Science.gov

Sample records for air pressure increased

  1. Enhanced heterologous protein production in Pichia pastoris under increased air pressure.

    PubMed

    Lopes, Marlene; Oliveira, Carla; Domingues, Lucília; Mota, Manuel; Belo, Isabel

    2014-01-01

    Pichia pastoris is a widely used host for the production of heterologous proteins. In this case, high cell densities are needed and oxygen is a major limiting factor. The increased air pressure could be used to improve the oxygen solubility in the medium and to reach the high oxygen demand of methanol metabolism. In this study, two P. pastoris strains producing two different recombinant proteins, one intracellular (β-galactosidase) and other extracellular (frutalin), were used to investigate the effect of increased air pressure on yeast growth in glycerol and heterologous protein production, using the methanol AOX1-inducible system. Experiments were carried out in a stainless steel bioreactor under total air pressure of 1 bar and 5 bar. The use of an air pressure raise of up to 5 bar proved to be applicable for P. pastoris cultivation. Moreover, no effects on the kinetic growth parameters and methanol utilization (Mut) phenotype of strains were found, while an increase in recombinant β-galactosidase-specific activity (ninefold) and recombinant frutalin production was observed. Furthermore, the air pressure raise led to a reduction in the secreted protease specific activity. This work shows for the first time that the application of an air pressure of 5 bar may be used as a strategy to decrease protease secretion and improve recombinant protein production in P. pastoris.

  2. Response of pulmonary veins to increased intracranial pressure and pulmonary air embolization

    SciTech Connect

    Peterson, B.T.; Grauer, S.E.; Hyde, R.W.; Ortiz, C.; Moosavi, H.; Utell, M.J.

    1980-01-01

    To see whether air emboli to the lungs rather than brain compression caused these findings, anesthetized dogs received intravenous air infusions, subdural air infusions, or brain compression from balloons inflated in the subdural space. Subdural air and intravenous air resulted in similar vascular responses. Pulmonary artery pressure (Ppa) increased 160% (P < 0.01) and pulmonary venous pressure transiently rose 13 +- 5 Torr (P < 0.05) without an increase in left atrial pressure or cardiac output (Q). The end-tidal PCP/sub 2/ fell 55% (P < 0.01) and the postmortem weight of the lungs increased 55% (P < 0.05). Brain compression with a subdural balloon instead of air only caused a 20% rise in Ppa and Q without pulmonary edema. Thus, pulmonary air emboli rather than brain compression accounts for the edema and pulmonary hypertension caused by subdural air. Catheters in pulmonary veins and the left atrium showed that air emboli cause transient pulmonary venous hypertension as well as a reproducible form of noncardiogenic pulmonary edema.

  3. Association between long-term air pollution and increased blood pressure and hypertension in China.

    PubMed

    Dong, Guang-Hui; Qian, Zhengmin Min; Xaverius, Pamela K; Trevathan, Edwin; Maalouf, Salwa; Parker, Jamaal; Yang, Laiji; Liu, Miao-Miao; Wang, Da; Ren, Wan-Hui; Ma, Wenjun; Wang, Jing; Zelicoff, Alan; Fu, Qiang; Simckes, Maayan

    2013-03-01

    Several studies have investigated the short-term effects of ambient air pollutants in the development of high blood pressure and hypertension. However, little information exists regarding the health effects of long-term exposure. To investigate the association between residential long-term exposure to air pollution and blood pressure and hypertension, we studied 24 845 Chinese adults in 11 districts of 3 northeastern cities from 2009 to 2010. Three-year average concentration of particles with an aerodynamic diameter ≤10 µm (PM(10)), sulfur dioxide (SO(2)), nitrogen dioxides (NO(2)), and ozone (O(3)) were calculated from monitoring stations in the 11 districts. We used generalized additive models and 2-level logistic regressions models to examine the health effects. The results showed that the odds ratio for hypertension increased by 1.12 (95% confidence interval [CI], 1.08-1.16) per 19 μg/m(3) increase in PM(10), 1.11 (95% CI, 1.04-1.18) per 20 μg/m(3) increase in SO(2), and 1.13 (95% CI, 1.06-1.20) per 22 μg/m(3) increase in O(3). The estimated increases in mean systolic and diastolic blood pressure were 0.87 mm Hg (95% CI, 0.48-1.27) and 0.32 mm Hg (95% CI, 0.08-0.56) per 19 μg/m(3) interquartile increase in PM(10), 0.80 mm Hg (95% CI, 0.46-1.14) and 0.31 mm Hg (95% CI, 0.10-0.51) per 20 μg/m(3) interquartile increase in SO(2), and 0.73 mm Hg (95% CI, 0.35-1.11) and 0.37 mm Hg (95% CI, 0.14-0.61) per 22 μg/m(3) interquartile increase in O(3). These associations were only statistically significant in men. In conclusion, long-term exposure to PM(10), SO(2), and O(3) was associated with increased arterial blood pressure and hypertension in the study population.

  4. Increased cardiac output, not pulmonary artery systolic pressure, increases intrapulmonary shunt in healthy humans breathing room air and 40% O2

    PubMed Central

    Elliott, Jonathan E; Duke, Joseph W; Hawn, Jerold A; Halliwill, John R; Lovering, Andrew T

    2014-01-01

    Blood flow through intrapulmonary arteriovenous anastomoses (IPAVAs) has been demonstrated to increase in healthy humans during a variety of conditions; however, whether or not this blood flow represents a source of venous admixture (/) that impairs pulmonary gas exchange efficiency (i.e. increases the alveolar-to-arterial difference (A–aDO2)) remains controversial and unknown. We hypothesized that blood flow through IPAVAs does provide a source of /. To test this, blood flow through IPAVAs was increased in healthy humans at rest breathing room air and 40% O2: (1) during intravenous adrenaline (epinephrine) infusion at 320 ng kg−1 min−1 (320 ADR), and (2) with vagal blockade (2 mg atropine), before and during intravenous adrenaline infusion at 80 ng kg−1 min−1 (ATR + 80 ADR). When breathing room air the A–aDO2 increased by 6 ± 2 mmHg during 320 ADR and by 5 ± 2 mmHg during ATR + 80 ADR, and the change in calculated / was +2% in both conditions. When breathing 40% O2, which minimizes contributions from diffusion limitation and alveolar ventilation-to-perfusion inequality, the A–aDO2 increased by 12 ± 7 mmHg during 320 ADR, and by 9 ± 6 mmHg during ATR + 80 ADR, and the change in calculated / was +2% in both conditions. During 320 ADR cardiac output () and pulmonary artery systolic pressure (PASP) were significantly increased; however, during ATR + 80 ADR only was significantly increased, yet blood flow through IPAVAs as detected with saline contrast echocardiography was not different between conditions. Accordingly, we suggest that blood flow through IPAVAs provides a source of intrapulmonary shunt, and is mediated primarily by increases in rather than PASP. PMID:25085889

  5. Air pressure measurement

    NASA Technical Reports Server (NTRS)

    Ballard, H. N.

    1978-01-01

    The pressure measurement was made by a Model 830J Rosemont sensor which utilized the principle of a changing pressure to change correspondingly the capacitance of the pressure sensitive element. The sensor's range was stated to be from zero to 100 Torr (14 km); however, the sensor was not activated until an altitude of 20 km (41 Torr) was reached during the balloon ascent. The resolution of the sensor was specified by the manufacturer as infinitesimal; however, associated electronic and pressure readout systems limit the resolution to .044 Torr. Thus in the vicinity of an altitude of 30 km the pressure resolution corresponded to an altitude resolution of approximately 33 meters.

  6. Increased intracranial pressure

    MedlinePlus

    ... rupture and subarachnoid hemorrhage Brain tumor Encephalitis Head injury Hydrocephalus (increased fluid around the brain) Hypertensive brain hemorrhage Intraventricular hemorrhage Meningitis Subdural hematoma Status epilepticus Stroke

  7. Air atmospheric pressure plasma jet pretreatment for drop-wise loading of dexamethasone on hydroxyapatite scaffold for increase of osteoblast attachment.

    PubMed

    Lee, Jung-Hwan; Kwon, Jae-Sung; Kim, Yong Hee; Choi, Eun Ha; Kim, Kwang-Mahn; Kim, Kyoung-Nam

    2014-10-01

    Periodontal disease affects alveolar bone resorption around the involved teeth. To gain bone height, bone graft materials have been widely used with drug carriers. Application of an atmospheric pressure plasma jet (APPJ) treatment is widely studied due to its ability to change surface characteristics without topographical change. The aim of this study is to identify whether the air APPJ (AAPPJ) treatment before drop-wise loading performance could change loaded amount of dexamethasone, and induce increase of cell attachment and proliferation. The results suggested that AAPPJ treatment decreased the contact angle down to about 13 degrees, which increased gradually but significantly lowered at least 4 days compared to no-treated group. After AAPPJ treatment, hydrocarbon was removed with change of zeta potential into positive charge. However, the AAPPJ treatment did not change the quantity or releasing profile of dexamethasone (p > 0.05). Confocal analysis combined with DNA proliferation analysis showed increase of osteoblast attachment and proliferation. Hence, AAPPJ could be a useful pretreatment method before drop-wise loading on HA scaffold with dexamethasone for increase of osteoblast attachment. PMID:25942843

  8. Air separation with temperature and pressure swing

    DOEpatents

    Cassano, Anthony A.

    1986-01-01

    A chemical absorbent air separation process is set forth which uses a temperature swing absorption-desorption cycle in combination with a pressure swing wherein the pressure is elevated in the desorption stage of the process.

  9. The relationships between air exposure, negative pressure, and hemolysis.

    PubMed

    Pohlmann, Joshua R; Toomasian, John M; Hampton, Claire E; Cook, Keith E; Annich, Gail M; Bartlett, Robert H

    2009-01-01

    The purpose of this study was to describe the hemolytic effects of both negative pressure and an air-blood interface independently and in combination in an in vitro static blood model. Samples of fresh ovine or human blood (5 ml) were subjected to a bubbling air interface (0-100 ml/min) or negative pressure (0-600 mm Hg) separately, or in combination, for controlled periods of time and analyzed for hemolysis. Neither negative pressure nor an air interface alone increased hemolysis. However, when air and negative pressure were combined, hemolysis increased as a function of negative pressure, the air interface, and time. Moreover, when blood samples were exposed to air before initiating the test, hemolysis was four to five times greater than samples not preexposed to air. When these experiments were repeated using freshly drawn human blood, the same phenomena were observed, but the hemolysis was significantly higher than that observed in sheep blood. In this model, hemolysis is caused by combined air and negative pressure and is unrelated to either factor alone.

  10. Monitoring Air Circulation Under Reduced Pressures

    NASA Astrophysics Data System (ADS)

    Rygalov, Vadim

    Adequate air circulation is required for controlled environments to maintain uniform temperature and humidity control, and hence the ability to measure air flow accurately is important. Human and associated life support habitats (e.g.,. plant production systems) for future space missions will likely be operated at pressures less than 100 kPa to minimize gas leakage and structural mass. Under such reduced pressures, the outputs from conventional anemometers for monitoring air flow can change and require re-calibration. These effects of atmospheric pressure on different types of air flow measurements are not completely understood; hence we compared the performance of several air flow sensors across a range of hypobaric pressures. Sensors included a propeller type anemometer, a hot-wire anemometer, and a Pitot-tube based device. Theoretical schematics (including mathematical models) underlying these measurements were developed. Results demonstrated that changes in sensor outputs were predictable based on their operating principles, and that corrections could be developed for sensors calibrated under normal Earth atmosphere pressure ( 100 kPa) and then used at different pressures. The potential effects of hypobaric atmospheres and their altered air flows on plant physiology are also discussed.

  11. Microfluidic pressure sensing using trapped air compression.

    PubMed

    Srivastava, Nimisha; Burns, Mark A

    2007-05-01

    We have developed a microfluidic method for measuring the fluid pressure head experienced at any location inside a microchannel. The principal component is a microfabricated sealed chamber with a single inlet and no exit; the entrance to the single inlet is positioned at the location where pressure is to be measured. The pressure measurement is then based on monitoring the movement of a liquid-air interface as it compresses air trapped inside the microfabricated sealed chamber and calculating the pressure using the ideal gas law. The method has been used to measure the pressure of the air stream and continuous liquid flow inside microfluidic channels (d approximately 50 microm). Further, a pressure drop has also been measured using multiple microfabricated sealed chambers. For air pressure, a resolution of 700 Pa within a full-scale range of 700-100 kPa was obtained. For liquids, pressure drops as low as 70 Pa were obtained in an operating range from 70 Pa to 10 kPa. Since the method primarily uses a microfluidic sealed chamber, it does not require additional fabrication steps and may easily be incorporated in several lab-on-a-chip fluidic applications for laminar as well as turbulent flow conditions. PMID:17476384

  12. Microfluidic pressure sensing using trapped air compression.

    PubMed

    Srivastava, Nimisha; Burns, Mark A

    2007-05-01

    We have developed a microfluidic method for measuring the fluid pressure head experienced at any location inside a microchannel. The principal component is a microfabricated sealed chamber with a single inlet and no exit; the entrance to the single inlet is positioned at the location where pressure is to be measured. The pressure measurement is then based on monitoring the movement of a liquid-air interface as it compresses air trapped inside the microfabricated sealed chamber and calculating the pressure using the ideal gas law. The method has been used to measure the pressure of the air stream and continuous liquid flow inside microfluidic channels (d approximately 50 microm). Further, a pressure drop has also been measured using multiple microfabricated sealed chambers. For air pressure, a resolution of 700 Pa within a full-scale range of 700-100 kPa was obtained. For liquids, pressure drops as low as 70 Pa were obtained in an operating range from 70 Pa to 10 kPa. Since the method primarily uses a microfluidic sealed chamber, it does not require additional fabrication steps and may easily be incorporated in several lab-on-a-chip fluidic applications for laminar as well as turbulent flow conditions.

  13. Pressure Drop in Radiator Air Tubes

    NASA Technical Reports Server (NTRS)

    Parsons, S R

    1921-01-01

    This report describes a method for measuring the drop in static pressure of air flowing through a radiator and shows (1) a reason for the discrepancy noted by various observers between head resistance and drop in pressure; (2) a difference in degree of contraction of the jet in entering a circular cell and a square cell; (3) the ratio of internal frictional resistance to total head resistance for two representative types; (4) the effect of smoothness of surface on pressure gradient; and (5) the effects of supplying heat to the radiator on pressure gradient. The fact that the pressure gradients are found to be approximately proportional to the square of the rate of flow of air appears to indicate turbulent flow, even in the short tubes of the radiator. It was found that the drop in the static pressure in the air stream through a cellular radiator and the pressure gradient in the air tubes are practically proportional to the square of the air flow in a given air density; that the difference between the head resistance per unit area and the fall of static pressure through the air tubes in radiators is apparent rather than real; and that radiators of different types differ widely in the amount of contraction of the jet at entrance. The frictional resistance was found to vary considerably, and in one case to be two-thirds of the head resistance in the type using circular cells and one-half of the head resistance of the radiator type using square cells of approximately the same dimensions.

  14. Influence of ambient air pressure on effervescent atomization

    NASA Technical Reports Server (NTRS)

    Chen, S. K.; Lefebvre, A. H.; Rollbuhler, J.

    1993-01-01

    The influence of ambient air pressure on the drop-size distributions produced in effervescent atomization is examined in this article. Also investigated are the effects on spray characteristics of variations in air/liquid mass ratio, liquid-injection pressure, and atomizer discharge-orifice diameter at different levels of ambient air pressure. It is found that continuous increase in air pressure above the normal atmospheric value causes the mean drop-size to first increase up to a maximum value and then decline. An explanation for this characteristic is provided in terms of the various contributing factors to the overall atomization process. It is also observed that changes in atomizer geometry and operating conditions have little effect on the distribution of drop-sizes in the spray.

  15. Scaling-up Fermentation of Pichia pastoris to demonstration-scale using new methanol-feeding strategy and increased air pressure instead of pure oxygen supplement

    PubMed Central

    Liu, Wan-Cang; Gong, Ting; Wang, Qing-Hua; Liang, Xiao; Chen, Jing-Jing; Zhu, Ping

    2016-01-01

    Scaling-up of high-cell-density fermentation (HCDF) of Pichia pastoris from the lab or pilot scale to the demonstration scale possesses great significance because the latter is the final technological hurdle in the decision to go commercial. However, related investigations have rarely been reported. In this paper, we study the scaling-up processes of a recombinant P. pastoris from the pilot (10 to 100-L) to the demonstration (1,000-L) scales, which can be used to convert 7-β-xylosyl-10-deacetyltaxol into 10-deacetyltaxol by the β-xylosidase for semi-synthesis of Taxol. We demonstrated that a pure oxygen supplement can be omitted from the HCDF if the super atmospheric pressure was increased from 0.05 to 0.10 ± 0.05 MPa, and we developed a new methanol feeding biomass-stat strategy (0.035 mL/g/h) with 1% dissolved oxygen and 100 g/L initial induction biomass (dry cell weight). The scaling-up was reproducible, and the best results were obtained from the 1,000-L scale, featuring a shorter induction time and the highest enzyme activities and productions, respectively. The specific growth and specific production rates were also determined. This study lays a solid foundation for the commercial preparation of 10-deacetyltaxol through the recombinant yeast. It also provides a successful paradigm for scaling-up HCDF of P. pastoris to the demonstration scale. PMID:26790977

  16. Building pressurization control with rooftop air conditioners

    SciTech Connect

    Winter, S.

    1982-10-01

    The modulated exhaust fan appears to be the most cost effective positive means to maintain close building pressure control with rooftop air conditioning, but because building construction and applications vary, every building's pressure control needs must be analyzed. Requirements will vary from no relief to barometric dampers to return fans to modulated exhaust fans. As heating and cooling costs continue to rise and tighter building codes prevail, proper selection of building pressure control is one area that must be monitored more carefully by the HVAC system designer.

  17. Simple Experiments for Teaching Air Pressure

    ERIC Educational Resources Information Center

    Shamsipour, Gholamreza

    2006-01-01

    Everyone who teaches physics knows very well that sometimes a simple device or experiment can help to make a concept clear. In this paper, inspired by "The Jumping Pencil" by Martin Gardner, I will discuss a simple demonstration device that can be used to start the study of air pressure.

  18. High pressure microhollow cathode discharges in air

    SciTech Connect

    Khedr, M.A.; Stark, R.H.; Watson, B.; Schoenbach, K.H.

    1998-12-31

    Research on high pressure, large volume glow discharges in air is motivated by applications such as reflectors and absorbers for electromagnetic radiation, plasma processing, and the remediation of gaseous pollution. In order to prevent glow-to-arc transitions, which in high-pressure glow discharges start in the cathode region, it is proposed to use a plasma cathode consisting of an array of microhollow cathode discharges. To explore the conditions for stable operation of single 100 {micro}m microhollow cathode discharges in flowing air, the current-voltage characteristics, and the visual appearance of a 100 {micro}m microhollow cathode discharge were studied. The results show that the threshold current for the transition from a glow into a filamentary discharge varies inversely with pressure. At pressures of 400 Torr the current in the 100 {micro}m hollow cathode discharge must not exceed 0.5 mA in order for the discharge to be stable. The type of instability, which causes the transition from dc to fluctuating currents, is not known at this time, but the observed dependence of the threshold current from the gas pressure points to a thermal instability. Assuming that the White-Allis scaling law still holds for air discharges at pressures close to atmospheric, it is expected that reducing the cathode hole diameter to 50 {micro}m will allow us to operate microhollow cathode discharges at atmospheric air with currents of up to 0.25 mA. Experimental studies on the effect of the cathode dimensions and cathode material are underway and results will be discussed at the conference.

  19. Intraoral air pressure and oral air flow under different bleed and bite-block conditions.

    PubMed

    Putnam, A H; Shelton, R L; Kastner, C U

    1986-03-01

    Intraoral pressures and oral flows were measured as normal talkers produced /p lambda/ and /si/ under experimental conditions that perturbed the usual aeromechanical production characteristics of the consonants. A translabial pressure-release device was used to bleed off intraoral pressure during /p/. Bite-blocks were used to open the anterior bite artificially during /s/. For /p/, intraoral pressure decreased and translabial air leakage increased as bleed orifice area increased. For /s/, flow increased as the area of sibilant constriction increased, but differential pressure across the /s/ oral constriction did not vary systematically with changes in its area. Flow on postconsonantal vowels /lambda/ and /i/ did not vary systematically across experimental conditions. The data imply that maintenance of perturbed intraoral pressure was more effective when compensatory options included opportunity for increased respiratory drive and structural adjustments at the place of consonant articulation rather than increased respiratory drive alone.

  20. Fuel Cells Utilizing Oxygen From Air at Low Pressures

    NASA Technical Reports Server (NTRS)

    Cisar, Alan; Boyer, Chris; Greenwald, Charles

    2006-01-01

    A fuel cell stack has been developed to supply power for a high-altitude aircraft with a minimum of air handling. The fuel cell is capable of utilizing oxygen from ambient air at low pressure with no need for compression. For such an application, it is advantageous to take oxygen from the air (in contradistinction to carrying a supply of oxygen onboard), but it is a challenging problem to design a fuel-cell stack of reasonable weight that can generate sufficient power while operating at reduced pressures. The present fuel-cell design is a response to this challenge. The design features a novel bipolar plate structure in combination with a gas-diffusion structure based on a conductive metal core and a carbon gas-diffusion matrix. This combination makes it possible for the flow fields in the stack to have a large open fraction (ratio between open volume and total volume) to permit large volumes of air to flow through with exceptionally low backpressure. Operations at reduced pressure require a corresponding increase in the volume of air that must be handled to deliver the same number of moles of oxygen to the anodes. Moreover, the increase in the open fraction, relative to that of a comparable prior fuel-cell design, reduces the mass of the stack. The fuel cell has been demonstrated to operate at a power density as high as 105 W/cm2 at an air pressure as low as 2 psia (absolute pressure 14 kPa), which is the atmospheric pressure at an altitude of about 50,000 ft ( 15.2 km). The improvements in the design of this fuel cell could be incorporated into designs of other fuel cells to make them lighter in weight and effective at altitudes higher than those of prior designs. Potential commercial applications for these improvements include most applications now under consideration for fuel cells.

  1. 21 CFR 880.5550 - Alternating pressure air flotation mattress.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Alternating pressure air flotation mattress. 880... Personal Use Therapeutic Devices § 880.5550 Alternating pressure air flotation mattress. (a) Identification. An alternating pressure air flotation mattress is a device intended for medical purposes...

  2. 21 CFR 880.5550 - Alternating pressure air flotation mattress.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Alternating pressure air flotation mattress. 880... Personal Use Therapeutic Devices § 880.5550 Alternating pressure air flotation mattress. (a) Identification. An alternating pressure air flotation mattress is a device intended for medical purposes...

  3. 21 CFR 880.5550 - Alternating pressure air flotation mattress.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Alternating pressure air flotation mattress. 880... Personal Use Therapeutic Devices § 880.5550 Alternating pressure air flotation mattress. (a) Identification. An alternating pressure air flotation mattress is a device intended for medical purposes...

  4. 21 CFR 880.5550 - Alternating pressure air flotation mattress.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Alternating pressure air flotation mattress. 880... Personal Use Therapeutic Devices § 880.5550 Alternating pressure air flotation mattress. (a) Identification. An alternating pressure air flotation mattress is a device intended for medical purposes...

  5. 21 CFR 880.5550 - Alternating pressure air flotation mattress.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Alternating pressure air flotation mattress. 880... Personal Use Therapeutic Devices § 880.5550 Alternating pressure air flotation mattress. (a) Identification. An alternating pressure air flotation mattress is a device intended for medical purposes...

  6. An alternating pressure sequence proposal for an air-cell cushion for preventing pressure ulcers.

    PubMed

    Arias, Sandra; Cardiel, Eladio; Rogeli, Pablo; Mori, Taketoshi; Nakagami, Gojiro; Noguchi, Hiroshi; Sanada, Hiromi

    2014-01-01

    The distribution and release of pressure on ischial regions are two important parameters for evaluating the effectiveness of a cushion; especially the release of pressure over time on ischial tuberosities, which is significant for preventing pressure ulcers. The aim of this work is to evaluate the effect on interface pressure through the application of a proposed alternating pressure sequence for an air-cell cushion. Six healthy volunteers were asked to sit on the air cell cushion, in static and alternating modes, as well as on a typical foam cushion for 12 minutes. Interface pressure was monitored with a matrix sensor system. Interface pressure values on ischial tuberosities, user contact area and pressure distribution were analyzed. Results showed that IP on IT tends to increase in both foam and static cushions, while in alternating cushion IP on IT tends to decrease. User contact area was significantly larger in alternating cushion than in static or foam cushions. Moreover, there is a better pressure re-distribution with alternating cushion than with the other cushions. The goal of the alternating sequence is to redistribute pressure and stimulate the ischial regions in order to promote blood flow and prevent pressure occurring in wheelchair users.

  7. Intraoral Air Pressure of Alaryngeal Speakers during a No-Air Insufflation Maneuver.

    ERIC Educational Resources Information Center

    Gorham, Mary M.; And Others

    1996-01-01

    Intraoral air pressure was recorded during the production of consonant cognate pairs by 8 esophageal speakers (mean age 67 years) under 2 experimental conditions: after the insufflation of air and without air insufflation. Results revealed that peak intraoral air pressure magnitudes were significantly greater following the insufflation of air than…

  8. Increase in whole-body peripheral vascular resistance during three hours of air or oxygen prebreathing

    NASA Technical Reports Server (NTRS)

    Waligora, J. M.; Horrigan, D. J., Jr.; Conkin, J.; Dierlam, J. J.; Stanford, J., Jr.; Riddle, J. R.

    1984-01-01

    Male and female subjects prebreathed air or 100% oxygen through a mask for 3.0 hours while comfortably reclined. Blood pressures, heart rate, and cardiac output were collected before and after the prebreathe. Peripheral vascular resistance (PVR) was calculated from these parameters and increased by 29% during oxygen prebreathing and 15% during air prebreathing. The oxygen contributed substantially to the increase in PVR. Diastolic blood pressure increased by 18% during the oxygen prebreathe while stystolic blood pressure showed no change under either procedure. The increase in PVR during air prebreathing was attributed to procedural stress common to air and oxygen prebreathing.

  9. Air and gas pockets in sewerage pressure mains.

    PubMed

    Lubbers, C L; Clemens, F

    2005-01-01

    In The Netherlands, wastewater is collected in municipal areas and transported to large centralised WWTPs by means of an extensive system of pressure mains. Over the past decades these pressure mains did not receive much attention in terms of monitoring of performance or maintenance. For that reason, in practice their state of functioning is often not known. Failure of operation is only noticed when the capacity of the system proves to be insufficient to fulfil the minimum design capacity demand. A recent inventory showed that half of the pressure mains show an increased pressure loss for no directly obvious reason. Many causes may account for the reduction of the system's nominal capacity like an increased wall roughness, scaling or occurrence of free gas in the pipeline. The occurrence of free gas may be caused by degassing of dissolved (bio) gas or by air entrained at the pumps' inlet or at air valves. A research study is started that will focus on three main issues: The description of the gas-water phenomena in wastewater pressure mains with respect to transportation and dynamic hydraulic behaviour, A method to diagnose gas problems, and To overcome future problems by either applying remedial measures or improving the design of wastewater pressure systems. For this study, two experimental facilities are constructed, a small circuit for the study of multi-phase flow and a second, larger one for the research into diagnostic methods. This paper describes the preliminary results of the experiments in the multi-phase circuit.

  10. Lead exposure increases blood pressure by increasing angiotensinogen expression.

    PubMed

    Jiao, Jiandong; Wang, Miaomiao; Wang, Yiqing; Sun, Na; Li, Chunping

    2016-01-01

    Lead exposure can induce increased blood pressure. Several mechanisms have been proposed to explain lead-induced hypertension. Changes in angiotensinogen (AGT) expression levels or gene variants may also influence blood pressure. In this study, we hypothesized that AGT expression levels or gene variants contribute to lead-induced hypertension. A preliminary HEK293 cell model experiment was performed to analyze the association between AGT expression and lead exposure. In a population-based study, serum AGT level was measured in both lead-exposed and control populations. To further detect the influence of AGT gene single nucleotide polymorphisms (SNPs) in lead-induced hypertension, two SNPs (rs699 and rs4762) were genotyped in a case-control study including 219 lead-exposed subjects and 393 controls. Lead exposure caused an increase in AGT expression level in HEK 293 cell models (P < 0.001) compared to lead-free cells, and individuals exposed to lead had higher systolic and diastolic blood pressure (P < 0.001). Lead-exposed individuals had higher serum AGT levels compared to controls (P < 0.001). However, no association was found between AGT gene SNPs (rs699 and rs4762) and lead exposure. Nevertheless, the change in AGT expression level may play an important role in the development of lead-induced hypertension.

  11. Alanine increases blood pressure during hypotension

    NASA Technical Reports Server (NTRS)

    Conlay, L. A.; Maher, T. J.; Wurtman, R. J.

    1990-01-01

    The effect of L-alanine administration on blood pressure (BP) during haemorrhagic shock was investigated using anesthetized rats whose left carotid arteries were cannulated for BP measurement, blood removal, and drug administration. It was found that L-alanine, in doses of 10, 25, 50, 100, and 200 mg/kg, increased the systolic BP of hypotensive rats by 38 to 80 percent (while 100 mg/kg pyruvate increased BP by only 9.4 mmhg, not significantly different from saline). The results suggest that L-alanine might influence cardiovascular function.

  12. Horizontal air drilling increases gas recovery in depleted zone

    SciTech Connect

    Elrod, J.P.

    1997-06-30

    Increased gas recoveries in depleted gas zones can be achieved through horizontal air drilling. In December 1995, OXY USA Inc. drilled the Pirkle 2, the first air-drilled horizontal well in the Carthage field of Texas. Targeting the Cretaceous Frost ``A`` zone of the lower Pettit limestone at 6,000 ft true vertical depth, the well established production in a 1,400 ft lateral section with a bottom hole pressure (BHP) of 185 psi. The initial BHP for the zone was 3,280 psi in 1942. As of April 27, 1997, the Pirkle 2 had produced 530 MMcf of gas at a rate of 1.1 MMcfd. Total cumulative gas production for the lower Pettit limestone in the Carthage field was 3.83 tcf as of January 1997. The paper discusses reservoir properties, abandonment pressure, minimizing well bore damage, drilling fluid selection, special equipment and modifications, compressors, BOPs, steering tools, drilling, completion, and production.

  13. Herbivore pressure increases toward the equator.

    PubMed

    Salazar, Diego; Marquis, Robert J

    2012-07-31

    Increases in species diversity and density from higher to lower latitudes are well documented. Nevertheless, the consequences of these changes in diversity for structuring ecological communities and influencing biotic evolution are largely unknown. It is widely believed that this increase in species diversity is associated with increased intensity of ecological interactions closer to the equator. For plant-herbivore interactions in particular, the predictions are that, at lower latitudes, plants will be attacked by more individual herbivores, more herbivore species, and more specialized herbivores and, therefore, will suffer greater damage. We used a large-scale latitudinal transect from Mexico to Bolivia to quantify changes in leaf damage, diversity, and abundance of lepidopteran larvae on two widely distributed host species of the genus Piper (Piperaceae). We show that both density and species richness of herbivores were highest at the equator and decreased with increasing latitude, both northward and southward. Contrary to expectation, however, this increase in herbivore diversity was attributable to the addition of generalist not specialist species. Finally, and again contrary to expectation, the increase in herbivore density with decreasing latitude did not produce a corresponding damage gradient. We propose that the lack of a latitudinal concordance between increases in herbivore density and diversity with decreasing latitude, and the resulting herbivore damage, supports the hypothesis of better plant antiherbivore defenses at lower latitudes. Furthermore, the changes in the relative abundance of generalist vs. specialist species suggest that the nature of the selective pressure is intrinsically different between higher and lower latitudes.

  14. Microcontrolled air-mattress for ulcer by pressure prevention

    NASA Astrophysics Data System (ADS)

    Pasluosta, Cristian F.; Fontana, Juan M.; Beltramone, Diego A.; Taborda, Ricardo A. M.

    2007-11-01

    An ulcer by pressure is produced when a constant pressure is exerted over the skin. This generates the collapse of the blood vessels and, therefore, a lack in the contribution of the necessary nutrients for the affected zone. As a consequence, the skin deteriorates, eventually causing an ulcer. In order to prevent it, a protocol must be applied to the patient, which is reflected on time and cost of treatment. There are some air mattresses available for this purpose, but whose performance does not fulfill all requirements. The prototype designed in our laboratory is based on the principle of the air mattress. Its objective is to improve on existing technologies and, due to an increased automation, reduce time dedication for personnel in charge of the patient. A clinical experience was made in the local Emergencies Hospital and also in an institution dedicated to aged patients care. In both cases, the results obtained and the comments from the personnel involved were favorable.

  15. Differential air sac pressures in diving tufted ducks Aythya fuligula.

    PubMed

    Boggs, D F; Butler, P J; Wallace, S E

    1998-09-01

    The air in the respiratory system of diving birds contains a large proportion of the body oxygen stores, but it must be in the lungs for gas exchange with blood to occur. To test the hypothesis that locomotion induces mixing of air sac air with lung air during dives, we measured differential pressures between the interclavicular and posterior thoracic air sacs in five diving tufted ducks Aythya fuligula. The peak differential pressure between posterior thoracic and interclavicular air sacs, 0.49+/-0.13 kPa (mean +/- s.d.), varied substantially during underwater paddling as indicated by gastrocnemius muscle activity. These data support the hypothesis that locomotion, perhaps through associated abdominal muscle activity, intermittently compresses the posterior air sacs more than the anterior ones. The result is differential pressure fluctuations that might induce the movement of air between air sacs and through the lungs during dives. PMID:9716518

  16. AIR SEPARATION BY PRESSURE SWING ADSORPTION USING SUPERIOR ADSORBENTS

    SciTech Connect

    Ralph T. Yang

    2001-08-31

    Li-X zeolite (Si/Al = 1.0) is currently the best sorbent for use in the separation of air by adsorption processes. In particular, pressure swing adsorption (PSA) using zeolite sorbents is being increasingly used for air separation. Silver is also known to strongly affect the adsorptive properties of zeolites; and it is known that thermal vacuum dehydration of silver zeolites leads to the formation of silver clusters within the zeolite. In this work we have synthesized type X zeolites containing Ag and also varying mixtures of Li and Ag. In this project, we developed the Ag-containing zeolite as the best sorbent for air separation. We have also studied Co-ligand compounds as oxygen-selective sorbents. Syntheses, structural characterization and adsorption properties have been performed on all sorbents. The results are described in detail in 5 chapters.

  17. Breakdown of air pockets in downwardly inclined sewerage pressure mains.

    PubMed

    Lubbers, C L; Clemens, F H L R

    2006-01-01

    In the Netherlands, wastewater is collected in municipal areas and transported to centralised WWTPs by an extensive system of pressure mains. Over the last decades these pressure mains did not receive much attention in terms of monitoring of performance or maintenance. A recent inventory showed that half of the pressure mains show an increased pressure loss for no directly obvious reason. One of the many causes that account for the reduction of the flow capacity is the occurrence of free gas in the pipeline. During dry weather periods with low flow velocities, gas may accumulate at high points in the system. Once the velocity increases during storm weather flow, the air pockets may be broken down and transported to the end of the system. A research study is started focussing on the description of the gas-water phenomena in wastewater pressure mains with respect to transportation of gas. An experimental facility is constructed for the study of multi-phase flow. This paper describes the preliminary results of experiments on breakdown rates of gas pockets as a function of inclination angle and water flow rate. The results show an increasing breakdown rate with increasing inclination angle.

  18. Emergency management of increased intracranial pressure.

    PubMed

    Pitfield, Alexander Fraser; Carroll, Allison B; Kissoon, Niranjan

    2012-02-01

    Primary neurological injury in children can be induced by diverse intrinsic and extrinsic factors including brain trauma, tumors, and intracranial infections. Regardless of etiology, increased intracranial pressure (ICP) as a result of the primary injury or delays in treatment may lead to secondary (preventable) brain injury. Therefore, early diagnosis and aggressive treatment of increased ICP is vital in preventing or limiting secondary brain injury in children with a neurological insult. Present management strategies to improve survival and neurological outcome focus on reducing ICP while optimizing cerebral perfusion and meeting cerebral metabolic demands. Targeted therapies for increased ICP must be considered and implemented as early as possible during and after the initial stabilization of the child. Thus, the emergency physician has a critical role to play in early identification and treatment of increased ICP. This article intends to identify those patients at risk of intracranial hypertension and present a framework for the emergency department investigation and treatment, in keeping with contemporary guidelines. Intensive care management and the treatment of refractory increases in ICP are also outlined.

  19. Modelling of air pressure effects in casting moulds

    NASA Astrophysics Data System (ADS)

    Attar, E.; Homayonifar, P.; Babaei, R.; Asgari, K.; Davami, P.

    2005-09-01

    In the casting process, as a mould is filled with molten metal, air escapes through the vents. Air pressure in the mould cavity has serious effects upon the filling behaviour such as surface profile of the molten metal and filling time. In this project a computational model was developed for calculation of air pressure during the mould filling. A 3D single phase code based on the SOLA-VOF algorithm was used for the prediction of the fluid flow. The ideal gas assumption, conservation of mass equation and Bernoulli law were used for the calculation of air pressure. A new algorithm was developed to interpolate air pressure on the surface cells. The creation of air pressure was correlated with the sizes of the vents and their locations. An experimental test was designed to verify the modelling results. Comparison between the experimental data and simulation results has shown a good agreement.

  20. High pressure flame system for pollution studies with results for methane-air diffusion flames

    NASA Technical Reports Server (NTRS)

    Miller, I. M.; Maahs, H. G.

    1977-01-01

    A high pressure flame system was designed and constructed for studying nitrogen oxide formation in fuel air combustion. Its advantages and limitations were demonstrated by tests with a confined laminar methane air diffusion flame over the pressure range from 1 to 50 atm. The methane issued from a 3.06 mm diameter port concentrically into a stream of air contained within a 20.5 mm diameter chimney. As the combustion pressure is increased, the flame changes in shape from wide and convex to slender and concave, and there is a marked increase in the amount of luminous carbon. The height of the flame changes only moderately with pressure.

  1. Indoor Air Quality: Is Increased Ventilation the Answer?

    ERIC Educational Resources Information Center

    Hansen, Shirley

    1989-01-01

    Explains how indoor air quality is affected by pollutants in the air and also by temperature, humidity, and ventilation. Increased ventilation alone seldom solves the "sick building syndrome." Lists ways to improve indoor air quality and optimize energy efficiency. (MLF)

  2. Noncontact Monitoring of Respiration by Dynamic Air-Pressure Sensor.

    PubMed

    Takarada, Tohru; Asada, Tetsunosuke; Sumi, Yoshihisa; Higuchi, Yoshinori

    2015-01-01

    We have previously reported that a dynamic air-pressure sensor system allows respiratory status to be visually monitored for patients in minimally clothed condition. The dynamic air-pressure sensor measures vital information using changes in air pressure. To utilize this device in the field, we must clarify the influence of clothing conditions on measurement. The present study evaluated use of the dynamic air-pressure sensor system as a respiratory monitor that can reliably detect change in breathing patterns irrespective of clothing. Twelve healthy volunteers reclined on a dental chair positioned horizontally with the sensor pad for measuring air-pressure signals corresponding to respiration placed on the seat back of the dental chair in the central lumbar region. Respiratory measurements were taken under 2 conditions: (a) thinly clothed (subject lying directly on the sensor pad); and (b) thickly clothed (subject lying on the sensor pad covered with a pressure-reducing sheet). Air-pressure signals were recorded and time integration values for air pressure during each expiration were calculated. This information was compared with expiratory tidal volume measured simultaneously by a respirometer connected to the subject via face mask. The dynamic air-pressure sensor was able to receive the signal corresponding to respiration regardless of clothing conditions. A strong correlation was identified between expiratory tidal volume and time integration values for air pressure during each expiration for all subjects under both clothing conditions (0.840-0.988 for the thinly clothed condition and 0.867-0.992 for the thickly clothed condition). These results show that the dynamic air-pressure sensor is useful for monitoring respiratory physiology irrespective of clothing.

  3. Noncontact Monitoring of Respiration by Dynamic Air-Pressure Sensor

    PubMed Central

    Takarada, Tohru; Asada, Tetsunosuke; Sumi, Yoshihisa; Higuchi, Yoshinori

    2015-01-01

    We have previously reported that a dynamic air-pressure sensor system allows respiratory status to be visually monitored for patients in minimally clothed condition. The dynamic air-pressure sensor measures vital information using changes in air pressure. To utilize this device in the field, we must clarify the influence of clothing conditions on measurement. The present study evaluated use of the dynamic air-pressure sensor system as a respiratory monitor that can reliably detect change in breathing patterns irrespective of clothing. Twelve healthy volunteers reclined on a dental chair positioned horizontally with the sensor pad for measuring air-pressure signals corresponding to respiration placed on the seat back of the dental chair in the central lumbar region. Respiratory measurements were taken under 2 conditions: (a) thinly clothed (subject lying directly on the sensor pad); and (b) thickly clothed (subject lying on the sensor pad covered with a pressure-reducing sheet). Air-pressure signals were recorded and time integration values for air pressure during each expiration were calculated. This information was compared with expiratory tidal volume measured simultaneously by a respirometer connected to the subject via face mask. The dynamic air-pressure sensor was able to receive the signal corresponding to respiration regardless of clothing conditions. A strong correlation was identified between expiratory tidal volume and time integration values for air pressure during each expiration for all subjects under both clothing conditions (0.840–0.988 for the thinly clothed condition and 0.867–0.992 for the thickly clothed condition). These results show that the dynamic air-pressure sensor is useful for monitoring respiratory physiology irrespective of clothing. PMID:26398125

  4. Compression-ignition Engine Performance at Altitudes and at Various Air Pressures and Temperatures

    NASA Technical Reports Server (NTRS)

    Moore, Charles S; Collins, John H

    1937-01-01

    Engine test results are presented for simulated altitude conditions. A displaced-piston combustion chamber on a 5- by 7-inch single cylinder compression-ignition engine operating at 2,000 r.p.m. was used. Inlet air temperature equivalent to standard altitudes up to 14,000 feet were obtained. Comparison between performance at altitude of the unsupercharged compression-ignition engine compared favorably with the carburetor engine. Analysis of the results for which the inlet air temperature, inlet air pressure, and inlet and exhaust pressure were varied indicates that engine performance cannot be reliably corrected on the basis of inlet air density or weight of air charge. Engine power increases with inlet air pressure and decreases with inlet air temperatures very nearly as straight line relations over a wide range of air-fuel ratios. Correction factors are given.

  5. Pressurized solid oxide fuel cell integral air accumular containment

    DOEpatents

    Gillett, James E.; Zafred, Paolo R.; Basel, Richard A.

    2004-02-10

    A fuel cell generator apparatus contains at least one fuel cell subassembly module in a module housing, where the housing is surrounded by a pressure vessel such that there is an air accumulator space, where the apparatus is associated with an air compressor of a turbine/generator/air compressor system, where pressurized air from the compressor passes into the space and occupies the space and then flows to the fuel cells in the subassembly module, where the air accumulation space provides an accumulator to control any unreacted fuel gas that might flow from the module.

  6. Predicting Increased Blood Pressure Using Machine Learning

    PubMed Central

    Golino, Hudson Fernandes; Amaral, Liliany Souza de Brito; Duarte, Stenio Fernando Pimentel; Soares, Telma de Jesus; dos Reis, Luciana Araujo

    2014-01-01

    The present study investigates the prediction of increased blood pressure by body mass index (BMI), waist (WC) and hip circumference (HC), and waist hip ratio (WHR) using a machine learning technique named classification tree. Data were collected from 400 college students (56.3% women) from 16 to 63 years old. Fifteen trees were calculated in the training group for each sex, using different numbers and combinations of predictors. The result shows that for women BMI, WC, and WHR are the combination that produces the best prediction, since it has the lowest deviance (87.42), misclassification (.19), and the higher pseudo R2 (.43). This model presented a sensitivity of 80.86% and specificity of 81.22% in the training set and, respectively, 45.65% and 65.15% in the test sample. For men BMI, WC, HC, and WHC showed the best prediction with the lowest deviance (57.25), misclassification (.16), and the higher pseudo R2 (.46). This model had a sensitivity of 72% and specificity of 86.25% in the training set and, respectively, 58.38% and 69.70% in the test set. Finally, the result from the classification tree analysis was compared with traditional logistic regression, indicating that the former outperformed the latter in terms of predictive power. PMID:24669313

  7. Plant responses to reduced air pressure: advanced techniques and results

    NASA Astrophysics Data System (ADS)

    Daunicht, H.-J.; Brinkjans, H. J.

    1996-01-01

    Knowledge on air pressure impacts on plant processes and growth is essential for understanding responses to altitude and for comprehending the way of action of aerial gasses in general, and is of potential importance for life support systems in space. Our research on reduced air pressure was extended by help of a new set-up comprising two constantly ventilated chambers (283 L each), allowing pressure gradients of +/- 100 kPa. They provide favourable general growth conditions while maintaining all those factors constant or at desired levels which modify the action of air pressure, e.g. water vapour pressure deficit and air mass flow over the plants. Besides plant growth parameters, transpiration and CO_2 gas exchange are determined continuously. Results are presented on young tomato plants grown hydroponically, which had been treated with various combinations of air pressure (400 - 700 - 1000 hPa), CO_2 concentration and wind intensity for seven days. At the lowest pressure transpiration was enhanced considerably, and the plants became sturdier. On the other hand growth was retarded to a certain extent, attributable to secondary air pressure effects. Therefore, even greater limitations of plant productivity are expected after more extended periods of low pressure treatment.

  8. [Aerodynamics study on pressure changes inside pressure-type whole-body plethysmograph produced by flowing air].

    PubMed

    Xu, Wei-Hua; Shen, Hua-Hao

    2010-02-25

    When using pressure-type plethysmography to test lung function of rodents, calculation of lung volume is always based on Boyle's law. The precondition of Boyle's law is that perfect air is static. However, air in the chamber is flowing continuously when a rodent breathes inside the chamber. Therefore, Boyle's law, a principle of air statics, may not be appropriate for measuring pressure changes of flowing air. In this study, we deduced equations for pressure changes inside pressure-type plethysmograph and then designed three experiments to testify the theoretic deduction. The results of theoretic deduction indicated that increased pressure was generated from two sources: one was based on Boyle's law, and the other was based on the law of conservation of momentum. In the first experiment, after injecting 0.1 mL, 0.2 mL, 0.4 mL of air into the plethysmograph, the pressure inside the chamber increased sharply to a peak value, then promptly decreased to horizontal pressure. Peak values were significantly higher than the horizontal values (P<0.001). This observation revealed that flowing air made an extra effect on air pressure in the plethysmograph. In the second experiment, the same volume of air was injected into the plethysmograph at different frequencies (0, 0.5, 1, 2, 3 Hz) and pressure changes inside were measured. The results showed that, with increasing frequencies, the pressure changes in the chamber became significantly higher (P<0.001). In the third experiment, small animal ventilator and pipette were used to make two types of airflow with different functions of time. The pressure changes produced by the ventilator were significantly greater than those produced by the pipette (P<0.001). Based on the data obtained, we draw the conclusion that, the flow of air plays a role in pressure changes inside the plethysmograph, and the faster the airflow is, the higher the pressure changes reach. Furthermore, the type of airflow also influences the pressure changes

  9. [Aerodynamics study on pressure changes inside pressure-type whole-body plethysmograph produced by flowing air].

    PubMed

    Xu, Wei-Hua; Shen, Hua-Hao

    2010-02-25

    When using pressure-type plethysmography to test lung function of rodents, calculation of lung volume is always based on Boyle's law. The precondition of Boyle's law is that perfect air is static. However, air in the chamber is flowing continuously when a rodent breathes inside the chamber. Therefore, Boyle's law, a principle of air statics, may not be appropriate for measuring pressure changes of flowing air. In this study, we deduced equations for pressure changes inside pressure-type plethysmograph and then designed three experiments to testify the theoretic deduction. The results of theoretic deduction indicated that increased pressure was generated from two sources: one was based on Boyle's law, and the other was based on the law of conservation of momentum. In the first experiment, after injecting 0.1 mL, 0.2 mL, 0.4 mL of air into the plethysmograph, the pressure inside the chamber increased sharply to a peak value, then promptly decreased to horizontal pressure. Peak values were significantly higher than the horizontal values (P<0.001). This observation revealed that flowing air made an extra effect on air pressure in the plethysmograph. In the second experiment, the same volume of air was injected into the plethysmograph at different frequencies (0, 0.5, 1, 2, 3 Hz) and pressure changes inside were measured. The results showed that, with increasing frequencies, the pressure changes in the chamber became significantly higher (P<0.001). In the third experiment, small animal ventilator and pipette were used to make two types of airflow with different functions of time. The pressure changes produced by the ventilator were significantly greater than those produced by the pipette (P<0.001). Based on the data obtained, we draw the conclusion that, the flow of air plays a role in pressure changes inside the plethysmograph, and the faster the airflow is, the higher the pressure changes reach. Furthermore, the type of airflow also influences the pressure changes.

  10. Cold atmospheric pressure air plasma jet for medical applications

    SciTech Connect

    Kolb, J. F.; Price, R. O.; Bowman, A.; Chiavarini, R. L.; Stacey, M.; Schoenbach, K. H.; Mohamed, A.-A H.; Swanson, R. J.

    2008-06-16

    By flowing atmospheric pressure air through a direct current powered microhollow cathode discharge, we were able to generate a 2 cm long plasma jet. With increasing flow rate, the flow becomes turbulent and temperatures of the jet are reduced to values close to room temperature. Utilizing the jet, yeast grown on agar can be eradicated with a treatment of only a few seconds. Conversely, animal studies show no skin damage even with exposures ten times longer than needed for pathogen extermination. This cold plasma jet provides an effective mode of treatment for yeast infections of the skin.

  11. Cold atmospheric pressure air plasma jet for medical applications

    NASA Astrophysics Data System (ADS)

    Kolb, J. F.; Mohamed, A.-A. H.; Price, R. O.; Swanson, R. J.; Bowman, A.; Chiavarini, R. L.; Stacey, M.; Schoenbach, K. H.

    2008-06-01

    By flowing atmospheric pressure air through a direct current powered microhollow cathode discharge, we were able to generate a 2cm long plasma jet. With increasing flow rate, the flow becomes turbulent and temperatures of the jet are reduced to values close to room temperature. Utilizing the jet, yeast grown on agar can be eradicated with a treatment of only a few seconds. Conversely, animal studies show no skin damage even with exposures ten times longer than needed for pathogen extermination. This cold plasma jet provides an effective mode of treatment for yeast infections of the skin.

  12. A Balanced-pressure Sliding Seal for Transfer of Pressurized Air Between Stationary and Rotating Parts

    NASA Technical Reports Server (NTRS)

    Curren, Arthur N; Cochran, Reeves P

    1957-01-01

    A combination sliding-ring and pressure-balancing seal capable of transferring pressurize air from stationary to rotating parts was developed and experimentally investigated at sliding velocities and cooling-air pressures up to 10,000 feet per minute and 38.3 pounds per square inch absolute, respectively. Leakage of cooling air was completely eliminated with an expenditure of balance air less than one-fourth the leakage loss of air from labyrinth seals under the same conditions. Additional cooling of the carbon-base seal rings was required, and the maximum wear rate on the rings was about 0.0005 inch per hour.

  13. Air Flow and Pressure Drop Measurements Across Porous Oxides

    NASA Technical Reports Server (NTRS)

    Fox, Dennis S.; Cuy, Michael D.; Werner, Roger A.

    2008-01-01

    This report summarizes the results of air flow tests across eight porous, open cell ceramic oxide samples. During ceramic specimen processing, the porosity was formed using the sacrificial template technique, with two different sizes of polystyrene beads used for the template. The samples were initially supplied with thicknesses ranging from 0.14 to 0.20 in. (0.35 to 0.50 cm) and nonuniform backside morphology (some areas dense, some porous). Samples were therefore ground to a thickness of 0.12 to 0.14 in. (0.30 to 0.35 cm) using dry 120 grit SiC paper. Pressure drop versus air flow is reported. Comparisons of samples with thickness variations are made, as are pressure drop estimates. As the density of the ceramic material increases the maximum corrected flow decreases rapidly. Future sample sets should be supplied with samples of similar thickness and having uniform surface morphology. This would allow a more consistent determination of air flow versus processing parameters and the resulting porosity size and distribution.

  14. Behavior of a horizontal air curtain subjected to a vertical pressure gradient

    NASA Astrophysics Data System (ADS)

    Linden, James; Phelps, LeEllen

    2012-09-01

    We present the details on an experiment to investigate the behavior of an air curtain that is subjected to a transverse pressure gradient. The setup simulates the conditions that will be present in the Advanced Technology Solar Telescope (ATST), a 4-meter solar observatory that will be built on Haleakala, Hawaii. A test rig was built to replicate the region at which the optical path crosses a temperature and pressure boundary between the telescope mount region, which is at the ambient temperature and pressure, and a warmer, pressurized lab space directly below. Use of an air curtain in place of an optically-transmitting window at the interface would allow science observations at a wider range of scientific wavelengths. With the air curtain exhibiting transitional flow behavior across the boundary, and applied pressure gradients of up to 6.5 Pa, we found that the air curtain was able to hold a pressure gradient of 0.25 Pa. As the applied pressure was increased, transient turbulent regions formed at the interface, and predictable flow behavior only occurred in the region closest to the air curtain blower. Computer modeling is used to validate the test data, identify laminar regions of the air curtain where minimal image distortion would occur, and explore the relationship between the applied pressure, effective pressure difference, and air curtain profile.

  15. Air plasma jet with hollow electrodes at atmospheric pressure

    SciTech Connect

    Hong, Yong Cheol; Uhm, Han Sup

    2007-05-15

    Atmospheric-pressure plasma jet with air is produced through hollow electrodes and dielectric with a hole of 1 mm diam. The plasma jet device is operated by injecting pressurized air into the electrode hole. The air plasma jet device at average powers less than 5 W exhibits a cold plasma jet of about 2 cm in length and near the room temperature, being low enough to treat thermally sensitive materials. Preliminary studies on the discharge characteristics and application tests are also presented by comparing the air plasma jet with the nitrogen and argon plasma jet.

  16. Prenatal Air Pollution Exposure and Newborn Blood Pressure

    PubMed Central

    Rifas-Shiman, Sheryl L.; Melly, Steven J.; Kloog, Itai; Luttmann-Gibson, Heike; Zanobetti, Antonella; Coull, Brent A.; Schwartz, Joel D.; Mittleman, Murray A.; Oken, Emily; Gillman, Matthew W.; Koutrakis, Petros; Gold, Diane R.

    2015-01-01

    Background Air pollution exposure has been associated with increased blood pressure in adults. Objective: We examined associations of antenatal exposure to ambient air pollution with newborn systolic blood pressure (SBP). Methods: We studied 1,131 mother–infant pairs in a Boston, Massachusetts, area pre-birth cohort. We calculated average exposures by trimester and during the 2 to 90 days before birth for temporally resolved fine particulate matter (≤ 2.5 μm; PM2.5), black carbon (BC), nitrogen oxides, nitrogen dioxide, ozone (O3), and carbon monoxide measured at stationary monitoring sites, and for spatiotemporally resolved estimates of PM2.5 and BC at the residence level. We measured SBP at a mean age of 30 ± 18 hr with an automated device. We used mixed-effects models to examine associations between air pollutant exposures and SBP, taking into account measurement circumstances; child’s birth weight; mother’s age, race/ethnicity, socioeconomic position, and third-trimester BP; and time trend. Estimates represent differences in SBP associated with an interquartile range (IQR) increase in each pollutant. Results: Higher mean PM2.5 and BC exposures during the third trimester were associated with higher SBP (e.g., 1.0 mmHg; 95% CI: 0.1, 1.8 for a 0.32-μg/m3 increase in mean 90-day residential BC). In contrast, O3 was negatively associated with SBP (e.g., –2.3 mmHg; 95% CI: –4.4, –0.2 for a 13.5-ppb increase during the 90 days before birth). Conclusions: Exposures to PM2.5 and BC in late pregnancy were positively associated with newborn SBP, whereas O3 was negatively associated with SBP. Longitudinal follow-up will enable us to assess the implications of these findings for health during later childhood and adulthood. Citation: van Rossem L, Rifas-Shiman SL, Melly SJ, Kloog I, Luttmann-Gibson H, Zanobetti A, Coull BA, Schwartz JD, Mittleman MA, Oken E, Gillman MW, Koutrakis P, Gold DR. 2015. Prenatal air pollution exposure and newborn blood pressure

  17. Air circulation under reduced atmospheric pressures

    NASA Astrophysics Data System (ADS)

    Hillhouse, Lendell E.

    The control of heat exchange is vital for plant life in off-world, low pressure, greenhouses. The ability to control this process was limited by methodology and technology. Mathematical models, based on classical mechanics are created to enhance our control capabilities. Data is collected using various sensors placed inside the Low Pressure Test Bed (LPTB) Chamber at Kennedy Space Center. Data from those sensors became non-linear at various pressures below 25 kPa. We introduced mathematical calibration corrections and found that sensor data linearity could be extended to a greater range of pressures. These calibration corrections allow for sensor calibration corrections in operational environments that differ from the environment of calibration (normal Earth atmospheric pressure).

  18. Laboratory performance of alternating pressure air mattresses component and sequelae.

    PubMed

    Bain, Duncan

    The performance of three different alternating pressure air mattresses with different geometries of air cell were compared (Nimbus 3, Heritage, Tamora Plus), using simple performance indices based on pressure mapping. The aim of this study was to examine the effect on performance of elevating the backrest and thigh section of the bed into sitting position. Ten healthy volunteers of various sizes were pressure-mapped over the full pressure cycle on three alternating pressure air mattresseses with differing cell geometries. This was then repeated with the beds profiled to a sitting position. Performance of the alternating pressure air mattresses in terms of their ability to redistribute pressure dynamically was assessed in the different positions. The different alternating pressure air mattresses performed similarly with the bed in the lying flat position, but smaller cells appeared to be more effective in the sitting position. A conclusion was made that cell geometry may have an effect on the ability of the mattress to achieve alternating behaviour in the sitting position.

  19. 58. AIR PRESSURIZATION TANK BEING LIFTED INTO PLACE ON THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    58. AIR PRESSURIZATION TANK BEING LIFTED INTO PLACE ON THE VAL BRIDGE STRUCTURE AT ISLIP CANYON, April 9, 1948. - Variable Angle Launcher Complex, Variable Angle Launcher, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA

  20. 27. EXTENSION OF SURGE CHAMBER AND AIR PIPES TO PRESSURE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    27. EXTENSION OF SURGE CHAMBER AND AIR PIPES TO PRESSURE LINE, HIGHLINE PUMPING PLANT. December 11, 1920 - Highline Canal & Pumping Station, South side of Salt River between Tempe, Phoenix & Mesa, Tempe, Maricopa County, AZ

  1. Insect hygroreceptor responses to continuous changes in humidity and air pressure.

    PubMed

    Tichy, H; Kallina, W

    2010-06-01

    The most favored model of humidity transduction views the cuticular wall of insect hygroreceptive sensilla as a hygromechanical transducer. Hygroscopic swelling or shrinking alters the geometry of the wall, deforming the dendritic membranes of the moist and dry cells. The small size the sensilla and their position surrounded by elevated structures creates technical difficulties to mechanically stimulate them by direct contact. The present study investigated hygroreceptors on the antennae of the cockroach and the stick insect. Accurately controlled, homogeneous mechanical input was delivered by modulating air pressure. Both the moist and dry cells responded not only to changes in air pressure but also in the opposite direction, as observed during changes in air humidity. The moist cell's excitatory response to increasing humidity and increasing air pressure implies that swelling of the hygroscopic cuticle compresses the dendrites, and the dry cell's excitatory response to decreasing humidity and decreasing air pressure implies that shrinking of the hygroscopic cuticle expands the dendrites. The moist and dry cells of the stick insect are more sensitive to pressure changes than those of the cockroach, but the responses to air pressure are generally weaker than to humidity. Therefore the hygroreceptive sensilla differ in their physical properties and constitutions. Furthermore, the mechanical parameters associated with homogeneous changes in air pressure on the sensillum surface can only partially account for the responses of the moist and dry cells of both species to humidity stimulation. PMID:20375249

  2. Insect hygroreceptor responses to continuous changes in humidity and air pressure

    PubMed Central

    Tichy, H.; Kallina, W.

    2011-01-01

    The most favored model of humidity transduction views the cuticular wall of insect hygroreceptive sensilla as a hygromechanical transducer. Hygroscopic swelling or shrinking alters the geometry of the wall, deforming the dendritic membranes of the moist and dry cells. The small size the sensilla and their position surrounded by elevated structures creates technical difficulties to mechanically stimulate them by direct contact. The present study investigated hygroreceptors on the antennae of the cockroach and the stick insect. Accurately controlled, homogeneous mechanical input was delivered by modulating air pressure. Both the moist and dry cells responded not only to changes in air pressure, but also in the opposite direction, as observed during changes in air humidity. The moist-cell’s excitatory response to increasing humidity and increasing air pressure implies that swelling of the hygroscopic cuticle compresses the dendrites, and the dry-cell’s excitatory response to decreasing humidity and decreasing air pressure implies that shrinking of the hygroscopic cuticle expands the dendrites. The moist and dry cells of the stick insect are more sensitive to pressure changes than those of the cockroach, but the responses to air pressure are generally weaker than to humidity. Therefore, the hygroreceptive sensilla differ in their physical properties and constitutions. Furthermore, the mechanical parameters associated with homogeneous changes in air pressure on the sensillum surface can only partially account for the responses of the moist and dry cells of both species to humidity stimulation. PMID:20375249

  3. High-pressure combustor exhaust emissions with improved air-atomizing and conventional pressure-atomizing fuel nozzles

    NASA Technical Reports Server (NTRS)

    Ingebo, R. D.; Norgren, C. T.

    1973-01-01

    A high-pressure combustor segment 0.456 meter (18 in.) long with a maximum cross section of 0.153 by 0.305 meter (6 by 12 in.) was tested with specially designed air-atomizing and conventional pressure-atomizing fuel nozzles at inlet-air temperatures of 340 to 755 k (610 deg to 1360 R), reference velocities of 12.4 to 26.1 meters per second (41 to 86 ft/sec), and fuel-air ratios of 0.008 to 0.020. Increasing inlet-air pressure from 4 to 20 atmospheres generally increased smoke number and nitric oxide, but decreased carbon monoxide and unburned hydrocarbon concentrations with air-atomizing and pressure-atomizing nozzles. Emission indexes for carbon monoxide and unburned hydrocarbons were lower at 4, 10, and 20 atmospheres, and nitric oxide emission indexes were lower at 10 and 20 atmospheres with air-atomizing than with pressure-atomizing nozzles.

  4. Method and Apparatus for Measuring Surface Air Pressure

    NASA Technical Reports Server (NTRS)

    Lin, Bing (Inventor); Hu, Yongxiang (Inventor)

    2014-01-01

    The present invention is directed to an apparatus and method for remotely measuring surface air pressure. In one embodiment, the method of the present invention utilizes the steps of transmitting a signal having multiple frequencies into the atmosphere, measuring the transmitted/reflected signal to determine the relative received power level of each frequency and then determining the surface air pressure based upon the attenuation of the transmitted frequencies.

  5. [A new approach to improving air in habitable pressurized modules].

    PubMed

    Argunova, A M; Odelevskiĭ, V K; Strogonova, L B

    2009-01-01

    Habitable pressurized modules, including space cabin, should provide ecologically efficient and physiologically auspicious conditions. The regenerated air should be comparable with fresh air of the natural environment humans belonged with over thousand years of evolution. Air scrubbing system GALOINHALATOR IGK-02 (MAI, patent No. 2209093) comprises eco-pure minerals from the salt rocks in Verkhnekamsk (the Urals). The portable automatic system controls air saturation with negative light aeroions and fine salt aerosols at preset levels. The laboratory, clinical and model tests demonstrated bactericide and bacteriostatic effects of air produced by GALOINHALATOR and the mineral ability to adsorb harmful volatile admixtures. Breathing decontaminated and ionized air during long stay in a pressurized module is beneficial to human performance, immunity, and chronic diseases prevention. PMID:19621806

  6. Endotracheal tube cuff pressure before, during, and after fixed-wing air medical retrieval.

    PubMed

    Brendt, Peter; Schnekenburger, Marc; Paxton, Karen; Brown, Anthony; Mendis, Kumara

    2013-01-01

    Abstract Background. Increased endotracheal tube (ETT) cuff pressure is associated with compromised tracheal mucosal perfusion and injuries. No published data are available for Australia on pressures in the fixed-wing air medical retrieval setting. Objective. After introduction of a cuff pressure manometer (Mallinckrodt, Hennef, Germany) at the Royal Flying Doctor Service (RFDS) Base in Dubbo, New South Wales (NSW), Australia, we assessed the prevalence of increased cuff pressures before, during, and after air medical retrieval. Methods. This was a retrospective audit in 35 ventilated patients during fixed-wing retrievals by the RFDS in NSW, Australia. Explicit chart review of ventilated patients was performed for cuff pressures and changes during medical retrievals with pressurized aircrafts. Pearson correlation was calculated to determine the relation of ascent and ETT cuff pressure change from ground to flight level. Results. The mean (± standard deviation) of the first ETT cuff pressure measurement on the ground was 44 ± 20 cmH2O. Prior to retrieval in 11 patients, the ETT cuff pressure was >30 cmH2O and in 11 patients >50 cmH2O. After ascent to cruising altitude, the cuff pressure was >30 cmH2O in 22 patients and >50 cmH2O in eight patients. The cuff pressure was reduced 1) in 72% of cases prior to take off and 2) in 85% of cases during flight, and 3) after landing, the cuff pressure increased in 85% of cases. The correlation between ascent in cabin altitude and ETT cuff pressure was r = 0.3901, p = 0.0205. Conclusions. The high prevalence of excessive cuff pressures during air medical retrieval can be avoided by the use of cuff pressure manometers. Key words: cuff pressure; air medical retrieval; prehospital. PMID:23252881

  7. Endotracheal tube cuff pressure before, during, and after fixed-wing air medical retrieval.

    PubMed

    Brendt, Peter; Schnekenburger, Marc; Paxton, Karen; Brown, Anthony; Mendis, Kumara

    2013-01-01

    Abstract Background. Increased endotracheal tube (ETT) cuff pressure is associated with compromised tracheal mucosal perfusion and injuries. No published data are available for Australia on pressures in the fixed-wing air medical retrieval setting. Objective. After introduction of a cuff pressure manometer (Mallinckrodt, Hennef, Germany) at the Royal Flying Doctor Service (RFDS) Base in Dubbo, New South Wales (NSW), Australia, we assessed the prevalence of increased cuff pressures before, during, and after air medical retrieval. Methods. This was a retrospective audit in 35 ventilated patients during fixed-wing retrievals by the RFDS in NSW, Australia. Explicit chart review of ventilated patients was performed for cuff pressures and changes during medical retrievals with pressurized aircrafts. Pearson correlation was calculated to determine the relation of ascent and ETT cuff pressure change from ground to flight level. Results. The mean (± standard deviation) of the first ETT cuff pressure measurement on the ground was 44 ± 20 cmH2O. Prior to retrieval in 11 patients, the ETT cuff pressure was >30 cmH2O and in 11 patients >50 cmH2O. After ascent to cruising altitude, the cuff pressure was >30 cmH2O in 22 patients and >50 cmH2O in eight patients. The cuff pressure was reduced 1) in 72% of cases prior to take off and 2) in 85% of cases during flight, and 3) after landing, the cuff pressure increased in 85% of cases. The correlation between ascent in cabin altitude and ETT cuff pressure was r = 0.3901, p = 0.0205. Conclusions. The high prevalence of excessive cuff pressures during air medical retrieval can be avoided by the use of cuff pressure manometers. Key words: cuff pressure; air medical retrieval; prehospital.

  8. Teaching Science: Air Pressure "Eggs-periments."

    ERIC Educational Resources Information Center

    Leyden, Michael B.

    1994-01-01

    Discusses how teachers can introduce students to various scientific concept concerning motion, air composition, and heat by conducting an experiment: A peeled, hard-boiled egg is sucked into a bottle neck slightly smaller than the egg, after the bottle has been filled and emptied of hot water. Also discusses how students' understanding of the…

  9. Pressure of air on coming to rest from various speeds

    NASA Technical Reports Server (NTRS)

    Zahm, A F

    1927-01-01

    The text gives theoretical formulas from which is computed a table for the pressure of air on coming to rest from various speeds, such as those of aircraft and propeller blades. Pressure graphs are given for speeds from 1 cm. Sec. up to those of swift projectiles.

  10. Increasing the Air Charge and Scavenging the Clearance Volume of a Compression-Ignition Engine

    NASA Technical Reports Server (NTRS)

    Spanogle, J A; Hicks, C W; Foster, H H

    1934-01-01

    The object of the investigation presented in this report was to determine the effects of increasing the air charge and scavenging the clearance volume of a 4-stroke-cycle compression-ignition engine having a vertical-disk form combustion chamber. Boosting the inlet-air pressure with normal valve timing increased the indicated engine power in proportion to the additional air inducted and resulted in smoother engine operation with less combustion shock. Scavenging the clearance volume by using a valve overlap of 145 degrees and an inlet-air boost pressure of approximately 2 1/2 inches of mercury produced a net increase in performance for clear exhaust operation of 33 percent over that obtained with normal valve timing and the same boost pressure. The improved combustion characteristics result in lower specific fuel consumption, and a clearer exhaust.

  11. Converging swirling liquid jets from pressure swirl atomizers: Effect of inner air pressure

    NASA Astrophysics Data System (ADS)

    Sivakumar, D.; Raghunandan, B. N.

