas. In the winter of 2000-2001, 250 snow samples were collected across the region over a 4-month period and analyzed in triplicate using inductively-coupled plasma mass spectrometry (ICP-MS) and ion chromatography (IC). Thirty-nine (39) trace elements and 9 common ions were positively identified in most samples. The data were analyzed using pattern recognition tools in the software, Pirouette® (Infometrix, Inc.). These results showed a large crustal component (Al, Zn, Mn, Ba, and rare earth elements), an overwhelming contribution from phosphate processing facilities located outside Pocatello in the southern portion of the ESRP, some changes in concentrations over time, and no obvious source area profiles (unique chemical signatures) other than at Pocatello. Concentrations near a major U.S. Department of Energy industrial complex on the Idaho National Engineering and Environmental Laboratory (INEEL) were lower than those observed at major downwind communities. In the winter of 2001-2002, we tried a new sampling design (and collected 135 additional samples) in an attempt to estimate pure emission profiles from the major source areas in the region and used classical least squares regression (CLS) to source

  18. Intercontinental Transport of Air Pollution

    NASA Technical Reports Server (NTRS)

    Rogers, David; Whung, Pai-Yei; Einaudi, Franco (Technical Monitor)

    2001-01-01

    The development of the global economy goes beyond raising our standards of living. We are in an ear of increasing environmental as well as economic interdependence. Long-range transport of anthropogenic atmospheric pollutants such as ozone, ozone precursors, airborne particles, heavy metals (such as mercury) and persistent organic pollutants are the four major types of pollution that are transported over intercontinental distances and have global environmental effects. The talk includes: 1) an overview of the international agreements related to intercontinental transport of air pollutants, 2) information needed for decision making, 3) overview of the past research on intercontinental transport of air pollutants - a North American's perspective, and 4) future research needs.

  19. Comparing toxic air pollutant programs

    SciTech Connect

    Hawkins, S.C.

    1997-05-01

    This article compares state and federal toxic air pollutant programs. The Clean Air Act Ammendments created a program for the control of Hazardous Air Pollutants based on the establishment of control technology standards. State toxic programs can be classified into two categories: control technology-based and ambient concentration-based. Many states have opened to implement the MACT standards while enforcing their own state air toxics programs. Specific topics discussed include the following: the Federal air toxics program; existing state regulations; New Jersey Air Toxic Program; New York Toxics program.

  20. Air pollution: impact and prevention.

    PubMed

    Sierra-Vargas, Martha Patricia; Teran, Luis M

    2012-10-01

    Air pollution is becoming a major health problem that affects millions of people worldwide. In support of this observation, the World Health Organization estimates that every year, 2.4 million people die because of the effects of air pollution on health. Mitigation strategies such as changes in diesel engine technology could result in fewer premature mortalities, as suggested by the US Environmental Protection Agency. This review: (i) discusses the impact of air pollution on respiratory disease; (ii) provides evidence that reducing air pollution may have a positive impact on the prevention of disease; and (iii) demonstrates the impact concerted polices may have on population health when governments take actions to reduce air pollution.

  1. Air pollution: Impact and prevention

    PubMed Central

    SIERRA-VARGAS, MARTHA PATRICIA; TERAN, LUIS M

    2012-01-01

    ABSTRACT Air pollution is becoming a major health problem that affects millions of people worldwide. In support of this observation, the World Health Organization estimates that every year, 2.4 million people die because of the effects of air pollution on health. Mitigation strategies such as changes in diesel engine technology could result in fewer premature mortalities, as suggested by the US Environmental Protection Agency. This review: (i) discusses the impact of air pollution on respiratory disease; (ii) provides evidence that reducing air pollution may have a positive impact on the prevention of disease; and (iii) demonstrates the impact concerted polices may have on population health when governments take actions to reduce air pollution. PMID:22726103

  2. Comparative estimation of soil and plant pollution in the impact area of air emissions from an aluminium plant after technogenic load reduction.

    PubMed

    Evdokimova, Galina A; Mozgova, Natalya P

    2015-01-01

    The work provides a comparative analysis of changes in soil properties in the last 10-13 years along the pollution gradient of air emissions from Kandalaksha aluminium plant in connection with the reduction of their volume. The content of the priority pollutant fluorine (F) in atmospheric precipitation and in the organic horizon of soil in the plant impact zone significantly decreased in 2011-2013 compared to 2001. The aluminium concentrations reduced only in immediate proximity to the plant (2 km). The fluorine, calcium (Ca) and magnesium (Mg) concentrations are higher in liquid phase compared to solid phase thus these elements can migrated to greater distances from the pollution source (up to 15-20 km). Silicon (Si), aluminium (Al), iron (Fe) and phosphorus (P) can be found only in solid phases and in fall-out within the 5 km. The acidity of soil litter reduced by 2 pH units in the proximity to the plot within the 2 km. The zone of maximum soil contamination decreased from 2.5 km to 1.5 km from the emission source, the zones of heavy and moderate pollution reduced by 5 km in connection with the reduction of pollutant emissions in the plant. A high correlation between the fluorine concentrations in vegetables and litter was found. Higher fluorine concentrations in the soil result in its accumulation in plants. Mosses accumulate fluorine most intensively.

  3. Diurnal variations of wildfire emissions in Europe: analysis of the MODIS and SEVIRI measurements in the framework of the regional scale air pollution modelling

    NASA Astrophysics Data System (ADS)

    Konovalov, Igor B.; Beekmann, Matthias; Kaiser, Johannes W.; Shudyaev, Anton A.; Yurova, Alla; Kuznetsova, Irina N.

    2013-04-01

    Wildfires episodically provide a major contribution to air pollution in many regions of the world. For example, the extreme air pollution level and strongly reduced visibility were observed in the Central European region of Russia during the intensive wildfire events in summer of 2010. Such episodes provide a strong impetus for further developments in air pollution modeling, aimed at improving the ability of chemistry transport models to simulate and predict evolution of atmospheric composition affected by wildfires. The main goals of our study are (1) to investigate the diurnal cycles of air pollutant emissions from wildfires in several European regions, taking into account the fire radiative power (FRP) satellite measurements for different vegetation land cover types and (2) to examine the possibilities of improving air pollution simulations by assimilating the diurnal variability of the FRP measurements performed by the polar orbiting (MODIS) and geostationary (SEVIRI) satellite instruments into a chemistry transport model. These goals are addressed for the case of wildfires occurred in summer 2010. The analysis of both the MODIS and SEVIRI data indicate that air pollutant emissions from wildfires in Europe in summer 2010 were typically much larger during daytime than during nighttime. The important exception is intensive fires around Moscow, featuring an almost "flat" diurnal cycle. These findings confirm the similar results reported earlier [1] but also extend them by attributing the flat diurnal cycle only to forest fires and by examining a hypothetical association of the "abnormal" diurnal cycle of FRP with peat fires. The derived diurnal variations of wildfire emissions have been used in the framework of the modeling system employed in our previous studies of the atmospheric effects of the 2010 Russian wildfires [2, 3]. The numerical experiments reveal that while the character of the diurnal variation of wildfire emissions has a rather small impact on the

  4. Application of mobile aerosol and trace gas measurements for the investigation of megacity air pollution emissions: the Paris metropolitan area

    NASA Astrophysics Data System (ADS)

    von der Weiden-Reinmüller, S.-L.; Drewnick, F.; Crippa, M.; Prévôt, A. S. H.; Meleux, F.; Baltensperger, U.; Beekmann, M.; Borrmann, S.

    2014-01-01

    For the investigation of megacity emission development and the impact outside the source region, mobile aerosol and trace gas measurements were carried out in the Paris metropolitan area between 1 July and 31 July 2009 (summer conditions) and 15 January and 15 February 2010 (winter conditions) in the framework of the European Union FP7 MEGAPOLI project. Two mobile laboratories, MoLa and MOSQUITA, were deployed, and here an overview of these measurements and an investigation of the applicability of such measurements for the analysis of megacity emissions are presented. Both laboratories measured physical and chemical properties of fine and ultrafine aerosol particles as well as gas phase constituents of relevance for urban pollution scenarios. The applied measurement strategies include cross-section measurements for the investigation of plume structure and quasi-Lagrangian measurements axially along the flow of the city's pollution plume to study plume aging processes. Results of intercomparison measurements between the two mobile laboratories represent the adopted data quality assurance procedures. Most of the compared measurement devices show sufficient agreement for combined data analysis. For the removal of data contaminated by local pollution emissions a video tape analysis method was applied. Analysis tools like positive matrix factorization and peak integration by key analysis applied to high-resolution time-of-flight aerosol mass spectrometer data are used for in-depth data analysis of the organic particulate matter. Several examples, including a combination of MoLa and MOSQUITA measurements on a cross section through the Paris emission plume, are provided to demonstrate how such mobile measurements can be used to investigate the emissions of a megacity. A critical discussion of advantages and limitations of mobile measurements for the investigation of megacity emissions completes this work.

  5. Analysis of a long-term measurement of air pollutants (2007-2011) in North China Plain (NCP); Impact of emission reduction during the Beijing Olympic Games.

    PubMed

    Xu, Ruiguang; Tang, Guiqian; Wang, Yuesi; Tie, Xuexi

    2016-09-01

    Five years measurements were used to evaluate the effect of emission controls on the changes of air pollutants in Beijing and its surroundings in the NCP during 2008 Olympic Games (2008OG). The major challenge of this study was to filter out the effect of variability of meteorological conditions, when compared the air pollutants during the game to non-game period. We used four-year (2007, 2009-2011) average as the Non-2008OG to smooth the temporal variability caused by meteorological parameters. To study the spatial variability and regional transport, 6 sites (urban, rural, a mega city, a heavy industrial city, and a remote site) were selected. The result showed that the annually meteorological variability was significantly reduced. Such as, in BJ the differences between 2008OG and 5-years averaged values were 2.7% for relative humidity and 0.6% for wind speed. As a result, the anomaly of air pollutants between 2008OG and Non-2008OG can largely attribute to the emission control. The comparison showed that the major pollutants (PM10, PM2.5, NO, NOx) at the 6 sites in 2008OG were consistently lowered. For example, PM2.5 in BJ decreased from 75 to 45 μg/m(3) (40% reduction). However, the emission controls had minor effect on O3 concentrations (1% reduction). In contrast, the O3 precursor (NOx) reduced from 19.7 to 13.2 ppb (33% reduction). The in-sensitivity between NOx and O3 suggested that the O3 formation was under VOCs control condition in NCP, showing that strong VOC emission control is needed in order to significantly reduce O3 concentration in the region.

  6. Analysis of a long-term measurement of air pollutants (2007-2011) in North China Plain (NCP); Impact of emission reduction during the Beijing Olympic Games.

    PubMed

    Xu, Ruiguang; Tang, Guiqian; Wang, Yuesi; Tie, Xuexi

    2016-09-01

    Five years measurements were used to evaluate the effect of emission controls on the changes of air pollutants in Beijing and its surroundings in the NCP during 2008 Olympic Games (2008OG). The major challenge of this study was to filter out the effect of variability of meteorological conditions, when compared the air pollutants during the game to non-game period. We used four-year (2007, 2009-2011) average as the Non-2008OG to smooth the temporal variability caused by meteorological parameters. To study the spatial variability and regional transport, 6 sites (urban, rural, a mega city, a heavy industrial city, and a remote site) were selected. The result showed that the annually meteorological variability was significantly reduced. Such as, in BJ the differences between 2008OG and 5-years averaged values were 2.7% for relative humidity and 0.6% for wind speed. As a result, the anomaly of air pollutants between 2008OG and Non-2008OG can largely attribute to the emission control. The comparison showed that the major pollutants (PM10, PM2.5, NO, NOx) at the 6 sites in 2008OG were consistently lowered. For example, PM2.5 in BJ decreased from 75 to 45 μg/m(3) (40% reduction). However, the emission controls had minor effect on O3 concentrations (1% reduction). In contrast, the O3 precursor (NOx) reduced from 19.7 to 13.2 ppb (33% reduction). The in-sensitivity between NOx and O3 suggested that the O3 formation was under VOCs control condition in NCP, showing that strong VOC emission control is needed in order to significantly reduce O3 concentration in the region. PMID:27355197

  7. Measurement of toxic and related air pollutants

    SciTech Connect

    Jayanty, R.K.M.; Gay, B.W. Jr.

    1990-12-01

    A joint conference for the fifth straight year cosponsored by the Air and Waste Management Association's EM-3, EM-4, and ITF-2 technical committees, and the Atmospheric Research and Exposure Assessment Laboratory (AREAL) of the US Environmental Protection Agency, was held in Raleigh, North Carolina, May 1-4, 1990. The technical program consisted of 187 presentations, held in 20 technical sessions, on recent advances in the measurement and monitoring of toxic and related pollutants found in ambient and source atmospheres. Covering a wide range of measurement topics and supported by 66 exhibitors of instrumentation and consulting services, the symposium was attended by more than 850 professionals from the US and other countries. This overview highlights a selection of the technical presentations. A synopsis of the keynote address to the symposium is also included. Presentations include: (1) radon, (2) atmospheric chemistry and fate of toxic pollutants, (3) supercritical fluid extraction, (4) acidic deposition, (5) determination of polar and volatile organic pollutants in ambient air, (6) Delaware Superfund innovative technology evaluation (SITE) study, (7) mobile sources emissions characterization, (8) Superfund site air monitoring, (9) exposure assessment, (10) chemometrics and environmental data analysis, (11) nicotine in environmental tobacco smoke, (12) source monitoring, (13) effects of air toxics on plants, (14) measurement of volatile organic pollutants, (15) general, (16) air pollution dispersion modeling, (17) measurement of hazardous waste emissions, (18) measurement of indoor toxic air contaminants, and (19) environmental quality assurance.

  8. Transport and urban air pollution in India.

    PubMed

    Badami, Madhav G

    2005-08-01

    The rapid growth in motor vehicle activity in India and other rapidly industrializing low-income countries is contributing to high levels of urban air pollution, among other adverse socioeconomic, environmental, health, and welfare impacts. This paper first discusses the local, regional, and global impacts associated with air pollutant emissions resulting from motor vehicle activity, and the technological, behavioral, and institutional factors that have contributed to these emissions, in India. The paper then discusses some implementation issues related to various policy measures that have been undertaken, and the challenges of the policy context. Finally, the paper presents insights and lessons based on the recent Indian experience, for better understanding and more effectively addressing the transport air pollution problem in India and similar countries, in a way that is sensitive to their needs, capabilities, and constraints.

  9. Psychological reactions to air pollution

    SciTech Connect

    Evans, G.W.; Colome, S.D.; Shearer, D.F.

    1988-02-01

    Interviews with a large representative sample of Los Angeles residents reveal that these citizens are somewhat aware and concerned about air pollution, but not knowledgeable about its causes. Direct behaviors to reduce causes of pollution or one's exposure to it are rare. A moderate percentage of people seek out information about air pollution or complain about it. Fewer follow state health advisories by reducing automobile driving or restricting activity during air pollution episodes. Preliminary modeling of citizen compliance with air pollution health advisories suggest that personal beliefs about negative health effects are a important predictor of compliance. Finally, modest but significant relationships are noted between ambient photochemical oxidants and anxiety symptoms. The latter finding controls for age, socioeconomic status, and temperature.

  10. Air pollution and plant life

    SciTech Connect

    Treshow, M.

    1984-01-01

    This book addresses air pollution's sources and movement; biochemical, cellular, and whole-plant effects, impacts on agricultural and natural systems; and control. The effects of convective turbulence and atmospheric stability are well illustrated. The diagnosis of air pollution injury to plants and mimicking symptoms are discussed. The environmental and source variables that affect pollutant dispersion are explained by use of the Gaussian dispersion model. An overview is presented of the effects of sulfur dioxide, photochemical oxidants, and fluoride on stomatal function, photosynthesis, respiration, and metabolic processes and products. Information is discussed concerning combinations of air pollutants, impacts on lichens, and effects of trace metals on plants. The relationship between air pollutants and diseases or other stress factors is evaluated.

