Sample records for air pollutants emissions

  1. The national air pollutant emission trends, 1900-1998

    DOT National Transportation Integrated Search

    2000-03-01

    The National Air Pollutant Emission Trends Report, 1900-1998 presents the most : recent estimate of national emissions of the criteria air pollutants. The : emissions of each pollutant are estimated for many different source categories, : which colle...

  2. [Study on emission standard system of air pollutants].

    PubMed

    Jiang, Mei; Zhang, Guo-Ning; Zhang, Ming-Hui; Zou, Lan; Wei, Yu-Xia; Ren, Chun

    2012-12-01

    Scientific and reasonable emission standard system of air pollutants helps to systematically control air pollution, enhance the protection of the atmospheric environment effect and improve the overall atmospheric environment quality. Based on the study of development, situation and characteristics of national air pollutants emission standard system, the deficiencies of system were pointed out, which were not supportive, harmonious and perfect, and the improvement measures of emission standard system were suggested.

  3. 77 FR 16508 - National Emission Standards for Hazardous Air Pollutant Emissions: Group IV Polymers and Resins...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-21

    ... National Emission Standards for Hazardous Air Pollutant Emissions: Group IV Polymers and Resins; Pesticide... Hazardous Air Pollutant Emissions: Group IV Polymers and Resins; National Emission Standards for Hazardous... proposed rule titled, National Emission Standards for Hazardous Air Pollutant Emissions: Group IV Polymers...

  4. Measurement of air pollutant emissions from Lome, Cotonou and Accra

    NASA Astrophysics Data System (ADS)

    Lee, James; Vaughan, Adam; Nelson, Bethany; Young, Stuart; Evans, Mathew; Morris, Eleanor; Ladkin, Russel

    2017-04-01

    High concentrations of airborne pollutants (e.g. the oxides of nitrogen, sulphur dioxide and carbon monoxide) in existing and evolving cities along the Guinea Coast cause respiratory diseases with potentially large costs to human health and the economic capacity of the local workforce. It is important to understand the rate of emission of such pollutants in order to model current and future air quality and provide guidance to the potential outcomes of air pollution abatement strategies. Often dated technologies and poor emission control strategies lead to substantial uncertainties in emission estimates calculated from vehicle and population number density statistics. The unreliable electrical supply in cities in the area has led to an increased reliance on small-scale diesel powered generators and these potentially present a significant source of emissions. The uncontrolled open incineration of waste adds a further very poorly constrained emission source within the cities. The DACCIWA (Dynamics-Aerosol-Chemistry-Cloud Interactions in West Africa) project involved a field campaign which used highly instrumented aircraft capable of in situ measurements of a range of air pollutants. Seven flights using the UK British Antarctic Survey's Twin Otter aircraft specifically targeted air pollution emissions from cities in West Africa (4 x Accra, Ghana; 2 x Lome, Togo and 1 x Cotonou, Benin). Measurements of NO, NO2, SO2, CO, CH4 and CO2 were made at multiple altitudes upwind and downwind of the cities, with the mass balance technique used to calculate emission rates. These are then compared to the Emissions Database for Global Atmospheric Research (EDGAR) estimates. Ultimately the data will be used to inform on and potentially improve the emission estimates, which in turn should lead to better forecasting of air pollution in West African cities and help guide future air pollution abatement strategy.

  5. 76 FR 22565 - National Emission Standards for Hazardous Air Pollutant Emissions: Group I Polymers and Resins...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-21

    ... National Emission Standards for Hazardous Air Pollutant Emissions: Group I Polymers and Resins; Marine Tank...-AO91 National Emission Standards for Hazardous Air Pollutant Emissions: Group I Polymers and Resins... Emissions Standards for Group I Polymers and Resins (Butyl Rubber Production, Epichlorohydrin Elastomers...

  6. 75 FR 9647 - National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-03

    ...EPA is promulgating national emission standards for hazardous air pollutants for existing stationary compression ignition reciprocating internal combustion engines that either are located at area sources of hazardous air pollutant emissions or that have a site rating of less than or equal to 500 brake horsepower and are located at major sources of hazardous air pollutant emissions. In addition, EPA is promulgating national emission standards for hazardous air pollutants for existing non-emergency stationary compression ignition engines greater than 500 brake horsepower that are located at major sources of hazardous air pollutant emissions. Finally, EPA is revising the provisions related to startup, shutdown, and malfunction for the engines that were regulated previously by these national emission standards for hazardous air pollutants.

  7. Mapping Emissions that Contribute to Air Pollution Using Adjoint Sensitivity Analysis

    NASA Astrophysics Data System (ADS)

    Bastien, L. A. J.; Mcdonald, B. C.; Brown, N. J.; Harley, R.

    2014-12-01

    The adjoint of the Community Multiscale Air Quality model (CMAQ) is used to map emissions that contribute to air pollution at receptors of interest. Adjoint tools provide an efficient way to calculate the sensitivity of a model response to a large number of model inputs, a task that would require thousands of simulations using a more traditional forward sensitivity approach. Initial applications of this technique, demonstrated here, are to benzene and directly-emitted diesel particulate matter, for which atmospheric reactions are neglected. Emissions of these pollutants are strongly influenced by light-duty gasoline vehicles and heavy-duty diesel trucks, respectively. We study air quality responses in three receptor areas where populations have been identified as especially susceptible to, and adversely affected by air pollution. Population-weighted air basin-wide responses for each pollutant are also evaluated for the entire San Francisco Bay area. High-resolution (1 km horizontal grid) emission inventories have been developed for on-road motor vehicle emission sources, based on observed traffic count data. Emission estimates represent diurnal, day of week, and seasonal variations of on-road vehicle activity, with separate descriptions for gasoline and diesel sources. Emissions that contribute to air pollution at each receptor have been mapped in space and time using the adjoint method. Effects on air quality of both relative (multiplicative) and absolute (additive) perturbations to underlying emission inventories are analyzed. The contributions of local versus upwind sources to air quality in each receptor area are quantified, and weekday/weekend and seasonal variations in the influence of emissions from upwind areas are investigated. The contribution of local sources to the total air pollution burden within the receptor areas increases from about 40% in the summer to about 50% in the winter due to increased atmospheric stagnation. The effectiveness of control

  8. REGIONAL AIR POLLUTION STUDY: HEAT EMISSION INVENTORY

    EPA Science Inventory

    As part of the St. Louis Regional Air Pollution Study (RAPS), a heat emission inventory has been assembled. Heat emissions to the atmosphere originate, directly or indirectly, from the combustion of fossil fuels (there are no nuclear plants in the St. Louis AQCR). With the except...

  9. Strategies for emission reduction of air pollutants produced from a chemical plant.

    PubMed

    Lee, Byeong-Kyu; Cho, Sung-Woong

    2003-01-01

    Various air pollution control (APC) techniques were employed in order to reduce emissions of air pollutants produced from chemical plants, which have many different chemical production facilities. For an emission reduction of acid gases, this study employed a method to improve solubility of pollutants by decreasing the operating temperature of the scrubbers, increasing the surface area for effective contact of gas and liquid, and modifying processes in the acid scrubbers. To reduce emission of both amines and acid gases, pollutant gas components were first separated, then condensation and/or acid scrubbing, depending on the chemical and physical properties of pollutant components, were used. To reduce emission of solvents, condensation and activated carbon adsorption were employed. To reduce emission of a mixture gases containing acid gases and solvents, the mixed gases were passed into the first condenser, the acid scrubber, the second condenser, and the activated carbon adsorption tower in sequence. As a strategy to reduce emission of pollutants at the source, this study also employed the simple pollution prevention concept of modification of the previously operating APC control device. Finally, air emissions of pollutants produced from the chemical plants were much more reduced by applying proper APC methods, depending upon the types (physical or chemical properties) and the specific emission situations of pollutants.

  10. 76 FR 72049 - National Emission Standards for Hazardous Air Pollutant Emissions for Shipbuilding and Ship...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-21

    ...This action finalizes the residual risk and technology review conducted for two industrial source categories regulated by separate national emission standards for hazardous air pollutants. The two national emission standards for hazardous air pollutants are: National Emissions Standards for Shipbuilding and Ship Repair (Surface Coating) and National Emissions Standards for Wood Furniture Manufacturing Operations. This action also finalizes revisions to the regulatory provisions related to emissions during periods of startup, shutdown and malfunction.

  11. Emission characteristics of harmful air pollutants from cremators in Beijing, China

    PubMed Central

    Xue, Yifeng; Cheng, Linglong; Chen, Xi; Zhai, Xiaoman; Wang, Wei; Zhang, Wenjie; Bai, Yan; Tian, Hezhong; Nie, Lei; Zhang, Shihao; Wei, Tong

    2018-01-01

    The process of corpse cremation generates numerous harmful air pollutants, including particulate matter (PM), sulfur dioxide (SO2), nitrogen oxides (NOx), volatile organic compounds (VOCs), and heavy metals. These pollutants could have severe effects on the surrounding environment and human health. Currently, the awareness of the emission levels of harmful air pollutants from cremators and their emission characteristics is insufficient. In this study, we obtained the emission characteristics of flue gas from cremators in Beijing and determined the localized emission factors and emission levels of harmful air pollutants based on actual monitoring data from nine typical cremators. The results show that the emissions of air pollutants from the cremators that directly discharge flue gas exceed the emission standards of China and Beijing. The installation of a flue gas post-treatment system could effectively reduce gaseous pollutants and the emission levels of PM. After being equipped with a flue gas post-treatment system, the emission concentrations of PM10, PM2.5, CO, SO2 and VOCs from the cremators are reduced by 97.6, 99.2, 19.6, 85.2 and 70.7%, respectively. Moreover, the emission factors of TSP, PM10, PM2.5, CO, SO2 and VOCs are also reduced to 12.5, 9.3, 3.0, 164.1, 8.8 and 19.8 g/body. Although the emission concentration of VOCs from the cremators is not high, they are one of major sources of “odor” in the crematories and demand more attention. Benzene, a chemical that can seriously harm human health, constitutes the largest proportion (~50%) of the chemical components of VOCs in the flue gas from the cremators. PMID:29718907

  12. Emission characteristics of harmful air pollutants from cremators in Beijing, China.

    PubMed

    Xue, Yifeng; Cheng, Linglong; Chen, Xi; Zhai, Xiaoman; Wang, Wei; Zhang, Wenjie; Bai, Yan; Tian, Hezhong; Nie, Lei; Zhang, Shihao; Wei, Tong

    2018-01-01

    The process of corpse cremation generates numerous harmful air pollutants, including particulate matter (PM), sulfur dioxide (SO2), nitrogen oxides (NOx), volatile organic compounds (VOCs), and heavy metals. These pollutants could have severe effects on the surrounding environment and human health. Currently, the awareness of the emission levels of harmful air pollutants from cremators and their emission characteristics is insufficient. In this study, we obtained the emission characteristics of flue gas from cremators in Beijing and determined the localized emission factors and emission levels of harmful air pollutants based on actual monitoring data from nine typical cremators. The results show that the emissions of air pollutants from the cremators that directly discharge flue gas exceed the emission standards of China and Beijing. The installation of a flue gas post-treatment system could effectively reduce gaseous pollutants and the emission levels of PM. After being equipped with a flue gas post-treatment system, the emission concentrations of PM10, PM2.5, CO, SO2 and VOCs from the cremators are reduced by 97.6, 99.2, 19.6, 85.2 and 70.7%, respectively. Moreover, the emission factors of TSP, PM10, PM2.5, CO, SO2 and VOCs are also reduced to 12.5, 9.3, 3.0, 164.1, 8.8 and 19.8 g/body. Although the emission concentration of VOCs from the cremators is not high, they are one of major sources of "odor" in the crematories and demand more attention. Benzene, a chemical that can seriously harm human health, constitutes the largest proportion (~50%) of the chemical components of VOCs in the flue gas from the cremators.

  13. Overview of Megacity Air Pollutant Emissions and Impacts

    NASA Astrophysics Data System (ADS)

    Kolb, C. E.

    2013-05-01

    The urban metabolism that characterizes major cities consumes very large qualities of humanly produced and/or processed food, fuel, water, electricity, construction materials and manufactured goods, as well as, naturally provided sunlight, precipitation and atmospheric oxygen. The resulting urban respiration exhalations add large quantities of trace gas and particulate matter pollutants to urban atmospheres. Key classes of urban primary air pollutants and their sources will be reviewed and important secondary pollutants identified. The impacts of these pollutants on urban and downwind regional inhabitants, ecosystems, and climate will be discussed. Challenges in quantifying the temporally and spatially resolved urban air pollutant emissions and secondary pollutant production rates will be identified and possible measurement strategies evaluated.

  14. Effects of future anthropogenic pollution emissions on global air quality

    NASA Astrophysics Data System (ADS)

    Pozzer, A.; Zimmermann, P.; Doering, U.; van Aardenne, J.; Dentener, F.; Lelieveld, J.

    2012-04-01

    The atmospheric chemistry general circulation model EMAC is used to estimate the impact of anthropogenic emission changes on global and regional air quality in recent and future years (2005, 2010, 2025 and 2050). The emission scenario assumes that population and economic growth largely determine energy consumption and consequent pollution sources ("business as usual"). By comparing with recent observations, it is shown that the model reproduces the main features of regional air pollution distributions though with some imprecision inherent to the coarse horizontal resolution (around 100 km). To identify possible future hot spots of poor air quality, a multi pollutant index (MPI) has been applied. It appears that East and South Asia and the Arabian Gulf regions represent such hotspots due to very high pollutant concentrations. In East Asia a range of pollutant gases and particulate matter (PM2.5) are projected to reach very high levels from 2005 onward, while in South Asia air pollution, including ozone, will grow rapidly towards the middle of the century. Around the Arabian Gulf, where natural PM2.5 concentrations are already high (desert dust), ozone levels will increase strongly. By extending the MPI definition, we calculated a Per Capita MPI (PCMPI) in which we combined population projections with those of pollution emissions. It thus appears that a rapidly increasing number of people worldwide will experience reduced air quality during the first half of the 21st century. It is projected that air quality for the global average citizen in 2050 will be comparable to the average in East Asia in the year 2005.

  15. 76 FR 13514 - National Emission Standards for Hazardous Air Pollutants for Chemical Manufacturing Area Sources

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-14

    ... National Emission Standards for Hazardous Air Pollutants for Chemical Manufacturing Area Sources AGENCY... Emission Standards for Hazardous Air Pollutants for Chemical Manufacturing Area Sources. Among the... Emission Standards for Hazardous Air Pollutants for Chemical Manufacturing Area Sources (CMAS) on October...

  16. Air Pollution

    MedlinePlus

    Air pollution is a mixture of solid particles and gases in the air. Car emissions, chemicals from factories, ... Ozone, a gas, is a major part of air pollution in cities. When ozone forms air pollution, it's ...

  17. Biofiltration: An innovative air pollution control technology for VOC emissions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leson, G.; Winer, A.M.

    1991-08-01

    Biofiltration is a relatively recent air pollution control (APC) technology in which off-gases containing biodegradable volatile organic compounds (VOC) or inorganic air toxics are vented through a biologically active material. This technology has been successfully applied in Germany and The Netherlands in many full-scale applications to control odors, VOC and air toxic emissions from a wide range of industrial and public sector sources. Control efficiencies of more than 90 percent have been achieved for many common air pollutants. Due to lower operating costs, biofiltration can provide significant economic advantages over other APC technologies if applied to off-gases that contain readilymore » biodegradable pollutants in low concentrations. Environmental benefits include low energy requirements and the avoidance of cross media transfer of pollutants. This paper reviews the history and current status of biofiltration, outlines its underlying scientific and engineering principles, and discusses the applicability of biofilters for a wide range of specific emission sources.« less

  18. Biofiltration: an innovative air pollution control technology for VOC emissions.

    PubMed

    Leson, G; Winer, A M

    1991-08-01

    Biofiltration is a relatively recent air pollution control (APC) technology in which off-gases containing biodegradable volatile organic compounds (VOC) or inorganic air toxics are vented through a biologically active material. This technology has been successfully applied in Germany and The Netherlands in many full-scale applications to control odors, VOC and air toxic emissions from a wide range of industrial and public sector sources. Control efficiencies of more than 90 percent have been achieved for many common air pollutants. Due to lower operating costs, biofiltration can provide significant economic advantages over other APC technologies if applied to off-gases that contain readily biodegradable pollutants in low concentrations. Environmental benefits include low energy requirements and the avoidance of cross media transfer of pollutants. This paper reviews the history and current status of biofiltration, outlines its underlying scientific and engineering principles, and discusses the applicability of biofilters for a wide range of specific emission sources.

  19. Air pollution in Latin America: Bottom-up Vehicular Emissions Inventory and Atmospheric Modeling

    NASA Astrophysics Data System (ADS)

    Ibarra Espinosa, S.; Vela, A. V.; Calderon, M. G.; Carlos, G.; Ynoue, R.

    2016-12-01

    Air pollution is a global environmental and health problem. Population of Latin America are facing air quality risks due to high level of air pollution. According to World Health Organization (WHO; 2016), several Latin American cities have high level of pollution. Emissions inventories are a key tool for air quality, however they normally present lack of quality and adequate documentation in developing countries. This work aims to develop air quality assessments in Latin American countries by 1) develop a high resolution emissions inventory of vehicles, and 2) simulate air pollutant concentrations. The bottom-up vehicular emissions inventory used was obtained with the REMI model (Ibarra et al., 2016) which allows to interpolate traffic over road network of Open Street Map to estimate vehicular emissions 24-h, each day of the week. REMI considers several parameters, among them the average age of fleet which was associated with gross domestic product (GDP) per capita. The estimated pollutants are CO, NOx, HC, PM2.5, NO, NO2, CO2, N2O, COV, NH3 and Fuel Consumption. The emissions inventory was performed at the biggest cities, including every capital of Latin America's countries. Initial results shows that the cities with most CO emissions are Buenos Aires 162800 (t/year), São Paulo 152061 (t/year), Campinas 151567 (t/year) and Brasilia 144332 (t/year). The results per capita shows that the city with most CO emissions per capita is Campinas, with 130 (kgCO/hab/year), showed in figure 1. This study also cover high resolution air quality simulations with WRF-Chem main cities in Latin America. Results will be assessed comparing: fuel estimates with local fuel sales, traffic count interpolation with available traffic data set at each city, and comparison between air pollutant simulations with air monitoring observation data. Ibarra, S., R. Ynoue, and S. Mhartain. 2016: "High Resolution Vehicular Emissions Inventory for the Megacity of São Paulo." Manuscript submitted to

  20. Economic development and multiple air pollutant emissions from the industrial sector.

    PubMed

    Fujii, Hidemichi; Managi, Shunsuke

    2016-02-01

    This study analyzed the relationship between economic growth and emissions of eight environmental air pollutants (carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), nitrogen oxide (NOx), sulfur oxide (SOx), carbon monoxide (CO), non-methane volatile organic compound (NMVOC), and ammonia (NH3)) in 39 countries from 1995 to 2009. We tested an environmental Kuznets curve (EKC) hypothesis for 16 individual industry sectors and for the total industrial sector. The results clarified that at least ten individual industries do not have an EKC relationship in eight air pollutants even though this relationship was observed in the country and total industrial sector level data. We found that the key industries that dictated the EKC relationship in the country and the total industrial sector existed in CO2, N2O, CO, and NMVOC emissions. Finally, the EKC turning point and the relationship between economic development and trends of air pollutant emissions differ among industries according to the pollution substances. These results suggest inducing new environmental policy design such as the sectoral crediting mechanism, which focuses on the industrial characteristics of emissions.

  1. Air pollutant emissions from Chinese households: A major and underappreciated ambient pollution source.

    PubMed

    Liu, Jun; Mauzerall, Denise L; Chen, Qi; Zhang, Qiang; Song, Yu; Peng, Wei; Klimont, Zbigniew; Qiu, Xinghua; Zhang, Shiqiu; Hu, Min; Lin, Weili; Smith, Kirk R; Zhu, Tong

    2016-07-12

    As part of the 12th Five-Year Plan, the Chinese government has developed air pollution prevention and control plans for key regions with a focus on the power, transport, and industrial sectors. Here, we investigate the contribution of residential emissions to regional air pollution in highly polluted eastern China during the heating season, and find that dramatic improvements in air quality would also result from reduction in residential emissions. We use the Weather Research and Forecasting model coupled with Chemistry to evaluate potential residential emission controls in Beijing and in the Beijing, Tianjin, and Hebei (BTH) region. In January and February 2010, relative to the base case, eliminating residential emissions in Beijing reduced daily average surface PM2.5 (particulate mater with aerodynamic diameter equal or smaller than 2.5 micrometer) concentrations by 14 ± 7 μg⋅m(-3) (22 ± 6% of a baseline concentration of 67 ± 41 μg⋅m(-3); mean ± SD). Eliminating residential emissions in the BTH region reduced concentrations by 28 ± 19 μg⋅m(-3) (40 ± 9% of 67 ± 41 μg⋅m(-3)), 44 ± 27 μg⋅m(-3) (43 ± 10% of 99 ± 54 μg⋅m(-3)), and 25 ± 14 μg⋅m(-3) (35 ± 8% of 70 ± 35 μg⋅m(-3)) in Beijing, Tianjin, and Hebei provinces, respectively. Annually, elimination of residential sources in the BTH region reduced emissions of primary PM2.5 by 32%, compared with 5%, 6%, and 58% achieved by eliminating emissions from the transportation, power, and industry sectors, respectively. We also find air quality in Beijing would benefit substantially from reductions in residential emissions from regional controls in Tianjin and Hebei, indicating the value of policies at the regional level.

  2. Air pollutant emissions from Chinese households: A major and underappreciated ambient pollution source

    PubMed Central

    Liu, Jun; Mauzerall, Denise L.; Chen, Qi; Zhang, Qiang; Song, Yu; Peng, Wei; Klimont, Zbigniew; Qiu, Xinghua; Zhang, Shiqiu; Hu, Min; Lin, Weili; Smith, Kirk R.; Zhu, Tong

    2016-01-01

    As part of the 12th Five-Year Plan, the Chinese government has developed air pollution prevention and control plans for key regions with a focus on the power, transport, and industrial sectors. Here, we investigate the contribution of residential emissions to regional air pollution in highly polluted eastern China during the heating season, and find that dramatic improvements in air quality would also result from reduction in residential emissions. We use the Weather Research and Forecasting model coupled with Chemistry to evaluate potential residential emission controls in Beijing and in the Beijing, Tianjin, and Hebei (BTH) region. In January and February 2010, relative to the base case, eliminating residential emissions in Beijing reduced daily average surface PM2.5 (particulate mater with aerodynamic diameter equal or smaller than 2.5 micrometer) concentrations by 14 ± 7 μg⋅m−3 (22 ± 6% of a baseline concentration of 67 ± 41 μg⋅m−3; mean ± SD). Eliminating residential emissions in the BTH region reduced concentrations by 28 ± 19 μg⋅m−3 (40 ± 9% of 67 ± 41 μg⋅m−3), 44 ± 27 μg⋅m−3 (43 ± 10% of 99 ± 54 μg⋅m−3), and 25 ± 14 μg⋅m−3 (35 ± 8% of 70 ± 35 μg⋅m−3) in Beijing, Tianjin, and Hebei provinces, respectively. Annually, elimination of residential sources in the BTH region reduced emissions of primary PM2.5 by 32%, compared with 5%, 6%, and 58% achieved by eliminating emissions from the transportation, power, and industry sectors, respectively. We also find air quality in Beijing would benefit substantially from reductions in residential emissions from regional controls in Tianjin and Hebei, indicating the value of policies at the regional level. PMID:27354524

  3. OFFICE EQUIPMENT: DESIGN, INDOOR AIR EMISSIONS, AND POLLUTION PREVENTION OPPORTUNITIES

    EPA Science Inventory

    The report summarizes available information on office equipment design; indoor air emissions of organics, ozone, and particulates from office equipment; and pollution prevention approaches for reducing these emissions. Since much of the existing emissions data from office equipme...

  4. Regional emissions of air pollutants in China.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Streets, D. G.

    1998-10-05

    As part of the China-MAP program, sponsored by the US National Aeronautics and Space Administration, regional inventories of air pollutants emitted in China are being characterized, in order that the atmospheric chemistry over China can be more fully understood and the resulting ambient concentrations in Chinese cities and the deposition levels to Chinese ecosystems be determined with better confidence. In addition, the contributions of greenhouse gases from China and of acidic aerosols that counteract global warming are being quantified. This paper presents preliminary estimates of the emissions of some of the major air pollutants in China: sulfur dioxide (SO{sub 2}),more » nitrogen oxides (NO{sub x}), carbon monoxide (CO), and black carbon (C). Emissions are estimated for each of the 27 regions of China included in the RAINS-Asia simulation model and are subsequently distributed to a 1{degree} x 1{degree} grid using appropriate disaggregation factors. Emissions from all sectors of the Chinese economy are considered, including the combustion of biofuels in rural homes. Emissions from larger power plants are calculated individually and allocated to the grid accordingly. Data for the period 1990-1995 are being developed, as well as projections for the future under alternative assumptions about economic growth and environmental control.« less

  5. Impact of Trans-Boundary Emissions on Modelled Air Pollution in Canada

    NASA Astrophysics Data System (ADS)

    Pavlovic, Radenko; Moran, Mike; Zhang, Junhua; Zheng, Qiong; Menard, Sylvain; Anselmo, David; Davignon, Didier

    2014-05-01

    The operational air quality model GEM-MACH is run twice daily at the Canadian Meteorological Centre in Montreal, Quebec to produce 48-hour forecasts of hourly O3, NO2, and PM2.5 fields over a North American domain. The hourly gridded anthropogenic emissions fields needed by GEM-MACH are currently based on the 2006 Canadian emissions inventory, a 2012 projected U.S. inventory, and the 1999 Mexican inventory. The Sparse Matrix Operator Kernel Emissions (SMOKE) processing package was used to process these three national emissions inventories to create the GEM-MACH emissions fields. While Canada is the second-largest country in the world by total area, its population and its emissions of criteria contaminants are both only about one-tenth of U.S. values and roughly 80% of the Canadian population lives within 150 km of the international border with the U.S. As a consequence, transboundary transport of air pollution has a major impact on air quality in Canada. To quantify the impact of non-Canadian emissions on forecasted pollutant levels in Canada, the following two tests were performed: (a) all U.S. and Mexican anthropogenic emissions were switched off; and (b) anthropogenic emissions from the southernmost tier of U.S. states and Mexico were switched off. These sensitivity tests were performed for the summer and winter periods of 2012 or 2011. The results obtained show that the impact of non-Canadian sources on forecasted pollution is generally larger in summer than in winter, especially in south-eastern parts of Canada. For the three pollutants considered in the Canadian national Air Quality Health Index, PM2.5 is impacted the most (up to 80%) and NO2 the least (<10%). Emissions from the southern U.S. and Mexico do impact Canadian air quality, but the sign may change depending on the season (i.e., increase vs. decrease), reflecting chemical processing en route.

  6. Spatial analysis on China's regional air pollutants and CO2 emissions: emission pattern and regional disparity

    NASA Astrophysics Data System (ADS)

    Dong, Liang; Liang, Hanwei

    2014-08-01

    China has suffered from serious air pollution and CO2 emission. Challenges of emission reduction policy not only come from technology advancement, but also generate from the fact that, China has pronounced disparity between regions, in geographical and socioeconomic. How to deal with regional disparity is important to achieve the reduction target effectively and efficiently. This research conducts a spatial analysis on the emission patterns of three air pollutants named SO2, NOx and PM2.5, and CO2, in China's 30 provinces, applied with spatial auto-correlation and multi regression modeling. We further analyze the regional disparity and inequity issues with the approach of Lorenz curve and Gini coefficient. Results highlight that: there is evident cluster effect for the regional air pollutants and CO2 emissions. While emission amount increases from western regions to eastern regions, the emission per GDP is in inverse trend. The Lorenz curve shows an even larger unequal distribution of GDP/emissions than GDP/capita in 30 regions. Certain middle and western regions suffers from a higher emission with lower GDP, which reveal the critical issue of emission leakage. Future policy making to address such regional disparity is critical so as to promote the emission control policy under the “equity and efficiency” principle.

  7. Assessing Potential Air Pollutant Emissions from Agricultural Feedstock Production using MOVES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eberle, Annika; Warner, Ethan; Zhang, Yi Min

    Biomass feedstock production is expected to grow as demand for biofuels and bioenergy increases. The change in air pollutant emissions that may result from large-scale biomass supply has implications for local air quality and human health. We developed spatially explicit emissions inventories for corn grain and six cellulosic feedstocks through the extension of the National Renewable Energy Laboratory's Feedstock Production Emissions to Air Model (FPEAM). These inventories include emissions of seven pollutants (nitrogen oxides, ammonia, volatile organic compounds, particulate matter, sulfur oxides, and carbon monoxide) generated from biomass establishment, maintenance, harvest, transportation, and biofuel preprocessing activities. By integrating the EPA'smore » MOtor Vehicle Emissions Simulator (MOVES) into FPEAM, we created a scalable framework to execute county-level runs of the MOVES-Onroad model for representative counties (i.e., those counties with the largest amount of cellulosic feedstock production in each state) on a national scale. We used these results to estimate emissions from the on-road transportation of biomass and combined them with county-level runs of the MOVES-Nonroad model to estimate emissions from agricultural equipment. We also incorporated documented emission factors to estimate emissions from chemical application and the operation of drying equipment for feedstock processing, and used methods developed by the EPA and the California Air Resources Board to estimate fugitive dust emissions. The model developed here could be applied to custom equipment budgets and is extensible to accommodate additional feedstocks and pollutants. Future work will also extend this model to analyze spatial boundaries beyond the county-scale (e.g., regional or sub-county levels).« less

  8. 76 FR 15607 - National Emission Standards for Hazardous Air Pollutants for Major Sources: Industrial...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-21

    ...On September 13, 2004, under authority of section 112 of the Clean Air Act, EPA promulgated national emission standards for hazardous air pollutants for new and existing industrial/commercial/ institutional boilers and process heaters. On June 19, 2007, the United States Court of Appeals for the District of Columbia Circuit vacated and remanded the standards. In response to the Court's vacatur and remand, EPA is, in this action, establishing emission standards that will require industrial/ commercial/institutional boilers and process heaters located at major sources to meet hazardous air pollutants standards reflecting the application of the maximum achievable control technology. This rule protects air quality and promotes public health by reducing emissions of the hazardous air pollutants listed in section 112(b)(1) of the Clean Air Act.

  9. Assessment of China's virtual air pollution transport embodied in trade by using a consumption-based emission inventory

    NASA Astrophysics Data System (ADS)

    Zhao, H. Y.; Zhang, Q.; Guan, D. B.; Davis, S. J.; Liu, Z.; Huo, H.; Lin, J. T.; Liu, W. D.; He, K. B.

    2015-05-01

    Substantial anthropogenic emissions from China have resulted in serious air pollution, and this has generated considerable academic and public concern. The physical transport of air pollutants in the atmosphere has been extensively investigated; however, understanding the mechanisms how the pollutant was transferred through economic and trade activities remains a challenge. For the first time, we quantified and tracked China's air pollutant emission flows embodied in interprovincial trade, using a multiregional input-output model framework. Trade relative emissions for four key air pollutants (primary fine particle matter, sulfur dioxide, nitrogen oxides and non-methane volatile organic compounds) were assessed for 2007 in each Chinese province. We found that emissions were significantly redistributed among provinces owing to interprovincial trade. Large amounts of emissions were embodied in the imports of eastern regions from northern and central regions, and these were determined by differences in regional economic status and environmental policy. It is suggested that measures should be introduced to reduce air pollution by integrating cross-regional consumers and producers within national agreements to encourage efficiency improvement in the supply chain and optimize consumption structure internationally. The consumption-based air pollutant emission inventory developed in this work can be further used to attribute pollution to various economic activities and final demand types with the aid of air quality models.

  10. Comparison of emissions inventories of anthropogenic air pollutants and greenhouse gases in China

    NASA Astrophysics Data System (ADS)

    Saikawa, Eri; Kim, Hankyul; Zhong, Min; Avramov, Alexander; Zhao, Yu; Janssens-Maenhout, Greet; Kurokawa, Jun-ichi; Klimont, Zbigniew; Wagner, Fabian; Naik, Vaishali; Horowitz, Larry W.; Zhang, Qiang

    2017-05-01

    Anthropogenic air pollutant emissions have been increasing rapidly in China, leading to worsening air quality. Modelers use emissions inventories to represent the temporal and spatial distribution of these emissions needed to estimate their impacts on regional and global air quality. However, large uncertainties exist in emissions estimates. Thus, assessing differences in these inventories is essential for the better understanding of air pollution over China. We compare five different emissions inventories estimating emissions of carbon dioxide (CO2), carbon monoxide (CO), nitrogen oxides (NOx), sulfur dioxide (SO2), and particulate matter with an aerodynamic diameter of 10 µm or less (PM10) from China. The emissions inventories analyzed in this paper include the Regional Emission inventory in ASia v2.1 (REAS), the Multi-resolution Emission Inventory for China (MEIC), the Emission Database for Global Atmospheric Research v4.2 (EDGAR), the inventory by Yu Zhao (ZHAO), and the Greenhouse Gas and Air Pollution Interactions and Synergies (GAINS). We focus on the period between 2000 and 2008, during which Chinese economic activities more than doubled. In addition to national totals, we also analyzed emissions from four source sectors (industry, transport, power, and residential) and within seven regions in China (East, North, Northeast, Central, Southwest, Northwest, and South) and found that large disagreements exist among the five inventories at disaggregated levels. These disagreements lead to differences of 67 µg m-3, 15 ppbv, and 470 ppbv for monthly mean PM10, O3, and CO, respectively, in modeled regional concentrations in China. We also find that all the inventory emissions estimates create a volatile organic compound (VOC)-limited environment and MEIC emissions lead to much lower O3 mixing ratio in East and Central China compared to the simulations using REAS and EDGAR estimates, due to their low VOC emissions. Our results illustrate that a better

  11. [Air pollutant emissions of aircraft in China in recent 30 years].

    PubMed

    He, Ji-Cheng

    2012-01-01

    Although aircrafts are of great importance in transportation in China, there has been rare study on air pollutant emissions of aircrafts until now. Based on the annually statistical data collected by the Statistic Center of Civil Aviation of China, using the emission factor method derived from fuel consumption, the air pollutant emissions of aircrafts during 1980-2009 were calculated, and their emission intensities and dynamic characteristics were analyzed. The results show that the emissions of SO2, CO, NO(x) and HC from aircrafts of China Civil Aviation increased from 0.31 thousand, 1.89 thousand, 2.25 thousand and 3.14 thousand tons in 1980 to 11.83 thousand, 72.98 thousand, 87.05 thousand and 121.59 thousand tons in 2009, indicating a increase of 0.397 thousand, 2.45 thousand, 2.92 thousand and 4.08 thousand tons per year, respectively. The emission intensities of SO2, CO, NO(x) and HC decreased significantly from 0.624, 3.806, 4.53 and 6.322 g x (t x km)(-1) in 1980 to 0.275, 1.697, 2.025 and 2.828 g x (t x km)(-1) in 2009, respectively. SO2, CO, NO(x) emissions of aircrafts of China Civil Aviation accounted very little of each total emissions in China, and the air pollutant emissions from aircrafts of China Civil Aviation was less than those from other industries in China.

  12. 75 FR 80761 - National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-23

    ... National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion Engines... March 3, 2010, final national emission standards for hazardous air pollutants for reciprocating internal... engines to allow emergency engines to operate for up to 15 hours per year as part of an emergency demand...

  13. Assessment of China's virtual air pollution transport embodied in trade by a consumption-based emission inventory

    NASA Astrophysics Data System (ADS)

    Zhao, H. Y.; Zhang, Q.; Davis, S. J.; Guan, D.; Liu, Z.; Huo, H.; Lin, J. T.; Liu, W. D.; He, K. B.

    2014-10-01

    High anthropogenic emissions from China have resulted in serious air pollution, and it has attracted considerable academic and public concern. The physical transport of air pollutants in the atmosphere has been extensively investigated, however, understanding the mechanisms how the pollutants were transferred through economic and trade activities remains challenge. In this work, we assessed China's virtual air pollutant transport embodied in trade, by using consumption-based accounting approach. We first constructed a consumption-based emission inventory for China's four key air pollutants (primary PM2.5, sulfur dioxide (SO2), nitrogen oxides (NOx) and non-methane volatile organic compounds (NMVOC)) in 2007, based on the bottom-up sectoral emission inventory concerning their production activities - a production-based inventory. We used a multiregional input-output (MRIO) model to integrate the sectoral production-based emissions and the associated economic and trade activities, and finally obtained consumption-based inventory. Unlike the production-based inventory, the consumption-based inventory tracked emissions throughout the supply chain related to the consumption of goods and services and hereby identified the emission flows followed the supply chains. From consumption-based perspective, emissions were significantly redistributed among provinces due to interprovincial trade. Large amount of emissions were embodied in the net imports of east regions from northern and central regions; these were determined by differences in the regional economic status and environmental policies. We also calculated the emissions embodied in exported and imported goods and services. It is found that 15-23% of China's pollutant emissions were related to exports for foreign consumption; that proportion was much higher for central and export-oriented coastal regions. It is suggested that measures should be introduced to reduce air pollution by integrating cross-regional consumers

  14. Examining air pollution in China using production- and consumption-based emissions accounting approaches.

    PubMed

    Huo, Hong; Zhang, Qiang; Guan, Dabo; Su, Xin; Zhao, Hongyan; He, Kebin

    2014-12-16

    Two important reasons for China's air pollution are the high emission factors (emission per unit of product) of pollution sources and the high emission intensity (emissions per unit of GDP) of the industrial structure. Therefore, a wide variety of policy measures, including both emission abatement technologies and economic adjustment, must be implemented. To support such measures, this study used the production- and consumption-based emissions accounting approaches to simulate the SO2, NOx, PM2.5, and VOC emissions flows among producers and consumers. This study analyzed the emissions and GDP performance of 36 production sectors. The results showed that the equipment, machinery, and devices manufacturing and construction sectors contributed more than 50% of air pollutant emissions, and most of their products were used for capital formation and export. The service sector had the lowest emission intensities, and its output was mainly consumed by households and the government. In China, the emission intensities of production activities triggered by capital formation and export were approximately twice that of the service sector triggered by final consumption expenditure. This study suggests that China should control air pollution using the following strategies: applying end-of-pipe abatement technologies and using cleaner fuels to further decrease the emission factors associated with rural cooking, electricity generation, and the transportation sector; continuing to limit highly emission-intensive but low value-added exports; developing a plan to reduce construction activities; and increasing the proportion of service GDP in the national economy.

  15. Air pollutant emissions from straw open burning: A case study in Tianjin

    NASA Astrophysics Data System (ADS)

    Guan, Yanan; Chen, Guanyi; Cheng, Zhanjun; Yan, Beibei; Hou, Li'an

    2017-12-01

    Straw open burning is a primary source of air pollution and difficult to forbid in China. To have a better understanding of the pollution status of straw open burning in Tianjin, an accurate pollutant emission inventory was established based on the county-level statistical data from 1996 to 2014 in Tianjin. Results showed that the emission of CO, VOCs, PM10, PM2.5, CH4, NOx, OC, SO2, NH3 and BC have decreased by 41.66%, 58.74%, 54.55%, 55.01%, 58.42%, 47.03%, 48.71%, 44.85%, 64.60%, 51.56% from 1996 to 2000, and then gradually increased by 44.05%, 53.48%, 59.43%, 59.49%, 51.24%, 55.05%, 53.09%, 22.73%, 56.25%, and 64.29% from 2000 to 2014, respectively. Spatially, counties of Wuqing, Baodi and Jixian were the largest contributors to the total emissions with the contribution of 25.98%, 22.69% and 18.87% respectively through the study period. The Monte Carlo simulation was also used to estimate the uncertainty and its confidence intervals of the pollutant emissions. The uncertainty of total pollutant emissions for each year is within ±80.35%. This study provides more accurate estimation for the pollutant emissions from straw open burning and reliable guidance for the policy formulation to improve the air quality in Tianjin.

  16. 77 FR 65135 - National Emission Standards for Hazardous Air Pollutants for Chemical Manufacturing Area Sources

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-25

    .... On February 12, 2010, the American Chemistry Council and the Society of Chemical Manufacturers and... National Emission Standards for Hazardous Air Pollutants for Chemical Manufacturing Area Sources AGENCY... Emission Standards for Hazardous Air Pollutants for Chemical Manufacturing Area Sources (CMAS) that was...

  17. Secondary Aluminum Production: National Emission Standards for Hazardous Air Pollutants

    EPA Pesticide Factsheets

    National emission standards for hazardous air pollutants (NESHAP) for new and existing sources at secondary aluminum production facilities. Includes rule history, summary, federal register citations and implementation information.

  18. 77 FR 41146 - Delegation of National Emission Standards for Hazardous Air Pollutants for Source Categories...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-12

    ... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 63 [EPA-R09-OAR-2012-0286; FRL-9698-6] Delegation of National Emission Standards for Hazardous Air Pollutants for Source Categories; Gila River Indian Community... emission standards for hazardous air pollutants (NESHAP) to the Gila River Indian Community Department of...

  19. 76 FR 81327 - National Emission Standards for Hazardous Air Pollutants From the Pulp and Paper Industry

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-27

    ... for each emission unit type (e.g., gas- or oil-fired paper machine dryers) based on the most common... 63 National Emission Standards for Hazardous Air Pollutants From the Pulp and Paper Industry...-AQ41 National Emission Standards for Hazardous Air Pollutants From the Pulp and Paper Industry AGENCY...

  20. Air pollution engineering

    NASA Astrophysics Data System (ADS)

    Maduna, Karolina; Tomašić, Vesna

    2017-11-01

    Air pollution is an environmental and a social problem which leads to a multitude of adverse effects on human health and standard of human life, state of the ecosystems and global change of climate. Air pollutants are emitted from natural, but mostly from anthropogenic sources and may be transported over long distances. Some air pollutants are extremely stable in the atmosphere and may accumulate in the environment and in the food chain, affecting human beings, animals and natural biodiversity. Obviously, air pollution is a complex problem that poses multiple challenges in terms of management and abatements of the pollutants emission. Effective approach to the problems of air pollution requires a good understanding of the sources that cause it, knowledge of air quality status and future trends as well as its impact on humans and ecosystems. This chapter deals with the complexities of the air pollution and presents an overview of different technical processes and equipment for air pollution control, as well as basic principles of their work. The problems of air protection as well as protection of other ecosystems can be solved only by the coordinated endeavors of various scientific and engineering disciplines, such as chemistry, physics, biology, medicine, chemical engineering and social sciences. The most important engineering contribution is mostly focused on development, design and operation of equipment for the abatement of harmful emissions into environment.

  1. Analyzing Air Pollutant Emissions from the Biofuel Supply Chain | Energy

    Science.gov Websites

    biomass-to-biofuels life cycle - fast-growing trees, agricultural waste, storage silos, and a biorefinery published in Chapter 9-"Implications of Air Pollutant Emissions from Producing Agricultural and

  2. Miscellaneous Coating Manufacturing: National Emission Standards for Hazardous Air Pollutants (NESHAP)

    EPA Pesticide Factsheets

    The national emission standards for hazardous air pollutants for miscellaneous coating manufacturing. Includes summary, rule history, compliance and implementation information, federal registry citations.

  3. 77 FR 37361 - National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-21

    ... National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion Engines; New Source Performance Standards for Stationary Internal Combustion Engines AGENCY: Environmental Protection... Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion Engines; New Source Performance...

  4. PRELIMINARY ANALYSIS OF HAZARDOUS AIR POLLUTANT EMISSION INVENTORIES FROM THREE MAJOR URBAN AREAS

    EPA Science Inventory

    The paper reports EPA/AEERL's progress on emissions inventory evaluation and improvement under a hazardous air pollutant (HAP) emissions research program in support of the Urban Area Source Program required under Title III of the Clean Air Act Amendments of 1990 (CAAA). he paper ...

  5. Organic Liquids Distribution: National Emission Standards for Hazardous Air Pollutants (NESHAP)

    EPA Pesticide Factsheets

    National emission standards for hazardous air pollutants (NESHAP) for organic liquidsdistribution (OLD) (non-gasoline) operations. Includes rule history, Federal Registry citations, implementation and compliance information.

  6. 75 FR 31317 - National Emission Standards for Hazardous Air Pollutants: Area Source Standards for Paints and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-03

    ... National Emission Standards for Hazardous Air Pollutants: Area Source Standards for Paints and Allied... when they should not be covered. This action clarifies text of the National Emission Standards for Hazardous Air Pollutants: Paints and Allied Products Manufacturing Area Source Standards which was published...

  7. Air Pollution Emissions Overview | Air Quality Planning & ...

    EPA Pesticide Factsheets

    2016-06-08

    Air pollution comes from many different sources: stationary sources such as factories, power plants, and smelters and smaller sources such as dry cleaners and degreasing operations; mobile sources such as cars, buses, planes, trucks, and trains; and naturally occurring sources such as windblown dust, and volcanic eruptions, all contribute to air pollution.

  8. Air pollution radiative forcing from specific emissions sectors at 2030

    NASA Astrophysics Data System (ADS)

    Unger, Nadine; Shindell, Drew T.; Koch, Dorothy M.; Streets, David G.

    2008-01-01

    Reduction of short-lived air pollutants can contribute to mitigate global warming in the near-term with ancillary benefits to human health. However, the radiative forcings of short-lived air pollutants depend on the location and source type of the precursor emissions. We apply the Goddard Institute for Space Studies atmospheric composition-climate model to quantify near-future (2030 A1B) global annual mean radiative forcing by ozone (O3) and sulfate from six emissions sectors in seven geographic regions. At 2030 the net forcings from O3, sulfate, black and organic carbon, and indirect CH4 effects for each emission sector are (in mWm-2) biomass burning, +95; domestic, +68; transportation, +67; industry, -131; and power, -224. Biomass burning emissions in East Asia and central and southern Africa, domestic biofuel emissions in East Asia, south Asia, and central and southern Africa, and transportation emissions in Europe and North America have large net positive forcings and are therefore attractive targets to counter global warming. Power and industry emissions from East Asia, south Asia, and north Africa and the Middle East have large net negative forcings. Therefore air quality control measures that affect these regional sectors require offsetting climate measures to avoid a warming impact. Linear relationships exist between O3 forcing and biomass burning and domestic biofuel CO precursor emissions independent of region with sensitivity of +0.2 mWm-2/TgCO. Similarly, linear relationships exist between sulfate forcing and SO2 precursor emissions that depend upon region but are independent of sector with sensitivities ranging from -3 to -12 mWm-2/TgS.

  9. Pharmaceuticals Production Industry: National Emission Standards for Hazardous Air Pollutants (NESHAP)

    EPA Pesticide Factsheets

    National emission standards for hazardous air pollutants (NESHAP) from facilities that manufacture pharmaceutical products. Includes rule history, Federal Register citations, implementation and compliance information, and additional resources.

  10. MODELS TO ESTIMATE VOLATILE ORGANIC HAZARDOUS AIR POLLUTANT EMISSIONS FROM MUNICIPAL SEWER SYSTEMS

    EPA Science Inventory

    Emissions from municipal sewers are usually omitted from hazardous air pollutant (HAP) emission inventories. This omission may result from a lack of appreciation for the potential emission impact and/or from inadequate emission estimation procedures. This paper presents an analys...

  11. Trends of multiple air pollutants emissions from residential coal combustion in Beijing and its implication on improving air quality for control measures

    NASA Astrophysics Data System (ADS)

    Xue, Yifeng; Zhou, Zhen; Nie, Teng; Wang, Kun; Nie, Lei; Pan, Tao; Wu, Xiaoqing; Tian, Hezhong; Zhong, Lianhong; Li, Jing; Liu, Huanjia; Liu, Shuhan; Shao, Panyang

    2016-10-01

    Residential coal combustion is considered to be an important source of air pollution in Beijing. However, knowledge regarding the emission characteristics of residential coal combustion and the related impacts on the air quality is very limited. In this study, we have developed an emission inventory for multiple hazardous air pollutants (HAPs) associated with residential coal combustion in Beijing for the period of 2000-2012. Furthermore, a widely used regional air quality model, the Community Multi-Scale Air Quality model (CMAQ), is applied to analyze the impact of residential coal combustion on the air quality in Beijing in 2012. The results show that the emissions of primary air pollutants from residential coal combustion have basically remained the same levels during the past decade, however, along with the strict emission control imposed on major industrial sources, the contribution of residential coal combustion emissions to the overall emissions from anthropogenic sources have increased obviously. In particular, the contributions of residential coal combustion to the total air pollutants concentrations of PM10, SO2, NOX, and CO represent approximately 11.6%, 27.5%, 2.8% and 7.3%, respectively, during the winter heating season. In terms of impact on the spatial variation patterns, the distributions of the pollutants concentrations are similar to the distribution of the associated primary HAPs emissions, which are highly concentrated in the rural-urban fringe zones and rural suburb areas. In addition, emissions of primary pollutants from residential coal combustion are forecasted by using a scenario analysis. Generally, comprehensive measures must be taken to control residential coal combustion in Beijing. The best way to reduce the associated emissions from residential coal combustion is to use economic incentive means to promote the conversion to clean energy sources for residential heating and cooking. In areas with reliable energy supplies, the coal used

  12. National Emission Standards for Hazardous Air Pollutants in Region 7

    EPA Pesticide Factsheets

    National Emission Standards for Hazardous Air Pollutants (NESHAPs) are applicable requirements under the Title V operating permit program. This is a resource for permit writers and reviewers to learn about the rules and explore other helpful tools.

  13. Potential Air Pollutant Emissions and Permitting Classifications for Two Biorefinery Process Designs in the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eberle, Annika; Bhatt, Arpit; Zhang, Yimin

    Advanced biofuel production facilities (biorefineries), such as those envisioned by the United States (U.S.) Renewable Fuel Standard and U.S. Department of Energy's research and development programs, often lack historical air pollutant emissions data, which can pose challenges for obtaining air emission permits that are required for construction and operation. To help fill this knowledge gap, we perform a thorough regulatory analysis and use engineering process designs to assess the applicability of federal air regulations and quantify air pollutant emissions for two feasibility-level biorefinery designs. We find that without additional emission-control technologies both biorefineries would likely be required to obtain majormore » source permits under the Clean Air Act's New Source Review program. The permitting classification (so-called 'major' or 'minor') has implications for the time and effort required for permitting and therefore affects the cost of capital and the fuel selling price. Consequently, we explore additional technically feasible emission-control technologies and process modifications that have the potential to reduce emissions to achieve a minor source permitting classification. Finally, our analysis of air pollutant emissions and controls can assist biorefinery developers with the air permitting process and inform regulatory agencies about potential permitting pathways for novel biorefinery designs.« less

  14. Potential Air Pollutant Emissions and Permitting Classifications for Two Biorefinery Process Designs in the United States

    DOE PAGES

    Eberle, Annika; Bhatt, Arpit; Zhang, Yimin; ...

    2017-04-26

    Advanced biofuel production facilities (biorefineries), such as those envisioned by the United States (U.S.) Renewable Fuel Standard and U.S. Department of Energy's research and development programs, often lack historical air pollutant emissions data, which can pose challenges for obtaining air emission permits that are required for construction and operation. To help fill this knowledge gap, we perform a thorough regulatory analysis and use engineering process designs to assess the applicability of federal air regulations and quantify air pollutant emissions for two feasibility-level biorefinery designs. We find that without additional emission-control technologies both biorefineries would likely be required to obtain majormore » source permits under the Clean Air Act's New Source Review program. The permitting classification (so-called 'major' or 'minor') has implications for the time and effort required for permitting and therefore affects the cost of capital and the fuel selling price. Consequently, we explore additional technically feasible emission-control technologies and process modifications that have the potential to reduce emissions to achieve a minor source permitting classification. Finally, our analysis of air pollutant emissions and controls can assist biorefinery developers with the air permitting process and inform regulatory agencies about potential permitting pathways for novel biorefinery designs.« less

  15. Potential Air Pollutant Emissions and Permitting Classifications for Two Biorefinery Process Designs in the United States.

    PubMed

    Eberle, Annika; Bhatt, Arpit; Zhang, Yimin; Heath, Garvin

    2017-06-06

    Advanced biofuel production facilities (biorefineries), such as those envisioned by the United States (U.S.) Renewable Fuel Standard and U.S. Department of Energy's research and development programs, often lack historical air pollutant emissions data, which can pose challenges for obtaining air emission permits that are required for construction and operation. To help fill this knowledge gap, we perform a thorough regulatory analysis and use engineering process designs to assess the applicability of federal air regulations and quantify air pollutant emissions for two feasibility-level biorefinery designs. We find that without additional emission-control technologies both biorefineries would likely be required to obtain major source permits under the Clean Air Act's New Source Review program. The permitting classification (so-called "major" or "minor") has implications for the time and effort required for permitting and therefore affects the cost of capital and the fuel selling price. Consequently, we explore additional technically feasible emission-control technologies and process modifications that have the potential to reduce emissions to achieve a minor source permitting classification. Our analysis of air pollutant emissions and controls can assist biorefinery developers with the air permitting process and inform regulatory agencies about potential permitting pathways for novel biorefinery designs.

  16. Nature of air pollution, emission sources, and management in the Indian cities

    NASA Astrophysics Data System (ADS)

    Guttikunda, Sarath K.; Goel, Rahul; Pant, Pallavi

    2014-10-01

    The global burden of disease study estimated 695,000 premature deaths in 2010 due to continued exposure to outdoor particulate matter and ozone pollution for India. By 2030, the expected growth in many of the sectors (industries, residential, transportation, power generation, and construction) will result in an increase in pollution related health impacts for most cities. The available information on urban air pollution, their sources, and the potential of various interventions to control pollution, should help us propose a cleaner path to 2030. In this paper, we present an overview of the emission sources and control options for better air quality in Indian cities, with a particular focus on interventions like urban public transportation facilities; travel demand management; emission regulations for power plants; clean technology for brick kilns; management of road dust; and waste management to control open waste burning. Also included is a broader discussion on key institutional measures, like public awareness and scientific studies, necessary for building an effective air quality management plan in Indian cities.

  17. Reinforced Plastic Composites Production: National Emission Standards for Hazardous Air Pollutants

    EPA Pesticide Factsheets

    National emissions standards for hazardous air pollutants for reinforced plastic composites production facilities. Regulates production and ancillary processes used to manufacture products with thermoset resins and gel coats.

  18. Transport and Environment Database System (TRENDS): Maritime air pollutant emission modelling

    NASA Astrophysics Data System (ADS)

    Georgakaki, Aliki; Coffey, Robert A.; Lock, Graham; Sorenson, Spencer C.

    This paper reports the development of the maritime module within the framework of the Transport and Environment Database System (TRENDS) project. A detailed database has been constructed for the calculation of energy consumption and air pollutant emissions. Based on an in-house database of commercial vessels kept at the Technical University of Denmark, relationships between the fuel consumption and size of different vessels have been developed, taking into account the fleet's age and service speed. The technical assumptions and factors incorporated in the database are presented, including changes from findings reported in Methodologies for Estimating air pollutant Emissions from Transport (MEET). The database operates on statistical data provided by Eurostat, which describe vessel and freight movements from and towards EU 15 major ports. Data are at port to Maritime Coastal Area (MCA) level, so a bottom-up approach is used. A port to MCA distance database has also been constructed for the purpose of the study. This was the first attempt to use Eurostat maritime statistics for emission modelling; and the problems encountered, since the statistical data collection was not undertaken with a view to this purpose, are mentioned. Examples of the results obtained by the database are presented. These include detailed air pollutant emission calculations for bulk carriers entering the port of Helsinki, as an example of the database operation, and aggregate results for different types of movements for France. Overall estimates of SO x and NO x emission caused by shipping traffic between the EU 15 countries are in the area of 1 and 1.5 million tonnes, respectively.

  19. 55 FR 14037 Correction to the National Emission Standards for Hazardous Air Pollutants

    EPA Pesticide Factsheets

    Correction to the National Emission Standards for Hazardous Air Pollutants; Benzene Emissions From Maleic Anhydride Plants, Ethylbenzene/Styrene Plants, Benzene Storage Vessels, Benzene Equipment Leaks, and Coke Byproduct Recovery Plants.

  20. How do emission patterns in megacities affect regional air pollution?

    NASA Astrophysics Data System (ADS)

    Heil, A.; Richter, C.; Schroeder, S.; Schultz, M. G.

    2010-12-01

    Megacities around the world show distinctly different emission patterns in terms of absolute amounts and emission ratios of individual chemical compounds due to varying socio-economic developments and technological standards. The emission patterns influence the chemical reactivity of the urban pollution plume, and hence determine air quality in and around megacity areas. In this study, which is part of the European project CITYZEN (megaCITY - Zoom for the ENvironment), the effects of emission changes in four selected megacity areas on air pollution were investigated: BeNeLux (BNL), Istanbul (IST), Pearl River Delta (PRD) and Sao Paulo (SAP). The study aims at answering the question: how would air pollution in megacity X change if it had the same urban emissions per capita as megacity Y? Model simulations with the global chemistry climate model ECHAM5-MOZ were carried out for the year 2001 using a resolution of about 2 degrees in the horizontal and of 31 levels (surface to 10 hPa) in the vertical. The model was driven by meteorological input data from the ECMWF ERA Interim reanalysis. Emissions were taken from the gridded global ACCMIP emission inventory recently established for use in chemistry-climate simulations in connection to the IPCC-AR5 assessments (Lamarque et al. 2010). We carried out sensitivity simulations where emission patterns from each of the megacity areas were replaced by those from all others. This was done on the basis of the per capita emissions for each species and sector averaged over the respective region. Total per capita CO and NMVOC emissions are highest in PRD and lowest in SAP while total per capita NOx emissions are highest in BNL and lowest in SAP. There are strong differences in the relative contribution of the urban sectors to total emissions of individual compounds. As a result, each of the four megacity areas exhibits a very characteristic NMVOC speciation profile which determines the NMVOC-related photochemical ozone (O_3

  1. Cellulose Products Manufacturing: National Emission Standards for Hazardous Air Pollutants (NESHAP)

    EPA Pesticide Factsheets

    Read the National Emission Standards for Hazardous Air Pollutants (NESHAP) for Cellulose Products Manufacturing, see the rule history for this Maximum Achievable Control Technology (MACT), and find Compliance help for this source.

  2. Estimating criteria pollutant emissions using the California Regional Multisector Air Quality Emissions (CA-REMARQUE) model v1.0

    NASA Astrophysics Data System (ADS)

    Zapata, Christina B.; Yang, Chris; Yeh, Sonia; Ogden, Joan; Kleeman, Michael J.

    2018-04-01

    The California Regional Multisector Air Quality Emissions (CA-REMARQUE) model is developed to predict changes to criteria pollutant emissions inventories in California in response to sophisticated emissions control programs implemented to achieve deep greenhouse gas (GHG) emissions reductions. Two scenarios for the year 2050 act as the starting point for calculations: a business-as-usual (BAU) scenario and an 80 % GHG reduction (GHG-Step) scenario. Each of these scenarios was developed with an energy economic model to optimize costs across the entire California economy and so they include changes in activity, fuels, and technology across economic sectors. Separate algorithms are developed to estimate emissions of criteria pollutants (or their precursors) that are consistent with the future GHG scenarios for the following economic sectors: (i) on-road, (ii) rail and off-road, (iii) marine and aviation, (iv) residential and commercial, (v) electricity generation, and (vi) biorefineries. Properly accounting for new technologies involving electrification, biofuels, and hydrogen plays a central role in these calculations. Critically, criteria pollutant emissions do not decrease uniformly across all sectors of the economy. Emissions of certain criteria pollutants (or their precursors) increase in some sectors as part of the overall optimization within each of the scenarios. This produces nonuniform changes to criteria pollutant emissions in close proximity to heavily populated regions when viewed at 4 km spatial resolution with implications for exposure to air pollution for those populations. As a further complication, changing fuels and technology also modify the composition of reactive organic gas emissions and the size and composition of particulate matter emissions. This is most notably apparent through a comparison of emissions reductions for different size fractions of primary particulate matter. Primary PM2.5 emissions decrease by 4 % in the GHG-Step scenario vs

  3. Pesticide Active Ingredient Production Industry: National Emission Standards for Hazardous Air Pollutants (NESHAP)

    EPA Pesticide Factsheets

    This action promulgates national emission standards for hazardous air pollutants (NESHAP) for the pesticide active ingredient (PAI) production source category under section 112 of the Clean Air Act as amended (CAA or Act).

  4. [Estimation of average traffic emission factor based on synchronized incremental traffic flow and air pollutant concentration].

    PubMed

    Li, Run-Kui; Zhao, Tong; Li, Zhi-Peng; Ding, Wen-Jun; Cui, Xiao-Yong; Xu, Qun; Song, Xian-Feng

    2014-04-01

    On-road vehicle emissions have become the main source of urban air pollution and attracted broad attentions. Vehicle emission factor is a basic parameter to reflect the status of vehicle emissions, but the measured emission factor is difficult to obtain, and the simulated emission factor is not localized in China. Based on the synchronized increments of traffic flow and concentration of air pollutants in the morning rush hour period, while meteorological condition and background air pollution concentration retain relatively stable, the relationship between the increase of traffic and the increase of air pollution concentration close to a road is established. Infinite line source Gaussian dispersion model was transformed for the inversion of average vehicle emission factors. A case study was conducted on a main road in Beijing. Traffic flow, meteorological data and carbon monoxide (CO) concentration were collected to estimate average vehicle emission factors of CO. The results were compared with simulated emission factors of COPERT4 model. Results showed that the average emission factors estimated by the proposed approach and COPERT4 in August were 2.0 g x km(-1) and 1.2 g x km(-1), respectively, and in December were 5.5 g x km(-1) and 5.2 g x km(-1), respectively. The emission factors from the proposed approach and COPERT4 showed close values and similar seasonal trends. The proposed method for average emission factor estimation eliminates the disturbance of background concentrations and potentially provides real-time access to vehicle fleet emission factors.

  5. National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion Engines

    EPA Pesticide Factsheets

    This page contains the current National Emission Standards for Hazardous Air Pollutants (NESHAP) for Reciprocating Internal Combustion Engines and additional information regarding rule compliance and implementation.

  6. Globalizing Air Pollution

    NASA Astrophysics Data System (ADS)

    Lin, J.

    2017-12-01

    Recent studies have revealed the issue of globalizing air pollution through complex coupling of atmospheric transport (physical route) and economic trade (socioeconomic route). Recognition of such globalizing air pollution has important implications for understanding the impacts of regional and global consumption (of goods and services) on air quality, public health, climate and the ecosystems. And addressing these questions often requires improved modeling, measurements and economic-emission statistics. This talk will introduce the concept and mechanism of globalizing air pollution, with following demonstrations based on recent works on modeling, satellite measurement and multi-disciplinary assessment.

  7. 76 FR 30604 - National Emission Standards for Hazardous Air Pollutants for Polyvinyl Chloride and Copolymers...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-26

    ... National Emission Standards for Hazardous Air Pollutants for Polyvinyl Chloride and Copolymers Production... Standards for Hazardous Air Pollutants for Polyvinyl Chloride and Copolymers Production. The EPA is... present oral testimony at the public hearing, please contact Ms. Teresa Clemons, U.S. Environmental...

  8. The Impact of Future Emissions Changes on Air Pollution Concentrations and Related Human Health Effects

    NASA Astrophysics Data System (ADS)

    Mikolajczyk, U.; Suppan, P.; Williams, M.

    2015-12-01

    Quantification of potential health benefits of reductions in air pollution on the local scale is becoming increasingly important. The aim of this study is to conduct health impact assessment (HIA) by utilizing regionally and spatially specific data in order to assess the influence of future emission scenarios on human health. In the first stage of this investigation, a modeling study was carried out using the Weather Research and Forecasting (WRF) model coupled with Chemistry to estimate ambient concentrations of air pollutants for the baseline year 2009, and for the future emission scenarios in southern Germany. Anthropogenic emissions for the baseline year 2009 are derived from the emission inventory provided by the Netherlands Organization of Applied Scientific Research (TNO) (Denier van der Gon et al., 2010). For Germany, the TNO emissions were replaced by gridded emission data with a high spatial resolution of 1/64 x 1/64 degrees. Future air quality simulations are carried out under different emission scenarios, which reflect possible energy and climate measures in year 2030. The model set-up included a nesting approach, where three domains with horizontal resolution of 18 km, 6 km and 2 km were defined. The simulation results for the baseline year 2009 are used to quantify present-day health burdens. Concentration-response functions (CRFs) for PM2.5 and NO2 from the WHO Health risks of air Pollution in Europe (HRAPIE) project were applied to population-weighted mean concentrations to estimate relative risks and hence to determine numbers of attributable deaths and associated life-years lost. In the next step, future health impacts of projected concentrations were calculated taking into account different emissions scenarios. The health benefits that we assume with air pollution reductions can be used to provide options for future policy decisions to protect public health.

  9. Influence of Air Pollutant Emission Controls on the "Climate Penalty" in the United States

    NASA Astrophysics Data System (ADS)

    Feng, T.; Couzo, E. A.; Selin, N. E.; Garcia-Menendez, F.; Monier, E.

    2016-12-01

    Previous work has examined the so-called "climate penalty" (or benefit, where climate change leads to decreased pollutant concentrations) for the U.S. In particular, previous research has identified the role of changes in temperature, precipitation, relative humidity, and biogenic emissions, in altering concentrations of O3 and PM2.5, when emissions of air pollutant precursors are held constant. However, changes in emissions of those precursors can also affect the magnitude of climate penalty/benefit. The effect of changing air pollutant emissions on the climate penalty/benefit has not been systematically studied. Here, we estimate the U.S. climate penalty (for O3 and PM2.5) as a function of four different local (U.S.) non-GHG emissions scenarios using the GEOS-Chem chemical transport model coupled to the MIT Integrated Global System Model linked to the Community Atmosphere Model (IGSM-CAM). Our base case scenario includes global and regional emissions for 2006. We conduct three sensitivity scenarios that adjust U.S. air pollutant precursor (non-GHG) emissions by -50%, +50%, and +100%; global emissions are kept at 2006 levels. This allows us to quantify the avoided climate penalty achieved by non-GHG emissions reductions. To capture inter-annual meteorological variability, our climate penalty calculations use 20-year averages for the present (1991-2010) and future (2091-2110) climate under a no-policy scenario. Consistent with previous work, we find a "climate penalty" for O3 and PM2.5 in U.S. by 2100 across all four scenarios. We also find a climate-related decrease in the concentration of NOx and nitrate, and an increase in black carbon, organic carbon and sulfate. Changes in ammonium are spatially inhomogeneous, with an increase in eastern U.S. and a decrease in middle and western U.S. When air pollutant precursor emissions increase, we find that the O3 "climate penalty" is enhanced. However, the response of the PM2.5 "climate penalty" to changed emissions

  10. 75 FR 77760 - National Emission Standards for Hazardous Air Pollutants for Chemical Manufacturing Area Sources

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-14

    .... 40 CFR 63.11494(e). On February 12, 2010, the American Chemistry Council and the Society of Chemical... Emission Standards for Hazardous Air Pollutants for Chemical Manufacturing Area Sources AGENCY... Hazardous Air Pollutants for Chemical Manufacturing Area Sources. Among the provisions that EPA is...

  11. Global Scenarios of Air Pollutant Emissions from Road Transport through to 2050

    PubMed Central

    Takeshita, Takayuki

    2011-01-01

    This paper presents global scenarios of sulphur dioxide (SO2), nitrogen oxides (NOx), and particulate matter (PM) emissions from road transport through to 2050, taking into account the potential impacts of: (1) the timing of air pollutant emission regulation implementation in developing countries; (2) global CO2 mitigation policy implementation; and (3) vehicle cost assumptions, on study results. This is done by using a global energy system model treating the transport sector in detail. The major conclusions are the following. First, as long as non-developed countries adopt the same vehicle emission standards as in developed countries within a 30-year lag, global emissions of SO2, NOx, and PM from road vehicles decrease substantially over time. Second, light-duty vehicles and heavy-duty trucks make a large and increasing contribution to future global emissions of SO2, NOx, and PM from road vehicles. Third, the timing of air pollutant emission regulation implementation in developing countries has a large impact on future global emissions of SO2, NOx, and PM from road vehicles, whereas there is a possibility that global CO2 mitigation policy implementation has a comparatively small impact on them. PMID:21845172

  12. 40 CFR 49.138 - Rule for the registration of air pollution sources and the reporting of emissions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... following air pollutants: particulate matter, PM10, PM2.5, sulfur oxides (SOX), nitrogen oxides (NOX... from air pollution sources: (i) Source-specific emission tests; (ii) Mass balance calculations; (iii...