    2002-12-01

    Converging swirling liquid jets from pressure swirl atomizers injected into atmospheric air are studied experimentally using still and cine photographic techniques in the context of liquid-liquid coaxial swirl atomizers used in liquid rocket engines. The jet exhibits several interesting flow features in contrast to the nonswirling liquid jets (annular liquid jets) studied in the literature. The swirl motion creates multiple converging sections in the jet, which gradually collapse one after the other due to the liquid sheet breakup with increasing Weber number (We). This is clearly related to the air inside the converging jet which exhibits a peculiar variation of the pressure difference across the liquid sheet, ΔP, with We. The variation shows a decreasing trend of ΔP with We in an overall sense, but exhibits local maxima and minima at specific flow conditions. The number of maxima or minima observed in the curve depends on the number of converging sections seen in the jet at the lowest We. An interesting feature of this variation is that it delineates the regions of prominent jet flow features like the oscillating jet region, nonoscillating jet region, number of converging sections, and so on. Numerical predictions of the jet characteristics are obtained by modifying an existing nonswirling liquid jet model by including the swirling motion. The comparison between the experimental and numerical measurements shows that the pressure difference across the liquid sheet is important for the jet behavior and cannot be neglected in any theoretical analysis.

  12. Influence of air pressure on the performance of plasma synthetic jet actuator

    NASA Astrophysics Data System (ADS)

    Li, Yang; Jia, Min; Wu, Yun; Li, Ying-hong; Zong, Hao-hua; Song, Hui-min; Liang, Hua

    2016-09-01

    Plasma synthetic jet actuator (PSJA) has a wide application prospect in the high-speed flow control field for its high jet velocity. In this paper, the influence of the air pressure on the performance of a two-electrode PSJA is investigated by the schlieren method in a large range from 7 kPa to 100 kPa. The energy consumed by the PSJA is roughly the same for all the pressure levels. Traces of the precursor shock wave velocity and the jet front velocity vary a lot for different pressures. The precursor shock wave velocity first decreases gradually and then remains at 345 m/s as the air pressure increases. The peak jet front velocity always appears at the first appearance of a jet, and it decreases gradually with the increase of the air pressure. A maximum precursor shock wave velocity of 520 m/s and a maximum jet front velocity of 440 m/s are observed at the pressure of 7 kPa. The averaged jet velocity in one period ranges from 44 m/s to 54 m/s for all air pressures, and it drops with the rising of the air pressure. High velocities of the precursor shock wave and the jet front indicate that this type of PSJA can still be used to influence the high-speed flow field at 7 kPa. Project supported by the National Natural Science Foundation of China (Grant Nos. 51407197, 51522606, 51336011, 91541120, and 11472306).

  13. Electrical explosion of Al and Ag wires in air at different pressures

    NASA Astrophysics Data System (ADS)

    Sarkisov, G. S.; Caplinger, J.; Parada, F.; Sotnikov, V. I.

    2016-09-01

    Experiments with electrically exploding fine Al and Ag wires in air demonstrate a strong dependence of the expanding metal core condition and velocity on ambient pressure. Expansion velocity of the wire core varies by 23 times between ˜0.2 km/s and ˜4.6 km/s. The shock-wave velocity at atmospheric pressure is ˜5 km/s and increases to ˜6 km/s when the pressure is decreased to 50 Torr. The condition of the metal core is strongly dependent on material and whether it is expanding into vacuum or against ambient air pressure. Expansion velocity of the fine Al and Ag wires for different surrounding pressures in general agree with Paschen's Law for air gap.

  14. Inverse Association between Air Pressure and Rheumatoid Arthritis Synovitis

    PubMed Central

    Furu, Moritoshi; Nakabo, Shuichiro; Ohmura, Koichiro; Nakashima, Ran; Imura, Yoshitaka; Yukawa, Naoichiro; Yoshifuji, Hajime; Matsuda, Fumihiko; Ito, Hiromu; Fujii, Takao; Mimori, Tsuneyo

    2014-01-01

    Rheumatoid arthritis (RA) is a bone destructive autoimmune disease. Many patients with RA recognize fluctuations of their joint synovitis according to changes of air pressure, but the correlations between them have never been addressed in large-scale association studies. To address this point we recruited large-scale assessments of RA activity in a Japanese population, and performed an association analysis. Here, a total of 23,064 assessments of RA activity from 2,131 patients were obtained from the KURAMA (Kyoto University Rheumatoid Arthritis Management Alliance) database. Detailed correlations between air pressure and joint swelling or tenderness were analyzed separately for each of the 326 patients with more than 20 assessments to regulate intra-patient correlations. Association studies were also performed for seven consecutive days to identify the strongest correlations. Standardized multiple linear regression analysis was performed to evaluate independent influences from other meteorological factors. As a result, components of composite measures for RA disease activity revealed suggestive negative associations with air pressure. The 326 patients displayed significant negative mean correlations between air pressure and swellings or the sum of swellings and tenderness (p = 0.00068 and 0.00011, respectively). Among the seven consecutive days, the most significant mean negative correlations were observed for air pressure three days before evaluations of RA synovitis (p = 1.7×10−7, 0.00027, and 8.3×10−8, for swellings, tenderness and the sum of them, respectively). Standardized multiple linear regression analysis revealed these associations were independent from humidity and temperature. Our findings suggest that air pressure is inversely associated with synovitis in patients with RA. PMID:24454853

  15. Air plasma jet with hollow electrodes at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Hong, Yong Cheol; Uhm, Han Sup

    2007-05-01

    Atmospheric-pressure plasma jet with air is produced through hollow electrodes and dielectric with a hole of 5W exhibits a cold plasma jet of about 2cm in length and near the room temperature, being low enough to treat thermally sensitive materials. Preliminary studies on the discharge characteristics and application tests are also presented by comparing the air plasma jet with the nitrogen and argon plasma jet.

  16. Temperature and pressure influence on explosion pressures of closed vessel propane-air deflagrations.

    PubMed

    Razus, Domnina; Brinzea, Venera; Mitu, Maria; Oancea, Dumitru

    2010-02-15

    An experimental study on pressure evolution during closed vessel explosions of propane-air mixtures was performed, for systems with various initial concentrations and pressures ([C(3)H(8)]=2.50-6.20 vol.%, p(0)=0.3-1.2 bar). The explosion pressures and explosion times were measured in a spherical vessel (Phi=10 cm), at various initial temperatures (T(0)=298-423 K) and in a cylindrical vessel (Phi=10 cm; h=15 cm), at ambient initial temperature. The experimental values of explosion pressures are examined against literature values and compared to adiabatic explosion pressures, computed by assuming chemical equilibrium within the flame front. The influence of initial pressure, initial temperature and fuel concentration on explosion pressures and explosion times are discussed. At constant temperature and fuel/oxygen ratio, the explosion pressures are linear functions of total initial pressure, as reported for other fuel-air mixtures. At constant initial pressure and composition, both the measured and calculated (adiabatic) explosion pressures are linear functions of reciprocal value of initial temperature. Such correlations are extremely useful for predicting the explosion pressures of flammable mixtures at elevated temperatures and/or pressures, when direct measurements are not available.

  17. An objective definition of air mass types affecting Athens, Greece; the corresponding atmospheric pressure patterns and air pollution levels.

    PubMed

    Sindosi, O A; Katsoulis, B D; Bartzokas, A

    2003-08-01

    This work aims at defining characteristic air mass types that dominate in the region of Athens, Greece during the cold (November-March) and the warm (May-September) period of the year and also at evaluating the corresponding concentration levels of the main air pollutants. For each air mass type, the mean atmospheric pressure distribution (composite maps) over Europe and the Mediterranean is estimated in order to reveal the association of atmospheric circulation with air pollution levels in Athens. The data basis for this work consists of daily values of thirteen meteorological and six pollutant parameters covering the period 1993-97. The definition of the characteristic air mass types is attempted objectively by using the methods of Factor Analysis and Cluster Analysis. The results show that during the cold period of the year there are six prevailing air mass types (at least 3% of the total number of days) and six infrequent ones. The examination of the corresponding air pollution concentration levels shows that the primary air pollutants appear with increased concentrations when light or southerly winds prevail. This is usually the case when a high pressure system is located over the central Mediterranean or a low pressure system lays over south Italy, respectively. Low levels of the primary pollutants are recorded under northeasterly winds, mainly caused by a high pressure system over Ukraine. During the warm period of the year, the southwestern Asia thermal low and the subtropical anticyclone of the Atlantic Ocean affect Greece. Though these synoptic systems cause almost stagnant conditions, four main air mass types are dominant and ten others, associated with extreme weather, are infrequent. Despite the large amounts of total solar radiation characterizing this period, ozone concentrations remain at low levels in central Athens because of its destruction by nitric oxide.

  18. Air mass flow estimation in turbocharged diesel engines from in-cylinder pressure measurement

    SciTech Connect

    Desantes, J.M.; Galindo, J.; Guardiola, C.; Dolz, V.

    2010-01-15

    Air mass flow determination is needed for the control of current internal combustion engines. Current methods are based on specific sensors (as hot wire anemometers) or indirect estimation through manifold pressure. With the availability of cylinder pressure sensors for engine control, methods based on them can be used for replacing or complementing standard methods. Present paper uses in cylinder pressure increase during the intake stroke for inferring the trapped air mass. The method is validated on two different turbocharged diesel engines and compared with the standard methods. (author)

  19. Impact of air conditioning system operation on increasing gases emissions from automobile

    NASA Astrophysics Data System (ADS)

    Burciu, S. M.; Coman, G.

    2016-08-01

    The paper presents a study concerning the influence of air conditioning system operation on the increase of gases emissions from cars. The study focuses on urban operating regimes of the automobile, regimes when the engines have low loads or are operating at idling. Are presented graphically the variations of pollution emissions (CO, CO2, HC) depending of engine speed and the load on air conditioning system. Additionally are presented, injection duration, throttle position, the mechanical power required by the compressor of air conditioning system and the refrigerant pressure variation on the discharge path, according to the stage of charging of the air conditioning system.

  20. Tongue-Palate Contact Pressure, Oral Air Pressure, and Acoustics of Clear Speech

    ERIC Educational Resources Information Center

    Searl, Jeff; Evitts, Paul M.

    2013-01-01

    Purpose: The authors compared articulatory contact pressure (ACP), oral air pressure (Po), and speech acoustics for conversational versus clear speech. They also assessed the relationship of these measures to listener perception. Method: Twelve adults with normal speech produced monosyllables in a phrase using conversational and clear speech.…

  1. DEVELOPMENT OF A LOW PRESSURE, AIR ATOMIZED OIL BURNER WITH HIGH ATOMIZER AIR FLOW

    SciTech Connect

    BUTCHER,T.A.

    1998-01-01

    This report describes technical advances made to the concept of a low pressure, air atomized oil burner for home heating applications. Currently all oil burners on the market are of the pressure atomized, retention head type. These burners have a lower firing rate limit of about 0.5 gallons per hour of oil, due to reliability problems related to small flow passage sizes. High pressure air atomized burners have been shown to be one route to avoid this problem but air compressor cost and reliability have practically eliminated this approach. With the low pressure air atomized burner the air required for atomization can be provided by a fan at 5--8 inches of water pressure. A burner using this concept, termed the Fan-Atomized Burner or FAB has been developed and is currently being commercialized. In the head of the FAB, the combustion air is divided into three parts, much like a conventional retention head burner. This report describes development work on a new concept in which 100% of the air from the fan goes through the atomizer. The primary advantage of this approach is a great simplification of the head design. A nozzle specifically sized for this concept was built and is described in the report. Basic flow pressure tests, cold air velocity profiles, and atomization performance have been measured. A burner head/flame tube has been developed which promotes a torroidal recirculation zone near the nozzle for flame stability. The burner head has been tested in several furnace and boiler applications over the tiring rate range 0.2 to 0.28 gallons per hour. In all cases the burner can operate with very low excess air levels (under 10%) without producing smoke. Flue gas NO{sub x} concentration varied from 42 to 62 ppm at 3% 0{sub 2}. The concept is seen as having significant potential and planned development efforts are discussed.

  2. Increased delignification by white rot fungi after pressure refining Miscanthus.

    PubMed

    Baker, Paul W; Charlton, Adam; Hale, Mike D C

    2015-01-01

    Pressure refining, a pulp making process to separate fibres of lignocellulosic materials, deposits lignin granules on the surface of the fibres that could enable increased access to lignin degrading enzymes. Three different white rot fungi were grown on pressure refined (at 6 bar and 8 bar) and milled Miscanthus. Growth after 28 days showed highest biomass losses on milled Miscanthus compared to pressure refined Miscanthus. Ceriporiopsis subvermispora caused a significantly higher proportion of lignin removal when grown on 6 bar pressure refined Miscanthus compared to growth on 8 bar pressure refined Miscanthus and milled Miscanthus. RM22b followed a similar trend but Phlebiopsis gigantea SPLog6 did not. Conversely, C. subvermispora growing on pressure refined Miscanthus revealed that the proportion of cellulose increased. These results show that two of the three white rot fungi used in this study showed higher delignification on pressure refined Miscanthus than milled Miscanthus.

  3. Multi-hole pressure probes to air data system for subsonic small-scale air vehicles

    NASA Astrophysics Data System (ADS)

    Shevchenko, A. M.; Berezin, D. R.; Puzirev, L. N.; Tarasov, A. Z.; Kharitonov, A. M.; Shmakov, A. S.

    2016-10-01

    A brief review of research performed to develop multi-hole probes to measure of aerodynamic angles, dynamic head, and static pressure of a flying vehicle. The basis of these works is the application a well-known classical multi-hole pressure probe technique of measuring of a 3D flow to use in the air data system. Two multi-hole pressure probes with spherical and hemispherical head to air-data system for subsonic small-scale vehicles have been developed. A simple analytical probe model with separation of variables is proposed. The probes were calibrated in the wind tunnel, one of them is in-flight tested.

  4. Modeling of an air-backed diaphragm in dynamic pressure sensors: Effects of the air cavity

    NASA Astrophysics Data System (ADS)

    Liu, Haijun; Olson, Douglas A.; Yu, Miao

    2014-12-01

    As the key structure of most dynamic pressure sensors, a diaphragm backed by an air cavity plays a critical role in the determination of sensor performance metrics. In this paper, we investigate the influence of air cavity length on the sensitivity and bandwidth. A continuum mechanics model neglecting the air viscous effect is first developed to capture the structural-acoustic coupling between a clamped circular diaphragm and a cylindrical backing air cavity. To facilitate sensor design, close-form approximations are obtained to calculate the static sensitivity and the fundamental natural frequency of the air-backed diaphragm. Parametric studies based on this analytical model show that the air cavity can change both the effective mass and the effective stiffness of the diaphragm. One new finding is that the natural frequency of the air-backed diaphragm behaves differently in three different cavity length ranges. In particular, due to the mass effect of the air cavity being dominant, it is shown for the first time that the natural frequency decreases when the cavity length decreases below a critical value in the short cavity range. Furthermore, a finite element method (FEM) model is developed to validate the continuum mechanics model and to study the damping effect of the air cavity. These results provide important design guidelines for dynamic pressure sensors with air-backed diaphragms.

  5. The Jar Magic--Instructional Activities for Teaching Air Pressure

    ERIC Educational Resources Information Center

    Ku, Bing-Hong; Chen, Chyong-Sun

    2013-01-01

    There are a variety of impressive activities designed for teaching the concept of air pressure to junior high school students. Water, glasses, balloons, plastic bottles, and suction cups are some of the items commonly used in these experiments. For example, if we take a glass of water, cover it with a piece of cardboard, and invert the glass,…

  6. Experimental Air Pressure Tank Systems for Process Control Education

    ERIC Educational Resources Information Center

    Long, Christopher E.; Holland, Charles E.; Gatzke, Edward P.

    2006-01-01

    In process control education, particularly in the field of chemical engineering, there is an inherent need for industrially relevant hands-on apparatuses that enable one to bridge the gap between the theoretical content of coursework and real-world applications. At the University of South Carolina, two experimental air-pressure tank systems have…

  7. Plain-jet airblast atomization of alternative liquid petroleum fuels under high ambient air pressure conditions

    NASA Astrophysics Data System (ADS)

    Jasuja, A. K.

    1982-04-01

    The effects that air and fuel properties have upon the spray mean drop size characteristics of a plain-jet airblast atomizer of the type employed in the gas turbine engine are investigated. The tests used kerosene, gas oil and a high-viscosity blend of gas oil in residual fuel oil, and covered a wide range of ambient air pressures. Laser light-scattering technique was employed for drop size measurements. It is concluded that the atomizer's measured mean drop size characteristics are only slightly different from those of the pre-filming type, especially when operating on low-viscosity kerosene under higher ambient air pressure. The beneficial effect of increased levels of ambient air pressure on mean drop size is shown to be much reduced in the case of high-viscosity fuels, thus making the attainment of good atomization performance on such fuels difficult. An expression is derived for correlating the obtained mean drop size data.

  8. Improved fireman's compressed air breathing system pressure vessel development program

    NASA Technical Reports Server (NTRS)

    King, H. A.; Morris, E. E.

    1973-01-01

    Prototype high pressure glass filament-wound, aluminum-lined pressurant vessels suitable for use in a fireman's compressed air breathing system were designed, fabricated, and acceptance tested in order to demonstrate the feasibility of producing such high performance, lightweight units. The 4000 psi tanks have a 60 standard cubic foot (SCF) air capacity, and have a 6.5 inch diamter, 19 inch length, 415 inch volume, weigh 13 pounds when empty, and contain 33 percent more air than the current 45 SCF (2250 psi) steel units. The current steel 60 SCF (3000 psi) tanks weigh approximately twice as much as the prototype when empty, and are 2 inches, or 10 percent shorter. The prototype units also have non-rusting aluminum interiors, which removes the hazard of corrosion, the need for internal coatings, and the possibility of rust particles clogging the breathing system.

  9. Cold Micro-Plasma Jets in Atmospheric Pressure Air

    NASA Astrophysics Data System (ADS)

    Mohamed, A. H.; Suddala, S.; Schoenbach, K. H.

    2003-10-01

    Direct current microhollow cathode discharges (MHCDs) have been operated in air, nitrogen and oxygen at pressures of one atmosphere. The electrodes are 250 μm thick molybdenum foils, separated by an alumina insulator of the same thickness. A cylindrical hole with a diameter in the 100 μm range is drilled through all layers. By flowing gases at high pressure through this hole, plasma jets with radial dimensions on the same order as the microhole dimensions, and with lengths of up to one centimeter are generated. The gas temperature in these jets was measured by means of a micro-thermocouple. The lowest temperatures of close to room temperature were measured when the flow changed from laminar to turbulent. The results of spectral emission and absorption studies indicate high concentrations of byproducts, such as ozone, when the discharge is operated in air or oxygen. This work is supported by the U.S Air Force Office of Scientific Research (AFOSR).

  10. Soot formation and temperature field structure in laminar propane-air diffusion flames at elevated pressures

    SciTech Connect

    Bento, Decio S.; Guelder, OEmer L.; Thomson, Kevin A.

    2006-06-15

    The effect of pressure on soot formation and the structure of the temperature field was studied in coflow propane-air laminar diffusion flames over the pressure range of 0.1 to 0.73 MPa in a high-pressure combustion chamber. The fuel flow rate was selected so that the soot was completely oxidized within the visible flame and the flame was stable at all pressures. Spectral soot emission was used to measure radially resolved soot volume fraction and soot temperature as a function of pressure. Additional soot volume fraction measurements were made at selected heights using line-of-sight light attenuation. Soot concentration values from these two techniques agreed to within 30% and both methods exhibited similar trends in the spatial distribution of soot concentration. Maximum line-of-sight soot concentration along the flame centerline scaled with pressure; the pressure exponent was about 1.4 for pressures between 0.2 and 0.73 MPa. Peak carbon conversion to soot, defined as the percentage of fuel carbon content converted to soot, also followed a power-law dependence on pressure, where the pressure exponent was near to unity for pressures between 0.2 and 0.73 MPa. Soot temperature measurements indicated that the overall temperatures decreased with increasing pressure; however, the temperature gradients increased with increasing pressure. (author)

  11. Increase of stagnation pressure and enthalpy in shock tunnels

    NASA Technical Reports Server (NTRS)

    Bogdanoff, David W.; Cambier, Jean-Luc

    1992-01-01

    High stagnation pressures and enthalpies are required for the testing of aerospace vehicles such as aerospace planes, aeroassist vehicles, and reentry vehicles. Among the most useful ground test facilities for performing such tests are shock tunnels. With a given driver gas condition, the enthalpy and pressure in the driven tube nozzle reservoir condition can be varied by changing the driven tube geometry and initial gas fill pressure. Reducing the driven tube diameter yields only very modest increases in reservoir pressure and enthalpy. Reducing the driven tube initial gas fill pressure can increase the reservoir enthalpy significantly, but at the cost of reduced reservoir pressure and useful test time. A new technique, the insertion of a converging section in the driven tube is found to produce substantial increases in both reservoir pressure and enthalpy. Using a one-dimensional inviscid full kinetics code, a number of different locations and shapes for the converging driven tube section were studied and the best cases found. For these best cases, for driven tube diameter reductions of factors of 2 and 3, the reservoir pressure can be increased by factors of 2.1 and 3.2, respectively and the enthalpy can be increased by factors of 1.5 and 2.1, respectively.

  12. The discharge of fine silica sand in a silo under different ambient air pressures

    NASA Astrophysics Data System (ADS)

    Hsiau, Shu-San; Liao, Chun-Chung; Lee, Jie-Hsien

    2012-04-01

    Silos are widely used for the industrial scale handling and transportation of powdered and granular materials. The process of discharging powder in a silo involves the flow of both solid particles and an interstitial fluid, usually air. In this study, we experimentally investigate the effects of particle size and ambient pressure on the discharge process in open- and closed-top silos. The discharge rate, pressure drop, and pressure recovery rate are measured and discussed. The results show that the particle size, the diameter of the orifice, and the ambient pressure significantly influence the process of discharge. The effect of air flow is stronger on fine-powdered flow in a closed-top silo. The results indicate that the effects of air flow could be reduced by lowering the ambient pressure. In addition, a normalized critical pressure can be defined beyond which the discharge rate increases dramatically. With reduced ambient pressure, this normalized critical pressure decreases with increasing particle size. Finally, the experimental results are compared with results calculated using the Beverloo equation and Darcy's law.

  13. Study of short atmospheric pressure dc glow microdischarge in air

    NASA Astrophysics Data System (ADS)

    Kudryavtsev, Anatoly; Bogdanov, Eugene; Chirtsov, Alexander; Emelin, Sergey

    2011-10-01

    The results of experiments and simulations of short (without positive column) atmospheric pressure dc glow discharge in air are presented. We used metal steel electrodes with a gap of 5-100 microns. The experimental voltage-current characteristic's (VAC) have a constant or slightly increasing form at low gap. The most stable microdischarges were burning with a flat cathode and rounded anode, when the length of the discharge is automatically established near the minimum of the Paschen curve by changing their binding on the anode. In this case microdischarge was stable and it had growing VAC. For simulations we used 2D fluid model with kinetic description of electrons. We solved the balance equations for the vibrationally- and the electronically-excited states of a nitrogen and oxygen molecules; nitrogen and oxygen atoms; ozone molecule; and different nitrogen and oxygen ions with different plasmochemical reactions between them. Simulations predicted the main regions of the dc glow discharges including cathode and anode sheath and plasma of negative glow, Faraday dark space and transition region. Gas heating plays an important role in shaping the discharge profiles. The results of experiments and simulations of short (without positive column) atmospheric pressure dc glow discharge in air are presented. We used metal steel electrodes with a gap of 5-100 microns. The experimental voltage-current characteristic's (VAC) have a constant or slightly increasing form at low gap. The most stable microdischarges were burning with a flat cathode and rounded anode, when the length of the discharge is automatically established near the minimum of the Paschen curve by changing their binding on the anode. In this case microdischarge was stable and it had growing VAC. For simulations we used 2D fluid model with kinetic description of electrons. We solved the balance equations for the vibrationally- and the electronically-excited states of a nitrogen and oxygen molecules; nitrogen

  14. The hybrid pressurized air receiver (HPAR) in the SUNDISC cycle

    NASA Astrophysics Data System (ADS)

    Heller, Lukas; Hoffmann, Jaap; Gauché, Paul

    2016-05-01

    Tubular metallic pressurized air solar receivers face challenges in terms of temperature distribution on the absorber tubes and the limited sustainable solar influx. The HPAR concept aims at mitigating these problems through a macro-volumetric design and a secondary non-pressurized air flow around the absorber elements. Here, a 360◦ manifestation of this concept for implementation in the dual-pressure SUNDISC cycle is presented. Computationally inexpensive models for the numerous heat flows were developed for use in parametric studies of a receiver's geometric layout. Initial findings are presented on the optical penetration of concentrated solar radiation into the absorber structure, blocking of thermal radiation from hot surfaces and the influence of the flow path through the heated tubes. In the basic design the heat transfer to the non-pressurized air stream is found to be insufficient and possible measures for its improvement are given. Their effect will be examined in more detailed models of external convection and thermal radiation to be able to provide performance estimates of the system.

  15. One-Component Pressure-Temperature Phase Diagrams in the Presence of Air

    ERIC Educational Resources Information Center

    Andrade-Gamboa, Julio; Martire, Daniel O.; Donati, Edgardo R.

    2010-01-01

    One-component phase diagrams are good approximations to predict pressure-temperature ("P-T") behavior of a substance in the presence of air, provided air pressure is not much higher than the vapor pressure. However, at any air pressure, and from the conceptual point of view, the use of a traditional "P-T" phase diagram is not strictly correct. In…

  16. Generation of subnanosecond electron beams in air at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Kostyrya, I. D.; Tarasenko, V. F.; Baksht, E. Kh.; Burachenko, A. G.; Lomaev, M. I.; Rybka, D. V.

    2009-11-01

    Optimum conditions for the generation of runaway electron beams with maximum current amplitudes and densities in nanosecond pulsed discharges in air at atmospheric pressure are determined. A supershort avalanche electron beam (SAEB) with a current amplitude of ˜30 A, a current density of ˜20 A/cm2, and a pulse full width at half maximum (FWHM) of ˜100 ps has been observed behind the output foil of an air-filled diode. It is shown that the position of the SAEB current maximum relative to the voltage pulse front exhibits a time shift that varies when the small-size collector is moved over the foil surface.

  17. Air Circulation and Heat Exchange Under Reduced Pressures

    NASA Technical Reports Server (NTRS)

    Rygalov, V.; Wheeler, R.; Dixon, M.; Fowler, P.; Hillhouse, L.

    2010-01-01

    Heat exchange rates decrease non-linearly with reductions in atmospheric pressure. This decrease creates risk of thermal stress (elevated leaf temperatures) for plants under reduced pressures. Forced convection (fans) significantly increases heat exchange rate under almost all pressures except below 10 kPa. Plant cultivation techniques under reduced pressures will require forced convection. The cooling curve technique is a reliable means of assessing the influence of environmental variables like pressure and gravity on gas exchange of plant. These results represent the extremes of gas exchange conditions for simple systems under variable pressures. In reality, dense plant canopies will exhibit responses in between these extremes. More research is needed to understand the dependence of forced convection on atmospheric pressure. The overall thermal balance model should include latent and radiative exchange components.

  18. Layers of air in the water beneath the floating fern Salvinia are exposed to fluctuations in pressure.

    PubMed

    Mayser, Matthias J; Barthlott, Wilhelm

    2014-12-01

    Superhydrophobic, hierarchically structured, technical surfaces (Lotus-effect) are of high scientific and economic interest because of their remarkable properties. Recently, the immense potential of air-retaining superhydrophobic surfaces, for example, for low-friction transport of fluids and drag-reducing coatings of ships has begun to be explored. A major problem of superhydrophobic surfaces mimicking the Lotus-effect is the limited persistence of the air retained, especially under rough conditions of flow. However, there are a variety of floating or diving plant and animal species that possess air-retaining surfaces optimized for durable water-repellency (Salvinia-effect). Especially floating ferns of the genus Salvinia have evolved superhydrophobic surfaces capable of maintaining layers of air for months. Apart from maintaining stability under water, the layer of air has to withstand the stresses of water pressure (up to 2.5 bars). Both of these aspects have an application to create permanent air layers on ships' hulls. We investigated the effect of pressure on air layers in a pressure cell and exposed the air layer to pressures of up to 6 bars. We investigated the suppression of the air layer at increasing pressures as well as its restoration during decreases in pressure. Three of the four examined Salvinia species are capable of maintaining air layers at pressures relevant to the conditions applying to ships' hulls. High volumes of air per surface area are advantageous for retaining at least a partial Cassie-Baxter-state under pressure, which also helps in restoring the air layer after depressurization. Closed-loop structures such as the baskets at the top of the "egg-beater hairs" (see main text) also help return the air layer to its original level at the tip of the hairs by trapping air bubbles.

  19. Layers of air in the water beneath the floating fern Salvinia are exposed to fluctuations in pressure.

    PubMed

    Mayser, Matthias J; Barthlott, Wilhelm

    2014-12-01

    Superhydrophobic, hierarchically structured, technical surfaces (Lotus-effect) are of high scientific and economic interest because of their remarkable properties. Recently, the immense potential of air-retaining superhydrophobic surfaces, for example, for low-friction transport of fluids and drag-reducing coatings of ships has begun to be explored. A major problem of superhydrophobic surfaces mimicking the Lotus-effect is the limited persistence of the air retained, especially under rough conditions of flow. However, there are a variety of floating or diving plant and animal species that possess air-retaining surfaces optimized for durable water-repellency (Salvinia-effect). Especially floating ferns of the genus Salvinia have evolved superhydrophobic surfaces capable of maintaining layers of air for months. Apart from maintaining stability under water, the layer of air has to withstand the stresses of water pressure (up to 2.5 bars). Both of these aspects have an application to create permanent air layers on ships' hulls. We investigated the effect of pressure on air layers in a pressure cell and exposed the air layer to pressures of up to 6 bars. We investigated the suppression of the air layer at increasing pressures as well as its restoration during decreases in pressure. Three of the four examined Salvinia species are capable of maintaining air layers at pressures relevant to the conditions applying to ships' hulls. High volumes of air per surface area are advantageous for retaining at least a partial Cassie-Baxter-state under pressure, which also helps in restoring the air layer after depressurization. Closed-loop structures such as the baskets at the top of the "egg-beater hairs" (see main text) also help return the air layer to its original level at the tip of the hairs by trapping air bubbles. PMID:24925548

  20. The Jar Magic -- Instructional Activities for Teaching Air Pressure

    NASA Astrophysics Data System (ADS)

    Ku, Bing-Hong; Chen, Chyong-Sun

    2013-12-01

    There are a variety of impressive activities designed for teaching the concept of air pressure to junior high school students. Water, glasses, balloons, plastic bottles, and suction cups are some of the items commonly used in these experiments. For example, if we take a glass of water, cover it with a piece of cardboard, and invert the glass, amazingly, no water spills out. Further, one may also use balloons and plastic bottles as the components in another experiment. Place a balloon in a plastic bottle and spread the balloon's mouth over the bottle's rim. Inflate the balloon by blowing into it. Students will be astonished at the fact that the balloon remains inflated even though its mouth is open. Making suction cups "stick" to the wall is also an instance of proving how air pressure works.

  1. Effects of hydraulic pressure on the performance of single chamber air-cathode microbial fuel cells.

    PubMed

    Cheng, Shaoan; Liu, Weifeng; Guo, Jian; Sun, Dan; Pan, Bin; Ye, Yaoli; Ding, Weijun; Huang, Haobin; Li, Fujian

    2014-06-15

    Scaling up of microbial fuel cells (MFCs) without losing power density requires a thorough understanding of the effect of hydraulic pressure on MFC performance. In this work, the performance of an activated carbon air-cathode MFC was evaluated under different hydraulic pressures. The MFC under 100 mmH2O hydraulic pressure produced a maximum power density of 1260 ± 24 mW m(-2), while the power density decreased by 24.4% and 44.7% as the hydraulic pressure increased to 500 mmH2O and 2000 mmH2O, respectively. Notably, the performance of both the anode and the cathode had decreased under high hydraulic pressures. Electrochemical impedance spectroscopy tests of the cathode indicated that both charge transfer resistance and diffusion transfer resistance increased with the increase in hydraulic pressure. Denaturing gradient gel electrophoresis of PCR-amplified partial 16S rRNA genes demonstrated that the similarity among anodic biofilm communities under different hydraulic pressures was ≥ 90%, and the communities of all MFCs were dominated by Geobacter sp. These results suggested that the reduction in power output of the single chamber air-cathode MFC under high hydraulic pressures can be attributed to water flooding of the cathode and suppression the metabolism of anodic exoelectrogenic bacteria.

  2. Benzene Dissociation in DC Atmospheric Pressure Air Glow Discharges

    NASA Astrophysics Data System (ADS)

    Jiang, Chunqi; Stark, Robert H.; Schoenbach, Karl H.

    2001-10-01

    By using a micro-hollow cathode discharge (MHCD) as an electron source to lower or eliminate the cathode fall voltage, a glow discharge could be operated in a dc atmospheric pressure air [1]. The effect of this glow discharge plasma on VOC (Volatile Organic Compound) remediation, particularly, benzene remediation, has been studied. A higher than 90 % destruction rate has been obtained by flowing a 300 ppm benzene/ dry air mixture through the plasma filament. The plasma is confined by a dielectric to a cross-section of 1 mm by 1.5 mm and extends over a depth of 0.8 mm. With a flow rate of 100 sccm, the residence time of the gas in the plasma column is 0.7 ms. A destruction efficiency of more than 0.5 L/kJ has been measured. The energy efficiency is 0.9 g/kWh which is comparable to that achieved by low pressure glow discharges in benzene/ noble gas mixtures [2]. References: [1] R. H. Stark and K. H. Schoenbach, "Direct Current Glow Discharges in Atmospheric Air," Appl. Phys. Lett. 89, 3568 (2001). [2] D. L. McCorkle, W. Ding, C. Ma and L. A. Pinnaduwage, "Dissociation of Benzene and Methylene Chloride Based on Enhanced Dissociative Electron Attachment to Highly Excited Molecules," J. Phys. D: Appl. Phys. 32, 46 (1999). Acknowledgments: This work is supported by the Air Force Office of Scientific Research.

  3. Hydrostatic pressure effect on micro air bubbles deposited on surfaces with a retreating tip.

    PubMed

    Huynh, So Hung; Wang, Jingming; Yu, Yang; Ng, Tuck Wah

    2014-06-01

    The effect of hydrostatic pressure on 6 μL air bubbles formed on micropillar structured PDMS and silicone surfaces using a 2 mm diameter stainless steel tip retreated at 1 mm/s was investigated. Dimensional analysis of the tip retraction process showed the experiments to be conducted in the condition where fluid inertial forces are comparable in magnitude with surface tension forces, while viscous forces were lower. Larger bubbles could be left behind on the structured PDMS surface. For hydrostatic pressures in excess of 20 mm H2O (196 Pa), the volume of bubble deposited was found to decrease progressively with pressure increase. The differences in width of the deposited bubbles (in contact with the substrate) were significant at any particular pressure but marginal in height. The attainable height before rupture reduced with pressure increase, thereby accounting for the reducing dispensed volume characteristic. On structured PDMS, the gaseous bridge width (in contact with the substrate) was invariant with tip retraction, while on silicone it was initially reducing before becoming invariant in the lead up to rupture. With silicone, hence, reductions in the contact width and height were both responsible for reduced volumes with pressure increase. Increased hydrostatic pressure was also found to restrict the growth in contact width on silicone during the stage when air was injected in through the tip. The ability to effect bubble size in such a simple manner may already be harnessed in nature and suggests possibilities in technological applications.

  4. Goat Meat Does Not Cause Increased Blood Pressure

    PubMed Central

    Sunagawa, Katsunori; Kishi, Tetsuya; Nagai, Ayako; Matsumura, Yuka; Nagamine, Itsuki; Uechi, Shuntoku

    2014-01-01

    While there are persistent rumors that the consumption of goat meat dishes increases blood pressure, there is no scientific evidence to support this. Two experiments were conducted to clarify whether or not blood pressure increases in conjunction with the consumption of goat meat dishes. In experiment 1, 24 Dahl/Iwai rats (15 weeks old, body weight 309.3±11.1 g) were evenly separated into 4 groups. The control group (CP) was fed a diet containing 20% chicken and 0.3% salt on a dry matter basis. The goat meat group (GM) was fed a diet containing 20% goat meat and 0.3% salt. The goat meat/salt group (GS) was fed a diet containing 20% goat meant and 3% to 4% salt. The Okinawan mugwort (Artemisia Princeps Pampan)/salt group (GY) was fed a diet containing 20% goat meat, 3% to 4% salt and 5% of freeze-dried mugwort powder. The experiment 1 ran for a period of 14 weeks during which time the blood pressure of the animals was recorded. The GS, and GY groups consumed significantly more water (p<0.01) than the CP and GM groups despite the fact that their diet consumption levels were similar. The body weight of animals in the CP, GM, and GS groups was similar while the animals in the GY group were significantly smaller (p<0.01). The blood pressure in the GM group was virtually the same as the CP group throughout the course of the experiment. In contrast, while the blood pressure of the animals in the GS and GY group from 15 to 19 weeks old was the same as the CP group, their blood pressures were significantly higher (p<0.01) after 20 weeks of age. The GY group tended to have lower blood pressure than the GS group. In experiment 2, in order to clarify whether or not the increase in blood pressure in the GS group and the GY group in experiment 1 was caused by an excessive intake of salt, the effects on blood pressure of a reduction of salt in diet were investigated. When amount of salt in the diet of the GS and GY group was reduced from 4% to 0.3%, the animal’s blood pressure

  5. Low pressure high speed Stirling air engine. Final technical report

    SciTech Connect

    Ross, M.A.

    1980-06-16

    The purpose of this project was to design, construct and test a simple, appropriate technology low pressure, high speed, wood-fired Stirling air engine of 100 W output. The final design was a concentric piston/displacer engine of 454 in. bore and 1 in. stroke with a rhombic drive mechanism. The project engine was ultimately completed and tested, using a propane burner for all tests as a matter of convenience. The 100 W aim was exceeded, at atmospheric pressure, over a wide range of engine speed with the maximum power being 112 W at 1150 rpm. A pressure can was constructed to permit pressurization; however the grant funds were running out, and the only pressurized power test attempted was unsuccessful due to seal difficulties. This was a disappointment because numerous tests on the 4 cubic inch engine suggested power would be more than doubled with pressurization at 25 psig. A manifold was designed and constructed to permit operation of the engine over a standard No. 40 pot bellied stove. The engine was run successfully, but at reduced speed and power, over this stove. The project engine started out being rather noisy in operation, but modifications ultimately resulted in a very quiet engine. Various other difficulties and their solutions also are discussed. (LCL)

  6. Brass plasmoid in external magnetic field at different air pressures

    SciTech Connect

    Patel, D. N.; Thareja, Raj K.; Pandey, Pramod K.

    2013-10-15

    The behavior of expanding brass plasmoid generated by 266 nm wavelength of Nd:YAG laser in nonuniform magnetic field at different air pressures has been examined using optical emission spectroscopy and fast imaging of plasma plumes. The splitting of the plasma plumes and enhancement of intensity of Cu I at 510.5 nm in the presence of magnetic field at lower pressures are discussed. The threading and expulsion of the magnetic field lines through the plasmoid are correlated with the ambient pressure. The stoichiometry of the plasma plume is not significantly influenced by the magnetic field; however, the abundance of neutral to ionic species of Cu and Zn is greatly influenced by the magnetic field.

  7. A stagnation pressure probe for droplet-laden air flow

    NASA Technical Reports Server (NTRS)

    Murthy, S. N. B.; Leonardo, M.; Ehresman, C. M.

    1985-01-01

    It is often of interest in a droplet-laden gas flow to obtain the stagnation pressure of both the gas phase and the mixture. A flow-decelerating probe (TPF), with separate, purged ports for the gas phase and the mixture and with a bleed for accumulating liquid at the closed end, has been developed. Measurements obtained utilizing the TPF in a nearly isothermal air-water droplet mixture flow in a smooth circular pipe under various conditions of flow velocity, pressure, liquid concentration and droplet size are presented and compared with data obtained under identical conditions with a conventional, gas phase stagnation pressure probe (CSP). The data obtained with the CSP and TPF probes are analyzed to determine the applicability of the two probes in relation to the multi-phase characteristics of the flow and the geometry of the probe.

  8. The influence of intraocular pressure and air jet pressure on corneal contactless tonometry tests.

    PubMed

    Simonini, Irene; Pandolfi, Anna

    2016-05-01

    The air puff is a dynamic contactless tonometer test used in ophthalmology clinical practice to assess the biomechanical properties of the human cornea and the intraocular pressure due to the filling fluids of the eye. The test is controversial, since the dynamic response of the cornea is governed by the interaction of several factors which cannot be discerned within a single measurement. In this study we describe a numerical model of the air puff tests, and perform a parametric analysis on the major action parameters (jet pressure and intraocular pressure) to assess their relevance on the mechanical response of a patient-specific cornea. The particular cornea considered here has been treated with laser reprofiling to correct myopia, and the parametric study has been conducted on both the preoperative and postoperative geometries. The material properties of the cornea have been obtained by means of an identification procedure that compares the static biomechanical response of preoperative and postoperative corneas under the physiological IOP. The parametric study on the intraocular pressure suggests that the displacement of the cornea׳s apex can be a reliable indicator for tonometry, and the one on the air jet pressure predicts the outcomes of two or more distinct measurements on the same cornea, which can be used in inverse procedures to estimate the material properties of the tissue.

  9. Increase in stagnation pressure and enthalpy in shock tunnels

    NASA Technical Reports Server (NTRS)

    Bogdanoff, David W.; Cambier, Jean-Luc

    1993-01-01

    A new technique based on the insertion of a converging section in the driven tube is described which is capable of producing substantial increases in both reservoir pressure and enthalpy. A 1D inviscid full kinetics code is used to study a number of different locations and shapes for the converging driven tube section. For driven tube diameter reductions of factors of 2 and 3, the reservoir pressure is found to increase by factors of 2.1 and 3.2, respectively, and the enthalpy is found to simultaneously increase by factors of 1.5 and 2.1, respectively.

  10. Acute changes in pulse pressure in relation to constituents of particulate air pollution in elderly persons

    SciTech Connect

    Jacobs, Lotte; Buczynska, Anna; Walgraeve, Christophe; Delcloo, Andy; Potgieter-Vermaak, Sanja; Van Grieken, Rene; Demeestere, Kristof; Dewulf, Jo; Van Langenhove, Herman; De Backer, Hugo; Nemery, Benoit; Nawrot, Tim S.

    2012-08-15

    An increased pulse pressure (difference between systolic and diastolic blood pressure) suggests aortic stiffening. The objective of this study was to examine the acute effects of both particulate matter (PM) mass and composition on blood pressure, among elderly persons. We carried out a panel study in persons living in elderly homes in Antwerp, Belgium. We recruited 88 non-smoking persons, 70% women with a mean age of 83 years (standard deviation: 5.2). Blood pressure was measured and a blood sample was collected on two time points, which were chosen so that there was an exposure contrast in ambient PM exposure. The elemental content of the collected indoor and outdoor PM{sub 2.5} (particulate matter with an aerodynamic diameter <2.5 {mu}m) mass concentration was measured. Oxygenated polycyclic aromatic hydrocarbons (oxy-PAHs) on outdoor PM{sub 10} (particulate matter with an aerodynamic diameter <10 {mu}m) were measured. Each interquartile range increase of 20.8 {mu}g/m Superscript-Three in 24-h mean outdoor PM{sub 2.5} was associated with an increase in pulse pressure of 4.0 mmHg (95% confidence interval: 1.8-6.2), in persons taking antihypertensive medication (n=57), but not in persons not using antihypertensive medication (n=31) (p for interaction: 0.02). Vanadium, iron and nickel contents of PM{sub 2.5} were significantly associated with systolic blood pressure and pulse pressure, among persons on antihypertensive medication. Similar results were found for indoor concentrations. Of the oxy-PAHs, chrysene-5,6-dione and benzo[a]pyrene-3,6-dione were significantly associated with increases in systolic blood pressure and pulse pressure. In elderly, pulse pressure was positively associated with acute increases in outdoor and indoor air pollution, among persons taking antihypertensive medication. These results might form a mechanistic pathway linking air pollution as a trigger of cardiovascular events.

  11. Acute changes in pulse pressure in relation to constituents of particulate air pollution in elderly persons.

    PubMed

    Jacobs, Lotte; Buczynska, Anna; Walgraeve, Christophe; Delcloo, Andy; Potgieter-Vermaak, Sanja; Van Grieken, René; Demeestere, Kristof; Dewulf, Jo; Van Langenhove, Herman; De Backer, Hugo; Nemery, Benoit; Nawrot, Tim S

    2012-08-01

    An increased pulse pressure (difference between systolic and diastolic blood pressure) suggests aortic stiffening. The objective of this study was to examine the acute effects of both particulate matter (PM) mass and composition on blood pressure, among elderly persons. We carried out a panel study in persons living in elderly homes in Antwerp, Belgium. We recruited 88 non-smoking persons, 70% women with a mean age of 83 years (standard deviation: 5.2). Blood pressure was measured and a blood sample was collected on two time points, which were chosen so that there was an exposure contrast in ambient PM exposure. The elemental content of the collected indoor and outdoor PM(2.5) (particulate matter with an aerodynamic diameter <2.5 μm) mass concentration was measured. Oxygenated polycyclic aromatic hydrocarbons (oxy-PAHs) on outdoor PM(10) (particulate matter with an aerodynamic diameter <10 μm) were measured. Each interquartile range increase of 20.8 μg/m³ in 24-h mean outdoor PM(2.5) was associated with an increase in pulse pressure of 4.0 mm Hg (95% confidence interval: 1.8-6.2), in persons taking antihypertensive medication (n=57), but not in persons not using antihypertensive medication (n=31) (p for interaction: 0.02). Vanadium, iron and nickel contents of PM(2.5) were significantly associated with systolic blood pressure and pulse pressure, among persons on antihypertensive medication. Similar results were found for indoor concentrations. Of the oxy-PAHs, chrysene-5,6-dione and benzo[a]pyrene-3,6-dione were significantly associated with increases in systolic blood pressure and pulse pressure. In elderly, pulse pressure was positively associated with acute increases in outdoor and indoor air pollution, among persons taking antihypertensive medication. These results might form a mechanistic pathway linking air pollution as a trigger of cardiovascular events.

  12. Characterization of the respiratory and heart beat signal from an air pressure-based ballistocardiographic setup.

    PubMed

    Willemen, Tim; Van Deun, Dorien; Verhaert, Vincent; Van Huffel, Sabine; Haex, Bart; Vander Sloten, Jos

    2014-01-01

    Off-body detection of respiratory and cardiac activity presents an enormous opportunity for general health, stress and sleep quality monitoring. The presented setup detects the mechanical activity of both heart and lungs by measuring pressure difference fluctuations between two air volumes underneath the chest area of the subject. The registered signals were characterized over four different sleep postures, three different base air pressures within the air volumes and three different mattress top layer materials. Highest signal strength was detected in prone posture for both the respiratory and heart beat signal. Respiratory signal strength was the lowest in supine posture, while heart beat signal strength was lowest for right lateral. Heart beat cycle variability was highest in prone and lowest in supine posture. Increasing the base air pressure caused a reduction in signal amplitude for both the respiratory and the heart beat signal. A visco-elastic poly-urethane foam top layer had significantly higher respiration amplitude compared to high resilient poly-urethane foam and latex foam. For the heart beat signal, differences between the top layers were small. The authors conclude that, while the influence of the mattress top layer material is small, the base air pressure can be tuned for optimal mechanical transmission from heart and lungs towards the registration setup.

  13. Evolvability is inevitable: increasing evolvability without the pressure to adapt.

    PubMed

    Lehman, Joel; Stanley, Kenneth O

    2013-01-01

    Why evolvability appears to have increased over evolutionary time is an important unresolved biological question. Unlike most candidate explanations, this paper proposes that increasing evolvability can result without any pressure to adapt. The insight is that if evolvability is heritable, then an unbiased drifting process across genotypes can still create a distribution of phenotypes biased towards evolvability, because evolvable organisms diffuse more quickly through the space of possible phenotypes. Furthermore, because phenotypic divergence often correlates with founding niches, niche founders may on average be more evolvable, which through population growth provides a genotypic bias towards evolvability. Interestingly, the combination of these two mechanisms can lead to increasing evolvability without any pressure to out-compete other organisms, as demonstrated through experiments with a series of simulated models. Thus rather than from pressure to adapt, evolvability may inevitably result from any drift through genotypic space combined with evolution's passive tendency to accumulate niches.

  14. Time pressure increases cooperation in competitively framed social dilemmas.

    PubMed

    Cone, Jeremy; Rand, David G

    2014-01-01

    What makes people willing to pay costs to benefit others? Does such cooperation require effortful self-control, or do automatic, intuitive processes favor cooperation? Time pressure has been shown to increase cooperative behavior in Public Goods Games, implying a predisposition towards cooperation. Consistent with the hypothesis that this predisposition results from the fact that cooperation is typically advantageous outside the lab, it has further been shown that the time pressure effect is undermined by prior experience playing lab games (where selfishness is the more advantageous strategy). Furthermore, a recent study found that time pressure increases cooperation even in a game framed as a competition, suggesting that the time pressure effect is not the result of social norm compliance. Here, we successfully replicate these findings, again observing a positive effect of time pressure on cooperation in a competitively framed game, but not when using the standard cooperative framing. These results suggest that participants' intuitions favor cooperation rather than norm compliance, and also that simply changing the framing of the Public Goods Game is enough to make it appear novel to participants and thus to restore the time pressure effect. PMID:25551386

  15. Comparison of deliverable and exhaustible pressurized air flow rates in laboratory gloveboxes

    SciTech Connect

    Compton, J.A.

    1994-10-01

    Calculations were performed to estimate the maximum credible flow rates of pressurized air into Plutonium Process Support Laboratories gloveboxes. Classical equations for compressible fluids were used to estimate the flow rates. The calculated maxima were compared to another`s estimates of glovebox exhaust flow rates and corresponding glovebox internal pressures. No credible pressurized air flow rate will pressurize a glovebox beyond normal operating limits. Unrestricted use of the pressurized air supply is recommended.

  16. Increased anthropogenic pressure decreases species richness in tropical intertidal reefs.

    PubMed

    Portugal, Adriana Brizon; Carvalho, Fabrício Lopes; de Macedo Carneiro, Pedro Bastos; Rossi, Sergio; de Oliveira Soares, Marcelo

    2016-09-01

    Multiple human stressors affect tropical intertidal sandstone reefs, but little is known about their biodiversity and the environmental impacts of these stressors. In the present study, multiple anthropogenic pressures were integrated using the relative environmental pressure index (REPI) and related to benthic community structure across an intertidal gradient in five sandstone reefs in the tropical South Atlantic coast. Greater species richness and diversity were noted in the low intertidal zones. There was a negative relationship between REPI and species richness, suggesting that increasing anthropogenic pressure has decreased benthic richness. The factors associated with the loss of richness were jetties built to control erosion, urban areas, beachfront kiosks and restaurants, fish markets, and storm sewers with illegal sewage connections. Our results highlight the need for better infrastructure planning and rigorous monitoring of coastal urban areas, since the large influence of multiple human pressures in these reefs leads to biodiversity losses. PMID:27428738

  17. Increased anthropogenic pressure decreases species richness in tropical intertidal reefs.

    PubMed

    Portugal, Adriana Brizon; Carvalho, Fabrício Lopes; de Macedo Carneiro, Pedro Bastos; Rossi, Sergio; de Oliveira Soares, Marcelo

    2016-09-01

    Multiple human stressors affect tropical intertidal sandstone reefs, but little is known about their biodiversity and the environmental impacts of these stressors. In the present study, multiple anthropogenic pressures were integrated using the relative environmental pressure index (REPI) and related to benthic community structure across an intertidal gradient in five sandstone reefs in the tropical South Atlantic coast. Greater species richness and diversity were noted in the low intertidal zones. There was a negative relationship between REPI and species richness, suggesting that increasing anthropogenic pressure has decreased benthic richness. The factors associated with the loss of richness were jetties built to control erosion, urban areas, beachfront kiosks and restaurants, fish markets, and storm sewers with illegal sewage connections. Our results highlight the need for better infrastructure planning and rigorous monitoring of coastal urban areas, since the large influence of multiple human pressures in these reefs leads to biodiversity losses.

  18. Gene Silencing and Haploinsufficiency of Csk Increase Blood Pressure

    PubMed Central

    Kim, Sung-Moon; Ji, Su-Min; Park, So-Yon; Kim, Marina E.; Jigden, Baigalmaa; Lim, Ji Eun; Hwang, Sue-Yun; Lee, Young-Ho; Oh, Bermseok

    2016-01-01

    Objective Recent genome-wide association studies have identified 33 human genetic loci that influence blood pressure. The 15q24 locus is one such locus that has been confirmed in Asians and Europeans. There are 21 genes in the locus within a 1-Mb boundary, but a functional link of these genes to blood pressure has not been reported. We aimed to identify a causative gene for blood pressure change in the 15q24 locus. Methods and Results CSK and ULK3 were selected as candidate genes based on eQTL analysis studies that showed the association between gene transcript levels and the lead SNP (rs1378942). Injection of siRNAs for mouse homologs Csk, Ulk3, and Cyp1a2 (negative control) showed reduced target gene mRNA levels in vivo. However, Csk siRNA only increased blood pressure while Ulk3 and Cyp1a2 siRNA did not change it. Further, blood pressure in Csk+/- heterozygotes was higher than in wild-type, consistent with what we observed in Csk siRNA-injected mice. We confirmed that haploinsufficiency of Csk increased the active form of Src in Csk+/- mice aorta. We also showed that inhibition of Src by PP2, a Src inhibitor decreased high blood pressure in Csk+/- mice and the active Src in Csk+/- mice aorta and in Csk knock-down vascular smooth muscle cells, suggesting blood pressure regulation by Csk through Src. Conclusions Our study demonstrates that Csk is a causative gene in the 15q24 locus and regulates blood pressure through Src, and these findings provide a novel therapeutic target for the treatment of hypertension. PMID:26751575

  19. Study of flow fields induced by surface dielectric barrier discharge actuator in low-pressure air

    SciTech Connect

    Che, Xueke E-mail: st@mail.iee.ac.cn; Nie, Wansheng; Tian, Xihui; Hou, Zhiyong; He, Haobo; Zhou, Penghui; Zhou, Siyin; Yang, Chao; Shao, Tao E-mail: st@mail.iee.ac.cn

    2014-04-15

    Surface dielectric barrier discharge (SDBD) is a promising method for a flow control. Flow fields induced by a SDBD actuator driven by the ac voltage in static air at low pressures varying from 1.0 to 27.7 kPa are measured by the particle image velocimetry method. The influence of the applied ac voltage frequency and magnitude on the induced flow fields is studied. The results show that three different classes of flow fields (wall jet flow field, complex flow field, and vortex-shape flow field) can be induced by the SDBD actuator in the low-pressure air. Among them, the wall jet flow field is the same as the tangential jet at atmospheric pressure, which is, together with the vertical jet, the complex flow field. The vortex-shape flow field is composed of one vertical jet which points towards the wall and two opposite tangential jets. The complex and the vortex-shape flow fields can be transformed to the wall jet flow field when the applied ac voltage frequency and magnitude are changed. It is found that the discharge power consumption increases initially, decreases, and then increases again at the same applied ac voltage magnitude when the air pressure decreases. The tangential velocity of the wall jet flow field increases when the air pressure decreases. It is however opposite for the complex flow field. The variation of the applied ac voltage frequency influences differently three different flow fields. When the applied ac voltage magnitude increases at the same applied ac voltage frequency, the maximal jet velocity increases, while the power efficiency increases only initially and then decreases again. The discharge power shows either linear or exponential dependences on the applied ac voltage magnitude.

  20. Daily changes in oxygen saturation and pulse rate associated with particulate air pollution and barometric pressure.

    PubMed

    Dockery, D W; Pope, C A; Kanner, R E; Martin Villegas, G; Schwartz, J

    1999-01-01

    Epidemiologic studies have linked fine particulate air pollution with increases in morbidity and mortality rates from cardiopulmonary complications. Although the underlying biologic mechanisms responsible for this increase remain largely unknown, potential pathways include transient declines in blood oxygenation and changes in pulse rate following exposures to particulate air pollution episodes. This study evaluated potential associations between daily measures of respirable particulate matter (PM) with pulse rate and oxygen saturation of the blood. Pulse rate and oxygen saturation (Spo2) using pulse oximetry were measured daily in 90 elderly subjects living near air pollution monitors during the winter of 1995-96 in Utah Valley. We also evaluated potential associations of oxygen saturation and pulse rate with barometric pressure. Small but statistically significant positive associations between day-to-day changes in Spo2 and barometric pressure were observed. Pulse rate was inversely associated with barometric pressure. Exposure to particulate pollution was not significantly associated with Spo2 except in male participants 80 years of age or older. Increased daily pulse rate, as well as the odds of having a pulse rate 5 or 10 beats per minute (bpm) above normal (normal is defined as the individual's mean pulse rate throughout the study period), were significantly associated with exposure to particulate pollution on the previous 1 to 5 days. The medical or biologic relevance of these increases in pulse rate following exposure to particulate air pollution requires further study.

  1. Daily changes in oxygen saturation and pulse rate associated with particulate air pollution and barometric pressure.

    PubMed

    Dockery, D W; Pope, C A; Kanner, R E; Martin Villegas, G; Schwartz, J

    1999-01-01

    Epidemiologic studies have linked fine particulate air pollution with increases in morbidity and mortality rates from cardiopulmonary complications. Although the underlying biologic mechanisms responsible for this increase remain largely unknown, potential pathways include transient declines in blood oxygenation and changes in pulse rate following exposures to particulate air pollution episodes. This study evaluated potential associations between daily measures of respirable particulate matter (PM) with pulse rate and oxygen saturation of the blood. Pulse rate and oxygen saturation (Spo2) using pulse oximetry were measured daily in 90 elderly subjects living near air pollution monitors during the winter of 1995-96 in Utah Valley. We also evaluated potential associations of oxygen saturation and pulse rate with barometric pressure. Small but statistically significant positive associations between day-to-day changes in Spo2 and barometric pressure were observed. Pulse rate was inversely associated with barometric pressure. Exposure to particulate pollution was not significantly associated with Spo2 except in male participants 80 years of age or older. Increased daily pulse rate, as well as the odds of having a pulse rate 5 or 10 beats per minute (bpm) above normal (normal is defined as the individual's mean pulse rate throughout the study period), were significantly associated with exposure to particulate pollution on the previous 1 to 5 days. The medical or biologic relevance of these increases in pulse rate following exposure to particulate air pollution requires further study. PMID:10192116

  2. Clitoral blood flow increases following vaginal pressure stimulation.

    PubMed

    Lavoisier, P; Aloui, R; Schmidt, M H; Watrelot, A

    1995-02-01

    The vascular responses of clitoral arteries to vaginal pressure stimulation in 10 volunteer women were evaluated by Doppler ultrasonography. Pressure stimulations (20-160 mm Hg) along the lower third of the vagina increased blood velocity and flow into clitoral arteries in 9 of the 10 women. The latency and duration of the Doppler responses ranged from 0.1 to 1.6 sec and from 3.2 to 9.5 sec, respectively, and the response was associated with a blood flow increase of 4 to 11 times the baseline prestimulation level. This response parallels that recorded in the cavernous arteries in men when a similar range of pressure stimulations are applied to the glans penis. Similar responses evoked in the male and female suggest a sexual synergy that may occur during intercourse in that such physiological responses and reflexes may be reciprocally reinforced.

  3. Microwave generation of stable atmospheric-pressure fireballs in air.

    PubMed

    Stephan, Karl D

    2006-11-01

    The generation of stable buoyant fireballs in a microwave cavity in air at atmospheric pressure without the use of vaporized solids is described. These fireballs have some of the characteristics of ball lightning and resemble those reported by Dikhtyar and Jerby [Phys. Rev. Lett. 96, 045002 (2006)], although of a different color, and do not require the presence of molten or vaporized material. Mechanisms of microwave plasma formation and fluid dynamics can account for the observed behavior of the fireballs, which do not appear to meet the accepted definition of dusty plasmas in this case. Relevance to models of ball lightning and industrial applications are discussed. PMID:17279961

  4. Vandenberg Air Force Base Pressure Gradient Wind Study

    NASA Technical Reports Server (NTRS)

    Shafer, Jaclyn A.

    2013-01-01

    Warning category winds can adversely impact day-to-day space lift operations at Vandenberg Air Force Base (VAFB) in California. NASA's Launch Services Program and other programs at VAFB use wind forecasts issued by the 30 Operational Support Squadron Weather Flight (30 OSSWF) to determine if they need to limit activities or protect property such as a launch vehicle. The 30 OSSWF tasked the AMU to develop an automated Excel graphical user interface that includes pressure gradient thresholds between specific observing stations under different synoptic regimes to aid forecasters when issuing wind warnings. This required the AMU to determine if relationships between the variables existed.

  5. Microwave generation of stable atmospheric-pressure fireballs in air

    SciTech Connect

    Stephan, Karl D.

    2006-11-15

    The generation of stable buoyant fireballs in a microwave cavity in air at atmospheric pressure without the use of vaporized solids is described. These fireballs have some of the characteristics of ball lightning and resemble those reported by Dikhtyar and Jerby [Phys. Rev. Lett. 96, 045002 (2006)], although of a different color, and do not require the presence of molten or vaporized material. Mechanisms of microwave plasma formation and fluid dynamics can account for the observed behavior of the fireballs, which do not appear to meet the accepted definition of dusty plasmas in this case. Relevance to models of ball lightning and industrial applications are discussed.

  6. Microwave generation of stable atmospheric-pressure fireballs in air.

    PubMed

    Stephan, Karl D

    2006-11-01

    The generation of stable buoyant fireballs in a microwave cavity in air at atmospheric pressure without the use of vaporized solids is described. These fireballs have some of the characteristics of ball lightning and resemble those reported by Dikhtyar and Jerby [Phys. Rev. Lett. 96, 045002 (2006)], although of a different color, and do not require the presence of molten or vaporized material. Mechanisms of microwave plasma formation and fluid dynamics can account for the observed behavior of the fireballs, which do not appear to meet the accepted definition of dusty plasmas in this case. Relevance to models of ball lightning and industrial applications are discussed.

  7. Microwave generation of stable atmospheric-pressure fireballs in air

    NASA Astrophysics Data System (ADS)

    Stephan, Karl D.

    2006-11-01

    The generation of stable buoyant fireballs in a microwave cavity in air at atmospheric pressure without the use of vaporized solids is described. These fireballs have some of the characteristics of ball lightning and resemble those reported by Dikhtyar and Jerby [Phys. Rev. Lett. 96, 045002 (2006)], although of a different color, and do not require the presence of molten or vaporized material. Mechanisms of microwave plasma formation and fluid dynamics can account for the observed behavior of the fireballs, which do not appear to meet the accepted definition of dusty plasmas in this case. Relevance to models of ball lightning and industrial applications are discussed.

  8. Pressure measurements of a three wave journal air bearing

    NASA Technical Reports Server (NTRS)

    Dimofte, Florin; Addy, Harold E., Jr.

    1994-01-01

    In order to validate theoretical predictions of a wave journal bearing concept, a bench test rig was assembled at NASA Lewis Research Center to measure the steady-state performance of a journal air bearing. The tester can run up to 30,000 RPM and the spindle has a run out of less than 1 micron. A three wave journal bearing (50 mm diameter and 58 mm length) has been machined at NASA Lewis. The pressures at 16 ports along the bearing circumference at the middle of the bearing length were measured and compared to the theoretical prediction. The bearing ran at speeds up to 15,000 RPM and certain loads. Good agreement was found between the measured and calculated pressures.

  9. A plasma needle for generating homogeneous discharge in atmospheric pressure air

    SciTech Connect

    Li Xuechen; Yuan Ning; Jia Pengying; Chen Junying

    2010-09-15

    Homogeneous discharge in air is often considered to be the ultimate low-temperature atmospheric pressure plasmas for industrial applications. In this paper, we present a method whereby stable homogeneous discharge in open air can be generated by a simple plasma needle. The discharge mechanism is discussed based on the spatially resolved light emission waveforms from the plasma. Optical emission spectroscopy is used to determine electron energy and rotational temperature, and results indicate that both electron energy and rotational temperature increase with increasing the applied voltage. The results are analyzed qualitatively based on the discharge mechanism.

  10. Transduction of pressure signal to electrical signal upon sudden increase in turgor pressure in Chara corallina.

    PubMed

    Shimmen, Teruo; Ogata, Koreaki

    2013-05-01

    By taking advantage of large cell size of Chara corallina, we analyzed the membrane depolarization induced by decreased turgor pressure (Shimmen in J Plant Res 124:639-644, 2011). In the present study, the response to increased turgor pressure was analyzed. When internodes were incubated in media containing 200 mM dimethyl sulfoxide, their intracellular osmolality gradually increased and reached a steady level after about 3 h. Upon removal of dimethyl sulfoxide, turgor pressure quickly increased. In response to the increase in turgor pressure, the internodes generated a transient membrane depolarization at its nodal end. The refractory period was very long and it took about 2 h for full recovery after the depolarizing response. Involvement of protein synthesis in recovery from refractoriness was suggested, based on experiments using inhibitors.

  11. Investigation of air solubility in jet A fuel at high pressures

    NASA Technical Reports Server (NTRS)

    Rupprecht, S. D.; Faeth, G. M.

    1981-01-01

    The solubility and density properties of saturated mixtures of fuels and gases were measured. The fuels consisted of Jet A and dodecane, the gases were air and nitrogen. The test range included pressures of 1.03 to 10.34 MPa and temperatures of 298 to 373 K. The results were correlated successfully, using the Soave equation of state. Over this test range, dissolved gas concentrations were roughly proportional to pressure and increased slightly with increasing temperature. Mixture density was relatively independent of dissolved gas concentration.

  12. Change in endotracheal tube cuff pressure during nitrous oxide anaesthesia: a comparison between air and distilled water cuff inflation.

    PubMed

    Ahmad, N L; Norsidah, A M

    2001-10-01

    In this prospective, randomized controlled trial, changes in endotracheal tube cuff pressure were studied in 60 patients undergoing elective surgery under general anaesthesia with nitrous oxide and oxygen. The cuffs were inflated with either air or distilled water. The mean pressure in the air-filled cuffs increased steadily throughout the procedure, reaching 47.5 +/- 7.3 cmH2O at one hour compared with 31.6 +/- 2.4 cmH2O mean pressure in the water-filled cuffs. The pressure and the rate of rise in cuff pressure were significantly lower (P<0.05) in the water-filled cuffs throughout the hour of study. When an endotracheal tube cuff is distended with water, the rise in cuff pressure during nitrous oxide anaesthesia is lower than that of an air-filled cuff.

  13. Heart-rate monitoring by air pressure and causal analysis

    NASA Astrophysics Data System (ADS)

    Tsuchiya, Naoki; Nakajima, Hiroshi; Hata, Yutaka

    2011-06-01

    Among lots of vital signals, heart-rate (HR) is an important index for diagnose human's health condition. For instance, HR provides an early stage of cardiac disease, autonomic nerve behavior, and so forth. However, currently, HR is measured only in medical checkups and clinical diagnosis during the rested state by using electrocardiograph (ECG). Thus, some serious cardiac events in daily life could be lost. Therefore, a continuous HR monitoring during 24 hours is desired. Considering the use in daily life, the monitoring should be noninvasive and low intrusive. Thus, in this paper, an HR monitoring in sleep by using air pressure sensors is proposed. The HR monitoring is realized by employing the causal analysis among air pressure and HR. The causality is described by employing fuzzy logic. According to the experiment on 7 males at age 22-25 (23 on average), the correlation coefficient against ECG is 0.73-0.97 (0.85 on average). In addition, the cause-effect structure for HR monitoring is arranged by employing causal decomposition, and the arranged causality is applied to HR monitoring in a setting posture. According to the additional experiment on 6 males, the correlation coefficient is 0.66-0.86 (0.76 on average). Therefore, the proposed method is suggested to have enough accuracy and robustness for some daily use cases.

  14. Visual Impairment/Increased Intracranial Pressure (VIIP): Layman's Summary

    NASA Technical Reports Server (NTRS)

    Fogarty, Jennifer

    2011-01-01

    To date NASA has documented that seven long duration astronauts have experienced in-flight and post-flight changes in vision and eye anatomy including degraded distant vision, swelling of the back of the eye, and changes in the shape of the globe. We have also documented in a few of these astronauts post-flight, increases in the pressure of the fluid that surrounds the brain and spinal cord. This is referred to as increased intracranial pressure (ICP). The functional and anatomical changes have varied in severity and duration. In the post-flight time period, some individuals have experienced a return to a pre-flight level of visual function while others have experienced changes that remain significantly altered compared to pre-flight. In addition, the increased ICP also persists in the post-flight time period. Currently, the underlying cause or causes of these changes is/are unknown but the spaceflight community at NASA suspects that the shift of blood toward the head and the changes in physiology that accompany it, such as increased intracranial pressure, play a significant role.

  15. On Static Pressure Fluctuation between Sirocco Fan Blades in a Car Air-Conditioning System

    NASA Astrophysics Data System (ADS)

    Sakai, Yasuhiko; Kato, Takaaki; Moriguchi, Yuu; Sakai, Masaharu; Ito, Kouji; Mitsuishi, Yasushi; Nagata, Kouji; Kubo, Takashi

    In this study, special attention is directed to static pressure fluctuation in a sirocco fan for a car air-conditioning system, because it is expected that there is a close connection between the fluid noise and the pressure fluctuation. The final purpose of this study is to clarify the relationship between the static pressure fluctuation between fan blades and the sound noise emitted to the outside of the fan, and to develop an air-conditioning system with highly low noise level. For this purpose, first of all, a new micro probe for the measurement of static pressure fluctuation has been developed. This new micro probe is composed of an L-type static pressure tube (the outer diameter is 0.5 mm and the inner diameter is 0.34 mm) and a very small pressure transducer. This probe exhibits a flat frequency response until approximately 2,000 Hz, and it is set between the blades of the fan rotating at 1,500 rpm. The measurements of the static pressure fluctuation between the blades have been performed, and the intensity of sound source was quantified from the second derivative of the phase-averaged static pressure fluctuation signals on the basis of Ribner's formula (Ribner 1962). The experiments have been made in two different modes, i.e., the cooling mode (FACE MODE) and the heating mode (FOOT MODE). It is shown that the static pressure increases rapidly as the blade approaches to the nose of the casing. It is also found that the sound source for FACE MODE shows the larger value than that for FOOT MODE as a whole. In particular, the largest intensity of sound source is observed when the blade approaches to the nose. From these results, it is confirmed that the present new static pressure probe is useful to specify the distributions of sound source in a sirocco fan.