  11. Air Pollution Primer. Revised Education.

    ERIC Educational Resources Information Center

    Corman, Rena

    This revised and updated book is written to inform the citizens on the nature, causes, and effects of air pollution. It is written in terms familiar to the layman with the purpose of providing knowledge and motivation to spur community action on clean air policies. Numerous charts and drawings are provided to support discussion of air pollution…

  12. Trends in emissions and concentrations of air pollutants in the lower troposphere in the Baltimore/Washington airshed from 1997 to 2011

    NASA Astrophysics Data System (ADS)

    He, H.; Stehr, J. W.; Hains, J. C.; Krask, D. J.; Doddridge, B. G.; Vinnikov, K. Y.; Canty, T. P.; Hosley, K. M.; Salawitch, R. J.; Worden, H. M.; Dickerson, R. R.

    2013-08-01

    Trends in the composition of the lower atmosphere (0-1500 m altitude) and surface air quality over the Baltimore/Washington area and surrounding states were investigated for the period from 1997 to 2011. We examined emissions of ozone precursors from monitors and inventories as well as ambient ground-level and aircraft measurements to characterize trends in air pollution. The US EPA Continuous Emissions Monitoring System (CEMS) program reported substantial decreases in emission of summertime nitrogen oxides (NOx) from power plants, up to ∼80% in the mid-Atlantic States. These large reductions in emission of NOx are reflected in a sharp decrease of ground-level concentrations of NOx starting around 2003. The decreasing trend of tropospheric column CO observed by aircraft is ∼0.8 Dobson unit (DU) per year, corresponding to ∼35 ppbv yr-1 in the lower troposphere (the surface to 1500 m above ground level). Satellite observations of long-term, near-surface CO show a ∼40% decrease over western Maryland between 2000 and 2011; the same magnitude is indicated by aircraft measurements above these regions upwind of the Baltimore/Washington airshed. With decreasing emissions of ozone precursors, the ground-level ozone in the Baltimore/Washington area shows a 0.6 ppbv yr-1 decrease in the past 15 yr. Since photochemical production of ozone is substantially influenced by ambient temperature, we introduce the climate penalty factor (CPF) into the trend analysis of long-term aircraft measurements. After compensating for inter-annual variations in temperature, historical aircraft measurements indicate that the daily net production of tropospheric ozone over the Baltimore/Washington area decreased from ∼20 ppbv day-1 in the late 1990s to ∼7 ppbv day-1 in the early 2010s during ozone season. A decrease in the long-term column ozone is observed as ∼0.2 DU yr-1 in the lowest 1500 m, corresponding to an improvement of ∼1.3 ppbv yr-1. Our aircraft

  13. Contribution from the ten major emission sectors in Europe to the Health-Cost Externalities of Air Pollution using the EVA Model System - an integrated modelling approach

    NASA Astrophysics Data System (ADS)

    Brandt, Jørgen; Silver, Jeremy D.; Christensen, Jesper H.; Andersen, Mikael S.; Bønløkke, Jakob H.; Sigsgaard, Torben; Geels, Camilla; Gross, Allan; Hansen, Ayoe B.; Hansen, Kaj M.; Hedegaard, Gitte B.; Kaas, Eigil; Frohn, Lise M.

    2013-04-01

    We have developed an integrated model system, EVA (Economic Valuation of Air pollution), based on the impact-pathway chain, to assess the health-related economic externalities of air pollution resulting from specific emission sources or sectors, which can be used to support policy-making with respect to emission control. Central for the system is a tagging method capable of calculating the contribution from a specific emission source or sector to the overall air pollution levels, taking into account the non-linear atmospheric chemistry. The main objective of this work is to identify the anthropogenic emission sources in Europe and Denmark that contribute the most to human health impacts. In this study, we applied the EVA system to Europe and Denmark, with a detailed analysis of health-related external costs from the ten major emission sectors and their relative contributions. The paper contains a thorough description of the EVA system. The conclusions in the paper are sensitive to the toxicity of the different types of atmospheric particles, and therefore the existing knowledge of health impacts from particles is reviewed. We conclude that with our present knowledge we are not able to distinguish between the impacts from different particle types and therefore the toxicity of the particles is handled equally in the overall results. The main conclusion from the analysis of the ten major emission sectors in Europe and Denmark is that the major contributors to health-related external costs are major power production, agriculture, road traffic, and non-industrial domestic combustion, including wood combustion. The major power plants in Europe contribute with around 25% of the total health related external costs relative to all sources in Europe, while the Danish power plants only contribute with less than 10% relative to all Danish sources. Our results suggest that the agricultural sector contributes with 25% to health impacts and related external costs. We conclude

  14. Evaluating sources of indoor air pollution

    SciTech Connect

    Tichenor, B.A.; Sparks, L.E.; White, J.B.; Jackson, M.D.

    1988-05-01

    This paper discusses a three-phase approach, employing environmental chambers, indoor air quality (IAQ) models, and test-house experiments, that is effective in linking sources of indoor pollutants to measured concentrations. Emission factors developed in test chambers can be used to evaluate full-scale indoor environments. A PC-based IAQ model has been developed that can accurately predict indoor concentrations of specific pollutants under controlled conditions in a test house. The model is also useful in examining the effect of pollutant sinks and variations in ventilation parameters. Pollutants were examined from: (1) para-dichloro-benzene emissions from moth crystal cakes; and, (2) particulate emissions from unvented kerosene heaters. However, the approach has not been validated for other source types, including solvent based materials and aerosol products.

  15. Atmospheric Chemistry and Air Pollution

    DOE PAGES

    Gaffney, Jeffrey S.; Marley, Nancy A.

    2003-01-01

    Atmospheric chemistry is an important discipline for understanding air pollution and its impacts. This mini-review gives a brief history of air pollution and presents an overview of some of the basic photochemistry involved in the production of ozone and other oxidants in the atmosphere. Urban air quality issues are reviewed with a specific focus on ozone and other oxidants, primary and secondary aerosols, alternative fuels, and the potential for chlorine releases to amplify oxidant chemistry in industrial areas. Regional air pollution issues such as acid rain, long-range transport of aerosols and visibility loss, and the connections of aerosols to ozonemore » and peroxyacetyl nitrate chemistry are examined. Finally, the potential impacts of air pollutants on the global-scale radiative balances of gases and aerosols are discussed briefly.« less

  16. Atmospheric chemistry and air pollution.

    PubMed

    Gaffney, Jeffrey S; Marley, Nancy A

    2003-04-07

    Atmospheric chemistry is an important discipline for understanding air pollution and its impacts. This mini-review gives a brief history of air pollution and presents an overview of some of the basic photochemistry involved in the production of ozone and other oxidants in the atmosphere. Urban air quality issues are reviewed with a specific focus on ozone and other oxidants, primary and secondary aerosols, alternative fuels, and the potential for chlorine releases to amplify oxidant chemistry in industrial areas. Regional air pollution issues such as acid rain, long-range transport of aerosols and visibility loss, and the connections of aerosols to ozone and peroxyacetyl nitrate chemistry are examined. Finally, the potential impacts of air pollutants on the global-scale radiative balances of gases and aerosols are discussed briefly.

  17. Using Satellite Remote Sensing and Modelling for Insights into N02 Air Pollution and NO2 Emissions

    NASA Technical Reports Server (NTRS)

    Lamsal, L. N.; Martin, R. V.; Krotkov, N. A.; Bucsela, E. J.; Celarier, E. A.; vanDonkelaar, A.; Parrish, D.

    2012-01-01

    Nitrogen oxides (NO(x)) are key actors in air quality and climate change. Satellite remote sensing of tropospheric NO2 has developed rapidly with enhanced spatial and temporal resolution since initial observations in 1995. We have developed an improved algorithm and retrieved tropospheric NO2 columns from Ozone Monitoring Instrument. Column observations of tropospheric NO2 from the nadir-viewing satellite sensors contain large contributions from the boundary layer due to strong enhancement of NO2 in the boundary layer. We infer ground-level NO2 concentrations from the OMI satellite instrument which demonstrate significant agreement with in-situ surface measurements. We examine how NO2 columns measured by satellite, ground-level NO2 derived from satellite, and NO(x) emissions obtained from bottom-up inventories relate to world's urban population. We perform inverse modeling analysis of NO2 measurements from OMI to estimate "top-down" surface NO(x) emissions, which are used to evaluate and improve "bottom-up" emission inventories. We use NO2 column observations from OMI and the relationship between NO2 columns and NO(x) emissions from a GEOS-Chem model simulation to estimate the annual change in bottom-up NO(x) emissions. The emission updates offer an improved estimate of NO(x) that are critical to our understanding of air quality, acid deposition, and climate change.

  18. Hazardous air pollutants and asthma.

    PubMed Central

    Leikauf, George D

    2002-01-01

    Asthma has a high prevalence in the United States, and persons with asthma may be at added risk from the adverse effects of hazardous air pollutants (HAPs). Complex mixtures (fine particulate matter and tobacco smoke) have been associated with respiratory symptoms and hospital admissions for asthma. The toxic ingredients of these mixtures are HAPs, but whether ambient HAP exposures can induce asthma remains unclear. Certain HAPs are occupational asthmagens, whereas others may act as adjuncts during sensitization. HAPs may exacerbate asthma because, once sensitized, individuals can respond to remarkably low concentrations, and irritants lower the bronchoconstrictive threshold to respiratory antigens. Adverse responses after ambient exposures to complex mixtures often occur at concentrations below those producing effects in controlled human exposures to a single compound. In addition, certain HAPs that have been associated with asthma in occupational settings may interact with criteria pollutants in ambient air to exacerbate asthma. Based on these observations and past experience with 188 HAPs, a list of 19 compounds that could have the highest impact on the induction or exacerbation of asthma was developed. Nine additional compounds were identified that might exacerbate asthma based on their irritancy, respirability, or ability to react with biological macromolecules. Although the ambient levels of these 28 compounds are largely unknown, estimated exposures from emissions inventories and limited air monitoring suggest that aldehydes (especially acrolein and formaldehyde) and metals (especially nickel and chromium compounds) may have possible health risk indices sufficient for additional attention. Recommendations for research are presented regarding exposure monitoring and evaluation of biologic mechanisms controlling how these substances induce and exacerbate asthma. PMID:12194881

  19. Study of air pollutant detectors

    NASA Technical Reports Server (NTRS)

    Gutshall, P. L.; Bowles, C. Q.

    1974-01-01

    The application of field ionization mass spectrometry (FIMS) to the detection of air pollutants was investigated. Current methods are reviewed for measuring contaminants of fixed gases, sulfur compounds, nitrogen oxides, hydrocarbons, and particulates. Two enriching devices: the dimethyl silicone rubber membrane separator, and the selective adsorber of polyethylene foam were studied along with FIMS. It is concluded that the membrane enricher system is not a suitable method for removing air pollutants. However, the FIMS shows promise as a useable system for air pollution detection.

  20. Tank exhaust comparison with 40 CFR 61.93, Subpart H, and other referenced guidelines for Tank Farms National Emission Standards for Hazardous Air Pollutant (NESHAP) designated stacks

    SciTech Connect

    Bachand, D.D.; Crummel, G.M.

    1994-07-01

    The US Environmental Protection Agency (EPA) promulgated National Emission Standards other than Radon from US Department of Energy (DOE) Facilities (40 CFR 61, Subpart H) on December 15, 1989. The regulations specify procedures, equipment, and test methods that.are to be used to measure radionuclide emissions from exhaust stacks that are designated as National Emission Standards for Hazardous Air Pollutant (NESHAP) stacks. Designated NESHAP stacks are those that have the potential to cause any member of the public to receive an effective dose equivalent (EDE) greater than or equal to 0.1 mrem/year, assuming all emission controls were removed. Tank Farms currently has 33 exhaust stacks, 15 of which are designated NESHAP stacks. This document assesses the compliance status of the monitoring and sampling systems for the designated NESHAP stacks.

  1. Application of mobile aerosol and trace gas measurements for the investigation of megacity air pollution emissions: the Paris metropolitan area

    NASA Astrophysics Data System (ADS)

    von der Weiden-Reinmüller, S.-L.; Drewnick, F.; Crippa, M.; Prévôt, A. S. H.; Meleux, F.; Baltensperger, U.; Beekmann, M.; Borrmann, S.

    2013-08-01

    For the investigation of megacity emission development and impact outside the source region mobile aerosol and trace gas measurements were carried out in the Paris metropolitan area between 1 July and 31 July 2009 (summer conditions) and 15 January and 15 February 2010 (winter conditions) in the framework of the European Union FP7 MEGAPOLI project. Two mobile laboratories, MoLa and MOSQUITA, were deployed, and here an overview of these measurements and an investigation of the applicability of such measurements for the analysis of megacity emissions are presented. Both laboratories measured physical and chemical properties of fine and ultrafine aerosol particles as well as gas phase constituents of relevance for urban pollution scenarios. The applied measurement strategies include cross section measurements for the investigation of plume structure and quasi-Lagrangian measurements radially away from the city center to study plume aging processes. Results of intercomparison measurements between the two mobile laboratories represent the adopted data quality assurance procedures. Most of the compared measurement devices show sufficient agreement for combined data analysis. For the removal of data contaminated by local pollution emissions a video tape analysis method was applied. Analysis tools like positive matrix factorization and peak integration by key analysis applied to high-resolution time-of-flight aerosol mass spectrometer data are used for in-depth data analysis of the organic particulate matter. Several examples, including a combination of MoLa and MOSQUITA measurements on a cross section through the Paris emission plume are provided to demonstrate how such mobile measurements can be used to investigate the emissions of a megacity. A critical discussion of advantages and limitations of mobile measurements for the investigation of megacity emissions completes this work.

  2. A comparison of greenhouse gas emissions and local area pollution of highspeed rail and air travel between Los Angeles and Las Vegas

    NASA Astrophysics Data System (ADS)

    Mullins, Damien

    Global warming is one of the most discussed global environmental issues in the world today. Global warming is driven by fossil fuel combustion emissions known as Green-house Gases (GHG). One of the major contributors to GHG emissions is the transport sector, emitting approximately 30% of total U.S. CO 2 emissions in 2010. Air travel contributed approximately 3.5% of total U.S. CO2 in 2008. High-speed Rail (HSR) is often touted as cleaner, more sustainable mode of transport than air travel. HSR is one of few modes of transport capable of competing with air travel for short to medium-haul distances. There has been considerable study of GHG emissions of each independently. Research has also been carried out into the economics and competition of these transport modes. However, there has been very limited study of the comparative emissions of each, apart from one study in Europe (Givoni, 2007). The current study was undertaken with the goal of quantifying potential emission savings due to mode substitution from air travel to HSR in the Los Angeles to Las Vegas corridor. This study only considered the emissions which occurred from the combustion of the relevant fuels, either in power plants or the engines of an aircraft. Emissions from fuel production/refining or transport of fuels were not considered. Another issue compared was Local Area Pollution (LAP), which is a measure of the severity of emissions effect on the environment. This was examined because all emissions from HSR occur close to the surface of the earth, and hence effect the local environment, while only a portion of aircraft emissions do. This study was carried out using internationally recognized emission inventory methodologies. For the air travel emission estimate methodologies and data published by the Intergovernmental Panel on Climate Change (IPCC) and the International Civil Aviation Organization (ICAO) were used. The HSR energy use was estimated from energy use data from currently running HSR

  3. Mercury and Air Pollution: A Bibliography With Abstracts.

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Research Triangle Park, NC. Office of Air Programs.