  13. 40 CFR 49.138 - Rule for the registration of air pollution sources and the reporting of emissions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... following air pollutants: particulate matter, PM10, PM2.5, sulfur oxides (SOX), nitrogen oxides (NOX... from air pollution sources: (i) Source-specific emission tests; (ii) Mass balance calculations; (iii...

  14. 40 CFR 49.138 - Rule for the registration of air pollution sources and the reporting of emissions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... following air pollutants: particulate matter, PM10, PM2.5, sulfur oxides (SOX), nitrogen oxides (NOX... from air pollution sources: (i) Source-specific emission tests; (ii) Mass balance calculations; (iii...

  15. 40 CFR 49.138 - Rule for the registration of air pollution sources and the reporting of emissions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... following air pollutants: particulate matter, PM10, PM2.5, sulfur oxides (SOX), nitrogen oxides (NOX... from air pollution sources: (i) Source-specific emission tests; (ii) Mass balance calculations; (iii...

  16. Air Emissions Monitoring for Permits

    EPA Pesticide Factsheets

    Operating permits document how air pollution sources will demonstrate compliance with emission limits and also how air pollution sources will monitor, either periodically or continuously, their compliance with emission limits and all other requirements.

  17. Air pollution and associated human mortality: The role of air pollutant emissions, climate change and methane concentration increases during the industrial period

    NASA Astrophysics Data System (ADS)

    Fang, Y.; Naik, V.; Horowitz, L. W.; Mauzerall, D. L.

    2012-12-01

    Increases in surface ozone (O3) and fine particulate matter (≤ 2.5μm aerodynamic diameter, PM2.5) are associated with excess premature human mortalities. Here we estimate changes in surface O3 and PM2.5 since preindustrial (1860) times and the global present-day (2000) premature human mortalities associated with these changes. We go beyond previous work to analyze and differentiate the contribution of three factors: changes in emissions of short-lived air pollutants, climate change, and increased methane (CH4) concentrations, to air pollution levels and the associated premature mortalities. We use a coupled chemistry-climate model in conjunction with global population distributions in 2000 to estimate exposure attributable to concentration changes since 1860 from each factor. Attributable mortalities are estimated using health impact functions of long-term relative risk estimates for O3 and PM2.5 from the epidemiology literature. We find global mean surface PM2.5 and health-relevant O3 (defined as the maximum 6-month mean of 1-hour daily maximum O3 in a year) have increased by 8±0.16 μg/m3 and 30±0.16 ppbv, respectively, over this industrial period as a result of combined changes in emissions of air pollutants (EMIS), climate (CLIM) and CH4 concentrations (TCH4). EMIS, CLIM and TCH4 cause global average PM2.5 (O3) to change by +7.5±0.19 μg/m3 (+25±0.30 ppbv), +0.4±0.17 μg/m3 (+0.5±0.28 ppbv), and -0.02±0.01 μg/m3 (+4.3±0.33 ppbv), respectively. Total changes in PM2.5 are associated with 1.5 (95% confidence interval, CI, 1.0-2.5) million all-cause mortalities annually and in O3 are associated with 375 (95% CI, 129-592) thousand respiratory mortalities annually. Most air pollution mortality is driven by changes in emissions of short-lived air pollutants and their precursors (95% and 85% of mortalities from PM2.5 and O3 respectively). However, changing climate and increasing CH4 concentrations also increased premature mortality associated with air

  18. International trade and air pollution: estimating the economic costs of air emissions from waterborne commerce vessels in the United States.

    PubMed

    Gallagher, Kevin P

    2005-10-01

    Although there is a burgeoning literature on the effects of international trade on the environment, relatively little work has been done on where trade most directly effects the environment: the transportation sector. This article shows how international trade is affecting air pollution emissions in the United States' shipping sector. Recent work has shown that cargo ships have been long overlooked regarding their contribution to air pollution. Indeed, ship emissions have recently been deemed "the last unregulated source of traditional air pollutants". Air pollution from ships has a number of significant local, national, and global environmental effects. Building on past studies, we examine the economic costs of this increasing and unregulated form of environmental damage. We find that total emissions from ships are largely increasing due to the increase in foreign commerce (or international trade). The economic costs of SO2 pollution range from dollars 697 million to dollars 3.9 billion during the period examined, or dollars 77 to dollars 435 million on an annual basis. The bulk of the cost is from foreign commerce, where the annual costs average to dollars 42 to dollars 241 million. For NOx emissions the costs are dollars 3.7 billion over the entire period or dollars 412 million per year. Because foreign trade is driving the growth in US shipping, we also estimate the effect of the Uruguay Round on emissions. Separating out the effects of global trade agreements reveals that the trade agreement-led emissions amounted to dollars 96 to dollars 542 million for SO2 between 1993 and 2001, or dollars 10 to dollars 60 million per year. For NOx they were dollars 745 million for the whole period or dollars 82 million per year. Without adequate policy responses, we predict that these trends and costs will continue into the future.

  19. Potential air pollutant emission from private vehicles based on vehicle route

    NASA Astrophysics Data System (ADS)

    Huboyo, H. S.; Handayani, W.; Samadikun, B. P.

    2017-06-01

    Air emissions related to the transportation sector has been identified as the second largest emitter of ambient air quality in Indonesia. This is due to large numbers of private vehicles commuting within the city as well as inter-city. A questionnaire survey was conducted in Semarang city involving 711 private vehicles consisting of cars and motorcycles. The survey was conducted in random parking lots across the Semarang districts and in vehicle workshops. Based on the parking lot survey, the average distance private cars travelled in kilometers (VKT) was 17,737 km/year. The machine start-up number of cars during weekdays; weekends were on average 5.19 and 3.79 respectively. For motorcycles the average of kilometers travelled was 27,092 km/year. The machine start-up number of motorcycles during weekdays and weekends were on average 5.84 and 3.98, respectively. The vehicle workshop survey showed the average kilometers travelled to be 9,510 km/year for motorcycles, while for private cars the average kilometers travelled was 21,347 km/year. Odometer readings for private cars showed a maximum of 3,046,509 km and a minimum of 700 km. Meanwhile, for motorcycles, odometer readings showed a maximum of 973,164 km and a minimum of roughly 54.24 km. Air pollutant emissions on East-West routes were generally higher than those on South-North routes. Motorcycles contribute significantly to urban air pollution, more so than cars. In this study, traffic congestion and traffic volume contributed much more to air pollution than the impact of fluctuating terrain.

  20. Cross-State Air Pollution Rule

    EPA Pesticide Factsheets

    The Cross-State Air Pollution Rule (CSAPR), requires states to significantly improve air quality by reducing power plant emissions that contribute to ozone and/or fine particle pollution in other states.

  1. 76 FR 14839 - Delegation of National Emission Standards for Hazardous Air Pollutants for Source Categories...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-18

    ...Pursuant to section 112(l) of the 1990 Clean Air Act, EPA granted delegation of specific national emission standards for hazardous air pollutants (NESHAP) to the Maricopa County Air Quality Department on May 6, 2010, and December 14, 2010, and to the Santa Barbara County Air Pollution Control District on July 30, 2010. EPA is proposing to revise the Code of Federal Regulations to reflect the current delegation status of NESHAP in Arizona and California.

  2. Site Remediation National Emission Standards for Hazardous Air Pollutants (NESHAP) Fact Sheets

    EPA Pesticide Factsheets

    This page contains July 2003 and May 2016 fact sheets with information regarding the final National Emission Standards for Hazardous Air Pollutants (NESHAP). This document provides a summary of the information for these regulations.

  3. Magnetic Tape Manufacturing Operations: National Emission Standards for Hazardous Air Pollutants (NESHAP)

    EPA Pesticide Factsheets

    Read this page to find information on the National Emission Standards for hazardous air pollutants for magnetic tape manufacturing operations. Read the rule summary and history, as well as supporting documents and related rules.

  4. Regional air pollution at a turning point.

    PubMed

    Grennfelt, Peringe; Hov, Oystein

    2005-02-01

    The control of transboundary air pollution in Europe has been successful. Emissions of many key pollutants are decreasing and there are signs of improvements in damaged ecosystems. The strategies under development within the CAFE programme under the European Commission and the Convention on Long-range Transboundary Air Pollution (CLRTAP), aim to take regional air pollution control a large step further, in particular with respect to small particles. In this paper we highlight the new strategies but look primarily at socioeconomic trends and climate change feedbacks that may have a significant influence on the outcome of the strategies and which so far have not been considered. In particular, we point out the influence on air quality of increased summer temperatures in Europe and of increasing emissions including international shipping, outside of Europe. Taken together the further emissions reductions in Europe and the increasing background pollution, slowly cause a greying of the Northern Hemisphere troposphere rather than the traditional picture of dominant emissions in Europe and North America ('black') with much lower emission intensities elsewhere ('white'). A hemispheric approach to further combat air pollution will become necessary in Europe and elsewhere.

  5. Contribution of ship emissions to the concentration and deposition of air pollutants in Europe

    NASA Astrophysics Data System (ADS)

    Aksoyoglu, S.; Prévôt, A. S. H.; Baltensperger, U.

    2015-11-01

    Emissions from the marine transport sector are one of the least regulated anthropogenic emission sources and contribute significantly to air pollution. Although strict limits were introduced recently for the maximum sulfur content in marine fuels in the SECAs (sulfur emission control areas) and in the EU ports, sulfur emissions outside the SECAs and emissions of other components in all European maritime areas have continued to increase in the last two decades. We have used the air quality model CAMx with and without ship emissions for the year 2006 to determine the effects of international shipping on the annual as well as seasonal concentrations of ozone, primary and secondary components of PM2.5 and the dry and wet deposition of nitrogen and sulfur compounds in Europe. Our results suggest that emissions from international shipping affect the air quality in northern and southern Europe differently and their contributions to the air concentrations vary seasonally. The largest changes in pollutant concentrations due to ship emissions were predicted for summer. Increased concentrations of the primary particle mass were found only along the shipping routes whereas concentrations of the secondary pollutants were affected over a larger area. Concentrations of particulate sulfate increased due to ship emissions in the Mediterranean (up to 60 %), in the English Channel and the North Sea (30-35 %) while increases in particulate nitrate levels were found especially in the north, around the Benelux area (20 %) where there were high NH3 land-based emissions. Our model results showed that not only the atmospheric concentrations of pollutants are affected by ship emissions, but also depositions of nitrogen and sulfur compounds increase significantly along the shipping routes. NOx emissions from the ships especially in the English Channel and the North Sea, cause a decrease in the dry deposition of reduced nitrogen at source regions by moving it from the gas-phase to the

  6. Air pollution monitoring using emission inventories combined with the moss bag approach.

    PubMed

    Iodice, P; Adamo, P; Capozzi, F; Di Palma, A; Senatore, A; Spagnuolo, V; Giordano, S

    2016-01-15

    Inventory of emission sources and biomonitoring with moss transplants are two different methods to evaluate air pollution. In this study, for the first time, both these approaches were simultaneously applied in five municipalities in Campania (southern Italy), deserving attention for health-oriented interventions as part of a National Interest Priority Site. The pollutants covered by the inventory were CO, NOx, particulate matter (PM10), volatile organic compounds (VOCs), and some heavy metals (As, Cd, Cr, Cu, Hg, Ni, Pb, Se, and Zn). The biomonitoring survey was based on the use of the devitalized moss Hypnum cupressiforme transplanted into bags, following a harmonized protocol. The exposure covered 40 agricultural and urban/residential sites, with half of them located in proximity to roads. The pollutants monitored were Al, As, Cd, Cr, Cu, Fe, Hg, Ni, Pb, Se, and Zn, as well as total polycyclic aromatic hydrocarbons (PAHs) only in five sites. Using the emission inventory approach, high emission loads were detected for all the major air pollutants and the following heavy metals: Cr, Cu, Ni, Pb and Zn, over the entire study area. Arsenic, Pb, and Zn were the elements most accumulated by moss. Total PAH postexposure contents were higher than the preexposure values (~20-50% of initial value). Moss uptakes did not differ substantially among municipalities or within exposure sites. In the five municipalities, a similar spatial pattern was evidenced for Pb by emission inventory and moss accumulation. Both approaches indicated the same most polluted municipality, suggesting their combined use as a valuable resource to reveal contaminants that are not routinely monitored. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Energy-Efficiency and Air-Pollutant Emissions-Reduction Opportunities for the Ammonia Industry in China

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Ding; Hasanbeigi, Ali; Chen, Wenying

    As one of the most energy-intensive and polluting industries, ammonia production is responsible for significant carbon dioxide (CO 2) and air-pollutant emissions. Although many energy-efficiency measures have been proposed by the Chinese government to mitigate greenhouse gas emissions and improve air quality, lack of understanding of the cost-effectiveness of such improvements has been a barrier to implementing these measures. Assessing the costs, benefits, and cost-effectiveness of different energy-efficiency measures is essential to advancing this understanding. In this study, a bottom-up energy conservation supply curve model is developed to estimate the potential for energy savings and emissions reductions from 26 energy-efficiencymore » measures that could be applied in China’s ammonia industry. Cost-effective implementation of these measures saves a potential 271.5 petajoules/year for fuel and 5,443 gigawatt-hours/year for electricity, equal to 14% of fuel and 14% of electricity consumed in China’s ammonia industry in 2012. These reductions could mitigate 26.7 million tonnes of CO 2 emissions. This study also quantifies the co-benefits of reducing air-pollutant emissions and water use that would result from saving energy in China’s ammonia industry. This quantitative analysis advances our understanding of the cost-effectiveness of energy-efficiency measures and can be used to augment efforts to reduce energy use and environmental impacts.« less

  8. Manufacturing of Nutritional Yeast: National Emission Standards for Hazardous Air Pollutants (NESHAP)

    EPA Pesticide Factsheets

    Read the final rule on the National Emission Standards for Hazardous Air Pollutants (NESHAP) for the Manufacturing of Nutritional Yeast, see the rule history, and a compliance and enforcement manual on this Maximum Achievable Control Technology.

  9. Portable air pollution control equipment for the control of toxic particulate emissions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chaurushia, A.; Odabashian, S.; Busch, E.

    1997-12-31

    Chromium VI (Cr VI) has been identified by the environmental regulatory agencies as a potent carcinogen among eleven heavy metals. A threshold level of 0.0001 lb/year for Cr VI emissions has been established by the California Air Resources Board for reporting under Assembly Bill 2588. A need for an innovative control technology to reduce fugitive emissions of Cr VI was identified during the Air Toxic Emissions Reduction Program at Northrop Grumman Military Aircraft Systems Division (NGMASD). NGMASD operates an aircraft assembly facility in El Segundo, CA. Nearly all of the aircraft components are coated with a protective coating (primer) priormore » to assembly. The primer has Cr VI as a component for its excellent corrosion resistance property. The complex assembly process requires fasteners which also need primer coating. Therefore, NGMASD utilizes High Volume Low Pressure (HVLP) guns for the touch-up spray coating operations. During the touch-up spray coating operations, Cr VI particles are atomized and transferred to the aircraft surface. The South Coast Air Quality Management District (SCAQMD) has determined that the HVLP gun transfers 65% of the paint particles onto the substrate and the remaining 35% are emitted as an overspray if air pollution controls are not applied. NGMASD has developed the Portable Air Pollution Control Equipment (PAPCE) to capture and control the overspray in order to reduce fugitive Cr VI emissions from the touch-up spray coating operations. A source test was performed per SCAQMD guidelines and the final report has been approved by the SCAQMD.« less

  10. Chemical Preparations Industry: National Emission Standards for Hazardous Air Pollutants for Area Sources

    EPA Pesticide Factsheets

    National emissions standards for control of hazardous air pollutants (HAP) from the chemical preparations area source category. Includes rule history, Federal Registry citations, implementation information, and additional resources.

  11. A high-resolution air pollutants emission inventory in 2013 for the Beijing-Tianjin-Hebei region, China

    NASA Astrophysics Data System (ADS)

    Qi, Ji; Zheng, Bo; Li, Meng; Yu, Fang; Chen, Chuchu; Liu, Fei; Zhou, Xiafei; Yuan, Jing; Zhang, Qiang; He, Kebin

    2017-12-01

    We developed a high-resolution Beijing-Tianjin-Hebei (BTH) regional air pollutants emission inventory for the year 2013. The inventory was established using a bottom-up approach based on facility-level activity data obtained from multiple data sources. The estimates from the BTH 2013 emission inventory show that the total emissions of SO2, NOX, PM2.5, PM10, CO, NMVOC, NH3, BC, and OC were 2,305, 2,686, 1,090, 1,494, 20,567, 2,207, 623, 160, and 254 Gg, respectively. The industry sector is the largest emissions source for SO2, NOX, PM2.5, PM10, CO, and NMVOC in the BTH region, contributing 72.6%, 43.7%, 59.6%, 64.7%, 60.3%, and 70.4% of the total emissions, respectively. Power plants contributed 11.8% and 23.3% of the total SO2 and NOX emissions, respectively. The transportation sector contributed 28.9% of the total NOX emissions. Emissions from the residential sector accounted for 31.3%, 21.5%, 46.6% and 71.7% of the total PM2.5, NMVOC, BC and OC emissions, respectively. In addition, more than 90% of the total NH3 emissions originate from the agriculture sector, with 44.2% from fertilizer use and 47.7% from livestock. The spatial distribution results illustrate that air pollutant emissions are mainly distributed over the eastern and southern BTH regions. Beijing, Tianjin, Shijiazhuang, Tangshan and Handan are the major contributors of air pollutants. The major NMVOC species in the BTH region are ethylene, acetylene, ethane and toluene. Ethylene is the biggest contributor in Tianjin and Hebei. The largest contributor in Beijing is toluene. There is relatively low uncertainty in SO2 and NOX emission estimates, medium uncertainty in PM2.5, PM10 and CO emission estimates, and high uncertainties in VOC, NH3, BC and OC emission estimates. The proposed policy recommendations, based on the BTH 2013 emission inventory, would be helpful to develop strategies for air pollution control.

  12. Collaborative Emission Reduction Model Based on Multi-Objective Optimization for Greenhouse Gases and Air Pollutants.

    PubMed

    Meng, Qing-chun; Rong, Xiao-xia; Zhang, Yi-min; Wan, Xiao-le; Liu, Yuan-yuan; Wang, Yu-zhi

    2016-01-01

    CO2 emission influences not only global climate change but also international economic and political situations. Thus, reducing the emission of CO2, a major greenhouse gas, has become a major issue in China and around the world as regards preserving the environmental ecology. Energy consumption from coal, oil, and natural gas is primarily responsible for the production of greenhouse gases and air pollutants such as SO2 and NOX, which are the main air pollutants in China. In this study, a mathematical multi-objective optimization method was adopted to analyze the collaborative emission reduction of three kinds of gases on the basis of their common restraints in different ways of energy consumption to develop an economic, clean, and efficient scheme for energy distribution. The first part introduces the background research, the collaborative emission reduction for three kinds of gases, the multi-objective optimization, the main mathematical modeling, and the optimization method. The second part discusses the four mathematical tools utilized in this study, which include the Granger causality test to analyze the causality between air quality and pollutant emission, a function analysis to determine the quantitative relation between energy consumption and pollutant emission, a multi-objective optimization to set up the collaborative optimization model that considers energy consumption, and an optimality condition analysis for the multi-objective optimization model to design the optimal-pole algorithm and obtain an efficient collaborative reduction scheme. In the empirical analysis, the data of pollutant emission and final consumption of energies of Tianjin in 1996-2012 was employed to verify the effectiveness of the model and analyze the efficient solution and the corresponding dominant set. In the last part, several suggestions for collaborative reduction are recommended and the drawn conclusions are stated.

  13. Collaborative Emission Reduction Model Based on Multi-Objective Optimization for Greenhouse Gases and Air Pollutants

    PubMed Central

    Zhang, Yi-min; Wan, Xiao-le; Liu, Yuan-yuan; Wang, Yu-zhi

    2016-01-01

    CO2 emission influences not only global climate change but also international economic and political situations. Thus, reducing the emission of CO2, a major greenhouse gas, has become a major issue in China and around the world as regards preserving the environmental ecology. Energy consumption from coal, oil, and natural gas is primarily responsible for the production of greenhouse gases and air pollutants such as SO2 and NOX, which are the main air pollutants in China. In this study, a mathematical multi-objective optimization method was adopted to analyze the collaborative emission reduction of three kinds of gases on the basis of their common restraints in different ways of energy consumption to develop an economic, clean, and efficient scheme for energy distribution. The first part introduces the background research, the collaborative emission reduction for three kinds of gases, the multi-objective optimization, the main mathematical modeling, and the optimization method. The second part discusses the four mathematical tools utilized in this study, which include the Granger causality test to analyze the causality between air quality and pollutant emission, a function analysis to determine the quantitative relation between energy consumption and pollutant emission, a multi-objective optimization to set up the collaborative optimization model that considers energy consumption, and an optimality condition analysis for the multi-objective optimization model to design the optimal-pole algorithm and obtain an efficient collaborative reduction scheme. In the empirical analysis, the data of pollutant emission and final consumption of energies of Tianjin in 1996–2012 was employed to verify the effectiveness of the model and analyze the efficient solution and the corresponding dominant set. In the last part, several suggestions for collaborative reduction are recommended and the drawn conclusions are stated. PMID:27010658

  14. Future air pollution in the Shared Socio-economic Pathways

    DOE PAGES

    Rao, Shilpa; Klimont, Zbigniew; Smith, Steven J.; ...

    2016-07-15

    Emissions of air pollutants such as sulfur and nitrogen oxides and particulates have significant health impacts as well as effects on natural and anthropogenic ecosystems. These same emissions also can change atmospheric chemistry and the planetary energy balance, thereby impacting global and regional climate. Long-term scenarios for air pollutant emissions are needed as inputs to global climate and chemistry models, and for analysis linking air pollutant impacts across sectors. In this paper we present methodology and results for air pollutant emissions in Shared Socioeconomic Pathways (SSP) scenarios. We first present a set of three air pollution narratives that describe high,more » central, and low pollution control ambitions over the 21 st century. These narratives are then translated into quantitative guidance for use in integrated assessment models. We provide an overview of pollutant emission trajectories under the SSP scenarios. Pollutant emissions in these scenarios cover a wider range than the scenarios used in previous international climate model comparisons. Furthermore, the SSP scenarios provide the opportunity to access a more comprehensive range of future global and regional air quality outcomes.« less

  15. Future air pollution in the Shared Socio-economic Pathways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rao, Shilpa; Klimont, Zbigniew; Smith, Steven J.

    Emissions of air pollutants such as sulfur and nitrogen oxides and particulates have significant health impacts as well as effects on natural and anthropogenic ecosystems. These same emissions also can change atmospheric chemistry and the planetary energy balance, thereby impacting global and regional climate. Long-term scenarios for air pollutant emissions are needed as inputs to global climate and chemistry models, and for analysis linking air pollutant impacts across sectors. In this paper we present methodology and results for air pollutant emissions in Shared Socioeconomic Pathways (SSP) scenarios. We first present a set of three air pollution narratives that describe high,more » central, and low pollution control ambitions over the 21 st century. These narratives are then translated into quantitative guidance for use in integrated assessment models. We provide an overview of pollutant emission trajectories under the SSP scenarios. Pollutant emissions in these scenarios cover a wider range than the scenarios used in previous international climate model comparisons. Furthermore, the SSP scenarios provide the opportunity to access a more comprehensive range of future global and regional air quality outcomes.« less

  16. Air pollution response to changing weather and power plant emissions in the eastern United States

    NASA Astrophysics Data System (ADS)

    Bloomer, Bryan Jaye

    Air pollution in the eastern United States causes human sickness and death as well as damage to crops and materials. NOX emission reduction is observed to improve air quality. Effectively reducing pollution in the future requires understanding the connections between smog, precursor emissions, weather, and climate change. Numerical models predict global warming will exacerbate smog over the next 50 years. My analysis of 21 years of CASTNET observations quantifies a climate change penalty. I calculate, for data collected prior to 2002, a climate penalty factor of ˜3.3 ppb O3/°C across the power plant dominated receptor regions in the rural, eastern U.S. Recent reductions in NOX emissions decreased the climate penalty factor to ˜2.2 ppb O3/°C. Prior to 1995, power plant emissions of CO2, SO2, and NOX were estimated with fuel sampling and analysis methods. Currently, emissions are measured with continuous monitoring equipment (CEMS) installed directly in stacks. My comparison of the two methods show CO 2 and SO2 emissions are ˜5% lower when inferred from fuel sampling; greater differences are found for NOX emissions. CEMS are the method of choice for emission inventories and commodity trading and should be the standard against which other methods are evaluated for global greenhouse gas trading policies. I used CEMS data and applied chemistry transport modeling to evaluate improvements in air quality observed by aircraft during the North American electrical blackout of 2003. An air quality model produced substantial reductions in O3, but not as much as observed. The study highlights weaknesses in the model as commonly used for evaluating a single day event and suggests areas for further investigation. A new analysis and visualization method quantifies local-daily to hemispheric-seasonal scale relationships between weather and air pollution, confirming improved air quality despite increasing temperatures across the eastern U.S. Climate penalty factors indicate

  17. Emissions of CO2 and criteria air pollutants from mobile sources: Insights from integrating real-time traffic data into local air quality models

    NASA Astrophysics Data System (ADS)

    Gately, Conor; Hutyra, Lucy

    2016-04-01

    In 2013, on-road mobile sources were responsible for over 26% of U.S. fossil fuel carbon dioxide (ffCO2) emissions, and over 34% of both CO and NOx emissions. However, accurate representations of these emissions at the scale of urban areas remains a difficult challenge. Quantifying emissions at the scale of local streets and highways is critical to provide policymakers with the information needed to develop appropriate mitigation strategies and to guide research into the underlying process that drive mobile emissions. Quantification of vehicle ffCO2 emissions at high spatial and temporal resolutions requires a detailed synthesis of data on traffic activity, roadway attributes, fleet characteristics and vehicle speeds. To accurately characterize criteria air pollutant emissions, information on local meteorology is also critical, as the temperature and relative humidity can affect emissions rates of these pollutants by as much as 400%. As the health impacts of air pollutants are more severe for residents living in close proximity (<500m) to road sources, it is critical that inventories of these emissions rely on highly resolved source data to locate potential hot-spots of exposure. In this study we utilize real-time GPS estimates of vehicle speeds to estimate ffCO2 and criteria air pollutant emissions at multiple spatial and temporal scales across a large metropolitan area. We observe large variations in emissions associated with diurnal activity patterns, congestion, sporting and civic events, and weather anomalies. We discuss the advantages and challenges of using highly-resolved source data to quantify emissions at a roadway scale, and the potential of this methodology for forecasting the air quality impacts of changes in infrastructure, urban planning policies, and regional climate.

  18. Emissions of CO2 and criteria air pollutants from mobile sources: Insights from integrating real-time traffic data into local air quality models

    NASA Astrophysics Data System (ADS)

    Gately, C.; Hutyra, L.; Sue Wing, I.; Peterson, S.; Janetos, A.

    2015-12-01

    In 2013, on-road mobile sources were responsible for over 26% of U.S. fossil fuel carbon dioxide (ffCO2) emissions, and over 34% of both CO and NOx emissions. However, accurate representations of these emissions at the scale of urban areas remains a difficult challenge. Quantifying emissions at the scale of local streets and highways is critical to provide policymakers with the information needed to develop appropriate mitigation strategies and to guide research into the underlying process that drive mobile emissions. Quantification of vehicle ffCO2 emissions at high spatial and temporal resolutions requires a detailed synthesis of data on traffic activity, roadway attributes, fleet characteristics and vehicle speeds. To accurately characterize criteria air pollutant emissions, information on local meteorology is also critical, as the temperature and relative humidity can affect emissions rates of these pollutants by as much as 400%. As the health impacts of air pollutants are more severe for residents living in close proximity (<500m) to road sources, it is critical that inventories of these emissions rely on highly resolved source data to locate potential hot-spots of exposure. In this study we utilize real-time GPS estimates of vehicle speeds to estimate ffCO2 and criteria air pollutant emissions at multiple spatial and temporal scales across a large metropolitan area. We observe large variations in emissions associated with diurnal activity patterns, congestion, sporting and civic events, and weather anomalies. We discuss the advantages and challenges of using highly-resolved source data to quantify emissions at a roadway scale, and the potential of this methodology for forecasting the air quality impacts of changes in infrastructure, urban planning policies, and regional climate.

  19. Aircraft engine exhaust emissions and other airport-related contributions to ambient air pollution: A review

    NASA Astrophysics Data System (ADS)

    Masiol, Mauro; Harrison, Roy M.

    2014-10-01

    Civil aviation is fast-growing (about +5% every year), mainly driven by the developing economies and globalisation. Its impact on the environment is heavily debated, particularly in relation to climate forcing attributed to emissions at cruising altitudes and the noise and the deterioration of air quality at ground-level due to airport operations. This latter environmental issue is of particular interest to the scientific community and policymakers, especially in relation to the breach of limit and target values for many air pollutants, mainly nitrogen oxides and particulate matter, near the busiest airports and the resulting consequences for public health. Despite the increased attention given to aircraft emissions at ground-level and air pollution in the vicinity of airports, many research gaps remain. Sources relevant to air quality include not only engine exhaust and non-exhaust emissions from aircraft, but also emissions from the units providing power to the aircraft on the ground, the traffic due to the airport ground service, maintenance work, heating facilities, fugitive vapours from refuelling operations, kitchens and restaurants for passengers and operators, intermodal transportation systems, and road traffic for transporting people and goods in and out to the airport. Many of these sources have received inadequate attention, despite their high potential for impact on air quality. This review aims to summarise the state-of-the-art research on aircraft and airport emissions and attempts to synthesise the results of studies that have addressed this issue. It also aims to describe the key characteristics of pollution, the impacts upon global and local air quality and to address the future potential of research by highlighting research needs.

  20. Contribution of ship emissions to the concentration and deposition of air pollutants in Europe

    NASA Astrophysics Data System (ADS)

    Aksoyoglu, Sebnem; Baltensperger, Urs; Prévôt, André S. H.

    2016-02-01

    Emissions from the marine transport sector are one of the least-regulated anthropogenic emission sources and contribute significantly to air pollution. Although strict limits were introduced recently for the maximum sulfur content in marine fuels in the SECAs (sulfur emission control areas) and in EU ports, sulfur emissions outside the SECAs and emissions of other components in all European maritime areas have continued to increase in the last two decades. We have used the air quality model CAMx (Comprehensive Air Quality Model with Extensions) with and without ship emissions for the year 2006 to determine the effects of international shipping on the annual as well as seasonal concentrations of ozone, primary and secondary components of PM2.5, and the dry and wet deposition of nitrogen and sulfur compounds in Europe. The largest changes in pollutant concentrations due to ship emissions were predicted for summer. Concentrations of particulate sulfate increased due to ship emissions in the Mediterranean (up to 60 %), the English Channel and the North Sea (30-35 %), while increases in particulate nitrate levels were found especially in the north, around the Benelux area (20 %), where there were high NH3 land-based emissions. Our model results showed that not only are the atmospheric concentrations of pollutants affected by ship emissions, but also depositions of nitrogen and sulfur compounds increase significantly along the shipping routes. NOx emissions from the ships, especially in the English Channel and the North Sea, cause a decrease in the dry deposition of reduced nitrogen at source regions by moving it from the gas phase to the particle phase which then contributes to an increase in the wet deposition at coastal areas with higher precipitation. In the western Mediterranean region, on the other hand, model results show an increase in the deposition of oxidized nitrogen (mostly HNO3) due to the ship traffic. Dry deposition of SO2 seems to be significant along

  1. Air Pollution Control, Part I.

    ERIC Educational Resources Information Center

    Strauss, Werner, Ed.

    Authoritative reviews in seven areas of current importance in air pollution control are supplied in this volume, the first of a two-part set. Titles contained in this book are: "Dispersion of Pollutants Emitted into the Atmosphere,""The Formation and Control of Oxides of Nitrogen in Air Pollution,""The Control of Sulfur Emissions from Combustion…

  2. Air pollution and associated human mortality: the role of air pollutant emissions, climate change and methane concentration increases from the preindustrial period to present

    NASA Astrophysics Data System (ADS)

    Fang, Y.; Naik, V.; Horowitz, L. W.; Mauzerall, D. L.

    2013-02-01

    Increases in surface ozone (O3) and fine particulate matter (≤2.5 μm aerodynamic diameter, PM2.5) are associated with excess premature human mortalities. We estimate changes in surface O3 and PM2.5 from pre-industrial (1860) to present (2000) and the global present-day (2000) premature human mortalities associated with these changes. We extend previous work to differentiate the contribution of changes in three factors: emissions of short-lived air pollutants, climate change, and increased methane (CH4) concentrations, to air pollution levels and associated premature mortalities. We use a coupled chemistry-climate model in conjunction with global population distributions in 2000 to estimate exposure attributable to concentration changes since 1860 from each factor. Attributable mortalities are estimated using health impact functions of long-term relative risk estimates for O3 and PM2.5 from the epidemiology literature. We find global mean surface PM2.5 and health-relevant O3 (defined as the maximum 6-month mean of 1-h daily maximum O3 in a year) have increased by 8 ± 0.16 μg m-3 and 30 ± 0.16 ppbv (results reported as annual average ±standard deviation of 10-yr model simulations), respectively, over this industrial period as a result of combined changes in emissions of air pollutants (EMIS), climate (CLIM) and CH4 concentrations (TCH4). EMIS, CLIM and TCH4 cause global population-weighted average PM2.5 (O35) to change by +7.5 ± 0.19 μg m-3 (+25 ± 0.30 ppbv), +0.4 ± 0.17 μg m-3 (+0.5 ± 0.28 ppbv), and 0.04 ± 0.24 μg m-3 (+4.3 ± 0.33 ppbv), respectively. Total global changes in PM2.5 are associated with 1.5 (95% confidence interval, CI, 1.2-1.8) million cardiopulmonary mortalities and 95 (95% CI, 44-144) thousand lung cancer mortalities annually and changes in O3 are associated with 375 (95% CI, 129-592) thousand respiratory mortalities annually. Most air pollution mortality is driven by changes in emissions of short-lived air pollutants and their

  3. Air Pollution Prevention and Control Policy in China.

    PubMed

    Huang, Cunrui; Wang, Qiong; Wang, Suhan; Ren, Meng; Ma, Rui; He, Yiling

    2017-01-01

    With rapid urbanization and development of transport infrastructure, air pollution caused by multiple-pollutant emissions and vehicle exhaust has been aggravated year by year in China. In order to improve air quality, the Chinese authorities have taken a series of actions to control air pollution emission load within a permissible range. However, although China has made positive progress on tackling air pollution, these actions have not kept up with its economy growth and fossil-fuel use. The traditional single-pollutant approach is far from enough in China now, and in the near future, air pollution control strategies should move in the direction of the multiple-pollutant approach. In addition, undesirable air quality is usually linked with the combination of high emissions and adverse weather conditions. However, few studies have been done on the influence of climate change on atmospheric chemistry in the global perspective. Available evidence suggested that climate change is likely to exacerbate certain kinds of air pollutants including ozone and smoke from wildfires. This has become a major public health problem because the interactions of global climate change, urban heat islands, and air pollution have adverse effects on human health. In this chapter, we first review the past and current circumstances of China's responses to air pollution. Then we discuss the control challenges and future options for a better air quality in China. Finally, we begin to unravel links between air pollution and climate change, providing new opportunities for integrated research and actions in China.

  4. ESP 2.0: Improved method for projecting U.S. GHG and air pollution emissions through 2055

    EPA Science Inventory

    The Emission Scenario Projection (ESP) method is used to develop multi-decadal projections of U.S. Greenhouse Gas (GHG) and criteria pollutant emissions. The resulting future-year emissions can then translated into an emissions inventory and applied in climate and air quality mod...

  5. CO-DEPENDENCIES OF REACTIVE AIR TOXIC AND CRITERIA POLLUTANTS ON EMISSION REDUCTIONS

    EPA Science Inventory

    It is important to understand the effect of emission controls on the concentrations of ozone, PM2.5, and hazardous air pollutants simultaneously, in order to evaluate the full range of both health related and economic effects. Until recently, the capability of simultan...

  6. Impacts of air pollutants from fire and non-fire emissions on the regional air quality in Southeast Asia

    NASA Astrophysics Data System (ADS)

    Lee, Hsiang-He; Iraqui, Oussama; Gu, Yefu; Hung-Lam Yim, Steve; Chulakadabba, Apisada; Yiu-Ming Tonks, Adam; Yang, Zhengyu; Wang, Chien

    2018-05-01

    Severe haze events in Southeast Asia caused by particulate pollution have become more intense and frequent in recent years. Widespread biomass burning occurrences and particulate pollutants from human activities other than biomass burning play important roles in degrading air quality in Southeast Asia. In this study, numerical simulations have been conducted using the Weather Research and Forecasting (WRF) model coupled with a chemistry component (WRF-Chem) to quantitatively examine the contributions of aerosols emitted from fire (i.e., biomass burning) versus non-fire (including fossil fuel combustion, and road dust, etc.) sources to the degradation of air quality and visibility over Southeast Asia. These simulations cover a time period from 2002 to 2008 and are driven by emissions from (a) fossil fuel burning only, (b) biomass burning only, and (c) both fossil fuel and biomass burning. The model results reveal that 39 % of observed low-visibility days (LVDs) can be explained by either fossil fuel burning or biomass burning emissions alone, a further 20 % by fossil fuel burning alone, a further 8 % by biomass burning alone, and a further 5 % by a combination of fossil fuel burning and biomass burning. Analysis of an 24 h PM2.5 air quality index (AQI) indicates that the case with coexisting fire and non-fire PM2.5 can substantially increase the chance of AQI being in the moderate or unhealthy pollution level from 23 to 34 %. The premature mortality in major Southeast Asian cities due to degradation of air quality by particulate pollutants is estimated to increase from ˜ 4110 per year in 2002 to ˜ 6540 per year in 2008. In addition, we demonstrate the importance of certain missing non-fire anthropogenic aerosol sources including anthropogenic fugitive and industrial dusts in causing urban air quality degradation. An experiment of using machine learning algorithms to forecast the occurrence of haze events in Singapore is also explored in this study. All of these

  7. Reducing air pollutant emissions at airports by controlling aircraft ground operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gelinas, C.G.; Fan, H.S.L.

    1979-02-01

    Potential reductions in air pollutant emissions were determined for four stategies to control aircraft ground operations at two case study airports, Los Angeles and San Francisco International Airports. Safety, cost, and fuel savings associated with strategy implementation were examined. Two strategies, aircraft towing and shutdown of one engine during taxi operations, provided significant emission reductions. However, there are a number of safety problems associated with aircraft towing. The shutdown of one engine while taxiing was found to be the most viable strategy because of substantial emission reductions, cost benefits resulting from fuel savings, and no apparent safety problems.

  8. Air pollution from industrial waste gas emissions is associated with cancer incidences in Shanghai, China.

    PubMed

    Cong, Xiaowei

    2018-05-01

    Outdoor air pollution may be associated with cancer risk at different sites. This study sought to investigate outdoor air pollution from waste gas emission effects on multiple cancer incidences in a retrospective population-based study in Shanghai, China. Trends in cancer incidence for males and females and trends in waste gas emissions for the total waste gas, industrial waste gas, other waste gas, SO 2 , and soot were investigated between 1983 and 2010 in Shanghai, China. Regression models after adjusting for confounding variables were constructed to estimate associations between waste gas emissions and multiple cancer incidences in the whole group and stratified by sex, Engel coefficient, life expectancy, and number of doctors per 10,000 populations to further explore whether changes of waste gas emissions were associated with multiple cancer incidences. More than 550,000 new cancer patients were enrolled and reviewed. Upward trends in multiple cancer incidences for males and females and in waste gas emissions were observed from 1983 to 2010 in Shanghai, China. Waste gas emissions came mainly from industrial waste gas. Waste gas emissions was significantly positively associated with cancer incidence of salivary gland, small intestine, colorectal, anus, gallbladder, thoracic organs, connective and soft tissue, prostate, kidney, bladder, thyroid, non-Hodgkin's lymphoma, lymphatic leukemia, myeloid leukemia, and other unspecified sites (all p < 0.05). Negative association between waste gas emissions and the esophagus cancer incidence was observed (p < 0.05). The results of the whole group were basically consistent with the results of the stratified analysis. The results from this retrospective population-based study suggest ambient air pollution from waste gas emissions was associated with multiple cancer incidences.

  9. A comprehensive emission inventory of multiple air pollutants from iron and steel industry in China: Temporal trends and spatial variation characteristics.

    PubMed

    Wang, Kun; Tian, Hezhong; Hua, Shenbing; Zhu, Chuanyong; Gao, Jiajia; Xue, Yifeng; Hao, Jiming; Wang, Yong; Zhou, Junrui

    2016-07-15

    China has become the largest producer of iron and steel throughout the world since 1996. However, as an energy-and-pollution intensive manufacturing sector, a detailed comprehensive emission inventory of air pollutants for iron and steel industry of China is still not available. To obtain and better understand the temporal trends and spatial variation characteristics of typical hazardous air pollutants (HAPs) emissions from iron and steel production in China, a comprehensive emission inventory of multiple air pollutants, including size segregated particulate matter (TSP/PM10/PM2.5), gaseous pollutants (SO2, NOx, CO), heavy metals (Pb, Cd, Hg, As, Cr, Ni etc.), as well as the more dangerous PCDD/Fs, is established with the unit-based annual activity, specific dynamic emission factors for the historical period of 1978-2011, and the future potential trends till to 2050 are forecasted by using scenario analysis. Our results show that emissions of gaseous pollutants and particulate matter have experienced a gradual increase tendency since 2000, while emissions of priority-controlled heavy metals (Hg, Pb, As, Cd, Cr, and Ni) have exhibited a short-term fluctuation during the period of 1990 to 2005. With regard to the spatial distribution of HAPs emissions in base year 2011, Bohai economic circle is identified as the top emission intensity region where iron and steel smelting plants are densely built; within iron and steel industry, blast furnaces contribute the majority of PM emissions, sinter plants account for most of gaseous pollutants and the majority of PCDD/Fs, whereas steel making processes are responsible for the majority of heavy metal emissions. Moreover, comparisons of future emission trends under three scenarios indicate that advanced technologies and integrated whole process management strategies are in great need to further diminish various hazardous air pollutants from iron and steel industry in the future. Copyright © 2016 Elsevier B.V. All rights

  10. Chinese air pollution embodied in trade

    NASA Astrophysics Data System (ADS)

    Davis, S. J.

    2014-12-01

    Rapid economic development in China has been accompanied by high levels of air pollution in many areas of China. Although researchers have applied a range of methods to monitor and track pollutant emissions in the atmosphere, studies of the underlying economic and technological drivers of this pollution have received considerably less attention. I will present results of a series of studies that have quantified the air pollutants embodied in goods being traded both within China and internationally. The results show that trade is facilitating the concentration of pollution in less economically developed areas, which in turn export pollution-intensive goods to more affluent areas. However, the export-related pollution itself is sometimes transported long distances; for instance, we have quantified the impacts of the Chinese pollution embodied in internationally-exported goods on air quality in the US. These findings important implications for Chinese efforts to curb CO2 emissions and improve air quality. The research to be presented reflects the efforts of a multiple year, ongoing collaboration among interdisciplinary researchers in China, the US and the UK.

  11. Temporal trends and spatial variation characteristics of primary air pollutants emissions from coal-fired industrial boilers in Beijing, China.

    PubMed

    Xue, Yifeng; Tian, Hezhong; Yan, Jing; Zhou, Zhen; Wang, Junling; Nie, Lei; Pan, Tao; Zhou, Junrui; Hua, Shenbing; Wang, Yong; Wu, Xiaoqing

    2016-06-01

    Coal-fired combustion is recognized as a significant anthropogenic source of atmospheric compounds in Beijing, causing heavy air pollution events and associated deterioration in visibility. Obtaining an accurate understanding of the temporal trends and spatial variation characteristics of emissions from coal-fired industrial combustion is essential for predicting air quality changes and evaluating the effectiveness of current control measures. In this study, an integrated emission inventory of primary air pollutants emitted from coal-fired industrial boilers in Beijing is developed for the period of 2007-2013 using a technology-based approach. Future emission trends are projected through 2030 based on current energy-related and emission control policies. Our analysis shows that there is a general downward trend in primary air pollutants emissions because of the implementation of stricter local emission standards and the promotion by the Beijing municipal government of converting from coal-fired industrial boilers to gas-fired boilers. However, the ratio of coal consumed by industrial boilers to total coal consumption has been increasing, raising concerns about the further improvement of air quality in Beijing. Our estimates indicate that the total emissions of PM10, PM2.5, SO2, NOx, CO and VOCs from coal-fired industrial boilers in Beijing in 2013 are approximately 19,242 t, 13,345 t, 26,615 t, 22,965 t, 63,779 t and 1406 t, respectively. Under the current environmental policies and relevant energy savings and emission control plans, it may be possible to reduce NOx and other air pollutant emissions by 94% and 90% by 2030, respectively, if advanced flue gas purification technologies are implemented and coal is replaced with natural gas in the majority of existing boilers. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. EMISSION OF ORGANIC HAZARDOUS AIR POLLUTANTS FROM THE COMBUSION OF PULVERIZED COAL IN A SMALL-SCALE COMBUSTOR

    EPA Science Inventory

    The emissions of hazardous air pollutants (HAPs) from the combustion of pulverized coal have become an important issue in light of the requirements of Title I11 of the 1990 Clean Air Act Amendments, which impose emission limits on 189 compounds and compound classes. Although pre...

  13. Exposure to industrial air pollutant emissions and lung function in children: Canadian Health Measures Survey, 2007 to 2011.

    PubMed

    Wong, Suzy L; Coates, Allan L; To, Teresa

    2016-02-01

    Long-term exposure to ambient air pollution has been associated with adverse effects on children's lung function. Few studies have examined lung function in relation to industrial emissions of air pollutants. This cross-sectional study was based on 2,833 respondents aged 6 to 18 for whom spirometry data were collected by the Canadian Health Measures Survey, 2007 to 2011. The weighted sum of industrial air emissions of nitrogen oxides (NOₓ) and fine particulate matter (PM2.5) within 25 km of the respondent's residence was derived using National Pollutant Release Inventory data. Multivariate linear regression was used to examine the relationship between NOₓ and PM2.5 emissions and forced vital capacity (FVC), the forced expiratory volume in 1 sec (FEV₁), and the ratio of the two (FEV₁/FVC). Industrial air emissions of NOₓ were not significantly associated with lung function among males or females. Emissions of PM2.5 were negatively associated with FEV₁ and FEV₁/FVC, but not FVC, among males. PM2.5 was not significantly related to lung function among females. The associations that emerged between lung function and industrial emissions of PM2.5 among males were consistent with airway obstruction. Further research is warranted to investigate the gender differences observed in this study.

  14. Improving the City-scale Emission Inventory of Anthropogenic Air Pollutants: A Case Study of Nanjing

    NASA Astrophysics Data System (ADS)

    Qiu, L.; Zhao, Y.; Xu, R.; Xie, F.; Wang, H.; Qin, H.; Wu, X.; Zhang, J.

    2014-12-01

    To evaluate the improvement of city-scale emission inventory, a high-resolution emission inventory of air pollutants for Nanjing is first developed combining detailed source information, and then justified through quantitative analysis with observations. The best available domestic emission factors and unit-/facility-based activity level data were compiled based on a thorough field survey on major emission sources. Totally 1089 individual emission sources were identified as point sources and all the emission-related parameters including burner type, combustion technology, fuel quality, and removal efficiency of pollution control devices, are carefully investigated and analyzed. Some new data such as detailed information of city fueling-gas stations, construction sites, monthly activity level, data from continuous emission monitoring systems and traffic flow information were combined to improve spatiotemporal distribution of this inventory. For SO2, NOX and CO, good spatial correlations were found between ground observation (9 state controlling air sampling sites in Nanjing) and city-scale emission inventory (R2=0.34, 0.38 and 0.74, respectively). For TSP, PM10 and PM2.5, however, poorer correlation was found due to relatively weaker accuracy in emission estimation and spatial distribution of road dust. The mixing ratios between specific pollutants including OC/EC, BC/CO and CO2/CO, are well correlated between those from ground observation and emission. Compared to MEIC (Multi-resolution Emission Inventory for China), there is a better spatial consistence between this city-scale emission inventory and NO2 measured by OMI (Ozone Monitoring Instrument). In particular, the city-scale emission inventory still correlated well with satellite observations (R2=0.28) while the regional emission inventory showed little correlation with satellite observations (R2=0.09) when grids containing power plants are excluded. It thus confirms the improvement of city-scale emission

  15. RESEARCH AREA -- MUNICIPAL WASTE COMBUSTION (AIR POLLUTION TECHNOLOGY BRANCH, AIR POLLUTION PREVENTION AND CONTROL DIVISION, NRMRL)

    EPA Science Inventory

    The municipal waste combustion (MWC) program supports the development of revised rules for air pollutant emissions from the MWC source category. Basic research is performed on MWC pollutant formation and control mechanisms for acid gas, trace organic, and trace metal emissions. T...

  16. 75 FR 67676 - Delegation of National Emission Standards for Hazardous Air Pollutants for Source Categories...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-03

    ... National Emission Standards for Hazardous Air Pollutants for Source Categories; State of Nevada; Clark... pollutants (NESHAP) to Clark County, Nevada. DATES: Any comments on this proposal must arrive by December 3...: This proposal concerns the delegation of unchanged NESHAP to Clark County, Nevada. In the Rules and...

  17. AIR POLLUTION CONTROL TECHNOLOGIES (CHAPTER 65)

    EPA Science Inventory

    The chapter discusses the use of technologies for reducing air pollution emissions from stationary sources, with emphasis on the control of combustion gen-erated air pollution. Major stationary sources include utility power boilers, industrial boilers and heaters, metal smelting ...

  18. Transportation Air Pollution Studies (TAPS) System

    DOT National Transportation Integrated Search

    1974-03-01

    This report describes the Transportation Air Pollution Studies (TAPS) Data Base and the Software System which has been developed in association with it. : The TAPS Data Base will be used to store the transportation air pollution data (including emiss...

  19. Relative impact of on-road vehicular and point-source industrial emissions of air pollutants in a medium-sized Andean city

    NASA Astrophysics Data System (ADS)

    González, C. M.; Gómez, C. D.; Rojas, N. Y.; Acevedo, H.; Aristizábal, B. H.

    2017-03-01

    Cities in emerging countries are facing a fast growth and urbanization; however, the study of air pollutant emissions and its dynamics is scarce, making their populations vulnerable to potential effects of air pollution. This situation is critical in medium-sized urban areas built along the tropical Andean mountains. This work assesses the contribution of on-road vehicular and point-source industrial activities in the medium-sized Andean city of Manizales, Colombia. Annual fluxes of criteria pollutants, NMVOC, and greenhouse gases were estimated. Emissions were dominated by vehicular activity, with more than 90% of total estimated releases for the majority of air pollutants. On-road vehicular emissions for CO (43.4 Gg/yr) and NMVOC (9.6 Gg/yr) were mainly associated with the use of motorcycles (50% and 81% of total CO and NMVOC emissions respectively). Public transit buses were the main source of PM10 (47%) and NOx (48%). The per-capita emission index was significantly higher in Manizales than in other medium-sized cities, especially for NMVOC, CO, NOx and CO2. The unique mountainous terrain of Andean cities suggest that a methodology based on VSP model could give more realistic emission estimates, with additional model components that include slope and acceleration. Food and beverage facilities were the main contributors of point-source industrial emissions for PM10 (63%), SOx (55%) and NOx (45%), whereas scrap metal recycling had high emissions of CO (73%) and NMVOC (47%). Results provide the baseline for ongoing research in atmospheric modeling and urban air quality, in order to improve the understanding of air pollutant fluxes, transport and transformation in the atmosphere. In addition, this emission inventory could be used as a tool to identify areas of public health exposure and provide information for future decision makers.

  20. Product Guide/1972 [Air Pollution Control Association].

    ERIC Educational Resources Information Center

    Journal of the Air Pollution Control Association, 1971

    1971-01-01

    Reprinted in this pamphlet is the fifth annual directory of air pollution control products as compiled in the "Journal of the Air Pollution Control Association" for December, 1971. The 16-page guide lists manufacturers of emission control equipment and air pollution instrumentation under product classifications as derived from McGraw-Hill's "Air…

  1. EFFECTS OF CHANGING COALS ON THE EMISSIONS OF METAL HAZARDOUS AIR POLLUTANTS FROM THE COMBUSTION OF PULVERIZED COAL

    EPA Science Inventory

    The report discusses tests conducted at EPA's Air Pollution Prevention and Control Division to evaluate the effects of changing coals on emissions of metal hazardous air pollutants from coal-fired boilers. Six coals were burned in a 29 kW (100,000 Btu/hr) down-fired combustor und...

  2. 78 FR 32223 - Control of Air Pollution From Motor Vehicles: Tier 3 Motor Vehicle Emission and Fuel Standards

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-29

    ...-OAR-2011-0135; FRL-9818-5] RIN 2060-A0 Control of Air Pollution From Motor Vehicles: Tier 3 Motor Vehicle Emission and Fuel Standards AGENCY: Environmental Protection Agency (EPA). ACTION: Notice... extension of the public comment period for the proposed rule ``Control of Air Pollution from Motor Vehicles...

  3. Managing respiratory effects of air pollution.

    PubMed

    Watson, Bianca K; Sheppeard, Vicky

    2005-12-01

    Exposure to air pollution (both indoor and outdoor) has many potential adverse effects on human health. This article looks at the adverse respiratory health effects of air pollution and gives some guidance about management of exposure in susceptible individuals. Motor vehicle and industrial emissions are the primary contributors to outdoor air pollution in Australia. High levels of ozone and other pollutants can cause respiratory symptoms in susceptible individuals. Air quality advisory systems exist in most states. Clinicians can incorporate the health effects of air pollution, and awareness of advisory systems in the education of their susceptible patients and their carers. Asthma and chronic airways disease management plans should include provision for possible exposure to high pollution events and steps that can be taken to reduce exposure.

  4. Development of a wireless air pollution sensor package for aerial-sampling of emissions

    EPA Science Inventory

    A new sensor system for mobile and aerial emission sampling was developed for open area pollutant sources, such as prescribed forest burns. The sensor system, termed “Kolibri”, consists of multiple low-cost air quality sensors measuring CO2, CO, samplers for particulate matter wi...

  5. How to reach haze control targets by air pollutants emission reduction in the Beijing-Tianjin-Hebei region of China?

    PubMed

    Xu, Feng; Xiang, Nan; Higano, Yoshiro

    2017-01-01

    Currently, Haze is one of the greatest environmental problems with serious impacts on human health in China, especially in capital region (Beijing-Tianjin-Hebei region). To alleviate this problem, the Chinese government introduced a National Air Pollution Control Action Plan (NAPCAP) with air pollutants reduction targets by 2017. However, there is doubt whether these targets can be achieved once the plan is implemented. In this work, the effectiveness of NAPCAP is analyzed by developing models of the statistical relationship between PM2.5 concentrations and air pollutant emissions (SO2, NOx, smoke and dust), while taking into account wind and neighboring transfer impacts. The model can also identify ways of calculating the intended emission levels in the Beijing-Tianjin-Hebei area. The results indicate that haze concentration control targets will not be attained by following the NAPCAP, and that the amount of progress needed to meet the targets is unrealistic. A more appropriate approach to reducing air emissions is proposed, which addresses joint regional efforts.

  6. Regional air pollution over Malaysia

    NASA Astrophysics Data System (ADS)

    Krysztofiak, G.; Catoire, V.; Dorf, M.; Grossmann, K.; Hamer, P. D.; Marécal, V.; Reiter, A.; Schlager, H.; Eckhardt, S.; Jurkat, T.; Oram, D.; Quack, B.; Atlas, E.; Pfeilsticker, K.

    2012-12-01

    During the SHIVA (Stratospheric Ozone: Halogen Impacts in a Varying Atmosphere) campaign in Nov. and Dec. 2011 a number of polluted air masses were observed in the marine and terrestrial boundary layer (0 - 2 km) and in the free troposphere (2 - 12 km) over Borneo/Malaysia. The measurements include isoprene, CO, CO2, CH4, N2O, NO2, SO2 as primary pollutants, O3 and HCHO as secondary pollutants, and meteorological parameters. This set of trace gases can be used to fingerprint different sources of local and regional air pollution (e.g., biomass burning and fossil fuel burning, gas flaring on oil rigs, emission of ships and from urban areas, volcanic emissions, and biogenic emissions). Individual sources and location can be identified when the measurements are combined with a nested-grid regional scale chemical and meteorological model and lagrangian particle dispersion model (e.g., CCATT-BRAMS and FLEXPART). In the case of the former, emission inventories of the primary pollutants provide the basis for the trace gas simulations. In this region, the anthropogenic influence on air pollution seems to dominate over natural causes. For example, CO2 and CH4 often show strong correlations with CO, suggesting biomass burning or urban fossil fuel combustion dominates the combustion sources. The study of the CO/CO2 and CH4/CO ratios can help separate anthropogenic combustion from biomass burning pollution sources. In addition, these ratios can be used as a measure of combustion efficiency to help place the type of biomass burning particular to this region within the wider context of fire types found globally. On several occasions, CH4 enhancements are observed near the ocean surface, which are not directly correlated with CO enhancements thus indicating a non-combustion-related CH4 source. Positive correlations between SO2 and CO show the anthropogenic influence of oil rigs located in the South China Sea. Furthermore, SO2 enhancements are observed without any increase in CO

  7. Emissions inventory and scenario analyses of air pollutants in Guangdong Province, China

    NASA Astrophysics Data System (ADS)

    Chen, Hui; Meng, Jing

    2017-03-01

    Air pollution, causing significantly adverse health impacts and severe environmental problems, has raised great concerns in China in the past few decades. Guangdong Province faces major challenges to address the regional air pollution problem due to the lack of an emissions inventory. To fill this gap, an emissions inventory of primary fine particles (PM2.5) is compiled for the year 2012, and the key precursors (sulfur dioxide, nitrogen oxides) are identified. Furthermore, policy packages are simulated during the period of 2012‒2030 to investigate the potential mitigation effect. The results show that in 2012, SO2, NO x , and PM2.5 emissions in Guangdong Province were as high as (951.7, 1363.6, and 294.9) kt, respectively. Industrial production processes are the largest source of SO2 and PM2.5 emissions, and transport is the top contributor of NO x emissions. Both the baseline scenario and policy scenario are constructed based on projected energy growth and policy designs. Under the baseline scenario, SO2, NO x , and PM2.5 emissions will almost double in 2030 without proper emissions control policies. The suggested policies are categorized into end-of- pipe control in power plants (ECP), end-of-pipe control in industrial processes (ECI), fuel improvement (FI), energy efficiency improvement (EEI), substitution-pattern development (SPD), and energy saving options (ESO). With the implementation of all these policies, SO2, NO x , and PM2.5 emissions are projected to drop to (303.1, 585.4, and 102.4) kt, respectively, in 2030. This inventory and simulated results will provide deeper insights for policy makers to understand the present situation and the evolution of key emissions in Guangdong Province.

  8. Respiratory health effects of air pollution: update on biomass smoke and traffic pollution.

    PubMed

    Laumbach, Robert J; Kipen, Howard M

    2012-01-01

    Mounting evidence suggests that air pollution contributes to the large global burden of respiratory and allergic diseases, including asthma, chronic obstructive pulmonary disease, pneumonia, and possibly tuberculosis. Although associations between air pollution and respiratory disease are complex, recent epidemiologic studies have led to an increased recognition of the emerging importance of traffic-related air pollution in both developed and less-developed countries, as well as the continued importance of emissions from domestic fires burning biomass fuels, primarily in the less-developed world. Emissions from these sources lead to personal exposures to complex mixtures of air pollutants that change rapidly in space and time because of varying emission rates, distances from source, ventilation rates, and other factors. Although the high degree of variability in personal exposure to pollutants from these sources remains a challenge, newer methods for measuring and modeling these exposures are beginning to unravel complex associations with asthma and other respiratory tract diseases. These studies indicate that air pollution from these sources is a major preventable cause of increased incidence and exacerbation of respiratory disease. Physicians can help to reduce the risk of adverse respiratory effects of exposure to biomass and traffic air pollutants by promoting awareness and supporting individual and community-level interventions. Copyright © 2012 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  9. Historical and future emission of hazardous air pollutants (HAPs) from gas-fired combustion in Beijing, China.

    PubMed

    Xue, Yifeng; Nie, Lei; Zhou, Zhen; Tian, Hezhong; Yan, Jing; Wu, Xiaoqing; Cheng, Linglong

    2017-07-01

    The consumption of natural gas in Beijing has increased in the past decade due to energy structure adjustments and air pollution abatement. In this study, an integrated emission inventory of hazardous air pollutants (HAPs) emitted from gas-fired combustion in Beijing was developed for the period from 2000 to 2014 using a technology-based approach. Future emission trends were projected through 2030 based on current energy-related and emission control policies. We found that emissions of primary HAPs exhibited an increasing trend with the rapid increase in natural gas consumption. Our estimates indicated that the total emissions of NO X , particulate matter (PM) 10 , PM 2.5 , CO, VOCs, SO 2 , black carbon, Pb, Cd, Hg, As, Cr, Cu, Ni, Zn, polychlorinated dibenzo-p-dioxins and dibenzofurans, and benzo[a]pyrene from gas-fired combustion in Beijing were approximately 22,422 t, 1042 t, 781 t, 19,097 t, 653 t, 82 t, 19 t, 0.6 kg, 0.1 kg, 43 kg, 52 kg, 0.3 kg, 0.03 kg, 4.3 kg, 0.6 kg, 216 μg, and 242 g, respectively, in 2014. To mitigate the associated air pollution and health risks caused by gas-fired combustion, stricter emission standards must be established. Additionally, combustion optimization and flue gas purification system could be used for lowering NO X emissions from gas-fired combustion, and gas-fired facilities should be continuously monitored based on emission limits. Graphical abstract Spatial distribution and typical live photos of gas-fired boiler in Beijing.

  10. 40 CFR Table 8 to Subpart Ffff of... - Soluble Hazardous Air Pollutants

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 14 2013-07-01 2013-07-01 false Soluble Hazardous Air Pollutants 8...) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants: Miscellaneous Coating...

  11. 40 CFR Table 8 to Subpart Ffff of... - Soluble Hazardous Air Pollutants

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 14 2014-07-01 2014-07-01 false Soluble Hazardous Air Pollutants 8...) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants: Miscellaneous Coating...

  12. 40 CFR Table 9 to Subpart Ffff of... - Soluble Hazardous Air Pollutants

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 13 2014-07-01 2014-07-01 false Soluble Hazardous Air Pollutants 9...) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants: Miscellaneous Organic...

  13. 40 CFR Table 16 to Subpart Xxxx of... - Selected Hazardous Air Pollutants

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 13 2012-07-01 2012-07-01 false Selected Hazardous Air Pollutants 16...) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emissions Standards for Hazardous Air Pollutants: Rubber Tire Manufacturing...

  14. 40 CFR Table 8 to Subpart Ffff of... - Soluble Hazardous Air Pollutants

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 14 2012-07-01 2011-07-01 true Soluble Hazardous Air Pollutants 8...) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants: Miscellaneous Coating...

  15. 40 CFR Table 16 to Subpart Xxxx of... - Selected Hazardous Air Pollutants

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 13 2014-07-01 2014-07-01 false Selected Hazardous Air Pollutants 16...) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emissions Standards for Hazardous Air Pollutants: Rubber Tire Manufacturing...

  16. 40 CFR Table 16 to Subpart Xxxx of... - Selected Hazardous Air Pollutants

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 13 2013-07-01 2012-07-01 true Selected Hazardous Air Pollutants 16...) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emissions Standards for Hazardous Air Pollutants: Rubber Tire Manufacturing...

  17. 40 CFR Table 9 to Subpart Ffff of... - Soluble Hazardous Air Pollutants

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 13 2013-07-01 2012-07-01 true Soluble Hazardous Air Pollutants 9...) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants: Miscellaneous Organic...

  18. 40 CFR Table 8 to Subpart Ffff of... - Soluble Hazardous Air Pollutants

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 13 2011-07-01 2011-07-01 false Soluble Hazardous Air Pollutants 8...) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants: Miscellaneous Coating...

  19. Estimation of River Towboat Air Pollution in Saint Louis, Missouri

    DOT National Transportation Integrated Search

    1976-02-01

    The study gives an estimate of river towboat air pollution emissions for the St. Louis Air Pollution Study area. No emissions from secondary sources or from recreational boating on the river of other areas are considered. The emission estimate is bas...

  20. A Comparison of the Health Effects of Ambient Particulate Matter Air Pollution from Five Emission Sources.

    PubMed

    Hime, Neil J; Marks, Guy B; Cowie, Christine T

    2018-06-08

    This article briefly reviews evidence of health effects associated with exposure to particulate matter (PM) air pollution from five common outdoor emission sources: traffic, coal-fired power stations, diesel exhaust, domestic wood combustion heaters, and crustal dust. The principal purpose of this review is to compare the evidence of health effects associated with these different sources with a view to answering the question: Is exposure to PM from some emission sources associated with worse health outcomes than exposure to PM from other sources? Answering this question will help inform development of air pollution regulations and environmental policy that maximises health benefits. Understanding the health effects of exposure to components of PM and source-specific PM are active fields of investigation. However, the different methods that have been used in epidemiological studies, along with the differences in populations, emission sources, and ambient air pollution mixtures between studies, make the comparison of results between studies problematic. While there is some evidence that PM from traffic and coal-fired power station emissions may elicit greater health effects compared to PM from other sources, overall the evidence to date does not indicate a clear ‘hierarchy’ of harmfulness for PM from different emission sources. Further investigations of the health effects of source-specific PM with more advanced approaches to exposure modeling, measurement, and statistics, are required before changing the current public health protection approach of minimising exposure to total PM mass.

  1. 40 CFR Table 16 to Subpart Xxxx of... - Selected Hazardous Air Pollutants

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Selected Hazardous Air Pollutants 16...) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES National Emissions Standards for Hazardous Air Pollutants: Rubber Tire Manufacturing Pt. 63, Subpt...

  2. Global emissions of trace gases, particulate matter, and hazardous air pollutants from open burning of domestic waste.

    PubMed

    Wiedinmyer, Christine; Yokelson, Robert J; Gullett, Brian K

    2014-08-19

    The open burning of waste, whether at individual residences, businesses, or dump sites, is a large source of air pollutants. These emissions, however, are not included in many current emission inventories used for chemistry and climate modeling applications. This paper presents the first comprehensive and consistent estimates of the global emissions of greenhouse gases, particulate matter, reactive trace gases, and toxic compounds from open waste burning. Global emissions of CO2 from open waste burning are relatively small compared to total anthropogenic CO2; however, regional CO2 emissions, particularly in many developing countries in Asia and Africa, are substantial. Further, emissions of reactive trace gases and particulate matter from open waste burning are more significant on regional scales. For example, the emissions of PM10 from open domestic waste burning in China is equivalent to 22% of China's total reported anthropogenic PM10 emissions. The results of the emissions model presented here suggest that emissions of many air pollutants are significantly underestimated in current inventories because open waste burning is not included, consistent with studies that compare model results with available observations.

  3. Air Emission Inventory for the INEEL -- 1999 Emission Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zohner, Steven K

    2000-05-01

    This report presents the 1999 calendar year update of the Air Emission Inventory for the Idaho National Engineering and Environmental Laboratory (INEEL). The INEEL Air Emission Inventory documents sources and emissions of nonradionuclide pollutants from operations at the INEEL. The report describes the emission inventory process and all of the sources at the INEEL, and provides nonradionuclide emissions estimates for stationary sources.

  4. Are Changing Emission Patterns Across the Northern Hemisphere Influencing Long-range Transport Contributions to Background Air Pollution?