  16. The Intracranial Volume Pressure Response in Increased Intracranial Pressure Patients: Clinical Significance of the Volume Pressure Indicator

    PubMed Central

    2016-01-01

    Background For patients suffering from primary brain injury, monitoring intracranial pressure alone is not enough to reflect the dynamic intracranial condition. In our previous study, a segment of the pressure-volume curve can be expressed by the parabolic regression model with single indicator “a”. The aim of this study is to evaluate if the indicator “a” can reflect intracranial conditions. Methods Patients with traumatic brain injury, spontaneous intracranial hemorrhage, and/or hydrocephalus who had external ventricular drainage from January 2009 to February 2010 were included. The successive volume pressure response values were obtained by successive drainage of cerebral spinal fluid from intracranial pressure 20–25 mm Hg to 10 mm Hg. The relationship between withdrawn cerebral spinal fluid volume and intracranial pressure was analyzed by the parabolic regression model with single parameter “a”. Results The overall mean for indicator “a” was 0.422 ± 0.046. The mean of “a” in hydrocephalus was 0.173 ± 0.024 and in severe intracranial mass with slender ventricle, it was 0.663 ± 0.062. The two extreme intracranial conditions had a statistical significant difference (p<0.001). Conclusion The indicator “a” of a pressure-volume curve can reflect the dynamic intracranial condition and is comparable in different situations. A significantly larger indicator “a” with increased intracranial pressure is always observed in severe intracranial mass lesions with cerebral edema. A significantly smaller indicator “a” with increased intracranial pressure is observed in hydrocephalus. Brain computed tomography should be performed early if a rapid elevation of indicator “a” is detected, as it can reveal some ongoing intracranial pathology prior to clinical deterioration. Increased intracranial pressure was frequently observed in patients with intracranial pathology. The progression can be differentiated using the pattern of the volume

  17. Long-Term Air Pollution Exposure and Blood Pressure in the Sister Study

    PubMed Central

    Chan, Stephanie H.; Van Hee, Victor C.; Bergen, Silas; Szpiro, Adam A.; DeRoo, Lisa A.; London, Stephanie J.; Marshall, Julian D.; Sandler, Dale P.

    2015-01-01

    Background Exposure to air pollution has been consistently associated with cardiovascular morbidity and mortality, but mechanisms remain uncertain. Associations with blood pressure (BP) may help to explain the cardiovascular effects of air pollution. Objective We examined the cross-sectional relationship between long-term (annual average) residential air pollution exposure and BP in the National Institute of Environmental Health Sciences’ Sister Study, a large U.S. cohort study investigating risk factors for breast cancer and other outcomes. Methods This analysis included 43,629 women 35–76 years of age, enrolled 2003–2009, who had a sister with breast cancer. Geographic information systems contributed to satellite-based nitrogen dioxide (NO2) and fine particulate matter (≤ 2.5 μm; PM2.5) predictions at participant residences at study entry. Generalized additive models were used to examine the relationship between pollutants and measured BP at study entry, adjusting for cardiovascular disease risk factors and including thin plate splines for potential spatial confounding. Results A 10-μg/m3 increase in PM2.5 was associated with 1.4-mmHg higher systolic BP (95% CI: 0.6, 2.3; p < 0.001), 1.0-mmHg higher pulse pressure (95% CI: 0.4, 1.7; p = 0.001), 0.8-mmHg higher mean arterial pressure (95% CI: 0.2, 1.4; p = 0.01), and no significant association with diastolic BP. A 10-ppb increase in NO2 was associated with a 0.4-mmHg (95% CI: 0.2, 0.6; p < 0.001) higher pulse pressure. Conclusions Long-term PM2.5 and NO2 exposures were associated with higher blood pressure. On a population scale, such air pollution–related increases in blood pressure could, in part, account for the increases in cardiovascular disease morbidity and mortality seen in prior studies. Citation Chan SH, Van Hee VC, Bergen S, Szpiro AA, DeRoo LA, London SJ, Marshall JD, Kaufman JD, Sandler DP. 2015. Long-term air pollution exposure and blood pressure in the Sister Study. Environ Health

  18. The impact of mass flow and masking on the pressure drop of air filter in heavy-duty diesel engine

    NASA Astrophysics Data System (ADS)

    Hoseeinzadeh, Sepideh; Gorji-Bandpy, Mofid

    2012-04-01

    This paper presents a computational fluid dynamics (CFD) calculation approach to predict and evaluate the impact of the mass-flow inlet on the pressure drop of turbocharger`s air filtfer in heavy-duty diesel engine. The numerical computations were carried out using a commercial CFD program whereas the inlet area of the air filter consisted of several holes connected to a channel. After entering through the channel, the air passes among the holes and enters the air filter. The effect of masking holes and hydraulic diameter is studied and investigated on pressure drop. The results indicate that pressure drop increase with decreasing of hydraulic diameter and masking of the holes has considerable affect on the pressure drop.

  19. Expanding Regional Airport Usage to Accommodate Increased Air Traffic Demand

    NASA Technical Reports Server (NTRS)

    Russell, Carl R.

    2009-01-01

    Small regional airports present an underutilized source of capacity in the national air transportation system. This study sought to determine whether a 50 percent increase in national operations could be achieved by limiting demand growth at large hub airports and instead growing traffic levels at the surrounding regional airports. This demand scenario for future air traffic in the United States was generated and used as input to a 24-hour simulation of the national airspace system. Results of the demand generation process and metrics predicting the simulation results are presented, in addition to the actual simulation results. The demand generation process showed that sufficient runway capacity exists at regional airports to offload a significant portion of traffic from hub airports. Predictive metrics forecast a large reduction of delays at most major airports when demand is shifted. The simulation results then show that offloading hub traffic can significantly reduce nationwide delays.

  20. Air Pressure Responses to Sudden Vocal Tract Pressure Bleeds During Production of Stop Consonants: New Evidence of Aeromechanical Regulation

    PubMed Central

    Zajac, David J.; Weissler, Mark C.

    2011-01-01

    Two studies were conducted to evaluate short-latency vocal tract air pressure responses to sudden pressure bleeds during production of voiceless bilabial stop consonants. It was hypothesized that the occurrence of respiratory reflexes would be indicated by distinct patterns of responses as a function of bleed magnitude. In Study 1, 19 adults produced syllable trains of /pΛ/ using a mouthpiece coupled to a computer-controlled perturbator. The device randomly created bleed apertures that ranged from 0 to 40 mm2 during production of the 2nd or 4th syllable of an utterance. Although peak oral air pressure dropped in a linear manner across bleed apertures, it averaged 2 to 3 cm H2O at the largest bleed. While slope of oral pressure also decreased in a linear trend, duration of the oral pressure pulse remained relatively constant. The patterns suggest that respiratory reflexes, if present, have little effect on oral air pressure levels. In Study 2, both oral and subglottal air pressure responses were monitored in 2 adults while bleed apertures of 20 and 40 mm2 were randomly created. For 1 participant, peak oral air pressure dropped across bleed apertures, as in Study 1. Subglottal air pressure and slope, however, remained relatively stable. These patterns provide some support for the occurrence of respiratory reflexes to regulate subglottal air pressure. Overall, the studies indicate that the inherent physiologic processes of the respiratory system, which may involve reflexes, and passive aeromechanical resistance of the upper airway are capable of developing oral air pressure in the face of substantial pressure bleeds. Implications for understanding speech production and the characteristics of individuals with velopharyngeal dysfunction are discussed. PMID:15324286

  1. Air pressure responses to sudden vocal tract pressure bleeds during production of stop consonants: new evidence of aeromechanical regulation.

    PubMed

    Zajac, David J; Weissler, Mark C

    2004-08-01

    Two studies were conducted to evaluate short-latency vocal tract air pressure responses to sudden pressure bleeds during production of voiceless bilabial stop consonants. It was hypothesized that the occurrence of respiratory reflexes would be indicated by distinct patterns of responses as a function of bleed magnitude. In Study 1, 19 adults produced syllable trains of "puh" using a mouthpiece coupled to a computer-controlled perturbator. The device randomly created bleed apertures that ranged from 0 to 40 mm2 during production of the 2nd or 4th syllable of an utterance. Although peak oral air pressure dropped in a linear manner across bleed apertures, it averaged 2 to 3 cm H2O at the largest bleed. While slope of oral pressure also decreased in a linear trend, duration of the oral pressure pulse remained relatively constant. The patterns suggest that respiratory reflexes, if present, have little effect on oral air pressure levels. In Study 2, both oral and subglottal air pressure responses were monitored in 2 adults while bleed apertures of 20 and 40 mm2 were randomly created. For 1 participant, peak oral air pressure dropped across bleed apertures, as in Study 1. Subglottal air pressure and slope, however, remained relatively stable. These patterns provide some support for the occurrence of respiratory reflexes to regulate subglottal air pressure. Overall, the studies indicate that the inherent physiologic processes of the respiratory system, which may involve reflexes, and passive aeromechanical resistance of the upper airway are capable of developing oral air pressure in the face of substantial pressure bleeds. Implications for understanding speech production and the characteristics of individuals with velopharyngeal dysfunction are discussed.

  2. Intracranial pressure increases during exposure to a shock wave.

    PubMed

    Leonardi, Alessandra Dal Cengio; Bir, Cynthia A; Ritzel, Dave V; VandeVord, Pamela J

    2011-01-01

    Traumatic brain injuries (TBI) caused by improvised explosive devices (IEDs) affect a significant percentage of surviving soldiers wounded in Iraq and Afghanistan. The extent of a blast TBI, especially initially, is difficult to diagnose, as internal injuries are frequently unrecognized and therefore underestimated, yet problems develop over time. Therefore it is paramount to resolve the physical mechanisms by which critical stresses are inflicted on brain tissue from blast wave encounters with the head. This study recorded direct pressure within the brains of male Sprague-Dawley rats during exposure to blast. The goal was to understand pressure wave dynamics through the brain. In addition, we optimized in vivo methods to ensure accurate measurement of intracranial pressure (ICP). Our results demonstrate that proper sealing techniques lead to a significant increase in ICP values, compared to the outside overpressure generated by the blast. Further, the values seem to have a direct relation to a rat's size and age: heavier, older rats had the highest ICP readings. These findings suggest that a global flexure of the skull by the transient shockwave is an important mechanism of pressure transmission inside the brain.

  3. Intracranial pressure increases during exposure to a shock wave.

    PubMed

    Leonardi, Alessandra Dal Cengio; Bir, Cynthia A; Ritzel, Dave V; VandeVord, Pamela J

    2011-01-01

    Traumatic brain injuries (TBI) caused by improvised explosive devices (IEDs) affect a significant percentage of surviving soldiers wounded in Iraq and Afghanistan. The extent of a blast TBI, especially initially, is difficult to diagnose, as internal injuries are frequently unrecognized and therefore underestimated, yet problems develop over time. Therefore it is paramount to resolve the physical mechanisms by which critical stresses are inflicted on brain tissue from blast wave encounters with the head. This study recorded direct pressure within the brains of male Sprague-Dawley rats during exposure to blast. The goal was to understand pressure wave dynamics through the brain. In addition, we optimized in vivo methods to ensure accurate measurement of intracranial pressure (ICP). Our results demonstrate that proper sealing techniques lead to a significant increase in ICP values, compared to the outside overpressure generated by the blast. Further, the values seem to have a direct relation to a rat's size and age: heavier, older rats had the highest ICP readings. These findings suggest that a global flexure of the skull by the transient shockwave is an important mechanism of pressure transmission inside the brain. PMID:21091267

  4. Elevated Plasma Endothelin-1 and Pulmonary Arterial Pressure in Children Exposed to Air Pollution

    PubMed Central

    Calderón-Garcidueñas, Lilian; Vincent, Renaud; Mora-Tiscareño, Antonieta; Franco-Lira, Maricela; Henríquez-Roldán, Carlos; Barragán-Mejía, Gerardo; Garrido-García, Luis; Camacho-Reyes, Laura; Valencia-Salazar, Gildardo; Paredes, Rogelio; Romero, Lina; Osnaya, Hector; Villarreal-Calderón, Rafael; Torres-Jardón, Ricardo; Hazucha, Milan J.; Reed, William

    2007-01-01

    Background Controlled exposures of animals and humans to particulate matter (PM) or ozone air pollution cause an increase in plasma levels of endothelin-1, a potent vasoconstrictor that regulates pulmonary arterial pressure. Objectives The primary objective of this field study was to determine whether Mexico City children, who are chronically exposed to levels of PM and O3 that exceed the United States air quality standards, have elevated plasma endothelin-1 levels and pulmonary arterial pressures. Methods We conducted a study of 81 children, 7.9 ± 1.3 years of age, lifelong residents of either northeast (n = 19) or southwest (n = 40) Mexico City or Polotitlán (n = 22), a control city with PM and O3 levels below the U.S. air quality standards. Clinical histories, physical examinations, and complete blood counts were done. Plasma endothelin-1 concentrations were determined by immunoassay, and pulmonary arterial pressures were measured by Doppler echocardiography. Results Mexico City children had higher plasma endothelin-1 concentrations compared with controls (p < 0.001). Mean pulmonary arterial pressure was elevated in children from both northeast (p < 0.001) and southwest (p < 0.05) Mexico City compared with controls. Endothelin-1 levels in Mexico City children were positively correlated with daily outdoor hours (p = 0.012), and 7-day cumulative levels of PM air pollution < 2.5 μm in aerodynamic diameter (PM2.5) before endothelin-1 measurement (p = 0.03). Conclusions Chronic exposure of children to PM2.5 is associated with increased levels of circulating endothelin-1 and elevated mean pulmonary arterial pressure. PMID:17687455

  5. 30 CFR 57.13015 - Inspection of compressed-air receivers and other unfired pressure vessels.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... receivers and other unfired pressure vessels. (a) Compressed-air receivers and other unfired pressure... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Inspection of compressed-air receivers and other unfired pressure vessels. 57.13015 Section 57.13015 Mineral Resources MINE SAFETY AND...

  6. 30 CFR 57.13015 - Inspection of compressed-air receivers and other unfired pressure vessels.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... receivers and other unfired pressure vessels. (a) Compressed-air receivers and other unfired pressure... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Inspection of compressed-air receivers and other unfired pressure vessels. 57.13015 Section 57.13015 Mineral Resources MINE SAFETY AND...

  7. 30 CFR 57.13015 - Inspection of compressed-air receivers and other unfired pressure vessels.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... receivers and other unfired pressure vessels. (a) Compressed-air receivers and other unfired pressure... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Inspection of compressed-air receivers and other unfired pressure vessels. 57.13015 Section 57.13015 Mineral Resources MINE SAFETY AND...

  8. 30 CFR 56.13015 - Inspection of compressed-air receivers and other unfired pressure vessels.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... and other unfired pressure vessels. (a) Compressed-air receivers and other unfired pressure vessels... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Inspection of compressed-air receivers and other unfired pressure vessels. 56.13015 Section 56.13015 Mineral Resources MINE SAFETY AND...

  9. 29 CFR 1915.172 - Portable air receivers and other unfired pressure vessels.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 7 2013-07-01 2013-07-01 false Portable air receivers and other unfired pressure vessels... SHIPYARD EMPLOYMENT Portable, Unfired Pressure Vessels, Drums and Containers, Other Than Ship's Equipment § 1915.172 Portable air receivers and other unfired pressure vessels. (a) Portable, unfired...

  10. 29 CFR 1915.172 - Portable air receivers and other unfired pressure vessels.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 7 2012-07-01 2012-07-01 false Portable air receivers and other unfired pressure vessels... SHIPYARD EMPLOYMENT Portable, Unfired Pressure Vessels, Drums and Containers, Other Than Ship's Equipment § 1915.172 Portable air receivers and other unfired pressure vessels. (a) Portable, unfired...

  11. 29 CFR 1915.172 - Portable air receivers and other unfired pressure vessels.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Portable air receivers and other unfired pressure vessels... SHIPYARD EMPLOYMENT Portable, Unfired Pressure Vessels, Drums and Containers, Other Than Ship's Equipment § 1915.172 Portable air receivers and other unfired pressure vessels. (a) Portable, unfired...

  12. 29 CFR 1915.172 - Portable air receivers and other unfired pressure vessels.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 7 2014-07-01 2014-07-01 false Portable air receivers and other unfired pressure vessels... SHIPYARD EMPLOYMENT Portable, Unfired Pressure Vessels, Drums and Containers, Other Than Ship's Equipment § 1915.172 Portable air receivers and other unfired pressure vessels. (a) Portable, unfired...

  13. 30 CFR 57.13015 - Inspection of compressed-air receivers and other unfired pressure vessels.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... receivers and other unfired pressure vessels. (a) Compressed-air receivers and other unfired pressure... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Inspection of compressed-air receivers and other unfired pressure vessels. 57.13015 Section 57.13015 Mineral Resources MINE SAFETY AND...

  14. 29 CFR 1915.172 - Portable air receivers and other unfired pressure vessels.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 7 2011-07-01 2011-07-01 false Portable air receivers and other unfired pressure vessels... SHIPYARD EMPLOYMENT Portable, Unfired Pressure Vessels, Drums and Containers, Other Than Ship's Equipment § 1915.172 Portable air receivers and other unfired pressure vessels. (a) Portable, unfired...

  15. 30 CFR 56.13015 - Inspection of compressed-air receivers and other unfired pressure vessels.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... and other unfired pressure vessels. (a) Compressed-air receivers and other unfired pressure vessels... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Inspection of compressed-air receivers and other unfired pressure vessels. 56.13015 Section 56.13015 Mineral Resources MINE SAFETY AND...

  16. 30 CFR 56.13015 - Inspection of compressed-air receivers and other unfired pressure vessels.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... and other unfired pressure vessels. (a) Compressed-air receivers and other unfired pressure vessels... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Inspection of compressed-air receivers and other unfired pressure vessels. 56.13015 Section 56.13015 Mineral Resources MINE SAFETY AND...

  17. 30 CFR 57.13015 - Inspection of compressed-air receivers and other unfired pressure vessels.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... receivers and other unfired pressure vessels. (a) Compressed-air receivers and other unfired pressure... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Inspection of compressed-air receivers and other unfired pressure vessels. 57.13015 Section 57.13015 Mineral Resources MINE SAFETY AND...

  18. 30 CFR 56.13015 - Inspection of compressed-air receivers and other unfired pressure vessels.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... and other unfired pressure vessels. (a) Compressed-air receivers and other unfired pressure vessels... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Inspection of compressed-air receivers and other unfired pressure vessels. 56.13015 Section 56.13015 Mineral Resources MINE SAFETY AND...

  19. 30 CFR 56.13015 - Inspection of compressed-air receivers and other unfired pressure vessels.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... and other unfired pressure vessels. (a) Compressed-air receivers and other unfired pressure vessels... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Inspection of compressed-air receivers and other unfired pressure vessels. 56.13015 Section 56.13015 Mineral Resources MINE SAFETY AND...

  20. Effect of Different Levels of Pressure Relieving Air-Mattress Firmness on Cough Strength

    PubMed Central

    Kamikawa, Norimichi; Taito, Shunsuke; Takahashi, Makoto; Sekikawa, Kiyokazu; Hamada, Hironobu

    2016-01-01

    Cough is an important host-defense mechanism. The elderly and patients who are severely ill cannot cough effectively when lying in the supine position. Furthermore, pressure relieving air-mattresses are recommended for preventing the development of pressure ulcers. In this study, we clarified whether or not the cough peak flow (CPF), an index of cough strength, is affected by different firmness levels of a pressure relieving air-mattress in healthy volunteers in the supine position. Fifty-two healthy young men participated. All the measurements were carried out on each participant in the supine position on a pressure relieving air-mattress. The participants were assessed at two firmness levels, a “hard” and “soft” mode. The CPF, forced vital capacity (FVC), maximal expiratory pressure (PEmax), and maximal inspiratory pressure (PImax) were determined for each mode. The sinking distance of the body into the mattress was measured without any activity and the difference between the sinking distances of the two firmness levels was determined. The CPF, FVC, PEmax, and PImax were determined for each mode. The sinking distance of the body into the mattress was measured and the difference between the sinking distances of the two firmness levels was determined. The CPF, FVC, PEmax and PImax values of the participants coughing on the mattress were significantly lower when the mattress was in “soft” than in “hard” mode. The differences between the sinking distances of the mattress in “soft” and “hard” modes were larger for the anterior superior iliac spine. A harder mattress may lead to increased CPF in healthy young men lying in the supine position, and increased CPF may be important for host defense. PMID:26741497

  1. Effect of Different Levels of Pressure Relieving Air-Mattress Firmness on Cough Strength.

    PubMed

    Kamikawa, Norimichi; Taito, Shunsuke; Takahashi, Makoto; Sekikawa, Kiyokazu; Hamada, Hironobu

    2016-01-01

    Cough is an important host-defense mechanism. The elderly and patients who are severely ill cannot cough effectively when lying in the supine position. Furthermore, pressure relieving air-mattresses are recommended for preventing the development of pressure ulcers. In this study, we clarified whether or not the cough peak flow (CPF), an index of cough strength, is affected by different firmness levels of a pressure relieving air-mattress in healthy volunteers in the supine position. Fifty-two healthy young men participated. All the measurements were carried out on each participant in the supine position on a pressure relieving air-mattress. The participants were assessed at two firmness levels, a "hard" and "soft" mode. The CPF, forced vital capacity (FVC), maximal expiratory pressure (PEmax), and maximal inspiratory pressure (PImax) were determined for each mode. The sinking distance of the body into the mattress was measured without any activity and the difference between the sinking distances of the two firmness levels was determined. The CPF, FVC, PEmax, and PImax were determined for each mode. The sinking distance of the body into the mattress was measured and the difference between the sinking distances of the two firmness levels was determined. The CPF, FVC, PEmax and PImax values of the participants coughing on the mattress were significantly lower when the mattress was in "soft" than in "hard" mode. The differences between the sinking distances of the mattress in "soft" and "hard" modes were larger for the anterior superior iliac spine. A harder mattress may lead to increased CPF in healthy young men lying in the supine position, and increased CPF may be important for host defense. PMID:26741497

  2. Effect of Different Levels of Pressure Relieving Air-Mattress Firmness on Cough Strength.

    PubMed

    Kamikawa, Norimichi; Taito, Shunsuke; Takahashi, Makoto; Sekikawa, Kiyokazu; Hamada, Hironobu

    2016-01-01

    Cough is an important host-defense mechanism. The elderly and patients who are severely ill cannot cough effectively when lying in the supine position. Furthermore, pressure relieving air-mattresses are recommended for preventing the development of pressure ulcers. In this study, we clarified whether or not the cough peak flow (CPF), an index of cough strength, is affected by different firmness levels of a pressure relieving air-mattress in healthy volunteers in the supine position. Fifty-two healthy young men participated. All the measurements were carried out on each participant in the supine position on a pressure relieving air-mattress. The participants were assessed at two firmness levels, a "hard" and "soft" mode. The CPF, forced vital capacity (FVC), maximal expiratory pressure (PEmax), and maximal inspiratory pressure (PImax) were determined for each mode. The sinking distance of the body into the mattress was measured without any activity and the difference between the sinking distances of the two firmness levels was determined. The CPF, FVC, PEmax, and PImax were determined for each mode. The sinking distance of the body into the mattress was measured and the difference between the sinking distances of the two firmness levels was determined. The CPF, FVC, PEmax and PImax values of the participants coughing on the mattress were significantly lower when the mattress was in "soft" than in "hard" mode. The differences between the sinking distances of the mattress in "soft" and "hard" modes were larger for the anterior superior iliac spine. A harder mattress may lead to increased CPF in healthy young men lying in the supine position, and increased CPF may be important for host defense.

  3. On extreme rainfall intensity increases with air temperature

    NASA Astrophysics Data System (ADS)

    Molnar, Peter; Fatichi, Simone; Paschalis, Athanasios; Gaal, Ladislav; Szolgay, Jan; Burlando, Paolo

    2016-04-01

    The water vapour holding capacity of air increases at about 7% per degree C according to the Clausius-Clapeyron (CC) relation. This is one of the arguments why a warmer future atmosphere, being able to hold more moisture, will generate higher extreme precipitation intensities. However, several empirical studies have recently demonstrated an increase in extreme rain intensities with air temperature above CC rates, in the range 7-14% per degree C worldwide (called super-CC rates). This was observed especially for shorter duration rainfall, i.e. in hourly and finer resolution data (e.g. review in Westra et al., 2014). The super-CC rate was attributed to positive feedbacks between water vapour and the updraft dynamics in convective clouds and lateral supply (convergence) of moisture. In addition, mixing of storm types was shown to be potentially responsible for super-CC rates in empirical studies. Assuming that convective events are accompanied by lightning, we will show on a large rainfall dataset in Switzerland (30 year records of 10-min and 1-hr data from 59 stations) that while the average rate of increase in extreme rainfall intensity (95th percentile) is 6-7% in no-lightning events and 8-9% in lightning events, it is 11-13% per degree C when all events are combined (Molnar et al., 2015). These results are relevant for climate change studies which predict shifts in storm types in a warmer climate in some parts of the world. The observation that extreme rain intensity and air temperature are positively correlated has consequences for the stochastic modelling of rainfall. Most current stochastic models do not explicitly include a direct rain intensity-air temperature dependency beyond applying factors of change predicted by climate models to basic statistics of precipitation. Including this dependency explicitly in stochastic models will allow, for example in the nested modelling approach of Paschalis et al. (2014), the random cascade disaggregation routine to be

  4. Raising the Bar: Increased Hydraulic Pressure Allows Unprecedented High Power Densities in Pressure-Retarded Osmosis

    SciTech Connect

    Straub, AP; Yip, NY; Elimelech, M

    2014-01-01

    Pressure-retarded osmosis (PRO) has the potential to generate sustainable energy from salinity gradients. PRO is typically considered for operation with river water and seawater, but a far greater energy of mixing can be harnessed from hypersaline solutions. This study investigates the power density that can be obtained in PRO from such concentrated solutions. Thin-film composite membranes with an embedded woven mesh were supported by tricot fabric feed spacers in a specially designed crossflow cell to maximize the operating pressure of the system, reaching a stable applied hydraulic pressure of 48 bar (700 psi) for more than 10 h. Operation at this increased hydraulic pressure allowed unprecedented power densities, up to 60 W/m(2) with a 3 M (180 g/L) NaCl draw solution. Experimental power densities demonstrate reasonable agreement with power densities modeled using measured membrane properties, indicating high-pressure operation does not drastically alter membrane performance. Our findings exhibit the promise of the generation of power from high-pressure PRO with concentrated solutions.

  5. Cryostat Filling Limitations for Proposed Ar Dewar Pressure Increase

    SciTech Connect

    Dixon, K.; Wu, J.; /Fermilab

    1991-07-23

    In order to significantly decrease the amount of time required to fill the cryostats, it is desired to raise the setpoint of the 'operating' relief valve on the argon storage dewar to 20 psig from its existing 16 psig setting. This additional pressure increases the flow to the cryostats and will overwhelm the relief capacity if the temperature of the modules within these vessels is warm enough. Using some conservative assumptions and simple calculations within this note, the maximum average temperature that the modules within each cryostat can be at prior to filling from the storage dewar with liquid argon is at least 290 K.

  6. A study of the glow discharge characteristics of contact electrodes at atmospheric pressure in air

    SciTech Connect

    Liu, Wenzheng Sun, Guangliang Li, Chuanhui; Zhang, Rongrong

    2014-04-15

    Electric field distributions and discharge properties of rod-rod contact electrodes were studied under the condition of DBD for the steady generation of atmospheric pressure glow discharge plasma (APGD) in air. We found that under the effect of the initial electrons generated in a nanometer-scale gap, the rod-rod cross-contact electrodes yielded APGD plasma in air. Regarding the rod-rod cross-contact electrodes, increasing the working voltage expanded the strong electric field area of the gas gap so that both discharge area and discharge power increased, and the increase in the number of contact points kept the initial discharge voltage unchanged and caused an increase in the plasma discharge area and discharge power. A mesh-like structure of cross-contact electrodes was designed and used to generate more APGD plasma, suggesting high applicability.

  7. Air-pressure tunable depletion width, rectification behavior, and charge conduction in oxide nanotubes.

    PubMed

    Alivov, Yahya; Funke, Hans H; Singh, Vivek; Nagpal, Prashant

    2015-02-01

    Metal-oxide nanotubes provide large surface areas and functionalizable surfaces for a variety of optical and electronic applications. Here we report air-tunable rectifying behavior, depletion width modulation, and two-dimensional (2D) charge conduction in hollow titanium-dioxide nanotubes. The metal contact forms a Schottky-diode in the nanotubes, and the rectification factor (on/off ratio) can be varied by more than 3 orders of magnitude (1-2 × 10(3)) as the air pressure is increased from 2 mTorr to atmospheric pressure. This behavior is explained using a change in depletion width of these thin nanotubes by adsorption of water vapor on both surfaces of a hollow nanotube, and the resulting formation of a metal-insulator-semiconductor (MIS) junction, which controls the 2D charge conduction properties in thin oxide nanotubes.

  8. Evaluation of analytical methodology for hydrocarbons in high pressure air and nitrogen systems. [evaluation of methodology

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Samples of liquid oxygen, high pressure nitrogen, low pressure nitrogen, and missile grade air were studied to determine the hydrocarbon concentrations. Concentration of the samples was achieved by adsorption on a molecular sieve and activated charcoal. The trapped hydrocarbons were then desorbed and transferred to an analytical column in a gas chromatograph. The sensitivity of the method depends on the volume of gas passed through the adsorbent tubes. The value of the method was verified through recoverability and reproducibility studies. The use of this method enables LOX, GN2, and missile grade air systems to be routinely monitored to determine low level increases in specific hydrocarbon concentration that could lead to potentially hazardous conditions.

  9. Air pollutants degrade floral scents and increase insect foraging times

    NASA Astrophysics Data System (ADS)

    Fuentes, Jose D.; Chamecki, Marcelo; Roulston, T.'ai; Chen, Bicheng; Pratt, Kenneth R.

    2016-09-01

    Flowers emit mixtures of scents that mediate plant-insect interactions such as attracting insect pollinators. Because of their volatile nature, however, floral scents readily react with ozone, nitrate radical, and hydroxyl radical. The result of such reactions is the degradation and the chemical modification of scent plumes downwind of floral sources. Large Eddy Simulations (LES) are developed to investigate dispersion and chemical degradation and modification of floral scents due to reactions with ozone, hydroxyl radical, and nitrate radical within the atmospheric surface layer. Impacts on foraging insects are investigated by utilizing a random walk model to simulate insect search behavior. Results indicate that even moderate air pollutant levels (e.g., ozone mixing ratios greater than 60 parts per billion on a per volume basis, ppbv) substantially degrade floral volatiles and alter the chemical composition of released floral scents. As a result, insect success rates of locating plumes of floral scents were reduced and foraging times increased in polluted air masses due to considerable degradation and changes in the composition of floral scents. Results also indicate that plant-pollinator interactions could be sensitive to changes in floral scent composition, especially if insects are unable to adapt to the modified scentscape. The increase in foraging time could have severe cascading and pernicious impacts on the fitness of foraging insects by reducing the time devoted to other necessary tasks.

  10. Experimental Study on a Standing Wave Thermoacoustic Prime Mover with Air Working Gas at Various Pressures

    NASA Astrophysics Data System (ADS)

    Setiawan, Ikhsan; Achmadin, Wahyu N.; Murti, Prastowo; Nohtomi, Makoto

    2016-04-01

    Thermoacoustic prime mover is an energy conversion device which converts thermal energy into acoustic work (sound wave). The advantages of this machine are that it can work with air as the working gas and does not produce any exhaust gases, so that it is environmentally friendly. This paper describes an experimental study on a standing wave thermoacoustic prime mover with air as the working gas at various pressures from 0.05 MPa to 0.6 MPa. We found that 0.2 MPa is the optimum pressure which gives the lowest onset temperature difference of 355 °C. This pressure value would be more preferable in harnessing low grade heat sources to power the thermoacoustic prime mover. In addition, we find that the lowest onset temperature difference is obtained when rh /δ k ratio is 2.85, where r h is the hydraulic radius of the stack and δ k is the thermal penetration depth of the gas. Moreover, the pressure amplitude of the sound wave is significantly getting larger from 2.0 kPa to 9.0 kPa as the charged pressure increases from 0.05 MPa up to 0.6 MPa.

  11. Effect of Fuel-Air Ratio, Inlet Temperature, and Exhaust Pressure on Detonation

    NASA Technical Reports Server (NTRS)

    Taylor, E S; Leary, W A; Diver, J R

    1940-01-01

    An accurate determination of the end-gas condition was attempted by applying a refined method of analysis to experimental results. The results are compared with those obtained in Technical Report no. 655. The experimental technique employed afforded excellent control over the engine variables and unusual cyclic reproducibility. This, in conjunction with the new analysis, made possible the determination of the state of the end-gas at any instant to a fair degree of precision. Results showed that for any given maximum pressure the maximum permissible end-gas temperature increased as the fuel-air ratio was increased. The tendency to detonate was slightly reduced by an increase in residual gas content resulting from an increase in exhaust backpressure with inlet pressure constant.

  12. Pattern recognition techniques for visualizing the biotropic waveform of air temperature and pressure

    NASA Astrophysics Data System (ADS)

    Ozheredov, V. A.

    2012-12-01

    It is known that long periods of adverse weather have a negative effect on the human cardiovascular system. A number of studies have set a lower limit of around 5 days for the duration of these periods. However, the specific features of the negative dynamics of the main weather characteristics—air temperature and atmospheric pressure—remained open. To address this problem, the present paper proposes a conjunctive method of the theory of pattern recognition. It is shown that this method approaches a globally optimal (in the sense of recognition errors) Neumann critical region and can be used to solve various problems in heliobiology. To illustrate the efficiency of this method, we show that some quickly relaxing short sequences of temperature and pressure time series (the so-called temperature waves and waves of atmospheric pressure changes) increase the risk of cardiovascular diseases and can lead to serious organic lesions (particularly myocardial infarction). It is established that the temperature waves and waves of atmospheric pressure changes increase the average morbidity rate of myocardial infarction by 90% and 110%, respectively. Atmospheric pressure turned out to be a more biotropic factor than air temperature.

  13. Progressive resistance neck exercises using a compressible ball coupled with an air pressure gauge.

    PubMed

    Axen, K; Haas, F; Schicchi, J; Merrick, J

    1992-01-01

    Strength training of neck muscles, a potentially important approach to injury prevention and rehabilitation, has been limited by the lack of a convenient means of instituting progressive resistance exercise (PRE) programs. By positioning a compressible ball coupled with an air pressure gauge between the head and a wall, eight men, ranging in age from 21 to 46 years, initially measured the maximum voluntary pressure (MVP) generated within the ball (a measure of neck muscle force), while maximally flexing, extending, and laterally flexing their head into the ball. In accordance with PRE principles, they then performed three sets of 10 repetitions of each motion while maintaining ball pressure at 60-80% of the measured MVP. This training program, consisting of three to five sessions per week for 4-7 weeks: 1) increased the MVPs for flexion [to 156 +/- 9% (SE) pretraining, p < 0.05], extension [to 162 +/- 11% (SE) pretraining, p < 0.05], and lateral flexion [to 173 +/- 12% (SE) pretraining, p < 0.05]; and 2) decreased the disparity between the MVPs for left and right lateral flexion, indicating that the weaker side showed greater improvement than the stronger side (p < 0.05). These findings demonstrate that progressive resistance neck exercises, facilitated by a compressible ball coupled with an air pressure gauge, can markedly increase neck muscle strength and decrease lateral force imbalance. J Orthop Sports Phys Ther 1992;16(6):275-280.

  14. Leptin Mediates the Increase in Blood Pressure Associated with Obesity

    PubMed Central

    Simonds, Stephanie E.; Pryor, Jack T.; Ravussin, Eric; Greenway, Frank L.; Dileone, Ralph; Allen, Andrew M.; Bassi, Jaspreet; Elmquist, Joel K.; Keogh, Julia M.; Henning, Elana; Myers, Martin G.; Licinio, Julio; Brown, Russell D.; Enriori, Pablo J.; O’Rahilly, Stephen; Sternson, Scott M.; Grove, Kevin L.; Spanswick, David C.; Farooqi, I. Sadaf; Cowley, Michael A.

    2014-01-01

    Summary Obesity is associated with increased blood pressure (BP), which in turn increases the risk of cardiovascular diseases. We found that the increase in leptin levels seen in diet-induced obesity (DIO) drives an increase in BP in rodents, an effect that was not seen in animals deficient in leptin or leptin receptors (LepR). Furthermore, humans with loss-of-function mutations in leptin and the LepR have low BP despite severe obesity. Leptin’s effects on BP are mediated by neuronal circuits in the dorsomedial hypothalamus (DMH), as blocking leptin with a specific antibody, antagonist, or inhibition of the activity of LepR-expressing neurons in the DMH caused a rapid reduction of BP in DIO mice, independent of changes in weight. Re-expression of LepRs in the DMH of DIO LepR-deficient mice caused an increase in BP. These studies demonstrate that leptin couples changes in weight to changes in BP in mammalian species. PMID:25480301

  15. Response of entrained air-void systems in cement paste to pressure

    NASA Astrophysics Data System (ADS)

    Frazier, Robert

    2011-12-01

    Scope and Method of Study: Determine the response of entrained air-void systems in fresh cement paste to applied pressures by utilizing micro-computed tomography. Compare results to those suggested by the ASTM C231 Type B pressure meter calibration equations. Findings and Conclusions: The results of this research suggest that although the Type B pressure meter assumptions are valid for the compression of individual voids, the volume of air-voids which dissolve under pressure is significant enough to register noticeable errors when using a synthetic air-entraining admixture with the Type B pressure meter test. Results currently suggest that air-void systems with a significant percentage of small voids present will have higher deviation from the Boyle's Law model used by the Type B pressure meter due to the dissolution of these air-voids.

  16. Narrowed Aortoseptal Angle Is Related to Increased Central Blood Pressure and Aortic Pressure Wave Reflection.

    PubMed

    Olafiranye, Oladipupo; Ibrahim, Mediha; Kamran, Haroon; Venner-Jones, Kinda; McFarlane, Samy I; Salciccioli, Louis; Lazar, Jason M

    2012-08-01

    The left ventricular (LV) aortoseptal angle (ASA) decreases with age, and is associated with basal septal hypertrophy (septal bulge). Enhanced arterial pressure wave reflection is known to impact LV hypertrophy. We assessed whether ASA is related to central blood pressure (BP) and augmentation index (AI), a measure of the reflected pressure wave. We studied 75 subjects (age 62 ± 16 years; 66% female) who were referred for transthoracic echocardiography and had radial artery applanation tonometry within 24 h. Peripheral systolic BP (P-SBP), peripheral diastolic BP (P-DBP), and peripheral pulse pressure (P-PP) were obtained by sphygmomanometry. Central BPs (C-SBP, C-DBP, C-PP) and AI were derived from applanation tonometry. AI was corrected for heart rate (AI75). The basal septal wall thickness (SWT), mid SWT and ASA were measured using the parasternal long axis echocardiographic view. Mean ASA and AI75 were 117 ± 11° and 22 ± 11%, respectively. ASA correlated with AI75 (r = -0.31, p ≤ 0.01), C-SBP (r = -0.24, p = 0.04), C-PP (r = -0.29, p = 0.01), but only showed a trend towards significance with P-SBP (r = -0.2, p = 0.09) and P-PP (r = -0.21, p = 0.08). Interestingly, C-PP was correlated with basal SWT (r = 0.27, p = 0.02) but not with mid SWT (r = 0.19, p = 0.11). On multivariate linear regression analysis, adjusted for age, gender, weight, and mean arterial pressure, AI75 was an independent predictor of ASA (p = 0.02). Our results suggest that a narrowed ASA is related to increased pressure wave reflection and higher central BP. Further studies are needed to determine whether narrowed LV ASA is a cause or consequence of enhanced wave reflection and whether other factors are involved.

  17. 78 FR 1735 - Airworthiness Directives; Honeywell International Inc. Air Data Pressure Transducers

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-09

    ... Executive Order 12866, (2) Is not a ``significant rule'' under DOT Regulatory Policies and Procedures (44 FR... International Inc. Air Data Pressure Transducers AGENCY: Federal Aviation Administration (FAA), DOT. ACTION... certain Honeywell International Inc. air data pressure transducers as installed on various aircraft....

  18. DESIGN NOTE: Measuring the residual air pressure in triple-point-of-water cells

    NASA Astrophysics Data System (ADS)

    White, D. R.

    2004-01-01

    Residual gas pressure is one of the factors influencing the temperature realized by triple-point-of-water cells. This note describes a simple procedure for measuring and correcting for the residual air pressure in sealed cells. The procedure is applicable to any cell with a McLeod-gauge extension or sufficient remnant 'seal-off' tube to trap an air bubble.

  19. Respiratory and Laryngeal Responses to an Oral Air Pressure Bleed during Speech

    ERIC Educational Resources Information Center

    Huber, Jessica E.; Stathopoulos, Elaine T.

    2003-01-01

    Researchers have hypothesized that the respiratory and laryngeal speech subsystems would respond to an air pressure bleed, but these responses have not been empirically studied. The present study examined the nature of the responses of the respiratory and laryngeal subsystems to an air pressure bleed in order to provide information relevant to the…

  20. Impact of flow regime on pressure drop increase and biomass accumulation and morphology in membrane systems.

    PubMed

    Vrouwenvelder, J S; Buiter, J; Riviere, M; van der Meer, W G J; van Loosdrecht, M C M; Kruithof, J C

    2010-02-01

    Biomass accumulation and pressure drop development have been studied in membrane fouling simulators at different flow regimes. At linear flow velocities as applied in practice in spiral wound nanofiltration (NF) and reverse osmosis (RO) membranes, voluminous and filamentous biofilm structures developed in the feed spacer channel, causing a significant increase in feed channel pressure drop. Elevated shear by both single phase flow (water) and two phase flow (water with air sparging: bubble flow) caused biofilm filaments and a pressure drop increase. The amount of accumulated biomass was independent of the applied shear, depending on the substrate loading rate (product of substrate concentration and linear flow velocity) only. The biofilm streamers oscillated in the passing water. Bubble flow resulted in a more compact and less filamentous biofilm structure than single phase flow, causing a much lower pressure drop increase. The biofilm grown under low shear conditions was more easy to remove during water flushing compared to a biofilm grown under high shear. To control biofouling, biofilm structure may be adjusted using biofilm morphology engineering combined with biomass removal from membrane elements by periodic reverse flushing using modified feed spacers. Potential long and short term consequences of flow regimes on biofilm development are discussed. Flow regimes manipulate biofilm morphology affecting membrane performance, enabling new approaches to control biofouling.

  1. Air Pressure Responses to Sudden Vocal Tract Pressure Bleeds during Production of Stop Consonants: New Evidence of Aeromechanical Regulation.

    ERIC Educational Resources Information Center

    Zajac, David J.; Weissler, Mark C.

    2004-01-01

    Two studies were conducted to evaluate short-latency vocal tract air pressure responses to sudden pressure bleeds during production of voiceless bilabial stop consonants. It was hypothesized that the occurrence of respiratory reflexes would be indicated by distinct patterns of responses as a function of bleed magnitude. In Study 1, 19 adults…

  2. Development of a Low Pressure, Air Atomized Oil Burner with High Atomizer Air Flow: Progress Report FY 1997

    SciTech Connect

    Butcher, T.A.

    1998-01-01

    This report describes technical advances made to the concept of a low pressure, air atomized oil burner for home heating applications. Currently all oil burners on the market are of the pressure atomized, retention head type. These burners have a lower firing rate limit of about 0.5 gallons per hour of oil, due to reliability problems related to small flow passage sizes. High pressure air atomized burners have been shown to be one route to avoid this problem but air compressor cost and reliability have practically eliminated this approach. With the low pressure air atomized burner the air required for atomization can be provided by a fan at 5-8 inches of water pressure. A burner using this concept, termed the Fan-Atomized Burner or ''FAB'' has been developed and is currently being commercialized. In the head of the FAB, the combustion air is divided into three parts, much like a conventional retention head burner. This report describes development work on a new concept in which 100% of the air from the fan goes through the atomizer. The primary advantage of this approach is a great simplification of the head design. A nozzle specifically sized for this concept was built and is described in the report. Basic flow pressure tests, cold air velocity profiles, and atomization performance have been measured. A burner head/flame tube has been developed which promotes a toroidal recirculation zone near the nozzle for flame stability. The burner head has been tested in several furnace and boiler applications over the firing rate range 0.2 to 0.28 gallons per hour. In all cases the burner can operate with very low excess air levels (under 10%) without producing smoke. Flue gas NO{sub x} concentration varied from 42 to 62 ppm at 3% O{sub 2}. The concept is seen as having significant potential and planned development efforts are discussed.

  3. The air elimination capabilities of pressure infusion devices and fluid-warmers.

    PubMed

    Schnoor, J; Macko, S; Weber, I; Rossaint, R

    2004-08-01

    Pressurised infusion devices may have only limited capability to detect and remove air during pressurised infusions. In order to assess pressure infusion systems with regard to their actual air elimination capabilities four disposable pressure infusion systems and fluid warmers were investigated: The Level 1 (L-1), Ranger (RA), Gymar (GY), and the Warmflo (WF). Different volumes of air were injected proximal to the heat exchanger and the remaining amount of air that was delivered at the end of the tubing was measured during pressurised infusions. Elimination of the injected air (100-200 ml) was superior by the RA system when compared to L-1 (p < 0.01). The GY and WF systems failed to eliminate the injected air. In conclusion, air elimination was best performed by the RA system. In terms of the risk of air embolism during pressurised infusions, improvements in air elimination of the investigated devices are still necessary. PMID:15270975

  4. 42 CFR 84.149 - Type C supplied-air respirator, demand and pressure demand class; minimum requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Type C supplied-air respirator, demand and pressure... be approved only when used to supply respirable air at the pressures and quantities required. (b) The manufacturer shall specify the range of air pressure at the point of attachment of the air-supply hose to...

  5. 42 CFR 84.149 - Type C supplied-air respirator, demand and pressure demand class; minimum requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Type C supplied-air respirator, demand and pressure... be approved only when used to supply respirable air at the pressures and quantities required. (b) The manufacturer shall specify the range of air pressure at the point of attachment of the air-supply hose to...

  6. 42 CFR 84.149 - Type C supplied-air respirator, demand and pressure demand class; minimum requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Type C supplied-air respirator, demand and pressure... be approved only when used to supply respirable air at the pressures and quantities required. (b) The manufacturer shall specify the range of air pressure at the point of attachment of the air-supply hose to...

  7. 42 CFR 84.149 - Type C supplied-air respirator, demand and pressure demand class; minimum requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Type C supplied-air respirator, demand and pressure... be approved only when used to supply respirable air at the pressures and quantities required. (b) The manufacturer shall specify the range of air pressure at the point of attachment of the air-supply hose to...

  8. 42 CFR 84.149 - Type C supplied-air respirator, demand and pressure demand class; minimum requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Type C supplied-air respirator, demand and pressure... be approved only when used to supply respirable air at the pressures and quantities required. (b) The manufacturer shall specify the range of air pressure at the point of attachment of the air-supply hose to...

  9. Rate of water equilibration in vapor-diffusion crystallization: dependence on the residual pressure of air in the vapor space.

    PubMed

    DeTitta, G T; Luft, J R

    1995-09-01

    The kinetics of water equilibration in vapor-diffusion crystallization experiments are sensitive to the residual pressure of air in the vapor chamber. Experiments with sitting droplets of 10%(w/v) PEG, allowed to equilibrate with reservoirs of 20%(w/v) PEG, were conducted at pressures ranging from 80 to 760 mm Hg. Equilibrations were interrupted after one, four, five and seven days to assess their progress. Even down to the lowest pressures examined it was found that a decrease in pressure leads to an increase in the rate of equilibration. The residual pressure of air in the vapor chamber can be varied to tailor the time course of equilibration in macromolecular crystal growth experiments.

  10. Characteristics of a Normal Glow Discharge Excited by DC Voltage in Atmospheric Pressure Air

    NASA Astrophysics Data System (ADS)

    Li, Xuechen; Zhao, Huanhuan; Jia, Pengying

    2013-11-01

    Atmospheric pressure glow discharges were generated in an air gap between a needle cathode and a water anode. Through changing the ballast resistor and gas gap width between the electrodes, it has been found that the discharges are in normal glow regime judged from the current-voltage characteristics and visualization of the discharges. Results indicate that the diameter of the positive column increases with increasing discharge current or increasing gap width. Optical emission spectroscopy is used to calculate the electron temperature and vibrational temperature. Both the electron temperature and the vibrational temperature increases with increasing discharge current or increasing gap width. Spatially resolved measurements show that the maxima of electron temperature and vibrational temperature appeared in the vicinity of the needle cathode.

  11. Effects of moderate strength cold air exposure on blood pressure and biochemical indicators among cardiovascular and cerebrovascular patients.

    PubMed

    Zhang, Xiakun; Zhang, Shuyu; Wang, Chunling; Wang, Baojian; Guo, Pinwen

    2014-02-27

    The effects of cold air on cardiovascular and cerebrovascular diseases were investigated in an experimental study examining blood pressure and biochemical indicators. Zhangye, a city in Gansu Province, China, was selected as the experimental site. Health screening and blood tests were conducted, and finally, 30 cardiovascular disease patients and 40 healthy subjects were recruited. The experiment was performed during a cold event during 27-28 April 2013. Blood pressure, catecholamine, angiotensin II (ANG-II), cardiac troponin I (cTnI), muscle myoglobin (Mb) and endothefin-1 (ET-1) levels of the subjects were evaluated 1 day before, during the 2nd day of the cold exposure and 1 day after the cold air exposure. Our results suggest that cold air exposure increases blood pressure in cardiovascular disease patients and healthy subjects via the sympathetic nervous system (SNS) that is activated first and which augments ANG-II levels accelerating the release of the norepinephrine and stimulates the renin-angiotensin system (RAS). The combined effect of these factors leads to a rise in blood pressure. In addition, cold air exposure can cause significant metabolism and secretion of Mb, cTnI and ET-1 in subjects; taking the patient group as an example, ET-1 was 202.7 ng/L during the cold air exposure, increased 58 ng/L compared with before the cold air exposure, Mb and cTnI levels remained relatively high (2,219.5 ng/L and 613.2 ng/L, increased 642.1 ng/L and 306.5 ng/L compared with before the cold air exposure, respectively) 1-day after the cold exposure. This showed that cold air can cause damage to patients' heart cells, and the damage cannot be rapidly repaired. Some of the responses related to the biochemical markers indicated that cold exposure increased cardiovascular strain and possible myocardial injury.

  12. Acute Effects of Continuous Positive Air way Pressure on Pulse Pressure in Chronic Heart Failure

    PubMed Central

    Quintão, Mônica; Chermont, Sérgio; Marchese, Luana; Brandão, Lúcia; Bernardez, Sabrina Pereira; Mesquita, Evandro Tinoco; Rocha, Nazareth de Novaes; Nóbrega, Antônio Claudio L.

    2014-01-01

    Background Patients with heart failure (HF) have left ventricular dysfunction and reduced mean arterial pressure (MAP). Increased adrenergic drive causes vasoconstriction and vessel resistance maintaining MAP, while increasing peripheral vascular resistance and conduit vessel stiffness. Increased pulse pressure (PP) reflects a complex interaction of the heart with the arterial and venous systems. Increased PP is an important risk marker in patients with chronic HF (CHF). Non-invasive ventilation (NIV) has been used for acute decompensated HF, to improve congestion and ventilation through both respiratory and hemodynamic effects. However, none of these studies have reported the effect of NIV on PP. Objective The objective of this study was to determine the acute effects of NIV with CPAP on PP in outpatients with CHF. Methods Following a double-blind, randomized, cross-over, and placebo-controlled protocol, twenty three patients with CHF (17 males; 60 ± 11 years; BMI 29 ± 5 kg/cm2, NYHA class II, III) underwent CPAP via nasal mask for 30 min in a recumbent position. Mask pressure was 6 cmH2O, whereas placebo was fixed at 0-1 cmH2O. PP and other non invasive hemodynamics variables were assessed before, during and after placebo and CPAP mode. Results CPAP decreased resting heart rate (Pre: 72 ± 9; vs. Post 5 min: 67 ± 10 bpm; p < 0.01) and MAP (CPAP: 87 ± 11; vs. control 96 ± 11 mmHg; p < 0.05 post 5 min). CPAP decreased PP (CPAP: 47 ± 20 pre to 38 ± 19 mmHg post; vs. control: 42 ± 12 mmHg, pre to 41 ± 18 post p < 0.05 post 5 min). Conclusion NIV with CPAP decreased pulse pressure in patients with stable CHF. Future clinical trials should investigate whether this effect is associated with improved clinical outcome. PMID:24676373

  13. The association of annual air pollution exposure with blood pressure among patients with sleep-disordered breathing.

    PubMed

    Liu, Wen-Te; Lee, Kang-Yun; Lee, Hsin-Chien; Chuang, Hsiao-Chi; Wu, Dean; Juang, Jer-Nan; Chuang, Kai-Jen

    2016-02-01

    While sleep-disordered breathing (SDB), high blood pressure (BP) and air pollution exposure have separately been associated with increased risk of cardiopulmonary mortality, the association linking air pollution exposure to BP among patients with sleep-disordered breathing is still unclear. We collected 3762 participants' data from the Taipei Medical University Hospital's Sleep Center and air pollution data from the Taiwan Environmental Protection Administration. Associations of 1-year mean criteria air pollutants [particulate matter with aerodynamic diameters ≤10 μm (PM10), particulate matter with aerodynamic diameters ≤2.5 μm (PM2.5), nitrogen dioxide (NO2) and ozone (O3)] with systolic BP (SBP) and diastolic BP (DBP) were investigated by generalized additive models. After controlling for age, sex, body mass index (BMI), temperature and relative humidity, we observed that increases in air pollution levels were associated with decreased SBP and increased DBP. We also found that patients with apnea-hypopnea index (AHI) ≥30 showed a stronger BP response to increased levels of air pollution exposure than those with AHI<30. Stronger effects of air pollution exposure on BP were found in overweight participants than in participants with normal BMI. We concluded that annual exposure to air pollution was associated with change of BP among patients with sleep-disordered breathing. The association between annual air pollution exposure and BP could be modified by AHI and BMI.

  14. The Increasing of Air and Biogas Mixer Instrument for Generating Friendly Environmental Electricity Power

    NASA Astrophysics Data System (ADS)

    Ketut Lasmi, Ni; Singarimbun, Alamta; Srigutomo, Wahyu

    2016-08-01

    The abolition of BBM Subsidize by the government causes increasing of its price, so a solution is necessary to find an alternative energy that is relatively cheap, environmentally friendly and affordable by all layers of society. Biogas is one of the renewable energy resources that are potential to be developed, especially in a farming area, because up until now, animal's excrement is not yet optimally used and it causes problem to environment. In response to this, one innovation to do is to make an instrument which is able to mix biogas and air by venture pipe using the basic theory of fluid mechanic, in order to raise the use of biogas as electricity source. Biogas conversion is done by changing fuel in benzene 5 kilowatt genset to biogas so it becomes a biogas genset. The biogas pressure is controlled when it enters the mixer instrument so that the velocity of biogas when it enters and it comes out the mixer is the same, and it will gain different pressure between biogas and air. By the pressure difference between biogas in the mixer instrument, biogas goes to the burning room so that the conversion of mechanical energy biogas to electricity will happen, and it will be applied as light and society's needs.

  15. Energy distribution of runaway electrons generated by a nanosecond discharge in atmospheric-pressure air

    NASA Astrophysics Data System (ADS)

    Tarasenko, V. F.; Baksht, E. Kh.; Burachenko, A. G.; Kostyrya, I. D.; Lomaev, M. I.; Petin, V. K.; Rybka, D. V.; Shlyakhtun, S. V.

    2008-12-01

    The spectra of an ultrashort avalanche electron beam generated by a nanosecond discharge in atmospheric-pressure air were investigated. The temporal characteristics of the beam current pulses, gap voltage, and discharge current in a gas diode were measured with a time resolution of ˜0.1 ns. A simple technique was developed for recovering electron spectra from the curves of beam attenuation by aluminum foils. The effect of the cathode design, electrode gap length, and generator parameters on the electron spectra were studied using seven setups. It is shown that generation of electrons with anomalously high energies requires the use of cathodes with increased curvature radius.

  16. Urbanization Increases Pathogen Pressure on Feral and Managed Honey Bees.

    PubMed

    Youngsteadt, Elsa; Appler, R Holden; López-Uribe, Margarita M; Tarpy, David R; Frank, Steven D

    2015-01-01

    Given the role of infectious disease in global pollinator decline, there is a need to understand factors that shape pathogen susceptibility and transmission in bees. Here we ask how urbanization affects the immune response and pathogen load of feral and managed colonies of honey bees (Apis mellifera Linnaeus), the predominant economically important pollinator worldwide. Using quantitative real-time PCR, we measured expression of 4 immune genes and relative abundance of 10 honey bee pathogens. We also measured worker survival in a laboratory bioassay. We found that pathogen pressure on honey bees increased with urbanization and management, and the probability of worker survival declined 3-fold along our urbanization gradient. The effect of management on pathogens appears to be mediated by immunity, with feral bees expressing immune genes at nearly twice the levels of managed bees following an immune challenge. The effect of urbanization, however, was not linked with immunity; instead, urbanization may favor viability and transmission of some disease agents. Feral colonies, with lower disease burdens and stronger immune responses, may illuminate ways to improve honey bee management. The previously unexamined effects of urbanization on honey-bee disease are concerning, suggesting that urban areas may favor problematic diseases of pollinators.

  17. Urbanization Increases Pathogen Pressure on Feral and Managed Honey Bees.

    PubMed

    Youngsteadt, Elsa; Appler, R Holden; López-Uribe, Margarita M; Tarpy, David R; Frank, Steven D

    2015-01-01

    Given the role of infectious disease in global pollinator decline, there is a need to understand factors that shape pathogen susceptibility and transmission in bees. Here we ask how urbanization affects the immune response and pathogen load of feral and managed colonies of honey bees (Apis mellifera Linnaeus), the predominant economically important pollinator worldwide. Using quantitative real-time PCR, we measured expression of 4 immune genes and relative abundance of 10 honey bee pathogens. We also measured worker survival in a laboratory bioassay. We found that pathogen pressure on honey bees increased with urbanization and management, and the probability of worker survival declined 3-fold along our urbanization gradient. The effect of management on pathogens appears to be mediated by immunity, with feral bees expressing immune genes at nearly twice the levels of managed bees following an immune challenge. The effect of urbanization, however, was not linked with immunity; instead, urbanization may favor viability and transmission of some disease agents. Feral colonies, with lower disease burdens and stronger immune responses, may illuminate ways to improve honey bee management. The previously unexamined effects of urbanization on honey-bee disease are concerning, suggesting that urban areas may favor problematic diseases of pollinators. PMID:26536606

  18. Urbanization Increases Pathogen Pressure on Feral and Managed Honey Bees

    PubMed Central

    López-Uribe, Margarita M.; Tarpy, David R.; Frank, Steven D.

    2015-01-01

    Given the role of infectious disease in global pollinator decline, there is a need to understand factors that shape pathogen susceptibility and transmission in bees. Here we ask how urbanization affects the immune response and pathogen load of feral and managed colonies of honey bees (Apis mellifera Linnaeus), the predominant economically important pollinator worldwide. Using quantitative real-time PCR, we measured expression of 4 immune genes and relative abundance of 10 honey bee pathogens. We also measured worker survival in a laboratory bioassay. We found that pathogen pressure on honey bees increased with urbanization and management, and the probability of worker survival declined 3-fold along our urbanization gradient. The effect of management on pathogens appears to be mediated by immunity, with feral bees expressing immune genes at nearly twice the levels of managed bees following an immune challenge. The effect of urbanization, however, was not linked with immunity; instead, urbanization may favor viability and transmission of some disease agents. Feral colonies, with lower disease burdens and stronger immune responses, may illuminate ways to improve honey bee management. The previously unexamined effects of urbanization on honey-bee disease are concerning, suggesting that urban areas may favor problematic diseases of pollinators. PMID:26536606

  19. Dynamic pressure sensor calibration techniques offering expanded bandwidth with increased resolution

    NASA Astrophysics Data System (ADS)

    Wisniewiski, David

    2015-03-01

    Advancements in the aerospace, defense and energy markets are being made possible by increasingly more sophisticated systems and sub-systems which rely upon critical information to be conveyed from the physical environment being monitored through ever more specialized, extreme environment sensing components. One sensing parameter of particular interest is dynamic pressure measurement. Crossing the boundary of all three markets (i.e. aerospace, defense and energy) is dynamic pressure sensing which is used in research and development of gas turbine technology, and subsequently embedded into a control loop used for long-term monitoring. Applications include quantifying the effects of aircraft boundary layer ingestion into the engine inlet to provide a reliable and robust design. Another application includes optimization of combustor dynamics by "listening" to the acoustic signature so that fuel-to-air mixture can be adjusted in real-time to provide cost operating efficiencies and reduced NOx emissions. With the vast majority of pressure sensors supplied today being calibrated either statically or "quasi" statically, the dynamic response characterization of the frequency dependent sensitivity (i.e. transfer function) of the pressure sensor is noticeably absent. The shock tube has been shown to be an efficient vehicle to provide frequency response of pressure sensors from extremely high frequencies down to 500 Hz. Recent development activity has lowered this starting frequency; thereby augmenting the calibration bandwidth with increased frequency resolution so that as the pressure sensor is used in an actual test application, more understanding of the physical measurement can be ascertained by the end-user.

  20. Hydrostatic Pressure Increases the Catalytic Activity of Amyloid Fibril Enzymes.

    PubMed

    Luong, Trung Quan; Erwin, Nelli; Neumann, Matthias; Schmidt, Andreas; Loos, Cornelia; Schmidt, Volker; Fändrich, Marcus; Winter, Roland

    2016-09-26

    We studied the combined effects of pressure (0.1-200 MPa) and temperature (22, 30, and 38 °C) on the catalytic activity of designed amyloid fibrils using a high-pressure stopped-flow system with rapid UV/Vis absorption detection. Complementary FT-IR spectroscopic data revealed a remarkably high pressure and temperature stability of the fibrillar systems. High pressure enhances the esterase activity as a consequence of a negative activation volume at all temperatures (about -14 cm(3)  mol(-1) ). The enhancement is sustained in the whole temperature range covered, which allows a further acceleration of the enzymatic activity at high temperatures (activation energy 45-60 kJ mol(-1) ). Our data reveal the great potential of using both pressure and temperature modulation to optimize the enzyme efficiency of catalytic amyloid fibrils.

  1. Hydrostatic Pressure Increases the Catalytic Activity of Amyloid Fibril Enzymes.

    PubMed

    Luong, Trung Quan; Erwin, Nelli; Neumann, Matthias; Schmidt, Andreas; Loos, Cornelia; Schmidt, Volker; Fändrich, Marcus; Winter, Roland

    2016-09-26

    We studied the combined effects of pressure (0.1-200 MPa) and temperature (22, 30, and 38 °C) on the catalytic activity of designed amyloid fibrils using a high-pressure stopped-flow system with rapid UV/Vis absorption detection. Complementary FT-IR spectroscopic data revealed a remarkably high pressure and temperature stability of the fibrillar systems. High pressure enhances the esterase activity as a consequence of a negative activation volume at all temperatures (about -14 cm(3)  mol(-1) ). The enhancement is sustained in the whole temperature range covered, which allows a further acceleration of the enzymatic activity at high temperatures (activation energy 45-60 kJ mol(-1) ). Our data reveal the great potential of using both pressure and temperature modulation to optimize the enzyme efficiency of catalytic amyloid fibrils. PMID:27573584

  2. Effect of airstream velocity on mean drop diameters of water sprays produced by pressure and air atomizing nozzles

    NASA Technical Reports Server (NTRS)

    Ingebo, R. D.

    1977-01-01

    A scanning radiometer was used to determine the effect of airstream velocity on the mean drop diameter of water sprays produced by pressure atomizing and air atomizing fuel nozzles used in previous combustion studies. Increasing airstream velocity from 23 to 53.4 meters per second reduced the Sauter mean diameter by approximately 50 percent with both types of fuel nozzles. The use of a sonic cup attached to the tip of an air assist nozzle reduced the Sauter mean diameter by approximately 40 percent. Test conditions included airstream velocities of 23 to 53.4 meters per second at 293 K and atmospheric pressure.

  3. Modeling the chemical kinetics of high-pressure glow discharges in mixtures of helium with real air

    SciTech Connect

    Stalder, K.R.; Vidmar, R.J.; Nersisyan, G.; Graham, W.G.

    2006-05-01

    Atmospheric and near-atmospheric pressure glow discharges generated in both pure helium and helium-air mixtures have been studied using a plasma chemistry code originally developed for simulations of electron-beam-produced air plasmas. Comparisons are made with experimental data obtained from high-pressure glow discharges in helium-air mixtures developed by applying sinusoidal voltage wave forms between two parallel planar metallic electrodes covered by glass plates, with frequencies ranging from 10 to 50 kHz and electric field strengths up to 5 kV/cm. The code simulates the plasma chemistry following periodic pulsations of ionization in prescribed E/N environments. Many of the rate constants depend on gas temperature, electron temperature, and E/N. In helium plasmas with small amounts ({approx}850 ppm) of air added, rapid conversion of atomic helium ions to molecular helium ions dominate the positive ion kinetics and these species are strongly modulated while the radical species are not. The charged and neutral species concentrations at atmospheric pressure with air impurity levels up to 10 000 ppm are predicted. The negative ion densities are very small but increase as the air impurity level is raised, which indicates that in helium-based systems operated in open air the concentration of negative ions would be significant. If water vapor at typical humidity levels is present as one of the impurities, hydrated cluster ions eventually comprise a significant fraction of the charged species.

  4. Air Pollution from Industrial Swine Operations and Blood Pressure of Neighboring Residents

    PubMed Central

    Horton, Rachel Avery; Rose, Kathryn M.

    2012-01-01

    Background: Industrial swine operations emit odorant chemicals including ammonia, hydrogen sulfide (H2S), and volatile organic compounds. Malodor and pollutant concentrations have been associated with self-reported stress and altered mood in prior studies. Objectives: We conducted a repeated-measures study of air pollution, stress, and blood pressure in neighbors of swine operations. Methods: For approximately 2 weeks, 101 nonsmoking adult volunteers living near industrial swine operations in 16 neighborhoods in eastern North Carolina sat outdoors for 10 min twice daily at preselected times. Afterward, they reported levels of hog odor on a 9-point scale and measured their blood pressure twice using an automated oscillometric device. During the same 2- to 3-week period, we measured ambient levels of H2S and PM10 at a central location in each neighborhood. Associations between systolic and diastolic blood pressure (SBP and DBP, respectively) and pollutant measures were estimated using fixed-effects (conditional) linear regression with adjustment for time of day. Results: PM10 showed little association with blood pressure. DBP [β (SE)] increased 0.23 (0.08) mmHg per unit of reported hog odor during the 10 min outdoors and 0.12 (0.08) mmHg per 1-ppb increase of H2S concentration in the same hour. SBP increased 0.10 (0.12) mmHg per odor unit and 0.29 (0.12) mmHg per 1-ppb increase of H2S in the same hour. Reported stress was strongly associated with BP; adjustment for stress reduced the odor–DBP association, but the H2S–SBP association changed little. Conclusions: Like noise and other repetitive environmental stressors, malodors may be associated with acute blood pressure increases that could contribute to development of chronic hypertension. PMID:23111006

  5. Monolayers of charged particles in a Langmuir trough: Could particle aggregation increase the surface pressure?

    PubMed

    Petkov, Plamen V; Danov, Krassimir D; Kralchevsky, Peter A

    2016-01-15

    The effect of aggregation on the surface pressure, Π, of monolayers from charged micrometer-sized colloidal particles on the air/water interface is investigated. Π is completely due to the long-range electrostatic repulsion between the particles mediated by their electrostatic field in the air. The most probable origin of particle aggregation is the attraction between capillary quadrupoles due to undulated contact lines on particle surfaces. Aggregates have higher charge and repel each other stronger than single particles. The data analysis by means of a theoretical model implies that Π linearly increases with n(1/2); n is the mean aggregation number, which can be determined from the experimental Π vs. area curves. The presence of electrolyte promotes aggregation, which tends to increase Π, but simultaneously reduces the surface charge that leads to lower Π. For our system, the first effect prevails and apparently paradoxical behavior is observed: the addition of salt in water enhances the electrostatic surface pressure. The data indicate limited aggregation: the rise of the electrostatic barrier prevents the further coalescence of aggregates if they have become sufficiently large. The results contribute for a better understanding of the factors that control the interactions in monolayers of charged particles at liquid interfaces.

  6. An Ultrasonic and Air Pressure Sensing System for Detection of Behavior before Getting out of Bed Aided by Fuzzy Theory

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Hayato; Nakajima, Hiroshi; Taniguchi, Kazuhiko; Kobashi, Syoji; Hata, Yutaka

    This paper proposes a sensing system for a behavior detection system using an ultrasonic oscillosensor and an air pressure sensor. The ultrasonic oscillosensor sensor has a cylindrical tank filled with water. It detects the vibration of the target object from the signal reflected from the water surface. This sensor can detect a biological vibration by setting to the bottom bed frame. The air pressure sensor consists of a polypropylene sheet and an air pressure sensor, and detects the pressure information by setting under the bed's mattress. An increase (decrease) in the load placed on the bed is detected by the increase (decrease) in the pressure of the air held in the tube attached to the sheet. We propose a behavior detection system using both sensors, complementally. The system recognizes three states (nobody in bed, keeping quiet in bed, moving in bed) using both sensors, and we detect the behavior before getting out of bed by recognized these states. Fuzzy logic plays a primary role in the system. As the fundamental experiment, we applied the system to five healthy volunteers, the system successfully recognized three states, and detected the behavior before getting out of bed. As the clinical experiment, we applied the system to four elderly patients with dementia, the system exactly detected the behavior before getting out of the bed with enough time for medical care support.

  7. Velocity and pressure distribution behind bodies in an air current

    NASA Technical Reports Server (NTRS)

    Betz, A

    1924-01-01

    The following experiments on the air flow behind bodies were made for the purpose of assisting in the explanation of the phenomena connected with air resistance. The first two series of experiments dealt with the phenomena behind a cylinder. The third series of experiments was carried out behind a streamlined strut.