    The Air Pollution Technical Information Center (APTIC) of the Office of Air Programs has selected and compiled this bibliography of abstracts on mercury and air pollution. The abstracted documents are considered representative of available literature, although not all-inclusive. They are grouped into eleven categories: (1) Emission Sources, (2)…

  4. The impact of the congestion charging scheme on air quality in London. Part 1. Emissions modeling and analysis of air pollution measurements.

    PubMed

    Kelly, Frank; Anderson, H Ross; Armstrong, Ben; Atkinson, Richard; Barratt, Ben; Beevers, Sean; Derwent, Dick; Green, David; Mudway, Ian; Wilkinson, Paul

    2011-04-01

    On February 17, 2003, a congestion charging scheme (CCS*) was introduced in central London along with a program of traffic management measures. The scheme operated Monday through Friday, 7 AM to 6 PM. This program resulted in an 18% reduction in traffic volume and a 30% reduction in traffic congestion in the first year (2003). We developed methods to evaluate the possible effects of the scheme on air quality: We used a temporal-spatial design in which modeled and measured air quality data from roadside and background monitoring stations were used to compare time periods before (2001-2002) and after (2003-2004) the CCS was introduced and to compare the spatial area of the congestion charging zone (CCZ) with the rest of London. In the first part of this project, we modeled changes in concentrations of oxides of nitrogen (NOx), nitrogen dioxide (NO2), and PM10 (particles with a mass median aerodynamic diameter < or = 10 microm) across the CCZ and in Greater London under different traffic and emission scenarios for the periods before and after CCS introduction. Comparing model results within and outside the zone suggested that introducing the CCS would be associated with a net 0.8-microg/m3 decrease in the mean concentration of PM10 and a net 1.7-ppb decrease in the mean concentration of NOx within the CCZ. In contrast, a net 0.3-ppb increase in the mean concentration of NO2 was predicted within the zone; this was partly explained by an expected increase in primary NO2 emissions due to the introduction of particle traps on diesel buses (one part of the improvements in public transport associated with the CCS). In the second part of the project, we established a CCS Study Database from measurements obtained from the London Air Quality Network (LAQN) for air pollution monitors sited to measure roadside and urban background concentrations. Fully ratified (validated) 15-minute mean carbon monoxide (CO), nitric oxide (NO), NO2, NOx, PM10, and PM2.5 data from each chosen

  5. Greenhouse gas and air pollutant emission reduction potentials of renewable energy--case studies on photovoltaic and wind power introduction considering interactions among technologies in Taiwan.

    PubMed

    Kuo, Yu-Ming; Fukushima, Yasuhiro

    2009-03-01

    To achieve higher energy security and lower emission of greenhouse gases (GHGs) and pollutants, the development of renewable energy has attracted much attention in Taiwan. In addition to its contribution to the enhancement of reliable indigenous resources, the introduction of renewable energy such as photovoltaic (PV) and wind power systems reduces the emission of GHGs and air pollutants by substituting a part of the carbon- and pollutant-intensive power with power generated by methods that are cleaner and less carbon-intensive. To evaluate the reduction potentials, consequential changes in the operation of different types of existing power plants have to be taken into account. In this study, a linear mathematical programming model is constructed to simulate a power mix for a given power demand in a power market sharing a cost-minimization objective. By applying the model, the emission reduction potentials of capacity extension case studies, including the enhancement of PV and wind power introduction at different scales, were assessed. In particular, the consequences of power mix changes in carbon dioxide, nitrogen oxides, sulfur oxides, and particulates were discussed. Seasonally varying power demand levels, solar irradiation, and wind strength were taken into account. In this study, we have found that the synergetic reduction of carbon dioxide emission induced by PV and wind power introduction occurs under a certain level of additional installed capacity. Investigation of a greater variety of case studies on scenario development with emerging power sources becomes possible by applying the model developed in this study.

  6. New directions: Air pollution challenges for developing megacities like Delhi

    NASA Astrophysics Data System (ADS)

    Kumar, Prashant; Khare, Mukesh; Harrison, Roy M.; Bloss, William J.; Lewis, Alastair C.; Coe, Hugh; Morawska, Lidia

    2015-12-01

    Most major cities around the world experience periods of elevated air pollution levels, which exceed international health-based air quality standards (Kumar et al., 2013). Although it is a global problem, some of the highest air pollution levels are found in rapidly expanding cities in India and China. The sources, emissions, transformations and broad effects of meteorology on air pollution are reasonably well accounted in air quality control strategies in many developed cities; however these key factors remain poorly constrained in the growing cities of countries with emerging economies. We focus here on Delhi, one of the largest global population centres, which faces particular air pollution challenges, now and in the future.

  7. Air Pollution Affects Community Health

    ERIC Educational Resources Information Center

    Shy, Carl M.; Finklea, John F.

    1973-01-01

    Community Health and Environmental Surveillance System (CHESS), a nationwide program relating community health to environmental quality, is designed to evaluate existing environmental standards, obtain health intelligence for new standards, and document health benefits of air pollution control. (BL)

  8. Civil aviation, air pollution and human health

    NASA Astrophysics Data System (ADS)

    Harrison, Roy M.; Masiol, Mauro; Vardoulakis, Sotiris

    2015-04-01

    Air pollutant emissions from aircraft have been subjected to less rigorous control than road traffic emissions, and the rapid growth of global aviation is a matter of concern in relation to human exposures to pollutants, and consequent effects upon health. Yim et al (2015 Environ. Res. Lett. 3 034001) estimate exposures globally arising from aircraft engine emissions of primary particulate matter, and from secondary sulphates and ozone, and use concentration-response functions to calculate the impact upon mortality, which is monetised using the value of statistical life. This study makes a valuable contribution to estimating the magnitude of public health impact at various scales, ranging from local, near airport, regional and global. The results highlight the need to implement future mitigation actions to limit impacts of aviation upon air quality and public health. The approach adopted in Yim et al only accounts for the air pollutants emitted by aircraft engine exhausts. Whilst aircraft emissions are often considered as dominant near runways, there are a number of other sources and processes related to aviation that still need to be accounted for. This includes impacts of nitrate aerosol formed from NOx emissions, but probably more important, are the other airport-related emissions from ground service equipment and road traffic. By inclusion of these, and consideration of non-fatal impacts, future research will generate comprehensive estimates of impact related to aviation and airports.

  9. Western forests and air pollution

    SciTech Connect

    Olson, R.K.; Binkley, D.; Boehm, M.

    1992-01-01

    The book addresses the relationships between air pollution in the western United States and trends in the growth and condition of Western coniferous forests. The major atmospheric pollutants to which forest in the region are exposed are sulfur and nitrogen compounds and ozone. The potential effects of atmospheric pollution on these forests include foliar injury, alteration of growth rates and patterns, soil acidification, shifts in species composition, and modification of the effects of natural stresses.

  10. Hazardous Air Pollutants

    MedlinePlus

    ... menu Learn the Issues Air Chemicals and Toxics Climate Change Emergencies Greener Living Health and Safety Land and Cleanup Pesticides Waste Water Science & Technology Air Climate Change Ecosystems Health Land, Waste and Cleanup Pesticides Substances ...

  11. Air pollution injury to plants

    SciTech Connect

    Seibert, R.J.

    1986-01-01

    The injuries to plants by oxidant air pollution can be used as biological indicators of pollution episodes. Bel W3 tobacco is often used as an indicator organism. Dogwood is another potential indicator organism. Specific growing procedures used for indicator organisms are described, as are diagnostic criteria for the type and extent of injuries.

  12. Air pollution and children's health.

    PubMed

    Schwartz, Joel

    2004-04-01

    Children's exposure to air pollution is a special concern because their immune system and lungs are not fully developed when exposure begins, raising the possibility of different responses than seen in adults. In addition, children spend more time outside, where the concentrations of pollution from traffic, powerplants, and other combustion sources are generally higher. Although air pollution has long been thought to exacerbate minor acute illnesses, recent studies have suggested that air pollution, particularly traffic-related pollution, is associated with infant mortality and the development of asthma and atopy. Other studies have associated particulate air pollution with acute bronchitis in children and demonstrated that rates of bronchitis and chronic cough declined in areas where particle concentrations have fallen. More mixed results have been reported for lung function. Overall, evidence for effects of air pollution on children have been growing, and effects are seen at concentrations that are common today. Although many of these associations seem likely to be causal, others require and warrant additional investigation.

  13. Analysis of motorcycle fleet in Hanoi for estimation of air pollution emission and climate mitigation co-benefit of technology implementation

    NASA Astrophysics Data System (ADS)

    Kim Oanh, Nguyen Thi; Thuy Phuong, Mai Thi; Permadi, Didin Agustian

    2012-11-01

    A fleet of over two million motorcycles (MC) in Hanoi is believed to contribute a substantial emission of air pollutants and climate forcers but has not been thoroughly characterized. This study conducted a survey of the MC technologies and activities in Hanoi using questionnaires, GPS monitoring, and video camera in 2008. The data were collected for three typical road types (highways, arterials, residential streets) in 3 zones of the city. Majority of MC in Hanoi were relatively new (3.6 years), had 4-stroke engine, but only 6% was equipped with catalyst exhaust control devices. About 35% of the fleet did not comply with any EURO standards. The MC daily driving was 20 km, mostly done on arterial streets. The main driving features in Hanoi arterials and residential streets were of low speeds with frequent starts/stops and idling. International Vehicle Emissions (IVE) model produced adjusted emission factors (EFs) that were compared with the limited available measurement data. The fleet emission was estimated for 2008 as a base case and for two “what-if” faster technology implementation scenarios: scenario 1 assumed that the entire fleet in 2008 conformed at least EURO2 and scenario 2 assumed 100% MC met the EURO3 standard. Total emissions from the fleet in 2008 of CO, VOC, NOx, SO2, PM10, and CH4 were 158, 51.5, 9.5, 0.17, 2.4 and 9.5 kt, respectively. Emissions of 1,3-butadiene, acetaldehydes, formaldehydes and benzene were 0.26, 1.2, 4.9 and 2.1 kt, respectively. Faster EURO3 technology intrusion in scenario 2 would significantly reduce the emission of pollutants (by 53-94%) and climate forcers in CO2-equivalent (53% for 20-year and 38% for 100-year horizon), which tripled the reductions obtained under scenario 1. Substantial co-benefits for air quality and climate forcer mitigation could be achieved by the faster technology implementation.

  14. Two reduced form air quality modeling techniques for rapidly calculating pollutant mitigation potential across many sources, locations and precursor emission types

    NASA Astrophysics Data System (ADS)

    Foley, Kristen M.; Napelenok, Sergey L.; Jang, Carey; Phillips, Sharon; Hubbell, Bryan J.; Fulcher, Charles M.

    2014-12-01

    Due to the computational cost of running regional-scale numerical air quality models, reduced form models (RFM) have been proposed as computationally efficient simulation tools for characterizing the pollutant response to many different types of emission reductions. The U.S. Environmental Protection Agency has developed two types of reduced form models based upon simulations of the Community Multiscale Air Quality (CMAQ) modeling system. One is based on statistical response surface modeling (RSM) techniques using a multidimensional kriging approach to approximate the nonlinear chemical and physical processes. The second approach is based on using sensitivity coefficients estimated with the Decoupled Direct Method in 3 dimensions (CMAQ-DDM-3D) in a Taylor series approximation for the nonlinear response of the pollutant concentrations to changes in emissions from specific sectors and locations. Both types of reduced form models are used to estimate the changes in O3 and PM2.5 across space associated with emission reductions of NOx and SO2 from power plants and other sectors in the eastern United States. This study provides a direct comparison of the RSM- and DDM-3D-based tools in terms of: computational cost, model performance against brute force runs, and model response to changes in emission inputs. For O3, the DDM-3D RFM had slightly better performance on average for low to moderate emission cuts compared to the kriging-based RSM, but over-predicted O3 disbenefits from cuts to mobile source NOx in very urban areas. The RSM approach required more up-front computational cost and produced some spurious O3 increases in response to reductions in power plant emissions. However the RSM provided more accurate predictions for PM2.5 and for predictions of very large emission cuts (e.g. -60 to -90%). This comparison indicates that there are some important differences in the output of the two approaches that should be taken under consideration when interpreting results for a

  15. A GIS based emissions inventory at 1 km × 1 km spatial resolution for air pollution analysis in Delhi, India

    NASA Astrophysics Data System (ADS)

    Guttikunda, Sarath K.; Calori, Giuseppe

    2013-03-01

    In Delhi, between 2008 and 2011, at seven monitoring stations, the daily average of particulates with diameter <2.5 μm (PM2.5) was 123 ± 87 μg m-3 and particulates with diameter <10 μm (PM10) was 208 ± 137 μg m-3. The bulk of the pollution is due to motorization, power generation, and construction activities. In this paper, we present a multi-pollutant emissions inventory for the National Capital Territory of Delhi, covering the main district and its satellite cities - Gurgaon, Noida, Faridabad, and Ghaziabad. For the base year 2010, we estimate emissions (to the nearest 000's) of 63,000 tons of PM2.5, 114,000 tons of PM10, 37,000 tons of sulfur dioxide, 376,000 tons of nitrogen oxides, 1.42 million tons of carbon monoxide, and 261,000 tons of volatile organic compounds. The inventory is further spatially disaggregated into 80 × 80 grids at 0.01° resolution for each of the contributing sectors, which include vehicle exhaust, road dust re-suspension, domestic cooking and heating, power plants, industries (including brick kilns), diesel generator sets and waste burning. The GIS based spatial inventory coupled with temporal resolution of 1 h, was utilized for chemical transport modeling using the ATMoS dispersion model. The modeled annual average PM2.5 concentrations were 122 ± 10 μg m-3 for South Delhi; 90 ± 20 μg m-3 for Gurgaon and Dwarka; 93 ± 26 μg m-3 for North-West Delhi; 93 ± 23 μg m-3 for North-East Delhi; 42 ± 10 μg m-3 for Greater Noida; 77 ± 11 μg m-3 for Faridabad industrial area. The results have been compared to measured ambient PM pollution to validate the emissions inventory.

  16. Air Pollution in Road Tunnels

    PubMed Central

    Waller, R. E.; Commins, B. T.; Lawther, P. J.