    EPA Science Inventory

    Air pollution reduction strategies for a region are complicated not only by the interplay of local emissions sources and several complex physical, chemical, dynamical processes in the atmosphere, but also hemispheric background levels of pollutants. Contrasting changes in emissio...

  5. Mercury emission trend influenced by stringent air pollutants regulation for coal-fired power plants in Korea

    NASA Astrophysics Data System (ADS)

    Pudasainee, Deepak; Kim, Jeong-Hun; Seo, Yong-Chil

    2009-12-01

    Regulatory control of mercury emission from anthropogenic sources has become a global concern in the recent past. Coal-fired power plants are one of the largest sources of anthropogenic mercury emission into the atmosphere. This paper summarizes the current reducing trend of mercury emission as co-beneficial effect by more stringent regulation changes to control primary air pollutants with introducing test results from the commercial coal-fired facilities and suggesting a guideline for future regulatory development in Korea. On average, mercury emission concentrations ranged 16.3-2.7 μg Sm -3, 2.4-1.1 μg Sm -3, 3.1-0.7 μg Sm -3 from anthracite coal-fired power plants equipped with electrostatic precipitator (ESP), bituminous coal-fired power plants with ESP + flue gas desulphurization (FGD) and bituminous coal-fired power plants with selective catalytic reactor (SCR) + cold side (CS) - ESP + wet FGD, respectively. Among the existing air pollution control devices, the best configuration for mercury removal in coal-fired power plants was SCR + CS - ESP + wet FGD, which were installed due to the stringent regulation changes to control primary air pollutants emission such as SO 2, NOx and dust. It was estimated that uncontrolled and controlled mercury emission from coal-fired power plants as 10.3 ton yr -1 and 3.2 ton yr -1 respectively. After the installation of ESP, FGD and SCR system, following the enforcement of the stringent regulation, 7.1 ton yr -1 of mercury emission has been reduced (nearly 69%) from coal-fired power plants as a co-benefit control. Based on the overall study, a sample guideline including emission limits were suggested which will be applied to develop a countermeasure for controlling mercury emission from coal-fired power plants.

  6. Air pollution exposure prediction approaches used in air pollution epidemiology studies.

    PubMed

    Özkaynak, Halûk; Baxter, Lisa K; Dionisio, Kathie L; Burke, Janet

    2013-01-01

    Epidemiological studies of the health effects of outdoor air pollution have traditionally relied upon surrogates of personal exposures, most commonly ambient concentration measurements from central-site monitors. However, this approach may introduce exposure prediction errors and misclassification of exposures for pollutants that are spatially heterogeneous, such as those associated with traffic emissions (e.g., carbon monoxide, elemental carbon, nitrogen oxides, and particulate matter). We review alternative air quality and human exposure metrics applied in recent air pollution health effect studies discussed during the International Society of Exposure Science 2011 conference in Baltimore, MD. Symposium presenters considered various alternative exposure metrics, including: central site or interpolated monitoring data, regional pollution levels predicted using the national scale Community Multiscale Air Quality model or from measurements combined with local-scale (AERMOD) air quality models, hybrid models that include satellite data, statistically blended modeling and measurement data, concentrations adjusted by home infiltration rates, and population-based human exposure model (Stochastic Human Exposure and Dose Simulation, and Air Pollutants Exposure models) predictions. These alternative exposure metrics were applied in epidemiological applications to health outcomes, including daily mortality and respiratory hospital admissions, daily hospital emergency department visits, daily myocardial infarctions, and daily adverse birth outcomes. This paper summarizes the research projects presented during the symposium, with full details of the work presented in individual papers in this journal issue.

  7. Air pollution from aircraft

    NASA Technical Reports Server (NTRS)

    Heywood, J. B.; Fay, J. A.; Chigier, N. A.

    1979-01-01

    A series of fundamental problems related to jet engine air pollution and combustion were examined. These include soot formation and oxidation, nitric oxide and carbon monoxide emissions mechanisms, pollutant dispension, flow and combustion characteristics of the NASA swirl can combustor, fuel atomization and fuel-air mixing processes, fuel spray drop velocity and size measurement, ignition and blowout. A summary of this work, and a bibliography of 41 theses and publications which describe this work, with abstracts, is included.

  8. Air Pollutant Emissions from Oil and Gas Production pads (Investigating Low Cost Passive Samplers)

    EPA Science Inventory

    To help achieve the goal of sustainable, environmentally responsible development of oil and gas resources, it isnecessary to understand the potential for air pollutant emissions from various extraction and production (E&P)processes at the upstream, wellpad level. Upstream oil and...

  9. Comparison of air pollutant emissions and household air quality in rural homes using improved wood and coal stoves

    NASA Astrophysics Data System (ADS)

    Du, Wei; Shen, Guofeng; Chen, Yuanchen; Zhu, Xi; Zhuo, Shaojie; Zhong, Qirui; Qi, Meng; Xue, Chunyu; Liu, Guangqing; Zeng, Eddy; Xing, Baoshan; Tao, Shu

    2017-10-01

    Air pollutant emissions, fuel consumption, and household air pollution were investigated in rural Hubei, central China, as a revisited evaluation of an intervention program to replace coal use by wood in gasifier stoves. Measured emission factors were comparable to the results measured two years ago when the program was initiated. Coal combustion produced significantly higher emissions of CO2, CH4, and SO2 compared with wood combustion; however, wood combustion in gasifier stoves had higher emissions of primary PM2.5 (particles with diameter less than 2.5 μm), Elemental Carbon (EC) and Organic Carbon (OC). In terms of potential impacts on climate, although the use of wood in gasifier stoves produced more black carbon (6.37 vs 910 gCO2e per day per capita from coal and wood use) and less SO2 (-684 vs -312), obvious benefits could be obtained owing to greater OC emissions (-15.4 vs -431), fewer CH4 emissions (865 vs 409) and, moreover, a reduction of CO2 emissions. The total GWC100 (Global Warming Potential over a time horizon of 100 years) would decrease by approximately 90% if coal use were replaced with renewable wood burned in gasifier stoves. However, similar levels of ambient particles and higher indoor OC and EC were found at homes using wood gasifier stoves compared to the coal-use homes. This suggests critical investigations on potential health impacts from the carbon-reduction intervention program.

  10. Are changing emission patterns across the Northern Hemisphere influencing long-range transport contributions to background air pollution?

    NASA Astrophysics Data System (ADS)

    Mathur, R.; Kang, D.; Napelenok, S. L.; Xing, J.; Hogrefe, C.

    2017-12-01

    Air pollution reduction strategies for a region are complicated not only by the interplay of local emissions sources and several complex physical, chemical, dynamical processes in the atmosphere, but also hemispheric background levels of pollutants. Contrasting changes in emission patterns across the globe (e.g. declining emissions in North America and Western Europe in response to implementation of control measures and increasing emissions across Asia due to economic and population growth) are resulting in heterogeneous changes in the tropospheric chemical composition and are likely altering long-range transport impacts and consequently background pollution levels at receptor regions. To quantify these impacts, the WRF-CMAQ model is expanded to hemispheric scales and multi-decadal model simulations are performed for the period spanning 1990-2010 to examine changes in hemispheric air pollution resulting from changes in emissions over this period. Simulated trends in ozone and precursor species concentrations across the U.S. and the Northern Hemisphere over the past two decades are compared with those inferred from available measurements during this period. Additionally, the decoupled direct method (DDM) in CMAQ, a first- and higher-order sensitivity calculation technique, is used to estimate the sensitivity of O3 to emissions from different source regions across the Northern Hemisphere. The seasonal variations in source region contributions to background O3 are then estimated from these sensitivity calculations and will be discussed. These source region sensitivities estimated from DDM are then combined with the multi-decadal simulations of O3 distributions and emissions trends to characterize the changing contributions of different source regions to background O3 levels across North America. This characterization of changing long-range transport contributions is critical for the design and implementation of tighter national air quality standards

  11. Air quality, primary air pollutants and ambient concentrations inventory for Romania

    NASA Astrophysics Data System (ADS)

    Năstase, Gabriel; Șerban, Alexandru; Năstase, Alina Florentina; Dragomir, George; Brezeanu, Alin Ionuț

    2018-07-01

    Air pollution is among the greatest risk factors for human health, but it also poses risks to the food security, the economy and the environment. The majority of the pollutants emitted by human activities derive from the production and use of fossil-fuel-based energy. Most energy-related emissions contain sulfur dioxide and nitrogen oxides. The principal source of sulfur dioxide originates from coal, and the main sources of nitrogen oxide emissions are power generation and use of vehicles. Other important pollutants are the inhalable coarse particles (PM10) and the fine particulate matter (PM2.5), which arises from the building sector. Over the last decade, since Romania joined the European Union on the 1st of January 2007, the use of fossil fuels has decreased dramatically, as consumers switched to either natural gas or biomass. This was as a result of the European Commission encouraging the member countries to make use of renewable sources (including biomass). To reduce the PM emissions, in April 2015 EC has extended the EcoDesign Directive to solid-fuel boilers and solid-fuel space heaters. The boilers need to generally meet certain requirements that will be introduced by 1 January 2020. In this article, we are highlighting the fluctuations in air pollution in Romania from the European WebDAB - EMAP database and trends in ambient concentrations of air pollutants using Romania's national air pollution monitoring network. Romania's Air Pollutants/Air Quality Monitoring Network consists of 142 automatic air quality monitoring stations. The results indicate that Romania's annual average mass emissions of CO decreased from 3186 Gg in 1990 to 774 in 2014 (decrease by <76%), SOx decreased from 1311 Gg-176 Gg (decrease by ∼60%), NOx decreased from 546 Gg to 218 (decrease by ∼87%), CO2 decreased from 66.226 Gg/year in 2007 to 38.916 Gg/year in 2014 (decrease by <41%).

  12. 78 FR 29815 - Control of Air Pollution From Motor Vehicles: Tier 3 Motor Vehicle Emission and Fuel Standards

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-21

    ...This action would establish more stringent vehicle emissions standards and reduce the sulfur content of gasoline beginning in 2017, as part of a systems approach to addressing the impacts of motor vehicles and fuels on air quality and public health. The proposed gasoline sulfur standard would make emission control systems more effective for both existing and new vehicles, and would enable more stringent vehicle emissions standards. The proposed vehicle standards would reduce both tailpipe and evaporative emissions from passenger cars, light-duty trucks, medium-duty passenger vehicles, and some heavy-duty vehicles. This would result in significant reductions in pollutants such as ozone, particulate matter, and air toxics across the country and help state and local agencies in their efforts to attain and maintain health-based National Ambient Air Quality Standards. Motor vehicles are an important source of exposure to air pollution both regionally and near roads. These proposed vehicle standards are intended to harmonize with California's Low Emission Vehicle program, thus creating a federal vehicle emissions program that would allow automakers to sell the same vehicles in all 50 states. The proposed vehicle standards would be implemented over the same timeframe as the greenhouse gas/fuel efficiency standards for light-duty vehicles, as part of a comprehensive approach toward regulating emissions from motor vehicles.

  13. Impacts of Air Pollution on Health in Eastern China: Implications for future air pollution and energy policies

    NASA Astrophysics Data System (ADS)

    Wang, X.; Mauzerall, D.

    2004-12-01

    Our objective is to establish the link between energy consumption and technologies, air pollution and resulting impacts on public health in eastern China. We quantify the impacts that air pollution in the Shandong region of eastern China has on public health in 2000 and quantify the benefits in improved air quality and health that could be obtained by 2020, relative to business-as-usual, through the implementation of new energy technology. We first develop a highly-resolved emission inventory for the year 2000 for the Shandong region of China including emissions from large point, area, mobile and biogenic sources. We use the Sparse Matrix Operator Kernel Emissions Modeling System (SMOKE) to process emissions from this inventory for use in the Community Multi-scale Air Quality modeling system (CMAQ) which we drive with the NCAR/PSU MM5 meso-scale meteorology model. We evaluate the inventory by comparing CMAQ results with available measurements of PM10 and SO2 from air pollution indices (APIs) reported in various Chinese municipalities during 2002-2004. We use epidemiological dose-response functions to quantify health impacts and values of a statistical life (VSL) and years-of-life-lost (YLL) to establish a range for the monetary value of these impacts. To examine health impacts and their monetary value, we focus explicitly on Zaozhuang, a coal-intensive city in the Shandong region of eastern China, and quantify the mortalities and morbidities resulting from air pollutants emitted from this city in 2000, and in 2020 using business-as-usual, best-available control technology, and advanced coal gasification technology scenarios. In all scenarios most health damages arise from exposure to particulate matter. We find that total health damages due to year 2000 anthropogenic emissions from Zaozhuang accounted for 4-10% of its GDP. If all health damages resulting from coal use were internalized in the market price of coal, the year 2000 price would have doubled. With no new

  14. Facilities Potentially Subject to the Secondary Aluminum National Emission Standards for Hazardous Air Pollutants (NESHAP)

    EPA Pesticide Factsheets

    This document contains a September 2001 list of sources potentially subject to the secondary aluminum production national emission standards for hazardous air pollutants (NESHAP). This list does not include auto salvage i.e. sweat furnaces.

  15. Probe into Gaseous Pollution and Assessment of Air Quality Benefit under Sector Dependent Emission Control Strategies over Megacities in Yangtze River Delta, China

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Xinyi; Gao, Yang; Fu, Joshua S.

    On February 29th 2012, China published its new National Ambient Air Quality Standard (CH-NAAQS) aiming at revising the standards and measurements for both gaseous pollutants including ozone (O3), nitrogen dioxide (NO2), and sulfur dioxide (SO2), and also particle pollutants including PM10 and PM2.5. In order to understand the air pollution status regarding this new standard, the integrated MM5/CMAQ modeling system was applied over Yangtze River Delta (YRD) within this study to examine the criteria gaseous pollutants listed in the new CH-NAAQS. Sensitivity simulations were also conducted to assess the responses of gaseous pollutants under 8 different sector-dependent emission reduction scenariosmore » in order to evaluate the potential control strategies. 2006 was selected as the simulation year in order to review the air quality condition at the beginning of China’s 11th Five-Year-Plan (FYP, from 2006 to 2010), and also compared with air quality status in 2010 as the end of 11th FYP to probe into the effectiveness of the national emission control efforts. Base case simulation showed distinct seasonal variation for gaseous pollutants: SO2, and NO2 were found to have higher surface concentrations in winter while O3 was found to have higher concentrations in spring and summer than other seasons. According to the analyses focused on 3 megacities within YRD, Shanghai, Nanjing, and Hangzhou, we found different air quality conditions among the cities: NO2 was the primary pollutant that having the largest number of days exceeding the CH-NAAQS daily standard (80 μg/m3) in Shanghai (59 days) and Nanjing (27 days); SO2 was the primary pollutant with maximum number of days exceeding daily air quality standard (150 μg/m3) in Hangzhou (28 days), while O3 exceeding the daily maximum 8-hour standard (160 μg/m3) for relatively fewer days in all the three cities (9 days in Shanghai, 14 days in Nanjing, and 11 days in Hangzhou). Simulation results from predefined potential

  16. 76 FR 15266 - National Emission Standards for Hazardous Air Pollutants; Notice of Reconsideration

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-21

    ... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Parts 60 and 63 [EPA-HQ-OAR-2002-0058; EPA-HQ-OAR-2006-0790; EPA-HQ-OAR-2003-0119; FRL- 9272-7] RIN 2060-AQ25; RIN 2060-AM44; RIN 2060-AO12 National Emission Standards for Hazardous Air Pollutants; Notice of Reconsideration AGENCY: Environmental Protection Agency...

  17. 75 FR 28227 - National Emission Standards for Hazardous Air Pollutants: Gold Mine Ore Processing and Production...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-20

    ... published a proposed rule for mercury emissions from the gold mine ore processing and production area source... proposed rule (75 FR 22470). Several parties requested that EPA extend the comment period. EPA has granted...-AP48 National Emission Standards for Hazardous Air Pollutants: Gold Mine Ore Processing and Production...

  18. Present and future emissions of air pollutants in China:. SO 2, NO x, and CO

    NASA Astrophysics Data System (ADS)

    Streets, D. G.; Waldhoff, S. T.

    As part of the CHINA-MAP program, sponsored by the US National Aeronautics and Space Administration, regional inventories of air pollutants emitted in China are being characterized, in order that the atmospheric chemistry over China can be more fully understood and the resulting ambient concentrations in Chinese cities and the deposition levels to Chinese ecosystems be determined with better confidence. This paper presents estimates of emissions of three of the major air pollutants in China: sulfur dioxide (SO 2), nitrogen oxides (NO x), and carbon monoxide (CO). Emissions are estimated for each of the 29 regions of China covered by the RAINS-ASIA simulation model, including Hong Kong and Taiwan. All sectors of the Chinese economy are considered, including the combustion of biofuels in rural homes. Data for 1990 and 1995 are presented, as well as two projections for the year 2020 under alternative assumptions about levels of environmental control. Sulfur dioxide emissions are projected to increase from 25.2 mt in 1995 to 30.6 mt in 2020, provided emission controls are implemented on major power plants; if this does not happen, emissions could increase to as much as 60.7 mt by 2020. Emissions of nitrogen oxides are projected to increase from 12.0 mt in 1995 to somewhere in the range of 26.6-29.7 mt by 2020, with little in the way of pollution controls or other emission reduction measures in place. Emissions of carbon monoxide are projected to decline from 115 mt in 1995 to 96.8 mt in 2020, due to more efficient combustion techniques, especially in the transportation sector; if these measures are not realized, carbon monoxide emissions could increase to 130 mt by 2020. Emissions of all three species are concentrated in the populated and industrialized areas of China: the Northeastern Plain, the East Central and Southeastern provinces, and the Sichuan Basin.

  19. IN VIVO EVIDENCE OF FREE RADICAL FORMATION IN THE RAT LUNG AFTER EXPOSURE TO AN EMISSION SOURCE AIR POLLUTION PARTICLE

    EPA Science Inventory

    Exposure to air pollution particles can be associated with increased human morbidity and mortality. The mechanism(s) of lung injury remains unknown. We tested the hypothesis that lung exposure to oil fly ash (an emission source air pollution particle) causes in vivo free radical ...

  20. 78 FR 14457 - National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-06

    ... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Parts 60 and 63 [EPA-HQ-OAR-2008-0708, FRL-9756-4] RIN 2060-AQ58 National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion Engines; New Source Performance Standards for Stationary Internal Combustion Engines Correction In rule...

  1. Assessment of air pollutant emissions from the Akrotiri landfill site (Chania, Greece).

    PubMed

    Chalvatzaki, E; Lazaridis, M

    2010-09-01

    Air pollutants emitted from landfills affect air quality, contribute to the greenhouse effect and may cause serious problems to human health under certain circumstances. The current study was focused on the determination of air emissions from the Akrotiri landfill site which is located in the Akrotiri area (Chania, Greece). The landfill consists of two phases, phase A (first phase) which is currently closed (operational between 2003 and 2007) and phase B (second phase, operation between 2007 and (foreseen) 2013). Three different emission models (the EPA LandGEM model, the triangular model and the stoichiometric model) were used for the quantification of emissions. The LandGEM 3.02 software was further adopted and used in conjunction with the long-term dispersion model ISC3-LT for the evaluation of the dispersion of gaseous chemical components from the landfill. The emission and meteorological conditions under which the models were applied were based on the worst-case emission scenario. Furthermore, the concentration of hydrogen sulfide, vinyl chloride and benzene were determined in and around the landfill site. The concentrations of hydrogen sulfide and benzene were calculated to be far below the limit value proposed by the World Health Organization (WHO) for human health safety. However, the vinyl chloride concentrations were above the WHO reference lifetime exposure health criteria for the phase B area.

  2. "The Incorporation of National Emission Inventories into Version 2 of the Hemispheric Transport of Air Pollutants Inventory"

    EPA Science Inventory

    EPA’s National Emission Inventory has been incorporated into the Emission Database for Global Atmospheric Research-Hemispheric Transport of Air Pollutants (EDGAR-HTAP) version 2. This work involves the creation of a detailed mapping of EPA Source Classification Codes (SCC) to the...

  3. Global emissions of trace gases, particulate matter, and hazardous air pollutants from open burning of domestic waste

    EPA Science Inventory

    The open burning of waste, whether at individual residences, businesses, or dump sites, is a large source of air pollutants. These emissions, however, are not included in many current emission inventories used in chemistry and climate modeling applications. This paper presents th...

  4. HTAP_v2: a mosaic of regional and global emission gridmaps for 2008 and 2010 to study hemispheric transport of air pollution

    NASA Astrophysics Data System (ADS)

    Janssens-Maenhout, G.; Crippa, M.; Guizzardi, D.; Dentener, F.; Muntean, M.; Pouliot, G.; Keating, T.; Zhang, Q.; Kurokawa, J.; Wankmüller, R.; Denier van der Gon, H.; Klimont, Z.; Frost, G.; Darras, S.; Koffi, B.

    2015-04-01

    The mandate of the Task Force Hemispheric Transport of Air Pollution (HTAP) under the Convention on Long-Range Transboundary Air Pollution (CLRTAP) is to improve the scientific understanding of the intercontinental air pollution transport, to quantify impacts on human health, vegetation and climate, to identify emission mitigation options across the regions of the Northern Hemisphere, and to guide future policies on these aspects. The harmonization and improvement of regional emission inventories is imperative to obtain consolidated estimates on the formation of global-scale air pollution. An emissions dataset has been constructed using regional emission gridmaps (annual and monthly) for SO2, NOx, CO, NMVOC, NH3, PM10, PM2.5, BC and OC for the years 2008 and 2010, with the purpose of providing consistent information to global and regional scale modelling efforts. This compilation of different regional gridded inventories, including the Environmental Protection Agency (EPA)'s for USA, EPA and Environment Canada's for Canada, the European Monitoring and Evaluation Programme (EMEP) and Netherlands Organisation for Applied Scientific Research (TNO)'s for Europe, and the Model Inter-comparison Study in Asia (MICS-Asia)'s for China, India and other Asian countries, was gap-filled with the emission gridmaps of the Emissions Database for Global Atmospheric Research (EDGARv4.3) for the rest of the world (mainly South-America, Africa, Russia and Oceania). Emissions from seven main categories of human activities (power, industry, residential, agriculture, ground transport, aviation and shipping) were estimated and spatially distributed on a common grid of 0.1° × 0.1° longitude-latitude, to yield monthly, global, sector-specific gridmaps for each substance and year. The HTAP_v2.2 air pollutant gridmaps are considered to combine latest available regional information within a complete global dataset. The disaggregation by sectors, high spatial and temporal resolution and

  5. [Implementation results of emission standards of air pollutants for thermal power plants: a numerical simulation].

    PubMed

    Wang, Zhan-Shan; Pan, Li-Bo

    2014-03-01

    The emission inventory of air pollutants from the thermal power plants in the year of 2010 was set up. Based on the inventory, the air quality of the prediction scenarios by implementation of both 2003-version emission standard and the new emission standard were simulated using Models-3/CMAQ. The concentrations of NO2, SO2, and PM2.5, and the deposition of nitrogen and sulfur in the year of 2015 and 2020 were predicted to investigate the regional air quality improvement by the new emission standard. The results showed that the new emission standard could effectively improve the air quality in China. Compared with the implementation results of the 2003-version emission standard, by 2015 and 2020, the area with NO2 concentration higher than the emission standard would be reduced by 53.9% and 55.2%, the area with SO2 concentration higher than the emission standard would be reduced by 40.0%, the area with nitrogen deposition higher than 1.0 t x km(-2) would be reduced by 75.4% and 77.9%, and the area with sulfur deposition higher than 1.6 t x km(-2) would be reduced by 37.1% and 34.3%, respectively.

  6. Contribution of biomass combustion to air pollutant emissions =

    NASA Astrophysics Data System (ADS)

    Goncalves, Catia Vanessa Maio

    In Portugal, it was estimated that around 1.95 Mton/year of wood is used in residential wood burning for heating and cooking. Additionally, in the last decades, burnt forest area has also been increasing. These combustions result in high levels of toxic air pollutants and a large perturbation of atmospheric chemistry, interfere with climate and have adverse effects on health. Accurate quantification of the amounts of trace gases and particulate matter emitted from residential wood burning, agriculture and garden waste burning and forest fires on a regional and global basis is essential for various purposes, including: the investigation of several atmospheric processes, the reporting of greenhouse gas emissions, and quantification of the air pollution sources that affect human health at regional scales. In Southern Europe, data on detailed emission factors from biomass burning are rather inexistent. Emission inventories and source apportionment, photochemical and climate change models use default values obtained for US and Northern Europe biofuels. Thus, it is desirable to use more specific locally available data. The objective of this study is to characterise and quantify the contribution of biomass combustion sources to atmospheric trace gases and aerosol concentrations more representative of the national reality. Laboratory (residential wood combustion) and field (agriculture/garden waste burning and experimental wildland fires) sampling experiments were carried out. In the laboratory, after the selection of the most representative wood species and combustion equipment in Portugal, a sampling program to determine gaseous and particulate matter emission rates was set up, including organic and inorganic aerosol composition. In the field, the smoke plumes from agriculture/garden waste and experimental wildland fires were sampled. The results of this study show that the combustion equipment and biofuel type used have an important role in the emission levels and

  7. Advection-diffusion model for the simulation of air pollution distribution from a point source emission

    NASA Astrophysics Data System (ADS)

    Ulfah, S.; Awalludin, S. A.; Wahidin

    2018-01-01

    Advection-diffusion model is one of the mathematical models, which can be used to understand the distribution of air pollutant in the atmosphere. It uses the 2D advection-diffusion model with time-dependent to simulate air pollution distribution in order to find out whether the pollutants are more concentrated at ground level or near the source of emission under particular atmospheric conditions such as stable, unstable, and neutral conditions. Wind profile, eddy diffusivity, and temperature are considered in the model as parameters. The model is solved by using explicit finite difference method, which is then visualized by a computer program developed using Lazarus programming software. The results show that the atmospheric conditions alone influencing the level of concentration of pollutants is not conclusive as the parameters in the model have their own effect on each atmospheric condition.

  8. Reducing Air Pollution from International Transportation

    EPA Pesticide Factsheets

    Because of their reliance on petroleum-based fuels and their dramatic growth rates in recent decades, air and sea transport are responsible for significant emissions of both traditional air pollutants and greenhouse gases.

  9. Paper and Other Web Coating National Emission Standards for Hazardous Air Pollutants (NESHAP) Questions and Answers

    EPA Pesticide Factsheets

    This May 2003 document contains questions and answers on the Paper and Web Coating National Emission Standards for Hazardous Air Pollutants (NESHAP) regulation. The questions cover topics such as compliance, applicability, and initial notification.

  10. 78 FR 22369 - National Emissions Standards for Hazardous Air Pollutants: Mineral Wool Production and Wool...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-15

    ... Emissions Standards for Hazardous Air Pollutants: Mineral Wool Production and Wool Fiberglass Manufacturing... Fiberglass Manufacturing (Subpart NNN) major source rules? A. Subpart DDD--Mineral Wool Production Major... Wool Production Major Source Rule B. Subpart NNN--Wool Fiberglass Manufacturing Major Source Rule VIII...

  11. Mercury and Air Pollution: A Bibliography With Abstracts.

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Research Triangle Park, NC. Office of Air Programs.

    The Air Pollution Technical Information Center (APTIC) of the Office of Air Programs has selected and compiled this bibliography of abstracts on mercury and air pollution. The abstracted documents are considered representative of available literature, although not all-inclusive. They are grouped into eleven categories: (1) Emission Sources, (2)…

  12. Effects of Automobile Emissions on Air Pollution in the United States

    NASA Astrophysics Data System (ADS)

    Cohen, Ryan; Singh, Ramesh

    2016-07-01

    Currently, about more than 253,000,000 automobiles and trucks, some are new, old, gas and electric, ply on the roads in the United States of America. Around the world, human activities and energy demand are the main sources for the air pollution and ozone depletion, causing dense haze, fog and smog especially during winter season in the country like China and India and also observed in different parts of the world. In recent years, automakers have been pushed by new governmental regulations and global expectations to create more fuel-efficient vehicles that burn less fossil fuels and create fewer harmful emissions. Automakers are exploring alternative fuel options such as hydrogen, natural gas, hybrids, and completely electric vehicles. Since the Nissan Leaf's introduction in 2010, fully electric vehicles have become widely produced and just fewer than 400,000 fully electric cars have been sold in the United States. Taking the influx of more fuel-efficient and alternative energy vehicles in the market into account, we have analyzed satellite and ground observed atmospheric pollution and greenhouse gases during 2009-2014 in the United States of America. Our results show that the increasing population of hybrid and fuel efficient vehicles have cut down the atmospheric pollution and greenhouse emissions in US in general, whereas in California the pollution level has increased as a result frequency of fog and haze events are seen during winter season. We will present a comparison of atmospheric pollution over US and California State in view of the increasing hybrid and fuel efficient vehicles.

  13. European Union emission inventory report 1990-2008 : under the UNECE Convention on Long-range Transboundary Air Pollution (LRTAP)

    DOT National Transportation Integrated Search

    2010-07-01

    This report describes the EU27 emission trends for : a number of air pollutants for the period 19902008. : An improved gap-filling methodology used in : compiling this year's EU27 emission inventory : means that for the first time a complete...

  14. A review of methods for predicting air pollution dispersion

    NASA Technical Reports Server (NTRS)

    Mathis, J. J., Jr.; Grose, W. L.

    1973-01-01

    Air pollution modeling, and problem areas in air pollution dispersion modeling were surveyed. Emission source inventory, meteorological data, and turbulent diffusion are discussed in terms of developing a dispersion model. Existing mathematical models of urban air pollution, and highway and airport models are discussed along with their limitations. Recommendations for improving modeling capabilities are included.

  15. Off-Site Waste and Recovery Operations: National Emission Standards for Hazardous Air Pollutants (NESHAP) Fact Sheets

    EPA Pesticide Factsheets

    This page contains July 1996 and February 2015 fact sheets with information regarding the final National Emission Standards for Hazardous Air Pollutants (NESHAP) regulations. This document provides a summary of the information for these regulations.

  16. Halogenated Solvent Cleaning Compliance Assistance Memoranda for the National Emission Standards for Hazardous Air Pollutants (NESHAP)

    EPA Pesticide Factsheets

    This page contains three documents, one from 1997, one from 1999, and one from 2001, that provide further clarification on complying with the National Emission Standards for Hazardous Air Pollutants (NESHAP) for Halogenated Solvent Cleaning.

  17. Evaluation of emission control strategies to reduce ozone pollution in the Paso del Norte region using a photochemical air quality modeling system

    NASA Astrophysics Data System (ADS)

    Valenzuela, Victor Hugo

    Air pollution emissions control strategies to reduce ozone precursor pollutants are analyzed by applying a photochemical modeling system. Simulations of air quality conditions during an ozone episode which occurred in June, 2006 are undertaken by increasing or reducing area source emissions in Ciudad Juarez, Chihuahua, Mexico. Two air pollutants are primary drivers in the formation of tropospheric ozone. Oxides of nitrogen (NOx) and volatile organic compounds (VOC) undergo multiple chemical reactions under favorable meteorological conditions to form ozone, which is a secondary pollutant that irritates respiratory systems in sensitive individuals especially the elderly and young children. The U.S. Environmental Protection Agency established National Ambient Air Quality Standards (NAAQS) to limit ambient air pollutants such as ozone by establishing an 8-hour average concentration of 0.075 ppm as the threshold at which a violation of the standard occurs. Ozone forms primarily due reactions in the troposphere of NOx and VOC emissions generated primarily by anthropogenic sources in urban regions. Data from emissions inventories indicate area sources account for ˜15 of NOx and ˜45% of regional VOC emissions. Area sources include gasoline stations, automotive paint bodyshops and nonroad mobile sources. Multiplicity of air pollution emissions sources provides an opportunity to investigate and potentially implement air quality improvement strategies to reduce emissions which contribute to elevated ozone concentrations. A baseline modeling scenario was established using the CAMx photochemical air quality model from which a series of sensitivity analyses for evaluating air quality control strategies were conducted. Modifications to area source emissions were made by varying NOx and / or VOC emissions in the areas of particular interest. Model performance was assessed for each sensitivity analysis. Normalized bias (NB) and normalized error (NE) were used to identify

  18. 77 FR 46371 - National Emission Standards for Hazardous Air Pollutants for the Portland Cement Manufacturing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-03

    ...-AQ93 National Emission Standards for Hazardous Air Pollutants for the Portland Cement Manufacturing... Portland Cement Manufacturing Industry and Standards of Performance for Portland Cement Plants,'' which was... Manufacturing Industry and Standards of Performance for Portland Cement Plants'' under Docket ID No. EPA-HQ-OAR...

  19. 76 FR 42613 - National Emission Standards for Hazardous Air Pollutants for Polyvinyl Chloride and Copolymers...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-19

    ... National Emission Standards for Hazardous Air Pollutants for Polyvinyl Chloride and Copolymers Production... Polyvinyl Chloride and Copolymers Production is being extended for 14 days. DATES: Comments. The public... for the May 20, 2011, Proposed Polyvinyl Chloride and Copolymers Production Rule, the EPA is extending...

  20. Transport and urban air pollution in India.

    PubMed

    Badami, Madhav G

    2005-08-01

    The rapid growth in motor vehicle activity in India and other rapidly industrializing low-income countries is contributing to high levels of urban air pollution, among other adverse socioeconomic, environmental, health, and welfare impacts. This paper first discusses the local, regional, and global impacts associated with air pollutant emissions resulting from motor vehicle activity, and the technological, behavioral, and institutional factors that have contributed to these emissions, in India. The paper then discusses some implementation issues related to various policy measures that have been undertaken, and the challenges of the policy context. Finally, the paper presents insights and lessons based on the recent Indian experience, for better understanding and more effectively addressing the transport air pollution problem in India and similar countries, in a way that is sensitive to their needs, capabilities, and constraints.

  1. Wildfire air pollution hazard during the 21st century

    NASA Astrophysics Data System (ADS)

    Knorr, Wolfgang; Dentener, Frank; Lamarque, Jean-François; Jiang, Leiwen; Arneth, Almut

    2017-07-01

    Wildfires pose a significant risk to human livelihoods and are a substantial health hazard due to emissions of toxic smoke. Previous studies have shown that climate change, increasing atmospheric CO2, and human demographic dynamics can lead to substantially altered wildfire risk in the future, with fire activity increasing in some regions and decreasing in others. The present study re-examines these results from the perspective of air pollution risk, focussing on emissions of airborne particulate matter (PM2. 5), combining an existing ensemble of simulations using a coupled fire-dynamic vegetation model with current observation-based estimates of wildfire emissions and simulations with a chemical transport model. Currently, wildfire PM2. 5 emissions exceed those from anthropogenic sources in large parts of the world. We further analyse two extreme sets of future wildfire emissions in a socio-economic, demographic climate change context and compare them to anthropogenic emission scenarios reflecting current and ambitious air pollution legislation. In most regions of the world, ambitious reductions of anthropogenic air pollutant emissions have the potential to limit mean annual pollutant PM2. 5 levels to comply with World Health Organization (WHO) air quality guidelines for PM2. 5. Worst-case future wildfire emissions are not likely to interfere with these annual goals, largely due to fire seasonality, as well as a tendency of wildfire sources to be situated in areas of intermediate population density, as opposed to anthropogenic sources that tend to be highest at the highest population densities. However, during the high-fire season, we find many regions where future PM2. 5 pollution levels can reach dangerous levels even for a scenario of aggressive reduction of anthropogenic emissions.

  2. National Emission Standards for Hazardous Air Pollutants - Radionuclide Emissions, Calendar Year 2010

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NSTec Ecological and Environmental Monitoring

    2011-06-30

    The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office operates the Nevada National Security Site (NNSS, formerly the Nevada Test Site) and North Las Vegas Facility (NLVF). From 1951 through 1992, the NNSS was the continental testing location for U.S. nuclear weapons. The release of radionuclides from NNSS activities has been monitored since the initiation of atmospheric testing. Limitation to underground detonations after 1962 greatly reduced radiation exposure to the public surrounding the NNSS. After nuclear testing ended in 1992, NNSS radiation monitoring focused on detecting airborne radionuclides from historically contaminated soils. These radionuclides are derived frommore » re-suspension of soil (primarily by wind) and emission of tritium-contaminated soil moisture through evapotranspiration. Low amounts of tritium are also emitted to air at the NLVF, an NNSS support complex in North Las Vegas. To protect the public from harmful levels of man-made radiation, the Clean Air Act, National Emission Standards for Hazardous Air Pollutants (NESHAP) (Title 40 Code of Federal Regulations [CFR] Part 61 Subpart H) (CFR, 2010a) limits the release of radioactivity from a U.S. Department of Energy (DOE) facility to that which would cause 10 millirem per year (mrem/yr) effective dose equivalent to any member of the public. This limit does not include radiation unrelated to NNSS activities. Unrelated doses could come from naturally occurring radioactive elements, from sources such as medically or commercially used radionuclides, or from sources outside of the United States, such as those from the damaged Fukushima nuclear power plant in Japan. Because this report is intended to discuss radioactive air emissions during calendar year 2010, data on radionuclides in air from the 2011 Fukushima nuclear power plant releases are not presented but will be included in the report for calendar year 2011. The NNSS demonstrates compliance with the

  3. Development of reduction scenarios for criteria air pollutants emission in Tehran Traffic Sector, Iran.

    PubMed

    Mohammadiha, Amir; Malakooti, Hossein; Esfahanian, Vahid

    2018-05-01

    Transport-related pollution as the main source of air pollution must be reduced in Tehran mega-city. The performance of various developed scenarios including BAU (Business As Usual) as baseline scenario, ECV (Elimination of carburetor equipped Vehicle), NEM (New Energy Motorcycles), HES (Higher Emission Standard), VCR (Vehicle Catalyst Replacement), FQE (Fuel Quality Enhancement), DPF (Diesel Particulate Filter) and TSA (Total Scenarios Aggregation) are evaluated by International Vehicle Model up to 2028. In the short term, the ECV, VCR, and FQE scenarios provided high performance in CO, VOCs and NOx emissions control. Also FQE has an excellent effect on SOx emission reduction (86%) and DPF on PM emissions (20%). In the mid-term, the VCR, ECV, and FQE scenarios were presented desirable mean emission reduction on CO, VOCs, and NOx. Moreover, NOx emission reduction of DPF scenario is the most common (14%). Again FQE scenario proves to have great effect on SOx emission reduction in mid-term (86%), DPF and HES scenarios on PM (DPF: 49% and HES: 17%). Finally for the long term, VCR, ECV, FQE, and NEM scenarios were shown good performance in emission control on CO, VOCs and NOx. For SOx only FQE has a good effect in all time periods (FQE: 86%) and DPF and HES scenarios have the best effect on PM emission reduction respectively (DPF: 51% and HES: 27%) compared with BAU scenario. However, DPF scenario increases 12% SOx emission in long-term (2028). It can be generally concluded that VCR and ECV scenarios would achieve a significant reduction on gaseous pollutants emission except for SOx in general and FQE scenarios have desirable performance for all gaseous pollutants in the short term and also for SOx and VOCs in long term. In addition, the DPF and HES would be desirable scenario for emission control on PM in Tehran Traffic Sector. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. 75 FR 42676 - National Emission Standards for Hazardous Air Pollutants for Major Sources: Industrial...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-22

    ... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Parts 60 and 63 [EPA-HQ-OAR-2002-0058; EPA-HQ-OAR-2006-0790; EPA-HQ-OAR-2003-0119; FRL- 9178-2] RIN 2060-AG69, RIN 2060-AM44, RIN 2060-AO12 National Emission Standards for Hazardous Air Pollutants for Major Sources: Industrial, Commercial, and Institutional Boilers...

  5. [Synergistic emission reduction of chief air pollutants and greenhouse gases-based on scenario simulations of energy consumptions in Beijing].

    PubMed

    Xie, Yuan-bo; Li, Wei

    2013-05-01

    It is one of the common targets and important tasks for energy management and environmental control of Beijing to improve urban air quality while reducing the emissions of greenhouse gases (GHG). Here, based on the interim and long term developmental planning and energy structure of the city, three energy consumption scenarios in low, moderate and high restrictions were designed by taking the potential energy saving policies and environmental targets into account. The long-range energy alternatives planning (LEAP) model was employed to predict and evaluate reduction effects of the chief air pollutants and GHG during 2010 to 2020 under the three given scenarios. The results showed that if urban energy consumption system was optimized or adjusted by exercising energy saving and emission reduction and pollution control measures, the predicted energy uses will be reduced by 10 to 30 million tons of coal equivalents by 2020. Under the two energy scenarios with moderate and high restrictions, the anticipated emissions of SO2, NOx, PM10, PM2.5, VOC and GHG will be respectively reduced to 71 to 100.2, 159.2 to 218.7, 89.8 to 133.8, 51.4 to 96.0, 56.4 to 74.8 and 148 200 to 164 700 thousand tons. Correspondingly, when compared with the low-restriction scenario, the reducing rate will be 53% to 67% , 50% to 64% , 33% to 55% , 25% to 60% , 41% to 55% and 26% to 34% respectively. Furthermore, based on a study of synergistic emission reduction of the air pollutants and GHG, it was proposed that the adjustment and control of energy consumptions shall be intensively developed in the three sectors of industry, transportation and services. In this way the synergistic reduction of the emissions of chief air pollutants and GHG will be achieved; meanwhile the pressures of energy demands may be deliberately relieved.

  6. National Emission Standards for Hazardous Air Pollutants (NESHAP); Asbestos NESHAP Revision: 1990 Final Rule (55 FR 48406)

    EPA Pesticide Factsheets

    This document is a copy of the Federal Register publication of the November 20, 1990 Final Rule of Asbestos National Emission Standards for Hazardous Air Pollutants (NESHAP) Revision for the Asbestos NESHAP.

  7. [Ambient air pollution of territories of children preschool institutions by emissions of vehicle components and health of children population].

    PubMed

    Makarov, O A; Zimina, A N; Nenakhova, E V

    The aim of this study was the assessment of levels of pollution of territories of preschool educational institutions (PEI) by components of vehicle emissions, in dependence on their locations relatively to highways with different traffic load and, in this regard, the assessment of children health according to the incidence on the seeking medical advice. To achieve this goal there were solved following tasks: to assess air pollution levels of PEI territories by components of vehicle emissions; to evaluate levels and the structure of morbidity rate according to seeking medical advice by children attending observed PEI. In the article there is presented the evaluation of air pollution levels of the components of vehicle emissions territories 4 PEI of the city of Irkutsk located near to highways with different intensity the road transport load. The research results were obtained with the use of «Methodics for the determination vehicle emissions for summary calculations of ambient air pollution in cities», which allows to determine the maximum emissions of a moving vehicle per time unit (g/s) for the main combustion components and with following use of software «Superhighway -city» to calculate surface concentrations of considered pollutants in the surface ambient air layer (1 m) in MPC proportions. The highest levels of contamination on the content of nitric oxide and benzo- (a)-pyrene (4 and 6,5 MPC respectively) are registered in the territories adjacent to the PEI motorways with high load tracking. To assess the morbidity rate according to seeking medical advice by children attending PEI with different road transport load there were used records from outpatient medical cards «Medical card of the child» (f.112/y). Morbidity rate according to seeking medical advice was evaluated in dynamics throughout five years and calculated per 1000 cases. The total sample size accounted for 670 children. The highest morbidity incidence rate levels according both to seeking

  8. Study Uncovers Dirty Little Secret: Soil Emissions are Much-Bigger-than-Expected Component of Air Pollution

    NASA Technical Reports Server (NTRS)

    Stricherz, Vince

    2005-01-01

    Nitrogen oxides produced by huge fires and fossil fuel combustion are a major component of air pollution. They are the primary ingredients in ground-level ozone, a pollutant harmful to human health and vegetation. But new research led by a University of Washington atmospheric scientist shows that, in some regions, nitrogen oxides emitted by the soil are much greater than expected and could play a substantially larger role in seasonal air pollution than previously believed. Nitrogen oxide emissions total more than 40 million metric tons worldwide each year, with 64 percent coming from fossil fuel combustion, 14 percent from burning and a surprising 22 percent from soil, said Lyatt Jaegle, a UW assistant professor of atmospheric sciences. The new research shows that the component from soil is about 70 percent greater than scientists expected. Instead of relying on scattered ground-based measurements of burning and combustion and then extrapolating a global total for nitrogen oxide emissions, the new work used actual observations recorded in 2000 by the Global Ozone Monitoring Experiment aboard the European Space Agency's European Remote Sensing 2 satellite. Nitrogen oxide emissions from fossil fuel combustion are most closely linked to major population centers and show up in the satellite's ozone-monitoring measurements of nitrogen dioxide, part of the nitrogen oxides family.

  9. Air Pollution Control Policies in China: A Retrospective and Prospects.

    PubMed

    Jin, Yana; Andersson, Henrik; Zhang, Shiqiu

    2016-12-09

    With China's significant role on pollution emissions and related health damage, deep and up-to-date understanding of China's air pollution policies is of worldwide relevance. Based on scientific evidence for the evolution of air pollution and the institutional background of environmental governance in China, we examine the development of air pollution control policies from the 1980s and onwards. We show that: (1) The early policies, until 2005, were ineffective at reducing emissions; (2) During 2006-2012, new instruments which interact with political incentives were introduced in the 11th Five-Year Plan, and the national goal of reducing total sulfur dioxide (SO₂) emissions by 10% was achieved. However, regional compound air pollution problems dominated by fine particulate matter (PM 2.5 ) and ground level ozone (O₃) emerged and worsened; (3) After the winter-long PM 2.5 episode in eastern China in 2013, air pollution control policies have been experiencing significant changes on multiple fronts. In this work we analyze the different policy changes, the drivers of changes and key factors influencing the effectiveness of policies in these three stages. Lessons derived from the policy evolution have implications for future studies, as well as further reforming the management scheme towards air quality and health risk oriented directions.

  10. California State Implementation Plan; San Diego County Air Pollution Control District; VOC Emissions from Polyester Resin Operations

    EPA Pesticide Factsheets

    EPA is taking final action to approve revisions to the San Diego County Air Pollution Control District (SDCAPCD) portion of the California SIP concerning volatile organic compound (VOC) emissions from polyester resin operations.

  11. Winds of change: reducing transboundary air pollutants.

    PubMed

    Reuther, C G

    2000-04-01

    Sulfur dioxide, nitrogen oxides, volatile organic compounds, persistent organic pollutants, particulate matter, and heavy metals---air pollutants once thought to be problems that could be solved locally, where the effects occur---are all currently being discussed in international forums. A spate of meetings and agreements in recent months has shown many international governments to be more willing than ever to try to limit the amount of their air pollution that drifts into other countries. Prompting this policy shift are increasing emissions in some parts of the world, better monitoring, and an improved understanding of air pollution transport and the effects of air pollution. In most regions of the world, however, no international agreements on air pollution exist at all, while in others, many overlapping local, multilateral, and global agreements address the problem simultaneously. According to the World Health Organization, air pollution causes nearly 3 million deaths per year, and the U.S. Environmental Protection Agency estimates that ground-level ozone causes damage to U.S. crops totaling $1-2 billion each year.

  12. Climate Change, Air Pollution, and the Economics of Health Impacts

    NASA Astrophysics Data System (ADS)

    Reilly, J.; Yang, T.; Paltsev, S.; Wang, C.; Prinn, R.; Sarofim, M.

    2003-12-01

    Climate change and air pollution are intricately linked. The distinction between greenhouse substances and other air pollutants is resolved at least for the time being in the context of international negotiations on climate policy through the identification of CO2, CH4, N2O, SF6 and the per- and hydro- fluorocarbons as substances targeted for control. Many of the traditional air pollutant emissions including for example CO, NMVOCs, NOx, SO2, aerosols, and NH3 also directly or indirectly affect the radiative balance of the atmosphere. Among both sets of gases are precursors of and contributors to pollutants such as tropopospheric ozone, itself a strong greenhouse gas, particulate matter, and other pollutants that affect human health. Fossil fuel combustion, production, or transportation is a significant source for many of these substances. Climate policy can thus affect traditional air pollution or air pollution policy can affect climate. Health effects of acute or chronic exposure to air pollution include increased asthma, lung cancer, heart disease and bronchitis among others. These, in turn, redirect resources in the economy toward medical expenditures or result in lost labor or non-labor time with consequent effects on economic activity, itself producing a potential feedback on emissions levels. Study of these effects ultimately requires a fully coupled earth system model. Toward that end we develop an approach for introducing air pollution health impacts into the Emissions Prediction and Policy Analysis (EPPA) model, a component of the MIT Integrated Global Systems Model (IGSM) a coupled economics-chemistry-atmosphere-ocean-terrestrial biosphere model of earth systems including an air pollution model resolving the urban scale. This preliminary examination allows us to consider how climate policy affects air pollution and consequent health effects, and to study the potential impacts of air pollution policy on climate. The novel contribution is the effort to

  13. Tracing global supply chains to air pollution hotspots

    NASA Astrophysics Data System (ADS)

    Moran, Daniel; Kanemoto, Keiichiro

    2016-09-01

    While high-income countries have made significant strides since the 1970s in improving air quality, air pollution continues to rise in many developing countries and the world as a whole. A significant share of the pollution burden in developing countries can be attributed to production for export to consumers in high-income nations. However, it remains a challenge to quantify individual actors’ share of responsibility for pollution, and to involve parties other than primary emitters in cleanup efforts. Here we present a new spatially explicit modeling approach to link SO2, NO x , and PM10 severe emissions hotspots to final consumers via global supply chains. These maps show developed countries reducing their emissions domestically but driving new pollution hotspots in developing countries. This is also the first time a spatially explicit footprint inventory has been established. Linking consumers and supply chains to emissions hotspots creates opportunities for other parties to participate alongside primary emitters and local regulators in pollution abatement efforts.

  14. The Interplay of Climate Change and Air Pollution on Health.

    PubMed

    Orru, H; Ebi, K L; Forsberg, B

    2017-12-01

    Air pollution significantly affects health, causing up to 7 million premature deaths annually with an even larger number of hospitalizations and days of sick leave. Climate change could alter the dispersion of primary pollutants, particularly particulate matter, and intensify the formation of secondary pollutants, such as near-surface ozone. The purpose of the review is to evaluate the recent evidence on the impacts of climate change on air pollution and air pollution-related health impacts and identify knowledge gaps for future research. Several studies modelled future ozone and particulate matter concentrations and calculated the resulting health impacts under different climate scenarios. Due to climate change, ozone- and fine particle-related mortalities are expected to increase in most studies; however, results differ by region, assumed climate change scenario and other factors such as population and background emissions. This review explores the relationships between climate change, air pollution and air pollution-related health impacts. The results highly depend on the climate change scenario used and on projections of future air pollution emissions, with relatively high uncertainty. Studies primarily focused on mortality; projections on the effects on morbidity are needed.

  15. Air Pollution Manual, Part 1--Evaluation. Second Edition.

    ERIC Educational Resources Information Center

    Giever, Paul M., Ed.

    Due to the great increase in technical knowledge and improvement in procedures, this second edition has been prepared to update existing information. Air pollution legislation is reviewed. Sources of air pollution are examined extensively. They are treated in terms of natural sources, man-made sources, metropolitan regional emissions, emission…

  16. The Impact of Individual Anthropogenic Emissions Sectors on the Global Burden of Human Mortality due to Ambient Air Pollution.

    PubMed

    Silva, Raquel A; Adelman, Zachariah; Fry, Meridith M; West, J Jason

    2016-11-01

    Exposure to ozone and fine particulate matter (PM2.5) can cause adverse health effects, including premature mortality due to cardiopulmonary diseases and lung cancer. Recent studies quantify global air pollution mortality but not the contribution of different emissions sectors, or they focus on a specific sector. We estimated the global mortality burden of anthropogenic ozone and PM2.5, and the impact of five emissions sectors, using a global chemical transport model at a finer horizontal resolution (0.67° × 0.5°) than previous studies. We performed simulations for 2005 using the Model for Ozone and Related Chemical Tracers, version 4 (MOZART-4), zeroing out all anthropogenic emissions and emissions from specific sectors (All Transportation, Land Transportation, Energy, Industry, and Residential and Commercial). We estimated premature mortality using a log-linear concentration-response function for ozone and an integrated exposure-response model for PM2.5. We estimated 2.23 (95% CI: 1.04, 3.33) million deaths/year related to anthropogenic PM2.5, with the highest mortality in East Asia (48%). The Residential and Commercial sector had the greatest impact globally-675 (95% CI: 428, 899) thousand deaths/year-and in most regions. Land Transportation dominated in North America (32% of total anthropogenic PM2.5 mortality), and it had nearly the same impact (24%) as Residential and Commercial (27%) in Europe. Anthropogenic ozone was associated with 493 (95% CI: 122, 989) thousand deaths/year, with the Land Transportation sector having the greatest impact globally (16%). The contributions of emissions sectors to ambient air pollution-related mortality differ among regions, suggesting region-specific air pollution control strategies. Global sector-specific actions targeting Land Transportation (ozone) and Residential and Commercial (PM2.5) sectors would particularly benefit human health. Citation: Silva RA, Adelman Z, Fry MM, West JJ. 2016. The impact of individual

  17. Spatial-temporal variation characteristics of air pollution in Henan of China: Localized emission inventory, WRF/Chem simulations and potential source contribution analysis.

    PubMed

    Liu, Shuhan; Hua, Shenbing; Wang, Kun; Qiu, Peipei; Liu, Huanjia; Wu, Bobo; Shao, Pangyang; Liu, Xiangyang; Wu, Yiming; Xue, Yifeng; Hao, Yan; Tian, Hezhong

    2018-05-15

    Henan is the most populous province and one of the most seriously polluted areas in China at present. In this study, we establish an integrated atmospheric emission inventory of primary air pollutants in Henan province for the target year of 2012. The inventory developed here accounts for detailed activity levels of 11 categories of primary anthropogenic emission sources, and determines the best available representation of emission factors. Further, we allocate the annual emissions into a high spatial resolution of 3km×3km with ArcGIS methodology and surrogate indices, such as regional population distribution and gross domestic product (GDP). Our results show that the emissions of VOCs, SO 2 , PM 10 , PM 2.5 , NO X , NH 3 , CO, BC and OC are about 1.15, 1.24, 1.29, 0.70, 1.93, 1.05, 7.92, 0.27 and 0.25milliontons, respectively. The majority of these pollutant emissions comes from the Central Plain Urban Agglomeration (CPUA) region, particularly Zhengzhou and Pingdingshan. By combining with the emission inventory with the WRF/Chem modeling and backward trajectory analysis, we investigate the temporal and spatial variability of air pollution in the province and explore the causes of higher pollutants concentrations in the region of CPUA during the heavily polluted period of January. The results demonstrate that intensive pollutants emissions and unfavorable meteorological conditions are the main causes of the heavy pollution. Besides, Weighted Potential Source Contribution Function (WPSCF) analysis indicates that local emissions remain the major contributor of PM 2.5 in Henan province, although emissions from the neighboring provinces (e.g. Shanxi, Shaanxi, Anhui, and Shandong) are also important contributors. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Impact of traffic-related air pollution on health.

    PubMed

    Jakubiak-Lasocka, J; Lasocki, J; Siekmeier, R; Chłopek, Z

    2015-01-01

    Road transport contributes significantly to air quality problems through vehicle emissions, which have various detrimental impacts on public health and the environment. The aim of this study was to assess the impact of traffic-related air pollution on health of Warsaw citizens, following the basics of the Health Impact Assessment (HIA) method, and evaluate its social cost. PM10 was chosen as an indicator of traffic-related air pollution. Exposure-response functions between air pollution and health impacts were employed. The value of statistical life (VSL) approach was used for the estimation of the cost of mortality attributable to traffic-related air pollution. Costs of hospitalizations and restricted activity days were assessed basing on the cost of illness (COI) method. According to the calculations, about 827 Warsaw citizens die in a year as a result of traffic-related air pollution. Also, about 566 and 250 hospital admissions due to cardiovascular and respiratory diseases, respectively, and more than 128,453 restricted activity days can be attributed to the traffic emissions. From the social perspective, these losses generate the cost of 1,604 million PLN (1 EUR-approx. 4.2 PLN). This cost is very high and, therefore, more attention should be paid for the integrated environmental health policy.

  19. Michigan`s air emission trading program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russette, T.M.; VanKolken, A.M.

    1997-12-31

    Michigan`s Emission Trading Program took effect on March 16, 1996 after two years of rule development by the Michigan Department of Environmental Quality, Air Quality Division and affected stakeholders. This program is based on the open market trading model and has been designed to (1) be consistent with existing federal and state rules and regulations, (2) integrate with existing air programs such as the permit program, and (3) address the needs of Michigan`s regulated community. Michigan`s Air Quality Division, along with other interested parties, initiated this program as part of market-based approaches to improve air quality through the reduction ofmore » criteria pollutants (except ozone) and volatile organic compounds. The Emission Trading rules offer potential benefits for Michigan companies that include increased operational flexibility, lower compliance costs, and/or money generated from the sale of the emission reduction credits. The environment also benefits from this program because the rules require that 10 percent of all registered emission reductions must be permanently retired as an air quality benefit. The emission trading program provides new opportunities for consulting firms to assist companies by identifying acceptable ways to generate and use emission reduction credits. Air pollution control companies may also see new opportunities by designing and installing control equipment in order to reduce air emissions. The role of consultants and equipment companies may expand to that of a broker selling and/or buying emission reduction credits on the Emission Trading Registry. Much has been learned since the conception of the air emission trading program. This paper will discuss how the program works in practice compared to what was envisioned in theory and the potential benefits from Michigan`s Emission Trading Program.« less

  20. Assessment of the impacts of vehicular pollution on urban air quality.

    PubMed

    Ghose, Mrinal K; Paul, R; Banerjee, S K

    2004-01-01

    Air quality crisis in cities is mainly due to vehicular emissions. Owing to the expanding economic base Indian cities are growing at a faster rate. Transportation systems are increasing everywhere and the improved technology is insufficient to counteract growth. The effect of vehicular emission on urban air quality and human health has been described. A survey has been conducted in an Indian mega city to evaluate the status of air pollution at traffic intersections and the unique problem arising out of vehicular emissions in the study area has been narrated. Approach for the selection of the air monitoring stations, methodology adopted for data collection and the results have been discussed. Vulnerability analysis (VA) has been carried out to identify the zones at what pollution stress. Options for reducing mobile source emission have been discussed and a strategic air quality management plan has been proposed to mitigate the air pollution in the city.

  1. Comparison of methodologies estimating emissions of aircraft pollutants, environmental impact assessment around airports

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurniawan, Jermanto S., E-mail: Jermanto.kurniawan@inrets.fr; Khardi, S., E-mail: Salah.khardi@inrets.f

    2011-04-15

    Air transportation growth has increased continuously over the years. The rise in air transport activity has been accompanied by an increase in the amount of energy used to provide air transportation services. It is also assumed to increase environmental impacts, in particular pollutant emissions. Traditionally, the environmental impacts of atmospheric emissions from aircraft have been addressed in two separate ways; aircraft pollutant emissions occurring during the landing and take-off (LTO) phase (local pollutant emissions) which is the focus of this study, and the non-LTO phase (global/regional pollutant emissions). Aircraft pollutant emissions are an important source of pollution and directly ormore » indirectly harmfully affect human health, ecosystems and cultural heritage. There are many methods to asses pollutant emissions used by various countries. However, using different and separate methodology will cause a variation in results, some lack of information and the use of certain methods will require justification and reliability that must be demonstrated and proven. In relation to this issue, this paper presents identification, comparison and reviews of some of the methodologies of aircraft pollutant assessment from the past, present and future expectations of some studies and projects focusing on emissions factors, fuel consumption, and uncertainty. This paper also provides reliable information on the impacts of aircraft pollutant emissions in short term and long term predictions.« less

  2. Quantifying Pollutant Emissions from Office Equipment Phase IReport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maddalena, R.L.; Destaillats, H.; Hodgson, A.T.

    2006-12-01

    Although office equipment has been a focal point for governmental efforts to promote energy efficiency through programs such as Energy Star, little is known about the relationship between office equipment use and indoor air quality. This report provides results of the first phase (Phase I) of a study in which the primary objective is to measure emissions of organic pollutants and particulate matter from a selected set of office equipment typically used in residential and office environments. The specific aims of the overall research effort are: (1) use screening-level measurements to identify and quantify the concentrations of air pollutants ofmore » interest emitted by major categories of distributed office equipment in a controlled environment; (2) quantify the emissions of air pollutants from generally representative, individual machines within each of the major categories in a controlled chamber environment using well defined protocols; (3) characterize the effects of ageing and use on emissions for individual machines spanning several categories; (4) evaluate the importance of operational factors that can be manipulated to reduce pollutant emissions from office machines; and (5) explore the potential relationship between energy consumption and pollutant emissions for machines performing equivalent tasks. The study includes desktop computers (CPU units), computer monitors, and three categories of desktop printing devices. The printer categories are: (1) printers and multipurpose devices using color inkjet technology; (2) low- to medium output printers and multipurpose devices employing monochrome or color laser technology; and (3) high-output monochrome and color laser printers. The literature review and screening level experiments in Phase 1 were designed to identify substances of toxicological significance for more detailed study. In addition, these screening level measurements indicate the potential relative importance of different categories of office

  3. Australians are not equally protected from industrial air pollution

    NASA Astrophysics Data System (ADS)

    Dobbie, B.; Green, D.

    2015-05-01

    Australian air pollution standards are set at national and state levels for a number of chemicals harmful to human health. However, these standards do not need to be met when ad hoc pollution licences are issued by state environment agencies. This situation results in a highly unequal distribution of air pollution between towns and cities, and across the country. This paper examines these pollution regulations through two case studies, specifically considering the ability of the regulatory regime to protect human health from lead and sulphur dioxide pollution in the communities located around smelters. It also considers how the proposed National Clean Air Agreement, once enacted, might serve to reduce this pollution equity problem. Through the case studies we show that there are at least three discrete concerns relating to the current licencing system. They are: non-onerous emission thresholds for polluting industry; temporal averaging thresholds masking emission spikes; and ineffective penalties for breaching licence agreements. In conclusion, we propose a set of new, legally-binding national minimum standards for industrial air pollutants must be developed and enforced, which can only be modified by more (not less) stringent state licence arrangements.

  4. A regional high-resolution emission inventory of primary air pollutants in 2012 for Beijing and the surrounding five provinces of North China

    NASA Astrophysics Data System (ADS)

    Liu, Huanjia; Wu, Bobo; Liu, Shuhan; Shao, Panyang; Liu, Xiangyang; Zhu, Chuanyong; Wang, Yong; Wu, Yiming; Xue, Yifeng; Gao, Jiajia; Hao, Yan; Tian, Hezhong

    2018-05-01

    A high resolution regional emission inventory of typical primary air pollutants (PAPs) for the year 2012 in Beijing and the surrounding five provinces (BSFP) of North China is developed. It is compiled with the combination of bottom-up and top-down methods, based on city-level collected activity data and the latest updated specific emission factors for different sources. The considered sources are classified into 12 major categories and totally 36 subcategories with respect to their multi-dimensional characteristics, such as economic sector, combustion facility or industrial process, installed air pollution control devices, etc. Power plant sector is the dominant contributor of NOX emissions with an average contribution of 34.1%, while VOCs emissions are largely emitted from industrial process sources (33.9%). Whereas, other stationary combustion sources represent major sources of primary PM2.5, PM10 and BC emissions, accounting for 22.7%, 30.0% and 33.9% of the total emissions, respectively. Hebei province contributes over 34% of the regional total CO emissions because of huge volume of iron and steel production. By comparison, Shandong province ranks as the biggest contributor for NOX, PM10, PM2.5, SO2, VOCs and OC. Further, the BSFP regional total emissions are spatially distributed into grid cells with a high resolution of 9 km × 9 km using GIS tools and surrogate indexes, such regional population, gross domestic product (GDP) and the types of arable soils. The highest emission intensities are mainly located in Beijing-Tianjin-Tangshan area, Jinan-Laiwu-Zibo area and several other cities such as Shijiazhuang, Handan, and Zhengzhou. Furthermore, in order to establish a simple method to estimate and forecast PAPs emissions with macroscopic provincial-level statistical parameters in China, multi-parameter regression equations are firstly developed to estimate emissions outside the BSFP region with routine statistics (e.g. population, total final coal consumption

  5. Association between air pollution and benign prostatic hyperplasia: An ecological study.

    PubMed

    Shim, Sung Ryul; Kim, Jae Heon; Song, Yun Seob; Lee, Won Jin

    2016-09-02

    Benign prostate hyperplasia (BPH) is a prevalent medical condition; however, little is known about the effect of environmental factors. Therefore, we conducted surveys to examine the association between air pollution and the risk of BPH in South Korea between May 2010 and April 2013, yielding data for 1,734 men. Air pollution information was obtained from the National Air Pollutants Emission 2010 report. Logistic regression analyses were conducted after adjusting for potential confounders. The International Prostate Symptom Score significantly increased with increasing per capita air pollutant emissions. The risk of BPH increased as the overall concentration of air pollutants increased (odds ratio [OR], 2.23; 95% confidence interval [CI], 1.55-3.21). In particular, nitrogen oxides (OR, 1.73; 95% CI, 1.25-2.39) and sulfur oxides (OR, 2.02; 95% CI, 1.42-2.88) showed a dose-dependent association. Our findings support a positive association between the risk of BPH and air pollution.

  6. Setting limits: Using air pollution thresholds to protect and restore US ecosystems

    USGS Publications Warehouse

    Fenn, Mark E.; Lambert, Kathleen F.; Blett, Tamara F.; Burns, Douglas A.; Pardo, Linda H.; Lovett, Gary M.; Haeuber, Richard A.; Evers, David C.; Driscoll, Charles T.; Jeffries, Dean S.

    2011-01-01

    More than four decades of research provide unequivocal evidence that sulfur, nitrogen, and mercury pollution have altered, and will continue to alter, our nation's lands and waters. The emission and deposition of air pollutants harm native plants and animals, degrade water quality, affect forest productivity, and are damaging to human health. Many air quality policies limit emissions at the source but these control measures do not always consider ecosystem impacts. Air pollution thresholds at which ecological effects are observed, such as critical loads, are effective tools for assessing the impacts of air pollution on essential ecosystem services and for informing public policy. U.S. ecosystems can be more effectively protected and restored by using a combination of emissions-based approaches and science-based thresholds of ecosystem damage.

  7. Air Pollution Control Policies in China: A Retrospective and Prospects

    PubMed Central

    Jin, Yana; Andersson, Henrik; Zhang, Shiqiu

    2016-01-01

    With China’s significant role on pollution emissions and related health damage, deep and up-to-date understanding of China’s air pollution policies is of worldwide relevance. Based on scientific evidence for the evolution of air pollution and the institutional background of environmental governance in China, we examine the development of air pollution control policies from the 1980s and onwards. We show that: (1) The early policies, until 2005, were ineffective at reducing emissions; (2) During 2006–2012, new instruments which interact with political incentives were introduced in the 11th Five-Year Plan, and the national goal of reducing total sulfur dioxide (SO2) emissions by 10% was achieved. However, regional compound air pollution problems dominated by fine particulate matter (PM2.5) and ground level ozone (O3) emerged and worsened; (3) After the winter-long PM2.5 episode in eastern China in 2013, air pollution control policies have been experiencing significant changes on multiple fronts. In this work we analyze the different policy changes, the drivers of changes and key factors influencing the effectiveness of policies in these three stages. Lessons derived from the policy evolution have implications for future studies, as well as further reforming the management scheme towards air quality and health risk oriented directions. PMID:27941665

  8. Global Scenarios of Air Pollution until 2030: Combining Air Quality, Climate Change and Energy Access Policies

    NASA Astrophysics Data System (ADS)

    Rao, S.; Dentener, F. J.; Klimont, Z.; Riahi, K.