  8. Extreme Air Pollution Conditions Adversely Affect Blood Pressure and Insulin Resistance: The Air Pollution and Cardiometabolic Disease Study.

    PubMed

    Brook, Robert D; Sun, Zhichao; Brook, Jeffrey R; Zhao, Xiaoyi; Ruan, Yanping; Yan, Jianhua; Mukherjee, Bhramar; Rao, Xiaoquan; Duan, Fengkui; Sun, Lixian; Liang, Ruijuan; Lian, Hui; Zhang, Shuyang; Fang, Quan; Gu, Dongfeng; Sun, Qinghua; Fan, Zhongjie; Rajagopalan, Sanjay

    2016-01-01

    Mounting evidence supports that fine particulate matter adversely affects cardiometabolic diseases particularly in susceptible individuals; however, health effects induced by the extreme concentrations within megacities in Asia are not well described. We enrolled 65 nonsmoking adults with metabolic syndrome and insulin resistance in the Beijing metropolitan area into a panel study of 4 repeated visits across 4 seasons since 2012. Daily ambient fine particulate matter and personal black carbon levels ranged from 9.0 to 552.5 µg/m(3) and 0.2 to 24.5 µg/m(3), respectively, with extreme levels observed during January 2013. Cumulative fine particulate matter exposure windows across the prior 1 to 7 days were significantly associated with systolic blood pressure elevations ranging from 2.0 (95% confidence interval, 0.3-3.7) to 2.7 (0.6-4.8) mm Hg per SD increase (67.2 µg/m(3)), whereas cumulative black carbon exposure during the previous 2 to 5 days were significantly associated with ranges in elevations in diastolic blood pressure from 1.3 (0.0-2.5) to 1.7 (0.3-3.2) mm Hg per SD increase (3.6 µg/m(3)). Both black carbon and fine particulate matter were significantly associated with worsening insulin resistance (0.18 [0.01-0.36] and 0.22 [0.04-0.39] unit increase per SD increase of personal-level black carbon and 0.18 [0.02-0.34] and 0.22 [0.08-0.36] unit increase per SD increase of ambient fine particulate matter on lag days 4 and 5). These results provide important global public health warnings that air pollution may pose a risk to cardiometabolic health even at the extremely high concentrations faced by billions of people in the developing world today. PMID:26573709

  9. Extreme Air Pollution Conditions Adversely Affect Blood Pressure and Insulin Resistance: The Air Pollution and Cardiometabolic Disease Study.

    PubMed

    Brook, Robert D; Sun, Zhichao; Brook, Jeffrey R; Zhao, Xiaoyi; Ruan, Yanping; Yan, Jianhua; Mukherjee, Bhramar; Rao, Xiaoquan; Duan, Fengkui; Sun, Lixian; Liang, Ruijuan; Lian, Hui; Zhang, Shuyang; Fang, Quan; Gu, Dongfeng; Sun, Qinghua; Fan, Zhongjie; Rajagopalan, Sanjay

    2016-01-01

    Mounting evidence supports that fine particulate matter adversely affects cardiometabolic diseases particularly in susceptible individuals; however, health effects induced by the extreme concentrations within megacities in Asia are not well described. We enrolled 65 nonsmoking adults with metabolic syndrome and insulin resistance in the Beijing metropolitan area into a panel study of 4 repeated visits across 4 seasons since 2012. Daily ambient fine particulate matter and personal black carbon levels ranged from 9.0 to 552.5 µg/m(3) and 0.2 to 24.5 µg/m(3), respectively, with extreme levels observed during January 2013. Cumulative fine particulate matter exposure windows across the prior 1 to 7 days were significantly associated with systolic blood pressure elevations ranging from 2.0 (95% confidence interval, 0.3-3.7) to 2.7 (0.6-4.8) mm Hg per SD increase (67.2 µg/m(3)), whereas cumulative black carbon exposure during the previous 2 to 5 days were significantly associated with ranges in elevations in diastolic blood pressure from 1.3 (0.0-2.5) to 1.7 (0.3-3.2) mm Hg per SD increase (3.6 µg/m(3)). Both black carbon and fine particulate matter were significantly associated with worsening insulin resistance (0.18 [0.01-0.36] and 0.22 [0.04-0.39] unit increase per SD increase of personal-level black carbon and 0.18 [0.02-0.34] and 0.22 [0.08-0.36] unit increase per SD increase of ambient fine particulate matter on lag days 4 and 5). These results provide important global public health warnings that air pollution may pose a risk to cardiometabolic health even at the extremely high concentrations faced by billions of people in the developing world today.

  10. Interaction of high-power microwave with air breakdown plasma at low pressure

    NASA Astrophysics Data System (ADS)

    Zhao, Pengcheng; Guo, Lixin; Shu, Panpan

    2016-09-01

    The high-power microwave breakdown at the low air pressure (about 0.01 atm) is simulated numerically using the one-dimensional model coupling Maxwell's equations with plasma fluid equations. The accuracy of the model is validated by comparing the breakdown prediction with the experimental data. We find that a diffuse plasma with a stationary front profile forms due to the large electron diffusion. Most of the incident wave energy is absorbed and reflected by the plasma when the plasma front achieves a stationary profile. The front propagation velocity remains almost unchanged with time and increases when the incident wave amplitude increases or the incident wave frequency decreases. With the incident wave frequency increasing, the maximum density of the stationary plasma front increases, while the ratio of the reflected wave power to the incident wave power remains almost unchanged. At a higher incident wave amplitude, the maximum density and reflectance become large.

  11. Sixteen-Day Bedrest Significantly Increases Plasma Colloid Osmotic Pressure

    NASA Technical Reports Server (NTRS)

    Hargens, Alan R.; Hsieh, S. T.; Murthy, G.; Ballard, R. E.; Convertino, V. A.; Wade, Charles E. (Technical Monitor)

    1994-01-01

    Upon exposure to microgravity, astronauts lose up to 10% of their total plasma volume, which may contribute to orthostatic intolerance after space flight. Because plasma colloid osmotic pressure (COP) is a primary factor maintaining plasma volume, our objective was to measure time course changes in COP during microgravity simulated by 6 deg. head-down tilt (HDT). Seven healthy male subjects (30-55 years of age) were placed in HDT for 16 days. For the purpose of another study, three of the seven subjects were chosen to exercise on a cycle ergometer on day 16. Blood samples were drawn immediately before bedrest on day 14 of bedrest, 18-24 hours following exercise while all subjects were still in HDT and 1 hour following bedrest termination. Plasma COP was measured in all 20 microliter EDTA-treated samples using an osmometer fitted with a PM 30 membrane. Data were analyzed with paired and unpaired t-tests. Plasma COP on day 14 of bedrest (29.9 +/- 0.69 mmHg) was significantly higher (p less than 0.005) than the control, pre-bedrest value (23.1 +/- 0.76 mmHg). At one hour of upright recovery after HDT, plasma COP remained significantly elevated (exercise: 26.9 +/- 0.87 mmHg; no exercise: 26.3 +/- 0.85 mmHg). Additionally, exercise had no significant effect on plasma COP 18-24 hours following exercise (exercise: 27.8 +/- 1.09 mmHg; no exercise: 27.1 +/- 0.78 mmHg). Our results demonstrate that plasma COP increases significantly with microgravity simulated by HDT. However, preliminary results indicate exercise during HDT does not significantly affect plasma COP.

  12. Method and apparatus for monitoring oxygen partial pressure in air masks

    NASA Technical Reports Server (NTRS)

    Kelly, Mark E. (Inventor); Pettit, Donald R. (Inventor)

    2006-01-01

    Method and apparatus are disclosed for monitoring an oxygen partial pressure in an air mask and providing a tactile warning to the user. The oxygen partial pressure in the air mask is detected using an electrochemical sensor, the output signal from which is provided to a comparator. The comparator compares the output signal with a preset reference value or range of values representing acceptable oxygen partial pressures. If the output signal is different than the reference value or outside the range of values, the air mask is vibrated by a vibrating motor to alert the user to a potentially hypoxic condition.

  13. Helium:oxygen versus air:oxygen noninvasive positive-pressure ventilation in patients exposed to sulfur mustard.

    PubMed

    Ghanei, Mostafa; Rajaeinejad, Mohsen; Motiei-Langroudi, Rouzbeh; Alaeddini, Farshid; Aslani, Jafar

    2011-01-01

    Exposure to sulfur mustard (SM) causes a variety of respiratory symptoms, such as chronic bronchitis and constrictive bronchiolitis. This study assessed the effectiveness of noninvasive positive-pressure ventilation, adjunct with 79:21 helium:oxygen instead of 79:21 air:oxygen, in 24 patients with a previous exposure to SM presenting with acute respiratory failure. Both air:oxygen and helium:oxygen significantly decreased systolic blood pressure, diastolic blood pressure, mean arterial pressure, pulse rate, respiratory rate, dyspnea, and increased oxygen saturation (P values: .007, .029, .002, <.001, <.001, <.001, and .002 for air:oxygen, respectively, and <.001, .020, .001, <.001, <.001, <.001, and .002, for helium:oxygen, respectively). Moreover, helium:oxygen more potently improved systolic pressure, mean arterial pressure, pulse rate, respiratory rate, and dyspnea (P values: .012, .048, <.001, <.001, and .012, respectively). The results of our study support the benefit of using helium:oxygen adjunct with noninvasive positive-pressure ventilation in patients exposed to SM with acute respiratory decompensation.

  14. Control of an Isolated Table's Fluctuation Caused by Supplied Air Pressure Using a Voice Coil Motor

    NASA Astrophysics Data System (ADS)

    Shirani, Habiburahman; Wakui, Shinji

    Pneumatic type anti-vibration apparatuses are used in the field of semiconductor manufacturing and precision measurement. The variation of the supplied air pressure from the air compressor causes the position fluctuation of the isolated table. A control method using a voice coil motor (VCM) as the actuator is proposed in this study to control the position fluctuation of the isolated table caused by the supplied air pressure. The feedforward compensator control scheme is used to provide a proper controlled signal to the VCM. According to the controlled signal, VCM exerts driving force in the opposite direction of the air spring expansion or compression to suppress the vibration of the isolated table.

  15. Air Pollution Exposure and Blood Pressure: An Updated Review of the Literature.

    PubMed

    Giorgini, Paolo; Di Giosia, Paolo; Grassi, Davide; Rubenfire, Melvyn; Brook, Robert D; Ferri, Claudio

    2016-01-01

    Both high arterial blood pressure (BP) and elevated levels of fine particulate matter (PM2.5) air pollution have been associated with an increased risk for several cardiovascular (CV) diseases, including stroke, heart failure, and myocardial infarction. Given that PM2.5 and high BP are each independently leading risk factors for premature mortality worldwide, a potential relationship between these factors would have tremendous public health repercussions. Therefore, the aim of this review is to summarize recent evidence linking air pollution and BP. Epidemiological findings demonstrate that particulate pollutants cause significant increases in BP parameters in relation to both short and long-term exposures, with robust evidence for exposures to PM2.5. Moreover, recent epidemiological studies suggest a positive association between residence within regions with higher levels of ambient PM and an increased incidence and prevalence of overt hypertension. Studies provide consistent results that elevated concentrations of pollutants increase hospital admissions and/or emergency visits for hypertensive disorders and also support that PM levels increases BP in vulnerable subsets of individuals (pregnant women, high CV risk individuals). In this context, PM-mediated BP elevations may be an important pathway which acts as a potential triggering factor for acute CV events. Mechanistic evidence illustrates plausible pathways by which acute and chronic exposures to air pollutants might disrupt hemodynamic balance favoring vasoconstriction, including autonomic imbalance and augmented release of various pro-oxidative, inflammatory and/or hemodynamically-active mediators. Together these responses may underlie PM-induced BP elevations; however, full details regarding the responsible mechanisms require further studies. As a consequence of the ubiquity of air pollution, even a small effect on raising BP and/or the prevalence of hypertension, i.e. the major risk factor for mortality

  16. Firefighter's compressed air breathing system pressure vessel development program

    NASA Technical Reports Server (NTRS)

    Beck, E. J.

    1974-01-01

    The research to design, fabricate, test, and deliver a pressure vessel for the main component in an improved high-performance firefighter's breathing system is reported. The principal physical and performance characteristics of the vessel which were required are: (1) maximum weight of 9.0 lb; (2) maximum operating pressure of 4500 psig (charge pressure of 4000 psig); (3) minimum contained volume of 280 in. 3; (4) proof pressure of 6750 psig; (5) minimum burst pressure of 9000 psig following operational and service life; and (6) a minimum service life of 15 years. The vessel developed to fulfill the requirements described was completely sucessful, i.e., every category of performence was satisfied. The average weight of the vessel was found to be about 8.3 lb, well below the 9.0 lb specification requirement.

  17. Effect of non-thermal air atmospheric pressure plasma jet treatment on gingival wound healing

    NASA Astrophysics Data System (ADS)

    Lee, Jung-Hwan; Choi, Eun-Ha; Kim, Kwang-Mahn; Kim, Kyoung-Nam

    2016-02-01

    Non-thermal atmospheric pressure plasmas have been applied in the biomedical field for the improvement of various cellular activities. In dentistry, the healing of gingival soft tissue plays an important role in health and aesthetic outcomes. While the biomedical application of plasma has been thoroughly studied in dentistry, a detailed investigation of plasma-mediated human gingival fibroblast (HGF) migration for wound healing and its underlying biological mechanism is still pending. Therefore, the aim of this study is to apply a non-thermal air atmospheric pressure plasma jet (NTAAPPJ) to HGF to measure the migration and to reveal the underlying biological mechanisms involved in the migration. After the characterization of NTAAPPJ by optical emission spectroscopy, the adherent HGF was treated with NTAAPPJ or air with a different flow rate. Cell viability, lipid peroxidation, migration, intracellular reactive oxygen species (ROS), and the expression of migration-related genes (EGFR, PAK1, and MAPK3) were investigated. The level of statistical significance was set at 0.05. NTAAPPJ and air treatment with a flow rate of 250–1000 standard cubic centimetres per minute (sccm) for up to 30 s did not induce significant decreases in cell viability or membrane damage. A significant increase in the migration of mitomycin C-treated HGF was observed after 30 s of NTAAPPJ treatment compared to 30 s air-only treatment, which was induced by high levels of intracellular reactive oxygen species (ROS). An increase in migration-related gene expression and EGFR activation was observed following NTAAPPJ treatment in an air flow rate-dependent manner. This is the first report that NTAAPPJ treatment induces an increase in HGF migration without changing cell viability or causing membrane damage. HGF migration was related to an increase in intracellular ROS, changes in the expression of three of the migration-related genes (EGFR, PAK1, and MAPK1), and EGFR activation. Therefore

  18. Effect of non-thermal air atmospheric pressure plasma jet treatment on gingival wound healing

    NASA Astrophysics Data System (ADS)

    Lee, Jung-Hwan; Choi, Eun-Ha; Kim, Kwang-Mahn; Kim, Kyoung-Nam

    2016-02-01

    Non-thermal atmospheric pressure plasmas have been applied in the biomedical field for the improvement of various cellular activities. In dentistry, the healing of gingival soft tissue plays an important role in health and aesthetic outcomes. While the biomedical application of plasma has been thoroughly studied in dentistry, a detailed investigation of plasma-mediated human gingival fibroblast (HGF) migration for wound healing and its underlying biological mechanism is still pending. Therefore, the aim of this study is to apply a non-thermal air atmospheric pressure plasma jet (NTAAPPJ) to HGF to measure the migration and to reveal the underlying biological mechanisms involved in the migration. After the characterization of NTAAPPJ by optical emission spectroscopy, the adherent HGF was treated with NTAAPPJ or air with a different flow rate. Cell viability, lipid peroxidation, migration, intracellular reactive oxygen species (ROS), and the expression of migration-related genes (EGFR, PAK1, and MAPK3) were investigated. The level of statistical significance was set at 0.05. NTAAPPJ and air treatment with a flow rate of 250-1000 standard cubic centimetres per minute (sccm) for up to 30 s did not induce significant decreases in cell viability or membrane damage. A significant increase in the migration of mitomycin C-treated HGF was observed after 30 s of NTAAPPJ treatment compared to 30 s air-only treatment, which was induced by high levels of intracellular reactive oxygen species (ROS). An increase in migration-related gene expression and EGFR activation was observed following NTAAPPJ treatment in an air flow rate-dependent manner. This is the first report that NTAAPPJ treatment induces an increase in HGF migration without changing cell viability or causing membrane damage. HGF migration was related to an increase in intracellular ROS, changes in the expression of three of the migration-related genes (EGFR, PAK1, and MAPK1), and EGFR activation. Therefore

  19. Characteristics of Low Power CH4/Air Atmospheric Pressure Plasma Jet

    NASA Astrophysics Data System (ADS)

    ZHANG, Jun; XIAO, Dezhi; FANG, Shidong; SHU, Xingsheng; ZUO, Xiao; CHENG, Cheng; MENG, Yuedong; WANG, Shouguo

    2015-03-01

    A low power atmospheric pressure plasma jet driven by a 24 kHz AC power source and operated with a CH4/air gas mixture has been investigated by optical emission spectrometer. The plasma parameters including the electron excitation temperature, vibrational temperature and rotational temperature of the plasma jet at different discharge powers are diagnosed based on the assumption that the kinetic energy of the species obeys the Boltzmann distribution. The electron density at different power is also investigated by Hβ Stark broadening. The results show that the plasma source works under non-equilibrium conditions. It is also found that the vibrational temperature and rotational temperature increase with discharge power, whereas the electron excitation temperature seems to have a downward trend. The electron density increases from 0.8 × 1021 m-3 to 1.1 × 1021 m-3 when the discharge power increases from 53 W to 94 W.

  20. Peak expiratory flow at increased barometric pressure: comparison of peak flow meters and volumetric spirometer.

    PubMed

    Thomas, P S; Ng, C; Bennett, M

    2000-01-01

    Increasing numbers of patients are receiving hyperbaric oxygen therapy as an intensive care treatment, some of whom have pre-existing airway obstruction. Spirometers are the ideal instruments for measuring airway obstruction, but peak flow meters are useful and versatile devices. The behaviour of both types of device was therefore studied in a hyperbaric unit under conditions of increased pressure. It is important to have a non-electrical indicator of airway obstruction, to minimize the fire risk in the hyperoxic environment. The hypothesis was tested that, assuming that dynamic resistance is unchanged, both the Wright's standard and mini-peak flow meters would over-read peak expiratory flow (PEF) under increased pressure when compared with a volumetric spirometer, as the latter is unaffected by air density. It was postulated that a correction factor could be derived so that PEF meters could be used in this setting. Seven normal subjects performed volume-dependent spirometry to derive PEF, and manoeuvres using both standard and mini PEF meters at sea level, under hyperbaric conditions at 303, 253 and 152 kPa (3, 2.5 and 1.5 atmospheres respectively; 1 atmosphere absolute=101.08 kPa), and again at sea level. There was a progressive and significant decline in PEF with increasing pressure as measured by the spirometer (69.46+/-0.8% baseline at 303 kPa compared with 101 kPa), while the PEF meters showed a progressive increase in their readings (an increase of 7.86+/-1.69% at 303 kPa with the mini PEF meter). Using these data points, a correction factor was derived which allows appropriate values to be calculated from the Wright's meter readings under these conditions. PMID:10600666

  1. Acceptance test report, inlet air filter and control station pressure decay leak test

    SciTech Connect

    Tuck, J.A., Fluor Daniel Hanford

    1997-02-11

    This is the acceptance test report for pressure decay leak tests performed on Tank Farm primary ventilation system inlet air filter and control stations, following their installation in the field and prior to acceptance for beneficial use.

  2. Space Charge Transient Kinetic Characteristics in DC Air Corona Discharge at Atmospheric Pressure

    NASA Astrophysics Data System (ADS)

    Liu, Xinghua; Xian, Richang; Sun, Xuefeng; Wang, Tao; Lv, Xuebin; Chen, Suhong; Yang, Fan

    2014-08-01

    Investigating the corona mechanism plays a key role in enhancing the performance of electrical insulation systems. Numerical simulation offers a better understanding of the physical characteristics of air corona discharges. Using a two-dimensional axisymmetrical kinetics model, into which the photoionization effect is incorporated, the DC air corona discharge at atmosphere pressure is studied. The plasma model is based on a self-consistent, multi-component, and continuum description of the air discharge, which is comprised of 12 species and 22 reactions. The discharge voltage-current characteristic predicted by the model is found to be in quite good agreement with experimental measurements. The behavior of the electronic avalanche progress is also described. O2+ and N2+ are the dominant positive ions, and the values of O- and O2- densities are much smaller than that of the electron. The electron and positive ion have a low-density thin layer near the anode, which is a result of the surface reaction and absorption effect of the electrode. As time progresses, the electric field increases and extends along the cathode surface, whereas the cathode fall shrinks after the corona discharge hits the cathode; thus, in the cathode sheath, the electron temperature increases and the position of its peak approaches to the cathode. The present computational model contributes to the understanding of this physical mechanism, and suggests ways to improve the electrical insulation system.

  3. Prosthetics socket that incorporates an air splint system focusing on dynamic interface pressure

    PubMed Central

    2014-01-01

    Background The interface pressure between the residual limb and prosthetic socket has a significant effect on an amputee’s satisfaction and comfort. This paper presents the design and performance of a new prosthetic socket that uses an air splint system. Methods The air splint prosthetic socket system was implemented by combining the air splint with a pressure sensor that the transhumeral user controls through the use of a microcontroller. The modular construction of the system developed allows the FSR pressure sensors that are placed inside the air splint socket to determine the required size and fitting for the socket used. Fifteen transhumeral amputees participated in the study. Results The subject’s dynamic pressure on the socket that’s applied while wearing the air splint systems was recorded using F-socket transducers and microcontroller analysis. The values collected by the F-socket sensor for the air splint prosthetic socket system were determined accordingly by comparing the dynamic pressure applied using statically socket. The pressure volume of the air splint fluctuated and was recorded at an average of 38 kPa (2.5) to 41 kPa (1.3) over three hours. Conclusion The air splint socket might reduce the pressure within the interface of residual limb. This is particularly important during the daily life activities and may reduce the pain and discomfort at the residual limb in comparison to the static socket. The potential development of an auto-adjusted socket that uses an air splint system as the prosthetic socket will be of interest to researchers involved in rehabilitation engineering, prosthetics and orthotics. PMID:25085005

  4. The rate of pressure rise of gaseous propylene-air explosions in spherical and cylindrical enclosures.

    PubMed

    Razus, Domnina; Movileanua, Codina; Oancea, Dumitru

    2007-01-01

    The maximum rates of pressure rise of propylene-air explosions at various initial pressures and various fuel/oxygen ratios in three closed vessels (a spherical vessel with central ignition and two cylindrical vessels with central or with top ignition) are reported. It was found that in explosions of quiescent mixtures the maximum rates of pressure rise are linear functions on total initial pressure, at constant initial temperature and fuel/oxygen ratio. The slope and intercept of found correlations are greatly influenced by vessel's volume and shape and by the position of the ignition source--factors which determine the amount of heat losses from the burned gas in a closed vessel explosion. Similar data on propylene-air inert mixtures are discussed in comparison with those referring to propylene-air, revealing the influence of nature and amount of inert additive. The deflagration index KG of centrally ignited explosions was also calculated from maximum rates of pressure rise. PMID:16876946

  5. The rate of pressure rise of gaseous propylene-air explosions in spherical and cylindrical enclosures.

    PubMed

    Razus, Domnina; Movileanua, Codina; Oancea, Dumitru

    2007-01-01

    The maximum rates of pressure rise of propylene-air explosions at various initial pressures and various fuel/oxygen ratios in three closed vessels (a spherical vessel with central ignition and two cylindrical vessels with central or with top ignition) are reported. It was found that in explosions of quiescent mixtures the maximum rates of pressure rise are linear functions on total initial pressure, at constant initial temperature and fuel/oxygen ratio. The slope and intercept of found correlations are greatly influenced by vessel's volume and shape and by the position of the ignition source--factors which determine the amount of heat losses from the burned gas in a closed vessel explosion. Similar data on propylene-air inert mixtures are discussed in comparison with those referring to propylene-air, revealing the influence of nature and amount of inert additive. The deflagration index KG of centrally ignited explosions was also calculated from maximum rates of pressure rise.

  6. Diesel engine emissions reduction by multiple injections having increasing pressure

    DOEpatents

    Reitz, Rolf D.; Thiel, Matthew P.

    2003-01-01

    Multiple fuel charges are injected into a diesel engine combustion chamber during a combustion cycle, and each charge after the first has successively greater injection pressure (a higher injection rate) than the prior charge. This injection scheme results in reduced emissions, particularly particulate emissions, and can be implemented by modifying existing injection system hardware. Further enhancements in emissions reduction and engine performance can be obtained by using known measures in conjunction with the invention, such as Exhaust Gas Recirculation (EGR).

  7. Pressure changes within the sac of human cerebral aneurysms in response to artificially induced transient increases in systemic blood pressure.

    PubMed

    Hasan, David M; Hindman, Bradley J; Todd, Michael M

    2015-08-01

    Formation and rupture of cerebral aneurysms have been associated with chronic hypertension. The effect of transient increase in blood pressure and its effect on intra-aneurysmal hemodynamics have not been studied. We examined the effects of controlled increases in blood pressure on different pressure parameters inside the sac of human cerebral aneurysms and corresponding parent arteries using invasive technology. Twelve patients (10 female, 2 male, age 54±15 years) with unruptured cerebral aneurysms undergoing endovascular coiling were recruited. Dual-sensor microwires with the capacity to simultaneously measure flow velocity and pressure were used to measure systolic, diastolic, and mean pressure inside the aneurysm sac and to measure both pressures and flow velocities in the feeder vessel just outside the aneurysm. These pressures were recorded simultaneously with pressures from a radial arterial catheter. Measurements were taken at baseline and then during a gradual increase in systemic systolic blood pressure to a target value of ≈25 mm Hg above baseline, using a phenylephrine infusion. The dose needed to achieve the required increase in radial arterial systolic blood pressure was 0.8±0.2 μg/kg/min. There was a clear linear relationship between changes in radial and aneurysmal pressures with substantial patient-by-patient variation in the slopes of those relationships. The overall increases in systolic and mean pressures in both radial artery and in the aneurysms were similar. Pressures in the aneurysm and in the parent vessels were similar. Peak and mean flow velocities in the parent arteries did not change significantly with phenylephrine infusion, nor did vessel diameters as measured angiographically.

  8. Energy of electrons generated during a subnanosecond breakdown in atmospheric-pressure air

    SciTech Connect

    Tarasenko, V. F. Baksht, E. Kh.; Burachenko, A. G.; Kostyrya, I. D.; Rybka, D. V.

    2013-07-15

    The influence of the cathode design on the energy of the main group of electrons generated during a subnanosecond breakdown in atmospheric-pressure air was studied experimentally. The electron energy was measured using a time-of-flight spectrometer with a picosecond time resolution. It is shown that the energy of the main group of electrons increases with increasing cathode curvature radius. It is established using 400- to 650-{mu}m-thick aluminum foils that the electron energy reaches its maximum value in voltage pulses with abrupt trailing edges and amplitudes below the maximum amplitude. Electrons with maximum energies are generated with a stronger spatial and amplitude scatter than those with average energies.

  9. Further experiments on the stability of laminar and turbulent hydrogen-air flames at reduced pressures

    NASA Technical Reports Server (NTRS)

    Fine, Burton

    1957-01-01

    Stability limits for laminar and turbulent hydrogen-air burner flames were measured as a function of pressure, burner diameter, and composition. On the basis of a simple flame model, turbulent flashback involved a smaller effective penetration distance than laminar flashback. No current theoretical treatment predicts the observed pressure and diameter dependence of laminar and turbulent blowoff.

  10. Performance of a hydrogen burner to simulate air entering scramjet combustors. [simulation of total temperature, total pressure, and volume fraction of oxygen of air at flight conditions

    NASA Technical Reports Server (NTRS)

    Russin, W. R.

    1974-01-01

    Tests were conducted to determine the performance of a hydrogen burner used to produce a test gas that simulates air entering a scramjet combustor at various flight conditions. The test gas simulates air in that it duplicates the total temperature, total pressure, and the volume fraction of oxygen of air at flight conditions. The main objective of the tests was to determine the performance of the burner as a function of the effective exhaust port area. The conclusions were: (1) pressure oscillations of the chugging type were reduced in amplitude to plus or minus 2 percent of the mean pressure level by proper sizing of hydrogen, oxygen, and air injector flow areas; (2) combustion efficiency remained essentially constant as the exhaust port area was increased by a factor of 3.4; (3) the mean total temperature determined from integrating the exit radial gas property profiles was within plus or minus 5 percent of the theoretical bulk total temperature; (4) the measured exit total temperature profile had a local peak temperature more than 30 percent greater than the theoretical bulk total temperature; and (5) measured heat transfer to the burner liner was 75 percent of that predicted by theory based on a flat radial temperature profile.

  11. Effect of air flow, panel curvature, and internal pressurization on field-incidence transmission loss

    NASA Technical Reports Server (NTRS)

    Koval, L. R.

    1976-01-01

    In the context of sound transmission through aircraft fuselage panels, equations for the field-incidence transmission loss (TL) of a single-walled panel are derived that include the effects of external air flow, panel curvature, and internal fuselage pressurization. Flow is shown to provide a modest increase in TL that is uniform with frequency up to the critical frequency. The increase is about 2 dB at Mach number M = 0.5, and about 3.5 dB at M = 1. Above the critical frequency where TL is damping controlled, the increase can be slightly larger at certain frequencies. Curvature is found to stiffen the panel, thereby increasing the TL at low frequencies, but also to introduce a dip at the 'ring frequency' of a full cylinder having the same radius as the panel. Pressurization appears to produce a slight decrease in TL throughout the frequency range, and also slightly shifts the dips at the critical frequency and at the ring frequency.

  12. Pressure Distribution and Air Data System for the Aeroassist Flight Experiment

    NASA Technical Reports Server (NTRS)

    Gibson, Lorelei S.; Siemers, Paul M., III; Kern, Frederick A.

    1989-01-01

    The Aeroassist Flight Experiment (AFE) is designed to provide critical flight data necessary for the design of future Aeroassist Space Transfer Vehicles (ASTV). This flight experiment will provide aerodynamic, aerothermodynamic, and environmental data for verification of experimental and computational flow field techniques. The Pressure Distribution and Air Data System (PD/ADS), one of the measurement systems incorporated into the AFE spacecraft, is designed to provide accurate pressure measurements on the windward surface of the vehicle. These measurements will be used to determine the pressure distribution and air data parameters (angle of attack, angle of sideslip, and free-stream dynamic pressure) encountered by the blunt-bodied vehicle over an altitude range of 76.2 km to 94.5 km. Design and development data are presented and include: measurement requirements, measurement heritage, theoretical studies to define the vehicle environment, flush-mounted orifice configuration, pressure transducer selection and performance evaluation data, and pressure tubing response analysis.

  13. Variation of the pressure limits of flame propagation with tube diameter for propane-air mixtures

    NASA Technical Reports Server (NTRS)

    Belles, Frank E; Simon, Dorothy M

    1951-01-01

    An investigation was made of the variation of the pressure limits of flame propagation with tube diameter for quiescent propane with tube diameter for quiescent propane-air mixtures. Pressure limits were measured in glass tubes of six different inside diameters, with a precise apparatus. Critical diameters for flame propagation were calculated and the effect of pressure was determined. The critical diameters depended on the pressure to the -0.97 power for stoichiometric mixtures. The pressure dependence decreased with decreasing propane concentration. Critical diameters were related to quenching distance, flame speeds, and minimum ignition energy.

  14. Pilot Study of the Effects of Simulated Turbine Passage Pressure on Juvenile Chinook Salmon Acclimated with Access to Air at Absolute Pressures Greater than Atmospheric

    SciTech Connect

    Carlson, Thomas J.; Abernethy, Cary S.

    2005-04-28

    The impacts of pressure on juvenile salmon who pass through the turbines of hydroelectric dams while migrating downstream on the Columbia and Snake rivers has not been well understood, especially as these impacts relate to injury to the fish's swim bladder. The laboratory studies described here were conducted by Pacific Northwest National Laboratory for the US Army Corps of Engineers Portland District at PNNL's fisheries research laboratories in 2004 to investigate the impacts of simulated turbine passage pressure on fish permitted to achieve neutral buoyancy at pressures corresponding to depths at which they are typically observed during downstream migration. Two sizes of juvenile Chinook salmon were tested, 80-100mm and 125-145mm total length. Test fish were acclimated for 22 to 24 hours in hyperbaric chambers at pressures simulating depths of 15, 30, or 60 ft, with access to a large air bubble. High rates of deflated swim bladders and mortality were observed. Our results while in conclusive show that juvenile salmon are capable of drawing additional air into their swimbladder to compensate for the excess mass of implanted telemetry devices. However they may pay a price in terms of increased susceptibility to injury, predation, and death for this additional air.

  15. The influence of locomotion on air-sac pressures in little penguins.

    PubMed

    Boggs, D F; Baudinette, R V; Frappell, P B; Butler, P J

    2001-10-01

    Air-sac pressures have been reported to oscillate with wing beat in flying magpies and with foot paddling in diving ducks. We sought to determine the impact on air-sac pressure of wing beats during swimming and of the step cycle during walking in little penguins (Eudyptula minor). Fluctuations averaged 0.16+/-0.06 kPa in the interclavicular air sacs, but only 0.06+/-0.04 kPa in the posterior thoracic sac, generating a small differential pressure between sacs of 0.06+/-0.02 kPa (means +/- S.E.M., N=4). These fluctuations occurred at approximately 3 Hz and corresponded to wing beats during swimming, indicated by electromyograms from the pectoralis and supracoracoideus muscles. There was no abdominal muscle activity associated with swimming or exhalation, but the abdominal muscles were active with the step cycle in walking penguins, and oscillations in posterior air-sac pressure (0.08+/-0.038 kPa) occurred with steps. We conclude that high-frequency oscillations in differential air-sac pressure enhance access to and utilization of the O(2) stores in the air sacs during a dive. PMID:11707507

  16. An experimental study of geyser-like flows induced by a pressurized air pocket

    NASA Astrophysics Data System (ADS)

    Elayeb, I. S.; Leon, A.; Choi, Y.; Alnahit, A. O.

    2015-12-01

    Previous studies argues that the entrapment of pressurized air pockets within combined sewer systems can produce geyser flows, which is an oscillating jetting of a mixture of gas-liquid flows. To verify that pressurized air pockets can effectively produce geysers, laboratory experiments were conducted. However, past experiments were conducted in relatively small-scale apparatus (i.e. maximum φ2" vertical shaft). This study conducted a set of experiments in a larger apparatus. The experimental setup consists of an upstream head tank, a downstream head tank, a horizontal pipe (46.5ft long, φ6") and a vertical pipe (10ft long, φ6"). The initial condition for the experiments is constant flow discharge through the horizontal pipe. The experiments are initiated by injecting an air pocket with pre-determined volume and pressure at the upstream end of the horizontal pipe. The air pocket propagates through the horizontal pipe until it arrives to the vertical shaft, where it is released producing a geyser-like flow. Three flow rates in the horizontal pipe and three injected air pressures were tested. The variables measured were pressure at two locations in the horizontal pipe and two locations in the vertical pipe. High resolution videos at two regions in the vertical shaft were also recorded. To gain further insights in the physics of air-water interaction, the laboratory experiments were complemented with numerical simulations conducted using a commercial 3D CFD model, previously validated with experiments.

  17. Aerodynamic effect of combustor inlet-air pressure on fuel jet atomization

    NASA Technical Reports Server (NTRS)

    Ingebo, R. D.

    1984-01-01

    Mean drop diameters were measured with a recently developed scanning radiometer in a study of the atomization of liquid jets injected cross stream in high velocity and high pressure airflows. At constant inlet air pressure, reciprocal mean drop diameter, was correlated with airflow mass velocity. Over a combustor inlet-air pressure range of 1 to 21 atmospheres, the ratio of orifice to mean drop diameter, D(O)/D(M), was correlated with the product of Weber and Reynolds number, WeRe, and with the molecular scale momentum transfer ratio of gravitational to inertial forces.

  18. Aerodynamic effect of combustor inlet-air pressure on fuel jet atomization

    NASA Technical Reports Server (NTRS)

    Ingebo, R. D.

    1984-01-01

    Mean drop diameters were measured with a recently developed scanning radiometer in a study of the atomization of liquid jets injected cross stream in high velocity and high pressure airflows. At constant inlet air pressure, reciprocal mean drop diameter was correlated with airflow mass velocity. Over a combustor inlet-air pressure range of 1 to 21 atmospheres, the ratio of orifice to mean drop diameter, D(O)/D(M), was correlated with the product of Weber and Reynolds number, WeRe, and with the molecular scale momentum transfer ratio of gravitational to inertial forces. Previously announced in STAR as N84-22910

  19. Intercooler cooling-air weight flow and pressure drop for minimum drag loss

    NASA Technical Reports Server (NTRS)

    Reuter, J George; Valerino, Michael F

    1944-01-01

    An analysis has been made of the drag losses in airplane flight of cross-flow plate and tubular intercoolers to determine the cooling-air weight flow and pressure drop that give a minimum drag loss for any given cooling effectiveness and, thus, a maximum power-plant net gain due to charge-air cooling. The drag losses considered in this analysis are those due to (1) the extra drag imposed on the airplane by the weight of the intercooler, its duct, and its supports and (2) the drag sustained by the cooling air in flowing through the intercooler and its duct. The investigation covers a range of conditions of altitude, airspeed, lift-drag ratio, supercharger-pressure ratio, and supercharger adiabatic efficiency. The optimum values of cooling air pressure drop and weight flow ratio are tabulated. Curves are presented to illustrate the results of the analysis.

  20. Electron density measurements in an atmospheric pressure air plasma by means of infrared heterodyne interferometry

    NASA Astrophysics Data System (ADS)

    Leipold, Frank; Stark, Robert H.; El-Habachi, Ahmed; Schoenbach, Karl H.

    2000-09-01

    An infrared heterodyne interferometer has been used to measure the spatial distribution of the electron density in direct current, atmospheric pressure discharges in air. Spatial resolution of the electron density in the high-pressure glow discharge with characteristic dimensions on the order of 100 µm required the use of a CO2 laser at a wavelength of 10.6 µm. For this wavelength and electron densities greater than 1011 cm-3 the index of refraction of the atmospheric air plasma is mainly determined by heavy particles rather than electrons. The electron contribution to the refractive index was separated from that of the heavy particles by taking the different relaxation times of the two particle species into account. With the discharge operated in a repetitive pulsed mode, the initial rapid change of the refractive index was assumed to be due to the increase in electron density, whereas the following slower rise is due to the decrease in gas density caused by gas heating. By reducing the time between pulses, direct current conditions were approached, and the electron density as well as the gas density, and gas temperature, respectively, were obtained through extrapolation. A computation inversion method was used to determine the radial distribution of the plasma parameters in the cylindrical discharge. For a direct-current filamentary discharge in air, at a current of 10 mA, the electron density was found to be 1013 cm-3 in the centre, decreasing to half of this value at a radial distance of 0.21 mm. Gaussian temperature profiles with σ = 1.1 mm and maximum values of 1000-2000 K in the centre were also obtained with, however, larger error margins than for electron densities.

  1. Numerical simulation of high pressure release and dispersion of hydrogen into air with real gas model

    NASA Astrophysics Data System (ADS)

    Khaksarfard, R.; Kameshki, M. R.; Paraschivoiu, M.

    2010-06-01

    Hydrogen is a renewable and clean source of energy, and it is a good replacement for the current fossil fuels. Nevertheless, hydrogen should be stored in high-pressure reservoirs to have sufficient energy. An in-house code is developed to numerically simulate the release of hydrogen from a high-pressure tank into ambient air with more accuracy. Real gas models are used to simulate the flow since high-pressure hydrogen deviates from ideal gas law. Beattie-Bridgeman and Abel Noble equations are applied as real gas equation of state. A transport equation is added to the code to calculate the concentration of the hydrogen-air mixture after release. The uniqueness of the code is to simulate hydrogen in air release with the real gas model. Initial tank pressures of up to 70 MPa are simulated.

  2. Altitude Cooling Investigation of the R-2800-21 Engine in the P-47G Airplane. IV - Engine Cooling-Air Pressure Distribution

    NASA Technical Reports Server (NTRS)

    Kaufman, Samuel J.; Staudt, Robert C.; Valerino, Michael F.

    1947-01-01

    A study of the data obtained in a flight investigation of an R-2800-21 engine in a P-47G airplane was made to determine the effect of the flight variables on the engine cooling-air pressure distribution. The investigation consisted of level flights at altitudes from 5000 to 35,000 feet for the normal range of engine and airplane operation. The data showed that the average engine front pressures ranged from 0.73 to 0.82 of the impact pressure (velocity head). The average engine rear pressures ranged from 0.50 to 0.55 of the impact pressure for closed cowl flaps and from 0.10 to 0.20 for full-open cowl flaps. In general, the highest front pressures were obtained at the bottom of the engine. The rear pressures for the rear-row cylinders were .lower and the pressure drops correspondingly higher than for the front-row cylinders. The rear-pressure distribution was materially affected by cowl-flap position in that the differences between the rear pressures of the front-row and rear-row cylinders markedly increased as the cowl flaps were opened. For full-open cowl flaps, the pressure drops across the rear-row cylinders were in the order of 0.2 of the impact pressure greater than across the front-row cylinders. Propeller speed and altitude had little effect on the -coolingair pressure distribution, Increase in angle of inclination of the thrust axis decreased the front ?pressures for the cylinders at the top of the engine and increased them for the cylinders at the bottom of the engine. As more auxiliary air was taken from the engine cowling, the front pressures and, to a lesser extent, the rear pressures for the cylinders at the bottom of the engine decreased. No correlation existed between the cooling-air pressure-drop distribution and the cylinder-temperature distribution.

  3. Effects of 6-h exposure to low relative humidity and low air pressure on body fluid loss and blood viscosity.

    PubMed

    Hashiguchi, N; Takeda, A; Yasuyama, Y; Chishaki, A; Tochihara, Y

    2013-10-01

    The purpose of this study was to investigate the effects of 6-h exposure to low relative humidity (RH) and low air pressure in a simulated air cabin environment on body fluid loss (BFL) and blood viscosity. Fourteen young healthy male subjects were exposed to four conditions, which combined RH (10% RH or 60% RH) and air pressure (NP: sea level or LP: equivalent to an altitude of 2000 m). Subjects remained seated on a chair in the chamber for 6 h. Their diet and water intake were restricted before and during the experiment. Insensible water loss (IWL) in LP10% condition was significantly greater than in NP60% condition; thus, combined 10%RH and LP conditions promoted a greater amount of IWL. The BFL under the LP condition was significantly greater than that under the NP condition. Blood viscosity significantly increased under LP conditions. Increases in red blood cell counts (RBCs) and BFL likely contributed to the increased blood viscosity. These findings suggest that hypobaric-induced hypoxia, similar to the conditions in the air cabin environment, may cause increased blood viscosity and that the combined low humidity and hypobaric hypoxia conditions increase IWL. PMID:23464811

  4. Increases in intramuscular pressure raise arterial blood pressure during dynamic exercise

    NASA Technical Reports Server (NTRS)

    Gallagher, K. M.; Fadel, P. J.; Smith, S. A.; Norton, K. H.; Querry, R. G.; Olivencia-Yurvati, A.; Raven, P. B.

    2001-01-01

    This investigation was designed to determine the role of intramuscular pressure-sensitive mechanoreceptors and chemically sensitive metaboreceptors in affecting the blood pressure response to dynamic exercise in humans. Sixteen subjects performed incremental (20 W/min) cycle exercise to fatigue under four conditions: control, exercise with thigh cuff occlusion of 90 Torr (Cuff occlusion), exercise with lower body positive pressure (LBPP) of 45 Torr, and a combination of thigh cuff occlusion and LBPP (combination). Indexes of central command (heart rate, oxygen uptake, ratings of perceived exertion, and electromyographic activity), cardiac output, stroke volume, and total peripheral resistance were not significantly different between the four conditions. Mechanical stimulation during LBPP and combination conditions resulted in significant elevations in intramuscular pressure and mean arterial pressure from control at rest and throughout the incremental exercise protocol (P < 0.05). Conversely, there existed no significant changes in mean arterial pressure when the metaboreflex was stimulated by cuff occlusion. These findings suggest that under normal conditions the mechanoreflex is tonically active and is the primary mediator of exercise pressor reflex-induced alterations in arterial blood pressure during submaximal dynamic exercise in humans.

  5. 46 CFR 52.01-55 - Increase in maximum allowable working pressure.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... POWER BOILERS General Requirements § 52.01-55 Increase in maximum allowable working pressure. (a) When the maximum allowable working pressure of a boiler has been established, an increase in the pressure settings of its safety valves shall not be granted unless the boiler design meets the requirements of...

  6. 46 CFR 52.01-55 - Increase in maximum allowable working pressure.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... POWER BOILERS General Requirements § 52.01-55 Increase in maximum allowable working pressure. (a) When the maximum allowable working pressure of a boiler has been established, an increase in the pressure settings of its safety valves shall not be granted unless the boiler design meets the requirements of...

  7. 46 CFR 52.01-55 - Increase in maximum allowable working pressure.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... POWER BOILERS General Requirements § 52.01-55 Increase in maximum allowable working pressure. (a) When the maximum allowable working pressure of a boiler has been established, an increase in the pressure settings of its safety valves shall not be granted unless the boiler design meets the requirements of...

  8. 46 CFR 52.01-55 - Increase in maximum allowable working pressure.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... POWER BOILERS General Requirements § 52.01-55 Increase in maximum allowable working pressure. (a) When the maximum allowable working pressure of a boiler has been established, an increase in the pressure settings of its safety valves shall not be granted unless the boiler design meets the requirements of...

  9. 46 CFR 52.01-55 - Increase in maximum allowable working pressure.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... POWER BOILERS General Requirements § 52.01-55 Increase in maximum allowable working pressure. (a) When the maximum allowable working pressure of a boiler has been established, an increase in the pressure settings of its safety valves shall not be granted unless the boiler design meets the requirements of...

  10. Downhole steam generator using low pressure fuel and air supply

    DOEpatents

    Fox, Ronald L.

    1983-01-01

    An apparatus for generation of steam in a borehole for penetration into an earth formation wherein a spiral, tubular heat exchanger is used in the combustion chamber to isolate the combustion process from the water being superheated for conversion into steam. The isolation allows combustion of a relatively low pressure oxidant and fuel mixture for generating high enthalpy steam. The fuel is preheated by feedback of combustion gases from the top of the combustion chamber through a fuel preheater chamber. The hot exhaust gases of combustion at the bottom of the combustion chamber, after flowing over the heat exchanger enter an exhaust passage and pipe. The exhaust pipe is mounted inside the water supply line heating the water flowing into the heat exchanger. After being superheated in the heat exchanger, the water is ejected through an expansion nozzle and converts into steam prior to penetration into the earth formation. Pressure responsive doors are provided at a steam outlet downstream of the nozzle and close when the steam pressure is lost due to flameout.

  11. Air bubble migration rates as a proxy for bubble pressure distribution in ice cores

    NASA Astrophysics Data System (ADS)

    Dadic, Ruzica; Schneebeli, Martin; Bertler, Nancy

    2015-04-01

    Air bubble migration can be used as a proxy to measure the pressure of individual bubbles and can help constrain the gradual close-off of gas bubbles and the resulting age distribution of gases in ice cores. The close-off depth of single bubbles can vary by tens of meters, which leads to a distribution of pressures for bubbles at a given depth. The age distribution of gases (along with gas-age-ice-age differences) decreases the resolution of the gas level reconstructions from ice cores and limits our ability to determine the phase relationship between gas and ice, and thus, the impact of rapid changes of greenhouse gases on surface temperatures. For times of rapid climate change, including the last 150 years, and abrupt climate changes further back in the past, knowledge of the age distribution of the gases trapped in air bubbles will enable us to refine estimates of atmospheric changes. When a temperature gradient is applied to gas bubbles in an ice sample, the bubbles migrate toward warmer ice. This motion is caused by sublimation from the warm wall and subsequent frost deposition on the cold wall. The migration rate depends on ice temperature and bubble pressure and is proportional to the temperature gradient. The spread in migration rates for bubbles in the same samples at given temperatures should therefore reflect the variations in bubble pressures within a sample. Air bubbles with higher pressures would have been closed off higher in the firn column and thus have had time to equilibrate with the surrounding ice pressure, while air bubbles that have been closed off recently would have pressures that are similar to todays atmospheric pressure above the firn column. For ice under pressures up to ~13-16 bar, the pressure distribution of bubbles from a single depth provides a record of the trapping function of air bubbles in the firn column for a certain time in the past. We will present laboratory experiments on air bubble migration, using Antarctic ice core

  12. Effect of inlet-air humidity, temperature, pressure, and reference Mach number on the formation of oxides of nitrogen in a gas turbine combustor

    NASA Technical Reports Server (NTRS)

    Marchionna, N. R.; Diehl, L. A.; Trout, A. M.

    1973-01-01

    Tests were conducted to determine the effect of inlet air humidity on the formation of oxides of nitrogen (NOx) from a gas turbine combustor. Combustor inlet air temperature ranged from 506 K (450 F) to 838 K (1050 F). The tests were primarily run at a constant pressure of 6 atmospheres and reference Mach number of 0.065. The NOx emission index was found to decrease with increasing inlet air humidity at a constant exponential rate: NOx = NOx0e-19H (where H is the humidity and the subscript 0 denotes the value at zero humidity). the emission index increased exponentially with increasing normalized inlet air temperature to the 1.14 power. Additional tests made to determine the effect of pressure and reference Mach number on NOx showed that the NOx emission index varies directly with pressure to the 0.5 power and inversely with reference Mach number.

  13. Ozone generation using atmospheric pressure glow discharge in air

    NASA Astrophysics Data System (ADS)

    Buntat, Z.; Smith, I. R.; Razali, N. A. M.

    2009-12-01

    This paper presents results from a study into the generation of ozone by a stable atmospheric glow discharge, using dry air as the feeding gas for ozone generation. The power supply is 50 Hz ac, with the use of a perforated aluminium sheet for the electrodes and soda lime glass as a dielectric layer in a parallel-plate configuration, stabilizing the generation process and enabling ozone to be produced. The stable glow discharge spreads uniformly at a gas breakdown voltage below 4.8 kV and requires only 330 mW discharge power, with a limitation of 3 mm on the maximum gap spacing for the dry air. With the technique providing a high collision rate between the electrons and gas molecules during the discharge process, a high ozone yield is obtained. An analysis of the effect on the production rate of parameters such as the input voltage, gas flow rate and reaction chamber dimensions resulted in a highest efficiency of production of almost 350 g kWh-1 and confirms its potential as an important ozone generation technology.

  14. The Survival of Meteorite Organic Compounds with Increasing Impact Pressure

    NASA Technical Reports Server (NTRS)

    Cooper, George; Horz, Friedrich; Oleary, Alanna; Chang, Sherwood; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    The majority of carbonaceous meteorites studied today are thought to originate in the asteroid belt. Impacts among asteroidal objects generate heat and pressure that may have altered or destroyed pre-existing organic matter in both targets and projectiles to a greater or lesser degree depending upon impact velocities. Very little is known about the shock related chemical evolution of organic matter relevant to this stage of the cosmic history of biogenic elements and compounds. The present work continues our study of the effects of shock impacts on selected classes of organic compounds utilizing laboratory shock facilities. Our approach was to subject mixtures of organic compounds, embedded in a matrix of the Murchison meteorite, to a simulated hypervelocity impact. The molecular compositions of products were then analyzed to determine the degree of survival of the original compounds. Insofar as results associated with velocities < 8 km/sec may be relevant to impacts on planetary surfaces (e.g., oblique impacts, impacts on small outer planet satellites) or grain-grain collisions in the interstellar medium, then our experiments will be applicable to these environments as well.

  15. [Intracranial pressure targeted treatment in acute bacterial meningitis increased survival].

    PubMed

    Glimåker, Martin; Johansson, Bibi; Halldorsdottir, Halla; Wanecek, Michael; Elmi-Terander, Adrian; Bellander, Bo-Michael

    2014-12-16

    To evaluate the efficacy of intracranial pressure (ICP)-targeted treatment, compared to standard intensive care, in adults with community acquired acute bacterial meningitis (ABM) and severely impaired consciousness, a prospectively designed intervention-control comparison study was performed. Included were patients with confirmed ABM and severely impaired mental status on admission. Fifty-two patients, given ICP-targeted treatment at a neuro-intensive care unit, and 53 control cases, treated with conventional intensive care, were included. All patients received intensive care with me-chanical ventilation, sedation, antibiotics and corticosteroids according to current guidelines. ICP-targeted treatment was performed in the intervention group, aiming at ICP 50 mmHg. The mortality was significantly lower in the intervention group compared to controls, 5/52 (10%) versus 16/53 (30%). Furthermore, only 17 patients (32%) in the control group fully recovered, compared to 28 (54%) in the intervention group. Early neuro-intensive care using ICP-targeted therapy reduces mortality and improves the overall outcome in adult patients with ABM and severely impaired mental status on admission.

  16. Drought Increases Consumer Pressure on Oyster Reefs in Florida, USA

    PubMed Central

    Garland, Hanna G.; Kimbro, David L.

    2015-01-01

    Coastal economies and ecosystems have historically depended on oyster reefs, but this habitat has declined globally by 85% because of anthropogenic activities. In a Florida estuary, we investigated the cause of newly reported losses of oysters. We found that the oyster reefs have deteriorated from north to south and that this deterioration was positively correlated with the abundance of carnivorous conchs and water salinity. In experiments across these gradients, oysters survived regardless of salinity if conchs were excluded. After determining that conchs were the proximal cause of oyster loss, we tested whether elevated water salinity was linked to conch abundance either by increasing conch growth and survivorship or by decreasing the abundance of a predator of conchs. In field experiments across a salinity gradient, we failed to detect spatial variation in predation on conchs or in conch growth and survivorship. A laboratory experiment, however, demonstrated the role of salinity by showing that conch larvae failed to survive at low salinities. Because this estuary’s salinity increased in 2006 in response to reduced inputs of freshwater, we concluded that the ultimate cause of oyster decline was an increase in salinity. According to records from 2002 to 2012, oyster harvests have remained steady in the northernmost estuaries of this ecoregion (characterized by high reef biomass, low salinity, and low conch abundance) but have declined in the southernmost estuaries (characterized by lower reef biomass, increases in salinity, and increases in conch abundance). Oyster conservation in this ecoregion, which is probably one of the few that still support viable oyster populations, may be undermined by drought-induced increases in salinity causing an increased abundance of carnivorous conchs. PMID:26275296

  17. Drought Increases Consumer Pressure on Oyster Reefs in Florida, USA.

    PubMed

    Garland, Hanna G; Kimbro, David L

    2015-01-01

    Coastal economies and ecosystems have historically depended on oyster reefs, but this habitat has declined globally by 85% because of anthropogenic activities. In a Florida estuary, we investigated the cause of newly reported losses of oysters. We found that the oyster reefs have deteriorated from north to south and that this deterioration was positively correlated with the abundance of carnivorous conchs and water salinity. In experiments across these gradients, oysters survived regardless of salinity if conchs were excluded. After determining that conchs were the proximal cause of oyster loss, we tested whether elevated water salinity was linked to conch abundance either by increasing conch growth and survivorship or by decreasing the abundance of a predator of conchs. In field experiments across a salinity gradient, we failed to detect spatial variation in predation on conchs or in conch growth and survivorship. A laboratory experiment, however, demonstrated the role of salinity by showing that conch larvae failed to survive at low salinities. Because this estuary's salinity increased in 2006 in response to reduced inputs of freshwater, we concluded that the ultimate cause of oyster decline was an increase in salinity. According to records from 2002 to 2012, oyster harvests have remained steady in the northernmost estuaries of this ecoregion (characterized by high reef biomass, low salinity, and low conch abundance) but have declined in the southernmost estuaries (characterized by lower reef biomass, increases in salinity, and increases in conch abundance). Oyster conservation in this ecoregion, which is probably one of the few that still support viable oyster populations, may be undermined by drought-induced increases in salinity causing an increased abundance of carnivorous conchs.

  18. Drought Increases Consumer Pressure on Oyster Reefs in Florida, USA.

    PubMed

    Garland, Hanna G; Kimbro, David L

    2015-01-01

    Coastal economies and ecosystems have historically depended on oyster reefs, but this habitat has declined globally by 85% because of anthropogenic activities. In a Florida estuary, we investigated the cause of newly reported losses of oysters. We found that the oyster reefs have deteriorated from north to south and that this deterioration was positively correlated with the abundance of carnivorous conchs and water salinity. In experiments across these gradients, oysters survived regardless of salinity if conchs were excluded. After determining that conchs were the proximal cause of oyster loss, we tested whether elevated water salinity was linked to conch abundance either by increasing conch growth and survivorship or by decreasing the abundance of a predator of conchs. In field experiments across a salinity gradient, we failed to detect spatial variation in predation on conchs or in conch growth and survivorship. A laboratory experiment, however, demonstrated the role of salinity by showing that conch larvae failed to survive at low salinities. Because this estuary's salinity increased in 2006 in response to reduced inputs of freshwater, we concluded that the ultimate cause of oyster decline was an increase in salinity. According to records from 2002 to 2012, oyster harvests have remained steady in the northernmost estuaries of this ecoregion (characterized by high reef biomass, low salinity, and low conch abundance) but have declined in the southernmost estuaries (characterized by lower reef biomass, increases in salinity, and increases in conch abundance). Oyster conservation in this ecoregion, which is probably one of the few that still support viable oyster populations, may be undermined by drought-induced increases in salinity causing an increased abundance of carnivorous conchs. PMID:26275296

  19. Studies on the tempo of bubble formation in recently cavitated vessels: a model to predict the pressure of air bubbles.

    PubMed

    Wang, Yujie; Pan, Ruihua; Tyree, Melvin T

    2015-06-01

    A cavitation event in a vessel replaces water with a mixture of water vapor and air. A quantitative theory is presented to argue that the tempo of filling of vessels with air has two phases: a fast process that extracts air from stem tissue adjacent to the cavitated vessels (less than 10 s) and a slow phase that extracts air from the atmosphere outside the stem (more than 10 h). A model was designed to estimate how water tension (T) near recently cavitated vessels causes bubbles in embolized vessels to expand or contract as T increases or decreases, respectively. The model also predicts that the hydraulic conductivity of a stem will increase as bubbles collapse. The pressure of air bubbles trapped in vessels of a stem can be predicted from the model based on fitting curves of hydraulic conductivity versus T. The model was validated using data from six stem segments each of Acer mono and the clonal hybrid Populus 84 K (Populus alba × Populus glandulosa). The model was fitted to results with root mean square error less than 3%. The model provided new insight into the study of embolism formation in stem tissue and helped quantify the bubble pressure immediately after the fast process referred to above.

  20. Simulations of nanosecond-pulsed dielectric barrier discharges in atmospheric pressure air

    SciTech Connect

    Soo Bak, Moon; Cappelli, Mark A.

    2013-03-21

    This paper describes simulations of nanosecond pulse plasma formation between planer electrodes covered by dielectric barriers in air at atmospheric pressure and 340 K. The plasma formation process starts as electrons detach from negative ions of molecular oxygen that are produced from the previous discharge pulse. An ionization front is found to form close to the positively biased electrode and then strengthens and propagates towards the grounded electrode with increasing gap voltage. Charge accumulation and secondary emission from the grounded electrode eventually lead to sheath collapse. One interesting feature is a predicted reversal in gap potential due to the accumulated charge, even when there is no reversal in applied potential. The simulation results are compared to recent measurement of mid-gap electric field under the same discharge conditions [Ito et al., Phys. Rev. Lett. 107, 065002 (2011)].

  1. Response of atmospheric pressure and air temperature to the solar events in October 2003

    NASA Astrophysics Data System (ADS)

    Avakyan, S. V.; Voronin, N. A.; Nikol'sky, G. A.

    2015-12-01

    Variations in the main weather parameters were studied for effects of solar flares and magnetic storms: the air temperature T and the atmospheric pressure P. We report the results of our comparison of these parameters measured at the mountain meteorological observatory near Kislovodsk (2100 m above sea level) to the monitoring data on strong solargeomagnetic perturbations for October 2003. We observed a decrease in the value of P for medium and large flares (of the type M > 4) in nine cases (82%) and an increase in T after magnetic storms with K p > 5 in 16 cases (84%). Hence, the manifestation of solar flares and magnetic storms in weather parameter variations ( T and P) at an altitude of 2100 m was proven, and the contribution of the radiooptical three-step trigger mechanism to solar-weather relations was qualitatively confirmed.

  2. Torricelli and the ocean of air: the first measurement of barometric pressure.

    PubMed

    West, John B

    2013-03-01

    The recognition of barometric pressure was a critical step in the development of environmental physiology. In 1644, Evangelista Torricelli described the first mercury barometer in a remarkable letter that contained the phrase, "We live submerged at the bottom of an ocean of the element air, which by unquestioned experiments is known to have weight." This extraordinary insight seems to have come right out of the blue. Less than 10 years before, the great Galileo had given an erroneous explanation for the related problem of pumping water from a deep well. Previously, Gasparo Berti had filled a very long lead vertical tube with water and showed that a vacuum formed at the top. However, Torricelli was the first to make a mercury barometer and understand that the mercury was supported by the pressure of the air. Aristotle stated that the air has weight, although this was controversial for some time. Galileo described a method of measuring the weight of the air in detail, but for reasons that are not clear his result was in error by a factor of about two. Torricelli surmised that the pressure of the air might be less on mountains, but the first demonstration of this was by Blaise Pascal. The first air pump was built by Otto von Guericke, and this influenced Robert Boyle to carry out his classical experiments of the physiological effects of reduced barometric pressure. These were turning points in the early history of high-altitude physiology.

  3. Torricelli and the ocean of air: the first measurement of barometric pressure.

    PubMed

    West, John B

    2013-03-01

    The recognition of barometric pressure was a critical step in the development of environmental physiology. In 1644, Evangelista Torricelli described the first mercury barometer in a remarkable letter that contained the phrase, "We live submerged at the bottom of an ocean of the element air, which by unquestioned experiments is known to have weight." This extraordinary insight seems to have come right out of the blue. Less than 10 years before, the great Galileo had given an erroneous explanation for the related problem of pumping water from a deep well. Previously, Gasparo Berti had filled a very long lead vertical tube with water and showed that a vacuum formed at the top. However, Torricelli was the first to make a mercury barometer and understand that the mercury was supported by the pressure of the air. Aristotle stated that the air has weight, although this was controversial for some time. Galileo described a method of measuring the weight of the air in detail, but for reasons that are not clear his result was in error by a factor of about two. Torricelli surmised that the pressure of the air might be less on mountains, but the first demonstration of this was by Blaise Pascal. The first air pump was built by Otto von Guericke, and this influenced Robert Boyle to carry out his classical experiments of the physiological effects of reduced barometric pressure. These were turning points in the early history of high-altitude physiology. PMID:23455767

  4. Torricelli and the Ocean of Air: The First Measurement of Barometric Pressure

    PubMed Central

    2013-01-01

    The recognition of barometric pressure was a critical step in the development of environmental physiology. In 1644, Evangelista Torricelli described the first mercury barometer in a remarkable letter that contained the phrase, “We live submerged at the bottom of an ocean of the element air, which by unquestioned experiments is known to have weight.” This extraordinary insight seems to have come right out of the blue. Less than 10 years before, the great Galileo had given an erroneous explanation for the related problem of pumping water from a deep well. Previously, Gasparo Berti had filled a very long lead vertical tube with water and showed that a vacuum formed at the top. However, Torricelli was the first to make a mercury barometer and understand that the mercury was supported by the pressure of the air. Aristotle stated that the air has weight, although this was controversial for some time. Galileo described a method of measuring the weight of the air in detail, but for reasons that are not clear his result was in error by a factor of about two. Torricelli surmised that the pressure of the air might be less on mountains, but the first demonstration of this was by Blaise Pascal. The first air pump was built by Otto von Guericke, and this influenced Robert Boyle to carry out his classical experiments of the physiological effects of reduced barometric pressure. These were turning points in the early history of high-altitude physiology. PMID:23455767

  5. Increased mortality in Philadelphia associated with daily air pollution concentrations

    SciTech Connect

    Schwartz, J.; Dockery, D.W. )

    1992-03-01

    Cause-specific deaths by day for the years 1973 to 1980 in Philadelphia, Pennsylvania, were extracted from National Center for Health Statistics mortality tapes. Death from accidents (International Classification of Disease, Revision 9 greater than or equal to 800) and deaths outside of the city were excluded. Daily counts of deaths were regressed using Poisson regression on total suspended particulate (TSP) and/or SO2 on the same day and on the preceding day, controlling for year, season, temperature, and humidity. A significant positive association was found between total mortality (mean of 48 deaths/day) and both TSP (second highest daily mean, 222 micrograms/m3) and SO2 (second highest daily mean, 299 micrograms/m3). The strongest associations were found with the mean pollution of the current and the preceding days. Total mortality was estimated to increase by 7% (95% CI, 4 to 10%) with each 100-micrograms/m3 increase in TSP, and 5% (95% CI, 3 to 7%) with each 100-micrograms/m3 increase in SO2. When both pollutants were considered simultaneously, the SO2 association was no longer significant. Mortality increased monotonically with TSP. The effect of 100 micrograms/m3 TSP was stronger in subjects older than 65 yr of age (10% increase) compared with those younger than 65 yr of age (3% increase). Cause-specific mortality was also associated with a 100-micrograms/m3 increase in TSP: chronic obstructive pulmonary disease (ICD9 490-496), +19% (95% CI, 0 to 42%), pneumonia (ICD9 480-486 and 507), +11% (95% CI, -3 to +27%), and cardiovascular disease (ICD9 390-448), +10% (95% CI, 6 to 14%). These results are somewhat higher than previously reported associations, and they add to the body of evidence showing that particulate pollution is associated with increased daily mortality at current levels in the United States.

  6. Thermodynamic and Transport Properties of Real Air Plasma in Wide Range of Temperature and Pressure

    NASA Astrophysics Data System (ADS)

    Wang, Chunlin; Wu, Yi; Chen, Zhexin; Yang, Fei; Feng, Ying; Rong, Mingzhe; Zhang, Hantian

    2016-07-01

    Air plasma has been widely applied in industrial manufacture. In this paper, both dry and humid air plasmas' thermodynamic and transport properties are calculated in temperature 300-100000 K and pressure 0.1-100 atm. To build a more precise model of real air plasma, over 70 species are considered for composition. Two different methods, the Gibbs free energy minimization method and the mass action law method, are used to determinate the composition of the air plasma in a different temperature range. For the transport coefficients, the simplified Chapman-Enskog method developed by Devoto has been applied using the most recent collision integrals. It is found that the presence of CO2 has almost no effect on the properties of air plasma. The influence of H2O can be ignored except in low pressure air plasma, in which the saturated vapor pressure is relatively high. The results will serve as credible inputs for computational simulation of air plasma. supported by the National Key Basic Research Program of China (973 Program)(No. 2015CB251002), National Natural Science Foundation of China (Nos. 51521065, 51577145), the Science and Technology Project Funds of the Grid State Corporation (SGTYHT/13-JS-177), the Fundamental Research Funds for the Central Universities, and State Grid Corporation Project (GY71-14-004)

  7. Air-braked cycle ergometers: validity of the correction factor for barometric pressure.

    PubMed

    Finn, J P; Maxwell, B F; Withers, R T

    2000-10-01

    Barometric pressure exerts by far the greatest influence of the three environmental factors (barometric pressure, temperature and humidity) on power outputs from air-braked ergometers. The barometric pressure correction factor for power outputs from air-braked ergometers is in widespread use but apparently has never been empirically validated. Our experiment validated this correction factor by calibrating two air-braked cycle ergometers in a hypobaric chamber using a dynamic calibration rig. The results showed that if the power output correction for changes in air resistance at barometric pressures corresponding to altitudes of 38, 600, 1,200 and 1,800 m above mean sea level were applied, then the coefficients of variation were 0.8-1.9% over the range of 160-1,597 W. The overall mean error was 3.0 % but this included up to 0.73 % for the propagated error that was associated with errors in the measurement of: a) temperature b) relative humidity c) barometric pressure d) force, distance and angular velocity by the dynamic calibration rig. The overall mean error therefore approximated the +/- 2.0% of true load that was specified by the Laboratory Standards Assistance Scheme of the Australian Sports Commission. The validity of the correction factor for barometric pressure on power output was therefore demonstrated over the altitude range of 38-1,800 m.

  8. Tables for pressure of air on coming to rest from various speeds

    NASA Technical Reports Server (NTRS)

    Zahm, A F; Louden, F A

    1930-01-01

    In Technical Report no. 247 of the National Advisory Committee for Aeronautics theoretical formulas are given from which was computed a table for the pressure of air on coming to rest from various speeds, such as those of aircraft and propeller blades. In that report, the table gave incompressible and adiabatic stop pressures of air for even-speed intervals in miles per hour and for some even-speed intervals in knots per hour. Table II of the present report extends the above-mentioned table by including the stop pressures of air for even-speed intervals in miles per hour, feet per-second, knots per hour, kilometers per hour, and meters per second. The pressure values in table II are also more exact than values given in the previous table. To furnish the aeronautical engineer with ready numerical formulas for finding the pressure of air on coming to rest, table I has been derived for the standard values specified below it. This table first presents the theoretical pressure-speed formulas and their working forms in C. G. S. Units as given in NACA Technical Report No. 247, then furnishes additional working formulas for several special units of speed. (author)

  9. Air-braked cycle ergometers: validity of the correction factor for barometric pressure.

    PubMed

    Finn, J P; Maxwell, B F; Withers, R T

    2000-10-01

    Barometric pressure exerts by far the greatest influence of the three environmental factors (barometric pressure, temperature and humidity) on power outputs from air-braked ergometers. The barometric pressure correction factor for power outputs from air-braked ergometers is in widespread use but apparently has never been empirically validated. Our experiment validated this correction factor by calibrating two air-braked cycle ergometers in a hypobaric chamber using a dynamic calibration rig. The results showed that if the power output correction for changes in air resistance at barometric pressures corresponding to altitudes of 38, 600, 1,200 and 1,800 m above mean sea level were applied, then the coefficients of variation were 0.8-1.9% over the range of 160-1,597 W. The overall mean error was 3.0 % but this included up to 0.73 % for the propagated error that was associated with errors in the measurement of: a) temperature b) relative humidity c) barometric pressure d) force, distance and angular velocity by the dynamic calibration rig. The overall mean error therefore approximated the +/- 2.0% of true load that was specified by the Laboratory Standards Assistance Scheme of the Australian Sports Commission. The validity of the correction factor for barometric pressure on power output was therefore demonstrated over the altitude range of 38-1,800 m. PMID:11071051

  10. Air jet erosion test on plasma sprayed surface by varying erodent impingement pressure and impingement angle

    NASA Astrophysics Data System (ADS)

    Behera, Ajit; Behera, Asit; Mishra, S. C.; Pani, S.; Parida, P.