    1961-01-01

    As a part of a study of pollution of the air by motor vehicles, measurements have been made in two London road tunnels during periods of high traffic density. The concentrations of smoke and polycyclic hydrocarbons found there are much higher than the average values in Central London, but they are of the same order of magnitude as those occurring during temperature inversions on winter evenings when smoke from coal fires accumulates at a low level. An attempt has been made to relate the concentration of each pollutant to the type and amount of traffic. Both diesel and petrol vehicles make some contribution to the amounts of smoke and polycyclic hydrocarbons found in the tunnels, but in the case of smoke, fluoranthene, 1: 2-benzpyrene, pyrene, and 3: 4-benzpyrene, the concentrations appear to be more closely related to the density of diesel traffic than to that of petrol traffic. The concentrations of lead and carbon monoxide have also been determined, and these are very closely related to the density of petrol traffic. During the morning and evening rush hours the mean concentration of carbon monoxide was just over 100 p.p.m. and peak values up to 500 p.p.m. were recorded at times. Oxides of nitrogen were determined in some of the experiments and there was always much more nitric oxide than nitrogen dioxide. Eye irritation was experienced but its cause was not investigated. The concentration of pollution in the tunnels does not appear to be high enough to create any special hazards for short-term exposures. The amosphere at peak periods may become very dirty and unpleasant and the concentration of carbon monoxide would be sufficient to produce some effect over a period of several hours' continuous exposure. The total emission of pollution from road vehicles must still be small in comparison with that from coal fires, but the effect of traffic on the concentration of smoke, polycyclic hydrocarbons, carbon monoxide, and lead in the air of city streets deserves

  17. Air pollution measurements in traffic tunnels.

    PubMed

    De Fré, R; Bruynseraede, P; Kretzschmar, J G

    1994-10-01

    Air pollution measurements during April 1991 are reported from the Craeybeckx highway tunnel in Antwerp, Belgium. The tunnel was used daily by an average of 45,000 vehicles, of which 60% were gasoline fueled passenger cars, 20% diesel cars, and 20% trucks. Of the gasoline cars, only 3% had three-way catalysts. Tunnel air concentrations of nitrogen oxides, sulphur dioxide, carbon dioxide, carbon monoxide, nonmethane hydrocarbons, volatile organic compounds, polycyclic aromatic hydrocarbons, and lead are presented. The traffic emissions in the tunnel are calculated by the carbon balance method, which uses the increase of the total carbon concentration in the tunnel air as the reference quantity. Division of the concentration of any pollutant by the total carbon concentration gives emission factors per kilogram of carbon. These emission factors can be converted directly to emissions relative to fuel consumption or per kilometer. The fraction of diesel used in the tunnel was derived from sulphur to carbon ratios in tunnel air. A calculation procedure with breakdown of emission factors according to vehicle categories was used to estimate countrywide emissions. The estimated emissions were compared to results from the Flanders Emissions Inventory [Emissie Inventaris Vlaamse Regio (EIVR)] and calculated emissions according to the emission factors proposed by the European Commissions CORINAIR Working Group. For NOx there is excellent agreement. For carbon monoxide and hydrocarbons, the tunnel data produced higher emissions than the CORINAIR model would predict but lower than the official EIVR statistics. The estimated lead emissions from traffic are found to be 22 to 29% of the lead in gasoline.

  18. Trace elements and common ions in southeastern Idaho snow: Regional air pollutant tracers for source area emissions

    USGS Publications Warehouse

    Abbott, M.; Einerson, J.; Schuster, P.; Susong, D.; Taylor, H.E.; ,

    2004-01-01

    Snow sampling and analysis methods which produce accurate and ultra-low measurements of trace elements and common ion concentration in southeastern Idaho snow, were developed. Snow samples were collected over two winters to assess trace elements and common ion concentrations in air pollutant fallout across the southeastern Idaho. The area apportionment of apportionment of fallout concentrations measured at downwind location were investigated using pattern recognition and multivariate statistical technical techniques. Results show a high level of contribution from phosphates processing facilities located outside Pocatello in the southern portion of the Eastern Snake River Plain, and no obvious source area profiles other than at Pocatello.

  19. Air pollution in mega cities in China

    NASA Astrophysics Data System (ADS)

    Chan, Chak K.; Yao, Xiaohong

    Due to its rapidly expanding economic and industrial developments, China is currently considered to be the engine of the world's economic growth. China's economic growth has been accompanied by an expansion of the urban area population and the emergence of a number of mega cities since the 1990. This expansion has resulted in tremendous increases in energy consumption, emissions of air pollutants and the number of poor air quality days in mega cities and their immediate vicinities. Air pollution has become one of the top environmental concerns in China. Currently, Beijing, Shanghai, and the Pearl River Delta region including Guangzhou, Shenzhen and Hong Kong, and their immediate vicinities are the most economically vibrant regions in China. They accounted for about 20% of the total GDP in China in 2005. These are also areas where many air pollution studies have been conducted, especially over the last 6 years. Based on these previous studies, this review presents the current state of understanding of the air pollution problems in China's mega cities and identifies the immediate challenges to understanding and controlling air pollution in these densely populated areas.

  20. Fuel consumption and CO2/pollutant emissions of mobile air conditioning at fleet level - new data and model comparison.

    PubMed

    Weilenmann, Martin F; Alvarez, Robert; Keller, Mario

    2010-07-01

    Mobile air conditioning (MAC) systems are the second-largest energy consumers in cars after driving itself. While different measurement series are available to illustrate their behavior in hot ambient conditions, little data are available for lower temperatures. There are also no data available on diesel vehicles, despite these being quite common in Europe (up to 70% of the fleet in some countries). In the present study, six representative modern diesel passenger cars were tested. In combination with data from previous measurements on gasoline cars, a new model was developed - EEMAC = Empa Emission model for Mobile Air Conditioning systems - to predict emissions from air conditioning. The measurements obtained show that A/C activity still occurs at temperatures below the desired interior temperature. The EEMAC model was applied to the average meteorological year of a central European region and compared with the US EPA MOBILE6 model. As temperatures in central Europe are often below 20 degrees C (the point below which the two models differ), the overall results differ clearly. The estimated average annual CO(2) output according to EEMAC is six times higher than that of MOBILE6. EEMAC also indicates that around two-thirds of the fuel used for air conditioning could be saved by switching the MAC system off below 18 degrees C.

  1. 1997 Idaho National Engineering and Environmental Laboratory (INEEL) National Emission Standards for Hazardous Air Pollutants (NESHAPs) -- Radionuclides annual report

    SciTech Connect

    1998-06-01

    Under Section 61.94 of Title 40, Code of Federal Regulations (CFR), Part 61, Subpart H, National Emission Standards for Emissions of Radionuclides Other Than Radon From Department of Energy Facilities, each Department of Energy (DOE) facility must submit an annual report documenting compliance. This report addresses the Section 61.94 reporting requirements for operations at the Idaho National Engineering and Environmental Laboratory (INEEL) for calendar year (CY) 1997. Section 1 of this report provides an overview of the INEEL facilities and a brief description of the radioactive materials and processes at the facilities. Section 2 identifies radioactive air effluent release points and diffuse sources at the INEEL and actual releases during 1997. Section 2 also describes the effluent control systems for each potential release point. Section 3 provides the methodology and EDE calculations for 1997 INEEL radioactive emissions.

  2. Indoor air pollution

    SciTech Connect

    Not Available

    1985-05-01

    This factsheet reviews what is currently known about pollutant sources, abatement and control equipment and techniques for poorly ventilated houses. Radon, formaldehyde, tobacco smokes, carbon dioxide, carbon monoxide, particulates, bacteria, fungi and viruses are addressed. (PSB)

  3. The impact of plug-in vehicles on greenhouse gas and criteria pollutants emissions in an urban air shed using a spatially and temporally resolved dispatch model

    NASA Astrophysics Data System (ADS)

    Razeghi, Ghazal; Brown, Tim; Samuelsen, G. Scott

    With the introduction of plug-in vehicles (PEVs) into the light-duty vehicle fleet, the tail-pipe emissions of GHGs and criteria pollutants will be partly transferred to electricity generating units. To study the impact of PEVs on well-to-wheels emissions, the U.S. Western electrical grid serving the South Coast Air Basin (SoCAB) of California is modeled with both spatial and temporal resolution at the level of individual power plants. Electricity load is calculated and projected for future years, and the temporal electricity generation of each power plant within the SoCAB is modeled based on historical data and knowledge of electricity generation and dispatch. Due to the efficiency and pollutant controls governing the performance of the Western grid, the deployment of PEVs results in a daily reduction of greenhouse gases (GHGs) and tail-pipe emissions, especially in the critical morning and afternoon commute hours. The extent of improvement depends on charging scenarios, future grid mix, and the number and type of plug-in vehicles. In addition, charging PEVs using wind energy that would otherwise be curtailed can result in a substantial emissions reduction. Smart control will be required to manage PEV charging in order to mitigate renewable intermittencies and decrease emissions associated with peaking power production.

  4. Title III hazardous air pollutants

    SciTech Connect

    Todd, R.

    1995-12-31

    The author presents an overview of the key provisions of Title III of the Clean Air Act Amendments of 1990. The key provisions include the following: 112(b) -- 189 Hazardous Air Pollutants (HAP); 112(a) -- Major Source: 10 TPY/25 TPY; 112(d) -- Application of MACT; 112(g) -- Modifications; 112(I) -- State Program; 112(j) -- The Hammer; and 112(r) -- Accidental Release Provisions.

  5. Children's response to air pollutants.

    PubMed

    Bateson, Thomas F; Schwartz, Joel

    2008-01-01

    It is important to focus on children with respect to air pollution because (1) their lungs are not completely developed, (2) they can have greater exposures than adults, and (3) those exposures can deliver higher doses of different composition that may remain in the lung for greater duration. The undeveloped lung is more vulnerable to assault and less able to fully repair itself when injury disrupts morphogenesis. Children spend more time outside, where concentrations of combustion-generated air pollution are generally higher. Children have higher baseline ventilation rates and are more physically active than adults, thus exposing their lungs to more air pollution. Nasal breathing in adults reduces some pollution concentrations, but children are more typically mouth-breathers--suggesting that the composition of the exposure mixture at the alveolar level may be different. Finally, higher ventilation rates and mouth-breathing may pull air pollutants deeper into children's lungs, thereby making clearance slower and more difficult. Children also have immature immune systems, which plays a significant role in asthma. The observed consequences of early life exposure to adverse levels of air pollutants include diminished lung function and increased susceptibility to acute respiratory illness and asthma. Exposure to diesel exhaust, in particular, is an area of concern for multiple endpoints, and deserves further research. PMID:18097949

  6. [Airport related air pollution and health effects].

    PubMed

    Iavicoli, Ivo; Fontana, Luca; Ancona, Carla; Forastiere, Francesco

    2014-01-01

    Airport is an extremely complex emission source of airborne pollutants that can have a significant impact on the environment. Indeed, several airborne chemicals emitted during airport activities may significantly get worse air quality and increase exposure level of both airport workers and general population living nearby the airports. In recent years airport traffic has increased and consequently several studies investigated the association between airport-related air pollution and occurrence of adverse health effects, particularly on respiratory system, in exposed workers and general population resident nearby. In this context, we carried out a critical evaluation of the studies that investigated this correlation in order to obtain a deeper knowledge of this issue and to identify the future research needs. Results show that the evidence of association between airport-related air pollution and health effects on workers and residents is still limited. PMID:25115476

  7. [Airport related air pollution and health effects].

    PubMed

    Iavicoli, Ivo; Fontana, Luca; Ancona, Carla; Forastiere, Francesco

    2014-01-01

    Airport is an extremely complex emission source of airborne pollutants that can have a significant impact on the environment. Indeed, several airborne chemicals emitted during airport activities may significantly get worse air quality and increase exposure level of both airport workers and general population living nearby the airports. In recent years airport traffic has increased and consequently several studies investigated the association between airport-related air pollution and occurrence of adverse health effects, particularly on respiratory system, in exposed workers and general population resident nearby. In this context, we carried out a critical evaluation of the studies that investigated this correlation in order to obtain a deeper knowledge of this issue and to identify the future research needs. Results show that the evidence of association between airport-related air pollution and health effects on workers and residents is still limited.

  8. Air emissions inventory for the Idaho National Engineering Laboratory -- 1995 emissions report

    SciTech Connect

    1996-06-01

    This report presents the 1995 update of the Air Emission Inventory for the Idaho National Engineering Laboratory (INEL). The INEL Air Emission Inventory documents sources and emissions of non-radionuclide pollutants from operations at the INEL. The report describes the emission inventory process and all of the sources at the INEL, and provides non-radionuclide emissions estimates for stationary sources. The air contaminants reported include nitrogen oxides, sulfur oxides, carbon monoxide, volatile organic compounds, particulates, and hazardous air pollutants (HAPs).

  9. Effect of Sea Breeze on Air Pollution in the Greater Athens Area. Part II: Analysis of Different Emission Scenarios.

    NASA Astrophysics Data System (ADS)

    Grossi, Paola; Thunis, Philippe; Martilli, Alberto; Clappier, Alain

    2000-04-01

    The Mediterranean Campaign of Photochemical Tracers-Transport and Chemical Evolution that took place in the greater Athens area from 20 August to 20 September 1994 has confirmed the role of sea-breeze circulation in photochemical smog episodes that had been suggested already by a number of experiments and numerical studies.The meteorological and photochemical modeling of this campaign were discussed in Part I. Part II focuses on the study of the 14 September photochemical smog event associated with a sea-breeze circulation. The objective of the study is to identify and to understand better the nonlinear processes that produce high ozone concentrations. In particular, the effect of land and sea breezes is investigated by isolating the effect of nighttime and daytime emissions on ozone concentrations. The same principle then is used to isolate the effect on ozone concentrations of the two main sources of emissions in the greater Athens area: the industrial area around Elefsis and the Athens urban area. Last, the buildup of ozone from one day to another is investigated.From this study, it comes out that ozone production in the Athens area is mainly a 1-day phenomenon. The increased values of photochemical pollutant (up to 130 ppb at ground level) reached during summertime late afternoons on mountain slopes to the north and northeast of the city are related mainly to the current-day emissions. Nevertheless, the recirculation of old pollutants can have an important effect on ozone concentrations in downtown Athens, the southern part of the peninsula, and over the sea, especially near Aigina Island.

  10. Air pollution: brown skies research.

    PubMed Central

    Tattersfield, A. E.

    1996-01-01

    Direct information on the health effects of air pollution in humans relies mainly on chamber studies and epidemiological studies. Although chamber studies have limitations they allow the acute effects of individual pollutants to be studied in well characterised subjects under controlled conditions. Most chamber studies have shown relatively small falls in lung function and relatively small increases in bronchial reactivity at the concentrations of ozone, SO2, and NO2 that occur even during high pollution episodes in the UK. The possible exception is SO2 where sensitive asthmatic patients may show a greater response at concentrations that are seen from time to time in certain areas and in proximity to power stations. There is no convincing evidence of potentiation between pollutants in chamber studies. Epidemiological studies are more difficult to carry out and require considerable epidemiological and statistical expertise to deal with the main problem-confounding by other factors. Although the health effects seen with current levels of pollution are small compared with those seen in the 1950s and close to the limits of detection, this should not be interpreted as being unimportant. A small effect may have large consequences when the population exposed is large (the whole population in this case). Recent data suggest that particles have more important health effects than the pollutant gases that have been studied. Much of this information comes from the USA though the findings are probably applicable in the UK. More information is needed on the size of the health effects that occur during the three types of air pollution episodes seen in this country and the relative contributions of particles, pollutant gases, pollen, and other factors such as temperature. Research into air pollution declined in the UK following the introduction of the Clean Air Acts; it is now increasing again following pressure from certain individuals and ginger groups, including the British

  11. 40 CFR Table 9 to Subpart Ffff of... - Soluble Hazardous Air Pollutants

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Soluble Hazardous Air Pollutants 9...) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES National Emission Standards for Hazardous Air Pollutants: Miscellaneous Organic...

  12. Air pollution in China: Scientific and Public Policy Challenges

    NASA Astrophysics Data System (ADS)

    Zhu, T.

    2014-12-01

    Sever air pollution in China has in recent years caused intensive public, media and governmental attention. Many questions need to be answered about the air pollution in China, such as how harmful is the air pollution, especially PM2.5? Why suddenly so many reports about sever air pollution, is the air in China getting more polluted? How to design a policy that can control the air pollution most efficiently? After updated the national Ambient Air Quality Standards in 2012 and included PM2.5 as one of the critical air pollutants, in 2013, Chinese central government released for the first time the "Air Pollution Prevention and Control Action Plan". The plan has set goals to reduce annual mean concentration of PM2.5 up to 25% in 2017 in different regions in China. If the ambitious goals were achieved, this could be the most significant air pollution reduction in such a short time that affects so many people in human history. To achieve these goals, however, there are enormous scientific and public policy challenges to deal with. For example: Identify the key components, size fraction of PM that have the largest health effects; and identify the sources of PM that has the most harmful effects on human health and ecosystem. Reduce the uncertainty in health risk assessment. Understand complicate chemical transformation processes in air pollution formation with intensive emissions from industry, power plant, vehicles, agriculture. Interactions between air pollution, PBL, and atmospheric circulation at different scales. The accountability, feasibility, effectiveness, and efficiency of air pollution control policies. Integrate multi-pollutant control and achieve co-benefit with climate and energy policy. Regional coordinated air pollution control. The largest challenge in China for air pollution control remains how to strength the link between science and policy.