    2011-12-01

    Outdoor air pollution is increasingly recognized as a significant contributor to global health outcomes. This has led to the implementation of a number of air quality policies worldwide, with total air pollution control costs in 2005 estimated at US$195 billion. More than 80% of the world's population is still found to be exposed to PM2.5 concentrations exceeding WHO air quality guidelines and health impacts resulting from these exposures estimated at around 2-5% of the global disease burden. Key questions to answer are 1) How will pollutant emissions evolve in the future given developments in the energy system and how will energy and environmental policies influence such emission trends. 2) What implications will this have for resulting exposures and related health outcomes. In order to answer these questions, varying levels of stringency of air quality legislation are analyzed in combination with policies on universal access to clean cooking fuels and limiting global temperature change to 2°C in 2100. Bottom-up methodologies using energy emissions modeling are used to derive sector-based pollutant emission trajectories until 2030. Emissions are spatially downscaled and used in combination with a global transport chemistry model to derive ambient concentrations of PM2.5. Health impacts of these exposures are further estimated consistent with WHO data and methodology. The results indicate that currently planned air quality legislation combined with rising energy demand will be insufficient in controlling future emissions growth in developing countries. In order to achieve significant reductions in pollutant emissions of the order of more than 50% from 2005 levels and reduce exposures to levels consistent with WHO standards, it will be necessary to increase the stringency of such legislations and combine them with policies on energy access and climate change. Combined policies also result in reductions in air pollution control costs as compared to those associated

  9. Evaluation of co-benefits from combined climate change and air pollution reduction strategies

    NASA Astrophysics Data System (ADS)

    Leitao, Joana; Van Dingenen, Rita; Dentener, Frank; Rao, Shilpa

    2014-05-01

    The connection of climate change and air pollution is becoming more relevant in the process of policy making and implementation of emission control strategies because of resulting co-benefits and trade-offs. Some sectors, such as fossil fuel combustion, are sources of both pollutants (NOx and PM) as well as greenhouse gas (CO2). Additionally, the use of wood burning as biofuel to reduce climate impact may in fact deteriorate air quality. Furthermore, several air pollutants are important radiative forcers and regulating their emissions impacts on climate. It is evident that both problems need to be undertaken with a common strategy and the existence of cross-policy with co-benefits may encourage their implementation. The LIMITS FP7 project (http://www.feem-project.net/limits/index.html) was designed with the main goal of assessing strategies for reduction of GHG emissions so that the 2°C target can be achieved. The work developed focus on the evaluation of the implementation of strategies analysing several aspects of different scenarios, namely: the feasibility of low carbon scenarios in terms of available technologies and infrastructure, the required financial mechanisms, and also the co-benefits regarding energy security, economic development and air pollution. For the latter, five integrated assessment models (IAMs) provided greenhouse gases and pollutant emission values for several scenarios. These were based on air pollution scenarios defined according to stringency and implementation of future global legislation. They which were also combined with 2 climate policy scenarios (no climate policy and 2.8 W/m2 target). The former are mostly focused on non-climate policies and technical control measures for emissions of air pollutants, such as PM2.5, NOx and SO2, with their emission factors harmonized between the IAMs. With the global air quality source-receptor model TM5-FASST the impact of the resulting emissions was analysed and the co-benefits of combined

  10. 40 CFR 1065.667 - Dilution air background emission correction.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calculations and Data Requirements § 1065.667 Dilution air background emission correction. (a) To determine the mass of background emissions to subtract... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Dilution air background emission...

  11. 40 CFR 1065.667 - Dilution air background emission correction.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calculations and Data Requirements § 1065.667 Dilution air background emission correction. (a) To determine the mass of background emissions to subtract... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Dilution air background emission...

  12. 40 CFR 1065.667 - Dilution air background emission correction.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calculations and Data Requirements § 1065.667 Dilution air background emission correction. (a) To determine the mass of background emissions to subtract... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Dilution air background emission...

  13. 40 CFR 1065.667 - Dilution air background emission correction.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calculations and Data Requirements § 1065.667 Dilution air background emission correction. (a) To determine the mass of background emissions to subtract... 40 Protection of Environment 33 2011-07-01 2011-07-01 false Dilution air background emission...

  14. 40 CFR 1065.667 - Dilution air background emission correction.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calculations and Data Requirements § 1065.667 Dilution air background emission correction. (a) To determine the mass of background emissions to subtract... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Dilution air background emission...

  15. Impact of ship emissions on air pollution and AOD over North Atlantic and European Arctic

    NASA Astrophysics Data System (ADS)

    Kaminski, Jacek W.; Struzewska, Joanna; Jefimow, Maciej; Durka, Pawel

    2016-04-01

    The iAREA project is combined of experimental and theoretical research in order to contribute to the new knowledge on the impact of absorbing aerosols on the climate system in the European Arctic (http://www.igf.fuw.edu.pl/iAREA). A tropospheric chemistry model GEM-AQ (Global Environmental Multiscale Air Quality) was used as a computational tool. The core of the model is based on a weather prediction model with environmental processes (chemistry and aerosols) implanted on-line and are interactive (i.e. providing feedback of chemistry on radiation and dynamics). The numerical grid covered the Euro-Atlantic region with the resolution of 50 km. Emissions developed by NILU in the ECLIPSE project was used (Klimont et al., 2013). The model was run for two 1-year scenarios. 2014 was chosen as a base year for simulations and analysis. Scenarios include a base run with most up-to-date emissions and a run without maritime emissions. The analysis will focus on the contribution of maritime emissions on levels of particulate matter and gaseous pollutants over the European Arctic, North Atlantic and coastal areas. The annual variability will be assessed based on monthly mean near-surface concentration fields. Analysis of shipping transport on near-surface air pollution over the Euro-Atlantic region will be assessed for ozone, NO2, SO2, CO, PM10, PM2.5. Also, a contribution of ship emissions to AOD will be analysed.

  16. Evaluating near highway air pollutant levels and estimating emission factors: Case study of Tehran, Iran.

    PubMed

    Nayeb Yazdi, Mohammad; Delavarrafiee, Maryam; Arhami, Mohammad

    2015-12-15

    A field sampling campaign was implemented to evaluate the variation in air pollutants levels near a highway in Tehran, Iran (Hemmat highway). The field measurements were used to estimate road link-based emission factors for average vehicle fleet. These factors were compared with results of an in tunnel measurement campaign (in Resalat tunnel). Roadside and in-tunnel measurements of carbon monoxide (CO) and size-fractionated particulate matter (PM) were conducted during the field campaign. The concentration gradient diagrams showed exponential decay, which represented a substantial decay, more than 50-80%, in air pollutants level in a distance between 100 and 150meters (m) of the highway. The changes in particle size distribution by distancing from highway were also captured and evaluated. The results showed particle size distribution shifted to larger size particles by distancing from highway. The empirical emission factors were obtained by using the roadside and in tunnel measurements with a hypothetical box model, floating machine model, CALINE4, CT-EMFAC or COPERT. Average CO emission factors were estimated to be in a range of 4 to 12g/km, and those of PM10 were 0.1 to 0.2g/km, depending on traffic conditions. Variations of these emission factors under real working condition with speeds were determined. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Global Air Quality and Climate Impacts of Mitigating Short-lived Climate Pollution in China

    NASA Astrophysics Data System (ADS)

    Harper, K.; Unger, N.; Heyes, C.; Kiesewetter, G.; Klimont, Z.; Schoepp, W.; Wagner, F.

    2014-12-01

    China is a major emitter of harmful air pollutants, including the short-lived climate pollutants (SLCPs) and their precursors. Implementation of pollution control technologies provides a mechanism for simultaneously protecting human and ecosystem health and achieving near-term climate co-benefits; however, predicting the outcomes of technical and policy interventions is challenging because the SLCPs participate in both climate warming and cooling and share many common emission sources. Here, we present the results of a combined regional integrated assessment and global climate modeling study aimed at quantifying the near-term climate and air quality co-benefits of selective control of Chinese air pollution emissions. Results from IIASA's Greenhouse Gas - Air Pollution Interactions and Synergies (GAINS) integrated assessment model indicate that methane emission reductions make up > 75% of possible CO2-equivalent emission reductions of the SLCPs and their precursors in China in 2030. A multi-pollutant emission reduction scenario incorporating the 2030 Chinese pollution control measures with the highest potential for future climate impact is applied to the NASA ModelE2 - Yale Interactive Terrestrial Biosphere (NASA ModelE2-YIBs) global carbon - chemistry - climate model to assess the regional and long-range impacts of Chinese SLCP mitigation measures. Using model simulations that incorporate dynamic methane emissions and photosynthesis-dependent isoprene emissions, we quantify the impacts of Chinese reductions of the short-lived air pollutants on radiative forcing and on surface ozone and particulate air pollution. Present-day modeled methane mole fractions are evaluated against SCIAMACHY methane columns and NOAA ESRL/GMD surface flask measurements.

  18. Evaluating impacts of air pollution in China on public health: Implications for future air pollution and energy policies

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoping; Mauzerall, Denise L.

    Our objective is to establish the link between energy consumption and technologies, air pollution concentrations, and resulting impacts on public health in eastern China. We use Zaozhuang, a city in eastern China heavily dependent on coal, as a case study to quantify the impacts that air pollution in eastern China had on public health in 2000 and the benefits in improved air quality and health that could be obtained by 2020, relative to business-as-usual (BAU), through the implementation of best available emission control technology (BACT) and advanced coal gasification technologies (ACGT). We use an integrated assessment approach, utilizing state-of-the-science air quality and meteorological models, engineering, epidemiology, and economics, to achieve this objective. We find that total health damages due to year 2000 anthropogenic emissions from Zaozhuang, using the "willingness-to-pay" metric, was equivalent to 10% of Zaozhuang's GDP. If all health damages resulting from coal use were internalized in the market price of coal, the year 2000 price would have more than tripled. With no new air pollution controls implemented between 2000 and 2020 but with projected increases in energy use, we estimate health damages from air pollution exposure to be equivalent to 16% of Zaozhuang's projected 2020 GDP. BACT and ACGT (with only 24% penetration in Zaozhuang and providing 2% of energy needs in three surrounding municipalities) could reduce the potential health damage of air pollution in 2020 to 13% and 8% of projected GDP, respectively. Benefits to public health, of substantial monetary value, can be achieved through the use of BACT; health benefits from the use of ACGT could be even larger. Despite significant uncertainty associated with each element of the integrated assessment approach, we demonstrate that substantial benefits to public health could be achieved in this region of eastern China through the use of additional pollution controls and particularly from the

  19. Supplement B to compilation of air pollutant emission factors, volume 1. Stationary point and area sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This document contains emission factors and process information for more than 200 air pollution source categories. This Supplement to AP-42 addresses pollutant-generating activity from Bituminous And Subbituminous Coal Combustion, Anthracite Coal Combustion, Fuel Oil Combustion, Natural Gas Combustion, Liquefied Petroleum Gas Combustion, Wood Waste Combustion In Boilers, Lignite Combustion, Bagasse Combustion In Sugar Mills, Residential Fireplaces, Residential Wood Stoves, Waste Oil Combustion, Stationary Gas Turbines For Electricity Generation, Heavy-duty Natural Gas-fired Pipeline Compressor Engines And Turbines, Gasoline and Diesel Industrial Engines, Large Stationary Diesel And All Stationary Dual-fuel Engines, Adipic Acid, Cotton Ginning, Alfafalfa Dehydrating, Malt Beverages, Ceramic Products Manufacturing,more » Electroplating, Wildfires And Prescribed Burning, Emissions From Soils-Greenhouse Gases, Termites-Greenhouse Gases, and Lightning Emissions-Greenhouse Gases.« less

  20. Fractal Analysis of Air Pollutant Concentrations

    NASA Astrophysics Data System (ADS)

    Cortina-Januchs, M. G.; Barrón-Adame, J. M.; Vega-Corona, A.; Andina, D.

    2010-05-01

    Air pollution poses significant threats to human health and the environment throughout the developed and developing countries. This work focuses on fractal analysis of pollutant concentration in Salamanca, Mexico. The city of Salamanca has been catalogued as one of the most polluted cities in Mexico. The main causes of pollution in this city are fixed emission sources, such as chemical industry and electricity generation. Sulphur Dioxide (SO2) and Particulate Matter less than 10 micrometer in diameter (PM10) are the most important pollutants in this region. Air pollutant concentrations were investigated by applying the box counting method in time series obtained of the Automatic Environmental Monitoring Network (AEMN). One year of time series of hourly average concentrations were analyzed in order to characterize the temporal structures of SO2 and PM10.

  1. Modeling to Evaluate Contribution of Oil and Gas Emissions to Air Pollution.

    PubMed

    Thompson, Tammy M; Shepherd, Donald; Stacy, Andrea; Barna, Michael G; Schichtel, Bret A

    2017-04-01

    Oil and gas production in the Western United States has increased considerably over the past 10 years. While many of the still limited oil and gas impact assessments have focused on potential human health impacts, the typically remote locations of production in the Intermountain West suggests that the impacts of oil and gas production on national parks and wilderness areas (Class I and II areas) could also be important. To evaluate this, we utilize the Comprehensive Air quality Model with Extensions (CAMx) with a year-long modeling episode representing the best available representation of 2011 meteorology and emissions for the Western United States. The model inputs for the 2011 episodes were generated as part of the Three State Air Quality Study (3SAQS). The study includes a detailed assessment of oil and gas (O&G) emissions in Western States. The year-long modeling episode was run both with and without emissions from O&G production. The difference between these two runs provides an estimate of the contribution of the O&G production to air quality. These data were used to assess the contribution of O&G to the 8 hour average ozone concentrations, daily and annual fine particulate concentrations, annual nitrogen deposition totals and visibility in the modeling domain. We present the results for the Class I and II areas in the Western United States. Modeling results suggest that emissions from O&G activity are having a negative impact on air quality and ecosystem health in our National Parks and Class I areas. In this research, we use a modeling framework developed for oil and gas evaluation in the western United States to determine the modeled impacts of emissions associated with oil and gas production on air pollution metrics. We show that oil and gas production may have a significant negative impact on air quality and ecosystem health in some national parks and other Class I areas in the western United States. Our findings are of particular interest to federal

  2. Emission inventory of primary air pollutants in 2010 from industrial processes in Turkey.

    PubMed

    Alyuz, Ummugulsum; Alp, Kadir

    2014-08-01

    The broad objective of this study was to develop CO2, PM, SOx, CO, NOx, VOC, NH3 and N2O emission inventory of organic and inorganic chemicals, mineral products, metallurgical, petroleum refining, wood products, food industries of Turkey for 2010 for both co]ntrolled and uncontrolled conditions. In this study, industries were investigated in 7 main categories and 53 sub-sectors and a representative number of pollutants per sub-sector were considered. Each industry was evaluated in terms of emitted emissions only from industrial processes, and fuel combustion activities were excluded (except cement industry). The study employed an approach designed in four stages; identification of key categories; activity data & emission factor search; emission factor analyzing; calculation of emissions. Emission factor analyzing required aggregate and firm analysis of sectors and sub-sectors and deeper insights into underlying specific production methods used in the industry to decide on the most representative emission factor. Industry specific abatement technologies were considered by using open-source documents and industry specific reports. Regarding results of this study, mineral industry and iron & steel industry were determined as important contributors of industrial emissions in Turkey in 2010. Respectively, organic chemicals, petroleum refining, and pulp & paper industries had serious contributions to Turkey's air pollutant emission inventory from industrial processes. The results showed that calculated CO2 emissions for year 2010 was 55,124,263 t, also other emissions were 48,853 t PM, 24,533 t SOx, 79,943 t NOx, 31,908 t VOC, 454 t NH3 and 2264 t N2O under controlled conditions. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Climate change and air pollution jointly creating nightmare for tourism industry.

    PubMed

    Sajjad, Faiza; Noreen, Umara; Zaman, Khalid

    2014-11-01

    The objective of the study is to examine the long-run and causal relationship between climate change (i.e., greenhouse gas emissions, hydrofluorocarbons, per fluorocarbons, and sulfur hexafluoride), air pollution (i.e., methane emissions, nitrous oxide emissions, and carbon dioxide emissions), and tourism development indicators (i.e., international tourism receipts, international tourism expenditures, natural resource depletion, and net forest depletion) in the World's largest regions. The aggregate data is used for robust analysis in the South Asia, the Middle East and North Africa, sub-Saharan Africa, and East Asia and the Pacific regions, over a period of 1975-2012. The results show that climatic factors and air pollution have a negative impact on tourism indicators in the form of deforestation and natural resource depletion. The impact is evident, as we have seen the systematic eroding of tourism industry, due to severe changes in climate and increasing strain of air pollution. There are several channels of cause-effect relationship between the climatic factors, air pollution, and tourism indicators in the World's region. The study confirms the unidirectional, bidirectional, and causality independent relationship between climatic factors, air pollution, and tourism indicators in the World. It is conclusive that tourism industry is facing all time bigger challenges of reduce investment, less resources, and minor importance from the government agencies because of the two broad challenges, i.e., climate change and air pollution, putting them in a dismal state.

  4. Interaction between Chronic Obstructive Pulmonary Disease (COPD) and other important health conditions and measurable air pollution

    NASA Astrophysics Data System (ADS)

    Blagev, D. P.; Mendoza, D. L.; Rea, S.; Sorensen, J.

    2015-12-01

    Adverse health effects have been associated with urban pollutant exposure arising from close proximity to highly-emitting sources and atmospheric mixing. The relative air pollution exposure dose and time effects on various diseases remains unknown. This study compares the increased risk of health complications when patients are exposed to short term high-levels of air pollution vs. longer term exposure to lower levels of air pollution. We used the electronic medical record of an integrated hospital system based in Utah, Intermountain Healthcare, to identify a cohort of patients with Chronic Obstructive Pulmonary Disease (COPD) who were seen between 2009-2014. We determined patient demographics as well as comorbidity data and healthcare utilization. To determine the approximate air pollution dose and time exposure, we used the Hestia highly-resolved emissions inventory for Salt Lake County, Utah in conjunction with emissions based on the National Emissions Inventory (NEI). Hourly emissions of CO2 and criteria air pollutants were gridded at a 0.002o x 0.002o resolution for the study years. The resulting emissions were transported using the CALPUFF and AERMOD dispersion models to estimate air pollutant concentrations at an hourly 0.002o x 0.002oresolution. Additionally, pollutant concentrations were estimated at each patient's home and work address to estimate exposure. Multivariate analysis adjusting for patient demographics, comorbidities and severity of COPD was performed to determine association between air pollution exposure and the risk of hospitalization or emergency department (ED) visit for COPD exacerbation and an equivalency estimate for air pollution exposure was developed. We noted associations with air pollution levels for each pollutant and hospitalizations and ED visits for COPD and other patient comorbidities. We also present an equivalency estimate for dose of air pollution exposure and health outcomes. This analysis compares the increased risk of

  5. An Evaluation of Hazardous Air Pollutants and Volatile Organic Compound Emissions from Tank Barges in Memphis, TN

    EPA Science Inventory

    Many urban centers have population centers near river ports, which may be affected by volatile organic compound (VOC) and hazardous air pollutant (HAP) emissions from tank barge traffic. This study will examine Memphis, Tennessee and West Memphis, Arkansas. Both cities (located ...

  6. [Exploring the Severe Haze in Beijing During December, 2015: Pollution Process and Emissions Variation].

    PubMed

    Xue, Yi-feng; Zhou, Zhen; Nie, Teng; Pan, Tao; Qi, Jun; Nie, Lei; Wang, Zhan-shan; Li, Yun-ting; Li, Xue-feng; Tian, He-zhong

    2016-05-15

    Severe haze episodes shrouded Beijing and its surrounding regions again during December, 2015, causing major environmental and health problems. Beijing authorities had launched two red alerts for atmospheric heavy pollution in this period, adopted a series of emergency control measures to reduce the emissions from major pollution sources. To better understand the pollution process and emissions variation during these extreme pollution events, we performed a model-assisted analysis of the hourly observation data of PM₂.₅, and meteorological parameters combined with the emissions variation of pollution sources. The synthetic analysis indicated that: (1) Compared with the same period of last year, the emissions of atmospheric pollution sources decreased in December 2015. However, the emission levels of primary pollutants were still rather high, which were the main intrinsic causes for haze episodes, and the unfavorable diffusion conditions represented the important external factor. High source emissions and meteorological factors together led to this heavy air pollution process. (2) Emergency control measures taken by the red alert for heavy air pollution could decrease the pollutants emission by about 36% and the PM₂.₅ concentrations by 11% to 21%. Though the implementation of red alert could not reverse the evolution trend of heavier pollution, it indeed played an active role in mitigation of PM₂.₅ pollution aggravating. (3) Under the heavy pollution weather conditions, air pollutants continued to accumulate in the atmosphere, and the maximum effect by taking emergency measures occurred 48-72 hours after starting the implementation; therefore, the best time for executing emergency measures should be 36-48 hours before the rapid rise of PM₂.₅ concentration, which requires a more powerful demand on the accuracy of air quality forecast.

  7. Respiratory disease in relation to outdoor air pollution in Kanpur, India.

    PubMed

    Liu, Hai-Ying; Bartonova, Alena; Schindler, Martin; Sharma, Mukesh; Behera, Sailesh N; Katiyar, Kamlesh; Dikshit, Onkar

    2013-01-01

    This paper examines the effect of outdoor air pollution on respiratory disease in Kanpur, India, based on data from 2006. Exposure to air pollution is represented by annual emissions of sulfur dioxide (SO(2)), particulate matter (PM), and nitrogen oxides (NO(x)) from 11 source categories, established as a geographic information system (GIS)-based emission inventory in 2 km × 2 km grid. Respiratory disease is represented by number of patients who visited specialist pulmonary hospital with symptoms of respiratory disease. The results showed that (1) the main sources of air pollution are industries, domestic fuel burning, and vehicles; (2) the emissions of PM per grid are strongly correlated to the emissions of SO(2) and NO(x); and (3) there is a strong correlation between visits to a hospital due to respiratory disease and emission strength in the area of residence. These results clearly indicate that appropriate health and environmental monitoring, actions to reduce emissions to air, and further studies that would allow assessing the development in health status are necessary.

  8. Transboundary health impacts of transported global air pollution and international trade

    NASA Astrophysics Data System (ADS)

    Tong, D.; Zhang, Q.; Jiang, X.

    2017-12-01

    Millions of people die every year from diseases caused by exposure to outdoor air pollution. Some studies have estimated premature mortality related to local sources of air pollution, but local air quality can also be affected by atmospheric transport of pollution from distant sources. International trade is contributing to the globalization of emission and pollution as a result of the production of goods (and their associated emissions) in one region for consumption in another region. The effects of international trade on air pollutant emissions, air quality and health have been investigated regionally, but a combined, global assessment of the health impacts related to international trade and the transport of atmospheric air pollution is lacking. Here we combine four global models to estimate premature mortality caused by fine particulate matter (PM2.5) pollution as a result of atmospheric transport and the production and consumption of goods and services in different world regions. We find that, of the 3.45 million premature deaths related to PM2.5 pollution in 2007 worldwide, about 12 per cent (411,100 deaths) were related to air pollutants emitted in a region of the world other than that in which the death occurred, and about 22 per cent (762,400 deaths) were associated with goods and services produced in one region for consumption in another. For example, PM2.5 pollution produced in China in 2007 is linked to more than 64,800 premature deaths in regions other than China, including more than 3,100 premature deaths in western Europe and the USA; on the other hand, consumption in western Europe and the USA is linked to more than 108,600 premature deaths in China. Our results reveal that the transboundary health impacts of PM2.5 pollution associated with international trade are greater than those associated with long-distance atmospheric pollutant transport.

  9. Transboundary health impacts of transported global air pollution and international trade.

    PubMed

    Zhang, Qiang; Jiang, Xujia; Tong, Dan; Davis, Steven J; Zhao, Hongyan; Geng, Guannan; Feng, Tong; Zheng, Bo; Lu, Zifeng; Streets, David G; Ni, Ruijing; Brauer, Michael; van Donkelaar, Aaron; Martin, Randall V; Huo, Hong; Liu, Zhu; Pan, Da; Kan, Haidong; Yan, Yingying; Lin, Jintai; He, Kebin; Guan, Dabo

    2017-03-29

    Millions of people die every year from diseases caused by exposure to outdoor air pollution. Some studies have estimated premature mortality related to local sources of air pollution, but local air quality can also be affected by atmospheric transport of pollution from distant sources. International trade is contributing to the globalization of emission and pollution as a result of the production of goods (and their associated emissions) in one region for consumption in another region. The effects of international trade on air pollutant emissions, air quality and health have been investigated regionally, but a combined, global assessment of the health impacts related to international trade and the transport of atmospheric air pollution is lacking. Here we combine four global models to estimate premature mortality caused by fine particulate matter (PM 2.5 ) pollution as a result of atmospheric transport and the production and consumption of goods and services in different world regions. We find that, of the 3.45 million premature deaths related to PM 2.5 pollution in 2007 worldwide, about 12 per cent (411,100 deaths) were related to air pollutants emitted in a region of the world other than that in which the death occurred, and about 22 per cent (762,400 deaths) were associated with goods and services produced in one region for consumption in another. For example, PM 2.5 pollution produced in China in 2007 is linked to more than 64,800 premature deaths in regions other than China, including more than 3,100 premature deaths in western Europe and the USA; on the other hand, consumption in western Europe and the USA is linked to more than 108,600 premature deaths in China. Our results reveal that the transboundary health impacts of PM 2.5 pollution associated with international trade are greater than those associated with long-distance atmospheric pollutant transport.

  10. Transboundary health impacts of transported global air pollution and international trade

    NASA Astrophysics Data System (ADS)

    Zhang, Qiang; Jiang, Xujia; Tong, Dan; Davis, Steven J.; Zhao, Hongyan; Geng, Guannan; Feng, Tong; Zheng, Bo; Lu, Zifeng; Streets, David G.; Ni, Ruijing; Brauer, Michael; van Donkelaar, Aaron; Martin, Randall V.; Huo, Hong; Liu, Zhu; Pan, Da; Kan, Haidong; Yan, Yingying; Lin, Jintai; He, Kebin; Guan, Dabo

    2017-03-01

    Millions of people die every year from diseases caused by exposure to outdoor air pollution. Some studies have estimated premature mortality related to local sources of air pollution, but local air quality can also be affected by atmospheric transport of pollution from distant sources. International trade is contributing to the globalization of emission and pollution as a result of the production of goods (and their associated emissions) in one region for consumption in another region. The effects of international trade on air pollutant emissions, air quality and health have been investigated regionally, but a combined, global assessment of the health impacts related to international trade and the transport of atmospheric air pollution is lacking. Here we combine four global models to estimate premature mortality caused by fine particulate matter (PM2.5) pollution as a result of atmospheric transport and the production and consumption of goods and services in different world regions. We find that, of the 3.45 million premature deaths related to PM2.5 pollution in 2007 worldwide, about 12 per cent (411,100 deaths) were related to air pollutants emitted in a region of the world other than that in which the death occurred, and about 22 per cent (762,400 deaths) were associated with goods and services produced in one region for consumption in another. For example, PM2.5 pollution produced in China in 2007 is linked to more than 64,800 premature deaths in regions other than China, including more than 3,100 premature deaths in western Europe and the USA; on the other hand, consumption in western Europe and the USA is linked to more than 108,600 premature deaths in China. Our results reveal that the transboundary health impacts of PM2.5 pollution associated with international trade are greater than those associated with long-distance atmospheric pollutant transport.

  11. Ultrafine particle air pollution inside diesel-propelled passenger trains.

    PubMed

    Abramesko, Victoria; Tartakovsky, Leonid

    2017-07-01

    Locomotives with diesel engines are used worldwide and are an important source of air pollution. Pollutant emissions by locomotive engines affect the air quality inside passenger trains. This study is aimed at investigating ultrafine particle (UFP) air pollution inside passenger trains and providing a basis for assessing passenger exposure to this pollutant. The concentrations of UFPs inside the carriages of push-pull trains are dramatically higher when the train operates in pull mode. This clearly shows that locomotive engine emissions are a dominant factor in train passengers' exposure to UFPs. The highest levels of UFP air pollution are observed inside the carriages of pull trains close to the locomotive. In push mode, the UFP number concentrations were lower by factors of 2.6-43 (depending on the carriage type) compared to pull mode. The UFP concentrations are substantially lower in diesel multiple-unit trains than in trains operating in pull mode. A significant influence of the train movement regime on the UFP NC inside a carriage is observed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. HTAP_v2.2: a mosaic of regional and global emission grid maps for 2008 and 2010 to study hemispheric transport of air pollution

    NASA Astrophysics Data System (ADS)

    Janssens-Maenhout, G.; Crippa, M.; Guizzardi, D.; Dentener, F.; Muntean, M.; Pouliot, G.; Keating, T.; Zhang, Q.; Kurokawa, J.; Wankmüller, R.; Denier van der Gon, H.; Kuenen, J. J. P.; Klimont, Z.; Frost, G.; Darras, S.; Koffi, B.; Li, M.

    2015-10-01

    The mandate of the Task Force Hemispheric Transport of Air Pollution (TF HTAP) under the Convention on Long-Range Transboundary Air Pollution (CLRTAP) is to improve the scientific understanding of the intercontinental air pollution transport, to quantify impacts on human health, vegetation and climate, to identify emission mitigation options across the regions of the Northern Hemisphere, and to guide future policies on these aspects. The harmonization and improvement of regional emission inventories is imperative to obtain consolidated estimates on the formation of global-scale air pollution. An emissions data set has been constructed using regional emission grid maps (annual and monthly) for SO2, NOx, CO, NMVOC, NH3, PM10, PM2.5, BC and OC for the years 2008 and 2010, with the purpose of providing consistent information to global and regional scale modelling efforts. This compilation of different regional gridded inventories - including that of the Environmental Protection Agency (EPA) for USA, the EPA and Environment Canada (for Canada), the European Monitoring and Evaluation Programme (EMEP) and Netherlands Organisation for Applied Scientific Research (TNO) for Europe, and the Model Inter-comparison Study for Asia (MICS-Asia III) for China, India and other Asian countries - was gap-filled with the emission grid maps of the Emissions Database for Global Atmospheric Research (EDGARv4.3) for the rest of the world (mainly South America, Africa, Russia and Oceania). Emissions from seven main categories of human activities (power, industry, residential, agriculture, ground transport, aviation and shipping) were estimated and spatially distributed on a common grid of 0.1° × 0.1° longitude-latitude, to yield monthly, global, sector-specific grid maps for each substance and year. The HTAP_v2.2 air pollutant grid maps are considered to combine latest available regional information within a complete global data set. The disaggregation by sectors, high spatial and

  13. China's international trade and air pollution in the United States.

    PubMed

    Lin, Jintai; Pan, Da; Davis, Steven J; Zhang, Qiang; He, Kebin; Wang, Can; Streets, David G; Wuebbles, Donald J; Guan, Dabo

    2014-02-04

    China is the world's largest emitter of anthropogenic air pollutants, and measurable amounts of Chinese pollution are transported via the atmosphere to other countries, including the United States. However, a large fraction of Chinese emissions is due to manufacture of goods for foreign consumption. Here, we analyze the impacts of trade-related Chinese air pollutant emissions on the global atmospheric environment, linking an economic-emission analysis and atmospheric chemical transport modeling. We find that in 2006, 36% of anthropogenic sulfur dioxide, 27% of nitrogen oxides, 22% of carbon monoxide, and 17% of black carbon emitted in China were associated with production of goods for export. For each of these pollutants, about 21% of export-related Chinese emissions were attributed to China-to-US export. Atmospheric modeling shows that transport of the export-related Chinese pollution contributed 3-10% of annual mean surface sulfate concentrations and 0.5-1.5% of ozone over the western United States in 2006. This Chinese pollution also resulted in one extra day or more of noncompliance with the US ozone standard in 2006 over the Los Angeles area and many regions in the eastern United States. On a daily basis, the export-related Chinese pollution contributed, at a maximum, 12-24% of sulfate concentrations over the western United States. As the United States outsourced manufacturing to China, sulfate pollution in 2006 increased in the western United States but decreased in the eastern United States, reflecting the competing effect between enhanced transport of Chinese pollution and reduced US emissions. Our findings are relevant to international efforts to reduce transboundary air pollution.

  14. Modeling urban air pollution in Budapest using WRF-Chem model

    NASA Astrophysics Data System (ADS)

    Kovács, Attila; Leelőssy, Ádám; Lagzi, István; Mészáros, Róbert

    2017-04-01

    Air pollution is a major problem for urban areas since the industrial revolution, including Budapest, the capital and largest city of Hungary. The main anthropogenic sources of air pollutants are industry, traffic and residential heating. In this study, we investigated the contribution of major industrial point sources to the urban air pollution in Budapest. We used the WRF (Weather Research and Forecasting) nonhydrostatic mesoscale numerical weather prediction system online coupled with chemistry (WRF-Chem, version 3.6).The model was configured with three nested domains with grid spacings of 15, 5 and 1 km, representing Central Europe, the Carpathian Basin and Budapest with its surrounding area. Emission data was obtained from the National Environmental Information System. The point source emissions were summed in their respective cells in the second nested domain according to latitude-longitude coordinates. The main examined air pollutants were carbon monoxide (CO) and nitrogen oxides (NOx), from which the secondary compound, ozone (O3) forms through chemical reactions. Simulations were performed under different weather conditions and compared to observations from the automatic monitoring site of the Hungarian Air Quality Network. Our results show that the industrial emissions have a relatively weak role in the urban background air pollution, confirming the effect of industrial developments and regulations in the recent decades. However, a few significant industrial sources and their impact area has been demonstrated.

  15. Correlation Analysis between Motor Vehicle Types and Air Pollution in Shijiazhuang City

    NASA Astrophysics Data System (ADS)

    Pan, Wei-Yi; Shen, Hong-Yan

    2018-05-01

    Air pollution is more serious than before in Shijiazhuang in recent years, motor vehicle exhaust emissions is one of the major causes of air pollution. The economy is developing rapidly in Shijiazhuang, the motor vehicles increase at a rate of 20% per year. In August 2017, the number of motor vehicles exceeded 2.6 million in Shijiazhuang. In order to explore the relationship between the types of motor vehicles and air pollution in Shijiazhuang. This paper chose the traffic information of the typical roads which are Heping East Road and Yuhua East Road, and determined emission factors, such as CO, HC, NOx, PM10 and so on. The EDMS model was used to calculate the air pollutant discharge emissions inventory and compared with the traffic information. The conclusion is that small cars account for 85% of the total traffic volume, the vehicle exhaust account for 68% of CO, 74% of HC, 77% of NOx and 77% of PM10. Air pollution and the number of small cars have a great correlation. The pollutants contributed by motor vehicles mainly for the small car discharge, in order to reduce the air pollution, relevant departments can take effective measures which include road pricing and limit the number of motor vehicle.

  16. Air Pollution Potential from Electroplating Operations.

    ERIC Educational Resources Information Center

    Diamond, Philip

    Measurements were made of emission rates from electroplating operations considered to have maximum air pollution potential. Sampling was performed at McClellan and additional data from a previous survey at Hill Air Force Base was used. Values obtained were extremely low. Based on existing Federal standards, no collectors are specifically required…

  17. The Sources of Air Pollution and Their Control.

    ERIC Educational Resources Information Center

    National Air Pollution Control Administration (DHEW), Arlington, VA.

    The problems of air pollution and its control are discussed. Major consideration is given the sources of pollution - motor vehicles, industry, power plants, space heating, and refuse disposal. Annual emission levels of five principle pollutants - carbon monoxide, sulfur dioxide, nitrogen oxides, hydrocarbons, and particulate matter - are listed…

  18. Modeling variability in air pollution-related health damages from individual airport emissions.

    PubMed

    Penn, Stefani L; Boone, Scott T; Harvey, Brian C; Heiger-Bernays, Wendy; Tripodis, Yorghos; Arunachalam, Sarav; Levy, Jonathan I

    2017-07-01

    In this study, we modeled concentrations of fine particulate matter (PM 2.5 ) and ozone (O 3 ) attributable to precursor emissions from individual airports in the United States, developing airport-specific health damage functions (deaths per 1000t of precursor emissions) and physically-interpretable regression models to explain variability in these functions. We applied the Community Multiscale Air Quality model using the Decoupled Direct Method to isolate PM 2.5 - or O 3 -related contributions from precursor pollutants emitted by 66 individual airports. We linked airport- and pollutant-specific concentrations with population data and literature-based concentration-response functions to create health damage functions. Deaths per 1000t of primary PM 2.5 emissions ranged from 3 to 160 across airports, with variability explained by population patterns within 500km of the airport. Deaths per 1000t of precursors for secondary PM 2.5 varied across airports from 0.1 to 2.7 for NOx, 0.06 to 2.9 for SO 2 , and 0.06 to 11 for VOCs, with variability explained by population patterns and ambient concentrations influencing particle formation. Deaths per 1000t of O 3 precursors ranged from -0.004 to 1.0 for NOx and 0.03 to 1.5 for VOCs, with strong seasonality and influence of ambient concentrations. Our findings reinforce the importance of location- and source-specific health damage functions in design of health-maximizing emissions control policies. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Is it time to tackle PM(2.5) air pollutions in China from biomass-burning emissions?

    PubMed

    Zhang, Yan-Lin; Cao, Fang

    2015-07-01

    An increase in haze days has been observed in China over the past two decades due to the rapid industrialization, urbanization and energy consumptions. To address this server issue, Chinese central government has recently released the Action Plan on Prevention and Control of Air Pollution, which mainly focuses on regulation of indusial and transport-related emissions with major energy consumption from fossil fuels. This comprehensive and toughest plan is definitely a major step in the right direction aiming at beautiful and environmental-friendly China; however, based on recent source apportionment results, we suggest that strengthening regulation emissions from biomass-burning sources in both urban and rural areas is needed to meet a rigorous reduction target. Here, household biofuel and open biomass burning are highlighted, as impacts of these emissions can cause local and regional pollution. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Oil and Natural Gas Production Facilities National Emissions Standards for Hazardous Air Pollutants (NESHAP) Final Rule Fact Sheet

    EPA Pesticide Factsheets

    This page contains a January 2007 fact sheet for the final National Emission Standards for Hazardous Air Pollutants (NESHAP) for Oil and Natural Gas Production Facilities. This document provides a summary of the 2007 final rule.

  1. Tropospheric Emissions: Monitoring of Pollution (TEMPO)

    NASA Technical Reports Server (NTRS)

    Zoogman, P.; Liu, X.; Suleiman, R. M.; Pennington, W. F.; Flittner, D. E.; Al-Saadi, J. A.; Hilton, B. B.; Nicks, D. K.; Newchurch, M. J.; Carr, J. L.; hide

    2016-01-01

    TEMPO (Tropospheric Emissions: Monitoring of Pollution) was selected in 2012 by NASA as the first Earth Venture Instrument, for launch between 2018 and 2021. It will measure atmospheric pollution for greater North America from space using ultraviolet and visible spectroscopy. TEMPO observes from Mexico City, Cuba, and the Bahamas to the Canadian oil sands, and from the Atlantic to the Pacific, hourly and at high spatial resolution (approximately 2.1 kilometers N/S by 4.4 kilometers E/W at 36.5 degrees N, 100 degrees W). TEMPO provides a tropospheric measurement suite that includes the key elements of tropospheric air pollution chemistry, as well as contributing to carbon cycle knowledge. Measurements are made hourly from geostationary (GEO) orbit, to capture the high variability present in the diurnal cycle of emissions and chemistry that are unobservable from current low-Earth orbit (LEO) satellites that measure once per day. The small product spatial footprint resolves pollution sources at sub-urban scale. Together, this temporal and spatial resolution improves emission inventories, monitors population exposure, and enables effective emission-control strategies. TEMPO takes advantage of a commercial GEO host spacecraft to provide a modest cost mission that measures the spectra required to retrieve ozone (O3), nitrogen dioxide (NO2), sulfur dioxide (SO2), formaldehyde (H2CO), glyoxal (C2H2O2), bromine monoxide (BrO), IO (iodine monoxide),water vapor, aerosols, cloud parameters, ultraviolet radiation, and foliage properties. TEMPO thus measures the major elements, directly or by proxy, in the tropospheric O3 chemistry cycle. Multi-spectral observations provide sensitivity to O3 in the lowermost troposphere, substantially reducing uncertainty in air quality predictions. TEMPO quantifies and tracks the evolution of aerosol loading. It provides these near-real-time air quality products that will be made publicly available. TEMPO will launch at a prime time to be the

  2. Air Pollution Data for Model Evaluation and Application

    EPA Science Inventory

    One objective of designing an air pollution monitoring network is to obtain data for evaluating air quality models that are used in the air quality management process and scientific discovery.1.2 A common use is to relate emissions to air quality, including assessing ...

  3. Air pollution and the heart : cardiovascular effects and mechanisms.

    PubMed

    Barclay, Justin; Hillis, Graham; Ayres, Jon

    2005-01-01

    There has been increasing awareness in recent years of the adverse cardiovascular effects of ambient air pollution. The recent publication of a statement from the Expert Panel on Population and Prevention Science of the American Heart Association has highlighted this issue. It has been appreciated for several decades that major pollution episodes, such as that associated with the London Fog of 1952, are responsible for increased numbers of deaths and most of these are due to cardiorespiratory causes. Realisation of this prompted government and environmental health initiatives to reduce emissions through establishing air quality standards. Previously, the major sources of air pollution were related to domestic coal burning and industry. However, the pattern of emissions in modern developed countries has changed, resulting in a pollution mixture of different composition to that on which early air quality standards were based. Even current 'lower' levels of air pollution have been shown consistently to be associated with adverse health effects. Over the past two decades, a wealth of epidemiological studies have considered both long- and short-term health effects of air pollution. Although the relative risk of respiratory disease in relation to air pollution exposure seems to be higher than that of cardiovascular disease, the latter are of greater absolute significance in population terms. A number of hypotheses have been proposed in order to explain the observed associations, and recent research efforts have focused on examining the mechanisms underlying the effects. It is suggested that certain subgroups of the population such as the elderly or those with pre-existing cardiorespiratory disease may be more susceptible to the effects of air pollution, and analysis of survival data from cohort studies supports this observation.

  4. Evaluation of bottom-up and downscaled emission inventories for Paris and consequences for estimating urban air pollution increments

    NASA Astrophysics Data System (ADS)

    Timmermans, R.; Denier van der Gon, H.; Segers, A.; Honore, C.; Perrussel, O.; Builtjes, P.; Schaap, M.

    2012-04-01

    Since a major part of the Earth's population lives in cities, it is of great importance to correctly characterise the air pollution levels over these urban areas. Many studies in the past have already been dedicated to this subject and have determined so-called urban increments: the impact of large cities on the air pollution levels. The impact of large cities on air pollution levels usually is determined with models driven by so-called downscaled emission inventories. In these inventories official country total emissions are gridded using information on for example population density and location of industries and roads. The question is how accurate are the downscaled inventories over cities or large urban areas. Within the EU FP 7 project MEGAPOLI project a new emission inventory has been produced including refined local emission data for two European megacities (Paris, London) and two urban conglomerations (the Po valley, Italy and the Rhine-Ruhr region, Germany) based on a bottom-up approach. The inventory has comparable national totals but remarkable difference at the city scale. Such a bottom up inventory is thought to be more accurate as it contains local knowledge. Within this study we compared modelled nitrogen dioxide (NO2) and particulate matter (PM) concentrations from the LOTOS-EUROS chemistry transport model driven by a conventional downscaled emission inventory (TNO-MACC inventory) with the concentrations from the same model driven by the new MEGAPOLI 'bottom-up' emission inventory focusing on the Paris region. Model predictions for Paris significantly improve using the new Megapoli inventory. Both the emissions as well as the simulated average concentrations of PM over urban sites in Paris are much lower due to the different spatial distribution of the anthropogenic emissions. The difference for the nearby rural stations is small implicating that also the urban increment for PM simulated using the bottom-up emission inventory is much smaller than

  5. Emission factors of air pollutants from CNG-gasoline bi-fuel vehicles: Part I. Black carbon.

    PubMed

    Wang, Yang; Xing, Zhenyu; Xu, Hui; Du, Ke

    2016-12-01

    Compressed natural gas (CNG) is considered to be a "cleaner" fuel compared to other fossil fuels. Therefore, it is used as an alternative fuel in motor vehicles to reduce emissions of air pollutants in transportation. To quantify "how clean" burning CNG is compared to burning gasoline, quantification of pollutant emissions under the same driving conditions for motor vehicles with different fuels is needed. In this study, a fleet of bi-fuel vehicles was selected to measure the emissions of black carbon (BC), carbon monoxide (CO), hydrocarbon (HC) and nitrogen oxide (NO x ) for driving in CNG mode and gasoline mode respectively under the same set of constant speeds and accelerations. Comparison of emission factors (EFs) for the vehicles burning CNG and gasoline are discussed. This part of the paper series reports BC EFs for bi-fuel vehicles driving on the real road, which were measured using an in situ method. Our results show that burning CNG will lead to 54%-83% reduction in BC emissions per kilometer, depending on actual driving conditions. These comparisons show that CNG is a cleaner fuel than gasoline for motor vehicles in terms of BC emissions and provide a viable option for reducing BC emissions cause by transportation. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Local emission of primary air pollutants and its contribution to wet deposition and concentrations of aerosols and gases in ambient air in Japan

    NASA Astrophysics Data System (ADS)

    Aikawa, Masahide; Hiraki, Takatoshi; Tomoyose, Nobutaka; Ohizumi, Tsuyoshi; Noguchi, Izumi; Murano, Kentaro; Mukai, Hitoshi

    2013-11-01

    We studied wet deposition by precipitation and the concentrations of aerosols and gases in ambient air in relation to the primary air pollutants discharged from domestic areas. The concentrations of aerosols and gases were influenced by nearby emissions except for non-sea-salt SO, which is transported long distances. The area facing the Sea of Japan showed much larger wet deposition than other areas, although the domestic emissions of the primary air pollutants there were small and showed a peak in wet deposition from October to March, as distinct from April to September in other areas. We performed the correlation analyses between wet deposition of each component and the product of the concentrations of corresponding aerosols and gases in ambient air and the two-thirds power of the precipitation. From the results, following scavenging processes were suggested. • Sulfate and ammonium were scavenged in precipitation as particulate matter such as (NH4)2SO4 and NH4HSO4. • Nitrate was scavenged mainly in precipitation through gaseous HNO3. • Ammonium was complementarily scavenged in precipitation through aerosols such as (NH4)2SO4 and NH4HSO4 and through gaseous NH3.

  7. Near-source air pollution and mitigation strategies

    EPA Science Inventory

    Abstract. Local-scale air pollution impact is of concern for populations located in close proximity to transit sources, including highway, port, rail, and other areas of concentrated diesel emissions. Previous near-road air monitoring research has prompted the U.S. EPA to implem...

  8. InMAP: A model for air pollution interventions

    DOE PAGES

    Tessum, Christopher W.; Hill, Jason D.; Marshall, Julian D.; ...

    2017-04-19

    Mechanistic air pollution modeling is essential in air quality management, yet the extensive expertise and computational resources required to run most models prevent their use in many situations where their results would be useful. We present InMAP (Intervention Model for Air Pollution), which offers an alternative to comprehensive air quality models for estimating the air pollution health impacts of emission reductions and other potential interventions. InMAP estimates annual-average changes in primary and secondary fine particle (PM2.5) concentrations—the air pollution outcome generally causing the largest monetized health damages–attributable to annual changes in precursor emissions. InMAP leverages pre-processed physical and chemical informationmore » from the output of a state-of-the-science chemical transport model and a variable spatial resolution computational grid to perform simulations that are several orders of magnitude less computationally intensive than comprehensive model simulations. In comparisons we run, InMAP recreates comprehensive model predictions of changes in total PM2.5 concentrations with population-weighted mean fractional bias (MFB) of -17% and population-weighted R2 = 0.90. Although InMAP is not specifically designed to reproduce total observed concentrations, it is able to do so within published air quality model performance criteria for total PM2.5. Potential uses of InMAP include studying exposure, health, and environmental justice impacts of potential shifts in emissions for annual-average PM2.5. InMAP can be trained to run for any spatial and temporal domain given the availability of appropriate simulation output from a comprehensive model. The InMAP model source code and input data are freely available online under an open-source license.« less

  9. InMAP: A model for air pollution interventions

    PubMed Central

    Hill, Jason D.; Marshall, Julian D.

    2017-01-01

    Mechanistic air pollution modeling is essential in air quality management, yet the extensive expertise and computational resources required to run most models prevent their use in many situations where their results would be useful. Here, we present InMAP (Intervention Model for Air Pollution), which offers an alternative to comprehensive air quality models for estimating the air pollution health impacts of emission reductions and other potential interventions. InMAP estimates annual-average changes in primary and secondary fine particle (PM2.5) concentrations—the air pollution outcome generally causing the largest monetized health damages–attributable to annual changes in precursor emissions. InMAP leverages pre-processed physical and chemical information from the output of a state-of-the-science chemical transport model and a variable spatial resolution computational grid to perform simulations that are several orders of magnitude less computationally intensive than comprehensive model simulations. In comparisons run here, InMAP recreates comprehensive model predictions of changes in total PM2.5 concentrations with population-weighted mean fractional bias (MFB) of −17% and population-weighted R2 = 0.90. Although InMAP is not specifically designed to reproduce total observed concentrations, it is able to do so within published air quality model performance criteria for total PM2.5. Potential uses of InMAP include studying exposure, health, and environmental justice impacts of potential shifts in emissions for annual-average PM2.5. InMAP can be trained to run for any spatial and temporal domain given the availability of appropriate simulation output from a comprehensive model. The InMAP model source code and input data are freely available online under an open-source license. PMID:28423049

  10. InMAP: A model for air pollution interventions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tessum, Christopher W.; Hill, Jason D.; Marshall, Julian D.

    Mechanistic air pollution modeling is essential in air quality management, yet the extensive expertise and computational resources required to run most models prevent their use in many situations where their results would be useful. We present InMAP (Intervention Model for Air Pollution), which offers an alternative to comprehensive air quality models for estimating the air pollution health impacts of emission reductions and other potential interventions. InMAP estimates annual-average changes in primary and secondary fine particle (PM2.5) concentrations—the air pollution outcome generally causing the largest monetized health damages–attributable to annual changes in precursor emissions. InMAP leverages pre-processed physical and chemical informationmore » from the output of a state-of-the-science chemical transport model and a variable spatial resolution computational grid to perform simulations that are several orders of magnitude less computationally intensive than comprehensive model simulations. In comparisons we run, InMAP recreates comprehensive model predictions of changes in total PM2.5 concentrations with population-weighted mean fractional bias (MFB) of -17% and population-weighted R2 = 0.90. Although InMAP is not specifically designed to reproduce total observed concentrations, it is able to do so within published air quality model performance criteria for total PM2.5. Potential uses of InMAP include studying exposure, health, and environmental justice impacts of potential shifts in emissions for annual-average PM2.5. InMAP can be trained to run for any spatial and temporal domain given the availability of appropriate simulation output from a comprehensive model. The InMAP model source code and input data are freely available online under an open-source license.« less

  11. Transportation, Air Pollution, and Climate Change

    EPA Pesticide Factsheets

    Learn how emissions reductions, advancements in fuels and fuel economy, and working with industry to find solutions to air pollution problems benefit human and environmental health, create consumer savings and are cost effective.

  12. Australia’s first national level quantitative environmental justice assessment of industrial air pollution

    NASA Astrophysics Data System (ADS)

    Chakraborty, Jayajit; Green, Donna

    2014-04-01

    This study presents the first national level quantitative environmental justice assessment of industrial air pollution in Australia. Specifically, our analysis links the spatial distribution of sites and emissions associated with industrial pollution sources derived from the National Pollution Inventory, to Indigenous status and social disadvantage characteristics of communities derived from Australian Bureau of Statistics indicators. Our results reveal a clear national pattern of environmental injustice based on the locations of industrial pollution sources, as well as volume, and toxicity of air pollution released at these locations. Communities with the highest number of polluting sites, emission volume, and toxicity-weighted air emissions indicate significantly greater proportions of Indigenous population and higher levels of socio-economic disadvantage. The quantities and toxicities of industrial air pollution are particularly higher in communities with the lowest levels of educational attainment and occupational status. These findings emphasize the need for more detailed analysis in specific regions and communities where socially disadvantaged groups are disproportionately impacted by industrial air pollution. Our empirical findings also underscore the growing necessity to incorporate environmental justice considerations in environmental planning and policy-making in Australia.

  13. Source apportionment of indoor air pollution

    NASA Astrophysics Data System (ADS)

    Sexton, Ken; Hayward, Steven B.

    An understanding of the relative contributions from important pollutant sources to human exposures is necessary for the design and implementation of effective control strategies. In the past, societal efforts to control air pollution have focused almost exclusively on the outdoor (ambient) environment. As a result, substantial amounts of time and money have been spent to limit airborne discharges from mobile and stationary sources. Yet it is now recognized that exposures to elevated pollutant concentrations often occur as a result of indoor, rather than outdoor, emissions. While the major indoor sources have been identified, their relative impacts on indoor air quality have not been well defined. Application of existing source apportionment models to nonindustrial indoor environments is only just beginning. It is possible that these models might be used to distinguish between indoor and outdoor emissions, as well as to distinguish among indoor sources themselves. However, before the feasibility and suitability of source-apportionment methods for indoor applications can be assessed adequately, it is necessary to take account of model assumptions and associated data requirements. This paper examines the issue of indoor source apportionment and reviews the need for emission characterization studies to support such source-apportionment efforts.

  14. Evaluating the Effects of Emission Reductions on Multiple Pollutants Simultaneously

    EPA Science Inventory

    Modeling studies over the Philadelphia metropolitan area have examined how emission control strategies might affect several types of air pollutants simultaneously. This study supports considering effects of multiple pollutants in determining optimum pollution control strategies. ...

  15. Polyvinyl Chloride and Copolymers Production: National Emission Standards for Hazardous Air Pollutants (NESHAP) - 40 CFR 63 Subparts J & HHHHHHH

    EPA Pesticide Factsheets

    Learn about the regulations for the Polyvinyl Chloride and Copolymers Production Production regarding the emissions of hazardous air pollutants. Find Federal Register citations, read the rule, and find the rule history here.

  16. 40 CFR Table 1 to Subpart Xx of... - Hazardous Air Pollutants

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 11 2013-07-01 2013-07-01 false Hazardous Air Pollutants 1 Table 1 to Subpart XX of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED...

  17. LOWER RIO GRANDE VALLEY TRANSBOUNDARY AIR POLLUTION PROJECT (TAPP) (MAIN REPORT)

    EPA Science Inventory

    The purpose of the Lower Rio Grande Valley Transboundary Air Pollution Project (TAPP) was to obtain air quality data for a full year at three border monitoring sites to assess anthropogenic and biogenic emission impacts and transboundary air pollution transport in the Lower Rio...

  18. 40 CFR Table 1 to Subpart Xx of... - Hazardous Air Pollutants

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 10 2010-07-01 2010-07-01 false Hazardous Air Pollutants 1 Table 1 to Subpart XX of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED...

  19. 40 CFR Table 1 to Subpart Xx of... - Hazardous Air Pollutants

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 10 2011-07-01 2011-07-01 false Hazardous Air Pollutants 1 Table 1 to Subpart XX of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED...

  20. Urban Form, Air Pollution, and Health.

    PubMed

    Hankey, Steve; Marshall, Julian D

    2017-12-01

    Urban form can impact air pollution and public health. We reviewed health-related articles that assessed (1) the relationships among urban form, air pollution, and health as well as (2) aspects of the urban environment (i.e., green space, noise, physical activity) that may modify those relationships. Simulation and empirical studies demonstrate an association between compact growth, improved regional air quality, and health. Most studies are cross-sectional and focus on connections between transportation emissions and land use. The physical and mental health impacts of green space, public spaces that promote physical activity, and noise are well-studied aspects of the urban environment and there is evidence that these factors may modify the relationship between air pollution and health. Urban form can support efforts to design clean, health-promoting cities. More work is needed to operationalize specific strategies and to elucidate the causal pathways connecting various aspects of health.

  1. Cleaning products and air fresheners: exposure to primary and secondary air pollutants

    NASA Astrophysics Data System (ADS)

    Nazaroff, William W.; Weschler, Charles J.

    Building occupants, including cleaning personnel, are exposed to a wide variety of airborne chemicals when cleaning agents and air fresheners are used in buildings. Certain of these chemicals are listed by the state of California as toxic air contaminants (TACs) and a subset of these are regulated by the US federal government as hazardous air pollutants (HAPs). California's Proposition 65 list of species recognized as carcinogens or reproductive toxicants also includes constituents of certain cleaning products and air fresheners. In addition, many cleaning agents and air fresheners contain chemicals that can react with other air contaminants to yield potentially harmful secondary products. For example, terpenes can react rapidly with ozone in indoor air generating many secondary pollutants, including TACs such as formaldehyde. Furthermore, ozone-terpene reactions produce the hydroxyl radical, which reacts rapidly with organics, leading to the formation of other potentially toxic air pollutants. Indoor reactive chemistry involving the nitrate radical and cleaning-product constituents is also of concern, since it produces organic nitrates as well as some of the same oxidation products generated by ozone and hydroxyl radicals. Few studies have directly addressed the indoor concentrations of TACs that might result from primary emissions or secondary pollutant formation following the use of cleaning agents and air fresheners. In this paper, we combine direct empirical evidence with the basic principles of indoor pollutant behavior and with information from relevant studies, to analyze and critically assess air pollutant exposures resulting from the use of cleaning products and air fresheners. Attention is focused on compounds that are listed as HAPs, TACs or Proposition 65 carcinogens/reproductive toxicants and compounds that can readily react to generate secondary pollutants. The toxicity of many of these secondary pollutants has yet to be evaluated. The inhalation

  2. Animals as indicators of ecosystem responses to air emissions

    USGS Publications Warehouse

    Newman, James R.; Schreiber, R. Kent

    1984-01-01

    With existing and proposed air-quality regulations, ecological disasters resulting from air emissions such as those observed at Copperhill, Tennessee, and Sudbury, Ontario, are unlikely. Current air-quality standards, however, may not protect ecosystems from subacute and chronic exposure to air emissions. The encouragement of the use of coal for energy production and the development of the fossil-fuel industries, including oil shales, tar sands, and coal liquification, point to an increase and spread of fossil-fuel emissions and the potential to influence a number of natural ecosystems. This paper reviews the reported responses of ecosystems to air-borne pollutants and discusses the use of animals as indicators of ecosystem responses to these pollutants. Animal species and populations can act as important indicators of biotic and abiotic responses of aquatic and terrestrial ecosystems. These responses can indicate long-term trends in ecosystem health and productivity, chemical cycling, genetics, and regulation. For short-term trends, fish and wildlife also serve as monitors of changes in community structure, signaling food-web contamination, as well as providing a measure of ecosystem vitality. Information is presented to show not only the importance of animals as indicators of ecosystem responses to air-quality degradation, but also their value as air-pollution indices, that is, as air-quality-related values (AQRV), required in current air-pollution regulation.

  3. Mobile Air Monitoring Data Processing Strategies and Effects on Spatial Air Pollution Trends

    EPA Science Inventory

    The collection of real-time air quality measurements while in motion (i.e., mobile monitoring) is currently conducted worldwide to evaluate in situ emissions, local air quality trends, and air pollutant exposure. This measurement strategy pushes the limits of traditional data an...

  4. Tropospheric emissions: monitoring of pollution (TEMPO)

    NASA Astrophysics Data System (ADS)

    Chance, Kelly; Liu, Xiong; Suleiman, Raid M.; Flittner, David E.; Al-Saadi, Jassim; Janz, Scott J.

    2013-09-01

    TEMPO was selected in 2012 by NASA as the first Earth Venture Instrument, for launch circa 2018. It will measure atmospheric pollution for greater North America from space using ultraviolet and visible spectroscopy. TEMPO measures from Mexico City to the Canadian tar sands, and from the Atlantic to the Pacific, hourly and at high spatial resolution (~2 km N/S×4.5 km E/W at 36.5°N, 100°W). TEMPO provides a tropospheric measurement suite that includes the key elements of tropospheric air pollution chemistry. Measurements are from geostationary (GEO) orbit, to capture the inherent high variability in the diurnal cycle of emissions and chemistry. The small product spatial footprint resolves pollution sources at sub-urban scale. Together, this temporal and spatial resolution improves emission inventories, monitors population exposure, and enables effective emission-control strategies. TEMPO takes advantage of a commercial GEO host spacecraft to provide a modest cost mission that measures the spectra required to retrieve O3, NO2, SO2, H2CO, C2H2O2, H2O, aerosols, cloud parameters, and UVB radiation. TEMPO thus measures the major elements, directly or by proxy, in the tropospheric O3 chemistry cycle. Multi-spectral observations provide sensitivity to O3 in the lowermost troposphere, substantially reducing uncertainty in air quality predictions. TEMPO quantifies and tracks the evolution of aerosol loading. It provides near-real-time air quality products that will be made widely, publicly available. TEMPO will launch at a prime time to be the North American component of the global geostationary constellation of pollution monitoring together with European Sentinel-4 and Korean GEMS.

  5. Interaction between air pollution dispersion and residential heating demands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lipfert, F.W.; Moskowitz, P.D.; Dungan, J.

    The effect of the short-term correlation of a specific emission (sulfur dioxide) from residential space heating, with air pollution dispersion rates on the accuracy of model estimates of urban air pollution on a seasonal or annual basis is analyzed. Hourly climatological and residential emission estimates for six U.S. cities and a simplified area source-dispersion model based on a circular receptor grid are used. The effect on annual average concentration estimations is found to be slight (approximately + or - 12 percent), while the maximum hourly concentrations are shown to vary considerably more, since maximum heat demand and worst-case dispersion aremore » not coincident. Accounting for the correlations between heating demand and dispersion makes possible a differentiation in air pollution potential between coastal and interior cities.« less

  6. On - road mobile source pollutant emissions : identifying hotspots and ranking roads.

    DOT National Transportation Integrated Search

    2010-12-30

    A considerable amount of pollution to the air in the forms of hydrocarbons, carbon : monoxide (CO), nitrogen oxides (NOx), particulate matter (PM) and air toxics comes : from the on-road mobile sources. Estimation of the emissions of these pollutants...

  7. News focus: Report on state and local air toxics regulatory strategies published by STAPPA/ALAPCO (State and Territorial Air Pollution Program Administrators/Association of Local Air Pollution Control Officials)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1989-12-01

    The report is entitled Toxic Air Pollutants: State and Local Regulatory Strategies - 1989. The 364-page report is the result of a survey of state and local air pollution control agencies, which solicited information on their programs to control air toxics. According to the survey, every state currently has a program to address emissions of air toxics. Additionally, 27 of the 40 local agencies that responded to the survey have, or are developing, air toxics programs. The strategies employed by state and local agencies vary widely, including control technology requirements, risk assessment, acceptable ambient guidelines, or a combination of thesemore » approaches. This is a report summarizing the air toxics control programs currently implemented (or under development) by state and local air pollution control agencies throughout the US. The report is based upon a survey of all 50 states and 220 local air pollution control agencies conducted by the State and Territorial Air Pollution Program Administrators (STAPPA) and the Association of Local Air Pollution Control Officials (ALAPCO). This survey updates one published five years earlier.« less

  8. Effects of canyon geometry on the distribution of traffic-related air pollution in a large urban area: Implications of a multi-canyon air pollution dispersion model

    NASA Astrophysics Data System (ADS)

    Fu, Xiangwen; Liu, Junfeng; Ban-Weiss, George A.; Zhang, Jiachen; Huang, Xin; Ouyang, Bin; Popoola, Olalekan; Tao, Shu

    2017-09-01

    Street canyons are ubiquitous in urban areas. Traffic-related air pollutants in street canyons can adversely affect human health. In this study, an urban-scale traffic pollution dispersion model is developed considering street distribution, canyon geometry, background meteorology, traffic assignment, traffic emissions and air pollutant dispersion. In the model, vehicle exhausts generated from traffic flows first disperse inside street canyons along the micro-scale wind field generated by computational fluid dynamics (CFD) model. Then, pollutants leave the street canyon and further disperse over the urban area. On the basis of this model, the effects of canyon geometry on the distribution of NOx and CO from traffic emissions were studied over the center of Beijing. We found that an increase in building height leads to heavier pollution inside canyons and lower pollution outside canyons at pedestrian level, resulting in higher domain-averaged concentrations over the area. In addition, canyons with highly even or highly uneven building heights on each side of the street tend to lower the urban-scale air pollution concentrations at pedestrian level. Further, increasing street widths tends to lead to lower pollutant concentrations by reducing emissions and enhancing ventilation simultaneously. Our results indicate that canyon geometry strongly influences human exposure to traffic pollutants in the populated urban area. Carefully planning street layout and canyon geometry while considering traffic demand as well as local weather patterns may significantly reduce inhalation of unhealthy air by urban residents.

  9. 76 FR 13851 - National Emission Standards for Hazardous Air Pollutants: Mercury Emissions From Mercury Cell...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-14

    ...This action proposes amendments to the national emission standards for hazardous air pollutants (NESHAP) for mercury emissions from mercury cell chlor-alkali plants (Mercury Cell NESHAP). On June 11, 2008, EPA proposed amendments to this NESHAP in response to a petition for reconsideration filed by the Natural Resources Defense Council (NRDC). This action is a supplement to the June 11, 2008, proposal. Specifically, this action proposes two options for amending the NESHAP for mercury emissions from mercury cell chlor-alkali plants. The first option would require the elimination of mercury emissions and thus encourage the conversion to non-mercury technology. The second option would require the measures proposed in 2008. These measures, which included significant improvements in the work practices to reduce fugitive emissions from the cell room, would result in near-zero levels of mercury emissions while still allowing the mercury cell facilities to continue to operate. We are specifically requesting comment on which of these options is more appropriate, and may finalize either option or a combination of elements from them. In addition, this action proposes several amendments that would apply regardless of which option we select. These proposed amendments are provisions of the existing NESHAP that would apply to periods of startup, shutdown, and malfunction (SSM), and corrections to compliance errors in the currently effective rule.

  10. Indoor air pollutants from unvented kerosene-heater emissions in mobile homes: Studies on particles, semivolatile organics, carbon monoxide, and mutagenicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mumford, J.L.; Williams, R.W.; Walsh, D.B.

    1991-01-01

    The study was conducted to assess human exposure to air pollutants resulting from the use of kerosene heaters in mobile homes. It has been estimated that 15-17 million unvented kerosene heaters have been sold in the United States, and 33% of these heaters have been sold to mobile home residents. The emissions from kerosene heaters can result in high pollutants levels in mobile homes that have a small air volume and low ventilation rate. Eight totally electric mobile homes with no smokers living in the homes were monitored for indoor air particles < 10 micrometer (PM10), semivolatile organics, carbon monoxidemore » (CO), and mutagenicity of semivolatile and particle-phase organics in Salmonella typhimurium TA98 without S9 using a microsuspension reverse-mutation assay. Each home was monitored for an average of 6.5 h/day, 3 days/week, for 4 weeks (2 weeks with the heater on and 2 weeks with the heater off) during the heating season of 1989. Indoor air exchange rate, temperature, and humidity were measured. Chemical analyses, including polycyclic aromatic hydrocarbon (PAH) and nitro PAH, also were performed on the indoor air samples from a selected home with the kerosene heater on and off. Increases in CO and organic concentrations resulting from the use of kerosene heaters were found in most homes monitored. Chemical analysis data also suggested the presence of evaporated, unburned kerosene fuel present in semivolatile organics collected in the XAD samples. In comparison with the U.S. national ambient air standards, four out of the eight heaters investigated in the study emitted pollutants that exceeded the ambient air standards some days. These data suggested that emissions from unvented kerosene heaters can significantly impact indoor air quality in mobile homes and that these emissions contain carcinogenic compounds and can be potentially carcinogenic in humans.« less

  11. Mitigation of severe urban haze pollution by a precision air pollution control approach.

    PubMed

    Yu, Shaocai; Li, Pengfei; Wang, Liqiang; Wu, Yujie; Wang, Si; Liu, Kai; Zhu, Tong; Zhang, Yuanhang; Hu, Min; Zeng, Liming; Zhang, Xiaoye; Cao, Junji; Alapaty, Kiran; Wong, David C; Pleim, Jon; Mathur, Rohit; Rosenfeld, Daniel; Seinfeld, John H

    2018-05-25

    Severe and persistent haze pollution involving fine particulate matter (PM 2.5 ) concentrations reaching unprecedentedly high levels across many cities in China poses a serious threat to human health. Although mandatory temporary cessation of most urban and surrounding emission sources is an effective, but costly, short-term measure to abate air pollution, development of long-term crisis response measures remains a challenge, especially for curbing severe urban haze events on a regular basis. Here we introduce and evaluate a novel precision air pollution control approach (PAPCA) to mitigate severe urban haze events. The approach involves combining predictions of high PM 2.5 concentrations, with a hybrid trajectory-receptor model and a comprehensive 3-D atmospheric model, to pinpoint the origins of emissions leading to such events and to optimize emission controls. Results of the PAPCA application to five severe haze episodes in major urban areas in China suggest that this strategy has the potential to significantly mitigate severe urban haze by decreasing PM 2.5 peak concentrations by more than 60% from above 300 μg m -3 to below 100 μg m -3 , while requiring ~30% to 70% less emission controls as compared to complete emission reductions. The PAPCA strategy has the potential to tackle effectively severe urban haze pollution events with economic efficiency.