    2015-02-01

    Fly-ash premixed with quartz and illmenite powder in different weight proportions are thermal sprayed on mild steel and copper substrates at various input power levels of the plasma torch ranging from 11 kW to 21 kW DC. The erosion test has done using Air Jet erosion test Reg (As per ASTM G76) with silica erodent typically 150-250 pm in size. Multiple tests were performed at increasing the time duration from 60 sec to 180 sec with increasing pressure (from 1 bar to 2.5 bar) and angle (60° & 90°). This study reveals that the impact velocity and impact angle are two most significant parameters among various factors influencing the wear rate of these coatings. The mechanisms and microstructural changes that arise during erosion wear are studied by using SEM. It is found that, when erodent are impacting the fresh un-eroded surface, material removal occurs by the continuous evolution of craters on the surface. Upper layer splats are removed out after 60 sec and second layer splat erosion starts. Based on these observations Physical models are developed. Some graphs plotted between mass loss-rate versus time period/impact Pressure/impact Angle gives good correlation with surface features observed.

  11. A barometric pressure sensor based on the air-gap scale effect in a cantilever

    NASA Astrophysics Data System (ADS)

    Minh-Dung, Nguyen; Takahashi, Hidetoshi; Uchiyama, Takeshi; Matsumoto, Kiyoshi; Shimoyama, Isao

    2013-09-01

    The most common structure for a conventional barometric pressure sensor consists of a vacuum-sealed cavity and a diaphragm. However, we hypothesize that a simple structure with an unsealed cavity and an ultra-thin cantilever can provide more sensitive measurements. We produced a 300-nm-thick cantilever with a small spring constant, which made the cantilever sensitive to low pressures. We demonstrated that miniaturizing the air-gap of the cantilever enables the sensor to measure barometric pressure changes at a low pressure change rate with a high resolution, which was 1 Pa at 0.05 Hz, and for a gap size of 1.7 μm.

  12. A handheld low temperature atmospheric pressure air plasma gun for nanomaterial synthesis in liquid phase

    NASA Astrophysics Data System (ADS)

    Yu, Shuang; Wang, Kaile; Zuo, Shasha; Liu, Jiahui; Zhang, Jue; Fang, Jing

    2015-10-01

    A handheld low temperature atmospheric pressure air plasma gun based on a dielectric barrier structure with hollow electrodes was proposed. The portable plasma gun with an embedded mini air pump was driven by a 12 V direct voltage battery. The air plasma jet generated from the gun could be touched without a common shock hazard. Besides working in air, the plasma gun can also work in water. The diagnostic result of optical emission spectroscopy showed the difference in reactive species of air plasma jet between in air and in water. The plasma gun was excited in 20 ml chloroauric acid aqueous solution with a concentration of 1.214 mM. A significant amount of gold nanoparticles were synthesized after 2 min continuous discharge. The plasma gun with these unique features is applicable in plasma medicine, etching, and s-nthesis of nanomaterials.

  13. A handheld low temperature atmospheric pressure air plasma gun for nanomaterial synthesis in liquid phase

    SciTech Connect

    Yu, Shuang; Wang, Kaile; Zuo, Shasha; Liu, Jiahui; Zhang, Jue Fang, Jing

    2015-10-15

    A handheld low temperature atmospheric pressure air plasma gun based on a dielectric barrier structure with hollow electrodes was proposed. The portable plasma gun with an embedded mini air pump was driven by a 12 V direct voltage battery. The air plasma jet generated from the gun could be touched without a common shock hazard. Besides working in air, the plasma gun can also work in water. The diagnostic result of optical emission spectroscopy showed the difference in reactive species of air plasma jet between in air and in water. The plasma gun was excited in 20 ml chloroauric acid aqueous solution with a concentration of 1.214 mM. A significant amount of gold nanoparticles were synthesized after 2 min continuous discharge. The plasma gun with these unique features is applicable in plasma medicine, etching, and s-nthesis of nanomaterials.

  14. Experimental study of the effect of drag reducing agent on pressure drop and thermal efficiency of an air cooler

    NASA Astrophysics Data System (ADS)

    Peyghambarzadeh, S. M.; Hashemabadi, S. H.; Saffarian, H.; Shekari, F.

    2016-01-01

    Effect of polymeric drag reduction agents (DRAs) on pressure drop and heat transfer was studied. Aqueous solutions of carboxy methyl cellulose were used inside an air-finned heat exchanger. Despite the previous studies which indicated the importance of drag reduction just in turbulent flow, results of this study in laminar flow indicated that the addition of DRA increases drag reduction, and decreases the overall heat transfer coefficient.

  15. Increasing influence of air temperature on upper Colorado River streamflow

    NASA Astrophysics Data System (ADS)

    Woodhouse, Connie A.; Pederson, Gregory T.; Morino, Kiyomi; McAfee, Stephanie A.; McCabe, Gregory J.

    2016-03-01

    This empirical study examines the influence of precipitation, temperature, and antecedent soil moisture on upper Colorado River basin (UCRB) water year streamflow over the past century. While cool season precipitation explains most of the variability in annual flows, temperature appears to be highly influential under certain conditions, with the role of antecedent fall soil moisture less clear. In both wet and dry years, when flow is substantially different than expected given precipitation, these factors can modulate the dominant precipitation influence on streamflow. Different combinations of temperature, precipitation, and soil moisture can result in flow deficits of similar magnitude, but recent droughts have been amplified by warmer temperatures that exacerbate the effects of relatively modest precipitation deficits. Since 1988, a marked increase in the frequency of warm years with lower flows than expected, given precipitation, suggests continued warming temperatures will be an increasingly important influence in reducing future UCRB water supplies.

  16. Increasing influence of air temperature on upper Colorado River streamflow

    USGS Publications Warehouse

    Woodhouse, Connie A.; Pederson, Gregory T.; Morino, Kiyomi; McAfee, Stephanie A.; McCabe, Gregory

    2016-01-01

    This empirical study examines the influence of precipitation, temperature, and antecedent soil moisture on upper Colorado River basin (UCRB) water year streamflow over the past century. While cool season precipitation explains most of the variability in annual flows, temperature appears to be highly influential under certain conditions, with the role of antecedent fall soil moisture less clear. In both wet and dry years, when flow is substantially different than expected given precipitation, these factors can modulate the dominant precipitation influence on streamflow. Different combinations of temperature, precipitation, and soil moisture can result in flow deficits of similar magnitude, but recent droughts have been amplified by warmer temperatures that exacerbate the effects of relatively modest precipitation deficits. Since 1988, a marked increase in the frequency of warm years with lower flows than expected, given precipitation, suggests continued warming temperatures will be an increasingly important influence in reducing future UCRB water supplies.

  17. Atmospheric-pressure air microplasma jets in aqueous media for the inactivation of Pseudomonas fluorescens cells

    SciTech Connect

    Zhang, Xianhui; Yang, Si-ze; Liu, Dongping; Song, Ying; Sun, Yue

    2013-05-15

    The hollow fiber-based cold air microplasma jet array running at atmospheric pressure has been designed to inactivate Pseudomonas fluorescens (P. fluorescens) cells in vitro in aqueous media. The influences of electrode configurations, air flow rate, and applied voltage on the discharge characteristics of the single microplasma jet operating in aqueous media are presented, and the bactericidal efficiency of the hollow fibers-based and large-volume microplasma jet array is reported. Optical emission spectroscopy is utilized to identify excited species during the antibacterial testing of plasma in solutions. These well-aligned and rather stable air microplasma jets containing a variety of short-lived species, such as OH and O radicals and charged particles, are in direct contact with aqueous media and are very effective in killing P. fluorescens cells in aqueous media. This design shows its potential application for atmospheric pressure air plasma inactivation of bacteria cells in aqueous media.

  18. Explosion bomb measurements of ethanol-air laminar gaseous flame characteristics at pressures up to 1.4 MPa

    SciTech Connect

    Bradley, D.; Lawes, M.; Mansour, M.S.

    2009-07-15

    The principal burning characteristics of a laminar flame comprise the fuel vapour pressure, the laminar burning velocity, ignition delay times, Markstein numbers for strain rate and curvature, the stretch rates for the onset of flame instabilities and of flame extinction for different mixtures. With the exception of ignition delay times, measurements of these are reported and discussed for ethanol-air mixtures. The measurements were in a spherical explosion bomb, with central ignition, in the regime of a developed stable, flame between that of an under or over-driven ignition and that of an unstable flame. Pressures ranged from 0.1 to 1.4 MPa, temperatures from 300 to 393 K, and equivalence ratios were between 0.7 and 1.5. It was important to ensure the relatively large volume of ethanol in rich mixtures at high pressures was fully evaporated. The maximum pressure for the measurements was the highest compatible with the maximum safe working pressure of the bomb. Many of the flames soon became unstable, due to Darrieus-Landau and thermo-diffusive instabilities. This effect increased with pressure and the flame wrinkling arising from the instabilities enhanced the flame speed. Both the critical Peclet number and the, more rational, associated critical Karlovitz stretch factor were evaluated at the onset of the instability. With increasing pressure, the onset of flame instability occurred earlier. The measured values of burning velocity are expressed in terms of their variations with temperature and pressure, and these are compared with those obtained by other researchers. Some comparisons are made with the corresponding properties for iso-octane-air mixtures. (author)

  19. Leg raise increases pressure in lower and upper esophageal sphincter among patients with gastroesophageal reflux disease.

    PubMed

    Bitnar, P; Stovicek, J; Andel, R; Arlt, J; Arltova, M; Smejkal, M; Kolar, P; Kobesova, A

    2016-07-01

    The purpose of this study was to determine the relation between posturally increased intra-abdominal pressure and lower/upper esophageal sphincter pressure changes in patients with gastroesophageal reflux disease. We used high resolution manometry to measure pressure changes in lower and upper esophageal sphincter during bilateral leg rise. We also examined whether the rate of lower and upper esophageal sphincter pressure would increase during leg raise differentially in individuals with versus without normal resting pressure. Fifty eight patients with gastroesophageal reflux disease participated in the study. High resolution manometry was performed in relaxed supine position, then lower and upper esophageal sphincter pressure was measured. Finally, the subjects were instructed to keep their legs lifted while performing 90-degree flexion at the hips and knees and the pressure was measured again. Paired t-test and independent samples t-test were used. There was a significant increase in both lower (P < 0.001) and upper esophageal sphincter pressure (P = 0.034) during leg raise compared to the initial resting position. Individuals with initially higher pressure in lower esophageal sphincter (>10 mmHg) exhibited a greater pressure increase during leg raise than those with initially lower pressure (pressure ≤10 mmHg; P = 0.002). Similarly individuals with higher resting upper esophageal sphincter pressure (>44 mmHg) showed a greater pressure increase during leg raise than those with lower resting pressure (≤44 mmHg; P < 0.001). The results illustrate the influence of postural leg activities on intraesophageal pressure in patients with gastroesophageal reflux disease, indicating by means of high resolution manometry that diaphragmatic postural and sphincter function are likely interrelated in this population. PMID:27634073

  20. Leg raise increases pressure in lower and upper esophageal sphincter among patients with gastroesophageal reflux disease.

    PubMed

    Bitnar, P; Stovicek, J; Andel, R; Arlt, J; Arltova, M; Smejkal, M; Kolar, P; Kobesova, A

    2016-07-01

    The purpose of this study was to determine the relation between posturally increased intra-abdominal pressure and lower/upper esophageal sphincter pressure changes in patients with gastroesophageal reflux disease. We used high resolution manometry to measure pressure changes in lower and upper esophageal sphincter during bilateral leg rise. We also examined whether the rate of lower and upper esophageal sphincter pressure would increase during leg raise differentially in individuals with versus without normal resting pressure. Fifty eight patients with gastroesophageal reflux disease participated in the study. High resolution manometry was performed in relaxed supine position, then lower and upper esophageal sphincter pressure was measured. Finally, the subjects were instructed to keep their legs lifted while performing 90-degree flexion at the hips and knees and the pressure was measured again. Paired t-test and independent samples t-test were used. There was a significant increase in both lower (P < 0.001) and upper esophageal sphincter pressure (P = 0.034) during leg raise compared to the initial resting position. Individuals with initially higher pressure in lower esophageal sphincter (>10 mmHg) exhibited a greater pressure increase during leg raise than those with initially lower pressure (pressure ≤10 mmHg; P = 0.002). Similarly individuals with higher resting upper esophageal sphincter pressure (>44 mmHg) showed a greater pressure increase during leg raise than those with lower resting pressure (≤44 mmHg; P < 0.001). The results illustrate the influence of postural leg activities on intraesophageal pressure in patients with gastroesophageal reflux disease, indicating by means of high resolution manometry that diaphragmatic postural and sphincter function are likely interrelated in this population.

  1. Long-term ambient air pollution exposure and risk of high blood pressure among citizens in Nis, Serbia.

    PubMed

    Stanković, Aleksandra; Nikolić, Maja

    2016-01-01

    Epidemiological studies suggest that long-term exposure to air pollution increases the risk for high blood pressure (BP). The aim of our study is to evaluate any effects in BP in citizens exposed to long-term ambient air pollution. The subjects are 1136 citizens, aged 18-70 years, living for more than 5 years in the same home in the areas with a different level of air pollution. The air concentrations of black smoke and sulfur dioxide were determined in the period from 2001 to 2011. We measured systolic and diastolic BP and heart rate. Multivariate methods were used in the analysis. Alcohol consumption had the greatest influence on the incidence of hypertension as a risk factor (RR: 3.461; 95% CI: 1.72-6.93) and age had the least (RR: 1.23; 95% CI: 1.183-1.92). Exposure to air pollution increases risk for developing hypertension 2.5 times (95% CI: 1.46-4.49). Physical activity has proved to be statistically significant protective factor for the development of hypertension. Long-term exposure to low levels of main air pollutants is significantly associated with elevated risk of hypertension.

  2. Characteristics of radio-frequency, atmospheric-pressure glow discharges with air using bare metal electrodes

    SciTech Connect

    Wang Huabo; Sun Wenting; Li Heping; Bao Chengyu; Zhang Xiaozhang

    2006-10-16

    In this letter, an induced gas discharge approach is proposed and described in detail for obtaining a uniform atmospheric-pressure glow discharge with air in a {gamma} mode using water-cooled, bare metal electrodes driven by radio-frequency (13.56 MHz) power supply. A preliminary study on the discharge characteristics of the air glow discharge is also presented in this study. With this induced gas discharge approach, radio-frequency, atmospheric-pressure glow discharges using bare metal electrodes with other gases which cannot be ignited directly as the plasma working gas, such as nitrogen, oxygen, etc., can also be obtained.

  3. Analytical evaluation of effect of equivalence ratio inlet-air temperature and combustion pressure on performance of several possible ram-jet fuels

    NASA Technical Reports Server (NTRS)

    Tower, Leonard K; Gammon, Benson E

    1953-01-01

    The results of an analytical investigation of the theoretical air specific impulse performance and adiabatic combustion temperatures of several possible ram-jet fuels over a range of equivalence ratios, inlet-air temperatures, and combustion pressures, is presented herein. The fuels include octane-1, 50-percent-magnesium slurry, boron, pentaborane, diborane, hydrogen, carbon, and aluminum. Thermal effects from high combustion temperatures were found to effect considerably the combustion performance of all the fuels. An increase in combustion pressure was beneficial to air specific impulse at high combustion temperatures. The use of these theoretical data in engine operation and in the evaluation of experimental data is described.

  4. Selectivity and Mass Transfer Limitations in Pressure-Retarded Osmosis at High Concentrations and Increased Operating Pressures.

    PubMed

    Straub, Anthony P; Osuji, Chinedum O; Cath, Tzahi Y; Elimelech, Menachem

    2015-10-20

    Pressure-retarded osmosis (PRO) is a promising source of renewable energy when hypersaline brines and other high concentration solutions are used. However, membrane performance under conditions suitable for these solutions is poorly understood. In this work, we use a new method to characterize membranes under a variety of pressures and concentrations, including hydraulic pressures up to 48.3 bar and concentrations of up to 3 M NaCl. We find membrane selectivity decreases as the draw solution concentration is increased, with the salt permeability coefficient increasing by a factor of 2 when the draw concentration is changed from 0.6 to 3 M NaCl, even when the applied hydraulic pressure is maintained constant. Additionally, we find that significant pumping energy is required to overcome frictional pressure losses in the spacer-filled feed channel and achieve suitable mass transfer on the feed side of the membrane, especially at high operating pressures. For a meter-long module operating at 41 bar, we estimate feedwater will have to be pumped in at a pressure of at least 3 bar. Both the reduced selectivity and increased pumping energy requirements we observe in PRO will significantly diminish the obtainable net energy, highlighting important new challenges for development of systems utilizing hypersaline draw solutions.

  5. GSOD Based Daily Global Mean Surface Temperature and Mean Sea Level Air Pressure (1982-2011)

    DOE Data Explorer

    Xuan Shi, Dali Wang

    2014-05-05

    This data product contains all the gridded data set at 1/4 degree resolution in ASCII format. Both mean temperature and mean sea level air pressure data are available. It also contains the GSOD data (1982-2011) from NOAA site, contains station number, location, temperature and pressures (sea level and station level). The data package also contains information related to the data processing methods

  6. Simplified configuration for the combustor of an oil burner using a low pressure, high flow air-atomizing nozzle

    DOEpatents

    Butcher, Thomas A.; Celebi, Yusuf; Fisher, Leonard

    2000-09-15

    The invention relates to clean burning of fuel oil with air. More specifically, to a fuel burning combustion head using a low-pressure, high air flow atomizing nozzle so that there will be a complete combustion of oil resulting in a minimum emission of pollutants. The improved fuel burner uses a low pressure air atomizing nozzle that does not result in the use of additional compressors or the introduction of pressurized gases downstream, nor does it require a complex design. Inventors:

  7. High Oxygen Partial Pressure Decreases Anemia-Induced Heart Rate Increase Equivalent to Transfusion

    PubMed Central

    Feiner, John R.; Finlay-Morreale, Heather E.; Toy, Pearl; Lieberman, Jeremy A.; Viele, Maurene K.; Hopf, Harriet W.; Weiskopf, Richard B.

    2011-01-01

    Background Anemia is associated with morbidity and mortality and frequently leads to transfusion of erythrocytes. We sought to compare directly the effect of high inspired oxygen fraction vs. transfusion of erythrocytes on the anemia-induced increased heart rate (HR) in humans undergoing experimental acute isovolemic anemia. Methods We combined HR data from healthy subjects undergoing experimental isovolemic anemia in seven studies performed by our group. We examined HR changes associated with breathing 100% oxygen by non-rebreathing face mask vs. transfusion of erythrocytes at their nadir hemoglobin (Hb) concentration of 5 g/dL. Data were analyzed using a mixed-effects model. Results HR had an inverse linear relationship to hemoglobin concentration with a mean increase of 3.9 beats per minute per gram of Hb (beats/min/g Hb) decrease (95% confidence interval [CI], 3.7 – 4.1 beats/min/g Hb), P < 0.0001. Return of autologous erythrocytes significantly decreased HR by 5.3 beats/min/g Hb (95% CI, 3.8 – 6.8 beats/min/g Hb) increase, P < 0.0001. HR at nadir Hb of 5.6 g/dL (95% CI, 5.5 – 5.7 g/dL) when breathing air (91.4 beats/min; 95% CI, 87.6 – 95.2 beats/min) was reduced by breathing 100% oxygen (83.0 beats/min; 95% CI, 79.0 -87.0 beats/min), P < 0.0001. The HR at hemoglobin 5.6 g/dL when breathing oxygen was equivalent to the HR at Hb 8.9 g/dL when breathing air. Conclusions High arterial oxygen partial pressure reverses the heart rate response to anemia, probably owing to its usability, rather than its effect on total oxygen content. The benefit of high arterial oxygen partial pressure has significant potential clinical implications for the acute treatment of anemia and results of transfusion trials. PMID:21768873

  8. Heart rate and blood pressure variability in subjects exposed to simulated increases in gravity.

    PubMed

    McKenzie, I

    1993-11-01

    The effect of simulated increases in gravity (G) force on blood pressure and heart rate variability was investigated in seven normal healthy subjects using a man-carrying centrifuge. Subjects were exposed to G forces up to 3.6 times the gravity at the earth's surface (3.6 G). Blood pressure was measured non-invasively using a finger cuff (Finapres), while the subjects breathed at a fixed rate and depth. The blood pressure waveform was digitized and systolic blood pressure, diastolic blood pressure and beat-to-beat intervals were extracted from these data. Power spectra were produced from these values. Increases in G force produced increases in spectral power of systolic blood pressure and diastolic blood pressure at the respiratory frequency (0.2 Hz) and less conspicuous but significant increases in spectral power at lower frequencies (0.045-0.15 Hz). The spectral power of beat-to-beat interval did not change. It is postulated that the reduction in central blood volume produced by increased gravity is affecting blood pressure control in a similar way to that seen in hypovolaemic animals. The marked increase in blood pressure fluctuations induced by respiration at the higher G levels may be a result of the alteration in venous return to the right atrium, ultimately reflected as fluctuating left ventricular output and pressure.

  9. Afterglow chemistry of atmospheric-pressure helium-oxygen plasmas with humid air impurity

    NASA Astrophysics Data System (ADS)

    Murakami, Tomoyuki; Niemi, Kari; Gans, Timo; O'Connell, Deborah; Graham, William G.

    2014-04-01

    The formation of reactive species in the afterglow of a radio-frequency-driven atmospheric-pressure plasma in a fixed helium-oxygen feed gas mixture (He+0.5%O2) with humid air impurity (a few hundred ppm) is investigated by means of an extensive global plasma chemical kinetics model. As an original objective, we explore the effects of humid air impurity on the biologically relevant reactive species in an oxygen-dependent system. After a few milliseconds in the afterglow environment, the densities of atomic oxygen (O) decreases from 1015 to 1013 cm-3 and singlet delta molecular oxygen (O2(1D)) of the order of 1015 cm-3 decreases by a factor of two, while the ozone (O3) density increases from 1014 to 1015 cm-3. Electrons and oxygen ionic species, initially of the order of 1011 cm-3, recombine much faster on the time scale of some microseconds. The formation of atomic hydrogen (H), hydroxyl radical (OH), hydroperoxyl (HO2), hydrogen peroxide (H2O2), nitric oxide (NO) and nitric acid (HNO3) resulting from the humid air impurity as well as the influence on the afterglow chemistry is clarified with particular emphasis on the formation of dominant reactive oxygen species (ROS). The model suggests that the reactive species predominantly formed in the afterglow are major ROS O2(1D) and O3 (of the order of 1015 cm-3) and rather minor hydrogen- and nitrogen-based reactive species OH, H2O2, HNO3 and NO2/NO3, of which densities are comparable to the O-atom density (of the order of 1013 cm-3). Furthermore, the model quantitatively reproduces the experimental results of independent O and O3 density measurements.

  10. An analysis of contact stiffness between a finger and an object when wearing an air-cushioned glove: the effects of the air pressure.

    PubMed

    Wu, John Z; Wimer, Bryan M; Welcome, Daniel E; Dong, Ren G

    2012-04-01

    Air-cushioned gloves have the advantages of lighter weight, lower cost, and unique mechanical performance, compared to gloves made of conventional engineering materials. The goal of this study is to analyze the contact interaction between fingers and object when wearing an air-cushioned glove. The contact interactions between the the fingertip and air bubbles, which is considered as a cell of a typical air-cushioned glove, has been analyzed theoretically. Two-dimensional finite element models were developed for the analysis. The fingertip model was assumed to be composed of skin layers, subcutaneous tissue, bone, and nail. The air bubbles were modeled as air sealed in the container of nonelastic membrane. We simulated two common scenarios: a fingertip in contact with one single air bubble and with two air cushion bubbles simultaneously. Our simulation results indicated that the internal air pressure can modulate the fingertip-object contact characteristics. The contact stiffness reaches a minimum when the initial air pressure is equal to 1.3 and 1.05 times of the atmosphere pressure for the single air bubble and the double air bubble contact, respectively. Furthermore, the simulation results indicate that the double air bubble contact will result in smaller volumetric tissue strain than the single air bubble contact for the same force.

  11. 49 CFR 570.57 - Air brake system and air-over-hydraulic brake subsystem.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... reading. (2) The air brake system compressor shall increase the air pressure in the reservoir(s) from the... time allowed for air pressure buildup shall not exceed 45 seconds. (3) The warning device (visual or audible) connected to the brake system air pressure source shall be activated when air pressure is...

  12. Pressure-loss and flow coefficients inside a chordwise-finned, impingement, convection, and film air-cooled turbine vane

    NASA Technical Reports Server (NTRS)

    Hippensteele, S. A.

    1974-01-01

    Total-pressure-loss coefficients, flow discharge coefficients, and friction factors were determined experimentally for the various area and geometry changes and flow passages within an air-cooled turbine vane. The results are compared with those of others obtained on similar configurations, both actual and large models, of vane passages. The supply and exit air pressures were controlled and varied. The investigation was conducted with essentially ambient-temperature air and without external flow of air over the vane.

  13. Effect of pressure on structure and NO sub X formation in CO-air diffusion flames

    NASA Technical Reports Server (NTRS)

    Maahs, H. G.; Miller, I. M.

    1979-01-01

    A study was made of nitric oxide formation in a laminar CO-air diffusion flame over a pressure range from 1 to 50 atm. The carbon monoxide (CO) issued from a 3.06 mm diameter port coaxially into a coflowing stream of air confined within a 20.5 mm diameter chimney. Nitric oxide concentrations from the flame were measured at two carbon monoxide (fuel) flow rates: 73 standard cubic/min and 146 sccm. Comparison of the present data with data in the literature for a methane-air diffusion flame shows that for flames of comparable flame height (8 to 10 mm) and pseudoequivalence ratio (0.162), the molar emission index of a CO-air flame is significantly greater than that of a methane-air flame.

  14. High pressure ceramic air heater for indirectly fired gas turbine applications

    SciTech Connect

    LaHaye, P.G.; Briggs, G.F.; Orozxo, N.J.; Seger, J.L.

    1993-11-01

    The EFCC cycle is conceptually simple. Air enters the compressor where it is pressurized and becomes the tube-side flow of the ceramic air heater. Heat transferred from the hot combustion gases flowing through the shell-side raises the air temperature to the desired turbine inlet temperature. Internally insulated high pressure piping returns the heated compressor air to the turbine, where it is expanded providing power to drive the electric generator and gas turbine compressor. Exhaust air from the turbine is used as the combustion air for the coal combustor. The EFCC cycle burns pulverized coal in an atmospheric combustion chamber similar to the combustion system in a conventional steam generator. The combustion gas exits the combustor and enters a slag screen, or impact separator, where the larger ash particles are collected to prevent fouling of the heat exchanger. After the slag screen, the combustion gas enters the shell-side of the CerHX where its thermal energy is transferred to the tube side air flow. Shell-side exit temperatures are sufficiently high to provide thermal energy for the bottoming Rankine Cycle through a heat recovery steam generator. Exhaust gas exiting the steam generator passes through a flue gas desulfurization system and a particulate removal system.

  15. Effect of increase in intraperitoneal pressure on fluid distribution in tissue using finite difference method

    NASA Astrophysics Data System (ADS)

    Putri, Selmi; Arif, Idam; Khotimah, Siti Nurul

    2015-04-01

    In this study, peritoneal dialysis transport system was numerically simulated using finite difference method. The increase in the intraperitoneal pressure due to coughing has a high value outside the working area of the void volume fraction of the hydrostatic pressure θ(P). Therefore to illustrate the effects of the pressure increment, the pressure of working area is chosen between 1 and 3 mmHg. The effects of increased pressure in peritoneal tissue cause more fluid to flow into the blood vessels and lymph. Furthermore, the increased pressure in peritoneal tissue makes the volumetric flux jv and solute flux js across the tissue also increase. The more fluid flow into the blood vessels and lymph causes the fluid to flow into tissue qv and the glucose flow qs to have more negative value and also decreases the glucose concentration CG in the tissue.

  16. 42 CFR 84.157 - Airflow resistance test; Type C supplied-air respirator, pressure-demand class; minimum...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... respirator, pressure-demand class; minimum requirements. 84.157 Section 84.157 Public Health PUBLIC HEALTH... test; Type C supplied-air respirator, pressure-demand class; minimum requirements. (a) The static pressure in the facepiece shall not exceed 38 mm. (1.5 inches) of water-column height. (b) The pressure...

  17. 49 CFR 393.51 - Warning signals, air pressure and vacuum gauges.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 5 2012-10-01 2012-10-01 false Warning signals, air pressure and vacuum gauges... and vacuum gauges. (a) General Rule. Every bus, truck and truck tractor, except as provided in.... (d) Vacuum brakes. A commercial motor vehicle (regardless of the date it was manufactured)...

  18. 49 CFR 393.51 - Warning signals, air pressure and vacuum gauges.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 5 2013-10-01 2013-10-01 false Warning signals, air pressure and vacuum gauges... and vacuum gauges. (a) General Rule. Every bus, truck and truck tractor, except as provided in.... (d) Vacuum brakes. A commercial motor vehicle (regardless of the date it was manufactured)...

  19. 49 CFR 393.51 - Warning signals, air pressure and vacuum gauges.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 5 2011-10-01 2011-10-01 false Warning signals, air pressure and vacuum gauges... and vacuum gauges. (a) General Rule. Every bus, truck and truck tractor, except as provided in.... (d) Vacuum brakes. A commercial motor vehicle (regardless of the date it was manufactured)...

  20. 49 CFR 393.51 - Warning signals, air pressure and vacuum gauges.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 5 2010-10-01 2010-10-01 false Warning signals, air pressure and vacuum gauges... and vacuum gauges. (a) General Rule. Every bus, truck and truck tractor, except as provided in.... (d) Vacuum brakes. A commercial motor vehicle (regardless of the date it was manufactured)...

  1. 49 CFR 393.51 - Warning signals, air pressure and vacuum gauges.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 5 2014-10-01 2014-10-01 false Warning signals, air pressure and vacuum gauges... and vacuum gauges. (a) General Rule. Every bus, truck and truck tractor, except as provided in.... (d) Vacuum brakes. A commercial motor vehicle (regardless of the date it was manufactured)...

  2. Negative Intraoral Air Pressures of Deaf Children with Cochlear Implants: Physiology, Phonology, and Treatment.

    ERIC Educational Resources Information Center

    Higgins, Maureen B.; And Others

    1996-01-01

    A study of four children with deafness who had cochlear implants investigated the use of negative intraoral air pressure in articulation, from both the physiological and phonological perspectives. The study showed that the children used speech-production strategies that were different from hearing children and that deviant speech behaviors should…

  3. Compressed-air work is entering the field of high pressures.

    PubMed

    Le Péchon, J Cl; Gourdon, G

    2010-01-01

    Since 1850, compressed-air work has been used to prevent shafts or tunnels under construction from flooding. Until the 1980s, workers were digging in compressed-air environments. Since the introduction of tunnel boring machines (TBMs), very little digging under pressure is needed. However, the wearing out of cutter-head tools requires inspection and repair. Compressed-air workers enter the pressurized working chamber only occasionally to perform such repairs. Pressures between 3.5 and 4.5 bar, that stand outside a reasonable range for air breathing, were reached by 2002. Offshore deep diving technology had to be adapted to TBM work. Several sites have used mixed gases: in Japan for deep shaft sinking (4.8 bar), in The Netherlands at Western Scheldt Tunnels (6.9 bar), in Russia for St. Petersburg Metro (5.8 bar) and in the United States at Seattle (5.8 bar). Several tunnel projects are in progress that may involve higher pressures: Hallandsås (Sweden) interventions in heliox saturation up to 13 bar, and Lake Mead (U.S.) interventions to about 12 bar (2010). Research on TBMs and grouting technologies tries to reduce the requirements for hyperbaric works. Adapted international rules, expertise and services for saturation work, shuttles and trained personnel matching industrial requirements are the challenges. PMID:20737925

  4. SOIL-AIR PERMEABILITY MEASUREMENT WITH A TRANSIENT PRESSURE BUILDUP METHOD

    EPA Science Inventory

    An analytical solution for transient pressure change in a single venting well was derived from mass conservation of air, Darcy's law of flow in porous media, and the ideal gas law equation of state. Slopes of plots of Pw2 against ln (t+Δt)/Δt similar to Homer's plot were used to ...

  5. The Impact of a Science Demonstration on Children's Understanding of Air Pressure.

    ERIC Educational Resources Information Center

    Shepardson, Damiel P.; And Others

    1994-01-01

    Examines 52 fifth graders' written and oral responses to determine the impact of a scientific demonstration on their understanding of air pressure. For one-third of the children, the demonstration reinforced previous understanding. Recommendations for using demonstrations to promote children's scientific understanding are presented. (ZWH)

  6. The Determination of the Percent of Oxygen in Air Using a Gas Pressure Sensor

    ERIC Educational Resources Information Center

    Gordon, James; Chancey, Katherine

    2005-01-01

    The experiment of determination of the percent of oxygen in air is performed in a general chemistry laboratory in which students compare the results calculated from the pressure measurements obtained with the calculator-based systems to those obtained in a water-measurement method. This experiment allows students to explore a fundamental reaction…

  7. Promoting Students' Learning of Air Pressure Concepts: The Interrelationship of Teaching Approaches and Student Learning Characteristics

    ERIC Educational Resources Information Center

    She, Hsiao-Ching

    2005-01-01

    The author explored the potential to promote students' understanding of difficult science concepts through an examination of the inter-relationships among the teachers' instructional approach, students' learning preference styles, and their levels of learning process. The concept "air pressure," which requires an understanding of invisible,…

  8. Near-complete optic nerve transection by high-pressure air

    PubMed Central

    Ko, Soo Won; Lee, Jong Seok; Choi, Han Sung; Ko, Young Gwan; Hong, Hoon Pyo

    2016-01-01

    The use of high-pressure air instruments has become more common. Consequently, there have been a number of cases of orbital emphysema caused by contact with high-pressure air. In this case, a 62-year-old male patient visited an emergency medical center after his left eye was shot by an air compressor gun that was used to wash cars. Lacerations were observed in the upper and lower eyelids of his left eye. Radiological examinations revealed orbital emphysema, optic nerve transection, pneumocephalus, and subcutaneous emphysema in the face, neck, shoulder, and mediastinum. Canalicular injury repair was performed, and the emphysema resolved. However, there was near-complete vision loss in the patient’s left eye. Because most optic nerve transections occur after a severe disruption in bone structure, pure optic nerve transections without any injury of the bone structure, as in the present case, is extremely rare. PMID:27752640

  9. An investigation of air solubility in Jet A fuel at high pressures

    NASA Technical Reports Server (NTRS)

    Faeth, G. M.

    1981-01-01

    Problems concerned with the supercritical injection concept are discussed. Supercritical injection involves dissolving air into a fuel prior to injection. A similar effect is obtained by preheating the fuel so that a portion of the fuel flashes when its pressure is reduced. Flashing improves atomization properties and the presence of air in the primary zone of a spray flame reduces the formation of pollutants. The investigation is divided into three phases: (1) measure the solubility and density properties of fuel/gas mixtures, including Jet A/air, at pressures and correlate these results using theory; (2) investigate the atomization properties of flashing liquids, including fuel/dissolved gas systems. Determine and correlate the effect of inlet properties and injector geometry on mass flow rates, Sauter mean diameter and spray angles; (3) examine the combustion properties of flashing injection in an open burner flame, considering flame shape and soot production.

  10. Extinction of Lean Near-Limit Methane/Air Flames at Elevated Pressures under Normal- and Micro-Gravity

    SciTech Connect

    Zhang, H.; Fan, R.; Wang, S.; Tian, X.; Xu, K.; Wan, S.; Egolfopoulos, Fokion N.

    2011-01-01

    The extinction limits of lean, near-limit, counterflowing, CH{sub 4}/air twin premixed flames were studied experimentally at evaluated pressures and under normal- and micro-gravity conditions utilizing the 3.5 s drop tower of the National Microgravity Laboratory of China. The results showed that under micro-gravity conditions the natural convection is minimized and the flames become more planar and symmetric compared to normal gravity. In both normal- and micro-gravity experiments and for a given strain rate and fuel concentration, the flame luminosity was found to enhance as the pressure increases. On the other hand, at a given pressure, the flame luminosity was determined to weaken as the strain rate decreases. At a given strain rate, the fuel concentration at extinction was found to vary non-monotonically with pressure, namely it first increases and subsequently decreases with pressure. The limit fuel concentration peaks around 3 and 4 atm under normal- and micro-gravity, respectively. The extinction limits measured at micro-gravity were in good agreement with predictions obtained through detailed numerical simulations but they are notably lower compared to the data obtained under normal gravity. The simulations confirmed the non-monotonic variation of flammability limits with pressure, in agreement with previous studies. Sensitivity analysis showed that for pressures between one and 5 atm, the near-limit flame response is dominated by the competition between the main branching, H + O{sub 2} → OH + O, and the pressure sensitive termination, H + O{sub 2} + M → HO{sub 2} + M, reaction. However, for pressures greater than 5 atm it was determined that the HO{sub 2} kinetics result in further chain branching in a way that is analogous to the third explosion limit of H{sub 2}/O{sub 2} mixtures.

  11. Investigation of the reaction of liquid hydrogen with liquid air in a pressure tube

    NASA Technical Reports Server (NTRS)

    Karb, Erich H.

    1987-01-01

    A pressure tube should protect the FR-2 reactor from the consequences of a hydrogen-air reaction, which is conceivable in the breakdown of several safety devices of the planned cold neutron source Project FR-2/16. The magnitudes and time pattern of the pressures to be expected were investigated. In the geometry used and the ignition mechanism selected, which is comparable to the strongest ignition process conceivable in the reactor, the reaction proceeds with greater probability than combustion. The combustion is possibly smaller if local limited partial detonations are superimposed. The magnitude of the pressure was determined by the masses of the reaction partners, liquid H2 and liquid air, and determines their ratio to each other.

  12. Kinetic studies of NO formation in pulsed air-like low-pressure dc plasmas

    NASA Astrophysics Data System (ADS)

    Hübner, M.; Gortschakow, S.; Guaitella, O.; Marinov, D.; Rousseau, A.; Röpcke, J.; Loffhagen, D.

    2016-06-01

    The kinetics of the formation of NO in pulsed air-like dc plasmas at a pressure of 1.33 mbar and mean currents between 50 and 150 mA of discharge pulses with 5 ms duration has been investigated both experimentally and by self-consistent numerical modelling. Using time-resolved quantum cascade laser absorption spectroscopy, the densities of NO, NO2 and N2O have been measured in synthetic air as well as in air with 0.8% of NO2 and N2O, respectively. The temporal evolution of the NO density shows four distinct phases during the plasma pulse and the early afterglow in the three gas mixtures that were used. In particular, a steep density increase during the ignition phase and after termination of the discharge current pulse has been detected. The NO concentration has been found to reach a constant value of 0.57× {{10}14}~\\text{molecules}~\\text{c}{{\\text{m}}-3} , 1.05× {{10}14}~\\text{molecules}~\\text{c}{{\\text{m}}-3} , and 1.3× {{10}14}~\\text{molecules}~\\text{c}{{\\text{m}}-3} for mean plasma currents of 50 mA, 100 mA and 150 mA, respectively, in the afterglow. The measured densities of NO2 and N2O in the respective mixture decrease exponentially during the plasma pulse and remain almost constant in the afterglow, especially where the admixture of NO2 has a remarkable impact on the NO production during the ignition. The numerical results of the coupled solution of a set of rate equations for the various heavy particles and the time-dependent Boltzmann equation of the electrons agree quite well with the experimental findings for the different air-like plasmas. The main reaction processes have been analysed on the basis of the model calculations and the remaining differences between the experiment and modelling especially during the afterglow are discussed.

  13. PTV analysis of the entrained air into the diesel spray at high-pressure injection

    NASA Astrophysics Data System (ADS)

    Toda, Naoki; Yamashita, Hayato; Mashida, Makoto

    2014-08-01

    In order to clarify the effect of high-pressure injection on soot reduction in terms of the air entrainment into spray, the air flow surrounding the spray and set-off length indicating the distance from the nozzle tip to the flame region in diffusion diesel combustion were investigated using 300MPa injection of a multi-hole injector. The measurement of the air entrainment flow was carried out at non-evaporating condition using consecutive PTV (particle tracking velocimetry) method with a high-speed camera and a high-frequency pulse YAG laser. The set-off length was measured at highpressure and high-temperature using the combustion bomb of constant volume and optical system of shadow graph method. And the amount of air entrainment into spray until reaching set-off length in diffusion combustion was studied as a factor of soot formation.

  14. Time evolution of nanosecond runaway discharges in air and helium at atmospheric pressure

    SciTech Connect

    Yatom, S.; Vekselman, V.; Krasik, Ya. E.

    2012-12-15

    Time- and space-resolved fast framing photography was employed to study the discharge initiated by runaway electrons in air and He gas at atmospheric pressure. Whereas in the both cases, the discharge occurs in a nanosecond time scale and its front propagates with a similar velocity along the cathode-anode gap, the later stages of the discharge differ significantly. In air, the main discharge channels develop and remain in the locations with the strongest field enhancement. In He gas, the first, diode 'gap bridging' stage, is similar to that obtained in air; however, the development of the discharge that follows is dictated by an explosive electron emission from micro-protrusions on the edge of the cathode. These results allow us to draw conclusions regarding the different conductivity of the plasma produced in He and air discharges.

  15. Generation of large-area and glow-like surface discharge in atmospheric pressure air

    NASA Astrophysics Data System (ADS)

    Song, Ying; Xia, Yang; Bi, Zhenhua; Wang, Xueyang; Qi, Zhihua; Ji, Longfei; Li, Bin; Liu, Dongping

    2016-08-01

    A large-area (6 cm × 6 cm) air surface dielectric barrier discharge has been generated at atmospheric pressure by using well-aligned and micron-sized dielectric tubes with tungsten wire electrodes. Intensified CCD images with an exposure time of 5 ns show that the uniform surface air discharge can be generated during the rising and falling time of pulsed DC voltage. Current and voltage and optical measurements confirm the formation of glow-like air discharges on the surface of micron-sized dielectric tubes. Simulation results indicate that the microelectrode configuration contributes to the formation of strong surface electric field and plays an important role in the generation of uniform surface air discharge.

  16. Pressure dependence of NO formation in laminar fuel-rich premixed CH{sub 4}/air flames

    SciTech Connect

    van Essen, V.M.; Sepman, A.V.; Mokhov, A.V.; Levinsky, H.B.

    2008-05-15

    Effects of pressure on NO formation in CH{sub 4}/air flames at a fixed equivalence ratio of 1.3 are investigated. The axial profiles of temperature, OH, CH, and NO mole fractions are measured using laser-induced fluorescence and compared with one-dimensional flame calculations. The measured and calculated temperature, CH, and NO profiles in free flames are observed to vary upon increasing the pressure from 40 to 75 Torr, following a scaling law derived for a chemical mechanism containing only second-order reactions. At pressures 300-760 Torr, the measurements and calculations in burner-stabilized flames show increasing flame temperature and NO mole fractions when the mass flux is increased linearly with pressure, while the CH profiles remain unchanged. The observed deviation from the scaling law in the temperature profiles arises from the increasing contribution of three-body reactions to the flame front propagation velocity, leading to a decrease in the degree of burner stabilization. The deviation from the pressure scaling law for the NO mole fractions is due to the temperature dependence of the rate coefficient for the reaction between CH and N{sub 2} and the fact that the temperature profiles themselves do not scale. In contrast, the surprisingly good scaling of the CH mole fractions with pressure indicates the dominant role of two-body reactions participating in the chain of chemical reactions leading to CH formation. The calculations using GRI-Mech 3.0 substantially overpredict (up to 50%) the measured nitric oxide concentrations for all pressures studied. The observed differences in the NO mole fraction may be addressed by improving the CH prediction. (author)

  17. A micro-machined piezoelectric flexural-mode hydrophone with air backing: a hydrostatic pressure-balancing mechanism for integrity preservation.

    PubMed

    Choi, Sungjoon; Lee, Haksue; Moon, Wonkyu

    2010-09-01

    Although an air-backed thin plate is an effective sound receiver structure, it is easily damaged via pressure unbalance caused by external hydrostatic pressure. To overcome this difficulty, a simple pressure-balancing module is proposed. Despite its small size and relative simplicity, with proper design and operation, micro-channel structure provides a solution to the pressure-balancing problem. If the channel size is sufficiently small, the gas-liquid interface may move back and forth without breach by the hydrostatic pressure since the surface tension can retain the interface surface continuously. One input port of the device is opened to an intermediate liquid, while the other port is connected to the air-backing chamber. As the hydrostatic pressure increases, the liquid in the micro-channel compresses the air, and the pressure in the backing chamber is then equalized to match the external hydrostatic pressure. To validate the performance of the proposed mechanism, a micro-channel prototype is designed and integrated with the piezoelectric micro-machined flexural sensor developed in our previous work. The working principle of the mechanism is experimentally verified. In addition, the effect of hydrostatic pressure on receiving sensitivity is evaluated and compared with predicted behavior.

  18. Gas bubble dimensions in Archean lava flows indicate low air pressure at 2.7 Ga

    NASA Astrophysics Data System (ADS)

    Som, S. M.; Buick, R.; Hagadorn, J.; Blake, T.; Perreault, J.; Harnmeijer, J.; Catling, D. C.

    2014-12-01

    Air pressure constrains atmospheric composition, which, in turn, is linked to the Earth system through biogeochemical cycles and fluxes of volatiles from and to the Earth's interior. Previous studies have only placed maximum levels on surface air pressure for the early Earth [1]. Here, we calculate an absolute value for Archean barometric pressure using gas bubble size (vesicle) distributions in uninflated basaltic lava flows that solidified at sea level 2.7 billion years ago in the Pilbara Craton, Western Australia. These vesicles have been filled in by secondary minerals deposited during metasomatism and so are now amydules, but thin sections show that infilling did not change vesicle dimensions. Amygdule dimensions are measured using high-resolution X-ray tomography from core samples obtained from the top and bottom of the lava flows. The modal size expressed at the top and at the bottom of an uninflated flow can be linked to atmospheric pressure using the ideal gas law. Such a technique has been verified as a paleoaltimeter using Hawaiian Quaternary lava flows [2]. We use statistical methods to estimate the mean and standard deviation of the volumetric size of the amygdules by applying 'bootstrap'resampling and the Central Limit Theorem. Our data indicate a surprisingly low atmospheric pressure. Greater nitrogen burial under anaerobic conditions likely explains lower pressure. Refs: [1] Som et al. (2012) Nature 484, 359-262. D. L. Sahagian et al. (2002) J. Geol., 110, 671-685.

  19. Calibrating airborne measurements of airspeed, pressure and temperature using a Doppler laser air-motion sensor

    NASA Astrophysics Data System (ADS)

    Cooper, W. A.; Spuler, S. M.; Spowart, M.; Lenschow, D. H.; Friesen, R. B.

    2014-09-01

    A new laser air-motion sensor measures the true airspeed with a standard uncertainty of less than 0.1 m s-1 and so reduces uncertainty in the measured component of the relative wind along the longitudinal axis of the aircraft to about the same level. The calculated pressure expected from that airspeed at the inlet of a pitot tube then provides a basis for calibrating the measurements of dynamic and static pressure, reducing standard uncertainty in those measurements to less than 0.3 hPa and the precision applicable to steady flight conditions to about 0.1 hPa. These improved measurements of pressure, combined with high-resolution measurements of geometric altitude from the global positioning system, then indicate (via integrations of the hydrostatic equation during climbs and descents) that the offset and uncertainty in temperature measurement for one research aircraft are +0.3 ± 0.3 °C. For airspeed, pressure and temperature, these are significant reductions in uncertainty vs. those obtained from calibrations using standard techniques. Finally, it is shown that although the initial calibration of the measured static and dynamic pressures requires a measured temperature, once calibrated these measured pressures and the measurement of airspeed from the new laser air-motion sensor provide a measurement of temperature that does not depend on any other temperature sensor.

  20. Long-Term Urban Particulate Air Pollution, Traffic Noise, and Arterial Blood Pressure

    PubMed Central

    Moebus, Susanne; Hertel, Sabine; Viehmann, Anja; Nonnemacher, Michael; Dragano, Nico; Möhlenkamp, Stefan; Jakobs, Hermann; Kessler, Christoph; Erbel, Raimund; Hoffmann, Barbara

    2011-01-01

    Background: Recent studies have shown an association of short-term exposure to fine particulate matter (PM) with transient increases in blood pressure (BP), but it is unclear whether long-term exposure has an effect on arterial BP and hypertension. Objectives: We investigated the cross-sectional association of residential long-term PM exposure with arterial BP and hypertension, taking short-term variations of PM and long-term road traffic noise exposure into account. Methods: We used baseline data (2000–2003) on 4,291 participants, 45–75 years of age, from the Heinz Nixdorf Recall Study, a population-based prospective cohort in Germany. Urban background exposure to PM with aerodynamic diameter ≤ 2.5 μm (PM2.5) and ≤ 10 μm (PM10) was assessed with a dispersion and chemistry transport model. We used generalized additive models, adjusting for short-term PM, meteorology, traffic proximity, and individual risk factors. Results: An interquartile increase in PM2.5 (2.4 μg/m3) was associated with estimated increases in mean systolic and diastolic BP of 1.4 mmHg [95% confidence interval (CI): 0.5, 2.3] and 0.9 mmHg (95% CI: 0.4, 1.4), respectively. The observed relationship was independent of long-term exposure to road traffic noise and robust to the inclusion of many potential confounders. Residential proximity to high traffic and traffic noise exposure showed a tendency toward higher BP and an elevated prevalence of hypertension. Conclusions: We found an association of long-term exposure to PM with increased arterial BP in a population-based sample. This finding supports our hypothesis that long-term PM exposure may promote atherosclerosis, with air-pollution–induced increases in BP being one possible biological pathway. PMID:21827977

  1. A Comparative Study of Sound Speed in Air at Room Temperature between a Pressure Sensor and a Sound Sensor

    ERIC Educational Resources Information Center

    Amrani, D.

    2013-01-01

    This paper deals with the comparison of sound speed measurements in air using two types of sensor that are widely employed in physics and engineering education, namely a pressure sensor and a sound sensor. A computer-based laboratory with pressure and sound sensors was used to carry out measurements of air through a 60 ml syringe. The fast Fourier…

  2. 42 CFR 84.157 - Airflow resistance test; Type C supplied-air respirator, pressure-demand class; minimum...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... test; Type C supplied-air respirator, pressure-demand class; minimum requirements. (a) The static... 42 Public Health 1 2012-10-01 2012-10-01 false Airflow resistance test; Type C supplied-air respirator, pressure-demand class; minimum requirements. 84.157 Section 84.157 Public Health PUBLIC...

  3. 42 CFR 84.157 - Airflow resistance test; Type C supplied-air respirator, pressure-demand class; minimum...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... test; Type C supplied-air respirator, pressure-demand class; minimum requirements. (a) The static... 42 Public Health 1 2013-10-01 2013-10-01 false Airflow resistance test; Type C supplied-air respirator, pressure-demand class; minimum requirements. 84.157 Section 84.157 Public Health PUBLIC...

  4. 42 CFR 84.157 - Airflow resistance test; Type C supplied-air respirator, pressure-demand class; minimum...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... test; Type C supplied-air respirator, pressure-demand class; minimum requirements. (a) The static... 42 Public Health 1 2014-10-01 2014-10-01 false Airflow resistance test; Type C supplied-air respirator, pressure-demand class; minimum requirements. 84.157 Section 84.157 Public Health PUBLIC...

  5. 42 CFR 84.157 - Airflow resistance test; Type C supplied-air respirator, pressure-demand class; minimum...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... test; Type C supplied-air respirator, pressure-demand class; minimum requirements. (a) The static... 42 Public Health 1 2011-10-01 2011-10-01 false Airflow resistance test; Type C supplied-air respirator, pressure-demand class; minimum requirements. 84.157 Section 84.157 Public Health PUBLIC...

  6. The Effect of Increased Carburetor Pressure on Engine Performance at Several Compression Ratios

    NASA Technical Reports Server (NTRS)

    Schey, Oscar W; Rollin, Vern G

    1933-01-01

    The object of this investigation was to determine the effect of increasing the carburetor pressures from 30 to 40 inches of mercury, at compression ratios from 3.5 to 7.5, on the power, on the maximum cylinder pressures, on the fuel consumption, and on the other performance characteristics of an engine. A roots-type aircraft-engine supercharger was used to maintain the desired carburetor pressure.

  7. Ductile creep and compaction: A mechanism for transiently increasing fluid pressure in mostly sealed fault zones

    USGS Publications Warehouse

    Sleep, N.H.; Blanpied, M.L.

    1994-01-01

    A simple cyclic process is proposed to explain why major strike-slip fault zones, including the San Andreas, are weak. Field and laboratory studies suggest that the fluid within fault zones is often mostly sealed from that in the surrounding country rock. Ductile creep driven by the difference between fluid pressure and lithostatic pressure within a fault zone leads to compaction that increases fluid pressure. The increased fluid pressure allows frictional failure in earthquakes at shear tractions far below those required when fluid pressure is hydrostatic. The frictional slip associated with earthquakes creates porosity in the fault zone. The cycle adjusts so that no net porosity is created (if the fault zone remains constant width). The fluid pressure within the fault zone reaches long-term dynamic equilibrium with the (hydrostatic) pressure in the country rock. One-dimensional models of this process lead to repeatable and predictable earthquake cycles. However, even modest complexity, such as two parallel fault splays with different pressure histories, will lead to complicated earthquake cycles. Two-dimensional calculations allowed computation of stress and fluid pressure as a function of depth but had complicated behavior with the unacceptable feature that numerical nodes failed one at a time rather than in large earthquakes. A possible way to remove this unphysical feature from the models would be to include a failure law in which the coefficient of friction increases at first with frictional slip, stabilizing the fault, and then decreases with further slip, destabilizing it. ?? 1994 Birkha??user Verlag.

  8. Vibration-to-translation energy transfer in atmospheric-pressure streamer discharge in dry and humid air

    NASA Astrophysics Data System (ADS)

    Komuro, Atsushi; Takahashi, Kazunori; Ando, Akira

    2015-10-01

    Vibration-to-translation (V-T) energy transfer in atmospheric-pressure streamer discharge is numerically simulated using a two-dimensional electro-hydrodynamic model. The model includes state-to-state vibrational kinetics in humid air and is coupled with the compressible flow equation of the gas fluid. The vibrational distribution of {{\\text{O}}2}(v) reaches equilibrium more quickly than that of {{\\text{N}}2}(v) , whereas the energy released from {{\\text{O}}2}(v) does not increase the gas temperature. In humid air, the decay rate of the vibrational energy of {{\\text{N}}2}(v) is accelerated by the V-T energy transfer through water molecules and the energy heats the gas. However, the increase in gas temperature due to V-T energy transfer is not always seen because it competes with thermal diffusion.

  9. Infradian, notably circaseptan testable feedsidewards among chronomes of the ECG and air temperature and pressure.

    PubMed

    Delyukov, A; Gorgo, Y; Cornélissen, G; Otsuka, K; Halberg, F

    2001-01-01

    To study the interactions among the natural physical environmental cycles and human infradian components of heart rate (HR) and HR variability (HRV), a healthy 49-year-old man in Kiev, who had monitored his electrocardiogram (ECG) around the clock earlier for 50 days, added at a later date with the same ambulatorily wearable device, a record of 70 days. The mean value of the R-R intervals (R-R), their standard deviation (SDNN) and other HRV endpoints, computed over consecutive 5-min intervals, served as markers of the subject's functional associations with the amplitude of fluctuations in atmospheric pressure (FAP) and the planetary Kp index of geomagnetic disturbance. About-weekly and half-weekly cycles in HRV endpoints indicate a reduction in physiological 'preparedness', here described as 'dynamics', of the subject investigated on Saturdays and Sundays and a sharp increase in 'dynamics' on Mondays. The waveform of the weekly oscillation seemed to be influenced by ambient air temperature and FAP. On Mondays, an FAP amplification or a temperature rise was accompanied by a significant decrease in R-R and SDNN, indicating an aggravation of a 'Monday effect' in physiological 'dynamics'. HRV endpoints also revealed about-5-day and about-12-day cyclic components similar to those found in FAP. The infradian pattern in a 70-day record differed from one found earlier in a 50-day record of the same subject. Changes in the natural physical environment (past as well as present), especially in air temperature and FAP, likely influence(d) if not synchronize(d) the amplitude and waveform of infradian weekly and half-weekly physiological cycles. Some of these infradians, their wobbly nature notwithstanding, may have been built into our temporal make-up by an evolutionary integration of life in the non-stationary quasi-periodic natural physical environment, which continues to contribute to variability. PMID:11774873

  10. Laminar burning velocities of lean hydrogen-air mixtures at pressures up to 1.0 MPa

    SciTech Connect

    Bradley, D.; Lawes, M.; Liu, Kexin; Woolley, R.; Verhelst, S.

    2007-04-15

    Values of laminar burning velocity, u{sub l}, and the associated strain rate Markstein number, Ma{sub sr}, of H{sub 2}-air mixtures have been obtained from measurements of flame speeds in a spherical explosion bomb with central ignition. Pressures ranged from 0.1 to 1.0 MPa, with values of equivalence ratio between 0.3 and 1.0. Many of the flames soon became unstable, with an accelerating flame speed, due to Darrieus-Landau and thermodiffusive instabilities. This effect increased with pressure. The flame wrinkling arising from the instabilities enhanced the flame speed. A method is described for allowing for this effect, based on measurements of the flame radii at which the instabilities increased the flame speed. This enabled u{sub l} and Ma{sub sr} to be obtained, devoid of the effects of instabilities. With increasing pressure, the time interval between the end of the ignition spark and the onset of flame instability, during which stable stretched flame propagation occurred, became increasingly small and very high camera speeds were necessary for accurate measurement. Eventually this time interval became so short that first Ma{sub sr} and then u{sub l} could not be measured. Such flame instabilities throw into question the utility of u{sub l} for high pressure, very unstable, flames. The measured values of u{sub l} are compared with those predicted by detailed chemical kinetic models of one-dimensional flames. (author)

  11. A severe case of systemic lupus erythematosus with increased pressure communicating hydrocephalus

    PubMed Central

    Özen, Gülşen; Yılmaz-Öner, Sibel; Tuncer, Neşe; Akbaş, Türkay; Tuğlular, Serhan; Direskeneli, Haner

    2015-01-01

    Normal/increased pressure hydrocephaly is an unusual manifestation of systemic lupus erythematosus (SLE), and the pathogenesis is still unclear. We report the case of an 18-year-old white female with severe refractory renal and pulmonary involvement who developed stupor during intensive immunosuppressive treatment. Enlarged ventricles on imaging and increased intracranial pressure with the exclusion of infectious and hemorrhagic/thrombotic processes suggested increased pressure communicating hydrocephalus associated with SLE. Few case reports are reviewed, and potential pathophysiologic mechanisms are discussed. PMID:27708931

  12. Heat transfer and pressure drop for air flow through enhanced passages

    SciTech Connect

    Obot, N.T.; Esen, E.B.

    1992-06-01

    An extensive experimental investigation was carried out to determine the pressure drop and heat transfer characteristics for laminar, transitional and turbulent flow of air through a smooth passage and twenty-three enhanced passages. The internal surfaces of all enhanced passages had spirally shaped geometries; these included fluted, finned/ribbed and indented surfaces. The Reynolds number (Re) was varied between 400 and 50000. The effect of heat transfer (wall cooling or fluid heating) on pressure drop is most significant within the transition region; the recorded pressure drop with heat transfer is much higher than that without heat transfer. The magnitude of this effect depends markedly on the average surface temperature and, to a lesser extent, on the geometric characteristics of the enhanced surfaces. When the pressure drop data are reduced as values of the Fanning friction factor(f), the results are about the same with and without heat transfer for turbulent flow, with moderate differences in the laminar and transition regions.

  13. Heat transfer and pressure drop for air flow through enhanced passages. Final report

    SciTech Connect

    Obot, N.T.; Esen, E.B.

    1992-06-01

    An extensive experimental investigation was carried out to determine the pressure drop and heat transfer characteristics for laminar, transitional and turbulent flow of air through a smooth passage and twenty-three enhanced passages. The internal surfaces of all enhanced passages had spirally shaped geometries; these included fluted, finned/ribbed and indented surfaces. The Reynolds number (Re) was varied between 400 and 50000. The effect of heat transfer (wall cooling or fluid heating) on pressure drop is most significant within the transition region; the recorded pressure drop with heat transfer is much higher than that without heat transfer. The magnitude of this effect depends markedly on the average surface temperature and, to a lesser extent, on the geometric characteristics of the enhanced surfaces. When the pressure drop data are reduced as values of the Fanning friction factor(f), the results are about the same with and without heat transfer for turbulent flow, with moderate differences in the laminar and transition regions.

  14. Atmospheric pressure air-plasma jet evolved from microdischarges: Eradication of E. coli with the jet

    SciTech Connect

    Hong, Yong Cheol; Kang, Won Seok; Hong, Yoo Beom; Yi, Won Ju; Uhm, Han Sup

    2009-12-15

    An atmospheric-pressure air-plasma jet operating at 60 Hz ac is presented. A plasma jet with a length of 23 mm was produced by feeding air through a porous alumina dielectric installed between an outer electrode and a hollow inner electrode. Microdischarges in the porous alumina are ejected as a plasma jet from the outer electrode through a 1 mm hole, showing that the temperature of the jet decreases to a value close to the room temperature. The jet disinfects E. coli cells very effectively, eradicating them with an exposure of a few seconds to the jet flame.

  15. Evaluation of pressure response in the Los Alamos controlled air incinerator during three incident scenarios

    SciTech Connect

    Vavruska, J.S.; Elsberry, K.; Thompson, T.K.; Pendergrass, J.A.

    1996-05-01

    The Los Alamos Controlled Air Incinerator (CAI) is a system designed to accept radioactive mixed waste containing alpha-emitting radionuclides. A mathematical model was developed to predict the pressure response throughout the offgas treatment system of the CAI during three hypothetical incident scenarios. The scenarios examined included: (1) loss of burner flame and failure of the flame safeguard system with subsequent reignition of fuel gas in the primary chamber, (2) pyrolytic gas buildup from a waste package due to loss of induced draft and subsequent restoration of induced draft, and (3) accidental charging of propellant spray cans in a solid waste package to the primary chamber during a normal feed cycle. For each of the three scenarios, the finite element computer model was able to determine the transient pressure surge and decay response throughout the system. Of particular interest were the maximum absolute pressures attainable at critical points in the system as well as maximum differential pressures across the high efficiency particulate air (HEPA) filters. Modeling results indicated that all three of the scenarios resulted in maximum HEPA filter differential pressures well below the maximum allowable levels.

  16. Calibrating airborne measurements of airspeed, pressure and temperature using a Doppler laser air-motion sensor

    NASA Astrophysics Data System (ADS)

    Cooper, W. A.; Spuler, S. M.; Spowart, M.; Lenschow, D. H.; Friesen, R. B.

    2014-03-01

    A new laser air-motion sensor measures the true airspeed with an uncertainty of less than 0.1 m s-1 (standard error) and so reduces uncertainty in the measured component of the relative wind along the longitudinal axis of the aircraft to about the same level. The calculated pressure expected from that airspeed at the inlet of a pitot tube then provides a basis for calibrating the measurements of dynamic and static pressure, reducing standard-error uncertainty in those measurements to less than 0.3 hPa and the precision applicable to steady flight conditions to about 0.1 hPa. These improved measurements of pressure, combined with high-resolution measurements of geometric altitude from the Global Positioning System, then indicate (via integrations of the hydrostatic equation during climbs and descents) that the offset and uncertainty in temperature measurement for one research aircraft are +0.3 ± 0.3 °C. For airspeed, pressure and temperature these are significant reductions in uncertainty vs. those obtained from calibrations using standard techniques. Finally, it is shown that the new laser air-motion sensor, combined with parametrized fits to correction factors for the measured dynamic and ambient pressure, provides a measurement of temperature that is independent of any other temperature sensor.

  17. Nanosecond Repetitively Pulsed Discharges in Air at Atmospheric Pressure -- Experiment and Theory of Regime Transitions

    NASA Astrophysics Data System (ADS)

    Pai, David; Lacoste, Deanna; Laux, Christophe

    2009-10-01

    In atmospheric pressure air preheated from 300 to 1000 K, the Nanosecond Repetitively Pulsed (NRP) method has been used to generate corona, glow, and spark discharges. Experiments have been performed to determine the parameter space (applied voltage, pulse repetition frequency, ambient gas temperature, and inter-electrode gap distance) of each discharge regime. Notably, there is a minimum gap distance for the existence of the glow regime that increases with decreasing gas temperature. A theory is developed to describe the Corona-to-Glow (C-G) and Glow-to-Spark (G-S) transitions for NRP discharges. The C-G transition is shown to depend on the Avalanche-to-Streamer Transition (AST) as well as the electric field strength in the positive column. The G-S transition is due to the thermal ionization instability. The minimum gap distance for the existence of the glow regime can be understood by considering that the applied voltage of the AST must be lower than that of the thermal ionization instability. This is a previously unknown criterion for generating glow discharges, as it does not correspond to the Paschen minimum or to the Meek-Raether criterion.

  18. Functionalization of graphene by atmospheric pressure plasma jet in air or H2O2 environments

    NASA Astrophysics Data System (ADS)

    Huang, Weixin; Ptasinska, Sylwia

    2016-03-01

    The functionalization of graphene, which deforms its band structure, can result in a metal-semiconductor transition. In this work, we report a facile strategy to oxidize single-layer graphene using an atmospheric pressure plasma jet (APPJ) that generates a variety of reactive plasma species at close to ambient temperature. We systematically characterized the oxygen content and chemical structure of the graphene films after plasma treatment under different oxidative conditions (ambient air atmosphere or hydrogen peroxide solution) by X-ray Photoelectron Spectroscopy (XPS). Plasma-treated graphene films containing more than 40% oxygen were obtained in both oxidative environments. Interestingly, prolonged irradiation led to the reduction of graphene oxides. N-doping of graphene also occurred during the APPJ treatment in H2O2 solution; the nitrogen content of the doped graphene was dependent on the duration of irradiation and reached up to 8.1% within 40 min. Moreover, the H2O2 solution served as a buffer layer that prevented damage to the graphene during plasma irradiation. Four-point probe measurement revealed an increase in sheet resistance of the plasma-treated graphene, indicating the transition of the material property from semi-metallic to semiconducting.

  19. Ignition of ethane, propane, and butane in counterflow jets of cold fuel versus hot air under variable pressures

    SciTech Connect

    Fotache, C.G.; Wang, H.; Law, C.K.

    1999-06-01

    This study investigates experimentally the nonpremixed ignition of ethane, propane, n-butane, and isobutane in a configuration of opposed fuel versus heated air jets. For each of these fuels the authors explore the effects of inert dilution, system pressure, and flow strain rate, for fuel concentrations ranging between 3--100% by volume, pressures between 0.2 and 8 atm, and strain rates of 100--600 s{sup {minus}1}. Qualitatively, these fuels share a number of characteristics. First, flame ignition typically occurs after an interval of mild oxidation, characterized by minimal heat release, fuel conversion, and weak light emission. The temperature extent of this regime decreases with increasing the fuel concentration, the ambient pressure, or the flow residence time. Second, the response to strain rate, pressure, and fuel concentration is similar for all investigated fuels, in that the ignition temperatures monotonically decrease with increasing fuel content, decreasing flow strain, and increasing ambient pressure. The C{sub 4} alkanes, however, exhibit three distinct p-T ignition regimes, similar to the homogeneous explosion limits. Finally, at 1 atm, 100% fuel, and a fixed flow strain rate the ignition temperature increases in the order of ethane < propane < n-butane < i-butane. Numerical simulation was conducted for ethane ignition using detailed reaction kinetics and transport descriptions. The modeling results suggest that ignition for all fuels studied at pressures below 5 atm is initiated by fuel oxidation following the high-temperature mechanism of radical chain branching and with little contribution by low-to-intermediate temperature chemistry.

  20. Influence of surface emission processes on a fast-pulsed dielectric barrier discharge in air at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Pechereau, François; Bonaventura, Zdeněk; Bourdon, Anne

    2016-08-01

    This paper presents simulations of an atmospheric pressure air discharge in a point-to-plane geometry with a dielectric layer parallel to the cathode plane. Experimentally, a discharge reignition in the air gap below the dielectrics has been observed. With a 2D fluid model, it is shown that due to the fast rise of the high voltage applied and the sharp point used, a first positive spherical discharge forms around the point. Then this discharge propagates axially and impacts the dielectrics. As the first discharge starts spreading on the upper dielectric surface, in the second air gap with a low preionization density of {{10}4}~\\text{c}{{\\text{m}}-3} , the 2D fluid model predicts a rapid reignition of a positive discharge. As in experiments, the discharge reignition is much slower, a discussion on physical processes to be considered in the model to increase the reignition delay is presented. The limit case with no initial seed charges in the second air gap has been studied. First, we have calculated the time to release an electron from the cathode surface by thermionic and field emission processes for a work function φ \\in ≤ft[3,4\\right] eV and an amplification factor β \\in ≤ft[100,220\\right] . Then a 3D Monte Carlo model has been used to follow the dynamics of formation of an avalanche starting from a single electron emitted at the cathode. Due to the high electric field in the second air gap, we have shown that in a few nanoseconds, a Gaussian cloud of seed charges is formed at a small distance from the cathode plane. This Gaussian cloud has been used as the initial condition of the 2D fluid model in the second air gap. In this case, the propagation of a double headed discharge in the second air gap has been observed and the reignition delay is in rather good agreement with experiments.

  1. Parameters of a supershort avalanche electron beam generated in atmospheric-pressure air

    SciTech Connect

    Tarasenko, V. F.