  13. Lung cancer and air pollution.

    PubMed

    Cohen, A J; Pope, C A

    1995-11-01

    Epidemiologic studies over the last 40 years suggest rather consistently that general ambient air pollution, chiefly due to the incomplete combustion of fossil fuels, may be responsible for increased rates of lung cancer. This evidence derives from studies of lung cancer trends, studies of occupational groups, comparisons of urban and rural populations, and case-control and cohort studies using diverse exposure metrics. Recent prospective cohort studies observed 30 to 50% increases in lung cancer rates associated with exposure to respirable particles. While these data reflect the effects of exposures in past decades, and despite some progress in reducing air pollution, large numbers of people in the United States continue to be exposed to pollutant mixtures containing known or suspected carcinogens. It is not known how many people in the United States are exposed to levels of fine respirable particles that have been associated with lung cancer in recent epidemiologic studies. These observations suggest that the most widely cited estimates of the proportional contribution of air pollution to lung cancer occurrence in the United States based largely on the results of animal studies, may be too low. It is important that better epidemiologic research be conducted to allow improved estimates of lung cancer risk from air pollution among the general population. The development and application of new epidemiologic methods, particularly the improved characterization of population-wide exposure to mixtures of air pollutants and the improved design of ecologic studies, could improve our ability to measure accurately the magnitude of excess cancer associated with air pollution. PMID:8741787

  14. Healthy Neighborhoods: Walkability and Air Pollution

    PubMed Central

    Marshall, Julian D.; Brauer, Michael; Frank, Lawrence D.

    2009-01-01

    Background The built environment may influence health in part through the promotion of physical activity and exposure to pollution. To date, no studies have explored interactions between neighborhood walkability and air pollution exposure. Methods We estimated concentrations of nitric oxide (NO), a marker for direct vehicle emissions), and ozone (O3) and a neighborhood walkability score, for 49,702 (89% of total) postal codes in Vancouver, British Columbia, Canada. NO concentrations were estimated from a land-use regression model, O3 was estimated from ambient monitoring data; walkability was calculated based on geographic attributes such as land-use mix, street connectivity, and residential density. Results All three attributes exhibit an urban–rural gradient, with high walkability and NO concentrations, and low O3 concentrations, near the city center. Lower-income areas tend to have higher NO concentrations and walkability and lower O3 concentrations. Higher-income areas tend to have lower pollution (NO and O3). “Sweet-spot” neighborhoods (low pollution, high walkability) are generally located near but not at the city center and are almost exclusively higher income. Policy implications Increased concentration of activities in urban settings yields both health costs and benefits. Our research identifies neighborhoods that do especially well (and especially poorly) for walkability and air pollution exposure. Work is needed to ensure that the poor do not bear an undue burden of urban air pollution and that neighborhoods designed for walking, bicycling, or mass transit do not adversely affect resident’s exposure to air pollution. Analyses presented here could be replicated in other cities and tracked over time to better understand interactions among neighborhood walkability, air pollution exposure, and income level. PMID:20049128

  15. Air Pollution in the World's Megacities.

    ERIC Educational Resources Information Center

    Richman, Barbara T., Ed.

    1994-01-01

    Reports findings of the Global Environment Monitoring System study concerning air pollution in the world's megacities. Discusses sources of air pollution, air pollution impacts, air quality monitoring, air quality trends, and control strategies. Provides profiles of the problem in Beijing, Los Angeles, Mexico City, India, Cairo, Sao Paulo, and…

  16. Air pollution source identification

    NASA Technical Reports Server (NTRS)

    Fordyce, J. S.

    1975-01-01

    The techniques available for source identification are reviewed: remote sensing, injected tracers, and pollutants themselves as tracers. The use of the large number of trace elements in the ambient airborne particulate matter as a practical means of identifying sources is discussed. Trace constituents are determined by sensitive, inexpensive, nondestructive, multielement analytical methods such as instrumental neutron activation and charged particle X-ray fluorescence. The application to a large data set of pairwise correlation, the more advanced pattern recognition-cluster analysis approach with and without training sets, enrichment factors, and pollutant concentration rose displays for each element is described. It is shown that elemental constituents are related to specific source types: earth crustal, automotive, metallurgical, and more specific industries. A field-ready source identification system based on time and wind direction resolved sampling is described.

  17. Air Pollution Data for Model Evaluation and Application

    EPA Science Inventory

    One objective of designing an air pollution monitoring network is to obtain data for evaluating air quality models that are used in the air quality management process and scientific discovery.1.2 A common use is to relate emissions to air quality, including assessing ...

  18. Development of a high temporal-spatial resolution vehicle emission inventory based on NRT traffic data and its impact on air pollution in Beijing - Part 1: Development and evaluation of vehicle emission inventory

    NASA Astrophysics Data System (ADS)

    Jing, B. Y.; Wu, L.; Mao, H. J.; Gong, S. L.; He, J. J.; Zou, C.; Song, G. H.; Li, X. Y.; Wu, Z.

    2015-10-01

    As the ownership of vehicles and frequency of utilization increase, vehicle emissions have become an important source of air pollution in Chinese cities. An accurate emission inventory for on-road vehicles is necessary for numerical air quality simulation and the assessment of implementation strategies. This paper presents a bottom-up methodology based on the local emission factors, complemented with the widely used emission factors of Computer Programme to Calculate Emissions from Road Transport (COPERT) model and near real time (NRT) traffic data on road segments to develop a high temporal-spatial resolution vehicle emission inventory (HTSVE) for the urban Beijing area. To simulate real-world vehicle emissions accurately, the road has been divided into segments according to the driving cycle (traffic speed) on this road segment. The results show that the vehicle emissions of NOx, CO, HC and PM were 10.54 × 104, 42.51 × 104 and 2.13 × 104 and 0.41 × 104 Mg, respectively. The vehicle emissions and fuel consumption estimated by the model were compared with the China Vehicle Emission Control Annual Report and fuel sales thereafter. The grid-based emissions were also compared with the vehicular emission inventory developed by the macro-scale approach. This method indicates that the bottom-up approach better estimates the levels and spatial distribution of vehicle emissions than the macro-scale method, which relies on more information. Additionally, the on-road vehicle emission inventory model and control effect assessment system in Beijing, a vehicle emission inventory model, was established based on this study in a companion paper (He et al., 2015).

  19. Development of a vehicle emission inventory with high temporal-spatial resolution based on NRT traffic data and its impact on air pollution in Beijing - Part 1: Development and evaluation of vehicle emission inventory

    NASA Astrophysics Data System (ADS)

    Jing, Boyu; Wu, Lin; Mao, Hongjun; Gong, Sunning; He, Jianjun; Zou, Chao; Song, Guohua; Li, Xiaoyu; Wu, Zhong

    2016-03-01

    This paper presents a bottom-up methodology based on the local emission factors, complemented with the widely used emission factors of Computer Programme to Calculate Emissions from Road Transport (COPERT) model and near-real-time traffic data on road segments to develop a vehicle emission inventory with high temporal-spatial resolution (HTSVE) for the Beijing urban area. To simulate real-world vehicle emissions accurately, the road has been divided into segments according to the driving cycle (traffic speed) on this road segment. The results show that the vehicle emissions of NOx, CO, HC and PM were 10.54 × 104, 42.51 × 104 and 2.13 × 104 and 0.41 × 104 Mg respectively. The vehicle emissions and fuel consumption estimated by the model were compared with the China Vehicle Emission Control Annual Report and fuel sales thereafter. The grid-based emissions were also compared with the vehicular emission inventory developed by the macro-scale approach. This method indicates that the bottom-up approach better estimates the levels and spatial distribution of vehicle emissions than the macro-scale method, which relies on more information. Based on the results of this study, improved air quality simulation and the contribution of vehicle emissions to ambient pollutant concentration in Beijing have been investigated in a companion paper (He et al., 2016).

  20. Air Pollution in the Mexico Megacity

    NASA Astrophysics Data System (ADS)

    Ruiz-Suarez, L. G.

    2007-05-01

    Mexico City is a megacity whose metropolitan area includes the country federal district, 18 municipalities of the State of Mexico. In year 1992, only 16 municipalities of the State of Mexico were part of MCMA. In year 1940 the Mexico City population was 1.78 millions in an area of 118 km2, in year 2000 the population was 17.9 millions in an area of 1,500 km2. Population has grown a ten fold whereas population density has dropped 20%. Total number of private cars has grown from 2,341,731 in year 1998 to 2,967,893 in year 2004. Nowadays, people and goods travel longer at lower speed to reach school, work and selling points. In addition highly efficient public transport lost a significant share of transport demand from 19.1 in 1986 to 14.3 in 1998. Air pollution is a public concern since early eighties last century; systematic public efforts have been carried out since late eighties. Energy consumption has steadily increased in the MCMA whereas emissions have also decreased. From year 2000 to 2004, the private cars fleet increased 17% whereas CO, NOx and COV emissions decreased between 20-30%. Average concentrations of criteria pollutants have decreased The number of days that the one-hour national standard for bad air quality was exceeded in year 1990 was 160. In year 2005 was 70. Research efforts and public policies on air pollution have been focused on public health. We are now better able to estimate the cost in human lives due to air pollution, or the cost in labor lost due to illness. Little if none at all work has been carried out to look at the effect of air pollution on private and public property or onto the cultural heritage. Few reports have can be found on the impact of air pollution in rural areas, including forest and crops, around the mega city. Mexico City is in the south end of a Valley with mountain ranges higher than 1000 m above the average city altitude. In spite the heavy loss of forested areas to the city, the mountains still retain large

  1. A Comparison of Exposure Metrics for Traffic-Related Air Pollutants: Application to Epidemiology Studies in Detroit, Michigan

    EPA Science Inventory

    Vehicles are major sources of air pollutant emissions, and individuals living near large roads endure high exposures and health risks associated with traffic-related air pollutants. Air pollution epidemiology, health risk, environmental justice, and transportation planning studi...

  2. Characterizing near-road air pollution using local-scale emission and dispersion models and validation against in-situ measurements

    NASA Astrophysics Data System (ADS)

    Wang, An; Fallah-Shorshani, Masoud; Xu, Junshi; Hatzopoulou, Marianne

    2016-10-01

    Near-road concentrations of nitrogen dioxide (NO2), a known marker of traffic-related air pollution, were simulated along a busy urban corridor in Montreal, Quebec using a combination of microscopic traffic simulation, instantaneous emission modeling, and air pollution dispersion. In order to calibrate and validate the model, a data collection campaign was designed. For this purpose, measurements of NO2 were conducted mid-block along four segments of the corridor throughout a four-week campaign conducted between March and April 2015. The four segments were chosen to be consecutive and yet exhibiting variability in road configuration and built environment characteristics. Roadside NO2 measurements were also paired with on-site and fixed-station meteorological data. In addition, traffic volumes, composition, and routing decisions were collected using video-cameras located at upstream and downstream intersections. Dispersion of simulated emissions was conducted for eight time slots and under a range of meteorological conditions using three different models with vastly different dispersion algorithms (OSPM, CALINE 4, and SIRANE). The three models exhibited poor correlation with near-road NO2 concentrations and were better able to simulate average concentrations occurring along the roadways rather than the range of concentrations measured under diverse meteorological and traffic conditions. As hypothesized, the model SIRANE that can handle a street canyon configuration was the most sensitive to the built environment especially to the presence of tall buildings around the road. In contrast, CALINE exhibited the lowest sensitivity to the built environment.

  3. [Air pollution and population health].

    PubMed

    Kristoforović-Ilić, Miroslava; Ilić, Miroslav

    2006-10-01

    In the last few decades, there has been increased population concern for quality of environment, for it is, after life style, the second risk factor of disease development. Particular problem is that a large majority of serious impairments of health is manifested only after a long latent period, so it is not always possible to establish clear association with environmental factors. It is considered today that around 40% of lethal cases are caused by polluted environment in various ways, while environment is the most important etiologic factor in 5% of disease incidence. Problems arising due to environment pollution are most frequently related to air pollution. The World Resource Institute, Washington, has developed the indicators for evaluation of risk of environment pollution to population health. There is one common indicator both for developed and developing countries--air pollution. EPA recommended new standards for some polluting substances. The document reviewed these standards and their implementation in our community. New Law on Environment Protection ("Official Gazette of RS" No. 135/2004) from December 20th, 2004, followed by relevant documents on air quality, should be beneficial to experts at the level of subtle diagnostics and proposal of adequate measures with a view to improve the quality of life.

  4. Air pollution and plant life

    SciTech Connect

    Treshow, M.

    1984-01-01

    The publication of this volume could hardly have been more timely, for concern about the damage to plants from air pollution has grown rapidly in the last few years. The book comprises eighteen chapters by contributors of high repute. Three early chapters deal with Dispersion and Fate of Atmospheric Pollutants, Long Range Transport and Monitoring Levels and Effects of Air Pollutants. They provide essential reading for those working on effects in the field, and they set the scene for a contribution from the Volume Editor on the problems of diagnosis. The central chapters (7 to 11) provide, in considerable depth, a summary of the knowledge of the mechanism of action of pollutants on plants, in terms of physiology, biochemistry, and ultrastructure. Particularly valuable is the essay entitled Impact of Air Pollutant Combinations on Plants, which concludes that even though few generalizations are possible, there is now sufficient evidence to suggest that interactions between some pollutants (e.g. SO/sub 2/ and O/sub 3/, SO/sub 2/ and NO/sub 2/) may seriously damage some plants.

  5. Contemporary threats and air pollution

    NASA Astrophysics Data System (ADS)

    Hopke, Philip K.

    It is now well understood that air pollution produces significant adverse health effects in the general public and over the past 60 years, there have been on-going efforts to reduce the emitted pollutants and their resulting health effects. There are now shifting patterns of industrialization with many heavily polluting industries moving from developed countries with increasingly stringent air quality standards to the developing world. However, even in decreasing concentrations of pollutants, health effects remain important possibly as a result of changes in the nature of the pollutants as new chemicals are produced and as other causes of mortality and morbidity are reduced. In addition, there is now the potential for deliberate introduction of toxic air pollutants by local armed conflicts and terrorists. Thus, there are new challenges to understand the role of the atmospheric environment on public health in this time of changing economic and demographic conditions overlaid with the willingness to indirectly attack governments and other established entities through direct attacks on the general public.

  6. [Air pollution and population health].

    PubMed

    Kristoforović-Ilić, Miroslava; Ilić, Miroslav

    2006-10-01

    In the last few decades, there has been increased population concern for quality of environment, for it is, after life style, the second risk factor of disease development. Particular problem is that a large majority of serious impairments of health is manifested only after a long latent period, so it is not always possible to establish clear association with environmental factors. It is considered today that around 40% of lethal cases are caused by polluted environment in various ways, while environment is the most important etiologic factor in 5% of disease incidence. Problems arising due to environment pollution are most frequently related to air pollution. The World Resource Institute, Washington, has developed the indicators for evaluation of risk of environment pollution to population health. There is one common indicator both for developed and developing countries--air pollution. EPA recommended new standards for some polluting substances. The document reviewed these standards and their implementation in our community. New Law on Environment Protection ("Official Gazette of RS" No. 135/2004) from December 20th, 2004, followed by relevant documents on air quality, should be beneficial to experts at the level of subtle diagnostics and proposal of adequate measures with a view to improve the quality of life. PMID:18172966

  7. Air Pollution Manual, Part 1--Evaluation. Second Edition.

    ERIC Educational Resources Information Center

    Giever, Paul M., Ed.