  12. Vegetation and other development options for mitigating urban air pollution impacts

    EPA Science Inventory

    In addition to installing air pollution control devices and reducing emissions activities, urban air pollution can be further mitigated through planning and design strategies including vegetation planting, building design, installing roadside and near source structures, and modif...

  13. What can individuals do to reduce personal health risks from air pollution?

    PubMed Central

    Laumbach, Robert; Meng, Qingyu

    2015-01-01

    In many areas of the world, concentrations of ambient air pollutants exceed levels associated with increased risk of acute and chronic health problems. While effective policies to reduce emissions at their sources are clearly preferable, some evidence supports the effectiveness of individual actions to reduce exposure and health risks. Personal exposure to ambient air pollution can be reduced on high air pollution days by staying indoors, reducing outdoor air infiltration to indoors, cleaning indoor air with air filters, and limiting physical exertion, especially outdoors and near air pollution sources. Limited evidence suggests that the use of respirators may be effective in some circumstances. Awareness of air pollution levels is facilitated by a growing number of public air quality alert systems. Avoiding exposure to air pollutants is especially important for susceptible individuals with chronic cardiovascular or pulmonary disease, children, and the elderly. Research on mechanisms underlying the adverse health effects of air pollution have suggested potential pharmaceutical or chemopreventive interventions, such as antioxidant or antithrombotic agents, but in the absence of data on health outcomes, no sound recommendations can be made for primary prevention. Health care providers and their patients should carefully consider individual circumstances related to outdoor and indoor air pollutant exposure levels and susceptibility to those air pollutants when deciding on a course of action to reduce personal exposure and health risks from ambient air pollutants. Careful consideration is especially warranted when interventions may have unintended negative consequences, such as when efforts to avoid exposure to air pollutants lead to reduced physical activity or when there is evidence that dietary supplements, such as antioxidants, have potential adverse health effects. These potential complications of partially effective personal interventions to reduce exposure or

  14. What can individuals do to reduce personal health risks from air pollution?

    PubMed

    Laumbach, Robert; Meng, Qingyu; Kipen, Howard

    2015-01-01

    In many areas of the world, concentrations of ambient air pollutants exceed levels associated with increased risk of acute and chronic health problems. While effective policies to reduce emissions at their sources are clearly preferable, some evidence supports the effectiveness of individual actions to reduce exposure and health risks. Personal exposure to ambient air pollution can be reduced on high air pollution days by staying indoors, reducing outdoor air infiltration to indoors, cleaning indoor air with air filters, and limiting physical exertion, especially outdoors and near air pollution sources. Limited evidence suggests that the use of respirators may be effective in some circumstances. Awareness of air pollution levels is facilitated by a growing number of public air quality alert systems. Avoiding exposure to air pollutants is especially important for susceptible individuals with chronic cardiovascular or pulmonary disease, children, and the elderly. Research on mechanisms underlying the adverse health effects of air pollution have suggested potential pharmaceutical or chemopreventive interventions, such as antioxidant or antithrombotic agents, but in the absence of data on health outcomes, no sound recommendations can be made for primary prevention. Health care providers and their patients should carefully consider individual circumstances related to outdoor and indoor air pollutant exposure levels and susceptibility to those air pollutants when deciding on a course of action to reduce personal exposure and health risks from ambient air pollutants. Careful consideration is especially warranted when interventions may have unintended negative consequences, such as when efforts to avoid exposure to air pollutants lead to reduced physical activity or when there is evidence that dietary supplements, such as antioxidants, have potential adverse health effects. These potential complications of partially effective personal interventions to reduce exposure or

  15. Railroads and Air Pollution : A Perspective

    DOT National Transportation Integrated Search

    1973-01-01

    A review of existing air pollution control legislation is presented with emphasis on legislation affecting the rail industry. Locomotive exhaust emissions, especially smoke, are receiving the bulk of attention from control agencies and the general pu...

  16. Estimation of economic costs of particulate air pollution from road transport in China

    NASA Astrophysics Data System (ADS)

    Guo, X. R.; Cheng, S. Y.; Chen, D. S.; Zhou, Y.; Wang, H. Y.

    2010-09-01

    Valuation of health effects of air pollution is becoming a critical component of the performance of cost-benefit analysis of pollution control measures, which provides a basis for setting priorities for action. Beijing has focused on control of transport emission as vehicular emissions have recently become an important source of air pollution, particularly during Olympic games and Post-games. In this paper, we conducted an estimation of health effects and economic cost caused by road transport-related air pollution using an integrated assessment approach which utilizes air quality model, engineering, epidemiology, and economics. The results show that the total economic cost of health impacts due to air pollution contributed from transport in Beijing during 2004-2008 was 272, 297, 310, 323, 298 million US (mean value), respectively. The economic costs of road transport accounted for 0.52, 0.57, 0.60, 0.62, and 0.58% of annual Beijing GDP from 2004 to 2008. Average cost per vehicle and per ton of PM 10 emission from road transport can also be estimated as 106 US /number and 3584 US $ t -1, respectively. These findings illustrate that the impact of road transport contributed particulate air pollution on human health could be substantial in Beijing, whether in physical and economic terms. Therefore, some control measures to reduce transport emissions could lead to considerable economic benefit.

  17. Transboundary health impacts of transported global air pollution and international trade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Qiang; Jiang, Xujia; Tong, Dan

    Millions of people die every year from diseases caused by exposure to outdoor air pollution1, 2, 3, 4, 5. Some studies have estimated premature mortality related to local sources of air pollution6, 7, but local air quality can also be affected by atmospheric transport of pollution from distant sources8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18. International trade is contributing to the globalization of emission and pollution as a result of the production of goods (and their associated emissions) in one region for consumption in another region14, 19, 20, 21, 22. The effects of international trade onmore » air pollutant emissions23, air quality14 and health24 have been investigated regionally, but a combined, global assessment of the health impacts related to international trade and the transport of atmospheric air pollution is lacking. Here we combine four global models to estimate premature mortality caused by fine particulate matter (PM2.5) pollution as a result of atmospheric transport and the production and consumption of goods and services in different world regions. We find that, of the 3.45 million premature deaths related to PM2.5 pollution in 2007 worldwide, about 12 per cent (411,100 deaths) were related to air pollutants emitted in a region of the world other than that in which the death occurred, and about 22 per cent (762,400 deaths) were associated with goods and services produced in one region for consumption in another. For example, PM2.5 pollution produced in China in 2007 is linked to more than 64,800 premature deaths in regions other than China, including more than 3,100 premature deaths in western Europe and the USA; on the other hand, consumption in western Europe and the USA is linked to more than 108,600 premature deaths in China. Our results reveal that the transboundary health impacts of PM2.5 pollution associated with international trade are greater than those associated with long-distance atmospheric pollutant transport.« less

  18. Review of air pollution and health impacts in Malaysia.

    PubMed

    Afroz, Rafia; Hassan, Mohd Nasir; Ibrahim, Noor Akma

    2003-06-01

    In the early days of abundant resources and minimal development pressures, little attention was paid to growing environmental concerns in Malaysia. The haze episodes in Southeast Asia in 1983, 1984, 1991, 1994, and 1997 imposed threats to the environmental management of Malaysia and increased awareness of the environment. As a consequence, the government established Malaysian Air Quality Guidelines, the Air Pollution Index, and the Haze Action Plan to improve air quality. Air quality monitoring is part of the initial strategy in the pollution prevention program in Malaysia. Review of air pollution in Malaysia is based on the reports of the air quality monitoring in several large cities in Malaysia, which cover air pollutants such as Carbon monoxide (CO), Sulphur Dioxide (SO2), Nitrogen Dioxide (NO2), Ozone (O3), and Suspended Particulate Matter (SPM). The results of the monitoring indicate that Suspended Particulate Matter (SPM) and Nitrogen Dioxide (NO2) are the predominant pollutants. Other pollutants such as CO, O(x), SO2, and Pb are also observed in several big cities in Malaysia. The air pollution comes mainly from land transportation, industrial emissions, and open burning sources. Among them, land transportation contributes the most to air pollution. This paper reviews the results of the ambient air quality monitoring and studies related to air pollution and health impacts.

  19. Control of Air Pollution from Aviation: The Emission Standard Setting Process.

    DTIC Science & Technology

    1981-01-01

    49 VIII-2 ORGANIC EMISSIONS FROM GAS TURBINE ENGINES .......... 64 VIII-3 THE REACTIVITY OF AIRCRAFT COMPARED WITH OTHER EMISSION SOURCES...SETTING PROCESS ............................................... 45 VIII-I GAS TURBINE POLLUTANT FORMATION AND DECOMPO- SITION...144 A-4-3 AIRCRAFT GAS TURBINE POLLUTION CONSIDERATIONS ....... 145 A-4-4 PRIMARY ZONE ENRICHMENT, DELAYED DILUTION, AND AIRBLAST

  20. A model for interprovincial air pollution control based on futures prices.

    PubMed

    Zhao, Laijun; Xue, Jian; Gao, Huaizhu Oliver; Li, Changmin; Huang, Rongbing

    2014-05-01

    Based on the current status of research on tradable emission rights futures, this paper introduces basic market-related assumptions for China's interprovincial air pollution control problem. The authors construct an interprovincial air pollution control model based on futures prices: the model calculated the spot price of emission rights using a classic futures pricing formula, and determined the identities of buyers and sellers for various provinces according to a partitioning criterion, thereby revealing five trading markets. To ensure interprovincial cooperation, a rational allocation result for the benefits from this model was achieved using the Shapley value method to construct an optimal reduction program and to determine the optimal annual decisions for each province. Finally, the Beijing-Tianjin-Hebei region was used as a case study, as this region has recently experienced serious pollution. It was found that the model reduced the overall cost of reducing SO2 pollution. Moreover, each province can lower its cost for air pollution reduction, resulting in a win-win solution. Adopting the model would therefore enhance regional cooperation and promote the control of China's air pollution. The authors construct an interprovincial air pollution control model based on futures prices. The Shapley value method is used to rationally allocate the cooperation benefit. Interprovincial pollution control reduces the overall reduction cost of SO2. Each province can lower its cost for air pollution reduction by cooperation.

  1. Surface Coating of Wood Building Products National Emission Standards for Hazardous Air Pollutants (NESHAP) Questions and Answers (Q&A's)

    EPA Pesticide Factsheets

    This September 2004 document contains questions and answers on the Surface Coating of Wood Building Products National Emission Standards for Hazardous Air Pollutants (NESHAP) regulation. The questions cover topics such as compliance, and applicability, etc

  2. Monitoring of air pollution levels related to Charilaos Trikoupis Bridge.

    PubMed

    Sarigiannis, D A; Handakas, E J; Kermenidou, M; Zarkadas, I; Gotti, A; Charisiadis, P; Makris, K; Manousakas, M; Eleftheriadis, K; Karakitsios, S P

    2017-12-31

    Charilaos Trikoupis bridge is the longest cable bridge in Europe that connects Western Greece with the rest of the country. In this study, six air pollution monitoring campaigns (including major regulated air pollutants) were carried out from 2013 to 2015 at both sides of the bridge, located in the urban areas of Rio and Antirrio respectively. Pollution data were statistically analyzed and air quality was characterized using US and European air quality indices. From the overall campaign, it was found that air pollution levels were below the respective regulatory thresholds, but once at the site of Antirrio (26.4 and 52.2μg/m 3 for PM 2.5 and ΡΜ 10 , respectively) during the 2nd winter period. Daily average PM 10 and PM 2.5 levels from two monitoring sites were well correlated to gaseous pollutant (CO, NO, NO 2 , NO x and SO 2 ) levels, meteorological parameters and factor scores from Positive Matrix Factorization during the 3-year period. Moreover, the elemental composition of PM 10 and PM 2.5 was used for source apportionment. That analysis revealed that major emission sources were sulfates, mineral dust, biomass burning, sea salt, traffic and shipping emissions for PM 10 and PM 2.5 , for both Rio and Antirrio. Seasonal variation indicates that sulfates, mineral dust and traffic emissions increased during the warm season of the year, while biomass burning become the dominant during the cold season. Overall, the contribution of the Charilaos Trikoupis bridge to the vicinity air pollution is very low. This is the result of the relatively low daily traffic volume (~10,000 vehicles per day), the respective traffic fleet composition (~81% of the traffic fleet are private vehicles) and the speed limit (80km/h) which does not favor traffic emissions. In addition, the strong and frequent winds further contribute to the rapid dispersion of the emitted pollutants. Copyright © 2017. Published by Elsevier B.V.

  3. Regional Air Pollutions in Three Different Regions of Asia From a Transcontinental Transport Perspective

    NASA Astrophysics Data System (ADS)

    Pochanart, P.; Kanaya, Y.; Komazaki, Y.; Liu, Y.; Akimoto, H.

    2007-12-01

    Asia is known as one of the regions with the fastest rate of growing in industrialization and urbanization. As a result, the rapid increases of large-scale air pollution in Asia emerge as a serious concern at both domestic and international levels. Apart from the problems of air quality degradation, emission control, environmental risk, and health effect in a domestic level, evidences from scientific studies indicate that by the long-range transport, Asian air pollution is becoming a global problem. Observations and model studies confirm that air pollution from Asia could be transported to North America or farther. In this work, we investigate the Asian air pollutions, in particular ozone and some other atmospheric components such as carbon monoxide and black carbon, from the ground- based observations in the three different regions, namely 1) background region of Siberia and central Asia, 2) highly anthropogenic region in eastern China, and 3) the rim region of the Asia-Pacific. In a transcontinental transport perspective, these regions are regarded as the inflow region, source region, and outflow region of Asia, respectively. From the results, it is found that the influences from large-scale emission in East Asia are observed clearly in the source region, and to the significant extent in the outflow region. For the inflow region of Asia, our data in Siberia and Kyrgyzstan indicate that air masses in this region are mostly intact from large-scale anthropogenic emission, and remain much of the global background atmospheric pollution characteristic. When the air masses are transported to source region, the air pollutants level increased sharply and frequent episodes of extremely high pollutions have been observed. Our results show good correlation between the residence time of air masses over the source region in eastern China and the observed levels of air pollutants verifying the strong enhancements by anthropogenic emissions from industrialization and

  4. China’s international trade and air pollution in the United States

    PubMed Central

    Lin, Jintai; Pan, Da; Davis, Steven J.; Zhang, Qiang; He, Kebin; Wang, Can; Streets, David G.; Wuebbles, Donald J.; Guan, Dabo

    2014-01-01

    China is the world’s largest emitter of anthropogenic air pollutants, and measurable amounts of Chinese pollution are transported via the atmosphere to other countries, including the United States. However, a large fraction of Chinese emissions is due to manufacture of goods for foreign consumption. Here, we analyze the impacts of trade-related Chinese air pollutant emissions on the global atmospheric environment, linking an economic-emission analysis and atmospheric chemical transport modeling. We find that in 2006, 36% of anthropogenic sulfur dioxide, 27% of nitrogen oxides, 22% of carbon monoxide, and 17% of black carbon emitted in China were associated with production of goods for export. For each of these pollutants, about 21% of export-related Chinese emissions were attributed to China-to-US export. Atmospheric modeling shows that transport of the export-related Chinese pollution contributed 3–10% of annual mean surface sulfate concentrations and 0.5–1.5% of ozone over the western United States in 2006. This Chinese pollution also resulted in one extra day or more of noncompliance with the US ozone standard in 2006 over the Los Angeles area and many regions in the eastern United States. On a daily basis, the export-related Chinese pollution contributed, at a maximum, 12–24% of sulfate concentrations over the western United States. As the United States outsourced manufacturing to China, sulfate pollution in 2006 increased in the western United States but decreased in the eastern United States, reflecting the competing effect between enhanced transport of Chinese pollution and reduced US emissions. Our findings are relevant to international efforts to reduce transboundary air pollution. PMID:24449863

  5. Description of Latvian Metal Production and Processing Enterprises' Air Emissions

    NASA Astrophysics Data System (ADS)

    Pubule, Jelena; Zahare, Dace; Blumberga, Dagnija

    2010-01-01

    The metal production and processing sector in Latvia has acquired a stable position in the national economy. Smelting of ferrous and nonferrous metals, production of metalware, galvanisation, etc. are developed in Latvia. The metal production and processing sector has an impact on air quality due to polluting substances which are released in the air from metal treatment processes. Therefore it is necessary to determine the total volume of emissions produced by the metal production and processing sector in Latvia. This article deals with the air polluting emissions of the Latvian metal production and processing industry, and sets the optimum sector emission volumes using the emissions benchmark methodology.

  6. Air Pollution.

    ERIC Educational Resources Information Center

    Gilpin, Alan

    A summary of one of our most pressing environmental problems, air pollution, is offered in this book by the Director of Air Pollution Control for the Queensland (Australia) State Government. Discussion of the subject is not restricted to Queensland or Australian problems and policies, however, but includes analysis of air pollution the world over.…

  7. Managing Air Quality - Air Pollutant Types

    EPA Pesticide Factsheets

    Describes the types of air pollutants, including common or criteria pollutants, and hazardous air pollutants and links to additional information. Also links to resources on other air pollution issues.

  8. Integrated Assessment of Air Pollution Control Measures for Megacities

    NASA Astrophysics Data System (ADS)

    Friedrich, R.; Theloke, J.; Denier-van-der-Gon, H.; Kugler, U.; Kampffmeyer, T.; Roos, J.; Torras, S.

    2012-04-01

    Air pollution in large cities is still a matter of concern. Especially the concentration of fine particles (PM10 and PM2.5) is largest in large cities leading to severe health impacts. Furthermore the PM10 thresholds of the EU Air Quality Directive are frequently exceeded. Thus the question arises, whether the initiated policies and measures for mitigating air pollution are sufficient to meet the air quality targets and - if not - which efficient further pollution mitigation measures exist. These questions have been addressed in the EU research project MEGAPOLI for the four European megacities respectively agglomerations London, Paris, Rhine-Ruhr area and Po valley. Firstly, a reference scenario of future activities and emissions has been compiled for the megacities for the years 2020, 2030 and 2050 for all relevant air pollutants (CO, NH3, NMVOC, NOx, PM10, PM2.5 and SO2) and greenhouse gases (CO2, CH4 and N2O). The reference scenario takes into account as well population changes as technical progress and economic growth. As pollution flowing in from outside the city is about as important as pollution caused by emissions in the city, the analysis covers the whole of Europe and not only the city area. Emissions are then transformed into concentrations using atmospheric models. The higher concentrations in cities were estimated with a newly developed 'urban increment' model. Results show, that in the megacities the limits of the Air Quality Directive (2008/50/EC) will be exceeded. Thus additional efforts are necessary to reduce emissions further. Thus, a number of further measures (not implemented in current legislation) were selected and assessed. These included mitigation options for road transport, other mobile sources, large combustion plants, small and medium combustion plants and industry. For each measure and in addition for various bundles of measures a cost-benefit analysis has been carried out. Benefits (avoided health risks and climate change risks) have

  9. 54 FR 38044: National Emission Standards for Hazardous Air Pollutants; Benzene Emissions From Maleic Anhydride Plants, Ethylbenzene/Styrene Plants, Benzene Storage Vessels, Benzene Equipment Leaks, and Coke By- Product Recovery Plants

    EPA Pesticide Factsheets

    Final Rule on National Emission Standards for Hazardous Air Pollutants; Benzene Emissions From Maleic Anhydride Plants, Ethylbenzene/Styrene Plants, Benzene Storage Vessels, Benzene Equipment Leaks, and Coke By-Product Recovery Plants.

  10. An Integrated Approach to Economic and Environmental Aspects of Air Pollution and Climate Interactions

    NASA Astrophysics Data System (ADS)

    Sarofim, M. C.

    2007-12-01

    Emissions of greenhouses gases and conventional pollutants are closely linked through shared generation processes and thus policies directed toward long-lived greenhouse gases affect emissions of conventional pollutants and, similarly, policies directed toward conventional pollutants affect emissions of greenhouse gases. Some conventional pollutants such as aerosols also have direct radiative effects. NOx and VOCs are ozone precursors, another substance with both radiative and health impacts, and these ozone precursors also interact with the chemistry of the hydroxyl radical which is the major methane sink. Realistic scenarios of future emissions and concentrations must therefore account for both air pollution and greenhouse gas policies and how they interact economically as well as atmospherically, including the regional pattern of emissions and regulation. We have modified a 16 region computable general equilibrium economic model (the MIT Emissions Prediction and Policy Analysis model) by including elasticities of substitution for ozone precursors and aerosols in order to examine these interactions between climate policy and air pollution policy on a global scale. Urban emissions are distributed based on population density, and aged using a reduced form urban model before release into an atmospheric chemistry/climate model (the earth systems component of the MIT Integrated Global Systems Model). This integrated approach enables examination of the direct impacts of air pollution on climate, the ancillary and complementary interactions between air pollution and climate policies, and the impact of different population distribution algorithms or urban emission aging schemes on global scale properties. This modeling exercise shows that while ozone levels are reduced due to NOx and VOC reductions, these reductions lead to an increase in methane concentrations that eliminates the temperature effects of the ozone reductions. However, black carbon reductions do have

  11. Long-term trends in emissions and transboundary transport of acidifying air pollution in Europe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berge, E.; Bartnicki, J.; Olendrzynski, K.

    1999-09-01

    The time evolution of the atmospheric emissions and depositions of sulphur and nitrogen compounds in Europe have been studied in this paper. Source-receptor matrices, which quantify the transboundary transport between the European countries, are presented. The temporal evolution of exceedances of the critical loads have also been analyzed. The present (1995) emission and deposition levels are also presented. The database utilized in this study is the one presently employed under the 1979 Geneva Convention on Long Range Transboundary Air Pollution. The emission data reported to EMEP indicate that the European sulfur emissions declined by approximately 50% during the period 1980--1995.more » Larger reductions were found in the area of the Former Soviet Union and western Europe than in central eastern Europe. For oxidized and reduced nitrogen the overall European reductions were approximately 15% from 1980 to 1995. Both oxidized and reduced nitrogen emissions fell more in eastern Europe than in western Europe.« less

  12. An analysis of candidates for addition to the Clean Air Act list of hazardous air pollutants.

    PubMed

    Lunder, Sonya; Woodruff, Tracey J; Axelrad, Daniel A

    2004-02-01

    There are 188 air toxics listed as hazardous air pollutants (HAPs) in the Clean Air Act (CAA), based on their potential to adversely impact public health. This paper presents several analyses performed to screen potential candidates for addition to the HAPs list. We analyzed 1086 HAPs and potential HAPs, including chemicals regulated by the state of California or with emissions reported to the Toxics Release Inventory (TRI). HAPs and potential HAPs were ranked by their emissions to air, and by toxicity-weighted (tox-wtd) emissions for cancer and noncancer, using emissions information from the TRI and toxicity information from state and federal agencies. Separate consideration was given for persistent, bioaccumulative toxins (PBTs), reproductive or developmental toxins, and chemicals under evaluation for regulation as toxic air contaminants in California. Forty-four pollutants were identified as candidate HAPs based on three ranking analyses and whether they were a PBT or a reproductive or developmental toxin. Of these, nine qualified in two or three different rankings (ammonia [NH3], copper [Cu], Cu compounds, nitric acid [HNO3], N-methyl-2-pyrrolidone, sulfuric acid [H2SO4], vanadium [V] compounds, zinc [Zn], and Zn compounds). This analysis suggests further evaluation of several pollutants for possible addition to the CAA list of HAPs.

  13. China's international trade and air pollution: 2000 - 2009

    NASA Astrophysics Data System (ADS)

    Ni, Ruijing; Lin, Jintai; Pan, Da; Wang, Jingxu; Yan, Yingying; Zhang, Qiang

    2016-04-01

    As the world's top trading country, China is now the most polluted country. However, a large portion of pollution produced in China is associated with its production of goods for foreign consumption via international trade. Along with China's rapid economic growth in recent years, its economic-trade structure and volume has been changing all the time, resulting in large changes in total emissions and the shares of trade-related emissions. Here, we assess the influence of China's changing total and export-related emissions between 2000 and 2009 on its atmospheric pollution loadings and transport, by exploiting simulations of a global chemical transport model GEOS-Chem. We find that both air pollution related to Chinese exports (PRE) which including nitrogen oxides (NOx), sulfur dioxide (SO2), carbon monoxide (CO), black carbon (BC), and primary organic aerosol (POA), and its share in total Chinese pollution have experienced continuous rapid growth until 2007, exposing more and more people to severely polluted air. After 2007, PRE decreases due to strengthened emission controls accompanied by declined exports as a result of the global financial crisis. Although production for exports contribute less than 35% SO2 over China in any year, the increasing trend of trade-related SO2 contributes 51% of integral trend. The changing PRE of China also affects its downwind regions such as the western United States. The contribution of export-related Chinese pollution to surface sulfate concentrations over the western United States has increased from 3% in 2000 to 12% in 2007. Overall, we find that the interannual variation of trade and associated production is a critical factor driving the trend of pollution over China and its downwind regions.

  14. STEMS-Air: a simple GIS-based air pollution dispersion model for city-wide exposure assessment.

    PubMed

    Gulliver, John; Briggs, David

    2011-05-15

    Current methods of air pollution modelling do not readily meet the needs of air pollution mapping for short-term (i.e. daily) exposure studies. The main limiting factor is that for those few models that couple with a GIS there are insufficient tools for directly mapping air pollution both at high spatial resolution and over large areas (e.g. city wide). A simple GIS-based air pollution model (STEMS-Air) has been developed for PM(10) to meet these needs with the option to choose different exposure averaging periods (e.g. daily and annual). STEMS-Air uses the grid-based FOCALSUM function in ArcGIS in conjunction with a fine grid of emission sources and basic information on meteorology to implement a simple Gaussian plume model of air pollution dispersion. STEMS-Air was developed and validated in London, UK, using data on concentrations of PM(10) from routinely available monitoring data. Results from the validation study show that STEMS-Air performs well in predicting both daily (at four sites) and annual (at 30 sites) concentrations of PM(10). For daily modelling, STEMS-Air achieved r(2) values in the range 0.19-0.43 (p<0.001) based solely on traffic-related emissions and r(2) values in the range 0.41-0.63 (p<0.001) when adding information on 'background' levels of PM(10). For annual modelling of PM(10), the model returned r(2) in the range 0.67-0.77 (P<0.001) when compared with monitored concentrations. The model can thus be used for rapid production of daily or annual city-wide air pollution maps either as a screening process in urban air quality planning and management, or as the basis for health risk assessment and epidemiological studies. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.

  15. 77 FR 65823 - Control of Air Pollution From Aircraft and Aircraft Engines; Emission Standards and Test Procedures

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-31

    ... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Parts 87 [EPA-HQ-OAR-2010-0687; FRL-9678-1] RIN 2060-AO70 Control of Air Pollution From Aircraft and Aircraft Engines; Emission Standards and Test Procedures Correction In rule document 2012-13828 appearing on pages 36341-36386 in the issue of Monday, June 18, 2012...

  16. Emissions of particulate and gaseous pollutants within the Keelung Harbor region of Taiwan.

    PubMed

    Yu-Peng, Chiung; Lin, Chern-Gyuan; Jong, Tain-Chyuan

    2005-10-01

    The Keelung port, which is located on the northern tip of Taiwan, right next to the Taipei metropolitan area, is an important international harbor. However, any air pollutants generated from the Keelung port region, immediately travel to the neighboring Keelung city, and greatly impact the residents' daily life and the quality of their environment. This study has investigated and quantified pollution emissions, from the Keelung port region, between 1997 and 2002. Emissions from major air pollution sources were estimated. The estimated results indicated that total TSP (total suspended particles) emissions had significantly increased, from 5221 ton/yr in 1997 to 262 687 ton/yr in 2002, due to the greatly increased volume of sand imported into Keelung Harbor. Quantities of other emissions, such as SO(2), NO(2), CO and HC remained stable and were 440, 207, 78 and 25 ton/yr, respectively, on average, with variations within 7% over the previous six-year period. By examining the emissions from pollution sources, it was found that TSP emissions mainly originated from re-suspension of dust, due to both vehicle movement and the sand unloading process; this accounted for over 99% of the total TSP emissions produced in the port region. About 80% of the total SO(2) emissions originated from the main ships' engines within the Keelung port region, due to the use of fuel with a high sulfur content. In addition, loading/unloading machines within the port region were the major sources of NO(2), CO and HC pollution emissions, which comprised 54, 58 and 66% of the total emissions of these pollutants, respectively. TSP emissions from Keelung port were much higher than from the neighboring Keelung city; hence, alleviating TSP emissions should be the first priority for air pollution reduction within both the port of Keelung and Keelung city.

  17. Urban emissions hotspots: Quantifying vehicle congestion and air pollution using mobile phone GPS data.

    PubMed

    Gately, Conor K; Hutyra, Lucy R; Peterson, Scott; Sue Wing, Ian

    2017-10-01

    On-road emissions vary widely on time scales as short as minutes and length scales as short as tens of meters. Detailed data on emissions at these scales are a prerequisite to accurately quantifying ambient pollution concentrations and identifying hotspots of human exposure within urban areas. We construct a highly resolved inventory of hourly fluxes of CO, NO 2 , NO x , PM 2.5 and CO 2 from road vehicles on 280,000 road segments in eastern Massachusetts for the year 2012. Our inventory integrates a large database of hourly vehicle speeds derived from mobile phone and vehicle GPS data with multiple regional datasets of vehicle flows, fleet characteristics, and local meteorology. We quantify the 'excess' emissions from traffic congestion, finding modest congestion enhancement (3-6%) at regional scales, but hundreds of local hotspots with highly elevated annual emissions (up to 75% for individual roadways in key corridors). Congestion-driven reductions in vehicle fuel economy necessitated 'excess' consumption of 113 million gallons of motor fuel, worth ∼ $415M, but this accounted for only 3.5% of the total fuel consumed in Massachusetts, as over 80% of vehicle travel occurs in uncongested conditions. Across our study domain, emissions are highly spatially concentrated, with 70% of pollution originating from only 10% of the roads. The 2011 EPA National Emissions Inventory (NEI) understates our aggregate emissions of NO x , PM 2.5 , and CO 2 by 46%, 38%, and 18%, respectively. However, CO emissions agree within 5% for the two inventories, suggesting that the large biases in NO x and PM 2.5 emissions arise from differences in estimates of diesel vehicle activity. By providing fine-scale information on local emission hotspots and regional emissions patterns, our inventory framework supports targeted traffic interventions, transparent benchmarking, and improvements in overall urban air quality. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Air pollution in Delhi: Its Magnitude and Effects on Health”

    PubMed Central

    Rizwan, SA; Nongkynrih, Baridalyne; Gupta, Sanjeev Kumar

    2013-01-01

    Air pollution is responsible for many health problems in the urban areas. Of late, the air pollution status in Delhi has undergone many changes in terms of the levels of pollutants and the control measures taken to reduce them. This paper provides an evidence-based insight into the status of air pollution in Delhi and its effects on health and control measures instituted. The urban air database released by the World Health Organization in September 2011 reported that Delhi has exceeded the maximum PM10 limit by almost 10-times at 198 μg/m3. Vehicular emissions and industrial activities were found to be associated with indoor as well as outdoor air pollution in Delhi. Studies on air pollution and mortality from Delhi found that all-natural-cause mortality and morbidity increased with increased air pollution. Delhi has taken several steps to reduce the level of air pollution in the city during the last 10 years. However, more still needs to be done to further reduce the levels of air pollution. PMID:23559696

  19. United Kingdom unveils ambitious air pollution plan

    NASA Astrophysics Data System (ADS)

    Warren, Matthew

    2018-06-01

    The U.K. government's new strategy to combat air pollution has drawn praise for its ambitious goals—and reservations about whether they will be achieved. Environmental scientists have applauded the aims of the Clean Air Strategy, which include substantially reducing the number of people breathing air containing high levels of fine particulates and curbing ammonia emissions from agriculture. But for now, the document, published as a draft for public consultation on 22 May, remains light on the specific policies that will help the country attain these goals. And although the government has said that with the new strategy it will go further than the European Union in tackling air pollution post-Brexit, scientists say major improvements to air quality will require a coordinated effort across Europe.

  20. Effects of business-as-usual anthropogenic emissions on air quality

    NASA Astrophysics Data System (ADS)

    Pozzer, A.; Zimmermann, P.; Doering, U. M.; van Aardenne, J.; Tost, H.; Dentener, F.; Janssens-Maenhout, G.; Lelieveld, J.

    2012-04-01

    The atmospheric chemistry general circulation model EMAC has been used to estimate the impact of anthropogenic emission changes on global and regional air quality in recent and future years (2005, 2010, 2025 and 2050). The emission scenario assumes that population and economic growth largely determine energy and food consumption and consequent pollution sources with the current technologies ("business as usual"). This scenario is chosen to show the effects of not implementing legislation to prevent additional climate change and growing air pollution, other than what is in place for the base year 2005, representing a pessimistic (but feasible) future. By comparing with recent observations, it is shown that the model reproduces the main features of regional air pollution distributions though with some imprecisions inherent to the coarse horizontal resolution (~100 km) and simplified bottom-up emission input. To identify possible future hot spots of poor air quality, a multi pollutant index (MPI), suited for global model output, has been applied. It appears that East and South Asia and the Middle East represent such hotspots due to very high pollutant concentrations, although a general increase of MPIs is observed in all populated regions in the Northern Hemisphere. In East Asia a range of pollutant gases and fine particulate matter (PM2.5) is projected to reach very high levels from 2005 onward, while in South Asia air pollution, including ozone, will grow rapidly towards the middle of the century. Around the Arabian Gulf, where natural PM2.5 concentrations are already high (desert dust), ozone levels are expected to increase strongly. The per capita MPI (PCMPI), which combines demographic and pollutants concentrations projections, shows that a rapidly increasing number of people worldwide will experience reduced air quality during the first half of the 21st century. Following the business as usual scenario, it is projected that air quality for the global average

  1. Effects of business-as-usual anthropogenic emissions on air quality

    NASA Astrophysics Data System (ADS)

    Pozzer, A.; Zimmermann, P.; Doering, U. M.; van Aardenne, J.; Tost, H.; Dentener, F.; Janssens-Maenhout, G.; Lelieveld, J.

    2012-08-01

    The atmospheric chemistry general circulation model EMAC has been used to estimate the impact of anthropogenic emission changes on global and regional air quality in recent and future years (2005, 2010, 2025 and 2050). The emission scenario assumes that population and economic growth largely determine energy and food consumption and consequent pollution sources with the current technologies ("business as usual"). This scenario is chosen to show the effects of not implementing legislation to prevent additional climate change and growing air pollution, other than what is in place for the base year 2005, representing a pessimistic (but plausible) future. By comparing with recent observations, it is shown that the model reproduces the main features of regional air pollution distributions though with some imprecisions inherent to the coarse horizontal resolution (~100 km) and simplified bottom-up emission input. To identify possible future hot spots of poor air quality, a multi pollutant index (MPI), suited for global model output, has been applied. It appears that East and South Asia and the Middle East represent such hotspots due to very high pollutant concentrations, while a general increase of MPIs is observed in all populated regions in the Northern Hemisphere. In East Asia a range of pollutant gases and fine particulate matter (PM2.5) is projected to reach very high levels from 2005 onward, while in South Asia air pollution, including ozone, will grow rapidly towards the middle of the century. Around the Persian Gulf, where natural PM2.5 concentrations are already high (desert dust), ozone levels are expected to increase strongly. The population weighted MPI (PW-MPI), which combines demographic and pollutant concentration projections, shows that a rapidly increasing number of people worldwide will experience reduced air quality during the first half of the 21st century. Following this business as usual scenario, it is projected that air quality for the global

  2. Monitoring an air pollution episode in Shenzhen by combining MODIS satellite images and the HYSPLIT model

    NASA Astrophysics Data System (ADS)

    Li, Lili; Liu, Yihong; Wang, Yunpeng

    2017-07-01

    Urban air pollution is influenced not only by local emission sources including industry and vehicles, but also greatly by regional atmospheric pollutant transportation from the surrounding areas, especially in developed city clusters, like the Pearl River Delta (PRD). Taking an air pollution episode in Shenzhen as an example, this paper investigates the occurrence and evolution of the pollution episode and identifies the transport pathways of air pollutants in Shenzhen by combining MODIS satellite images and HYSPLIT back trajectory analysis. Results show that this pollution episode is mainly caused by the local emission of pollutants in PRD and oceanic air masses under specific weather conditions.

  3. Evaluation of Traffic Density Parameters as an Indicator of Vehicle Emission-Related Near-Road Air Pollution: A Case Study with NEXUS Measurement Data on Black Carbon

    EPA Science Inventory

    An important factor in evaluating health risk of near-road air pollution is to accurately estimate the traffic-related vehicle emission of air pollutants. Inclusion of traffic parameters such as road length/area, distance to roads, and traffic volume/intensity into models such as...

  4. The role of meteorological conditions and pollution control strategies in reducing air pollution in Beijing during APEC 2014 and Victory Parade 2015

    NASA Astrophysics Data System (ADS)

    Liang, Pengfei; Zhu, Tong; Fang, Yanhua; Li, Yingruo; Han, Yiqun; Wu, Yusheng; Hu, Min; Wang, Junxia

    2017-11-01

    To control severe air pollution in China, comprehensive pollution control strategies have been implemented throughout the country in recent years. To evaluate the effectiveness of these strategies, the influence of meteorological conditions on levels of air pollution needs to be determined. Using the intensive air pollution control strategies implemented during the Asia-Pacific Economic Cooperation Forum in 2014 (APEC 2014) and the 2015 China Victory Day Parade (Victory Parade 2015) as examples, we estimated the role of meteorological conditions and pollution control strategies in reducing air pollution levels in Beijing. Atmospheric particulate matter of aerodynamic diameter ≤ 2.5 µm (PM2.5) samples were collected and gaseous pollutants (SO2, NO, NOx, and O3) were measured online at a site in Peking University (PKU). To determine the influence of meteorological conditions on the levels of air pollution, we first compared the air pollutant concentrations during days with stable meteorological conditions. However, there were few days with stable meteorological conditions during the Victory Parade. As such, we were unable to estimate the level of emission reduction efforts during this period. Finally, a generalized linear regression model (GLM) based only on meteorological parameters was built to predict air pollutant concentrations, which could explain more than 70 % of the variation in air pollutant concentration levels, after incorporating the nonlinear relationships between certain meteorological parameters and the concentrations of air pollutants. Evaluation of the GLM performance revealed that the GLM, even based only on meteorological parameters, could be satisfactory to estimate the contribution of meteorological conditions in reducing air pollution and, hence, the contribution of control strategies in reducing air pollution. Using the GLM, we found that the meteorological conditions and pollution control strategies contributed 30 and 28 % to the reduction

  5. Air pollution and gastrointestinal diseases in Utah

    NASA Astrophysics Data System (ADS)

    Maestas, Melissa May

    The valleys of northern Utah, where most of Utah's population resides, experience episodic air pollution events well in excess of the National Ambient Air Quality Standards. Most of the events are due to an accumulation of particulate matter during persistent cold air pools in winter from both direct emissions and secondary chemical reactions in the atmosphere. High wintertime ozone concentrations are occasionally observed in the Uintah Basin, in addition to particulate matter. At other times of the year, blowing dust, wildland fires, fireworks, and summertime ozone formation contribute to local air pollution. The objective of this dissertation is to investigate one facet of the health effects of Utah's air pollution on its residents: the acute impacts of air pollution on gastrointestinal (GI) disease. To study the health effects of these episodic pollution events, some measure of air pollution exposure must be matched to the health data. Time and place are used to link the health data for a person with the pollution data. This dissertation describes the method of kriging data from the sparse pollution monitoring network to estimate personal air pollution history based on the zip code of residence. This dissertation then describes the application of these exposure estimates to a health study on GI disease. The purpose of the GI study is to retrospectively look at two groups of patients during 2000-2014: those with autoimmune disease of the GI tract (inflammatory bowel disease, IBD) and those with allergic disease of the GI tract (eosinophilic esophagitis, EoE) to determine whether disease exacerbations occur more commonly during and following periods of poor air quality compared to periods of good air quality. The primary analysis method is case crossover design. In addition to using the kriged air pollution estimates, the analysis was repeated using simpler empirical estimation methods to assess whether the odds ratios are sensitive to the air pollution estimation

  6. Healthy neighborhoods: walkability and air pollution.

    PubMed

    Marshall, Julian D; Brauer, Michael; Frank, Lawrence D

    2009-11-01

    The built environment may influence health in part through the promotion of physical activity and exposure to pollution. To date, no studies have explored interactions between neighborhood walkability and air pollution exposure. We estimated concentrations of nitric oxide (NO), a marker for direct vehicle emissions), and ozone (O(3)) and a neighborhood walkability score, for 49,702 (89% of total) postal codes in Vancouver, British Columbia, Canada. NO concentrations were estimated from a land-use regression model, O(3) was estimated from ambient monitoring data; walkability was calculated based on geographic attributes such as land-use mix, street connectivity, and residential density. All three attributes exhibit an urban-rural gradient, with high walkability and NO concentrations, and low O(3) concentrations, near the city center. Lower-income areas tend to have higher NO concentrations and walkability and lower O(3) concentrations. Higher-income areas tend to have lower pollution (NO and O(3)). "Sweet-spot" neighborhoods (low pollution, high walkability) are generally located near but not at the city center and are almost exclusively higher income. Increased concentration of activities in urban settings yields both health costs and benefits. Our research identifies neighborhoods that do especially well (and especially poorly) for walkability and air pollution exposure. Work is needed to ensure that the poor do not bear an undue burden of urban air pollution and that neighborhoods designed for walking, bicycling, or mass transit do not adversely affect resident's exposure to air pollution. Analyses presented here could be replicated in other cities and tracked over time to better understand interactions among neighborhood walkability, air pollution exposure, and income level.

  7. Research on the Emission Inventory of Major Air Pollutants in 2012 for the Sichuan City Cluster in China

    NASA Astrophysics Data System (ADS)

    Qian, J.; He, Q.

    2014-12-01

    This paper developed a high resolution emission inventory of major pollutants in city cluster of Sichuan Basin, one of the most polluted regions in China. The city cluster included five cities, which were Chengdu, Deyang, Mianyang, Meishan and Ziyang. Pollution source census and field measurements were conducted for the major emission sources such as the industry sources, on-road mobile sources, catering sources and the dust sources. The inventory results showed that in the year of 2012, the emission of SO2、NOX、CO、PM10、PM2.5、VOCs and NH3 in the region were 143.5、251.9、1659.9、299.3、163.5、464.1 and 995kt respectively. Chengdu, the provincial capital city, had the largest emission load of every pollutant among the cities. The industry sources, including power plants, fuel combustion facilities and non-combustion processes were the largest emission sources for SO2、NOX and CO, contributing to 84%, 46.5%, 35% of total SO2, NOX and CO emissions. On-road mobile sources accounted for 46.5%, 33%, 16% of the total NOx, CO, PM2.5 emissions and 28% of the anthropogenic VOCs emission. Dust and industry sources contributed to 42% and 23% of the PM10 emission with the dust sources also as the largest source of PM2.5, contributing to 27%. Anthropogenic and biogenic sources took 75% and 25% of the total VOCs emission while 36% of anthropogenic VOCs emission was owing to solvent use. Livestock contributed to 62% of NH3 emissions, followed by nitrogen fertilizer application whose contribution was 23%. Based on the developed emission inventory and local meteorological data, the regional air quality modeling system WRF-CMAQ was applied to simulate the status of PM2.5 pollution in a regional scale. The results showed that high PM2.5 concentration was distributed over the urban area of Chengdu and Deyang. On-road mobile sources and dust sources were two major contributors to the PM2.5 pollution in Chengdu, both had an contribution ratio of 27%. In Deyang, Mianyang

  8. Spatial-temporal Variations and Source Apportionment of typical Heavy Metals in Beijing-Tianjin-Hebei (BTH) region of China Based on Localized Air Pollutants Emission Inventory and WRF-CMAQ modelling

    NASA Astrophysics Data System (ADS)

    Tian, H.; Liu, S.; Zhu, C.; Liu, H.; Wu, B.

    2017-12-01

    Abstract: Anthropogenic atmospheric emissions of air pollutants have caused worldwide concerns due to their adverse effects on human health and the ecosystem. By determining the best available emission factors for varied source categories, we established the comprehensive atmospheric emission inventories of hazardous air pollutants including 12 typical toxic heavy metals (Hg, As, Se, Pb, Cd, Cr, Ni, Sb, Mn, Co, Cu, and Zn) from primary anthropogenic activities in Beijing-Tianjin-Hebei (BTH) region of China for the period of 2012 for the first time. The annual emissions of these pollutants were allocated at a high spatial resolution of 9km × 9km grid with ArcGIS methodology and surrogate indexes, such as regional population and gross domestic product (GDP). Notably, the total heavy metal emissions from this region represented about 10.9% of the Chinese national total emissions. The areas with high emissions of heavy metals were mainly concentrated in Tangshan, Shijiazhuang, Handan and Tianjin. Further, WRF-CMAQ modeling system were applied to simulate the regional concentration of heavy metals to explore their spatial-temporal variations, and the source apportionment of these heavy metals in BTH region was performed using the Brute-Force method. Finally, integrated countermeasures were proposed to minimize the final air pollutants discharge on account of the current and future demand of energy-saving and pollution reduction in China. Keywords: heavy metals; particulate matter; emission inventory; CMAQ model; source apportionment Acknowledgment. This work was funded by the National Natural Science Foundation of China (21377012 and 21177012) and the Trail Special Program of Research on the Cause and Control Technology of Air Pollution under the National Key Research and Development Plan of China (2016YFC0201501).

  9. The incorporation of the US national emission inventory into version 2 of the Hemispheric Transport of air Pollutants inventory

    EPA Science Inventory

    EPA's 2008 national emission inventory has been incorporated into version 2 of the Hemispheric Transport of Air Pollutants Inventory. This work involves the creation of a detailed mapping of EPA Source Classification Codes (SCC) to the International Nomenclature for Reporting Sy...

  10. Air Pollution.

    ERIC Educational Resources Information Center

    Fox, Donald L.

    1989-01-01

    Materials related to air pollution are reviewed for the period January 1987, to October 1988. The topics are pollution monitoring, air pollution, and environmental chemistry. The organization consists of two major analytical divisions: (1) gaseous methods; and (2) aerosol and particulate methods. (MVL)

  11. Respiratory Disease in Relation to Outdoor Air Pollution in Kanpur, India

    PubMed Central

    Liu, Hai-Ying; Bartonova, Alena; Schindler, Martin; Sharma, Mukesh; Behera, Sailesh N.; Katiyar, Kamlesh; Dikshit, Onkar

    2013-01-01

    ABSTRACT This paper examines the effect of outdoor air pollution on respiratory disease in Kanpur, India, based on data from 2006. Exposure to air pollution is represented by annual emissions of sulfur dioxide (SO2), particulate matter (PM), and nitrogen oxides (NOx) from 11 source categories, established as a geographic information system (GIS)-based emission inventory in 2 km × 2 km grid. Respiratory disease is represented by number of patients who visited specialist pulmonary hospital with symptoms of respiratory disease. The results showed that (1) the main sources of air pollution are industries, domestic fuel burning, and vehicles; (2) the emissions of PM per grid are strongly correlated to the emissions of SO2 and NOx; and (3) there is a strong correlation between visits to a hospital due to respiratory disease and emission strength in the area of residence. These results clearly indicate that appropriate health and environmental monitoring, actions to reduce emissions to air, and further studies that would allow assessing the development in health status are necessary. [Supplementary materials are available for this article. Go to the publisher's online edition of Archives of Environmental & Occupational Health for material on emission of SO2, PM, NOx from various sources, and total number of inhabitants, total number of patients in grid squares covering the Kanpur city.] PMID:23697693

  12. Ambient air pollution, climate change, and population health in China.

    PubMed

    Kan, Haidong; Chen, Renjie; Tong, Shilu

    2012-07-01

    As the largest developing country, China has been changing rapidly over the last three decades and its economic expansion is largely driven by the use of fossil fuels, which leads to a dramatic increase in emissions of both ambient air pollutants and greenhouse gases (GHGs). China is now facing the worst air pollution problem in the world, and is also the largest emitter of carbon dioxide. A number of epidemiological studies on air pollution and population health have been conducted in China, using time-series, case-crossover, cross-sectional, cohort, panel or intervention designs. The increased health risks observed among Chinese population are somewhat lower in magnitude, per amount of pollution, than the risks found in developed countries. However, the importance of these increased health risks is greater than that in North America or Europe, because the levels of air pollution in China are very high in general and Chinese population accounts for more than one fourth of the world's totals. Meanwhile, evidence is mounting that climate change has already affected human health directly and indirectly in China, including mortality from extreme weather events; changes in air and water quality; and changes in the ecology of infectious diseases. If China acts to reduce the combustion of fossil fuels and the resultant air pollution, it will reap not only the health benefits associated with improvement of air quality but also the reduced GHG emissions. Consideration of the health impact of air pollution and climate change can help the Chinese government move forward towards sustainable development with appropriate urgency. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. The Impact of Individual Anthropogenic Emissions Sectors on the Global Burden of Human Mortality due to Ambient Air Pollution

    PubMed Central

    Silva, Raquel A.; Adelman, Zachariah; Fry, Meridith M.; West, J. Jason

    2016-01-01

    Background: Exposure to ozone and fine particulate matter (PM2.5) can cause adverse health effects, including premature mortality due to cardiopulmonary diseases and lung cancer. Recent studies quantify global air pollution mortality but not the contribution of different emissions sectors, or they focus on a specific sector. Objectives: We estimated the global mortality burden of anthropogenic ozone and PM2.5, and the impact of five emissions sectors, using a global chemical transport model at a finer horizontal resolution (0.67° × 0.5°) than previous studies. Methods: We performed simulations for 2005 using the Model for Ozone and Related Chemical Tracers, version 4 (MOZART-4), zeroing out all anthropogenic emissions and emissions from specific sectors (All Transportation, Land Transportation, Energy, Industry, and Residential and Commercial). We estimated premature mortality using a log-linear concentration–response function for ozone and an integrated exposure–response model for PM2.5. Results: We estimated 2.23 (95% CI: 1.04, 3.33) million deaths/year related to anthropogenic PM2.5, with the highest mortality in East Asia (48%). The Residential and Commercial sector had the greatest impact globally—675 (95% CI: 428, 899) thousand deaths/year—and in most regions. Land Transportation dominated in North America (32% of total anthropogenic PM2.5 mortality), and it had nearly the same impact (24%) as Residential and Commercial (27%) in Europe. Anthropogenic ozone was associated with 493 (95% CI: 122, 989) thousand deaths/year, with the Land Transportation sector having the greatest impact globally (16%). Conclusions: The contributions of emissions sectors to ambient air pollution–related mortality differ among regions, suggesting region-specific air pollution control strategies. Global sector-specific actions targeting Land Transportation (ozone) and Residential and Commercial (PM2.5) sectors would particularly benefit human health. Citation: Silva RA

  14. Odors and Air Pollution: A Bibliography with Abstracts.

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Research Triangle Park, NC. Office of Air Programs.

    The annotated bibliography presents a compilation of abstracts which deal with odors as they relate to air pollution. The abstracts are arranged within the following categories: Emission sources; Control methods; Measurement methods; Air quality measurements; Atmospheric interaction; Basic science and technology; Effects-human health;…

  15. 40 CFR 63.13 - Addresses of State air pollution control agencies and EPA Regional Offices.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 10 2013-07-01 2013-07-01 false Addresses of State air pollution... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES General Provisions § 63.13 Addresses of State air pollution control agencies...

  16. 40 CFR 63.13 - Addresses of State air pollution control agencies and EPA Regional Offices.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 10 2012-07-01 2012-07-01 false Addresses of State air pollution... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES General Provisions § 63.13 Addresses of State air pollution control agencies...

  17. 40 CFR 63.13 - Addresses of State air pollution control agencies and EPA Regional Offices.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 10 2014-07-01 2014-07-01 false Addresses of State air pollution... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES General Provisions § 63.13 Addresses of State air pollution control agencies...

  18. Unexpected slowdown of US pollutant emission reduction in the past decade

    PubMed Central

    McDonald, Brian C.; Worden, Helen; Worden, John R.; Miyazaki, Kazuyuki; Qu, Zhen; Henze, Daven K.; Jones, Dylan B. A.; Fischer, Emily V.; Zhu, Liye; Boersma, K. Folkert

    2018-01-01

    Ground and satellite observations show that air pollution regulations in the United States (US) have resulted in substantial reductions in emissions and corresponding improvements in air quality over the last several decades. However, large uncertainties remain in evaluating how recent regulations affect different emission sectors and pollutant trends. Here we show a significant slowdown in decreasing US emissions of nitrogen oxides (NOx) and carbon monoxide (CO) for 2011–2015 using satellite and surface measurements. This observed slowdown in emission reductions is significantly different from the trend expected using US Environmental Protection Agency (EPA) bottom-up inventories and impedes compliance with local and federal agency air-quality goals. We find that the difference between observations and EPA’s NOx emission estimates could be explained by: (i) growing relative contributions of industrial, area, and off-road sources, (ii) decreasing relative contributions of on-road gasoline, and (iii) slower than expected decreases in on-road diesel emissions. PMID:29712822

  19. Emissions of air pollutants from scented candles burning in a test chamber

    NASA Astrophysics Data System (ADS)

    Derudi, Marco; Gelosa, Simone; Sliepcevich, Andrea; Cattaneo, Andrea; Rota, Renato; Cavallo, Domenico; Nano, Giuseppe

    2012-08-01

    Burning of scented candles in indoor environment can release a large number of toxic chemicals. However, in spite of the large market penetration of scented candles, very few works investigated their organic pollutants emissions. This paper investigates volatile organic compounds emissions, with particular reference to the priority indoor pollutants identified by the European Commission, from the burning of scented candles in a laboratory-scale test chamber. It has been found that BTEX and PAHs emission factors show large differences among different candles, possibly due to the raw paraffinic material used, while aldehydes emission factors seem more related to the presence of additives. This clearly evidences the need for simple and cheap methodologies to measure the emission factors of commercial candles in order to foresee the expected pollutant concentration in a given indoor environment and compare it with health safety standards.

  20. Population-production-pollution nexus based air pollution management model for alleviating the atmospheric crisis in Beijing, China.

    PubMed

    Zeng, X T; Tong, Y F; Cui, L; Kong, X M; Sheng, Y N; Chen, L; Li, Y P

    2017-07-15

    In recent years, increscent emissions in the city of Beijing due to expanded population, accelerated industrialization and inter-regional pollutant transportation have led to hazardous atmospheric pollution issues. Although a number of anthropogenic control measures have been put into use, frequent/severe haze events have still challenged regional governments. In this study, a hybrid population-production-pollution nexus model (PPP) is proposed for air pollution management and air quality planning (AMP) with the aim to coordinate human activities and environmental protection. A fuzzy-stochastic mixed quadratic programming method (FSQ) is developed and introduced into a PPP for tackling atmospheric pollution issues with uncertainties. Based on the contribution of an index of population-production-pollution, a hybrid PPP-based AMP model that considers employment structure, industrial layout pattern, production mode, pollutant purification efficiency and a pollution mitigation scheme have been applied in Beijing. Results of the adjustment of employment structure, pollution mitigation scheme, and green gross domestic product under various environmental regulation scenarios are obtained and analyzed. This study can facilitate the identification of optimized policies for alleviating population-production-emission conflict in the study region, as well as ameliorating the hazardous air pollution crisis at an urban level. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Compliance Software for Radioactive Air Emissions

    EPA Pesticide Factsheets

    Atmospheric dispersion and transport models that are used to assess radiation dose and risk and to demonstrate compliance with certain radionuclide National Emission Standards for Hazardous Air Pollutants (NESHAPs) regulations.

  2. Local air pollution in the Arctic: knowledge gaps, challenges and future directions

    NASA Astrophysics Data System (ADS)

    Law, K.; Schmale, J.; Anenberg, S.; Arnold, S.; Simpson, W. R.; Mao, J.; Starkweather, S.

    2017-12-01

    It is estimated that about 30 % of the world's undiscovered gas and 13 % of undiscovered oil resources are located in the Arctic. Sea ice loss with climate change is progressing rapidly and by 2050 the Arctic could be nearly sea ice free in summer. This will allow for Arctic industrialization, commercial shipping, fishing and tourism to increase. Given that the world population is projected to grow beyond 9 billion by mid-century needing more resources, partly to be found in the Arctic, it can be expected that the current urbanization trend in the region will accelerate in the future. Against this background, it is likely that new local emission sources emerge which may lead to increased burdens of air pollutants such as particulate matter (PM), reactive nitrogen, and ozone. Typical Arctic emission sources include road transport, domestic fuel burning, diesel emissions, as well as industrial sources such as oil and gas extraction, metallurgical smelting, power generation as well as shipping in coastal areas. These emissions and their impacts remain poorly quantified in the Arctic. Boreal wildfires can already affect summertime air quality and may increase in frequency and size in a warmer climate. Locally produced air pollution, in combination with cold, stagnant weather conditions and inversion layers in winter, can also lead to significant localized pollutant concentrations, often in exceedance of air quality standards. Despite these concerns, very few process studies on local air pollution in or near inhabited areas in the Arctic have been conducted, which significantly limits our understanding of atmospheric chemical reactions involving air pollutants under Arctic conditions (e.g., extremely cold and dry air with little solar radiation in winter) and their impacts on human health and ecosystems. We will provide an overview of our current understanding of local air pollution and its impacts in Arctic urban environments and highlight key gaps. We will discuss a

  3. European Community emission inventory report 1990-2007 : under the UNECE Convention on Long-range Transboundary Air Pollution (LRTAP)

    DOT National Transportation Integrated Search

    2009-08-01

    The main air pollutant emission trends in the period 19902007 for NOX, CO, NMVOCs, SOX, NH3, PM10 and PM2.5 by country, and aggregated for the EU-27 are described in this report. Due to various gaps in the underlying data reported by Member States...

  4. Vegetation and other development options for mitigating urban air pollution impacts

    Treesearch

    Richard Baldauf; David J. Nowak

    2014-01-01

    While air pollution control devices and programs are the primary method of reducing emissions, urban air pollution can be further mitigated through planning and design strategies, including vegetation preservation and planting, building design and development, installing roadside and near-source structures, and modifying surrounding terrain features.

  5. Air Pollution in the Mexico Megacity

    NASA Astrophysics Data System (ADS)

    Ruiz-Suarez, L. G.

    2007-05-01

    Mexico City is a megacity whose metropolitan area includes the country federal district, 18 municipalities of the State of Mexico. In year 1992, only 16 municipalities of the State of Mexico were part of MCMA. In year 1940 the Mexico City population was 1.78 millions in an area of 118 km2, in year 2000 the population was 17.9 millions in an area of 1,500 km2. Population has grown a ten fold whereas population density has dropped 20%. Total number of private cars has grown from 2,341,731 in year 1998 to 2,967,893 in year 2004. Nowadays, people and goods travel longer at lower speed to reach school, work and selling points. In addition highly efficient public transport lost a significant share of transport demand from 19.1 in 1986 to 14.3 in 1998. Air pollution is a public concern since early eighties last century; systematic public efforts have been carried out since late eighties. Energy consumption has steadily increased in the MCMA whereas emissions have also decreased. From year 2000 to 2004, the private cars fleet increased 17% whereas CO, NOx and COV emissions decreased between 20-30%. Average concentrations of criteria pollutants have decreased The number of days that the one-hour national standard for bad air quality was exceeded in year 1990 was 160. In year 2005 was 70. Research efforts and public policies on air pollution have been focused on public health. We are now better able to estimate the cost in human lives due to air pollution, or the cost in labor lost due to illness. Little if none at all work has been carried out to look at the effect of air pollution on private and public property or onto the cultural heritage. Few reports have can be found on the impact of air pollution in rural areas, including forest and crops, around the mega city. Mexico City is in the south end of a Valley with mountain ranges higher than 1000 m above the average city altitude. In spite the heavy loss of forested areas to the city, the mountains still retain large

  6. Shipping emissions and their impacts on air quality in China.

    PubMed

    Zhang, Yan; Yang, Xin; Brown, Richard; Yang, Liping; Morawska, Lidia; Ristovski, Zoran; Fu, Qingyan; Huang, Cheng

    2017-03-01

    China has >400 ports, is home to 7 of 10 biggest ports in the world and its waterway infrastructure construction has been accelerating over the past years. But the increasing number of ports and ships means increasing emissions, and in turn, increasing impact on local and regional air pollution. This paper presents an overview of the broad field of ship emissions in China and their atmospheric impacts, including topics of ship engine emissions and control, ship emission factors and their measurements, developing of ship emission inventories, shipping and port emissions of the main shipping areas in China, and quantitative contribution of shipping emissions to the local and regional air pollution. There have been an increasing number of studies published on all the above aspects, yet, this review identified some critical research gaps, filling of which is necessary for better control of ship emissions, and for lowering their impacts. In particular, there are very few studies on inland ports and river ships, and there are few national scale ship emission inventories available for China. While advanced method to estimate ship emission based on ship AIS activities makes it now possible to develop high spatial- and temporal-resolution emission inventories, the ship emission factors used in Chinese studies have been based mainly on foreign measurements. Further, the contribution of ship emissions to air pollution in coastal cities, the dispersion of pollution plumes emitted by ships, or the chemical evolution process along the transmission path, have so far not been systematically studied in China. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Modeling indoor air pollution from cookstove emissions in developing countries using a Monte Carlo single-box model

    NASA Astrophysics Data System (ADS)

    Johnson, Michael; Lam, Nick; Brant, Simone; Gray, Christen; Pennise, David

    2011-06-01

    A simple Monte Carlo single-box model is presented as a first approach toward examining the relationship between emissions of pollutants from fuel/cookstove combinations and the resulting indoor air pollution (IAP) concentrations. The model combines stove emission rates with expected distributions of kitchen volumes and air exchange rates in the developing country context to produce a distribution of IAP concentration estimates. The resulting distribution can be used to predict the likelihood that IAP concentrations will meet air quality guidelines, including those recommended by the World Health Organization (WHO) for fine particulate matter (PM2.5) and carbon monoxide (CO). The model can also be used in reverse to estimate the probability that specific emission factors will result in meeting air quality guidelines. The modeled distributions of indoor PM2.5 concentration estimated that only 4% of homes using fuelwood in a rocket-style cookstove, even under idealized conditions, would meet the WHO Interim-1 annual PM2.5 guideline of 35 μg m-3. According to the model, the PM2.5 emissions that would be required for even 50% of homes to meet this guideline (0.055 g MJ-delivered-1) are lower than those for an advanced gasifier fan stove, while emissions levels similar to liquefied petroleum gas (0.018 g MJ-delivered-1) would be required for 90% of homes to meet the guideline. Although the predicted distribution of PM concentrations (median = 1320 μg m-3) from inputs for traditional wood stoves was within the range of reported values for India (108-3522 μg m-3), the model likely overestimates IAP concentrations. Direct comparison with simultaneously measured emissions rates and indoor concentrations of CO indicated the model overestimated IAP concentrations resulting from charcoal and kerosene emissions in Kenyan kitchens by 3 and 8 times respectively, although it underestimated the CO concentrations resulting from wood-burning cookstoves in India by approximately

  8. Air Emission Inventory for the Idaho National Engineering and Environmental Laboratory - Calendar Year 1999 Emission Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zohner, S.K.

    2000-05-30

    This report presents the 1999 calendar year update of the Air Emission Inventory for the Idaho National Engineering and Environmental Laboratory (INEEL). The INEEL Air Emission Inventory documents sources and emissions of nonradionuclide pollutants from operations at the INEEL. The report describes the emission inventory process and all of the sources at the INEEL, and provides nonradionuclide emissions estimates for stationary sources.

  9. Air Emission Inventory for the Idaho National Engineering and Environmental Laboratory - Calendar Year 1998 Emissions Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S. K. Zohner

    1999-10-01

    This report presents the 1998 calendar year update of the Air Emission Inventory for the Idaho National Engineering and Environmental Laboratory (INEEL). The INEEL Air Emission Inventory documents sources and emissions of nonradionuclide pollutants from operations at the INEEL. The report describes the emission inventory process and all of the sources at the INEEL, and provides nonradiological emissions estimates for stationary sources.

  10. Air pollutant emissions from rice straw open field burning in India, Thailand and the Philippines.

    PubMed

    Gadde, Butchaiah; Bonnet, Sébastien; Menke, Christoph; Garivait, Savitri

    2009-05-01

    Rice is a widely grown crop in Asia. China (30%) and India (21%) contribute to about half of the world's total rice production. In this study, three major rice-producing countries in Asia are considered, India, Thailand and the Philippines (the later two contributing 4% and 2% of the world's rice production). Rice straw is one of the main field based residues produced along with this commodity and its applications vary widely in the region. Although rice production practises vary from one country to another, open burning of straw is a common practice in these countries. In this study, an approach was followed aiming at (a) determining the quantity of rice straw being subject to open field burning in those countries, (b) congregating pollutant specific emissions factors for rice straw burning, and (c) quantifying the resulting air pollutant emissions. Uncertainties in the results obtained as compared to a global approach are also discussed.

  11. Simulating urban-scale air pollutants and their predicting capabilities over the Seoul metropolitan area.

    PubMed

    Park, Il-Soo; Lee, Suk-Jo; Kim, Cheol-Hee; Yoo, Chul; Lee, Yong-Hee

    2004-06-01

    Urban-scale air pollutants for sulfur dioxide, nitrogen dioxide, particulate matter with aerodynamic diameter > or = 10 microm, and ozone (O3) were simulated over the Seoul metropolitan area, Korea, during the period of July 2-11, 2002, and their predicting capabilities were discussed. The Air Pollution Model (TAPM) and the highly disaggregated anthropogenic and the biogenic gridded emissions (1 km x 1 km) recently prepared by the Korean Ministry of Environment were applied. Wind fields with observational nudging in the prognostic meteorological model TAPM are optionally adopted to comparatively examine the meteorological impact on the prediction capabilities of urban-scale air pollutants. The result shows that the simulated concentrations of secondary air pollutant largely agree with observed levels with an index of agreement (IOA) of >0.6, whereas IOAs of approximately 0.4 are found for most primary pollutants in the major cities, reflecting the quality of emission data in the urban area. The observationally nudged wind fields with higher IOAs have little effect on the prediction for both primary and secondary air pollutants, implying that the detailed wind field does not consistently improve the urban air pollution model performance if emissions are not well specified. However, the robust highest concentrations are better described toward observations by imposing observational nudging, suggesting the importance of wind fields for the predictions of extreme concentrations such as robust highest concentrations, maximum levels, and >90th percentiles of concentrations for both primary and secondary urban-scale air pollutants.

  12. Implications of alternative assumptions regarding future air pollution control in RCP-like scenarios

    NASA Astrophysics Data System (ADS)

    Chuwah, Clifford; van Noije, Twan; van Vuuren, Detlef; Hazeleger, Wilco; Strunk, Achim; Deetman, Sebastiaan; Mendoza Beltran, Angelica; van Vliet, Jasper

    2013-04-01

    Estimation of future emissions of short-lived trace gases and aerosols from human activities is a main source of uncertainty in projections of future air quality and climate forcing. The Representative Concentration Pathways (RCPs), however, all assume that worldwide ambitious air pollution control policies will be implemented in the coming decades. In this study, we therefore explore the consequences of four alternative emission scenarios generated using the IMAGE integrated assessment model following the methods used to generate the RCPs. These scenarios combine low and high air pollution variants of the scenarios with radiative forcing targets in 2100 of 2.6 W/m2 and 6.0 W/m2 (the high air pollution variants assume no improvement in emission factors, representing a hypothetical upper end of emission levels). Analysis using the global atmospheric chemistry and transport model TM5 shows that climate mitigation and air pollution control policy variants studied here have similar large-scale effects on the concentrations of ozone and black carbon; the impact of climate policy, however, has a stronger impact on sulphate concentrations. Air pollution control measures could significantly reduce the warming by tropospheric ozone and black carbon and the cooling by sulphate already in 2020, and on the longer term contribute to enhanced warming by methane. These effects tend to cancel each other at the global scale. According to our estimates the effect of the worldwide implementation of air pollution control measures on the total global mean direct radiative forcing in 2050 is +0.09 W/m2 in the 6.0 W/m2 scenario and -0.16 W/m2 in the 2.6 W/m2 scenario.