    2011-05-15

    Conditions under which the number of runaway electrons in atmospheric-pressure air reaches {approx}5 Multiplication-Sign 10{sup 10} are determined. Recommendations for creating runaway electron accelerators are given. Methods for measuring the parameters of a supershort avalanche electron beam and X-ray pulses from gas-filled diodes, as well as the discharge current and gap voltage, are described. A technique for determining the instant of runaway electron generation with respect to the voltage pulse is proposed. It is shown that the reduction in the gap voltage and the decrease in the beam current coincide in time. The mechanism of intense electron beam generation in gas-filled diodes is analyzed. It is confirmed experimentally that, in optimal regimes, the number of electrons generated in atmospheric-pressure air with energies T > eU{sub m}, where U{sub m} is the maximum gap voltage, is relatively small.

  2. Parameters of a supershort avalanche electron beam generated in atmospheric-pressure air

    NASA Astrophysics Data System (ADS)

    Tarasenko, V. F.

    2011-05-01

    Conditions under which the number of runaway electrons in atmospheric-pressure air reaches ˜5 × 1010 are determined. Recommendations for creating runaway electron accelerators are given. Methods for measuring the parameters of a supershort avalanche electron beam and X-ray pulses from gas-filled diodes, as well as the discharge current and gap voltage, are described. A technique for determining the instant of runaway electron generation with respect to the voltage pulse is proposed. It is shown that the reduction in the gap voltage and the decrease in the beam current coincide in time. The mechanism of intense electron beam generation in gas-filled diodes is analyzed. It is confirmed experimentally that, in optimal regimes, the number of electrons generated in atmospheric-pressure air with energies T > eU m , where U m is the maximum gap voltage, is relatively small.

  3. Open Air Silicon Deposition by Atmospheric Pressure Plasma under Local Ambient Gas Control

    NASA Astrophysics Data System (ADS)

    Naito, Teruki; Konno, Nobuaki; Yoshida, Yukihisa

    2015-09-01

    In this paper, we report open air silicon (Si) deposition by combining a silane free Si deposition technology and a newly developed local ambient gas control technology. Recently, material processing in open air has been investigated intensively. While a variety of materials have been deposited, there were only few reports on Si deposition due to the susceptibility to contamination and the hazardous nature of source materials. Since Si deposition is one of the most important processes in device fabrication, we have developed open air silicon deposition technologies in BEANS project. For a clean and safe process, a local ambient gas control head was designed. Process gas leakage was prevented by local evacuation, and air contamination was shut out by inert curtain gas. By numerical and experimental investigations, a safe and clean process condition with air contamination less than 10 ppm was achieved. Si film was deposited in open air by atmospheric pressure plasma enhanced chemical transport under the local ambient gas control. The film was microcrystalline Si with the crystallite size of 17 nm, and the Hall mobility was 2.3 cm2/V .s. These properties were comparable to those of Si films deposited in a vacuum chamber. This research has been conducted as one of the research items of New Energy and Industrial Technology Development Organization ``BEANS'' project.

  4. Characterization of an atmospheric pressure air plasma source for polymer surface modification

    NASA Astrophysics Data System (ADS)

    Yang, Shujun; Tang, Jiansheng

    2013-10-01

    An atmospheric pressure air plasma source was generated through dielectric barrier discharge (DBD). It was used to modify polyethyleneterephthalate (PET) surfaces with very high throughput. An equivalent circuit model was used to calculate the peak average electron density. The emission spectrum from the plasma was taken and the main peaks in the spectrum were identified. The ozone density in the down plasma region was estimated by Absorption Spectroscopy. NSF and ARC-ODU

  5. Ozone production by nanoporous dielectric barrier glow discharge in atmospheric pressure air

    SciTech Connect

    Cho, J. H.; Koo, I. G.; Choi, M. Y.; Lee, W. M.

    2008-03-10

    This study is aimed at demonstrating plasma-chemical ozone production based on low temperature atmospheric pressure glow discharge through nanoporous dielectric barriers. The 20 kHz ac driven discharge is formed in air or oxygen gas flowing in the axial direction of the cylindrical plasma reactor containing four parallel aluminum rods covered with nanoporous alumina films. The discharge utilizing nanoporous dielectric barrier is more uniform and more energy efficient in ozone generation than the discharge through smooth-surface dielectric barriers.

  6. Characteristics of a glow discharge in atmospheric pressure air over the water surface

    NASA Astrophysics Data System (ADS)

    Shuaibov, A. K.; Chuchman, M. P.; Mesarosh, L. V.

    2014-06-01

    The current-voltage characteristics, the amount of cathode fall, and the spectra of plasma radiation from different spatial domains are presented versus the molecular band intensity of products arising in an atmospheric-pressure air glow discharge over the distilled water surface. The plasma electron temperature is also reported. The distance to a liquid cathode or anode is varied from 1 to 10 mm at a discharge mean current of 10-36 mA.

  7. Travel of the center of pressure of airfoils transversely to the air stream

    NASA Technical Reports Server (NTRS)

    Katzmayr, Richard

    1929-01-01

    The experiments here described were performed for the purpose of obtaining the essential facts concerning the distribution of the air force along the span. We did not follow, however, the time-consuming method of point-to-point measurements of the pressure distribution on the wing surfaces, but determined directly the moment of mean force about an axis passing through the middle of the span parallel to the direction of flight.

  8. Vibration and recoil control of pneumatic hammers. [by air flow pressure regulation

    NASA Technical Reports Server (NTRS)

    Constantinescu, I. N.; Darabont, A. V.

    1974-01-01

    Vibration sources are described for pneumatic hammers used in the mining industry (pick hammers), in boiler shops (riveting hammers), etc., bringing to light the fact that the principal vibration source is the variation in air pressure inside the cylinder. The present state of the art of vibration control of pneumatic hammers as it is practiced abroad, and the solutions adopted for this purpose, are discussed. A new type of pneumatic hammer with a low noise and vibration level is presented.

  9. Review article: the surgical approach to the management of increased intracranial pressure after traumatic brain injury.

    PubMed

    Li, Lucia M; Timofeev, Ivan; Czosnyka, Marek; Hutchinson, Peter J A

    2010-09-01

    Increased intracranial pressure occurring after severe traumatic brain injury is a common and potentially devastating phenomenon. It has been clearly demonstrated that increased intracranial pressure that is refractory to initial medical measures is a poor prognostic sign. Current optimal management is based on a sequential, target-driven approach combining both medical and surgical treatment strategies. The surgical measures in current common practice include external ventricular drain insertion and decompressive craniectomy. There is evidence that both of these measures reduce intracranial pressure but the effect on outcome, particularly in the long term, is equivocal. Current Brain Trauma Foundation guidelines recommend timely evacuation of mass lesions and there is clear guidance regarding the indications for intracranial pressure monitoring; however, decompressive craniectomy is only cautiously recommended as a possible option for selected patients. In this review, we highlight the ongoing debate about the use of decompressive craniectomy to control intracranial pressure after traumatic brain injury; included is a summary of review of the most recent literature on the effect of decompressive craniectomy on increased intracranial pressure after traumatic brain injury and associated long-term outcome. The RESCUEicp and DECRA studies are discussed in detail. It is hoped that these 2 randomized controlled trials, which are evaluating the short- and longer-term outcomes of decompressive craniectomy, will provide conclusive evidence regarding the role of decompressive craniectomy in managing increased intracranial pressure after trauma.

  10. Measurement of Electron Densities in a Pulsed Atmospheric Pressure Air Discharge

    NASA Astrophysics Data System (ADS)

    Leipold, Frank; Stark, Robert H.; Schoenbach, Karl H.

    2000-10-01

    Microhollow cathode discharges have been shown to serve as plasma cathodes for atmospheric pressure air discharges [1]. The high pressure discharges are operated dc at currents from 10 mA up to 30 mA and at average electric fields of 1.25 kV/cm. The electron density in the dc discharge was measured by an interferometrique technique [2]. For a dc filamentary air discharge with a current of 10 mA, the radial electron density distribution was found to be parabolic with a total width of 660 μ m and an electron density of ne = 10^13 cm-3 in the center of the discharge. The diagnostic technique has now also been applied to pulsed discharges. It was found that the method provides electron densities measurements for discharges with durations as low as 5 μ s. The spatial distribution of the index of refraction in the pulsed discharge was obtained by shifting the discharge volume through the laser beam and by using an inversion method to obtain the radial index profile. For the electron density with a assumed parabolic profile, the maximum value was measured as 1.17*10^14 cm-3. (10 mA atmospheric pressure air discharge. The temperature profile was found to be gaussian with a half width of 1.3 mm. Acknowledgement This work was funded by the Air Force Office of Scientific Research in Cooperation with the DDR&E Air Plasma Ramparts MURI Program. References [1] Robert H. Stark and Karl H. Schoenbach, Appl. Phys. Lett. 74, 3770 (1999) [2] Frank Leipold, Robert H. Stark, and Karl H. Schoenbach, to appear in J. Phys. D., Appl. Phys.

  11. Effect of airstream velocity on mean drop diameters of water sprays produced by pressure and air atomizing nozzles. [for combustion studies

    NASA Technical Reports Server (NTRS)

    Ingebo, R. D.

    1977-01-01

    A scanning radiometer was used to determine the effect of airstream velocity on the mean drop diameter of water sprays produced by pressure atomizing and air atomizing fuel nozzles used in previous combustion studies. Increasing airstream velocity from 23 to 53.4 meters per second reduced the Sauter mean diameter by approximately 50 percent with both types of fuel nozzles. The use of a sonic cup attached to the tip of an air assist nozzle reduced the Sauter mean diameter by approximately 40 percent. Test conditions included airstream velocities of 23 to 53.4 meters per second at 293 K and atmospheric pressure.

  12. Negative pressure of the environmental air in the cleaning area of the materials and sterilization center: a systematic review

    PubMed Central

    Ciofi-Silva, Caroline Lopes; Hansen, Lisbeth Lima; Almeida, Alda Graciele Claudio dos Santos; Kawagoe, Julia Yaeko; Padoveze, Maria Clara; Graziano, Kazuko Uchikawa

    2016-01-01

    ABSTRACT Objective: to analyze the scientific evidence on aerosols generated during cleaning activities of health products in the Central Service Department (CSD) and the impact of the negative pressure of the ambient air in the cleaning area to control the dispersion of aerosols to adjacent areas. Method: for this literature systematic review the following searches were done: search guidelines, manuals or national and international technical standards given by experts; search in the portal and databases PubMed, Scopus, CINAHL and Web of Science; and a manual search of scientific articles. Results: the five technical documents reviewed recommend that the CSD cleaning area should have a negative differential ambient air pressure, but scientific articles on the impact of this intervention were not found. The four articles included talked about aerosols formed after the use of a ultrasonic cleaner (an increased in the contamination especially during use) and pressurized water jet (formation of smaller aerosols 5μm). In a study, the aerosols formed from contaminated the hot tap water with Legionella pneumophila were evaluated. Conclusions: there is evidence of aerosol formation during cleanup activities in CSD. Studies on occupational diseases of respiratory origin of workers who work in CSD should be performed. PMID:27598374

  13. Temperature and pressure influence on maximum rates of pressure rise during explosions of propane-air mixtures in a spherical vessel.

    PubMed

    Razus, D; Brinzea, V; Mitu, M; Movileanu, C; Oancea, D

    2011-06-15

    The maximum rates of pressure rise during closed vessel explosions of propane-air mixtures are reported, for systems with various initial concentrations, pressures and temperatures ([C(3)H(8)]=2.50-6.20 vol.%, p(0)=0.3-1.3 bar; T(0)=298-423 K). Experiments were performed in a spherical vessel (Φ=10 cm) with central ignition. The deflagration (severity) index K(G), calculated from experimental values of maximum rates of pressure rise is examined against the adiabatic deflagration index, K(G, ad), computed from normal burning velocities and peak explosion pressures. At constant temperature and fuel/oxygen ratio, both the maximum rates of pressure rise and the deflagration indices are linear functions of total initial pressure, as reported for other fuel-air mixtures. At constant initial pressure and composition, the maximum rates of pressure rise and deflagration indices are slightly influenced by the initial temperature; some influence of the initial temperature on maximum rates of pressure rise is observed only for propane-air mixtures far from stoichiometric composition. The differentiated temperature influence on the normal burning velocities and the peak explosion pressures might explain this behaviour. PMID:21514044

  14. Temperature and pressure influence on maximum rates of pressure rise during explosions of propane-air mixtures in a spherical vessel.

    PubMed

    Razus, D; Brinzea, V; Mitu, M; Movileanu, C; Oancea, D

    2011-06-15

    The maximum rates of pressure rise during closed vessel explosions of propane-air mixtures are reported, for systems with various initial concentrations, pressures and temperatures ([C(3)H(8)]=2.50-6.20 vol.%, p(0)=0.3-1.3 bar; T(0)=298-423 K). Experiments were performed in a spherical vessel (Φ=10 cm) with central ignition. The deflagration (severity) index K(G), calculated from experimental values of maximum rates of pressure rise is examined against the adiabatic deflagration index, K(G, ad), computed from normal burning velocities and peak explosion pressures. At constant temperature and fuel/oxygen ratio, both the maximum rates of pressure rise and the deflagration indices are linear functions of total initial pressure, as reported for other fuel-air mixtures. At constant initial pressure and composition, the maximum rates of pressure rise and deflagration indices are slightly influenced by the initial temperature; some influence of the initial temperature on maximum rates of pressure rise is observed only for propane-air mixtures far from stoichiometric composition. The differentiated temperature influence on the normal burning velocities and the peak explosion pressures might explain this behaviour.

  15. Evaluation of the operator protection factors offered by positive pressure air suits against airborne microbiological challenge.

    PubMed

    Steward, Jackie A; Lever, Mark S

    2012-08-01

    Laboratories throughout the world that perform work with Risk Group 4 Pathogens generally adopt one of two approaches within BSL-4 environments: either the use of positive pressure air-fed suits or using Class III microbiological safety cabinets and isolators for animal work. Within the UK at present, all laboratories working with Risk Group 4 agents adopt the use of Class III microbiological safety cabinet lines and isolators. Operator protection factors for the use of microbiological safety cabinets and isolators are available however; there is limited published data on the operator protection factors afforded by the use of positive pressure suits. This study evaluated the operator protection factors provided by positive pressure air suits against a realistic airborne microbiological challenge. The suits were tested, both intact and with their integrity compromised, on an animated mannequin within a stainless steel exposure chamber. The suits gave operator protection in all tests with an intact suit and with a cut in the leg. When compromised by a cut in the glove, a very small ingress of the challenge was seen as far as the wrist. This is likely to be due to the low airflow in the gloves of the suit. In all cases no microbiological penetration of the respiratory tract was observed. These data provide evidence on which to base safety protocols for use of positive pressure suits within high containment laboratories. PMID:23012620

  16. Evaluation of the Operator Protection Factors Offered by Positive Pressure Air Suits against Airborne Microbiological Challenge

    PubMed Central

    Steward, Jackie A.; Lever, Mark S.

    2012-01-01

    Laboratories throughout the world that perform work with Risk Group 4 Pathogens generally adopt one of two approaches within BSL-4 environments: either the use of positive pressure air-fed suits or using Class III microbiological safety cabinets and isolators for animal work. Within the UK at present, all laboratories working with Risk Group 4 agents adopt the use of Class III microbiological safety cabinet lines and isolators. Operator protection factors for the use of microbiological safety cabinets and isolators are available however; there is limited published data on the operator protection factors afforded by the use of positive pressure suits. This study evaluated the operator protection factors provided by positive pressure air suits against a realistic airborne microbiological challenge. The suits were tested, both intact and with their integrity compromised, on an animated mannequin within a stainless steel exposure chamber. The suits gave operator protection in all tests with an intact suit and with a cut in the leg. When compromised by a cut in the glove, a very small ingress of the challenge was seen as far as the wrist. This is likely to be due to the low airflow in the gloves of the suit. In all cases no microbiological penetration of the respiratory tract was observed. These data provide evidence on which to base safety protocols for use of positive pressure suits within high containment laboratories. PMID:23012620

  17. The role of air pressure and contact force in shaping obstruent consonant onset

    NASA Astrophysics Data System (ADS)

    Chen, Lan

    2003-04-01

    Soft tissues (the tongue or lips) are used to form the narrow oral constriction for turbulence noise generation during the production of obstruent consonants. The displacement of the soft tissue subject to oral pressure buildup is comparable to the vertical dimension of the constriction. The contact force during the closure of stop consonants and affricates provides a pressure load over 5 times larger than the air pressure at the surface in contact. It can influence the time variation of the constriction size at onset in the form of elastic energy stored in the compliant structure forming the constriction. A finite element fluid-structure interaction program has been used to simulate the effect of these external forces during the onset of obstruent consonants. Preliminary results from a 2-D tongue tip constriction/closure model show that air pressure and contact force can introduce movement on the order of 0.1-0.2 mm during the first tens of milliseconds after release, which is enough to affect the size of the constriction at onset and the nature of release burst. The results of this kind can be used for speech synthesis, guiding the modification of the trajectories of articulators at the consonant onset. [Work supported by NIH.

  18. Increased extracellular pressure stimulates tumor proliferation by a mechanosensitive calcium channel and PKC-β.

    PubMed

    Basson, Marc D; Zeng, Bixi; Downey, Christina; Sirivelu, Madhu P; Tepe, Jetze J

    2015-02-01

    Large tumors exhibit high interstitial pressure heightened by growth against the constraining stroma. Such pressures could stimulate tumor proliferation via a mechanosensitive ion channel. We studied the effects of 0-80 mmHg increased extracellular pressure for 24 h on proliferation of SW620, Caco-2, and CT-26 colon; MCF-7 breast; and MLL and PC3 prostate cancer cells, and delineated its mechanism in SW620 cells with specific inhibitors and siRNA. Finally, we compared NF-kB, phospho-IkB and cyclin D1 immunoreactivity in the high pressure centers and low pressure peripheries of human tumors. Pressure-stimulated proliferation in all cells. Pressure-driven SW620 proliferation required calcium influx via the T-type Ca(2+) channel Cav3.3, which stimulated PKC-β to invoke the IKK-IkB-NF-kB pathway to increase proliferation and S-phase fraction. The mitotic index and immunoreactivity of NF-kB, phospho-IkB, and cyclin D1 in the center of 28 large human colon, lung, and head and neck tumors exceeded that in tumor peripheries. Extracellular pressure increases [Ca(2+)]i via Cav3.3, driving a PKC-β- IKK- IkB-NF-kB pathway that stimulates cancer cell proliferation. Rapid proliferation in large stiff tumors may increase intratumoral pressure, activating this pathway to stimulate further proliferation in a feedback cycle that potentiates tumor growth. Targeting this pathway may inhibit proliferation in large unresectable tumors.

  19. Increased extracellular pressure stimulates tumor proliferation by a mechanosensitive calcium channel and PKC-β

    PubMed Central

    Basson, Marc D.; Zeng, Bixi; Downey, Christina; Siriveluprabhakar, Madhu; Tepe, Jetze J.

    2014-01-01

    Large tumors exhibit high interstitial pressure heightened by growth against the constraining stroma. Such pressures could stimulate tumor proliferation via a mechanosensitive ion channel. We studied the effects of 0–80 mm Hg increased extracellular pressure for 24 hours on proliferation of SW620, Caco-2, and CT-26 colon; MCF-7 breast; and MLL and PC3 prostate cancer cells, and delineated its mechanism in SW620 cells with specific inhibitors and siRNA. Finally, we compared NF-kB, phospho-IkB and cyclin D1 immunoreactivity in the high pressure centers and low pressure peripheries of human tumors. Pressure stimulated proliferation in all cells. Pressure-driven SW620 proliferation required calcium influx via the T-type Ca2+ channel Cav3.3, which stimulated PKC-β to invoke the IKK-IkB-NF-kB pathway to increase proliferation and S-phase fraction. The mitotic index and immunoreactivity of NF-kB, phospho-IkB, and cyclin D1 in the center of 28 large human colon, lung, and head and neck tumors exceeded that in tumor peripheries. Extracellular pressure increases [Ca2+]i via Cav3.3, driving a PKC-β-IKK-IkB-NF-kB pathway that stimulates cancer cell proliferation. Rapid proliferation in large stiff tumors may increase intratumoral pressure, activating this pathway to stimulate further proliferation in a feedback cycle that potentiates tumor growth. Targeting this pathway may inhibit proliferation in large unresectable tumors. PMID:25454347

  20. Soot formation in turbulent nonpremixed kerosine-air flames burning at elevated pressure: Experimental measurement

    SciTech Connect

    Young, K.J.; Stewart, C.D.; Moss, J.B.

    1994-12-31

    Detailed scalar property maps have been constructed for turbulent jet flames of prevaporized kerosine, burning in a coflowing air stream and confined within an optically accessed cylindrical chamber, which permits operation at elevated pressure. Time-averaged measurements of spatially resolved soot volume fraction by path-integrated laser absorption and tomographic inversion, temperature by fine wire thermocouple, and mixture fraction by microprobe sampling and mass spectrometric analysis are reported at chamber pressures from 1 to 6.4 bar. While the principal objective of the study has been to develop a database for modelling and computational prediction, the centerline data admit presentation in a standardized form, based on the centerline flame length to the maximum soot concentration, which permits analysis of the pressure dependence from turbulent flames of differing sizes. In this form, the peak soot volume fractions and soot formation rates appear linearly dependent on pressure, exhibiting a peak mass fraction of soot carbon of 7%, substantially independent of pressure. The peak soot loading, at the highest pressure investigated, approaches 120 gm{sup {minus}3} before complete laser extinction renders the flame inaccessible to further measurement. The high carbon loading and enhanced radiative loss lead to reduced mean temperatures throughout the flame by comparison with more widely studied gaseous fuels such as ethylene. Measured temperatures do not exceed 1,438 K anywhere on the centerline of the flame at 1 bar, for example.

  1. Indoor Air Pollution and Blood Pressure in Adult Women Living in Rural China

    PubMed Central

    Schauer, James J.; Ezzati, Majid; Lu, Lin; Cheng, Chun; Patz, Jonathan A.; Bautista, Leonelo E.

    2011-01-01

    Background: Almost half of the world’s population uses coal and biomass fuels for domestic energy. Limited evidence suggests that exposure to air pollutants from indoor biomass combustion may be associated with elevated blood pressure (BP). Objective: Our aim was to assess the relationship between air pollution exposure from indoor biomass combustion and BP in women in rural China. Methods: We measured 24-hr personal integrated gravimetric exposure to fine particles < 2.5 µm in aerodynamic diameter (PM2.5) and systolic BP (SBP) and diastolic BP (DBP) in the winter and summer among 280 women ≥ 25 years of age living in rural households using biomass fuels in Yunnan, China. We investigated the association between PM2.5 exposure and SBP and DBP using mixed-effects models with random intercepts to account for correlation among repeated measures. Results: Personal average 24-hr exposure to PM2.5 ranged from 22 to 634 µg/m3 in winter and from 9 to 492 µg/m3 in summer. A 1-log-µg/m3 increase in PM2.5 exposure was associated with 2.2 mm Hg higher SBP [95% confidence interval (CI), 0.8 to 3.7; p = 0.003] and 0.5 mm Hg higher DBP (95% CI, –0.4 to 1.3; p = 0.31) among all women; estimated effects varied by age group. Among women > 50 years of age, a 1-log-µg/m3 increase in PM2.5 exposure was associated with 4.1 mm Hg higher SBP (95% CI, 1.5 to 6.6; p = 0.002) and 1.8 mm Hg higher DBP (95% CI, 0.4 to 3.2; p = 0.01). PM2.5 exposure was positively associated with SBP among younger women, but the association was not statistically significant. Conclusion: PM2.5 exposure from biomass combustion may be a risk factor for elevated BP and hence for cardiovascular events. Our findings should be corroborated in longitudinal studies. PMID:21724522

  2. Surface Pressure Study of Lipid Aggregates at the Air Water Interface

    NASA Astrophysics Data System (ADS)

    Shew, Woody; Ploplis Andrews, Anna

    1996-11-01

    Qualitative and quantitative descriptions of the growth of fatty acid aggregates on a water/air interface were made by analyzing surface pressure measurements taken with a Langmuir Balance. High concentrations of palmitic acid, lauric acid, myristic acid, and also phosphatidylethanolamine in solution with chloroform were applied with a syringe to the surface of the Langmuir Balance and surface pressure was monitored as aggregates assembled spontaneously. The aggregation process for palmitic acid was determined to consist of three distinct parts. Exponential curves were fit to the individual regions of the data and growth and decay constants were determined. Surface pressure varied in very complex ways for lauric acid, myristic acid, and phosphatidylethanolamine yet kinetic measurements yield qualitative information about assembly of those aggregates. This research was supported by NSF Grant No. DMR-93-22301.

  3. Advancing a smart air cushion system for preventing pressure ulcers using projection Moiré for large deformation measurements

    NASA Astrophysics Data System (ADS)

    Cheng, Sheng-Lin; Tsai, Tsung-Heng; Lee, Carina Jean-Tien; Hsu, Yu-Hsiang; Lee, Chih-Kung

    2016-03-01

    A pressure ulcer is one of the most important concerns for wheelchair bound patients with spinal cord injuries. A pressure ulcer is a localized injury near the buttocks that bear ischial tuberosity oppression over a long period of time. Due to elevated compression to blood vessels, the surrounding tissues suffer from a lack of oxygen and nutrition. The ulcers eventually lead to skin damage followed by tissue necrosis. The current medical strategy is to minimize the occurrence of pressure ulcers by regularly helping patients change their posture. However, these methods do not always work effectively or well. As a solution to fundamentally prevent pressure ulcers, a smart air cushion system was developed to detect and control pressure actively. The air cushion works by automatically adjusting a patient's sitting posture to effectively relieve the buttock pressure. To analyze the correlation between the dynamic pressure profiles of an air cell with a patient's weight, a projection Moiré system was adopted to measure the deformation of an air cell and its associated stress distribution. Combining a full-field deformation imaging with air pressure measured within an air cell, the patient's weight and the stress distribution can be simultaneously obtained. By integrating a full-field optical metrology with a time varying pressure sensor output coupled with different active air control algorithms for various designs, we can tailor the ratio of the air cells. Our preliminary data suggests that this newly developed smart air cushion has the potential to selectively reduce localized compression on the tissues at the buttocks. Furthermore, it can take a patient's weight which is an additional benefit so that medical personnel can reference it to prescribe the correct drug dosages.

  4. Surface pressure affects B-hordein network formation at the air-water interface in relation to gastric digestibility.

    PubMed

    Yang, Jingqi; Huang, Jun; Zeng, Hongbo; Chen, Lingyun

    2015-11-01

    Protein interfacial network formation under mechanical pressure and its influence on degradation was investigated at molecular level using Langmuir-Blodgett B-hordein monolayer as a 2D model. Surface properties, such as surface pressure, dilatational and shear rheology and the surface pressure--area (π-A) isotherm, of B-hordein at air-water interface were analyzed by tensiometer, rheometer and a Langmuir-Blodgett trough respectively. B-Hordein conformation and orientation under different surface pressures were determined by polarization modulation-infrared reflection absorption spectroscopy (PM-IRRAS). The interfacial network morphology was observed by atomic force microscopy (AFM). B-Hordein could reduce the air-water surface tension rapidly to ∼ 45 mN/m and form a solid-like network with high rheological elasticity and compressibility at interface, which could be a result of interactions developed by intermolecular β-sheets. The results also revealed that B-hordein interfacial network switched from an expanded liquid phase to a solid-like film with increasing compression pressure. The orientation of B-hordein was parallel to the surface when in expended liquid phase, whereas upon compression, the hydrophobic repetitive region tilted away from water phase. When compressed to 30 mN/m, a strong elastic network was formed at the interface, and it was resistant to a harsh gastric-like environment of low pH and pepsin. This work generated fundamental knowledge, which suggested the potential to design B-hordein stabilized emulsions and encapsulations with controllable digestibility for small intestine targeted delivery of bioactive compounds.

  5. Air Pressure, Humidity and Stroke Occurrence: A Systematic Review and Meta-Analysis

    PubMed Central

    Cao, Yongjun; Wang, Xia; Zheng, Danni; Robinson, Thompson; Hong, Daqing; Richtering, Sarah; Leong, Tzen Hugh; Salam, Abdul; Anderson, Craig; Hackett, Maree L.

    2016-01-01

    Background/Aims: An influence of climate upon stroke risk is biologically plausible and supported by epidemiological evidence. We aimed to determine whether air pressure (AP) and humidity are associated with hospital stroke admission. Methods: We searched MEDLINE, Embase, PsycINFO, CINAHL, Web of Science, and GEOBASE, from inception to 16 October 2015 to identify relevant population-based observational studies. Where possible, data were pooled for meta-analysis with odds ratios (OR) and corresponding 95% confidence intervals (CI) by means of the random-effect method. Results: We included 11 studies with a total of 314,385 patients. The effect of AP was varied across studies for ischemic stroke (IS) and subarachnoid haemorrhage (SAH). Pooled ORs (95%CI) associated with 1 hPa increase in AP for the risk of IS, intracerebral hemorrhage (ICH) and SAH were 1.00 (0.99–1.01), 1.01 (0.99–1.02) and 1.02 (0.97–1.07) respectively. The pooled ORs (95%CI) associated with 1 percent increase in humidity for the risk of IS and ICH were 1.00 (1.00–1.01) and 1.00 (0.99–1.01) respectively. Conclusion: This review shows that there is no evidence of a relationship between AP or humidity and the occurrence of hospital admission for stroke. Further research is needed to clarify the extent and nature of any relationship between AP, humidity and stroke in different geographical areas. PMID:27399733

  6. Soot Formation in Laminar Acetylene/Air Diffusion Flames at Atmospheric Pressure. Appendix J

    NASA Technical Reports Server (NTRS)

    Xu, F.; Faeth, G. M.; Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)

    2001-01-01

    The flame structure and soot-formation (soot nucleation and growth) properties of axisymmetric laminar coflowing jet diffusion flames were studied experimentally. Test conditions involved acetylene-nitrogen jets burning in coflowing air at atmospheric pressure. Measurements were limited to the axes of the flames and included soot concentrations, soot temperatures, soot structure, major gas species concentrations, radical species (H, OH, and O) concentrations, and gas velocities. The results show that as distance increases along the axes of the flames, detectable soot formation begins when significant H concentrations are present, and ends when acetylene concentrations become small. Species potentially associated with soot oxidation--O2, CO2, H2O, O, and OH-are present throughout the soot-formation region so that soot formation and oxidation proceed at the same time. Strong rates of soot growth compared to soot nucleation early in the soot-formation process, combined with increased rates of soot nucleation and oxidation as soot formation proceeds, causes primary soot particle diameters to reach a maximum relatively early in the soot-formation process. Aggregation of primary soot particles proceeds, however, until the final stages of soot oxidation. Present measurements of soot growth (corrected for soot oxidation) in laminar diffusion flames were consistent with earlier measurements of soot growth in laminar premixed flames and exhibited encouraging agreement with existing hydrogen-abstraction/carbon-addition (HACA) soot growth mechanisms in the literature that were developed based on measurements within laminar premixed flames. Measured primary soot particle nucleation rates in the present laminar diffusion flames also were consistent with corresponding rates measured in laminar premixed flames and yielded a crude correlation in terms of acetylene and H concentrations and the temperature.

  7. Soot Formation in Laminar Acetylene/Air Diffusion Flames at Atmospheric Pressure. Appendix C

    NASA Technical Reports Server (NTRS)

    Xu, F.; Faeth, G. M.; Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)

    2000-01-01

    The flame structure and soot-formation (soot nucleation and growth) properties of axisymmetric laminar coflowing jet diffusion flames were studied experimentally. Test conditions involved acetylene-nitrogen jets burning in coflowing air at atmospheric pressure. Measurements were limited to the axes of the flames and included soot concentrations, soot temperatures, soot structure, major gas species concentrations, radical species (H, OH, and O) concentrations, and gas velocities. The results show that as distance increases along the axes of the flames, detectable soot formation begins when significant H concentrations are present, and ends when acetylene concentrations become small. Species potentially associated with soot oxidation-O2, CO2, H2O, O, and OH-are present throughout the soot-formation region so that soot formation and oxidation proceed at the same time. Strong rates of soot growth compared to soot nucleation early in the soot-formation process, combined with increased rates of soot nucleation and oxidation as soot formation proceeds, causes primary soot particle diameters to reach a maximum relatively early in the soot-formation process. Aggregation of primary soot particles proceeds, however, until the final stages of soot oxidation. Present measurements of soot growth (corrected for soot oxidation) in laminar diffusion flames were consistent with earlier measurements of soot growth in laminar premixed flames and exhibited encouraging agreement with existing hydrogen-abstraction/carbon-addition (HACA) soot growth mechanisms in the literature that were developed based on measurements within laminar premixed flames. Measured primary soot particle nucleation rates in the present laminar diffusion flames also were consistent with corresponding rates measured in laminar premixed flames and yielded a crude correlation in terms of acetylene and H concentrations and the temperature.

  8. Soot Formation in Laminar Acetylene/Air Diffusion Flames at Atmospheric Pressure. Appendix H

    NASA Technical Reports Server (NTRS)

    Xu, F.; Faeth, G. M.; Yuan, Z.-G. (Technical Monitor); Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)

    2001-01-01

    The flame structure and soot-formation (soot nucleation and growth) properties of axisymmetric laminar coflowing jet diffusion flames were studied experimentally. Test conditions involved acetylene-nitrogen jets burning in coflowing air at atmospheric pressure. Measurements were limited to the axes of the flames and included soot concentrations, soot temperatures, soot structure, major gas species concentrations, radical species (H, OH, and O) concentrations, and gas velocities. The results show that as distance increases along the axes of the flames, detectable soot formation begins when significant H concentrations are present, and ends when acetylene concentrations become small. Species potentially associated with soot oxidation-O2, CO2, H2O, O, and OH-are present throughout the soot-formation region so that soot formation and oxidation proceed at the same time. Strong rates of soot growth compared to soot nucleation early in the soot-formation process, combined with increased rates of soot nucleation and oxidation as soot formation proceeds, causes primary soot particle diameters to reach a maximum relatively early in the soot-formation process. Aggregation of primary soot particles proceeds, however, until the final stages of soot oxidation. Present measurements of soot growth (corrected for soot oxidation) in laminar diffusion flames were consistent with earlier measurements of soot growth in laminar premixed flames and exhibited encouraging agreement with existing hydrogen-abstraction/carbon-addition (HACA) soot growth mechanisms in the literature that were developed based on measurements within laminar premixed flames. Measured primary soot particle nucleation rates in the present laminar diffusion flames also were consistent with corresponding rates measured in laminar premixed flames and yielded a crude correlation in terms of acetylene and H concentrations and the temperature.

  9. Microwave plasma source operating with atmospheric pressure air-water mixtures

    NASA Astrophysics Data System (ADS)

    Tatarova, E.; Henriques, J. P.; Felizardo, E.; Lino da Silva, M.; Ferreira, C. M.; Gordiets, B.

    2012-11-01

    The overall performance of a surface wave driven air-water plasma source operating at atmospheric pressure and 2.45 GHz has been analyzed. A 1D model previously developed has been improved in order to describe in detail the creation and loss processes of active species of interest. This model provides a complete characterization of the axial structure of the source, including the discharge and the afterglow zones. The main electron creation channel was found to be the associative ionization process N + O → NO+ + e. The NO(X) relative density in the afterglow plasma jet ranges from 1.2% to 1.6% depending on power and water percentage, according to the model predictions and the measurements. Other types of species such as NO2 and nitrous acid HNO2 have also been detected by mass and Fourier Transform Infrared spectroscopy. The relative population density of O(3P) ground state atoms increases from 8% to 10% in the discharge zone when the input microwave power increases from 200 to 400 W and the water percentage from 1% to 10%. Furthermore, high densities of O2(a1Δg) singlet delta oxygen molecules and OH radicals (1% and 5%, respectively) can be achieved in the discharge zone. In the late afterglow the O2(a1Δg) density is about 0.1% of the total density. This plasma source has a flexible operation and potential for channeling the energy in ways that maximize the density of active species of interest.

  10. Influence of increased static pressure in MHD-channel of hypervelocity wind tunnel on its characteristics

    SciTech Connect

    Alfyorov, V.I.; Rudakova, A.P.; Rukavets, V.P.; Shcherbakov, G.I.

    1995-12-31

    One of the main weaknesses of available MHD gas acceleration wind tunnels which restricts their application for simulating vehicle re-entry flights and reproducing scramjet combustion chamber conditions is a relatively low static pressure in the channel (P{approximately}0.1 to 0.2 Atm). The possibility of increasing this pressure and the influence of the increased pressure on the MHD-accelerator characteristics are the subject of the present paper. It is shown that the main challenge is the necessity of increasing the total Lorentz force proportionally to the channel gas density at electrode current density not resulting in heat and electrical breakdown and the development of the side walls and interelectrode insulators designed for higher heat fluxes, q {approximately} 5 to 10 kw/cm{sup 2}. Some possible wall design versions are suggested. The influence of increased pressure is investigated using the Faraday - type MED channel at static pressures in the MHD channel from 0.2 to 1.0 Atm and total accelerating current I = 300 to 1,100 Amps when B=2.5T. Forty five electrodes are used in the MHD channel at maximum current density of 50 A/cm{sup 2}. The channel flow is calculated by applying the model of a gas in thermodynamic equilibrium. The influence of the increased pressure on electrodynamic (accelerator electrode voltages and currents, Hall voltage and current) and gasdynamic (distributions of static pressure, temperature, velocity, Mach numbers, etc., along the channel length) characteristics is evaluated. Some recommendations on the development of MHD channels for hypersonic wind tunnels designed for high pressure are suggested.

  11. Simplified Configuration for the Combustor of an oil Burner using a low Pressure, high flow air-atomizing Nozzle

    SciTech Connect

    Butcher, Thomas; Celebi, Yusuf; Fisher, Leonard

    1998-09-28

    The invention relates to clean burning of fuel oil with air. More specifically, to a fuel burning combustion head using a low-pressure, high air flow atomizing nozzle so that there will be a complete combustion oil resulting in a minimum emission of pollutants. The inventors have devised a fuel burner that uses a low pressure air atomizing nozzle. The improved fuel burner does not result in the use of additional compressors or the introduction of pressurized gases downstream, nor does it require a complex design.

  12. Fiber in-line Mach-Zehnder interferometer based on an inner air-cavity for high-pressure sensing.

    PubMed

    Talataisong, W; Wang, D N; Chitaree, R; Liao, C R; Wang, C

    2015-04-01

    We demonstrate a fiber in-line Mach-Zehnder interferometer based on an inner air-cavity with open micro-channel for high-pressure sensing applications. The inner air-cavity is fabricated by combining femtosecond laser micromachining and the fusion splicing technique. The micro-channel is drilled on the top of the inner air-cavity to allow the high-pressure gas to flow in. The fiber in-line device is miniature, robust, and stable in operation and exhibits a high pressure sensitivity of ∼8,239  pm/MPa.

  13. Decay of femtosecond laser-induced plasma filaments in air, nitrogen, and argon for atmospheric and subatmospheric pressures.

    PubMed

    Aleksandrov, N L; Bodrov, S B; Tsarev, M V; Murzanev, A A; Sergeev, Yu A; Malkov, Yu A; Stepanov, A N

    2016-07-01

    The temporal evolution of a plasma channel at the trail of a self-guided femtosecond laser pulse was studied experimentally and theoretically in air, nitrogen (with an admixture of ∼3% O_{2}), and argon in a wide range of gas pressures (from 2 to 760 Torr). Measurements by means of transverse optical interferometry and pulsed terahertz scattering techniques showed that plasma density in air and nitrogen at atmospheric pressure reduces by an order of magnitude within 3-4 ns and that the decay rate decreases with decreasing pressure. The argon plasma did not decay within several nanoseconds for pressures of 50-760 Torr. We extended our theoretical model previously applied for atmospheric pressure air plasma to explain the plasma decay in the gases under study and to show that allowance for plasma channel expansion affects plasma decay at low pressures. PMID:27575227

  14. Analysis of an Aircraft Honeycomb Sandwich Panel with Circular Face Sheet/Core Disbond Subjected to Ground-Air Pressurization

    NASA Technical Reports Server (NTRS)

    Rinker, Martin; Krueger, Ronald; Ratcliffe, James

    2013-01-01

    The ground-air pressurization of lightweight honeycomb sandwich structures caused by alternating pressure differences between the enclosed air within the honeycomb core and the ambient environment is a well-known and controllable loading condition of aerospace structures. However, initial face sheet/core disbonds intensify the face sheet peeling effect of the internal pressure load significantly and can decrease the reliability of the sandwich structure drastically. Within this paper, a numerical parameter study was carried out to investigate the criticality of initial disbonds in honeycomb sandwich structures under ground-air pressurization. A fracture mechanics approach was used to evaluate the loading at the disbond front. In this case, the strain energy release rate was computed via the Virtual Crack Closure Technique. Special attention was paid to the pressure-deformation coupling which can decrease the pressure load within the disbonded sandwich section significantly when the structure is highly deformed.

  15. Decay of femtosecond laser-induced plasma filaments in air, nitrogen, and argon for atmospheric and subatmospheric pressures

    NASA Astrophysics Data System (ADS)

    Aleksandrov, N. L.; Bodrov, S. B.; Tsarev, M. V.; Murzanev, A. A.; Sergeev, Yu. A.; Malkov, Yu. A.; Stepanov, A. N.

    2016-07-01

    The temporal evolution of a plasma channel at the trail of a self-guided femtosecond laser pulse was studied experimentally and theoretically in air, nitrogen (with an admixture of ˜3% O2), and argon in a wide range of gas pressures (from 2 to 760 Torr). Measurements by means of transverse optical interferometry and pulsed terahertz scattering techniques showed that plasma density in air and nitrogen at atmospheric pressure reduces by an order of magnitude within 3-4 ns and that the decay rate decreases with decreasing pressure. The argon plasma did not decay within several nanoseconds for pressures of 50-760 Torr. We extended our theoretical model previously applied for atmospheric pressure air plasma to explain the plasma decay in the gases under study and to show that allowance for plasma channel expansion affects plasma decay at low pressures.

  16. Genetic predisposition to higher blood pressure increases risk of incident hypertension and cardiovascular diseases in Chinese.

    PubMed

    Lu, Xiangfeng; Huang, Jianfeng; Wang, Laiyuan; Chen, Shufeng; Yang, Xueli; Li, Jianxin; Cao, Jie; Chen, Jichun; Li, Ying; Zhao, Liancheng; Li, Hongfan; Liu, Fangcao; Huang, Chen; Shen, Chong; Shen, Jinjin; Yu, Ling; Xu, Lihua; Mu, Jianjun; Wu, Xianping; Ji, Xu; Guo, Dongshuang; Zhou, Zhengyuan; Yang, Zili; Wang, Renping; Yang, Jun; Yan, Weili; Gu, Dongfeng

    2015-10-01

    Although multiple genetic markers associated with blood pressure have been identified by genome-wide association studies, their aggregate effect on risk of incident hypertension and cardiovascular disease is uncertain, particularly among East Asian who may have different genetic and environmental exposures from Europeans. We aimed to examine the association between genetic predisposition to higher blood pressure and risk of incident hypertension and cardiovascular disease in 26 262 individuals in 2 Chinese population-based prospective cohorts. A genetic risk score was calculated based on 22 established variants for blood pressure in East Asian. We found the genetic risk score was significantly and independently associated with linear increases in blood pressure and risk of incident hypertension and cardiovascular disease (P range from 4.57×10(-3) to 3.10×10(-6)). In analyses adjusted for traditional risk factors including blood pressure, individuals carrying most blood pressure-related risk alleles (top quintile of genetic score distribution) had 40% (95% confidence interval, 18-66) and 26% (6-45) increased risk for incident hypertension and cardiovascular disease, respectively, when compared with individuals in the bottom quintile. The genetic risk score also significantly improved discrimination for incident hypertension and cardiovascular disease and led to modest improvements in risk reclassification for cardiovascular disease (all the P<0.05). Our data indicate that genetic predisposition to higher blood pressure is an independent risk factor for blood pressure increase and incident hypertension and cardiovascular disease and provides modest incremental information to cardiovascular disease risk prediction. The potential clinical use of this panel of blood pressure-associated polymorphisms remains to be determined.

  17. Increase of Acting Pressure by Adjusted Tool Geometry in Laser Shock Forming

    SciTech Connect

    Wielage, Hanna; Vollertsen, Frank

    2011-01-17

    In laser shock forming TEA-CO2{sub 2}-laser induced shock waves are used to form metal foils, such as aluminum or copper. The process utilizes an initiated plasma shock wave on the target surface, which leads to a forming of the foil. Several pulses can be applied at one point in order to achieve a high forming degree without increasing the energy density beyond the ablation limit. During the process, pressure peaks in the range of several MPa can be achieved. In this article, it will be demonstrated that the acting shock wave pressure can be increased and the forming behavior can be modified by an adjustment of tool geometry, which limits the non-directional propagation of the shock wave. Shock wave pressure measurements as well as forming results with different tool geometries show that the acting pressure, and therefore the forming behavior, can be modified by an adjustment of the tool.

  18. Experimental Study on the Flow Regimes and Pressure Gradients of Air-Oil-Water Three-Phase Flow in Horizontal Pipes

    PubMed Central

    Al-Hadhrami, Luai M.; Shaahid, S. M.; Tunde, Lukman O.; Al-Sarkhi, A.

    2014-01-01

    An experimental investigation has been carried out to study the flow regimes and pressure gradients of air-oil-water three-phase flows in 2.25 ID horizontal pipe at different flow conditions. The effects of water cuts, liquid and gas velocities on flow patterns and pressure gradients have been studied. The experiments have been conducted at 20°C using low viscosity Safrasol D80 oil, tap water and air. Superficial water and oil velocities were varied from 0.3 m/s to 3 m/s and air velocity varied from 0.29 m/s to 52.5 m/s to cover wide range of flow patterns. The experiments were performed for 10% to 90% water cuts. The flow patterns were observed and recorded using high speed video camera while the pressure drops were measured using pressure transducers and U-tube manometers. The flow patterns show strong dependence on water fraction, gas velocities, and liquid velocities. The observed flow patterns are stratified (smooth and wavy), elongated bubble, slug, dispersed bubble, and annular flow patterns. The pressure gradients have been found to increase with the increase in gas flow rates. Also, for a given superficial gas velocity, the pressure gradients increased with the increase in the superficial liquid velocity. The pressure gradient first increases and then decreases with increasing water cut. In general, phase inversion was observed with increase in the water cut. The experimental results have been compared with the existing unified Model and a good agreement has been noticed. PMID:24523645

  19. Experimental study on the flow regimes and pressure gradients of air-oil-water three-phase flow in horizontal pipes.

    PubMed

    Al-Hadhrami, Luai M; Shaahid, S M; Tunde, Lukman O; Al-Sarkhi, A

    2014-01-01

    An experimental investigation has been carried out to study the flow regimes and pressure gradients of air-oil-water three-phase flows in 2.25 ID horizontal pipe at different flow conditions. The effects of water cuts, liquid and gas velocities on flow patterns and pressure gradients have been studied. The experiments have been conducted at 20 °C using low viscosity Safrasol D80 oil, tap water and air. Superficial water and oil velocities were varied from 0.3 m/s to 3 m/s and air velocity varied from 0.29 m/s to 52.5 m/s to cover wide range of flow patterns. The experiments were performed for 10% to 90% water cuts. The flow patterns were observed and recorded using high speed video camera while the pressure drops were measured using pressure transducers and U-tube manometers. The flow patterns show strong dependence on water fraction, gas velocities, and liquid velocities. The observed flow patterns are stratified (smooth and wavy), elongated bubble, slug, dispersed bubble, and annular flow patterns. The pressure gradients have been found to increase with the increase in gas flow rates. Also, for a given superficial gas velocity, the pressure gradients increased with the increase in the superficial liquid velocity. The pressure gradient first increases and then decreases with increasing water cut. In general, phase inversion was observed with increase in the water cut. The experimental results have been compared with the existing unified Model and a good agreement has been noticed. PMID:24523645

  20. Experimental study on the flow regimes and pressure gradients of air-oil-water three-phase flow in horizontal pipes.

    PubMed

    Al-Hadhrami, Luai M; Shaahid, S M; Tunde, Lukman O; Al-Sarkhi, A

    2014-01-01

    An experimental investigation has been carried out to study the flow regimes and pressure gradients of air-oil-water three-phase flows in 2.25 ID horizontal pipe at different flow conditions. The effects of water cuts, liquid and gas velocities on flow patterns and pressure gradients have been studied. The experiments have been conducted at 20 °C using low viscosity Safrasol D80 oil, tap water and air. Superficial water and oil velocities were varied from 0.3 m/s to 3 m/s and air velocity varied from 0.29 m/s to 52.5 m/s to cover wide range of flow patterns. The experiments were performed for 10% to 90% water cuts. The flow patterns were observed and recorded using high speed video camera while the pressure drops were measured using pressure transducers and U-tube manometers. The flow patterns show strong dependence on water fraction, gas velocities, and liquid velocities. The observed flow patterns are stratified (smooth and wavy), elongated bubble, slug, dispersed bubble, and annular flow patterns. The pressure gradients have been found to increase with the increase in gas flow rates. Also, for a given superficial gas velocity, the pressure gradients increased with the increase in the superficial liquid velocity. The pressure gradient first increases and then decreases with increasing water cut. In general, phase inversion was observed with increase in the water cut. The experimental results have been compared with the existing unified Model and a good agreement has been noticed.

  1. Climate change, air pollution and extreme events leading to increasing prevalence of allergic respiratory diseases.

    PubMed

    D'Amato, Gennaro; Baena-Cagnani, Carlos E; Cecchi, Lorenzo; Annesi-Maesano, Isabella; Nunes, Carlos; Ansotegui, Ignacio; D'Amato, Maria; Liccardi, Gennaro; Sofia, Matteo; Canonica, Walter G

    2013-01-01

    The prevalence of asthma and allergic diseases has increased dramatically during the past few decades not only in industrialized countries. Urban air pollution from motor vehicles has been indicated as one of the major risk factors responsible for this increase.Although genetic factors are important in the development of asthma and allergic diseases, the rising trend can be explained only in changes occurred in the environment. Despite some differences in the air pollution profile and decreasing trends of some key air pollutants, air quality is an important concern for public health in the cities throughout the world.Due to climate change, air pollution patterns are changing in several urbanized areas of the world, with a significant effect on respiratory health.The observational evidence indicates that recent regional changes in climate, particularly temperature increases, have already affected a diverse set of physical and biological systems in many parts of the world. Associations between thunderstorms and asthma morbidity in pollinosis subjects have been also identified in multiple locations around the world.Allergens patterns are also changing in response to climate change and air pollution can modify the allergenic potential of pollens especially in presence of specific weather conditions.The underlying mechanisms of all these interactions are not well known yet. The consequences on health vary from decreases in lung function to allergic diseases, new onset of diseases, and exacerbation of chronic respiratory diseases.Factor clouding the issue is that laboratory evaluations do not reflect what happens during natural exposition, when atmospheric pollution mixtures in polluted cities are inhaled. In addition, it is important to recall that an individual's response to pollution exposure depends on the source and components of air pollution, as well as meteorological conditions. Indeed, some air pollution-related incidents with asthma aggravation do not depend

  2. Climate change, air pollution and extreme events leading to increasing prevalence of allergic respiratory diseases

    PubMed Central

    2013-01-01

    The prevalence of asthma and allergic diseases has increased dramatically during the past few decades not only in industrialized countries. Urban air pollution from motor vehicles has been indicated as one of the major risk factors responsible for this increase. Although genetic factors are important in the development of asthma and allergic diseases, the rising trend can be explained only in changes occurred in the environment. Despite some differences in the air pollution profile and decreasing trends of some key air pollutants, air quality is an important concern for public health in the cities throughout the world. Due to climate change, air pollution patterns are changing in several urbanized areas of the world, with a significant effect on respiratory health. The observational evidence indicates that recent regional changes in climate, particularly temperature increases, have already affected a diverse set of physical and biological systems in many parts of the world. Associations between thunderstorms and asthma morbidity in pollinosis subjects have been also identified in multiple locations around the world. Allergens patterns are also changing in response to climate change and air pollution can modify the allergenic potential of pollens especially in presence of specific weather conditions. The underlying mechanisms of all these interactions are not well known yet. The consequences on health vary from decreases in lung function to allergic diseases, new onset of diseases, and exacerbation of chronic respiratory diseases. Factor clouding the issue is that laboratory evaluations do not reflect what happens during natural exposition, when atmospheric pollution mixtures in polluted cities are inhaled. In addition, it is important to recall that an individual’s response to pollution exposure depends on the source and components of air pollution, as well as meteorological conditions. Indeed, some air pollution-related incidents with asthma aggravation do not

  3. Climate change, air pollution and extreme events leading to increasing prevalence of allergic respiratory diseases.

    PubMed

    D'Amato, Gennaro; Baena-Cagnani, Carlos E; Cecchi, Lorenzo; Annesi-Maesano, Isabella; Nunes, Carlos; Ansotegui, Ignacio; D'Amato, Maria; Liccardi, Gennaro; Sofia, Matteo; Canonica, Walter G

    2013-02-11

    The prevalence of asthma and allergic diseases has increased dramatically during the past few decades not only in industrialized countries. Urban air pollution from motor vehicles has been indicated as one of the major risk factors responsible for this increase.Although genetic factors are important in the development of asthma and allergic diseases, the rising trend can be explained only in changes occurred in the environment. Despite some differences in the air pollution profile and decreasing trends of some key air pollutants, air quality is an important concern for public health in the cities throughout the world.Due to climate change, air pollution patterns are changing in several urbanized areas of the world, with a significant effect on respiratory health.The observational evidence indicates that recent regional changes in climate, particularly temperature increases, have already affected a diverse set of physical and biological systems in many parts of the world. Associations between thunderstorms and asthma morbidity in pollinosis subjects have been also identified in multiple locations around the world.Allergens patterns are also changing in response to climate change and air pollution can modify the allergenic potential of pollens especially in presence of specific weather conditions.The underlying mechanisms of all these interactions are not well known yet. The consequences on health vary from decreases in lung function to allergic diseases, new onset of diseases, and exacerbation of chronic respiratory diseases.Factor clouding the issue is that laboratory evaluations do not reflect what happens during natural exposition, when atmospheric pollution mixtures in polluted cities are inhaled. In addition, it is important to recall that an individual's response to pollution exposure depends on the source and components of air pollution, as well as meteorological conditions. Indeed, some air pollution-related incidents with asthma aggravation do not depend

  4. Reproducible increases in blood pressure during intermittent noise exposure: underlying haemodynamic mechanisms specific to passive coping.

    PubMed

    Sawada, Y

    1993-01-01

    The purpose of the present study was to investigate the reproducibility of the increases in blood pressure found in our recent study on exposure to intermittent noise, to confirm the haemodynamic mechanism raising blood pressure (via an increase in peripheral vascular resistance expected to be specific to passive coping), and to assess baroreceptor cardiac reflex sensitivity in connection with the blood pressure elevation. A group of 16 young normotensive men participated in the experiment and underwent a 10-min intermittent exposure to pink noise at 100 dB (sound pressure level). The subjects also underwent three other stresses: a 1-min cold pressor test, a 3-min isometric handgrip and 3-min of mental arithmetic. The results indicated that blood pressure was elevated reproducibly for most of the noise exposure periods and that peripheral vascular resistance increased simultaneously, as expected. Baroreflex sensitivity was not suppressed. The results, as a whole, were in agreement with our recent findings for exposure to a similar type of noise and thus the reproducibility was corroborated. The mechanism raising blood pressure was similar in the cold pressor test. Conversely, during the isometric handgrip and mental arithmetic, blood pressure elevations were attributable mainly to increases in cardiac output. The implications of the opposing haemodynamic mechanisms raising blood pressure among the four stressful tasks have been discussed in relation to active versus passive coping required for each task. Differences in the magnitude of suppression observed in baroreflex sensitivity among the tasks have also been discussed in the context of defence reactions. PMID:8299606

  5. Early evolution of neurological surgery: conquering increased intracranial pressure, infection, and blood loss.

    PubMed

    Voorhees, Jennifer R; Cohen-Gadol, Aaron A; Spencer, Dennis D

    2005-04-15

    At the end of the 19th century, the early evolution of the specialty of neurological surgery was restricted by complications related to infection, increased intracranial pressure, and excessive intraoperative blood loss. These complications often caused mortality rates of 30 to 50%. An improved understanding of pathophysiological factors involved in increased intracranial pressure, along with meticulous surgical techniques learned from William Halsted, allowed Harvey Cushing to increase the safety of neurosurgical procedures that were then in their infancy. Cushing's later development of the "silver clip" and incorporation of electrosurgical techniques facilitated safe resection of brain tumors previously assumed to be inoperable. These pivotal accomplishments paved the way for the establishment of our specialty.

  6. Estrogen depletion increases blood pressure and hypothalamic norepinephrine in middle-aged spontaneously hypertensive rats.

    PubMed

    Peng, Ning; Clark, John T; Wei, Chi-Chang; Wyss, J Michael

    2003-05-01

    In male spontaneously hypertensive rats (SHR) a high NaCl diet increases arterial pressure via a reduction in anterior hypothalamic nucleus norepinephrine release. Young female SHR are relatively well protected from this NaCl-sensitive hypertension, but depletion of both endogenous and dietary estrogens greatly exacerbates NaCl-sensitive hypertension. This study tests the hypothesis that estrogen also protects late middle-aged female SHR from NaCl-sensitive hypertension and that this effect is mediated by an estrogen-related effect on hypothalamic norepinephrine release. Ten-month-old female SHR were ovariectomized and placed on a phytoestrogen-free diet containing either basal or high NaCl. Each rat was implanted with a silastic tube containing 17beta estradiol or vehicle. Three months later, arterial pressure and hypothalamic norepinephrine metabolite levels (MOPEG) were measured. On the basal NaCl diet, estrogen-depleted rats displayed increased arterial pressure (12 mm Hg) and decreased anterior hypothalamic nucleus MOPEG (20%). Both effects were reversed by estrogen treatment. In all groups, the high NaCl diet increased arterial pressure by over 35 mm Hg and reduced anterior hypothalamic nucleus MOPEG by >60%. Across all groups, there was a significant inverse correlation between arterial pressure and anterior hypothalamic nucleus MOPEG. These data suggest that both dietary NaCl excess and estrogen depletion raise arterial pressure in middle-aged female SHR by a decreasing hypothalamic norepinephrine.

  7. An Analytical Solution for Mechanical Responses Induced by Temperature and Air Pressure in a Lined Rock Cavern for Underground Compressed Air Energy Storage

    NASA Astrophysics Data System (ADS)

    Zhou, Shu-Wei; Xia, Cai-Chu; Du, Shi-Gui; Zhang, Ping-Yang; Zhou, Yu

    2015-03-01

    Mechanical responses induced by temperature and air pressure significantly affect the stability and durability of underground compressed air energy storage (CAES) in a lined rock cavern. An analytical solution for evaluating such responses is, thus, proposed in this paper. The lined cavern of interest consists of three layers, namely, a sealing layer, a concrete lining and the host rock. Governing equations for cavern temperature and air pressure, which involve heat transfer between the air and surrounding layers, are established first. Then, Laplace transform and superposition principle are applied to obtain the temperature around the lined cavern and the air pressure during the operational period. Afterwards, a thermo-elastic axisymmetrical model is used to analytically determine the stress and displacement variations induced by temperature and air pressure. The developments of temperature, displacement and stress during a typical operational cycle are discussed on the basis of the proposed approach. The approach is subsequently verified with a coupled compressed air and thermo-mechanical numerical simulation and by a previous study on temperature. Finally, the influence of temperature on total stress and displacement and the impact of the heat transfer coefficient are discussed. This paper shows that the temperature sharply fluctuates only on the sealing layer and the concrete lining. The resulting tensile hoop stresses on the sealing layer and concrete lining are considerably large in comparison with the initial air pressure. Moreover, temperature has a non-negligible effect on the lined cavern for underground compressed air storage. Meanwhile, temperature has a greater effect on hoop and longitudinal stress than on radial stress and displacement. In addition, the heat transfer coefficient affects the cavern stress to a higher degree than the displacement.

  8. Field test of two high-pressure, direct-contact downhole steam generators. Volume I. Air/diesel system

    SciTech Connect

    Marshall, B.W.

    1983-05-01

    As a part of the Project DEEP STEAM to develop technology to more efficiently utilize steam for the recovery of heavy oil from deep reservoirs, a field test of a downhole steam generator (DSG) was performed. The DSG burned No. 2 diesel fuel in air and was a direct-contact, high pressure device which mixed the steam with the combustion products and injected the resulting mixture directly into the oil reservoir. The objectives of the test program included demonstration of long-term operation of a DSG, development of operational methods, assessment of the effects of the steam/combustion gases on the reservoir and comparison of this air/diesel DSG with an adjacent oxygen/diesel direct contact generator. Downhole operation of the air/diesel DSG was started in June 1981 and was terminated in late February 1982. During this period two units were placed downhole with the first operating for about 20 days. It was removed, the support systems were slightly modified, and the second one was operated for 106 days. During this latter interval the generator operated for 70% of the time with surface air compressor problems the primary source of the down time. Thermal contact, as evidenced by a temperature increase in the production well casing gases, and an oil production increase were measured in one of the four wells in the air/diesel pattern. Reservoir scrubbing of carbon monoxide was observed, but no conclusive data on scrubbing of SO/sub x/ and NO/sub x/ were obtained. Corrosion of the DSG combustor walls and some other parts of the downhole package were noted. Metallurgical studies have been completed and recommendations made for other materials that are expected to better withstand the downhole combustion environment. 39 figures, 8 tables.

  9. Air

    MedlinePlus

    ... do to protect yourself from dirty air . Indoor air pollution and outdoor air pollution Air can be polluted indoors and it can ... this chart to see what things cause indoor air pollution and what things cause outdoor air pollution! Indoor ...

  10. Association between indoor air pollutant exposure and blood pressure and heart rate in subjects according to body mass index.

    PubMed

    Jung, Chien-Cheng; Su, Huey-Jen; Liang, Hsiu-Hao

    2016-01-01

    This study investigates the effects of high body mass index (BMI) of subjects on individual who exhibited high cardiovascular disease indexes with blood pressure (BP) and heart rate (HR) when exposed to high levels of indoor air pollutants. We collected 115 office workers, and measured their systolic blood pressure (SBP), diastolic blood pressure (DBP) and HR at the end of the workday. The subjects were divided into three groups according to BMI: 18-24 (normal weight), 24-27 (overweight) and >27 (obese). This study also measured the levels of carbon dioxide (CO2), total volatile organic compounds (TVOC), particulate matter with an aerodynamic diameter less than 2.5μm (PM2.5), as well as the bacteria and fungi in the subjects' work-places. The pollutant effects were divided by median. Two-way analysis of variance (ANOVA) was used to analyze the health effects of indoor air pollution exposure according to BMI. Our study showed that higher levels of SBP, DBP and HR occurred in subjects who were overweight or obese as compared to those with normal weight. Moreover, there was higher level of SBP in subjects who were overweight or obese when they were exposed to higher levels of TVOC and fungi (p<0.05). We also found higher value for DBP and HR with increasing BMI to be associated with exposure to higher TVOC levels. This study suggests that individuals with higher BMI have higher cardiovascular disease risk when they are exposed to poor indoor air quality (IAQ), and specifically in terms of TVOC.

  11. Reversible self-association of ovalbumin at air-water interfaces and the consequences for the exerted surface pressure.

    PubMed

    Kudryashova, Elena V; Visser, Antonie J W G; De Jongh, Harmen H J

    2005-02-01

    In this study the relation between the ability of protein self-association and the surface properties at air-water interfaces is investigated using a combination of spectroscopic techniques. Three forms of chicken egg ovalbumin were obtained with different self-associating behavior: native ovalbumin, heat-treated ov-albumin-being a cluster of 12-16 predominantly noncovalently bound proteins, and succinylated ovalbumin, as a form with diminished aggregation properties due to increased electrostatic repulsion. While the bulk diffusion of aggregated protein is clearly slower compared to monomeric protein, the efficiency of transport to the interface is increased, just like the efficiency of sticking to rather than bouncing from the interface. On a timescale of hours, the aggregated protein dissociates and adopts a conformation comparable to that of native protein adsorbed to the interface. The exerted surface pressure is higher for aggregated material, most probably because the deformability of the particle is smaller. Aggregated protein has a lower ability to desorb from the interface upon compression of the surface layer, resulting in a steadily increasing surface pressure upon reducing the available area for the surface layer. This observation is opposite to what is observed for succinylated protein that may desorb more easily and thereby suppresses the buildup of a surface pressure. Generally, this work demonstrates that modulating the ability of proteins to self-associate offers a tool to control the rheological properties of interfaces.

  12. Design of a MEMS piezoresistive differential pressure sensor with small thermal hysteresis for air data modules

    NASA Astrophysics Data System (ADS)

    Song, Jin Woo; Lee, Jang-Sub; An, Jun-Eon; Park, Chan Gook

    2015-06-01

    The design, fabrication, and evaluation results of a MEMS piezoresistive differential pressure sensor fabricated by the dry etching process are described in this paper. The proposed sensor is designed to have optimal performances in mid-pressure range from 0 psi to 20 psi suitable for a precision air data module. The piezoresistors with a Wheatstone bridge structure are implanted where the thermal effects are minimized subject to sustainment of the sensitivity. The rectangular-shaped silicon diaphragm is adopted and its dimension is analyzed for improving pressure sensitivity and linearity. The bridge resistors are driven by constant current to compensate temperature effects on sensitivity. The designed differential pressure sensor is fabricated by using MEMS dry etching techniques, and the fabricated sensing element is attached and packaged in a Kovar package in consideration of leakage and temperature hysteresis. The implemented sensors are tested and evaluated as well. The evaluation results show the static RSS (root sum square) accuracy including nonlinearity, non-repeatability, and pressure hysteresis before temperature compensation is about 0.09%, and the total error band which includes the RSS accuracy, the thermal hysteresis, and other thermal effects is about 0.11%, which confirm the validity of the proposed design process.

  13. Design of a MEMS piezoresistive differential pressure sensor with small thermal hysteresis for air data modules.

    PubMed

    Song, Jin Woo; Lee, Jang-Sub; An, Jun-Eon; Park, Chan Gook

    2015-06-01

    The design, fabrication, and evaluation results of a MEMS piezoresistive differential pressure sensor fabricated by the dry etching process are described in this paper. The proposed sensor is designed to have optimal performances in mid-pressure range from 0 psi to 20 psi suitable for a precision air data module. The piezoresistors with a Wheatstone bridge structure are implanted where the thermal effects are minimized subject to sustainment of the sensitivity. The rectangular-shaped silicon diaphragm is adopted and its dimension is analyzed for improving pressure sensitivity and linearity. The bridge resistors are driven by constant current to compensate temperature effects on sensitivity. The designed differential pressure sensor is fabricated by using MEMS dry etching techniques, and the fabricated sensing element is attached and packaged in a Kovar package in consideration of leakage and temperature hysteresis. The implemented sensors are tested and evaluated as well. The evaluation results show the static RSS (root sum square) accuracy including nonlinearity, non-repeatability, and pressure hysteresis before temperature compensation is about 0.09%, and the total error band which includes the RSS accuracy, the thermal hysteresis, and other thermal effects is about 0.11%, which confirm the validity of the proposed design process.

  14. 42 CFR 84.163 - Man test for gases and vapors; Type C supplied-air respirators, demand and pressure-demand...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... for gases and vapors; Type C supplied-air respirators, demand and pressure-demand classes; test... for which approval is granted and at the minimum specified air-supply pressure. The maximum flow shall not exceed 425 liters (15 cubic feet) per minute at the maximum specified air-supply pressure with...

  15. 42 CFR 84.163 - Man test for gases and vapors; Type C supplied-air respirators, demand and pressure-demand...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... for gases and vapors; Type C supplied-air respirators, demand and pressure-demand classes; test... for which approval is granted and at the minimum specified air-supply pressure. The maximum flow shall not exceed 425 liters (15 cubic feet) per minute at the maximum specified air-supply pressure with...

  16. 42 CFR 84.163 - Man test for gases and vapors; Type C supplied-air respirators, demand and pressure-demand...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... for gases and vapors; Type C supplied-air respirators, demand and pressure-demand classes; test... for which approval is granted and at the minimum specified air-supply pressure. The maximum flow shall not exceed 425 liters (15 cubic feet) per minute at the maximum specified air-supply pressure with...

  17. 42 CFR 84.163 - Man test for gases and vapors; Type C supplied-air respirators, demand and pressure-demand...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... for gases and vapors; Type C supplied-air respirators, demand and pressure-demand classes; test... for which approval is granted and at the minimum specified air-supply pressure. The maximum flow shall not exceed 425 liters (15 cubic feet) per minute at the maximum specified air-supply pressure with...

  18. 42 CFR 84.163 - Man test for gases and vapors; Type C supplied-air respirators, demand and pressure-demand...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... for gases and vapors; Type C supplied-air respirators, demand and pressure-demand classes; test... for which approval is granted and at the minimum specified air-supply pressure. The maximum flow shall not exceed 425 liters (15 cubic feet) per minute at the maximum specified air-supply pressure with...

  19. Soot Formation in Laminar Premixed Ethylene/Air Flames at Atmospheric Pressure. Appendix G

    NASA Technical Reports Server (NTRS)

    Xu, F.; Sunderland, P. B.; Faeth, G. M.; Urban, D. L. (Technical Monitor)

    2001-01-01

    Soot formation was studied within laminar premixed ethylene/air flames (C/O ratios of 0.78-0.98) stabilized on a flat-flame burner operating at atmospheric pressure. Measurements included soot volume fractions by both laser extinction and gravimetric methods, temperatures by multiline emission, soot structure by thermophoretic sampling and transmission electron microscopy, major gas species concentrations by sampling and gas chromatography, concentrations of condensable hydrocarbons by gravimetric sampling. and velocities by laser velocimetry. These data were used to find soot surface growth rates and primary soot particle nucleation rates along the axes of the flames. Present measurements of soot surface growth rates were correlated successfully by predictions based on typical hydrogen-abstraction/carbon-addition (HACA) mechanisms of Frenklach and co-workers and Colket and Hall. These results suavest that reduced soot surface growth rates with increasing residence time seen in the present and other similar flames were mainly caused by reduced rates of surface activation due to reduced H atom concentrations as temperatures decrease as a result of radiative heat losses. Primary soot particle nucleation rates exhibited variations with temperature and acetylene concentrations that were similar to recent observations for diffusion flames; however, nucleation rates in the premixed flames were significantly lower than in, the diffusion flames for reasons that still must be explained. Finally, predictions of yields of major gas species based on mechanisms from both Frenklach and co-workers and Leung and Lindstedt were in good agreement with present measurements and suggest that H atom concentrations (relevant to HACA mechanisms) approximate estimates based on local thermodynamic equilibrium in the present flames.