    Due to the great increase in technical knowledge and improvement in procedures, this second edition has been prepared to update existing information. Air pollution legislation is reviewed. Sources of air pollution are examined extensively. They are treated in terms of natural sources, man-made sources, metropolitan regional emissions, emission…

  8. The Sources of Air Pollution and Their Control.

    ERIC Educational Resources Information Center

    National Air Pollution Control Administration (DHEW), Arlington, VA.

    The problems of air pollution and its control are discussed. Major consideration is given the sources of pollution - motor vehicles, industry, power plants, space heating, and refuse disposal. Annual emission levels of five principle pollutants - carbon monoxide, sulfur dioxide, nitrogen oxides, hydrocarbons, and particulate matter - are listed…

  9. Acid rain and transported air pollutants

    SciTech Connect

    Not Available

    1985-01-01

    This book considers aspects of the air pollutant controversy. It discusses the following: the policy dilemma - including impact on terrestrial and aquatic eco-systems, effects on human health, diplomatic issues, and how control would benefit some industries and hurt others; scientific uncertainties about the extent and location of current damage, future damage, the origin of transported air pollutants, and the efficacy of current and proposed emissions control programs; how three major pollutants - sulfur dioxide, nitrous oxide, and reactive hydrocarbons - are distributed geographically; the effect of current legislation on acid rain and its distribution; how geographic and economic risks are dispersed throughout the United States; and other risks, such as potential damage to buildings and metals.

  10. Ice core sulfur and methanesulfonic acid (MSA) records from southern Greenland document North American and European air pollution and suggest a decline in regional biogenic sulfur emissions.

    NASA Astrophysics Data System (ADS)

    Pasteris, D. R.; McConnell, J. R.; Burkhart, J. F.; Saltzman, E. S.

    2014-12-01

    Sulfate aerosols have an important cooling effect on the Earth because they scatter sunlight back to space and form cloud condensation nuclei. However, understanding of the atmospheric sulfur cycle is incomplete, leading to uncertainty in the assessment of past, present and future climate forcing. Here we use annually resolved observations of sulfur and methanesulfonic acid (MSA) concentration in an array of precisely dated Southern Greenland ice cores to assess the history of sulfur pollution emitted from North America and Europe and the history of biogenic sulfate aerosol derived from the North Atlantic Ocean over the last 250 years. The ice core sulfur time series is found to closely track sulfur concentrations in North American and European precipitation since records began in 1965, and also closely tracks estimated sulfur emissions since 1850 within the air mass source region as determined by back trajectory analysis. However, a decline to near-preindustrial sulfur concentrations in the ice cores after 1995 that is not so extensive in the source region emissions indicates that there has been a change in sulfur cycling over the last 150 years. The ice core MSA time series shows a decline of 60% since the 1860s, and is well correlated with declining sea ice concentrations around Greenland, suggesting that the phytoplankton source of biogenic sulfur has declined due to a loss of marginal sea ice zone habitat. Incorporating the implied decrease in biogenic sulfur in our analysis improves the match between the ice core sulfur record and the source region emissions throughout the last 150 years, and solves the problem of the recent return to near-preindustrial levels in the Greenland ice. These findings indicate that the transport efficiency of sulfur air pollution has been relatively stable through the industrial era and that biogenic sulfur emissions in the region have declined.

  11. Greenhouse gas and air pollutant emission reduction potentials of renewable energy - case studies on photovoltaic and wind power introduction considering interactions among technologies in Taiwan

    SciTech Connect

    Yu-Ming Kuo; Yasuhiro Fukushima

    2009-03-15

    To achieve higher energy security and lower emission of greenhouse gases (GHGs) and pollutants, the development of renewable energy has attracted much attention in Taiwan. In addition to its contribution to the enhancement of reliable indigenous resources, the introduction of renewable energy such as photovoltaic (PV) and wind power systems reduces the emission of GHGs and air pollutants by substituting a part of the carbon- and pollutant-intensive power with power generated by methods that are cleaner and less carbon-intensive. To evaluate the reduction potentials, consequential changes in the operation of different types of existing power plants have to be taken into account. In this study, a linear mathematical programming model is constructed to simulate a power mix for a given power demand in a power market sharing a cost-minimization objective. By applying the model, the emission reduction potentials of capacity extension case studies, including the enhancement of PV and wind power introduction at different scales, were assessed. In particular, the consequences of power mix changes in carbon dioxide, nitrogen oxides, sulfur oxides, and particulates were discussed. Seasonally varying power demand levels, solar irradiation, and wind strength were taken into account. In this study, we have found that the synergetic reduction of carbon dioxide emission induced by PV and wind power introduction occurs under a certain level of additional installed capacity. Investigation of a greater variety of case studies on scenario development with emerging power sources becomes possible by applying the model developed in this study. 15 refs., 8 figs., 11 tabs.

  12. In Brief: Air pollution app

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2010-10-01

    A new smartphone application takes advantage of various technological capabilities and sensors to help users monitor air quality. Tapping into smartphone cameras, Global Positioning System (GPS) sensors, compasses, and accelerometers, computer scientists with the University of Southern California's (USC) Viterbi School of Engineering have developed a new application, provisionally entitled “Visibility.” Currently available for the Android telephone operating system, the application is available for free download at http://robotics.usc.edu/˜mobilesensing/Projects/AirVisibilityMonitoring. An iPhone application may be introduced soon. Smartphone users can take a picture of the sky and then compare it with models of sky luminance to estimate visibility. While conventional air pollution monitors are costly and thinly deployed in some areas, the smartphone application potentially could help fill in some blanks in existing air pollution maps, according to USC computer science professor Gaurav Sukhatme.

  13. A practical approach to estimate emission rates of indoor air pollutants due to the use of personal combustible products based on small-chamber studies.

    PubMed

    Szulejko, Jan E; Kim, Ki-Hyun

    2016-02-01

    As emission rates of airborne pollutants are commonly measured from combusting substances placed inside small chambers, those values need to be re-evaluated for the possible significance under practical conditions. Here, a simple numerical procedure is investigated to extrapolate the chamber-based emission rates of formaldehyde that can be released from various combustible sources including e-cigarettes, conventional cigarettes, or scented candles to their concentration levels in a small room with relatively poor ventilation. This simple procedure relies on a mass balance approach by considering the masses of pollutants emitted from source and lost through ventilation under the assumption that mixing occurs instantaneously in the room without chemical reactions or surface sorption. The results of our study provide valuable insights into re-evaluation procedure of chamber data to allow comparison between extrapolated and recommended values to judge the safe use of various combustible products in confined spaces. If two scented candles with a formaldehyde emission rate of 310 µg h(-1) each were lit for 4 h in a small 20 m(3) room with an air change rate of 0.5 h(-1), then the 4-h (candle lit) and 8-h (up to 8 h after candle lighting) TWA [FA] were determined to be 28.5 and 23.5 ppb, respectively. This is clearly above the 8-h NIOSH recommended exposure limit (REL) time weighted average of 16 ppb.

  14. A practical approach to estimate emission rates of indoor air pollutants due to the use of personal combustible products based on small-chamber studies.

    PubMed

    Szulejko, Jan E; Kim, Ki-Hyun

    2016-02-01

    As emission rates of airborne pollutants are commonly measured from combusting substances placed inside small chambers, those values need to be re-evaluated for the possible significance under practical conditions. Here, a simple numerical procedure is investigated to extrapolate the chamber-based emission rates of formaldehyde that can be released from various combustible sources including e-cigarettes, conventional cigarettes, or scented candles to their concentration levels in a small room with relatively poor ventilation. This simple procedure relies on a mass balance approach by considering the masses of pollutants emitted from source and lost through ventilation under the assumption that mixing occurs instantaneously in the room without chemical reactions or surface sorption. The results of our study provide valuable insights into re-evaluation procedure of chamber data to allow comparison between extrapolated and recommended values to judge the safe use of various combustible products in confined spaces. If two scented candles with a formaldehyde emission rate of 310 µg h(-1) each were lit for 4 h in a small 20 m(3) room with an air change rate of 0.5 h(-1), then the 4-h (candle lit) and 8-h (up to 8 h after candle lighting) TWA [FA] were determined to be 28.5 and 23.5 ppb, respectively. This is clearly above the 8-h NIOSH recommended exposure limit (REL) time weighted average of 16 ppb. PMID:26495830

  15. Indoor air pollutants

    SciTech Connect

    Angle, C.R.

    1988-01-01

    A major contribution of the pediatrician is to help families rank the multitude of pollutants according to their known risk for child health. Elimination of household smoking and completely effective venting of indoor heating devices are beneficial to all and mandatory in homes of allergic children. Acute releases of NO/sub 2/ by gas ranges and ovens may be a significant factor in an increased incidence of respiratory infection, especially in children under two years. Despite intensive investigation, immunosuppressive and other health effects have not been defined for indoor levels of PBBs, PCBs, and related halogenated hydrocarbons. The analytic ability to determine nanomolar concentrations of numerous toxic chemicals opens a Pandora's box of inquiry. New methods, particularly immunologic, are urgently needed to quantitate the dose response to multiple combinations of chemicals and determine their significance for the health of the tight-box generation of children. 136 references.

  16. 2009 LANL radionuclide air emissions report

    SciTech Connect

    Fuehne, David P.

    2010-06-01

    The emissions of radionuclides from Department of Energy Facilities such as Los Alamos National Laboratory (LANL) are regulated by the Amendments to the Clean Air Act of 1990, National Emissions Standards for Hazardous Air Pollutants (40 CFR 61 Subpart H). These regulations established an annual dose limit of 10 mrem to the maximally exposed member of the public attributable to emissions of radionuclides. This document describes the emissions of radionuclides from LANL and the dose calculations resulting from these emissions for calendar year 2009. This report meets the reporting requirements established in the regulations.

  17. 2008 LANL radionuclide air emissions report

    SciTech Connect

    Fuehne, David P.

    2009-06-01

    The emissions of radionuclides from Department of Energy Facilities such as Los Alamos National Laboratory (LANL) are regulated by the Amendments to the Clean Air Act of 1990, National Emissions Standards for Hazardous Air Pollutants (40 CFR 61 Subpart H). These regulations established an annual dose limit of 10 mrem to the maximally exposed member of the public attributable to emissions of radionuclides. This document describes the emissions of radionuclides from LANL and the dose calculations resulting from these emissions for calendar year 2008. This report meets the reporting requirements established in the regulations.

  18. 2010 LANL radionuclide air emissions report /

    SciTech Connect

    Fuehne, David P.

    2011-06-01

    The emissions of radionuclides from Department of Energy Facilities such as Los Alamos National Laboratory (LANL) are regulated by the Amendments to the Clean Air Act of 1990, National Emissions Standards for Hazardous Air Pollutants (40 CFR 61 Subpart H). These regulations established an annual dose limit of 10 mrem to the maximally exposed member of the public attributable to emissions of radionuclides. This document describes the emissions of radionuclides from LANL and the dose calculations resulting from these emissions for calendar year 2010. This report meets the reporting requirements established in the regulations.

  19. Air Pollution. Part A: Analysis.

    ERIC Educational Resources Information Center

    Ledbetter, Joe O.

    Two facets of the engineering control of air pollution (the analysis of possible problems and the application of effective controls) are covered in this two-volume text. Part A covers Analysis, and Part B, Prevention and Control. (This review is concerned with Part A only.) This volume deals with the terminology, methodology, and symptomatology…

  20. Air pollution and cardiovascular disease.

    PubMed

    Franklin, Barry A; Brook, Robert; Arden Pope, C

    2015-05-01

    An escalating body of epidemiologic and clinical research provides compelling evidence that exposure to fine particulate matter air pollution contributes to the development of cardiovascular disease and the triggering of acute cardiac events. There are 3 potential mediating pathways that have been implicated, including "systemic spillover," autonomic imbalance, and circulating particulate matter constituents. Further support that the increased morbidity and mortality attributed to air pollution comes from studies demonstrating the adverse cardiovascular effects of even brief periods of exposure to secondhand smoke. Accordingly, persons with known or suspected cardiovascular disease, the elderly, diabetic patients, pregnant women, and those with pulmonary disease should be counseled to limit leisure-time outdoor activities when air pollution is high. Recognizing the insidious and pervasive nature of air pollution, and the associated odds ratios and population attributable fractions for this widely underappreciated chemical trigger of acute cardiovascular events, may serve to maximize the potential for cardiovascular risk reduction by addressing at least a portion of the 10%-25% incidence of coronary disease that is unexplained by traditional risk factors.

  1. Health Effects of Air Pollution.

    ERIC Educational Resources Information Center

    Environmental Education Report and Newsletter, 1985

    1985-01-01

    Summarizes health hazards associated with air pollution, highlighting the difficulty in establishing acceptable thresholds of exposure. Respiratory disease, asthma, cancer, cardiovascular disease, and other problems are addressed. Indicates that a wide range of effects from any one chemical exists and that there are differences in sensitivity to…

  2. The impact of air pollutant and methane emission controls on tropospheric ozone and radiative forcing: CTM calculations for the period 1990-2030

    NASA Astrophysics Data System (ADS)

    Dentener, F.; Stevenson, D.; Cofala, J.; Mechler, R.; Amann, M.; Bergamaschi, P.; Raes, F.; Derwent, R.

    2005-07-01

    To explore the relationship between tropospheric ozone and radiative forcing with changing emissions, we compiled two sets of global scenarios for the emissions of the ozone precursors methane (CH4), carbon monoxide (CO), non-methane volatile organic compounds (NMVOC) and nitrogen oxides (NOx) up to the year 2030 and implemented them in two global Chemistry Transport Models. The "Current Legislation" (CLE) scenario reflects the current perspectives of individual countries on future economic development and takes the anticipated effects of presently decided emission control legislation in the individual countries into account. In addition, we developed a "Maximum technically Feasible Reduction" (MFR) scenario that outlines the scope for emission reductions offered by full implementation of the presently available emission control technologies, while maintaining the projected levels of anthropogenic activities. Whereas the resulting projections of methane emissions lie within the range suggested by other greenhouse gas projections, the recent pollution control legislation of many Asian countries, requiring introduction of catalytic converters for vehicles, leads to significantly lower growth in emissions of the air pollutants NOx, NMVOC and CO than was suggested by the widely used and more pessimistic IPCC (Intergovernmental Panel on Climate Change) SRES (Special Report on Emission Scenarios) scenarios (Nakicenovic et al., 2000), which made Business-as-Usual assumptions regarding emission control technology. With the TM3 and STOCHEM models we performed several long-term integrations (1990-2030) to assess global, hemispheric and regional changes in CH4, CO, hydroxyl radicals, ozone and the radiative climate forcings resulting from these two emission scenarios. Both models reproduce broadly the observed trends in CO, and CH4 concentrations from 1990 to 2002.

    For the "current legislation" case, both models indicate an increase of the

  3. Solid Waste, Air Pollution and Health

    ERIC Educational Resources Information Center

    Kupchik, George J.; Franz, Gerald J.

    1976-01-01

    This article examines the relationships among solid waste disposal, air pollution, and human disease. It is estimated that solid waste disposal contributes 9.7 percent of the total air pollution and 9.9 percent of the total air pollution health effect. Certain disposal-resource recovery systems can be implemented to meet air quality standards. (MR)

  4. Air pollution and lung cancer.

    PubMed

    Böhm, G M

    1982-01-01

    Epidemiological evidence proves conclusively that lung cancer correlates with air pollution. However, data on lung cancer death rates and smoking show that mankind accepts the risk of long-term and low-level exposure to carcinogens. As a rule, immediate benefits are sought and remote hazards ignored. Fear of atmospheric contamination by radioactive fallout seems to be the main factor for awareness of air pollution. Experimental works help us to understand physics of particle deposition in the lungs (inertial impactation, sedimentation, Brownian movement), shed light on carcinogenesis (eg, bay region theory in case of polycyclic aromatic hydrocarbons and surface charge changes regarding asbestos), show that atmospheric particulates accepted as harmless may act as co-carcinogens (eg, iron and benzo(a)pyrene) and stress the importance of in vitro researches (bacterial mutation tests, organ cultures, sister chromatid exchange system) to screen pollutants for their malignant potential and study their pathogenesis.