  13. Does air pollution pose a public health problem for New Zealand?

    PubMed

    Scoggins, Amanda

    2004-02-01

    Air pollution is increasingly documented as a threat to public health and a major focus of regulatory activity in developed and developing countries. Air quality indicators suggest New Zealand has clean air relative to many other countries. However, media releases such as 'Christchurch wood fires pump out deadly smog' and 'Vehicle pollution major killer' have sparked public health concern regarding exposure to ambient air pollution, especially in anticipation of increasing emissions and population growth. Recent evidence is presented on the effects of air quality on health, which has been aided by the application of urban airshed models and Geographic Information Systems (GIS). Future directions for research into the effects of air quality on health in New Zealand are discussed, including a national ambient air quality management project: HAPINZ--Health and Air Pollution in New Zealand.

  14. Diurnal variations of wildfire emissions in Europe: analysis of the MODIS and SEVIRI measurements in the framework of the regional scale air pollution modelling

    NASA Astrophysics Data System (ADS)

    Konovalov, Igor B.; Beekmann, Matthias; Kaiser, Johannes W.; Shudyaev, Anton A.; Yurova, Alla; Kuznetsova, Irina N.

    2013-04-01

    Wildfires episodically provide a major contribution to air pollution in many regions of the world. For example, the extreme air pollution level and strongly reduced visibility were observed in the Central European region of Russia during the intensive wildfire events in summer of 2010. Such episodes provide a strong impetus for further developments in air pollution modeling, aimed at improving the ability of chemistry transport models to simulate and predict evolution of atmospheric composition affected by wildfires. The main goals of our study are (1) to investigate the diurnal cycles of air pollutant emissions from wildfires in several European regions, taking into account the fire radiative power (FRP) satellite measurements for different vegetation land cover types and (2) to examine the possibilities of improving air pollution simulations by assimilating the diurnal variability of the FRP measurements performed by the polar orbiting (MODIS) and geostationary (SEVIRI) satellite instruments into a chemistry transport model. These goals are addressed for the case of wildfires occurred in summer 2010. The analysis of both the MODIS and SEVIRI data indicate that air pollutant emissions from wildfires in Europe in summer 2010 were typically much larger during daytime than during nighttime. The important exception is intensive fires around Moscow, featuring an almost "flat" diurnal cycle. These findings confirm the similar results reported earlier [1] but also extend them by attributing the flat diurnal cycle only to forest fires and by examining a hypothetical association of the "abnormal" diurnal cycle of FRP with peat fires. The derived diurnal variations of wildfire emissions have been used in the framework of the modeling system employed in our previous studies of the atmospheric effects of the 2010 Russian wildfires [2, 3]. The numerical experiments reveal that while the character of the diurnal variation of wildfire emissions has a rather small impact on the

  15. Air pollution and chronic airway diseases: what should people know and do?

    PubMed

    Jiang, Xu-Qin; Mei, Xiao-Dong; Feng, Di

    2016-01-01

    The health effects of air pollution remain a public health concern worldwide. Exposure to air pollution has many substantial adverse effects on human health. Globally, seven million deaths were attributable to the joint effects of household and ambient air pollution. Subjects with chronic respiratory diseases such as chronic obstructive pulmonary disease (COPD) and asthma are especially vulnerable to the detrimental effects of air pollutants. Air pollution can induce the acute exacerbation of COPD and onset of asthma, increase the respiratory morbidity and mortality. The health effects of air pollution depend on the components and sources of pollutants, which varied with countries, seasons, and times. Combustion of solid fuels is a major source of air pollutants in developing countries. To reduce the detrimental effects of air pollution, people especially those with COPD or asthma should be aware of the air quality and take extra measures such as reducing the time outdoor and wearing masks when necessary. For reducing the air pollutants indoor, people should use clean fuels and improve the stoves so as to burn fuel more efficiently and vent emissions to the outside. Air cleaners that can improve the air quality efficiently are recommended.

  16. Air pollution and chronic airway diseases: what should people know and do?

    PubMed Central

    Jiang, Xu-Qin; Feng, Di

    2016-01-01

    The health effects of air pollution remain a public health concern worldwide. Exposure to air pollution has many substantial adverse effects on human health. Globally, seven million deaths were attributable to the joint effects of household and ambient air pollution. Subjects with chronic respiratory diseases such as chronic obstructive pulmonary disease (COPD) and asthma are especially vulnerable to the detrimental effects of air pollutants. Air pollution can induce the acute exacerbation of COPD and onset of asthma, increase the respiratory morbidity and mortality. The health effects of air pollution depend on the components and sources of pollutants, which varied with countries, seasons, and times. Combustion of solid fuels is a major source of air pollutants in developing countries. To reduce the detrimental effects of air pollution, people especially those with COPD or asthma should be aware of the air quality and take extra measures such as reducing the time outdoor and wearing masks when necessary. For reducing the air pollutants indoor, people should use clean fuels and improve the stoves so as to burn fuel more efficiently and vent emissions to the outside. Air cleaners that can improve the air quality efficiently are recommended. PMID:26904251

  17. Air Pollution Control, Part II.

    ERIC Educational Resources Information Center

    Strauss, Werner, Ed.

    This book contains five major articles in areas of current importance in air pollution control. They are written by authors who are actively participating in the areas on which they report. It is the aim of each article to completely cover theory, experimentation, and practice in the field discussed. The contents are as follows: Emissions,…

  18. [Airport related air pollution and health effects].

    PubMed

    Iavicoli, Ivo; Fontana, Luca; Ancona, Carla; Forastiere, Francesco

    2014-01-01

    Airport is an extremely complex emission source of airborne pollutants that can have a significant impact on the environment. Indeed, several airborne chemicals emitted during airport activities may significantly get worse air quality and increase exposure level of both airport workers and general population living nearby the airports. In recent years airport traffic has increased and consequently several studies investigated the association between airport-related air pollution and occurrence of adverse health effects, particularly on respiratory system, in exposed workers and general population resident nearby. In this context, we carried out a critical evaluation of the studies that investigated this correlation in order to obtain a deeper knowledge of this issue and to identify the future research needs. Results show that the evidence of association between airport-related air pollution and health effects on workers and residents is still limited.

  19. Mortality, migration, income, and air pollution: a comparative study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bozzo, S.R.; Novak, K.M.; Galdos, F.

    1978-06-02

    The interrelationships among different demographic factors, specific causes of death, median family income, and estimated air pollution emissions were examined. Using the Medical Data Base (MEDABA) developed at Brookhaven National Laboratory, the entire population of the United States was cross-tabulated by income and emission levels of air pollutants. Path analysis was used to examine a number of patterns and relationships for each age, race, and sex group containing a minimum of 10,000 persons. Competitive and complementary effects were observed. These effects were frequently age dependent and occasionaly sex related. This specialized data base, the application of path analysis, and themore » development of a dynamic population and mortality model, in combination, proved to be a useful tool for investigating the effects of energy related pollutants on the exposed population.« less

  20. Screening procedure to evaluate effects of air pollution on Eastern Region wildernesses cited as Class I air quality areas.

    Treesearch

    Mary Beth Adams; Dale S. Nichols; Anthony C. Federer; Keith F. Jensen; Harry Parrott

    1991-01-01

    The USDA Forest Service's Eastern Region manages eight wilderness areas that have been designated as Class I air quality areas by the Federal Clean Air Act. As part of this legislation, Federal land managers are required to consult with air pollution regulators on the potential impacts of proposed air pollution emissions--including phytotoxic gases and acidic...

  1. National Emission Standards for Hazardous Air Pollutants (NESHAP) for Source Categories: Perchloroethylene Dry Cleaning Facilities - 1993 Final Rule (58 FR 49354)

    EPA Pesticide Factsheets

    This document is a copy of the Federal Register publication of the September 22, 1993 Final Rule for the National Emission Standards for Hazardous Air Pollutants for Source Categories: Perchloroethylene Dry Cleaning Facilities.

  2. High-resolution simulation of link-level vehicle emissions and concentrations for air pollutants in a traffic-populated eastern Asian city

    NASA Astrophysics Data System (ADS)

    Zhang, Shaojun; Wu, Ye; Huang, Ruikun; Wang, Jiandong; Yan, Han; Zheng, Yali; Hao, Jiming

    2016-08-01

    Vehicle emissions containing air pollutants created substantial environmental impacts on air quality for many traffic-populated cities in eastern Asia. A high-resolution emission inventory is a useful tool compared with traditional tools (e.g. registration data-based approach) to accurately evaluate real-world traffic dynamics and their environmental burden. In this study, Macau, one of the most populated cities in the world, is selected to demonstrate a high-resolution simulation of vehicular emissions and their contribution to air pollutant concentrations by coupling multimodels. First, traffic volumes by vehicle category on 47 typical roads were investigated during weekdays in 2010 and further applied in a networking demand simulation with the TransCAD model to establish hourly profiles of link-level vehicle counts. Local vehicle driving speed and vehicle age distribution data were also collected in Macau. Second, based on a localized vehicle emission model (e.g. the emission factor model for the Beijing vehicle fleet - Macau, EMBEV-Macau), this study established a link-based vehicle emission inventory in Macau with high resolution meshed in a temporal and spatial framework. Furthermore, we employed the AERMOD (AMS/EPA Regulatory Model) model to map concentrations of CO and primary PM2.5 contributed by local vehicle emissions during weekdays in November 2010. This study has discerned the strong impact of traffic flow dynamics on the temporal and spatial patterns of vehicle emissions, such as a geographic discrepancy of spatial allocation up to 26 % between THC and PM2.5 emissions owing to spatially heterogeneous vehicle-use intensity between motorcycles and diesel fleets. We also identified that the estimated CO2 emissions from gasoline vehicles agreed well with the statistical fuel consumption in Macau. Therefore, this paper provides a case study and a solid framework for developing high-resolution environment assessment tools for other vehicle-populated cities

  3. The contributions of emissions and spatial microenvironments to exposure to indoor air pollution from biomass combustion in Kenya.

    PubMed Central

    Ezzati, M; Saleh, H; Kammen, D M

    2000-01-01

    Acute and chronic respiratory diseases, which are causally linked to exposure to indoor air pollution in developing countries, are the leading cause of global morbidity and mortality. Efforts to develop effective intervention strategies and detailed quantification of the exposure-response relationship for indoor particulate matter require accurate estimates of exposure. We used continuous monitoring of indoor air pollution and individual time-activity budget data to construct detailed profiles of exposure for 345 individuals in 55 households in rural Kenya. Data for analysis were from two hundred ten 14-hour days of continuous real-time monitoring of concentrations of particulate matter [less than/equal to] 10 microm in aerodynamic diameter and the location and activities of household members. These data were supplemented by data on the spatial dispersion of pollution and from interviews. Young and adult women had not only the highest absolute exposure to particulate matter (2, 795 and 4,898 microg/m(3) average daily exposure concentrations, respectively) but also the largest exposure relative to that of males in the same age group (2.5 and 4.8 times, respectively). Exposure during brief high-intensity emission episodes accounts for 31-61% of the total exposure of household members who take part in cooking and 0-11% for those who do not. Simple models that neglect the spatial distribution of pollution within the home, intense emission episodes, and activity patterns underestimate exposure by 3-71% for different demographic subgroups, resulting in inaccurate and biased estimations. Health and intervention impact studies should therefore consider in detail the critical role of exposure patterns, including the short periods of intense emission, to avoid spurious assessments of risks and benefits. PMID:11017887

  4. Atlanta Rail Yard Study: Evaluation of local-scale air pollution ...

    EPA Pesticide Factsheets

    Intermodal rail yards are important nodes in the freight transportation network, where freight is organized and moved from one mode of transport to another, critical equipment is serviced, and freight is routed to its next destination. Rail yard environments are also areas with multiple sources of air pollutant emissions (e.g., heavy-duty vehicles, locomotives, cranes), which may affect local air quality in residential areas nearby. In order to understand emissions and related air quality impacts, two field studies took place over the time span of 2010-2012 to measure air pollution trends in close proximity to the Inman and Tilford rail yard complex in Atlanta, GA. One field study involved long-term stationary monitoring of black carbon, fine particles, and carbon dioxide at two stations nearby the rail yard. In addition, a second field study performed intensive mobile air monitoring for a one month period in the summer of 2012 at a roadway network surrounding the rail yard complex and measured a comprehensive array of pollutants. Real-time mobile particulate measurements included particle counts, extinction coefficient, black carbon via light-absorption and particle incandescence, and particle composition derived by aerosol mass spectrometry. Gas-phase measurements included oxides of nitrogen, sulfur dioxide, carbon dioxide, and air toxics (e.g., benzene). Both sets of measurements determined detectable local influence from rail yard-related emissions.

  5. Air Pollution, Disease Burden, and Health Economic Loss in China.

    PubMed

    Niu, Yue; Chen, Renjie; Kan, Haidong

    2017-01-01

    As the largest developing country in the world, China is now facing one of the severest air pollution problems. The objective of this section is to evaluate the disease burden and corresponding economic loss attributable to ambient air pollution in China. We reviewed a series of studies by Chinese or foreign investigators focusing on the disease burden and economic loss in China. These studies showed both the general air pollution and haze episodes have resulted in substantial disease burden in terms of excess number of premature deaths, disability-adjusted life-year loss, and years of life lost. The corresponding economic loss has accounted for an appreciable proportion of China's national economy. Overall, the disease burden and health economic loss due to ambient air pollution in China is greater than in the remaining parts of the world, for one of the highest levels of air pollution and the largest size of exposed population. Consideration of both health and economic impacts of air pollution can facilitate the Chinese government to develop environmental policies to reduce the emissions of various air pollutants and protect the public health.

  6. Characterizing ultrafine particles and other air pollutants in and around school buses.

    PubMed

    Zhu, Yifang; Zhang, Qunfang

    2014-03-01

    Increasing evidence has demonstrated toxic effects of ultrafine particles (UFP*, diameter < 100 nm). Children are particularly at risk because of their immature respiratory systems and higher breathing rates per body mass. This study aimed to characterize UFP, PM2.5 (particulate matter < or = 2.5 microm in aerodynamic diameter), and other vehicular-emitted pollutants in and around school buses. Four sub-studies were conducted, including: 1. On-road tests to measure in-cabin air pollutant levels while school buses were being driven; 2. Idling tests to determine the contributions of tailpipe emissions from idling school buses to air pollutant levels in and around school buses under different scenarios; 3. Retrofit tests to evaluate the performance of two retrofit systems, a diesel oxidation catalyst (DOC) muffler and a crankcase filtration system (CFS), on reducing tailpipe emissions and in-cabin air pollutant concentrations under idling and driving conditions; and 4. High efficiency particulate air (HEPA) filter air purifier tests to evaluate the effectiveness of in-cabin filtration. In total, 24 school buses were employed to cover a wide range of school buses commonly used in the United States. Real-time air quality measurements included particle number concentration (PNC), fine and UFP size distribution in the size range 7.6-289 nm, PM2.5 mass concentration, black carbon (BC) concentration, and carbon monoxide (CO) and carbon dioxide (CO2) concentrations. For in-cabin measurements, instruments were placed on a platform secured to the rear seats inside the school buses. For all other tests, a second set of instruments was deployed to simultaneously measure the ambient air pollutant levels. For tailpipe emission measurements, the exhaust was diluted and then measured by instruments identical to those used for the in-cabin measurements. The results show that when driving on roads, in-cabin PNC, fine and UFP size distribution, PM2.5, BC, and CO varied by engine age

  7. Mapping real-time air pollution health risk for environmental management: Combining mobile and stationary air pollution monitoring with neural network models.

    PubMed

    Adams, Matthew D; Kanaroglou, Pavlos S

    2016-03-01

    Air pollution poses health concerns at the global scale. The challenge of managing air pollution is significant because of the many air pollutants, insufficient funds for monitoring and abatement programs, and political and social challenges in defining policy to limit emissions. Some governments provide citizens with air pollution health risk information to allow them to limit their exposure. However, many regions still have insufficient air pollution monitoring networks to provide real-time mapping. Where available, these risk mapping systems either provide absolute concentration data or the concentrations are used to derive an Air Quality Index, which provides the air pollution risk for a mix of air pollutants with a single value. When risk information is presented as a single value for an entire region it does not inform on the spatial variation within the region. Without an understanding of the local variation residents can only make a partially informed decision when choosing daily activities. The single value is typically provided because of a limited number of active monitoring units in the area. In our work, we overcome this issue by leveraging mobile air pollution monitoring techniques, meteorological information and land use information to map real-time air pollution health risks. We propose an approach that can provide improved health risk information to the public by applying neural network models within a framework that is inspired by land use regression. Mobile air pollution monitoring campaigns were conducted across Hamilton from 2005 to 2013. These mobile air pollution data were modelled with a number of predictor variables that included information on the surrounding land use characteristics, the meteorological conditions, air pollution concentrations from fixed location monitors, and traffic information during the time of collection. Fine particulate matter and nitrogen dioxide were both modelled. During the model fitting process we reserved

  8. List of Potentially Affected Sources for the Asphalt Processing and Roofing Manufacturing National Emission Standards for Hazardous Air Pollutants (NESHAP) November 2001

    EPA Pesticide Factsheets

    This is a November 2001 list of sources identified by EPA as potentially affected by the Asphalt Processing and Roofing Manufacturing National Emission Standards for Hazardous Air Pollutants (NESHAP).

  9. Ambient air pollution is associated with the increased incidence of breast cancer in US.

    PubMed

    Wei, Yudan; Davis, Jamie; Bina, William F

    2012-01-01

    Women in the United States have among the highest incidence rates of breast cancer. The reasons behind this are not fully understood. In this study we analyzed US ecological data to examine the effect of ambient air pollution on breast cancer incidence. Time trends and regional variations in breast cancer incidence were assessed in relation to emissions of air pollutants. A statistically significant increase in the incidence of female breast cancer in US was observed during 1986-2002, which could occur following the increased emissions of air pollutants as a result of industrial development and automobile use. Emissions of nitrogen oxides, carbon monoxide, sulfur dioxide, and volatile organic compounds were shown to be positively associated with breast cancer incidence with r = 0.89, 0.82, 0.71, and 0.68, respectively (p < 0.001). A higher incidence rate of breast cancer was found in high emission regions and metropolitan areas. This study suggests a possible association between air pollution and female breast cancer in US.

  10. 76 FR 78872 - National Emission Standards for Hazardous Air Pollutants for Wool Fiberglass Manufacturing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-20

    ...The EPA published in the Federal Register on November 25, 2011, the proposed rules, ``National Emission Standards for Hazardous Air Pollutants: Mineral Wool Production and Wool Fiberglass Manufacturing.'' The EPA was asked to hold a public hearing only on the wool fiberglass rule. Therefore, EPA is making two announcements: first, a public hearing for the proposed Wool Fiberglass Manufacturing rule will be held on January 4, 2012 in Kansas City Kansas, and second, the comment period for the Wool Fiberglass Manufacturing proposed rules will be extended until February 3, 2012.

  11. Tropospheric emissions: Monitoring of pollution (TEMPO)

    NASA Astrophysics Data System (ADS)

    Zoogman, P.; Liu, X.; Suleiman, R. M.; Pennington, W. F.; Flittner, D. E.; Al-Saadi, J. A.; Hilton, B. B.; Nicks, D. K.; Newchurch, M. J.; Carr, J. L.; Janz, S. J.; Andraschko, M. R.; Arola, A.; Baker, B. D.; Canova, B. P.; Chan Miller, C.; Cohen, R. C.; Davis, J. E.; Dussault, M. E.; Edwards, D. P.; Fishman, J.; Ghulam, A.; González Abad, G.; Grutter, M.; Herman, J. R.; Houck, J.; Jacob, D. J.; Joiner, J.; Kerridge, B. J.; Kim, J.; Krotkov, N. A.; Lamsal, L.; Li, C.; Lindfors, A.; Martin, R. V.; McElroy, C. T.; McLinden, C.; Natraj, V.; Neil, D. O.; Nowlan, C. R.; O`Sullivan, E. J.; Palmer, P. I.; Pierce, R. B.; Pippin, M. R.; Saiz-Lopez, A.; Spurr, R. J. D.; Szykman, J. J.; Torres, O.; Veefkind, J. P.; Veihelmann, B.; Wang, H.; Wang, J.; Chance, K.

    2017-01-01

    TEMPO was selected in 2012 by NASA as the first Earth Venture Instrument, for launch between 2018 and 2021. It will measure atmospheric pollution for greater North America from space using ultraviolet and visible spectroscopy. TEMPO observes from Mexico City, Cuba, and the Bahamas to the Canadian oil sands, and from the Atlantic to the Pacific, hourly and at high spatial resolution ( 2.1 km N/S×4.4 km E/W at 36.5°N, 100°W). TEMPO provides a tropospheric measurement suite that includes the key elements of tropospheric air pollution chemistry, as well as contributing to carbon cycle knowledge. Measurements are made hourly from geostationary (GEO) orbit, to capture the high variability present in the diurnal cycle of emissions and chemistry that are unobservable from current low-Earth orbit (LEO) satellites that measure once per day. The small product spatial footprint resolves pollution sources at sub-urban scale. Together, this temporal and spatial resolution improves emission inventories, monitors population exposure, and enables effective emission-control strategies. TEMPO takes advantage of a commercial GEO host spacecraft to provide a modest cost mission that measures the spectra required to retrieve ozone (O3), nitrogen dioxide (NO2), sulfur dioxide (SO2), formaldehyde (H2CO), glyoxal (C2H2O2), bromine monoxide (BrO), IO (iodine monoxide), water vapor, aerosols, cloud parameters, ultraviolet radiation, and foliage properties. TEMPO thus measures the major elements, directly or by proxy, in the tropospheric O3 chemistry cycle. Multi-spectral observations provide sensitivity to O3 in the lowermost troposphere, substantially reducing uncertainty in air quality predictions. TEMPO quantifies and tracks the evolution of aerosol loading. It provides these near-real-time air quality products that will be made publicly available. TEMPO will launch at a prime time to be the North American component of the global geostationary constellation of pollution monitoring

  12. Hemispheric Transport of Air Pollutants: Issues, Progress, and Implications

    NASA Astrophysics Data System (ADS)

    Keating, T.

    2007-12-01

    Once thought of as only a local or regional issue, air quality is now understood to be influenced by local, regional, hemispheric, and global phenomena. There is well-documented evidence from ground-, aircraft-, and satellite- based observations for the intercontinental transport of ozone, aerosols, mercury, and some persistent organic pollutants. Global and regional models have provided a range of estimates of the influence of emissions on one continent on concentrations and deposition levels on another continent. These estimates have been difficult to compare and the significance of this intercontinental influence for the design of air pollution control policies is not well understood. The Task Force on Hemispheric Transport of Air Pollutants organized under the Convention on Long-Range Transboundary Air Pollution is developing the first systematic assessment of intercontinental transport and hemispheric pollution in the Northern Hemisphere. This presentation by one of the co-chairs of the Task Force will explore the motivations behind the creation of the Task Force, review its progress, and discuss the implications of its work for the development of domestic and international air quality management policies.

  13. Room chamber assessment of the pollutant emission properties of (nominally) low-emission unflued gas heaters.

    PubMed

    Brown, Stephen K; Mahoney, K John; Cheng, Min

    2004-01-01

    Pollutant emissions from unflued gas heaters were assessed in CSIRO's Room Dynamic Environmental Chamber. This paper describes the chamber assessment procedure and presents findings for major commercial heaters that are nominally "low-emission". The chamber was operated at controlled conditions of temperature, humidity, ventilation and air mixing, representative of those encountered in typical indoor environments. A fixed rate of heat removal from the chamber air ensured that the heaters operated at constant heating rates, typically approximately 6 MJ/h which simulated operation of a heater after warm-up in an insulated dwelling in south-east Australia. The pollutants assessed were nitrogen dioxide, carbon monoxide, formaldehyde, VOCs and respirable suspended particulates. One type of heater was lower emitting for nitrogen dioxide, but emitted greater amounts of carbon monoxide and formaldehyde (the latter becoming significant to indoor air quality). When operated with low line pressure or slight misalignment of the gas burner, this heater became a hazardous source of these pollutants. Emissions from the heaters changed little after continuous operation for up to 2 months. Unflued gas heaters have been popular as primary heating sources in Australian homes for many years due to their ease of installation and energy efficiency, with approximately 600,000 now installed in housing and schools. However, with concerns over potential health impacts to occupants, manufacturers have reduced the nitrogen dioxide emissions from unflued gas heaters in Australia over recent years. They have done so with a target level for nitrogen dioxide in indoor air of 300 p.p.b. This is somewhat higher than the ambient air (and WHO) guideline of 110 p.p.b. Several studies of child respiratory health show an impact of unflued gas combustion products. A full characterization of the combustion products is needed under conditions that simulate heater operation in practice-this study was

  14. Co-control of urban air pollutants and greenhouse gases in Mexico City.

    PubMed

    West, J Jason; Osnaya, Patricia; Laguna, Israel; Martínez, Julia; Fernández, Adrián

    2004-07-01

    This study addresses the synergies of mitigation measures to control urban air pollutant and greenhouse gas (GHG) emissions, in developing integrated "co-control" strategies for Mexico City. First, existing studies of emissions reduction measures--PROAIRE (the air quality plan for Mexico City) and separate GHG studies--are used to construct a harmonized database of options. Second, linear programming (LP) is developed and applied as a decision-support tool to analyze least-cost strategies for meeting co-control targets for multiple pollutants. We estimate that implementing PROAIRE measures as planned will reduce 3.1% of the 2010 metropolitan CO2 emissions, in addition to substantial local air pollutant reductions. Applying the LP, PROAIRE emissions reductions can be met at a 20% lower cost, using only the PROAIRE measures, by adjusting investments toward the more cost-effective measures; lower net costs are possible by including cost-saving GHG mitigation measures, but with increased investment. When CO2 emission reduction targets are added to PROAIRE targets, the most cost-effective solutions use PROAIRE measures for the majority of local pollutant reductions, and GHG measures for additional CO2 control. Because of synergies, the integrated planning of urban-global co-control can be beneficial, but we estimate that for Mexico City these benefits are often small.

  15. Emission factors of air toxics from semiconductor manufacturing in Korea.

    PubMed

    Eom, Yun-Sung; Hong, Ji-Hyung; Lee, Suk-Jo; Lee, Eun-Jung; Cha, Jun-Seok; Lee, Dae-Gyun; Bang, Sun-Ae

    2006-11-01

    The development of local, accurate emission factors is very important for the estimation of reliable national emissions and air quality management. For that, this study is performed for pollutants released to the atmosphere with source-specific emission tests from the semiconductor manufacturing industry. The semiconductor manufacturing industry is one of the major sources of air toxics or hazardous air pollutants (HAPs); thus, understanding the emission characteristics of the emission source is a very important factor in the development of a control strategy. However, in Korea, there is a general lack of information available on air emissions from the semiconductor industry. The major emission sources of air toxics examined from the semiconductor manufacturing industry were wet chemical stations, coating applications, gaseous operations, photolithography, and miscellaneous devices in the wafer fabrication and semiconductor packaging processes. In this study, analyses of emission characteristics, and the estimations of emission data and factors for air toxics, such as acids, bases, heavy metals, and volatile organic compounds from the semiconductor manufacturing process have been performed. The concentration of hydrogen chloride from the packaging process was the highest among all of the processes. In addition, the emission factor of total volatile organic compounds (TVOCs) for the packaging process was higher than that of the wafer fabrication process. Emission factors estimated in this study were compared with those of Taiwan for evaluation, and they were found to be of similar level in the case of TVOCs and fluorine compounds.

  16. Tropospheric Emissions: Monitoring of Pollution Overview

    NASA Technical Reports Server (NTRS)

    Chance, Kelly; Liu, Xiong; Suleiman, Raid M.; Flittner, David; Al-Saadi, Jay; Janz, Scott

    2015-01-01

    TEMPO is now well into its implementation phase, having passed both its Key Decision Point C and the Critical Design Review (CDR) for the instrument. The CDR for the ground systems will occur in March 2016 and the CDR for the Mission component at a later date, after the host spacecraft has been selected. TEMPO is on schedule to measure atmospheric pollution for greater North America from space using ultraviolet and visible spectroscopy. TEMPO measures from Mexico City to the Canadian oil sands, and from the Atlantic to the Pacific, hourly and at high spatial resolution. TEMPO provides a tropospheric measurement suite that includes the key elements of tropospheric air pollution chemistry. Measurements are from geostationary (GEO) orbit, to capture the inherent high variability in the diurnal cycle of emissions and chemistry. The small product spatial footprint resolves pollution sources at sub-urban scale. Together, this temporal and spatial resolution improves emission inventories, monitors population exposure, and enables effective emission-control strategies. TEMPO takes advantage of a GEO host spacecraft to provide a modest cost mission that measures the spectra required to retrieve O3, NO2, SO2, H2CO, C2H2O2, H2O, aerosols, cloud parameters, and UVB radiation. TEMPO thus measures the major elements, directly or by proxy, in the tropospheric O3 chemistry cycle. Multi-spectral observations provide sensitivity to O3 in the lowermost troposphere, substantially reducing uncertainty in air quality predictions by 50 percent. TEMPO quantifies and tracks the evolution of aerosol loading. It provides near-real-time air quality products that will be made widely, publicly available. TEMPO provides much of the atmospheric measurement capability recommended for GEO-CAPE in the 2007 National Research Council Decadal Survey, Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond. Instruments from Europe (Sentinel 4) and Asia (GEMS) will

  17. Hazardous air pollutant (HAP) emission characterization of sewage treatment facilities in Korea.

    PubMed

    Kang, Kyoung-Hee; Dong, Jong-In

    2010-04-01

    Until recently, nearly all sewage treatment-related regulations and researches have focused on the removal of the conventional and toxic pollutants from liquid effluents. The discharge of toxic compounds to the atmosphere has been implicitly regarded as a way of removal or destruction. During sewage treatment, the fate mechanism of volatilization/stripping, sorption and biotransformation primarily determines the fate of volatile HAPs. The objectives of this study are to investigate the emission characteristics of HAPs, which are generated from the liquid surface of sewage treatment facilities, by using an emission isolation flux chamber. HAP emissions increased at the inlet of the aerobic chamber during summer due to the relatively high atmospheric temperature. The percent ratio of flux for toluene reached its peak in winter, accounting for 33.6-34.2% of the total, but decreased to 25.1-28.6% in summer. In autumn, trichloroethene (TCE) was the highest, recording 17.6-18.1%, with chloroform and toluene showing similar levels. It seems that the ratio of chlorinated hydrocarbons increases in both summer and autumn because the chamber temperature during that time is higher than winter. This study is the initial study to investigate the emission characteristics of volatile HAPs emitted from domestic sewage treatment facilities to the air in Korea. Therefore, the isolation flux chamber will be used as an emission estimations tool to measure HAPs from sewage treatment facilities and may be applied to develop the emission factor and national source inventory of HAPs.

  18. Effects of air pollution on human health and practical measures for prevention in Iran

    PubMed Central

    Ghorani-Azam, Adel; Riahi-Zanjani, Bamdad; Balali-Mood, Mahdi

    2016-01-01

    Air pollution is a major concern of new civilized world, which has a serious toxicological impact on human health and the environment. It has a number of different emission sources, but motor vehicles and industrial processes contribute the major part of air pollution. According to the World Health Organization, six major air pollutants include particle pollution, ground-level ozone, carbon monoxide, sulfur oxides, nitrogen oxides, and lead. Long and short term exposure to air suspended toxicants has a different toxicological impact on human including respiratory and cardiovascular diseases, neuropsychiatric complications, the eyes irritation, skin diseases, and long-term chronic diseases such as cancer. Several reports have revealed the direct association between exposure to the poor air quality and increasing rate of morbidity and mortality mostly due to cardiovascular and respiratory diseases. Air pollution is considered as the major environmental risk factor in the incidence and progression of some diseases such as asthma, lung cancer, ventricular hypertrophy, Alzheimer's and Parkinson's diseases, psychological complications, autism, retinopathy, fetal growth, and low birth weight. In this review article, we aimed to discuss toxicology of major air pollutants, sources of emission, and their impact on human health. We have also proposed practical measures to reduce air pollution in Iran. PMID:27904610

  19. Effects of air pollution on human health and practical measures for prevention in Iran.

    PubMed

    Ghorani-Azam, Adel; Riahi-Zanjani, Bamdad; Balali-Mood, Mahdi

    2016-01-01

    Air pollution is a major concern of new civilized world, which has a serious toxicological impact on human health and the environment. It has a number of different emission sources, but motor vehicles and industrial processes contribute the major part of air pollution. According to the World Health Organization, six major air pollutants include particle pollution, ground-level ozone, carbon monoxide, sulfur oxides, nitrogen oxides, and lead. Long and short term exposure to air suspended toxicants has a different toxicological impact on human including respiratory and cardiovascular diseases, neuropsychiatric complications, the eyes irritation, skin diseases, and long-term chronic diseases such as cancer. Several reports have revealed the direct association between exposure to the poor air quality and increasing rate of morbidity and mortality mostly due to cardiovascular and respiratory diseases. Air pollution is considered as the major environmental risk factor in the incidence and progression of some diseases such as asthma, lung cancer, ventricular hypertrophy, Alzheimer's and Parkinson's diseases, psychological complications, autism, retinopathy, fetal growth, and low birth weight. In this review article, we aimed to discuss toxicology of major air pollutants, sources of emission, and their impact on human health. We have also proposed practical measures to reduce air pollution in Iran.

  20. A framework for the evaluation of air pollution caused by motor vehicles

    NASA Astrophysics Data System (ADS)

    Elawej, Khalifa A. K.

    This research investigated the problem of air pollution caused by vehicles in the city of Tripoli, Libya. This also included the identification of the socioeconomic and institutional factors which have contributed to the increased severity of the air pollution problem. The issues addressed included legal, institutional and technical aspects. A descriptive method was applied in which a case study approach was adopted. Primary data were collected through personal interviews with responsible people in relevant institutions, including EGA, GTL and ATD, complemented by questionnaires and direct observations. The data collected from the interviews and questionnaires were analysed using Excel and SPSS software.Owing to the lack of data on vehicular emissions in the study area, an inventory of the annual vehicular emissions in the city was made through the application of COPERT.4 software which is widely used for calculating vehicular emissions. This inventory covered the period from 2005 to 2010. Laboratory Mobile was also used to measure the concentration of vehicular emissions in the city centre of Tripoli, and compared with the vehicular concentrations in Sheffield, UK, for the same period.A framework was developed and validated to evaluate the air pollution caused by vehicles in Tripoli. The findings from the research showed that there has been a dramatic increase in the quantity of vehicle emissions in the city, highlighting the extent of the problem. Some influencing factors which have made a significant contribution to the occurrence and increased severity of traffic air pollution in Tripoli include: the increase in the vehicle fleet, the quality and quantity of the fuel consumed, insufficient public transportation, a shortage of public awareness, and deficiencies in the relevant legislation. Obstacles facing the responsible institutions include a lack of capable and qualified staff, and a shortage of necessary equipment for monitoring and addressing traffic

  1. 40 CFR 60.2706 - By what date must I conduct the initial air pollution control device inspection?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... air pollution control device inspection? 60.2706 Section 60.2706 Protection of Environment... pollution control device inspection? (a) The initial air pollution control device inspection must be... meeting the amended emission limitations. (b) Within 10 operating days following an air pollution control...

  2. 40 CFR 60.2706 - By what date must I conduct the initial air pollution control device inspection?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... air pollution control device inspection? 60.2706 Section 60.2706 Protection of Environment... pollution control device inspection? (a) The initial air pollution control device inspection must be... meeting the amended emission limitations. (b) Within 10 operating days following an air pollution control...

  3. 40 CFR 60.2706 - By what date must I conduct the initial air pollution control device inspection?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... air pollution control device inspection? 60.2706 Section 60.2706 Protection of Environment... pollution control device inspection? (a) The initial air pollution control device inspection must be... meeting the amended emission limitations. (b) Within 10 operating days following an air pollution control...

  4. Spatial resolution requirements for traffic-related air pollutant exposure evaluations

    EPA Science Inventory

    Vehicle emissions represent one of the most important air pollution sources in most urban areas, and elevated concentrations of pollutants found near major roads have been associated with many adverse health impacts. To understand these impacts, exposure estimates should reflect ...

  5. Emissions of air pollutants and greenhouse gases over Asian regions during 2000-2008: Regional Emission inventory in ASia (REAS) version 2

    NASA Astrophysics Data System (ADS)

    Kurokawa, J.; Ohara, T.; Morikawa, T.; Hanayama, S.; Janssens-Maenhout, G.; Fukui, T.; Kawashima, K.; Akimoto, H.

    2013-11-01

    We have updated the Regional Emission inventory in ASia (REAS) as version 2.1. REAS 2.1 includes most major air pollutants and greenhouse gases from each year during 2000 and 2008 and following areas of Asia: East, Southeast, South, and Central Asia and the Asian part of Russia. Emissions are estimated for each country and region using updated activity data and parameters. Monthly gridded data with a 0.25° × 0.25° resolution are also provided. Asian emissions for each species in 2008 are as follows (with their growth rate from 2000 to 2008): 56.9 Tg (+34%) for SO2, 53.9 Tg (+54%) for NOx, 359.5 Tg (+34%) for CO, 68.5 Tg (+46%) for non-methane volatile organic compounds, 32.8 Tg (+17%) for NH3, 36.4 Tg (+45%) for PM10, 24.7 Tg (+42%) for PM2.5, 3.03 Tg (+35%) for black carbon, 7.72 Tg (+21%) for organic carbon, 182.2 Tg (+32%) for CH4, 5.80 Tg (+18%) for N2O, and 16.0 Pg (+57%) for CO2. By country, China and India were respectively the largest and second largest contributors to Asian emissions. Both countries also had higher growth rates in emissions than others because of their continuous increases in energy consumption, industrial activities, and infrastructure development. In China, emission mitigation measures have been implemented gradually. Emissions of SO2 in China increased from 2000 to 2006 and then began to decrease as flue-gas desulphurization was installed to large power plants. On the other hand, emissions of air pollutants in total East Asia except for China decreased from 2000 to 2008 owing to lower economic growth rates and more effective emission regulations in Japan, South Korea, and Taiwan. Emissions from other regions generally increased from 2000 to 2008, although their relative shares of total Asian emissions are smaller than those of China and India. Tables of annual emissions by country and region broken down by sub-sector and fuel type, and monthly gridded emission data with a resolution of 0.25° × 0.25° for the major sectors are

  6. Emissions of air pollutants and greenhouse gases over Asian regions during 2000-2008: Regional Emission inventory in ASia (REAS) version 2

    NASA Astrophysics Data System (ADS)

    Kurokawa, J.; Ohara, T.; Morikawa, T.; Hanayama, S.; Greet, J.-M.; Fukui, T.; Kawashima, K.; Akimoto, H.

    2013-04-01

    We have updated the Regional Emission inventory in ASia (REAS) as version 2.1. REAS 2.1 includes most major air pollutants and greenhouse gases from each year during 2000 and 2008 and following areas of Asia: East, Southeast, South, and Central Asia and the Asian part of Russia. Emissions are estimated for each country and region using updated activity data and parameters. Monthly gridded data with a 0.25 × 0.25° resolution are also provided. Asian emissions for each species in 2008 are as follows (with their growth rate from 2000 to 2008): 56.9 Tg (+34%) for SO2, 53.9 Tg (+54%) for NOx, 359.5 Tg (+34%) for CO, 68.5 Tg (+46%) for non-methane volatile organic compounds, 32.8 Tg (+17%) for NH3, 36.4 Tg (+45%) for PM10, 24.7 Tg (+42%) for PM2.5, 3.03 Tg (+35%) for black carbon, 7.72 Tg (+21%) for organic carbon, 182.2 Tg (+32%) for CH4, 5.80 Tg (+18%) for N2O, and 16.7 Pg (+59%) for CO2. By country, China and India were respectively the largest and second largest contributors to Asian emissions. Both countries also had higher growth rates in emissions than others because of their continuous increases in energy consumption, industrial activities, and infrastructure development. In China, emission mitigation measures have been implemented gradually. Emissions of SO2 in China increased from 2000 to 2006 and then began to decrease as flue-gas desulfurization was installed to large power plants. On the other hand, emissions of air pollutants in total East Asia except for China decreased from 2000 to 2008 owing to lower economic growth rates and more effective emission regulations in Japan, South Korea, and Taiwan. Emissions from other regions generally increased from 2000 to 2008, although their relative shares of total Asian emissions are smaller than those of China and India. Tables of annual emissions by country and region broken down by sub-sector and fuel type, and monthly gridded emission data with a resolution of 0.25 × 0.25° for the major sectors are available

  7. Air Pollution.

    EPA Science Inventory

    Air quality is affected by many types of pollutants that are emitted from various sources, including stationary and mobile. These sources release both criteria and hazardous air pollutants, which cause health effects, ecological harm, and material damage. They are generally categ...

  8. Roles of Meteorology in Changes of Air Pollutants Concentrations in China from 2010 to 2015

    NASA Astrophysics Data System (ADS)

    Wang, P.; Kota, S. H.; Hu, J.; Ying, Q.; Zhang, H.

    2017-12-01

    Tremendous efforts have been made to control the severe air pollution in China in recent years. However, no significant improvement was observed according to annual fine particulate matter (PM2.5) concentrations and the concentrations in severe air pollution events in winter. This is partially due to the role of meteorology, which affects the emission, transport, transformation, and deposition of air pollutants. In this study, simulation of air pollutants over China was conducted for six years from 2010 to 2015 with constant anthropogenic emissions to verify the changes of air pollutants due to meteorology changes only. Model performance was validated by comparing with meteorological observations and air pollutants measures from various sources. Four different regions/cities were selected to understand the changes in wind, mixing layer height, temperature, and relative humanity at different seasons. The changes in concentrations of pollutants including PM2.5 and its chemical components and ozone were analyzed and associated with meteorological changes. This study would provide information for designing effective control strategies in different areas with the consideration of meteorological and climate changes.

  9. Air pollution and risk of hospitalization for epilepsy: the role of farm use of nitrogen fertilizers and emissions of the agricultural air pollutant, nitrous oxide.

    PubMed

    Fluegge, Keith; Fluegge, Kyle

    2017-09-01

    The link between various air pollutants and hospitalization for epilepsy has come under scrutiny. We have proposed that exposure to air pollution and specifically the pervasive agricultural air pollutant and greenhouse gas, nitrous oxide (N2O), may provoke susceptibility to neurodevelopmental disorders. Evidence supports a role of N2O exposure in reducing epileptiform seizure activity, while withdrawal from the drug has been shown to induce seizure-like activity. Therefore, we show here that the statewide use of anthropogenic nitrogen fertilizers (the most recognized causal contributor to environmental N2O burden) is significantly negatively associated with hospitalization for epilepsy in all three pre-specified hospitalization categories, even after multiple pollutant comparison correction (p<.007), while the other identified pollutants were not consistently statistically significantly associated with hospitalization for epilepsy. We discuss potential neurological mechanisms underpinning this association between air pollutants associated with farm use of anthropogenic nitrogen fertilizers and hospitalization for epilepsy.

  10. Synthetic Organic Chemical Manufacturing Industry: Organic National Emission Standards for Hazardous Air Pollutants (NESHAP) - 40 CFR 63 Subparts F,G,H,I

    EPA Pesticide Factsheets

    Read about the National Emission Standards for Hazardous Air Pollutants (NESHAP) for the Synthetic Organic Chemical Manufacturing Industry. Read the rules, find the CFR text, dockets, effective dates, rule history and compliance information.

  11. Air pollutant emissions and mitigation potential through the adoption of semi-coke coals and improved heating stoves: Field evaluation of a pilot intervention program in rural China.

    PubMed

    Liu, Yafei; Zhang, You; Li, Chuang; Bai, Yun; Zhang, Daoming; Xue, Chunyu; Liu, Guangqing

    2018-05-15

    Pollutant emissions from incomplete combustion of raw coal in low-efficiency residential heating stoves greatly contribute to winter haze in China. Semi-coke coals and improved heating stoves are expected to lower air pollutant emissions and are vigorously promoted by the Chinese government in many national and local plans. In this study, the thermal performance and air pollutant emissions from semi-coke combustion in improved heating stoves were measured in a pilot rural county and compared to the baseline of burning raw coal to quantify the mitigation potential of air pollutant emissions. A total of five stove-fuel combinations were tested, and 27 samples from 27 different volunteered households were obtained. The heating efficiency of improved stoves increased, but fuel consumption appeared higher with more useful energy output compared to traditional stoves. The emission factors of PM 2.5 , SO 2 , and CO 2 of semi-coke burning in specified improved stoves were lower than the baseline of burning raw coal chunk, but no significant NOx and CO decreases were observed. The total amount of PM 2.5 and SO 2 emissions per household in one heating season was lower, but CO, CO 2 , and NOx increased when semi-coke coal and specified improved stoves were deployed. Most differences were not statistically significant due to the limited samples and large variation, indicating that further evaluation would be needed to make conclusions that could be considered for policy. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. A Comparison of Exposure Metrics for Traffic-Related Air Pollutants: Application to Epidemiology Studies in Detroit, Michigan

    EPA Science Inventory

    Vehicles are major sources of air pollutant emissions, and individuals living near large roads endure high exposures and health risks associated with traffic-related air pollutants. Air pollution epidemiology, health risk, environmental justice, and transportation planning studi...

  13. Air Pollution Translations: A Bibliography with Abstracts - Volume 4.

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Research Triangle Park, NC. Air Pollution Technical Information Center.

    This volume is the fourth in a series of compilations presenting abstracts and indexes of translations of technical air pollution literature. The entries are grouped into 12 subject categories: Emission Sources, Control Methods, Measurement Methods, Air Quality Measurements, Atmospheric Interaction, Basic Science and Technology, Effects--Human…

  14. Methods for reducing pollutant emissions from jet aircraft

    NASA Technical Reports Server (NTRS)

    Butze, H. F.

    1971-01-01

    Pollutant emissions from jet aircraft and combustion research aimed at reducing these emissions are defined. The problem of smoke formation and results achieved in smoke reduction from commercial combustors are discussed. Expermental results of parametric tests performed on both conventional and experimental combustors over a range of combustor-inlet conditions are presented. Combustor design techniques for reducing pollutant emissions are discussed. Improved fuel atomization resulting from the use of air-assist fuel nozzles has brought about significant reductions in hydrocarbon and carbon monoxide emissions at idle. Diffuser tests have shown that the combustor-inlet airflow profile can be controlled through the use of diffuser-wall bleed and that it may thus be possible to reduce emissions by controlling combustor airflow distribution. Emissions of nitric oxide from a shortlength annular swirl-can combustor were significantly lower than those from a conventional combustor operating at similar conditions.

  15. The impact of European measures to reduce air pollutants on air quality, human health and climate

    NASA Astrophysics Data System (ADS)

    Turnock, S.; Butt, E. W.; Richardson, T.; Mann, G.; Forster, P.; Haywood, J. M.; Crippa, M.; Janssens-Maenhout, G. G. A.; Johnson, C.; Bellouin, N.; Spracklen, D. V.; Carslaw, K. S.; Reddington, C.

    2015-12-01

    European air quality legislation has reduced emissions of air pollutants across Europe since the 1970s, resulting in improved air quality and benefits to human health but also an unintended impact on regional climate. Here we used a coupled chemistry-climate model and a new policy relevant emission scenario to determine the impact of air pollutant emission reductions over Europe. The emission scenario shows that a combination of technological improvements and end-of-pipe abatement measures in the energy, industrial and road transport sectors reduced European emissions of sulphur dioxide, black carbon and organic carbon by 53%, 59% and 32% respectively. We estimate that these emission reductions decreased European annual mean concentrations of fine particulate matter (PM2.5) by 35%, sulphate by 44%, black carbon (BC) by 56% and particulate organic matter (POM) by 23%. The reduction in PM2.5 concentrations is calculated to have prevented 107,000 (40,000-172,000, 5-95% confidence intervals) premature deaths annually from cardiopulmonary disease and lung cancer across the EU member states. The decrease in aerosol concentrations caused a positive all-sky aerosol radiative forcing at the top of atmosphere over Europe of 2.3±0.06 W m-2 and a positive clear-sky forcing of 1.7±0.05 W m-2. Additionally, the amount of solar radiation incident at the surface over Europe increased by 3.3±0.07 W m-2 under all-sky and by 2.7±0.05 W m-2 under clear-sky conditions. Reductions in BC concentrations caused a 1 Wm-2 reduction in atmospheric absorption. We use an energy budget approximation to show that the aerosol induced radiative changes caused both temperature and precipitation to increase globally and over Europe. Our results show that the implementation of European legislation to reduce the emission of air pollutants has improved air quality and human health over Europe, as well as altered the regional radiative balance and climate.

  16. Tropospheric Emissions: Monitoring of Pollution (TEMPO) - Status and Potential Science Studies

    NASA Astrophysics Data System (ADS)

    Chance, Kelly

    2016-05-01

    TEMPO is the first NASA Earth Venture Instrument, to launch between 2019 and 2021. It measures atmospheric pollution from Mexico City and Cuba to the Canadian oil sands, and from the Atlantic to the Pacific, hourly at high spatial resolution, ~ 10 km2. It measures the key elements of air pollution chemistry. Geostationary (GEO) measurements capture the variability in the diurnal cycle of emissions and chemistry at sub-urban scale to improve emission inventories, monitor population exposure, and enable emission-control strategies. TEMPO measures the UV/visible spectra to retrieve O3, NO2, SO2, H2 CO, C2 H2 O2, H2 O, aerosols, cloud parameters, and UVB radiation. It tracks aerosol loading. It provides near-real-time air quality products. TEMPO is the North American component of the global geostationary constellation for pollution monitoring, with the European Sentinel-4 and the Korean GEMS. TEMPO studies may include: Solar-induced fluorescence from chlorophyll over land and in the ocean to study tropical dynamics, primary productivity, carbon uptake, to detect red tides, and to study phytoplankton; Measurements of stratospheric intrusions that cause air quality exceedances; Measurements at peaks in vehicle travel to capture the variability in emissions from mobile sources; Measurements of thunderstorm activity, including outflow regions to better quantify lightning NOx and O3 production; Cropland measurements follow the temporal evolution of emissions after fertilizer application and from rain-induced emissions from semi-arid soils; Measurements investigate the chemical processing of primary fire emissions and the secondary formation of VOCs and ozone; Measurements examine ocean halogen emissions and their impact on the oxidizing capacity of coastal environments; Spectra of nighttime lights are markers for human activity, energy conservation, and compliance with outdoor lighting standards intended to reduce light pollution.

  17. 40 CFR Table 2 to Subpart F of... - Organic Hazardous Air Pollutants

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... CATEGORIES National Emission Standards for Organic Hazardous Air Pollutants From the Synthetic Organic Chemical Manufacturing Industry Pt. 63, Subpt. F, Table 2 Table 2 to Subpart F of Part 63—Organic Hazardous... 40 Protection of Environment 10 2013-07-01 2013-07-01 false Organic Hazardous Air Pollutants 2...

  18. 40 CFR Table 2 to Subpart F of... - Organic Hazardous Air Pollutants

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... CATEGORIES National Emission Standards for Organic Hazardous Air Pollutants From the Synthetic Organic Chemical Manufacturing Industry Pt. 63, Subpt. F, Table 2 Table 2 to Subpart F of Part 63—Organic Hazardous... 40 Protection of Environment 9 2011-07-01 2011-07-01 false Organic Hazardous Air Pollutants 2...

  19. 40 CFR Table 2 to Subpart F of... - Organic Hazardous Air Pollutants

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... CATEGORIES National Emission Standards for Organic Hazardous Air Pollutants From the Synthetic Organic Chemical Manufacturing Industry Pt. 63, Subpt. F, Table 2 Table 2 to Subpart F of Part 63—Organic Hazardous... 40 Protection of Environment 10 2014-07-01 2014-07-01 false Organic Hazardous Air Pollutants 2...

  20. Impact of air pollution on the burden of chronic respiratory diseases in China: time for urgent action.

    PubMed

    Guan, Wei-Jie; Zheng, Xue-Yan; Chung, Kian Fan; Zhong, Nan-Shan

    2016-10-15

    In China, where air pollution has become a major threat to public health, public awareness of the detrimental effects of air pollution on respiratory health is increasing-particularly in relation to haze days. Air pollutant emission levels in China remain substantially higher than are those in developed countries. Moreover, industry, traffic, and household biomass combustion have become major sources of air pollutant emissions, with substantial spatial and temporal variations. In this Review, we focus on the major constituents of air pollutants and their impacts on chronic respiratory diseases. We highlight targets for interventions and recommendations for pollution reduction through industrial upgrading, vehicle and fuel renovation, improvements in public transportation, lowering of personal exposure, mitigation of the direct effects of air pollution through healthy city development, intervention at population-based level (systematic health education, intensive and individualised intervention, pre-emptive measures, and rehabilitation), and improvement in air quality. The implementation of a national environmental protection policy has become urgent. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Sectoral linkage analysis of three main air pollutants in China's industry: Comparing 2010 with 2002.

    PubMed

    He, Weiwei; Wang, Yuan; Zuo, Jian; Luo, Yincheng

    2017-11-01

    To investigate the driving forces of air pollution in China, the changes in linkages amongst inter-industrial air pollutant emissions were analyzed by hypothetical extraction method under the input-output framework. Results showed that the emissions of SO 2 , soot and dust from industrial sources increased by 56.46%, 36.95% and 11.69% respectively in 2010, compared with 2002. As major contributors to emissions, the power and gas sectors were responsible for the growing SO 2 emissions, the nonmetal products sector for soot emissions, and the metals mining, smelting and pressing sectors for dust emissions. The increasing volume of emissions was mainly driven by the growing demand in the transport equipment and electrical equipment sectors. In addition, the expansion in the metals mining, smelting and pressing sectors could result in even more severe air pollution. Therefore, potential effective strategies to control air pollution in China are: (1) reducing the demand of major import sectors in the equipment manufacturing industry; (2) promoting R&D in low-emissions-production technologies to the power and gas sectors, the metals mining, smelting and pressing sectors, and the nonmetal products sector, and (3) auditing the considerable industrial scale expansion in the metals mining, smelting and pressing sectors and optimizing the industrial structure. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Review of Singapore's air quality and greenhouse gas emissions: current situation and opportunities.

    PubMed

    Velasco, Erik; Roth, Matthias

    2012-06-01

    Singapore has many environmental accomplishments to its credit. Accessible data on air quality indicates that all criteria pollutants satisfy both U.S. Environmental Protection Agency (EPA) and World Health Organization (WHO) air quality standards and guidelines, respectively. The exception is PM2.5 (particles with an aerodynamic diameter < or = 2.5 microm), which is not currently considered a criteria pollutant in Singapore but may potentially be the major local air pollution problem and cause for health concern. Levels of other airborne pollutants as well as their physical and chemical processes associated with local formation, transformation, dispersion, and deposition are not known. According to available emission inventories, Singapore contribution to the total atmospheric pollution and carbon budget at the regional and global scales is small. Emissions per unit gross domestic product (GDP) are low compared with other countries, although Singapore's per-capita GDP and per-capita emissions are among the highest in the world. Some information is available on health effects, but the impacts on the ecosystem and the complex interactions of air pollution and climate change at a regional level are also unknown. This article reviews existing available information on atmospheric pollution and greenhouse gas emissions and proposes a multipollutant approach to greenhouse gas mitigation and local air quality. Singapore, by reducing its per-capita emissions, increasing the availability of information (e.g., through regularly publishing hourly and/or daily PM2.5 concentrations) and developing a research agenda in this area, would likely be seen to be a model of a high-density, livable, and sustainable city in Southeast Asia and other tropical regions worldwide.

  3. Two reduced form air quality modeling techniques for rapidly calculating pollutant mitigation potential across many sources, locations and precursor emission types

    EPA Science Inventory

    Due to the computational cost of running regional-scale numerical air quality models, reduced form models (RFM) have been proposed as computationally efficient simulation tools for characterizing the pollutant response to many different types of emission reductions. The U.S. Envi...

  4. Field validation of sound mitigation models and air pollutant emission testing in support of missile motor disposal activities.

    PubMed

    McFarland, Michael J; Palmer, Glenn R; Kordich, Micheal M; Pollet, Dean A; Jensen, James A; Lindsay, Mitchell H

    2005-08-01

    The U.S. Department of Defense approved activities conducted at the Utah Test and Training Range (UTTR) include both operational readiness test firing of intercontinental ballistic missile motors as well as the destruction of obsolete or otherwise unusable intercontinental ballistic missile motors through open burn/open detonation (OB/ OD). Within the Utah Division of Air Quality, these activities have been identified as having the potential to generate unacceptable noise levels, as well as significant amounts of hazardous air pollutants. Hill Air Force Base, UT, has completed a series of field tests at the UTTR in which sound-monitoring surveillance of OB/OD activities was conducted to validate the Sound Intensity Prediction System (SIPS) model. Using results generated by the SIPS model to support the decision to detonate, the UTTR successfully disposed of missile motors having an aggregate net explosive weight (NEW) of 56,500 lbs without generating adverse noise levels within populated areas. These results suggest that, under appropriate conditions, missile motors of even larger NEW may be detonated without exceeding regulatory noise limits. In conjunction with collecting noise monitoring data, air quality data was collected to support the development of air emission factors for both static missile motor firings and OB/OD activities. Through the installation of 15 ground-based air samplers, the generation of combustion fixed gases, hazardous air pollutants, and chlorides were monitored during the 56,500-lb NEW detonation event. Comparison of field measurements to predictions generated from the U.S. Navy's energetic combustion pollutant formation model, POLU4WN, indicated that, as the detonation fireball expanded from ground zero, organic compounds as well as carbon monoxide continued to oxidize as the hot gases reacted with ambient air. Hazardous air pollutant analysis of air samplers confirmed the presence of chloromethane, benzene, toluene, 1,2-propadiene, and

  5. Exploring the heavy air pollution in Beijing in the fourth quarter of 2015: assessment of environmental benefits for red alerts

    NASA Astrophysics Data System (ADS)

    Nie, Teng; Nie, Lei; Zhou, Zhen; Wang, Zhanshan; Xue, Yifeng; Gao, Jiajia; Wu, Xiaoqing; Fan, Shoubin; Cheng, Linglong

    2018-06-01

    In recent years, Beijing has experienced severe air pollution which has caused widespread public concern. Compared to the same period in 2014, the first three quarters of 2015 exhibited significantly improved air quality. However, the air quality sharply declined in the fourth quarter of 2015, especially in November and December. During that time, Beijing issued the first red alert for severe air pollution in history. In total, 2 red alerts, 3 orange alerts, 3 yellow alerts, and 3 blue alerts were issued based on the adoption of relatively temporary emergency control measures to mitigate air pollution. This study explored the reasons for these variations in air quality and assessed the effectiveness of emergency alerts in addressing severe air pollution. A synthetic analysis of emission variations and meteorological conditions was performed to better understand these extreme air pollution episodes in the fourth quarter of 2015. The results showed that compared to those in the same period in 2014, the daily average emissions of air pollutants decreased in the fourth quarter of 2015. However, the emission levels of primary pollutants were still relatively high, which was the main intrinsic cause of haze episodes, and unfavorable meteorological conditions represented important external factors. Emergency control measures for heavy air pollution were implemented during this red alert period, decreasing the emissions of primary air pollutants by approximately 36% and the PM2.5 concentration by 11%‒21%.

  6. Air pollution forecasting in Ankara, Turkey using air pollution index and its relation to assimilative capacity of the atmosphere.

    PubMed

    Genc, D Deniz; Yesilyurt, Canan; Tuncel, Gurdal

    2010-07-01

    Spatial and temporal variations in concentrations of CO, NO, NO(2), SO(2), and PM(10), measured between 1999 and 2000, at traffic-impacted and residential stations in Ankara were investigated. Air quality in residential areas was found to be influenced by traffic activities in the city. Pollutant ratios were proven to be reliable tracers to differentiate between different sources. Air pollution index (API) of the whole city was calculated to evaluate the level of air quality in Ankara. Multiple linear regression model was developed for forecasting API in Ankara. The correlation coefficients were found to be 0.79 and 0.63 for different time periods. The assimilative capacity of Ankara atmosphere was calculated in terms of ventilation coefficient (VC). The relation between API and VC was investigated and found that the air quality in Ankara was determined by meteorology rather than emissions.

  7. Dynamic Evaluation of Regional Air Quality Model's Response to Emission Reductions in the Presence of Uncertain Emission Inventories

    EPA Science Inventory

    A method is presented and applied for evaluating an air quality model’s changes in pollutant concentrations stemming from changes in emissions while explicitly accounting for the uncertainties in the base emission inventory. Specifically, the Community Multiscale Air Quality (CMA...

  8. Air pollution from aircraft

    NASA Technical Reports Server (NTRS)

    Heywood, J. B.; Fay, J. A.; Chigier, N. A.

    1979-01-01

    Forty-one annotated abstracts of reports generated at MIT and the University of Sheffield are presented along with summaries of the technical projects undertaken. Work completed includes: (1) an analysis of the soot formation and oxidation rates in gas turbine combustors, (2) modelling the nitric oxide formation process in gas turbine combustors, (3) a study of the mechanisms causing high carbon monoxide emissions from gas turbines at low power, (4) an analysis of the dispersion of pollutants from aircraft both around large airports and from the wakes of subsonic and supersonic aircraft, (5) a study of the combustion and flow characteristics of the swirl can modular combustor and the development and verification of NO sub x and CO emissions models, (6) an analysis of the influence of fuel atomizer characteristics on the fuel-air mixing process in liquid fuel spray flames, and (7) the development of models which predict the stability limits of fully and partially premixed fuel-air mixtures.

  9. Evaluation of Traffic Density Parameters as an Indicator of Vehicle Emission-Related Near-Road Air Pollution: A Case Study with NEXUS Measurement Data on Black Carbon.

    PubMed

    Liu, Shi V; Chen, Fu-Lin; Xue, Jianping

    2017-12-15

    An important factor in evaluating health risk of near-road air pollution is to accurately estimate the traffic-related vehicle emission of air pollutants. Inclusion of traffic parameters such as road length/area, distance to roads, and traffic volume/intensity into models such as land use regression (LUR) models has improved exposure estimation. To better understand the relationship between vehicle emissions and near-road air pollution, we evaluated three traffic density-based indices: Major-Road Density (MRD), All-Traffic Density (ATD) and Heavy-Traffic Density (HTD) which represent the proportions of major roads, major road with annual average daily traffic (AADT), and major road with commercial annual average daily traffic (CAADT) in a buffered area, respectively. We evaluated the potential of these indices as vehicle emission-specific near-road air pollutant indicators by analyzing their correlation with black carbon (BC), a marker for mobile source air pollutants, using measurement data obtained from the Near-road Exposures and Effects of Urban Air Pollutants Study (NEXUS). The average BC concentrations during a day showed variations consistent with changes in traffic volume which were classified into high, medium, and low for the morning rush hours, the evening rush hours, and the rest of the day, respectively. The average correlation coefficients between BC concentrations and MRD, ATD, and HTD, were 0.26, 0.18, and 0.48, respectively, as compared with -0.31 and 0.25 for two commonly used traffic indicators: nearest distance to a major road and total length of the major road. HTD, which includes only heavy-duty diesel vehicles in its traffic count, gives statistically significant correlation coefficients for all near-road distances (50, 100, 150, 200, 250, and 300 m) that were analyzed. Generalized linear model (GLM) analyses show that season, traffic volume, HTD, and distance from major roads are highly related to BC measurements. Our analyses indicate that

  10. Evaluation of Traffic Density Parameters as an Indicator of Vehicle Emission-Related Near-Road Air Pollution: A Case Study with NEXUS Measurement Data on Black Carbon

    PubMed Central

    Chen, Fu-Lin; Xue, Jianping

    2017-01-01

    An important factor in evaluating health risk of near-road air pollution is to accurately estimate the traffic-related vehicle emission of air pollutants. Inclusion of traffic parameters such as road length/area, distance to roads, and traffic volume/intensity into models such as land use regression (LUR) models has improved exposure estimation. To better understand the relationship between vehicle emissions and near-road air pollution, we evaluated three traffic density-based indices: Major-Road Density (MRD), All-Traffic Density (ATD) and Heavy-Traffic Density (HTD) which represent the proportions of major roads, major road with annual average daily traffic (AADT), and major road with commercial annual average daily traffic (CAADT) in a buffered area, respectively. We evaluated the potential of these indices as vehicle emission-specific near-road air pollutant indicators by analyzing their correlation with black carbon (BC), a marker for mobile source air pollutants, using measurement data obtained from the Near-road Exposures and Effects of Urban Air Pollutants Study (NEXUS). The average BC concentrations during a day showed variations consistent with changes in traffic volume which were classified into high, medium, and low for the morning rush hours, the evening rush hours, and the rest of the day, respectively. The average correlation coefficients between BC concentrations and MRD, ATD, and HTD, were 0.26, 0.18, and 0.48, respectively, as compared with −0.31 and 0.25 for two commonly used traffic indicators: nearest distance to a major road and total length of the major road. HTD, which includes only heavy-duty diesel vehicles in its traffic count, gives statistically significant correlation coefficients for all near-road distances (50, 100, 150, 200, 250, and 300 m) that were analyzed. Generalized linear model (GLM) analyses show that season, traffic volume, HTD, and distance from major roads are highly related to BC measurements. Our analyses indicate

  11. Response of SO2 and Particulate Air Pollution to Local and Regional Emission Controls: A Case Study in Maryland

    NASA Technical Reports Server (NTRS)

    He, Hao; Vinnikov, Konstantin Y.; Li, Can; Krotkov, Nickolay Anatoly; Jongeward, Andrew R.; Li, Zhanqing; Stehr, Jeffrey W.; Hains, Jennifer; Dickerson, RUssell R.

    2016-01-01

    This paper addresses the questions of what effect local regulations can have on pollutants with different lifetimes and how surface observations and remotely sensed data can be used to determine the impacts. We investigated the decadal trends of tropospheric sulfur dioxide (SO2) and aerosol pollution over Maryland and its surrounding states, using surface, aircraft, and satellite measurements. Aircraft measurements indicated fewer isolated SO2 plumes observed in summers, a 40 decrease of column SO2, and a 20 decrease of atmospheric optical depth (AOD) over Maryland after the implementation of local regulations on sulfur emissions from power plants (90 reduction from 2010). Surface observations of SO2 and particulate matter (PM) concentrations in Maryland show similar trends. OMI SO2 and MODIS AOD observations were used to investigate the column contents of air pollutants over the eastern U.S.; these indicate decreasing trends in column SO2 (60 decrease) and AOD (20 decrease). The decrease of upwind SO2 emissions also reduced aerosol loadings over the downwind Atlantic Ocean near the coast by 20, while indiscernible changes of the SO2 column were observed. A step change of SO2 emissions in Maryland starting in 20092010 had an immediate and profound benefit in terms of local surface SO2 concentrations but a modest impact on aerosol pollution, indicating that short-lived pollutants are effectively controlled locally, while long-lived pollutants require regional measures.

  12. North American pollution measurements from geostationary orbit with Tropospheric Emissions: Monitoring of Pollution (TEMPO)

    NASA Astrophysics Data System (ADS)

    Chance, K.