  20. Deactivating bacteria with RF Driven Hollow Slot Microplasmas in Open Air at Atmospheric Pressure

    NASA Astrophysics Data System (ADS)

    Yu, Zengqi; Pruden, Amy; Sharma, Ashish; Collins, George

    2003-10-01

    A hollow slot discharge operating in open air at atmospheric pressure has demonstrated its ability to deactivate bacterial growth on nearby surfaces exposed to the RF driven plasma. The cold plasma exits from a hollow slot with a width of 0.2 mm and variable length of 1-35 cm. An internal electrode was powered by 13.56 MHz radio-frequency power at a voltage below 200 V. External electrically grounded slots face the work piece. The plasma plume extends millimeters to centimeter beyond the hollow slot toward the work piece to be irradiated. Argon-Oxygen gas mixtures, at 33 liters per minute flow, were passed through the electrodes and the downstream plasma was employed for the process, with treatment exposure time varied from 0.06 to 0.18 seconds. Bacterial cultures were fixed to 0.22 micron cellulose filter membranes and passed under the plasma at a controlled rate at a distance of about 5-10 millimeters from the grounded slot electrode. Preliminary studies on the effectiveness of the plasma for sterilization were carried out on E. coli. Cultures were grown overnight on the membranes after exposure and the resulting colony forming units (cfu) were determined in treated and untreated groups. In the plasma treated group, a 98.2% kill rate was observed with the lowest exposure time, and increased to 99.8% when the exposure time was tripled. These studies clearly demonstrate the ability of the RF-driven hollow slot atmospheric plasma to inhibit bacterial growth on surfaces.

  1. Inhibitory effect of silver nanoparticles mediated by atmospheric pressure air cold plasma jet against dermatophyte fungi.

    PubMed

    Ouf, Salama A; El-Adly, Amira A; Mohamed, Abdel-Aleam H

    2015-10-01

    In an in vitro study with five clinical isolates of dermatophytes, the MIC(50) and MIC(100) values of silver nanoparticles (AgNPs) ranged from 5 to 16 and from 15 to 32 μg ml(- 1), respectively. The combined treatment of AgNPs with atmospheric pressure-air cold plasma (APACP) induced a drop in the MIC(50) and MIC100 values of AgNPs reaching 3-11 and 12-23 μg ml(- 1), respectively, according to the examined species. Epidermophyton floccosum was the most sensitive fungus to AgNPs, while Trichophyton rubrum was the most tolerant. AgNPs induced significant reduction in keratinase activity and an increase in the mycelium permeability that was greater when applied combined with plasma treatment. Scanning electron microscopy showed electroporation of the cell walls and the accumulation of AgNPs on the cell wall and inside the cells, particularly when AgNPs were combined with APACP treatment. An in vivo experiment with dermatophyte-inoculated guinea pigs indicated that the application of AgNPs combined with APACP was more efficacious in healing and suppressing disease symptoms of skin as compared with the application of AgNPs alone. The recovery from the infection reached 91.7 % in the case of Microsporum canis-inoculated guinea pigs treated with 13 μg ml(- 1) AgNPs combined with APACP treatment delivered for 2  min. The emission spectra indicated that the efficacy of APACP was mainly due to generation of NO radicals and excited nitrogen molecules. These reactive species interact and block the activity of the fungal spores in vitro and in the skin lesions of the guinea pigs. The results achieved are promising compared with fluconazole as reference antifungal drug. PMID:26296782

  2. Inhibitory effect of silver nanoparticles mediated by atmospheric pressure air cold plasma jet against dermatophyte fungi.

    PubMed

    Ouf, Salama A; El-Adly, Amira A; Mohamed, Abdel-Aleam H

    2015-10-01

    In an in vitro study with five clinical isolates of dermatophytes, the MIC(50) and MIC(100) values of silver nanoparticles (AgNPs) ranged from 5 to 16 and from 15 to 32 μg ml(- 1), respectively. The combined treatment of AgNPs with atmospheric pressure-air cold plasma (APACP) induced a drop in the MIC(50) and MIC100 values of AgNPs reaching 3-11 and 12-23 μg ml(- 1), respectively, according to the examined species. Epidermophyton floccosum was the most sensitive fungus to AgNPs, while Trichophyton rubrum was the most tolerant. AgNPs induced significant reduction in keratinase activity and an increase in the mycelium permeability that was greater when applied combined with plasma treatment. Scanning electron microscopy showed electroporation of the cell walls and the accumulation of AgNPs on the cell wall and inside the cells, particularly when AgNPs were combined with APACP treatment. An in vivo experiment with dermatophyte-inoculated guinea pigs indicated that the application of AgNPs combined with APACP was more efficacious in healing and suppressing disease symptoms of skin as compared with the application of AgNPs alone. The recovery from the infection reached 91.7 % in the case of Microsporum canis-inoculated guinea pigs treated with 13 μg ml(- 1) AgNPs combined with APACP treatment delivered for 2  min. The emission spectra indicated that the efficacy of APACP was mainly due to generation of NO radicals and excited nitrogen molecules. These reactive species interact and block the activity of the fungal spores in vitro and in the skin lesions of the guinea pigs. The results achieved are promising compared with fluconazole as reference antifungal drug.

  3. Ionic wind generation by a wire-cylinder-plate corona discharge in air at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Colas, Dorian F.; Ferret, Antoine; Pai, David Z.; Lacoste, Deanna A.; Laux, Christophe O.

    2010-11-01

    A wire-cylinder-plate electrode configuration is presented to generate ionic wind with a dc corona discharge in air at atmospheric pressure. The objective of the work is to maximize the power supplied to the flow in order to increase acceleration while avoiding breakdown. Thus, the proposed experimental setup addresses the problem of decoupling the mechanism of ion generation from that of ion acceleration. Using a wire-plate configuration as a reference, we have focused on improving the topography of the electric field to (1) separate the ionization and acceleration zones in space, and (2) guide the trajectory of charged particles as parallel to the median axis as possible. In the proposed wire-cylinder-plate setup, a dc corona discharge is generated in the space between a wire and two cylinders. The ions produced by the corona then drift past the cylinders and into a channel between two plates, where they undergo acceleration. To maximize the ionic wind it is found that the geometric configuration must be as compact as possible and that the voltage applied must be right below breakdown. Experimentally, the optimized wire-plate reference setup provides a maximum flow velocity of 8 m s-1, a flow rate per unit electrode length of 0.034 m2 s-1, and a thrust per unit electrode length of 0.24 N m-1. The wire-cylinder-plate configuration provides a maximum flow velocity of 10 m s-1, a flow rate per unit electrode length of 0.041 m2 s-1, and a thrust per unit electrode length of 0.35 N m-1. This 46% increase in thrust is obtained by increasing the electric power per unit electrode length by only 16% (from 175 to 210 W m-1), which confirms the gain in efficiency obtained with the decoupled system. In comparison with a simple wire-wire corona configuration, the wire-cylinder-plate configuration increases the ionic wind velocity by up to a factor of 3, and the thrust by an order of magnitude.

  4. Air emission into a water shear layer through porous media. Part 2: Cavitation induced pressure attenuation

    SciTech Connect

    Myer, E.C.; Marboe, R.C.

    1994-12-31

    Cavitation near the casing of a hydroturbine can lead to damage through both cavitation erosion and mechanical vibration of the casing and the associated piping. Cavitation erosion results from the collapse of cavitation bubbles on or near a surface such as the casing wall. Mechanical vibrations transmitted to the casing directly through the collapse of bubbles on the casing wall indirectly through a coupling of the acoustic pressure pulse due to a nearby collapse on the turbine blade. Air emission along the casing can reduce the intensity of the tip vortex and the gap cavitation through ventilation of the cavity. Reduction in the machinery vibration is obtained by reduction of the intensity of cavitation bubble collapse and attenuation and scattering of the radiated acoustic pressure. This requires a bubble layer which may be introduced in the vicinity of the turbine blade tips. This layer remains for some distance downstream of the blades and is effective for attenuation of tip vortex induced noise and blade surface cavitation noise. For the purpose of characterizing this bubble layer within a water pipe, the authors spanned a pipe with a two dimensional hydrofoil and emitted air through porous media (20 and 100 micron porosity sintered stainless steel) into the shear flow over the hydrofoil. This paper is limited to an investigation of the attenuation of acoustic pressure propagating to the casing rather than the reduction in acoustic source level due to collapse cushioning effects.

  5. Measurement of Respiration, Heart Beat and Body Movement on a Bed Using Dynamic Air-Pressure Sensor

    NASA Astrophysics Data System (ADS)

    Kuno, Hiroaki; Takashima, Mitsuru; Okawai, Hiroaki

    In this study, the possibility of the measurement of respiration, heart beat, and body movement on a bed was examined using the dynamic air-pressure sensor aiming at a daily health monitoring. The dynamic air-pressure sensor measures vital information using a change of air pressure. Twelve healthy volunteers participated in this study. The dynamic air-pressure sensor was installed under the bed mat and respiration and heart beat information were measured. This information was compared with the standard waveforms obtained from respiratory belt transducer and the electrocardiograph. As a result, both waveforms demonstrate a high correlation, and confirmed the validity of this method. A change of waveform and a quantitative evaluation of respiration, heart beat, and body movement measured from during sleep using this sensor can be useful for a daily health monitoring.

  6. Pathophysiology of increased cerebrospinal fluid pressure associated to brain arteriovenous malformations: The hydraulic hypothesis

    PubMed Central

    Rossitti, Sandro

    2013-01-01

    Background: Brain arteriovenous malformations (AVMs) produce circulatory and functional disturbances in adjacent as well as in remote areas of the brain, but their physiological effect on the cerebrospinal fluid (CSF) pressure is not well known. Methods: The hypothesis of an intrinsic disease mechanism leading to increased CSF pressure in all patients with brain AVM is outlined, based on a theory of hemodynamic control of intracranial pressure that asserts that CSF pressure is a fraction of the systemic arterial pressure as predicted by a two-resistor series circuit hydraulic model. The resistors are the arteriolar resistance (that is regulated by vasomotor tonus), and the venous resistance (which is mechanically passive as a Starling resistor). This theory is discussed and compared with the knowledge accumulated by now on intravasal pressures and CSF pressure measured in patients with brain AVM. Results: The theory provides a basis for understanding the occurrence of pseudotumor cerebri syndrome in patients with nonhemorrhagic brain AVMs, for the occurrence of local mass effect and brain edema bordering unruptured AVMs, and for the development of hydrocephalus in patients with unruptured AVMs. The theory also contributes to a better appreciation of the pathophysiology of dural arteriovenous fistulas, of vein of Galen aneurismal malformation, and of autoregulation-related disorders in AVM patients. Conclusions: The hydraulic hypothesis provides a comprehensive frame to understand brain AVM hemodynamics and its effect on the CSF dynamics. PMID:23607064

  7. Effects of sudden air pressure changes on hospital admissions for cardiovascular diseases in Prague

    NASA Astrophysics Data System (ADS)

    Kysely, Jan; Plavcova, Eva

    2013-04-01

    Sudden weather changes have long been supposed to be associated with negative impacts on human health. However, relatively few studies attempted to quantify these relationships. In this study, we use large 6-hour changes of atmospheric sea level pressure as proxy for sudden weather changes, and evaluate their association with hospital admissions for cardiovascular diseases. Winter and summer seasons and positive and negative pressure changes are analyzed separately, using data for the city of Prague (population of 1.2 million) over 16-year period (1994-2009). We find that sudden pressure drops in winter are associated with significant increases in the number of hospital admissions. Increases in morbidity are not observed for pressure drops in summer, nor pressure increases in any season. Analysis of synoptic weather maps shows that the large pressure drops in winter are associated with strong zonal (westerly) flow and rapidly moving low pressure systems with centres over Northern Europe and atmospheric fronts affecting the area of Western and Central Europe. Several of the largest pressure decreases were associated with infamous winter storms (such as Lothar on December 25, 1999 and Kyrill on January 18, 2007). Analysis of links between passages of strong atmospheric fronts and hospital admissions shows that the links are much weaker if weather changes are characterized by frontal passages. Since climate models project strengthening of the zonal circulation in winter and increased frequency of winter storms, the negative effects of such weather phenomena and their possible changes in a warmer climate of the 21st century need to be better understood, particularly as their importance in inducing excess morbidity and mortality in winter may increase compared to cold spells.

  8. Origin of the increase in resistivity of manganese-zinc ferrite polycrystals with oxygen partial pressure

    NASA Astrophysics Data System (ADS)

    Byeon, Soon Cheon; Hong, Kug Sun; Park, Jae Gwan; Kang, Won Nam

    1997-06-01

    In our present study, the origin of the increase in resistivity of polycrystalline Mn0.47Zn0.47Fe2.06O4 with increasing oxygen partial pressure was investigated by measuring thermoelectric power and electrical resistivity, and through analysis of grain size. The ferrous ion (Fe2+) concentration of the samples was estimated using the thermoelectric power data and it indicated that the increase of oxygen partial pressure accompanied only a 0.5 wt. % decrease in the concentration of Fe2+. The decrease in Fe2+ concentration failed to explain the order of magnitude increase in resistivity. Preferential oxidation of the grain boundaries did not contribute to the increase in resistivity since all the samples were cooled under the same conditions, i.e., constant oxidation potential. Impedance spectroscopy revealed that the increase in resistivity arose from the increase in resistivity of the grain boundary; this is discussed in terms of the microscopic shape factor, the brick-layer model, and the Maxwell-Wagner model. It is suggested that the increase in resistivity, with increasing oxygen partial pressure, originates from the increase in the microscopic shape factor of the grain boundary.

  9. Exposure to air pollution increases the risk of osteoporosis: a nationwide longitudinal study.

    PubMed

    Chang, Kuang-Hsi; Chang, Mei-Yin; Muo, Chih-Hsin; Wu, Trong-Neng; Hwang, Bing-Fang; Chen, Chiu-Ying; Lin, Tsung-Hsing; Kao, Chia-Hung

    2015-05-01

    Several studies have indicated that air pollution induces systemic as well as tissue-specific inflammation. Chronic inflammatory diseases such as rheumatoid arthritis and chronic obstructive pulmonary disease reduce bone mineral density (BMD), leading to increased release of immune cells from the bone marrow. However, the association between air pollution and osteoporosis remains poorly defined. Therefore, we conducted this population-based retrospective cohort study to evaluate the risk of osteoporosis in Taiwanese residents exposed to air pollution.We combined 2 nationwide databases in this study. The National Health Insurance Research Database of Taiwan was available from 2000 to 2010. Detailed daily data on air pollution were collected by Taiwan Environmental Protection Agency (EPA) from 1998 to 2010. We calculated the yearly average concentrations of air pollutants from the study start to the date of osteoporosis occurrence, or withdrawal from the NHI program, or December 31, 2010. The yearly average concentrations of air pollutants were categorized into quartiles, and the risks of osteoporosis were evaluated among 4 stages of air pollutants.Among Q1, Q2, Q3, and Q4 of pollutants in all subjects, the adjusted hazard ratios (HRs) of osteoporosis in Q2, Q3, and Q4 were compared with Q1. For carbon monoxide (CO), the adjusted HRs were 1.05 (95% confidence interval [CI], 0.97-1.14), 1.78 (95% CI, 1.65-1.92), and 1.84 (95% CI, 1.71-1.98), respectively. For nitrogen dioxide (NO2), the adjusted HRs were 1.35 (95% CI, 1.25-1.45), 1.24 (95% CI, 1.15-1.35), and 1.60 (95% CI, 1.48-1.73), respectively, in all subjects.The findings of the present study show that CO and NO2 exposure is associated with an increased risk of osteoporosis in the Taiwanese population.

  10. Aerobic endurance training reduces bubble formation and increases survival in rats exposed to hyperbaric pressure

    PubMed Central

    Wisløff, Ulrik; Brubakk, Alf O

    2001-01-01

    The formation of bubbles is the basis for injury to divers after decompression, a condition known as decompression illness. In the present study we investigated the effect of endurance training in the rat on decompression-induced bubble formation. A total of 52 adult female Sprague-Dawley rats (300-370 g) were randomly assigned to one of two experimental groups: training or sedentary control. Trained rats exercised on a treadmill for 1.5 h per day for 1 day, or for 2 or 6 weeks (5 days per week) at exercise intervals that alternated between 8 min at 85-90 % of maximal oxygen uptake (V̇O2,max) and 2 min at 50-60 % of V̇O2,max. Rats were compressed (simulated dive) in a decompression chamber in pairs, one sedentary and one trained, at a rate of 200 kPa min−1 to a pressure of 700 kPa, and maintained for 45 min breathing air. At the end of the exposure period, rats were decompressed linearly to the ‘surface’ (100 kPa) at a rate of 50 kPa min−1. Immediately after reaching the ‘surface’ (100 kPa) the animals were anaesthetized and the right ventricle was insonated using Doppler ultrasound. Intensity-controlled interval training significantly increased V̇O2,max by 12 and 60 % after 2 and 6 weeks, respectively. At 6 weeks, left and right ventricular weights were 14 and 17 % higher, respectively, in trained compared to control rats. No effect of training was observed on skeletal muscle weight. Bubble formation was significantly reduced in trained rats after both 2 and 6 weeks. However, the same effect was seen after a single bout of aerobic exercise lasting 1.5 h on the day prior to decompression. All of the rats that exercised for 1.5 h and 2 weeks, and most of those that trained for 6 weeks, survived the protocol, whereas most sedentary rats died within 60 min post-decompression. This study shows that aerobic exercise protects rats from severe decompression and death. This may be a result of less bubbling in the trained animals. The data showed that the

  11. High-pressure ceramic air heater for indirectly fired gas turbine applications

    NASA Astrophysics Data System (ADS)

    Lahaye, P. G.; Briggs, G. F.; Vandervort, C. L.; Seger, J. L.

    The Externally-Fired Combined Cycle (EFCC) offers a method for operating high-efficiency gas and steam turbine combined cycles on coal. In the EFCC, an air heater replaces the gas turbine combustor so that the turbine can be indirectly fired. Ceramic materials are required for the heat exchange surfaces to accommodate the operating temperatures of modern gas turbines. The ceramic air heater or heat exchanger is the focus of this program, and the two primary objectives are (1) to demonstrate that a ceramic air heater can be reliably pressurized to a level of 225 psia (1.5 MPa); and (2) to show that the air heater can withstand exposure to the products of coal combustion at elevated temperatures. By replacing the gas turbine combustor with a ceramic air heater, the cycle can use coal or other ash-bearing fuels. Numerous programs have attempted to fuel high efficiency gas turbines directly with coal, often resulting in significant ash deposition upon turbine components and corrosion or erosion of turbine blades. This report will show that a ceramic air heater is significantly less susceptible to ash deposition or corrosion than a gas turbine when protected by rudimentary methods of gas-stream clean-up. A 25 x 10(sup 6) Btu/hr (7 MW) test facility is under construction in Kennebunk, Maine. It is anticipated that this proof of concept program will lead to commercialization of the EFCC by electric utility and industrial organizations. Applications are being pursued for power plants ranging from 10 to 100 megawatts.

  12. Smooth Muscle Cell Contraction Increases the Critical Buckling Pressure of Arteries

    PubMed Central

    Hayman, Danika M.; Zhang, Jinzhou; Liu, Qin; Xiao, Yangming; Han, Hai-Chao

    2012-01-01

    Recent in vitro experiments demonstrated that arteries under increased internal pressure or decreased axial stretch may buckle into the tortuous pattern that is commonly observed in aging or diseased arteries in vivo. It suggests that buckling is a possible mechanism for the development of artery tortuosity. Vascular tone has significant effects on arterial mechanical properties but its effect on artery buckling is unknown. The objective of this study was to determine the effects of smooth muscle cell contraction on the critical buckling pressure of arteries. Porcine common carotid arteries were perfused in an ex vivo organ culture system overnight under physiological flow and pressure. The perfusion pressure was adjusted to determine the critical buckling pressure of these arteries at in vivo and reduced axial stretch ratios (1.5 and 1.3) at baseline and after smooth muscle contraction and relaxation stimulated by norepinephrine and sodium nitroprusside, respectively. Our results demonstrated that the critical buckling pressure was significantly higher when the smooth muscle was contracted compared with relaxed condition (97.3mmHg versus 72.9mmHg at axial stretch ratio of 1.3 and 93.7mmHg vs 58.6mmHg at 1.5, p<0.05). These results indicate that arterial smooth muscle cell contraction increased artery stability. PMID:23261241

  13. Smooth muscle cell contraction increases the critical buckling pressure of arteries.

    PubMed

    Hayman, Danika M; Zhang, Jinzhou; Liu, Qin; Xiao, Yangming; Han, Hai-Chao

    2013-02-22

    Recent in vitro experiments demonstrated that arteries under increased internal pressure or decreased axial stretch may buckle into the tortuous pattern that is commonly observed in aging or diseased arteries in vivo. It suggests that buckling is a possible mechanism for the development of artery tortuosity. Vascular tone has significant effects on arterial mechanical properties but its effect on artery buckling is unknown. The objective of this study was to determine the effects of smooth muscle cell contraction on the critical buckling pressure of arteries. Porcine common carotid arteries were perfused in an ex vivo organ culture system overnight under physiological flow and pressure. The perfusion pressure was adjusted to determine the critical buckling pressure of these arteries at in vivo and reduced axial stretch ratios (1.5 and 1.3) at baseline and after smooth muscle contraction and relaxation stimulated by norepinephrine and sodium nitroprusside, respectively. Our results demonstrated that the critical buckling pressure was significantly higher when the smooth muscle was contracted compared with relaxed condition (97.3mmHg vs 72.9mmHg at axial stretch ratio of 1.3 and 93.7mmHg vs 58.6mmHg at 1.5, p<0.05). These results indicate that arterial smooth muscle cell contraction increased artery stability.

  14. Live births achieved via IVF are increased by improvements in air quality and laboratory environment.

    PubMed

    Heitmann, Ryan J; Hill, Micah J; James, Aidita N; Schimmel, Tim; Segars, James H; Csokmay, John M; Cohen, Jacques; Payson, Mark D

    2015-09-01

    Infertility is a common disease, which causes many couples to seek treatment with assisted reproduction techniques. Many factors contribute to successful assisted reproduction technique outcomes. One important factor is laboratory environment and air quality. Our facility had the unique opportunity to compare consecutively used, but separate assisted reproduction technique laboratories, as a result of a required move. Environmental conditions were improved by strategic engineering designs. All other aspects of the IVF laboratory, including equipment, physicians, embryologists, nursing staff and protocols, were kept constant between facilities. Air quality testing showed improved air quality at the new IVF site. Embryo implantation (32.4% versus 24.3%; P < 0.01) and live birth (39.3% versus 31.8%, P < 0.05) were significantly increased in the new facility compared with the old facility. More patients met clinical criteria and underwent mandatory single embryo transfer on day 5 leading to both a reduction in multiple gestation pregnancies and increased numbers of vitrified embryos per patient with supernumerary embryos available. Improvements in IVF laboratory conditions and air quality had profound positive effects on laboratory measures and patient outcomes. This study further strengthens the importance of the laboratory environment and air quality in the success of an IVF programme.

  15. Live births achieved via IVF are increased by improvements in air quality and laboratory environment

    PubMed Central

    Heitmann, Ryan J; Hill, Micah J; James, Aidita N; Schimmel, Tim; Segars, James H; Csokmay, John M; Cohen, Jacques; Payson, Mark D

    2016-01-01

    Infertility is a common disease, which causes many couples to seek treatment with assisted reproduction techniques. Many factors contribute to successful assisted reproduction technique outcomes. One important factor is laboratory environment and air quality. Our facility had the unique opportunity to compare consecutively used, but separate assisted reproduction technique laboratories, as a result of a required move. Environmental conditions were improved by strategic engineering designs. All other aspects of the IVF laboratory, including equipment, physicians, embryologists, nursing staff and protocols, were kept constant between facilities. Air quality testing showed improved air quality at the new IVF site. Embryo implantation (32.4% versus 24.3%; P < 0.01) and live birth (39.3% versus 31.8%, P < 0.05) were significantly increased in the new facility compared with the old facility. More patients met clinical criteria and underwent mandatory single embryo transfer on day 5 leading to both a reduction in multiple gestation pregnancies and increased numbers of vitrified embryos per patient with supernumerary embryos available. Improvements in IVF laboratory conditions and air quality had profound positive effects on laboratory measures and patient outcomes. This study further strengthens the importance of the laboratory environment and air quality in the success of an IVF programme. PMID:26194882

  16. Pressurized liquid extraction of diesel and air particulate standard reference materials: effect of extraction temperature and pressure.

    PubMed

    Schantz, Michele M; McGaw, Elizabeth; Wise, Stephen A

    2012-10-01

    Four particulate matter Standard Reference Materials (SRMs) available from the National Institute of Standards and Technology (NIST) were used to evaluate the effect of solvent, number of static cycles and static times, pressure, and temperature when using pressurized liquid extraction (PLE) for the extraction of polycyclic aromatic hydrocarbons (PAHs) and nitrated-PAHs. The four materials used in the study were SRM 1648a Urban Particulate Matter, SRM 1649b Urban Dust, SRM 1650b Diesel Particulate Matter, and SRM 2975 Diesel Particulate Matter (Industrial Forklift). The results from the study indicate that the choice of solvent, dichloromethane compared to toluene and toluene/methanol mixtures, had little effect on the extraction efficiency. With three to five extraction cycles, increasing the extraction time for each cycle from 5 to 30 min had no significant effect on the extraction efficiency. The differences in extraction efficiency were not significant (with over 95% of the differences being <10%) when the pressure was increased from 13.8 to 20.7 MPa. The largest increase in extraction efficiency occurred for selected PAHs when the temperature of extraction was increased from 100 to 200 °C. At 200 °C naphthalene, biphenyl, fluorene, dibenzothiophene, and anthracene show substantially higher mass fractions (>30%) than when extracted at 100 °C in all the SRMs studied. For SRM 2975, large increases (>100%) are also observed for some other PAHs including benz[a]anthracene, benzo[k]fluoranthene, benzo[e]pyrene, benzo[a]pyrene, benzo[ghi]perylene, and benzo[b]chrysene when extracted at the higher temperatures; however, similar trends were not observed for the other diesel particulate sample, SRM 1650b. The results are discussed in relation to the use of the SRMs for evaluating analytical methods.

  17. Metal-air cells comprising collapsible foam members and means for minimizing internal pressure buildup

    NASA Technical Reports Server (NTRS)

    Woodruff, Glenn (Inventor); Putt, Ronald A. (Inventor)

    1994-01-01

    This invention provides a prismatic zinc-air cell including, in general, a prismatic container having therein an air cathode, a separator and a zinc anode. The container has one or more oxygen access openings, and the air cathode is disposed in the container in gaseous communication with the oxygen access openings so as to allow access of oxygen to the cathode. The separator has a first side in electrolytic communication with the air cathode and a second side in electrolytic communication with the zinc anode. The separator isolates the cathode and the zinc anode from direct electrical contact and allows passage of electrolyte therebetween. An expansion chamber adjacent to the zinc anode is provided which accommodates expansion of the zinc anode during discharge of the cell. A suitable collapsible foam member generally occupies the expansion space, providing sufficient resistance tending to oppose movement of the zinc anode away from the separator while collapsing upon expansion of the zinc anode during discharge of the cell. One or more vent openings disposed in the container are in gaseous communication with the expansion space, functioning to satisfactorily minimize the pressure buildup within the container by venting gasses expelled as the foam collapses during cell discharge.

  18. Study on an Efficient Dehumidifying Air-conditioning System utilizing Phase Change of Intermediate Pressure Refrigerant

    NASA Astrophysics Data System (ADS)

    Maeda, Kensaku; Inaba, Hideo

    The present study has proven a new dehumidifying system that aimed to reduce the sensible heat factor(SHF) of cooling process without using additional heat to relieve the internationally indicated conflict between energy saving and dehumidification necessary for keeping adequate indoor air quality (IAQ). In this system, we used intermediate pressure refrigerant in a vapor compression refrigerating cycle as heat transfer medium of a characteristic heat exchanger to precool the process air entering into an evaporator as well as to reheat the process air leaving from the evaporator. By this system, the present results achieved higher moisture removal and consequently higher efficiency of dehumidifying process. In addition to this fact, since this system has capability of integration into air-conditioning apparatus(HVAC system), it will be able to work for wide range of cooling load by variable SHF function. In the present paper, technical information, experimental results, and simulation results which assumed to apply this system into HVAC system are reported.

  19. Surface treatment of polypropylene (PP) film by 50 Hz dielectric barrier discharge produced in air and argon/air mixture at atmospheric pressure

    SciTech Connect

    Joshi, Ujjwal Man Subedi, Deepak Prasad

    2015-07-31

    Thin films of polypropylene (PP) are treated for improving hydrophilicity using non-thermal plasma generated by 50 Hz line frequency dielectric barrier discharge produced in air and argon/air mixture at atmospheric pressure. PP samples before and after the treatments are studied using contact angle measurements, surface free energy calculations and scanning electron microscopy (SEM). Distilled water (H{sub 2}O), glycerol (C{sub 3}H{sub 8}O{sub 3}) and diiodomethane (CH{sub 2}I{sub 2}) are used as test liquids. The contact angle measurements between test liquids and PP samples are used to determine total surface free energy using sessile drop technique. PP films show a remarkable increase in surface free energy after plasma treatment. SEM analysis of the plasma-treated PP films shows that plasma treatment introduces greater roughness on the surface leading to the increased surface free energy. Furthermore, it is found that introducing a small quantity of argon can enhance the surface treatment remarkably.

  20. Simulation of a runaway electron avalanche developing in an atmospheric pressure air discharge

    SciTech Connect

    Oreshkin, E. V.; Barengolts, S. A.; Chaikovsky, S. A.; Oreshkin, V. I.

    2015-12-15

    To gain a better understanding of the operation of atmospheric pressure air discharges, the formation of a runaway electron beam at an individual emission site on the cathode has been numerically simulated. The model provides a description of the dynamics of the fast electrons emitted into an air gap from the surface of the emission zone by solving numerically two-dimensional equations for the electrons. It is supposed that the electric field at the surface of the emission zone is enhanced, providing conditions for continuous acceleration of the emitted electrons. It is shown that the formation of a runaway electron beam in a highly overvolted discharge is largely associated with avalanche-type processes and that the number of electrons in the avalanche reaches 50% of the total number of runaway electrons.

  1. JT8D revised high-pressure turbine cooling and other outer air seal program

    NASA Technical Reports Server (NTRS)

    Gaffin, W. O.

    1979-01-01

    The JT8D high pressure turbine was revised to reduce leakage between the blade tip shrouds and the outer air seal, and engine testing was performed to determine the effect on performance. The addition of a second knife-edge on the blade tip shroud, the extension of the honeycomb seal land to cover the added knife-edge and an existing spoiler on the shroud, and a material substitution in the seal support ring to improve thermal growth characteristics are included. A relocation of the blade cooling air discharge to insure adequate cooling flow is required. Significant specific fuel consumption and exhaust gas temperature improvements were demonstrated with the revised turbine in sea level and simulated altitude engine tests. Inspection of the revised seal hardware after these tests showed no unusual wear or degradation.

  2. Sustained diffusive alternating current gliding arc discharge in atmospheric pressure air

    NASA Astrophysics Data System (ADS)

    Zhu, Jiajian; Gao, Jinlong; Li, Zhongshan; Ehn, Andreas; Aldén, Marcus; Larsson, Anders; Kusano, Yukihiro

    2014-12-01

    Rapid transition from glow discharge to thermal arc has been a common problem in generating stable high-power non-thermal plasmas especially at ambient conditions. A sustained diffusive gliding arc discharge was generated in a large volume in atmospheric pressure air, driven by an alternating current (AC) power source. The plasma column extended beyond the water-cooled stainless steel electrodes and was stabilized by matching the flow speed of the turbulent air jet with the rated output power. Comprehensive investigations were performed using high-speed movies measured over the plasma column, synchronized with simultaneously recorded current and voltage waveforms. Dynamic details of the novel non-equilibrium discharge are revealed, which is characterized by a sinusoidal current waveform with amplitude stabilized at around 200 mA intermediate between thermal arc and glow discharge, shedding light to the governing mechanism of the sustained spark-suppressed AC gliding arc discharge.

  3. BOREAS AFM-5 Level-2 Upper Air Network Standard Pressure Level Data

    NASA Technical Reports Server (NTRS)

    Barr, Alan; Hrynkiw, Charmaine; Hall, Forrest G. (Editor); Newcomer, Jeffrey A. (Editor); Smith, David E. (Technical Monitor)

    2000-01-01

    The BOREAS AFM-5 team collected and processed data from the numerous radiosonde flights during the project. The goals of the AFM-05 team were to provide large-scale definition of the atmosphere by supplementing the existing AES aerological network, both temporally and spatially. This data set includes basic upper-air parameters interpolated at 0.5 kiloPascal increments of atmospheric pressure from data collected from the network of upper-air stations during the 1993, 1994, and 1996 field campaigns over the entire study region. The data are contained in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884) or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  4. Confronting environmental pressure, environmental quality and human health impact indicators of priority air emissions

    NASA Astrophysics Data System (ADS)

    Geelen, Loes M. J.; Huijbregts, Mark A. J.; den Hollander, Henri; Ragas, Ad M. J.; van Jaarsveld, Hans. A.; de Zwart, Dick

    This paper evaluates the ranking of 21 priority air pollutants with three indicator schemes: environmental pressure indicator (EPI), environmental quality indicator (EQI), and human health effect indicator (HEI). The EPI and EQI compare the emissions and concentrations with the target emissions and target concentrations, respectively. The HEI comprehends the steps from cause (i.e. national emissions) to effect (i.e. human health effects), and is the total human health burden, expressed in Disability Adjusted Life Years per year of exposure (DALYs year -1). We estimated a health burden in the Netherlands of 41 × 10 3 DALYs year -1 caused by Dutch air emissions of PM10 and its precursors in the year 2003. The burden due to 17 carcinogenic substances emitted to air, was much lower (140 DALYs year -1). In contrast, when the same substances were evaluated regarding environmental pressure and environmental quality, carbon tetrachloride (pressure) and benzo[ a]pyrene (quality) were of highest importance, whereas the importance of PM10 was substantially lower. This result is remarkable, because for the majority of substances evaluated, the target concentrations and target emissions are based on preventing human health damage. The differences in relevance are explained by the different weighting of interests in the indicators. The HEI is based on concentration-response relations, whereas the EPI and EQI also depend on other, policy-based, principles and on technical feasibility. Therefore, to effectively prioritize emission reduction measures in policy-making, substances should not only be evaluated as to whether emission targets and environmental quality targets are reached, but they should be evaluated regarding their human health impact as well. In this context, the HEI is a suitable indicator to evaluate the human health impact.

  5. Focused excimer laser initiated, radio frequency sustained high pressure air plasmas

    SciTech Connect

    Giar, Ryan; Scharer, John

    2011-11-15

    Measurements and analysis of air breakdown processes and plasma production by focusing 193 nm, 300 mJ, 15 MW high power laser radiation inside a 6 cm diameter helical radio frequency (RF) coil are presented. Quantum resonant multi-photon ionization (REMPI) and collisional cascade laser ionization processes are exploited that have been shown to produce high-density (n{sub e} {approx} 7 x 10{sup 16}/cm{sup 3}) cylindrical seed plasmas at 760 Torr. Air breakdown in lower pressures (from 7-22 Torr), where REMPI is the dominant laser ionization process, is investigated using an UV 18 cm focal length lens, resulting in a laser flux of 5.5 GW/cm{sup 2} at the focal spot. The focused laser power absorption and associated shock wave produce seed plasmas for sustainment by the RF (5 kW incident power, 1.5 s) pulse. Measurements of the helical RF antenna load impedance in the inductive and capacitive coupling regimes are obtained by measuring the loaded antenna reflection coefficient. A 105 GHz interferometer is used to measure the plasma electron density and collision frequency. Spectroscopic measurements of the plasma and comparison with the SPECAIR code are made to determine translational, rotational, and vibrational neutral temperatures and the associated neutral gas temperature. From this and the associated measurement of the gas pressure the electron temperature is obtained. Experiments show that the laser-formed seed plasma allows RF sustainment at higher initial air pressures (up to 22 Torr) than that obtained via RF-only initiation (<18 Torr) by means of a 0.3 J UV laser pulse.

  6. Sterilization effect of atmospheric pressure non-thermal air plasma on dental instruments

    PubMed Central

    Sung, Su-Jin; Huh, Jung-Bo; Yun, Mi-Jung; Chang, Brian Myung W.; Jeong, Chang-Mo

    2013-01-01

    PURPOSE Autoclaves and UV sterilizers have been commonly used to prevent cross-infections between dental patients and dental instruments or materials contaminated by saliva and blood. To develop a dental sterilizer which can sterilize most materials, such as metals, rubbers, and plastics, the sterilization effect of an atmospheric pressure non-thermal air plasma device was evaluated. MATERIALS AND METHODS After inoculating E. coli and B. subtilis the diamond burs and polyvinyl siloxane materials were sterilized by exposing them to the plasma for different lengths of time (30, 60, 90, 120, 180 and, 240 seconds). The diamond burs and polyvinyl siloxane materials were immersed in PBS solutions, cultured on agar plates and quantified by counting the colony forming units. The data were analyzed using one-way ANOVA and significance was assessed by the LSD post hoc test (α=0.05). RESULTS The device was effective in killing E. coli contained in the plasma device compared with the UV sterilizer. The atmospheric pressure non-thermal air plasma device contributed greatly to the sterilization of diamond burs and polyvinyl siloxane materials inoculated with E. coli and B. subtilis. Diamond burs and polyvinyl siloxane materials inoculated with E. coli was effective after 60 and 90 seconds. The diamond burs and polyvinyl siloxane materials inoculated with B. subtilis was effective after 120 and 180 seconds. CONCLUSION The atmospheric pressure non-thermal air plasma device was effective in killing both E. coli and B. subtilis, and was more effective in killing E. coli than the UV sterilizer. PMID:23508991

  7. Evidence for a major gene influencing 7-year increases in diastolic blood pressure with age

    SciTech Connect

    Li Shu-Chuan Cheng; Carmelli, D.; Hunt, S.C.

    1995-11-01

    The contribution of genetic factors to blood pressure levels is well established. The contribution of genes to the longitudinal change in blood pressure has been less well studied, because of the lack of longitudinal family data. The present study investigated a possible major-gene effect on the observed increase with age in diastolic blood pressure (DBP) levels. Subjects included 965 unmedicated adults (age {ge}18 years) in 73 pedigrees collected in Utah as part of a longitudinal cardiovascular family study. Segregation analysis of DBP change over 7.2 years of follow-up identified a recessive major-gene effect with a gene frequency of p = .23. There was also a significant age effect on the genotypic means, which decreased expression of the major gene at older ages. For those inferred to have the genotype responsible for large DBP increases, DBP increased 32.3%, compared with a 1.5% increase in the nonsusceptible group (P < .0001). The relative risk of developing hypertension between the susceptible and nonsusceptible groups after 7.2 years was 2.4 (P = .006). Baseline DBP reactivities to mental arithmetic (P < .0001) and isometric hand-grip (P < .0001) stress tests were greatest in those assigned to the susceptible genotype. We conclude that age-related changes in DBP are influenced by a major gene. Characteristics of this major-gene effect for greater age-related blood pressure increases include greater reactivity to mental and physical stressors. The present study thus provides evidence for genetic control of changes in blood pressure, in addition to the previously suggested genetic control of absolute blood pressure level. 28 refs., 6 tabs.

  8. Numerical and experimental study of an axisymmetric coflow laminar methane-air diffusion flame at pressures between 5 and 40 atmospheres

    SciTech Connect

    Liu, Fengshan; Thomson, Kevin A.; Guo, Hongsheng; Smallwood, Gregory J.

    2006-08-15

    A numerical and experimental study of an axisymmetric coflow laminar methane-air diffusion flame at pressures between 5 and 40 atm was conducted to investigate the effect of pressure on the flame structure and soot formation characteristics. Experimental work was carried out in a new high-pressure combustion chamber described in a recent study [K.A. Thomson, O.L. Gulder, E.J. Weckman, R.A. Fraser, G.J. Smallwood, D.R. Snelling, Combust. Flame 140 (2005) 222-232]. Radially resolved soot volume fraction was experimentally measured using both spectral soot emission and line-of-sight attenuation techniques. Numerically, the elliptic governing equations were solved in axisymmetric cylindrical coordinates using the finite volume method. Detailed gas-phase chemistry and complex thermal and transport properties were employed in the numerical calculations. The soot model employed in this study accounts for soot nucleation and surface growth using a semiempirical acetylene-based global soot model with oxidation of soot by O{sub 2}, OH, and O taken into account. Radiative heat transfer was calculated using the discrete-ordinates method and a nine-band nongray radiative property model. Two soot surface growth submodels were investigated and the predicted pressure dependence of soot yield was compared with available experimental data. The experiment, the numerical model, and a simplified theoretical analysis found that the visible flame diameter decreases with pressure as P{sub a}{sup -0.5}. The flame-diameter-integrated soot volume fraction increases with pressure as P{sub a}{sup 1.3} between 5 and 20 atm. The assumption of a square root dependence of the soot surface growth rate on the soot particle surface area predicts the pressure dependence of soot yield in good agreement with the experimental observation. On the other hand, the assumption of linear dependence of the soot surface growth rate on the soot surface area predicts a much faster increase in the soot yield with

  9. Surface pressure-induced layer growth of a monolayer at the air-water interface

    SciTech Connect

    Fang, J.Y.; Uphaus, R.A. )

    1994-04-01

    Spread monolayers containing a nematic liquid crystal and stearic acid were characterized at various mole fractions by determination of surface pressure-area isotherms at the air-water interface. The surface-composition phase diagrams indicate that compression induces a new phase transition in the films, which changes from a mixed monolayer to a supermonomolecular system. X-ray diffraction and optical absorption spectra demonstrate that the supermolecular array consists of an island liquid crystal monolayer and a uniform stearic acid monolayer. 12 refs., 7 figs.

  10. Research Update: Direct conversion of amorphous carbon into diamond at ambient pressures and temperatures in air

    SciTech Connect

    Narayan, Jagdish Bhaumik, Anagh

    2015-10-01

    We report on fundamental discovery of conversion of amorphous carbon into diamond by irradiating amorphous carbon films with nanosecond lasers at room-temperature in air at atmospheric pressure. We can create diamond in the form of nanodiamond (size range <100 nm) and microdiamond (>100 nm). Nanosecond laser pulses are used to melt amorphous diamondlike carbon and create a highly undercooled state, from which various forms of diamond can be formed upon cooling. The quenching from the super undercooled state results in nucleation of nanodiamond. It is found that microdiamonds grow out of highly undercooled state of carbon, with nanodiamond acting as seed crystals.

  11. Spectrum of the Runaway Electron Beam Generated During a Nanosecond Discharge in Air at Atmospheric Pressure

    NASA Astrophysics Data System (ADS)

    Tarasenko, V. F.; Baksht, E. Kh.; Burachenko, A. G.

    2016-04-01

    The spectrum of supershort avalanche runaway electron beam generated in air at atmospheric pressure is experimentally investigated using a time-of-flight spectrometer and attenuation curves. It is shown that the maximum of the electron energy distribution for the main (second) group of electrons is less than the energy eUm, where Um is the maximal voltage across the gap, and the difference between these energies depends on the design of the cathode and the interelectrode gap in a gas diode. It is confirmed that there are three groups of electrons with different energies in the runaway electron beam spectrum.

  12. Scuba tanks as a compressed air source in positive-pressure ventilation.

    PubMed

    Stewart, T

    1992-06-01

    Throughout the developing world there is a general problem of ensuring regular deliveries of medical supplies to hospitals. This includes the supply of compressed gases. At one regional hospital in Vanuatu, we were faced with the problem of how to provide economically a source of compressed gas at regulated pressure to drive an anaesthetic ventilator. We eventually adapted the output from a Scuba cylinder for this purpose. This paper describes the simple modifications necessary and suggests other uses for this source of compressed air that could be implemented in hospitals with small to medium case loads and access to a diving compressor.

  13. Integrated LTCC Pressure/Flow/Temperature Multisensor for Compressed Air Diagnostics†

    PubMed Central

    Fournier, Yannick; Maeder, Thomas; Boutinard-Rouelle, Grégoire; Barras, Aurélie; Craquelin, Nicolas; Ryser, Peter

    2010-01-01

    We present a multisensor designed for industrial compressed air diagnostics and combining the measurement of pressure, flow, and temperature, integrated with the corresponding signal conditioning electronics in a single low-temperature co-fired ceramic (LTCC) package. The developed sensor may be soldered onto an integrated electro-fluidic platform by using standard surface mount device (SMD) technology, e.g., as a standard electronic component would be on a printed circuit board, obviating the need for both wires and tubes and thus paving the road towards low-cost integrated electro-fluidic systems. Several performance aspects of this device are presented and discussed, together with electronics design issues. PMID:22163518

  14. Selective Heart Rate Reduction With Ivabradine Increases Central Blood Pressure in Stable Coronary Artery Disease.

    PubMed

    Rimoldi, Stefano F; Messerli, Franz H; Cerny, David; Gloekler, Steffen; Traupe, Tobias; Laurent, Stéphane; Seiler, Christian

    2016-06-01

    Heart rate (HR) lowering by β-blockade was shown to be beneficial after myocardial infarction. In contrast, HR lowering with ivabradine was found to confer no benefits in 2 prospective randomized trials in patients with coronary artery disease. We hypothesized that this inefficacy could be in part related to ivabradine's effect on central (aortic) pressure. Our study included 46 patients with chronic stable coronary artery disease who were randomly allocated to placebo (n=23) or ivabradine (n=23) in a single-blinded fashion for 6 months. Concomitant baseline medication was continued unchanged throughout the study except for β-blockers, which were stopped during the study period. Central blood pressure and stroke volume were measured directly by left heart catheterization at baseline and after 6 months. For the determination of resting HR at baseline and at follow-up, 24-hour ECG monitoring was performed. Patients on ivabradine showed an increase of 11 mm Hg in central systolic pressure from 129±22 mm Hg to 140±26 mm Hg (P=0.02) and in stroke volume by 86±21.8 to 107.2±30.0 mL (P=0.002). In the placebo group, central systolic pressure and stroke volume remained unchanged. Estimates of myocardial oxygen consumption (HR×systolic pressure and time-tension index) remained unchanged with ivabradine.The decrease in HR from baseline to follow-up correlated with the concomitant increase in central systolic pressure (r=-0.41, P=0.009) and in stroke volume (r=-0.61, P<0.001). In conclusion, the decrease in HR with ivabradine was associated with an increase in central systolic pressure, which may have antagonized possible benefits of HR lowering in coronary artery disease patients. CLINICAL TRIALSURL: http://www.clinicaltrials.gov. Unique identifier NCT01039389. PMID:27091900

  15. Effects of ear-canal pressurization on middle-ear bone- and air-conduction responses

    PubMed Central

    Homma, Kenji; Shimizu, Yoshitaka; Kim, Namkeun; Du, Yu; Puria, Sunil

    2014-01-01

    In extremely loud noise environments, it is important to not only protect one’s hearing against noise transmitted through the air-conduction (AC) pathway, but also through the bone-conduction (BC) pathways. Much of the energy transmitted through the BC pathways is concentrated in the mid-frequency range around 1.5–2 kHz, which is likely due to the structural resonance of the middle ear. One potential approach for mitigating this mid-frequency BC noise transmission is to introduce a positive or negative static pressure in the ear canal, which is known to reduce BC as well as AC hearing sensitivity. In the present study, middle-ear ossicular velocities at the umbo and stapes were measured using human cadaver temporal bones in response to both BC and AC excitations, while static air pressures of ±400 mm H2O were applied in the ear canal. For the maximum negative pressure of −400 mm H2O, mean BC stapes-velocity reductions of about 5–8 dB were observed in the frequency range from 0.8 to 2.5 kHz, with a peak reduction of 8.6(± 4.7) dB at 1.6 kHz. Finite-element analysis indicates that the peak BC-response reduction tends to be in the mid-frequency range because the middle-ear BC resonance, which is typically around 1.5–2 kHz, is suppressed by the pressure-induced stiffening of the middle-ear structure. The measured data also show that the BC responses are reduced more for negative static pressures than for positive static pressures. This may be attributable to a difference in the distribution of the stiffening among the middle-ear components depending on the polarity of the static pressure. The characteristics of the BC-response reductions are found to be largely consistent with the available psychoacoustic data, and are therefore indicative of the relative importance of the middle-ear mechanism in BC hearing. PMID:19944139

  16. Low-pressure reservoir drilled with air/N[sub 2] in a closed system

    SciTech Connect

    Teichrob, R.R. )

    1994-03-21

    Ignition tests on simulated produced fluids helped determine the ideal air/nitrogen mixture for an underbalanced drilling operation that used a closed surface system to process return fluids. The low-pressure, heavy-oil target reservoir required underbalanced drilling to minimize formation damage. Underbalanced or near-balanced drilling can improve production from pressure-depleted reservoirs by reducing the chance of formation damage from drilling fluid losses. Underbalanced drilling technology currently available includes the use of gas injection through parasite strings or through drilling tubulars. No one (to the author's knowledge) has combined concentric-string commingled gas injection with through-drilling-tubular commingled gas injection. The paper describes lab work, test results, surface returns, downhole design, operations, and field results.

  17. Exposure to bisphenol A from drinking canned beverages increases blood pressure: randomized crossover trial.

    PubMed

    Bae, Sanghyuk; Hong, Yun-Chul

    2015-02-01

    Bisphenol A (BPA) is a chemical used in plastic bottles and inner coating of beverage cans, and its exposure is almost ubiquitous. BPA has been associated with hypertension and decreased heart rate variability in the previous studies. The aim of the present study was to determine whether increased BPA exposure from consumption of canned beverage actually affects blood pressure and heart rate variability. We conducted a randomized crossover trial with noninstitutionalized adults, who were aged ≥60 years and recruited from a local community center. A total of 60 participants visited the study site 3 times, and they were provided the same beverage in 2 glass bottles, 2 cans, or 1 can and 1 glass bottle at a time. The sequence of the beverage was randomized. We then measured urinary BPA concentration, blood pressure, and heart rate variability 2 hours after the consumption of each beverage. The paired t test and mixed model were used to compare the differences. The urinary BPA concentration increased after consuming canned beverages by >1600% compared with that after consuming glass bottled beverages. Systolic blood pressure adjusted for daily variance increased by ≈4.5 mm Hg after consuming 2 canned beverages compared with that after consuming 2 glass bottled beverages, and the difference was statistically significant. The parameters of the heart rate variability did not show statistically significant differences.The present study demonstrated that consuming canned beverage and consequent increase of BPA exposure increase blood pressure acutely.

  18. Aerosols generated by releases of pressurized powders and solutions in static air

    SciTech Connect

    Sutter, S.L.

    1983-08-01

    Safety assessments and environmental impact statements for nuclear fuel cycle facilities require an estimate of potential airborne releases caused by accidents. Aerosols generated by accidents are being investigated by Pacific Northwest Laboratory to develop the source terms for these releases. An upper boundary accidental release event would be a pressurized release of powder or liquid in static air. Experiments were run using various source sizes and pressures and measuring the mass airborne and the particle size distribution of aerosols produced by these pressurized releases. Two powder and two liquid sources were used: TiO/sub 2/ and depleted uranium dioxide (DUO); and aqueous uranine (sodium fluorescein) and uranyl nitrate solutions. Results of the experiments showed that pressurization level and source size were significant variables for the airborne powder releases. For this experimental configuration, the liquid releases were a function of pressure, but volume did not appear to be a significant variable. During the experiments 100 g and 350 g of DUO (1 ..mu..m dia) and TiO/sub 2/ (1.7 ..mu..m dia) powders and 100 cm/sup 3/ and 350 cm/sup 3/ of uranine and uranyl nitrate solutions were released at pressures ranging from 50 to 500 psig. The average of the largest fractions of powder airborne was about 24%. The maximum amount of liquid source airborne was significantly less, about 0.15%. The median aerodynamic equivalent diameters (AED) for collected airborne powders ranged from 5 to 19 ..mu..m; liquids ranged from 2 to 29 ..mu..m. All of the releases produced a significant fraction of respirable particles of 10 ..mu..m and less. 12 references, 10 figures, 23 tables.

  19. Laser-based measurements of OH in high pressure CH4/air flames

    NASA Technical Reports Server (NTRS)

    Battles, B. E.; Hanson, R. K.

    1991-01-01

    Narrow-linewidth laser absorption measurements are reported from which mole fraction and temperature of OH are determined in high-pressure (1-10 atm), lean CH4/air flames. These measurements were made in a new high pressure combustion facility which incorporates a traversable flat flame burner, providing spatially and temporally uniform combustion gases at pressures up to 10 am. A commercially avialable CW ring dye laser was used with an intracavity doubling crystal to provide near-UV single mode output at approximately 306 nm. The UV beam was rapidly scanned over 120 GHz (0.1 sec scan duration) to resolve the absorption lineshape of the A-X (0,0) R1(7)/R1(11) doublet of the OH radical. From the doublet's absorption lineshape, the temperature was determined; and from peak absorption, Beer's Law was employed to find the mole fraction of OH. These data were obtained as a function of height above the flame at various pressures.

  20. The lunar semidiurnal air pressure tide in in-situ data and ECMWF reanalyses

    NASA Astrophysics Data System (ADS)

    Schindelegger, Michael; Dobslaw, Henryk

    2016-04-01

    A gridded empirical model of the lunar semidiurnal air pressure tide L2 is deduced through multiquadric interpolation of more than 2000 globally distributed tidal estimates from land barometers and moored buoys. The resulting climatology serves as an independent standard to validate the barometric L2 oscillations that are present in ECMWF's (European Centre for Medium-Range Weather Forecasts) global atmospheric reanalyses despite the omission of gravitational forcing mechanisms in the involved forecast routines. Inconsistencies between numerical and empirical L2 solutions are found to be small even though the reanalysis models typically underestimate equatorial peak pressures by 10-20% and produce slightly deficient tidal phases in latitudes south of 30°N. Through using a time-invariant reference surface over both land and water and assimilating marine pressure data without accounting for vertical sensor movements due to the M2 ocean tide, ECMWF-based tidal solutions are also prone to strong local artifacts. Additionally, the dependency of the lunar tidal oscillation in atmospheric analysis systems on the meteorological input data is demonstrated based on a recent ECMWF twentieth-century reanalysis (ERA-20C) which draws its all of its observational constraints from in-situ registrations of pressure and surface winds. The L2 signature prior to 1950 is particularly indicative of distinct observing system changes, such as the paucity of marine data during both World Wars or the opening of the Panama Canal in 1914 and the associated adjustment of commercial shipping routes.

  1. Transient pool boiling heat transfer due to increasing heat inputs in subcooled water at high pressures

    SciTech Connect

    Fukuda, K.; Shiotsu, M.; Sakurai, A.

    1995-09-01

    Understanding of transient boiling phenomenon caused by increasing heat inputs in subcooled water at high pressures is necessary to predict correctly a severe accident due to a power burst in a water-cooled nuclear reactor. Transient maximum heat fluxes, q{sub max}, on a 1.2 mm diameter horizontal cylinder in a pool of saturated and subcooled water for exponential heat inputs, q{sub o}e{sup t/T}, with periods, {tau}, ranging from about 2 ms to 20 s at pressures from atmospheric up to 2063 kPa for water subcoolings from 0 to about 80 K were measured to obtain the extended data base to investigate the effect of high subcoolings on steady-state and transient maximum heat fluxes, q{sub max}. Two main mechanisms of q{sub max} exist depending on the exponential periods at low subcoolings. One is due to the time lag of the hydrodynamic instability which starts at steady-state maximum heat flux on fully developed nucleate boiling (FDNB), and the other is due to the heterogenous spontaneous nucleations (HSN) in flooded cavities which coexist with vapor bubbles growing up from active cavities. The shortest period corresponding to the maximum q{sub max} for long period range belonging to the former mechanism becomes longer and the q{sub max}mechanism for long period range shifts to that due the HSN on FDNB with the increase of subcooling and pressure. The longest period corresponding to the minimum q{sub max} for the short period range belonging to the latter mechanism becomes shorter with the increase in saturated pressure. On the contrary, the longest period becomes longer with the increase in subcooling at high pressures. Correlations for steady-state and transient maximum heat fluxes were presented for a wide range of pressure and subcooling.

  2. Effect of aviation fuel type and fuel injection conditions on the spray characteristics of pressure swirl and hybrid air blast fuel injectors

    NASA Astrophysics Data System (ADS)

    Feddema, Rick

    Feddema, Rick T. M.S.M.E., Purdue University, December 2013. Effect of Aviation Fuel Type and Fuel Injection Conditions on the Spray Characteristics of Pressure Swirl and Hybrid Air Blast Fuel Injectors. Major Professor: Dr. Paul E. Sojka, School of Mechanical Engineering Spray performance of pressure swirl and hybrid air blast fuel injectors are central to combustion stability, combustor heat management, and pollutant formation in aviation gas turbine engines. Next generation aviation gas turbine engines will optimize spray atomization characteristics of the fuel injector in order to achieve engine efficiency and emissions requirements. Fuel injector spray atomization performance is affected by the type of fuel injector, fuel liquid properties, fuel injection pressure, fuel injection temperature, and ambient pressure. Performance of pressure swirl atomizer and hybrid air blast nozzle type fuel injectors are compared in this study. Aviation jet fuels, JP-8, Jet A, JP-5, and JP-10 and their effect on fuel injector performance is investigated. Fuel injector set conditions involving fuel injector pressure, fuel temperature and ambient pressure are varied in order to compare each fuel type. One objective of this thesis is to contribute spray patternation measurements to the body of existing drop size data in the literature. Fuel droplet size tends to increase with decreasing fuel injection pressure, decreasing fuel injection temperature and increasing ambient injection pressure. The differences between fuel types at particular set conditions occur due to differences in liquid properties between fuels. Liquid viscosity and surface tension are identified to be fuel-specific properties that affect the drop size of the fuel. An open aspect of current research that this paper addresses is how much the type of aviation jet fuel affects spray atomization characteristics. Conventional aviation fuel specifications are becoming more important with new interest in alternative

  3. Diving-induced venous gas emboli do not increase pulmonary artery pressure.

    PubMed

    Valic, Z; Duplancić, D; Baković, D; Ivancev, V; Eterović, D; Wisløff, U; Brubakk, A O; Dujić, Z

    2005-10-01

    Venous gas emboli are frequently observed in divers even if proper decompression procedures are followed. This study was initiated to determine if pulmonary artery pressure increases in asymptomatic divers, which could increase the risk of arterial embolization due to passage of venous gas emboli from the right to the left side of the heart. Recordings of venous gas emboli and estimation of pulmonary artery pressure by non-invasive transthoracic echocardiography were applied in 10 recreational scuba diving volunteers before and 20, 40, 60, and 80 min after simulated dives to 18 m (80 min bottom time) in a hyperbaric chamber. The ratio between pulmonary artery acceleration time and right ventricular ejection time was used as an estimate of pulmonary artery pressure. None of investigated divers had signs of decompression sickness. Despite the post-dive presence of the venous gas emboli, measured in the region of the pulmonary valve annulus (mean=1.71 bubbles.cm-2, 40 min after dive), the ratio between pulmonary artery acceleration time and right ventricular ejection time did not decrease, but actually increased (from 0.43+/-0.06 to 0.49+/-0.06, 40 min after dive; p<0.05), suggesting a decrease in pulmonary artery pressure after the dive. We conclude that diving-induced venous gas bubbles do not cause significant changes in the central circulation which could increase the risk of arterial embolization.

  4. Modeling the pressure increase in liquid helium cryostats after failure of the insulating vacuum

    SciTech Connect

    Heidt, C.; Grohmann, S.; Süßer, M.

    2014-01-29

    The pressure relief system of liquid helium cryostats requires a careful design, due to helium's low enthalpy of vaporization and due to the low operating temperature. Hazard analyses often involve the failure of the insulating vacuum in the worst-case scenario. The venting of the insulating vacuum and the implications for the pressure increase in the helium vessel, however, have not yet been fully analyzed. Therefore, the dimensioning of safety devices often requires experience and reference to very few experimental data. In order to provide a better foundation for the design of cryogenic pressure relief systems, this paper presents an analytic approach for the strongly dynamic process induced by the loss of insulating vacuum. The model is based on theoretical considerations and on differential equation modeling. It contains only few simplifying assumptions, which will be further investigated in future experiments. The numerical solutions of example calculations are presented with regard to the heat flux into the helium vessel, the helium pressure increase and the helium flow rate through the pressure relief device. Implications concerning two-phase flow and the influence of kinetic energy are discussed.

  5. Evidence of transient increases of fluid pressure in SAFOD phase III cores

    NASA Astrophysics Data System (ADS)

    Mittempergher, S.; di Toro, G.; Gratier, J.; Hadizadeh, J.; Smith, S. A.; Spiess, R.

    2010-12-01

    In the SAFOD (San Andreas Fault Observatory at Depth) site, the activity of the San Andreas Fault includes creep and microearthquakes. Creeping is accommodated in two actively deforming gouge zones, the Southwest and the Central Deforming Zones, embedded in ~200 m wide damage zone composed of deformed sandstones, siltstones and shales. During drilling of SAFOD, no pressurized fluids were detected, although the fault and the damaged zone act as a permeability barrier to fluid circulation between the North American and Pacific plates. Microstructural, mineralogical and geochemical analysis (X-Ray Fluorescence, Field Emission Scanning Electron Microscopy, Cathodoluminescence, Electron Back Scatter Diffraction Analysis, quantitative X-Ray Powder Diffraction) of clay-rich sheared shales and arkosic sandstones associated with high angle calcite and anhydrite-bearing veins, collected at 1 m from the Southwest Deforming Zone, suggests that transient increases of pore fluid pressure have occurred, producing mode I failure in the sandstone. Such build-ups in fluid pressure may be related to permeability reduction due to dissolution of quartz and feldspar grains and passive concentration of clays in the shale layers due to pressure-solution related mass transfer. Fault parallel, low permeability seals border small fault zone patches, where fluid pressure may increase, providing a potential mechanism for the initiation of some of the microearthquakes registered in the SAFOD site.

  6. Insulin resistance, low cardiorespiratory fitness, and increased exercise blood pressure: contribution of abdominal obesity.

    PubMed

    Huot, Maxime; Arsenault, Benoit J; Gaudreault, Valérie; Poirier, Paul; Pérusse, Louis; Tremblay, Angelo; Bouchard, Claude; Després, Jean-Pierre; Rhéaume, Caroline

    2011-12-01

    Individuals with insulin resistance and low cardiorespiratory fitness are frequently found to have an increased waist circumference and high exercise blood pressure. We tested the hypothesis that the relationships among insulin resistance, low cardiorespiratory fitness, and increased exercise blood pressure may be mediated by an elevated waist circumference. This study included 317 apparently healthy men and women (mean age: 34.8±12.8 years; mean body mass index: 26.1±5.2 kg/m(2)). Exercise blood pressure values were measured using a submaximal ergometer test evaluating physical working capacity. Plasma insulin and glucose levels were measured during a 3-hour oral glucose tolerance test. Multivariate regression analyses showed that waist circumference accounted for 32.8% (P<0.0001) and 45.1% (P<0.0001) of the variance in exercise systolic blood pressure in men and women, respectively. Participants were classified into tertiles according to either insulin response, measured during the oral glucose tolerance test, or fitness levels and then further subdivided into 2 subgroups using sex-specific waist circumference thresholds. Individuals with an increased waist circumference (≥94 cm and ≥80 cm for men and women, respectively) had higher exercise systolic blood pressure compared with individuals with low waist circumference, irrespective of their level of insulin resistance (10.6 versus 6.8, 12.2 versus 7.7, and 13.2 versus 8.7 mm Hg/metabolic equivalent, respectively, for the low, intermediate, and high tertiles; P<0.05) or fitness levels (13.1 versus 8.2, 12.0 versus 7.9, and 10.6 versus 7.1 mm Hg/metabolic equivalent, respectively, for the low, intermediate, and high tertiles; P<0.05). Individuals with a higher waist circumference have elevated exercise systolic blood pressure, regardless of their insulin sensitivity or level of cardiorespiratory fitness.

  7. Comparison of predicted and experimental real-gas pressure distributions on space shuttle orbiter nose for shuttle entry air data system

    NASA Technical Reports Server (NTRS)

    Shinn, J. L.

    1980-01-01

    An experimental investigation of inviscid real-gas effects on the pressure distribution along the Space Shuttle Orbiter nose center line up to an angle of attack of 32 deg was performed in support of the Shuttle Entry Air Data System (SEADS). Free-stream velocities from 4.8 to 6.6 kn/s were generated at hypersonic conditions with helium, air, and CO2, resulting in normal-shock density ratios from 3.7 to 18.4. The experimental results for pressure distribution agreed closely with numerical results. Modified Newtonian theory deviates from both experiment and the numerical results as angle of attack increases or shock density ratio decreases. An evaluation of the use of modified Newtonian theory for predicting SEADS pressure distributions in actual flight conditions was made through comparison with numerical predictions.

  8. Integrated Energy Method for Propulsion Dynamics Analysis of Air-Pressurized Waterjet Rocket

    NASA Astrophysics Data System (ADS)

    Lee, Hsing-Juin; Chiu, Chih-Hong; Hsia, Wen-Kung

    The launching of a waterjet rocket has been a very popular idea in recent years. Its basic propulsion principle makes use of the high-pressurized air inside the rocket’s main body to swiftly expel the water out of the nozzle and thus generate thrust. The waterjet rocket is characterized with nature, interest, combustionlessness, environmental friendliness, simplicity, and minimal cost. Moreover, it is a very good science model for propulsion analysis, design, experiment, and education because of an abundance of easily adjustable key parameters. This model also features separately stored energy and mass of the propellant, in contrast to a conventional rocket. However, related literature shows that no in-depth theoretical analysis of the waterjet rocket has been attempted for various reasons. In this research, the propulsion dynamics of a waterjet rocket is analyzed by simultaneously solving the momentum and the newly derived generalized power equations to predict its flight histogram, computationally, and convolutionally. This integrated energy approach synthesizes the internal and external dynamics analyses together and ingeniously takes full advantage of the clear power supply of pressurized air in a waterjet rocket. The analysis results are generally agreeable with the experimental flight data. While the new power equation herein gives a complete spectrum of physical parameters to be manipulated, there will be wider room in quest of better rocket propulsion performance, especially through the heuristic research of this versatile but affordable waterjet rocket.

  9. Emission spectroscopy of an atmospheric pressure plasma jet operated with air at low frequency

    NASA Astrophysics Data System (ADS)

    Giuliani, L.; Gallego, J. L.; Minotti, F.; Kelly, H.; Grondona, D.

    2015-03-01

    Low-temperature, high-pressure plasma jets have an extensive use in plasma biology and plasma medicine, such as pathogen deactivation, wound disinfection, stopping of bleeding without damage of healthy tissue, acceleration of wound healing, control of bio-film proliferation, etc. In this work, a spectroscopic characterization of a typical plasma jet, operated in air at atmospheric pressure, is reported. Within the spectrum of wavelengths from 200 to 450 nm all remarkable emissions of N2 were monitored. Spectra of the N2 2nd positive system (C3Πu-B3Πg) emitted in air are the most convenient for plasma diagnostics, since they enable to determine electronic Te, rotational Tr and vibrational Tv temperatures by fitting the experimental spectra with the simulated ones. We used SPECAIR software for spectral simulation and obtained the best fit with all these temperatures about 3500K. The conclusion that all temperatures are equal, and its relatively high value, is consistent with the results of a previous work, where it was found that the experimentally determined electrical characteristic was consistent with the model of a thermal arc discharge, together with a highly collisional cathode sheet.

  10. Effect of Air-Flow Distribution and Total-Pressure Loss on Performance of One-Sixth Segment of Turbojet Combuster

    NASA Technical Reports Server (NTRS)

    Hill, Francis U.; Mark, Herman

    1947-01-01

    An investigation has been conducted on a one-sixth segment of an annular turbojet combustor to determine the effects of modification in air-flow distribution and total-pressure loss on the performance of the segment. The performance features investigated during this series of determinations were the altitude operational limits and the temperature-rise efficiency. Altitude operational limits of the combustor segment, for the 19XB engine using the original combustor-basket design were approximately 38,000 feet at 17,000 rpm and 26,000 feet at 10,000 rpm. The altitude operational limits were approximately 50,000 feet at 17,000 rpm and 38,000 feet at 10,000 rpm for a combustor-basket design in which the air-passage area in the basket was redistributed so as to admit gradually no more than 20 percent of the air along the first half of the basket. In this case the total pressure loss through the combustor segment was not appreciably changed from the total-pressure loss for the original combustor basket design. Altitude operational limits of the combustor segment for the 19XB engine were above 52,000 feet at 17,000 rpm and were approximately 23,000 feet at 10,000 rpm for a combustor-basket design in which the distribution of the air-passage area in the basket was that of the original design but where the total-pressure loss was increased to 19 times the inlet reference kinetic pressure at an inlet-to-outlet density ratio of 2.4. The total-pressure loss for the original design was 14 times the inlet kinetic reference pressure at an inlet-to-outlet density ratio of 2.4.