  5. Air pollution and lung cancer

    SciTech Connect

    Boehm, G.M.

    1982-01-01

    Epidemiological evidence proves conclusively that lung cancer correlates with air pollution. However, data on lung cancer death rates and smoking show that mankind accepts the risk of long-term and low-level exposure to carcinogens. As a rule, immediate benefits are sought and remote hazards ignored. Fear of atmospheric contamination by radioactive fallout seems to be the main factor for awareness of air pollution. Experimental works help us to understand physics of particle deposition in the lungs (inertial impactation, sedimentation, Brownian movement), shed light on carcinogenesis (eg, bay region theory in case of polycyclic aromatic hydrocarbons and surface charge changes regarding asbestos), show that atmospheric particulates accepted as harmless may act as co-carcinogens (eg, iron and benzo(a)pyrene) and stress the importance of in vitro research (bacterial mutation tests, organ cultures, sister chromatid exchange system) to screen pollutants for their malignant potential and study their pathogenesis.

  6. Notice of Construction (NOC) Application for Criteria and Toxic Air Pollutant Emissions from Thermal Stabilization of Polycubes at the PFP

    SciTech Connect

    RANADE, D.G.

    2000-11-01

    This is a notice of construction (NOC) application for thermal stabilization of plutonium in a polystyrene matrix (polycubes) in the muffle furnaces at the Plutonium Finishing Plant (PFP). This NOC application is required by Washington Administrative Code (WAC) 173-460-040. During the 1960's and 1970's, polycubes were thermally stabilized using a pyrolysis process at PFP. The proposed process of thermal stabilization of polycubes in muffle furnaces results in emissions of air contaminants not emitted since implementation of WAC 173-460 (effective 9/18/91). The new process and related air contaminants are the basis for this NOC application. The proposed activity would use the muffle furnaces in the 234-52 Building to stabilize polycubes. The resulting plutonium oxides would be packaged to meet storage requirements specified in Stabilization, Packaging, and Storage of Plutonium Bearing Materials (DOE-STD-3013). The PFP is located in the 200 West Area of the Hanford Site. The PFP consists of several large and small buildings that are grouped to form the processing complex. The PFP activities are focused on the stabilization of plutonium-bearing materials to a form suitable for long-term storage; immobilization of residual plutonium-bearing materials; and removal of readily retrievable, plutonium-bearing materials left behind in process equipment and process areas.

  7. [Polluting agents and sources of urban air pollution].

    PubMed

    Cocheo, V

    2000-01-01

    This paper is an up-to-date review of the scientific evidence on mechanisms of pollutant generation and health effects for a number of urban air pollutants. The review focuses on main sources and health effect of ozone and photochemical smog, benzene, polycyclic aromatic hydrocarbons, and particulate matter. These agents are "priority pollutants", generated by vehicle traffic, and their regulation is currently being examined by the European Council and the European Commission. The aim is to reach, by the year 2010, values lower than 180 micrograms/m3 for ozone as maximum hourly concentration, 2.5 micrograms/m3 for benzene as an annual average, 93 micrograms/m3 for nitrogen dioxide as 98 degrees percentile of hourly concentrations, 50 micrograms/m3 for particulate as a daily average. The goal can be achieved only by means of immediate interventions on emissions. PMID:11293295

  8. 40 CFR 52.274 - California air pollution emergency plan.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... actions for interdistrict coordination; has no provisions for nitrogen dioxide, particulate matter, and... the following schedule: (i) For sources with emissions of hydrocarbons (HC) or nitrogen oxides (NOX... by the Administrator. (d) Regulation for prevention of air pollution emergency...

  9. 40 CFR 52.274 - California air pollution emergency plan.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... actions for interdistrict coordination; has no provisions for nitrogen dioxide, particulate matter, and... the following schedule: (i) For sources with emissions of hydrocarbons (HC) or nitrogen oxides (NOX... by the Administrator. (d) Regulation for prevention of air pollution emergency...

  10. Review of air pollution and health impacts in Malaysia.

    PubMed

    Afroz, Rafia; Hassan, Mohd Nasir; Ibrahim, Noor Akma

    2003-06-01

    In the early days of abundant resources and minimal development pressures, little attention was paid to growing environmental concerns in Malaysia. The haze episodes in Southeast Asia in 1983, 1984, 1991, 1994, and 1997 imposed threats to the environmental management of Malaysia and increased awareness of the environment. As a consequence, the government established Malaysian Air Quality Guidelines, the Air Pollution Index, and the Haze Action Plan to improve air quality. Air quality monitoring is part of the initial strategy in the pollution prevention program in Malaysia. Review of air pollution in Malaysia is based on the reports of the air quality monitoring in several large cities in Malaysia, which cover air pollutants such as Carbon monoxide (CO), Sulphur Dioxide (SO2), Nitrogen Dioxide (NO2), Ozone (O3), and Suspended Particulate Matter (SPM). The results of the monitoring indicate that Suspended Particulate Matter (SPM) and Nitrogen Dioxide (NO2) are the predominant pollutants. Other pollutants such as CO, O(x), SO2, and Pb are also observed in several big cities in Malaysia. The air pollution comes mainly from land transportation, industrial emissions, and open burning sources. Among them, land transportation contributes the most to air pollution. This paper reviews the results of the ambient air quality monitoring and studies related to air pollution and health impacts.

  11. Impact of aircraft emissions on air quality in the vicinity of airports. Volume II. An updated model assessment of aircraft generated air pollution at LAX, JFK, and ORD. Final report Jan 1978-Jul 1980

    SciTech Connect

    Yamartino, R.J.; Smith, D.G.; Bremer, S.A.; Heinold, D.; Lamich, D.

    1980-07-01

    This report documents the results of the Federal Aviation Administration (FAA)/Environmental Protection Agency (EPA) air quality study which has been conducted to assess the impact of aircraft emissions of carbon monoxide (CO), hydrocarbons (HC), and oxides of nitrogen (NOx) in the vicinity of airports. This assessment includes the results of recent modeling and monitoring efforts at Washington National (DCA), Los Angeles International (LAX), Dulles International (IAD), and Lakeland, Florida airports and an updated modeling of aircraft generated pollution at LAX, John F. Kennedy (JFK) and Chicago O'Hare (ORD) airports. The Airport Vicinity Air Pollution (AVAP) model which was designed for use at civil airports was used in this assessment. In addition the results of the application of the military version of the AVAP model the Air Quality Assessment Model (AQAM), are summarized. Both the results of the pollution monitoring analyses in Volume I and the modeling studies in Volume II suggest that: maximum hourly average CO concentrations from aircraft are unlikely to exceed 5 parts per million (ppm) in areas of public exposure and are thus small in comparison to the National Ambient Air Quality Standard of 35 ppm; maximum hourly HC concentrations from aircraft can exceed 0.25 ppm over an area several times the size of the airport; and annual average NO2 concentrations from aircraft are estimated to contribute only 10 to 20 percent of the NAAQS limit level.

  12. Ethical and economic issues in the use of zero-emission vehicles as a component of an air-pollution mitigation strategy.

    PubMed

    Duvall, Tim; Englander, Fred; Englander, Valerie; Hodson, Thomas J; Marpet, Mark

    2002-10-01

    The air pollution generated by motor vehicles and by static sources is, in certain geographic areas, a very serious problem, a problem that exists because of a failure of the marketplace. To address this marketplace failure, the State of California has mandated that by 2003, 10% of the Light-Duty Vehicle Fleet (LDV) be composed of Zero-Emission Vehicles (ZEVs). However, the policy-making process that was utilized to generate the ZEV mandate was problematic and the resulting ZEV mandate is economically unsound. Moreover, an ethical analysis, based primarily upon the work of John Rawls, suggests that implementation of the California ZEV mandate is--in spite of the wide latitude that ought to be given to policy decision makers--unethical. A more ethical and economically efficient approach to the pollution caused by marketplace failure is one that relies on market incentives and thereby achieves the desired improvement in air quality by appealing both to the self-interest of motorists and to those businesses that are directly or indirectly involved with the automobile industry. Such an approach would take better advantage of the creative forces of the market and improvements in technology over time and avoid the infringements on individual liberty and fairness embodied in the ZEV mandate. PMID:12501725

  13. Ethical and economic issues in the use of zero-emission vehicles as a component of an air-pollution mitigation strategy.

    PubMed

    Duvall, Tim; Englander, Fred; Englander, Valerie; Hodson, Thomas J; Marpet, Mark

    2002-10-01

    The air pollution generated by motor vehicles and by static sources is, in certain geographic areas, a very serious problem, a problem that exists because of a failure of the marketplace. To address this marketplace failure, the State of California has mandated that by 2003, 10% of the Light-Duty Vehicle Fleet (LDV) be composed of Zero-Emission Vehicles (ZEVs). However, the policy-making process that was utilized to generate the ZEV mandate was problematic and the resulting ZEV mandate is economically unsound. Moreover, an ethical analysis, based primarily upon the work of John Rawls, suggests that implementation of the California ZEV mandate is--in spite of the wide latitude that ought to be given to policy decision makers--unethical. A more ethical and economically efficient approach to the pollution caused by marketplace failure is one that relies on market incentives and thereby achieves the desired improvement in air quality by appealing both to the self-interest of motorists and to those businesses that are directly or indirectly involved with the automobile industry. Such an approach would take better advantage of the creative forces of the market and improvements in technology over time and avoid the infringements on individual liberty and fairness embodied in the ZEV mandate.

  14. Air Emission Inventory for the Idaho National Engineering and Environmental Laboratory - Calendar Year 1998 Emissions Report

    SciTech Connect

    S. K. Zohner

    1999-10-01

    This report presents the 1998 calendar year update of the Air Emission Inventory for the Idaho National Engineering and Environmental Laboratory (INEEL). The INEEL Air Emission Inventory documents sources and emissions of nonradionuclide pollutants from operations at the INEEL. The report describes the emission inventory process and all of the sources at the INEEL, and provides nonradiological emissions estimates for stationary sources.

  15. Air emission inventory for the Idaho National Engineering Laboratory: 1994 emissions report

    SciTech Connect

    1995-07-01

    This report Presents the 1994 update of the Air Emission inventory for the Idaho National Engineering Laboratory (INEL). The INEL Air Emission Inventory documents sources and emissions of non-radionuclide pollutants from operations at the INEL. The report describes the emission inventory process and all of the sources at the INEL, and provides non-radionuclide emissions estimates for stationary sources.

  16. Air Emission Inventory for the Idaho National Engineering and Environmental Laboratory - Calendar Year 1999 Emission Report

    SciTech Connect

    Zohner, S.K.

    2000-05-30

    This report presents the 1999 calendar year update of the Air Emission Inventory for the Idaho National Engineering and Environmental Laboratory (INEEL). The INEEL Air Emission Inventory documents sources and emissions of nonradionuclide pollutants from operations at the INEEL. The report describes the emission inventory process and all of the sources at the INEEL, and provides nonradionuclide emissions estimates for stationary sources.

  17. Air Pollution and Heart Disease, Stroke

    MedlinePlus

    ... Pressure High Blood Pressure Tools & Resources Stroke More Air Pollution and Heart Disease, Stroke Updated:Aug 30,2016 ... or Longer-Term Acute short-term effects of air pollution tend to strike people who are elderly or ...

  18. Clean Air Slots Amid Atmospheric Pollution

    NASA Technical Reports Server (NTRS)

    Hobbs, Peter V.

    2002-01-01

    This article investigates the mechanism for those layers in the atmosphere that are free of air borne pollution even though the air above and below them carry pollutants. Atmospheric subsidence is posed as a mechanism for this phenomenon.

  19. Vegetation and other development options for mitigating urban air pollution impacts

    EPA Science Inventory

    In addition to installing air pollution control devices and reducing emissions activities, urban air pollution can be further mitigated through planning and design strategies including vegetation planting, building design, installing roadside and near source structures, and modif...

  20. Source apportionment of indoor air pollution

    NASA Astrophysics Data System (ADS)

    Sexton, Ken; Hayward, Steven B.

    An understanding of the relative contributions from important pollutant sources to human exposures is necessary for the design and implementation of effective control strategies. In the past, societal efforts to control air pollution have focused almost exclusively on the outdoor (ambient) environment. As a result, substantial amounts of time and money have been spent to limit airborne discharges from mobile and stationary sources. Yet it is now recognized that exposures to elevated pollutant concentrations often occur as a result of indoor, rather than outdoor, emissions. While the major indoor sources have been identified, their relative impacts on indoor air quality have not been well defined. Application of existing source apportionment models to nonindustrial indoor environments is only just beginning. It is possible that these models might be used to distinguish between indoor and outdoor emissions, as well as to distinguish among indoor sources themselves. However, before the feasibility and suitability of source-apportionment methods for indoor applications can be assessed adequately, it is necessary to take account of model assumptions and associated data requirements. This paper examines the issue of indoor source apportionment and reviews the need for emission characterization studies to support such source-apportionment efforts.

  1. Effects of Air Pollution and the Introduction of the London Low Emission Zone on the Prevalence of Respiratory and Allergic Symptoms in Schoolchildren in East London: A Sequential Cross-Sectional Study.

    PubMed

    Wood, Helen E; Marlin, Nadine; Mudway, Ian S; Bremner, Stephen A; Cross, Louise; Dundas, Isobel; Grieve, Andrew; Grigg, Jonathan; Jamaludin, Jeenath B; Kelly, Frank J; Lee, Tak; Sheikh, Aziz; Walton, Robert; Griffiths, Christopher J

    2015-01-01

    The adverse effects of traffic-related air pollution on children's respiratory health have been widely reported, but few studies have evaluated the impact of traffic-control policies designed to reduce urban air pollution. We assessed associations between traffic-related air pollutants and respiratory/allergic symptoms amongst 8-9 year-old schoolchildren living within the London Low Emission Zone (LEZ). Information on respiratory/allergic symptoms was obtained using a parent-completed questionnaire and linked to modelled annual air pollutant concentrations based on the residential address of each child, using a multivariable mixed effects logistic regression analysis. Exposure to traffic-related air pollutants was associated with current rhinitis: NOx (OR 1.01, 95% CI 1.00-1.02), NO2 (1.03, 1.00-1.06), PM10 (1.16, 1.04-1.28) and PM2.5 (1.38, 1.08-1.78), all per μg/m3 of pollutant, but not with other respiratory/allergic symptoms. The LEZ did not reduce ambient air pollution levels, or affect the prevalence of respiratory/allergic symptoms over the period studied. These data confirm the previous association between traffic-related air pollutant exposures and symptoms of current rhinitis. Importantly, the London LEZ has not significantly improved air quality within the city, or the respiratory health of the resident population in its first three years of operation. This highlights the need for more robust measures to reduce traffic emissions.

  2. Effects of Air Pollution and the Introduction of the London Low Emission Zone on the Prevalence of Respiratory and Allergic Symptoms in Schoolchildren in East London: A Sequential Cross-Sectional Study.