    2017-12-01

    TEMPO is the first NASA Earth Venture Instrument. It launches between 2019 and 2021 to measure atmospheric pollution from Mexico City and Cuba to the Canadian oil sands, and from the Atlantic to the Pacific, hourly at high spatial resolution, 10 km2. Geostationary daytime measurements capture the variability in the diurnal cycle of emissions and chemistry at sub-urban scale to improve emission inventories, monitor population exposure, and enable emission-control strategies.TEMPO measures UV/visible Earth reflectance spectra to retrieve O3, NO2, SO2, H2CO, C2H2O2, H2O, BrO, OClO, IO, aerosols, cloud parameters, and UVB radiation. It tracks aerosol loading. It provides near-real-time air quality products. TEMPO is the North American component of the upcoming the global geostationary constellation for pollution monitoring, together with the European Sentinel-4 and the Korean Geostationary Environmental Monitoring Spectrometer (GEMS).TEMPO science studies include: Intercontinental pollution transport; Solar-induced fluorescence from chlorophyll over land and in the ocean to study tropical dynamics, primary productivity and carbon uptake, to detect red tides, and to study phytoplankton; measurements of stratospheric intrusions that cause air quality exceedances; measurements at peaks in vehicle travel to capture the variability in emissions from mobile sources; measurements of thunderstorm activity, including outflow regions to better quantify lightning NOx and O3 production; cropland measurements to follow the temporal evolution of emissions after fertilizer application and from rain-induced emissions from semi-arid soils; investigating the chemical processing of primary fire emissions and the secondary formation of VOCs and ozone; examining ocean halogen emissions and their impact on the oxidizing capacity of coastal environments; measuring spectra of nighttime lights as markers for human activity, energy conservation, and compliance with outdoor lighting standards

  13. Trans-Pacific Air Pollution and NAAQS Attainment: Domestic and International Policy Options

    NASA Astrophysics Data System (ADS)

    Dolsak, N.; Jaegle, L.

    2002-12-01

    Observational data and models of global air pollution increasingly indicate that Asian air pollution caused by fossil fuel burning is transported across the Pacific, thereby affecting local air quality in the United States. This may have policy ramifications for a number of counties in the U.S. struggling to meet the NAAQS. This problem will be exacerbated as the EPA tightens the standards for Ozone and PM. As the new 8-hour, 80 ppb ozone standard and the new PM2.5 standards are implemented, the number of counties considered to be in non-attainment is estimated to double (for ozone) and quadruple (for PM2.5), respectively. State Implementation Plans that rely only on local emission reductions may not be enough to meet the new NAAQS if a considerable proportion of the background concentrations come from Asia or other distant sources. Further, reducing emissions locally may not be the most cost-effective way of meeting the new EPA standards. This presentation will draw on observational data in the western U.S. and global models, such as GEOS-CHEM, to examine the significance of trans-pacific pollution (background pollution as well as episodic impacts) to air quality in the Western United States in their attempts to meet the new NAAQS for Ozone and Particulate Matter. The size of Asian economies, their reliance on fossil fuels, and their rapid industrialization suggests that the importance of trans-pacific air pollution will increase. This presentation will examine policy implications of Asian emissions under three of the IPCC future emission scenarios. We will also identify an array of domestic policies that States and counties in non-attainment areas may consider to reduce the concentrations of ozone and PM. Further, we will examine the potential for reducing local concentrations by devising policy instruments for reducing emissions where they can be reduced at a lower cost. For this work, we will draw on policy experience from regional air pollution in the European

  14. Environmental Perception and Citizen Response: a Denver, Colorado Air Pollution Case Study.

    NASA Astrophysics Data System (ADS)

    Naomi, Leaura M.

    Denver, a high altitude city, suffers from air pollution. Automobile emissions, as well as wood and coal burning contribute to Denver's air pollution. In order to reduce its air pollution, Denver hosted a no-drive campaign, The Better Air Campaign. This study examined how Denver -area citizens perceived their air pollution, responded to their air pollution, and responded to their no-drive campaign. First, I conducted personal interviews of twenty Denver air pollution decision-makers to ascertain their perceptions and definitions of Denver's air pollution problem. Second, I created a theoretical model of environmental perception and behavioral response to air pollution. Third, I conducted a telephone survey of 500 Denver-area residents to examine the usefulness of the model. By segmenting a sample of 500 Denver-area residents via a modified values and lifestyles (VALS) technique included in a telephone survey, the perceptions and behaviors of residents fell into a clear pattern. This values and lifestyles pattern coincided with a conventional innovation-adoption pattern, including innovators, the bandwagon, and laggards. Thus, the research determined the population's perceptions and behavioral responses to their air pollution. The research also pointed a direction for Denver's air pollution decision-makers to follow in order to reduce use of the gasoline-powered automobile. And, for those interested in encouraging public acceptance of ecological sustainability, it suggested application of the VALS technique for reaching the public.

  15. [Simulation of air pollution characteristics and estimates of environmental capacity in Zibo City].

    PubMed

    Xue, Wen-Bo; Wang, Jin-Nan; Yang, Jin-Tian; Lei, Yu; Yan, Li; He, Jin-Yu; Han, Bao-Ping

    2013-04-01

    To develop a new pattern of air pollution control that is based on the integration of "concentration control, total amount control, and quality control", and in the context of developing national (2011-2015 air pollution control plan for key areas) and (Environmental protection plan of Zibo municipality for the "12th Five-Year Plan" period), a simulation of atmospheric dispersion of air pollutants in Zibo City and its peripheral areas is carried out by employing CALPUFF model, and the atmospheric environmental capacity of SO2, NO(x) and PM10 is estimated based on the results of model simulation and using multi-objective linear programming optimization. The results indicates that the air pollution in Zibo City is significantly related to the pollution sources outside of Zibo City, which contributes to the annual average concentration of SO2, NO2 and PM10 in Zibo City by 26.34%, 21.23%, and 14.58% respectively. There is a notable interaction between districts and counties of Zibo municipality, in which the contribution of SO2, NO(x) and PM10 emissions in surrounding counties and districts to the annual average concentrations of SO2, NO2 and PM10 in downtown area are 35.96%, 43.17%, and 17.69% respectively. There is a great variation in spatial sensitivity of air pollutant emission, and the environmental impact of unit pollutant emissions from Zhoucun, Huantai, Zhangdian and Zichuan is greater than that released from other districts/counties. To meet the requirement of (Ambient air quality standard) (GB 3095-2012), the environmental capacities of SO2, NO(x) and PM10 of Zibo City are only 8.03 x 10(4) t, 19.16 x 10(4) t and 3.21 x 10(4) t, respectively. Therefore, it is imperative to implement regional air pollution joint control in Shandong peninsula in order to ensure the achievement of air quality standard in Zibo City.

  16. Assessment of Volatile Organic Compound and Hazardous Air Pollutant Emissions from Oil and Natural Gas Well Pads using Mobile Remote and On-site Direct Measurements

    EPA Science Inventory

    Emissions of volatile organic compounds (VOC) and hazardous air pollutants (HAP) from oil and natural gas production were investigated using direct measurements of component-level emissions on well pads in the Denver-Julesburg (DJ) Basin and remote measurements of production pad-...

  17. Climate Change and Air Pollution: Effects on Respiratory Allergy.

    PubMed

    D'Amato, Gennaro; Pawankar, Ruby; Vitale, Carolina; Lanza, Maurizia; Molino, Antonio; Stanziola, Anna; Sanduzzi, Alessandro; Vatrella, Alessandro; D'Amato, Maria

    2016-09-01

    A body of evidence suggests that major changes involving the atmosphere and the climate, including global warming induced by anthropogenic factors, have impact on the biosphere and human environment. Studies on the effects of climate change on respiratory allergy are still lacking and current knowledge is provided by epidemiological and experimental studies on the relationship between allergic respiratory diseases, asthma and environmental factors, such as meteorological variables, airborne allergens, and air pollution. Urbanization with its high levels of vehicle emissions, and a westernized lifestyle are linked to the rising frequency of respiratory allergic diseases and bronchial asthma observed over recent decades in most industrialized countries. However, it is not easy to evaluate the impact of climate changes and air pollution on the prevalence of asthma in the general population and on the timing of asthma exacerbations, although the global rise in asthma prevalence and severity could also be an effect of air pollution and climate change. Since airborne allergens and air pollutants are frequently increased contemporaneously in the atmosphere, an enhanced IgE-mediated response to aeroallergens and enhanced airway inflammation could account for the increasing frequency of respiratory allergy and asthma in atopic subjects in the last 5 decades. Pollen allergy is frequently used to study the relationship between air pollution and respiratory allergic diseases, such as rhinitis and bronchial asthma. Epidemiologic studies have demonstrated that urbanization, high levels of vehicle emissions, and westernized lifestyle are correlated with an increased frequency of respiratory allergy prevalently in people who live in urban areas in comparison with people living in rural areas. Climatic factors (temperature, wind speed, humidity, thunderstorms, etc.) can affect both components (biological and chemical) of this interaction.

  18. Tracking hazardous air pollutants from a refinery fire by applying on-line and off-line air monitoring and back trajectory modeling.

    PubMed

    Shie, Ruei-Hao; Chan, Chang-Chuan

    2013-10-15

    The air monitors used by most regulatory authorities are designed to track the daily emissions of conventional pollutants and are not well suited for measuring hazardous air pollutants that are released from accidents such as refinery fires. By applying a wide variety of air-monitoring systems, including on-line Fourier transform infrared spectroscopy, gas chromatography with a flame ionization detector, and off-line gas chromatography-mass spectrometry for measuring hazardous air pollutants during and after a fire at a petrochemical complex in central Taiwan on May 12, 2011, we were able to detect significantly higher levels of combustion-related gaseous and particulate pollutants, refinery-related hydrocarbons, and chlorinated hydrocarbons, such as 1,2-dichloroethane, vinyl chloride monomer, and dichloromethane, inside the complex and 10 km downwind from the fire than those measured during the normal operation periods. Both back trajectories and dispersion models further confirmed that high levels of hazardous air pollutants in the neighboring communities were carried by air mass flown from the 22 plants that were shut down by the fire. This study demonstrates that hazardous air pollutants from industrial accidents can successfully be identified and traced back to their emission sources by applying a timely and comprehensive air-monitoring campaign and back trajectory air flow models. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  19. A Numerical Simulation of Traffic-Related Air Pollution Exposures in Urban Street Canyons

    NASA Astrophysics Data System (ADS)

    Liu, J.; Fu, X.; Tao, S.

    2016-12-01

    Urban street canyons are usually associated with intensive vehicle emissions. However, the high buildings successively along both sides of a street block the dispersion of traffic-generated air pollutants, which enhances human exposure and adversely affects human health. In this study, an urban scale traffic pollution dispersion model is developed with the consideration of street distribution, canyon geometry, background meteorology, traffic assignment, traffic emissions and air pollutant dispersion. Vehicle exhausts generated from traffic flows will first disperse inside a street canyon along the micro-scale wind field (generated by computational fluid dynamics (CFD) model) and then leave the street canyon and further disperse over the urban area. On the basis of this model, the effects of canyon geometry on the distribution of NOx and CO from traffic emissions were studied over the center of Beijing, China. We found that an increase of building height along the streets leads to higher pollution levels inside streets and lower pollution levels outside, resulting in higher domain-averaged concentrations over the area. In addition, street canyons with equal (or highly uneven) building heights on two sides of a street tend to lower the urban-scale air pollution concentrations at pedestrian level. Our results indicate that canyon geometry strongly influences human exposure to traffic pollutants in the populated urban area. Carefully planning street layout and canyon geometry in consideration of traffic demand as well as local weather pattern may significantly reduce the chances of unhealthy air being inhaled by urban residents.

  20. Will joint regional air pollution control be more cost-effective? An empirical study of China's Beijing-Tianjin-Hebei region.

    PubMed

    Wu, Dan; Xu, Yuan; Zhang, Shiqiu

    2015-02-01

    By following an empirical approach, this study proves that joint regional air pollution control (JRAPC) in the Beijing-Tianjin-Hebei region will save the expense on air pollution control compared with a locally-based pollution control strategy. The evidences below were found. (A) Local pollutant concentration in some of the cities is significantly affected by emissions from their surrounding areas. (B) There is heterogeneity in the marginal pollutant concentration reduction cost among various districts as a result of the cities' varying contribution of unit emission reduction to the pollutant concentration reduction, and their diverse unit cost of emission reduction brought about by their different industry composition. The results imply that the cost-efficiency of air pollution control will be improved in China if the conventional locally based regime of air pollution control can shift to a regionally based one. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Emissions reduction policies and recent trends in Southern California's ambient air quality.

    PubMed

    Lurmann, Fred; Avol, Ed; Gilliland, Frank

    2015-03-01

    To assess accountability and effectiveness of air regulatory policies, we reviewed more than 20 years of monitoring data, emissions estimates, and regulatory policies across several southern California communities participating in a long-term study of children's health. Between 1994 and 2011, air quality improved for NO2 and PM2.5 in virtually all the monitored communities. Average NO2 declined 28% to 53%, and PM2.5 decreased 13% to 54%. Year-to-year PM2.5 variability at lower pollution sites was large compared to changes in long-term trends. PM10 and O3 decreases were largest in communities that were initially among the most polluted. Trends in annual average NO2, PM2.5, and PM10 concentrations in higher pollution communities were generally consistent with NOx, ROG, SOx, PM2.5, and PM10 emissions decreases. Reductions observed at one of the higher PM2.5 sites, Mira Loma, were generally within the range expected from reductions observed in ROG, NOx, SOx, and PM2.5 emissions. Despite a 38% increase in regional motor vehicle activity, vigorous economic growth, and a 30% population increase, total estimated emissions of NOx, ROG, SOx, PM2.5, and PM10 decreased by 54%, 65%, 40%, 21%, and 15%, respectively, during the 20-year time period. Emission control strategies in California have achieved dramatic reductions in ambient NO2, O3, PM2.5, and PM10. However, additional reductions will still be needed to achieve current health-based clean air standards. For many cities facing the challenge of reducing air pollution to meet health-based standards, the emission control policies and pollution reduction programs adopted in southern California should serve as an example of the potential success of aggressive, comprehensive, and integrated approaches. Policies targeting on-road mobile emissions were the single most important element for observed improvements in the Los Angeles region. However, overall program success was the result of a much broader approach designed to

  2. Magnetic biomonitoring of industrial air pollution in SW Finland

    NASA Astrophysics Data System (ADS)

    Salo, Hanna; Mäkinen, Joni

    2015-04-01

    Moss bags made of Sphagnum papillosum were exposed along 8 km transects near Harjavalta Industrial Park in SW Finland. Previous studies have identified Cu-Ni smelter's pipe as the main source of air pollution. Our research hypothesis is that nowadays the local pollution load of airborne particulate matter from Industrial Park is mainly caused by other emission sources than the smelter's pipe. To identify possible magnetic fingerprints, industrial samples (fiberglass filters from the smokestacks of Cu-Ni smelter and Ni-dryer, final Cu-slag, granulated Ni-slag, Cu-concentrates, Ni-concentrates) were investigated. Mass-specific susceptibility and heavy metal levels were significantly higher near Industrial Park and showed a decreasing trend with increasing distance from the source. The magnetic mineralogy of moss bags, smelter's filter and Cu-slag was dominated by a low-coercivity magnetite while high-coercivity minerals were observed in dryer's filter, Ni-slag and majority of concentrates including all Ni-concentrates. Angular and sharp-edged particles prevailed in moss bags and industrial samples, except for smelter's filter and granulated Ni-slag in which spherical particles dominated. Seven air pollution impact zones were distinguished around Industrial Park on the basis of magnetic susceptibility and previous studies. Overall, industrial area's influence is observable up to 4 km and even further distances in SE and NW along prevailing wind directions and Kokemäenjoki River valley. The heaviest anthropogenic air pollution load is deposited at 0.5-1 km distances. Particle morphology and magnetic data of the moss bags indicate that the particulate matter in the hot spot area, which spatial emphasis is in S-SW-W-NW in the upwind from the smelter, originate mainly from the dust emissions from other sources rather than the smelter's pipe. The industrial activities in and nearby hot spot area include handling and moving of concentrates and slags as well as heavy

  3. Prospective air pollutant emissions inventory for the development and production of unconventional natural gas in the Karoo basin, South Africa

    NASA Astrophysics Data System (ADS)

    Altieri, Katye E.; Stone, Adrian

    2016-03-01

    The increased use of horizontal drilling and hydraulic fracturing techniques to produce gas from unconventional deposits has led to concerns about the impacts to local and regional air quality. South Africa has the 8th largest technically recoverable shale gas reserve in the world and is in the early stages of exploration of this resource. This paper presents a prospective air pollutant emissions inventory for the development and production of unconventional natural gas in South Africa's Karoo basin. A bottom-up Monte Carlo assessment of nitrogen oxides (NOx = NO + NO2), particulate matter less than 2.5 μm in diameter (PM2.5), and non-methane volatile organic compound (NMVOC) emissions was conducted for major categories of well development and production activities. NOx emissions are estimated to be 68 tons per day (±42; standard deviation), total NMVOC emissions are 39 tons per day (±28), and PM2.5 emissions are 3.0 tons per day (±1.9). NOx and NMVOC emissions from shale gas development and production would dominate all other regional emission sources, and could be significant contributors to regional ozone and local air quality, especially considering the current lack of industrial activity in the region. Emissions of PM2.5 will contribute to local air quality, and are of a similar magnitude as typical vehicle and industrial emissions from a large South African city. This emissions inventory provides the information necessary for regulatory authorities to evaluate emissions reduction opportunities using existing technologies and to implement appropriate monitoring of shale gas-related activities.

  4. Assessment of the emissions and air quality impacts of biomass and biogas use in California.

    PubMed

    Carreras-Sospedra, Marc; Williams, Robert; Dabdub, Donald

    2016-02-01

    It is estimated that there is sufficient in-state "technically" recoverable biomass to support nearly 4000 MW of bioelectricity generation capacity. This study assesses the emissions of greenhouse gases and air pollutants and resulting air quality impacts of new and existing bioenergy capacity throughout the state of California, focusing on feedstocks and advanced technologies utilizing biomass resources predominant in each region. The options for bioresources include the production of bioelectricity and renewable natural gas (NG). Emissions of criteria pollutants and greenhouse gases are quantified for a set of scenarios that span the emission factors for power generation and the use of renewable natural gas for vehicle fueling. Emissions are input to the Community Multiscale Air Quality (CMAQ) model to predict regional and statewide temporal air quality impacts from the biopower scenarios. With current technology and at the emission levels of current installations, maximum bioelectricity production could increase nitrogen oxide (NOx) emissions by 10% in 2020, which would cause increases in ozone and particulate matter concentrations in large areas of California. Technology upgrades would achieve the lowest criteria pollutant emissions. Conversion of biomass to compressed NG (CNG) for vehicles would achieve comparable emission reductions of criteria pollutants and minimize emissions of greenhouse gases (GHG). Air quality modeling of biomass scenarios suggest that applying technological changes and emission controls would minimize the air quality impacts of bioelectricity generation. And a shift from bioelectricity production to CNG production for vehicles would reduce air quality impacts further. From a co-benefits standpoint, CNG production for vehicles appears to provide the best benefits in terms of GHG emissions and air quality. This investigation provides a consistent analysis of air quality impacts and greenhouse gas emissions for scenarios examining

  5. Enhanced air pollution via aerosol-boundary layer feedback in China.

    PubMed

    Petäjä, T; Järvi, L; Kerminen, V-M; Ding, A J; Sun, J N; Nie, W; Kujansuu, J; Virkkula, A; Yang, X-Q; Fu, C B; Zilitinkevich, S; Kulmala, M

    2016-01-12

    Severe air pollution episodes have been frequent in China during the recent years. While high emissions are the primary reason for increasing pollutant concentrations, the ultimate cause for the most severe pollution episodes has remained unclear. Here we show that a high concentration of particulate matter (PM) will enhance the stability of an urban boundary layer, which in turn decreases the boundary layer height and consequently cause further increases in PM concentrations. We estimate the strength of this positive feedback mechanism by combining a new theoretical framework with ambient observations. We show that the feedback remains moderate at fine PM concentrations lower than about 200 μg m(-3), but that it becomes increasingly effective at higher PM loadings resulting from the combined effect of high surface PM emissions and massive secondary PM production within the boundary layer. Our analysis explains why air pollution episodes are particularly serious and severe in megacities and during the days when synoptic weather conditions stay constant.

  6. Air Pollution and Stroke

    PubMed Central

    Lee, Kuan Ken; Miller, Mark R.; Shah, Anoop S. V.

    2018-01-01

    The adverse health effects of air pollution have long been recognised; however, there is less awareness that the majority of the morbidity and mortality caused by air pollution is due to its effects on the cardiovascular system. Evidence from epidemiological studies have demonstrated a strong association between air pollution and cardiovascular diseases including stroke. Although the relative risk is small at an individual level, the ubiquitous nature of exposure to air pollution means that the absolute risk at a population level is on a par with “traditional” risk factors for cardiovascular disease. Of particular concern are findings that the strength of this association is stronger in low and middle income countries where air pollution is projected to rise as a result of rapid industrialisation. The underlying biological mechanisms through which air pollutants exert their effect on the vasculature are still an area of intense discussion. A greater understanding of the effect size and mechanisms is necessary to develop effective strategies at individual and policy levels to mitigate the adverse cardiovascular effects of air pollution. PMID:29402072

  7. Air Pollution and Stroke.

    PubMed

    Lee, Kuan Ken; Miller, Mark R; Shah, Anoop S V

    2018-01-01

    The adverse health effects of air pollution have long been recognised; however, there is less awareness that the majority of the morbidity and mortality caused by air pollution is due to its effects on the cardiovascular system. Evidence from epidemiological studies have demonstrated a strong association between air pollution and cardiovascular diseases including stroke. Although the relative risk is small at an individual level, the ubiquitous nature of exposure to air pollution means that the absolute risk at a population level is on a par with "traditional" risk factors for cardiovascular disease. Of particular concern are findings that the strength of this association is stronger in low and middle income countries where air pollution is projected to rise as a result of rapid industrialisation. The underlying biological mechanisms through which air pollutants exert their effect on the vasculature are still an area of intense discussion. A greater understanding of the effect size and mechanisms is necessary to develop effective strategies at individual and policy levels to mitigate the adverse cardiovascular effects of air pollution.

  8. Emerging research on real-time air pollution sensing with the United States Environmental Protection Agency, Office of Research and Development

    EPA Science Inventory

    Abstract: Air pollution research ranges broadly at the US EPA and includes the characterization of pollutant emissions from a wide array of sources, studying post-emission transport and transformation in the atmosphere, and evaluating the linkages between air pollution and advers...

  9. Indoor air pollutants from unvented kerosene heater emissions in mobile homes: Studies on particles, semivolatile organics, carbon monoxide, and mutagenicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mumford, J.L.; Burton, R.M.; Svendsgaard, D.J.

    1991-10-01

    This study assessed human exposure to air pollutants from unvented kerosene heaters in mobile homes. Eight electric homes with no smokers were monitored for airborne particles of < 10 {mu}m in diameter (PM{sub 10}), semivolatile organics, and carbon monoxide with the kerosene heaters on and off. The organic emissions were assayed for polycyclic aromatic hydrocarbon (PAH), nitro-PAH, and for mutagenicity in a Salmonella typhimurium reverse mutation assay. Usage of kerosene heaters resulted in (a) a significant increase in CO and organic levels (including carcinogenic PAH and nitro-PAH), (b) no significant effect on PM{sub 10} levels, except in two homes, (c)more » the presence of unburned kerosene fuel, (d) an increase in mutagenicity (in TA98) of particle-phase organics in five homes, and (e) little mutagenicity in the semivolatile organics in TA98 and TA100. Four of the eight heaters investigated emitted pollutants that exceeded the US ambient air standards for the 24-h PM{sub 10} standard and/or CO standards (the 1-h peak or 8-h average standard). This study showed that kerosene heater emissions can significantly impact indoor air quality in mobile homes.« less

  10. Understanding Potential Air Emissions from a Cellulosic Biorefinery Producing Renewable Diesel Blendstock.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yimin; Heath, Garvin A.; Renzaglia, Jason

    2015-06-22

    The Energy Independence and Security Act of 2007, through the Renewable Fuel Standard (RFS), mandates increased use of biofuels, including cellulosic biofuels. The RFS is expected to spur the development of advanced biofuel technologies (e.g., new and innovative biofuel conversion pathways) as well as the construction of biorefineries (refineries that produce biofuels) using these technologies. To develop sustainable cellulosic biofuels, one of the goals of the Bioenergy Technologies Office (BETO) at the Department of Energy is to minimize air pollutants from the entire biofuel supply chain, as stated in their 2014 Multi-Year Program Plan (2014). Although biofuels in general havemore » been found to have lower life cycle greenhouse gas (GHG) emissions compared to petroleum fuels on an energy basis, biomass feedstock production, harvesting, transportation, processing and conversion are expected to emit a wide range of other air pollutants (e.g., criteria air pollutants, hazardous air pollutants), which could affect the environmental benefits of biofuels when displacing petroleum fuels. While it is important for policy makers, air quality planners and regulators, biofuel developers, and investors to understand the potential implications on air quality from a growing biofuel industry, there is a general lack of information and knowledge about the type, fate and magnitude of potential air pollutant emissions from the production of cellulosic biofuels due to the nascent stage of this emerging industry. This analysis assesses potential air pollutant emissions from a hypothetical biorefinery, selected by BETO for further research and development, which uses a biological conversion process of sugars to hydrocarbons to produce infrastructural-compatible renewable diesel blendstock from cellulosic biomass.« less

  11. Quantifying regional consumption-based health impacts attributable to ambient air pollution in China.

    PubMed

    Zhang, Yanxia; Qu, Shen; Zhao, Jing; Zhu, Ge; Zhang, Yanxu; Lu, Xi; Sabel, Clive E; Wang, Haikun

    2018-03-01

    Serious air pollution has caused about one million premature deaths per year in China recently. Besides cross-border atmospheric transport of air pollution, trade also relocates pollution and related health impacts across China as a result of the spatial separation between consumption and production. This study proposes an approach for calculating the health impacts of emissions due to a region's consumption based on a multidisciplinary methodology coupling economic, atmospheric, and epidemiological models. These analyses were performed for China's Beijing and Hebei provinces. It was found that these provinces' consumption-based premature deaths attributable to ambient PM 2.5 were respectively 22,500 and 49,700, which were 23% higher and 37% lower than the numbers solely within their boundaries in 2007. The difference between the effects of trade and trade-related emissions on premature deaths attributable to air pollution in a region has also been clarified. The results illustrate the large and broad impact of domestic trade on regional air quality and the need for comprehensive consideration of supply chains in designing policy to mitigate the negative health impacts of air pollution across China. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. InMAP: a new model for air pollution interventions

    NASA Astrophysics Data System (ADS)

    Tessum, C. W.; Hill, J. D.; Marshall, J. D.

    2015-10-01

    Mechanistic air pollution models are essential tools in air quality management. Widespread use of such models is hindered, however, by the extensive expertise or computational resources needed to run most models. Here, we present InMAP (Intervention Model for Air Pollution), which offers an alternative to comprehensive air quality models for estimating the air pollution health impacts of emission reductions and other potential interventions. InMAP estimates annual-average changes in primary and secondary fine particle (PM2.5) concentrations - the air pollution outcome generally causing the largest monetized health damages - attributable to annual changes in precursor emissions. InMAP leverages pre-processed physical and chemical information from the output of a state-of-the-science chemical transport model (WRF-Chem) within an Eulerian modeling framework, to perform simulations that are several orders of magnitude less computationally intensive than comprehensive model simulations. InMAP uses a variable resolution grid that focuses on human exposures by employing higher spatial resolution in urban areas and lower spatial resolution in rural and remote locations and in the upper atmosphere; and by directly calculating steady-state, annual average concentrations. In comparisons run here, InMAP recreates WRF-Chem predictions of changes in total PM2.5 concentrations with population-weighted mean fractional error (MFE) and bias (MFB) < 10 % and population-weighted R2 ~ 0.99. Among individual PM2.5 species, the best predictive performance is for primary PM2.5 (MFE: 16 %; MFB: 13 %) and the worst predictive performance is for particulate nitrate (MFE: 119 %; MFB: 106 %). Potential uses of InMAP include studying exposure, health, and environmental justice impacts of potential shifts in emissions for annual-average PM2.5. Features planned for future model releases include a larger spatial domain, more temporal information, and the ability to predict ground-level ozone (O3

  13. The challenges of reducing greenhouse gas emissions and air pollution through energy sources: evidence from a panel of developed countries.

    PubMed

    Akhmat, Ghulam; Zaman, Khalid; Shukui, Tan; Sajjad, Faiza; Khan, Muhammad Azhar; Khan, Muhammad Zahir

    2014-06-01

    The objective of the study is to investigate the long-run relationship between climatic factors (i.e., greenhouse gas emissions, agricultural methane emissions, and industrial nitrous oxide emission), air pollution (i.e., carbon dioxide emissions), and energy sources (i.e., nuclear energy; oil, gas, and coal energy; and fossil fuel energy) in the panel of 35 developed countries (including EU-15, new EU member states, G-7, and other countries) over a period of 1975-2012. In order to achieve this objective, the present study uses sophisticated panel econometric techniques including panel cointegration, panel fully modified OLS (FMOLS), and dynamic OLS (DOLS). The results show that there is a long-run relationship between the variables. Nuclear energy reduces greenhouse gases and carbon emissions; however, the other emissions, i.e., agricultural methane emissions and industrial nitrous oxide, are still to increase during the study period. Electricity production from oil, gas, and coal sources increases the greenhouse gases and carbon emissions; however, the intensity to increase emissions is far less than the intensity to increase emissions through fossil fuel. Policies that reduce emissions of greenhouse gases can simultaneously alter emissions of conventional pollutants that have deleterious effects on human health and the environment.

  14. Higher fuel prices are associated with lower air pollution levels.

    PubMed

    Barnett, Adrian G; Knibbs, Luke D

    2014-05-01

    Air pollution is a persistent problem in urban areas, and traffic emissions are a major cause of poor air quality. Policies to curb pollution levels often involve raising the price of using private vehicles, for example, congestion charges. We were interested in whether higher fuel prices were associated with decreased air pollution levels. We examined an association between diesel and petrol prices and four traffic-related pollutants in Brisbane from 2010 to 2013. We used a regression model and examined pollution levels up to 16 days after the price change. Higher diesel prices were associated with statistically significant short-term reductions in carbon monoxide and nitrogen oxides. Changes in petrol prices had no impact on air pollution. Raising diesel taxes in Australia could be justified as a public health measure. As raising taxes is politically unpopular, an alternative political approach would be to remove schemes that put a downward pressure on fuel prices, such as industry subsidies and shopping vouchers that give fuel discounts. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Tropospheric Emissions: Monitoring of Pollution (TEMPO)

    NASA Astrophysics Data System (ADS)

    Chance, K.; Liu, X.; Suleiman, R. M.; Flittner, D. E.; Al-Saadi, J. A.; Janz, S. J.; Tempo Science Team

    2013-05-01

    TEMPO has been selected by NASA as the first Earth Venture Instrument. It will measure atmospheric pollution for greater North America from space using ultraviolet/visible spectroscopy. TEMPO measures from Mexico City to the Canadian tar/oil sands, and from the Atlantic to the Pacific, hourly and at high spatial resolution (Mexico City is measured at 1.6 km N/S by 4.5 km E/W). TEMPO provides a tropospheric measurement suite that includes the key elements of tropospheric air pollution chemistry. Measurements are from geostationary (GEO) orbit, to capture the inherent high variability in the diurnal cycle of emissions and chemistry. The small product spatial footprint resolves pollution sources at sub-urban scale. Together, this temporal and spatial resolution improves emission inventories, monitors population exposure, and enables effective emission-control strategies. TEMPO takes advantage of a GEO host spacecraft to provide a modest cost mission that measures the spectra required to retrieve O3, NO2, SO2, H2CO, C2H2O2, H2O, aerosols, cloud parameters, and UVB radiation. TEMPO thus measures the major elements, directly or by proxy, in the tropospheric O3 chemistry cycle. Multi-spectral observations provide sensitivity to O3 in the lowermost troposphere, reducing uncertainty in air quality predictions by 50%. TEMPO quantifies and tracks the evolution of aerosol loading. It provides near-real-time air quality products that will be made widely, publicly available. TEMPO makes the first tropospheric trace gas measurements from GEO, by building on the heritage of five spectrometers flown in low-earth-orbit (LEO). These LEO instruments measure the needed spectra, although at coarse spatial and temporal resolutions, to the precisions required for TEMPO and use retrieval algorithms developed for them by TEMPO Science Team members and currently running in operational environments. This makes TEMPO an innovative use of a well proven technique, able to produce a revolutionary

  16. Tropospheric Emissions: Monitoring of Pollution (TEMPO)

    NASA Astrophysics Data System (ADS)

    Chance, Kelly; Liu, Xiong; Suleiman, Raid M.; Flittner, David E.; Al-Saadi, Jassim; Janz, Scott J.

    2014-06-01

    TEMPO, selected by NASA as the first Earth Venture Instrument, will measure atmospheric pollution for greater North America from space using ultraviolet and visible spectroscopy. TEMPO measures from Mexico City to the Canadian oil sands, and from the Atlantic to the Pacific, hourly and at high spatial resolution. TEMPO provides a tropospheric measurement suite that includes the key elements of tropospheric air pollution chemistry. Measurements are from geostationary (GEO) orbit, to capture the inherent high variability in the diurnal cycle of emissions and chemistry. The small product spatial footprint resolves pollution sources at sub-urban scale. Together, this temporal and spatial resolution improves emission inventories, monitors population exposure, and enables effective emission-control strategies. TEMPO takes advantage of a GEO host spacecraft to provide a modest-cost mission that measures the spectra required to retrieve O3, NO2, SO2, H2CO, C2H2O2, H2O, aerosols, cloud parameters, and UVB radiation. TEMPO thus measures the major elements, directly or by proxy, in the tropospheric O3 chemistry cycle. Multi-spectral observations provide sensitivity to O3 in the lowermost troposphere, reducing uncertainty in air quality predictions by 50 %. TEMPO quantifies and tracks the evolution of aerosol loading. It provides near-real-time air quality products that will be made widely, publicly available. TEMPO makes the first tropospheric trace gas measurements from GEO, by building on the heritage of five spectrometers flown in low-earth-orbit (LEO). These LEO instruments measure the needed spectra, although at coarse spatial and temporal resolutions, to the precisions required for TEMPO and use retrieval algorithms developed for them by TEMPO Science Team members and currently running in operational environments. This makes TEMPO an innovative use of a well-proven technique, able to produce a revolutionary data set. TEMPO provides much of the atmospheric measurement

  17. Tropospheric Emissions: Monitoring of Pollution (TEMPO)

    NASA Astrophysics Data System (ADS)

    Chance, K.; Liu, X.; Suleiman, R. M.; Flittner, D. E.; Janz, S. J.

    2012-12-01

    TEMPO is a proposed concept to measure pollution for greater North America using ultraviolet/visible spectroscopy. TEMPO measures from Mexico City to the Canadian tar/oil sands, and from the Atlantic to the Pacific, hourly and at high spatial resolution (9 km2). TEMPO provides a tropospheric measurement suite that includes the key elements of tropospheric air pollution chemistry. Measurements are from geostationary (GEO) orbit, to capture the inherent high variability in the diurnal cycle of emissions and chemistry. The small product spatial footprint resolves pollution sources at sub-urban scale. Together, this temporal and spatial resolution improves emission inventories, monitors population exposure, and enables effective emission-control strategies. TEMPO takes advantage of a GEO host spacecraft to provide a modest cost mission that measures the spectra required to retrieve O3, NO2, SO2, H2CO, C2H2O2, H2O, aerosols, cloud parameters, and UVB radiation. TEMPO thus measures the major elements, directly or by proxy, in the tropospheric O3 chemistry cycle. Multi-spectral observations provide sensitivity to O3 in the lowermost troposphere, reducing uncertainty in air quality predictions by 50%. TEMPO quantifies and tracks the evolution of aerosol loading. It provides near-real-time air quality products that will be made widely, publicly available. TEMPO makes the first tropospheric trace gas measurements from GEO, by building on the heritage of five spectrometers flown in low-earth-orbit (LEO). These LEO instruments measure the needed spectra, although at coarse spatial and temporal resolutions, to the precisions required for TEMPO and use retrieval algorithms developed for them by TEMPO Science Team members and currently running in operational environments. This makes TEMPO an innovative use of a well proven technique, able to produce a revolutionary data set. TEMPO provides much of the atmospheric measurement capability recommended for GEO-CAPE in the 2007

  18. Effects of Air Pollution and the Introduction of the London Low Emission Zone on the Prevalence of Respiratory and Allergic Symptoms in Schoolchildren in East London: A Sequential Cross-Sectional Study.

    PubMed

    Wood, Helen E; Marlin, Nadine; Mudway, Ian S; Bremner, Stephen A; Cross, Louise; Dundas, Isobel; Grieve, Andrew; Grigg, Jonathan; Jamaludin, Jeenath B; Kelly, Frank J; Lee, Tak; Sheikh, Aziz; Walton, Robert; Griffiths, Christopher J

    2015-01-01

    The adverse effects of traffic-related air pollution on children's respiratory health have been widely reported, but few studies have evaluated the impact of traffic-control policies designed to reduce urban air pollution. We assessed associations between traffic-related air pollutants and respiratory/allergic symptoms amongst 8-9 year-old schoolchildren living within the London Low Emission Zone (LEZ). Information on respiratory/allergic symptoms was obtained using a parent-completed questionnaire and linked to modelled annual air pollutant concentrations based on the residential address of each child, using a multivariable mixed effects logistic regression analysis. Exposure to traffic-related air pollutants was associated with current rhinitis: NOx (OR 1.01, 95% CI 1.00-1.02), NO2 (1.03, 1.00-1.06), PM10 (1.16, 1.04-1.28) and PM2.5 (1.38, 1.08-1.78), all per μg/m3 of pollutant, but not with other respiratory/allergic symptoms. The LEZ did not reduce ambient air pollution levels, or affect the prevalence of respiratory/allergic symptoms over the period studied. These data confirm the previous association between traffic-related air pollutant exposures and symptoms of current rhinitis. Importantly, the London LEZ has not significantly improved air quality within the city, or the respiratory health of the resident population in its first three years of operation. This highlights the need for more robust measures to reduce traffic emissions.

  19. Setting limits: Using air pollution thresholds to protect and restore U.S. ecosystems

    USGS Publications Warehouse

    Fenn, M.E.; Lambert, K.F.; Blett, T.F.; Burns, Douglas A.; Pardo, L.H.; Lovett, Gary M.; Haeuber, R. A.; Evers, D.C.; Driscoll, C.T.; Jeffries, D.S.

    2011-01-01

    More than four decades of research provide unequivocal evidence that sulfur, nitrogen, and mercury pollution have altered, and will continue to alter, our nation's lands and waters. The emission and deposition of air pollutants harm native plants and animals, degrade water quality, affect forest productivity, and are damaging to human health. Many air quality policies limit emissions at the source but these control measures do not always consider ecosystem impacts. Air pollution thresholds at which ecological effects are observed, such as critical loads, are effective tools for assessing the impacts of air pollution on essential ecosystem services and for informing public policy. U.S. ecosystems can be more effectively protected and restored by using a combination of emissions-based approaches and science-based thresholds of ecosystem damage. Based on the results of a comprehensive review of air pollution thresholds, we conclude: ??? Ecosystem services such as air and water purification, decomposition and detoxification of waste materials, climate regulation, regeneration of soil fertility, production and biodiversity maintenance, as well as crop, timber and fish supplies are impacted by deposition of nitrogen, sulfur, mercury and other pollutants. The consequences of these changes may be difficult or impossible to reverse as impacts cascade throughout affected ecosystems. ??? The effects of too much nitrogen are common across the U.S. and include altered plant and lichen communities, enhanced growth of invasive species, eutrophication and acidification of lands and waters, and habitat deterioration for native species, including endangered species. ??? Lake, stream and soil acidification is widespread across the eastern United States. Up to 65% of lakes within sensitive areas receive acid deposition that exceeds critical loads. ??? Mercury contamination adversely affects fish in many inland and coastal waters. Fish consumption advisories for mercury exist in all 50

  20. Setting limits: Using air pollution thresholds to protect and restore U.S

    Treesearch

    Mark E Fenn; Kathleen F. Lambert; Tamara F. Blett; Douglas A. Burns; Linda H. Pardo; Gary M. Lovett; Richard A. Haeuber; David C. Evers; Charles T. Driscoll; Dean S. Jeffries

    2011-01-01

    More than four decades of research provide unequivocal evidence that sulfur, nitrogen, and mercury pollution have altered, and will continue to alter, our nation’s lands and waters. The emission and deposition of air pollutants harm native plants and animals, degrade water quality, affect forest productivity, and are damaging to human health. Many air quality policies...

  1. Burden of Mortality and Disease Attributable to Multiple Air Pollutants in Warsaw, Poland

    PubMed Central

    Kałuszko, Andrzej; Nahorski, Zbigniew

    2017-01-01

    Air pollution is a significant public health issue all over the world, especially in urban areas where a large number of inhabitants are affected. In this study, we quantify the health burden due to local air pollution for Warsaw, Poland. The health impact of the main air pollutants, PM, NOX, SO2, CO, C6H6, BaP and heavy metals is considered. The annual mean concentrations are predicted with the CALPUFF air quality modeling system using the year 2012 emission and meteorological data. The emission field comprises point, mobile and area sources. The exposure to these pollutants was estimated using population data with a spatial resolution of 0.5 × 0.5 km2. Changes in mortality and in disability-adjusted life-years (DALYs) were estimated with relative risk functions obtained from literature. It has been predicted that local emissions cause approximately 1600 attributable deaths and 29,000 DALYs per year. About 80% of the health burden was due to exposure to fine particulate matter (PM2.5). Mobile and area sources contributed 46% and 52% of total DALYs, respectively. When the inflow from outside was included, the burden nearly doubled to 51,000 DALYs. These results indicate that local decisions can potentially reduce associated negative health effects, but a national-level policy is required for reducing the strong environmental impact of PM emissions. PMID:29117145

  2. Tehran Air Pollutants Prediction Based on Random Forest Feature Selection Method

    NASA Astrophysics Data System (ADS)

    Shamsoddini, A.; Aboodi, M. R.; Karami, J.

    2017-09-01

    Air pollution as one of the most serious forms of environmental pollutions poses huge threat to human life. Air pollution leads to environmental instability, and has harmful and undesirable effects on the environment. Modern prediction methods of the pollutant concentration are able to improve decision making and provide appropriate solutions. This study examines the performance of the Random Forest feature selection in combination with multiple-linear regression and Multilayer Perceptron Artificial Neural Networks methods, in order to achieve an efficient model to estimate carbon monoxide and nitrogen dioxide, sulfur dioxide and PM2.5 contents in the air. The results indicated that Artificial Neural Networks fed by the attributes selected by Random Forest feature selection method performed more accurate than other models for the modeling of all pollutants. The estimation accuracy of sulfur dioxide emissions was lower than the other air contaminants whereas the nitrogen dioxide was predicted more accurate than the other pollutants.

  3. Economic evaluation of health losses from air pollution in Beijing, China.

    PubMed

    Zhao, Xiaoli; Yu, Xueying; Wang, Ying; Fan, Chunyang

    2016-06-01

    Aggravated air pollution in Beijing, China has caused serious health concern. This paper comprehensively evaluates the health losses from illness and premature death caused by air pollution in monetary terms. We use the concentration of PM10 as an indicator of the pollution since it constitutes the primary pollutant in Beijing. By our estimation, air pollution in Beijing caused a health loss equivalent to Ұ583.02 million or 0.03 % of its GDP. Most of the losses took the form of depreciation in human capital that resulted from premature death. The losses from premature deaths were most salient for people of either old or young ages, with the former group suffering from the highest mortality rates and the latter group the highest per capital losses of human capitals from premature death. Policies that target on PM10 emission reduction, urban vegetation expansion, and protection of vulnerable groups are all proposed as possible solutions to air pollution risks in Beijing.

  4. APEX (Air Pollution Exercise) Volume 21: Legal References: Air Pollution Control Regulations.

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Research Triangle Park, NC. Office of Manpower Development.

    The Legal References: Air Pollution Control Regulations Manual is the last in a set of 21 manuals (AA 001 009-001 029) used in APEX (Air Pollution Exercise), a computerized college and professional level "real world" game simulation of a community with urban and rural problems, industrial activities, and air pollution difficulties. The manual…

  5. Quantification of local and global benefits from air pollution control in Mexico City.

    PubMed

    Mckinley, Galen; Zuk, Miriam; Höjer, Morten; Avalos, Montserrat; González, Isabel; Iniestra, Rodolfo; Laguna, Israel; Martínez, Miguel A; Osnaya, Patricia; Reynales, Luz M; Valdés, Raydel; Martínez, Julia

    2005-04-01

    Complex sociopolitical, economic, and geographical realities cause the 20 million residents of Mexico City to suffer from some of the worst air pollution conditions in the world. Greenhouse gas emissions from the city are also substantial, and opportunities for joint local-global air pollution control are being sought. Although a plethora of measures to improve local air quality and reduce greenhouse gas emissions have been proposed for Mexico City, resources are not available for implementation of all proposed controls and thus prioritization must occur. Yet policy makers often do not conduct comprehensive quantitative analyses to inform these decisions. We reanalyze a subset of currently proposed control measures, and derive cost and health benefit estimates that are directly comparable. This study illustrates that improved quantitative analysis can change implementation prioritization for air pollution and greenhouse gas control measures in Mexico City.

  6. Ship emissions and the use of current air cleaning technology: contributions to air pollution and acidification in the Baltic Sea

    NASA Astrophysics Data System (ADS)

    Claremar, Björn; Haglund, Karin; Rutgersson, Anna

    2017-10-01

    The shipping sector is a significant contributor to emissions of air pollutants in marine and coastal regions. In order to achieve sustainable shipping, primarily through new regulations and techniques, greater knowledge of dispersion and deposition of air pollutants is required. Regional model calculations of the dispersion and concentration of sulfur, nitrogen, and particulate matter, as well as deposition of oxidized sulfur and nitrogen from the international maritime sector in the Baltic Sea and the North Sea, have been made for the years 2011 to 2013. The contribution from shipping is highest along shipping lanes and near large ports for concentration and dry deposition. Sulfur is the most important pollutant coupled to shipping. The contribution of both SO2 concentration and dry deposition of sulfur represented up to 80 % of the total in some regions. WHO guidelines for annual concentrations were not trespassed for any analysed pollutant, other than PM2.5 in the Netherlands, Belgium, and central Poland. However, due to the resolution of the numerical model, 50 km × 50 km, there may be higher concentrations locally close to intense shipping lanes. Wet deposition is more spread and less sensitive to model resolution. The contribution of wet deposition of sulfur and nitrogen from shipping was up to 30 % of the total wet deposition. Comparison of simulated to measured concentration at two coastal stations close to shipping lanes showed some underestimations and missed maximums, probably due to resolution of the model and underestimated ship emissions. A change in regulation for maximum sulfur content in maritime fuel, in 2015 from 1 to 0.1 %, decreases the atmospheric sulfur concentration and deposition significantly. However, due to costs related to refining, the cleaning of exhausts through scrubbers has become a possible economic solution. Open-loop scrubbers meet the air quality criteria but their consequences for the marine environment are largely unknown

  7. Outdoor air pollution and respiratory health in Asia.

    PubMed

    Chung, Kian Fan; Zhang, Junfeng; Zhong, Nanshan

    2011-10-01

    With the rapid economic development occurring in the last decade in many countries of Asia, the level of air pollution has increased from both industrial and motor vehicle emissions. Compared with Europe and North America, the potential health effects of this increasing air pollution in Asia remain largely unmeasured. Recent data published by the Health Effects Institute from some major cities in India and China reveal that a 10 µg/m(3) increase in PM(10) was associated with an increase in mortality of 0.6% in daily all-natural cause mortality, with higher risks being found at extremes of high temperatures and in the lowest economically advantaged population. Other Asian studies have confirmed the link between hospital admissions for the worsening of COPD and the increase in asthma prevalence to levels of outdoor air pollutants. Although potential health effects appear to be similar to already-published Western data, it is important that further studies be carried out in Asia that will inform the public and the authorities of the necessity to curb levels of outdoor air pollutants to acceptable levels. © 2011 The Authors. Respirology © 2011 Asian Pacific Society of Respirology.

  8. Implementation of Tropospheric Emissions: Monitoring of Pollution (TEMPO)

    NASA Astrophysics Data System (ADS)

    Chance, K.; Liu, X.; Suleiman, R. M.; Flittner, D. E.; Al-Saadi, J. A.; Janz, S. J.

    2014-12-01

    The updated status of TEMPO, as it proceeds from formulation phase into implementation phase is presented. TEMPO, the first NASA Earth Venture Instrument, will measure atmospheric pollution for greater North America from space using ultraviolet and visible spectroscopy. TEMPO measures from Mexico City to the Canadian oil sands, and from the Atlantic to the Pacific, hourly and at high spatial resolution. TEMPO provides a tropospheric measurement suite that includes the key elements of tropospheric air pollution chemistry. Measurements are from geostationary (GEO) orbit, to capture the inherent high variability in the diurnal cycle of emissions and chemistry. The small product spatial footprint resolves pollution sources at sub-urban scale. Together, this temporal and spatial resolution improves emission inventories, monitors population exposure, and enables effective emission-control strategies. TEMPO takes advantage of a GEO host spacecraft to provide a modest cost mission that measures the spectra required to retrieve O3, NO2, SO2, H2CO, C2H2O2, H2O, aerosols, cloud parameters, and UVB radiation. TEMPO thus measures the major elements, directly or by proxy, in the tropospheric O3 chemistry cycle. Multi-spectral observations provide sensitivity to O3 in the lowermost troposphere, reducing uncertainty in air quality predictions by 50%. TEMPO quantifies and tracks the evolution of aerosol loading. It provides near-real-time air quality products that will be made widely, publicly available. TEMPO provides much of the atmospheric measurement capability recommended for GEO-CAPE in the 2007 National Research Council Decadal Survey, Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond. GEO-CAPE is not planned for implementation this decade. However, instruments from Europe (Sentinel 4) and Asia (GEMS) will form parts of a global GEO constellation for pollution monitoring later this decade, with a major focus on intercontinental

  9. Discriminatory Air Pollution

    ERIC Educational Resources Information Center

    McCaull, Julian

    1976-01-01

    Described are the patterns of air pollution in certain large urban areas. Persons in poverty, in occupations below the management or professional level, in low-rent districts, and in black population are most heavily exposed to air pollution. Pollution paradoxically is largely produced by high energy consuming middle-and upper-class households.…

  10. Determination of a cost-effective air pollution control technology for the control of VOC and HAP emissions from a steroids processing plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamel, T.M.

    1997-12-31

    A steroids processing plant located in northeastern Puerto Rico emits a combined average of 342 lb/hr of hazardous air pollutants (HAPs) and volatile organic compounds (VOCs) from various process operations. The approach that this facility used to implement maximum achievable control technology (MACT) may assist others who must contend with MACT for pharmaceutical or related manufacturing facilities. Federal air regulations define MACT standards for stationary sources emitting any of 189 HAPs. The MACT standards detailed in the NESHAPs are characterized by industry and type of emission control system or technology. It is anticipated that the standard will require HAP reductionsmore » of approximately 95%. The steroid plant`s emissions include the following pollutant loadings: VOC/HAP Emission Rate (lb/hr): Methanol 92.0; Acetone 35.0; Methylene chloride 126.0; Chloroform 25.0; Ethyl acetate 56.0; Tetrahydrofuran 5.00; and 1,4-Dioxane 3.00. The facility`s existing carbon adsorption control system was nearing the end of its useful life, and the operators sought to install an air pollution control system capable of meeting MACT requirements for the pharmaceutical industry. Several stand-alone and hybrid control technologies were considered for replacement of the carbon adsorption system at the facility. This paper examines the following technologies: carbon adsorption, membrane separation, thermal oxidation, membrane separation-carbon adsorption, and condensation-carbon adsorption. Each control technology is described; the advantages and disadvantages of utilizing each technology for the steroid processing plant are examined; and capital and operating costs associated with the implementation of each technology are presented. The rationale for the technology ultimately chosen to control VOC and HAP emissions is presented.« less

  11. Characterizing multi-pollutant air pollution in China: Comparison of three air quality indices.

    PubMed

    Hu, Jianlin; Ying, Qi; Wang, Yungang; Zhang, Hongliang

    2015-11-01

    Multi-pollutant air pollution (i.e., several pollutants reaching very high concentrations simultaneously) frequently occurs in many regions across China. Air quality index (AQI) is used worldwide to inform the public about levels of air pollution and associated health risks. The current AQI approach used in China is based on the maximum value of individual pollutants, and does not consider the combined health effects of exposure to multiple pollutants. In this study, two novel alternative indices--aggregate air quality index (AAQI) and health-risk based air quality index (HAQI)--were calculated based on data collected in six megacities of China (Beijing, Shanghai, Guangzhou, Shjiazhuang, Xi'an, and Wuhan) during 2013 to 2014. Both AAQI and HAQI take into account the combined health effects of various pollutants, and the HAQI considers the exposure (or concentration)-response relationships of pollutants. AAQI and HAQI were compared to AQI to examine the effectiveness of the current AQI in characterizing multi-pollutant air pollution in China. The AAQI and HAQI values are higher than the AQI on days when two or more pollutants simultaneously exceed the Chinese Ambient Air Quality Standards (CAAQS) 24-hour Grade II standards. The results of the comparison of the classification of risk categories based on the three indices indicate that the current AQI approach underestimates the severity of health risk associated with exposure to multi-pollutant air pollution. For the AQI-based risk category of 'unhealthy', 96% and 80% of the days would be 'very unhealthy' or 'hazardous' if based on AAQI and HAQI, respectively; and for the AQI-based risk category of 'very unhealthy', 67% and 75% of the days would be 'hazardous' if based on AAQI and HAQI, respectively. The results suggest that the general public, especially sensitive population groups such as children and the elderly, should take more stringent actions than those currently suggested based on the AQI approach during

  12. EMISSION FACTORS FOR IRON AND STEEL SOURCES: CRITERIA AND TOXIC POLLUTANTS

    EPA Science Inventory

    The report provides a comprehensive set of emission factors for sources of both criteria and toxic air pollutants in integrated iron and steel plants and specialty electric arc shops (minimills). Emission factors are identified for process sources, and process and open source fug...

  13. Influence of Social-economic Activities on Air Pollutants in Beijing, China

    NASA Astrophysics Data System (ADS)

    Li, Xiaolu; Zheng, Wenfeng; Yin, Lirong; Yin, Zhengtong; Song, Lihong; Tian, Xia

    2017-08-01

    With the rapid economic development, the serious air pollution in Beijing attracts increasing attention in the last decade. Seen as one whole complex and grey system, the causal relationship between the social development and the air pollution in Beijing has been quantitatively analyzed in this paper. By using the grey relational model, the aim of this study is to explore how the socio-economic and human activities affect on the air pollution in the city of Beijing, China. Four air pollutants, as the particulate matter with size 2.5 micrometers or less (PM2.5), particulate matter with size 10 micrometers or less (PM10), sulfur dioxide (SO2) and nitrogen dioxide (NOx), are selected as the indicators of air pollution. Additionally, fifteen socio-economic indicators are selected to account for the regional socio-economic characteristics (economy variables, energy consumption variables, pollution emissions variables, environment and construction activity variables). The results highlight that all variables are associated with the concentrations of the four selected air pollutants, but with notable differences between the air pollutants. Most of the socio-economic indicators, such as industrial output, total energy consumption are highly correlated with PM2.5, while PM10, SO2, and NOx present in general moderate correlations with most of the socio-economic variables. Contrary to other studies and reports this study reveals that vehicles and life energy do not have the strongest effect on air pollution in Beijing. This study provides useful information to reduce air pollution and support decision-making for sustainable development.

  14. Climate Change and Air Pollution: Effects on Respiratory Allergy

    PubMed Central

    Pawankar, Ruby; Vitale, Carolina; Lanza, Maurizia; Molino, Antonio; Stanziola, Anna; Sanduzzi, Alessandro; Vatrella, Alessandro; D'Amato, Maria

    2016-01-01

    A body of evidence suggests that major changes involving the atmosphere and the climate, including global warming induced by anthropogenic factors, have impact on the biosphere and human environment. Studies on the effects of climate change on respiratory allergy are still lacking and current knowledge is provided by epidemiological and experimental studies on the relationship between allergic respiratory diseases, asthma and environmental factors, such as meteorological variables, airborne allergens, and air pollution. Urbanization with its high levels of vehicle emissions, and a westernized lifestyle are linked to the rising frequency of respiratory allergic diseases and bronchial asthma observed over recent decades in most industrialized countries. However, it is not easy to evaluate the impact of climate changes and air pollution on the prevalence of asthma in the general population and on the timing of asthma exacerbations, although the global rise in asthma prevalence and severity could also be an effect of air pollution and climate change. Since airborne allergens and air pollutants are frequently increased contemporaneously in the atmosphere, an enhanced IgE-mediated response to aeroallergens and enhanced airway inflammation could account for the increasing frequency of respiratory allergy and asthma in atopic subjects in the last 5 decades. Pollen allergy is frequently used to study the relationship between air pollution and respiratory allergic diseases, such as rhinitis and bronchial asthma. Epidemiologic studies have demonstrated that urbanization, high levels of vehicle emissions, and westernized lifestyle are correlated with an increased frequency of respiratory allergy prevalently in people who live in urban areas in comparison with people living in rural areas. Climatic factors (temperature, wind speed, humidity, thunderstorms, etc.) can affect both components (biological and chemical) of this interaction. PMID:27334776

  15. Spatial Resolution Requirements for Traffic-Related Air Pollutant Exposure Evaluations

    PubMed Central

    Batterman, Stuart; Chambliss, Sarah; Isakov, Vlad

    2014-01-01

    Vehicle emissions represent one of the most important air pollution sources in most urban areas, and elevated concentrations of pollutants found near major roads have been associated with many adverse health impacts. To understand these impacts, exposure estimates should reflect the spatial and temporal patterns observed for traffic-related air pollutants. This paper evaluates the spatial resolution and zonal systems required to estimate accurately intraurban and near-road exposures of traffic-related air pollutants. The analyses use the detailed information assembled for a large (800 km2) area centered on Detroit, Michigan, USA. Concentrations of nitrogen oxides (NOx) due to vehicle emissions were estimated using hourly traffic volumes and speeds on 9,700 links representing all but minor roads in the city, the MOVES2010 emission model, the RLINE dispersion model, local meteorological data, a temporal resolution of 1 hr, and spatial resolution as low as 10 m. Model estimates were joined with the corresponding shape files to estimate residential exposures for 700,000 individuals at property parcel, census block, census tract, and ZIP code levels. We evaluate joining methods, the spatial resolution needed to meet specific error criteria, and the extent of exposure misclassification. To portray traffic-related air pollutant exposure, raster or inverse distance-weighted interpolations are superior to nearest neighbor approaches, and interpolations between receptors and points of interest should not exceed about 40 m near major roads, and 100 m at larger distances. For census tracts and ZIP codes, average exposures are overestimated since few individuals live very near major roads, the range of concentrations is compressed, most exposures are misclassified, and high concentrations near roads are entirely omitted. While smaller zones improve performance considerably, even block-level data can misclassify many individuals. To estimate exposures and impacts of traffic

  16. Improving the accuracy of vehicle emissions profiles for urban transportation greenhouse gas and air pollution inventories.

    PubMed

    Reyna, Janet L; Chester, Mikhail V; Ahn, Soyoung; Fraser, Andrew M

    2015-01-06

    Metropolitan greenhouse gas and air emissions inventories can better account for the variability in vehicle movement, fleet composition, and infrastructure that exists within and between regions, to develop more accurate information for environmental goals. With emerging access to high quality data, new methods are needed for informing transportation emissions assessment practitioners of the relevant vehicle and infrastructure characteristics that should be prioritized in modeling to improve the accuracy of inventories. The sensitivity of light and heavy-duty vehicle greenhouse gas (GHG) and conventional air pollutant (CAP) emissions to speed, weight, age, and roadway gradient are examined with second-by-second velocity profiles on freeway and arterial roads under free-flow and congestion scenarios. By creating upper and lower bounds for each factor, the potential variability which could exist in transportation emissions assessments is estimated. When comparing the effects of changes in these characteristics across U.S. cities against average characteristics of the U.S. fleet and infrastructure, significant variability in emissions is found to exist. GHGs from light-duty vehicles could vary by -2%-11% and CAP by -47%-228% when compared to the baseline. For heavy-duty vehicles, the variability is -21%-55% and -32%-174%, respectively. The results show that cities should more aggressively pursue the integration of emerging big data into regional transportation emissions modeling, and the integration of these data is likely to impact GHG and CAP inventories and how aggressively policies should be implemented to meet reductions. A web-tool is developed to aide cities in improving emissions uncertainty.

  17. Air pollution from gas flaring: new emission factor estimates and detection in a West African aerosol remote-sensing climatology

    NASA Astrophysics Data System (ADS)

    MacKenzie, Rob; Fawole, Olusegun Gabriel; Levine, James; Cai, Xiaoming

    2016-04-01

    Gas flaring, the disposal of gas through stacks in an open-air flame, is a common feature in the processing of crude oil, especially in oil-rich regions of the world. Gas flaring is a prominent source of volatile organic compounds (VOCs), polycyclic aromatic hydrocarbons (PAH), CO, CO2, nitrogen oxides (NOx), SO2 (in "sour" gas only), and soot (black carbon), as well as the release of locally significant amounts of heat. The rates of emission of these pollutants from gas flaring depend on a number of factors including, but not limited to, fuel composition and quantity, stack geometry, flame/combustion characteristics, and prevailing meteorological conditions. Here, we derive new estimated emission factors (EFs) for carbon-containing pollutants (excluding PAH). The air pollution dispersion model, ADMS5, is used to simulate the dispersion of the pollutants from flaring stacks in the Niger delta. A seasonal variation of the dispersion pattern of the pollutant within a year is studied in relation to the movements of the West Africa Monsoon (WAM) and other prevailing meteorological factors. Further, we have clustered AERONET aerosol signals using trajectory analysis to identify dominant aerosol sources at the Ilorin site in West Africa (4.34 oE, 8.32 oN). A 10-year trajectory-based analysis was undertaken (2005-2015, excluding 2010). Of particular interest are air masses that have passed through the gas flaring region in the Niger Delta area en-route the AERONET site. 7-day back trajectories were calculated using the UK Universities Global Atmospheric Modelling Programme (UGAMP) trajectory model which is driven by analyses from the European Centre for Medium-Range Weather Forecasts (ECMWF). From the back-trajectory calculations, dominant sources are identified, using literature classifications: desert dust (DD); Biomass burning (BB); and Urban-Industrial (UI). We use a combination of synoptic trajectories and aerosol optical properties to distinguish a fourth source

  18. Air pollution impacts on avian species via inhalation exposure and associated outcomes

    NASA Astrophysics Data System (ADS)

    Sanderfoot, Olivia V.; Holloway, Tracey

    2017-08-01

    Despite the well-established links between air pollution and human health, vegetation, and aquatic ecosystems, less attention has been paid to the potential impact of reactive atmospheric gases and aerosols on avian species. In this literature review, we summarize findings published since 1950 regarding avian responses to air pollution and discuss knowledge gaps that could be addressed in future studies. We find consistent evidence for adverse health impacts on birds attributable to exposure to gas-phase and particulate air pollutants, including carbon monoxide (CO), ozone (O3), sulfur dioxide (SO2), smoke, and heavy metals, as well as mixtures of urban and industrial emissions. Avian responses to air pollution include respiratory distress and illness, increased detoxification effort, elevated stress levels, immunosuppression, behavioral changes, and impaired reproductive success. Exposure to air pollution may furthermore reduce population density, species diversity, and species richness in bird communities.

  19. 78 FR 6784 - Revisions to the California State Implementation Plan, Placer County Air Pollution Control District

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-31

    ... the California State Implementation Plan, Placer County Air Pollution Control District AGENCY... the Placer County Air Pollution Control District (PCAPCD) portion of the California State... regulate this emission source under the Clean Air Act (CAA or the Act). DATES: Any comments on this...

  20. Meta-Analysis on Near-Road Air Pollutants Concentrations for Developing Traffic Indicators for Exposure Assessment

    EPA Science Inventory

    Near-road air pollution has been associated with various health risks in human populations living near roadways. To better understand relationship between vehicle emissions and spatial profiles of traffic-related air pollutants we performed a comprehensive and systematic literat...

  1. Air Pollution Training Programs.

    ERIC Educational Resources Information Center

    Public Health Service (DHEW), Rockville, MD.

    This catalog lists the universities, both supported and not supported by the Division of Air Pollution, which offer graduate programs in the field of air pollution. The catalog briefly describes the programs and their entrance requirements, the requirements, qualifications and terms of special fellowships offered by the Division of Air Pollution.…

  2. Greenhouse Gas and Criteria Air Pollutant Emission Reductions from Forest Fuel Treatment Projects in Placer County, California

    NASA Astrophysics Data System (ADS)

    Saah, D. S.; Moritz, M.; Ganz, D. J.; Stine, P. A.; Moody, T.

    2010-12-01

    Years of successful fire suppression activities have left forests unnaturally dense, overstocked, and with high hazardous fuel loads. Wildfires, particularly those of high severity, may dramatically reduce carbon stocks and convert forested lands from carbon sinks to decades-long carbon sources . Forest resource managers are currently pursuing fuels reduction and mitigation strategies to reduce wildfire risk and maintain carbon stocks. These projects include selective thinning and removal of trees and brush to return forest ecosystems to more natural stocking levels, resulting in a more fire-resilient forest that in theory would retain higher carry capacity for standing above ground carbon. Resource managers are exploring the possibility of supporting these local forest management projects by offering greenhouse gas (GHG) offsets to project developers that require GHG emissions mitigation. Using robust field data, this research project modeled three types of carbon benefits that could be realized from forest management: 1. Fuels treatments in the study area were shown to reduce the GHG and Criteria Air Pollutant emissions from wildfires by decreasing the probability, extent, and severity of fires and the corresponding loss in forest carbon stocks; 2. Biomass utilization from fuel treatment was shown to reduce GHG and Criteria Air Pollutant emissions over the duration of the fuels treatment project compared to fossil fuel energy. 3. Management and thinning of forests in order to stimulate growth, resulting in more rapid uptake of atmospheric carbon and approaching a carbon carrying capacity stored in a forest ecosystem under prevailing environmental conditions and natural disturbance regimes.

  3. A comprehensive classification method for VOC emission sources to tackle air pollution based on VOC species reactivity and emission amounts.

    PubMed

    Li, Guohao; Wei, Wei; Shao, Xia; Nie, Lei; Wang, Hailin; Yan, Xiao; Zhang, Rui

    2018-05-01

    In China, volatile organic compound (VOC) control directives have been continuously released and implemented for important sources and regions to tackle air pollution. The corresponding control requirements were based on VOC emission amounts (EA), but never considered the significant differentiation of VOC species in terms of atmospheric chemical reactivity. This will adversely influence the effect of VOC reduction on air quality improvement. Therefore, this study attempted to develop a comprehensive classification method for typical VOC sources in the Beijing-Tianjin-Hebei region (BTH), by combining the VOC emission amounts with the chemical reactivities of VOC species. Firstly, we obtained the VOC chemical profiles by measuring 5 key sources in the BTH region and referencing another 10 key sources, and estimated the ozone formation potential (OFP) per ton VOC emission for these sources by using the maximum incremental reactivity (MIR) index as the characteristic of source reactivity (SR). Then, we applied the data normalization method to respectively convert EA and SR to normalized EA (NEA) and normalized SR (NSR) for various sources in the BTH region. Finally, the control index (CI) was calculated, and these sources were further classified into four grades based on the normalized CI (NCI). The study results showed that in the BTH region, furniture coating, automobile coating, and road vehicles are characterized by high NCI and need to be given more attention; however, the petro-chemical industry, which was designated as an important control source by air quality managers, has a lower NCI. Copyright © 2017. Published by Elsevier B.V.

  4. Characterization of air pollutant concentrations, fleet emission factors, and dispersion near a North Carolina interstate freeway across two seasons

    NASA Astrophysics Data System (ADS)

    Saha, Provat K.; Khlystov, Andrey; Snyder, Michelle G.; Grieshop, Andrew P.