  11. Will the Increasing of Anthropogenic Pressures Reduce the Biopotential Value of Sponges?

    PubMed Central

    Januar, Hedi Indra; Pratitis, Asri; Bramandito, Aditya

    2015-01-01

    Production of bioactive compounds from marine benthic organisms is suggested to relate ecologically with environment. However, anthropogenic pressures cause a considerable damage to coral reefs environment. This research aimed to define the pattern sponges biopotential values at the increasing of anthropogenic pressures to coral reef environment. Three representative sponges were selected (Theonella sp., Hyrtios sp., and Niphates sp.) and study had been conducted in Hoga Island, Indonesia, to define the relationship between seawater variables (DO, pH, phosphate, and ammonia ions), sponges spatial competition, and their bioactivity level (Brine Shrimp Lethality Test). The study showed anthropogenic pressures affect the reef environment, as abiotic cover was increased and eutrophication was detected at the site closer to the run-off domesticated area. Statistical multivariate analyses revealed sponges spatial competition was significantly different (P < 0.05) between groups of high, moderate, and low bioactivity level. Abiotic cover was detected as the major factor (36.19%) contributed to the differences and also the most discriminant factor distinguishing sponges spatial competition in the groups of bioactivity level (93.91%). These results showed the increasing anthropogenic pressures may result in a higher abiotic area and may directly be a consequence to the lower production of bioactive compounds in sponges. PMID:26457226

  12. Use of MODIS Cloud Top Pressure to Improve Assimilation Yields of AIRS Radiances in GSI

    NASA Technical Reports Server (NTRS)

    Zavodsky, Bradley; Srikishen, Jayanthi

    2014-01-01

    Radiances from hyperspectral sounders such as the Atmospheric Infrared Sounder (AIRS) are routinely assimilated both globally and regionally in operational numerical weather prediction (NWP) systems using the Gridpoint Statistical Interpolation (GSI) data assimilation system. However, only thinned, cloud-free radiances from a 281-channel subset are used, so the overall percentage of these observations that are assimilated is somewhere on the order of 5%. Cloud checks are performed within GSI to determine which channels peak above cloud top; inaccuracies may lead to less assimilated radiances or introduction of biases from cloud-contaminated radiances.Relatively large footprint from AIRS may not optimally represent small-scale cloud features that might be better resolved by higher-resolution imagers like the Moderate Resolution Imaging Spectroradiometer (MODIS). Objective of this project is to "swap" the MODIS-derived cloud top pressure (CTP) for that designated by the AIRS-only quality control within GSI to test the hypothesis that better representation of cloud features will result in higher assimilated radiance yields and improved forecasts.

  13. Increasing Intracranial Pressure After Head Injury: Impact on Respiratory Oscillations in Cerebral Blood Flow Velocity.

    PubMed

    Haubrich, Christina; Diehl, Rolf R; Kasprowicz, Magdalena; Diedler, Jennifer; Sorrentino, Enrico; Smielewski, Piotr; Czosnyka, Marek

    2016-01-01

    Experiments have shown that closed-box conditions alter the transmission of respiratory oscillations (R waves) to organ blood flow already at a marginal pressure increase. How does the increasing intracranial pressure (ICP) interact with R waves in cerebral blood flow after head injury (HI)?Twenty-two head-injured patients requiring sedation and mechanical ventilation were monitored for ICP, Doppler flow velocity (FV) in the middle cerebral arteries, and arterial blood pressure (ABP). The analysis included transfer function gains of R waves (9-20 cpm) from ABP to FV, and indices of pressure-volume reserve (RAP) and autoregulation (Mx). Increasing ICP has dampened R-wave gains from day 1 to day 4 after HI in all patients. A large impact (ΔGain /ΔICP right: 0.14 ± 0.06; left: 0.18 ± 0.08) was associated with exhausted reserves (RAP ≥0.85). When RAP was <0.85, rising ICP had a lower impact on R-wave gains (ΔGain /ΔICP right: 0.05 ± 0.02; left: 0.06 ± 0.04; p < 0.05), but increased the pulsatility indices (right: 1.35 ± 0.55; left: 1.25 ± 0.52) and Mx indices (right: 0.30 ± 0.12; left: 0.28 ± 0.08, p < 0.05). Monitoring of R waves in blood pressure and cerebral blood flow velocity has suggested that rising ICP after HI might have an impact on cerebral blood flow directly, even before autoregulation is impaired. PMID:27165901

  14. Interactive response of photosynthetic characteristics in Haloxylon ammodendron and Hedysarum scoparium exposed to soil water and air vapor pressure deficits.

    PubMed

    Gong, Chunmei; Wang, Jiajia; Hu, Congxia; Wang, Junhui; Ning, Pengbo; Bai, Juan

    2015-08-01

    C4 plants possess better drought tolerance than C3 plants. However, Hedysarum scoparium, a C3 species, is dominant and widely distributed in the desert areas of northwestern China due to its strong drought tolerance. This study compared it with Haloxylon ammodendron, a C4 species, regarding the interactive effects of drought stress and different leaf-air vapor pressure deficits. Variables of interest included gas exchange, the activity levels of key C4 photosynthetic enzymes, and cellular anatomy. In both species, gas exchange parameters were more sensitive to high vapor pressure deficit than to strong water stress, and the net CO2 assimilation rate (An) was enhanced as vapor pressure deficits increased. A close relationship between An and stomatal conductance (gs) suggested that the species shared a similar response mechanism. In H. ammodendron, the activity levels of key C4 enzymes were higher, including those of phosphoenolpyruvate carboxylase (PEPC) and nicotinamide adenine dinucleotide phosphate-malate enzyme (NADP-ME), whereas in H. scoparium, the activity level of nicotinamide adenine dinucleotide-malate enzyme (NAD-ME) was higher. Meanwhile, H. scoparium utilized adaptive structural features, including a larger relative vessel area and a shorter distance from vein to stomata, which facilitated the movement of water. These findings implied that some C4 biochemical pathways were present in H. scoparium to respond to environmental challenges. PMID:26257361

  15. Interactive response of photosynthetic characteristics in Haloxylon ammodendron and Hedysarum scoparium exposed to soil water and air vapor pressure deficits.

    PubMed

    Gong, Chunmei; Wang, Jiajia; Hu, Congxia; Wang, Junhui; Ning, Pengbo; Bai, Juan

    2015-08-01

    C4 plants possess better drought tolerance than C3 plants. However, Hedysarum scoparium, a C3 species, is dominant and widely distributed in the desert areas of northwestern China due to its strong drought tolerance. This study compared it with Haloxylon ammodendron, a C4 species, regarding the interactive effects of drought stress and different leaf-air vapor pressure deficits. Variables of interest included gas exchange, the activity levels of key C4 photosynthetic enzymes, and cellular anatomy. In both species, gas exchange parameters were more sensitive to high vapor pressure deficit than to strong water stress, and the net CO2 assimilation rate (An) was enhanced as vapor pressure deficits increased. A close relationship between An and stomatal conductance (gs) suggested that the species shared a similar response mechanism. In H. ammodendron, the activity levels of key C4 enzymes were higher, including those of phosphoenolpyruvate carboxylase (PEPC) and nicotinamide adenine dinucleotide phosphate-malate enzyme (NADP-ME), whereas in H. scoparium, the activity level of nicotinamide adenine dinucleotide-malate enzyme (NAD-ME) was higher. Meanwhile, H. scoparium utilized adaptive structural features, including a larger relative vessel area and a shorter distance from vein to stomata, which facilitated the movement of water. These findings implied that some C4 biochemical pathways were present in H. scoparium to respond to environmental challenges.

  16. Road, rail, and air transportation noise in residential and workplace neighborhoods and blood pressure (RECORD Study).

    PubMed

    Méline, Julie; Van Hulst, Andraea; Thomas, Frederique; Chaix, Basile

    2015-01-01

    Associations between road traffic noise and hypertension have been repeatedly documented, whereas associations with rail or total road, rail, and air (RRA) traffic noise have rarely been investigated. Moreover, most studies of noise in the environment have only taken into account the residential neighborhood. Finally, few studies have taken into account individual/neighborhood confounders in the relationship between noise and hypertension. We performed adjusted multilevel regression analyses using data from the 7,290 participants of the RECORD Study to investigate the associations of outdoor road, rail, air, and RRA traffic noise estimated at the place of residence, at the workplace, and in the neighborhoods around the residence and workplace with systolic blood pressure (SBP), diastolic blood pressure (DBP), and hypertension. Associations were documented between higher outdoor RRA and road traffic noise estimated at the workplace and a higher SBP [+1.36 mm of mercury, 95% confidence interval (CI): +0.12, +2.60 for 65-80 dB(A) vs 30-45 dB(A)] and DBP [+1.07 (95% CI: +0.28, +1.86)], after adjustment for individual/neighborhood confounders. These associations remained after adjustment for risk factors of hypertension. Associations were documented neither with rail traffic noise nor for hypertension. Associations between transportation noise at the workplace and blood pressure (BP) may be attributable to the higher levels of road traffic noise at the workplace than at the residence. To better understand why only noise estimated at the workplace was associated with BP, our future work will combine Global Positioning System (GPS) tracking, assessment of noise levels with sensors, and ambulatory monitoring of BP. PMID:26356373

  17. Road, rail, and air transportation noise in residential and workplace neighborhoods and blood pressure (RECORD Study)

    PubMed Central

    Méline, Julie; Van Hulst, Andraea; Thomas, Frederique; Chaix, Basile

    2015-01-01

    Associations between road traffic noise and hypertension have been repeatedly documented, whereas associations with rail or total road, rail, and air (RRA) traffic noise have rarely been investigated. Moreover, most studies of noise in the environment have only taken into account the residential neighborhood. Finally, few studies have taken into account individual/neighborhood confounders in the relationship between noise and hypertension. We performed adjusted multilevel regression analyses using data from the 7,290 participants of the RECORD Study to investigate the associations of outdoor road, rail, air, and RRA traffic noise estimated at the place of residence, at the workplace, and in the neighborhoods around the residence and workplace with systolic blood pressure (SBP), diastolic blood pressure (DBP), and hypertension. Associations were documented between higher outdoor RRA and road traffic noise estimated at the workplace and a higher SBP [+1.36 mm of mercury, 95% confidence interval (CI): +0.12, +2.60 for 65-80 dB(A) vs 30-45 dB(A)] and DBP [+1.07 (95% CI: +0.28, +1.86)], after adjustment for individual/neighborhood confounders. These associations remained after adjustment for risk factors of hypertension. Associations were documented neither with rail traffic noise nor for hypertension. Associations between transportation noise at the workplace and blood pressure (BP) may be attributable to the higher levels of road traffic noise at the workplace than at the residence. To better understand why only noise estimated at the workplace was associated with BP, our future work will combine Global Positioning System (GPS) tracking, assessment of noise levels with sensors, and ambulatory monitoring of BP. PMID:26356373

  18. Changes in CMDP and DPOAE during acute increased inner ear pressure in the guinea pig

    PubMed Central

    Wit, H. P.; Albers, F. W. J.

    2007-01-01

    During and after an increase of inner ear pressure, induced by injection of artificial perilymph, the 2f1 − f2 and f2 − f1 distortion products (DPs) in cochlear microphonics (CM) and otoacoustic emissions (OAE) were recorded in the guinea pig. An inner pressure increase of ∼600 Pa gave only small changes in CMDP and DPOAE. Along with a decrease in f1 amplitude, a small decrease in amplitude of the 2f1 − f2 and a small increase in the f2 − f1 were measured in CM. This matches a shift from a symmetrical position of the operating point for hair cell transduction, leading to an increase in even-order distortion and a decrease in odd-order distortion. Similar, a decrease in 2f1 − f2 DPOAE was expected. This might be the case at the generation sites but this effect was then more than compensated for by a better middle ear transfer, accounting for the increase of 0.4 dB of the 2f1 − f2 DPOAE amplitude. In conclusion, changes of overall inner ear fluid pressure have minor effects on cochlear function. This is a relevant finding for further understanding of diseases with changed inner ear fluid volumes, as Ménière’s. PMID:17901968

  19. Microwave air plasmas in capillaries at low pressure I. Self-consistent modeling

    NASA Astrophysics Data System (ADS)

    Coche, P.; Guerra, V.; Alves, L. L.

    2016-06-01

    This work presents the self-consistent modeling of micro-plasmas generated in dry air using microwaves (2.45 GHz excitation frequency), within capillaries (<1 mm inner radius) at low pressure (300 Pa). The model couples the system of rate balance equations for the most relevant neutral and charged species of the plasma to the homogeneous electron Boltzmann equation. The maintenance electric field is self-consistently calculated adopting a transport theory for low to intermediate pressures, taking into account the presence of O- ions in addition to several positive ions, the dominant species being O{}2+ , NO+ and O+ . The low-pressure small-radius conditions considered yield very-intense reduced electric fields (˜600-1500 Td), coherent with species losses controlled by transport and wall recombination, and kinetic mechanisms strongly dependent on electron-impact collisions. The charged-particle transport losses are strongly influenced by the presence of the negative ion, despite its low-density (˜10% of the electron density). For electron densities in the range (1-≤ft. 4\\right)× {{10}12} cm-3, the system exhibits high dissociation degrees for O2 (˜20-70%, depending on the working conditions, in contrast with the  ˜0.1% dissociation obtained for N2), a high concentration of O2(a) (˜1014 cm-3) and NO(X) (5× {{10}14} cm-3) and low ozone production (<{{10}-3}% ).

  20. Atmospheric pressure resistive barrier air plasma jet induced bacterial inactivation in aqueous environment

    NASA Astrophysics Data System (ADS)

    Thiyagarajan, Magesh; Sarani, Abdollah; Gonzales, Xavier

    2013-03-01

    An atmospheric pressure resistive barrier air plasma jet is designed to inactivate bacteria in aqueous media in direct and indirect exposure modes of treatment. The resistive barrier plasma jet is designed to operate at both dc and standard 50-60 Hz low frequency ac power input and the ambient air at 50% humidity level was used as the operating gas. The voltage-current characteristics of the plasma jet were analyzed and the operating frequency of the discharge was measured to be 20 kHz and the plasma power was measured to be 26 W. The plasma jet rotational temperatures (Trot) are obtained from the optical emission spectra, from the N2C-B(2+) transitions by matching the experimental spectrum results with the Spectra Air (SPECAIR) simulation spectra. The reactive oxygen and nitrogen species were measured using optical emission spectroscopy and gas analyzers, for direct and indirect treatment modes. The nitric oxides (NO) were observed to be the predominant long lived reactive nitrogen species produced by the plasma. Three different bacteria including Staphylococcus aureus (Gram-positive), Escherichia coli (Gram-negative), and Neisseria meningitidis (Gram-negative) were suspended in an aqueous media and treated by the resistive barrier air plasma jet in direct and indirect exposure modes. The results show that a near complete bacterial inactivation was achieved within 120 s for both direct and indirect plasma treatment of S. aureus and E. coli bacteria. Conversely, a partial inactivation of N. meningitidis was observed by 120 s direct plasma exposure and insignificant inactivation was observed for the indirect plasma exposure treatment. Plasma induced shifts in N. meningitidis gene expression was analyzed using pilC gene expression as a representative gene and the results showed a reduction in the expression of the pilC gene compared to untreated samples suggesting that the observed protection against NO may be regulated by other genes.

  1. Association of exposure to di-2-ethylhexylphthalate replacements with increased blood pressure in children and adolescents.

    PubMed

    Trasande, Leonardo; Attina, Teresa M

    2015-08-01

    Phthalates are environmental chemicals widely used in consumer and personal care products. In this study, we examined associations of urinary phthalates with blood pressure, triglycerides, and lipoproteins in children and adolescents, performing a cross-sectional analysis of a subsample of US children 6 to 19 years of age who participated in the National Health and Nutrition Examination Survey between the years 2009 and 2012. We quantified exposure to common environmental phthalates, with a focus on the dietary contaminant di-2-ethylhexylphthalate and 2 increasingly used replacements, di-isononyl phthalate and di-isodecyl phthalate, based on micromolar concentration of urinary metabolites. We assessed descriptive, univariate, and multivariable associations with blood pressure and lipids. Controlling for an array of sociodemographic and behavioral factors, as well as diet and body mass, metabolites of di-2-ethylhexylphthalate, di-isononyl phthalate, and di-isodecyl phthalate were associated with higher age-, sex- and height-standardized blood pressure. For each log unit increase in di-isodecyl phthalate metabolites, a 0.105 standard deviation unit increase in systolic blood pressure z score was identified (P=0.004); for di-isononyl phthalate metabolites, a 0.113 standard deviation unit increment was identified (P=0.008). For di-2-ethylhexylphthalate metabolites, a 0.103 standard deviation unit increment (P=0.013) was detected. Metabolites of low molecular weight phthalates commonly found in cosmetics and personal care products showed an association with blood pressure (≥90th percentile) in univariate analysis, but this was no longer significant in our full multivariable model, suggesting specificity. Phthalate metabolites were not associated with triglycerides or high-density lipoproteins. Further, longitudinal studies are needed to confirm these associations and to assess opportunities for intervention. PMID:26156503

  2. Cellular Attachment and Differentiation on Titania Nanotubes Exposed to Air- or Nitrogen-Based Non-Thermal Atmospheric Pressure Plasma

    PubMed Central

    Seo, Hye Yeon; Kwon, Jae-Sung; Choi, Yu-Ri; Kim, Kwang-Mahn; Choi, Eun Ha; Kim, Kyoung-Nam

    2014-01-01

    The surface topography and chemistry of titanium implants are important factors for successful osseointegration. However, chemical modification of an implant surface using currently available methods often results in the disruption of topographical features and the loss of beneficial effects during the shelf life of the implant. Therefore, the aim of this study was to apply the recently highlighted portable non-thermal atmospheric pressure plasma jet (NTAPPJ), elicited from one of two different gas sources (nitrogen and air), to TiO2 nanotube surfaces to further improve their osteogenic properties while preserving the topographical morphology. The surface treatment was performed before implantation to avoid age-related decay. The surface chemistry and morphology of the TiO2 nanotube surfaces before and after the NTAPPJ treatment were determined using a field-emission scanning electron microscope, a surface profiler, a contact angle goniometer, and an X-ray photoelectron spectroscope. The MC3T3-E1 cell viability, attachment and morphology were confirmed using calcein AM and ethidium homodimer-1 staining, and analysis of gene expression using rat mesenchymal stem cells was performed using a real-time reverse-transcription polymerase chain reaction. The results indicated that both portable nitrogen- and air-based NTAPPJ could be used on TiO2 nanotube surfaces easily and without topographical disruption. NTAPPJ resulted in a significant increase in the hydrophilicity of the surfaces as well as changes in the surface chemistry, which consequently increased the cell viability, attachment and differentiation compared with the control samples. The nitrogen-based NTAPPJ treatment group exhibited a higher osteogenic gene expression level than the air-based NTAPPJ treatment group due to the lower atomic percentage of carbon on the surface that resulted from treatment. It was concluded that NTAPPJ treatment of TiO2 nanotube surfaces results in an increase in cellular activity

  3. Cellular attachment and differentiation on titania nanotubes exposed to air- or nitrogen-based non-thermal atmospheric pressure plasma.

    PubMed

    Seo, Hye Yeon; Kwon, Jae-Sung; Choi, Yu-Ri; Kim, Kwang-Mahn; Choi, Eun Ha; Kim, Kyoung-Nam

    2014-01-01

    The surface topography and chemistry of titanium implants are important factors for successful osseointegration. However, chemical modification of an implant surface using currently available methods often results in the disruption of topographical features and the loss of beneficial effects during the shelf life of the implant. Therefore, the aim of this study was to apply the recently highlighted portable non-thermal atmospheric pressure plasma jet (NTAPPJ), elicited from one of two different gas sources (nitrogen and air), to TiO2 nanotube surfaces to further improve their osteogenic properties while preserving the topographical morphology. The surface treatment was performed before implantation to avoid age-related decay. The surface chemistry and morphology of the TiO2 nanotube surfaces before and after the NTAPPJ treatment were determined using a field-emission scanning electron microscope, a surface profiler, a contact angle goniometer, and an X-ray photoelectron spectroscope. The MC3T3-E1 cell viability, attachment and morphology were confirmed using calcein AM and ethidium homodimer-1 staining, and analysis of gene expression using rat mesenchymal stem cells was performed using a real-time reverse-transcription polymerase chain reaction. The results indicated that both portable nitrogen- and air-based NTAPPJ could be used on TiO2 nanotube surfaces easily and without topographical disruption. NTAPPJ resulted in a significant increase in the hydrophilicity of the surfaces as well as changes in the surface chemistry, which consequently increased the cell viability, attachment and differentiation compared with the control samples. The nitrogen-based NTAPPJ treatment group exhibited a higher osteogenic gene expression level than the air-based NTAPPJ treatment group due to the lower atomic percentage of carbon on the surface that resulted from treatment. It was concluded that NTAPPJ treatment of TiO2 nanotube surfaces results in an increase in cellular activity

  4. Studies on survival, biological activities and behavior of Biomphalaria glabrata, the host snail of schistosomiasis, submitted to increased hydrostatic pressure: a technique.

    PubMed

    Jurberg, P; Soares, M S; Mascitelli, A C; Favre, T C; Barbosa, J V

    1988-01-01

    To study changes in survival, in biological activities and behavior of planorbids submitted to increased hydrostatic pressure, we developed a technique using two transparent chambers and a hydraulic piston. The apparatus permitted renewal of the liquid medium without substantial variations in pressure, thus eliminating excretion products and maintaining the desired O2 level and thereby permitting us to evaluate the effects of pressure independently of the occurrence of anoxia. Pressure was maintained without any contact of the liquid medium with compressed air, a situation which reproduced with relative fidelity what occurs in nature and assured the presence of the same amounts of gases in the two observation chambers (Control and Experimental). Biomphalaria glabrata was found to be able to survive at least 48 hours when submitted to 49.02 x 10(4) Pa (equivalent to a water depth of 48.8 m), continuing to lay egg masses and showing few behavioral changes when compared with the control group.

  5. Doubling of water intake increases daytime blood pressure and reduces vertigo in healthy subjects.

    PubMed

    Jormeus, Anders; Karlsson, Samuel; Dahlgren, Christina; Lindström, Torbjörn; Nystrom, Fredrik H

    2010-01-01

    We studied the effect of increased water intake on ambulatory blood pressure (BP) in healthy individuals. Blood pressure was recorded after 2 weeks of either regular (RWI) or extra water intake (EWI, an additional 30 ml water/kg body weight per day) in 20 healthy subjects (10 males, 10 females). The extra water intake (RWI: 1.7 ± 0.59 l, EWI: 3.7 ± 0.84 l, respectively, p < 0.0001, i.e., an increase of 2 liters) induced an increase in mean arterial daytime BP from 89.0 ± 5.5 mmHg during RWI to 91.4 ± 6.4 mmHg during the EWI phase (p = 0.005), while night-time BP was unchanged by the intervention. The visual-analogue-scale (VAS, maximum score of 10) score corresponding to the statement "I often experience vertigo" was 3.1 ± 2.6 during RWI and decreased to 2.1 ± 2. 1 during EWI phase (p = 0.008). In conclusion,two liters of extra water intake for 2 weeks significantly increased daytime blood pressure and reduced a sense of vertigo in healthy individuals.

  6. Sleep Complaints Predict Increases in Resting Blood Pressure Following Marital Separation

    PubMed Central

    Krietsch, Kendra N.; Mason, Ashley E.; Sbarra, David A.

    2015-01-01

    Objective Although marital separation and divorce are associated with many negative health outcomes, few studies examine the psychophysiological mechanisms that may give rise to these outcomes. This study examined changes in resting blood pressure (BP) as a function of sleep complaints in recently divorced adults. Method Recently separated adults (n = 138; 38 men) completed a self-report measure of sleep complaints and a resting blood pressure (BP) assessment in the laboratory at three occasions across 7.5 months. Results Multilevel analyses revealed that although sleep complaints were not associated with concurrent BP, sleep complaints predicted significant increases in both systolic and diastolic BP at the subsequent laboratory visit. In addition, time since the separation from an ex-partner moderated the association between sleep complaints at baseline and resting systolic blood pressure (SBP) 3 months later. People who reported high sleep complaints 10 weeks or more after their separation demonstrated greater increases in SBP. Conclusions In recently separated adults, greater sleep complaints may index increased risk for future increases in BP. This work helps pinpoint one potential mechanistic pathway linking marital separation with an important, health-relevant biological outcome. PMID:25020156

  7. Simulation of the effect of an increase in methane on air temperature

    NASA Astrophysics Data System (ADS)

    Bi, Yun; Chen, Yuejuan; Zhou, Renjun; Yi, Mingjian; Deng, Shumei

    2011-01-01

    The infrared radiative effect of methane was analyzed using the 2D, interactive chemical dynamical radiative SOCRATES model of the National Center for Atmospheric Research. Then, a sensitivity experiment, with the methane volume mixing ratio increased by 10%, was carried out to study the influence of an increase of methane on air temperature. The results showed that methane has a heating effect through the infrared radiative process in the troposphere and a cooling effect in the stratosphere. However, the cooling effect of the methane is much smaller than that of water vapor in the stratosphere and is negligible in the mesosphere. The simulation results also showed that when methane concentration is increased by 10%, the air temperature lowers in the stratosphere and mesosphere and increases in the troposphere. The cooling can reach 0.2 K at the stratopause and can vary from 0.2-0.4 K in the mesosphere, and the temperature rise varies by around 0.001-0.002 K in the troposphere. The cooling results from the increase of the infrared radiative cooling rate caused by increased water vapor and O3 concentration, which are stimulated by the increase in methane in most of the stratosphere. The infrared radiation cooling of methane itself is minor. The depletion of O3 stimulated by the methane increase results indirectly in a decrease in the rate of solar radiation heating, producing cooling in the stratopause and mesosphere. The tropospheric warming is mainly caused by the increase of methane, which produces infrared radiative heating. The increase in H2O and O3 caused by the methane increase also contributes to a rise in temperature in the troposphere.

  8. Effects of a solar wind dynamic pressure increase in the magnetosphere and in the ionosphere

    NASA Astrophysics Data System (ADS)

    Juusola, L.; Andréeová, K.; Amm, O.; Kauristie, K.; Milan, S. E.; Palmroth, M.; Partamies, N.

    2010-10-01

    On 17 July 2005, an earthward bound north-south oriented magnetic cloud and its sheath were observed by the ACE, SoHO, and Wind solar wind monitors. A steplike increase of the solar wind dynamic pressure during northward interplanetary magnetic field conditions was related to the leading edge of the sheath. A timing analysis between the three spacecraft revealed that this front was not aligned with the GSE y-axis, but had a normal (-0.58,0.82,0). Hence, the first contact with the magnetosphere occurred on the dawnside rather than at the subsolar point. Fortunately, Cluster, Double Star 1, and Geotail happened to be distributed close to the magnetopause in this region, which made it possible to closely monitor the motion of the magnetopause. After the pressure front had impacted the magnetosphere, the magnetopause was perceived first to move inward and then immediately to correct the overshoot by slightly expanding again such that it ended up between the Cluster constellation with Double Star 1 inside the magnetosphere and Geotail in the magnetosheath. Coinciding with the inward and subsequent outward motion, the ground-based magnetic field at low latitudes was observed to first strengthen and then weaken. As the magnetopause position stabilised, so did the ground-based magnetic field intensity, settling at a level slightly higher than before the pressure increase. Altogether the magnetopause was moving for about 15 min after its first contact with the front. The high latitude ionospheric signature consisted of two parts: a shorter (few minutes) and less intense preliminary part comprised a decrease of AL and a negative variation of PC. A longer (about ten minutes) and more intense main part of the signature comprised an increase of AU and a positive variation of PC. Measurements from several ground-based magnetometer networks (210 MM CPMN, CANMOS, CARISMA, GIMA, IMAGE, MACCS, SuperMAG, THEMIS, TGO) were used to obtain information on the ionospheric E×B drift

  9. Studies on the Tempo of Bubble Formation in Recently Cavitated Vessels: A Model to Predict the Pressure of Air Bubbles1

    PubMed Central

    Wang, Yujie; Pan, Ruihua; Tyree, Melvin T.

    2015-01-01

    A cavitation event in a vessel replaces water with a mixture of water vapor and air. A quantitative theory is presented to argue that the tempo of filling of vessels with air has two phases: a fast process that extracts air from stem tissue adjacent to the cavitated vessels (less than 10 s) and a slow phase that extracts air from the atmosphere outside the stem (more than 10 h). A model was designed to estimate how water tension (T) near recently cavitated vessels causes bubbles in embolized vessels to expand or contract as T increases or decreases, respectively. The model also predicts that the hydraulic conductivity of a stem will increase as bubbles collapse. The pressure of air bubbles trapped in vessels of a stem can be predicted from the model based on fitting curves of hydraulic conductivity versus T. The model was validated using data from six stem segments each of Acer mono and the clonal hybrid Populus 84K (Populus alba × Populus glandulosa). The model was fitted to results with root mean square error less than 3%. The model provided new insight into the study of embolism formation in stem tissue and helped quantify the bubble pressure immediately after the fast process referred to above. PMID:25907963

  10. Treatment of poly(ethylene terephthalate) foils by atmospheric pressure air dielectric barrier discharge and its influence on cell growth

    NASA Astrophysics Data System (ADS)

    Kuzminova, Anna; Vandrovcová, Marta; Shelemin, Artem; Kylián, Ondřej; Choukourov, Andrei; Hanuš, Jan; Bačáková, Lucie; Slavínská, Danka; Biederman, Hynek

    2015-12-01

    In this contribution an effect of dielectric barrier discharge (DBD) sustained in air at atmospheric pressure on surface properties of poly(ethylene terephthalate) (PET) foils is studied. It is found that exposure of PET to DBD plasma leads to rapid changes of surface chemical composition, wettability, surface morphology as well as mechanical properties of PET surface. In addition, based on biological tests that were performed using two cell types (Saos-2 human osteoblast-like cells and HUVEC human umbilical vein endothelial cells), it may be concluded that DBD plasma treatment positively influences cell growth on PET. This effect was found to be connected predominantly with increased surface energy and oxygen content of the surface of treated PET foils.

  11. Increased Air Velocity Reduces Thermal and Cardiovascular Strain in Young and Older Males during Humid Exertional Heat Stress.

    PubMed

    Wright Beatty, Heather E; Hardcastle, Stephen G; Boulay, Pierre; Flouris, Andreas D; Kenny, Glen P

    2015-01-01

    Older adults have been reported to have a lower evaporative heat loss capacity than younger adults during exercise when full sweat evaporation is permitted. However, it is unclear how conditions of restricted evaporative and convective heat loss (i.e., high humidity, clothing insulation) alter heat stress. to the purpose of this study was to examine the heat stress responses of young and older males during and following exercise in a warm/humid environment under two different levels of air velocity. Ten young (YOUNG: 24±2 yr) and 10 older (OLDER: 59±3 yr) males, matched for body surface area performed 4×15-min cycling bouts (15-min rest) at a fixed rate of heat production (400 W) in warm/humid conditions (35°C, 60% relative humidity) under 0.5 (Low) and 3.0 (High) m·s(-1) air velocity while wearing work coveralls. Rectal (Tre) and mean skin (MTsk) temperatures, heart rate (HR), local sweat rate, % max skin blood flow (SkBF) (recovery only), and blood pressure (recovery only) were measured. High air velocity reduced core and skin temperatures (p < 0.05) equally in YOUNG and OLDER males (p > 0.05) but was more effective in reducing cardiovascular strain (absolute and % max HR; p < 0.05) in YOUNG males (p < 0.05). Greater increases in local dry heat loss responses (% max SkBF and cutaneous vascular conductance) were detected across time in OLDER than YOUNG males in both conditions (p < 0.05). Local dry heat loss responses and cardiovascular strain were attenuated during the High condition in YOUNG compared to OLDER (p < 0.05). High air velocity reduced the number of males surpassing the 38.0°C Tre threshold from 90% (Low) to 50% (High). Despite age-related local heat loss differences, YOUNG and OLDER males had similar levels of heat stress during intermittent exercise in warm and humid conditions while wearing work coveralls. Increased air velocity was effective in reducing heat stress equally, and cardiovascular strain to a greater extent, in YOUNG and OLDER

  12. Increased Air Velocity Reduces Thermal and Cardiovascular Strain in Young and Older Males during Humid Exertional Heat Stress.

    PubMed

    Wright Beatty, Heather E; Hardcastle, Stephen G; Boulay, Pierre; Flouris, Andreas D; Kenny, Glen P

    2015-01-01

    Older adults have been reported to have a lower evaporative heat loss capacity than younger adults during exercise when full sweat evaporation is permitted. However, it is unclear how conditions of restricted evaporative and convective heat loss (i.e., high humidity, clothing insulation) alter heat stress. to the purpose of this study was to examine the heat stress responses of young and older males during and following exercise in a warm/humid environment under two different levels of air velocity. Ten young (YOUNG: 24±2 yr) and 10 older (OLDER: 59±3 yr) males, matched for body surface area performed 4×15-min cycling bouts (15-min rest) at a fixed rate of heat production (400 W) in warm/humid conditions (35°C, 60% relative humidity) under 0.5 (Low) and 3.0 (High) m·s(-1) air velocity while wearing work coveralls. Rectal (Tre) and mean skin (MTsk) temperatures, heart rate (HR), local sweat rate, % max skin blood flow (SkBF) (recovery only), and blood pressure (recovery only) were measured. High air velocity reduced core and skin temperatures (p < 0.05) equally in YOUNG and OLDER males (p > 0.05) but was more effective in reducing cardiovascular strain (absolute and % max HR; p < 0.05) in YOUNG males (p < 0.05). Greater increases in local dry heat loss responses (% max SkBF and cutaneous vascular conductance) were detected across time in OLDER than YOUNG males in both conditions (p < 0.05). Local dry heat loss responses and cardiovascular strain were attenuated during the High condition in YOUNG compared to OLDER (p < 0.05). High air velocity reduced the number of males surpassing the 38.0°C Tre threshold from 90% (Low) to 50% (High). Despite age-related local heat loss differences, YOUNG and OLDER males had similar levels of heat stress during intermittent exercise in warm and humid conditions while wearing work coveralls. Increased air velocity was effective in reducing heat stress equally, and cardiovascular strain to a greater extent, in YOUNG and OLDER

  13. Increased Intracranial Pressure in a Boy with Gorham-Stout Disease

    PubMed Central

    Patel, Manisha K.; Mittelstaedt, Brent R.; Valentin, Frank E.; Thomas, Linda P.; Carlson, Christian L.; Faux, Brian M.; Hsieh, David T.

    2016-01-01

    Gorham-Stout disease (GSD), also known as vanishing bone disease, is a rare disorder, which most commonly presents in children and young adults and is characterized by an excessive proliferation of lymphangiomatous tissue within the bones. This lymphangiomatous proliferation often affects the cranium and, due to the proximate location to the dura surrounding cerebrospinal fluid (CSF) spaces, can result in CSF leaks manifesting as intracranial hypotension with clinical symptoms to include orthostatic headache, nausea, and vertigo. We present the case of a boy with GSD and a known history of migraine headaches who presented with persistent headaches due to increased intracranial pressure. Although migraine had initially been suspected, he was eventually diagnosed with intracranial hypertension after developing ophthalmoplegia and papilledema. We describe the first known instance of successful medical treatment of increased intracranial pressure in a patient with GSD. PMID:27194986

  14. Increase in skin perfusion pressure after maggot debridement therapy for critical limb ischaemia.

    PubMed

    Maeda, T M; Kimura, C K; Takahashi, K T; Ichimura, K I

    2014-12-01

    Skin perfusion pressure (SPP) is the perfusion pressure at the skin level, and it can serve as an index of peripheral circulation in the skin and subcutaneous tissue. We report a 78-year-old man with critical limb ischaemia who, despite having undergone several catheter interventions, still had severe ulcers with exposed bone on his right foot. We performed transmetatarsal amputation. The tissue around the surgical site became necrotic several days later, and did not respond to conservative therapy. Therefore, we opted for maggot debridement therapy (MDT), given that maggots favour necrotic tissue. After the therapy, SPP around the ulcer increased from 12 to 54 mmHg on the dorsal aspect, and from 17 to 44 mmHg on the plantar aspect. Wound healing was successfully activated by MDT, leading to complete healing within 2.5 months after MDT. We believe that MDT probably contributed to increase the blood supply to the ischaemic wound.

  15. A global ground truth view of the lunar air pressure tide L2

    NASA Astrophysics Data System (ADS)

    Schindelegger, Michael; Dobslaw, Henryk

    2016-01-01

    A comprehensive model of the lunar air pressure tide L2 is developed on the basis of 2315 ground truth estimates from land barometers and moored buoys. Regional-scale features of the tide and its seasonal modulations are well resolved by the in situ scatter and gridded to a 2° mesh through multiquadric interpolation. The resulting climatologies serve as an independent standard to validate the lunar semidiurnal tidal signal that is present in ERA-Interim reanalysis products despite the absence of L2-related gravitational forcing mechanisms in the prescribed model physics. Inconsistencies between the reanalysis solution of the barometric lunar tide and its empirical account are generally small, yet when averaged over the period 1979-2010, ERA-Interim underestimates the 100 μbar open ocean tidal amplitude in the Tropics by up to 20 μbar and produces times of peak pressure that are too early by 10 lunar minutes. Large-amplitude features of the reanalysis tide off the coast of Alaska, the eastern U.S., and Great Britain are evidently spurious, introduced to the analysis system by assimilating marine pressure data at an invariant reference surface instead of properly accounting for vertical sensor movements associated with the M2 ocean tide. Additionally, a credible L2 signal is documented for the ERA-20C pilot reanalysis of the twentieth century. The fact that this model rests upon input data from mere surface observations provides an unambiguous indication that the lunar tidal oscillation in atmospheric analysis systems is closely tied to the assimilation of conventional pressure measurements from stations and marine objects.

  16. Commentary: Air-conditioning as a risk for increased use of healthservices

    SciTech Connect

    Mendell, Mark J.

    2004-06-01

    In this issue of the journal, Preziosi et al. [2004] report the first study to assess differences in the utilization of health care related to the presence of air-conditioning in office workplaces. Although the study was simple and cross-sectional, the data variables from questionnaires, and the findings subject to a variety of questions, the findings are striking enough to deserve clarification. The study used a large random national sample of French women assembled for another purpose (to study antioxidant nutrients and prevention of cancer and cardiovascular disease). Participants reported health services and health events in monthly questionnaires over 1 year, and in one questionnaire in the middle of that period also reported whether air-conditioning was in use at their workplace. Fifteen percent of participants reported air-conditioning at work. Analyses adjusting for age and smoking status of participants found increases in most outcomes assessed: use of specific kinds of physicians, sickness absence, and hospital stays. While the increases in odds ratios (OR) and 95% confidence intervals (CI) were statistically significant for only otorhinolaryngology [OR (95% CI) = 2.33 (1.35-4.04)] and sickness absence [1.70 (1.13-2.58)], other increases were notable--dermatology [1.6 (0.98-2.65)]; hospital stay [1.51 (0.92-2.45)], and pneumonology [2.10 (0.65-6.82)]. The least elevated outcomes were for general practice medicine [0.99 (0.65-1.48)] and global medical visits [1.18 (0.67-2.07)]. [Preziosi et al., 2004 ,(Table 2)] Odds ratios for relatively common health outcomes often lie farther from the null than the risk ratios most useful for quantifying the increase in risk. Risk ratios, or prevalence ratios (PRs, the equivalent measure of effect for cross-sectional data), have seldom been used because of the convenience and availability of logistic regression models that estimate odds ratios. With baseline prevalences ranging up to 85.7% in the data from Preziosi et

  17. Use of nose cap and fuselage pressure orifices for determination of air data for space shuttle orbiter below supersonic speeds

    NASA Technical Reports Server (NTRS)

    Larson, T. J.; Siemers, P. M., III

    1980-01-01

    Wind tunnel pressure measurements were acquired from orifices on a 0.1 scale forebody model of the space shuttle orbiter that were arranged in a preliminary configuration of the shuttle entry air data system (SEADS). Pressures from those and auxiliary orifices were evaluated for their ability to provide air data at subsonic and transonic speeds. The orifices were on the vehicle's nose cap and on the sides of the forebody forward of the cabin. The investigation covered a Mach number range of 0.25 to 1.40 and an angle of attack range from 4 deg. to 18 deg. An air data system consisting of nose cap and forebody fuselage orifices constitutes a complete and accurate air data system at subsonic and transonic speeds. For Mach numbers less than 0.80 orifices confined to the nose cap can be used as a complete and accurate air data system. Air data systems that use only flush pressure orifices can be used to determine basic air data on other aircraft at subsonic and transonic speeds.

  18. High-Reynolds-number turbulent-boundary-layer wall pressure fluctuations with skin-friction reduction by air injection.

    PubMed

    Winkel, Eric S; Elbing, Brian R; Ceccio, Steven L; Perlin, Marc; Dowling, David R

    2008-05-01

    The hydrodynamic pressure fluctuations that occur on the solid surface beneath a turbulent boundary layer are a common source of flow noise. This paper reports multipoint surface pressure fluctuation measurements in water beneath a high-Reynolds-number turbulent boundary layer with wall injection of air to reduce skin-friction drag. The experiments were conducted in the U.S. Navy's Large Cavitation Channel on a 12.9-m-long, 3.05-m-wide hydrodynamically smooth flat plate at freestream speeds up to 20 ms and downstream-distance-based Reynolds numbers exceeding 200 x 10(6). Air was injected from one of two spanwise slots through flush-mounted porous stainless steel frits (approximately 40 microm mean pore diameter) at volume flow rates from 17.8 to 142.5 l/s per meter span. The two injectors were located 1.32 and 9.78 m from the model's leading edge and spanned the center 87% of the test model. Surface pressure measurements were made with 16 flush-mounted transducers in an "L-shaped" array located 10.7 m from the plate's leading edge. When compared to no-injection conditions, the observed wall-pressure variance was reduced by as much as 87% with air injection. In addition, air injection altered the inferred convection speed of pressure fluctuation sources and the streamwise coherence of pressure fluctuations.

  19. Increasing the compression pressure in an engine by using a long intake pipe

    NASA Technical Reports Server (NTRS)

    Mathews, Robertson; Gardiner, Arthur W

    1924-01-01

    During some tests of a one-cylinder engine, using gas oil (diesel engine oil, specific gravity 0.86 at 60 F) with solid injection and compression ignition, it was found to be necessary to increase either the jacket water temperature or the compression pressure in order to start the engine. It was found that a sufficient increase in compression pressure could be obtained simply by attaching a long pipe to the inlet flange of the cylinder. However, since no data were available giving the values of the increase in compression pressure that might be expected from such a step-up, an investigation was made covering some engine speeds between 500 r.p.m. and 1800 r.p.m. The data obtained are included here in the form of curves. Although this data is not strictly applicable to another engine, it should give indications of what might be expected with such a set-up on an engine operating at similar speeds. The engine used was a single cylinder Liberty, 5-inch bore and 7-inch stroke, having standard cylinder, cams, valves, and valve timing and operating on a four-stroke cycle.

  20. A simple atmospheric pressure room-temperature air plasma needle device for biomedical applications

    NASA Astrophysics Data System (ADS)

    Lu, X.; Xiong, Z.; Zhao, F.; Xian, Y.; Xiong, Q.; Gong, W.; Zou, C.; Jiang, Z.; Pan, Y.

    2009-11-01

    Rather than using noble gas, room air is used as the working gas for an atmospheric pressure room-temperature plasma. The plasma is driven by submicrosecond pulsed directed current voltages. Several current spikes appear periodically for each voltage pulse. The first current spike has a peak value of more than 1.5 A with a pulse width of about 10 ns. Emission spectra show that besides excited OH, O, N2(C-B), and N2+(B-X) emission, excited NO, N2(B-A), H, and even N emission are also observed in the plasma, which indicates that the plasma may be more reactive than that generated by other plasma jet devices. Utilizing the room-temperature plasma, preliminary inactivation experiments show that Enterococcus faecalis can be killed with a treatment time of only several seconds.

  1. Atmospheric pressure discharge plasma decomposition for gaseous air contaminants -- Trichlorotrifluoroethane and trichloroethylene

    SciTech Connect

    Oda, Tetsuji; Yamashita, Ryuichi; Takahashi, Tadashi; Masuda, Senichi

    1996-03-01

    The decomposition performance of gaseous environmental destructive contaminants in air by using atmospheric pressure discharged plasma including the surface discharge induced plasma chemical processing (SPCP) was examined. The main contaminants tested were chlorofluorocarbon (CFC-113) and trichloroethylene, typically. The discharge exciting frequency range studied was wide--50 Hz to 50 kHz. Results showed the low frequency discharge requires high voltage to inject high electric power in the gas and to decompose the contaminants. A Gas Chromatograph Mass Spectrometer was used to analyze discharge products of dense CFC-113 or trichloroethylene. Among the detected products were HCl, CClFO, and CHCl{sub 3}. Two different electrode configurations; the silent discharge (coaxial) electrode and the coil-electrode were also tested and compared to each other as a gas reactor.

  2. Synthesis of ammonia directly from air and water at ambient temperature and pressure.

    PubMed

    Lan, Rong; Irvine, John T S; Tao, Shanwen

    2013-01-01

    The N≡N bond (225 kcal mol⁻¹) in dinitrogen is one of the strongest bonds in chemistry therefore artificial synthesis of ammonia under mild conditions is a significant challenge. Based on current knowledge, only bacteria and some plants can synthesise ammonia from air and water at ambient temperature and pressure. Here, for the first time, we report artificial ammonia synthesis bypassing N₂ separation and H₂ production stages. A maximum ammonia production rate of 1.14 × 10⁻⁵ mol m⁻² s⁻¹ has been achieved when a voltage of 1.6 V was applied. Potentially this can provide an alternative route for the mass production of the basic chemical ammonia under mild conditions. Considering climate change and the depletion of fossil fuels used for synthesis of ammonia by conventional methods, this is a renewable and sustainable chemical synthesis process for future.

  3. The frequency of dental abscesses increases in periods of low barometric pressure.

    PubMed

    Seemann, Rudolf; Svabik, Otto; Orlik, Alexander; Figl, Michael; Fischer, Michael B; Schicho, Kurt; Wutzl, Arno; Forster, Johannes; Jesch, Philip; Perisanidis, Christos; Undt, Gerhard; Millesi, Werner

    2015-11-01

    Bioclimatic conditions are thought to have an impact on the frequency of dental abscesses but previous studies have suffered from small patient cohorts, methodological obstacles, and restriction to a single site resulting in limited geographic and meteorological variability. The aim of the present study was to investigate the influence of environmental temperature and barometric pressure on the frequency of dental abscesses. Three maxillofacial and two dental clinics in Vienna retrospectively provided a total of 19,218 patients with dentoalveolar abscesses who were treated by intraoral incision between 1998 and 2011. Daily records from six local meteorological stations were consulted to assess daily meteorological parameters. Univariate and multivariate hurdle count regression models were fitted to estimate the effect of daily average barometric pressure and temperature on registered abscess frequencies. Temporal confounders causing variance of the observed abscess frequencies - such as weekday, business day, and month - were taken into consideration. On days of low barometric pressure a significant rise in dental abscess frequency was observed, even when adjusting for confounders. Environmental temperature, in contrast, did not show any effect. In conclusion, bioclimatic conditions affect health as low barometric pressure increases the number of patients with dental abscesses.

  4. High hydrostatic pressure increases amino acid requirements in the piezo-hyperthermophilic archaeon Thermococcus barophilus.

    PubMed

    Cario, Anaïs; Lormières, Florence; Xiang, Xiao; Oger, Philippe

    2015-11-01

    We have established a defined growth medium for the piezophilic hyperthermophilic archaeon Thermococcus barophilus, which allows growth yields of ca. 10(8) cells/ml under both atmospheric and high hydrostatic pressure. Our results demonstrate a major impact of hydrostatic pressure on amino acid metabolism, with increases from 3 amino acids required at atmospheric pressure to 17 at 40 MPa. We observe in T. barophilus and other Thermococcales a similar discrepancy between the presence/absence of amino acid synthesis pathways and amino acid requirements, which supports the existence of alternate, but yet unknown, amino acid synthesis pathways, and may explain the low number of essential amino acids observed in T. barophilus and other Thermococcales. T. barophilus displays a strong metabolic preference for organic polymers such as polypeptides and chitin, which may constitute a more readily available resource of carbon and energy in situ in deep-sea hydrothermal vents. We hypothesize that the low energy yields of fermentation of organic polymers, together with energetic constraints imposed by high hydrostatic pressure, may render de novo synthesis of amino acids ecologically unfavorable. Induction of this metabolic switch to amino acid recycling can explain the requirement for non-essential amino acids by Thermococcales for efficient growth in defined medium. PMID:26226334

  5. High hydrostatic pressure increases amino acid requirements in the piezo-hyperthermophilic archaeon Thermococcus barophilus.

    PubMed

    Cario, Anaïs; Lormières, Florence; Xiang, Xiao; Oger, Philippe

    2015-11-01

    We have established a defined growth medium for the piezophilic hyperthermophilic archaeon Thermococcus barophilus, which allows growth yields of ca. 10(8) cells/ml under both atmospheric and high hydrostatic pressure. Our results demonstrate a major impact of hydrostatic pressure on amino acid metabolism, with increases from 3 amino acids required at atmospheric pressure to 17 at 40 MPa. We observe in T. barophilus and other Thermococcales a similar discrepancy between the presence/absence of amino acid synthesis pathways and amino acid requirements, which supports the existence of alternate, but yet unknown, amino acid synthesis pathways, and may explain the low number of essential amino acids observed in T. barophilus and other Thermococcales. T. barophilus displays a strong metabolic preference for organic polymers such as polypeptides and chitin, which may constitute a more readily available resource of carbon and energy in situ in deep-sea hydrothermal vents. We hypothesize that the low energy yields of fermentation of organic polymers, together with energetic constraints imposed by high hydrostatic pressure, may render de novo synthesis of amino acids ecologically unfavorable. Induction of this metabolic switch to amino acid recycling can explain the requirement for non-essential amino acids by Thermococcales for efficient growth in defined medium.

  6. The frequency of dental abscesses increases in periods of low barometric pressure.

    PubMed

    Seemann, Rudolf; Svabik, Otto; Orlik, Alexander; Figl, Michael; Fischer, Michael B; Schicho, Kurt; Wutzl, Arno; Forster, Johannes; Jesch, Philip; Perisanidis, Christos; Undt, Gerhard; Millesi, Werner

    2015-11-01

    Bioclimatic conditions are thought to have an impact on the frequency of dental abscesses but previous studies have suffered from small patient cohorts, methodological obstacles, and restriction to a single site resulting in limited geographic and meteorological variability. The aim of the present study was to investigate the influence of environmental temperature and barometric pressure on the frequency of dental abscesses. Three maxillofacial and two dental clinics in Vienna retrospectively provided a total of 19,218 patients with dentoalveolar abscesses who were treated by intraoral incision between 1998 and 2011. Daily records from six local meteorological stations were consulted to assess daily meteorological parameters. Univariate and multivariate hurdle count regression models were fitted to estimate the effect of daily average barometric pressure and temperature on registered abscess frequencies. Temporal confounders causing variance of the observed abscess frequencies - such as weekday, business day, and month - were taken into consideration. On days of low barometric pressure a significant rise in dental abscess frequency was observed, even when adjusting for confounders. Environmental temperature, in contrast, did not show any effect. In conclusion, bioclimatic conditions affect health as low barometric pressure increases the number of patients with dental abscesses. PMID:26346764

  7. Prediction of aerodynamic heating and pressures on Shuttle Entry Air Data System (SEADS) nose cap and comparison with STS-61C flight data

    NASA Technical Reports Server (NTRS)

    Ting, Paul C.; Rochelle, William C.; Curry, Donald M.

    1988-01-01

    Results are presented from predictions of aerothermodynamic heating rates, temperatures, and pressures on the surface of the Shuttle Entry Air Data System (SEADS) nosecap during Orbiter reentry. These results are compared with data obtained by the first actual flight of the SEADS system aboard STS-61C. The data also used to predict heating rates and surface temperatures for a hypothetical Transatlantic Abort Landing entry trajectory, whose analysis involved ascertaining the increases in heating rate as the airstream flowed across regions of the lower surface catalycity carbon/carbon composite to the higher surface catalycity columbium pressure ports.

  8. Modelling of heat and mass transfer in a granular medium during high-temperature air drying. Effect of the internal gas pressure

    NASA Astrophysics Data System (ADS)

    Othmani, Hammouda; Hassini, Lamine; Lamloumi, Raja; El Cafsi, Mohamed Afif

    2016-02-01

    A comprehensive internal heat and water transfer model including the gas pressure effect has been proposed in order to improve the industrial high-temperature air drying of inserts made of agglomerated sand. In this model, the internal gas phase pressure effect was made perfectly explicit, by considering the liquid and vapour transfer by filtration and the liquid expulsion at the surface. Wet sand enclosed in a tight cylindrical glass bottle dried convectively at a high temperature was chosen as an application case. The model was validated on the basis of the experimental average water content and core temperature curves for drying trials at different operating conditions. The simulations of the spatio-temporal distribution of internal gas pressure were performed and interpreted in terms of product potential damage. Based on a compromise between the drying time and the pressure increase, a simple drying cycle was implemented in order to optimize the drying process.

  9. An air-pressure-free elastomeric valve for integrated nucleic acid analysis by capillary electrophoresis

    NASA Astrophysics Data System (ADS)

    Jung, Wooseok; Barrett, Matthew; Brooks, Carla; Rivera, Andrew; Birdsell, Dawn N.; Wagner, David M.; Zenhausern, Frederic

    2015-12-01

    We present a new elastomeric valve for integrated nucleic acid analysis by capillary electrophoresis. The valve functions include metering to capture a designated volume of biological sample into a polymerase chain reaction (PCR) chamber, sealing to preserve the sample during PCR cycling, and transfer of the PCR-products and on-chip formamide post-processing for the analysis of DNA fragments by capillary gel electrophoresis. This new valve differs from prior art polydimethylsiloxane (PDMS) valves in that the valve is not actuated externally by air-pressure or vacuum so that it simplifies a DNA analysis system by eliminating the need for an air-pressure or vacuum source, and off-cartridge solenoid valves, control circuit boards and software. Instead, the new valve is actuated by a thermal cycling peltier assembly integrated within the hardware instrument that tightly comes in contact with a microfluidic cartridge for thermal activation during PCR, so that it spontaneously closes the valve without an additional actuator system. The valve has bumps in the designated locations so that it has a self-alignment that does not require precise alignment of a valve actuator. Moreover, the thickness of the new valve is around 600 μm with an additional bump height of 400 μm so that it is easy to handle and very feasible to fabricate by injection molding compared to other PDMS valves whose thicknesses are around 30-100 μm. The new valve provided over 95% of metering performance in filling the fixed volume of the PCR chamber, preserved over 97% of the sample volume during PCR, and showed very comparable capillary electrophoresis peak heights to the benchtop assay tube controls with very consistent transfer volume of the PCR-product and on-chip formamide. The new valve can perform a core function for integrated nucleic acid analysis by capillary electrophoresis.

  10. Soot Surface Oxidation in Laminar Hydrocarbon/Air Diffusion Flames at Atmospheric Pressure. Appendix I

    NASA Technical Reports Server (NTRS)

    Xu, F.; El-Leathy, A. M.; Kim, C. H.; Faeth, G. M.; Yuan, Z.-G. (Technical Monitor); Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)

    2003-01-01

    Soot surface oxidation was studied experimentally in laminar hydrocarbon/air diffusion flames at atmospheric pressure. Measurements were carried out along the axes of round fuel jets burning in coflowing dry air considering acetylene-nitrogen, ethylene, propyiene-nitrogen, propane and acetylene-benzene-nitrogen in the fuel stream. Measurements were limited to the initial stages of soot oxidation (carbon consumption less than 70%) where soot oxidation occurs at the surface of primary soot particles. The following properties were measured as a function of distance above the burner exit: soot concentrations by deconvoluted laser extinction, soot temperatures by deconvoluted multiline emission, soot structure by thermophoretic sampling and analysis using Transmission Electron Microscopy (TEM), concentrations of major stable gas species (N2, H2O, H2, O2, CO, CO2, CH4, C2H2, C2H6, C3H6, C3H8, and C6H6) by sampling and gas chromatography, concentrations of some radical species (H, OH, O) by deconvoluted Li/LiOH atomic absorption and flow velocities by laser velocimetry. For present test conditions, it was found that soot surface oxidation rates were not affected by fuel type, that direct rates of soot surface oxidation by O2 estimated from Nagle and Strickland-Constable (1962) were small compared to observed soot surface oxidation rates because soot surface oxidation was completed near the flame sheet where O2 concentrations were less than 3% by volume, and that soot surface oxidation rates were described by the OH soot surface oxidation mechanism with a collision efficiency of 0.14 and an uncertainty (95% confidence) of +/- 0.04 when allowing for direct soot surface oxidation by O2, which is in reasonably good agreement with earlier observations of soot surface oxidation rates in both premixed and diffusion flames at atmospheric pressure.

  11. Chemerin promotes the proliferation and migration of vascular smooth muscle and increases mouse blood pressure.

    PubMed

    Kunimoto, Hidemizu; Kazama, Kyosuke; Takai, Mizuho; Oda, Mayuko; Okada, Muneyoshi; Yamawaki, Hideyuki

    2015-09-01

    Blood chemerin concentration shows positive correlation not only with body mass index and serum triglyceride level but also with systolic blood pressure. While it seems likely that chemerin influences vascular smooth muscle cell (SMC) proliferation and migration, which are crucial to the development of hypertension, this remains to be clarified. In the present study, we investigated whether chemerin controls SMC proliferation and migration in vitro and also affects blood pressure in vivo. In vitro, chemerin significantly stimulated rat mesenteric arterial SMC proliferation and migration, as determined by a cell counting assay and Boyden chamber assay, respectively. The migratory effect of chemerin was confirmed in human aortic SMCs. Chemerin significantly increased ROS production in SMCs and phosphorylation of Akt (Ser(473)) and ERK, as measured by fluorescent staining and Western blot analysis, respectively. Various inhibitors (ROS inhibitor: N-acetyl-l-cysteine, phosphatidylinositol 3-kinase inhibitor: LY-294002, MAPKK inhibitor: PD-98059, NADPH oxidase inhibitor: gp91 ds-tat, and xanthine oxidase inhibitor: allopurinol) as well as chemokine-like receptor 1 small interfering RNA significantly inhibited chemerin-induced SMC proliferation and migration. Furthermore, chemerin-neutralizing antibody prevented carotid neointimal hyperplasia in the mouse ligation model. In vivo, chronic chemerin treatment (6 μg/kg, 6 wk) increased systolic blood pressure as well as phosphorylation of Akt and ERK in the mouse isolated aorta. In summary, we, for the first time, demonstrate that chemerin/chemokine-like receptor 1 stimulates SMC proliferation and migration via ROS-dependent phosphorylation of Akt/ERK, which may lead to vascular structural remodeling and an increase in systolic blood pressure.

  12. Localized etching of polymer films using an atmospheric pressure air microplasma jet

    NASA Astrophysics Data System (ADS)

    Guo, Honglei; Liu, Jingquan; Yang, Bin; Chen, Xiang; Yang, Chunsheng

    2015-01-01

    A direct-write process device based on the atmospheric pressure air microplasma jet (AμPJ) has been developed for the localized etching of polymer films. The plasma was generated by the air discharge ejected out through a tip-nozzle (inner diameter of 100 μm), forming the microplasma jet. The AμPJ was capable of reacting with the polymer surface since it contains a high concentration of oxygen reactive species and thus resulted in the selective removal of polymer films. The experimental results demonstrated that the AμPJ could fabricate different microstructures on a parylene-C film without using any masks or causing any heat damage. The etch rate of parylene-C reached 5.1 μm min-1 and microstructures of different depth and width could also be realized by controlling two process parameters, namely, the etching time and the distance between the nozzle and the substrate. In addition, combining XPS analysis and oxygen-induced chemical etching principles, the potential etching mechanism of parylene-C by the AμPJ was investigated. Aside from the etching of parylene-C, micro-holes on the photoresist and polyimide film were successfully created by the AμPJ. In summary, maskless pattern etching of polymer films could be achieved using this AμPJ.

  13. Use of MODIS Cloud Top Pressure to Improve Assimilation Yields of AIRS Radiances in GSI

    NASA Technical Reports Server (NTRS)

    Zavodsky, Bradley; Srikishen, Jayanthi

    2014-01-01

    Improvements to global and regional numerical weather prediction have been demonstrated through assimilation of data from NASA's Atmospheric Infrared Sounder (AIRS). Current operational data assimilation systems use AIRS radiances, but impact on regional forecasts has been much smaller than for global forecasts. Previously, it has been shown that cloud top designation associated with quality control procedures within the Gridpoint Statistical Interpolation (GSI) system used operationally by a number of Joint Center for Satellite Data Assimilation (JCSDA) partners may not provide the best representation of cloud top pressure (CTP). Because this designated CTP determines which channels are cloud-free and, thus, available for assimilation, ensuring the most accurate representation of this value is imperative to obtaining the greatest impact from satellite radiances. This paper examines the assimilation of hyperspectral sounder data used in operational numerical weather prediction by comparing analysis increments and numerical forecasts generated using operational techniques with a research technique that swaps CTP from the Moderate-resolution Imaging Spectroradiometer (MODIS) for the value of CTP calculated from the radiances within GSI.

  14. Magnetospheric ULF waves with an increasing amplitude induced by solar wind dynamic pressure changes: THEMIS observations

    NASA Astrophysics Data System (ADS)

    Shen, X.; Zong, Q.; Shi, Q.; Tian, A.; Sun, W.; Wang, Y.; Zhou, X.; Fu, S.; Angelopoulos, V.; Pu, Z.; Hartinger, M.

    2014-12-01

    We report the in situ observation of the magnetospheric ultra-low frequency (ULF) waves with an increasing amplitude induced by solar wind dynamic pressure changes. We examine the magnetospheric responses to solar wind dynamic pressure enhancements from April 1, 2007 to December 31, 2012, and find six ULF wave events with slow but clear wave amplitude increase. The amplitudes of ion velocities and magnetic field of these waves continuously increase by 2.1 ˜ 4.4 times during three to six wave cycles. We choose two typical cases to further investigate the cause of this wave amplitude increase. We find that the wave amplitude growth is mainly contributed by the toroidal mode wave. Interestingly, toroidal mode waves are standing, while compressional and poloidal mode waves are not. Thus, we suspect that the wave amplitude increase may be caused by the superposition of two wave sources. One wave source is the standing wave excited by the solar wind dynamic impulse. Additionally, fast mode compressional wave continuously shakes the magnetic field lines. The azimuthal component of this magnetic perturbation is the second wave source. Furthermore, the simple model calculation of superposing two waves match the observations pretty well.

  15. Environmentally persistent free radicals decrease cardiac function and increase pulmonary artery pressure

    PubMed Central

    Mahne, Sarah; Chuang, Gin C.; Pankey, Edward; Kiruri, Lucy; Kadowitz, Philip J.; Dellinger, Barry

    2012-01-01

    Epidemiological studies have consistently linked inhalation of particulate matter (PM) to increased cardiac morbidity and mortality, especially in at risk populations. However, few studies have examined the effect of PM on baseline cardiac function in otherwise healthy individuals. In addition, airborne PM contain environmentally persistent free radicals (EPFR) capable of redox cycling in biological systems. The purpose of this study was to determine whether nose-only inhalation of EPFRs (20 min/day for 7 days) could decrease baseline left ventricular function in healthy male Sprague-Dawley rats. The model EPFR tested was 1,2-dichlorobenzene chemisorbed to 0.2-μm-diameter silica/CuO particles at 230°C (DCB230). Inhalation of vehicle or silica particles served as controls. Twenty-four hours after the last exposure, rats were anesthetized (isoflurane) and ventilated (3 l/min), and left ventricular function was assessed using pressure-volume catheters. Compared with controls, inhalation of DCB230 significantly decreased baseline stroke volume, cardiac output, and stroke work. End-diastolic volume and end-diastolic pressure were also significantly reduced; however, ventricular contractility and relaxation were not changed. DCB230 also significantly increased pulmonary arterial pressure and produced hyperplasia in small pulmonary arteries. Plasma levels of C-reactive protein were significantly increased by exposure to DCB230, as were levels of heme oxygenase-1 and SOD2 in the left ventricle. Together, these data show that inhalation of EPFRs, but not silica particles, decreases baseline cardiac function in healthy rats by decreasing cardiac filling, secondary to increased pulmonary resistance. These EPFRs also produced systemic inflammation and increased oxidative stress markers in the left ventricle. PMID:22942180

  16. Exercise prevents leptin-induced increase in blood pressure in Sprague-Dawley rats.

    PubMed

    Farhana, K; Effendi, I; Caszo, Brinnell; Satar, Nuraliza Abdul; Singh, H J

    2014-06-01

    Although leptin has been shown to increase blood pressure (BP), it is however unclear if this increase can be prevented by exercise. This study therefore investigated the effect of leptin treatment with concurrent exercise on blood pressure (BP), sodium output, and endothelin-1 (ET-1) levels in normotensive rats. Male Sprague-Dawley rats weighing 250-270 g were divided into four groups consisting of a control group (n = 6), leptin-treated (n = 8), non-leptin-treated exercise group (n = 8), and a leptin-treated exercise group (n = 8). Leptin was given subcutaneously daily for 14 days (60 μg/kg/day). Animals were exercised on a treadmill for 30 min at a speed of 0.5 m/s and at 5° incline four times per week. Measurement of systolic blood pressure (SBP) and collection of urine samples for estimation of sodium and creatinine was done once a week. Serum samples were collected at the end of the experiment for determination of sodium, creatinine and ET-1. At day 14, mean SBP and serum ET-1 level in the leptin-treated group was significantly higher than that in the control group whereas mean SBP and serum ET-1 level was significantly lower in the leptin-treated exercise group than those in leptin-treated and control groups. Creatinine clearance, urinary sodium excretion, and urine output were not different between the four groups. Regular treadmill exercise prevents leptin-induced increases in SBP in rats, which might in part result from increased urinary sodium excretion and preventing the leptin-induced increases in serum ET-1 concentration.

  17. Breathing responses of unanesthetized man and guinea pigs to increased transrespiratory pressure.

    PubMed

    Gillespie, J R; Bruce, E; Alexander, J; Mead, J

    1979-07-01

    We compared the breathing responses of unanesthetized men and guinea pigs to externally imposed shifts in lung volume produced by steady pressures applied to the body surface while the mouth remained near atmospheric pressure. Lung inflation caused no consistent or significant changes either in frequency or end-tidal CO2 in the three men. In contrast, during lung inflation the guinea pigs breathed at low frequencies and smaller tidal volumes and showed consistent increases in arterial PCO2 lasting up to 10 min. The changes seen immediately on application of pressure, namely apneic periods followed by breathing in which inspiratory duration was shortened while expiratory duration was substantially increased, indicates that conscious guinea pigs have active inflation reflexes. We concluded that the reflex responses rather than mechanical factors probably account for the underventilation in the guinea pigs and that guinea pigs are not nearly as well equipped as is man to defend gas exchange in the face of nonmetabolic shifts in lung volume. PMID:381262

  18. Neuropeptide W increases mean arterial pressure as a result of behavioral arousal

    PubMed Central

    Pate, Alicia T.; Yosten, Gina L. C.

    2013-01-01

    Neuropeptide W (NPW), an endogenous ligand for G protein-coupled receptors NPBWR1 (GPR7) and NPBWR2 (GPR8), has been detected in neurons in limbic and reticular activating system areas known to be important in arousal, as well as hypothalamic nuclei known to be important in food and water intake and the neuroendocrine response to stress. In rat, central administration of NPW increased mean arterial pressure (MAP) and behaviors associated with locomotion and grooming. We hypothesized that the NPW-induced increase in MAP was secondary to those increases in physical activity. Since peptides that stimulate arousal have been shown to increase sympathetic activity (e.g., orexin), we tested the ability of the mixed α1- and α2-adrenergic antagonist, phentolamine, to block the NPW-23-induced rise in MAP. Phentolamine pretreatment abrogated the NPW-induced MAP increase. However, we noticed the animals no longer exhibited NPW-associated behavioral arousal when pretreated with phentolamine. Anesthesia also blocked the NPW-induced increase in MAP, although the animals still were able to respond with an increase in MAP to centrally administered ANG II. Additionally, pretreatment with an orexin type 1 receptor antagonist significantly reduced the behavioral action of NPW-23 and completely blocked the peptide's action to increase MAP, suggesting that orexin neurons are downstream targets of NPW. Our results suggest that NPW increased MAP secondary to increased behavioral arousal. PMID:23926134

  19. Unique erosion features of hafnium cathode in atmospheric pressure arcs of air, nitrogen and oxygen

    NASA Astrophysics Data System (ADS)

    Ghorui, S.; Meher, K. C.; Kar, R.; Tiwari, N.; Sahasrabudhe, S. N.

    2016-07-01

    Experimental investigation of cathode erosion in atmospheric pressure hafnium-electrode plasma torches is reported under different plasma environments along with the results of numerical simulation. Air, nitrogen and oxygen are the plasma gases considered. Distinct differences in the erosion features in different plasmas are brought out. Cathode images exhibiting a degree of erosion and measured erosion rates are presented in detail as a function of time of arc operation and arc current. Physical erosion rates are determined using high precision balance. The changes in the surface microstructures are investigated through scanning electron microscopy (SEM). Evolution of cathode chemistry is determined using energy dispersive x-ray spectroscopy (EDX). Numerical simulation with proper consideration of the plasma effects is performed for all the plasma gases. The important role of electromagnetic body forces in shaping the flow field and the distribution of pressure in the region is explored. It is shown that the mutual interaction between fluid dynamic and electromagnetic body forces may self-consistently evolve a situation of an extremely low cathode erosion rate.

  20. Phenol production in benzene/air plasmas at atmospheric pressure. Role of radical and ionic routes.

    PubMed

    Ascenzi, Daniela; Franceschi, Pietro; Guella, Graziano; Tosi, Paolo

    2006-06-29

    Benzene can be efficiently converted into phenol when it is treated by either corona or dielectric barrier discharge (DBD) plasmas operating at atmospheric pressure in air or mixtures of N(2) and O(2). Phenol produced by corona discharge in an atmospheric pressure chemical ionization source (APCI) has been detected as the corresponding radical cation C(6)H(5)OH(+*) at m/z 94 by an ion trap mass spectrometer. On the other hand, phenol has been observed also as neutral product by gas chromatography-mass spectrometry analysis (GC-MS) after treatment in a DBD plasma. Experiments aimed at shading light on the elementary processes responsible for benzene oxidation were carried out (i) by changing the composition of the gas in the corona discharge source; (ii) by using isotopically labeled reagents; and (iii) by investigating some relevant ion-molecule reactions (i.e. C(6)H(6)(+*) + O(2), C(6)H(5)(+) + O(2)) via selected guided ion beam measurements and with the help of ab initio calculations. The results of our approach show that ionic mechanisms do not play a significant role in phenol production, which can be better explained by radical reactions resulting in oxygen addition to the benzene ring followed by 1,2 H transfer.