    PubMed

    Wood, Helen E; Marlin, Nadine; Mudway, Ian S; Bremner, Stephen A; Cross, Louise; Dundas, Isobel; Grieve, Andrew; Grigg, Jonathan; Jamaludin, Jeenath B; Kelly, Frank J; Lee, Tak; Sheikh, Aziz; Walton, Robert; Griffiths, Christopher J

    2015-01-01

    The adverse effects of traffic-related air pollution on children's respiratory health have been widely reported, but few studies have evaluated the impact of traffic-control policies designed to reduce urban air pollution. We assessed associations between traffic-related air pollutants and respiratory/allergic symptoms amongst 8-9 year-old schoolchildren living within the London Low Emission Zone (LEZ). Information on respiratory/allergic symptoms was obtained using a parent-completed questionnaire and linked to modelled annual air pollutant concentrations based on the residential address of each child, using a multivariable mixed effects logistic regression analysis. Exposure to traffic-related air pollutants was associated with current rhinitis: NOx (OR 1.01, 95% CI 1.00-1.02), NO2 (1.03, 1.00-1.06), PM10 (1.16, 1.04-1.28) and PM2.5 (1.38, 1.08-1.78), all per μg/m3 of pollutant, but not with other respiratory/allergic symptoms. The LEZ did not reduce ambient air pollution levels, or affect the prevalence of respiratory/allergic symptoms over the period studied. These data confirm the previous association between traffic-related air pollutant exposures and symptoms of current rhinitis. Importantly, the London LEZ has not significantly improved air quality within the city, or the respiratory health of the resident population in its first three years of operation. This highlights the need for more robust measures to reduce traffic emissions. PMID:26295579

  3. The Crisis in Air Pollution Manpower Development

    ERIC Educational Resources Information Center

    Moeller, Dade W.

    1974-01-01

    Three studies conducted by the National Air Pollution Manpower Development Advisory Committee concluded there is a crisis in air pollution manpower development within the United States today. The studies investigated the existing federal manpower program, air pollution educational requirements and the quality of graduate level university programs.…

  4. Air pollution ranks as largest health risk

    NASA Astrophysics Data System (ADS)

    Wendel, JoAnna

    2014-04-01

    The World Health Organization (WHO) reports that 7 million people died in 2012 from air-pollution-related sicknesses, marking air pollution as the single largest environmental health risk. This finding, a result of better knowledge and assessment of the diseases, is more than double previous estimates of the risk of death from air pollution.

  5. Clean fuel vehicles: The air pollution solution

    SciTech Connect

    Meotti, M.P.

    1995-11-01

    Clean fuels for cars and trucks can do more for air quality, and do it sooner, than any other alternative on the drawing boards today. In much of the country, vehicles are the single biggest cause of air pollution. It`s not the industrial smoke stacks, but the tail pipes on cars that foul the air. Ninety percent of the carbon monoxide, 50% of the volatile organic compounds, and 40% of the ozone in metropolitan areas come from motor vehicles. Many state and local government officials are pursuing vehicle emission inspection, high occupancy vehicle lanes, and carpooling programs to reduce auto pollution. These efforts are valuable and should be continued. But clean fuels can quickly reduce auto emissions at a much lower cost. Alternative fuel vehicles produce fewer emissions, are much less dependent on foreign sources, and have the potential to create new jobs. One alternative fuel, natural gas, emits no particulates, 90% less carbon monoxide, and 85% fewer of the gases that form ozone.

  6. Air pollution and brain damage.

    PubMed

    Calderón-Garcidueñas, Lilian; Azzarelli, Biagio; Acuna, Hilda; Garcia, Raquel; Gambling, Todd M; Osnaya, Norma; Monroy, Sylvia; DEL Tizapantzi, Maria Rosario; Carson, Johnny L; Villarreal-Calderon, Anna; Rewcastle, Barry

    2002-01-01

    Exposure to complex mixtures of air pollutants produces inflammation in the upper and lower respiratory tract. Because the nasal cavity is a common portal of entry, respiratory and olfactory epithelia are vulnerable targets for toxicological damage. This study has evaluated, by light and electron microscopy and immunohistochemical expression of nuclear factor-kappa beta (NF-kappaB) and inducible nitric oxide synthase (iNOS), the olfactory and respiratory nasal mucosae, olfactory bulb, and cortical and subcortical structures from 32 healthy mongrel canine residents in Southwest Metropolitan Mexico City (SWMMC), a highly polluted urban region. Findings were compared to those in 8 dogs from Tlaxcala, a less polluted, control city. In SWMMC dogs, expression of nuclear neuronal NF-kappaB and iNOS in cortical endothelial cells occurred at ages 2 and 4 weeks; subsequent damage included alterations of the blood-brain barrier (BBB), degenerating cortical neurons, apoptotic glial white matter cells, deposition of apolipoprotein E (apoE)-positive lipid droplets in smooth muscle cells and pericytes, nonneuritic plaques, and neurofibrillary tangles. Persistent pulmonary inflammation and deteriorating olfactory and respiratory barriers may play a role in the neuropathology observed in the brains of these highly exposed canines. Neurodegenerative disorders such as Alzheimer's may begin early in life with air pollutants playing a crucial role.

  7. "Air pollution in Delhi: Its Magnitude and Effects on Health".

    PubMed

    Rizwan, Sa; Nongkynrih, Baridalyne; Gupta, Sanjeev Kumar

    2013-01-01

    Air pollution is responsible for many health problems in the urban areas. Of late, the air pollution status in Delhi has undergone many changes in terms of the levels of pollutants and the control measures taken to reduce them. This paper provides an evidence-based insight into the status of air pollution in Delhi and its effects on health and control measures instituted. The urban air database released by the World Health Organization in September 2011 reported that Delhi has exceeded the maximum PM10 limit by almost 10-times at 198 μg/m3. Vehicular emissions and industrial activities were found to be associated with indoor as well as outdoor air pollution in Delhi. Studies on air pollution and mortality from Delhi found that all-natural-cause mortality and morbidity increased with increased air pollution. Delhi has taken several steps to reduce the level of air pollution in the city during the last 10 years. However, more still needs to be done to further reduce the levels of air pollution.

  8. 40 CFR 63.13 - Addresses of State air pollution control agencies and EPA Regional Offices.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 9 2011-07-01 2011-07-01 false Addresses of State air pollution... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES General Provisions § 63.13 Addresses of State air pollution control...

  9. 40 CFR 63.13 - Addresses of State air pollution control agencies and EPA Regional Offices.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 10 2014-07-01 2014-07-01 false Addresses of State air pollution... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES General Provisions § 63.13 Addresses of State air pollution control...

  10. 40 CFR 63.13 - Addresses of State air pollution control agencies and EPA Regional Offices.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 10 2013-07-01 2013-07-01 false Addresses of State air pollution... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES General Provisions § 63.13 Addresses of State air pollution control...

  11. 40 CFR 63.13 - Addresses of State air pollution control agencies and EPA Regional Offices.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 9 2010-07-01 2010-07-01 false Addresses of State air pollution... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES General Provisions § 63.13 Addresses of State air pollution control...

  12. 40 CFR 63.13 - Addresses of State air pollution control agencies and EPA Regional Offices.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 10 2012-07-01 2012-07-01 false Addresses of State air pollution... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES General Provisions § 63.13 Addresses of State air pollution control...

  13. Changing perspectives on air-pollution stress

    SciTech Connect

    Bormann, F.H.; Likens, G.E.

    1987-06-01

    As more has been learned about the nature of air pollution and more sophisticated techniques have been developed for measurement, it has become apparent that acid rain is only one of an interrelated array of airshed-watershed problems. Despite important reductions in some pollutant emissions, the authors believe the situation today is worse than it appeared to be 15 years ago. Recently scientists have reported data showing that in some locations dry deposition of hydrogen ion, sulfur, and nitrogen in coarse and fine particles and vapors may exceed the same substances measured in bulk precipitation. As scientists learned about acid rain, they also became more aware of photochemical oxidant pollution. Symptoms of ozone damage on crops and natural vegetation have been found in a majority of states. As understanding and measurement ability have increased, estimates of the magnitude of the air pollution problem have grown. The recent measurements of dry deposition, cloud-water deposition, and photochemical oxidant concentrations have greatly increased estimates of airborne pollutants reaching ecosystems. They have shown that the photochemical oxidant problem cannot be separated from the acid-rain problem and that the combined effects may be both episodic and long-term. These findings indicate that regional air pollution is more severe than it was perceived to be 15 years ago. Solving the problem will be extremely difficult and expensive both in terms of monitoring and assessing effects on ecosystems under realistic conditions. The longer the delays in setting an official policy of comprehensive correctional measures, the more environmental damage may occur. Extensive damage, in turn, would increase the cost of measures for protection and recovery.

  14. Air Pollution and Control Legislation in India

    NASA Astrophysics Data System (ADS)

    P Bhave, Prashant; Kulkarni, Nikhil

    2015-09-01

    Air pollution in urban areas arises from multiple sources, which may vary with location and developmental activities. Anthropogenic activities as rampant industrialization, exploitation and over consumption of natural resources, ever growing population size are major contributors of air pollution. The presented review is an effort to discuss various aspects of air pollution and control legislation in India emphasizing on the history, present scenario, international treaties, gaps and drawbacks. The review also presents legislative controls with judicial response to certain landmark judgments related to air pollution. The down sides related to enforcement mechanism for the effective implementation of environmental laws for air pollution control have been highlighted.

  15. Self-organized criticality of air pollution

    NASA Astrophysics Data System (ADS)

    Shi, Kai; Liu, Chun-Qiong

    In this work, we investigate the frequency-size distribution of three pollution indexes (PM 10, NO 2 and SO 2) in Shanghai. They are well approximated by power-law distributions, which suggest that air pollution might be a manifestation of self-organized criticality. We introduce a new numerical sandpile model with decay coefficient to reveal inherent dynamic mechanism of air pollution. Only changing the number value of decay coefficient of pollutants, this model gives a good simulation of three pollutants' statistical characteristic. This work shows that it is the self-organized criticality of the air pollutants that results in the temporal variation of air pollutant indexes and the minor air pollution sources can trigger the occurrence of large pollutant events by SOC behavior.

  16. Air quality and pollution control in Taiwan

    NASA Astrophysics Data System (ADS)

    Fang, Shu-Hwei; Chen, Hsiung-Wen

    Due to limited land and great emphasis on economic growth in the past, Taiwan has an extremely heavy environmental burden. Population density, factory density, as well as densities of motor vehicles are several times higher than those in the United States and Japan. According to the statistics of 1991, the Pollutant Standards Index (PSI) fell mostly in the "moderate" category, i.e., in the range of 50-100. There were 16.25% of the monitored days with PSI above 100, and 0.51% with PSI beyond 200. Suspended particulates were the major pollutant responsible for PSI above 100, followed by carbon monoxide, ozone, and sulfur dioxide. The measures adopted to control air pollution can be divided into four categories, namely law and regulations, control measures on stationary sources, mobile sources and construction projects. The latest amended Air Pollution Control Act was promulgated on 1 February 1992. Several major revisions were introduced to make the amended Act much more stringent than the 1982 amendment, especially on the offenses likely to endanger public health and welfare. In regard to stationary sources, a permit system was enacted to regulate the establishment and alteration of stationary sources. Designated stationary sources are required to be equipped with automatic monitoring facilities. An inspection and enforcement program have expanded to cover more than 10,000 factories. Major control measures for motor vehicles include introducing stringent emission standards for gasoline-fueled vehicles and diesel cars, setting up ratification and approval program for new vehicle model, promoting the inspection/maintenance program on in-used motorcycles and encouraging the use of unleaded and low sulfur fuels. In order to control the pollution caused by construction work, constructors are required to use low-pollution machinery and engineering methods and incorporate pollution prevention into the construction budget.

  17. Epidemiology of air pollution and diabetes.

    PubMed

    Thiering, Elisabeth; Heinrich, Joachim

    2015-07-01

    Air pollution affects a large proportion of the global population. Air pollutants are hypothesized to exert their effects via impaired endothelial function, elevated systemic inflammation, mitochondrial dysfunction, and oxidative stress, all of which are hallmarks of type 2 diabetes (T2D). Here we review epidemiological studies aimed at answering whether diabetes patients are more vulnerable to ambient (outdoor) air pollution exposure and whether air pollution is associated with diabetes development or other predisposing conditions for T2D. Current evidence suggests an association between air pollution exposure and T2D, but more critical analysis is warranted. Understanding the associations between air pollution exposure and the development of T2D is critical in our efforts to control sources of air pollution and their impact on the disease.

  18. Tropospheric emissions: monitoring of pollution (TEMPO)

    NASA Astrophysics Data System (ADS)

    Chance, Kelly; Liu, Xiong; Suleiman, Raid M.; Flittner, David E.; Al-Saadi, Jassim; Janz, Scott J.

    2013-09-01

    TEMPO was selected in 2012 by NASA as the first Earth Venture Instrument, for launch circa 2018. It will measure atmospheric pollution for greater North America from space using ultraviolet and visible spectroscopy. TEMPO measures from Mexico City to the Canadian tar sands, and from the Atlantic to the Pacific, hourly and at high spatial resolution (~2 km N/S×4.5 km E/W at 36.5°N, 100°W). TEMPO provides a tropospheric measurement suite that includes the key elements of tropospheric air pollution chemistry. Measurements are from geostationary (GEO) orbit, to capture the inherent high variability in the diurnal cycle of emissions and chemistry. The small product spatial footprint resolves pollution sources at sub-urban scale. Together, this temporal and spatial resolution improves emission inventories, monitors population exposure, and enables effective emission-control strategies. TEMPO takes advantage of a commercial GEO host spacecraft to provide a modest cost mission that measures the spectra required to retrieve O3, NO2, SO2, H2CO, C2H2O2, H2O, aerosols, cloud parameters, and UVB radiation. TEMPO thus measures the major elements, directly or by proxy, in the tropospheric O3 chemistry cycle. Multi-spectral observations provide sensitivity to O3 in the lowermost troposphere, substantially reducing uncertainty in air quality predictions. TEMPO quantifies and tracks the evolution of aerosol loading. It provides near-real-time air quality products that will be made widely, publicly available. TEMPO will launch at a prime time to be the North American component of the global geostationary constellation of pollution monitoring together with European Sentinel-4 and Korean GEMS.

  19. Groundwater treatment with zero air emissions

    SciTech Connect

    Cheuvront, D.A. ); Giggy, C.L.; Loven, C.G. ); Swett, G.H. )

    1990-08-01

    Air emissions from the treatment of volatile organic compound (VOC) - contaminated groundwater are a growing problem in the US. Historically, air stripping has been used to remove VOCs from contaminated groundwater. Air stripping technology is a cross media treatment technique, i.e., it solves a groundwater problem by transferring contamination to the atmosphere. In response to the air pollution problem created by air stripping, the public, air quality regulatory agencies, the federal government and private industry are exerting pressure to eliminate and/or reduce air emissions from the clean-up of contaminated groundwater. These forces make it desirable to consider alternative and innovative technologies for the treatment of groundwater contaminated with VOCs.

  20. Methods of valuing air pollution and estimated monetary values of air pollutants in various U.S. regions

    SciTech Connect

    Wang, M.Q.; Santini, D.J.; Warinner, S.A.

    1994-12-01

    Air pollutant emission values are used to determine the social costs of various technologies that cause air pollution and to estimate the benefits of emission control technologies. In this report, the authors present two methods of estimating air pollutant emission values--the damage value method and the control cost method--and review 15 recent studies in which these methods were employed to estimate emission values. The reviewed studies derived emission values for only a limited number of areas; emission value estimates are needed for other US regions. Using the emission values estimated in the reviewed studies, they establish regression relationships between emission values, air pollutant concentrations, and total population exposed, and apply the established relationships to 17 US metropolitan areas to estimate damage-based and control-cost-based emission values for reactive organic gases, nitrogen oxides, particulate matter measuring less than 10 microns, sulfur oxides, and carbon monoxide in these areas. Their estimates show significant variations in emission values across the 17 regions.