    2018-03-01

    We present field measurement data and modeling of multiple traffic-related air pollutants during two seasons at a site adjoining Interstate 40, near Durham, North Carolina. We analyze spatial-temporal and seasonal trends and fleet-average pollutant emission factors and use our data to evaluate a line source dispersion model. Month-long measurement campaigns were performed in summer 2015 and winter 2016. Data were collected at a fixed near-road site located within 10 m from the highway edge, an upwind background site and, under favorable meteorological conditions, along downwind perpendicular transects. Measurements included the size distribution, chemical composition, and volatility of submicron particles, black carbon (BC), nitrogen oxides (NOx), meteorological conditions and traffic activity data. Results show strong seasonal and diurnal differences in spatial distribution of traffic sourced pollutants. A strong signature of vehicle emissions was observed within 100-150 m from the highway edge with significantly higher concentrations during morning. Substantially higher concentrations and less-sharp near-road gradients were observed in winter for many species. Season-specific fleet-average fuel-based emission factors for NO, NOx, BC, and particle number (PN) were derived based on up- and down-wind roadside measurements. The campaign-average NOx and PN emission factors were 20% and 300% higher in winter than summer, respectively. These results suggest that the combined effect of higher emissions and their slower downwind dispersion in winter dictate the observed higher downwind concentrations and wider highway influence zone in winter for several species. Finally, measurements of traffic data, emission factors, and pollutant concentrations were integrated to evaluate a line source dispersion model (R-LINE). The dispersion model captured the general trends in the spatial and temporal patterns in near-road concentrations. However, there was a tendency for the model

  5. Health Impacts of Air Pollution Under a Changing Climate

    NASA Astrophysics Data System (ADS)

    Kinney, P. L.; Knowlton, K.; Rosenthal, J.; Hogrefe, C.; Rosenzweig, C.; Solecki, W.

    2003-12-01

    Outdoor air pollution remains a serious public health problem in cities throughout the world. In the US, despite considerable progress in reducing emissions over the past 30 years, as many as 50,000 premature deaths each year have been attributed to airborne particulate matter alone. Tropospheric ozone has been associated with increased daily mortality and hospitalization rates, and with a variety of related respiratory problems. Weather plays an important role in the transport and transformation of air pollution. In particular, a warming climate is likely to promote the atmospheric reactions that are responsible for ozone and secondary aerosol production, as well as increasing emissions of many of their volatile precursors. Increasingly, efforts to address urban air pollution problems throughout the world will be complicated by trends and variability in climate. The New York Climate and Health Project (NYCHP) is developing and applying tools for integrated assessment of health impacts from air pollution and heat associated with climate and land-use changes in the New York City metropolitan region. Global climate change is modeled over the 21st century based on the Intergovernmental Panel on Climate Change (IPCC) A2 greenhouse gas emissions scenario using the Goddard Institute for Space Studies (GISS) Global Atmosphere-Ocean Model (GCM). Meteorological fields are downscaled to a 36 km grid over the eastern US using the Penn State/NCAR MM5 mesoscale meteorological model. MM5 results are then used as input to the Community Multiscale Air Quality (CMAQ) model for simulating air quality, with emissions based on the Sparse Matrix Operator Kernel Emissions Modeling System (SMOKE). To date, simulations have been performed for five summer seasons each during the 1990s and the 2050s. An evaluation of the present-day climate and air quality predictions indicates that the modeling system largely captures the observed climate-ozone system. Analysis of future-year predictions

  6. Nutritional Solutions to Reduce Risks of Negative Health Impacts of Air Pollution

    PubMed Central

    Péter, Szabolcs; Holguin, Fernando; Wood, Lisa G.; Clougherty, Jane E.; Raederstorff, Daniel; Antal, Magda; Weber, Peter; Eggersdorfer, Manfred

    2015-01-01

    Air pollution worldwide has been associated with cardiovascular and respiratory morbidity and mortality, particularly in urban settings with elevated concentrations of primary pollutants. Air pollution is a very complex mixture of primary and secondary gases and particles, and its potential to cause harm can depend on multiple factors—including physical and chemical characteristics of pollutants, which varies with fine-scale location (e.g., by proximity to local emission sources)—as well as local meteorology, topography, and population susceptibility. It has been hypothesized that the intake of anti-oxidant and anti-inflammatory nutrients may ameliorate various respiratory and cardiovascular effects of air pollution through reductions in oxidative stress and inflammation. To date, several studies have suggested that some harmful effects of air pollution may be modified by intake of essential micronutrients (such as B vitamins, and vitamins C, D, and E) and long-chain polyunsaturated fatty acids. Here, we review the existing literature related to the potential for nutrition to modify the health impacts of air pollution, and offer a framework for examining these interactions. PMID:26690474

  7. Nutritional Solutions to Reduce Risks of Negative Health Impacts of Air Pollution.

    PubMed

    Péter, Szabolcs; Holguin, Fernando; Wood, Lisa G; Clougherty, Jane E; Raederstorff, Daniel; Antal, Magda; Weber, Peter; Eggersdorfer, Manfred

    2015-12-10

    Air pollution worldwide has been associated with cardiovascular and respiratory morbidity and mortality, particularly in urban settings with elevated concentrations of primary pollutants. Air pollution is a very complex mixture of primary and secondary gases and particles, and its potential to cause harm can depend on multiple factors-including physical and chemical characteristics of pollutants, which varies with fine-scale location (e.g., by proximity to local emission sources)-as well as local meteorology, topography, and population susceptibility. It has been hypothesized that the intake of anti-oxidant and anti-inflammatory nutrients may ameliorate various respiratory and cardiovascular effects of air pollution through reductions in oxidative stress and inflammation. To date, several studies have suggested that some harmful effects of air pollution may be modified by intake of essential micronutrients (such as B vitamins, and vitamins C, D, and E) and long-chain polyunsaturated fatty acids. Here, we review the existing literature related to the potential for nutrition to modify the health impacts of air pollution, and offer a framework for examining these interactions.

  8. The changing face of urban air pollution

    NASA Astrophysics Data System (ADS)

    Lewis, Alastair C.

    2018-02-01

    The atmospheric chemistry that leads to photochemical smog and climate-active aerosols requires the presence of volatile organic compounds (VOCs) (1, 2). The VOCs in urban air typically derive from the prevailing energy and transport technologies as well as the use of petrochemical-derived products. On page 760 of this issue, McDonald et al. (3) report that a notable change in emissions may be underway in U.S. cities, with effects on secondary pollutants such as organic aerosols. Shifting from an urban atmosphere dominated by transport-related VOCs to one dominated by VOCs from coatings, adhesives, and consumer products would alter predictions of urban air quality and challenge the existing policy framework for emissions control.

  9. 78 FR 37176 - Revisions to the California State Implementation Plan, San Diego Air Pollution Control District

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-20

    ... the California State Implementation Plan, San Diego Air Pollution Control District AGENCY... the San Diego Air Pollution Control District (SDAPCD) portion of the California State Implementation... coatings. We are proposing to approve a local rule to regulate these emission sources under the Clean Air...

  10. Air emissions assessment from offshore oil activities in Sonda de Campeche, Mexico.

    PubMed

    Schifter, I; González-Macías, C; Miranda, A; López-Salinas, E

    2005-10-01

    Air emission data from offshore oil platforms, gas and oil processing installations and contribution of marine activities at the Sonda de Campeche, located at the Gulf of Mexico, were compiled and integrated to facilitate the study of long range transport of pollutants into the region. From this important region, roughly 76% of the total Mexican oil and gas production is obtained. It was estimated that the total air emissions of all contaminants are approximately 821,000 tons per year. Hydrocarbons are the largest pollutant emissions with 277,590 tons per year, generated during flaring activities, and SOx in second place with 185,907 tons per year. Marine and aviation activities contribute with less than 2% of total emissions. Mass of pollutants emitted per barrel of petroleum produced calculated in this work, are in the range reported by similar oil companies.

  11. Interactions of Climate Change, Air Pollution, and Human Health.

    PubMed

    Kinney, Patrick L

    2018-03-01

    I review literature on the impacts of climate change on air quality and human health, with a focus on articles published from 2013 on ozone and airborne particles. Selected previous literature is discussed where relevant in tracing the origins of our current knowledge. Climate and weather have strong influences on the spatial and temporal distribution of air pollution concentrations. Emissions of ozone and PM 2.5 precursors increase at higher ambient temperatures. The reactions that form ozone occur faster with greater sunlight and higher temperatures. Weather systems influence the movement and dispersion of air pollutants in the atmosphere through the action of winds, vertical mixing, and precipitation, all of which are likely to alter in a changing climate. Recent studies indicate that, holding anthropogenic air pollution emissions constant, ozone concentrations in populated regions will tend to increase in future climate scenarios. For the USA, the climate impact on ozone is most consistently seen in north-central and north-eastern states, with the potential for many thousands of additional ozone-related deaths. The sensitivity of anthropogenic PM 2.5 to climate is more variable across studies and regions, owing to the varied nature of PM constituents, as well as to less complete characterization of PM reaction chemistry in available atmospheric models. However, PM emitted by wildland fires is likely to become an increasing health risk in many parts of the world as climate continues to change. The complex interactions between climate change and air quality imply that future policies to mitigate these twin challenges will benefit from greater coordination. Assessing the health implications of alternative policy approaches towards climate and pollution mitigation will be a critical area of future work.

  12. Ozone sensitivity to its precursor emissions in northeastern Mexico for a summer air pollution episode.

    PubMed

    Sierra, A; Vanoye, A Y; Mendoza, A

    2013-10-01

    A summer episode was modeled to address the expected response of ambient air O3 to hypothetical emission control scenarios in northeastern Mexico, and in particular in the Monterrey Metropolitan Area (MMA). This region is of interest because the MMA holds one of the worst air quality problems in the country and levels of air pollutants in the rest of northeastern Mexico are starting to be a concern. The MM5-SMOKE-CMAQ platform was used to conduct the numerical experiments. Twenty-four control scenarios were evaluated, combining the level of emission controls of O3 precursors (NO(x) and volatile organic compounds [VOCs]) from 0% to 50%. For the MMA, VOC-only controls result in the best option to reduce O3 concentrations, though the benefit is limited to the urban core. This same strategy results in negligible benefits for the rest of northeastern Mexico. NO(x) controls result in an increase in O3 concentration within the MMA of up to 20 ppbv and a decrease at downwind locations of up to 11 ppbv, with respect to the base-case scenario. Indicator ratios were also used to probe for NO(x)-sensitive and VOC-sensitive areas. Locations with an important influence of NO(x) point sources (i.e., Monclova and Nava/Acuña) are quite sensitive to changes in NO(x) emissions. Border cities in the Rio Bravo/Grande Valley tend to be marginally NO(x)-sensitive. Overall, the MMA seems to be dominated by a VOC-sensitive regime, while the rest of the region would tend to have a NO(x)-sensitive response. The results obtained serve to expand the current knowledge on the chemical regimes that dominate this region (VOC- or NO(x)-sensitive), and thus could help guide public policies related to emission regional control strategies.

  13. Air pollution trends over Indian megacities and their local-to-global implications

    NASA Astrophysics Data System (ADS)

    Gurjar, B. R.; Ravindra, Khaiwal; Nagpure, Ajay Singh

    2016-10-01

    More than half of the world's population lives in urban areas. It is estimated that by 2030 there will be 41 megacities and most of them will be located in developing countries. The megacities in India (Delhi, Mumbai, and Kolkata) collectively have >46 million inhabitants. Increasing population and prosperity results in rapid growth of the already large consumption of energy and other resources, which contributes to air pollution, among other problems. Megacity pollution outflow plumes contain high levels of criteria pollutants (e.g. Particulate matter, SO2, NOx), greenhouse gases, ozone precursors and aerosols; which can affect the atmosphere not only on a local scale but also on regional and global scales. In the current study, emissions and concentration trends of criteria and other air pollutants (polycyclic aromatic hydrocarbons, carbon monoxide and greenhouse gases) were examined in the three Indian megacities. Further, various policies and control strategies adopted by Indian Government are also discussed to improve air quality. Decreasing trends of SO2 was observed in all three megacities due to decrease in the sulfur content in coal and diesel. However, increasing trend for NOx was found in these megacities due to increase in number of vehicles registered and high flash point of CNG engines, which leads to higher NOx emission. In terms of SPM and PM10, highest emissions have been found at Kolkata, whereas highest ambient concentrations were recorded in Delhi. For Mumbai and Kolkata fluctuating trends of SPM concentrations were observed between 1991 and 1998 and stable afterwards till 2005; whereas for Delhi, fluctuating trend was observed for the entire study period. However, several steps have been taken to control air pollution in India but there is a need to focus on control of non-exhaust emissions including municipal solid waste and biomass burning in the megacities and surrounding areas.

  14. Air pollution: Tropospheric ozone, and wet deposition of sulfate and inorganic nitrogen

    Treesearch

    John W. Coulston

    2009-01-01

    The influence of air pollutants on ecosystems in the United States is an important environmental issue. The term “air pollution” encompasses a wide range of topics, but acid deposition and ozone are primary concerns in the context of forest health. Acid deposition partially results from emissions of sulfur dioxide, nitrogen oxides, and ammonia that are deposited in wet...

  15. Win–Win strategies to promote air pollutant control policies and non-fossil energy target regulation in China

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Lining; Patel, Pralit L.; Yu, Sha

    The rapid growth of energy consumption in China has led to increased emissions of air pollutants. As a response, in its 12th Five Year Plan the Chinese government proposed mitigation targets for SO2 and NOx emissions. Herein we have investigated mitigation measures taken in different sectors and their corresponding impacts on the energy system. Additionally, as non-fossil energy development has gained traction in addressing energy and environmental challenges in China, we further investigated the impact of non-fossil energy development on air pollutant emissions, and then explored interactions and co-benefits between these two types of policies. An extended Global Change Assessmentmore » Model (GCAM) was used in this study, which includes an additional air pollutant emissions control module coupling multiple end-of-pipe (EOP) control technologies with energy technologies, as well as more detailed end-use sectors in China. We find that implementing EOP control technologies would reduce air pollution in the near future, but with little room left to implement these EOP technologies, other cleaner and more efficient technologies are also effective. These technologies would reduce final energy consumption, increase electricity’s share in final energy, and increase the share of non-fossil fuels in primary energy and electricity consumption. Increasing non-fossil energy usage at China’s proposed adoption rate would in turn also reduce SO2 and NOx emissions, however, the reductions from this policy alone still lag behind the targeted requirements of air pollutant reduction. Fortunately, a combination of air pollutant controls and non-fossil energy development could synergistically help realize the respective individual targets, and would result in lower costs than would addressing these issues separately.« less

  16. 75 FR 56942 - Revisions to the California State Implementation Plan, San Diego County Air Pollution Control...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-17

    ... the California State Implementation Plan, San Diego County Air Pollution Control District AGENCY... the San Diego Air Pollution Control District (SDCAPCD) portion of the California State Implementation... to approve a local rule to regulate these emission sources under the Clean Air Act as amended in 1990...

  17. Assessment of air pollutant emissions from brick kilns

    NASA Astrophysics Data System (ADS)

    Rajarathnam, Uma; Athalye, Vasudev; Ragavan, Santhosh; Maithel, Sameer; Lalchandani, Dheeraj; Kumar, Sonal; Baum, Ellen; Weyant, Cheryl; Bond, Tami

    2014-12-01

    India has more than 100,000 brick kilns producing around 250 billion bricks annually. Indian brick industry is often a small scale industry and third largest consumer of coal in the country. With the growing demand for building materials and characterised by lack of pollution control measures the brick industry has a potential to cause adverse effects on the environment. This paper presents assessment of five brick making technologies based on the measurements carried out at seventeen individual brick kilns. Emissions of PM, SO2, CO and CO2 were measured and these emissions were used to estimate the emission factors for comparing the emissions across different fuel or operating conditions. Estimated emission from brick kilns in South Asia are about 0.94 million tonnes of PM; 3.9 million tonnes of CO and 127 million tonnes of CO2 per year. Among various technologies that are widely used in India, Zig zag and vertical shaft brick kilns showed better performance in terms of emissions over the traditional fixed chimney Bull's trench kilns. This suggests that the replacement of traditional technologies with Zig zag, vertical shaft brick kilns or other cleaner kiln technologies will contribute towards improvements in the environmental performance of brick kiln industry in the country. Zig zag kilns appear to be the logical replacement because of low capital investment, easy integration with the existing production process, and the possibility of retrofitting fixed chimney Bull's trench kilns into Zig zag firing.

  18. The CHRONOS mission: capability for sub-hourly synoptic observations of carbon monoxide and methane to quantify emissions and transport of air pollution

    NASA Astrophysics Data System (ADS)

    Edwards, David P.; Worden, Helen M.; Neil, Doreen; Francis, Gene; Valle, Tim; Arellano, Avelino F., Jr.

    2018-02-01

    The CHRONOS space mission concept provides time-resolved abundance for emissions and transport studies of the highly variable and highly uncertain air pollutants carbon monoxide and methane, with sub-hourly revisit rate at fine (˜ 4 km) horizontal spatial resolution across a North American domain. CHRONOS can provide complete synoptic air pollution maps (snapshots) of the continental domain with less than 10 min of observations. This rapid mapping enables visualization of air pollution transport simultaneously across the entire continent and enables a sentinel-like capability for monitoring evolving, or unanticipated, air pollution sources in multiple locations at the same time with high temporal resolution. CHRONOS uses a compact imaging gas filter correlation radiometer for these observations, with heritage from more than 17 years of scientific data and algorithm advances by the science teams for the Measurements of Pollution in the Troposphere (MOPITT) instrument on NASA's Terra spacecraft in low Earth orbit. To achieve continental-scale sub-hourly sampling, the CHRONOS mission would be conducted from geostationary orbit, with the instrument hosted on a communications or meteorological platform. CHRONOS observations would contribute to an integrated observing system for atmospheric composition using surface, suborbital and satellite data with atmospheric chemistry models, as defined by the Committee on Earth Observing Satellites. Addressing the U.S. National Academy's 2007 decadal survey direction to characterize diurnal changes in tropospheric composition, CHRONOS observations would find direct societal applications for air quality management and forecasting to protect public health.

  19. Health Effects of Air Pollution: A Historical Review and Present Status.

    PubMed

    Shima, Masayuki

    2017-01-01

    During the 1960s, the concentrations of air pollutants, particularly that of sulfur dioxide (SO 2 ), were extremely high in many industrial cities in Japan, and the prevalence of bronchial asthma and chronic bronchitis increased among residents living in the cities. To evaluate the effects of air pollution on respiratory diseases, many epidemiological studies were conducted, and the findings played an important role in the regulatory control of air pollution. After 1970, the concentration of SO 2 has decreased markedly, and its adverse health effects have been minimized. On the other hand, the increasing automobile traffic in Japan has caused considerable increases in concentrations of air pollutants, such as nitrogen oxides (NOx) and particulate matter (PM). The large-scale epidemiological studies conducted in Japan showed that traffic-related air pollution was associated with the development of asthma in school children and the persistence of asthmatic symptoms in preschool children. In recent years, however, the concentrations of NOx and PM have gradually decreased, since control measures based on the Automobile NOx/PM law were enforced in 2001. At present, the adverse health effects of airborne fine particulate matter (PM 2.5 ) and photochemical oxidants have become a major concern. These air pollutants consist of not only emissions from primary sources but also secondary formations in air, and have spread worldwide. Both short- and long-term exposure to these air pollutants are reported to increase the risk of respiratory and cardiovascular diseases in the population. Therefore, global efforts are necessary to reduce the health risk of these air pollutants.

  20. A modeling study of the nonlinear response of fine particles to air pollutant emissions in the Beijing-Tianjin-Hebei region

    NASA Astrophysics Data System (ADS)

    Zhao, Bin; Wu, Wenjing; Wang, Shuxiao; Xing, Jia; Chang, Xing; Liou, Kuo-Nan; Jiang, Jonathan H.; Gu, Yu; Jang, Carey; Fu, Joshua S.; Zhu, Yun; Wang, Jiandong; Lin, Yan; Hao, Jiming

    2017-10-01

    The Beijing-Tianjin-Hebei (BTH) region has been suffering from the most severe fine-particle (PM2. 5) pollution in China, which causes serious health damage and economic loss. Quantifying the source contributions to PM2. 5 concentrations has been a challenging task because of the complicated nonlinear relationships between PM2. 5 concentrations and emissions of multiple pollutants from multiple spatial regions and economic sectors. In this study, we use the extended response surface modeling (ERSM) technique to investigate the nonlinear response of PM2. 5 concentrations to emissions of multiple pollutants from different regions and sectors over the BTH region, based on over 1000 simulations by a chemical transport model (CTM). The ERSM-predicted PM2. 5 concentrations agree well with independent CTM simulations, with correlation coefficients larger than 0.99 and mean normalized errors less than 1 %. Using the ERSM technique, we find that, among all air pollutants, primary inorganic PM2. 5 makes the largest contribution (24-36 %) to PM2. 5 concentrations. The contribution of primary inorganic PM2. 5 emissions is especially high in heavily polluted winter and is dominated by the industry as well as residential and commercial sectors, which should be prioritized in PM2. 5 control strategies. The total contributions of all precursors (nitrogen oxides, NOx; sulfur dioxides, SO2; ammonia, NH3; non-methane volatile organic compounds, NMVOCs; intermediate-volatility organic compounds, IVOCs; primary organic aerosol, POA) to PM2. 5 concentrations range between 31 and 48 %. Among these precursors, PM2. 5 concentrations are primarily sensitive to the emissions of NH3, NMVOC + IVOC, and POA. The sensitivities increase substantially for NH3 and NOx and decrease slightly for POA and NMVOC + IVOC with the increase in the emission reduction ratio, which illustrates the nonlinear relationships between precursor emissions and PM2. 5 concentrations. The contributions of primary

  1. Controlling air pollution from passenger ferries: cost-effectiveness of seven technological options.

    PubMed

    Farrell, Alexander E; Corbett, James J; Winebrake, James J

    2002-12-01

    Continued interest in improving air quality in the United States along with renewed interest in the expansion of urban passenger ferry service has created concern about air pollution from ferry vessels. This paper presents a methodology for estimating the air pollution emissions from passenger ferries and the costs of emissions control strategies. The methodology is used to estimate the emissions and costs of retrofitting or re-powering ferries with seven technological options (combinations of propulsion and emission control systems) onto three vessels currently in service in San Francisco Bay. The technologies include improved engine design, cleaner fuels (including natural gas), and exhaust gas cleanup devices. The three vessels span a range of ages and technologies, from a 25-year-old monohull to a modern, high-speed catamaran built only four years ago. By looking at a range of technologies, vessel designs, and service conditions, a sense of the broader implications of controlling emissions from passenger ferries across a range of vessels and service profiles is provided. Tier 2-certified engines are the most cost-effective choice, but all options are cost-effective relative to other emission control strategies already in place in the transportation system.

  2. Final Rule for Finding That Greenhouse Gas Emissions From Aircraft Cause or Contribute to Air Pollution That May Reasonably Be Anticipated To Endanger Public Health and Welfare

    EPA Pesticide Factsheets

    The EPA finalized findings that greenhouse gas (GHG) emissions from certain classes of engines used in aircraft contribute to the air pollution that causes climate change endangering public health and welfare under section 231(a) of the Clean Air Act.

  3. 76 FR 4155 - National Emission Standards for Hazardous Air Pollutants for Source Categories: Gasoline...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-24

    ...This action promulgates amendments to the National Emission Standards for Hazardous Air Pollutants for Source Categories: Gasoline Distribution Bulk Terminals, Bulk Plants, and Pipeline Facilities; and Gasoline Dispensing Facilities, which EPA promulgated on January 10, 2008, and amended on March 7, 2008. In this action, EPA is finalizing amendments and clarifications to certain definitions and applicability provisions of the final rules in response to some of the issues raised in the petitions for reconsideration. In addition, several other compliance-related questions posed by various individual stakeholders and State and local agency representatives are addressed in this action. We are also denying reconsideration on one issue raised in a petition for reconsideration received by the Agency on the final rules.

  4. Predicted impact of thermal power generation emission control measures in the Beijing-Tianjin-Hebei region on air pollution over Beijing, China.

    PubMed

    Wang, Liqiang; Li, Pengfei; Yu, Shaocai; Mehmood, Khalid; Li, Zhen; Chang, Shucheng; Liu, Weiping; Rosenfeld, Daniel; Flagan, Richard C; Seinfeld, John H

    2018-01-17

    Widespread economic growth in China has led to increasing episodes of severe air pollution, especially in major urban areas. Thermal power plants represent a particularly important class of emissions. Here we present an evaluation of the predicted effectiveness of a series of recently proposed thermal power plant emission controls in the Beijing-Tianjin-Hebei (BTH) region on air quality over Beijing using the Community Multiscale Air Quality(CMAQ) atmospheric chemical transport model to predict CO, SO 2 , NO 2 , PM 2.5 , and PM 10 levels. A baseline simulation of the hypothetical removal of all thermal power plants in the BTH region is predicted to lead to 38%, 23%, 23%, 24%, and 24% reductions in current annual mean levels of CO, SO 2 , NO 2 , PM 2.5 , and PM 10 in Beijing, respectively. Similar percentage reductions are predicted in the major cities in the BTH region. Simulations of the air quality impact of six proposed thermal power plant emission reduction strategies over the BTH region provide an estimate of the potential improvement in air quality in the Beijing metropolitan area, as a function of the time of year.

  5. Impacts of Energy Sector Emissions on PM2.5 Air Quality in Northern India

    NASA Astrophysics Data System (ADS)

    Karambelas, A. N.; Kiesewetter, G.; Heyes, C.; Holloway, T.

    2015-12-01

    India experiences high concentrations of fine particulate matter (PM2.5), and several Indian cities currently rank among the world's most polluted cities. With ongoing urbanization and a growing economy, emissions from different energy sectors remain major contributors to air pollution in India. Emission sectors impact ambient air quality differently due to spatial distribution (typical urban vs. typical rural sources) as well as source height characteristics (low-level vs. high stack sources). This study aims to assess the impacts of emissions from three distinct energy sectors—transportation, domestic, and electricity—on ambient PM2.5­­ in northern India using an advanced air quality analysis framework based on the U.S. EPA Community Multi-Scale Air Quality (CMAQ) model. Present air quality conditions are simulated using 2010 emissions from the Greenhouse Gas-Air Pollution Interaction and Synergies (GAINS) model. Modeled PM2.5 concentrations are compared with satellite observations of aerosol optical depth (AOD) from the Moderate Imaging Spectroradiometer (MODIS) for 2010. Energy sector emissions impacts on future (2030) PM2.5 are evaluated with three sensitivity simulations, assuming maximum feasible reduction technologies for either transportation, domestic, or electricity sectors. These simulations are compared with a business as usual 2030 simulation to assess relative sectoral impacts spatially and temporally. CMAQ is modeled at 12km by 12km and include biogenic emissions from the Community Land Model coupled with the Model of Emissions of Gases and Aerosols in Nature (CLM-MEGAN), biomass burning emissions from the Global Fires Emissions Database (GFED), and ERA-Interim meteorology generated with the Weather Research and Forecasting (WRF) model for 2010 to quantify the impact of modified anthropogenic emissions on ambient PM2.5 concentrations. Energy sector emissions analysis supports decision-making to improve future air quality and public health in

  6. Impact of varying area of polluting surface materials on perceived air quality.

    PubMed

    Sakr, W; Knudsen, H N; Gunnarsen, L; Haghighat, F

    2003-06-01

    A laboratory study was performed to investigate the impact of the concentration of pollutants in the air on emissions from building materials. Building materials were placed in ventilated test chambers. The experimental set-up allowed the concentration of pollution in the exhaust air to be changed either by diluting exhaust air with clean air (changing the dilution factor) or by varying the area of the material inside the chamber when keeping the ventilation rate constant (changing the area factor). Four different building materials and three combinations of two or three building materials were studied in ventilated small-scale test chambers. Each individual material and three of their combinations were examined at four different dilution factors and four different area factors. An untrained panel of 23 subjects assessed the air quality from the chambers. The results show that a certain increase in dilution improves the perceived air quality more than a similar decrease in area. The reason for this may be that the emission rate of odorous pollutants increases when the concentration in the chamber decreases. The results demonstrate that, in some cases the effect of increased ventilation on the air quality may be less than expected from a simple dilution model.

  7. Pupils' Understanding of Air Pollution

    ERIC Educational Resources Information Center

    Dimitriou, Anastasia; Christidou, Vasilia

    2007-01-01

    This paper reports on a study of pupils' knowledge and understanding of atmospheric pollution. Specifically, the study is aimed at identifying: 1) the extent to which pupils conceptualise the term "air pollution" in a scientifically appropriate way; 2) pupils' knowledge of air pollution sources and air pollutants; and 3) pupils'…

  8. A pound of prevention: Air pollution and the fuel cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, B.L.; Rose, R.

    1996-12-31

    The expanded use of fuel cells in transportation and power generation is an exciting proposition for public health officials because of the potential of this technology to help reduce air pollution levels around the globe. Such work is about prevention -- prevention of air emissions of hazardous substances. Prevention is a key concept in public health. An example is quarantine, which aims to prevent the spread of a disease-causing organism. In the environmental arena, prevention includes cessation of pollution. Air pollution prevention policies also have a practical impact. Sooner or later ideas on technology, especially new technology, must be soldmore » to policy makers, legislators, and eventually the public. Advocating technologies that will improve human health and welfare can be an effective marketing strategy.« less

  9. Large Gain in Air Quality Compared to an Alternative Anthropogenic Emissions Scenario

    NASA Technical Reports Server (NTRS)

    Daskalakis, Nikos; Tsigaridis, Kostas; Myriokefalitakis, Stelios; Fanourgakis, George S.; Kanakidou, Maria

    2016-01-01

    During the last 30 years, significant effort has been made to improve air quality through legislation for emissions reduction. Global three-dimensional chemistrytransport simulations of atmospheric composition over the past 3 decades have been performed to estimate what the air quality levels would have been under a scenario of stagnation of anthropogenic emissions per capita as in 1980, accounting for the population increase (BA1980) or using the standard practice of neglecting it (AE1980), and how they compare to the historical changes in air quality levels. The simulations are based on assimilated meteorology to account for the yearto- year observed climate variability and on different scenarios of anthropogenic emissions of pollutants. The ACCMIP historical emissions dataset is used as the starting point. Our sensitivity simulations provide clear indications that air quality legislation and technology developments have limited the rapid increase of air pollutants. The achieved reductions in concentrations of nitrogen oxides, carbon monoxide, black carbon, and sulfate aerosols are found to be significant when comparing to both BA1980 and AE1980 simulations that neglect any measures applied for the protection of the environment. We also show the potentially large tropospheric air quality benefit from the development of cleaner technology used by the growing global population. These 30-year hindcast sensitivity simulations demonstrate that the actual benefit in air quality due to air pollution legislation and technological advances is higher than the gain calculated by a simple comparison against a constant anthropogenic emissions simulation, as is usually done. Our results also indicate that over China and India the beneficial technological advances for the air quality may have been masked by the explosive increase in local population and the disproportional increase in energy demand partially due to the globalization of the economy.

  10. High-Resolution Air Pollution Mapping with Google Street View Cars: Exploiting Big Data.

    PubMed

    Apte, Joshua S; Messier, Kyle P; Gani, Shahzad; Brauer, Michael; Kirchstetter, Thomas W; Lunden, Melissa M; Marshall, Julian D; Portier, Christopher J; Vermeulen, Roel C H; Hamburg, Steven P

    2017-06-20

    Air pollution affects billions of people worldwide, yet ambient pollution measurements are limited for much of the world. Urban air pollution concentrations vary sharply over short distances (≪1 km) owing to unevenly distributed emission sources, dilution, and physicochemical transformations. Accordingly, even where present, conventional fixed-site pollution monitoring methods lack the spatial resolution needed to characterize heterogeneous human exposures and localized pollution hotspots. Here, we demonstrate a measurement approach to reveal urban air pollution patterns at 4-5 orders of magnitude greater spatial precision than possible with current central-site ambient monitoring. We equipped Google Street View vehicles with a fast-response pollution measurement platform and repeatedly sampled every street in a 30-km 2 area of Oakland, CA, developing the largest urban air quality data set of its type. Resulting maps of annual daytime NO, NO 2 , and black carbon at 30 m-scale reveal stable, persistent pollution patterns with surprisingly sharp small-scale variability attributable to local sources, up to 5-8× within individual city blocks. Since local variation in air quality profoundly impacts public health and environmental equity, our results have important implications for how air pollution is measured and managed. If validated elsewhere, this readily scalable measurement approach could address major air quality data gaps worldwide.

  11. Air Pollutant Characterization in Tula Industrial Corridor, Central Mexico, during the MILAGRO Study

    PubMed Central

    Sosa, G.; Vega, E.; González-Avalos, E.; Mora, V.; López-Veneroni, D.

    2013-01-01

    Pollutant emissions and their contribution to local and regional air quality at the industrial area of Tula were studied during a four-week period as part of the MILAGRO initiative. A recurrent shallow stable layer was observed in the morning favoring air pollutants accumulation in the lower 100 m atmospheric layer. In the afternoon the mixing layer height reached 3000 m, along with a featuring low level jet which was responsible of transporting air pollutants at regional scales. Average PM10 at Jasso (JAS) and Tepeji (TEP) was 75.1 and 36.8 μg/m3, respectively while average PM2.5 was 31.0 and 25.7 μg/m3. JAS was highly impacted by local limestone dust, while TEP was a receptor of major sources of combustion emissions with 70% of the PM10 constituted by PM2.5. Average hourly aerosol light absorption was 22 Mm−1, while aerosol scattering (76 Mm−1) was higher compared to a rural site but much lower than at Mexico City. δ 13C values in the epiphyte Tillandsia recurvata show that the emission plume directly affects the SW sector of Mezquital Valley and is then constrained by a mountain range preventing its dispersion. Air pollutants may exacerbate acute and chronic adverse health effects in this region. PMID:23484131

  12. Air pollutant characterization in Tula industrial corridor, Central Mexico, during the MILAGRO study.

    PubMed

    Sosa, G; Vega, E; González-Avalos, E; Mora, V; López-Veneroni, D

    2013-01-01

    Pollutant emissions and their contribution to local and regional air quality at the industrial area of Tula were studied during a four-week period as part of the MILAGRO initiative. A recurrent shallow stable layer was observed in the morning favoring air pollutants accumulation in the lower 100 m atmospheric layer. In the afternoon the mixing layer height reached 3000 m, along with a featuring low level jet which was responsible of transporting air pollutants at regional scales. Average PM10 at Jasso (JAS) and Tepeji (TEP) was 75.1 and 36.8 μ g/m(3), respectively while average PM2.5 was 31.0 and 25.7 μ g/m(3). JAS was highly impacted by local limestone dust, while TEP was a receptor of major sources of combustion emissions with 70% of the PM10 constituted by PM2.5. Average hourly aerosol light absorption was 22 Mm(-1), while aerosol scattering (76 Mm(-1)) was higher compared to a rural site but much lower than at Mexico City. δ(13)C values in the epiphyte Tillandsia recurvata show that the emission plume directly affects the SW sector of Mezquital Valley and is then constrained by a mountain range preventing its dispersion. Air pollutants may exacerbate acute and chronic adverse health effects in this region.

  13. The Siberian High and Arctic Sea Ice: Long-term Climate Change and Impacts on Air Pollution during Wintertime in China

    NASA Astrophysics Data System (ADS)

    Long, X.; Zhao, S.; Feng, T.; Tie, X.; Li, G.

    2017-12-01

    China has undergone severe air pollution during wintertime as national industrialization and urbanization have been increasingly developed in the past three decades. It has been suggested that high emission and adverse weather patterns contribute to wintertime air pollution. Recent studies propose that climate change and Arctic sea ice loss likely lead to extreme haze events in winter. Here we use two reanalysis and observational datasets to present the trends of Siberian High (SH) intensity over Eurasia, and Arctic temperature and sea ice. The results show the Arctic region of Asia is becoming warming accompanied by a rapid decline of sea ice while Eurasia is cooling and SH intensity is gradually enhancing. Wind patterns induced by these changes cause straight westerly prevailing over Eurasia at the year of weak SH while strengthened northerly winds at the year of strong SH. Therefore, we utilize regional dynamical and chemical WRF-Chem model to determine the impact of SH intensity difference on wintertime air pollution in China. As a result, enhancing northerly winds at the year of strong SH rapidly dilute and transport air pollution, causing a decline of 50 - 400 µg m-3 PM2.5 concentrations relative to that at the year of weak SH. We also assess the impact of emission reduction to half the current level on air pollution. The results show that emission reduction by 50% has an equivalent impact as the variability of SH intensity. This suggests that climate change over Eurasia has largely offset the negative impact of emission on air pollution and it is urgently needed to take measures to mitigate air pollution. In view of current high emission scenario in China, it will be a long way to effectively mitigate, or ultimately prevent wintertime air pollution.

  14. Linking stroke mortality with air pollution, income, and greenness in northwest Florida: an ecological geographical study

    PubMed Central

    Hu, Zhiyong; Liebens, Johan; Rao, K Ranga

    2008-01-01

    Background Relatively few studies have examined the association between air pollution and stroke mortality. Inconsistent and inclusive results from existing studies on air pollution and stroke justify the need to continue to investigate the linkage between stroke and air pollution. No studies have been done to investigate the association between stroke and greenness. The objective of this study was to examine if there is association of stroke with air pollution, income and greenness in northwest Florida. Results Our study used an ecological geographical approach and dasymetric mapping technique. We adopted a Bayesian hierarchical model with a convolution prior considering five census tract specific covariates. A 95% credible set which defines an interval having a 0.95 posterior probability of containing the parameter for each covariate was calculated from Markov Chain Monte Carlo simulations. The 95% credible sets are (-0.286, -0.097) for household income, (0.034, 0.144) for traffic air pollution effect, (0.419, 1.495) for emission density of monitored point source polluters, (0.413, 1.522) for simple point density of point source polluters without emission data, and (-0.289,-0.031) for greenness. Household income and greenness show negative effects (the posterior densities primarily cover negative values). Air pollution covariates have positive effects (the 95% credible sets cover positive values). Conclusion High risk of stroke mortality was found in areas with low income level, high air pollution level, and low level of exposure to green space. PMID:18452609

  15. National Emission Standards for Hazardous Air Pollutants (NESHAP): Halogenated Solvent Cleaning - 1993 Proposed Rule and Test Method & Notice of Public Hearing (58 FR 62566)

    EPA Pesticide Factsheets

    This document is a copy of the Federal Register publication of the November 29, 1993 Proposed Rule and Test Method & Notice of Public Hearing for the National Emission Standards for Hazardous Air Pollutants (NESHAP): Halogenated Solvent Cleaning.

  16. Air Pollution Forecasts: An Overview

    PubMed Central

    Bai, Lu; Wang, Jianzhou; Lu, Haiyan

    2018-01-01

    Air pollution is defined as a phenomenon harmful to the ecological system and the normal conditions of human existence and development when some substances in the atmosphere exceed a certain concentration. In the face of increasingly serious environmental pollution problems, scholars have conducted a significant quantity of related research, and in those studies, the forecasting of air pollution has been of paramount importance. As a precaution, the air pollution forecast is the basis for taking effective pollution control measures, and accurate forecasting of air pollution has become an important task. Extensive research indicates that the methods of air pollution forecasting can be broadly divided into three classical categories: statistical forecasting methods, artificial intelligence methods, and numerical forecasting methods. More recently, some hybrid models have been proposed, which can improve the forecast accuracy. To provide a clear perspective on air pollution forecasting, this study reviews the theory and application of those forecasting models. In addition, based on a comparison of different forecasting methods, the advantages and disadvantages of some methods of forecasting are also provided. This study aims to provide an overview of air pollution forecasting methods for easy access and reference by researchers, which will be helpful in further studies. PMID:29673227

  17. Air Pollution Forecasts: An Overview.

    PubMed

    Bai, Lu; Wang, Jianzhou; Ma, Xuejiao; Lu, Haiyan

    2018-04-17

    Air pollution is defined as a phenomenon harmful to the ecological system and the normal conditions of human existence and development when some substances in the atmosphere exceed a certain concentration. In the face of increasingly serious environmental pollution problems, scholars have conducted a significant quantity of related research, and in those studies, the forecasting of air pollution has been of paramount importance. As a precaution, the air pollution forecast is the basis for taking effective pollution control measures, and accurate forecasting of air pollution has become an important task. Extensive research indicates that the methods of air pollution forecasting can be broadly divided into three classical categories: statistical forecasting methods, artificial intelligence methods, and numerical forecasting methods. More recently, some hybrid models have been proposed, which can improve the forecast accuracy. To provide a clear perspective on air pollution forecasting, this study reviews the theory and application of those forecasting models. In addition, based on a comparison of different forecasting methods, the advantages and disadvantages of some methods of forecasting are also provided. This study aims to provide an overview of air pollution forecasting methods for easy access and reference by researchers, which will be helpful in further studies.

  18. Status of Tropospheric Emissions: Monitoring of Pollution (TEMPO)

    NASA Astrophysics Data System (ADS)

    Suleiman, R. M.; Chance, K.; Liu, X.; Flittner, D. E.; Al-Saadi, J. A.; Janz, S. J.

    2015-12-01

    TEMPO is now well into its implementation phase, having passed both its Key Decision Point C and the Critical Design Review (CDR) for the instrument. The CDR for the ground systems will occur in March 2016 and the CDR for the Mission component at a later date, after the host spacecraft has been selected. TEMPO is on schedule to measure atmospheric pollution for greater North America from space using ultraviolet and visible spectroscopy. TEMPO measures from Mexico City to the Canadian oil sands, and from the Atlantic to the Pacific, hourly and at high spatial resolution. TEMPO provides a tropospheric measurement suite that includes the key elements of tropospheric air pollution chemistry. Measurements are from geostationary (GEO) orbit, to capture the inherent high variability in the diurnal cycle of emissions and chemistry. The small product spatial footprint resolves pollution sources at sub-urban scale. Together, this temporal and spatial resolution improves emission inventories, monitors population exposure, and enables effective emission-control strategies.TEMPO takes advantage of a GEO host spacecraft to provide a modest cost mission that measures the spectra required to retrieve O3, NO2, SO2, H2CO, C2H2O2, H2O, aerosols, cloud parameters, and UVB radiation. TEMPO thus measures the major elements, directly or by proxy, in the tropospheric O3 chemistry cycle. Multi-spectral observations provide sensitivity to O3 in the lowermost troposphere, substantially reducing uncertainty in air quality predictions by 50%. TEMPO quantifies and tracks the evolution of aerosol loading. It provides near-real-time air quality products that will be made widely, publicly available.TEMPO provides much of the atmospheric measurement capability recommended for GEO-CAPE in the 2007 National Research Council Decadal Survey, Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond. Instruments from Europe (Sentinel 4) and Asia (GEMS) will form

  19. Status of Tropospheric Emissions: Monitoring of Pollution (TEMPO)

    NASA Astrophysics Data System (ADS)

    Chance, K.; Liu, X.; Suleiman, R. M.; Flittner, D. E.; Al-Saadi, J. A.; Janz, S. J.

    2016-12-01

    TEMPO is now in the Assembly, Integration and Test (AI&T) phase, having passed its Key Decision Point C, Critical Design Reviews (CDRs) for the instrument and the ground systems, and the Test Readiness Review (TRR). The TEMPO instrument is scheduled for delivery in August 2017. The request for proposals to host TEMPO on a commercial geostationary satellite is scheduled for release by May 2017, with host selection hopefully completed by the end of calendar 2017. TEMPO is thus on schedule to measure atmospheric pollution for greater North America from space using ultraviolet and visible spectroscopy. TEMPO measures from Mexico City and Cuba to the Canadian oil sands, and from the Atlantic to the Pacific, hourly and at high spatial resolution. It provides a measurement suite that includes the key elements of tropospheric air pollution chemistry. Measurements are from geostationary (GEO) orbit, to capture the high variability in the diurnal cycle of emissions and chemistry. The small spatial footprint resolves pollution sources at sub-urban scale. Together, this temporal and spatial resolution improves emission inventories, monitors population exposure, and enables effective emission-control strategies.TEMPO takes advantage of a GEO host spacecraft to provide a mission that measures the spectra required to retrieve O3, NO2, SO2, H2CO, C2H2O2, H2O, aerosols, cloud parameters, and UVB radiation. TEMPO thus measures the major elements, directly or by proxy, in the tropospheric O3 chemistry cycle. Multi-spectral observations provide sensitivity to O3 in the lowermost troposphere, substantially reducing uncertainty in air quality predictions. TEMPO quantifies and tracks the evolution of aerosol loading. It provides near-real-time air quality products that will be made widely, publicly available.TEMPO provides much of the atmospheric measurement capability recommended for GEO-CAPE in the 2007 National Research Council Decadal Survey, Earth Science and Applications from Space

  20. Fine-particulate Air Pollution from Diesel Emission Control and Mortality Rates in Tokyo: A Quasi-experimental Study.

    PubMed

    Yorifuji, Takashi; Kashima, Saori; Doi, Hiroyuki

    2016-11-01

    Evidence linking air pollution with adverse health outcomes is accumulating. However, few studies have adopted a quasi-experimental design to evaluate whether decline in air pollution from regulatory action improves public health. We evaluated the effect of a diesel emission control ordinance introduced in 2003 on mortality rates in 23 wards of the Tokyo metropolitan area, Japan, from October 2000 to September 2012, taking into account change in mortality rates in a reference population (Osaka) with a introduction of such a regulation in 2009. We obtained daily counts of all-cause and cause-specific mortality and concentrations of nitrogen dioxide (NO2) and particulate matter less than 2.5 μm in diameter (PM2.5) during the study period. We employed interrupted time-series analysis to analyze the data. Decline in NO2 during the study period was similar in the two areas, while decline in PM2.5 and the improvement in age-standardized mortality rates were greater in Tokyo's 23 wards compared with Osaka. Even after adjusting for age-standardized mortality rates in Osaka, percent changes in mortality between the first 3-year interval (October 2000 to September 2003) and the last 3-year interval (October 2009 to September 2012) were -6.0% for all causes, -11% for cardiovascular disease, -10% for ischemic heart disease, -6.2% for cerebrovascular disease, -22% for pulmonary disease, and -4.9% for lung cancer. We did not observe a decline in mortality from other causes. This quasi-experimental study in Tokyo suggests that emission control was associated with improvements in both air quality and health outcomes.

  1. Antioxidative response of olive to air emissions from tire burning under various zinc nutritional treatments.

    PubMed

    Hatami, Ashkan; Khoshgoftarmanesh, Amir Hossein

    2016-12-01

    Uniform 2-year old seedlings of a commercial olive cultivar (Olea europaea L., cv. Mahzam) were exposed or unexposed to the air pollution from the controlled burning of waste tires. The plants were supplied with zinc sulfate (ZnSO 4 ) or synthesized Zn(Glycine) 2 (Zn-Gly) or unsupplied with Zn. Exposure to air pollution resulted in oxidative damage to the olive, as indicated by the higher production of malondialdehyde (MDA). Supplement with Zn partly alleviated oxidative damage induced by the air emissions on the olive. Leaf concentration of MDA was higher at the active period of tire burning than that of the inactive one. Exposure to the emissions from tire burning significantly increased leaf ascorbate peroxidase (APX) activity. Supplement with Zn increased APX activity in plants exposed to the air pollution. According to the results, Zn nutrition was effective in alleviating oxidative stress induced by air pollution on the olive. APX seemed to play a significant role in alleviating oxidative damages induced by air emissions from tire burning on the olive; however, the role of other antioxidant enzymes should be addressed in future studies.

  2. Assessment of Health-Cost Externalities of Air Pollution at the National Level using the EVA Model System

    NASA Astrophysics Data System (ADS)

    Brandt, Jørgen; Silver, Jeremy David; Heile Christensen, Jesper; Skou Andersen, Mikael; Geels, Camilla; Gross, Allan; Buus Hansen, Ayoe; Mantzius Hansen, Kaj; Brandt Hedegaard, Gitte; Ambelas Skjøth, Carsten

    2010-05-01

    Air pollution has significant negative impacts on human health and well-being, which entail substantial economic consequences. We have developed an integrated model system, EVA (External Valuation of Air pollution), to assess health-related economic externalities of air pollution resulting from specific emission sources/sectors. The EVA system was initially developed to assess externalities from power production, but in this study it is extended to evaluate costs at the national level. The EVA system integrates a regional-scale atmospheric chemistry transport model (DEHM), address-level population data, exposure-response functions and monetary values applicable for Danish/European conditions. Traditionally, systems that assess economic costs of health impacts from air pollution assume linear approximations in the source-receptor relationships. However, atmospheric chemistry is non-linear and therefore the uncertainty involved in the linear assumption can be large. The EVA system has been developed to take into account the non-linear processes by using a comprehensive, state-of-the-art chemical transport model when calculating how specific changes to emissions affect air pollution levels and the subsequent impacts on human health and cost. Furthermore, we present a new "tagging" method, developed to examine how specific emission sources influence air pollution levels without assuming linearity of the non-linear behaviour of atmospheric chemistry. This method is more precise than the traditional approach based on taking the difference between two concentration fields. Using the EVA system, we have estimated the total external costs from the main emission sectors in Denmark, representing the ten major SNAP codes. Finally, we assess the impacts and external costs of emissions from international ship traffic around Denmark, since there is a high volume of ship traffic in the region.

  3. Improved attribution of climate forcing to emissions by pollutant and sector

    NASA Astrophysics Data System (ADS)

    Shindell, D. T.

    2009-12-01

    Evaluating multi-component climate change mitigation strategies requires knowledge of the diverse direct and indirect effects of emissions. Methane, ozone and aerosols are linked through atmospheric chemistry so that emissions of a single pollutant can affect several species. I will show new calculations of atmospheric composition changes, radiative forcing, and the global warming potential (GWP) for increased emissions of tropospheric ozone and aerosol precursors in a coupled composition-climate model. The results demonstrate that gas-aerosol interactions substantially alter the relative importance of the various emissions, suggesting revisions to the GWPs used in international carbon trading. Additionally, I will present results showing how the net climate impact of particular activities depends strongly upon non-CO2 forcing agents for some sectors. These results will be highlighted by discussing the interplay between air quality emissions controls and climate for the case of emissions from coal-fired power plants. The changing balance between CO2 and air quality pollutants from coal plants may have contributed to the 20th century spatial and temporal patterns of climate change, and is likely to continue to do so as more and more plants are constructed in Asia.

  4. Developing risk-based priorities for reducing air pollution in urban settings in Ukraine.

    PubMed

    Brody, Michael; Caldwell, Jane; Golub, Alexander

    2007-02-01

    Ukraine, when part of the former Soviet Union, was responsible for about 25% of its overall industrial production. This aging industrial infrastructure continues to emit enormous volumes of air and water pollution and wastes. The National Report on the State of Environment in Ukraine 1999 (Ukraine Ministry of Environmental Protection [MEP], 2000) shows significant air pollution. There are numerous emissions that have been associated with developmental effects, chronic long-term health effects, and cancer. Ukraine also has been identified as a major source of transboundary air pollution for the eastern Mediterranean region. Ukraine's Environment Ministry is not currently able to strategically target high-priority emissions and lacks the resources to address all these problems. For these reasons, the U.S. Environmental Protection Agency set up a partnership with Ukraine's Ministry of Environmental Protection to strengthen its capacity to set environmental priorities through the use of comparative environmental risk assessment and economic analysis--the Capacity Building Project. The project is also addressing improvements in the efficiency and effectiveness of the use of its National Environmental Protection Fund. The project consists of a series of workshops with Ukrainian MEP officials in comparative risk assessment of air pollutant emissions in several heavily industrialized oblasts; cost-benefit and cost-effectiveness analysis; and environmental finance. Pilot risk assessment analyses have been completed. At the end of the Capacity Building Project it is expected that the use of the National Environmental Protection fund and the regional level oblast environmental protection funds will begin to target and identify the highest health and environmental risk emissions.

  5. Patterns of household concentrations of multiple indoor air pollutants in China.

    PubMed

    He, Gongli; Ying, Bo; Liu, Jiang; Gao, Shirong; Shen, Shaolin; Balakrishnan, Kalpana; Jin, Yinlong; Liu, Fan; Tang, Ning; Shi, Kai; Baris, Enis; Ezzati, Majid

    2005-02-15

    Most previous studies on indoor air pollution from household use of solid fuels have used either indirect proxies for human exposure or measurements of individual pollutants at a single point, as indicators of (exposure to) the mixture of pollutants in solid fuel smoke. A heterogeneous relationship among pollutant-location pairs should be expected because specific fuel-stove technology and combustion and dispersion conditions such as temperature, moisture, and air flow are likely to affect the emissions and dispersion of the various pollutants differently. We report on a study for monitoring multiple pollutants--including respirable particles (RPM), carbon monoxide, sulfur dioxide, fluoride, and arsenic--at four points inside homes that used coal and/or biomass fuels in Guizhou and Shaanxi provinces of China. All pollutants exhibited large variability in emissions and spatial dispersion within and between provinces and were generally poorly correlated. RPM, followed by SO2, was generally higher than common health-based guidelines/standards and provided sufficient resolution for assessing variations within and between households in both provinces. Indoor heating played an important role in the level and spatial patterns of pollution inside homes, possibly to an extent more important than cooking. The findings indicate the need for monitoring of RPM and selected other pollutants in longer-term health studies, with focus on both cooking and living/sleeping areas.

  6. The impact of shipping emissions on air pollution in the greater North Sea region - Part 1: Current emissions and concentrations

    NASA Astrophysics Data System (ADS)

    Aulinger, A.; Matthias, V.; Zeretzke, M.; Bieser, J.; Quante, M.; Backes, A.

    2016-01-01

    The North Sea is one of the areas with the highest ship traffic densities worldwide. At any time, about 3000 ships are sailing its waterways. Previous scientific publications have shown that ships contribute significantly to atmospheric concentrations of NOx, particulate matter and ozone. Especially in the case of particulate matter and ozone, this influence can even be seen in regions far away from the main shipping routes. In order to quantify the effects of North Sea shipping on air quality in its bordering states, it is essential to determine the emissions from shipping as accurately as possible. Within Interreg IVb project Clean North Sea Shipping (CNSS), a bottom-up approach was developed and used to thoroughly compile such an emission inventory for 2011 that served as the base year for the current emission situation. The innovative aspect of this approach was to use load-dependent functions to calculate emissions from the ships' current activities instead of averaged emission factors for the entire range of the engine loads. These functions were applied to ship activities that were derived from hourly records of Automatic Identification System signals together with a database containing the engine characteristics of the vessels that traveled the North Sea in 2011. The emission model yielded ship emissions among others of NOx and SO2 at high temporal and spatial resolution that were subsequently used in a chemistry transport model in order to simulate the impact of the emissions on pollutant concentration levels. The total emissions of nitrogen reached 540 Gg and those of sulfur oxides 123 Gg within the North Sea - including the adjacent western part of the Baltic Sea until 5° W. This was about twice as much of those of a medium-sized industrialized European state like the Netherlands. The relative contribution of ships to, for example, NO2 concentration levels ashore close to the sea can reach up to 25 % in summer and 15 % in winter. Some hundred kilometers

  7. RESEARCH AREA -- POLLUTION PREVENTION (P2) (EMISSIONS CHARACTERIZATION AND PREVENTION BRANCH, AIR POLLUTION PREVENTION AND CONTROL DIVISION, NRMRL)

    EPA Science Inventory

    The objective of this program is to develop and demonstrate technologies, processes, and products that will prevent the formation of hazardous emission or criteria pollutants. The pollution prevention alternatives are often no more costly (and sometimes even less) than tradition...

  8. Analysis of a long-term measurement of air pollutants (2007-2011) in North China Plain (NCP); Impact of emission reduction during the Beijing Olympic Games.

    PubMed

    Xu, Ruiguang; Tang, Guiqian; Wang, Yuesi; Tie, Xuexi

    2016-09-01

    Five years measurements were used to evaluate the effect of emission controls on the changes of air pollutants in Beijing and its surroundings in the NCP during 2008 Olympic Games (2008OG). The major challenge of this study was to filter out the effect of variability of meteorological conditions, when compared the air pollutants during the game to non-game period. We used four-year (2007, 2009-2011) average as the Non-2008OG to smooth the temporal variability caused by meteorological parameters. To study the spatial variability and regional transport, 6 sites (urban, rural, a mega city, a heavy industrial city, and a remote site) were selected. The result showed that the annually meteorological variability was significantly reduced. Such as, in BJ the differences between 2008OG and 5-years averaged values were 2.7% for relative humidity and 0.6% for wind speed. As a result, the anomaly of air pollutants between 2008OG and Non-2008OG can largely attribute to the emission control. The comparison showed that the major pollutants (PM10, PM2.5, NO, NOx) at the 6 sites in 2008OG were consistently lowered. For example, PM2.5 in BJ decreased from 75 to 45 μg/m(3) (40% reduction). However, the emission controls had minor effect on O3 concentrations (1% reduction). In contrast, the O3 precursor (NOx) reduced from 19.7 to 13.2 ppb (33% reduction). The in-sensitivity between NOx and O3 suggested that the O3 formation was under VOCs control condition in NCP, showing that strong VOC emission control is needed in order to significantly reduce O3 concentration in the region. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. National Port Strategy Assessment: Reducing Air Pollution and Greenhouse Gases at U.S. Ports

    EPA Pesticide Factsheets

    The assessment finds that air pollution at the Nation's ports can be significantly reduced by implementing currently available strategies and technologies to reduce emissions of harmful pollutants from diesel vehicles and engines.

  10. Meteorological Drivers of Extreme Air Pollution Events

    NASA Astrophysics Data System (ADS)

    Horton, D. E.; Schnell, J.; Callahan, C. W.; Suo, Y.

    2017-12-01

    The accumulation of pollutants in the near-surface atmosphere has been shown to have deleterious consequences for public health, agricultural productivity, and economic vitality. Natural and anthropogenic emissions of ozone and particulate matter can accumulate to hazardous concentrations when atmospheric conditions are favorable, and can reach extreme levels when such conditions persist. Favorable atmospheric conditions for pollutant accumulation include optimal temperatures for photochemical reaction rates, circulation patterns conducive to pollutant advection, and a lack of ventilation, dispersion, and scavenging in the local environment. Given our changing climate system and the dual ingredients of poor air quality - pollutants and the atmospheric conditions favorable to their accumulation - it is important to characterize recent changes in favorable meteorological conditions, and quantify their potential contribution to recent extreme air pollution events. To facilitate our characterization, this study employs the recently updated Schnell et al (2015) 1°×1° gridded observed surface ozone and particulate matter datasets for the period of 1998 to 2015, in conjunction with reanalysis and climate model simulation data. We identify extreme air pollution episodes in the observational record and assess the meteorological factors of primary support at local and synoptic scales. We then assess (i) the contribution of observed meteorological trends (if extant) to the magnitude of the event, (ii) the return interval of the meteorological event in the observational record, simulated historical climate, and simulated pre-industrial climate, as well as (iii) the probability of the observed meteorological trend in historical and pre-industrial climates.

  11. PUBLICATIONS (AIR POLLUTION TECHNOLOGY BRANCH, AIR POLLUTION PREVENTION AND CONTROL DIVISION, NRMRL)

    EPA Science Inventory

    The Air Pollution Technology Branch (APTB) of NRMRL's Air Pollution Prevention and Control Division produces and publishes highly specialized technical and scientific documents related to APTB's research. Areas of research covered include artificial intelligence, CFC destruction,...

  12. Spatially- and Temporally-Resolved Measurements of Roadway Air Pollution Using a Zero-Emission Electric Vehicle

    EPA Science Inventory

    Vehicle-related air pollution has an intrinsically dynamic nature. Recent field measurements and modeling work have demonstrated that near-road topography may modify levels of air pollutants reaching populations residing and working in close proximity to roadways. However, the ma...

  13. Air pollution and survival within the Washington University-EPRI veterans cohort: risks based on modeled estimates of ambient levels of hazardous and criteria air pollutants.

    PubMed

    Lipfert, Frederick W; Wyzga, Ronald E; Baty, Jack D; Miller, J Philip

    2009-04-01

    For this paper, we considered relationships between mortality, vehicular traffic density, and ambient levels of 12 hazardous air pollutants, elemental carbon (EC), oxides of nitrogen (NOx), sulfur dioxide (SO2), and sulfate (SO4(2-)). These pollutant species were selected as markers for specific types of emission sources, including vehicular traffic, coal combustion, smelters, and metal-working industries. Pollutant exposures were estimated using emissions inventories and atmospheric dispersion models. We analyzed associations between county ambient levels of these pollutants and survival patterns among approximately 70,000 U.S. male veterans by mortality period (1976-2001 and subsets), type of exposure model, and traffic density level. We found significant associations between all-cause mortality and traffic-related air quality indicators and with traffic density per se, with stronger associations for benzene, formaldehyde, diesel particulate, NOx, and EC. The maximum effect on mortality for all cohort subjects during the 26-yr follow-up period is approximately 10%, but most of the pollution-related deaths in this cohort occurred in the higher-traffic counties, where excess risks approach 20%. However, mortality associations with diesel particulates are similar in high- and low-traffic counties. Sensitivity analyses show risks decreasing slightly over time and minor differences between linear and logarithmic exposure models. Two-pollutant models show stronger risks associated with specific traffic-related pollutants than with traffic density per se, although traffic density retains statistical significance in most cases. We conclude that tailpipe emissions of both gases and particles are among the most significant and robust predictors of mortality in this cohort and that most of those associations have weakened over time. However, we have not evaluated possible contributions from road dust or traffic noise. Stratification by traffic density level suggests the

  14. Cardiovascular effects of air pollution

    PubMed Central

    Bourdrel, Thomas; Bind, Marie-Abèle; Béjot, Yannick; Morel, Olivier; Argacha, Jean-François

    2018-01-01

    Summary Air pollution is composed of particulate matter (PM) and gaseous pollutants, such as nitrogen dioxide and ozone. PM is classified according to size into coarse particles (PM10), fine particles (PM2.5) and ultrafine particles. We aim to provide an original review of the scientific evidence from epidemiological and experimental studies examining the cardiovascular effects of outdoor air pollution. Pooled epidemiological studies reported that a 10 μg/m3 increase in long-term exposure to PM2.5 was associated with an 11% increase in cardiovascular mortality. Increased cardiovascular mortality was also related to long-term and short-term exposure to nitrogen dioxide. Exposure to air pollution and road traffic was associated with an increased risk of arteriosclerosis, as shown by premature aortic and coronary calcification. Short-term increases in air pollution were associated with an increased risk of myocardial infarction, stroke and acute heart failure. The risk was increased even when pollutant concentrations were below European standards. Reinforcing the evidence from epidemiological studies, numerous experimental studies demonstrated that air pollution promotes a systemic vascular oxidative stress reaction. Radical oxygen species induce endothelial dysfunction, monocyte activation and some proatherogenic changes in lipoproteins, which initiate plaque formation. Furthermore, air pollution favours thrombus formation, because of an increase in coagulation factors and platelet activation. Experimental studies also indicate that some pollutants have more harmful cardiovascular effects, such as combustion-derived PM2.5 and ultrafine particles. Air pollution is a major contributor to cardiovascular diseases. Promotion of safer air quality appears to be a new challenge in cardiovascular disease prevention. PMID:28735838

  15. Outdoor air pollution and asthma

    PubMed Central

    Guarnieri, Michael; Balmes, John R.

    2015-01-01

    Traffic and power generation are the main sources of urban air pollution. The idea that outdoor air pollution can cause exacerbations of pre-existing asthma is supported by an evidence base that has been accumulating for several decades, with several studies suggesting a contribution to new-onset asthma as well. In this Series paper, we discuss the effects of particulate matter (PM), gaseous pollutants (ozone, nitrogen dioxide, and sulphur dioxide), and mixed traffic-related air pollution. We focus on clinical studies, both epidemiological and experimental, published in the previous 5 years. From a mechanistic perspective, air pollutants probably cause oxidative injury to the airways, leading to inflammation, remodelling, and increased risk of sensitisation. Although several pollutants have been linked to new-onset asthma, the strength of the evidence is variable. We also discuss clinical implications, policy issues, and research gaps relevant to air pollution and asthma. PMID:24792855

  16. 40 CFR 60.5215 - By what date must I conduct annual air pollution control device inspections and make any...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... air pollution control device inspections and make any necessary repairs? (a) You must conduct an annual inspection of each air pollution control device used to comply with the emission limits, according to § 60.5220(c), no later than 12 months following the previous annual air pollution control device...

  17. 40 CFR 60.5215 - By what date must I conduct annual air pollution control device inspections and make any...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... air pollution control device inspections and make any necessary repairs? (a) You must conduct an annual inspection of each air pollution control device used to comply with the emission limits, according to § 60.5220(c), no later than 12 months following the previous annual air pollution control device...

  18. 40 CFR 60.5215 - By what date must I conduct annual air pollution control device inspections and make any...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... air pollution control device inspections and make any necessary repairs? (a) You must conduct an annual inspection of each air pollution control device used to comply with the emission limits, according to § 60.5220(c), no later than 12 months following the previous annual air pollution control device...

  19. Source attribution and mitigation strategies for air pollution in Delhi

    NASA Astrophysics Data System (ADS)

    Kiesewetter, Gregor; Purohit, Pallav; Schoepp, Wolfgang; Liu, Jun; Amann, Markus; Bhanarkar, Anil

    2017-04-01

    Indian cities, and the megacity of Delhi in particular, have suffered from high air pollution for years. Recent observations show that ambient concentrations of fine particulate matter (PM2.5) in Delhi strongly exceed the Indian national ambient air quality standards as well as the World Health Organization's interim target levels. At the same time, India is experiencing strong urbanization, and both Delhi's emissions as well as the exposed population are growing. Therefore the question arises how PM2.5 concentrations will evolve in the future, and how they can be improved efficiently. In the past, typical responses of the Delhi government to high pollution episodes have been restrictions on motorized road traffic, on power plant operations and on construction activities. However, to design sustainable and efficient pollution mitigation measures, the contribution of different source sectors and spatial scales needs to be quantified. Here we combine the established emission calculation scheme of the Greenhouse Gas - Air Pollution Interactions and Synergies (GAINS) model with regional chemistry-transport model simulations (0.5° resolution) as well as local particle dispersion (2 × 2 km resolution) to arrive at a source attribution of ambient PM2.5 in Delhi. Calculated concentrations compare well to observations. We find that roughly 60% of total population-weighted PM2.5 originates from sources outside the national capital territory of Delhi itself. Consequently, mitigation strategies need to involve neighboring states and address the typical sources there. We discuss the likely evolution of ambient concentrations under different scenarios which assume either current emission control legislation, or application of a Clean Air Scenario foreseeing additional regulations in non-industrial sectors which are often overlooked, such as phase-out of solid fuel cookstoves, and road paving. Only in the case where the Clean Air Scenario is applied both in Delhi as well as in

  20. Temporalization of Electric Generation Emissions for Improved Representation of Peak Air Quality Episodes

    NASA Astrophysics Data System (ADS)

    Farkas, C. M.; Moeller, M.; Carlton, A. G.

    2013-12-01

    Photochemical transport models routinely under predict peak air quality events. This deficiency may be due, in part, to inadequate temporalization of emissions from the electric generating sector. The National Emissions Inventory (NEI) reports emissions from Electric Generating Units (EGUs) by either Continuous Emission Monitors (CEMs) that report hourly values or as an annual total. The Sparse Matrix Operator Kernel Emissions preprocessor (SMOKE), used to prepare emissions data for modeling with the CMAQ air quality model, allocates annual emission totals throughout the year using specific monthly, weekly, and hourly weights according to standard classification code (SCC) and location. This approach represents average diurnal and seasonal patterns of electricity generation but does not capture spikes in emissions due to episodic use as with peaking units or due to extreme weather events. In this project we use a combination of state air quality permits, CEM data, and EPA emission factors to more accurately temporalize emissions of NOx, SO2 and particulate matter (PM) during the extensive heat wave of July and August 2006. Two CMAQ simulations are conducted; the first with the base NEI emissions and the second with improved temporalization, more representative of actual emissions during the heat wave. Predictions from both simulations are evaluated with O3 and PM measurement data from EPA's National Air Monitoring Stations (NAMS) and State and Local Air Monitoring Stations (SLAMS) during the heat wave, for which ambient concentrations of criteria pollutants were often above NAAQS. During periods of increased photochemistry and high pollutant concentrations, it is critical that emissions are most accurately represented in air quality models.